
Examination of Planning under Uncertainty Algorithms for
Cooperative Unmanned Aerial Vehicles

by
Rikin Bharat Gandhi

B.S. Computer Science,
Carnegie Mellon University, 2003

SUBMITTED TO THE DEPARTMENT OF AERONAUTICS AND ASTRONAUTICS
IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE IN AERONAUTICS AND ASTRONAUTICS
AT THE

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

FEBRUARY 2005

@ Rikin Bharat Gandhi, MMV. All rights reserved.

The author hereby grants to MIT permission to reproduce and to distribute publicly paper
and electronic copies of this thesis document in whole or in part.

Author
Department of Aeronautics and Astronautics

Certified by

January 21, 2005

Lee C. Yang, Ph.D.(A
Charles Stark Draper Laboratory

Technical Supervisor

Certified by

Accepted by
MASSACHUSETTS TNSTITU IL

MASSACHUSETTS 1iNSTTUTE-
OF TECHNOLOGY

FEB 10 2005

j Nicholas Roy
Professor qf Aeronautics and Astronautic's

Thesis Advisor

Jaime Peraire
P fessor of Aeronautics and Astronautics

Chair, Committee on Graduate Students

MARO I

I

[Except for this sentence, this page intentionally left blank]

2

Examination of Planning under Uncertainty Algorithms for
Cooperative Unmanned Aerial Vehicles

by
Rikin Bharat Gandhi

Submitted to the Department of Aeronautics and Astronautics
on January 21, 2005, in partial fulfillment of the

requirements for the degree of
Master of Science in Aeronautics and Astronautics

ABSTRACT

Cooperation is essential for numerous tasks. Cooperative planning seeks actions to
achieve a team's common set of objectives by balancing both the benefits and the costs of
execution. Uncertainty in action outcomes and external threats complicates this task.
Planning algorithms can be generally classified into two categories: exact and heuristic.
In this thesis, an exact planner, based on Markov decision processes, and a heuristic,
receding horizon controller are evaluated in typical planning problems. The exact
planner searches for an optimal policy with global contingencies, while the heuristic
controller sequentially approximates the global plans over local horizons.

Generally, the two planners trade mission and computational performance.
Although the results are limited to specific problem instances, they provide
characterizations of the algorithms' capabilities and limitations. The exact planner's
policy provides an optimal course of action for all possible conditions over the mission
duration; however, the algorithm consumes substantial computational resources. On the
other hand, the heuristic approach does not guarantee optimality, but may form worthy
plans without evaluating every contingency.

On a fully-observable battlefield, the planners coordinate a team of unmanned
aerial vehicles (UAVs) to obtain a maximum reward by destroying targets. Stochastic
components, including UAV capability and attrition, represent uncertainty in the
simulated missions.

For a majority of the examined scenarios, the exact planner exhibits statistically
better mission performance at considerably greater computational cost in comparison to
the heuristic controller. Scalability studies show that these trends intensify in larger
missions that include increasing numbers of UAVs and targets. Additionally, sensitivity
trials are used to capture each algorithm's robustness to real world planning environments
where planners must negotiate incomplete or inaccurate system models. The mission
performances of both methods degrade as the quality of their system models worsen

Technical Supervisor: Lee C. Yang
Title: Senior Member of Technical Staff

The Charles Stark Draper Laboratory, Inc.

Thesis Advisor: Nicholas Roy
Title: Assistant Professor

Department of Aeronautics and Astronautics

3

[Except for this sentence, this page intentionally left blank]

4

DEDICATION

In January 1963, MIT/Draper fellow Edwin "Buzz" Aldrin submitted his doctoral thesis

in dedication "to the crew members of this country's present and future manned space

programs. If only I could join them in their exciting endeavors!" Six years later on July

20, 1969 he leaped mankind onto the lunar surface with Neil Armstrong.

To all those who aspire to explore and soar above our blue origins

5

[Except for this sentence, this page intentionally left blank]

6

ACKNOWLEDGEMENT

Thank you.

I thank the many family, friends, professors, advisors, employers, co-workers, astronauts,

scientists, writers, musicians, artists, athletes, theologians, and dreamers who have

supported and inspired me for the journey ahead.

This thesis was prepared at The Charles Stark Draper Laboratory, Inc.

Publication of this thesis does not constitute approval by Draper or the sponsoring agency

of the findings or conclusions contained herein. It is published for the exchange and

stimulation of ideas.

Rikin B. Gandhi

January 21, 2005

7

[Except for this sentence, this page intentionally left blank]

8

Contents
Nomenclature 13

Acronyms 15

1 Introduction 17
1.1 M otivation...18

1.1.1 Firefighting exam ple .. 18
1.1.2 A ir traffic control exam ple... 19

1.2 Overview ... 20
1.3 D ecision- m aking for cooperative planning... 21

1.3.1 D ecision problem s .. 21
1.3.2 D ecision-m akers... 21
1.3.3 D ecision system s... 23
1.3.4 D ecision rew ards... 25
1.3.5 D ecision planning .. 26
1.3.6 Cooperation, coordination, and com m unication... 27
1.3.7 Thesis structure ... 30

2 Problem 33
2.1 Objectives..33
2.2 Overview ... 34
2.3 Form ulation... 35

2.3.1 Sim ulation scenario.. 36
2.3.2 A utom ated solvers .. 37
2.3.3 System dim ensionality... 38
2.3.4 Evaluating planning algorithm s .. 40

3 Planning Algorithms 43
3.1 Overview ... 43
3.2 M arkov decision processes ... 44

3.2.1 H istorical origins ... 44
3.2.2 Fully-observable fram ew ork ... 46
3.2.3 M D P optim al policy solvers .. 47

3.2.3.1 Linear program m ing ... 48
3.2.3.2 V alue iteration... 48
3.2.3.3 Policy iteration.. 49
3.2.3.4 Curse of dim ensionality... 49

3.2.4 Stochastic planning using decision diagram s ... 50
3.2.4.1 A ction representation... 51
3.2.4.2 Rew ard representation.. 54
3.2.4.3 Policy representation.. 54

3.2.5 Factors affecting SPU D D 's optim al policy .. 57

9

3.2.5.1 Expected utility computations for one-UAV, two-target scenario 57
3.2.5.2 Expected utility computation for one-UAV, three-target scenario......... 64
3.2.5.3 Dim ensionality of expected utility computations 66

3.3 Receding Horizon ... 66
3.3.1 Background ... 67
3.3.2 Control schem e .. 67

3.3.2.1 Transform ation of the m ission problem ... 68
3.3.2.2 Formulation of the optim ization problem ... 69
3.3.2.3 Stationary vehicle-to-target assignm ents .. 72
3.3.2.3 Cooperative assignment for a two-UAV, two-target scenario 73

3.4 Relationship of SPUDD and RH planners .. 75
3.4.1 Problem s of optim ization... 75
3.4.2 Optim al versus greedy controllers .. 77

3.4.2.1 Valuation of plans... 77

4 Results 81
4.1 Overview ... 81
4.2 Test cases .. 81

4.2.1 Scenario 1.. 82
4.2.1.1 SPUDD and RH comparison ... 83
4.2.1.2 SPUDD sensitivity to UAV capability m odel 86
4.2.1.3 SPUDD and RH sensitivity to partially-observable munitions............ 88

4.2.2 Scenario 2.. 92
4.2.2.1 SPUDD and RH com parison... 93
4.2.2.2 SPUDD and RH perform ance gain with fuel....................................... 96

4.2.3 Scenario 3.. 98
4.2.3.1 SPUDD and RH com parison ... 99
4.2.3.2 SPUDD sensitivity to reward valuations .. 103

4.2.5 Scalability...105

5 Conclusions 113
5.1 Sum m ary ... 113
5.2 Capabilities and Lim itations ... 114
5.3 Future directions ... 116

5.3.1 Perform ance m etrics .. 116
5.3.1.1 M ission m easures .. 116
5.3.1.2 Computation m easures .. 116

5.3.2 Planning m odels ... 117
5.3.2.1 Scope... 117
5.3.2.2 Robustness .. 117

5.3.3 Scenarios .. 118

References 121

10

List of Figures

1-1 Firefighting coordination and planning.. 18
1-2 A ir traffic control routing... 20
1-3 Generic view of an agent's interaction with a system...22
1-4 Interaction of an air traffic controller agent with airspace system.....................23
1-5 Mission planning with stationary policies versus successive re-planning..........27
1-6 Comparison of cooperate planning approaches..29

2-1 Hierarchical planning approach used in cooperative UAV simulation...............35
2-2 Cooperative three-UAV, six- target simulation scenario.....................................36
2-3 Complexity classification of possible system dimensions.................................. 40

3-1 Relationship of various M arkov models.. 45

3-2 Fully-observable, UAV mission state variables.. 46

3-3 Example strike action ADD for the simulated UAV mission............................. 53
3-4 Example reward ADD for the simulated UAV mission.....................................54
3-5 Example value function ADD for the simulated UAV mission..........................55
3-6 Example policy ADD for the simulated UAV mission....................................... 56
3-7 Canonical one-UAV, two-target scenario... 58

3-8 Action tree for the one-UAV, two-target scenario..59
3-9 Expected utility as a function of rewards.. 60
3-10 Expected utility as a function of action costs.. 61
3-11 Expected utility as a function of the ratio of action costs................................... 62
3-12 Expected utility as a function of discount rate... 63

3-13 Expected utility as a function of strike success probability and rewards............ 64

3-14 One-UAV, three-target expected utility as a function of rewards...................... 65

3-15 Receding horizon controller's integrated planning approach............................. 67
3-16 Possible RH heading assignments for a two-UAV, two-target scenario............. 73
3-17 System model comparison of the SPUDD planner and RH controller...............76

4-1 Scenario 1: Initial system with two UAVs and eight targets.............................. 83

4-2 Scenario 1: Typical target sequencing for each UAV on a per planner basis.........84
4-3 Scenario 1: Mission statistics for SPUDD policy.. 85
4-4 Scenario 1: M ission statistics for RH strategy... 86

4-5 Scenario 1: SPUDD's sensitivity to the accuracy of first strike probability...........88
4-6 Scenario 1: Mission statistics for SPUDD with partially-observable munitions 89

4-7 Scenario 1: Mission statistics for RH with partially-observable munitions..... 90
4-8 Scenario 1: Summary of average targets destroyed for each test case............... 91
4-9 Scenario 2: Initial system with three UAVs and nine targets............................. 92

4-10 Scenario 2: Typical target sequencing for each UAV on a per planner basis.........93
4-11 Scenario 2: Mission statistics for SPUDD policy.. 94

4-12 Scenario 2: Mission statistics for RH strategy.. 95

11

4-13 Scenario 2: Mission performance as a function of initial fuel............................. 98
4-14 Scenario 3: Initial system with three UAVs and eight targets............................ 99
4-15 Scenario 3: M ission statistics for SPUDD policy... 100
4-16 Scenario 3: Nominal target assignment sequence for the RH controller.............. 101
4-17 Scenario 3: Typical target sequencing for each UAV on a per planner basis....... 102
4-18 Scenario 3: M ission statistics for RH strategy.. 103
4-19 Scenario 3: Mission statistics for SPUDD with distorted reward......................... 104
4-20 Scenario 3: Summary of performance metrics for each test case..........................105
4-21 Standardized scenario exam ples.. 106
4-22 Planning times of SPUDD and RH planners for standardized scenarios.............. 108
4-23 Maximum memory usage of SPUDD and RH planners..109
4-24 Representation sizes of SPUDD ADD and equivalent tree structures.................. 110
4-25 Mission and computational performances of SPUDD and RH planners.............. 111

12

Nomenclature

N
Xk

xj (t)

M

Yk

D
0
max-strikes
R
Rwnax

Ti

Wi

f, (tA)

g1 (t)

ziI(tk)

C

number of identical, unmanned aerial vehicles (UAVs)
set of participating UAV positions at time tk

two-dimensional coordinates of the jth vehicle at time t

number of fixed, target sites
set of participating target positions at time tk
two-dimensional coordinates of the ith target

UAV's initial fuel
UAV's initial munitions
maximum number of strikes on a single target
reward function
maximum reward valuation
indicator of ith target site's destruction
value for ith target site
available fuel of UAV j at time tk

available munitions of UAV j at time tk

number of strikes that have been executed by UAV j on target i at time tk

constant velocity of the UAVs

Markov decision process model
set of possible system states
set of possible joint actions
Markovian state transition model
normalized relevance state value
discount factor
stationary policy function
expected value of policy p
optimal value function
optimal policy
Bellman error of a value function

11
S
A
P
a
13
p
V,

V*

RP
t *

t
Uk

H

A,

set of receding horizon optimizations
time of the kth optimization
joint-heading assignment at time tk
length of planning horizon at time tk
relative distance function between vehiclej and target i

normalized relative proximity function

"capture radius" of target i

13

[Except for this sentence, this page intentionally left blank]

14

Acronyms

DBN dynamic Bayesian network
FAA Federal Aviation Administration
GHz gigahertz
GPS global positioning system
HMM hidden Markov model
LP linear programming
MDP Markov decision process
NP-hard nondeterministic polynomial-time hard
POMDP partially-observable Markov decision process
RAM random access memory
RH receding horizon
SPUDD stochastic planning using decision diagrams
UAV unmanned aerial vehicle

15

[Except for this sentence, this page intentionally left blank]

16

I Introduction
"He who fails to plan, plans to fail"

- Unknown

Everyday experiences are adventures in decision- making. The simple choice of taking a

short-cut to work balances the risk of encountering traffic and the cost of greater mileage.

A commuter might keep alternate routes in case of congestion, based on intuition, traffic

reports, or previous experience. Meanwhile, a more care-free commuter wait s until she is

in a jam to consider her options. Consider a similar scenario at a grocery store where

there is a special sale on cookies. A customer may balance his purchases for the foods he

needs with those he desires to fit inside his shopping basket, depending on his food stock

at home, pricing, diet, marketing, emotion, weather, etc. While one customer may forgo

the sale to restock his supply of milk, another may first visit the cookies aisle and not

keep enough space for milk. Decision-makers must select a course of action (or plan) to

attain some objective. The pervasiveness of uncertainty in the real world causes some to

construct contingencies for off-nominal circumstances. Others delay such decisions until

the events actually occur.

17

1.1 Motivation

The planning problem is complicated in the presence of other decision-makers (or agents)

with similar or conflicting goals. This section provides multi-agent planning examples to

illustrate the importance of automated decision-making and the difficulty of selecting an

"optimal" decision

1.1.1 Firefighting example

Consider the firefighting scenario that is illustrated in Figure 1-1. The alarm rings at the

firehouse for a fire at an old apartment complex First, the fire chief must judge the

strength of the blaze to select assets to send to the scene. The chief must dispatch enough

firefighters and trucks to control the current situation, while maintaining adequate

resources at the firehouse for other emergencies. Then, the fire truck drivers must choose

routes to get to the scene. Their decision will likely be based on distance and anticipated

traffic conditions. The drivers may plan alternate routes prior to their departure as

contingencies to possible jams. Once the fire trucks arrive at the scene, the chief

coordinates his firefighters to efficiently rescue occupants and extinguish the blaze.

Following the chief's guidance, each individual firefighter needs to select a specific path

within the building to reach his assignment. The fighter might choose intermediate

waypoints based on proximity, anticipated danger, or an unexpected event (such has

hearing an occupant's call for help).

(1) (2) (3) (4)

Figure 1-1 Planning for firefighting: (1) allocate fire trucks, (2) plan routes to scene, (3)

coordinate firefighters, (4) firefighters choose paths to rescue occupants

18

The allocation and path-planning flow for the firefighting problem is illustrated in

Figure 1-1. The fire chief allocates the fire trucks in (1) and the firefighters in (3). The

fire truck drivers determine their routes in (2) and the firefighters choose their paths

within the building in (4). Each decision-maker uses a varied set of information

resources to make their choice. Each choice impacts the safety of the firefighters and

occupants, and their ability to accomplish their rescue and extinguishing objectives.

Uncertainty pervades nearly every aspect of this scenario. The fire chief, truck drivers,

and firefighters keep contingencies to preclude the effects ofunexpected events. Still, the

emergency of the fire limits the time that can be spent planning for every possible

situation.

1.1.2 Air traffic control example

Now, consider the cooperative task of air traffic controllers. Air traffic controllers are

responsible for directing aircraft within the national air space to their destinations. While

airlines select high-level flight routes, air traffic controllers provide detailed bearings to

aircraft within predefined quadrants of airspace. For each aircraft that enters her

airspace, a controller provides pilots with specific navigation instructions and updated

weather and traffic conditions. The controllers direct pilots to maintain headings and

altitudes for specified durations to fly through particular intermediate (waypoint)

locations. The hierarchical planning structure of the aircraft routing is shown in Figure 1-

2. The airlines provide (1) aircraft allocation and (2) high-level coordination of flights to

city-pair routes. Air traffic control provides pilots with (3) detailed waypoint guidance in

each section of airspace. Uncertainties related to weather, traffic, or emergencies have

led the Federal Aviation Administration (FAA) to provide controllers with contingency

directives for known possible situations. For unanticipated events, the guidelines serve

the controllers as a basis for making justified decisions.

19

Figure 1-2 Air traffic control routing: (1) airlines allocate aircraft and (2) select city-pair

routes, (3) controllers provide pilots with detailed guidance through airspace

1.2 Overview

The decision-making agents in the firefighting and air traffic control examples are

cooperative. That is, the decision-makers share common objectives or some subset of

them Decision- makers must coordinate and sequence actions that have immediate and

long-term effects. These decisions are complicated by uncertainty. Uncertainty is

ubiquitous in the real world. The results of an action, system dynamics, or even the

environment itself may be unknown and nondeterministic.

Technology and algorithm advances have enabled researchers to address some of

these complex decision-making under uncertainty problems. Scalability to handle large

real world planning problems is a continuing challenge. The automated methods that are

used to solve such planning problems range from exact to heuristic. In this thesis, an

exact planner, based on Markov decision processes (MDPs), which searches for an

optimal policy with global contingencies, is compared to a heuristic, receding horizon

controller that sequentially selects approximate plans over more localized spaces. The

algorithms are examined in various scenarios to characterize the ir capabilities and

limitations. The two approaches are characterized by distinctive computatioml

requirements and behavioral attributes. This thesis focuses on evaluating both classes of

automated decision-making methods for cooperative planning under uncertainty

problems. The empirical examination benchmarks each method's planning ability in

20

simulated, mission scenarios based on behavioral performance, computational scalability,

and robustness.

1.3 Decision-making for cooperative planning

This section provides the framework for the decision- making problem that is considered

in this thesis.

1.3.1 Decision problems

Decision-making problems are based on the interaction of the agent with the world and

other agents. The term "agents" simply refers to decision-makers. In the cooperative

planning examples, the fire chief firefighters, airline schedulers, air traffic controllers,

and pilots have functional roles as agents. The decision problem is to select actions that

achieve these goals. In the previous examples, the fire chief faced the problem of

allocating his firefighters to effectively extinguish the fire and rescue occupants, and the

air traffic controller had to determine the safest routes for aircraft in her airspace.

The decision problem is dependent on the desired contingency capability. Pre-

mission contingency planning provides agents with alternative courses of action in the

presence of uncertain events. Oppositely, some planners delay the elaboration of possible

situations, and may sequentially make decisions over local spaces.

1.3.2 Decision-makers

Agents' decisions result in actions that affect the system. As shown in Figure 1-3, agents

choose actions that influence the state of the system to achieve some immediate or future

reward. Typically, this selection is based on the agent's perception(p) of the system state

(s). An agent acquires this perception as a function (P) of the system state. In a fully-

observable environment, the perception function provides a true view of the system

Otherwise, the system state is partially-observable. An action selection function (A)

maps the agent's perception to a particular action choice (a). Once an action has been

21

performed, a transition function () determines its effects on the actual state. The agent

may receive some reward (r) based on a reward function (R) of the system state.

