
Structure out of Sound
Michael Jerome Hawley

B.S. Computer Science, Music, Yale University, 1983

Submitted to the Program in Media Arts and Sciences,
School of Architecture and Planning
in partial fulfillment of the requirements for the degree of
Doctor of Philosophy at the
Massachusetts Institute of Technology

September 1993

@ Massachusetts Institute of Technology, 1993. All rights reserved.

Author:

Progran anedia Arts and Sciences
August 6, 1993

AN A

Certified by:
I ~- -

If

VM in Minsky
Toshiba Professor of Media Tehnology, MIT

Thesis Supervisor

Accepted by:

Stephen A. Benton
Chairman, Departmental Committee on Graduate Students

Rotch
MASSACHUSETTS INSTITUTE

OF TFfI4NItoI0y

tOCT 18 1993
LIBRARIES

I

Abstract

Structure out of Sound
Michael Hawley

submitted to the Program in Media Arts and Sciences
on August 6, 1993 in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in the field of
Media Arts and Sciences.

Sound is the predominant communication modality in the

natural world, yet most current computers have no sense of

sound whatsoever. They only occasionally "bleep," and are,

in effect, stone-deaf. This is a serious deficiency. General audio

capability must be developed if machines are to function in

more natural contexts.

The thesis presented here is that machines must be able to

extract meaningful structure in order to operate intelligently on

sound. They must "hear" events, and recognize voices, effects,

melodies, moods, room-acoustics, and many other features.

This work demonstrates how such sound recognizers may be

built and unified in a fruitful framework.

In particular, several implementations of sound sensors are

presented, including a polyphonic pitch extractor, a music

detector, and a talker recognizer for indexing conversations.

These programs filter sound to produce event-list scripts that

describe the contents in some sense. In this way, many sorts of

sound streams may be abstracted and rendered amenable to

processing by a wide variety of applications. New applications

in music and speech synthesis as well as content-oriented

filtering of video are shown.

Supervisor: Professor Marvin Minsky
Title: Toshiba Professor of Media Technology, MIT

This work was supported by sponsors of the Movies of the Future Program, including: 3

Apple Computer, AT&T, Bellcore, Columbia Pictures Entertainment,
Eastman Kodak Company, Intel Corporation, Paramount Pictures Inc.,

Warner Brothers, Inc., and Viacom.

.90 1 1 __ I - - I - 11 1 - - I . , I I I I- - - - - . -

Doctoral Committee

Advisor:

Reader:

Reader:

Marvin I insky
Toshiba Professor of Media Technol ciy, MIT

Andrew Lippman
Assistant Director, MIT Media Laboratory

Robert Sproull
Fellow, Sun Microsystems

1

Contents

Title

Abstract

Doctoral Committee

Contents

Author

Acknowledgements

Structure out of Sound

1.0 A potential problem
Computers have no sense of sound
Toward a solution: an integral approach...
Need for a notation of sound content
Specific contributions

1.1 Organization of this thesis
Experimental apparatus

1.2 Understanding global digital media

Contents

1: Structure out of Sound

"How The World Was One" 25

The information inversion 27

Parable of the ant - revisited 27

Some specifics 29

The internet 30

The Library of Congress as bookstore .. . 32

Listen to the Net 34

1.3 Related work on sound understanding 35
Visible Speech 36

Perceptual research - auditory scene . . . 37

Implementations of the general auditory .. 39

Other precedents from speech science 41

Other developments in audio. . . 42

Low-level structural manipulations ... 42

High-level processing 43

What about the general problem? 46

Summary 48

1.4 Remarks 49

End of the silent computing era 49

Broad versus deep 50

2 "I can name that tune in..." 53
Listening to Music

2.0 Overview 53
2: I can name that tune in..

Listening to Music 2.1 Revolutionary etudes 55

The rise of the instrument-savant 55
* -*---.ir . Historical notes 57

Cathedrals and the end of chant 58
Baroque high-technology 58
Pianos and the industrial onslaught 60

Electronics and the wane of live music 61
Musical automata 62

Summary: towards the longest musical lever 64

2.2 Experiences with MIDI 65
Musical building blocks and glue 65

BSO in a box 65

First studies 66

Arranging studies 69

A piano roll reader 75

Summary 78

2.3 A music detector 78
Measuring harmonic entropy to find .. . 79

Implementing the music detector 81

Testing the music detector 85

Limitations and extensions 86

A music elimination filter 87

2.4 A polyphonic pitch extraction filter 89
Two clues 90

The nature of piano sound 91

Finding and identifying note onsets 94

Testing the polyphonic pitch extractor 97

Limitations and extensions 98

2.5 Name that tune 100
Name that tune for MIDI 100

Name that tune from polyphonic audio 102

2.6 Remarks 106

3 Listening to Speech 109

3.0 Overview 109 3: Ltening to Speech

3.1 Sizing up Speech 110

3.2 Finding and Segmenting Speech 112
A split-comb to locate voiced speech 113

The speech event detector 115

Spectre: a spectral sound editor 115

Identifying Talkers
Typical approaches to speaker recognition
Average baseline pitch in determining ...

Supersynthesis

Remarks

Looking for the Holy Grail:
Movie Scene and Sound Analysis

4: Looking for the Holy Crail
Movie Scene and Sound Analysis

4.0

4.1

4.2

4.3

4.4

5: Conclusions

5.0

5.1

5.2

Overview

A close listen to Mr. Ed
Indexing the elements of a sitcom
Footsteps and Doorslams
Cows, horses, laughtracks, and other

Visual Scene Analysis
Scene parsing with Media Whacker
Limitations and extensions

The Holy Grail
The quintessential adventure
Hearing the clues
Finding the grail

Remarks

129

130

130
131

effects 137

138

137
140

141

141
142
143

144

Conclusions

Recap - What about the Pigeon?

Contributions

Lacunae and Future Work

3.3

3.4

3.5

118

120
121

123

127

129

147

147

149

153

References

Software in this thesis 171

171al.0 Overview

Rich Text Programming 175

Introduction

What rich-text code looks like

Quick overview

Remarks

175

176

177

180

184a2.4 Summary

6: Refemnces

Softwam i this tesis

lids Tedt P~mh~g

----- - - -

-- - -- -

a2.0

a2.1

a2.2

a2.3

155

Author

Michael Hawley received degrees in music and computer science from

Yale University in 1983. He has pursued research in operating systems,

cognitive psychology, computer music, and digital cinema at Bell

Laboratories in Murray Hill, IRCAM in Paris, and Lucasfilm in San

Rafael. Recently he was a member of the team that created the NeXT

computer, for which he implemented several seminal digital books,

including Merriam-Webster's dictionary and the first digital edition of the

works of William Shakespeare. Michael is also occasionally active as a

concert pianist.

Upon completing his doctorate he will hold the J.C.R. Licklider Chair as

an Assistant Professor of Media Technology in the MIT Department of

Electrical Engineering and Computer Science, in conjunction with the

Laboratory for Computer Science and the Media Laboratory.

Acknowledgements

Deep thanks to professors Steve Benton, Tod Machover, Nicholas

Negroponte, and Barry Vercoe for outstanding support and stimulation of

all kinds that has improved my work and my life at MIT. My gratitude

extends especially to committee members Bob Sproull and particularly

Andy Lippman, for many thoughts and insights. (It was also Andy who

persuaded me to take up rollerblades.) In addition, thoughtful comments

from Andy Moorer were deeply appreciated, as well as Tom Stockham,

who made a very special visit on my behalf. I feel privileged to have

been the focus of so much goodwill.

I am also one of a few lucky people who can thank Marvin Minsky as a

surrogate father. Marvin was not simply my advisor - he and the whole

Minsky family (Gloria, Margaret, Julie, Henry, Milan, Adrian, Silas,

Whiskers, Claudia...) essentially adopted me. I lived in the attic of the

Minsky mansion in Brookline in my early time at MIT, and spent some

wonderful evenings up in the garret reading, downstairs chatting or

making music, or occasionally helping Marvin randomize the plumbing.

That sort of nurturing relationship is more than most students dream of,

and in retrospect it is hard to imagine how anyone could build a PhD

without that kind of backing - or how I could possibly repay the favor.

I hope my virtual family got a fraction of fun in return.

I have been the beneficiary of a good deal of equipment, from computers

to grand pianos. Wayne Stahnke, Jim Turner, Hal Vincent, Tony Habig,
John Amuedo, Tadao Kikumoto, Eran Egozy, Ray Kurzweil, Bill Joy, Laura

Tong, Dave Cumming, Garth Zeglin and many others helped make it

materialize. Greg Tucker, Bob Greene and Nicholas helped find a place

to put it all.

Steve Jobs has helped in ways too numerous to mention, and I am

grateful and honored to have had the opportunity to contribute at NeXT.

During that time, the Media Laboratory let me put my doctoral work in a

somewhat ticklish position, disappearing for months at a stretch to the bit

mines of California. I like to think such mingling of academic thought

and worldly currents is the essence of MIT at its best, but I know this

created complications, and MIT was most indulgent on my behalf, for

which I am thankful.

Officemate Robert Rowe and virtual officemate Henry Massalin have
shared many thoughts and ideas, leaving a deep impression on my work,
which I know they will recognize. Henry in particular has furnished a
number of illuminating insights about signal processing and operating
systems; his fast Hartley transform code was enormously useful.
Dan Ellis is one of the few others at MIT working along similar lines, and
has provided terrific intellectual leads; the mere existence of a kindred
soul or two is refreshing when the field seems so empty. Janet Cahn and
Barry Arons provided a number of helpful hints about the nature of
speech. Brian Redman revived my interest in Mr. Ed at just the right
moment. Michael Schrage saw me through some lean stretches and has
helped immensely all along the way. Sam Joffe has been a close friend
and housemate throughout, as well as a careful and thoughtful reader.
His comments greatly improved the writing. Linda Peterson miraculously
held the whole academic bundle together.

Several dear friends helped hold me together - to risk naming far too
few, Charisse Castagnoli, Dominic Frontiere, Murray Goldman, Leo
Hourvitz, Gillian Lee, Mark Lucente, Mort Meyerson, Margaret Minsky,
Ken Phillips, Wendy Plesniak, Olin Shivers, Kate Smith, John
Underkoffler, and Gaye Williams are some of many who were there
when it mattered. I hope I will be forgiven for leaving unnamed my
much larger family of friends and colleagues at MIT, NeXT, Lucasfilm,
and many wonderful friends who have expanded my thinking, and
helped in countless ways.

I am not ashamed to admit that I've had as wonderful and fortunate a
graduate life as one could wish for. This is due in no small measure to
the Media Laboratory itself which has been an ideal place to live a
research life; and that, in turn, is due in no small measure to the
brobdingnagian vision of Nicholas Negroponte and the many sponsors
that have joined in these explorations. My work was generously
supported by the Movies of the Future research program.

Finally, I hope my parents, Mary Kay and George, and my brothers, Pat
and Steve will enjoy finding a few familiar echoes in some of this work.

click (door)

1: Structure out of Sound

1.0 A Potential Problem

Computers have no sense of sound.

Current "computers" are like silent movies. The few
accompanimental sounds they make are odd blips and bleeps.
They hear even less: most machines are stone-deaf.
Meanwhile, in the natural world, sound is, arguably, the
predominant communication modality. Compared to most
pictures, sound is evanescent. You can't scribble it on a napkin
and tuck it in your pocket, but sound travels through air, water,
and earth, around corners, through walls, in the dark, and for
miles through the ocean or across plains. It is the primary
medium for human communication, and even pigeons can hear
the difference between Bach and Stravinsky (in fact, according to
Neuringer and Porter (1984), pigeons correctly heard Buxtehude
and Scarlatti as "Bach-like" and Eliot Carter and Walter Piston as
"Stravinsky-like"); and of course, parrots can whistle and mimic
speech, with only a minimal vocal tract, a brain the size of a
pea, and no lips. All this is vaguely disturbing with respect to
today's computers: they are adapting exuberantly to graphics,
text and spreadsheets, but are unfit for the real acoustic world.

How can we build machines that make wiser use of sound?

"Take care ofthe sense, and
the sounds will take care of
themselves."

- Lewis Carroll

Alice's Adventures
in Wonderland

click (door)

C- lnvsEd (!Wilbur

You can't compete with radio.
Rube Goldberg (1929)

The answer, of course, is that machines need to understand
sound, and to operate all along the continuum between a sound
wave and representations of its content. That is not a succinct or
singular concept, however. Grand challenges, like creating
conversational speech systems or interactive music systems,
are among many largely unsolved problems that are subsumed
therein; so are more basic functions that have recently begun to
appear in workstations for recording, encoding, and rendering
sounds. In the complex acoustic world, countless moving parts
jiggle and collide. Their sound reflects something of the
mechanics and behavior of the system, including information
about features such as size, shape, location, motion, or more
elusive characteristics of personality, like mood or emotion in
speech or music. Understanding those sounds and all their
subtleties gives rise to a perceptual mirror-world that is just as
convoluted (as well as the ubiquitous tangle of patch cables).

