
The Spindle Checkpoint:

Bubs, Mads, and Chromosome-Microtubule Attachment in Budding Yeast

by

Emily S. Gillett

A.B. Biochemical Sciences
Harvard College, 1998

SUBMITTED TO THE DEPARTMENT OF BIOLOGY
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY IN BIOLOGY
AT THE

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

FEBRUARY 2005

© 2004 Massachusetts Institute of Technology. All rights reserved.

Signature of
(

Certitied by:

Professor of Biology and

C

Accepted by:
kI- I

MASSACHUSETTS INSTITUTE
OF TECHNOLOGY

C0T 2 2004

LIBRARIESL ,R .~~u ....

V

Peter K. Sorger
Biological Engineering

Thesis Supervisor

Stephen P. Bell
Professor of Biology

Chairman, Committee for Graduate Students

ARCHIVES . .--- "W . -

4

t



The Spindle Checkpoint:
Bubs, Mads, and Chromosome-Microtubule Attachment in Budding Yeast

by

Emily S. Gillett

Submitted to the Department of Biology on September 24, 2004
in Partial Fulfillment of the Requirements

for the Degree of Doctor of Philosophy in Biology

ABSTRACT

The high fidelity of chromosome transmission in eukaryotes is achieved, in part, by the
activity of the spindle checkpoint. This checkpoint monitors the status of chromosome-
microtubule attachments and delays the onset of anaphase until all kinetochores have formed
stable bipolar connections to the mitotic spindle. We have characterized the localization of
the Bub and Mad spindle checkpoint proteins in Saccharomyces cerevisiae. In metazoan
cells, all known spindle checkpoint proteins are recruited to kinetochores during normal
mitoses. In contrast, we show that whereas S. cerevisiae Bublp and Bub3p are bound to
kinetochores early in mitosis as part of the normal cell cycle, Madlp and Mad2p are
kinetochore-bound only in the presence of spindle damage or kinetochore lesions that
interfere with chromosome-microtubule attachment. We propose that differences in the
behavior of spindle checkpoint proteins in metazoan cells and budding yeast are due
primarily to evolutionary divergence in spindle assembly pathways.

The spindle checkpoint proteins Madlp and Mad2p exhibit perinuclear localization in both
budding yeast and metazoans. We find that the perinuclear localization of Madlp is
dependent on Myosin-like proteins Mlplp and Mlp2p, two proteins that link nuclear pore
complexes to the interior of the nucleus. Deletion of either MLPI or MLP2 releases Mad
proteins from the nuclear periphery and allows them to associate with kinetochores during
early mitosis. Ectopic binding of Madlp to kinetochores does not dramatically alter cell
cycle progression, nor does loss of Madlp from the nuclear periphery appear to impair
spindle checkpoint activation. However, as the Mlps have been implicated in several cellular
processes, such as the DNA damage response, we hypothesize that the perinuclear pool of
Mad proteins may be required for spindle checkpoint-independent functions such as invoking
metaphase arrest following DNA damage.

Thesis Supervisor: Peter K. Sorger
Title: Professor of Biology, Professor of Biological Engineering
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1.1 Introduction

Mitotic spindle assembly is a stochastic process reliant on an unpredictable series of

chromosome-microtubule (MT) capture events. However, to maintain genomic stability, all

chromosomes must become properly attached to the mitotic spindle prior to the onset of

anaphase. The amount of time a given eukaryotic cell will require to complete spindle

assembly is quite variable (Ault and Rieder, 1992). Therefore imposing a strict time limit on

spindle assembly would not be sufficient to ensure proper chromosome segregation in all

cases. Instead of a strict timer, eukaryotic cells have evolved a surveillance system called the

spindle checkpoint that monitors chromosome-MT attachment and delays the onset of

anaphase until spindle assembly has been completed. The spindle checkpoint is only one in a

series of checkpoints that regulate passage through critical cell cycle transitions. As will be

discussed in this chapter, the spindle checkpoint utilizes proteins that fulfill the classical

definition of checkpoint components, as well as proteins that appear to have additional roles

in mitotic timing and spindle assembly.

The process of spindle assembly has long intrigued cytologists. Chromosome

movements during mitosis were painstakingly documented in drawings by the German

anatomist Walther Flemming in the late 19th century (Paweletz, 2001), and chromosome

segregation was postulated to be the basis of heredity by the German biologist Theodor

Boveri and the American zoologist Walter Sutton at the beginning of the 20th century

(Boveri, 1907; Sutton, 1903). Spindle assembly and chromosome segregation have proven to

be rich and complex research topics, as scientists in the 21S century still remain actively

engaged in unraveling the molecular details that underlie these processes in eukaryotes.
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1.2 Cell Cycle Checkpoints

Successful mitosis requires that critical steps of the cell cycle such as DNA

replication, chromosome segregation, and cytokinesis be executed in the appropriate order.

Each period of the cell cycle is characterized by the presence of specific cyclins that bind to

and activate cyclin-dependent kinases (Cdk's). The cell cycle machinery relies on

proteolysis to regulate passage from one stage of mitosis to the next. In metazoan cells,

cyclin B synthesis and cyclin B association with Cdkl are essential for early mitotic events,

while cyclin B degradation and deactivation of Cdkl are essential for progression through

anaphase and telophase (reviewed in Peters, 2002). The regulated depletion of critical

proteins, such as cyclin B, imparts a strict directionality to mitotic events and makes each cell

cycle transition a point of no return.

Passage from one phase of mitosis to the next is tightly regulated by a series of

checkpoints. Each checkpoint requires surveillance components to monitor the status of a

given process (such as DNA replication or mitotic spindle assembly) and effector

components that interface with the cell cycle machinery to regulate mitotic progression (Hoyt

et al., 1991; Li and Murray, 1991; Weinert and Hartwell, 1988). Cell cycle checkpoints

were initially defined as non-essential surveillance systems required for survival only under

unusual and adverse conditions. This definition stems from studies on the DNA damage

response in S. cerevisiae. Eukaryotic cells with DNA damage normally arrest until damage

has been repaired. Mutations in the checkpoint component RAD9 eliminate G2/M cell cycle

arrest and reduce viability following X-ray induced DNA damage; however, loss of Rad9p

function does not dramatically alter the rate of cellular proliferation or viability under normal

growth conditions (Weinert and Hartwell, 1988).
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Interestingly, although rad9 mutants allow mitosis to proceed without regard to the

repair status of DNA damage, completion of DNA repair and viability can be restored if

irradiated rad9 cells are delayed in mitosis by alternate means, such as treatment with the

MT-depolymerizing drug nocodazole. These data indicate that the primary role of Rad9p is

to arrest the cell cycle in order to allow sufficient time for DNA repair to be completed

(Hartwell and Weinert, 1989; Weinert and Hartwell, 1988). Although the behavior of Rad9p

suggested that checkpoint proteins' main function is to regulate mitotic timing, recent studies

have shown that some DNA damage checkpoint proteins, such as Rad24p, themselves

participate in repair activities as well as checkpoint activation (Aylon and Kupiec, 2003;

Aylon and Kupiec, 2004). The evolution of multifunctional proteins with both checkpoint

and repair activities may increase efficiency and reduce the potential for competition at repair

sites where both sensor and repair systems must be active (Aylon and Kupiec, 2004).

1.3 Chromosome Segregation and the Mitotic Spindle

Maintaining a stable genome through the process of mitotic division is essential for

preserving cellular function and identity. The stability of the genome is dependent upon

checkpoints that monitor the fidelity of newly replicated and repaired DNA sequences, as

well as the spindle checkpoint that ensures that duplicate chromosomes are partitioned

equally at anaphase. Failure to partition DNA correctly during mitosis or meiosis leads to

aneuploidy. Although chromosome loss is generally lethal for unicellular organisms,

aneuploid metazoan cells sometimes survive. Aneuploidy is responsible for a subset of birth

defects in humans, such as Down Syndrome and Klinefelter Syndrome, and is also
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characteristic of many tumor cells (Draviam et al., 2004; Hassold and Hunt, 2001; Jallepalli

and Lengauer, 2001; Lowe et al., 2001; Storchova and Pellman, 2004).

Following DNA replication, duplicate sister chromatids remain paired together and

chromosome segregation is subsequently accomplished via the mitotic spindle. This bipolar

self-organizing array of MT polymers captures and maneuvers the sister chromatid pairs.

MTs are nucleated by MT organizing centers (MTOCs) called spindle pole bodies (SPBs) in

budding yeast and centrosomes in metazoans. In contrast to metazoan cells, yeast cells

undergo a closed mitosis in which the nuclear envelope remains intact throughout the cell

cycle. Following duplication, yeast SPBs separate and move to opposite sides of the nucleus.

Spindle MTs that capture chromosomes and interpolar MTs that maintain spindle integrity

emanate from a SPB's nuclear face, while astral MTs essential for nuclear positioning and

division radiate from a SPB's cytoplasmic face.

MTs attach to chromosomes via kinetochores, multiprotein complexes that assemble

on centromeric DNA. In metazoan cells, MTs are excluded from the nucleus during

interphase; therefore, no chromosomes are attached to MTs during interphase or early

mitosis. In contrast, budding yeast kinetochores remain closely associated with SPBs, and

chromosomes are likely attached to spindle MTs throughout the entire cell cycle (Jin et al.,

2000).

The bipolar symmetry of the mitotic spindle is essential for chromosome segregation.

During spindle assembly, a given chromatid must become stably attached to MTs emanating

from one and only one pole of the spindle, while its partner must become attached to MTs

emanating from the opposite pole. Achieving such bi-orientation ensures that paired sister

chromatids will migrate toward opposite poles of the spindle at anaphase. In budding yeast,
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centromere duplication appears to precede maturation of the new SPB, and it has been

postulated that duplicated sister chromatids are initially attached to a single SPB during early

mitosis (Tanaka et al., 2002). This state of mono-orientation, or "syntelic" attachment, is

typically resolved once the new SPB has matured and begun to nucleate MTs.

1.4 Search-and-Capture

All chromosomes in a cell must achieve bi-orientation to the spindle before mitosis

can proceed. When unattached chromosomes are present, MTs search throughout the cell

volume in order to capture them. This stochastic search-and-capture process is reliant on the

dynamic nature of MT filaments. Free MTs transition unpredictably between periods of slow

growth and rapid shrinkage (Desai and Mitchison, 1997). Chromosome capture stabilizes

individual MTs, thereby enabling the formation of secure MT-chromosome attachments and

facilitating the formation of a proper mitotic spindle (Hunt and McIntosh, 1998; Mitchison et

al., 1986; Zhai et al., 1995).

MTs are assembled from at-tubulin heterodimers. Tubulin heterodimers initially

assemble into linear protofilaments, 13 of which are then arranged in parallel orientation to

form a hollow tubule -25nm in diameter (Amos and Klug, 1974; Desai and Mitchison, 1997;

Weisenberg and Deery, 1976). The asymmetry of the ajo-heterodimers imparts a structural

polarity to the parallel protofilaments: ca-tubulin subunits are exposed at less dynamic MT

minus ends, while 03-tubulin subunits are exposed at the faster growing MT plus ends. MT

minus ends are embedded in MTOCs and therefore are more stable and less dynamic than

MT plus ends in vivo.
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GTP hydrolysis is responsible for the "dynamic instability" exhibited by MT

filaments. Both the a- and -tubulin subunits bind to GTP; however, only the [3-tubulin

subunit hydrolyzes and exchanges GTP (Desai and Mitchison, 1997; Spiegelman et al.,

1977). Filament assembly is GTP-dependent as an ca3-heterodimer can only be added to the

plus end of a MT when both subunits are bound to GTP (Desai and Mitchison, 1997).

Polymerization catalyzes GTP hydrolysis and much of the P-tubulin within a MT fiber is

GDP-bound (David-Pfeuty et al., 1977; MacNeal and Purich, 1978; Nogales et al., 2003). It

is thought that GTP-bound heterodimers at the plus ends of MTs form caps that stabilize the

MT lattice and prevent depolymerization. When a MT loses its GTP cap, the GDP-bound

plus ends of the tubulin protofilaments then become curved and splay apart from one another,

and the MT begins to disassemble (Mitchison and Kirschner, 1984; Nogales et al., 2003).

MT dynamics in metazoan cells change during the cell cycle with rates of MT growth

and nucleation increasing significantly as cells enter early mitosis (Piehl and Cassimeris,

2003; Piehl et al., 2004; Rusan et al., 2001; Tirnauer et al., 2004; Tournebize et al., 2000).

The fast turnover of MTs during mitosis allows for the swift completion of MT-chromosome

capture and spindle assembly. In addition, dynamic instability provides part of the energy

and force necessary to effect chromosome movements during mitosis (Dogterom and Yurke,

1997; Inoue and Salmon, 1995; McIntosh et al., 2002; Rieder and Salmon, 1998; Scholey et

al., 2003). Motor proteins and MT associated proteins (MAPs) also contribute to force

generation, in part by regulating MT dynamics (Hunter and Wordeman, 2000; Kosco et al.,

2001; Severin et al., 2001; van Breugel et al., 2003). In budding yeast, MAPs such as Stulp,

Stu2p, and Slkl9p, and a subset of the kinesin-like motor proteins (KLPs) contribute to the

formation and stability of bipolar spindles by modulating MT dynamics, crosslinking MTs,
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and, presumably, by attaching chromosomes to MTs (Hildebrandt and Hoyt, 2000; Kosco et

al., 2001; Pasqualone and Huffaker, 1994; Saunders et al., 1997; Severin et al., 2001; Straight

et al., 1998; Tytell and Sorger, submitted; Yin et al., 2002; Zeng et al., 1999).

1.5 The Spindle Checkpoint

During DNA replication, duplicate sister chromatids are glued together by cohesin

complexes (Nasmyth, 2002). Once these cohesin complexes are dissolved and sister

chromatids are separated at the onset of anaphase, there is no turning back. Interestingly, it

was noted early on that when S. cerevisiae spindles are disrupted by treatment with anti-MT

agents, such as the benzimidazole compounds benomyl or nocodazole, or the presence of

certain tubulin mutations, cells arrest with large buds and a single, undivided nucleus

(Huffaker et al., 1988; Jacobs et al., 1988). This suggested that a mechanism analogous to

the DNA damage checkpoint might be involved in monitoring spindle assembly or other MT-

dependent processes during cell division. Therefore, screens were performed in S. cerevisiae

to identify mutants that failed to arrest when grown in the presence of the anti-MT drug

benomyl.

Two separate genetic screens were initiated, and each yielded a unique set of mitotic

checkpoint genes. The first screen searched for mutants that were unable to recover after

20hrs of growth on plates containing 70gg/ml of benomyl, a dose that is high enough to

completely disrupt all visible MT structures (Hoyt et al., 1991). This screen yielded three

genes: Budding Uninhibited by Benzimidazole (BUB) 1, 2, and 3. The second screen

searched for mutants that were unable to survive when grown continuously on plates

containing only 15gg/ml of benomyl. This screen yielded three different genes: Mitotic
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Arrest Deficient (MAD) 1, 2, and 3 (Li and Murray, 1991). Neither the BUB nor the MAD

genes are essential under normal growth conditions, however deletion of BUBI or BUB3

initially yields slow growing cells. bublA and bub3A cells eventually overcome this slow

growth phenotype in culture, presumably by accumulating one or more compensatory

mutations (Hoyt et al., 1991; Roberts et al., 1994).

Subsequent characterization of these genes has revealed that BUB, BUB3, and

MAD1-3 all participate in a checkpoint pathway that monitors chromosome-MT attachment

and spindle assembly (reviewed in Lew and Burke, 2003), while BUB2 is involved in a

second checkpoint pathway that links spindle positioning to mitotic exit (Bardin et al., 2000;

Li, 1999; Pereira et al., 2000). Another critical component of the spindle checkpoint is

MPS1, a kinase that also has an essential role in SPB duplication (Weiss and Winey, 1996).

BUBI, BUB3, MADI-3, and MPS] have all been conserved through evolution, and spindle

checkpoint components localize to kinetochores early during mitosis in metazoan cells and S.

pombe (reviewed in Cleveland et al., 2003). Although the spindle checkpoint is not essential

in budding yeast under normal growth conditions, it is essential in animal cells (Basu et al.,

1999; Dobles et al., 2000; Kalitsis et al., 2000; Kitagawa and Rose, 1999). The reasons for

this discrepancy are uncertain, but differences in the pathways of spindle assembly in each

organism likely contribute.

1.6 The Anaphase Promoting Complex

In budding yeast, anaphase onset is characterized by separation and migration of

sister chromatids toward opposite poles of the mitotic spindle, as well as spindle elongation
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Bublp Bub3p

Mad p Mad3p

Ub-securin .* sister
separation

Figure 1.1 Spindle checkpoint components in budding yeast.
Unattached kinetochores signal to delay anaphase via Mpslp, Madl-3p, Bublp and Bub3p.
Following checkpoint activation, Mad2p binds to Cdc20p and prevents the Anaphase
Promoting Complex (APC) from ubiquitinating Pdsl p/securin and other targets. Even the
presence of a single unattached kinetochore is sufficient to engage the spindle checkpoint
(Rieder et al., 1994).
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through the bud neck. The anaphase promoting complex (APC), an E3 ubiquitin ligase, is

required for passage through the metaphase-to-anaphase transition. The APC is

phosphorylated and activated early during mitosis; however, it must also become associated

with one of its two specificity factors, Cdc20p or Cdhlp, in order to ubiquitinate specific

substrates (Peters, 1998; Schwab et al., 1997; Visintin et al., 1997). Ubiquitination of cyclins

and other proteins targets them for destruction by the 26S proteasome (Glotzer et al., 1991;

Hershko, 1991).