System-based

Action (a)
Perception Perception (p)
function (P)

Action

Reward Reward 'r) function (A)
function (R)

------ e------------------------------------ -b -d

Figure 1-3 Generic view of an agent's interaction with a system. Functionality that

occurs on the agent-side is indicated separately from those in the system.

An idealized air traffic control example clarifies this process in Figure 1-4. Suppose an

air traffic controller is providing guidance to an aircraft in her assigned airspace. The

controller perception (p) of the aircraft's position is based on her radar monitor (P).

Assuming the radar monitor is always complete and accurate, the controller can observe

the state of every aircraft in her airspace. The controller now directs (a) the aircraft's

pilot to a certain heading and altitude. Her guidance causes the pilot to fly (T) to the

specified waypoint. Now, the state (s) of the system changes because the aircraft's

position has changed. A supervisor might observe the state of the system and recognize

(r) the controller for safely managing her airspace. Notice that the aircraft pilots are not

viewed as decision-makers in this idealized example. That is, the aircraft are assumed to

strictly follow the controller's guidance.

22

The joint action decisions of all participating agents factor into the overall system

dynamics. For example, one air traffic controller might direct an aircraft to move from

its current position to a destination in another's airspace. The congestion of a particular

quadrant of airspace is then determined by the collective decisions of the nation's air

traffic controllers (decision- makers).

Figure 1-4 Interaction of an air traffic controller "agent" with airspace "system"

1.3.3 Decision systems

Decision-makers select actions to interact with a system Aspects of the world that are

ignored or irrelevant belong to the environment. To produce a plan of action, the

decision- maker must have a representation of the system that is to be acted upon

In the real world, systems continually evolve with time. Each system component

is characterized by a set of state variables, and a system's overall state is defined by the

aggregation of these component states. For instance, an air traffic controller's quadrant

of airspace might be described by one or more state variables, including aircraft

positions, squawk codes, weather conditions, etc. The national airspace's overall state is

determined by the totality of these state variables for every quadrant that comprises it.

23

a

The completeness and accuracy of a planner's system model impacts its

behavioral and computational performance. Problems in artificial intelligence are

problems of agents interacting with an external world [35]. These interactions can vary

across a limitless space. A system's dimensions from a decision-maker's perspective

include:

e episodic v. sequential tasks

An agent's task that is independent of past performance and does not affect future

objectives is episodic. Sequential tasks depend on an interconnected sequence of

decisions.

e single-agent v. multiple agent

Systems may be comprised of one or more agents.

e discrete v. continuous states and actions

Discrete systems can be divided into categories. That is, each perception belongs

to a distinct set of possibilities. Continuous systems lack such classifications with

only ranges for the perception.

e fully-observable v. partially-observable states

An agent uses its perception of the system to determine its course of action. If

each agent has a complete, true view of every state, the system is fully-

observable. Partially-observable systems include states that are inaccessible to

the agents.

e Markovian v. non-Markovian dynamics

In Markov system, the effects of an action taken in a particular state depend only

on that state and not on prior history. In non-Markovian systems, historical data

from a previous state is sometimes needed to accurately forecast the future.

e deterministic v. stochastic v. strategic transitions

24

In a purely deterministic system, state transitions are well-defined by a function of

the previous state. Strategic systems are essentially deterministic systems with

multiple agents. Stochastic systems include elements of uncertainty in state or

transitions between states. That is, an action performed in one state might

produce a different transition in the same state at a later time. Still, the

probabilities that form the basis for these stochastic transitions are fixed over

time.

e synchronous v. asynchronous

State transitions in synchronous systems occur whenever an agent performs an

action. For synchronous systems with multiple agents, time progresses only when

a joint action is performed. That is, the system "waits" for the agents to take

action. Synchronous systems do not require actions to be completed in a fixed

time window. In asynchronous systems, the system continuously changes without

reference to the agents.

e static v. dynamic

Static systems, an analogous concept to synchronicity, do not change while an

agent perceives the state of the system or deliberates its next course of action.

Time is a critical fictor in dynamic systems. Some ieal world agents have to

contend with dynamic, asynchronous systems that advance along a continuum of

change.

1.3.4 Decision rewards

Decision-makers have a capitalistic basis for selecting their course of action -

maximizing reward. Positive rwards are typically awarded for specific states which

satisfy mission objectives. Negative rewards are usually assigned to unfavorable states or

costly actions. The number of lives saved and property damages prevented are possible

rewards for the firefighters. Similarly, air traffic controllers might view the number of

flights guided without incident as a rewarding quantity.

25

Rewards provide an assessment of an agent's decision-making performance. For

rewards to affect an agent's course of action, the agent must have some ability to quantify

the reward that has been earned. The ability for an agent to forecast its expected future

rewards based on a perception of the current system is an important property of the

planning methods examined in this thesis.

1.3.5 Decision planning

In a fully-observable and deterministic system, agents may simply follow a sequence of

actions that are set prior to mission execution This approach depends on complete and

accurate models of the system's initial state and dynamics. Suppose all aircraft were

known to enter an air traffic controller's airspace at fixed intervals and coordinates. The

controller could issue the same guidance to the same aircraft everyday. Unfortunately,

the real world is not so predictable. Routes alter, emergencies occur, weather fluctuates,

etc. A decision-maker may choose to follow a deterministic approach until a particular

event occurs and keep a conditional plan to respond appropriately. Conditional planners

prescribe actions that are contingent on the appearance of certain system attributes. For

instance, the air traffic controller may provide aircraft with specific routing instructions

depending on the visibility conditions of her airspace.

Using stochastic models of uncertainty, policies can elaborate conditional plans to

relate action choices with every possible state of the system (stationary) or past events

(non-stationary). Decision-makers may use these policies to maximize the expected

utility of actions over the mission duration Stationary policies provide a set of

contingency options for systems in which a known set of possible states may occur with

some uncertainty. Universal stationary policies, which map the complete set of possible

state to action choices, can be difficult to scale.

On the other hand, some re-planning methods segment the mission duration into

more manageable planning blocks. For instance, a greedy approach might sequentially

select actions that provide immediate gain, rather than forecasting states that might occur

over the mission duration. Although this heuristic reduces complexity, it does not

guarantee optimality or correctness.

26

The methodologies of planners that generate stationary policies and those that

sequentially re-plan are illustrated in Figure 1-5. Stationary policies formulate universal

contingency plans over the entire mission duration to handle uncertainty. On the other

hand, a re-planning method may successively plan over shorter time horizons and react to

unexpected events. At time step i, this planner selects actions RPi, which are executed

over the particular horizon length. This thesis examines both planners that generate

universal stationary policies and those that sequentially re-plan.

Mission Duration

Stationary
time

RP, RP 2 RP3 ... RPn
Re- 7
planning time

Figure 1-5 Mission planning with stationary policies versus successive re-planning

1.3.6 Cooperation, coordination, and communication

Cooperative agents perform actions in pursuit of achieving the team's common set of

objectives. Cooperation is essential for numerous tasks. These include swarms of

unmanned aerial vehicles (UAVs) performing military surveillance and reconnaissance,

earthquake rescuers working with search dogs and robots to find missing persons, and

firefighters extinguishing a blaze. Agents are cooperating if the addition of a new agent

increases the productivity of the group or the actions of the agents avoid or solve possible

conflicts [25]. Sergiy Butenko proposed a unified framework for cooperation [8]:

1. requires more than one entity,

2. the entities have some dynamic behavior that influences the decision space,

27

3. the entities share at least one common objective, and

4. entities are able to share information about themselves and the system

Cooperation usually requires some level of coordination. Coordination involves

managing an individual agent's local actions to support the team's mission objectives.

Some systems utilize a unifying coordinator to direct individual entities as a team, others

rely on the participants to cooperatively interact, and still others use a hybrid approach in

which a team member is provincially designated as a coordinator. In the first, the

coordinator is a centralized planner that sees all, decides all, and tells all. As illustrated

in Figure 1-6a, the coordinator observes the system, selects a mutually beneficial course

of action for the team, and informs individual participants to interact with the system

accordingly. Figure 1-6b depicts the planning structure of a more decentralized

approach. Other circumstances might require individuals to coordinate themselves. In

these cases, each team member is a decision-maker that fully incorporates the agent

attributes shown in Figure 1-3. Additionally, some cooperative systems use a hybrid

approach in which a participating agent operates as both a coordinator and a team

member. In the event the leading agent is lost, its role can be transferred to an available

teammate.

28

Figure 1-6 Comparison of (a) hierarchical and (b) decentralized approaches to

cooperative planning. Entities with agent roles are highlighted.

An important property of positive cooperation is the improvement of some aspect of the

goal fulfillment process with each additional team member. That is, the participants

achieve their common goal with greater speed, better performance, and/or lesser cost by

operating cooperatively rather than individually. Purposes for cooperation include

accomplishing tasks that might be impossible to perform alone, improving the

productivity of agents, increasing the number of tasks performed within a given time,

reducing the time to perform tasks, and improving the use of resources. In the

firefighting scenario, the fire chief must determine the most effective number of

firefighters to send into a burning building. The chief must choose enough firefighters to

extinguish the blaze without unnecessarily risking lives. At first, each additional

firefighter contributes positively to rescuing occupants and extinguishing the fire;

however, the cooperative value of dispatching additional firefighters increases to a point

of diminishing returns. Eventually, the building becomes overcrowded with firefighters

that neither speed the mission nor improve the team's ability to succeed. Instead, these

extra firefighters represent a liability.

29

Communication usually emerges as a rational mechanism for cooperation and

coordination [35]. Even in fully-observable systems, agents might wish to ensure that

their actions positively contribute to the fulfillment of their goals. Communication

expands the perceptive capacities of agents and can serve as a fundamental means to

distribute tasks and coordinate actions. To this end, hierarchical coordinators exchange

state and strategy information with each individual agent, and decentralized team

members communicate with each other. In the firefighting scenario, ie chief might

coordinate his team by receiving firefighter reports, selecting the next course of action,

and responding to firefighters with appropriate directions. Appropriate devices for this

interaction might be wireless, GPS-enabled handheld computers or simple two-way

radios. Now, suppose the firefighters did not have a fire chief. The fire fighters could

coordinate themselves to best rescue occupants and quickly extinguish the fire. To

successfully cooperate, each firefighter might desire knowledge of the states, actions, and

plans of his comrades. By exchanging only the most relevant attributes of their mission,

the firefighters support efficient communication and enhance individual decision- making.

This information may be transmitted amongst firefighters by computer or radio to allow

an individual firefighter to determine his next course of action based on a collective

perception of the system state. Of course, neither the chief nor the firefighters really have

a complete and accurate view inside the fiery building. De-centralized planning and

distributed partially-observable Markov decision processes (POMDPs) research seek to

address such concerns.

1.3.7 Thesis structure

The organization of this thesis is as follows:

Chapter 1: An introduction with motivation for problems of cooperative planning under

uncertainty. Fundamental concepts and terms that are used throughout the

thesis are introduced in this chapter.

30

Chapter 2: The specific problem of cooperative UAV mission planning is described and

formalized. In addition, the strategy for evaluating exact and heuristic

planning methods in simulation is discussed.

Chapter 3: An overview is provided for the exact, Markov decision process-based

planner and heuristic, receding horizon controller that are investigated in this

thesis. Optimization and representation differences of these exact and

heuristic approaches are also described. Application examples are drawn

from simulated, cooperative UAV scenarios.

Chapter 4: The Markov decision process and receding horizon controllers are simulated

in a diverse set of cooperative, multiple-UAV scenarios. Mission and

computational perfornance of the exact planner is weighed against the

heuristic controller to determine the strengths and weaknesses of each

approach. Scalability studies measure the trends of these performance

metrics in scenarios that include increasing numbers of UAVs and targets.

Additionally, sensitivity trials capture each algorithm's robustness to real

world planning environments where planners must negotiate incomplete or

inaccurate system models. The scenarios are meant to empirically examine

the trade-offs of global, contingency planning and sequential, local re-

planning.

Chapter 5: The main contributions of this thesis are summarized. The final discussion

concludes with open problems and future directions.

31

[Except for this sentence, this page intentionally left blank]

32

2 Problem
"The probable is what usually happens"

- Aristotle

2.1 Objectives

Cooperative planning seeks actions to achieve a team's common set of objectives by

balancing both the benefits and the costs of execution. Uncertainty in action outcomes

and external threats complicate this task. Planners can be classified into two categories:

exact or heuristic. In this thesis, an exact planner, based on Markov decision processes,

and a heuristic, receding horizon controller are evaluated in typical planning problems.

The exact planner searches for an optimal policy with global contingencies, while the

heuristic controller sequentially selects approximate plans over more localized horizons.

Generally, the two planners trade mission and computational performance. The

presented results are limited to specific problem instances, and provide characterizations

of the algorithms' capabilities and limitations in each scenario.

33

2.2 Overview

Unmanned vehicles, including airborne drones and minesweeping robots, are becoming

an increasing feature in the battle field theatre. Civilian counterparts are also in

development for disaster relief, environmental monitoring, and planetary exploration [8].

Unmanned vehicles in current use, such as the Global Hawk, lack significant autonomy

and are remotely guided by teams of human operators. This technology is expensive, and

restrictive in scalability and range. Recent advances in hardware and artificial

intelligence have allowed researchers to consider cooperative control systems that

involve multiple autonomous vehic les in dynamic, uncertain environments.

In this thesis, the planning problem is comprised of sets of unmanned aerial

vehicles (UAVs) and targets. Reducing both human casualties and cost, UAVs will have

a rising role in battlefields of the future. Military UAVs will be used primarily in three

classes of missions: surveillance, reconnaissance, and strike.

To evaluate the planning algorithms, the UAVs simulated in this thesis are

engaged in a visit-and-destroy mission over an extended battlefield of fixed targets with

known positions. As shown in Figure 2-1, a centralized planner hierarchically controls

the actions of the UAVs on the battlefield. The planner perceives the current state of the

system, which includes the component states of the UAVs and targets, and formulates a

cooperative plan to maximize the rewards acquired from destroying targets in the face of

uncertainty and constraints. Plans are issued to individual UAVs, which execute the

planner's task guidance on the battlefield by moving to particular locations or executing

strikes on specific target sites. The UAVs' actions on the battlefield alter the system's

state, and the planning cycle repeats. Essentially, the software agent that provides the

core planning functionality has three cyclical tasks:

1. perceive the state of the system

2. determine a cooperative course of action

3. provide task guidance to each UAV

34

The managerial, software planner unifies the UAVs as a team by coordinating them

cooperatively. This division relies on the assumption that the true state of the system is

fully-observable.

Figure 2-1 Hierarchical planning approach used in cooperative UAV simulation

2.3 Formulation

Before proceeding, the discus sion of system states and models should be formalized.

This thesis is focused on examining exact and heuristic algorithms for cooperative

planning. In the considered scenarios, the UAVs must collectively visit-and-destroy a

predetermined set of targets within resource constraints.

The simulated scenarios are extensions of the classic traveling salesperson

problem. The traveling salesperson problem attempts to solve the deceptively simple

question: given a number of cities and the costs for traveling from one to the other, what

is the cheapest roundtrip route that visits each city and then returns to the starting city?

Significant caveats that distinguish this problem from the traveling salesperson problem

35

include the presence of multiple vehicles, non-routing actions, stochastic state transitions,

vehicle attrition, and resource constraints.

2.3.1 Simulation scenario

The simulated, cooperative UAV scenarios share similarities with the firefighting and air

traffic control examples described in Chapter 1. Indeed, the planning algorithms

examined in this thesis can be applied to a diverse set of domains.

The simulation scenario, shown in Figure 2-2, is defined by a two-dimensional

mission space in which positions are given by latitude and longitude coordinates. A set

of M stationary, target sites Y = {yj, ... , yM} gives the ith target's location as y e 912 . In

addition, N identical, unmanned aerial vehicles (UAVs) have positions in a set X, where

the position of thejth vehicle at time t is denoted as x,(t) e 912

Figure 2-2 Cooperative three-UAV, six-target simulation scenario

The UAVs are initialized at predetermined, airborne locations that belong to the set

{xj(O),..., xN(0)}. All UAVs are equally equipped and capable. The vehicles are assumed

to travel at a constant velocity C throughout the missions. The planner coordinates and

36

sequences the UAVs' actions to the fixed target sites. Probability distributions describe

the UAVs' attrition rates and capability to successfully destroy target sites. Fuels costs

for transits between sites are proportional to distance, and strike costs are fixed. Fuel and

munitions limit the UAVs and a max-strikes constraint bounds the number of attacks

performed on a single target. Because of UAV attrition and target destruction, the

numbers of participating vehicles and targets are a subset of the original N UAVs and M

targets at any given mission time. The mission terminates when all targets are destroyed,

every UAV is lost, or the surviving UAVs have expended either their fuel or munitions.

The objective of the cooperative UAV mission is to claim a maximum reward

over the mission duration Based on the number of targets destroyed, the UAVs

accumulate a reward TW, , where Ti is a binary variable that indicates whether target

yi is destroyed and W is its value. Admittedly, this construction of the reward function

biases planning strategies towards destroying targets, while disregarding UAV losses.

Although the costs associated with UAV attrition could be incorporated into the reward

model, these additions substantially increase the computational requirements of the exact

planner evaluated in this thesis and limit the sizes of missions that can be reasonably

examined. Still, by modeling the probability of UAV attrition, a planner should avoid

vehicle losses to maintain greater opportunities for gaining reward.

2.3.2 Automated solvers

There are two fundamental techniques for tackling the cooperative UAV mission

planning problem:

1. exact algorithms to find optimal solutions

2. heuristic algorithms to find acceptable solutions

A critical difference between exact and heuristic planners is the solution that each

is intended to provide. The exact planner evaluated in this thesis seeks policies that are

optimal in the presence of uncertainty over the mission duration Moreover, the MDP-

37

based planner's policy includes contingencies for every possible condition. The

heuristic, receding horizon controller collapses this search by sequentially re-planning

over localized spaces. In some cases, this locally optimal solution is the global optimum.

Otherwise, the solution is suboptimal.

Typically, planners that search for a stationary policy with universal

contingencies are computationally limited by the size of the mission domain. Less

comprehensive leuristic algorithms tend to be more scalable and can produce provably

good results.

2.3.3 System dimensionality

In this thesis, the UAVs have a joint mission to visit-and-destroy a set of targets.

e sequential tasks

Planners select the UAVs' sequential courses of action to maximize the success of

this task.

e multiple agent

Simulated scenarios include one or more UAVs to examine the cooperative

behaviors produced by each planning approach

e discrete states and actions

Practical problems may be comprised of a large or infinite number of states and

actions. For instance, battlefield positions and fuel have values along a

continuous spectrum. These states have been discretized to transform the system

into a finite state-space. Fuel quantities are divided into predefined increments,

and positions belong to a fixed set of coordinate nodes. The physical health of the

UAVs and targets also are represented by Boolean states: alive or dead.

e fully-observable states

38

The UAVs operate in a fully-observable system. At each time step, the planner

knows the health and position of every UAV and target, and each UAV's

remaining fuel and munitions.

e Markovian dynamics

System dynamics are modeled in discrete time as Markovian processes. That is,

the future depends only on the system's present state, not the past.

e stochastic and strategic transitions

UAV transits between sites are deterministically strategic; however, the

probability distributions associated with each UAV's strike success and attrition

introduces stochastic elements into the problem formulation These stochastic

attributes and Markovian dynamics represent uncertainty in the mission

a synchronous and static

The UAVs' joint actions synchronize their interaction with the static system

A review of the system dimensions discussed in Section 1.3.3 is provided in

Figure 2-3. Each dimension can be varied to represent the world more completely and

realistically, though elaborate models tend to increase the complexity of the planning

problem. Figure 2-3 categorizes the complexity of system dimensions. Properties of the

planning systems considered in this thesis are highlighted.