In the face of this noisy complexity, human hearing shows a
remarkable ability to "diagnose" sound (to use S. S. Stevens'
word). Although we have many techniques for putting structure
into sound, taking it out is a lot harder. In most respects we
have barely begun to understand the workings of the human
auditory system well enough to emulate them in machines.
Surely we want interfaces that can listen, understand, and
converse naturally with us, and models of sound that are
relevant to our sensibilities. But just as surely, we want
machines to sense and synthesize sound, doing many practical

Structure out of Sound

things with sound in an infinite variety of ways that humans
alone cannot. As powerful and general-purpose as it is, human
audio capability is nevertheless highly specialized. Consider the
subtle alignment of human ears and voices: the ear canal is well-
sized to work in the frequency range of speech. Elephants have
much larger ears (and throats) so they can listen and "speak" in
the sub-audible (to humans) 8-Hz band - a useful portion of the
spectrum to pick, since low frequency sounds travel farther and
are easier to orient (especially if your ears fan out like a dish
antenna). Bats use high-frequency chirps for guidance, and owls
have sophisticated spatial audio abilities for night hunting.
Human abilities, while a relevant and lofty goal, are not the only
goal, and perhaps not even the most important one. Moreover,
the most interesting applications of new technologies are often
the unexpected ones. Remember that when Edison and his team
developed the phonograph, he thought it was going to be a
voice dictating machine: he had no inkling of the fact that music
would be its chief application, by far, and that making music
disks would become a major entertainment industry. Certainly,
future entertainment media will afford many interesting and as
yet unanticipated opportunities for audio applications. In any
case, the point is that while much is known about the nature of
many kinds of sounds and about techniques for processing them,
little of that knowledge has found its way into day-to-day systems.

Toward a solution: an integral approach to sound understanding

Would you rather be blind or deaf? Fortunately this is a choice
most of us never need to make. But consider the question from
a different perspective, as a designer of machines. There has
already been a great deal of work on interactive graphics and
visual modalities. Machine vision is a well-known field; but
"machine hearing" is not. As a designer, the corresponding
question might be: would you rather have a visually adept but
deaf machine, or one that has limited graphics (color- or stereo-
blind, say) but has a well-developed sense of sound and a voice

Edison phonograph
(Harper's Weekly,
March 30, 1878)

Structure out of Sound

that is as friendly as its graphical icons? This is almost a non-

question. Yet take apart today's "workstation" and you will find
thousands of dollars in parts for imaging - video hardware,
an expensive color monitor, custom graphics chips, rendering
software, graphical input devices, and often attachments for
printers. On the audio side, there may be a 3" speaker,
a peculiar sound chip, and possibly an input jack for a cheap
microphone. Something is wrong with this picture.

Central to this thesis is the idea that sound - general sound
must become an integral modality in machine-mediated
communication. Information machines need to operate fluently
in the acoustic world. The idea of an audio-rich computer
suggests a markedly different context for "computing" than has
so far been used, and that is certainly a strong departure from the
"silent movie" world of window systems and spreadsheets.
The future machine that understands you when you say "dim the
lights," the language-translating "vidphone," tomorrow's music
machines, and the entity that your home entertainment system
eventually becomes, all will function as one machine, because
the information will be shared in a single digital form.
Thus, what once was a peculiar piece of audio hardware, like a
"reverberator" or a musical instrument, will become weightless
software in a general machine. Although there have by now
been several audio workstations and a piecemeal array of audio
peripherals, we need to architect the acoustic aspects of systems
in a far more unified way. This trend may seem obvious to
some, but it is not at all the mainstream view.

Most important, to operate intelligently on a sound ultimately
depends on sensing structure in the wave that describes
meaningful aspects of the source. Our inability to build
machines that can do this is partly why sound has been so
poorly used in interfaces. Until such senses exist, sound will
continue to be too slippery: operations will grasp little of the
salient content, and machines will not make good use of it.

Structure out of Sound

w mill 11 "ONKOFA 14 ON

The problem is not so much to develop machine analyzers and
indexers that can identify the source attributes of particular
acoustic signals - sound effects recognizers, ambience sensors,
musical timbre identifiers and pitch extractors, speech
identification and transcription systems, and so on -
this thesis argues that the problem is more to knit them into
representations that can be fruitfully processed and recomposed.
In the recent scientific literature this analysis is often called
signal understanding (a class of the general Al problem of sensor
interpretation) to distinguish it from the classical signal
processing that traditionally focuses on relatively low-level
phenomena and linearly-filtered systems. The goal is to abstract
the signal into a symbolic stream so that the most meaningful
elements are exposed. In this way, other agencies can operate
on "deeper" qualities of the source.

Indeed, the idea of operating on sound in qualitative ways, like
altering the gender or mood of a voice, is a tantalizing prospect.
In one future, not far off, it suggests telephones that let you pick
the voice you wish to project (Cary Grant... Lauren Bacall...),
shaping your sound for irresistible appeal - in fact, inexpensive
DSP technology is already being built into phones to do things
like this. It begins to allow machines to be sensitive to the joys
and frustrations conveyed in speech. It suggests more immediate
realities, too, like systems that intelligently select and
synchronize sounds to fit a movie, or machines that search
through thousands of hours of recorded audio to find elements of
interest. One could imagine many such tools. One need only
reflect on the impact of signal-oriented audio technology in the
past hundred years - phones, broadcast and personal radio,
recording and playback tools - to get an idea of what it will
mean as content-oriented audio tools begin to take root.

Need for a Notation of Sound Content

One immediate implication of this is that we need conventions
for describing the features of interest in sound streams. Some of
the tools in this thesis use a simple notation for indexing speech,

The Voice Changer Telephone
casts the caller's voice from
male to female, child to adult,
or through any of a dozen
other disguises.

Structure out of Sound

music, and other sound streams, extending to describe video and
other sorts of data as well. It is reminiscent of data structures
like "cue sheets" that support digital movie editing systems. The
existence of such a notation invites a variety of tools that operate
on such scripts. As an example, suppose we have a

Lidentifier -playback
R _

sound segmented individualized
events channel

assignments

monophonic recording of a conversation between two people
and we wish to cast it to stereo, putting one talker in the left

--------------------------------------- Channel, another in the right (as shown in the diagram above).
segmented utterances: An utterance segmenter produces an initial event list, one event

11.25-2.211 utterancel per utterance. This event file is then filtered through a speaker
12.37-4.521 utterance212.3-4.51 uterace2identifier that tags each utterance event with the name of the

speaker. A speech-recognition system might do that, but simpler
after identification: tools often suffice. This tagged event stream is passed through a

11.25-2.21 Harrison text filter (a trivial editing script) that appends a "pan..." directive
Z237-4.52|IKaren123-4.21 are to each event according to the talker's identity to indicate

positioning of the sound during playback. A playback filter then
pan, according to speaker: reads this list of events and plays them back, interpreting

11.25-2.21 IHarrisonIpan left instructions like "pan..." (For the moment, it is not necessary to
dwell on the many subtleties of accurately isolating utterances,

assigning them to talkers, or dealing with difficulties due to
background noise or overlap; some of these issues are dealt with
in chapter 3). This could perhaps be done in certain special
purpose machines, and things like this are certainly done by
hand, by Hollywood movie mixers. This little example illustrates
how a few general-purpose tools, linked by the same economical
event-level representation, may be composed in many ways.

Specific contributions

This work makes some pragmatic contributions to the problem of
abstracting and applying the contents of sound streams. A small
one is the event list transcription (or e-list) mentioned above. An

Structure out of Sound

e-list is a simple textual description of sounds that is readily

amenable to processing by many other software tools. The need

for representations like this is obvious; however, note that

although such an encoding already exists for music (MIDI, the

musical instrument digital interface), there is no comparable

"MIDI for speech," or for general sound.

The hard task is to devise ways of filtering sounds to derive such

event lists. For example, a machine listener that detects

"footsteps" might be built from a low-level listener that finds

"clicks" and in so doing, translates a sound stream into a

condensed list of "click" events; this would be followed by a

higher-level analyzer that notices groups of clicks that resemble

the patterns of footsteps. (This problem is discussed in chapter 4;

it may seem straightforward, but in practice, a naive click-finder

will trigger on many noise bursts, like consonants and glottal

stops; overcoming that naivete is not easy, and a robust footstep

recognizer is not a simple thing to build). Many sound-to-event

converters fit into this framework; e.g., "speech-to-text" would be

a complex instance of such a filter.

Among the new filters presented here are: a polyphonic pitch

finder for extracting the notes from piano recordings; a general

music detector (for finding segments of music amid movie sound

tracks); and a speaker identifier (for determining who-speaks-

when in a conversation). All of these are difficult problems,
known in the literature, and often are studied here with many

limitations, as will be noted. For example, demixing of sound

(the "cocktail party" signal separation problem, but without
necessarily having the benefit of binaural information) is

notoriously hard, as is the removal of ambient sounds or

reverberation, or the accurate identification of effects, instrument

timbres, or linguistic accents or affects. For that matter, problems

like segmentation of speech utterances or music transcription

have each been the topic of several dissertations. Undaunted by

this, each application presented here is functioning in a useful if

limited sense, and can now be studied in a productive

Structure out of Sound

"In its present form, the
model requires approximately
two hours of computation for
every second ofacoustic
input."
-Guy Brown (1992)

programming environment. For instance, although speaker
identification has been a research topic for decades, there are no
systems (known to the author) that index conversations. Here,
part of the solution is presented as a conventional Unix filter that
reads sound and writes event lists (each event a per-speaker
utterance) that can then be processed by many other programs.
These analysis and resynthesis utilities often run faster than
realtime.

In the course of devising these filters, some new techniques (or
new twists on old techniques) were tried; these include spectral
differencing (to find new notes in piano music), harmonic
entropy prediction (to find music and speech), and a vowel
timbral matcher (to identify speakers). Several of the filters are
built atop straightforward spectral analysis (e.g., using a
windowed fast Hartley transform to obtain magnitude and phase
information, and tracking prominences and features in them).
Some might quibble with this approach - surely a simple
spectrum is not the "right" representation, and other analytic
tools (wavelet-or chirp-transforms, constant-Q spectra,
"correllograms," optimal comb filters, LPC coding, etc.) are
better for certain applications. Yes, that is often true, and
particular signal processing details will be noted when relevant,
but part of the point of this thesis is to show how many such
mechanisms can and must be brought to bear in order to
produce a fuller description of sound contents.

Finally, this work has produced insights into some novel ways of
operating on sounds once some of the contents have been
identified. In music, it appears that, at least for relatively simple
recordings like a close-miked piano, one can not only find the
notes, but in so doing, separate the note samples to build a
model of the piano. That is to say, a recording system can be
built that constructs a model of the performance by separating
the information into gestural (keystroke-like) events and
instrumental components. In speech processing, if an event list is
sufficiently detailed so as to map the words (and their speakers)

Structure out of Sound

to respective segments of sound, these can be used to fuel a

powerful new class of sampled-speech synthesis systems. Whole

words and phrases may be assembled into utterances, provided

intonation and amplitude are contoured to fit. This is seen as a

generalization of the automatic dialog replacement that is
common in commercial media production. The event

information gleaned from soundtracks is also used in the context

of a movie parser, a program that filters the sound and picture

parts of a film so as to help find clips and scenes of interest.

These examples illustrate ways in which a variety of high-level

sound processing tasks can be combined into a more unified

system.

1.1 Organization of this thesis

The remainder of this chapter provides additional background
information. This includes some remarks about the emerging
global context for information machines (1.2), and a discussion
of relevant work that has been done to date in the area of sound
understanding (1.3).

Each subsequent chapter studies a particular aspect of the

problem of abstracting structure from sound and incorporating it in

the larger system. These range from specific to general, as follows:

2: Listening to music - presents three sound feature detectors,

one a pitch-extracter that transcribes acoustic recordings of

polyphonic piano music (with certain limitations), a program
that finds segments of music in general soundstreams, and a
"name that tune" melody finder. Music is a particularly well-

codified and highly structured form of sound, so it provides a

useful point of departure. A discussion of historical trends in

music and technology, as well as recent MIDI-based systems,
motivates the chapter.

3: Listening to speech - the familiar problems of utterance

segmentation and talker identification are extended to index

Structure out of Sound

dialogs based on who-speaks-when.
The notion of smart splicing (a generalization of dialog
replacement) is introduced, illustrating how spoken utterances
might be constructed by future speech synthesis systems.

4: Movie scene and sound analysis - a feature film soundtrack
contains a mixture of dialog, music, and effects; in fact, much
of the interesting information in a film is contained in the
soundtrack. It thus presents a rich and challenging domain for
audio analysis. How many events in a soundtrack can be
automatically detected? How can they be used in browsing?
This chapter presents a movie parser that uses both sound and
picture information to locate meaningful parts of a film.

5: Conclusions - a summary highlighting the interesting aspects
of the work presented here, and pointers for future work.

6: References

In addition, two appendices discuss implementation details.

This arrangement is not arbitrary. The progression develops some
building blocks in the domains of music and speech (both highly
structured forms of sound), applies them to full soundtracks, and
integrates these components with a movie system. The fullest
working taxonomy and richest synthesis of general sound is found
in the movie industry: the broad categories include dialog, music,
effects of several types, and ambiences. This is likely to be
recapitulated in information systems, particularly as they inherit an
entertainment context. The examples used here focus on dialog and
music, which are most often the meaning-bearing components, with
some mention of effects recognition.