Interestingly, although loss-of-function mutations in APC components or CDC20

cause metaphase arrest (Imiger et al., 1995; Tugendreich et al., 1995), expression of non-

degradable mitotic cyclins does not arrest cells until telophase (Holloway et al., 1993; Surana

et al. 1993). These data indicate that cyclins must not be the only targets ubiquitinated by

APCCd20 at the metaphase-to-anaphase transition. An additional APC substrate called

Pds lp/securin was isolated in screens for mutants defective in chromosome segregation

(Yamamoto et al., 1996a; Yamamoto et al., 1996b). After replication, sister chromatids in

budding yeast are held together by cohesins, tetrameric complexes consisting of Scclp (also

called Mcdlp), Scc3p, Smclp, and Smc3p (reviewed in Nasmyth, 2002). Pdslp/securin

binds to and inhibits separase/Esplp, a cysteine endopeptidase. Once liberated from securin,

Esplp cleaves the cohesin subunit Scclp, eliminating cohesion and allowing sister chromatid

segregation to proceed (Ciosk et al., 1998).

Securin is the only APC Cdc20 substrate that must be degraded to allow passage

through the metaphase-to-anaphase transition (Shirayama et al., 1999; Cohen-Fix et al.,

1996; Yamamoto et al., 1996a; Yamamoto et al., 1996b). Spindle checkpoint proteins

directly interact with and inhibit the activity of Cdc20p (Byers and Goetsch, 1974; Hwang et
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al., 1998), thereby preventing premature destruction of securin. In budding yeast, Madlp,

Mad2p, and Mad3p co-immunoprecipitate with Cdc20p (Hwang et al., 1998; Sironi et al.,

2001), and cdc20 mutants that are unable to bind to Mad2p abrogate the spindle checkpoint

response to MT-depolymerizing agents (Schott and Hoyt, 1998). In addition, interactions

between Madl and p55CDC (the metazoan homolog of Cdc20), and between BubR1/Bub3

and p55CDC, have also been documented (Fang, 2002; Fang et al., 1998a; Fang et al.,

1998b; Kallio et al., 1998; Tang et al., 2001).

1.7 Attachment versus Tension

Cytological studies have shown that the duration of spindle assembly in metazoan

cells is highly variable, and that anaphase onset is significantly delayed in cells that contain

unattached or mono-oriented chromosomes (Ault and Rieder, 1992; Rieder, 1990; Rieder,

1991). It was subsequently demonstrated that the time interval between nuclear envelope

breakdown and anaphase onset is linearly related to the length of time unattached

kinetochores persist in PtKl cells, and that the presence of even a single unattached

kinetochore is sufficient to delay anaphase onset (Rieder et al., 1994). As kinetochores form

the attachment sites for spindle MTs, it is generally thought that unattached kinetochores

generate a diffusible "wait for me" signal that prevents the cell cycle machinery from

initiating anaphase events until spindle assembly is complete. This idea gained further

support when it was shown that laser ablating the kinetochores on the last misaligned

chromosome inside a PtK1 cell allows anaphase to proceed (Rieder et al., 1995) and that

functional kinetochores are required for spindle checkpoint function in budding yeast

(Gardner et al., 2001).
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It is questionable, however, if a checkpoint that only monitors MT occupancy at

kinetochores is sufficient to ensure accurate chromosome segregation. If sister kinetochores

are configured in such a manner that it is unlikely for both of them to form attachments to

MTs nucleated by a single spindle pole, then strictly monitoring attachment would be

sufficient to ensure bi-orientation in most cases. During meiosis I in metazoan cells,

however, homologous chromosomes are linked together by chiasmata and homologous

kinetochores can move relatively independently from one another. In this situation, the

kinetochores on homologous chromosomes attach to the same spindle pole quite frequently

during early meiosis (Lew and Burke, 2003). However, these monopolar attachments are

usually corrected prior to anaphase I, suggesting either that the spindle checkpoint recognizes

mono-oriented chromosomes and delays anaphase until they have become bi-oriented, or that

mono-oriented attachments are unstable enough to be released and corrected during most

meioses.

It was initially proposed by McIntosh that one mechanism the spindle checkpoint

might employ to distinguish kinetochores that are bi-oriented from kinetochores that are

mono-oriented is to measure tension (Lew and Burke, 2003; McIntosh, 1991). In this case, a

checkpoint tension sensor would activate the checkpoint and prevent anaphase onset in the

presence of unattached and mono-oriented kinetochores, neither of which experience bipolar

tension. Consistent with the tension hypothesis, using a micromanipulation needle to apply

artificial tension across the last mono-oriented kinetochore in mantid spermatocytes allows

anaphase to proceed (Li and Nicklas, 1995).

The tension hypothesis of spindle checkpoint regulation is elegant and appealing.

However, the process of kinetochore-MT attachment turns out to be somewhat murkier than
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this model suggests. It is complicated, for instance, by the fact that tension across

kinetochores stabilizes MT attachments, allowing bi-oriented kinetochores to bind more MTs

than mono-oriented kinetochores (Nicklas and Ward, 1994; King and Nicklas, 2000).

Therefore, disentangling the effects of tension and MT attachment on spindle checkpoint

signaling is difficult in systems where MT recruitment and the stability of kinetochore-MT

attachments are modulated by tension. Theoretically, it may be easier to distinguish between

the effects of tension and attachment in organisms such as budding yeast where each

kinetochore recruits a single MT and chromosome-MT attachment may be an all-or-nothing

event.

Interestingly, it does appear that the chemistry of kinetochores changes in response to

tension. The 3F3 antibody, for instance, recognizes kinetochore-specific phosphoepitopes

that are present on unattached kinetochores but absent on kinetochores that are under bipolar

tension (Nicklas et al., 1995). Additionally, while associations of the metazoan spindle

checkpoint proteins Madl and Mad2 are modulated by attachment status, kinetochore

binding of the mammalian checkpoint protein BubR1 (the homolog of yeast Mad3p) appears

to be sensitive to tension. Therefore, some have proposed that metazoan cells utilize a

bifurcated checkpoint with a Mad2-dependent branch that monitors attachment and a BubR1-

dependent branch that monitors tension (Skoufias et al., 2001).

1.8 Kinetochores in Budding Yeast

Centromeres were first defined as genetic loci required for stable chromosome

transmission. Each wild-type chromosome contains one centromere, and each centromere

serves as the assembly site for a single kinetochore (reviewed in Cleveland et al., 2003).
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Centromeres in S. cerevisiae are well defined and each CEN region consists of a conserved

stretch of 125 basepairs that is both necessary and sufficient to promote stable chromosome

transmission during mitosis and meiosis (Clarke and Carbon, 1980; Cottarel et al., 1989).

Haploid budding yeast cells have 16 chromosomes, and electron microscopy studies indicate

that each kinetochore is captured by a single MT in this organism (Winey et al., 1995).

Centromeres and kinetochores in Schizosaccharomyces pombe and metazoans are

considerably more complex than those found in S. cerevisiae. Human kinetochores, for

instance, are assembled on stretches of DNA several megabases in length that contain

numerous repeats of a conserved -170 basepair a-satellite DNA element (Bjerling and

Ekwall, 2002; Cleveland et al., 2003); however, these a-satellite repeats are not strictly

required for centromere assembly as neo-centromeres sometimes form without detectable a-

satellite sequences (Depinet et al., 1997; Wandall et al., 1998). In contrast to budding yeast

kinetochores which recruit only a single MT, metazoan kinetochores each recruit between 15

and 30 MTs (McEwen et al., 1997). In an extreme case, C. elegans utilizes diffuse

holocentric kinetochores that recruit MTs along the entire length of the chromosomes

(Maddox et al., 2004).

Although budding yeast contain the best defined and simplest eukaryotic kinetochores

characterized to date, assembly of a functional MT binding site on centromeric DNA still

requires greater than 60 different proteins in this organism. These kinetochore components

can be classified into three groups: DNA binding components, MT binding components, and

linker components that bridge the DNA and MT binding layers (see Fig. 1.2; McAinsh et al.,

2003). The extensive catalog of kinetochore components in budding yeast makes it an
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excellent system in which to characterize the interface between spindle checkpoint and

kinetochore proteins. Checkpoint function appears to map to two kinetochore subcomplexes,

the DNA-binding CBF3 complex and the linker NDC80 complex (Gardner et al., 2001;

McCleland et al., 2004). As described below, temperature sensitive mutations in different

kinetochore components also confer specific types of chromosome-MT attachment defects

and can thus be used to analyze the process of spindle checkpoint activation.

1.8.1 DNA Binding Components

DNA binding kinetochore proteins associate with centromeric DNA and form the

foundation of the kinetochore. DNA binding components include the CBF3 complex, which

consists ofNdcl0p, Cep3p, Ctfl3p, and Skplp (Connelly and Hieter, 1996; Doheny et al.,

1993; Goh and Kilmartin, 1993; Lechner and Carbon, 1991; Strunnikov et al., 1995),

specialized histones containing the histone H3 variant Cse4p, called CENP-A in metazoans

(Meluh et al., 1998), and Cbflp (Cai and Davis, 1990). All components of the CBF3

complex and CSE4 are essential, whereas CBFI is nonessential but still required to achieve

wild-type levels of chromosome transmission fidelity (Cai and Davis, 1990).

The 125bp budding yeast centromere can be separated into three conserved elements:

CDEI, CDEII, and CDEIII (Fitzgerald-Hayes et al., 1982). CDEI and CDEIII are imperfect

palindromes. Cbflp binds to the CDEI element and CBF3 binds to the CDEIII element (Cai

and Davis, 1990; Lechner and Carbon, 1991; Ng et al., 1986). The exact sequence of CDEII

is quite variable, but this element maintains a consistent length of-85bp and is always AT-

rich (Clarke and Carbon, 1980). The CBF3 component Ndc l Op is the only known protein to

bind to CDEII in vitro (Espelin et al., 2003). Ndc lOp is thought to bind to CDEII in the
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absence of other CBF3 components, but other proteins such as the kinetochore components

Mif2p (called CENP-C in metazoans) and the histone H3 variant Cse4p (CENP-A) have also

been proposed to bind CDEII (Espelin et al., 2003). Notably, CBF3 function is required for

kinetochore assembly and ndcl O- mutants completely disrupt MT attachment and

centromere association of all other kinetochore components tested to date (Goh and

Kilmartin, 1993; He et al., 2001).

Despite loss of chromosome-MT attachment, ndcl O- mutants do not activate the

spindle checkpoint at non-permissive temperature (Gardner et al., 2001). Although it has

been suggested that the CBF3 component Skplp mediates Bublp binding to kinetochores

(Kitagawa et al., 2003), other data have shown that loss of the NDC80 linker complex

(described below) also abrogates checkpoint activity (McCleland et al., 2004). As loss of

NDC80 function does not disrupt the DNA binding layer, this result suggests that the CBF3

complex is necessary, but not sufficient, for checkpoint protein activation at kinetochores.

1.8.2 Linker Components

The central layer of S. cerevisiae kinetochores contains proteins essential for

kinetochore function that do not have established DNA- or MT-binding activities. Linker

components of the kinetochore include the NDC80 complex, the MIND complex, and the

COMA complex. The NDC80 complex consists of four essential subunits-Ndc80p, Nuf2p,

Spc24p, and Spc25p-all of which have homologs in metazoan cells (Bharadwaj et al., 2004;

McCleland et al., 2003; McCleland et al., 2004; Wigge and Kilmartin, 2001). The MIND

complex also consists of four essential proteins-Mtwlp, Nnflp, Nsllp, and Dsnlp-but

homologs of these components are yet to be identified in metazoans (De Wulf et al., 2003;
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Euskirchen, 2002; Nekrasov et al., 2003; Shan et al., 1997). The COMA complex contains

two essential proteins--Okplp and Amelp-and two non-essential proteins-Ctfl9p and

Mcm2 lp--for which no metazoan homologs have been identified (De Wulf et al., 2003;

Hyland et al., 1999; Ortiz et al., 1999; Poddar et al., 1999). The NDC80, MIND, and COMA

complexes are not interdependent for centromere association, suggesting that the budding

yeast kinetochore is assembled using a tripartite structure in which each linker complex

forms an independent branch. Loss of functional NDC80 complex detaches chromosomes

from MTs (He et al., 2001; Janke et al., 2001; Wigge and Kilmartin, 2001), while

temperature sensitive mutations in components of the MIND and COMA disrupt

chromosome dynamics and force generation but do not appear to cause complete loss of

attachment (De Wulf et al., 2003).

An additional kinetochore complex whose role is less well defined is the Ctf3

complex which contains Ctf3p, Mcml5p, and Mcm22p (Measday et al., 2002). Components

of the Ctf3 complex localize exclusively to kinetochores and are essential in metazoans, but

nonessential in budding yeast (Goshima et al., 2003; Measday et al., 2002). Interestingly, the

S. pombe homolog of Ctf3p, Mis6+, is required for recruiting the fission yeast Cse4p-like

histone, Cnpl+, to centromeric DNA (Takahashi et al., 2000); however, the opposite

dependency exists in S. cerevisiae and human cells (Goshima et al., 2003; Measday et al.,

2002). It is currently hypothesized that the Ctf3 complex contributes to some as yet

undefined aspect of centromeric chromatin assembly (McAinsh et al., 2003).
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1.8.3 Microtubule Binding Components

Although it was initially postulated that a single motor protein might be sufficient to

link budding yeast kinetochores to MTs, the reality has turned out to be much more

complicated. Of the four nuclear KLPs in S. cerevisiae, three-Kiplp, Kip3p, and Cin8p-

associate with kinetochores (Tytell and Sorger, submitted). No individual KLP is essential in

budding yeast; however, cin8A is synthetically lethal with kiplA suggesting that there is

some functional redundancy between these two KLPs (Hoyt et al., 1992; Roof et al., 1992).

Interestingly, deletion of any single KLP has a unique effect with regard to anaphase

movement. cin8A cells lack the rapid phase of anaphase B movement, kiplA cells have

defects in the slow phase of anaphase B, and kip3A cells exhibit prolonged anaphase and

impaired chromosome-to-pole movement during anaphase A (Straight et al., 1998; Tytell and

Sorger, submitted). Whether or not these anaphase defects are due primarily to the roles that

these KLPs play at the kinetochore is uncertain. Both Cin8p and Kiplp are BimC class

motors that form homotetramers and can crosslink MTs (Hildebrandt and Hoyt, 2001);

interestingly, both of these motors appear to help cluster kinetochores during metaphase

(Tytell and Sorger, submitted). Both Cin8p and Kiplp also require the NDC80 complex to

achieve wild-type levels of kinetochore association, whereas Kip3p does not (Tytell and

Sorger, submitted). This suggests that Cin8p and Kiplp are likely outer kinetochore proteins,

whereas Kip3p may be part of the inner kinetochore. As functional NDC80 complex is

required for chromosome-MT attachment, Cin8p and Kiplp association with kinetochores

may also be dependent on MTs. It has yet to be determined if any of the three KLPs require

the COMA or MIND complexes for CEN association.
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In addition to the KLPs, several MAPs associate with kinetochores including Stu2p,

Biklp, Slkl9p, and the DASH complex (Cheeseman et al., 2001; He et al., 2001; Jones et al.,

2001; Lin et al., 2001; Pellman et al., 1995). Stu2p is an essential protein homologous to

Xenopus XMAP215 and human ch-TOG1 (Wang and Huffaker, 1997). Stu2p localizes to

kinetochores and cortical tips, two sites where MT plus ends are concentrated, and also along

the length of MTs (He et al., 2001). Although the majority of members of the

TOG/XMAP215 family are thought to stabilize MTs (Gard and Kirschner, 1987; Tournebize

et al., 2000; Vasquez et al., 1994), budding yeast Stu2p actually appears to destabilize them

(van Breugel et al., 2003). Consistent with this, MTs seem to be less dynamic in stu2

mutants than in wild-type cells (Kosco et al., 2001). Most kinetochores in stu2 mutants

maintain bi-orientation, however they appear to experience significantly less bipolar tension

(He et al., 2001).

Biklp binds to the plus ends of MTs and localizes to kinetochores and cortical tips

(Berlin et al., 1990; He et al., 2001). Biklp is homologous to human CLIP170 which plays a

role in linking MT- and actin-based elements of the cytoskeleton (Brunner, 2002; Perez et al.,

1999). Although deletion of BIKI does not have a dramatic effect on haploid or diploid cells,

it is essential for kinetochore-MT attachment in polyploid yeast (Lin et al., 2001). Another

MT plus end binding protein, Bimlp, is also a candidate kinetochore protein (Schwartz et al.,

1997). Bimlp is the homolog of human EB1, a protein that binds to the adenomatous

polyposis coli (AdPC) protein known to associate with the plus ends of MTs (Maekawa and

Schiebel, 2004; Schwartz et al., 1997). Although it has not been demonstrated that Bimlp

associates with kinetochores in budding yeast, EB 1 is known to localize to kinetochores

during metaphase in metazoan cells (Tirnauer et al., 2002a; Tirnauer et al., 2002b). As EB1
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appears to be an important regulator of MT dynamics, it would not be surprising if Bimlp

also plays a role at kinetochore-bound MTs in budding yeast.

SLK19 was isolated in a screen for genes that are synthetically lethal with a deletion

of KAR3, a KLP motor located on the nuclear face of SPBs (Zeng et al., 1999). Slkl 9p

localizes to kinetochores and, although it is nonessential, slk19A cells exhibit abnormally

short spindles. SLK19's genetic interactions with KAR3 suggest that these two proteins have

overlapping roles in maintaining spindle stability, despite the fact that they function at

opposite ends of the MTs.

The DASH complex consists of at least nine essential subunits: Damlp, Duolp,

Dadlp, Dad2p, Dad3p, Dad4p, Asklp, Spcl9p, and Spc34p (Cheeseman et al., 2002;

Cheeseman et al., 2001; Enquist-Newman et al., 2001; Janke et al., 2002; Jones et al., 1999).