39

Episodic Sequential

Single-agent Multi-agent

Discrete Continuous

Fully observable Partially

Markovian ncreasing Complexity Non-Markovian

Deterministic Stochastic

Synchronous Asynchronous

Static Dynamic

Figure 2-3 Complexity classification of possible system dimensions

In summary, the examined scenarios share the following characteristics: sequential,

multi-agent, discrete state and action spaces, fully-observable states, Markovian

dynamics, stochastic state transitions, synchronous actions, and static systems. Aspects

of the examined systems purposefully belong to both orders of complexity to simplify the

simulated systems and provide real world generality.

2.3.4 Evaluating planning algorithms

A chief concern of this thesis is to characterize the capabilities and limitations of the

tested, planning algorithms. Alas, there is no "silver bullet" evaluation standard. By

intuition, one planner might be better than another if it is more likely to find the optimal

solution or policy. Often though, users of plans do not seek optimality. They prefer a

plan that is good enough, rather than wait for an optimal policy generator to converge.

This trade-off between optimality and resource consumption is typical of many artificial

intelligence problems.

For the purposes of this thesis, optimality depends on the cooperative behavior of

the UAVs, determined by the centralized planner. As described in Section 1.3.6, positive

cooperation is defined by improving objective completion efficiency with the addition of

each agent. Cooperative behavior is evaluated on three mission performance metrics:

40

speed, reward, and cost. Simulated mission times do not accurately characterize speed

because the tested algorithms differ in trajectory control strategies. Instead, the relative

speed of mission completion is captured by considering vehicle-to-target assignment and

strike sequencing. These attributes offer a high-level perspective into the cooperation

exhibited by the UAVs. In this thesis, the UAVs share the objective to collectively

obtain a maximum reward by destroying targets.

An algorithm that generates plans with favorable mission behavior and poor

computational performance is impractical. Planning that consumes hours of computation

is not feasible for real-time systems, and plans that are "good enough" may be preferred

over waiting for an optimal policy generator to converge. Computational performance is

measured on the bisis of planning time and memory consumption. Algorithms may

display unique performance characteristics, depending on the execution machine and test

scenario. To ensure consistent computability statistics, all simulations are performed on a

single 1.8 GHz Linux workstation with 512 MB of RAM.

Since action decisions can induce a probability distribution over the set of

possible states for each initial state of the nondeterministic system, Monte-Carlo

simulations assess average-case performance [30]. Scalability tests evaluate the

planners' mission and computational performance trends in scenarios that include

increasing numbers of UAVs and targets. Additionally, sensitivity trials are used to

capture each algorithm's robustness to real world planning environments where planners

must negotiate incomplete or inaccurate system models.

A primary interest of the artificial intelligence community is the formalization of

real world problems. Researchers must balance simplifying the real world for efficient

computability with modeling the inherent complexity that defines reality. This thesis

does not introduce any new models of the real world. Instead, the presented results

examine several existing methods and models. This thesis follows an experimental

paradigm. Because this thesis focuses on the empirical behavior of planners, rigorous

mathematical proofs are not provided. Additionally, relevant implementation details are

described at a high-level because they are described more thoroughly by the authors of

the referenced works.

41

[Except for this sentence, this page intentionally left blank]

42

3 Planning Algorithms
"It is a truth very certain that when it is not in our power to determine

what is true we ought to follow what is most probable"

- Aristotle

3.1 Overview

Planning algorithms are designed to select a course of action, which leads participating

agents to best achieve their objectives. Generally, planning problems are composed of

five basic ingredients [35]:

1. a description of the initial system

2. a set of actions that can be performed on the system

3. a description of the goal states for the system

4. a description of the system constraints

5. a valuation function that describes action costs and state rewards

The planner must find a sequence of actions from a particular initial state to a goal state

that satisfies constraints and maximizes value. Decision-makers tend to balance the

potential of attaining a goal state, the risk of causing an unfavorable state, and the cost of

43

performing the action. Two planning approaches are evaluated in the context of the

cooperative UAV, target assignment and sequencing problem: optimal policy generation

using Markov decision processes and heuristic approximation using receding horizon. A

key objective of this thesis is to examine the strengths and weaknesses of each method.

This chapter provides an overview of the Markov decision processes and receding

horizon planning methods.

3.2 Markov decision processes

Markov decision processes (MDPs) formalize some problems of planning under

uncertainty. Based on probability and utility theory, MDPs can weigh the benefits and

trade-offs of following a particular plan. MDPs adhere to the Markovian property which

implies that the future probabilistic behavior of a process is conditional on the current

state, independent of past history. In the presence of stochastic action outcomes, MDP

solvers compute the long-term value or expected utility ofperforming a particular action

in a particular state to formulate an optimal policy, which maximizes the expected utility

of actions.

3.2.1 Historical origins

In the early 1900s, Andrei Markov began work that would bring forth the theory of

stochastic processes. He studied state sequences in which future states could be predicted

with knowledge only of the current state. That is, for sequences that possess the Markov

property, the future only depends on the present and is independent of prior history. At

the time, Markov thought his revolutionary idea was applicable only to literary texts.

Indeed, he famously proved his discovery of Markov chains by calculating the

probability of vowel positions in A. S. Pushkin's poem "Eugeny Onegin." He showed

that in Pushkin's poem the probability of finding two consecutive vowels is 0.128, and

the probability of a vowel following a consonant is 0.663 [1]. Markov's tedious

calculations were rewarded when Norbert Weiner began to rigorously treat continuous

Markov processes in 1923, and Andrei Kolmogorov formed a general theory for

44

stochastic processes in the 1930s. Markov processes are now used in a wide-range of

fields, including social sciences, atomic physics, quantum theory, and genetics [l].

Richard Bellman formalized the concept of Markov decision processes in the

1950s [2]. Later, MDPs were recognized as a fundamental mathematical construct for

representing planning problems in the presence of uncertainty [13]. MDPs are used to

formalize domains in which actions may have probabilistic results and agents have access

to the system's state. Indeed, the MDP model serves as a basis for algorithms that

provably find optimal policies (mappings from system states to actions) given a

stochastic model of the system and the goal [9]. Comprehensive coverage of the MDP

framework and controller is provided in [5, 19, 33].

While the exact planner examined in this thesis follows the traditional MDP

paradigm, partially-observable Markov decision processes (POMDPs) handle problems

in which a system's state is not completely known at all times. The POMDP model

addresses the uncertainty associated with partially-observable domains by uniformly

treating actions that affect the system and those that affect the agent's state information

[9]. Michael Littman related various Markov models, based on state observability and

control over state transitions, as shown in Figure 3-1 [26]. To learn more about these

models, the reader may consult the referenced works.

Markov Models Control over state transitions?
YES NO

MDP

YES Markov Decision Markov Chain
S YESProcess [15]

[33]
4)

POMDP
Partially-Observable HMM

NO Markov Decision Hidden Markov Model
E Process [34]
0

[9]

Figure 3-1 Relationship of various Markov models

45

3.2.2 Fully-observable framework

Finite, fully-observable Markov decision processes (MDP) are defined by a five-tuple

31= (S,AP, R,#). S = {S ,...,Ss} is a finite set of system states that describe possible

states of the system, A= {A1 , ... , AA} is a finite set of actions that can be performed by

the agents, P is the Markovian state transition model, R is a reward function, and # is a

discount factor. The initial state of the system is Si, and the number of possible states in

the model is given by |SI. Actions trigger stochastic state transitions that have a

probability P(Sj I Si,Ak). P(Sj I S,Ak) is the probability that state Sj is reached after

taking action Ak e A in a prior state Si, where S, ,S e S. A reward function

R(Sj) : S i-> 91 provides a mapping between possible system states and real-number

valuations. The rewards are bounded by a maximum reward, Rmax, where

Rmax | IR(S), VS. A discount factor # e [0,1] prioritizes the collection of rewards by

discounting those that are available farther in the future.

In the cooperative UAV simulations, the planner is given the initial coordinates of

the UAVs and the fixed locations of the target sites. The system's state includes the

health and position of every UAV and target, and each UAV's fuel and munitions. The

possible values of these states are shown in Figure 3-2.

System States
UAV Health Alive, Dead

UAV Position X1, X 2 , ... , XN

UAV Fuel 0, ... , D
UAV Munitions 0, ..., 0
Target Health Alive, Dead

Target Position Y1, Y2, -'- YM

Figure 3-2 Fully-observable, UAV mission state variables

The UAVs have two possible actions of varying cost: move between any two sites or

strike a particular target The state transition model represents both the determinism of

certain attributes, such as fuel and position, and the stochastic nature of UAV strike

46

N

capability and attrition. The reward valuation of a state Sk is R(Sk)= W, where T

indicates whether target y; is destroyed and W; is its value. UAVs are constrained by fuel

(D), munitions (0), and maxstrikes. The mission terminates in five possible states: (1)

all the targets are destroyed, (2) all targets are struck to their maxstrikes constraint, (3)

every UAV is lost, (4) the surviving UAVs have expended their fuel, or (5) the surviving

UAVs have expended their munitions.

The planner should determine a joint course of action for the UAVs that

maximizes reward. A stationary policy function p : S ? A describes a specific plan for

an agent, where p(Si) gives the action to be taken by the agent in system state Si. In the

presence of uncertainty, the optimal policy provides courses of action of maximum

expected utility or total discounted reward. The value function V, e 9 N of a policyp i

determined by the expected discounted reward accumulated from an initial state Si. The

expected value V,~ (S) of a policy p for an initial state Si satisfies [33]:

V, (Si)= R(Si)+#YP(Sj |Si~r(Sj)).V, (Sj) (3.1)
SpeS

A policy p is optimal if V 2 V, for all Si E S and all policies p'. That is, an optimal

policy identifies maximizing actions for the global set of possible states. The optimal

value function V* is the value of any optimal policyp*.

3.2.3 MDP optimal policy solvers

Several algorithms exist for generating an optimal policy for an MDP. Three typical

methods are linear programming, value iteration, and policy iteration. Each method uses

a different approach to calculate the value function The value function V (S j) gives the

value for every possible state Si e S in the system's state space. MDP solvers determine

the optimal value function V* to compute the value of an optimal policy p*.

47

3.2.3.1 Linear programming

Manne first proposed the linear programming (LP) approach to obtain the optimal value

function for an MDP [31]. The LP variables V(Si) for each state Si e S represent the

value V, (Si) for starting in state S;. The LP is defined by

Variables: V(Si),VS1 E S

Minimize: x a(Si)V(Si)

Subject to: V(Si) > R(Si)+#IP(Sj S1,A)- V(S1), VS c S,A e A
sk S

(3.2)

where a(Si) is the LP cost-vector or state relevance weighting, which is positive and

normalized to sum to one [19]. Equation 3.2 subjects V(Si) to the constraint that it is

either greater than or equal to R(Si)+ #3P(S I Si,Ak) -V(S).
S eS

The minimization of

a(Si)V(Si) , however, ensures V(S) equals this constraint.

3.2.3.2 Value iteration

Value iteration is a commonly used alternative approach for constructing optimal policies

[2]. The algorithm builds a series of n-steps-to-go value functions V", starting with an

initial estimate of the value function V0 = R. The value at the next step is given by

V"n1(Si)=R(Si)+max #I
AkEA

P(Sj I Si,Ak)-V"

The sequence of value functions T linearly converges to the optimal value function V*,

which provides an optimal policy p* that maximizes Equation 3.3.

48

(Sj) (3.3)

3.2.3.3 Policy iteration

Policy iteration solves for the optimal policy of MDPs by iteratively searching in the

space of policies [23]. Starting with an initial policy p0 , the algorithm includes both

phases of value determination and policy improvement. In the value determination

phase, the value function V' is established for the policy pt . Policy improvement selects

the next policy by r'' = max, V,. Policy iteration converges to the optimal policy p*

[33].

In practice, policy iteration tends to be faster than the linear programming

approach [33]. Puterman also showed that the convergence of policy iteration is bounded

by the number of iterations required for value iteration. Policy iteration tends to find the

optimal policy in fewer iterations than value iteration, though each iteration is more

computationally expensive [19].

3.2.3.4 Curse of dimensionality

MDP cptimal policy computation has been shown to be P-complete [32]. P-complete

decision problems are the hardest problems that can be solved in polynomial time with

parallel computers. MDPs suffer from three curses of dimensionality: large state spaces,

large action spaces, and large outcome spaces. Although standard MDP algorithms

usually converge in relatively few iterations, each iteration requires computation time at

least linear in the size of the state space (for value iteration, more for other algorithms)

[6]. The very design of an MDP's optimal policy with contingencies for a global state

space is intrinsically affected by the dimensionality of a system. For instance, the

cooperative UAV system's states include the health and position of every UAV and

target, and each UAV's remaining fuel and munitions. Each system state Si C S is

described by an assignment of these component state variables Si = {s,,...,s, }.

Consequently, the number of possible states is exponential in the number of state

variables. Richard Bellman described this exponential relationship as a "curse of

dimensionality" [2].

49

Multi-agent systems include another curse of dimensionality. Each of the UAVs'

joint actions Ak e A represented in the system model is defined by a set of actions

Ak =a a,,...,a,}, where the action for UAV ; is a;. Viewing each agent's action as an

action variable, the number of joint actions is exponential in the number of action

variables [19].

Representation of the MDP model is impractical in systems described by many

state variables, involving many agents, or including agents with many actions. For

example, the transition model for performing a particular joint action in a certain state

assigns a probability distribution over states in the next time step. In large systems, a

tabular representation of this model is restrictive because it requires a set of entries that is

exponential in the state and action spaces. Similarly, a tabular representation of the

reward function, which assigns values to the set of system states, also limits scalability.

Although advances in hardware have provided faster processors and greater

memory at lower cost, classical MDP planners are limited by the curse of dimensionality.

Researchers have focused on developing computational and representational methods for

solving MDPs without intensive enumeration of the complete state space [6].

Aggregation methods view a set of states as a single aggregate state [5]. Abstraction,

another form of aggregation, has also been used to drop certain details of the model [14].

These techniques exploit the structure of a problem to compactly represent the reward

function and the transition function. In fact, many of these abstract MDPs can be

automatically generated with probabilistic rules [21] or dynamic Bayesian network

(DBN) action representations [13].

3.2.4 Stochastic planning using decision diagrams

A particularly powerful, dynamic abstraction method for solving MDPs is stochastic

planning using decision diagrams (SPUDD). Developed by Jesse Hoey, Robert St-

Aubin, et al., SPUDD utilizes algebraic decision diagrams (ADDs) to represent value

functions and policies [22]. ADDs extend binary decision diagrams, which only permit

Boolean transitions for state variables. ADDs can include descriptions of the value and

policy functions in the natural language of the problem domain. SPUDD's dynamic

50

programming algorithm follows the classical MDP value iteration paradigm described in

Section 3.2.3. The expected number of value iterations is significantly condensed by

exploiting regularities in the ADD action and reward networks. Compact decision graphs

aggregate equivalent states during dynamic programming computation. Unlike decision

trees, decision graphs allow identical subtrees of the same value to be merged into one.

This reduces both the number of expected value computations and maximizations needed

by dynamic programming. Hoey and St-Aubin showed that their SPUDD approach

scales better with larger state spaces than a classic, tabular value iteration MDP algorithm

[22]. The state space can be further reduced by specifying the tolerance of policy

satisfaction and the depth of value iteration. These approximation techniques do not

guarantee, however, that SPUDD will produce an optimal policy.

3.2.4.1 Action representation

Actions are taken to interact with the system. Dynamic Bayesian Networks (DBNs) can

be used to describe this interaction based on an action's effects on particular state

variables of the system. Indeed, DBNs model stochastic processes as directed graphs,

which represent a system's state in terms of state variables and their interdependencies

[22]. Furthermore, a DBNs' graphical representation exploits the conditional

independence of state variable transitions and is usually quite compact.

For instance, the Markovian transition model P(Sj I Si,Ak) gives the probability

that state Sj is reached after taking action Ak e A on a prior state Si, where Si,S e S. A

DBN for an action Ak requires both a set of prior state variables S, = {sj,,...,ss}, which

describe the state of the system before performing Ak, and analogous states after

execution S', = {s'1 ,...,s'js }. A sample representation for a UAV's strike action is shown

in Figure 3-3a. In this example, there are two UAVs xj and X2, one target y], and two

possible target site locations loc, and loc2. The two UAVs begin their mission from a

common, initial position home. Directed arcs from variables in S, to S', indicate causal

influences to the effected state.

Since the process is fully-observable, the DBN is used only to predict future state

transitions and not pre-action states. These predictions allow the SPUDD planner to

51

compute the expected utilities of a global state space and generate a contingency-based

policy for uncertain events.

Individual DBNs are required for each action Ak e A. Figure 3-3b depicts two

of the Markovian transition tables for UAV xi's strike action (xistrike). Adhering to the

Markov property, the first table shows that x i's health (x _alive') after executing a strike

is solely dependent on its current health (xlalive). If UAV x, is currently alive (xl alive

= T), the probability that it remains alive (xialive' = 7) after performing a strike is 0.6.

On the other hand, the probability that UAV xj survives (xialive' =) a strike is 0.0, if

it was previously lost (x _alive = F).

The second table considers the affect of the strike action on the state of target yi's

health. Target yi's subsequent health state (yijalive') after a strike operation is

dependent on the current states of its health (yalive), UAV xi's health (xlalive), and

xj's position (xiloc). If target yi was previously destroyed (yi_alive = F), the

probability that it survives (valive' = T) UAV xi's strike is 0.0, regardless of other

states. If both target yi and UAV xI are currently alive (yialive = T and x _alive = 7),

the probability that yj survives xi's strike (yialive' = 7) is 1.0 if x, struck at its starting

position (xi_loc = home) and 0.5 if xj struck at either site loci (x;_loc = loci) or loc2

(Xiloc = loc2). Finally, if UAV x1 was lost (xialive = F) and target y' is still active

(yi_alive = 7), the probability that yi remains alive (yi alive' = 7) after a strike is 1.0.

Notice that the state of UAV x2 does not factor into the representation of UAV x1 's strike

action

52

.X iv....... .{Probxi a.ive.'.=T) Prob{x1_alive' = T}

XaDrve jaie T ... 0.6 T 0.6F 0.0

1 alive y1_alive' Y_ X1_ xI Prob{ F 0.0
alive alive loc vi alive'=T} Probyl.alive' = T)

F T home 0.0
F T loci 0.0 x1_alive
IF T 10C2 0.

~Qv~-+ive F F home 0.0T
9 F F loci 0.0 liv 0.