Experimental Apparatus

The work done here was implemented on NeXT (release 3.0)
and Sun (4.2BSD Unix) systems, using MIDI, audio, and video
peripherals of several sorts. Audio input was digitized using a
stereo, 16-bit, 44.1 KHz sampling microphone made by Ariel

Structure out of Sound

corporation, and processed entirely in the NeXT 68040. Video

was taken in through a 24-bit NeXTDimension board. Specific

apparatus will be noted as necessary.

1.2 Understanding Global Digital Media

The science of speech processing sprouted from incentives in

transmission economy: much of our audio signal processing

technology derived from the acute demands of the global

telephone and radio infrastructure. Making wise use of limited

capacity still provides incentives, for example in managing

cellular phone networks, but these seem minuscule compared to

the demands of the new digital infrastructure. Sound in future

interfaces will develop in that infrastructure, so it is worth reflecting

briefly on it.

"How The World Was One"

We are in the early stage of an awesome diffusion of computational
power and digital information. In the global transition from

analog to digital media, two properties are all-important: many

diverse information formats will be unified in a single digital

channel, and information of all sorts will accumulate in the

collective memory of a planetful of machines.

The result will be a pervasive, information-rich climate.

Future machines will be characterized not by the size of a disk

or the speed of a processor, but by what they know, and by how

skillfully they use that knowledge to find more. Their evolution
will be spurred by the ambient information environment and

implemented in software. Little more than a decade ago, the

idea of a "personal computer" was a novelty: a PC the size of a

suitcase could scarcely hold even a dimestore paperpack.

Networks were sinewy webs tied together with telephones so

that scientists could swap Fortran code by e-mail. Today, digital

machines are rapidly absorbing books, music and movies, fusing

with cellular phones, televisions, and pocket diaries, and

working their way into the conversational mainstream. In the

"Is it afact. .
that by means of electricity,
the world of matter has be-
come a great nerve, vibrating
thousands of miles in a
breathless point of time?
Rather, the round globe is a
vast head, a brain instinct
with intelligence!
Or, shall we say, it is itselfa
thought, nothing but a
thought, and no longer the
substance which we deemed
it!"

-Nathaniel Hawthorne
The House of the
Seven Gables (1851)

Structure out of Sound

"In this electric age we see
ourselves more and more
being translated into the

form of information, moving
toward the technological
extension of consciousness."

- H. Marshall McLuhan

(1911-1980)

space of about two decades, a machine that once was sensory
deprived, large, isolated, and had little storage - essentially a
tabula rasa - becomes one that is sensory-rich, portable,
globally linked, having immense storage that is soaked with
information of many kinds. Some machines will come to parse
movies and television, looking for moments of interest.
Some will graze global networks, ferreting for new resources.
Some will be like idiot-savants: not generally intelligent, but able
to leverage thousands of hours of music or a global electronic
library in a pocket of memory. All will "compute" in the context
of a vast amount of information. In sum, future "thinking
machines" will rather suddenly have an awful lot to think about.

These trends are not exactly news. Recent developments are
bringing cable television, phone and data networks into mass-
convergence with computing. The emergence of national and
global information infrastructures is a topic of daily discussion,
from e-mail in the White House and federally-funded
information superhighways, to a multitude of computer-mediated
consumer products that are beginning to include interactive
television, virtual shopping, networked education, and many
other applications. Hawthorne's vision (1 851) of the electrically
wired world as resembling a giant nervous system, and of the
information transcending the hardware, is striking considering it
dates from the dawn of telegraphy (Morse's famous transmission
of "What hath God wrought?" from Washington to Baltimore was
sent in 1844, and the new transatlantic cables around 1855
would reduce the time it took news to travel between Europe
and the United States from a month to a few seconds). McLuhan
echoed this idea with the metaphor of a global village, as has
Arthur C. Clarke in his book How the World Was One: Towards
the Tele-Family of Man (1992).

What is news to some extent is an awareness that an antidote to
the numbing influence of a flood of bandwidth is the creative
application of computing to get at the "meat" of those messages.
Recall that at the core of McLuhan's Understanding Media
(1 963) was the discussion of "hot" versus "cool" media.

Structure out of Sound

1111111,101 1 w I

Television, as cool, passive medium, was a sort of "unified

sensorium" that "introduced a kind of rigor mortis into the body

politic." At that time, concepts of "interactive" computing were

just being born (Ivan Sutherland's Sketchpad thesis was finished

in 1963), so computer applications were irrelevant to filtering

sensory channels like those of television. Not surprisingly,
Understanding Media had little to say about computers.

The Information Inversion

Now that digital machines are beginning to acquire audio-visual

modalities, and now that they clearly show the promise of

helping to turn broadcast media into more engaging, imaginative
and personable forms, it seems strange that so many interests are

still so fixated on the dissemination of raw bandwidth instead of

the interesting use of it. The nature of global tradeoffs between

bandwidth and intelligence has been a frequent topic in

Negroponte's editorials (e.g., Debunking Bandwidth, 1993),
and the argument is often a plea not for more pixels, or more

channels, but for smarter machines. In any case, from the point

of view of the computer scientist, there has been a marked

inversion. "Computers" were once designed like cathedrals,
and the problems they dealt with were bounded by whether or

not they fit in through the front door in a certain sense - that is,
early machines were commodious for only a few kinds of tasks.

Now, computing is being built into all manner of secular

appliances and even adornments, and we can see that the

information that fuels these machines will, by extension through

the global net, be effectively unbounded.

The parable of the ant - revisited

It is helpful to recall (and reinterpret) Simon's parable of the ant

on a beach (1965/1985):

We watch an ant make his laborious way across a wind- and
wave-molded beach. He moves ahead, angles to the right to
ease his climb up a steep dunelet, detours around a pebble,
stops for a moment to exchange information with a compatriot.

"More bits per second is not
an intrinsic good. In fact,
more bandwidth can have
the deleterious effect of
swamping people and of
allowing machines at the
periphery to be dumb."

- Nicholas Negroponte

(1993)

Structure out of Sound

An X, viewed as a behaving
system, is simple. The appar-
ent complexity of its behavior
is largely a reflection of the
complexity of the environ-
ment in which it finds itself

X= ant,
man,
algorithm...

Thus he makes his weaving, halting way back to his home.
So as not to anthropomorphize about his purposes, I sketch the
path on a piece of paper. It is a sequence of irregular, angular
segments - not quite a random walk, for it has an underlying
sense of direction, of aiming toward a goal.

I show the unlabeled sketch to a friend. Whose path is it?
An expert skier, perhaps, slaloming down a steep and somewhat
rocky slope. Or a sloop, beating upwind in a channel dotted
with islands or shoals. Perhaps it is a path in a more abstract
space: the course of a search of a student seeking the proof of a
theorem in geometry.

Whoever made the path... why is it not straight;
why does it not aim directly from its starting point to its goal?

The moral is that even a simple-seeming algorithm behaves in
interesting ways once loose in an information-rich environment.
Complex behavior reflects a complex world.

With this in mind, Simon and others assumed it would therefore
be easy to emulate human decision-making: recall the infamous
mis-forecast (Simon 1960) "within the very near future - much

less than 25 years - we shall have the technical capability of

substituting machines for any and all human functions in

organizations.... Duplicating the problem-solving and
information-handling capabilities of the brain is not far

off...[certainly] within the next decade." The timescale for such

predictions has proven far from true. When decisions require
significant general knowledge (which is to say, when the "ant" is
extremely sophisticated, and when there is interesting interplay
between the metaphoric ant and the world), the complexity of
human responses is still only poorly emulated by machines.

Somehow, focusing on the ant seems moot. We are just starting
to create a global beach where there was a void before.
Understanding and interacting with the beach is the goal.
Machine environments are growing information-rich: we need to
develop ways of filtering for content. This thesis is partly an
instance of that.

Structure out of Sound

I " -- omit le - " 6w- 1 ---- , __ I MANIN106410M

Some specifics

Around 1981 a personal machine held about 64,000 bytes of fast

memory and 256,000 bytes of slow (disk) memory. By 2000 a.d.

or shortly after, the forecast is for perhaps 1,000,000,000 bytes of

fast memory and on the order of 100,000,000,000 bytes of disk,
though this is hard to gauge because the virtual memory will be
multiplied by millions of networked machines. Even in the time

I have been engaged in doctoral research, the technology
changes have been startling.

Significantly for this thesis, a few years into my work digital

audio and video began to come within the grasp of common

computing. In 1986, an audio-oriented computer was a high-
end proposition. Workstations with microphones (and without

special ancillary audio hardware) began to appear in significant

numbers around 1990, and it became possible (though still

uncommon) to record and play samples of sounds, like sound

effects or snippets of speech, using relatively conventional

computers. Now workstations commonly run in the 20-100

mips range. Thus, general-purpose machines are beginning to

encroach on the territory once occupied by special-purpose
audio hardware, like digital music synthesizers.

Similar progress can be seen in textual media. The limitations of

paper books have been known for years, and many sermons
have been given on the promise of more dynamic containers.
Bush's memex (1945) was not the first of these, and Kahn's

knowbots (1988) will not be the last. What is notable is that,
beginning around 1985, increases in memory, software richness,

and improvements in display quality and interface aesthetics, all

finally combined to make interactive digital books and libraries

viable products. Backer's movie manual (described in a 1988
thesis) was a research instance of that, as was Phillips'
MediaView (1991). One of the first commercial examples was

the Digital Webster dictionary I implemented for the NeXT

computer (Hawley, 1987, 1988):

1945 memex
Vannevar Bush

1965 libraries of the future
J.C.R. Licklider

1969 intellect augmentation
Douglas Engelbart

1974 hypertext
Ted Nelson

1979 books without pages
Nicholas Negroponte

1979 dynabook
Alan Kay

1988 hypercard
Andy Herzfeld

1988 knowbots
Bob Kahn

Variations on a theme

Structure out of Sound

-------- -----

"On the Internet,
nobody knows you're a dog."

- The New Yorker, July 5 1993.

amphora

am-pho*ra Yam(p)-fa-ro\
[L, modif. of Gk amphoreus, amphiphoreus, fr.
amphi + phoreus bearer, fr. pherein to bear;
more at BEAR]

(14c)
1: an ancient Greek jar or vase with a large oval

body, narrow cylindrical neck, and two handles
that rise almost to the level of the mouth

2: a 2-handled vessel shaped like an amphora

Although forms of digital dictionaries had been in use for years
years (for example, in the computational linguistics community),
and although the reading and writing of "e-books" was emerging
as a field (e.g., Yankelovich and Meyerowitz, 1985), this was the
first time it became possible to publish a digital "desktop"
dictionary with adequate typography, embedded illustrations,
and connectivity to other applications. It was, however, a bit too
early to implement a talking pronunciation function. Since then
there have been a flurry of digital publications, as is well known.

The internet

The same trends that have brought such interfaces to fruition
have also caused global networks to blossom. Again, even in
the few years spanned by my doctoral research, the growth has
been phenomenal. In 1987 there were about 28,000 internet
host machines; by 1991 that number had increased
exponentially to over a million (Lottor, 1992), involving
somewhere between 10M and 15M users on a daily basis:

Structure out of Sound

"The system of man's devel-
1M iM opment and use of know/edge:

is regenerative.
If/a strong effort is made toI improve that system,

hsts hostSthen the early effort's results

wi//facilitate subsequent
28000hostsphases of the effort, and so

28000 hosts
on, progressively, in an
exponential crescendo."

1982 1987 1991

Although there are indications that growth (in North America, at -J.C.R. Licklider
least) is slowing to a linear pace (Quarterman, 1993), the factors
that led to this growth recall Licklider's argument in Libraries of (-96-)
the Future (1965) - namely, that a strong effort made to improve
libraries would be repaid by ever-increasing accessibility and use
of the information.

The internet constitutes a global associative memory, and has
become the de facto library for some fields like software
engineering. It is a somewhat anarchic network of networks
connecting a universe of universities, companies, and private
users. As the net has filled, it has given rise to a number of
schemes for finding things. The concept of resource discovery

(a phrase coined by Michael Schwartz around 1991) refers to
processes for finding relevant information in that space. In the
past three years over a dozen systems for indexing and browsing
the contents of the net have been developed. Danzig (1992) has
analyzed several of these; some that may be familiar to the
reader include Gopher (Alberti et al 1992), Archie (Emtage et al
1992), Prospero (Neuman, 1991), the World Wide Web (Berners-

Lee et al 1992), and WAIS (Kahle, 1991). Archie, for example,
indexes about 3M public files (about 200 gigabytes of material)
on 1500 machines. Its searching service, distributed on Digitized manuscript from the
machines around the world, essentially provides filename lookup Library of Congress online exhibit

of Treasures from the Vatican;
All of these systems can be viewed as part of a perennial found on the net using Archie.
process: burgeoning information, whether in clay tablets, urns,

Structure out of Sound

Scrolls from the Dead Sea
(on-line Library of Congress exhibit)

"[with] computer consoles
installed in every home. ..
everybody will have access to
the Library of Congress"
-John McCarthy

(1966)

bookshelves, file cabinets or personal computers, has spurred the
development of filing and indexing systems, from Callimachus'
first catalog of the scrolls in the Alexandrian library, to Kahle's
Connection Machine data-parallel retrieval system. More and
more, we will seek ways of structuring and exploring these
globally networked resources, and coupling them to intuitively
and aesthetically appealing personal interfaces.