The DASH complex is required for both establishment and maintenance of chromosome

biorientation, as sister chromatids in daml-1 and spc34-3 cells remain associated with a

single SPB (He et al., 2001; Janke et al., 2002; Jones et al., 1999). The DASH complex

binds to MTs in vitro (Hofmann et al., 1998), and DASH association with kinetochores is

MT-dependent in vivo (Li et al., 2002), suggesting it is an outer kinetochore component.

1.8.4 Transient Kinetochore Components

While the majority of kinetochore components remain associated with centromeres

throughout the cell cycle, several components only associate transiently during early mitosis.

Of those already mentioned, Kiplp and Cin8p undergo degradation at the end of metaphase

and mitosis, respectively (Gordon and Roof, 2001; Hildebrandt and Hoyt, 2001). Additional

proteins that exhibit regulated kinetochore association include the Aurora-like kinase Ipllp
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(Buvelot et al., 2003), Slkl9p (Zeng et al., 1999), the phosphatase PP2A regulatory subunits

Tpd3p and Rtslp (Dobbelaere et al., 2003; Gentry and Hallberg, 2002), and the spindle

checkpoint proteins.

The kinase Ipllp exists in a complex with a second essential protein, Slil5p (Kim et

al., 1999). Birlp, a kinetochore protein with homology to the mammalian anti-apoptotic

protein survivin, has also been reported to interact with Ipllp (Cheeseman et al., 2002; Yoon

and Carbon, 1999). The Ipllp-SlilS5p complex behaves in a manner similar to that of

chromosomal passenger proteins, such as Aurora B, in metazoan cells. Ipllp-Slil5p is

present at kinetochores from S-phase to early mitosis in yeast, but re-localizes to the spindle

midzone at the metaphase-to-anaphase transition (Buvelot et al., 2003); this suggests that the

Ipllp-Slil5p complex may play roles in multiple aspects of spindle function. Consistent with

this idea, ipll mutants have difficulty both achieving chromosome biorientation early in

mitosis (Tanaka et al., 2002) and breaking down mitotic spindles late in mitosis (Buvelot et

al., 2003).

Three other kinetochore proteins that move to the spindle midzone in a manner

similar to that of the Ipllp-Slil5p complex are Slkl9p, NdclOp, and Damlp (Buvelot et al.,

2003; Zeng et al., 1999). The MAP Slkl9p is cleaved by Esplp protease at the metaphase-

to-anaphase transition and one of its cleavage products then re-localizes to the spindle

midzone. This cleavage product appears to stabilize the mitotic spindle, thereby ensuring

timely progression through mitosis (Sullivan and Uhlmann, 2003). Although a fraction of

Ndc lOp remains associated with centromeric DNA throughout the cell cycle, Ndc lOp is also

observed at the spindle mid-zone during anaphase and is thought to be a target of the Ipllp

kinase (Buvelot et al., 2003). Similarly, the MT binding component Damlp relocalizes to the
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midzone during anaphase and is also thought to be phosphorylated by Ipllp (Kang et al.,

2001).

In contrast to the other transient kinetochore components described above, the

phosphatase PP2A regulatory subunits Tpd3p and Rtslp do not relocalize to the midzone, but

instead move from kinetochores to the bud neck where they regulate septin dynamics and

cytokinesis (Dobbelaere et al., 2003; Gentry and Hallberg, 2002). The function of these

proteins at the kinetochore is not well understood. However, both tpd3 mutants and budding

yeast cells with mutations in the catalytic subunit of PP2A and its third regulatory subunit,

CDC55, are nocodazole sensitive, suggesting that PP2A may have a role in spindle

checkpoint function (Evans and Hemmings, 2000; Wang and Burke, 1997).

Prior to the experiments described herein, kinetochore localization of the spindle

checkpoint proteins had only been characterized in metazoans and fission yeast. In

metazoans, checkpoint proteins associate with kinetochores early during mitosis (review in

(Cleveland et al., 2003)). A subset of spindle checkpoint components localize to

centrosomes in metazoan cells, and some are thought to transit along the MTs from the

kinetochore to the centrosomes following MT attachment in a dynein-dependent manner

(Fisk and Winey, 2001; Gorbsky et al., 1998; Howell et al., 2000; Kallio et al., 2002). It

remains to be proven whether or not the centrosomal localization of checkpoint proteins is

important for activating or silencing checkpoint signaling.
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1.9 Spindle Checkpoint Proteins

1.9.1 The Mad Proteins

Madlp and Mad2p bind to one another (Chen et al., 1999) and a crystal structure of

the tetrameric human Madl-Mad2 complex has recently been solved (Sironi et al., 2002).

The N- and C-termini of hMadl consist primarily of coiled coils, but they are interrupted at

the center by a hMad2 binding domain. hMadl forms a dimer that binds to two molecules of

hMad2. The C-terminus of hMad2 is mobile and acts as a "safety belt," folding over an

elongated domain of hMadl and latching hMad2 into place (Sironi et al., 2002). Madl is

required for Mad2 binding to kinetochores inXenopus (Chen et al., 1998). Treatment with

the anti-MT drug nocodazole arrests cells in mitosis and results in hyperphosphorylation of

Madlp, as does GAL-driven overexpression of Mpslp (Hardwick et al., 1996). However,

although overexpression of the mutant Bub 1-5 protein also causes mitotic arrest, it does not

lead to hyperphosphorylation of Madlp (Farr and Hoyt, 1998), making the significance of

Madlp phosphorylation in checkpoint signaling uncertain.

Little is known about the structure of Mad3p and there is some debate as to its role in

the spindle checkpoint response. Some studies have shown that mad3A cells have a less

severe chromosome loss phenotype than do cells lacking MAD1 or MAD2, and mad3A cells

may also be less benomyl sensitive than madlA and mad2A cells (Warren et al., 2002). It

has also been shown that a deletion of MAD3 is synthetically lethal with only a subset of

those mutants known to be synthetically lethal with MAD] and MAD2 deletions (Lee and

Spencer, 2004), and although MAD3 is required for the checkpoint response to unattached

kinetochores, it does not appear to be required for the checkpoint response to unreplicated

chromosomes that are attached but not under tension (Lee and Spencer, 2004). The closest
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homolog of MAD3 in metazoan cells is the kinase BubR1 (Taylor et al., 1998). The N-

terminus of BubR1 is similar to Mad3p, but BubR1 also contains a C-terminal kinase domain

similar to that of Bub 1. Oddly, although Mad3p's role in the checkpoint response to tension

is unclear, the BubR1 kinase appears to be recruited to kinetochores in response to loss of

tension (Skoufias et al., 2001).

1.9.2 The Bub Proteins

BUB1 encodes a Ser/Thr kinase, whereas BUB3 encodes a WD40-repeat P-propeller

protein (Hoyt et al., 1991; Roberts et al., 1994; Taylor et al., 1998). Budding yeast Bublp

has been reported to have autophosphorylation activity and to catalyze phosphorylation of

Bub3p (Roberts et al., 1994). The MT plus end binding protein AdPC is also a high affinity

substrate of human Bubl and the related kinase BubR1 (Kaplan et al., 2001). Bublp and

Bub3p bind to one another and Bublp is thought to require Bub3p for kinetochore

localization in human cells (Taylor et al., 1998). Although Bub3p has been reported to

associate with kinetochores independently of Bublp in PtK2 cells (Howell et al., 2004), it

may require Bub lp for kinetochore binding in Xenopus (Sharp-Baker and Chen, 2001).

Interestingly, although the kinase domain of Bublp is conserved from yeast to

metazoans, Bublp's kinase activity is not absolutely required for checkpoint function in

Xenopus or in budding yeast, suggesting that it may be important for other aspects of mitosis

(Sharp-Baker and Chen, 2001; Warren et al., 2002). Initial reports showed that the kinase

activity of Xenopus Bublp is not required for mitotic arrest in response to nocodazole or for

assembly of spindle checkpoint components onto kinetochores (Sharp-Baker and Chen,

2001); however, a more recent study suggests that the kinase activity of Xenopus Bublp can
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enhance the efficacy of the checkpoint in response to weaker stimuli, such as only one or two

unattached kinetochores (Chen, 2004).

1.9.3 Other Spindle Checkpoint Kinases

Another kinase required for spindle checkpoint activity is Mps lp, an essential dual

specificity kinase that plays a role in both checkpoint function and SPB duplication (Weiss

and Winey, 1996). To date, the only known targets of the Mpslp kinase in yeast are the SPB

components Spc42p (Castillo et al., 2002), Spc98p (Pereira et al., 1998), and Spcl 10p

(Friedman et al., 2001), although genetic interactions between MPS1 and the kinetochore

component DAM] have also been reported (Jones et al., 1999). Mpsl kinase activity is

required for kinetochore localization of Madl and Mad2 in Xenopus and humans (Abrieu et

al., 2001; Liu et al., 2003). In budding yeast, overexpression of either Mpslp or a Bubl-5

mutant protein induces mitotic arrest in the absence of spindle damage (Farr and Hoyt, 1998;

Hardwick et al., 1996). Mpslp is thought to be an upstream component of the spindle

checkpoint as GAL-MPS 1 overexpression requires all of the BUB and MAD genes to

establish an arrest (Hardwick et al., 1996). Puzzlingly, although the GAL-MPS 1

overexpression phenotype requires the Bub and Mad proteins, functional kinetochores do not

appear to be required for this arrest (Fraschini et al., 2001; Poddar et al., 2004).

An additional kinase that may play a role both in kinetochore-MT attachment and

checkpoint signaling is the Ipllp kinase. ipll- 3 2 1 kinetochores do not achieve bi-orientation

at non-permissive temperature; however, they also do not invoke a spindle checkpoint arrest

(Biggins and Murray, 2001). One interpretation of this result is that the Ipllp kinase

participates in the checkpoint signaling cascade. A second interpretation is that the structure
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of kinetochores in ipll-321 cells is unrecognizable to the checkpoint machinery.

Interestingly, ipll-321 cells do arrest in nocodazole at non-permissive temperature (Biggins

and Murray, 2001) indicating that unattached kinetochores are still competent to activate the

checkpoint in ipll-321 cells. It has been proposed that Ipllp is required to activate the

checkpoint specifically in response to lack of bipolar tension (Biggins and Murray, 2001).

However, as Ipllp is also postulated to facilitate MT turnover at kinetochores that have

formed syntelic attachments (in which both kinetochores are attached to MTs emanating

from the same SPB), it is also possible that Ipllp activates the checkpoint by transiently

detaching kinetochores from spindle MTs. Interestingly, although daml-1 cells have mono-

oriented chromosomes similar to those in ipll-321 cells, daml-1 mutants are able to engage a

spindle checkpoint response, perhaps due to the presence of active Ipllp kinase (Jones et al.,

1999). Future analysis of ipll-daml double mutants will hopefully lend insight into Ipllp's

role in spindle assembly and checkpoint signaling.

1.9.4 Differences between the Mads and Bubs

Several lines of evidence suggest that the Bub proteins may have roles in mitosis that

the Mad proteins do not share. For instance, bublA and bub3A cells have higher rates of

chromosome loss than do deletions of MAD1, MAD2, or MAD3 (Gardner et al., 2001). In

addition, overexpression of Bub lp or Bub3p suppresses the kinetochore attachment defects

of tubl-729 cells in a manner that is independent of Mad2p checkpoint signaling (Abruzzi et

al., 2002). Intriguingly, although spindle checkpoint activation does not absolutely require

Bublp kinase activity (Sharp-Baker and Chen, 2001; Warren et al., 2002), suppression of the
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tubl-729 cold sensitive mitotic phenotype does require Bublp's kinase domain (Abruzzi et

al., 2002).

Mad proteins may also have roles that the Bub proteins do not share as recent work in

animal cells also suggests that Mad2 has a Bub-independent role in regulating the basal

timing of mitosis by preventing activation of the anaphase promoting complex (APC) prior to

kinetochore assembly (Meraldi et al., 2004). Another property that appears to be unique to

Madlp and Mad2p is that both of these proteins associate with the nuclear periphery. This is

true in animal cells during interphase and in budding yeast throughout the cell cycle

(Campbell et al., 2001; Chen et al., 1998; Iouk et al., 2002). It has been reported that Madlp

associates with a subcomplex of nucleoporins containing Nup53p, Nupl70p, and Nup157p,

and that deletion of MADI reduces nuclear transport rates by about two-fold (Iouk et al.,

2002).

1.9.5 Spindle Checkpoint Proteins and Nuclear Pores

Intriguingly, there seem to be several connections between nuclear pore complexes

(NPCs) and kinetochores. For instance, mutating the budding yeast nucleoporin NUPI 70

leads to kinetochore and chromosome segregation defects (Kerscher et al., 2001), and

nucleoporins such as hNup 133 and hNup 107 relocalize from NPCs to kinetochores during

mitosis in human cells (Belgareh et al., 2001). In addition, the nuclear transport factor Ran-

GTP plays a role in spindle and kinetochore assembly (reviewed in Di Fiore et al., 2004 and

Salina et al., 2003) and several of its regulatory proteins associate with kinetochores

following nuclear envelope breakdown in human cells (Arnaoutov and Dasso, 2003; Joseph

et al., 2002). In addition, there is a significant degree of sequence similarity between the
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spindle checkpoint protein Bub3 and the nuclear import factor Rael. Rael can functionally

substitute for Bub3 in mice, and haploinsufficiency of murine RAE 1 leads to chromosome

missegregation and spindle checkpoint defects similar to those found in BUB3 heterozygotes

(Babu et al., 2003).

1.10 Conclusion

Spindle assembly checkpoint activation in budding yeast requires functional

kinetochores as well as the activities of Bub and Mad proteins, Mpslp, and Cdc20p.

However, the molecular details of how unattached or mal-oriented kinetochores generate the

"wait anaphase" signal remain uncertain. Budding yeast has many advantages as a model

system for studying the dynamics of spindle checkpoint signaling. First, the spindle

checkpoint is nonessential in this organism, therefore mutations and deletions in spindle

checkpoint genes can be easily made. Second, this organism contains the simplest known

and best characterized eukaryotic kinetochores known to date, making it an excellent system

in which to characterize the interface between kinetochore components and spindle

checkpoint proteins. Third, mutations in specific kinetochore components have been shown

to produce distinct effects on MT-kinetochore attachment and chromosome dynamics in

budding yeast; this allows one to probe the response of spindle checkpoint proteins to a

variety of spindle defects including unattached kinetochores (as are found in ndc80-1

mutants), mono-oriented chromosomes (as are found in daml-1 and ipll-321 mutants), and

bi-oriented chromosomes with reduced tension (as are found in stu2-279 mutants) (He et al.,

2001). The conservation of the spindle checkpoint proteins through evolution also makes

yeast a good system in which to test the behavior of rational mutants based on the observed
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behavior of checkpoint components in animal cells. Studies of the spindle checkpoint

components in budding yeast are likely to advance our understanding of spindle checkpoint

signaling dynamics, illuminating both the types of lesions recognized by the checkpoint and

how the Mad and Bub proteins execute mitotic arrest. Such data may shed light on the

mechanisms responsible for generating aneuploid cells and may eventually suggest

therapeutic strategies for targeting tumor cells that harbor checkpoint defects and aberrant

numbers of chromosomes.
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2.1 ABSTRACT

Accurate chromosome segregation depends on precise regulation of mitosis by the spindle

checkpoint. This checkpoint monitors the status of kinetochore-microtubule attachment and

delays the metaphase to anaphase transition until all kinetochores have formed stable bipolar

connections to the mitotic spindle. Components of the spindle checkpoint include the mitotic

arrest defective (MAD) genes MAD1-3 and the budding uninhibited by benzimidazole (BUB)

genes BUBI and BUB3. In animal cells, all known spindle checkpoint proteins are recruited

to kinetochores during normal mitoses. In contrast, we show that whereas Saccharomyces

cerevisiae Bublp and Bub3p are bound to kinetochores early in mitosis as part of the normal

cell cycle, Madlp and Mad2p are kinetochore-bound only in the presence of spindle damage

or kinetochore lesions that interfere with chromosome-microtubule attachment. Moreover,

although Madlp and Mad2p perform essential mitotic functions during every division cycle

in mammalian cells, they are required in budding yeast only when mitosis goes awry. We

propose that differences in the behavior of spindle checkpoint proteins in animal cells and

budding yeast result primarily from evolutionary divergence in spindle assembly pathways.

ABBREVIATIONS: 3D, three-dimensional; BUB, budding uninhibited by benzimidazole;

CEN, centromeric; CFP, cyan fluorescent protein; ChIP, chromatin immunoprecipitation;

GFP, green fluorescent protein; MAD, mitotic arrest defective; MT, microtubule; SPB,

spindle pole body.
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2.2 INTRODUCTION

The spindle checkpoint ensures the fidelity of chromosome transmission by delaying

anaphase until all chromatid pairs have formed proper links to the mitotic spindle. Sister

chromatids attach to spindle microtubules (MTs) via kinetochores, which are multiprotein

complexes that assemble on centromeric (CEN) DNA. During spindle assembly, a

kinetochore must be captured by MTs emanating from one and only one pole of the mitotic

spindle, whereas its partner must be captured by MTs emanating from the opposite pole.

Sister pairs that have not formed bipolar attachments will not segregate correctly at anaphase.

The presence of even a single kinetochore pair that has not achieved bipolar attachment is

sufficient to engage the spindle checkpoint and arrest cell cycle progression (Rieder et al.,

1994; Li and Nicklas, 1995).

Spindle checkpoint genes were first identified in budding yeast and include the

mitotic arrest defective (MAD) genes MAD 1-3 (Li and Murray, 1991) and the budding

uninhibited by benzimidazole (BUB) genes BUB 1 and BUB3 (Hoyt et al., 1991), all of

which are well conserved among eukaryotes. The Bub proteins are thought to be upstream

components of the checkpoint pathway, whereas Mad2p and Mad3p (called BubRI in animal

cells) are downstream components that bind to and inhibit the regulatory protein Cdc20p (for

review, see Yu, 2002). At the metaphase to anaphase transition, Cdc20p activates the

anaphase promoting complex, an E3 ubiquitin ligase, thereby promoting ubiquitination and

degradation of the securin protein, Pdslp, and subsequent destruction of the cohesin

complexes that tether sister chromatids together (for review, see Morgan, 1999). Although

the spindle checkpoint is not essential in budding yeast under normal growth conditions, it is
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essential in animal cells (Basu et al., 1999; Kitagawa and Rose, 1999; Dobles et al., 2000;

Kalitsis et al., 2000).