F F 10C2 0.0ie ~
T T home 1.0 T

Current Next T T loci 0.5 F
State State T T IoC2 0.5 x1 loc

T F home 1.0 loc1/ home
T F loci 1.0 loc2
T F loC2 1.0 0.5 1.0

(a) Bayesian network (b) Matrix representation (c) ADD representation

Figure 3-3 Example strike action ADD for the simulated UAV mission

Figure 3-3c shows the condensed ADD representation that SPUDD automatically

formulates from the tabular input. Nodes in the ADD represent current states, and leaves

represent conditional probabilities of transitioning to a future state. The top ADD

indicates the probability that UAV x1 is alive (xJalive' = 7) after a strike execution is

either 0.6 or 0.0 depending on its previous health (xialive). The second ADD shows that

the probability that target yj survives (y_alive' =) UAV xi's strike is dependent on its

current health (y1_alive), xj's health (xialive), and xj's position (xiloc). The ADD

representation exploits table regularities to reduce the table representation of target yi's

strike survival, which includes twelve conditional parameters, to a tree with three nodes

and three leaves. Whereas a tabular representation of the Markovian transition model

grows exponentially with the number of state variables, ADDs exploit context-specific

independence in the distributions to merge identical subtrees of the same value into one

[22]. For instance, SPUDD's ADD uses one node and one leaf to effectively represent

target yj's 0.0 probability of surviving xj's strike if it is currently destroyed (yialive =

F). Conversely, the traditional matrix representation includes six table entries to

represent this same dependency. The abstraction technique employed by SPUDD is

53

related to previous work in constructing DBN conditional probability tables with tree-

and rule-based representations [6].

3.2.4.2 Reward representation

The reward function shown in Figure 3-4 also benefits from the ADD's compressed

representation. For the two-UAV and one-target example, the reward valuation is based

on the states of the target yi, and UAV x, and x2. The ultimate reward is determined by

the final conditions of these states.

y1_alivei0.

x ylaliveS T F

x 2 ali x 2alive

T FT F

6.0 4.0 2.0

Reward Network Reward ADD

Figure 3-4 Example reward network and ADD for the simulated UAV mission

3.2.4.3 Policy representation

SPUDD adheres to the MDP optimal value iteration algorithm discussed in Section 3.2.3.

SPUDD reduces the expected number of value iterations by exploiting regularities in the

ADD action and reward networks and aggregating states of equivalent value during

dynamic programming computation. Regularities in the action and reward networks are

used to discover regularities in the search for an optimal value function. This approach

avoids explicit enumeration of the entire state space, and yields significant savings in

computational time and space [22]. Figure 3-5 shows the value function ADD generated

by SPUDD for a system model that includes action and reward ADDs that follow from

54

Figure 3-3 and Figure 3-4. SPUDD computes the expected values of possible states

based on state transition probabilities, action costs, and reward valuations.

lc0 home loc home

15.1 14.3 7.3

Figure 3-5 Example value function ADD for the simulated UAV mission

SPUDD constructs an optimal policy from its derived value function. The policy

provides actions of maximum utility that are contingent on a global set of possible states.

In this example, the battlefield is comprised of two UAVs x, and X2, two locations home

and locj, and one target site yl. Participating UAVs can perform strike (y1 strike)

operations at a location, transits (xjmove) to the target site loci from their initial position

home, or terminate the mission (stop).

55

FT

F

Figure 3-6 Example policy ADD for the simulated UAV mission

ADD representations not only simplify evaluation of the system model, but also make the

dynamics of the system more conprehensible. That is, ADDs indicate the conditional

commonalities of states that share the same value and/or plan in a flow-down format that

appears easier to read than a tabular chart. Still, human planners are confronted with the

difficult task of accurately representing their "best guess" of the actual system's

dynamics. Complete and fully-observable planner models match the system's true nature

by definition. In the real world, a planner must possess robustness to negotiate scenarios

where its system model might be incomplete or inaccurate. The interrelationships of

SPUDD's model parameters and its "optimal" policy are considered in the next section

56

3.2.5 Factors affecting SPUDD's optimal policy

The SPUDD planner determines an optimal policy based on its model of the system.

Operating on a fully-observable battlefield, the locations and states of the UAVs and the

target sites are accurately known in realtime.

For the cooperative UAV mission, SPUDD's system model includes the costs for

move and strike operations, stochastic distributions for successful strikes and UAV

attrition, reward valuations, and a discount factor for future rewards. Indeed, the

interdependency of these variables is critical to the behavior exhibited by the UAVs. For

instance, although the cost of transiting between sites is correlated to distance, specific

cost assignments should be proportional to the other factors in SPUDD's system model to

prevent biasing.

The relationship of SPUDD's model parameters to its optimal policy is

determined by its optimization equation. SPUDD generates an optimal policy through

value iteration by computing the expected utility or total discounted reward for a global

set of possible states. As described in Section 3.2.3, the expected total discounted reward

of a policy p for an initial state Si is computed as

V, (Sj) = R(Sj) +#P P(Sj I Si,ir(Si)) -V, (Sj)
SiES

3.2.5.1 Expected utility computations for one-UAV, two-target scenario

The advantage of following a particular plan is determined by computing the expected

utilities of possible actions. For a very simple scenario, this section evaluates the

relationship of SPUDD's model parameters to valuations of actions.

Consider a battlefield with a UAV x, and two targets yo and yj. Rewards are

accumulated by destroying target sites. The probability of a successful strike is

maintained constant over multiple attempts. The model assumes the UAV has enough

fuel to complete its mission and is indestructible. The expected utilities of rewards

obtained in the future are discounted in time, as noted in each computation At the time

of optimization, the UAV is at position locO. As shown in Figure 3-7, the UAV's next

57

possible action is either to strike its current target yo (strikejlocO) or to move to the

neighboring target yj (move locO loc1).

X1

strike_locO move_locO_loc1

Yo yi1
loco loc1

O UAV $ Target

Figure 3-7 Canonical one-UAV, two-target scenario

Following the value iteration paradigm, SPUDD computes the expected utilities of both

alternatives. The mission behavior exhibited by the UAVs in simulation can be related to

these quantifiable, expected utilities. In this section, the expected utilities of the

strikelocO and moveloc0_loc] actions are compared for varying parameters of

SPUDD's model. The expected value difference of the two actions represents the

subtraction of the expected utility of movelocOoc] action from the expected utility of

the strikelocO. Therefore, positive expected value differences are associated with a

greater utility for striking, whereas negative differences correlate to a higher expected

utility for the move action.

The expected utilities are analytically computed by considering possible action

sequences for the UAV over a value-iteration horizon of six time steps. This horizon is

the number of time steps to look-ahead from the current state at time t =0 . For instance,

Figure 3-8 depicts the scenario's possible action sequences for a horizon of three time

steps. As described by Equation 3.1, the expected utilities of possible next actions are

related to the system states that subsequent action sequences yield.

58

Figure 3-8 : Action tree for the one-UAV, two-target scenario for a three time-step

horizon

3.2.5.1.1 Effects of target reward valuations

Figure 3-9 depicts the expected value difference of the two possible next actions with

respect to the reward valuations of the targets. The system model includes a discount

factor of 0.8, move and strike action costs of 1 unit, and the UAV's strike success

probability of 0.5. The reward for destroying target yo is fixed at 2, and the reward for

destroying target yj is varied to observe the affect of the targets' reward ratio (loc1-to-

locO) on the expected value difference. The cross-over target rewards ratio indicates the

particular reward valuations of the targets where the expected utility of striking target yo

becomes higher than moving to yj. Namely, this cross-over point occurs at a target

rewards ratio of 5, where the reward for destroying targets yo and yi are 2 and 10,

respectively. The subsequent sections aim to highlight the dependence of this specific

cross-over point on other parameters of system model, including discount factor, action

costs, and strike success probability.

59

Figure 3-9 strike_locO versus movelocO_loc1 valuation difference as a function of

target rewards

3.2.5.1.2 Effects of action costs

Figure 3-10 generalizes the influence of target reward valuations on the expected utilities

of the strike and move actions over a spectrum of action cost assignments. In this

example, the discount factor is 0.8 and the UAV has a strike success probability of 0.5.

The expected utility of striking target yo increases as the cost of moving to yj rises.

Likewise, the expected utility of moving to yi increases as the cost of striking yo rises.

UAV x, is attracted to the more valuable target for expensive strike operations. For

instance, UAV x, passes target yo for y, in scenarios where the ratio of the target rewards

(loc1-to-locO) is large. The cross-over target rewards ratio increases for greater move

action costs, and reduces for higher strike costs. That is, the move locOloc1 action has a

higher expected utility if target y; offers a higher reward than yo and the strikelocO

action is expensive.

60

strike-locO versus movelocO_loci Valuation Difference as a Function of Location Rewards
by Action Costs (discount rate = 0.8, success probability = 0.5)

30 __

Action Costs

S-move=-1, strike=O

- - - move=-1, strike=-1
-0" move=-2, strike=-1
-- move=-3, strike=-1

move=-1, strike=-2

10. -- -- ction:
e ,trike-loc0

cro s-over action:
s- n e _locO, move_locOloc1

0

0 -10 - -- --- - --..--- - -- - ction:
B novelocO_loc1

0

a

-30
0 2 4 6 8 10 12 14 16 18 20

Ratio of Location Rewards (lociloc) (reward loc0 = 2)

Figure 3-10 strikelocO versus move_locO_loc1 valuation difference as a function of

target rewards by action costs

Figure 3-11 considers the relationship of action costs to the expected value difference of

the move and strike actions with a discount factor of 0.8, UAV strike success probability

of 0.5, and a fixed reward of 2 and 8 for destroying targets yo and yi, respectively. Here,

action costs are a dominating factor in the expected utility calculations. Even though the

target rewards ratio loc1-to-locO is 4, the strike action has a greater expected utility for a

majority of action cost ratios. The strike action has greater utility where the move action

is costlier, and vice-versa. For instance, if the movelocOloci action costs less than

strike_loc0 (i.e. move_locOloc1-to-strikelocO action cost ratios below one), target yi's

larger reward supports a higher expected utility for the movelocO_loc1 action.

Oppositely, a cost increase in the moveloc0_loc1 action relative to the strikelocO

disproportionately improves the utility of the strike action - the first strike of target yj

incurs both the cost of transiting to its location loc1 (moveloc0_locI) and the cost to

61

strike it (strike loc1). In contrast, a strike at target yo only incurs the cost of the

strike-locO operation. As a result, the strike-locO action has a greater expected utility.

Figure 3-11 strike_locO versus movelocO_/oc1 valuation difference as function of the

ratio of action costs (move_/ocOocl-to-strike-locO)

3.2.5.1.3 Effects of discount factor

Each of the preceding SPUDD models included a discount factor of 0.8. The discount

factor # e [0,1] controls the effect of future rewards on the optimal policy. Future

rewards are decayed less for large discount factors, and decayed more for small discount

factors. Figure 3-12 plots the effect of the discount factor on the expected utilities of the

strike and move actions for various target rewards settings. In this example, move and

strike costs are both 1 unit and the UAV's strike success probability is 0.5.

For low discount factors, SPUDD greedily prefers actions that maximize

immediate reward. Since the UAV is already at location locO, low discount factors give

62

the strike_locO action a higher expected utility. At higher discount factors, which are

close to one, the reward valuations of the targets have a greater influence on the expected

utility computations. The strikelocO action has a higher expected utility if targetyo has a

larger or comparable reward to yl, and the moveloc0_loc1 action has a higher expected

utility if target yi has a significantly larger reward. As noted in Section 3.2.5.1.2, this

disproportionate discrepancy in behavior is related to the additional cost incurred for

moving to target yi before striking it.

strikelocO versus movelocO_loci Valuation Difference as a Function of
Discount Rate by Location Rewards (move cost = -1, strike cost = -1, success

probability = 0.5)

15-

10-
06
w
LU

5 , ac ion:
,- - -- strke oc0

0 , cross-over action:
Sostrike locOc

SmovelocO1loci
U>

S-5. 0in

-10-
Location Rewards

- locO=2,Ioc1=0
15-- - -loc0=2,locl=4

i- - IocO=2,oc1=8
IocO=2,Ioc1=16

- - IocO=2,loc1=20
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Discount Rate

Figure 3-12 strikelocO versus move_/ocOloc1 valuation

discount rate

difference as a function of

3.2.5.1.4 Effects of strike success probability

Strike success probability correlates to the UAV's ability to acquire the reward it seeks.

For a given ratio of target rewards, Figure 3-13 shows that the expected utilities of both

the strikelocO or movelocOloc1 actions increase with higher strike success rates.

63:

Accordingly, the expected value difference of the two actions crosses-over at a lower

target rewards ratio for higher strike success probabilities. 'Ihe expected utility of the

strikelocO action increases with strike success probability where the reward at target yo

is comparable to yl. Similarly, for larger target. yj rewards, higher strike success

probabilities increase the utility of the movelocOioc] action (i.e. yielding a negative

expected value difference with respect to the strikelocO action). The planner passes over

target yo foryj, which offers a high probability of obtaining a greater reward.

strikelocO versus movelocO_loci Valuation Difference by Strike Success Probability
(discount rate 0.8, move cost -1, strike cost = -1)

20_

action:
trikelocO

> 10.

- -.. rn.... action:
trikeloc), movelocO_loc

10 ction:
E ove locOloci

0

-30 __ __ _ Success Prob.

Sprob=0
- - prob=.25

P -40- -- prob=.5
- prob=.75
-- - prob=l

0 2 4 6 8 10 12 14 16 18 20

Ratio of Location Rewards (Ioc1lIocO) (reward locO =2)

Figure 3-13 strikelocOversus move_locO_loci valuation

probability

difference by strike success

3.2.5.2 Expected utility computation for one-UAV, three-target scenario

To confirm the computed trends, the expected utility calculations were extended to the

more complex scenario depicted in Figure 3-14a, which includes one UAV and three

targets. At the current time step, the planner must decide whether to strike the target yo

64

(strike-locO), move to yj's site loci (move_loc0_loc]), or move to y2's site loc2

(move_locO_/oc2). Transiting between target sites costs 2 units and each strike attempt

costs 1 unit. The probability of a strike's success is 0.5, and the discount factor is 0.8.

Like the one-UAV, two-target scenario, the reward valuations of the target sites

significantly contribute to the expected utilities of the possible next actions. The

expected valuations of the movelocO_loc1 and movelocO_loc2 actions are compared

with the strikelocO action over a horizon of 4 time steps in Figure 3-14b. Strikingyo has

a higher utility where the rewards of target y, and y2 do not appreciably differ from the

reward at yo. The movelocOloc] and move_locO_loc2 actions have higher expected

utilities (i.e. negative expected value difference with respect to strike locO) for greater

rewards valuations of target yj and y2, respectively. At the intersection of the

movelocOoc] and movelocOloc2 valuation planes, where the rewards for targets yj

and y2 are equal, the strikelocO action has a higher utility for target rewards ratios below

3.

xi strike_
move- locO move
locO_ Yo locO_
loci locO loc2

Y1 Ta Y2 k

loc1 loc2

0

0-

CD-0

0 X

C >

CD

(a)

.moveocJoc1
S......... & movejloc o 2 |

strike.... .
6

4

2--

0

2-
-4 --mo - -ov

-4 - Move lOCO o

-6 R ocano w .

2 1.5 1 0.5 0 0 j
Raffo Of LocfortO Rewards (ioc2/1000) ia

(b)

Figure 3-14 (a) One-UAV, three-target example scenario, (b) expected utility

computation for varying target reward valuations (reward at locO = 6)

The computation confirms expectations by following the results obtained from the one-

UAV, two targets example. Both Figure 3-9 and Figure 3-14b show that the expected

65

utility for striking target yo linearly decreases with increasing reward valuations of other

targets in the scenarios.

3.2.5.3 Dimensionality of expected utility computations

For the simple scenarios considered, the preceding analysis provides a basic overview of

the parameter interrelationships in SPUDD's model that influence the UAVs' observed

behavior. The utilities of possible next actions form the basis of SPUDD's value iteration

algorithm, which ultimately forms an optimal policy. This policy maximizes the

expected utility of actions, using model parameters to determine contingencies for

uncertain events.

Specific expected valuations and cross-over points are particular to the scenario

representations. The results depict the trends that govern the interdependencies of

parameter values in this problem.

Behavior exhibited in simulation can be quantifiably understood by computing the

utility of possible actions, though this analysis increases in complexity with the size of

the problem. These relatively small examples demonstrate the exploding complexity of

the optimal, contingency planning problem as the numbers of UAVs and targets rise.

Indeed, Figure 3-9 and Figure 3-14b illustrate the substantial increase in dimensionality

of the expected utility computation from the one-UAV, two-target scenario to the one-

UAV, three-target scemrio.

3.3 Receding Horizon

The intractability of dynamic programming-based approaches, such as MDP solvers, in

large domains has lead researchers to consider other methods of addressing complex

stochastic optimal control problems [2]. Research has focused on decomposing the

complexity of the overall problem into hierarchical levels - from high-level path planning

and assignment of UAVs to target sites to detailed vehicle motion control [10]. For

instance, Casta56n addressed aspects of dynamic resource allocation [12] and How

framed the cooperative UAV path planning problem as a mixed-integer linear program,

incorporating task timing and vehicle capability constraints and including the presence of

66

obstacles [3]. At the level of detailing the UAVs' trajectories, planning issues include

multi-vehicle formation control, obstacle avoidance, and stabilization [17, 24, 29].

3.3.1 Background

An alternative to these functional approaches is time decomposition. Receding horizon

(RH) controllers maximize the total expected reward accumulated by the team over a

given time horizon and periodically move this horizon forward in time [28]. RH

schemes, which are associated with model-predictive control, have been used

successfully for optimal control problems that do not have simple feedback solutions [11,

36]. Cassandras and Wei Li proposed a RH controller that dynamically selects UAV

trajectories by sequentially optimizing over a planning horizon and executing decisions

over a shorter action horizon P8]. This approach, shown in Figure 3-15, integrates

vehicle assignment, sequencing, and routing construction into a single-tier, real time

controller.

Receding Horizon
Router + Planner

Route determines a
"stationary" assignment and sequencing

Figure 3-15 Receding horizon controller's integrated planning approach

3.3.2 Control scheme

Cassandras' RH scheme solves a nonlinear optimization problem that selects vehicle

headings to place the UAVs in a position of maximum expected reward at the end of each

planning horizon. Importantly, the controller somewhat simplifies the optimization

problem by not attempting to make explicit vehicle-to-target assignments. To the RH

67

controller, a potential field overlays the region within each planning horizon. The UAVs

are drawn to attack the most rewarding target sites in this space.

As described later, the headings chosen by RH have a convergence property that

ensures vehicles are ultimately assigned to target sites. Cassandras and Li analytically

proved that a stationary policy of vehicle-to-target assignment was obtained for one-

vehicle, M-target [27] and two-vehicle, M-target [28] scenarios.

3.3.2.1 Transformation of the mission problem

The RH controller's model captures aspects of the two-dimensional battlefield with N

UAVs and M fixed, target sites. The ith target's location belongs to a set of target sites

Y = {yj, ... , yM}, and the jth UAV at time t has a position xj(t)e 92 in the set X(t).

Cassandras uses vehicles' headings as the control variable in his RH model. The vehicle

heading for the jth UAV at time t is given by u,(t) e (0,360]. The UAVs travel at the

same, constant velocity C such that

cos uj (t)
i (= C u (t) (3.9)

As before, UAVs may only strike targets Y within constraints of fuel (D), munitions (0),

and strike attempts (max-strikes). Following SPUDD's reward function

M

R(S k) = 7;W , the value received for successfully destroying target i is given by Wi.

The RH planner solves optimization problems over a sequence of planning

horizons. In mission time, these optimizations [RP1 , ... , RPp] occur at time points [ti,

tp]. Considering the kth optimization problem at time tk, RPk solves for the control vector

Uk = [uJ(tk),..., UIV(tk)]. At time tk, suppose that the N UAVs are assigned the headings

U1(tk),..., UN(tk), which are intended to be maintained for a planning horizon denoted by

Hk. Then, the position of a vehiclej at time tk+ H is given by

68

[cosu, (t)1
x ,(tk+ Hk) =x,(tk)+C [s HU,(t)J

Isin uj (t) j (3.10)

=-- X(t4. + Hk ,)= x (tk) +x'j(tk)H k

The earliest time that vehicle j could reach a target i, starting at a time tk with a heading

assignment u1 (t) e u1 and moving directly to target site i from the point x, (t, +Hk) is

given by

(3.11)1xj (tk+ Hk)-yITi(tk,uk)=(tk+ Hk)+ HC

denotes the Euclidean norm. The optimization problem is to maximize the reward

obtained by vehiclej when it reaches target i at time Z, 1(tik Uk) given a heading vector uk.