The Library of Congress as bookstore front-end

Consider the following Library of Congress interface (Hawley,
1992). The query window (shown below) communicates with
the Library of Congress card catalog (a resource available on the
internet, as are hundreds of other library catalogs). A user can
fetch book records by subject, title, author, and so on. Catalog
entries are retrieved and formatted. The following illustration
shows a book record as the user sees it.:

how the world was one
Ttle swarch; "RmOng" nds all Items beginning wit 'Rowing.*

Rowing for th oelt of if* itnue that 'ook Puncivtion, upperlower
case, and W, "an ' at tho start of a titie, wil be igored.

ke , hr Cha t - w etd o:beyond the global 4*14ge [192]

- -How the world was one: towards the tele-family of man 1992

Type of Materia
LC Call Numbe
Author:
Title:

Publication Info
Phys. Descripti
Notes:
subjects:
LC Card Numbe
ISBN:

SOY

on:

Book
TK5102.2 .C53 1992
Clarke, Arthur Charles, 1917-
How the world was one : towards the
tele-family of man / Arthur C. Clarke.
New York, N.Y. : Bantam Books, c1992.
xvi, 296 p. 24 cm.
Includes bibliographical references
Telecommunication systems--History.
92003558
0-553-07440-7

order the booak-,

Structure out of Sound

l:

r:

What is going on here is straightforward: the interface essentially
contains the same components as Webster, minus the dictionary
service, plus a connection to the networked catalog (which in
this case, resides at Data Research Associates in St. Louis, MO,
although the Library of Congress recently placed its own catalog
on line). Recent books are tagged with an international standard
book number (ISBN code). The "Order..." button sends this
catalog information along with billing information by e-mail to a
purchasing service - the book, if it can be found, may be
shipped by overnight mail.

In addition to a design that encompasses the browsing of digital
books as well as the purchasing of physical ones, the software
itself was distributed to users through the network using a similar
mechanism: the author dragged the icon representing the Library
of Congress application into an archival program, called Opener,
that shipped the software automatically to several hub archive
sites around the world. The copyright notice in the Library of
Congress program is self-registering - that is, receipts are
collected from users when they acknowledge the copyright
notice. In this way, we can observe how far and how fast the
software spreads around the world. In this case, about 7500

The Media Laboratory

20 Ane SI..W
eridp, MA ala9

Cop 199g , 192i byam e M Icrda Laborabfy

Co yThis notM Is cregd b Mchai pfw an&otheH MIT MedaLb~ory. We tlope s eu oyu

I Pmsiss9amw ms, coMi or mo9S* Ov skwlo[3e~ucaft endasmcet pi*2oses onyad hu
bIs twis~ hsratie pri fts noice Vpeas on
al Ip.~ Ay 0w us hi olmI~n rW
nwMIow, ini Muftl orIn par ratpres pamsior
Irom MiT. This sobwae shal not be usari rrwr~ter

Copyright notice/registration panel.

7500 *-

f 962-

users 448-

2976 -

1458 -

Spread of Library of Congress interface

users registered over a 9-month period; the growth rate is
roughly linear with slight inflections at the beginning and ends of
academic semesters (there seems to be a slight

Structure out of Sound

interface cor ne ra
bookstore

Library of
Congress

acceleration in the early fall and spring, and a

Structure out of Sound

deceleration around Christmas and the beginning
of summer, reflecting the preponderance of
academic users; however, there are users in

42 4 NIAahundreds of private companies and institutions in
over 40 countries around the world). This degree
of connectivity between an author and users was

unprecedented before the advent of global
networks. It prompts many users to send in
comments and corrections to the code, which have
greatly improved the software. One grateful user

_________________7-_______________ mailed in a digitized $20 bill!
A "shareware" profit?.

Listen to the Net

At this point, the reader might well ask, what has this got to do
with sound? A discussion of the global information organism
and the numinous medium beyond is all well and good, but how
does it advance this thesis?

The phenomenon, seen in the rapid expansion of computer
networks, is that systems are evolved and adapted in response to
the demands of ambient information. But current networks,
built as they are from machines of the sensory-deprived sort,
are largely based on rudimentary forms of text, a highly abstract
form of information, and one can regard well-known text
indexing and file-browsing techniques as having been extended
into the net in natural ways. Nevertheless, with a bit of
cleverness, some surprisingly imaginative products and services
can be built. A similar pattern should follow as audio and video
become common datatypes in the net. In fact, "talk radio" and
forms of broadcast television have already begun to appear.

Unfortunately, machines are currently unable to do many
structurally useful things with audio and video streams.
We compute from models to audio-visual renderings with
difficulty, and the reverse process - abstracting useful models

1=1

IRMO

Station: Internet Multicasting Service
Channel: Internet Town Hall
Program: National Public Radio

meets the Internet
Release: May 21, 1993, 2-3PM EDT
Content: Talk of the Nation!

Science Friday

On May 21, we will be joining the
Internet to National Public Radio for
a special edition of Talk of the
Nation/Science Friday. Host Ira
Flatow will field questions from

users sitting in front of computers as
well as users sitting next to
telephones. Questions from the
Internet will come from video-
conferencing tools on the Multicast
Backbone (MBONE) using a
gateway provided by Ron Fredrick
and Steve Deering of Xerox PARC.
(To learn more about the multicast
backbone, ftp to isi.edu and get the
file Imbone/faq.txt If you do have
MBONE connectivity, check SD for a
listing for Internet Town Hall.)

Notice regarding new internet media services

from sounds or images - is much more poorly understood. The

era of global digital systems is rapidly approaching, but without

meaningful, integrated approaches to structuring sound and

video, the promise of it will be largely unfulfilled.

1.3 Related work on sound understanding

One of the great scientific texts of all time is Helmholtz's On the

Sensations of Tone (1863) which ties together physical and

physiological acoustics with musical science and aesthetics.

That work is significant to this thesis for many reasons, of course,
but especially because of Helmholtz's explicit goal: to unify

"the horizons of physics, philosophy, and art" which had grown

too widely separate. That goal is consonant with the view of the

general digital channel as a "unimedium," and with the specific

approach of this thesis through sound. Helmholtz was interested

in the structure of sounds, how human hearing was able to sense

this, and the consequent structure of music. His analysis of the

perception of difference tones was done in 1856, and two years

later he published his theory of the cause of musical harmony as

rooted in the mixing of partials, as well as a study of the timbre

of vowels and music instruments. One of the chief difficulties

Helmholtz faced was simply that sound is hard to see.

The acoustic analogue of prisms was made with great difficulty

Helmholtz's electromechanical
vowel synthesizer.
(cf Helmholtz, p. 399)

Structure out of Sound

Bell's "ear phonautograph"

from tuning forks and resonators, or sand on vibrating metal
plates, but there was no real way to view a sound spectrum;
the phonautograph, for transcribing sound pressure waves onto
smoked glass, was a new development, but offered little insight
into the strengths of the "partials" in a given sound. Often it was
easier to do analysis by synthesis: his vowel synthesizer is a good
example of a tool for that purpose. By adjusting the resonant
tubes, Helmholtz could approximate vowel sounds and thus
make a rough map of formant frequency.

Confronted with a similar problem, Alexander Graham Bell built
an "ear phonautograph" in 1874, a somewhat grisly device made
from a human ear (taken from a cadaver at Harvard) and a piece
of straw attached to the tympanum to scribe the vibration on
smoked glass. Speech waveforms could then be observed.
Bell was looking specifically to find ways of improving on other
mechanical phonautographs by using the couplings in a real ear.
It was the new understanding he gained from studying the
structure of speech sound at the wave level - seeing pictures of
vowels and the way they were transduced - that directly
sparked his development of the telephone (Millman, p.5).
For decades after that, as phonographic tools became developed,
many similar studies of waveform traces were done; numerous
examples can be found in Scripture (Elements of Experimental

Phonetics, 1904).

Visible Speech

In the 1930's, Homer Dudley and others developed filterbank
approaches to the analysis of sound, leading to vocoder
analyzers and the "voder" speech synthesizer. These tools
provided a much better analytic view of the frequency content of
sound. By 1944, these techniques finally culminated in the real-
time sound spectrograph, which Ralph Potter and his group at
Bell Labs used in an interesting early study looking (literally) at
structure in the sound (1947). Their book, Visible Speech, was
an atlas of sound spectrograms, containing hundreds of pages
depicting spectra, ranging from a phonetic pronunciation guide,

Structure out of Sound

to pictures of the sounds of Caruso and Bing Crosby, bird songs,
speech in unusual languages (like Icelandic and Ojibway) or
speech of the speech- or hearing-impaired. Even the ululations
of a tobacco auctioneer were included.

Fig. 63 - Geschw (Jodel); "Alpenkldnge" (Ldndlerkapelle: Die Vierwaldsthttler).

How big is the white yacht?

Two of Potter's spectrograms: yodelling (above), and speech (below).

Potter picked up a thread from Melville Bell (Alexander Graham
Bell's father) whose own book, Visible Speech: The Science of

Universal Alphabetics, was published in 1867. Bell had devised
a symbolic phonemic system to aid the deaf, a mission that was
shared somewhat by Potter, who pointed out that seeing the
spectra, and observing the patterns in them, was deeply
informative and educational: the spectrograph, he said, was like
"the pattern of a rug, spread out so that it is clearly visible,"
unlike the wave which resembled the unravelled thread. In tests
with experimental classes, Potter et al found that "reading" the
speech spectra in realtime was difficult, but that humans could
acquire vocabularies with about the same facility as in learning a
foreign language (Millman, p.106). The science of speech
recognition has essentially taken the same tack ever since.

Perceptual research - auditory scene analysis

Approaches to machine transmission of sound have long been
informed by some knowledge of human audio perception,
although this was not codified until recently. Beginning his

Structure out of Sound

Gestalt "rules of th

principle of cli

principle of good c

similarity

lengthy book Auditory Scene Analysis (1990), Albert Bregman

wrote (page xi):

In the late 1960's, when I began to do research on the perceptu-
al organization of sound, I naively thought that surely the ques-
tions that I was puzzling about had been studied to death.

Indeed, Bregman was one of the first to embrace the problem of
audio perception and to attempt to establish a comprehensive
framework for study. The phrase "auditory scene analysis" and
much of the flavor of his approach were borrowed from models
of machine vision, particularly the exemplary studies of David
Marr (1982). By attempting to understand how sound may be
"parsed" in a computable way, this represents something of a
departure from the work of more physical or physiological
predecessors like Helmholtz or von B6ksy.

Bregman's discussion cannot be summed up in a paragraph or
two, but the idea is to work toward understanding how humans
hear acoustic events - performing primitive auditory scene
analysis, segregating and integrating those cues, sensing
"timbre," recognizing "schemas of 'known' sounds," and so on.

umb:"

As an experimental psychologist, much of Bregman's work has
involved generating listening tests and aural puzzles (akin to
optical illusions), then observing how human listeners resolve
them so as to postulate the underlying auditory perceptual
mechanisms. (Helmholtz approached the study of difference
tones in much the same way). He discusses these mechanisms
mainly by analogy to the visual features that are observed in
images of magnitude spectra. Certain principles of perceptual
organization well-known from vision also pertain to audition:
for example, closure refers to the tendency to complete missing

itinuation or obscured parts of a figure; good continuation refers to the way
that ambiguous crossings are resolved by following the most
predictable paths; similarity refers to the way that elements with
the same attributes (e.g., color, size, shape, amplitude, etc) are
grouped together, and proximity refers to the way nearby
elements (in time, space, etc) are chunked into groups. A greatproximity

------------- -- deal of Bregman's discussion is devoted to applying and

Structure out of Sound

extending these principles toward the organization of the

auditory scene. Bregman notes how computer scientists have

also applied insights gleaned from human perception when

building systems to untangle complicated soundstreams.
For example, although musical deconvolution processes need

not model hearing directly, they nevertheless benefit from using

similar principles to collect harmonics into notes. In this thesis,

although these rules are not explicitly developed, many of the

ways in which spectra are taken apart depend on finding lines to

locate clicks or harmonics, grouping proximal elements together,

and so on.

Implementations of the general auditory scene analysis model

Overall, work on computer implementations of auditory scene

analyzers so far has focused on particular problems in music or

speech processing. Moorer's thesis, On the Segmentation and

Analysis of Continuous Musical Sound by Computer (1975) was

a pioneering effort to perform automatic polyphonic music

transcription (from sound to symbolic score). Moorer's system,

though not "practical" at the time, did accomplish the task of

music transcription on a limited basis (only periodic tones, no

vibrato or trills, no instances of a fundamental overlapped by

other harmonics, no more than two voices, etc.). Much of the

work was classically rooted, but penetrated into the murkier

realm of perceptual processing, and of heuristics needed for high-

level work. The thesis ended optimistically, suggesting that the

process could be advanced to a relatively high level by
straightforward extensions. It is notable that, nearly 20 years

later, there are still no systems for automatic music transcription

in practical use known to the author. This is not for lack of

research attention or want of industrial interest.