Spindle checkpoint proteins have been shown to bind to kinetochores in animal cells

and fission yeast (for review, see Cleveland et al., 2003), and functional kinetochores are

required to generate the checkpoint signal in both animal cells and budding yeast (Rieder et

al., 1995; Gardner et al., 2001). However, the exact nature of the kinetochore lesions sensed

by the spindle checkpoint remains uncertain. The first possibility is that it is the absence of

tension across sister kinetochores that initiates checkpoint signaling (Stern and Murray,

2001), and the second is that it is a lack of MT attachment itself that is responsible (Rieder et

al., 1995). Tension-based models are appealing because they link checkpoint silencing to an

event that is absolutely dependent on bipolar attachment. However, in higher eukaryotes,

tension stabilizes individual kinetochore-MT attachments (King and Nicklas, 2000; Nicklas

and Ward, 1994) and disentangling the effects of tension and MT attachment on checkpoint

signaling is difficult.

Determining the nature of the events that initiate and silence spindle checkpoint

signaling should be less complicated in organisms such as budding yeast in which each

kinetochore recruits a single MT. Budding yeast also has the advantage of temperature-

sensitive mutants defective in specific steps of kinetochore-MT attachment. Such lesions

include mutations in subunits of the Ndc80 complex that cause chromosomes to detach from

MTs, mutations in the MT binding component DAMI and the Aurora B kinase IPL1 that

prevent chromosomes from forming bipolar attachments, and mutations in the MT regulator

STU2 that allow chromosomes to form bipolar attachments but prevent them from
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establishing wild-type levels of tension (Biggins et al., 1999; Kim et al., 1999; He et al.,

2001; Janke et al., 2001; Wigge and Kilmartin, 2001; Janke et al., 2002; Tanaka et al., 2002).

In budding yeast, only two known kinetochore complexes are required for spindle

checkpoint function: CBF3 and Ndc80 (Gardner et al., 2001; McCleland et al., 2003). The

CBF3 complex binds directly to CEN DNA and is required for the assembly of all known

kinetochore components on CEN DNA (for review, see McAinsh et al., 2003). In contrast,

the Ndc80 complex is part of a set of "linker" proteins that do not bind directly to DNA or

MTs but instead appear to link DNA-binding and MT-binding components. The Ndc80

complex consists of four essential proteins: Ndc80p, Nuf2p, Spc24p, and Spc25p. Among

these, Ndc80p and Nuf2p are well conserved among eukaryotes (Wigge and Kilmartin, 2001)

and human Ndc80 (Hecl) can functionally substitute for its yeast counterpart (Zheng et al.,

1999). While loss of function mutations in SPC24 or SPC25 disable the spindle checkpoint

(Janke et al., 2001), mutations in NDC80 or NUF2 do not (McCleland et al., 2003). These

and other data suggest that the Ndc80 complex may have an important role in relation to

spindle checkpoint signaling.

In this paper, we report that four spindle checkpoint proteins-Bublp, Bub3p,

Madlp, and Mad2p-associate with Saccharomyces cerevisiae kinetochores. Although

Bublp and Bub3p bind to kinetochores during normal mitoses, Madlp and Mad2p are

recruited only in the presence of spindle damage or checkpoint-activating kinetochore

lesions. The kinetochore association of Bub lp and Mad2p requires the function of some, but

not all, members of the Ndc80O complex. Our findings suggest that budding yeast

kinetochores rarely, if ever, detach completely from MTs during normal cell division, and we
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propose that this aspect of spindle morphogenesis may explain why the checkpoint is not

essential for mitosis in budding yeast under normal growth conditions. Our results also

suggest that the release of the Bub proteins from kinetochores during normal spindle

assembly is likely to be dependent upon a transition from immature to mature kinetochore-

MT attachment rather than on the establishment of tension across sisters.
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2.3 RESULTS

2.3.1 Bublp and Bub3p are recruited to kinetochores during normal cell cycles

To localize spindle checkpoint proteins in S. cerevisiae, endogenous MAD and BUB

genes were linked to GFP at their COOH termini via homologous recombination. GFP

tagging did not interfere with checkpoint function, as assayed by growth on plates containing

the MT-depolymerizing agent benomyl (Fig. 2.S1). Spindle pole bodies (SPBs) were

visualized by linking the SPB component Spc42p to CFP (Spc42p-CFP; Donaldson et al.,

2001; He et al., 2001). Cells expressing GFP-tagged checkpoint proteins and CFP-tagged

Spc42p were observed using two-wavelength three-dimensional (3D) deconvolution

microscopy (Rines et al., 2002). Cell-cycle state was determined from the length and

position of the mitotic spindle.

When Bublp-GFP and Bub3p-GFP were examined in early mitotic cells, a distinct

pattern of two GFP lobes lying between the CFP-tagged SPBs was observed (Fig. 2.1, A and

B). This is the classic localization pattern of kinetochore proteins such as Ndc80p and

reflects the metaphase clustering of budding yeast kinetochores into two lobes that lie along

the spindle axis and between the spindle poles (Fig. 2.1C; (He et al., 2000)). To demonstrate

the kinetochore association of Bublp-GFP and Bub3p-GFP directly, we performed

chromatin immunoprecipitation (ChIP) with primers specific for CENIV DNA. In

asynchronous cultures, both Bublp-GFP and Bub3p-GFP exhibited clear CEN binding by

ChIP (Fig. 2.1, D and E). Binding was specific as neither protein cross-linked to DNA at the

non-CEN URA3 locus (unpublished data). Moreover, CEN binding required the core

kinetochore complex CBF3, as Bublp-GFP and Bub3p-GFP ChIP signals were negligible in

ndcl O-I strains at 37°C (Fig. 2.1, D and E).
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Figure 2.1 Bubl p-GFP and Bub3p-GFP are associated with kinetochores.
(A-C) Typical images of wild type mitotic cells expressing the SPB marker Spc42p-CFP in red)
and the spindle checkpoint proteins Bubl p-GFP or Bub3p-GFP (in green) or the kinetochore protein
Ndc80p-GFP (in blue). Images represent 2D projections of 3D image stacks containing ten to fifteen
0.2gim sections. (D. E) ChIP of Bubl p-GFP and Bub3p-GFP at CENIV. Crosslinking of Bub proteins
to CEN DNA was assayed in asynchronous wild type cells. nocodazole-treated wild type cells, and
nc/clO-l cells at 37C. All cells were grown to mid-log phase at 25 C then shifted to 370 C for 3 hrs
prior to analysis. The amount of CE¥L/[," DNA recovered with immune complexes is shox\ n as a
percentage of the amount of C('ENIV DNA present in each total cell lysate. Dashed lines represent the
percentage of CENIV DNA recovered with immune complexes from wild type cells (a negative
control). Absolute differences in the amount of DNA precipitated among different panels are not
considered to be meaningful. (F. G) ChIP of Bub proteins at CENIV is cell cycle regulated. Wild-
type cells expressing Bubl p-GFP or Bub3p-GFP were grown to mid-log phase at 25°C and then
treated with a-factor (5!ug/mL final) or nocodazole (25g/mrnL final) for 3 hrs prior to Chl P analysis.
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When cells carrying Bublp-GFP and Bub3p-GFP were treated with the anti-MT drug

nocodazole to activate the spindle checkpoint, the ChIP signals for Bublp and Bub3p at

CENIVrose 1.5- and 3-fold, respectively, relative to untreated asynchronous cells (Fig. 2.1,

D and E). In contrast, in a-factor arrested G1 cells, ChIP signals for Bublp and Bub3p fell to

background levels (Fig. 2.1, F and G). From these data, we conclude that Bublp and Bub3p

associate with CEN DNA during normal cell divisions, that this association requires

functional kinetochores, and that it is cell-cycle regulated, being high in nocodazole-treated

mitotic cells and low in G1. Our results with Bublp in nocodazole-treated cells are

consistent with those of Kitagawa et al. (2003) and Kerscher et al. (2003), but unlike

Kitagawa, we conclude from imaging and ChIP that little to no Bublp binds to kinetochores

in a-factor-arrested cells.

2.3.2 Kinetochore association by Bublp occurs early in mitosis

To determine when during the cell cycle Bub proteins are recruited to kinetochores,

the localization of Bublp-GFP was compared to that of the kinetochore protein Ndc80p-

GFP. Parallel cell cultures were synchronized using a-factor, released at 250C, and samples

withdrawn and fixed every 15 min. The percentage of cells containing Bublp-GFP or

Ndc80p-GFP foci was determined by analyzing at least 40 individual cells at each time point.

Progression through the cell cycle was monitored by examining bud size, spindle length and

spindle position (determined using Spc42p-CFP). In synchronous cultures released from a-

factor, very few cells contained kinetochore-localized Bubl-GFP prior to T= 45 min. (Fig.

2.2, A and C). Kinetochore binding by Bublp then rose dramatically, peaking at T= 60 min.,

and fell again as mitosis progressed (Fig. 2.2C). In contrast, kinetochore binding by Ndc80p-

GFP was apparent throughout the experiment, giving rise at early time points to a single GFP
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Figure 2.2 Kinetochore association of Bub proteins is cell cycle regulated.
(A) Wild type cells expressing BubIp-GFP (green) and the SPB component Spc42p-CFP (red). Images
are representative or each time point. The surface plot below each image depicts the distribution of GFP
(green) and CFP (red) signal intensities (in arbitrary units) across the boxed regions of each image. For
the 30 min time point. we included an image representative of the 15% of cells that contained Bub I p-GFP
Foci. (B) Images of individual cells expressing the kinetochore protein Ndc80p-GFP (blue) and Spc42-CFP
(red). Images and graphs are as described for part A. (C) Fraction of total cells containing Bublp-GFP
kinetochore foci, metaphase spindles. and anaphase spindles versus time following -factor release at 250C.
Metaphase cells were those with spindle lengths between 0.8mrn and 2.2pm and anaphase cells those with
spindles > 2.2im. At least 40 individual cells were scored at each time point. (D) Fraction of cells
containing Bublp-GFP kinetochore foci versus spindle length following a-factor release at 250 C (n = 281).
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cluster in close proximity to the newly duplicated SPBs and subsequently resolving into a bi-

lobed metaphase configuration (Fig. 2.2B).

Bublp-GFP foci were first visible around the time of SPB duplication (during S-

phase, at T= 30-45 min; Fig. 2.2, C and D). At this point, the patterns of Bublp-GFP and

Ndc80p-GFP localization were very similar, suggesting that most, if not all, kinetochores

were associated with Bublp. The peak of Bublp binding to kinetochores was observed at T=

60 min in cells with spindles that averaged 0.8 pm in length. Cells at this point in the cell

cycle contain duplicated SPBs, but kinetochores do not yet exhibit a bi-lobed metaphase

configuration (as judged by Ndc80p-GFP). At T= 75 min, 71% of cells contained

metaphase-length spindles, but only 38% contained Bublp-GFP foci (Fig. 2.2C), indicating

that Bublp is released from kinetochores as metaphase proceeds. No Bublp-GFP foci were

seen in anaphase cells (Fig. 2.2A, 75 and 90 min; Fig. 2.2D). Bublp was also absent from

kinetochores arrested in metaphase by cdc23-1 or cdc2O-l mutations (unpublished data).

Cells in asynchronous cultures exhibited a pattern of kinetochore association by Bublp

similar to that seen in synchronous cultures, showing that our findings were not an artifact of

a-factor release. Moreover, the dynamics of Bub3p binding to kinetochores was

indistinguishable from those of Bublp-GFP (unpublished data). From these results, we

conclude that the Bub proteins first associate with kinetochores during S-phase when cells

contain monopolar spindles, but dissociate from kinetochores as mature bipolar MT

attachments are established early in mitosis.

2.3.3 Kinetochore recruitment of the Mad checkpoint proteins

Next, we examined the kinetochore association of Madlp, Mad2p, and Mad3p in

asynchronous and nocodazole-treated cells. We detected little or no kinetochore-bound
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Madlp, Mad2p, or Mad3p in asynchronous cells by imaging or ChIP at any stage of the cell

cycle (Fig. 2.3A, not depicted; Iouk et al., 2002). However, ChIP signals were high for both

Madlp-GFP and Mad2p-GFP in nocodazole-treated cells (Fig. 2.3A). The ChIP signal for

Mad3p-GFP was consistently just above background levels in nocodazole-treated cells (Fig.

2.3A), but we have been unable to confirm kinetochore association by microscopy (not

depicted). From these data we conclude that Madlp, Mad2p, and Mad3p do not associate

significantly with kinetochores in cycling cells but that Madlp and Mad2p are kinetochore

bound in the presence of spindle damage.

Nocodazole treatment interferes with microtubule polymerization and causes mitotic

spindles to collapse (Jacobs et al., 1988). When we imaged nocodazole-treated cells co-

expressing Ndc80p-GFP and Spc42p-CFP, we found that the majority of kinetochores

remained in a large cluster close to the collapsed SPBs (Fig. 2.3B). However, most cells also

contained 1 or 2 dim Ndc80p kinetochore foci > 1 Im away from the SPBs (Fig. 2.3B,

arrowheads). Data from live-cell chromosome tracking experiments in nocodazole-treated

cells suggest that these dim Ndc80p foci represent kinetochores that are detached from

spindle MTs (D.R. Rines, unpublished data). Foci of Madlp-GFP, Mad2p-GFP, and Bublp-

GFP co-localized specifically with the weaker Ndc80p kinetochore foci that were distant

from SPBs (Fig. 2.3, C-E). Some Madlp-GFP also remained on the nuclear periphery (Fig.

2.3D; Iouk et al., 2002). From these data, we conclude that treating cycling cells with

nocodazole causes some, but not all, kinetochores to detach from spindle MTs and that

spindle checkpoint proteins are recruited selectively to the detached kinetochores.
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Figure 2.3 Kinetochore association of spindle checkpoint proteins in nocodazole-treated cells.
(A) ChIP of Mad I p-GFP, Mad2p-GFP, and Mad3p-GFP at CENIV in cycling and nocodazole
treated cells. Graphs are as described for Figure ID-G. (B) Wild type cell co-expressing the
SPB protein Spc42p-CFP and the kinetochore protein Ndc80p-GFP following treatment with
25jtg/mL nocodazole tfor I hr at 250C. Panels show Ndc80p-GFP alone; Spc42p-CFP alone:
and Spc42p-CFP (red) merged with Ndc80p-GFP (blue). (C. D, E) Wild type cells co-expressing
Ndc80p-CFP (blue) and Mad l p-GFP, Mad2p-GFP, or Bubl p-GFP (green) tollowing nocodazole
treatment. Panels are laid out as in (B). Orange arrowheads indicate the locations of unattached
kinetochores.
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2.3.4 A functional checkpoint pathway is required for kinetochore recruitment of

Madlp and Mad2p

Epistasis analysis has suggested that Bublp and Bub3p are upstream components of

the checkpoint pathway while Mad2p is a downstream effector (Farr and Hoyt, 1998). To

determine if interdependencies for CEN binding by checkpoint proteins mirrored their

proposed order in the checkpoint signaling pathway, ChIP ofMadlp, Mad2p, Bublp and

Bub3p was performed in cells deleted for other checkpoint components. CEN association of

Madlp and Mad2p was assayed in cells treated with nocodazole, while that of Bublp and

Bub3p was assayed in asynchronous cells. We observed that CEN association of Mad2p-

GFP was abolished in bublI and bub3A cells, as well as in cells lacking MAD1, but not in

cells lacking MAD3 (Fig. 2.4A). CEN association by Madlp-GFP exhibited a similar set of

dependencies, requiring BUB1, BUB3, and MAD2, but not MAD3 (Fig. 2.4B). In contrast,

both Bublp-GFP and Bub3p-GFP associated with CEN DNA in cells lacking MAD, MAD2,

or MAD3 (Fig. 2.4, C and D). Finally, although Bublp-GFP did not bind to kinetochores in

cells lacking BUB3, Bub3p-GFP could still be cross-linked to CEN DNA in bublA cells (Fig.

2.4, C and D). In all but one case (Bub3p-GFP), results from imaging matched those from

ChIP (Fig. 2.4E). High levels of autofluorescence in bublA cells may have masked Bub3p-

GFP kinetochore signals. Overall, our data show that kinetochore binding by checkpoint

components is dependent on the presence of proteins upstream in the signaling pathway:

kinetochore binding by Madlp and Mad2p requires BUBI and BUB3 but not MAD3, Bublp

requires BUB3 but not the MAD genes, and Bub3p is independent of all other checkpoint

proteins.
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Figure 2.4 Interdependencies of checkpoint proteins for kinetochore binding.
(A) ChIP of Mad2p-GFP at CENIV in wild type and checkpoint-delete cells in the presence of
nocodazole (25gg/mL). (B) ChIP of Madlp-GFP at CENIV in wild type and checkpoint delete-cells
in the presence of nocodazole. (C, D) ChIP of Bublp-GFP or Bub3p-GFP at CENIVin wild type and
checkpoint delete cells. ChIP signals from deletion strains were normalized to the ChIP signal
obtained from the wild type strain. Dashed line shows the amount of CEN DNA precipitated using

untagged wild type cells (negative control). (E) Summary of the interdependencies of checkpoint
protein kinetochore binding as assayed by imaging. Mad lp-GFP and Mad2p-GFP were examined in
the presence of nocodazole, while Bublp-GFP and Bub3p-GFP were examined in asynchronous cells.
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2.3.5 Bublp and Mad2p bind to kinetochores in ndc80-1 cells but not in spc25-7 cells

The structural proteins that recruit checkpoint components to kinetochores are

unknown. The best candidates are those kinetochore components whose loss disables spindle

checkpoint signaling. One such protein is Spc25p, a component of the Ndc80 complex.