3.3.2.2 Formulation of the optimization problem

The optimization problem incorporates reward valuations and an assignment

probability function As noted earlier, W values the reward for the successful destruction

of target i.

Next, for N>1, a relative distance function Q, (X(tk)) gives the proximity of

vehicle j to target i's position y; in relation to the positions of the UAVs X(tk) =

{x I(tk-),...,xN(tk)} at time tk. This relative distance function is defined as

45 j (~tk IX,(tk) - yi1

1(')1IxI(tk) -II

For N UAVs and M targets, a normalized relative proximity function qj, (6,,)

(3.12)

is any

monotonically nonincreasing function of 64 such that

69

q,,(0) =1, q,, lim qi(8,)= 0 (3.13)
N N

The normalized relative proximity function q,,(3,,) can be interpreted as the probability

that target i is assigned to vehicle j at a time t [27]. If the Euclidean distance from a

particular target i to each of the N vehicles is the same, q, - = ensures that the
N N

vehicles have an equal probability of assignment.

As relative distances vary during the mission, UAVs are attracted to the vicinity

of target sites and are eventually assigned to them by virtue of their proximity [10]. For a

particular UAV, the relationship of a target's attractive weighting to its proximity is

determined by the normalized relative distance function q,(3j) . In a two vehicle (N=2)

scenario, a convenient q,,(6,,), which satisfies the conditions set in Equation 3.13 and

was used in [27], is

1 if _i A ,

q,(I- 2A= [(1- A,)-,,] if A, <3,, i1- A, (3.14)
1-3 2>1-A0 if 6U, >I1 - A,

where A, c [0,) is an adjustable threshold that can be interpreted as target 's "capture

radius": if a vehicle j is close enough to i as to satisfy 8U 5 A,, then it is committed to

visit i [10]. For simplicity, assume A, = A for all targets i.

The value of the normalized relative proximity function at the end of the planning

horizon (i.e. at t = tk + H) for a particular heading control vector u. is defined as

q ;(uk, X(tk)) = q,, [s,, (X(t, + Hk)) (3.15)

where X(tk + H) is given by Equation 3.10.

70

Next, for UAVj at time t k, define the available fuel as f, (tk) and available

munitions as g, (tk). Assuming that fuel is allotted in time increments and is consumed

at a constant rate of 1 fuel unit per time unit, UAVj's remaining fuel after a planning

horizon H is f, (tk) -1 -Hk, which follows the correlation of SPUDD's move action

costs to distance. Each UAV is initialized with a fuel quantity D, such that f, (to) D .

At the end of the planning horizon Hk, the UAV's remaining munitions are

gJ (t)-g (tk+ Hk). The available munitions for vehiclej at time tk are computed as

M

g, (tk)= 0- z1,, (t) where 0 is the initial number of munitions allocated each UAV

and zi(tk) gives the number of strikes that has been made by UAV j on target i by time

tk. For the RH controller examined in this thesis, the number of strikes executed on a

particular target i by vehiclej is the minimum of the maximum strike attempts

maxstrikes and the available munitions of vehiclej (i.e.

zg (t,) = min{ max strikes, g1 (t0)}). The optimization problem RPk that solves for the

UAV heading vector uk at time tk is

M N

max Ic .W -q4(uk ,Xk)+c2' fj (k +Hk)+c 3 gj(tk +HA)
= i = (3.16)

such that f,k(t)-1.- Hk 0, gj(tk)-gj(tk+Hk) 0

where the normalized relative proximity function is given by , (u., X), fuel of vehicle

j is given by f, (tk + H,), and munitions of vehicle j is given by g1 (tk + Hk). The

parameters are weighted by factors C1, C2, and C3, respectively. In addition, the

optimization is subject to constraints that ensure the vehicles have sufficient fuel and

munitions.

Based on available state information, an optimal uk is derived for Equation 3.16.

The N UAVs follow this control for an action horizon hk. The value of hk is determined

either by the occurrence of an unexpected event at time t, e (tk ,tk + hk), which sets hk -

71

te - tk, or by simply updating the control at predefined intervals. As a result, the times of

planning optimization [t1 , ... , tp] can be a random sequence.

The optimization problem RPk is fully specified by selecting the functions W and

qj (8) along with HA to define g, (t I,uk) and hk. The next section discusses the

criticality of the planning horizon H to obtain desirable properties for this RH controller.

RPk is solved through standard nonlinear programming techniques in which multiple

local optima may generally exist. As an approximation, the possible heading assignments

of the vehicles u1 (t) e (0,3 60] are discretized into 100 increments. The problem is solved

as an on- line control that responds to stochastic events, such as the elimination of UAVs

or targets; however, the problem setting can also be used for a priori planning of vehicle

trajectories [27].

3.3.2.3 Stationary vehicle-to-target assignments

The optimization problem shown in Equation 3.16 solves for the joint-headings Uk of the

participating UAVs at time tk. This joint-heading assignment does not explicitly require

the resultant trajectories to be stationary or characterized by an ultimate assignment of

vehicles-to-targets. Indeed, there is no express constraint imposed on RPk to assign a

vehicle to a target site of the form x (tk + HO E Y or

y, -x 1 (t) x, +Hk)-X k)(tk)1 i(k IJ(tk +) (tI which force a vehicle to either be at a particular
1yi - Xj Qt)1 11Xj(tk+ Hk)-Xj t

point yi by a certain time or to set a heading to it [28].

Cassandras and Li showed that the length of the planning horizon H determines

the stationary properties of the receding horizon controller [10, 27]. They found that the

length of the planning horizon should be based on the shortest distance of UAV-target

pairs. Since UAVs might be lost and targets might be destroyed over the course of the

mission, Xk and Yk reflect, respectively, the participating UAVs and targets at time tk.

Assuming the UAVs travel at a constant velocity C, the planning horizon H is

72

HA = min (3.17)H k E X Am J j j-_ C

The RH controller provides stationary vehicle-to-target assignments for planning

horizons that follow Equation 3.17 without explicit enforcement of such a constraint.

3.3.2.3 Cooperative assignment for a two-UAV, two-target scenario

This section analytically examines the RH controller's behavior in an example mission

Consider the system shown in Figure 3-16 with two UAVs initialized at the coordinates

(0,0) and two target sites at the coordinates (10,0) and (0,10). Suppose the UAVs are

tasked to visit the two target sites with the least amount of fuel. The controller has three

options: (a) assign both UAVs to a heading of 360, routing them together to targety], (b)

direct UAV xI and x2 to the headings 360 and 090, respectively, or (c) assign both UAVs

to a heading of 090, routing them together to target y2. Options (a) and (c) are equivalent

because of the scenario's symmetry, so case (c) is disregarded in the proceeding analysis.

Notice that trading assignment (b) ultimately achieves the mission faster than option (a)

by cooperatively dispatching vehicle x, to target y, and vehicle x2 to target y2.

Figure 3-16 Two possible heading assignments for a two-UAV, two-target scenario

73

(a) (b)

The RH controller selects a joint- heading assignment that maximizes the expected reward

over the planning horizon. For scenarios with two UAVs and M targets, Li showed that

the maximization problem in Equation 3.16 is equivalent to the minimization [27]:

N

iin XWi IXI(t + Hk)-y ilqi, +Ix 2(t + ItHk)-y i qi2) (3.18)
U =1

Assuming the UAVs travel at velocity C of one distance unit per time unit; the planning

horizon H is ten time units (based on the shortest distance between vehicle-target pairs).

The first UAV to visit target i obtains a reward W. = 5. Using a normalized relative

proximity function qi(Si) that satisfies Equation 3.13 [27], the value of the trajectory

assignment illustrated in Figure 3-16a is

[u, = 360,u 2 = 360]= W, x I(tk + Hk) - YIjq,, + x 12(t + Hk) -y Jq1 2)

... + W|x(tk + Hk)- yI q21 +||x2 (t, + H k) - y I q22)

= 5((0.0)(0.5) + (0.0)(0.5))+ 5((14.1)(0.5) + (14.1)(0.5)) = 70.5

Similarly, the value of the joint-vehicle heading assignment depicted in Figure 3-16b is

[u, =360,u2 = 090] =W, ||x1(tk + Hk) y,1q,1 +1x 2 (tk + Hk) -yq, 2)

... + W |x (tk + Hk,) - Y1 Jq21 +2 JJX (t+ Hk) - y, Jq22)

= 5((0.0)(1.0) + (14.1)(0.0))+ 5((14.1)(0.0) + (0.0)(1.0)) = 0.0

The receding horizon controller selects the optimal joint-vehicle heading assignment that

minimizes the optimization problem of Equation 3.18. For this example, the minimum

value of UAV heading assignments over the initial planning horizon is zero. The RH

controller selects the heading assignment uO = {360,090}, which ultimately directs

vehicle xI to target y, and vehicle x2 to target y2.

74

This assignment reveals the controller's cooperative task distribution.

Cooperation enhances the behavioral performance of the UAVs. Positive cooperative

behavior is defined by improving some performance characteristic with each additional

participant. Clustering both UAVs to a single target provides no advantage to a1

analogous one-UAV scenario. By assigning the UAVs to separate headings, the two

vehicles are able to cooperatively complete their task in less time than possible with a

single vehicle.

3.4 Relationship of SPUDD and RH planners

3.4.1 Problems of optimization

Two critical characteristics that distinguish the RH controller from the SPUDD planner

are its (1) on-line and (2) greedy design. The cooperative behavior engendered by each

planner in the form of vehicle-to-target assignments and action sequencing affect mission

performance, which includes rewards accumulated for destroying targets and costs

incurred for losing UAVs. The dissimilar approaches also affect computational

performance measures, including planning time and memory consumption.

The SPUDD and RI planners solve planning problems that differ in the scope of

optimization. Whereas the SPUDD planner searches for an optimal policy with

contingences for a global state space, the RH controller sequentially selects actions that

provide a maximum expected reward within each localized planning horizon These

optimization disparities induce the SPUDD planner to construct its global policy prior to

mission execution, and the RH controller to react to battlefield events in real-time. As

noted in Section 3.3.1, the RH scheme dynamically optimizes over a sequence of

planning horizons and executes decisions over shorter action horizons, which ultimately

result in stationary vehicle-to-target assignments and sequencing. On the other hand, the

SPUDD planner embeds these attributes into its policy before the simulated mission has

even begun.

Both the SPUDD and RH controllers construct plans for a fully-observable

battlefield in which states of system variables, such as a UAV's remaining fuel, are

accurately known. The RH optimization described by Equation 3.16 though is a

75

reduction of the problem considered by SPUDD. The system components represented in

the models of the SPUDD and RH controllers are compared in Figure 3-17. SPUDD

relies on a system model that captures the costs for transits and strikes, rewards for

satisfying mission objectives, UAV strike success capability, and UAV attrition

probability. Indeed, detailed, stochastic state transition models permit SPUDD to

discover contingencies of maximum expected utility through the global state space. The

RH controller does not benefit from such a complete model of the battlefield system

Although the RH controller equivalently models cost and reward valuations, it is not

provided probabilistic representations of the UAVs' capabilities and attrition risks. These

shortcomings and its myopic planning horizon induce the RH controller to behave

greedily.

The differences in the planners' system models lead to distinctive mission

behaviors and computation requirements. Although contingency planning benefits

mission performance, the practicality of SPUDD's optimal policy search is cursed by

increasing system dimensionality, as described in Section 3.2.3.4. Oppositely, the RH

controller divides SPUDD's global computation into a sequence of optimizations over

localized planning horizons. The RH controller's reduced system model and narrowed

horizon streamline planning computation, but trade behavioral optimality for

approximation.

Utility Functions States State Transition Dynamics

Action Costs UAV Health Strike Success Capability
Reward Valuations UAV Position Attrition Probability

UAV Fuel (D)
UAV Munitions (0)

Limited- horizon Target Health
RH Target Position

Global
SPUDD

Figure 3-17 System model comparison of the SPUDD planner and RH controller

76

To evaluate the robustness of these algorithms, performance is evaluated in scenarios

where certain model parameters (ofFigure 3-17) inaccurately represent the actual system.

Indeed, a model's level of accuracy and/or specification impacts the value of

contingencies that a planner can provide.

3.4.2 Optimal versus greedy controllers

The preceding section showed that the SPUDD and RH planners solve differing problems

of optimization.

Greedy algorithms sometimes perform optimally in a subset of systems, but may

behave poorly in others. In addition, they tend to require fewer computational resources

than elaborate exact approaches. SPUDD guarantees an optimal policy; however, the

planner is plagued by the curse of dimensionality. Although the SPUDD planner utilizes

efficient model representations, it still searches and provides contingencies for a universal

state space. Oppositely, the RH controller performs a sequence of optimizations over

shorter planning horizons and ignores aspects of the system's dynamics. Indeed, the RH

controller's abridged system model and myopic horizon truncate the planning problem.

The following section briefly describes the quantitative relationship of optimal

MDP-based controllers and heuristic greedy controllers from the work of [19, 37].

3.4.2.1 Valuation of plans

As described in Section 3.2.2, MDP-based planners use the expected total discounted

reward as a basis for optimality to compare possible policies. The value function

e 91N gives this quantity for following a policy p from an initial state Si. The

expected value V, (Si) of a policyp for an initial state Si satisfies [33]:

V, (S)= R(S)+#P P(S I|Si,i(Si))-V,(S)
SpES

77

Greedy controllers seek actions that maximize this expected value. The greedy valuation

function is defined as [19]:

Greedy [V, (Si)]= arg max R(S)+# P(S ISi, r(Si)).V,(S) (3.18)

To an extent, SPUDD is greedy The SPUDD planner finds an optimal policy p* that is a

greedy selection of actions with respect to the optimal value function V*. The planner

seeks an optimal policy with contingencies for a global state space with a maximum

expected discounted reward. That is,

r* = Greedy[V*] (3.19)

For RH, the targets (or rewards) visible in a particular optimization is dependent on the

size of the planning horizon. The limited planning horizon and reduced system dynamics

model afford an approximate value function V, instead of the optimal value function V*.

The RH controller chooses a joint course of action that offers an immediate reward over

each planning horizon without regard to the UAVs' strike success capabilities or attrition

risks. As a result, the greedy plan iF = Greedy[V,] might be suboptimal with respect to

SPUDD's optimal policy. The deficiency sustained by following a suboptimal policy ir

instead of p* is bounded by the error on the approximate valuation function V, [37].

This approximation or Bellman error E for a particular value function V, that may be

suboptimal is [38]

E(V) =max V,(Si)-max R(Si)+# P(S jIS, A) V,(SJ) (3.20)
SES AkE I i

78

The optimal value function V* has a Bellman error of zero. Williams and Baird bounded

the loss of following a greedy, suboptimal policy i rather than an optimal policy p* as

[37]:

V*-(S i)-- V, (S i) s 2# -E(Y,),IVSi E= S (3.21)
1-f

where V, is the approximate value function, V* is the optimal value function for the

policy p*, and V, (S1) is the true value of the suboptimal policy i . The bound depends

on the approximation quality of the value function and the discount factorf.

Cassandras showed that the RH controller's solutions can match a reward upper

bound. Considering a fully deterministic environment, the upper bound is provided by an

exhaustive search over all possible trajectories from given initial vehicle positions,

assuming straight-line paths between target sites [10]. That is, vehicle j's trajectory is

specified as a sequence of targets to be visited. In a two-UAV, six-target scenario, RH

sometimes yields rewards that are equivalent to the exhaustive search, however, the

controller performs suboptimally in the presence of multiple local optima and instabilities

in the form ofoscillating heading vectors [10].

79

[Except for this sentence, this page intentionally left blank]

80

4 Results
"Planning without action is futile, action without planning is fatal"

- Unknown

4.1 Overview

This thesis evaluates the SPUDD and RH planning algorithms in a representative set of

scenarios. As described in Chapter 3, each algorithm has extensive customizable

attributes. Although the results are limited to specific problem instances, they provide

characterizations of each algorithm's capabilities and limitations.

4.2 Test cases

The scenarios emulate visit-and-destroy, cooperative UAV missions. Scenarios vary

numbers and positions of UAVs and targets, rewards obtainable for destroying targets,

available fuel and munitions, and probabilities of UAV strike successes and attrition

These test cases experimentally reveal the strengths and weakness of the algorithms. As

noted in Section 3.4.1, the SPUDD and RH planners utilize differing system models. The

SPUDD planner searches for an optimal policy with contingencies for a global state

space, while the RH controller sequentially re-plans over more localized regions.

81

Dissimilar system representations and optimization horizons contribute to particular

mission and computational performances. For each scenario, mission success is assessed

on the basis of rewards accumulated for destroying targets and costs incurred for UAV

losses. Planning time is the primary metric for describing the computational

requirements of each planner. Monte-Carlo simulations evaluate the planners' average-

case performances in the presence of stochastic system components. For the examined

scenarios, the SPUDD planner generates policies with a discount factor of 0.8 to

moderate its bias on mission behavior, as described in Section 3.2.5.

Extending nominal tests, the planners are examined in situations where system

models are inaccurate or incomplete representations of the true battlefield. These

sensitivity studies indicate each algorithm's robustness to real world conditions, where a

planner's model is typically an imprecise estimate of reality. The test scenarios also

suggest each planner's scalability to larger missions that include greater numbers of

UAVs and targets.

4.2.1 Scenario 1

This scenario captures the assignment and sequencing behavior of the SPUDD and RH

controllers in a straightforward, cooperative mission. The initial system is comprised of

two UAVs and eight targets at the relative positions shown in Figure 4-1. The targets are

valued equally, and the fuel cost for moving between target sites is proportional to

distance. Each UAV is initialized with 7 fuel units and 6 ordnances. UAVs are

invincible; however, the probability of a successful strike degrades from 0.5 to 0.2 to 0.1

with each strike attempt on a particular target. The maxstrikes constraint limits the

number of strike attempts allowable on a single target to three. Figure 4-1 highlights the

nominal path of the two UAVs. The mission concludes when every target site has been

destroyed or all the UAVs have expended their fuel and/or munitions. In nominal

conditions, the UAVs have sufficient fuel and munitions to visit their all of the target

sites and perform an average of 1.5 strikes at each site.

82

UAV Resources

Y2y 1.0 Y8 Fuel (D) = 7.0
- -X-- c -~ Munitions (0) = 6.0

Ic~2 lci oc Fuel Costs
12 l ' Moveo (denoted)

Y3 Y4 X2 _Y Strike =0.5
y5 Target Rewards

loc3 loc4 loc5 loc6 V1.6 = 3.0
1.0 System Dynamics

Strike Success = 50%, 25%, 10%

0 UAV $ Target

Figure 4-1 Scenario 1: hitial system with two UAVs and eight targets. Dotted lines

denote the nominal target assignment sequence for both SPUDD and RH controllers

4.2.1.1 SPUDD and RH comparison

Figure 4-2 shows typical strike sequences of the two UAVs on a per planner basis. Both

the SPUDD and RH controllers select identical vehicle-to-target assignments. In average

conditions, the planners assign UAV x, to targets yi, y2, Y3, Y4 and x2 to ys, Y6, Y7, y8. The

algorithms critically differ in the number of strikes enacted on a particular target. Guided

by the SPUDD planner, the UAVs execute a maximum of two strike attempts on each

target. SPUDD's strategy seeks to obtain rewards from the target sites at the higher 0.5

and 0.2 strike success probabilities. Rather than strike at a 0.1 success probability, the

planner advances the UAVs to other more promising target sites. On the other hand, the

RH controller's model disregards state transition dynamics, which include the UAVs'

strike capabilities. As a result, the RH planner repeatedly strikes each target until either a

reward is acquired or constrained by maxstrikes.