Mellinger's thesis, Event Formation and Separation in Musical

Sound (1992), is an example of a low-level perceptually-

modelled musical event parser. In particular, he builds on Lyons'

cochlear models (1986) as the first-stage processor, and follows a

Structure out of Sound

source formation

\ 1 /
event formation

features

\ 1 /
transduction

(ear filters, etc)

sound
levels of processing in an
auditory scene analyzer
(after Mellinger)

tack similar to that of Marr (1982) in constructing a multi-level
auditory model. In the model, sound is first transduced by an
"ear" filter to yield a correlogram (similar to a "constant-Q"
spectrum, but incorporating mechanisms for gain control,
dynamic encoding, and a process representing basilar membrane
action). This is followed by a feature extractor that finds cues
such as harmonic onsets and offsets, or variations in frequency
and amplitude (like vibrato). The next stage collects features into
events in a more or less gestalt sense. Finally, events are
assigned to specific sources, using a fairly complex process that
has knowledge of heuristics, patterns, grammars, or possibly
even culture (Mellinger p.12). It is a bottom-to-top approach
that maps a stream of sound to a collection of logical sources.

A similar method was used by Guy Brown (Computational
Auditory Scene Analysis: a Representational Approach, 1992).
Like Mellinger, Brown also concentrates on a source separation
problem (the "cocktail party" problem of separating a voice from
surrounding noise). Brown makes the compelling argument that
most work in audio content analysis, like speech recognition,
has attempted to leap from low-level spectral details to high
level symbolic structures with little intervening representation -

and without much success. For this reason, he attempts to build
a fuller representational layer, essentially paralleling Marr (and
Mellinger; the differences in their approaches, as well as critical
reviews of the literature on neurophysiological and perceptual
modelling of hearing can be found in both theses). Brown also
notes that his implementation (and other current
implementations) is based on unlearned, "primitive" processing.
That is, they make no use whatsoever of learned patterns that
might aid the processing, or help to complete higher level gaps.
This role is filled somewhat by Markov models in speech
processing, but in general, auditory models use little pattern
memory. Thus, existing implementations concentrate on low-
level segmentation of sources, not recognition of events.

There are other shortcomings besides this in applying formal
perceptual models to practical problems in auditory scene

Structure out of Sound

-l -ili 1i | -i E~iil~ l~ m MlMM a m i llR[gj|ljIA Wjllll2 40.-lll-aK]Ii- _mI -lipn m l .IN i ll~ll0E M i)I4J14 'U -A'._t_'__-1.M lt41J i11mgt jl]E 1p|M _ _i--n VImN Ojim i.0

analysis. One is overkill. It is often neither necessary nor

desirable to force a particular sound recognition task through a

human-like processing model. It may be simpler and more

effective from an engineering standpoint to model the source.

For instance, one does not need a human to identify DTMF

telephone "touch tones" - in fact, it takes an unusually skilled

human to do it, whereas a simple filter works perfectly well.

But, bear in mind that even implementing a touch-tone

recognizer in software is awkward at best in current systems!

Another problem is extensibility. Perceptual models are not

generally coupled to synthetic processes. By its nature, a

perceptual filter seeks to throw away irrelevant or redundant

information so as to isolate the important parts. The process is

not always reversible. Although a perceptual system might

inform a synthetic process in a uniquely meaningful way, and

although approaches to synthesis are being explored (Ellis,
1993), the model is essentially analytic. It also tends to be

monolithic, with customized connections between transduction

filters, feature extractors, and so on, making it difficult to apply

to other problems.

Other precedents from speech science

The speech recognition field, also a highly structured domain

like music, has a pressing need to create complex, high-level

sound analyzers that are integrated into general systems.

The literature on speech processing is full of approaches to

extracting content from spoken utterances - talker identification,

separation and segmentation of mixed conversations, speech

identification (speech to text), studies of intonation (affect), and

so on. There is no need to review the speech literature here (the

reader might refer to the recent perspectives offered by Flanagan

and Del Riesgo, 1990, or Sondhi and Furui, 1992, or any of a

number of texts, like Parsons, 1986).

One of the more demonstrably useful recurring techniques in

recent research speech processing systems is the use of

Structure out of Sound

"blackboard" architectures for coordinating the interpretation of
multiple sensors. The term originated with Hearsay (Lesser,
Organization of the Hearsay-Il Speech-Understanding System,

1975) and has become a central part of many approaches to
sensor interpretation. The model is that of a group of experts
watching solutions being developed to a problem, as if on a
blackboard: whenever an expert sees room for a contribution or
a correction, it goes to the blackboard and makes the changes.
In this way, many interpreters can inform one another. One of
the notable things about this approach is that it is highly
unstructured: there is no predetermined order in which expertise
is applied, and solutions tend to adapt well to a variety of
situations. Thus it provides some of the representational richness
that Brown, Mellinger, and others were after, but without the
"hardwiring."

Other developments in audio programming

Low-level structural manipulations of sound

In his 1988 doctoral thesis, Xavier Serra described an analysis/
synthesis system that worked by separating a sound into
predictable (pitched) parts, and residual (stochastic) noise.
The gist of his idea was to model the pitched component
sinusoidally (much like the method used by Macaulay and
Quatieri in 1986), then subtract the modelled sound from the
original to derive a residual noise signal. A piano note could
thus be separated into the resonant string sound, and the "crack"
of the hammer. In this way, the two components could be
separately operated upon and then recombined to reconstitute
the original exactly, or a modified version of it. This has to be
done with care - for instance, phase must be properly dealt
with - but it is an intuitive and effective decomposition.

Serra's thesis came at a time when thousands of timbres and
sampled sounds were beginning to crop up in synthesizers,
but there was no graceful way to mix or interpolate between
them. Such mixing is known as "cross-synthesis," and forms of it

Structure out of Sound

have been used for many years. Moorer discussed the

application of linear prediction for this purpose in 1978, e.g., to

make a "talking trumpet." Lansky and Steiglitz (1981) used a

similar "warped" form of linear prediction to change the

apparent size of the source resonator (turning a violin into a

'cello, or a man into a boy, for example). But linear prediction

can be difficult to do well, particularly when the sounds contain

noise, and it has been too costly to compute for common use in

synthesizers. For relatively simple musical sounds, Serra's

method provides a natural approach, and at the time, it was just

becoming feasible to consider incorporating that degree of

computation in commercial synthetic instruments. A similar

method was reported by Dannenberg, Rubine, and M. H. Serra

(1990), which was based on the interpolation of frequency

spectra to reproduce short-time variations in a signal. In that

case, time-varying magnitude spectra were used to modulate the

output of a bank of waveform oscillators. Like Serra's technique,

this made it possible to mix sound in a more structurally-oriented

way, using a few intuitive parameters. In any case, all of these

methods are approaches to the problem of operating upon low-

level structural aspects of sound.

High-level processing

The advent of MIDI (Loy 1985) spurred a great deal of work on

high-level music processing. Prior to that, though, Buxton et al.

(The Use of Hierarchy and Instance in a Data Structure for

Computer Music; Design Issues in the Foundation of a Computer-

Based Tool for Music Composition, 1978) showed how a fertile

set of musical tools could be built given a well-conceived

underlying data structure. Later, MIDI-based tools provided a

wealth of music making possibilities built on a standard for

encoding the contents of musical data streams. Using MIDI,

Langston provided a more modern rendition of Buxton's artful

arrangement of software tools by grafting the general "little

language" methodology well-known from Unix system design

"In the last decade, little
languages have emerged to
support a multitude of tasks
rangingfrom complex stasti-
cal calculations to construc-
tion of lexical parsers.
Meanwhile, in the last half-
decade, a multitude of
computer-controlled sound
synthesis devices have become
available. Unfortunately
there has been little overlap
of these new development
areas and the software to
support these new devices has
been rudimentary at best."
-Peter Langston

(1990)

Structure out of Sound

eaber 2.0

now 000000

o oooooooo

1M.8.e0000000
Rowe's inerfc t 00000000

61 Do*s %A1 %-2 W'~I 1* ""8 "1 low slotWW .1the
C"! C)c C) C) C C) CD CD CD
CC) D C) C) 0 C > C)

tiru ph" M1 am amt.f 001 M W fit 4We 1ist fIs tes

Rowe's interface to Cypher,
for interconnecting "listener"
and "player" objects in an
interactive MIDI music system.

into musical tasks (Little Languages for Music, 1990). The
synergy of such an approach is nicely seen in Langston's work.

A more recent example is the NeXT Music Kit (Jaffe et al, 1992)
which extends musical data structures familiar from the earliest
"Music-N" languages of Mathews (1969) into a fully object-
oriented system. The Music Kit has a full-featured score
language intended to make programmatic use of all the musical
objects. NeXT was also the first company to provide some
general sound processing software with its Sound Kit (closely
coupled to the Music Kit), though most of the work is simply in
managing recording and playback of multiformat audio data.
It was, however, an important first step towards making sound
a first-class data type in general computing (around 1988).
Of all these examples, and many others besides, Langston's best
illustrates the expressive power to be had by crafting well-
designed tools and languages. For example, he shows how
entertaining incidental music (pseudo-Mozart, bluegrass, etc)
may be generated on demand to suit given constraints (e.g.,
time, key, tempo, etc).

In the analytic area, Rowe's recent thesis (Machine Listening and
Composing, 1991) showed how many high-level musical feature
detectors could be combined to do quasi-intelligent sensing of
musical input. These cooperating agents were able to inform a
synthetic performer, shaping its behavior to suit the musical
content. Rowe's program, called Cypher, was a Macintosh
application that provided a construction kit for assembling and
experimenting with high-level musical sensors. Because the
tasks were musical ones, a great deal of processing involved
listening for and operating on patterns of notes, like motives,
harmonies, and rhythms. In this way, the system was able to act
on musically salient features in the live performance, and modify
its improvisations accordingly. This tied together high-level
musical content analysis and synthesis in an interactive system,
marvelously demonstrating that one does not need to imbue a
machine with the clairvoyant ability to follow a human's musical
intentions: rather, because music is so highly patterned, useful

Structure out of Sound

and intriguing synthetic performers can be built to serve as

gestural amplifiers by sensing and acting on those patterns.

One would also like to build applications in this vein that are

connected not just to MIDI sensors, but to sound sensors, and

Miller Puckette has taken a step in that direction by extending

his MAX program (a graphical MIDI dataflow-style application,
1991) and Animal (Lindemann and Puckette, 1991) to include

signal objects. In particular, MAX was adapted to run on the

IRCAM Signal Processing Workstation (a NeXT computer

equipped with an add-on i860 accelerator). This was one of the

first attempts at using general-purpose processors for

sophisticated realtime audio applications. The machine was fast

enough to compute and invert FFTs in real-time along with a

network of other signal and control filtering algorithms, all of it

embedded in the framework of an engineering workstation -

an important step towards achieving computational continuity

between signal and content. Rowe surveys these issues more

fully in his book, Interactive Music Systems (1993).

A large-scale attempt to integrate sound and other multimodal

input was made by Flanagan's group at AT&T Bell Laboratories,

with its HuMaNet experiment (Berkley and Flanagan, 1990).

This was a group teleconferencing experiment that used talker

and speech recognition, speech synthesis, spatial positioning and

spatial sensing of audio sources, along with computer-mediated

videoconferencing. It demonstrated how these technologies

could combine harmoniously to provide an information and

communication interface that was natural and easy to use.
It also demonstrated how several sorts of structural information

in the sound were needed to achieve that. The "guts" of the

control system was a finite-state grammar that allowed rapid

definition of application interface commands and easy changes

to existing systems: the sensory inputs (chiefly speech

commands, after the correct talker had been physically located

and identified) were parsed through the grammar to trigger

actions.

A MAX patch for a recording
and score-following function.
(cf Rowe, 1993)

Structure out of Sound

What about the general problem?

"System architectures are
desirable that permit specific
techniques and data represen-
tations from signalprocessing
and artificial intelligence to
be integrated in a more
sophisticated manner than
allowed by classical signal
understanding systems"
-H. Nawab

(1992)

Little of this recent systems work has much to say about the
problem of general sound understanding. The research of
Nawab's group is the sole exception that proves this rule: he
describes a general "sound understanding testbed" (in Symbolic
and Knowledge-Based Signal Processing, 1992, ch. 9; Nawab &
Lesser, High-Level Adaptive Signal Processing, 1989). Their
system lets one experiment with techniques for understanding
sound in a household setting (recognizing telephone rings,
electrical appliance sounds, smoke alarms, and the like).
Robot hearing ability was the goal, although more specific
systems, like a helicopter signal tracking system, and a pitch
analyzer for a speech system, were also discussed.

Nawab showed how their general sound understanding system
attempts to detect the rings of a telephone and the whir of a hair
drier turning on: roughly speaking, a spectrum is obtained by
short-time Fourier analysis of the input, the spectrum is reduced
by a peak-finder, and peaks that are close in a harmonic and
temporal sense are grouped into contours (Bregman calls this
process sequential integration), then contours are collected into
streams by a process of spectral integration. Streams are then
grouped to form source hypotheses. All of these activities were
steered by a sophisticated blackboard system. This is the first
attempt known to the author to build exploratory tools for a
general-purpose high-level sound recognition system that can
function in a realistic setting.