Kinetochores detach from spindle MTs in spc25-7 cells but the spindle checkpoint is not

activated (He et al., 2001; Janke et al., 2001; Wigge and Kilmartin, 2001; McCleland et al.,

2003). Consistent with this, neither Bublp-GFP nor Mad2p-GFP is associated with CEN

DNA in spc25-7 cells at 37°C (Fig. 2.5, A and B). In contrast, kinetochores also detach from

spindle MTs in ndc80-1 cells at 37°C, but the checkpoint is engaged (Janke et al., 2001;

McCleland et al., 2003) and we found that Bublp-GFP and Mad2p-GFP are associated with

CEN DNA in this mutant (Fig. 2.5, A and B). In a control experiment, we observed that

CEN binding by the Cep3p component of CBF3 was equally high in wild type, spc25-7 and

ndc80-1 cells (Fig. 2.5C).

To confirm that the ndc80-1 mutant was effectively disrupting kinetochore structure

under our experimental conditions, we performed ChIP experiments using ndc80-1 cells co-

expressing Bublp-GFP and myc-tagged Nuf2p, a protein known to require functional

Ndc80p for CEN-association (He et al., 2001). Although Bublp-GFP and Nuf2p-myc could

be cross-linked to CEN DNA in ndc80-1 cells at permissive temperature, only Bublp-GFP

remained CEN-bound at 37C (Fig. 2.5D and E). From these results, we conclude that the

association of Bublp and Mad2p with unattached kinetochores in budding yeast is dependent

upon kinetochore components that assemble properly in ndc80-1 cells but not in spc25-7

cells. Differences between kinetochores in ndc80-1 and spc25-7 cells are likely to be quite
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subtle, and it is possible that Spc25p or other subunits of the Ndc80 complex may directly

bind to Mad and Bub proteins.

2.3.6 Mad2p is recruited to kinetochores in daml-1 but not ipll-321 cells

The existence of kinetochore mutants with distinct effects on chromosome dynamics

affords an opportunity to investigate which types of lesions recruit checkpoint proteins to

kinetochores. In daml-1 and ipll-321 cells, kinetochores cannot form stable bipolar

attachments to spindle MTs, sister chromatid pairs each remain associated with a single SPB,

and chromosome congression fails (Biggins et al., 1999; Kim et al., 1999; He et al., 2001;

Janke et al., 2002; Tanaka et al., 2002). Interestingly, although daml-1 mutants engage the

spindle checkpoint, ipll-321 mutants do not (Biggins and Murray, 2001; Cheeseman et al.,

2001; He et al., 2001; Jones et al., 2001; Janke et al., 2002). To determine whether

checkpoint proteins are recruited to kinetochores in daml-1 and ipll-321 mutants, we

examined the localization of Ndc80p-GFP, Bublp-GFP, and Mad2p-GFP in mutant cells co-

expressing the SPB marker, Spc42p-CFP. Although it has previously been reported that

kinetochores preferentially associate with the old SPB when subunits of the Daml complex

are inactivated (Janke et al., 2002), we find the asymmetric distribution of kinetochores in

daml-1 cells to be somewhat variable. In many cells, similar numbers of chromosomes were

bound to each SPB (Fig. 2.6A). In contrast, the asymmetric distribution of kinetochores in

ipll-321 cells was dramatic and consistent (Fig. 2.6D). By imaging, we found that Bublp-

GFP was present on kinetochores at non-permissive temperature in both daml-1 and ipll- 3 2 1

cells (Fig. 2.6, B, E, G, and H). While Mad2p-GFP appeared to be kinetochore-bound in the

majority of daml-1 cells after lh at 370 C (Fig. 2.6, C and G), Mad2p-GFP was rarely

detected
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on kinetochores in ipll-321 cells at non-permissive temperature (Fig. 2.6, F and H). ChIP

analysis confirmed these findings (unpublished data).

Why do daml-1 kinetochores recruit Mad2p while ipll-321 kinetochores do not?

One possibility is that Ipllp is an upstream component of the checkpoint pathway required

for the activity of Mad2p (Biggins and Murray, 2001). This is not strictly true, however, as

Mad2p binding to CEN DNA could be detected by imaging and ChIP in ipll-321 cells

treated with nocodazole (unpublished data). A second possibility is that kinetochore-MT

links in ipll-321 cells prevent Mad2p binding. It has been proposed that Ipllp plays an

essential role in releasing syntelic attachments that form early in the cell cycle when both

kinetochores in a pair of sister chromatids bind to MTs emanating from the same SPB

(Tanaka et al., 2002). We speculate that yeast Mad2p is not recruited to kinetochores in ipll-

321 cells because they have syntelic MT attachments. In contrast, monotelic attachments (in

which one kinetochore is attached, while its partner is unattached) likely predominate in

daml-1 cells, and Mad2p is therefore recruited to the unattached kinetochore. By this

reasoning, the inability of ipll-321 cells to engage the spindle checkpoint does not reflect a

role for IPLI in checkpoint signaling, but rather the failure of ipll-321 cells to generate a

kinetochore structure that the checkpoint can recognize.

2.3. 7 Loss of tension is not sufficient to recruit Bublp or Mad2p to kinetochores in

stu2-279 cells

A major question in the study of mitosis is whether it is the absence of tension or the

loss of MT attachment that is ultimately responsible for activating checkpoint signaling. Our

data show that kinetochores that remain attached to collapsed spindles in nocodazole-treated

cells do not recruit Mad and Bub proteins (Fig. 2.3, C-E). As it is mechanically impossible
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for collapsed spindles to impose tension on chromatids, these results suggest that loss of

tension does not recruit high levels of Mad or Bub proteins to kinetochores. To determine if

checkpoint proteins are kinetochore-bound in cells in which tension has been eliminated by

other means, we examined cells carrying mutations in the MT-associated protein Stu2p (He

et al., 2001). stu2-279 cells arrest in a checkpoint-dependent fashion with kinetochores that

have bipolar attachments but are not under detectable tension (He et al., 2001; Severin et al.,

2001a). When stu2-279 cells co-expressing the SPB marker Spc42p-CFP and Ndc80p-GFP,

Mad2p-GFP or Bublp-GFP were examined by imaging and ChIP at non-permissive

temperatures, one or two bright GFP foci were visible (Fig. 2.7, A and B) and both Mad2p

and Bublp were CEN-associated by ChIP (Fig. 2.7, F and G). However, almost all Mad2p-

GFP and Bublp-GFP foci lay > lugm from the spindle axis (Fig. 2.7, A and B), while the

majority of kinetochores, as monitored by Ndc80p-GFP, lay between the SPBs (Fig. 2.7C).

In most cells, one or two dim Ndc80p-GFP foci were also visible > 1 Lm from the spindle

axis (Fig. 2.7 C). The analysis of stu2-279 cells co-expressing Ndc80p-CFP and either

Bublp-GFP or Mad2p-GFP made it clear that the dim Ndc80p-CFP foci distant from the

spindle axis were coincident with the bright Bublp-GFP and Mad2p-GFP foci (Fig. 2.7, D

and E). Thus, it appears that Bublp and Mad2p are specifically recruited only to a subset of

kinetochores in stu2-279 cells. Similar results were obtained with a stu2-277 mutant (data

not shown).

What distinguishes kinetochores that recruit Bublp and Mad2p in stu2 cells from

those that do not? One possibility is that kinetochores that lie off of the spindle axis, and that

bind to Bublp and Mad2p, are not correctly attached to MTs. Although we had not
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Figure 2.7 Bublp and Mad2p localization in stu2-279 cells.
(A, B, C) stu2-279 cells co-expressing the SPB protein Spc42p-CFP and Bublp-GFP, Mad2p-GFP,
or Ndc80p-CFP. Panels show Spc42p-CFP alone; Bublp-GFP, Mad2p-GFP, or Ndc80p-CFP alone;
and Spc42p-CFP (red) merged with Bublp-GFP (green), Mad2p-GFP (green), or Ndc80p-CFP (blue).
Cells were grown at 25C to mid-log phase and then shifted to 370 C for 2 hrs prior to fixation. Orange
arrowheads denote unattached kinetochores. (D, E) stu2-279 cells co-expressing the kinetochore
protein Ndc80p-CFP and Bublp-GFP or Mad2p-GFP. Panels show Ndc80p-CFP alone; Bubi p-GFP
or Mad2p-GFP alone; and Ndc80p-CFP (blue) merged with Bub I p-GFP (green) or Mad2p-GFP (green).
Images are as described in Fig. 1A. Red X's denote the inferred positions ofSPBs. (F, G) ChIP of
Bubl p-GFP and Mad2p-GFP at CENIVin asynchronous wild type cells, nocodazole-treated wild-type
cells, and stu2-279 cells, all at 370 C. (H-K) Spatial distribution of kinetochore protein foci for
(H) Ndc80p-GFP in wild-type cells with attached kinetochores, (I) Mtwl p-GFP in ndc80-1 cells with
unattached kinetochores (at 37C), and (J, K) Bub Ip-GFP or Mad2p-GFP in stu2-279 cells (also at
37°C). Distances were measured from each GFP focus to the center of the spindle. Spindle orientation
and length was determined using Spc42p-CFP. Only cells with spindles between 0.75 and 1.50 pm were
included. Lines represent normal distributions for attached (red, [t=0.40 m, o=0. 15) or unattached
kinetochores (green, p=1.1m, 0=0.52). The number of cells (n) and number of kinetochore foci (m)
analyzed are listed on each graph.
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anticipated that stu2 cells would contain unattached kinetochores, MTs are known to be

fewer in number and less dynamic in stu2 mutants (Kosco et al., 2001) and it is likely that the

spindle's ability to capture kinetochores and maintain kinetochore-MT attachments is

compromised in these cells. Moreover, although we only detected attached chromosomes in

our initial studies of stu2 cells (He et al., 2001), recent live-cell data indicate that a subset of

kinetochores do detach from spindle MTs in stu2 mutants (D.R. Rines, unpublished data).

To better characterize the state of chromosome-MT attachment in stu2 cells, we

profiled the spatial distributions of Bublp and Mad2p foci within the nuclei of these cells and

compared them to the spatial distribution of kinetochores known to be attached (as

determined from the positions of Ndc80p-GFP foci in metaphase wild type cells) and those

known to be unattached (as determined from the positions ofMtwlp-GFP foci in ndc80-1

cells). In each case, spatial kinetochore distributions were profiled by measuring the

distances from each GFP focus to the center of the spindle. Although attached kinetochores

exhibited a narrow distribution with a mean of 0.4gm (Fig. 2.7 H), unattached kinetochores

showed a broad distribution with a mean of 1.0 m and a maximum of 2.3 gm (Fig. 2.7 I).

Importantly, the distribution of Bublp-GFP and Mad2p-GFP foci in stu2-279 cells was very

similar to that of unattached kinetochores, strongly suggesting that checkpoint proteins are

recruited to kinetochores that have become detached from the spindle in stu2-279 cells (Fig.

2.7, J and K). We conclude that, in stu2 mutants, the majority of kinetochores are attached to

MTs and lack detectable Bublp and Mad2p, despite a lack of tension. However, a subset of

kinetochores-perhaps one or two per cell-are not attached to MTs, and these kinetochores

selectively recruit high levels of Bub lp and Mad2p.
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2.3.8 Bublp binds kinetochores in the absence of sister cohesion, but Mad2p does not

Another method by which tension across kinetochores can be eliminated is by

inactivating sister cohesion. A temperature sensitive mcdl-l cohesin mutant disables sister

pairing and allows chromatids to segregate independently of one another (Guacci et al.,

1997). While mcdl-l cells experience a slight checkpoint-dependent cell cycle delay, they

appear to undergo a morphologically normal anaphase (Biggins and Murray, 2001; Severin et

al., 2001b). We were unable to detect Mad2p on kinetochores in mcdl-l cells by ChIP or

imaging (unpublished data), even though the cell cycle delay in mcdl-l cells is known to be

MAD2 dependent. We cannot tell if this reflects an off-kinetochore function for Mad2p in

response to lack of tension (Martin-Lluesma et al., 2002), or if Mad2p is present transiently

at kinetochores below our limit of detection. However, it is clear that the lack of tension on

kinetochores in mcdl-l cells is not sufficient to recruit the high levels of Mad2p seen on

unattached kinetochores.

A comparison of wild type and mcdl-l cells co-expressing Bublp-GFP and Ndc80p-

CFP revealed that Bublp binding to kinetochores was very similar from 0-60 min after a-

factor release (Fig. 2.8, A, B, and G). However, the dissociation of Bublp from kinetochores

was delayed -15 min. relative to wild type cells (Fig. 2.8G). Interestingly, mcdl-I cells with

longer spindles almost always contained a heterogeneous population of Bublp-positive and -

negative kinetochores (Fig. 2.8B, compare Ndc80p with Bublp), suggesting that Bublp

binding is likely to depend on the attachment status of individual kinetochores. From these

data, we conclude that Bublp is recruited properly to kinetochores in mcdl-l mutants early

in mitosis and is then lost as mitosis progresses. Thus, bipolar attachment and tension are not

absolutely required to release Bublp from kinetochores. At this point, it is not clear if
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delayed release of Bublp from kinetochores in mcdl-1 cells is a consequence of lack of

tension per se, or rather of problems in establishing mature chromosome-MT attachments

due to a lack of sister pairing.
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Figure 2.8 Bublp localization in mccll-I cells.
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2.4 DISCUSSION

In this paper, we show that spindle checkpoint proteins in S. cerevisiae are recruited

to centromeres in a kinetochore-dependent manner, just as they are in animal cells. Despite

the high degree of conservation in Mad and Bub proteins through evolution, however, our

data also show that interactions between kinetochores and spindle checkpoint proteins in

yeast and animal cells differ in several significant ways. Budding yeast Bublp and Bub3p

are like their mammalian counterparts in that they bind to kinetochores during normal cell

division. This binding is cell cycle regulated, being highest early in mitosis around the time

of SPB duplication and falling as mitosis proceeds. In contrast, while mammalian Madl and

Mad2 are bound to kinetochores during prometaphase in normally dividing cells, yeast

Madlp and Mad2p are kinetochore-bound only in cells in which chromosome-MT

attachment is inhibited. We propose that organism-specific differences in the behavior of

spindle checkpoint proteins are likely to reflect evolutionary divergence in the mechanics of

spindle assembly rather than extensive differences in the pathways of checkpoint signaling.

Several key features distinguish spindle assembly in animal cells and budding yeast.

Animal cells undergo an open mitosis and prometaphase chromosomes are initially free of

spindle MTs following nuclear envelope breakdown. High levels of Mad and Bub proteins

are present on these unattached kinetochores, but Madl and Mad2, in particular, dissociate as

chromosome-MT attachments form (Waters et al., 1998). In contrast, budding yeast cells

undergo a closed mitosis in which kinetochores remain closely associated with SPBs

throughout the cell cycle (Jin et al., 2000; D.R. Rines, unpublished data). Although we find

Madlp and Mad2p on unattached S. cerevisiae kinetochores in cells with spindle damage or

kinetochore lesions, yeast kinetochores do not recruit high levels of these proteins during

83



normal mitosis, which is consistent with the idea that yeast chromosomes are continuously

linked to MTs. The maintenance of kinetochore-MT attachments throughout the yeast cell

cycle may make spindle assembly more efficient, a property that could explain why yeast

MAD2 is not required for normal cell growth (Li and Murray, 1991), whereas murine Mad2

is essential (Dobles et al., 2000). Interestingly, yeast Mad2p appears to be important for

chromosome bi-orientation during the first meiotic division (Shonn et al., 2000, 2003), which

implies that kinetochore binding by Mad2p might be a normal feature of meiosis. Therefore,

it will be interesting to determine if Mad2p-positive chromosomes are generated during

meiotic bouquet formation (Trelles-Sticken et al., 1999).

2.4.1 The Ndc80 complex and spindle checkpoint signaling

An important issue in the study of spindle checkpoint signaling is determining how

spindle checkpoint proteins bind to kinetochores. The best candidates for proteins that link

Mad and Bub proteins to kinetochores are those whose inactivation disrupts checkpoint

signaling without completely disrupting kinetochore assembly. Although mutations in

almost all known kinetochore components engage the checkpoint (Gardner et al., 2001), loss

of function mutations in subunits of the CBF3 complex (which consists of Ndc 10p, Cep3p,

Ctfl 3p, and Skplp) and some subunits of the Ndc80 complex (which consists of Spc24,

Spc25p, Ndc80p and Nuf2p) have the special property of abolishing the checkpoint (Goh and

Kilmartin, 1993; Gardner et al., 2001; Janke et al., 2001; McCleland et al., 2003). However,

protein-protein and protein-DNA associations among kinetochore proteins are hierarchical;

whereas loss of CBF3 function prevents all known kinetochore proteins from associating

with CEN DNA (Goh and Kilmartin, 1993; He et al., 2001), loss of Ndc80 function disrupts

the assembly of only a small subset of kinetochore components (He et al., 2001; Janke et al.,
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2001; De Wulf et al., 2003). It has been suggested that the CBF3 subunit, Skplp, mediates

the binding of Bublp to kinetochores (Kitagawa et al., 2003), but our data show that the

spc25-7 mutation prevents Bublp and Mad2p from binding to kinetochores at non-

permissive temperature without altering the level of CEN-bound CBF3 (Fig. 2.5C, as

measured using the CBF3 component, Cep3p). This evidence strongly suggests that CBF3,

and hence Skplp, cannot be sufficient for the recruitment of Bublp to kinetochores.