83

9

Figure 4-2 Scenario 1: Typical target sequencing for each UAV on a per planner basis

The probabilistic-nature of strike successes introduces uncertainty into the system. This

stochastic component causes variation in possible vehicle-to-target strike sequences.

Monte-Carlo simulations provide average-case results over five hundred samples. Figure

4-3 depicts the number of times each target was visited, struck, and destroyed by the

SPUDD planner. The plot indicates that SPUDD's global policy balances its strikes

amongst the eight, equally-valued targets. Per iteration, each target is visited 1.0 times,

struck about 1.5 times, and destroyed 0.6 times. This behavior indicates the strength of

SPUDD's complete and fully-observable system model, which permits the construction

of a policy with contingencies to manage uncertainty. The UAVs destroy 4.72±0.06

targets and accumulate a reward of 14.16±0.18, per iteration.

84

8

7

6

0 - SPUDD-UAV1

A- - "SPUDD-UAV2

- RH-UAV1
* RH-UAV2

3

2

0
0 1 2 3 4 5 6

Strike sequence order

2.5

0
2

C)

.5S1.5 -U- Destroyed

0 Struck

a Visited

0

0

E 0.5-A

1 2 3 4 5 6 7 8

Target Site ID Bars indicate one standard
error of the mean

Figure 4-3 Scenario 1: Mission statistics for SPUDD policy over a Monte-Carlo

simulation with five hundred samples

The mission performance of the RH controller was similarly measure by Monte-Carlo

simulation The results, shown in Figure 4-4, expose the greedy nature of the algorithm.

The UAVs repeatedly strike target sites until successful or constrained by maxstrikes.

Because of fuel and munitions limitations, a UAV that performs more than two strikes on

a single target is unable to attack all of its potential targets. UAVs xj and x2 strike their

first targets yj and ys, respectively, about 2.25 times per iteration. By expending extra

resources on these targets, UAVs x] and X2 visit y4 and y8, respectively, only about 50

percent of the time. The RH scheme destroys 4.30±0.08 targets and claims a reward of

12.90±0.24, per iteration. A two-sample, one-tailed Student's t-Test indicates that more

targets were destroyed with the SPUDD planner than the RH controller (p<0.05).

SPUDD effectively manages the constraints of fuel and munitions and the uncertainty

associated with strike successes by generating a policy with contingencies for a universal

state space. Indeed, RH's strategy performs worse than SPUDD because resources are

wasted on excessive strike attempts that have a low probability of success.

85

2.5

2-
E

1.5- - Destroyed

0 Struck

1 - -3 Visited
U

0

1 2 3 4 5 6 7 8

T arget Site |D Bars indicate one standard
error of the mean

Figure 4-4 Scenario 1: Mission statistics for receding horizon strategy over a Monte-

Carlo simulation (n=500)

4.2.1.2 SPUDD sensitivity to UAV capability model

Unlike the RH controller, the SPUDD planner models the uncertainty associated with the

system's dynamics. In particular, SPUDD's model represents the UAVs' degradation in

strike success probability as reducing from 0.5 to 0.2 to 0.1 over three strike attempts.

Suppose the SPUDD planner inaccurately estimates the success probability of the first

strike attempt For example, a first strike success transition probability error of -0.3

represents the UAV strike capability degradation as 0.2 to 0.2 to 0.1.

SPUDD's sensitivity to such errors is shown in Figure 4-5. Note that these results

are dependent on the attributes of this problem instance, including reward valuations,

action costs, fuel, munitions, etc. The planner formulates three types of policies

depending on whether the first strike success probability is underestimated, comparable,

or overestimated with respect to its true value of 0.5. Figure 4-5 depicts typical strike

sequences induced by each policy.

86

Policy 1: Underestimate. For first strike transition probability errors of -0.2 and

-0.3, the UAVs destroy about 4.3 targets per iteration. Since the probabilities of the

UAVs' first and second strike attempts are similar, SPUDD formulates a somewhat

greedy policy. Exhibiting the same performance as RH, the UAVs repeatedly strike each

target until successful or constrained by maxstrikes. UAVs x1 and X2 strike their first

targets (y1 and ys, respectively) about 2.25 times, their second targets (y2 and y6,

respectively) about 2.20 times, their third targets (y3 and y7, respectively) about 1.77

times, and their fourth targets (4 and Y8, respectively) about 0.78 times per iteration.

The underestimated first strike success rate favors striking at least two times, rather than

advancing to another site, because both options appear to offer similar success

probabilities and the move action is costlier. As a result, however, the UAVs strike

targets at the lower 0.2 and 0.1 strike success probabilities and lack sufficient resources to

attack targets that have a greater probability of destruction.

Policy 2: Comparable. For first strike transition probability errors of -0.1 and

+0.1, the UAVs destroy about 4.7 targets per iteration SPUDD shows robustness by

performing equivalently to these small model errors as with a true model. SPUDD's

global policy balances its strikes amongst the eight equally-valued targets within the

constraints of fuel and munitions, and each target is struck on average about 1.5 times per

iteration.

Policy 3: Overestimate. For first strike transition probability errors of +0.2,

+0.3, and +0.4, the seemingly large disparity between first and second strike success rates

induces the UAVs to advance to their next targets after only one strike attempt. In these

scenarios where its model overestimates the UAVs' first strike success probability,

SPUDD destroys about 4.5 targets per iteration. Mission performance is better than that

of underestimated capability models because the UAVs strike each target at least once.

Still, the UAVs expend considerable resources while transiting between target sites.

Instead of optimizing strike attempts, SPUDD directs the UAVs to strike each of their

targets once on the first pass and attempt a second wave of attacks if resources permit.

Typically, in the first pass, UAV xj strikes each target y,, y2, y3, y4 once and X2 strikes

each target ys, Y6, y7, Y8 once. In the second attack, UAV xi may revisit targets that were

not destroyed in the order Y4, Y3, Y2, yi, and UAV X2 may revisit targets that were not

87

destroyed in the order Y8, Y7, Y6, ys. Consequently, targets yi and ys are struck about 1.07

times, y2 and Y6 are struck about 1.12 times, targets Y3 and y7 are stuck about 1.30 times,

and y, and Y8 are struck about 1.70 times, per iteration.

4.8 ---4.8 1Policy 2: Comparable I

o------------------------SPDQefrac
4.7 (with true model)

4.6
Policy 3: Overestimate

S4.5

i 4.4 - Policy 1: Underestimate

0 4.
4 3 - - - - - - - ~ -P~- ~ ~ ~ - ~ ~ ~ ~ ~ ~ ~ ~ ~ .

S4.(with true model)

E 4.2 -

m 4.1'

-0.3 -0.2 -0.1 True +0.1 +0.2 +0.3 +0.4

Error of first strike success probability Bars indicate one standard
error of the mean

Figure 4-5 Scenario 1: SPUDD's sensitivity to the accuracy of the UAVs' first strike

probability

4.2.1.3 SPUDD and RH sensitivity to partially-observable munitions

In nominal missions, the state of each UAV's available munitions is fully-observable to

both the SPUDD and RH controllers. Consider a scenario in which the ordnance

monitoring systems fail on the UAVs. As a result, the number of munitions perceived to

be available for strike operations is inaccurate. Although the evaluated planner

implementations do not explicitly handle partially-observable states, this test case

considers each algorithm's robustness to such a situation. The models of both planners

assume each UAV is initialized with six strike ordnances, even though each is actually

mounted only with three. As before, the simulation ends when every target site has been

destroyed or the UAVs have expended either their fuel or munitions.

88

The performance statistics for the SPUDD and RH controllers are shown in

Figure 4-6 and Figure 4-7, respectively. The two UAVs have a total of six strike

ordnances to use in the mission Munitions, not fuel, are the overwhelming limitation in

this scenario. The optimal strategy for such a munitions constraint is for each UAV to

attempt only one strike on each target at the highest success probability (i.e. 0.5).

2.5

8 2E (U

0

.
1.5 -N Destroyed

3 Struck

1_-_-I_0 Visited

.0

E 0.5-

0 -1

1 2 3 4 5 6 7 8

Target Site ID Bars indicate one standard
error of the mean

Figure 4-6 Scenario 1: Mission statistics for SPUDD policy with constraining, partially

observable munitions states over a Monte-Carlo simulation (n=500)

With partially-observable munitions states, the SPUDD planner assumes the two UAVs

possess a total of twelve ordnances. Consequently, the planner generates a policy

equivalent to that of Section 4.2.1.1. SPUDD only guarantees the generation of an exact

policy for the system model that it receives. Indeed, SPUDD's policy provides

suboptimal contingencies because the UAVs have fewer munitions than modeled. Like

before, the SPUDD policy directs the UAVs to attempt about 1.5 strikes on each target

per iteration The expenditure of munitions early in this mission; however, reduces the

ordnances available to strike targets in the future. Consequently, targets yj and ys are

89

struck about 1.5 times, y2 and Y6 are struck 1.3 times, and y3 and Y7 are struck 0.3 times,

per iteration Targets y4 and y8 are not struck at all. Over a five hundred sample Monte-

Carlo simulation, the SPUDD planner destroys an average of 2.58±0.06 targets and

collects a reward of 7.74+0.18, per iteration.

2.5-

0

.5

N Destroyed
0 Struck

1__-_--__ _il Visited
0

. 5-0

E0.5

.0

1 2 3 4 5 6 7 8

Target Site ID Error bars indicate one standard
deviation from the mean

Figure 4-7 Scenario 1: Mission statistics for receding horizon strategy with constraining,

partially observable munitions states over a Monte-Carlo simulation (n=500)

The receding horizon controller similarly suffers from the partially-observable, reduced

supply of munitions. The number of ordnances available for later targets is even lower;

however, because the RH planner greedily strikes until a UAV's target is destroyed or

limited by maxstrikes. The strikes attempted per iteration decline rapidly across the

targets from about 2.1 times at yj and ys to 0.8 times at y2 and Y6 to 0.1 times at y3 and Y7

to 0.0 times at y4 and Y8. The controller destroys 2.05±0.06 targets and collects a reward

of 6.15±0.18, per iteration. A Student t-Test indicates that the SPUDD planner performs

statistically better than the RH controller for restrictive, partially-observable munitions

(p<0.05).

90

The SPUDD planner successfully destroyed more targets than the RH controller

in the fully-observable missions (see Section 4.2.1.1) and the robustness study with

partially-observable munitions states (see Section 4.2.1.3). Still, mission performance of

both the SPUDD and RH planners significantly degrades with reductions in system

observability or model completeness. These performance reductions are pronounced for

the RH controller, which lacks contingency planning capability. Furthermore, the

sensitivity trials (see Section 4.2.1.2) show that SPUDD's mission performance is

adversely affected by inaccuracies in the uncertainty associated with UAV strike

capabilities. Interestingly, while SPUDD destroys the greatest number of targets with a

true system model, the planner performs better with an overestimation than an

underestimation of the UAVs' first strike success probability (p < 0.05). The average

targets destroyed per iteration for each test case are summarized in Figure 4-8.

Targets
Destroyed per

Iteration
SPUDD 4.72±0.06

RH 4.30±0.08
SPUDD (partially-observable munitions) 2.58±0.06

RH (partially-observable munitions) 2.05±0.06

Figure 4-8 Scenario 1: Summary of average targets destroyed for each test case

SPUDD's mission performance advantages entail substantial computational resources.

Whereas the RH controller's average, cumulative planning time is 43±5 seconds, SPUDD

consumes 1.01 hours to construct a policy for the two-UAV, eight-target scenario.

SPUDD-guided UAVs accomplish statistically more mission objectives than the RH

controller (p<0.05); however, SPUDD's planning computation is about 100 times longer.

The benefits of SPUDD's policy can be realized only if sufficient time exists for off-line,
pre-mission planning. SPUDD's policy construction consumes a maximum of 233 MB

of memory, while iterating through a possible action and reward space of 168,400 nodes.

Still, SPUDD's ADD abstractions considerably condense the search space of classical

value-iteration methods, which would require 112,037,630 equivalent nodes.

91

4.2.2 Scenario 2

This scenario extends the battlefield of Scenario 1 to three UAVs and nine targets. The

initial, relative positions of the vehicles and targets are shown in Figure 4-9. Like

Scenario 1, the targets are equally valued, and the cost for moving between target sites is

proportional to distance. Additionally, the maximum number of strike attempts

maxstrikes on a single target is limited to three, and the UAVs' strike success

probability degrades from 0.5 to 0.2 to 0.1 with each strike on a particular site.

In real world battlefields, UAVs may be lost due to malfunction, damage,

maintenance, weather, etc. These losses are modeled as probability distributions on each

UAV's health during operation. Namely, UAVs are lost 10 percent of the time in transits

between sites and 25 percent of the time in strike executions. UAV attrition is assumed

to occur after an action has been committed. For instance, the resultant system state after

a strike action might include the destruction of the attacking UAV, struck target, or both

loci loc2 loc3

X1 ~~Y4t .. 5 1
X2 ~~~--- -- ~- ----- -K- - - ------ !4

X3 loc4 loc5 loc6

Y7 V

loc7 loc8 loc9
1.0 -A

UAV Resources
Fuel (D) = 7.0
Munitions (0) = 4.0
Fuel Costs
Move = (denoted)
Strike = 0.5
Target Rewards
V1.9 = 3.0
System Dynamics
Strike Success = 50%, 25%, 10%
UAV Attrition (Move) = 10%
UAV Attrition (Strike) = 25%

< UAV $ Target

Figure 4-9 Scenario 2: Initial system with three UAVs and nine targets. Dotted lines

denote the nominal target assignment sequence for both SPUDD and RH controllers

92

3.0

4.2.2.1 SPUDD and RH comparison

Figure 4-10 shows typical strike sequences of the two UAVs on a per planner basis. Both

planners select identical vehicle-to-target assignments. In average conditions, the

planners ultimately assign UAV xI to targets yI, y2, y3; X2 to Y4, ys, y6; and X3 to Y7, Y8, Y9.

SPUDD's policy directs the UAVs to execute a fewer number of strikes at each site to

maximize the total number of sites struck. With complete models of the UAVs' strike

success and attrition distributions, SPUDD's contingency-based policy manages

uncertainty by capitalizing strikes on targets at high success probabilities, while

mitigating risk to the UAVs. Oppositely, the RH controller neither models the UAVs'

strike success capability nor loss probability. As a result, the RH planner greedily strikes

targets until either a reward is acquired or limited by maxstrikes.

Figure 4-10 Scenario 2: Typical target sequencing for each UAV on a per planner basis

93

10

9

8

7

- -- SPUDD-UAV1
6 - SPUDD-UAV2
50 0" SPUDD-UAV3
5.

RH-UAV1
IM 000

4U - RH-UAV2

RH-UAV3

2

1

0
0 1 2 3

Strike sequence order

Figure 4-11 depicts the average number of times the UAVs visited, struck, and destroyed

each target with the SPUDD planner. UAV attrition causes the targets to be unevenly

struck. The policy directs the UAVs to strike once at each target site; however, UAVs

are quickly lost through attrition during move and strike operations. On average, a

reduced number of UAVs survive to attack their second target assignment and fewer yet

to their third. Consequently, UAV xI visits target yj 100 percent of the time, y2 about 60

percent of the time, and y3 40 percent of the time. Over a five hundred sample Monte-

Carlo simulation, an average of 2.17±0.03 UAVs are lost and 2.68±0.06 targets are

destroyed, per iteration. Although these values appear similar, a one-tailed, unpaired

Student t-Test shows that more targets are destroyed than UAVs lost (p<0.05).

1.8

1.6
0

1.4

0 1.2

1) N Destroyed

O Struck
0.8-- --- O Visited

0
- 0.6-

z
0.2

1 2 3 4 5 6 7 8 9

Target Site ID Bars indicate one standard
error of the mean

Figure 4-11 Scenario 2: Mission statistics for SPUDD

simulation (n=500)

policy over a Monte-Carlo

An equivalent Monte-Carlo simulation was performed to assess the mission performance

of the RH controller in an identical scenario. The UAVs' mission performance, as shown

in Figure 4-12, indicates the greediness of the controller's plans. As observed in previous

94

test cases, the UAVs repeatedly strike each target site until successful or constrained by

maxstrikes. The RH planner suffers without stochastic models of risk and success. The

planner is unable to recognize the danger of vehicle attrition and diminished success

probabilities for multiple strike attempts on a single target. As a result, even fewer UAVs

survive to strike their targets. For the RH controller, UAV x, survives to visit target yj

100 percent of the time, y2 about 35 percent of the time, and y3 about 10 percent of the

time. The method loses 2.16 0.03 UAVs and destroys 2.40±0.07 targets, per iteration.

Like SPUDD, more targets were destroyed than UAVs lost (p<0.05).

1.8

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

0
1 2 3 4 5 6

Target Site ID

7 8 9
Bars indicate
error of the n

N Destroyed

O Struck

2 Visited

one standard
ean

Figure 4-12 Scenario 2: Mission statistics for receding horizon strategy over a Monte-

Carlo simulation (n=500)

UAV attrition severely impacts the mission performance of both the SPUDD and RH

planners. The SPUDD planner destroys more targets than the RH controller (p<0.05),

however, no statistical difference exists between the numbers of UAVs lost by the two

methods. The SPUDD policy's bias towards destroying more targets at the expense of

vehicle attrition exposes partiality in the planner's optimization and reward functions.

95

C
0

0.

0

E
Z

- -

SPUDD's contingency-based policy inherently rejects actions with high loss risk and low

success probability to extract the greatest cumulative reward over the mission duration.

Al

Indeed, SPUDD's reward function TW, , where Ti is indicates whether target i is
i= I

destroyed and W, is its value, represents the cumulative reward obtained from the M

targets. As noted in Section 2.3, the optimization functions of neither SPUDD nor RH

explicitly represent the cost of vehicle losses because such additions substantially

increase the computational requirements of the SPUDD planner and limit the sizes of

missions that can be reasonably examined.

Although SPUDD and RH suffer similar UAV losses, the disparity in

computational performance is great. RH spends an average btal of 81±7 seconds

planning, while SPUDD forms its policy in 8.73 hours. The SPUDD planner destroys

more targets than the RH controller with a universal contingency-based policy, but takes

500 times longer to compute (p<0.05). Construction of SPUDD's policy consumes a

maximum of 558 MB of memory, while iterating through 377,712 nodes. For a classical

MDP approach, this search space is equivalent to 2,553,809,902 nodes.

Although SPUDD substantially conpresses the search space, it still suffers from

the curse of dimensionality described in Section 3.2.3.4. Essentially, one vehicle and one

target have been added to Scenario 1. The corresponding additions to the action and

reward ADDs explode SPUDD's policy .construction time by nearly eight hours and

double its maximum memory usage. In contrast, the execution time for the RH controller

remains within two minutes. These results highlight the computational differences of

global contingency planning and localized, sequential re-planning. The SPUDD

planner's computational requirements weigh heavily on its performance advantages. A

considerable amount of pre-mission time is required to realize the performance benefits

of SPUDD.