One of Nawab's chief observations was that, because of the
enormous variety of input signal types and system goals, classical
signal understanding methods were inappropriate. The "classical
approach" is one that seeks to formulate the problem
mathematically, and then designs a particular system to achieve
those objectives if possible. It was Nawab's contention that the
wealth of inputs demanded a similar wealth of processing
algorithms, and that the focus is on "providing the capability of

Structure out of Sound

~tt~W~MAYv#~VA ~'SUT seeks to take a sound

2 from input wave (1) to
peaks for frames at 2-3s source description by a

series of intermediatetL~4 ianalyses: STFT (2), peak
E - detection (3), sequential

.06.0 integration (4) (to group
frequency,proximal spectral peaks),

5kHzand spectral integration (5)

5k~z -time (se cs)4

("reming"), befe (1)nto
source identfction is

Os 1 2s5

[ring] [ring] [ring] ia

6.0 jnteg atio ((to grouphon

-~[hum] hairdryer

[silence] [silence]

utilizing the most appropriate algorithm on a when-needed basis

as well as providing mechanisms for deciding which algorithm is

needed in particular situations." Whether or not much of this
has been put into practice, as by integration in current operating

systems frameworks, is unclear.

Recently, Nawab, Beyerbach, and Dorken (1993) have begun to

look more deeply into the problem of tracking arbitrary sounds

using a principal component analysis of time-frequency
distributions. The idea is to reduce time-frequency data, like a

spectrum, to three one-dimensional "principal decomposition

functions" - a spectral function, a frequency-shift function, and

an amplitude function. This is reminiscent of linear predictive

Structure out of Sound

"The nature of the computa-
tions that underlie perception
depends more upon the com-
putational problems that
have to be solved that upon
the particular hardware in
which their solutions are im-
plemented...an algorithm is
likely to be understood more
readily by understanding the
nature ofthe problem being
solved than by examining the
mechanism (and the hard-
ware) in which it is embod-
ied."
-David Marr

(1982)

analysis, which similarly yields a representation of pitch,
amplitude, and a time-varying filter function, though Nawab's
PDF's do not seek to provide an invertible analysis. Because
pitch corresponds to the driving mechanism, and filtering relates
to the resonating components, this sort of analysis corresponds
fairly well with many physical sound sources.

Summary

Taken as a whole, this work is clearly heading in a common
direction, albeit under many different rubrics. Awareness to the
topic of auditory scene analysis is increasing, and there is a
growing opportunity to embed knowledge of this in machines.
In particular, computers are acquiring enough computational
power to make audio processing capability common. Massalin
gave a convincing demonstration of that with his Synthesis
operating system (1992). It essentially proved that previous
attempts to build audio systems will be combinable in a unified
software environment.

Abstracting structure from sound is an ancient problem, and this
brief survey shows three styles of approach. In contrast to the
formal perceptual modelling approach, and the classical signal
processing approach, and the neo-classic approach used by
Nawab, this thesis seeks representational richness by
concentrating on high-level events, and on ways to develop a
flexible repertoire of programming tools for working with them.
That does not mean that traditional research themes are not
present: the use of event lists in this thesis serves a similar
purpose as blackboard architectures (except that it serves to
make the content of sound available to the whole system);
gestalt-like grouping mechanisms, edge enhancement and attack-
detection filters, and other analytic primitives familiar from the
traditional perceptual and analytic literature are used frequently.
Lessons learned from studies of integration (like Langston's music
languages, Rowe's improviser, or the HuMaNet conferencing
system) have been pleasantly synergistic, which is encouraging.

Structure out of Sound

I -, NPNMWVA% W M WWWWAMMWM ------ _MM* 14--yon , NNIMMOddeap-

1.4 Remarks

End of the silent computing era

The topic of general sound understanding was presented as a
fertile area for future work in rich-media information systems.

Other sensory modalities are important, too - a machine with

taste buds, or some haptic sensitivity would have many

wonderful applications - but the lack of audio capability is a

grave deficiency in machines, much as it is in humans.

Outside of speech processing and computer music, work on

sound understanding systems to date has been sparse and

disjoint. Areas like "machine hearing" and "audio interfaces"
remain virtually unknown compared with their graphical
analogues. This is not simply because of the more tangible

nature of images compared to sounds, or the prevalence of

applications that require pictures, or even because simple still

pictures and sketches can serve as a natural and useful interface

on practical machines, whereas "still" sounds per se don't exist

and "sketchy" sounds are not tolerable for long. Rather, it is

because operating effectively on sound requires a grasp of the

underlying structure. Cave paintings evolved before written

languages for essentially this reason - much the same reason

that recent graphical interfaces necessarily preceded audio

interfaces.

The drastically changing climate of general digital information

systems was also discussed. By its nature, this change is global

and highly synthetic, reflecting a mass-merger of computing and

all manner of digital information. Simon's parable of the ant on

a beach reminds us that, although organism and environment
mix to shape intelligent behavior, the rapid buildup of digital

information infrastructures relatively suddenly creates a vast

"beach" where there was none before. That imposes itself on

the organism. Faced with information overload, we evolve

discerning sensory abilities. The stimulating case of the free-

"Whether deafness is prefera-
ble'to blindness, ifacquired
in later life, is arguable; but
to be born deaf is infinitely
more serious than to be born
blind. For the prelingually
deaf; unable to hear their
parents, risk being severely
retarded, if not permanently
defective, in their grasp of
language....and to be defec-
tive in language, for a hu-
man being, is one of the most
serious calamities, for it is
only through language that
we enter fully into our
human estate and culture,
communicate freely with our
fellows, acquire and share
information. Ifwe cannot
do this, we will be bizarrely
cut off- whatever our de-
sires, or endeavors, or native
capacities."

- Oliver Sacks
Seeing Voices (1989)

Structure out of Sound

"In order to survive in a
constantly fluctuating world,
it is better to have a little
information about a lot of
things than to have a lot of
information about a small
segment ofthe environment."

-G. A. Miller
(1956)

flowing wealth of services already populating the internet versus
the torpid world of broadcast television, makes a good argument
for why we must develop ways of abstracting meaningful
structure from sound and video.

Broad versus deep

Unlike most doctoral studies, which contain a lot of information
about particular problems, this one attempts to cut some
practical inroads in a large general problem. A difficulty with
this sort of work is that, although certain low-level signal analysis
techniques are often of interest in and of themselves (in fact, to
the author, they are frequently the most interesting parts), the
higher-level mixtures that tie recognition systems together seem
to be described by a hodgepodge of heuristics, or a babel of little
languages. As with other "Al" problems in sensor interpretation,
problems in understanding sound are often qualitative. They can
be quirky and subjective in nature, revealing the complexities of
the source as well as the context in which the sound occurs.
Consequently they tend not to be defensible in a crisp,
mathematical sense, as has been noted by Moorer, Rowe,
Nawab, and a great many others.

This is not a failure of science, simply a reflection of the world.
The job of perception is to build a useful model of reality from
sensory input - that is the beginning of deeper understanding.
To cope with this, as Miller said, it is generally better to know a
little about a lot of things. Roger Shepard (1981) used the phrase
"psychophysical complementarity" to describe the tangled way
that mental mechanisms evolve to map the tangled structure of
their surroundings. Marvin Minsky's Society of Mind (1986) told
a similar story on a much larger scale. So did Georg von B6kesy
(1 960) when he described his approach to the convoluted
problem of hearing as a "mosaic" that studied many small pieces
of the problem. And in a way, so did Albert Bregman (1991)
when, after nearly 700 pages of discourse on the subject of
auditory scene analysis, he concluded:

Structure out of Sound

-S"! " io W-1 WO - - -- --- ---- "WiPOW1W" We - -+-1-w_-_ . - -1 -_ -

There is no chance that the reader will have arrived at this point
in the discussion with the sense that anything is settled. Even if
one accepts the general framework of auditory scene analysis
there still remains the problem of filling it out ...

Like any other sense, the sense of sound is plural, and the

implementation of it is an endless process of understanding and

integration. This thesis is a step in that direction.

Structure out of Sound

52 Structure out of Sound

2: I can name that tune in...
Listening to Music

2.0 Overview

"Strange, dear ... but true, dear..."

Spinning the radio dial, you hear little snatches of sound:

"...from the BBC world news..."

In a few seconds, or even fractions of a second, you can tell

whether the sound is a news anchor person, a talk show, or

music. What is really daunting is that, in the space of those few

seconds, you effortlessly recognize enough about the vocal

personalities and musical styles to tell whether or not you want

to listen! Besides which, you may be driving a car one-handed,

listening to the radio through static and traffic noise, and sipping

a milkshake, all at the same time.

You have just solved the generalized "name that tune" problem.

Not only can you hear whether those snippets of sound contain

music, you can guess the instruments, hear the notes and lyrics,
and recognize melodies in the presence of a great deal of

competing noise. This chapter builds some machine listeners

that attempt to do similar things. Music, by broad definition, is

the whole science or art of structuring sound, so to motivate and

focus the chapter, the first two sections discuss music-making

from a technology perspective, and the subsequent three sections

study specific music-related sensors.

In particular, section 2.1 notes trends in the interplay of tools and

musical forms. Its purpose is to sketch some of the ways they
have mingled, and offer insights to those who might not be

well-acquainted with music. The material is nontechnical.

Section 2.2 describes experiments and experiences with a MIDI

music system I built, including such problems as arranging a full

romantic piano concerto for synthetic orchestra and

computerized Bbsendorfer concert grand piano "soloist," as well

as the quaint but interesting reciprocal problem of optically
reading paper piano rolls to derive musical performance data.

To begin the discussion of music signal analysis, section 2.3
presents a music detector, a filter that attempts to find the

musical segments in a sound stream, converting a sound stream

to a list of "music" events. At first this seems an impossibly

broad notion, but it is shown how quite a good music finder can

be written in about a dozen lines of code. Its performance is

examined. Section 2.4 investigates an approach to the knotty

problem of polyphonic pitch extraction, specifically for the case

of filtering acoustic recordings of piano music to derive the

performance gesture. This is another example of a sound-to-

eventlist conversion process, where the input sound is piano
music, and the output event list is the gist of the performance.
Can we really build a filter to convert an audio piano recording

to a performance list? What are its limitations and implications?
These questions are considered. Then, having found some
music, and having extracted a few notes, section 2.5 discusses
the "name that tune" problem, in which we want to recognize
an input melody. That problem hinges not so much on the
lexical aspect of matching a melody-string in a dictionary, as it
does on finding ways to locate snatches of music in (often noisy)
sound streams. Section 2.6 summarizes the results.

Music

0-40 wlw _N _.-__-__- _--_- - - ____ - - - -_ 11 1 -- 111- 1 11 - .. __ __1____,_____ __ - I bNOWNWOMM60-

2.1 Revolutionary etudes: music and technology

The rise of the instrument-savant

Have you heard the organ at Notre Dame recently?

PARIS (December 7, 1992) - The organ of Notre Dame cathedral can now

boast digitized sound transmission, video monitors and three IBM PS/2 PCs

on a 16 megabit/sec Token Ring local-area network. Following its three-year,

11 million franc (US$2m) investment from the French state, French software

firm Synaptel SA unveiled the restored instrument last week. A PC supervises

the transmission of data between the organ's five keyboards and pedals and

the 7,800-pipe organ case as well as a MIDI (Musical Interface Digital Instru-

ment) gateway. The system allows the organist to program the sensitivity of

the keys and the digitization of the musical signal avoids problems of dust in

the organ's old pneumatic tubes and valves. The sequencer of the network's

MIDI interface lets the organist record, recall and edit anything he plays.

Instead of a key to modulate the tension parameters of the keyboard console,

a memory card memorizes and establishes the preferred configuration of each

organist. Synaptel also installed synthetic voice capability on headphones to

warn blind organists of important mixing information as they play.

The organ of Notre Dame cathedral was first reconstructed in 1730-1735

when a mechanical traction system was put in place. Electricity was installed

in the keyboard/pedal console in 1959. (0 IDG News Service)

The inevitable infiltration of digital technology into the organ

console at Notre Dame represents a far more drastic change than

simply eliminating the troubles caused by dusty pneumatics.

The change, of course, is that instruments are no longer relatively

simple mechanical systems. Instruments now have memory and

the ability to receive digital information. They may render music
in a deeply informed way, reflecting the stored impressions of
many instruments, halls, performers, compositions, and a number

of environmental or contrived variables. At first, digital

technology let us clumsily analyze and synthesize sound; later, it

became possible to build digital control into instrument

interfaces, so that musician's gestures were captured and could

be operated upon; and now, we can see that it will eventually be

possible to compute seamlessly between the wave and the

underlying musical content. That is a distinct departure from the

traditional idea of an instrument.

'As you know, my own life
has been chiefly devoted to
the development ofinstru-
ments of communication.
But however important these
may be, they are at best only
instrumentalities. Their
function is only to transmit.
In the final analysis, they
will be judged by what they
transmit.