Mutant analysis suggests the link between checkpoint signaling and mutations in

subunits of the Ndc80 complex is fairly complex: spc24-2 and spc25-7 mutants abrogate the

checkpoint whereas ndc80- and nuJ2-457 mutants engage the checkpoint (He et al., 2001;

Janke et al., 2001; Wigge and Kilmartin, 2001; McCleland et al., 2003). We have found that

these functional differences are reflected in the extent to which Mad and Bub proteins are

recruited to kinetochores. Gene and allele-specific differences among spc24, spc25, ndc80

and nuf2 mutations may be a simple consequence of differences in allelic strength: in the

case of CBF3, Burke and colleagues have elegantly demonstrated that hypomorphic alleles

engage the checkpoint whereas complete loss-of-function mutations inactivate it (Doheny et

al., 1993; Strunnikov et al., 1995; Connelly and Hieter, 1996; Tavormina and Burke, 1998;

Gardner et al., 2001); and the results of McClelland et al. (2003) suggest that ndc80-1 may

indeed be a hypomorphic allele. Alternatively, it is also possible that some subunits of the

Ndc80 complex are required for the recruitment of Mad and Bub proteins to kinetochores,

whereas other subunits are not. Either way, the requirement for a functional Ndc80 complex

in checkpoint signaling and the evolutionary conservation of the Ndc80 complex (human

Ndc80/HEC 1 can functionally substitute for yeast NDC80; Zheng et al., 1999) are suggestive

of important functional connections between the Ndc80 complex and the spindle checkpoint.
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2.4.2 Attachment, tension, and the spindle checkpoint in buddingyeast

Two main hypotheses exist regarding what features of kinetochore-MT attachment

are monitored by the spindle checkpoint. The tension hypothesis posits that the checkpoint

monitors tension across paired sister kinetochores (Stem and Murray, 2001), whereas the

attachment hypothesis suggests that the checkpoint monitors the occupancy of kinetochore-

MT attachment sites (Rieder et al., 1995). In budding yeast, Madlp, Mad2p, Bublp and

Bub3p are recruited to unattached kinetochores in ndc80-1 cells and to kinetochores with

monopolar attachments in daml-1 cells. However, in no context have we observed high

levels of checkpoint proteins bound to kinetochores that have achieved bipolar attachment

but lack tension. Although cells carrying a mutation in the kinetochore-associated MAP,

Stu2p, contain attached tension-free kinetochores as well as unattached kinetochores, high

levels of Bublp and Mad2p are recruited only to the latter. Similarly, although a few

kinetochores detach from spindle MTs in cells treated with the anti-MT drug nocodazole, the

majority of kinetochores remain attached to very short MTs and in close proximity to the

collapsed SPBs. Although the collapsed spindles in nocodazole-treated cells cannot generate

tension across sister kinetochores, Bublp and Mad2p are found only on unattached

kinetochores. Finally, Mad2p is not detectable on kinetochores in mcdl-1 cells that lack

sister cohesion and bipolar tension. Thus, the absence of tension on paired sister

chromosomes is not sufficient to recruit high levels of Mad or Bub proteins to kinetochores.

Overall, our data are most consistent with the attachment hypothesis, but it remains possible

that lack of tension may cause the transient binding of Bub and Mad proteins to kinetochores

at levels that are below our limit of detection.
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2.4.3 Role of the Bub proteins during normal spindle assembly

High levels of Bublp and Bub3p, but not Madlp or Mad2p, are recruited to

kinetochores during normal mitosis, suggesting that Bublp and Bub3p play a role in spindle

assembly that the Mad proteins do not share. Several additional pieces of evidence support

this hypothesis. First, budding yeast cells deleted for BUBI or BUB3 experience much more

severe chromosome loss than do cells deleted for MADI, MAD2, or MAD3 (Warren et al.,

2002). Second, extra copies of BUBI or BUB3 suppress the chromosome-MT attachment

defects generated by tubl-729 mutant, independent of MAD2-dependent signaling (Abruzzi

et al., 2002). Third, although the conserved kinase domain of Bublp is not required for

nocodazole arrest in yeast (Sharp-Baker and Chen, 2001; Warren et al., 2002) or the

recruitment of downstream checkpoint proteins to kinetochores in Xenopus (Sharp-Baker and

Chen, 2001; Warren et al., 2002), it is required for suppression of attachment defects in tubl-

729 cells (Abruzzi et al., 2002) and for accurate chromosome transmission in wild-type cells

(Warren et al., 2002).

We find selective binding of Bub proteins, but not Mad proteins, to kinetochores in

three contexts: wild type cells early in mitosis, ipll-321 cells, and mcdl-1 cells. Early during

spindle assembly, kinetochores are thought to form transient syntelic attachments in which

both sister kinetochores are linked to the old SPB. Syntelic attachments resolve to bipolar

attachments early in spindle assembly in wild-type cells, but persist in ipll-321 cells (Tanaka

et al., 2002). Although Bublp is recruited to kinetochores with syntelic attachments in ipll-

321 cells, it is also recruited to kinetochores in mcdl-1 cells which are necessarily unpaired

and therefore unable to form syntelic attachments. What feature is common to ipll-321 and

mcdl-1 chromosome-MT attachments as well as to wild-type attachments early in the cell
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cycle? It is known that kinetochores in animal cells initially bind to the sides of MTs during

spindle assembly (Merdes and De Mey, 1990), and MT binding assays have demonstrated

that reconstituted budding yeast kinetochores form "lateral" attachments to the sides of MTs

in vitro (Sorger et al., 1994). We therefore propose that Bub proteins are recruited in yeast to

kinetochores that have attached to the sides rather than the ends of MTs, as well as to

kinetochores that lack MT attachment altogether.

2.4.4 Summary

In summary, our analysis of spindle checkpoint proteins in budding yeast reinforces

the idea that Bublp and Bub3p have a role during spindle assembly that Madlp and Mad2p

do not share. Although the Bub proteins appear to respond to changes in chromosome-MT

attachment that occur during the course of normal spindle assembly, Mad proteins respond

primarily to chromosome-MT detachment, a condition that does not exist in normally

growing yeast cells. Our data help to explain why the spindle checkpoint is non-essential in

budding yeast as well as why deletions of BUB1 or BUB3 have more dramatic effects on cell

growth and chromosome loss than do deletions of MAD1-3. More broadly, our findings

support the hypothesis that it is changes in the state of chromosome-MT attachment rather

than in tension across sister kinetochores that is responsible for recruiting checkpoint proteins

to kinetochores and, presumably, for initiating checkpoint signaling.
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2.5 MATERIALS AND METHODS

Yeast Strains and Manipulations

Strains were derived from W303 or S288C parental stocks. Proteins were tagged with GFP

or CFP by linking a 300-800 bp C-terminal PCR gene fragment to the coding sequence for

EGFP or ECFP in pRS306 or pRS304. Endogenous genes were replaced using one-step gene

replacement and correct integrants were verified by PCR.

Microscopy Analysis

Images of fixed cells carrying CFP and GFP fusion proteins were collected at room

temperature using a fluorescence microscope (Deltavision with Nikon TE200 base), Plan

Apo 100X/1.40 oil objective, and a camera (model CoolSnap HQ; Photometrics) with

Chroma 86002 JP4 (CFP) and 41018 (GFP) filters. 3D image acquisition, deconvolution,

and maximum intensity 2D projections were done using softWoRx software. Fixed cells

were treated with 2% formaldehyde for 5-10 min. followed by 0.1 M phosphate buffer (pH

6.6) for at least 5 min and imaged at RT.

Chromatin immunoprecipitation (ChIP)

ChIP was performed as described (Megee et al.,1999) except that cells were crosslinked with

formaldehyde for 2 hours at RT, lysed using glass beads in a BiolOl FastPrep FP120,

sonicated until DNA was an average of 200-500 bp in length and centrifuged to remove

cellular debris. Immunoprecipitations were performed using anti-GFP (Clontech), anti-myc

(Santa Cruz), anti-Cep3p (Sorger Lab) antibodies. PCR amplifications of 200bp fragments

of URA3 and CENIV were performed on serial dilutions (to determine linearity) of two or

more independent IPs; error bars show standard deviations.
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Supplemental material

A summary of kinetochore localization by Spindle Checkpoint proteins can be found in

Table 2.S1. Benomyl sensitivity assays of strains expressing GFP-tagged proteins are shown

in Figure 2.S1.
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Mlps Facilitate Madlp Binding to the Nuclear Periphery
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3.1 ABSTRACT

The spindle checkpoint monitors chromosome-microtubule attachment and delays the onset

of anaphase until all chromosomes have attained bipolar links to the mitotic spindle. Two

checkpoint components, mitotic arrest deficient (Mad) proteins 1 and 2, associate with the

nuclear periphery and are not recruited to kinetochores in Saccharomyces cerevisiae during

normal cell cycles. We show here that the perinuclear localization of Madlp is dependent

upon myosin-like proteins Mlplp and Mlp2p which are thought to link nuclear pore

complexes to the interior of the nucleus. Deletion of either MLPI or MLP2 releases Mad

proteins from the nuclear periphery and allows them to associate with kinetochores during

early mitosis. However, ectopic kinetochore localization of Madlp does not dramatically

affect spindle assembly or mitotic timing, nor does loss of Madlp at the nuclear periphery

impair spindle checkpoint function. As the Mlps have been implicated in several cellular

processes, such as the DNA damage response, we hypothesize that the perinuclear

localization of Madlp and Mad2p may be required for spindle checkpoint-independent

functions such as invoking a metaphase arrest following DNA damage.
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3.2 INTRODUCTION

Successful cell division requires that sister chromatids are partitioned equally

between daughter cells following DNA replication. In eukaryotes, chromosome segregation

is accomplished via the mitotic spindle, a self-organizing bipolar array of microtubules

(MTs). MTs attach to chromosomes via kinetochores, multiprotein complexes that assemble

on centromeric DNA. During spindle assembly, a chromatid attaches to MTs emanating

from one and only one pole of the spindle, while its partner attaches to MTs emanating from

the opposite pole. The spindle checkpoint contributes to chromosome transmission fidelity

by delaying the onset of anaphase until all chromosomes have attained bipolar links to the

mitotic spindle.

Although all known spindle checkpoint proteins are recruited to unattached

kinetochores during prometaphase in metazoan cells (Cleveland et al., 2003), kinetochores in

S. cerevisiae recruit only a subset of spindle checkpoint components during normal mitoses.

Bublp and Bub3p are consistently recruited to kinetochores during early mitosis, but Madlp

and Mad2p are not (Gillett et al., 2004; Iouk et al., 2002; Kerscher et al., 2003). In contrast

to animal cells, budding yeast kinetochores remain closely associated with spindle pole

bodies (SPBs) and attached to spindle microtubules (MTs) throughout the cell cycle (Jin et

al., 2000). As Mad proteins are specifically recruited to unattached kinetochores in metazoan

cells (Waters et al., 1998), this disparity may be due to differences in the spindle

morphogenesis pathways employed in each organism.

Two spindle checkpoint components, Madlp and Mad2p, localize to the nuclear

envelope in S. cerevisiae, Homo sapiens, and Xenopus (Campbell et al., 2001; Chen et al.,

1998; Iouk et al., 2002). Budding yeast undergo a closed mitosis, and Madlp remains
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associated with the nuclear envelope throughout the cell cycle in this organism (Iouk et al.,

2002). Madlp co-immunoprecipitates with a subcomplex of nucleoporins that includes

Nup53p, Nup 157p, and Nupl 70p, and deletion of MADI reduces nuclear transport rates by

about two-fold (Iouk et al., 2002).

Several intriguing connections exist between kinetochores and components of the

nuclear pore complex (NPC). For instance, mutating the budding yeast nucleoporin NUPI 70

leads to kinetochore and chromosome segregation defects (Kerscher et al., 2001), and

nucleoporins such as hNup 133 and hNupl07 relocalize from NPCs to kinetochores during

mitosis in human cells (Belgareh et al., 2001). In addition, the Ran-GTP regulatory proteins

RCC 1, RanBP2, and RanGAP1 also move to kinetochores following nuclear envelope

breakdown in human cells (Arnaoutov and Dasso, 2003; Joseph et al., 2002) and Ran-GTP

plays an important role in spindle and kinetochore assembly (reviewed in Di Fiore et al.,

2004 and Salina et al., 2003). In addition, there is a significant degree of sequence similarity

between the spindle checkpoint protein Bub3 and the nuclear import factor Rael. Rae 1 can

functionally substitute for Bub3 in mice, and haploinsufficiency of murine RAE 1 leads to

chromosome missegregation and spindle checkpoint defects in a manner similar to that of

BUB3 (Babu et al., 2003).

All of the spindle checkpoint components are required for checkpoint arrest in

response to spindle damage or kinetochore lesions. Bublp and Bub3p are thought to be

upstream components of the checkpoint pathway, while the Mad proteins are thought to be

downstream components. Following checkpoint activation, Mad2p binds and inhibits

Cdc20p, a specificity factor for the anaphase promoting complex (APC). The APC is an E3

ubiquitin ligase, and binding of Mad2p to Cdc20p prevents Cdc20p from directing the APC
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to targets such as Pdslp/securin which must be ubiquitinated and degraded by the 26S

proteasome in order for sister chromatids to separate and anaphase to proceed (reviewed in

Nasmyth, 2002).

Here, we examine more closely the factors responsible for sequestering Mad proteins

at the nuclear periphery. We find the perinuclear localization of Madlp is dependent upon

Myosin-like proteins Mlplp and Mlp2p, two proteins implicated in multiple cellular

processes. Mlps are thought to be the yeast homologs of metazoan Tpr proteins that link

NPCs to the interior of the nucleus (Strambio-de-Castillia et al., 1999; Cordes et al., 1997;

Krull et al., 2004). Release of Madlp from the nuclear periphery allows it to bind to

kinetochores early during mitosis. However, this mislocalization does not have a significant

impact on cell cycle progression and does not impair spindle checkpoint activation in the

presence of unattached kinetochores. We propose that the perinuclear pool of Mad proteins

may be important for spindle checkpoint-independent activities, such as executing mitotic

arrest following DNA damage.
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3.3 RESULTS AND DISCUSSION

3.3.1 Madlp Co-localizes with Mlplp and Mlp2p

To localize proteins at the nuclear membrane in S. cerevisiae, endogenous MAD,

NUP, and MLP genes were linked to GFP or CFP at their COOH termini via homologous

recombination. Cells expressing GFP- and CFP-tagged proteins were observed using two-

wavelength three-dimensional (3D) deconvolution microscopy (Rines et al., 2002).

Although Madlp is reported to associate with a subset of nucleoporins (Iouk et al., 2002), we

find that Madl-GFP does not co-localize completely with Nup49-CFP (Fig. 3.1A) or with

other nucleoporins such as Nic96p or Nup 170p (unpublished data). As a control, we also

examined cells co-expressing two nucleoporins, Nupl70-GFP and Nup49-CFP, and these

two proteins co-localize well under our experimental conditions (Fig. 3.1B). In contrast to

nucleoporins, which are distributed relatively evenly across the entire surface of the nuclear

envelope, Madl-GFP frequently exhibits a crescent-shaped fluorescence pattern at the

nuclear periphery (Fig. 3.1A). This suggests that Madlp is, at most, recruited to a subset of

NPCs.

Two additional perinuclear proteins, Mlplp and Mlp2, are also known to exhibit a

crescent-shaped pattern and partial co-localization with NPCs (Galy et al., 2004; Strambio-

de-Castillia et al., 1999). The Mlps are putative coiled-coil proteins thought to link nuclear

pore complexes (NPCs) to the interior of the nucleus. It has been reported that Mlps

participate in a variety of pathways, including those that regulate telomere length and

clustering, transcriptional silencing, double strand break repair, and mRNA export

(Feuerbach et al., 2002; Galy et al., 2004; Galy et al., 2000; Hediger et al., 2002a; Hediger et

al., 2002b; Kosova et al., 2000). Although the mechanisms that restrict their localization is
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unknown, these proteins are consistently seen on the opposite side of the nucleus from the

nucleolus (Galy et al., 2004). We find that Madl-GFP co-localizes well with Mlpl-CFP and

Mlp2-CFP (Fig. 3.1, C and D).

3.3.2 Perinuclear Localization of Madlp is Mlp-Dependent

In budding yeast, Madlp requires the upstream checkpoint proteins Bublp and

Bub3p, as well as its binding partner Mad2p, to bind to unattached kinetochores (Gillett et

al., 2004). In contrast, we find that none of the other BUB and MAD checkpoint components,

nor the upstream kinase MPS (Weiss and Winey, 1996), are required to maintain the

perinuclear localization of Madlp (Fig. 3.1, E-H; unpublished data, (Iouk et al., 2002)).

However, deletion of either MLP1 or MLP2 is sufficient to disrupt Madlp's perinuclear

localization (Fig. 3.1, I and K). The reverse is not true, as MADI is not required for the

perinuclear localization of Mlplp or Mlp2p (Fig. 3.1, J and L). Although deletion of NUP53

reportedly reduces the intensity of Madlp foci at the nuclear periphery (Iouk et al., 2002), we

find that the Madlp nuclear signal is bright but diffuse in mlplA and mlp2A cells. Thus, our

data show that Madlp co-localizes with the NPC-associated proteins Mlplp and Mlp2p, and

that Madlp's association with the nuclear envelope is dependent on both MLP1 and MLP2.

3.3.3 Loss of Perinuclear Tethering Allows Madlp to Bind Kinetochores

We have previously shown that the Bub and Mad spindle checkpoint proteins exhibit

distinct behaviors during normal cell cycles. Although Bublp and Bub3p bind to

kinetochores early during normal mitosis, Madlp and Mad2p are only recruited to

kinetochores following spindle checkpoint activation (Gillett et al., 2004). Interestingly,
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deletion of MLP1 or MLP2 not only releases Madlp from the nuclear periphery, it also

allows Madlp to bind to kinetochores during early mitosis (Fig. 3.2, A and B). Kinetochore

association of Madlp is cell cycle-regulated in these mutants, being evident in small budded

S- and early M-phase cells, but absent in unbudded G1 and large-budded anaphase cells (Fig.