4.2.2.2 SPUDD and RH performance gain with fuel

In the preceding test scenarios, UAVs were initialized with a predetermined quantity of

fuel. This amount was maintained constant across the preceding trials to fairly compare

96

the planners. Fuel though is a limiting constraint that directly affects mission

performance. To examine the influence of fuel in Scenario 2, the numbers of targets

destroyed and vehicles lost are measured for varying quantities of initial UAV fuel. For

each fuel level, the planners are evaluated in a five hundred sample Monte-Carlo

simulation. The difference in performance metrics for the two planners is shown in

Figure 4-13.

For scenarios in which each UAV is initialized with fewer than three fuel units,

SPUDD's contingency-based policy exhibits comparable behavior to the RH controller's

sequential approximations. Greater fuel quantities, however, allow the UAVs to advance

farther into the mission and intensify the two planners' performance differences. As the

mission extends, more targets are destroyed and more UAVs are lost. Generating

contingences based on its capabilities and risks model, the SPUDD planner destroys more

targets and loses fewer UAVs than the RH controller. For UAVs initialized with over

nine fuel units, the mission performances of the SPUDD and RH planners appear

bounded. These bounds reflect other constraints in the system, including the number of

targets and UAVs, munitions, max-strikes, strike success capabilities, and attrition rates.

In this performance-bounded region, the SPUDD planner destroys about 0.4 more targets

and loses 0.2 less UAVs than the RH controller, per iteration Variance in the mission

performance differences of these planners produces uncertainty in the statistical

significance of these results. One-tailed, unpaired Student t-Tests suggest that the

SPUDD controller destroys more targets for fuel settings above seven increments and

loses fewer vehicles above six increments (p<0.05).

97

0.5

0.4-
0

.r -*Targets
WE 0.2 -- Destroyed

I-o

-Am-UAVs Lost

0.1 -Significance

region

0 .10" (p < 0.05)

0D

-0.1

-0.2 -Det

-0.3-
0 2 4 6 8 10 12 14

Intial Fuel Units (D)

Figure 4-13 Scenario 2: Mission performance differences of SPUDD and RH planners

as a function of UAV fuel over Monte-Carlo simulations (n=500). Highlighted

significance region computed by a series of one-tailed, unpaired Student t-Tests

(p<0.05)

4.2.3 Scenario 3

Scenarios 1 and 2 revealed some of the UAV behavioral differences produced by the

SPUDD and RH planners. These scenarios, however, only focused on strike sequences

as a mission performance discriminator (i.e. both planners chose identical vehicle-to-

target assignments). Scenario 3 extends the investigation to measure the controllers'

performance attributes for dissimilar vehicle -to- target assignments and strike sequenc es.

The battlefield is initialized with three UAVs and eight targets, as shown in

Figure 4-14. Like Scenarios I and 2, max-strikes limits the number of strike attempts on

a target to three, and the UAVs' strike success probability degrades from 0.5 to 0.2 to 0. 1

with each strike on a particular site. Additionally, UAVs may be lost 10 percent of the

time during transits between sites and 25 percent of the time during strike executions.

98

The scenario includes seven targets yj, Y3, y4, 5, y 6, y, which offer a reward of three,

and one highly-prized target Y7, which has a value of twelve. Perhaps, target y7 is a key

weapons depot and the others are less-critical, communication infrastructure targets.

Y1 <1 0 UAV Target
Y2' lec1

loc2 2.0

loc3 -- - - - - -- - 7 Y

4, X3 loc7 loc8
I i4 4.0 1.0 -

1.0 Y5

loc5
1oc6

UAV Resources Fuel Costs Target Rewards System Dynamics
Fuel (D) = 10.0 Move = (denoted) Vl.6,8= 3 Strike Success = 50%,25%,10%
Munitions (0) = 4.0 Strike = 0.5 V7 = 12 UAV Attrition (Move) = 10%

UAV Attrition (Strike) = 25%

Figure 4-14 Scenario 3: Initial system with three UAVs and eight targets. Dotted lines

denote the nominal target assignment sequence for the SPUDD controller

4.2.3.1 SPUDD and RH comparison

Figure 4-14 depicts the nminal vehicle-to-target assignment determined by the SPUDD

policy. In average conditions, xj is assigned to targets y1, y2, y3; X2 to y7, y8; and X3 to y4,

Ys, Y6. Since the SPUDD planner performs a global search for an optimal policy, UAV X2

is immediately dispatched to strike high- value target y7. Even though UAV x2 is in closer

proximity to other targets, the reward at target Y7 dominates SPUDD's expected

discounted reward computation. SPUDD's policy selects contingent actions that

maximize this expected reward in the presence of uncertainty. As a result, either UAV x,

or X3 is rerouted to target Y7 if x2 is lost Indeed, SPUDD's policy directs UAVs xj and X3

to attempt only one strike on each of their targets until Y7 is destroyed, to maintain

vehicles for backup. After target y7 is eliminated, the UAVs follow a course of action

that mirrors that observed in Scenario 2. Success probability, risk aversion, and fuel

99

constraints contribute to SPUDD's conservative strategy for striking lower-valued

targets. Unless a target's reward is exceptionally high, the planner tends not to assign

multiple UAVs to a single target because the maxstrikes constraint permits each target

site to be struck a maximum of three times.

Figure 4-15 depicts the number of times each target was visited, struck, and

destroyed with the SPUDD planner. Highly-prized target Y7 is destroyed most often at

0.47±0.02 times per iteration. UAV attrition, during move and strike operations,

substantially reduces the number strikes performed on targets later in mission For a five

hundred sample Monte-Carlo simulation, an average of 2.07±0.03 UAVs are lost and

2.70±0.07 targets are destroyed, per iteration. The UAVs collect an average reward of

12.33±0.45 per iteration

1.4

1.2

0

.'0.8-- --- Destroyed
10 Struck

U0.6-- 0iVisited
0
0

-0.4 ---0 .4-

E
z 0.2-

0-
1 2 3 4 5 6 7 8

Target Site ID Bars indicate one standard
error of the mean

Figure 4-15 Scenario 3: Mission statistics for SPUDD

simulation (n=500)

policy over a Monte-Carlo

Unlike the SPUDD planner, the RH controller cannot build contingencies for stochastic

events with its incomplete model of the system. RH's model neither represents the

100

UAVs' strike capability nor attrition probability. Additionally, the controller's visibility

is limited by its localized planning horizon H. As discussed in Section 3.3.2.3,

Cassandras and Li showed that their RH controller requires H to be based on the shortest

distance between any vehicle and any target at time tk to guarantee stationary trajectories.

Figure 4-16 indicates that high-value target Y7 is excluded from the controller's initial

planning horizon Ho at time to. Nominally, the UAVs first destroy targets within this

horizon (y] ... Y6) before attacking targets Y7 and y8.

2 -a C UAV :j Target

ning

YN Y84'
Y4 ,- loc7 loc8

Y5

loc6

Figure 4-16 Scenario 3: Nominal vehicle-to-target assignment sequence for the RH

controller

The RH planner's vehicle-to-target assignment and sequencing adheres to its greedy

design. That is, the planner focuses on generating trajectories to targets within this

horizon- limited area. Targets farther than H are largely ignored until the horizon

expands. With a sizeable portion of targets in close proximity, the vehicles are attracted

to a locally maximum region. Additionally, the controller's strike sequencing follows

that of Scenarios 1 and 2. Specifically, the UAVs repeatedly strike target sites until

successful or constrained by max-strikes. Figure 4-17 compares typical vehicle-to-target

assignments and strike sequencing of both the SPUDD and RH controllers on a per UAV

basis.

101

9

Figure 4-17 Scenario 3: Typical target sequencing for each UAV on a per planner basis

The RH planner's performance suffers from the lack of a complete system dynamics

model and a myopic planning horizon. As shown in Figure 4-18, the UAVs concentrate

strike attempts on nearby targets. Consequently, targets y7 and ys are rarely visited

because of fuel and/or munitions exhaustion and UAV attrition. For example, target yj is

struck about 1.3 times, y2 is struck 0.2 times, and Y7 is struck 0.1 times, per iteration.

Target y8 is visited 0.04 times per iteration, but never struck because all vehicles that

moved to its site were subsequently lost. For a five hundred sample Monte-Carlo

simulation, an average of 2.61±0.03 UAVs are lost and 2.14±0.03 targets are destroyed,

per iteration. While SPUDD destroys more targets than it loses UAVs, RH loses more

UAVs than it destroys targets (p<0.0 5). Furthermore, RH-directed UAVs destroy high-

value target y7 only 3 percent of the time, claiming a significantly lower reward of

6.69±0.33 per iteration

102

8

7-

6 SPUDD-UAV1

""-SPUDD-UAV2

5 - SPUDD-UAV3

4 RH-UAV1

RH-UAV2

3RH-UAV3

2-

1~

0i
0 1 2 3

Strike sequence order

1.4

C 1.2-- - -

t0.8 -- - -- ---- 0 Destroyed

13 Struck

0.6 - - liVisited

0
4-

0.

0.4 -

Z 0.2 -

0

1 2 3 4 5 6 7 8

Target Site ID Bars indicate one standard
error of the mean

Figure 4-18 Scenario 3: Mission statistics for receding horizon strategy over a Monte-

Carlo simulation (n=500)

4.2.3.2 SPUDD sensitivity to reward valuations

In part, the RH planner performs poorly because its local maximization strategy ignores

the distant, but more valuable target, y7. Prior to mission execution, suppose the SPUDD

planner was unaware of target y7's high-value. Perhaps, intelligence reports indicated

that all eight targets were equally- important infrastructure targets. During post-mission

analysis, military strategists may realize that a high-value, critical weapons depot existed

at y7.

This sensitivity study compares SPUDD's mission and computational

performance in a scenario where its reward function is true to a distortion The SPUDD

planner must negotiate a reward valuation model in which all eight targets have a reward

valuation of three, even though target Y7 will later be known to have a value of twelve.

The mission performance of the SPUDD planner with such distorted reward valuations is

shown in Figure 4-19. The reward model engenders a policy that does not actively focus

on target Y7. Vehicle-to-target assignments follow that of the greedy RH controller;

103

however, SPUDD's complete model of UAV strike capabilities and attrition rates support

a cautionary, contingency-based policy. Indeed, strikes are only executed at high of

confidence levels to mitigate the effects of attrition. Tempering the RH controller's sharp

performance decline over multiple targets, the UAVs strike y1, y2, y3 about 0.9 times; y4,

ys, Y6 0.6 times; y7 0.4 times; and y8 0.3 times, per iteration With a distorted reward

model, SPUDD's policy loses 2.20±0.03 UAVs and destroys 2.72±0.07 targets, per

iteration While the imprecise model values the accumulated rewards as 8.16±0.21 per

iteration, the UAVs actually collect a reward of 10.37±0.45 per iteration by inclusion of

target y7's high-value. In comparison to its performance with a true reward model,

SPUDD destroys a comparable number of targets, but accumulates less reward by not

aggressively pursuing critical target Y7.

1.4-

1.2
0

CL

24 0.8-- - Destroyed

0 Struck

8 0.6- iiVisited
0
4.-

0
0.4 -

E
z 0.2 -

0

1 2 3 4 5 6 7 8

Target Site ID Bars indicate one standard
error of the mean

Figure 4-19 Scenario 3: Mission statistics for SPUDD policy with distorted reward

function over a Monte-Carlo simulation (n=500)

104

Still, the SPUDD planner destroys more targets than the RH controller in both the fully-

observable and sensitivity trial missions. The performance metrics for each test case are

summarized in Figure 4-20.

UAVs Lost per Targets Target 7 Reward per
Iteration Destroyed per Destroyed per IterationIteration Iteration ______

SPUDD 2.07±0.03 2.70±0.07 0.47±0.02 12.33±0.45
RH 2.61±0.03 2.14±0.03 0.03±0.02 6.69±0.33

SPUDD (distorted reward model) 2.20±0.03 2.72±0.07 0.25±0.02 10.37±0.45

Figure 4-20 Scenario 3: Mission performance summary of test cases

The planning time of the RH controller averages 72.42±3.21 seconds per iteration.

Although plans are quickly generated, the RH approach loses more UAVs than it destroys

targets. The SPUDD planner performs better than the RH controller; however, sufficient

time and memory must exist for pre-mission planning. SPUDD's policy is generated in

6.6 hours, consuming 526 MB of memory for 351,170 nodes.

4.2.5 Scalability

Mission performance and computational cost seem to follow each other. Complete and

accurate system models tend to provide high mission success; however, the preceding

case studies have also shown they beget increasing computational costs.

These computational requirements are inherently intertwined with the complexity

of the planning task. Section 3.4 described the optimization and representation

differences of the SPUDD and RH controllers. Whereas the RH controller optimizes

over a sequence of local horizons, the SPUDD planner searches for an optimal policy

with contingencies for a global state space. The RH controller models utility functions

and state variables, while the SPUDD planner represents the complete system, including

state transition dynamics.

This section evaluates the ability of the planners to scale to systems of greater

dimensionality. Mission and computational performance is examined over a series of

scenarios, which vary system attributes modeled by both controllers. Specifically,

105

scalability is revealed for missions that include increasing numbers of UAVs and targets.

The standardized lest scenarios include up to three UAVs and nine targets at positions

which avoid the special-case behavior observed in Scenario 3. As shown in Figure 4-21,

UAVs begin their mission from a common, initial position Targets are positioned along

evenly-spaced rows and columns, where the number of columns equals the number of

UAVs.

1.0

(a) 1 UAV

-T

1.0

1.0

(b) 2 UAVs

1.0

(c) 3 UAVs

UAV Resources
Fuel (D) = 8.0
Munitions (0) = 6.0

Fuel Costs Target Rewards System Dynamics
Move = (denoted) V1m = 3 Strike Success = 50%,25%,10%
Strike = 0.5 UAV Attrition (Move) = 10%

UAV Attrition (Strike) = 25%

Figure 4-21 Standardized scenario examples with six targets and varying numbers of

UAVs. Dotted lines denote the nominal target assignment sequence for both SPUDD

and RH controllers

In each of the 27 standardized scenarios, the UAVs are initialized with the same fuel and

munitions. Targets are valued equally, and the cost for transiting between target sites is

proportional to distance. Strike attempts on a single target site are limited to three by

maxstrikes, and strike success probability degrades from 0.5 to 0.2 to 0.1 with each

attempt to destroy a particular target. UAVs are lost 10 percent of the time during

transits between sites and 25 percent of the time during strike executions. Five hundred

106

sample Monte-Carlo simulations of each scenario provide the average-case behavior of

the planners. Pre-mission policy construction establishes the SPUDD algorithm's

planning time, and the sum of the RH controller's on-line optimizations determines its

time.

The planning times of the SPUDD and RH controllers in each of these scenarios

are shown in Figure 4-22. SPUDD generates policies about an order faster than the RH

controller for scenarios that include less than a total of 4 UAVs and targets. For greater

numbers of UAVs and targets, the curse of dimensionality that plagues SPUDD worsens

its computational performance. Each additional target site lengthens SPUDD's policy

construction time by an average of 1,532 seconds. Oppositely, the RH controller's

planning time increases at a more restrained rate of about 6 seconds per target. The RH

controller avoids some of the complexity of larger state and action spaces by disregarding

certain system attributes and sequentially optimizing over localized spaces. With each

additional UAV, SPUDD's planning time increased by an average of 4,200 seconds,

while the RH controller gained an average of 12 seconds. The accelerated growth of

SPUDD's execution time eases moderately in scenarios with seven or more targets. The

difference of the two planners' execution times is most pronounced in these relatively

large scenarios. In the three-UAV, nine-target scenario, SPUDD spends nearly 400 times

longer to compute its policy than the summed execution time of RH's optimizations.

These planning time differences represent significant disadvantages in practicality.

Unless sufficient pre-mission time exists for SPUDD policy generation, the possible

mission benefits of contingency planning cannot be realized.

107

1.E+05

1.E+04 - ~ SP

1.E+03- - --

E 1.E+02 r*SUD

Vild 1'*0
'E 1.E+01

1.E-'O - -00 - - - - - - -

1.E-01 --- - -

1.E-02 - --- -- - - - - --- ---

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9

Number of Targets in Scenario

Figure 4-22 Planning times of SPUDD and RH controllers for standardized scenarios

SPUDD's optimal policy generation consumes both time and memory. As shown in

Figure 4-23, SPUDD's memory requirements depend on the number of UAVs and targets

included in the mission The plot shows limited growth in maximum memory utilization

for scenarios that include less than a total of seven UAVs and targets. Memory

consumption accelerates in larger scenarios; however, like the trend of SPUDD's

execution time, its rate diminishes in scenarios that include seven or more targets. In the

three-UAV scenarios, maximum memory usages range from 12 MB with one target to

560 MB with nine targets.

108

600

500 ------ --

M400-- --- -

0300- - - --E

E 200 -- -
E

100- - -

0+1 2 3 4 5 6 7 8' 91 1 2 3 4 5 6 7 8'9 1 2 3 4 5 6 7 8 9

Number of Targets in Scenario

Figure 4-23 Maximum memory usage of SPUDD and RH controllers for standardized

scenarios

The SPUDD planner's maximum memory consumption is determined by the size of its

model-dependent search space. As described in Section 3.2.4, SPUDD uses compact

ADD action and reward representations that avoid tabulations. Aggregating multiple

subtrees of the same value, the ADD formulation compresses the search space. The

numbers of action and value nodes represented by ADDs and an analogous tabular-based

MDP structure are shown in Figure 4-24. The orders of difference between the two

representations intensify for increasing dimensionality Like the trends of SPUDD's

planning time and memory usage, the growth in ADD nodes decelerates in scenarios that

include more than seven targets. The equivalent tree's expansion does not decrease as

substantially. In scenarios with three UAVs, the numbers of ADD and equivalent tree

nodes ranged from 104 to 377,712 and from 476 to 2,553,809,902, respectively. On

average, the number of ADD nodes increased by 24,941 with each additional target,

while the equivalent tree grew at a rate of 111,777,704 nodes per target.

109

IUAV 2UAVs 3UAVs
1.E+10 ---- -

1.E+09 -

w1.E+08 -- y

o 1.E+07 -Z

1.E+06 - -*-ADD
++ 1.E+05 - -u-Analogous0

1.E+04 -Tree

1.E+03 -

1.E+02-
z

1.E+01 -

1 2 3 4 5 6 7 8 91 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9

Number of Targets in Scenario

Figure 4-24 Representation sizes of SPUDD's ADD and an analogous tabular-based

MDP structure

Although SPUDD shrinks the search space with efficient ADDs, increases in

dimensionality curse the method's computational feasibility. Each vehicle and target

adds considerable model complexity. Elaborate system models result in large memory

consumptions and long planning times. While hardware costs and sizes miniaturize on an

annual basis, the value of time continues to increase - especially in military operations.

The RH controller demonstrates a more graceful scaling of computational requirements

with increasing numbers of UAVs and targets. On the other hard, the RH approach does

not guarantee an optimal course of action. The RH controller exhibits better

computational scalability precisely because it sequentially negotiates localized

approximations of the system.

110

1.E+03

0 .75 - - - - - - - - - - - - -- - - -

.0

0 .5 4 - - -- - - - -- -

1.E+01

Targets Destroyed
O 0.25- - UAVs Lost

a). -4- Execution Time

1.E+00 Significance

region (p < 0.05)
0

1.E-01
-0.25-

-0.5, 1.E--02
1 2 3 4 5 6 7 8 911 2 3 4 5 6 7 8 911 2 3 4 5 6 7 8 9

Number of Targets in Scenario

Figure 4-25 Mission and computational performance differences of SPUDD and RH

planners in standardized scenarios over multiple Monte-Carlo simulations (n=500).