- David Sarnoff

in a letter (1954) to
Arturo Toscanini

Music

What is interesting about the trend is that it injects intelligence
and autonomy into instruments. Their function is no longer
"only to transmit" or transduce: they become sources and
interpreters of deeper musical information in their own right.
Mathews articulated this early on (1969); Vercoe's work with
"synthetic accompanists" (1989) and Machover's work with
"hyperinstruments" (1990) are two of many recent examples of
the ways that artistic and research opportunities flourish when
instruments become active partners. The consequences of this
are both immediate and far-reaching. To understand how, it
helps to reconsider the canonical flow of musical information:

c -- ,p
iRh

|1000 bytes/ 10000000 bytes/min

Information from a composer is transmitted to a performer,
who adds interpretation and inputs it to an instrument. Typically,
that is a transducer that converts gesture to sound, so that the
wave imparts compositional and performance information as
well as information about the instrument. As it radiates through
a hall or through a recording system, the sound acquires features
of the acoustics or the recording setup. The listener catches this
signal and takes away some sense of the room, the instrument,
and possibly the recording methods, but unless the listener is a
piano tuner, an acoustician or a recording engineer, most of the
attention is concentrated on the music and how it is played.

There are many variations on this theme, and there are vital
feedback paths, too (e.g., a performer will play differently
depending on the instrument, the room, or on interaction with

Music

other performers) but essentially, the source network is a process

of information expansion, and a reciprocal process of reduction
occurs in the listener. Measurements indicate that the data flow

between a performer and an instrument is on the order of 1,000
bytes per minute (e.g., piano-playing is typically about 3Kbytes

per minute, depending on the music). By contrast, a digital

recording of the sound at acceptable commercial rates is about

10,000,000 bytes per minute, much of it redundant over time.

Many people (even information scientists, who should know
better) are startled by the fact that musical gesture, like the

keystrokes in piano-playing, flows at such a paltry rate. There

are about four orders of magnitude in compression to be had by
distilling the audio signal to its gestural content. At gestural

rates, all of Joplin's piano rags occupy about a megabyte, and

one present-day compact disc would hold years of music(!).

Consider how this has changed the music production

infrastructure has: today, a composer can earn $25,000 for a

day's work by synthesizing 30 seconds of music for a soft drink
commercial - the music is composed, arranged, performed,

synthesized, edited, mixed, synchronized with video, and printed

to a master digital tape, all by one musician-engineer working in

a digital studio. Most of the tools that make this possible are less

than ten years old - many, less than five.

This is a short-term symptom of a long-term trend. The new

concept of an "instrument savant" piano that recalls a Chopin

etude, or that can render any piece of music in its repertoire, and

can shape the timing and expression to suit some other purpose,
improvising as need be, is indeed revolutionary. As more

information accumulates in instruments, it is fair to say that

instruments themselves must begin to understand something

more musical about the music that flows through them.

Historical notes

The prospects of increasingly intelligent instruments are actually

part of a long history of using technology to amplify music-

making ability. A digression helps put this in perspective.

Music

Air pump for the Halberstadt organ
in the 16th century (from Praetorius).

Consider the marriage of music and musical tools through the
early mechanical, industrial, electrical, and now digital eras.
Until the advent of the phonograph and telephone around 1875,
there was no medium for recording and transmitting sound per
se. Early musical instruments were purely mechanical. Music
was always "live." The other musical communication medium
was printed scores, which were scarce. Although it is often
forgotten, the interplay between prevailing technology and the
changing shapes of music can readily be seen in each era - the
development of musical form is largely written around its tools.
Here are several examples.

Cathedrals and the end of chant

For a monk sitting in a small chapel, it was easy to adhere to
Gregory I's divinely-inspired reforms to the schola cantorum
(c.590) that there be no instruments, and that all singing be done
in monophonic, rhythm-free chant (so-called gregorian chant).
That broke down with the rise of great cathedrals (c.1000 AD).
In huge rooms, monophony gave way to polyphony, instruments
that were loud enough to be heard had to be used to extend the
voices, and a strong sense of rhythm was needed to keep many
participants together. The fact that Andrea and Giovanni
Gabrieli in Venice wrote so much polyphonic brass and multi-
choir music is unsurprising given Saint Mark's cathedral with its
many vaults and domes, and remarkable acoustics. These are
clear cases of building architecture influencing musical style.

Baroque high-technology

Pipe organs furnish another example. Even though the organ is
one of the most ancient instruments (it was described in detail by
Hero of Alexandria in the first century), organs remained rather
simple until the 1500's, with a few exceptions in the larger
cathedrals (Note Dame in Paris probably had around 2,500 pipes
in the 1 400's). Then, in 1517, with the first printed books on
organ building and the wider availability of clockwork for
making control mechanisms, designs and inventions flourished
(Sumner, The Organ, 1973): the richness and quality of organ

Music

construction, and consequently, organ playing, improved
dramatically. The art of organ building reached a zenith in the
work of Arp Schnitger, who built some of the finest organs that
J.S. Bach played on, and held a virtual monopoly on the organ-
building business in 1 7th century Germany. Schnitger was able
to muster a great deal of technology for glittering metalwork and
cabinetry to build perhaps the grandest, most complex and
inspiring machines of the time. Nearly all the pipework was
metal: wood pipes did not fare well in the dank northern
European climate. The corresponding clarity made it favorable
to play many-voiced fugues at brisk speeds. The pipes were
mostly lead-tin alloys (the show pipes were almost pure tin,
imported from England), and the keys were ivory and ebony, so a
considerable trade and shipping base was required to supply the
materials. Schnitger and his sons built more than 150 organs in
northern Europe, many of them magnificent four-manual
instruments with upwards of 60 ranks of pipes, requiring
substantial air power. It is no wonder that the organ became the
hub of so much musical activity. Bach was actively interested in
organ mechanics, constantly testing them and working with
builders to improve them. The phrase "pulling out all the stops"
may have originated with Bach and his habit of opening all the
ranks at once when trying out an organ for the first time
(cf. David and Mendel, The Bach Reader, 1966).

Note that organs have always presented a challenge to interface
designers. The word organ derives from the Greek ergon (tool,
instrument) and organ consoles have long been an ergonomic
adventure. The problem of linking fingers and feet to tens of
thousands of pipes and switches commends itself to
contemporary interface designers. One extreme is found in
Atlantic City, where the world's largest organ not surprisingly has
the world's most complex console (seven keyboards and
hundreds of stops, switches, and indicators, all within an arm's
or leg's reach). Computer mediation finally has made it possible
shield the user from this overt complexity, and provide many
enhanced functions besides, by adding software control as in the
new console at Notre Dame.

The 1695 Schnitger organ at
Johanniskirche, Hamburg.

The world's largest organ console
in Atlantic City, NJ.

Music

Pianos and the industrial onslaught

industrialization in the 19th century made it possible to mass-

produce and mass-distribute instruments. The "modern" grand

piano was thus partly a byproduct of the railroad industry, not

only for shipping, but for factory tools to make iron frames and

wire strings. The piano was the home entertainment medium for

a century: manufactured in tremendous quantities, it naturally
became a nexus of inventive musical, social and industrial

activity of all kinds. If the 1 7th century organ was a time-shared

mainframe machine, the piano in the 19th century can be seen

as a much more personal one. The romantic concept of the solo
"recital" - a virtuoso with mane of hair and concert dress,

playing in profile to an audience of thousands in a large concert

hall - was pioneered with overwhelming success by Franz Liszt,

and made possible by dint of the overwhelming success of the

piano. The majority of musical forms for a hundred years
revolved around the piano; for example, all important chamber

and symphonic music circulated as piano transcriptions. It

became the broadcast channel for music.

Arthur Loesser (Men, Woman, and Pianos, 1954) mentions that

in 1891, for instance, a real estate developer built a row of
apartments on the west side of Harlem in New York - and built
an upright piano into every one of the four dozen parlors!
From 1890 to 1910 the number of pianos in the U.S. multiplied
about 6 times as fast as the population; on the frontier it was not
uncommon to find a piano in a log cabin, even if there was no
bathtub present. There were many other musical channels
opening at the time, to be sure - valved brass instruments,
woodwinds with keys, and the flute as we now know it, all
matured, and the symphony orchestra grew to its modern size

(cf., Sachs 1940). Nevertheless, the dominance of the piano as a

unified musical channel is interesting. A full-blooded social and
musical history can be written around a single instrument.

Music

Electronics and the wane of live music

For about the past hundred years, the momentum of electronic
communication and the newfound ability to manipulate and
transmit sound signals have reshaped music and the way we
hear it, in ways both obvious and subtle. The science and craft
of analog electronics entered into the design of instruments, from
the curious telharmonium (1908), a sort of combination organ
and telephone network that was a precursor to muzak; and the
theremin (among the first electronic instruments, adapted from
radio parts in the 1920's) to the Gibson guitar, the Hammond
organ and Moog's synthesizers. The centralized concert
experience that led to the large symphony orchestra and mass
gatherings is now fragmenting, due to the influence of home and
personal audio machines, as well as the ability to amplify and
broadcast. The "unified" channel once occupied by the highly
interactive piano has been replaced by highly passive receivers,
like radios and televisions.

With tape recording, splicing and mixing became the building
blocks of a non-live musical art form. Pierre Schaeffer's musique
concrete in the 1940's was essentially a montage form of
composition using taped elements. The Canadian pianist Glenn
Gould was also a fiendish splicer of tape, removing clinkers or
overdubbing extra lines in pursuit of an ideal contrapuntal
extreme (cf. Kazd in, Glenn Gould at Work: Creative Lying, 1989;
Gould/Page, The Glenn Gould Reader, 1984). Gould shunned
live concerts, preferring to make music exclusively in the studio,
freezing the impression on tape a bit like a sculptor, and thus he
became a prime example of an artistic extreme fostered by
electronic and recorded media. Much as Bach involved himself
in the design of organs and early pianos to improve his musical
craft, Gould embraced analog studio technology (e.g. Gould,
Strauss and the Electronic Future, 1964): "it will not, it seems to
me, be very much longer before a more self-assertive streak is
detected in the listener's participation, before, to give but one
example, 'do it yourself' tape-editing is the prerogative of every

"I predicted that the public
concert as we know it today
would no longer exist a centu-
ry hence - that its function
would have been entirely tak-
en over by electronic media.
It had not occurred to me
that this statement represent-
ed a particularly radical pro-
nouncement.

- Glenn Gould
(1966)

Glenn Gould: "Let's ban applause."

Music

"Technology...
is not primarily a conveyor
belt for the dissemination of
information; not primarily an
instantaneous relay system;
not primarily a memory bank
to hold the achievements of
man... It should not be
treated as a noncommittal
voyeur.., it must be exploited."

-Glenn Gould (1975)

Leonardo's drum machine.

conscientious consumer of recorded music (the Hausmusik of the
future, perhaps). And I would be most surprised if the consumer
involvement were to terminate at that level. In fact, implicit in
electronic culture is an acceptance of the idea of multilevel
participation in the creative process." Gould's somewhat
introspective and paradoxical focus on recordings, which goes
against the grain of self-assertiveness in the listener, was, it seems
to me, more of an effort to engage the only available
electronically-mediated outlet.

The interaction between recorded and live forms of music also
makes itself felt in subtler ways: the advent of the "long playing"
record caused many musicians to become "completists,"
recording lists of pieces that were never really intended to be
played as a set (all Chopin's ballades, or Bach's partitas, say).
This has flavored live concert programming, as musicians now
will play "boxed sets" in a single sitting, instead of more
balanced menus. And of course new technology this century
has brought a merger with movies and television, creating new
forms. Chances are, when a composer today writes an orchestral
score, it is destined for a film soundtrack: Hollywood studios and
routes to the personal stereo have replaced royal courts,
cathedrals, salons, and pianos in family rooms - another
example of large-scale architectural influences on musical forms.

Musical automata

Instruments have been built to play themselves for centuries.
Leonardo da Vinci (1452-1519) designed and probably built a
number of self-playing music machines; the drum machine
shown here was one of many, and along with player
mechanisms for bells, organs, and trumpets, was probably
conceived for providing automatic fanfares for plays and parties
(Winternitz, Leonardo da Vinci as a Musician, 1982). Leonardo
was certainly not the sole inventor of such things. We know that
automatic water-organs were built by Arab and Byzantine
engineers in the 9th century (the palace of the Khalif al-Muqtadir

Music

had a famous musical tree; automatic musical instruments of
many kinds are described by al-Jazari, 1974). These
technologies migrated to Italy by about 1400, and during the
Renaissance, became quite common. Self-playing organs and
musical clocks were well known in the 1500's and 1600's, using
pinned barrels to store the notes. The organ shown here was
one of the most famous, built for the Tivoli gardens at the Villa
d'Este around 1550. It stood about 20 feet high, was powered
by a fabulous waterfall, and was described as playing "madrigals
and many other things" (the engraving shows it also flapping the
wings on puppet birds; see Williams and Owen, The Organ,
1988). Contraptions like these were built for popes and for
royalty all over Europe, reaching the heights of extravagance at
Versailles. By the early 1700's mechanical organs were
sophisticated enough to be used to accompany hymns in
church. Composers were called upon to write novelty pieces for
these automata; Mozart and Beethoven were two of many who
composed musical clock and organ music. By the early 1 800's Barrel organ (c 1550)

barrel-programmed organs were considered to be note-perfect.