3.2, A and B). Mad2p exhibited a similar pattern of kinetochore localization in mlpl A and

mlp2A cells, consistent with the fact that Madlp requires MAD2 to bind kinetochores

(unpublished data; (Gillett et al., 2004)).

Madlp association with centromeric DNA in mlplA and mlp2A cells was verified

using chromatin immunoprecipitation (ChIP) at CENIV. As Madlp requires spindle

activation for binding to kinetochores in wild-type cells, ChIP signals were quantified and

normalized to that of Madl-GFP in nocodazole-treated wild-type cells. The ChIP signal for

Madl-GFP in cycling mlplA and mlp2A cells was significantly greater than the background

signal detected for Madl-GFP in cycling wild-type cells, but not as great as that of Madl -

GFP in nocodazole treated wild-type cells (Fig. 3.2 C). This decrease may be due to the fact

that nocodazole treated cells are arrested in mitosis and have a higher percentage of Madlp-

positive cells than do asynchronous mlplA and mlp2A cells. Alternatively, kinetochores in

mlplA and mlp2A cells may each recruit lower levels of Madlp proteins than do unattached

kinetochores in nocodazole treated wild-type cells. The kinetics of Madlp kinetochore

association in mlplA and mlp2A cells (Fig. 3.2C) are very similar to those of Bublp in wild-

type cells, consistent with the fact that BUB1 is required for Madlp binding to kinetochores

in wild-type cells (Gillett et al., 2004).
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Figure 3.2 Madip associates with kinetochores during early mitosis in mlplA and mlp2A cells.
(A. B) Mad I-GFP localization in mplA and mlp2A cells during G1, early M and anaphase.
(C) Chromatin immunoprecipitation (ChIP) of Mad -GFP at CENIVin wild-type cycling, wild-type
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3.3.4 Mitotic Timing and Spindle Checkpoint Activity in MLP deletes

Why is Madlp sequestered at the nuclear periphery in the absence of unattached

kinetchores? One possibility is that Madlp binding to kinetochores is somehow

disadvantageous during normal cell cycles. Sequestration is used as to inhibit other proteins

during mitosis such as the phosphatase Cdcl4p which is held in the nucleolus prior to

anaphase to prevent premature dephosphorylation of Cdks and other targets (Shou et al.,

1999; Visintin et al., 1999). If kinetochore binding by Madlp and Mad2p transiently

activates the spindle checkpoint, we reasoned that mlplA and mlp2A cells might experience a

slight mitotic delay. We therefore examined the mitotic progression of a-factor synchronized

mlplA, mp2A, and wild-type cells by monitoring spindle length and position. However,

progression through mitosis in mlplA and mlp2A cells is not significantly delayed compared

to wild-type cells (Fig. 3.3 A).

As Madlp bound to kinetochores in mlplA and mlp2A cells does not cause an

extended checkpoint delay, we next examined if the spindle checkpoint was functional in

these cells. To elicit a spindle checkpoint response, we treated mlplA and mlp2A cells co-

expressing Madl-GFP and the kinetochore marker Ndc80-CFP with 25 pg/mL nocodazole, a

MT depolymerizing drug that inhibits spindle assembly and activates the spindle checkpoint.

mlplA and mlp2A cells treated with nocodazole arrested in mitosis similarly to wild-type

cells, and Madlp was recruited to unattached kinetochores in mlp deletions indicating that

the spindle checkpoint is functional these cells (Fig. 3.3, B-D).
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3.3.5 Mlp localization in nup60A and nocodazole treated cells

Two proteins, Nup60p and Nupl45p, are required to maintain the proper distribution

of Mlplp and Mlp2p on the nuclear envelope (Feuerbach et al., 2002; Galy et al., 2000).

Deletion of Nup60p or truncation of Nupl45p causes Mlplp and Mlp2p molecules to

mislocalize at 37°C. Although deletion of NUP60 does not affect the localization of integral

nucleoporins such as Nsplp and Nup49p (Dilworth et al., 2001), Mlps cluster tightly at the

nuclear periphery in nup60A cells (Fig. 3.4, A and B; (Feuerbach et al., 2002)). Madlp's

association with Mlp-dependent attachment sites at the nuclear periphery must be relatively

strong, as Madlp and Mad2p are similarly mislocalized in nup60A cells (Fig. 3.4, C and D).

The Madlp foci in nup60A cells are present throughout the cell cycle and thus are distinct

from the cell-cycle regulated Madlp kinetochore foci found in mlplA and mlp2A cells. The

close association between Madlp and the Mlps at the nuclear envelope prompted us to

examine if Mlplp and Mlp2p might be recruited to unattached kinetochores following

spindle checkpoint activation. However, no Mlplp or Mlp2p is evident at unattached

kinetochores in nocodazole-treated cells (Fig. 3.4, E and F) indicating that Madlp is released

from its Mlp-associated complex during checkpoint activation.

3.3.6 Summary and Conclusions

Our previous studies of Bub Ip and Mad2p localization suggested that budding yeast

kinetochores have at least three states of attachment. In wild-type cells, unattached

kinetochores recruit Bublp and Mad2p, kinetochores with mature attachments in G1 and late

mitosis recruit neither Bublp nor Mad2p, and kinetochores with immature attachments

during early mitosis recruit Bublp but not Mad2p (Gillett et al., 2004). The loss of Mlp-

111



I)

I N rl

, S; I
c;j o 

_ , 1 4 ) '

- ._ I c1 ')

I -s t_ -C *- 'V ) CIO 

z j"-Ir_ -3
Z. :1)

2: 2 V
-,: J A

rZ , ? , 

I ' 3j
- - - I2 ~j ,)

- .- ) 7 

- t -3

V3 N rwr _ -

cl ) - O :

= I .c s I Cl
_ ,, C I -< " - C- a -r3 -I 'l-J

u IO

-3 1)s~t

3 -3 3 

3 ,1a ) -

-3 C-I

11)

-3l

c)'3 3 r

i12

II 1 

= _ a ) 1 1 _I n 3

I



dependent tethering of Madlp to the nuclear periphery allows Madlp and Mad2p to bind to

kinetochores during early mitosis. Although Mad kinetochore localization could be

indicative that kinetochores are being detached from spindle MTs in mlplA and mlp2A cells,

spindle assembly and chromosome dynamics appear relatively normal in these cells

(unpublished data). Thus, it seems more likely that Mad proteins are being recruited to

kinetochores that have not wholly detached from spindle MTs. However, Mad localization

to these kinetochores in mlplA and mlp2A cells is not sufficient to induce a prolonged

spindle checkpoint arrest. In fact, Mad proteins are displaced from kinetochores as mitosis

progresses and mature bipolar attachments are formed. Thus, either the Mad proteins bound

to kinetochores in mlplA and mlp2A cells are not bound in the proper context to activate the

checkpoint, or additional factors, such as Cdc20p, are not properly configured to allow the

formation of inhibitory complexes that block APC activation and anaphase onset.

Madlp binding to kinetochores early during mitosis in MP deletions can be easily

explained if the Madlp binding sites at kinetochores with immature microtubule attachments

are of lower affinity than the Madlp binding sites at the nuclear periphery. If MLP-

dependent binding sites for Madlp at the nuclear periphery are of higher affinity than are the

binding sites for Madlp on kinetochores with immature attachments, Madlp will

preferentially bind to the nuclear periphery throughout the cell cycle. However, in this case,

Madlp must either have an even greater affinity for unattached kinetochores than it does for

the nuclear periphery, or spindle checkpoint-dependent modifications, such as

phosphorylation events, must release Madlp from the nuclear periphery in order to allow it

to bind unattached kinetochores in wild-type cells. Such a release mechanism for Madlp

may be required as fluorescence recovery after photobleaching (FRAP) experiments suggest
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that Madl and Mad2 molecules are stably bound at the nuclear envelope in PtK2 cells (Shah

et al., 2004). Although spindle checkpoint activation appears to function normally in mlplA

and mlp2A cells, it is also worth investigating if down regulation of the spindle checkpoint

signal is slower when perinuclear Madlp binding sites are unavailable.

Another possibility consistent with our data is that Madlp plays a role at the nuclear

periphery that is independent of its role in spindle checkpoint signaling. Previous data have

shown that loss of MAD1 reduces the efficiency of nuclear transport (Iouk et al., 2002).

However, as both the Mads and Mlps have also been linked to the DNA damage response,

another possibility is that Madlp at the nuclear periphery is important for invoking a

metaphase arrest in response to DNA damage. Mlp2p is required to physically tether both

Madlp and the DNA damage response protein Yku70p to the nuclear periphery, and deletion

of MLP2 decreases the efficiency of double strand break (DSB) repair (Galy et al., 2000).

Mad proteins are partially required for the G2/M arrest of cells in response to DNA damage

(Garber and Rine, 2002; Maringele and Lydall, 2002; Scott and Plon, 2003) and also for the

eventual arrest of cells with DSBs in which the Rad24p checkpoint protein is defective

(Aylon and Kupiec, 2003). It is appealing to imagine that Mlp attachment sites may serve as

auxiliary activation centers for the formation of Mad2p-Cdc20p inhibitory complexes in

response to DNA damage or other stimuli that induce cell cycle arrest. Interestingly, deletion

of YKU70 prevents cells with persistent DSBs from resuming growth, causing a permanent

G2/M arrest (Lee et al., 1998). As Mlp2p is required to tether both Yku70p and Madlp to

the nuclear periphery, it may serve as an integration site linking the repair response and cell

cycle arrest, possibly regulating the transition from prolonged cell cycle arrest to adaptation

in the presence of persistent damage.
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3.4 MATERIALS AND METHODS

Yeast Strains and Manipulations

Strains were derived from W303 or S288C parental stocks. Proteins were tagged with GFP

or CFP by linking a 300-800 bp C-terminal PCR gene fragment to the coding sequence for

EGFP or ECFP in pRS304, pRS303, or pRS306. Endogenous genes were replaced using one-

step gene replacement and correct integrants were verified by PCR and microscopy.

Microscopy Analysis

Images of live and fixed cells carrying CFP and GFP fusion proteins were collected at room

temperature using a fluorescence microscope (Deltavision with Nikon TE200 base), Plan

Apo 100X/1.40 oil objective, and a camera (model CoolSnap HQ; Photometrics) with

Chroma 86002 JP4 (CFP) and 41018 (GFP) filters. 3D image acquisition, deconvolution,

and maximum intensity 2D projections were done using softWoRx software. Fixed cells

were treated with 2% formaldehyde for 5-10 min. followed by 0.1 M phosphate buffer (pH

6.6) for at least 5 min and imaged at RT. Live cells were imaged in SD media.

Chromatin immunoprecipitation (ChIP)

ChIP was performed as described (Megee et al.,1999) except that cells were crosslinked with

formaldehyde for 2 hours at RT, lysed using glass beads in a BiolO1 FastPrep FP120,

sonicated until DNA was an average of 200-500 bp in length and centrifuged to remove

cellular debris. Immunoprecipitations were performed using anti-GFP (Clontech) and anti-

Cep3p (Sorger Lab) antibodies. PCR amplifications of 200bp fragments of URA3 and
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CENIV were performed on serial dilutions (to determine linearity) of two or more

independent IPs.
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Robust genetics and simple, well characterized kinetochores make budding yeast a

powerful system in which to analyze spindle checkpoint function. Spindle checkpoint genes

were first identified in budding yeast more than ten years ago (Hoyt et al., 1991; Li and

Murray, 1991); however, before I began this work, little was known about the localization

and behavior of spindle checkpoint proteins in this organism. Spindle checkpoint proteins

are expressed at very low levels, and the experiments described herein were only recently

made possible by technological advances in fluorescence microscopy and the development of

deconvolution microscopes (Wallace et al., 2001). My work provides a basic foundation for

future cell biological analyses of spindle checkpoint function in budding yeast and, as will be

described below, my results serve both to confirm certain aspects of checkpoint behavior in

budding yeast, and to suggest areas in which additional levels of complexity may exist.

4.1 Locating kinetochores in budding yeast

In contrast to metazoan cells, budding yeast kinetochores do not assemble into a

proper metaphase plate configuration. Instead, budding yeast kinetochores cluster during

mitosis and kinetochore proteins appear as two distinct lobes located between the SPBs (He

et al., 2000). Although individual kinetochores can be easily distinguished in metazoan cells,

the clustering of budding yeast kinetochores prevents individual chromosomes from being

resolved during normal spindle assembly. Thus far, analyses of single chromosomes in

budding yeast have primarily employed fluorescent tags on single chromosomes generated

by integrating arrays of DNA binding sites close to a centromere and then expressing the

appropriate DNA binding protein fused to GFP (Michaelis et al., 1997; Straight et al., 1997).

These types of experiments have illuminated certain aspects of chromosome dynamics during
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spindle assembly, such as transient sister separation, and have been useful in characterizing

MT attachment defects in various kinetochore mutants.

Prior to my work presented here, it was not known if the fluorescence signals from

GFP-tagged kinetochore components, such as Ndc80p, would be bright enough to allow the

detection of single kinetochores in budding yeast. Assuming the amounts of Ndc80p bound

to unattached and attached kinetochores are relatively similar, integration of signal intensities

has indicated that the weak foci present in my images of stu2 cells likely represent one set, or

at most two sets, of paired kinetochores (unpublished data). Thus, my work shows for the

first time that Ndc80-GFP can be used to detect individual budding yeast kinetochores that

have become detached from the mitotic spindle. As the presence of unattached kinetochores

had previously been missed in the analysis of the stu2 mutants, my experiments also

demonstrate that using GFP-tagged kinetochore proteins to survey the distribution of

kinetochores within a cell can reveal heterogeneity that is less easily detected using single

chromosome tracking methods. Examining kinetochore distributions complements

information gained from the experiments probing the dynamics of individual chromosomes.

4.2 Three states of attachment?

Following DNA replication, budding yeast nuclei contain 32 kinetochores and an

average of -35 potential kinetochore MTs, suggesting that each kinetochore captures a single

MT during spindle assembly (Winey et al., 1995). Although metazoan kinetochores recruit

multiple MTs and kinetochore-MT attachment is a gradual process in animal cells, it has long

been assumed that chromosome-MT attachment in budding yeast is an all-or-nothing event.

In contrast, my data suggest that at least three states of kinetochore-MT attachment may exist
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in budding yeast. One model consistent with my checkpoint protein localization data is that

unattached kinetochores recruit both Bub and Mad checkpoint proteins, kinetochores with

mature MT attachments recruit no checkpoint proteins, and kinetochores with immature MT

attachments recruit Bub proteins but not Mad proteins. Should early kinetochore-MT

attachments differ from mature kinetochore-MT attachments in structure or configuration,

however, it is still difficult to say if these early attachments evolve to stable, mature Bub-

negative structures, or if kinetochores release their initial early MT attachments and form

novel attachments to new MTs as spindle assembly progresses. It is also possible that both

of these processes may occur.

My experimental results also suggest something about what the nature of these

immature attachments might be. In addition to being recruited to wild-type kinetochores

during early mitosis, high levels of Bub proteins are found at kinetochores in ipll-321 and

mcdl-l cells at non-permissive temperature, while high levels of Mad proteins are not. It is

possible that Bub proteins may be responding to a physical trait of kinetochores that is

similar in all three of these situations. In ipll- 32 1 cells, chromosomes are thought to have

syntelic attachments in which both sister chromatids are attached to a single SPB (Tanaka et

al., 2002). In contrast, in mcdl-l cells, cohesin complexes are non-functional and sister

chromatids segregate independently (Guacci et al., 1997; Michaelis et al., 1997). What

property might kinetochores in early mitotic cells, ipll-321 cells, and mcdl-l cells have in

common? One possibility is that each of these kinetochores may be forming attachments to

the lateral sides of MTs rather than their plus ends. It is well documented that kinetochores

in metazoan cells frequently form initial attachments to the lateral sides of MTs (Merdes and
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De Mey, 1990), and in vitro experiments have demonstrated that budding yeast kinetochores

are also capable of making lateral attachments to MTs (Sorger et al., 1994).

As kinetochores are invisible to current electron microscopy techniques, proving the

existence of lateral kinetochore-MT attachments in budding yeast is not feasible at present.

However, irrespective the nature of the kinetochore attachments that recruit Bub and not Mad

proteins, our experiments definitely suggest that single kinetochore-MT attachment events in

budding yeast may be more complicated than originally suspected. This potential

complication should be taken into account when interpreting experiments designed to test the

spindle checkpoint response to loss of tension between sisters. To date, virtually all of the

experiments probing this issue have employed cells containing unpaired sister chromatids

generated either by inactivation of cohesin (in mcdl-1 cells; Guacci et al., 1997; Michaelis et

al., 1997; Biggins and Murray, 2001) or inhibition of DNA replication (in cdc6A cells; Piatti

et al., 1995; Biggins and Murray, 2001; Stern and Murray, 2001). My work with these two

mutants suggests that individual kinetochores in these cells lose Bublp association during

spindle elongation, despite the fact that they never experience bipolar tension. This suggests

that unpaired kinetochores still transition from a state of immature attachment that recruits

Bublp to a state of mature attachment in which Bublp is not bound. This transition appears

to be somewhat less efficient in the absence of partner kinetochores, but independent of

tension as bipolar attachments are never established under these conditions. This kinetochore

transition may be similar, in principle, to the MT-dependent, but tension independent,

maturation process exhibited by kinetochores in PtKI cells (Hoffman et al., 2001).

Although it will be difficult to define the exact nature of the kinetochore-MT

attachments that recruit Bub, but not Mad, proteins, my work indicates that characterizing
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Bub and Mad proteins localization can expose subtle differences between kinetochore

mutants with similar phenotypes. This was certainly true in the case of the daml-1 and ipll-

321 mutants. Differences between the monopolar attachment phenotypes in these two

mutants had previously been suggested by data from studies of chromosome dynamics (He et

al., 2001). Our observation that Mad2p is recruited to kinetochores in daml-1 cells but not

ipll-321 cells reinforces the idea that the kinetochore-MT attachments in these two mutants

are significantly different.