Highlighted significance region computed by a series of one-tailed, unpaired Student t-

Tests (p<0.05)

Figure 4-25 compares the behavioral and computational trade-offs exhibited by the two

planners. Each planner was examined in five hundred sample Monte-Carlo simulations

of the 27 standardized scenarios. This two y-axes plot shows the explosive increase in

execution time of the SPUDD planner in relation to the RH controller. SPUDD's policy

generation time tends to be shorter than the RH controller for scenarios with less than a

total of 4 UAVs and targets, and decelerates in growth for scenarios that include more

than seven targets. Figure 4-25 highlights scenarios in which SPUDD showed better

mission performance based on the results of one-tailed, unpaired Student t-Tests

(p<0.0 5).

SPUDD loses fewer UAVs in scenarios that include more than three targets,

though reither planner explicitly represents loss-of-vehicle costs (p<0.05). Unlike the

111

RH controller, however, SPUDD's model does represent UAV attrition probabilities. To

extract the highest cumulative reward, SPUDD's contingency-based policy cautiously

avoids actions that are associated with expectations of high loss and low gain.

Oppositely, the RH controller directs each UAV to repeatedly strike its targets until

successful or constrained by maxstrikes. Because UAVs attrite 25 percent of the time

during strike operations, the RH controller's greedy approach loses more UAVs (p<0.05).

As denoted in Figure 4-21, the battlefield's grid-like design induces nominal

vehicle assignments along target columns. In small scenarios that include a comparable

number of targets and UAVs, each UAV ultimately visits few target sites. Consequently,

the two planners produce similar courses of action and exhibit comparable mission

performances because the UAVs have sufficient supplies of fuel and munitions to fully

strike every target to its max strikes limit. In larger scenarios where the targets

outnumber the UAVs, SPUDD's conservative strike sequencing limits UAV losses and

destroys more targets than the RH controller (p<0.05). This advantage is apparent in the

one-UAV, five-target; two-UAV, six-target; three-UAV, seven-target battlefields and

larger.

Furthermore, the one-UAV mission performance trends indicate a bound for both

the SPUDD and RH planners in scenarios that have low vehicle-to-target ratios (e.g.

scenarios that include one-UAV and six targets or more). These bounds reflect

constraints in the system, including fuel (D), munitions (0), max-strikes, strike success

capabilities, and attrition rates.

Across the 27 test scenarios, SPUDD's planning time is an average factor of 60

times greater than the RH controller. For each target added to the standardized scenarios,

on average the SPUDD planner has a 22 times longer execution time, destroys 0.06 more

targets, and loses 0.02 fewer UAVs than the RH controller. Similarly, for each additional

UAV, on average SPUDD takes 62 times longer, destroys 0.03 more targets, and loses

0.05 fewer UAVs than RH. The considerable increase of SPUDD's policy generation

time may be prohibitive; however, its gain in mission performance may be worthwhile.

The partially decelerated increase of computational resources in scenarios involving more

than seven targets might offer some relief for large-scale mission planning. Still,

sufficient pre- mission time must exist for SPUDD's optimal policy construction.

112

5 Conclusions
"I will never believe that god plays dice with the universe"

- A lbert Einstein

This thesis examines two planning algorithms that coordinate collaborative agents to

accomplish shared mission objectives in the presence of action outcome uncertainty On

a fully-observable battlefield, the planners coordinate a team of unmanned aerial vehicles

(UAVs) to obtain a maximum reward by destroying targets (Chapter 2). Stochastic

components, including UAV capability and attrition, represent uncertainty in the

simulated missions.

5.1 Summary

Planning algorithms can be generally classified into two categories: exact and heuristic.

In this thesis, an exact stochastic planning using decision diagrams planner (SPUDD) and

a heuristic, receding horizon controller (RH) are evaluated in typical planning problems.

SPUDD searches for an optimal policy with global contingencies, while RH sequentially

selects approximate plans over more localized horizons.

113

Generally, the two planners trade mission and computational performance.

Although the results are limited to specific problem instances, they provide

characterizations of the algorithms' capabilities and limitations. The SPUDD planner

provides optimal courses of action for all possible conditions over the mission duration;

however, the algorithm consumes substantial computational resources. On the other

hand, the RH approach does not guarantee optimality, but may form worthy plans

without evaluating every contingency.

5.2 Capabilities and Limitations

The SPUDD and RH planners have an expansive set of customizable attributes. The

accuracy, observability, and interrelationships of these parameters, such as discount

factors, action costs, rewards valuations, success capabilities, and attrition probabilities,

directly impact both mission and computational performances (Chapter 3). Indeed, the

SPUDD planner's more complete and truthful model of the system exhibits statistically

better mission performance at sub stantially higher computational cost in comparison to

the heuristic, RH controller (Chapter 4).

Sensitivity trials capture each algorithm's robustness to real world planning

environments where planners must negotiate incomplete or inaccurate system models. A

model's completeness and correctness tends to correlate to a planner's computational

complexity and mission performance. Indeed, the SPUDD and RH planners endure high

UAV attrition because neither explicitly represents the cost of vehicle losses. The

mission performances of both methods decay as the quality of their system model

worsens.

Scalability studies assess the trends of the mission and computational

performance metrics for both approaches in larger scenarios that include increasing

numbers of UAVs and targets. For relatively small scenarios, the RH controller provides

statistically similar mission performance to the SPUDD planner in considerably less time.

In scenarios with greater dimensionality, however, SPUDD's mission advantages and

computational weaknesses intensify in relation to the RH controller. For long missions

where the UAVs are initialized with large quantities of fuel (D) or that include many

114

more targets than vehicles, SPUDD destroys more targets and loses fewer UAVs than RH

(p<0.05). In certain cases, he mission performances of both planners is bounded by

other constraints in the system, including munitions (0), maximum strike attempts (max-

_strikes), strike success capabilities, and attrition rates.

Although SPUDD reduces the computational requirements of tabular MDP value

iteration with efficient algebraic decision diagram (ADD) representations, its state,

action, and outcome spaces are afflicted by the curse of dimensionality in large scenarios.

Oppositely, the RH controller's abridged system model and myopic horizon truncate the

planning problem. The RH method suffers mission performance shortcomings because

its model does not represent the uncertainties associated with the UAVs' capabilities and

risks. Instead of formulating contingencies for possible states over the mission duration,

RH sequentially re-plans over shorter horizons that steer the UAVs towards local

maxima. Consequently, the RH controller is characterized by shorter planning times and

poorer mission performance than the SPUDD planner.

In nearly every scenario, statistical tests show that SPUDD's policy destroys more

targets and loses fewer UAVs than the RH controller (p<0.05). The merits of this

statistical significance depend on one's perspective. SPUDD's mission advantages can

be realized only with sufficient availability of pre-mission planning time. While

hardware costs and sizes miniaturize on an annual basis, the value of time continues to

increase - especially in military operations. These concerns are particularly relevant for

responding to unexpected events. Both SPUDD and RH are designed for fully-

observable systems; however, the real world is difficult to completely estimate and

quantify. The sensitivity studies show that the planners' performances deteriorate with

partially-observable and imprecise systems models. Consequently, re-planning may be

necessary. Whereas re-planning is an integral feature of the RH controller, the

computational requirements of reconstructing SPUDD's optimal policy is prohibitive.

For example, if targets need to be destroyed in a particular order, the RH controller

simply ignores sites that need to be attacked later in the mission. Conversely, SPUDD

incorporates this ordering into its model, but cannot immediately respond to

unanticipated changes during mission execution.

115

5.3 Future directions

This thesis formally measures the mission and computational performance trade-offs of

the SPUDD and RH planners over a spectrum of scenarios. This objective suggests three

opportunities for future work: (1) performance metrics, (2) planning models, and (3)

scenarios.

5.3.1 Performance metrics

5.3.1.1 Mission measures

Mission performance is assessed based on vehicle-to-target assignments and sequencing,

accumulated rewards, number of targets destroyed, and number of UAVs lost. These

metrics provide a high-level glimpse into the UAV behavior induced by each planner.

Vehicle-to-target assignments and sequencing give indications to the cooperativeness of a

planner's objective fulfillment strategy; however, these metrics do not describe the

estimated time of mission completion. Simulated mission times are a better

characterization of speed.

5.3.1.2 Computation measures

Pre-mission policy construction establishes the SPUDD algorithm's planning time, and

the sum of the RH controller's on-line optimizations determines its time. These

measurement inconsistencies may imperfectly represent each method's true

computational performance. Total planning time and maximum memory consumption

are practical measures, but these can be supplemented by theoretical average- and worse-

case computability analysis.

116

5.3.2 Planning models

5.3.2.1 Scope

The planning models incorporate basic system attributes, including action costs, reward

valuations, health, fuel, munitions, positions, strike capabilities, and attrition

probabilities. Actual UAV missions necessitate consideration of many other features,

including heterogeneous vehicle characteristics, three-dimensional space, non-stationary

targets with unique threat capabilities, time-sensitive rewards, attrition costs, etc. Such

additions curse the feasibility of the SPUDD planner. SPUDD substantially compresses

the evaluation state space with its aggregative ADD representations; however, context-

specific planners that exploit the structure of a problem domain may exhibit better

scalability to missions of greater complexity. For instance, fuel and munitions can be

modeled as part of an action's cost, rather than as separate state variables. In additior, a

single UAV might be modeled to represent an entire team of UAVs that follow identical

plans. Simplified system nndels could allow SPUDD to evaluate larger scenarios, but

mission performance may suffer. Oppositely, incorporating additional system

components, such as UAV capabilities and threats, into the RH controller's optimization

may improve mission performance at the expense of greater computation.

5.3.2.2 Robustness

Both planners perform significantly worse with system models that are partially-

observable, incomplete, or inaccurate. Although neither SPUDD nor RH is intended to

manage such situations, actual missions require robustness to the unexpected. To ensure

stationary trajectories, the RH controller determines the length of each optimization's

planning horizon based on the shortest distance of UAV-to-target pairs. These myopic

horizons disadvantage he controller in scenarios that include local maxima. Other

schemes for setting the controller's horizon might still enforce stationary trajectories and

provide better performance.

Whereas RH trades mission performance for computational efficiency, SPUDD

performs optimally at the expense of substantial computational requirements. SPUDD

117

manages uncertainty with a complete and accurate system model; however, policy

reconstruction in response to unanticipated events requires considerable processing time.

Researchers at the University of British Columbia recently upgraded their

implementation of SPUDD with approximate value iteration to speed computation and

partially-observable Markov decision process (POMDP) capabilities to support greater

robustness.

Alternative planning approaches include decentralized MDP models and policy

roll-out. Decentralized MDPs (Dec-MDPs) methods capture the decentralized nature of

multi-agent systems by using each agent's partial knowledge of the overall system to

choose local actions (including communication and information sharing actions) [18].

Each agent formulates a local policy for itself, which aims to maximize the expected

utility for the entire team. Research is focused on finding approximate solutions to Dec-

MDPs, as optimal solutions were proven to require double exponential time (22) [4].

Policy roll-out, which approximates MDP policy iteration, combines machine learning

and simulation to iteratively improve the best policy found until improvement ceases or a

time limit is exceeded [39]. This process is initially computationally intensive, like

SPUDD, but its reactive policy can quickly solve future problem instances of a specific

domain

5.3.3 Scenarios

Monte-Carlo simulations provide each planner's average-case performance in the test

scenarios. The robustness of the SPUDD and RH planners is examined by sensitivity and

scalability studies. The curse of dimensionality that plagues SPUDD limits the feasibility

of considering missions that include more than 3 UAVs and 9 targets. Alternative

planning models may permit comparison of the two approaches over a greater range of

scenarios.

For each mission, system and optimization parameters, including discount factor,

fuel (D), munitions (0), max-strikes, reward valuations, action costs, strike capabilities,

attrition probabilities, and vehicle and target positions, can also be varied to

experimentally observe their effect on performance. For example, the number of strikes

118

attempts allowable on a single target (max strikes) is three in the examined scenarios. As

a result, unless a target's reward is exceptionally high, planners tend not to assign

multiple UAVs to a single target. Generalizing the interdependency of scemrio attributes

could assist planners to appropriately select model parameters.

119

[Except for this sentence, this page intentionally left blank]

120

References

[1] Basharin, G., Langville, A., and Naumov, V., "The Life and Work of A. A.
Markov," Linear Algebra and its Applications, Vol. 386, Addison-Wesley, New
York, 2004, pp. 3-26.

[2] Bellman, R., Dynamic Programming, Princeton University Press, Princeton, 1957.

[3] Bellingham, J., Tillerson, M., Alighanbari, M., and How, J., "Cooperative Path
Planning for Multiple UAVs in Dynamic and Uncertain Environments,"
Proceedings of 41st IEEE Conference on Decision and Control, 2002, pp. 2816-
2822.

[4] Bernstein, D., Givan, R., Immerman, N., and Zilberstein, S., 'The Complexity of
Decentralized Control of Markov Decision Processes," Mathematics of Operations
Research, Vol. 27, No. 4, 2002, pp. 819-840.

[5] Bertsekas, D. and Castanon, D., "Adaptive aggregation for infinite horizon dynamic
programming," IEEE Transactions on Automatic Control, Vol. 34, 1989, pp. 589-
598.

[6] Boutilier, C., Dean, T., and Hanks, S., "Decision theoretic planning: Structural
assumptions and computational leverage," Journal of Artificial Intelligence
Research, Vol. 11, 1999, pp. 1-94.

[7] Boutilier, C., "Planning, Learning, and Coordination in Multiagent Decision
Processes," Sixth Conference on Theoretical Aspects of Rationality and Knowledge
(TARK-96), 1996, pp. 195-2 10.

[8] Butenko, S., Murphey, R., and Pardalos, P., editors, Recent developments in
cooperative control and optimization, Kluwer Academic Publishers, Boston, 2004.

[9] Cassandra, A., Kaelbling, L., and Littman, M., "Acting optimally in partially
observable stochastic domains," Proceedings of the 12th National Conference on
Artificial Intelligence (AAAI), 1994, pp. 1023-928.

[10] Cassandras, C. and Li, W., "A Receding Horizon Approach for Solving Some
Cooperative Control Problems," Proceedings of the 41st IEEE Conference on
Decision and Control, 2002, pp. 3760-3765.

[11] Cruz, J., Simaan, M., Gacic, A., and Liu, Y., "Moving Horizon Game Theoretic
Approaches for Control Strategies in a Military Operation," Proceedings of the 40th
IEEE Conference on Decision and Control, 2001, pp. 628-633.

121

[12] Curry, M., Wohletz, J., Castaut6n, J., and Cassandras, C., "Modeling and Control of
a Joint Air Operations Environment with Imperfect Information," Proceedings of
the SPIE 161h Annual International Symposium, 2002, pp. 41-5 1.

[13] Dean, T. and Kanazawa, K., "A model for reasoning about persistence and
causation," Computer Intelligence, Vol. 5, No. 3, 1989, pp. 142-150.

[14] Dearden, R. and Boutilier, C., "Abstraction and approximate decision theoretic
planning," Artificial Intelligence, Vol. 89, 1997, pp. 219-283.

[15] Gamerman, D., Markov Chain Monte Carlo: Stochastic Simulation for Bayesian
Inferences, Chapman and Hall, New York, 1997.

[16] Garey, M., Computers and Intractability: A Guide to the Theory of NP-
Completeness, W. H. Freeman, San Francisco, 1979.

[17] Gazi, V. and Passino, K., "Stability Analysis of Social Foraging Swarms:
Combined Effects of Attractant/Repellent Profiles," Proceedings of 41st IEEE
Conference on Decision and Control, 2002, pp. 2848-2853.

[18] Goldman, C. and Zilberstein, S., "Decentralized control of cooperative systems,"
Technical Report 03-36, Department of Computer Science, University of
Massachusetts at Amherst, 2003.

[19] Guestrin, C., "Planning under uncertainty in complex environments," PhD thesis,
Department of Computer Science, Stanford University, 2003.

[20] Guestrin, C., Koller, D., and Parr, R., 'Multiagent planning with factored MDPs,"
Proceeding of the 14th Neural Information Processing Systems (NIPS-14), 2001,
pp. 1523-1430.

[21] Hanks, S. and McDermott, D., "Modeling a dynamic and uncertain world I:
symbolic and probabilistic reasoning about change," Artificial Intelligence, Vol. 66,
No. 1, 1994, pp. 1-55.

[22] Hoey, J., St-Aubin, R., Hu, A., and Boutilier, C., "SPUDD: Stochastic planning
using decision diagrams," Proceedings of the 15th Conference on Uncertainty in
Artificial Intelligence (UAI), 1999, pp. 279-288.

[23] Howard, R., Dynamic programning and Markov processes, MIT Press, Cambridge,
1960.

[24] Hu, J. and Sastry, S., "Optimal Collision Avoidance and Formation Switching on

Riemannian Manifolds," Proceedings of 40th IEEE Conference on Decision and

Control, 2002, pp. 1071-1076.

122

[25] Juhasz, Z., "MultiAgent Systems," COM6405: Agent Technology, University of
Exeter, 8 March 2004, http://www.dcs.ex.ac.uk/studyRes/COM6405/2004_5.ppt
[cited 23 December 2004].

[26] Lovejoy, W., "A survey of algorithmic methods for partially observable Markov
decision processes," Annals of Operations Research, Vol. 28, No. 1, 1991, pp. 47-
66.

[27] Li, W. and Cassandras, C., "Stability Properties of a Cooperative Receding Horizon
Controller," Proceedings of the 42nd IEEE Conference on Decision and Control,
2003, pp. 492-497.

[28] Li, W. and Cassandras, C., "Stability Properties of a Receding Horizon Controller
for Cooperating UAVs," Department of Manufacturing Engineering, Boston
University, 2004.

[29] Lian, F. and Murray, R., "Real-Time Trajectory Generation for the Cooperative
Path Planning of Multi-Vehicle Systems," Proceedings of41st IEEE Conference on
Decision and Control, 2002, pp. 3766-3769.

[30] Littman, M., "Algorithms for Sequential Decision Making," PhD thesis,
Department Computer Science, Brown University, 1996.

[31] Manne, A., 'Linear programming and sequential decisions," Management Science,
Vol. 6, No. 3, 1960, pp. 259-267.

[32] Papadimitriou, C. and Tsitsiklis, J., "The complexity of Markov decision
processes," Mathematics of Operations Research, Vol. 12, No. 3, 1987, pp. 441-
450.

[33] Puterman, M., Markov Decision Processes: Discrete Stochastic Dynamic
Programming, Wiley, New York, 1994.

[34] Rabiner, L. and Juang, B., "An introduction to hidden Markov models," IEEE ASSP
Magazine, January 1986, pp. 4-15.

[35] Russell, S. and Norvig, P., Artificial Intelligence: A Modern Approach, Prentice
Hall, Englewood Cliffs, 1995.

[36] Singh, L. and Fuller, J., "Trajectory Generation for a UAV in Urban Terrain Using
Nonlinear MPC," Proceedings of 2001 American Control Conference, 2001, pp.
2301-2308.

123

[37] Williams, R. and Baird, L., "Tight performance bounds on greedy policies based on
imperfect value functions," Proceedings of the Tenth Yale Workshop on Adaptive
and Learning Systems, Yale University, 1994.

[38] Wingate, D. and Seppi, K., "Cache performance of priority metrics for MDP
solvers," Technical Report, Department of Computer Science Department, Brigham
Young University, 2004.

[39] Yoon, S., Fern, A., and Givan, R., "Learning Reactive Policies for Probabilistic
Planning Domains," Technical Report, Department of Electrical and Computer
Engineering, Purdue University, 2004.

124
7,