4.3 Illuminating the Interface between Spindle Checkpoint Proteins and Kinetochore

Components

The NDC80 complex appears to have a unique role in relation to spindle checkpoint

binding to kinetochores. Before I began this work, it was assumed that because ndc80-1

kinetochores detach from spindle MTs at non-permissive temperature, most kinetochore

components are likely to be disrupted in these cells. Therefore, it was initially surprising to

us that both Bublp and Mad2p could be detected at kinetochores in ndc80-1 cells.

Interestingly, mutating a second member of the complex, SPC25, prevents checkpoint protein

binding, suggesting that ndc80-1 allele may not completely deactivate NDC80 complexes.

Data from other groups has also implicated the NDC80 complex in spindle checkpoint

responses (McCleland et al., 2003) and human Ndc80 and Nuf2 are required for high levels

of Madl and Mad2 to accumulate on kinetochores (Meraldi et al., 2004). In contrast to many

other budding yeast kinetochore components, the NDC80 complex has been conserved

through evolution, which makes it a good candidate for interacting directly with conserved

spindle checkpoint components. Further studies probing the role of the NDC80 complex in
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recruiting checkpoint proteins to kinetochores may lend insights into how the checkpoint

senses kinetochores with improper attachments and what elements of the kinetochore

modulate its ability to activate checkpoint signaling during the attachment process.

An important question in the checkpoint field is whether or not checkpoint proteins

must be associated with kinetochores in order to invoke a cell cycle arrest. In some

instances, Mad2-dependent delays have been described in cells where Mad2 was not

detectable at kinetochores (Martin-Lluesma et al., 2002; Shannon et al., 2002). As even a

single unattached kinetochore recruiting Mad2 is sufficient to activate the spindle checkpoint,

this is an extremely tricky issue to resolve. One interesting observation made from studies of

budding yeast is that GAL-MPS 1 overexpression can cause a checkpoint arrest in ndcl O-i

cells at non-permissive temperature when kinetochores are not properly assembled (Fraschini

et al., 2001a; Poddar et al., 2004). Although GAL-MPS1 overexpression may not be a

physiologically relevant manner in which to activate the spindle checkpoint, examining the

localization of Bub and Mad checkpoint proteins, as well as chromosome dynamics, in GAL-

MPS 1 overexpressing cells may still increase our understanding of checkpoint signaling or

alternative mechanisms of checkpoint activation. A second piece of evidence that Mad2p

may affect mitotic timing without being visible at kinetochores comes from mcdl-1 cells.

Although these cells are reported to experience a Mad2p-dependent checkpoint delay (Stern

and Murray, 2001), my data show that mcdl-l kinetochores recruit high levels of Bublp but

no visible Mad2p. This suggests either that Mad2p has an off-kinetochore function, or that

the levels of Mad2p associated with kinetochores in these cells are below our limits of

detection. Another interesting characteristic of Mad2p is that it appears to cause a delay in

mitotic progression prior to completion of kinetochore assembly in mammalian cells
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(Meraldi et al., 2004). This supports the idea that Mad2p may not always require kinetochore

association in order to invoke a mitotic delay.

4.4 Exploring Differences between the Roles of Bub and Mad Proteins

My localization studies reinforce the idea that Bub and Mad checkpoint proteins have

distinctive roles during mitosis in budding yeast. One future approach that may contribute to

our understanding of these differences is to find and compare mutants that are synthetically

lethal with deletions of the BUB and MAD genes. As the Bublp kinase domain may not be

absolutely required for checkpoint signaling (Sharp-Baker and Chen, 2001; Warren et al.,

2002), comparing mutants that are synthetically lethal with kinase dead Bublp versus those

that are synthetically lethal with a total deletion of BUBI may also be informative.

Examining the chromosomes dynamics in cells depleted of Bub and Mad proteins

could also expose further differences between the various checkpoint proteins. Deletion of

either BUBI or BUB3 causes an initial slow growth phenotype that reverts as cells adapt and

secondary, unidentified mutations accumulate (Hoyt et al., 1991; Roberts et al., 1994). This

suggests that in order to examine the full consequences of Bub depletion, an inducible system

must be employed. One possibility is to design degron alleles of the BUB genes which, when

invoked, will cause rapid degradation of the Bub proteins (Dohmen et al., 1994). An

alternate approach to test the immediate effects of specifically inhibiting Bublp kinase

activity is to employ the strategy designed by Kevan Shokat in which the ATP binding

pocket in a protein's kinase domain is modified to accommodate an ATP-analog which,

when added to cells, specifically inhibits only the modified kinase (Bishop et al., 1998).
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Identifying what types of changes occur in bublA and bub3A cells during adaptation

may also help us understand the roles these proteins play during spindle assembly. The

easiest approach to this issue might be to utilize gene chip technologies to profile the mRNA

expression levels across the genome in wild-type cells and adapted bublA or bub3A cells.

Depending on whether compensatory mutations are dominant or recessive, more classical

gene mapping and cloning techniques may be appropriate. Examining the behavior of Bub

and Mad proteins in the context of diploid cells, polyploidy cells, and meiotic cells may also

be informative. Work from the Pellman lab has shown that deletion of some genes that do

not produce a strong phenotype in haploid or diploid cells, such as BIKI, can cause lethality

in polyploid cells (Lin et al., 2001; Storchova and Pellman, 2004). Although the majority of

the work on spindle checkpoint function in budding yeast has been done in haploid cells,

wild strains of this organism most often grow as diploids. It will therefore be interesting to

learn if checkpoint protein localization, or the behavior of chromosomes during mitosis,

differs significantly in diploids or polyploids. Studies examining relationships between the

spindle checkpoint and polyploidy could inform our understanding of tumorigenesis, as

cancer cells frequently contain excessive numbers of chromosomes and exhibit chromosomal

instability.

4.5 Defining Kinase Contributions to the Spindle Checkpoint and Spindle Assembly

Identifying the consensus target sequences and direct substrates of the Bublp, Mpslp,

and Ipl lp kinases at kinetochores is certain to increase our understanding of the roles that

these proteins play in spindle assembly and checkpoint response. It is intriguing that both

Bublp and Ipllp are only present at kinetochores early during mitosis in budding yeast. My
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preliminary results suggest that while Mpslp is associated with the SPBs throughout the cell

cycle in budding yeast, Mpslp also associates with kinetochores only during early mitosis

(unpublished data). Temperature sensitive mutants of these proteins exist and, as described

earlier, employing Shokat alleles is a second way in which to probe the activities of each of

these kinases (Bishop et al., 1998). It will be interesting to learn how disabling each of these

kinases separately, and in combination, affects spindle assembly and checkpoint signaling.

4.6 Biochemistry of Spindle Checkpoint Complexes

Although several binding interactions have been identified between different spindle

checkpoint components, how checkpoint complexes change during checkpoint activation and

inactivation is uncertain. Some have suggested that the checkpoint proteins in mammalian

cells form a large complex called the mitotic checkpoint complex (MCC) which consists of

hBubRl, hBub3, Cdc20, and Mad2 (Sudakin et al., 2001). Thus far, biochemical

characterizations of complexes in budding yeast have suggested that the checkpoint proteins

likely form multiple different complexes, and that the spindle checkpoint is unlikely to

behave as a linear signaling pathway (Brady and Hardwick, 2000; Fraschini et al., 2001 a;

Fraschini et al., 2001 b). Recent work using velocity sedimentation gradients and gel

filtration techniques have greatly expanded our understanding of the budding yeast

kinetochore and its subcomplexes, and it seems likely that applying similar techniques to

analyzing spindle checkpoint components will help us to understand which complexes are

critical for generating the "wait anaphase" signal, and how they interact with one another.

An additional technique that has begun to reveal new aspects of checkpoint signaling

dynamics is fluorescence recovery after photobleaching (FRAP). (Howell et al., 2004; Shah
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et al., 2004). These studies have indicated that there is both a pool of Mad2 that turns over

rapidly at the kinetochore, and a pool that turns over more slowly. As others have previously

proposed that checkpoint function requires both free Mad2 and Mad2 bound to Madl (Chung

and Chen, 2002), one idea that is emerging is that Mad2 bound stably to Madl at the

kinetochore may serve as a platform to activate additional Mad2 molecules which then

inhibit Cdc20. Although FRAP at kinetochores would be technically difficult in S.

cerevisiae, budding yeast may be a good system in which to rapidly test the localization and

checkpoint activity of mutant proteins based on the data gained from FRAP studies and other

experiments done in metazoan cells.

4.7 Links to the MLP Proteins and DNA Damage

Madlp and Mad2p localize to the nuclear envelope in both yeast and metazoans,

suggesting that they may have important functions at this location. My work on the

perinuclear localization of Madlp has revealed a novel connection between the Mad proteins

and Mlp proteins. Mlp proteins are thought to link NPCs to the interior of the nucleus and

have been implicated in several processes, including the DNA damage response. As several

groups have reported that Mad2p contributes to cell cycle arrest following DNA damage, it

will be interesting to examine the localization of the Mad proteins in cells following DNA

damage and to determine if Mad2p-dependent DNA damage responses require functional

kinetochores. Much more work remains to be done in characterizing the Mad-Mlp

connection, including determining whether or not the interactions between these proteins are

direct or indirect.
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4.8 Summary

Overall, my work has contributed to the spindle checkpoint field by providing a

comprehensive overview of the behavior of Bublp, Bub3p, Madlp, and Mad2p in wild-type

and mutant budding yeast cells. It has both laid the foundation for future studies on the

checkpoint proteins in yeast and suggested several interesting avenues for future research,

including the maturation of kinetochore-MT attachments and potential interactions between

the spindle checkpoint and DNA damage checkpoint pathways.
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The following review is reprinted, with permission, from E.S. Gillett and P.K. Sorger. 2001.
Tracing the pathway of spindle assembly checkpoint signaling. Dev. Cell. 1: 162-4.

Tracing the Pathway of Spindle Assembly Checkpoint Signaling

ABSTRACT

Most current models of spindle assembly checkpoint signaling involve inhibition of

the Cdc20-APC by Mad2 protein. Interestingly, a paper from Hongtao Yu and colleagues in

this issue of Developmental Cell suggests that the Cdc20/APC can also be inhibited in a

Mad2-independent manner by a complex of proteins that includes BubR1.

DISCUSSION

During eukaryotic cell division, accurate transmission of the genome is essential for

survival and is ensured both by intrinsic properties of the cell cycle machinery and by a series

of checkpoints. The entry into mitosis is controlled by checkpoints that monitor DNA

damage and the replicative state of DNA while the exit from mitosis is controlled by

checkpoints that monitor assembly and position of the mitotic spindle. The spindle assembly

checkpoint links chromosome-microtubule attachment to anaphase onset and is particularly

intriguing because it serves as a link between the mechanical and regulatory aspects of

mitosis.

Chromosomes bind to microtubules of the mitotic spindle via kinetochores,

multiprotein complexes assembled on centromeric DNA. The search and capture process that

drives microtubule-kinetochore attachment is stochastic; therefore, cells rely on the spindle
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assembly checkpoint to monitor when all kinetochores have become attached to the spindle.

Several components of the spindle assembly checkpoint have been identified, but the manner

in which these proteins sense microtubule-kinetochore attachment, their order of action in the

checkpoint signaling pathway, and the exact nature of the "wait" signal they produce are still

under investigation.

Genetic experiments in Saccharomyces cerevisiae identified seven spindle checkpoint

genes: BUB1, BUB2, and BUB3 (Budding Uninhibited by Benzamidazol); MAD1, MAD2,

and MAD3 (Mitotic Arrest Deficient); and MPS 1 (Monopolar spindle 1) (for references, see

Amon, 1999). Subsequent work has established that Bublp, Bub3p, and Madl-3p are all

essential for spindle assembly checkpoint function while Bub2p helps monitor spindle

positioning as part of the mitotic exit network. Mpslp participates in both spindle pole

duplication and the spindle assembly checkpoint pathway. The complicated pattern of

biochemical interactions between spindle assembly checkpoint components supports the

hypothesis that the checkpoint signal propagates via a nonlinear signaling network, reliant on

several multiprotein complexes (Burke, 2000).

Orthologs of the budding yeast spindle assembly checkpoint genes exist in many

organisms, including Schizosaccharomyces pombe, Caenorhabditis elegans, Drosophila

melanogaster, Xenopus, mice, and humans, suggesting that the basic components of the

checkpoint are well conserved among eucaryotes. Two recent papers have shown that the

roles of mouse and Xenopus Mpsl appear to be analogous to those of Mpslp in budding

yeast (Abrieu et al. 2001 and Fisk and Winey 2001). However, despite this conservation,

different organisms are more or less dependent upon spindle assembly checkpoint function
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during cell division. In budding yeast, spindle checkpoint activity is only required when

spindle assembly is disabled by microtubule depolymerizing agents or other factors, while

the complexity of spindle assembly in higher eucaryotes appears to necessitate checkpoint

function even under normal conditions.

Kinetochores not only link chromosomes to microtubules, they also serve integral

roles in transducing the spindle assembly checkpoint's "wait" signal. Checkpoint activation

by unattached or tension-free kinetochores leads to inhibition of the anaphase promoting

complex (APC). The APC is an E3 ubiquitin-protein ligase that targets key cell cycle

regulators for degradation by the proteosome. At the metaphase-to-anaphase transition, the

association of APC with Cdc20/p55Cdc/Fizzy activates its ubiquitination activity; the APC

then triggers dissolution of the cohesin complexes that secure sister chromatids together and

subsequently promotes the destruction of M phase cyclins, thereby enabling mitotic exit

(Morgan, 1999).

The spindle assembly checkpoint protein Mad2 has long been thought to block

activation of the APC by inhibiting its association with Cdc20 (Shah and Cleveland, 2000).

In budding yeast, Mad2p, Mad3p, and Bub3p are believed to form a complex that binds to

Cdc20p (Shah and Cleveland, 2000). It was therefore not surprising when human Cdc20 was

discovered to interact with BubRl, a vertebrate protein homologous to Mad3p but with a

kinase domain similar to that of Bublp (Wu et al., 2000). Interestingly, in this issue of

Developmental Cell, Tang et al. (2001) suggest that although both vertebrate Mad2 and

BubR1 can bind to Cdc20, they are unlikely to do so in a single, isolatable complex. This

paper begins with the characterization of a mitosis-specific complex containing BubR1,
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Bub3, and Cdc20, but not Mad2, suggesting that vertebrate Mad2-Cdc20 and BubRl-Cdc20

complexes are independent.

Using in vitro assays, Tang et al. demonstrate that both BubR1 and Mad2 can

sequester Cdc20 from APC and inhibit APC-mediated ubiquitination. In addition, the authors

show that recombinant BubR1 inhibits Cdc20/APC at much lower concentrations than does

recombinant Mad2. Although BubR1 can phosphorylate Cdc20 in vitro (Wu et al., 2000), the

data from Tang et al. indicate that BubRl's kinase activity is not required for it to inhibit

Cdc20/APC. Most research on APC activation has focused on the interactions between

Cdc20 and Mad2. Therefore, Tang et al.'s suggestion that the output of the spindle assembly

checkpoint pathway bifurcates into separate Mad2- and BubR1-dependent branches is very

intriguing.

If BubR1 and Mad2 can each function independently to inhibit the APC, it is

surprising that loss of either one abrogates spindle checkpoint arrest in vivo (Chan et al. 1999

and Dobles et al. 2000). Tang et al. make a number of suggestions for reconciling the results

of genetic and biochemical experiments (see Figure 1). Mad2, which has a half-life at

kinetochores of 24-28 s, may act as a diffusible Cdc20 inhibitor, while BubRl may act as a

local inhibitor at kinetochores (Shah and Cleveland, 2000). Alternatively, BubR1 may recruit

Cdc20 to kinetochores and facilitate its association with Mad2. A third intriguing possibility

supported by additional data from Skoufias et al. is that Mad2 and BubR1 may block

Cdc20/APC activation as part of separate signaling systems, the first acting in response to

loss of microtubule attachment and the second in response to a lack of tension across

kinetochores (Skoufias et al., 2001). Consistent with this third model, BubRl associates with
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incomplete spindle assembly
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Figure 1. Proposed models for Mad2- and BubRI-dependent inhibition of Cdc20.
In Model 1, Mad2 and BubRI form independent complexes with Cdc20. In this case, Mad2 could
act as a diffusible inhibitor of Cdc20 while BubRI acts as a local inhibitor at kinetochores. However,
another possibility to explain the presence of separate Mad2-Cdc20 and BubRI-Cdc20 complexes in
Model I is that Mad2 inhibits Cdc20 in response to loss of microtubule attachment while BubRi
inhibits Cdc20 in response to lack of tension across kinetochores (perhaps detected by the CENP-E
motor). In Model 2, binding of BubR1 to Cdc20 instead facilitates the formation of an inhibitory
Mad2-Cdc20 complex.
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CENP-E, a kinetochore-localized kinesin-like motor whose interaction with microtubules

could alter BubR1 activity in response to changes in kinetochore tension (Chan et al., 1999).

Although its exact mechanism remains uncertain, two requirements of the spindle

assembly checkpoint signal are that it be diffusible to ensure that all sister chromatids

separate in concert and that it decay relatively rapidly to allow anaphase to proceed in a

timely fashion. Biochemical experiments provide invaluable information about kinetically

stable complexes formed between checkpoint components, but higher order complexes

formed through transient interactions can be missed. Experiments using live cell fluorescence

microscopy will be necessary to map the dynamics of checkpoint signaling in greater detail.

Biochemical analyses such as those presented by Tang et al. will remain essential, however,

as they reveal to us which molecular interactions should be examined.
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The man of science is nothing
if not a poet gone wrong.

- George Meredith
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