These fascinating ancient automatic instruments are sometimes
forgotten because there has been a deluge of self-playing RQLL.MOMCA

instruments in the 19th and early 20th centuries. The decades
around the turn of the century are littered with thousands of
varieties of player pianos, organs, music boxes, orchestrions,
player violins, player banjos, roll-driven movie sound systems,
organs, harps, and percussion among other things; they were
built into furniture and into handheld instruments, merged with
record players, radios, and telephones, powered by steam,
electric, pneumatic, or hand crank systems, programmed with SU
rolls, barrels, discs or sheets of punched cardboard, paper, or ..
brass. The player pianos achieved a degree of perfection:
instruments built by Ampico, Duo-Art, and Welte-Mignon were
capable of reproducing the finest nuances in piano playing.
Nearly every prominent pianist until about 1930 cut piano rolls, .M

and regarded it as the preferred medium. Mussolini and Babe
Some handheld player instruments.Ruth owned Duo-Arts. The current industry built around MIDI Prehrnorslt pcketumts.
Precursors to pocket computers?

Music

has recaptured some of the sales volume, but not the charm of
these mechanical wonders.

Summary - towards the longest musical lever

To sum up, the couplings between musical forms and musical
tools are as intimate and intricate as one's embouchure is to a
flute. When architecture provided big rooms, polyphony and
masses of instruments were developed to fill them, and rhythm
was needed to coordinate them. When industrialization
provided avenues for massive production and shipping, general-
purpose instruments like pianos became a kind of broadcast
medium and piano scores became the lingua franca for musical
information exchange. When electric technology took root,
recording and broadcast spawned a new art of studio music-
making which transcends space and time at the expense of
traditional live concert experiences. All of these tools have had
a drastic impact on musical forms, the way music is made, and
the way it is heard.

Unlike previous mechano-electric instruments, computer-
mediated techniques impinge on the whole gamut of musical
sources - composers, performers, instruments, rooms, and so
on. In principle, the entire musical process can be controlled
and composed. Now that gestural information has come within
the realm of cheap synthesis, computer instruments are
developing from music boxes into "instrument savants," with a
lot of memory, not much general intelligence, but the beginnings
of an ability to listen and shape a response. The next section, on
MIDI-related software, illustrates how some of the high-level
structure in music can be arranged and sensed.

Music

- , - R 0 . - it M i - - -- - --- ____ - _- _ __ - - , - _ i-"ftw 1i I I 1, 11 1 , I- 1 -0-- - 0- ----

2.2 Experiences with MIDI

Musical building blocks and glue

The present music synthesis industry began to bloom in the early

1980's with two developments: digital music synthesis with

interesting sounds and keyboard control became technically
feasible (the Yamaha DX7 began that beguine, using FM synthesis

which was both computationally inexpensive and acoustically

rich); and the MIDI protocol took root, connecting synthesizers to

general computers for high-level control. This was welcome

news, for it brought computer music as a field out of the mire of

low-level synthesis, and into the realm of high-level gestural

control. Now more than 40% of all cinema and television music

is produced synthetically. Curiously, however, MIDI has not

spawned much of a recording industry: you cannot really buy a

"record" or "piano roll" of MIDI data as rendered by some

famous artist (or algorithm) and play it on your system. This is

primarily because MIDI encodes instrument information in a

device-specific way (and the devices are quite peculiar). Despite

that drawback, many imaginative possibilities have emerged.

BSO in a box

Around 1986 I began to build a MIDI system (Hawley, The

Personal Orchestra, 1990). The idea was to construct a fairly

aggressive music system (at the time), and explore.

The system consisted of a Sun-3 workstation (25MHz, 8Mb,
1600x1 280 bitmapped display) with a custom VME-bus interface

that controlled 4 real-time MIDI processors (Roland MPU-401),

for a total of 64 channels of MIDI output, and 4 channels of

MIDI input. The Sun ran a local window system (Hawley 1985)
and some MIDI system software (Hawley 1986). An IBM PC-AT
with a Z80-based controller handled realtime piano control, and

connected to the Sun through a serial port. Other musical

apparatus included a Yamaha KX-88 keyboard controller (a silent

keyboard with weighted keys that generates MIDI data), an MJC8

MIDI junction box, a number of synthesizers (Kurzweil, E-mu,

"Extraordinary how potent
cheap music is.
-Noel Coward (1932)

"Suppose we had a digital
Boston Symphony Orchestra
in a box as a personal stereo
add-on, and the apparatus to
control it. What would
people do with such stuff?"

Music

-- --------- - m

Bosendorfer concert grand piano;
Solenoid actuators below keyboard.

Roland, and Yamaha), a mixer, amplifier, and some speakers.
This kind of configuration was novel at the time, but since then
has become conventional.

There was also a B6sendorfer grand piano, which warrants a
special word. The piano was an unusual addition to the band:
it was a 9'6" "imperial" concert grand, the largest piano in
commercial production, weighing 1400 pounds, with 97 keys
(nine extra bass notes), and three pedals. Designed by Wayne
Stahnke for the Kimball corporation, it records hammer velocities
optically (at a sample rate of about 800 Hz, to 10 bits of
precision), and reproduces the playing with a solenoid stack.
It is the ultimate player piano (as well as the most expensive one:
at about $120,000 it cost twice as much as the other equipment
combined). Note that by adequately capturing pedal and
keystroke data, the piano completely characterizes its musical
input. The meaning of the Nyquist limit for sampling of gestural
input is not so straightforward to interpret as in the linear signals
case, but temporal resolution and dynamic range are such that
reproduction is perceptually flawless. Unless the piano is poorly
calibrated, one cannot tell by listening whether a performance is
live or reproduced.

The idea was that such apparatus would be common in about 10
years - a control processor sufficient to drive 64 synthetic
"performers," a synthesis system capable of rendering sound of
near-orchestral richness, and content processing as well as
musical archives that make interesting interaction possible.
While one would not expect to find a B6sendorfer in every living
room, a sampled piano and the rest of the apparatus would
certainly be condensed into a small box in the forseeable future.

First studies

When musical information begins to flow through a computer,
one of the first interesting things to do is count the bits, studying
statistics of timing, pitch content, and so forth. Even the simplest-
seeming measurements are often illuminating because they

Music

capture meaningful gestures. Simon and Sumner (1968)

considered aspects of this; for example, that patterns of note

occurrence in music, like letters in text, accumulate in

characteristic distributions. Rearrangements of pitches and

timings can therefore have an interesting impact on the music.

Shown here is the first prelude in C major from the Well

Tempered Clavier. The data was recorded on the Bbsendorfer

and filtered through a "piano roll" plotting program:

File: pl.midi, 02:18.979

6

2 - -- - """ " - "--""-"- -2 f-

1 <damper pedal

t

By inverting the pitches (that is, by re-mapping pitches as if the

piano keyboard were flipped, which is done with a software

filter) the image of the music is flipped as well, as expected,

...-..--**----

but what is a little more interesting is how the tonal content is

affected. "Major" becomes "minor" and vice versa (so a C major

harmony becomes an f minor harmony), and traditional tonal

chord progressions often become "modal" ones; e.g, a I-V-1
harmonic progression becomes a i-iv-i. When this happens, the

music no longer sounds like Bach, although it still has some

strange but beautiful progressions. The weird nature of this

effect is belied by the picture of a simple visual flip.

Obviously, the distribution of pitch content is related to the sense

of musical key. Tonality per se is defined more by the grammar

of harmonic progression, but raw pitch distribution is informative

=
Music

in other ways. The following is a time-compressed picture of the
first movement of Bach's c minor partita, and the dark horizontal
striations indicate frequent notes:

This suggests that a histogram of pitch content (folded into one
octave) correlates with the overall key most of the time
provided there is one:

Bach Joplin Stravins

CEG=CMajor CE DG=FMajor ED#DA#...=??
*-A or C Major

ky

In most cases, when the music is of the straightforward tonal
kind, the three or four commonest notes indicate the triad of the
principal key, as in the Bach prelude. In the case of the Joplin
piece (Solace, a rag) the bulge in the distribution reflects what
turns out to be the bi-modal tonality of the music (it begins in C
and ends in F). The Stravinsky example (from Les Noces) is a
peculiar distribution, with a big spike on E, then a succession of
pitches in a non-tonal order. It is an atonal piece.

This measure - one of the simplest measures of musical content
imaginable - is interesting not because it measures the musical
key. In fact, it doesn't do that in a musical sense, and to do so is
not simple (Rowe devoted a considerable part of his thesis work
towards getting his Cypher program to do just that, with

Music

?IU :1,111 1 ol I I 111. II% 1
me J. I I 1VII oilA in "

1
11 ' 0~ 11 NIIIoN

ou. .. il on:;9 b &"7:1 1' *irM~ ITI~ is. IN~I I Ii' i Ni isi i-r IM -
A6 0 hM i Vi(W. 10

0~~~ ~ it n II III N
r

1 I I Z I 11

somewhat mixed success). Nevertheless, the nature of the pitch
distribution is frequently all that is needed to distinguish between
broad categories of music (for example, tonal vs. atonal, or "is
Eliot Carter more like Stravinsky than Bach?"). In fact, in 1962
Wilhelm Fucks studied the frequency distribution of pitch and
showed that kurtosis and standard deviation both increased
significantly from about 1500 to the present. Furthermore, the
choice of key in western music is a significant one - the key
of c# minor, for instance, is generally associated with somber or
bittersweet music; G major is for "happier" music, by and large.
There are undoubtedly many reasons why these associations
have developed over the centuries; early tuning systems made
some keys more dissonant than others, for instance, but even
after equal tempering the tendency for composers to copy
successful pieces helped to propagate these conventions.
As a result, the statistics of pitch distribution reveal aspects of the
music that are deeply ingrained in the culture. So, it appears
that pitch probability can be used to roughly pinpoint the
century in which the music was written, the approximate key,
the degree to which the music is tonal, and it can certainly be
used as a kind of "hash" function for finding similar music.
These methods will be interesting to develop more fully as
libraries of digital music data become available.

Arranging studies

MIDI technology is mainly intended for making music, and one
project was concerned with building arrangements. In particular,
I wanted to investigate the feasibility of assembling scores of
orchestral complexity and wondered what soft tools would be
required. This problem is discussed at length in Hawley
(Totentanz: an Experiment in Symphony Emulation, 1989); the

purpose of what follows is to provide a feeling for the overall
approach.

Briefly, the problems encountered in arranging involve
assembling the quiltwork of many musical elements, fitting and
adjusting the parts, and mapping the parts to instruments in the

1500 1600 17 1500 1900

() Willaert Palestrina, Hassler, Schein...

Corelli, Vivaldi, Bach
Mozart Beethoven, Spohr, Schubert..

(Schumann, Brahms, Strauss,...
(Hindemith, Bart6k, Berg, Webern,...

Kurtosis in pitch distribution
over four centuries
(after Fucks, 1962)

Music

synthetic orchestra. There are a number of subtleties involved;
for instance, special editing capability is required to deal with
details in piano data like pedalling, and in general, it is not at all
straightforward to cast parts between different synthetic
instruments because the nuances of the different instruments are
highly variable. As an example, MIDI amplitude values are
interpreted differently by different synthesizers, and often by
different voices within the same synthesizer; there is seldom a
helpful relationship between these values and the output sound
amplitude, in dB, say. Another challenge is maintaining good
data structures to couple the underlying music to a manipulable
graphical interface; this topic was discussed at length by Buxton
(1 978), and by many others since.

The approach taken here was to treat notes, phrases,
instrumental parts, and whole score assemblies as lists of
"Events," and build a graphical editing system to arrange these
elements in a visual score. This is easily understood with an
example. Music is entered, as by playing a part on the piano
keyboard:

This fragment includes pedal data as well as key velocity
information (drawn as grey scale in the note events). This part
then becomes an object that can be edited at several levels
one may alter the parameters of individual notes, arbitrary

Music

collections of notes, or whole parts, using a variety of filters (for
example, to transpose, stretch, "make staccato," "make legato,"
apply dynamics or rhythmic rubato). To add emphasis to this
particular virtuoso riff, the notes in the arpeggio were copied out
into a second part that was composited with the first, but with a
slight delay to make a double flourish:

0 0~bevdf .

Many such parts are then assembled into a visual score,
reminiscent of a traditional score but using this graphical
performance list notation. A large symphonic piece will have
several hundred parts. At a higher level, these parts need to be
positioned in time, and the editor supports automatic alignment
and stretching to facilitate this (one can graphically "stretch" a
part in time to fit it into a particular niche); there were, however,
no facilities for aligning notes within parts or for specifying
temporal dependencies (for example, it would be useful to
somehow "link" the beats so that stretching the solo piano part
would cause the rest of the associated orchestral parts to stretch
as well). Each part is routed to some number of instruments.
A central palette provides patching such that any of several
thousand synthetic instruments may be attached to a part - the
complexities of MIDI channel numbers, program maps, and
other device specifics are subsumed in that abstraction. Because
of that, a score needs to be compiled to generate performance
files (like MIDI files, special piano control files, and perhaps
audio event files) so that the instrumental patches can be

S c-iand: MIDI insrumnt fInder

I tx1-1 n age piena 'px-217#
2 t.816-2 n pn R px-W17BH

t B16-3 -m1 -letr- It.1zA43Hf
4t.BIE-4 noise sh~ Otx81zo2ofB

5 tuH-5
n ylun itar IB-x8125G

aHU616-6 a.qh 25.0 hI81H-2e
7 t.1116-7 abb 2413 Rtx8319238 t 8 a lize Brch MS u
9 txOi

1o p.- I hue Pax-2019MB
11 px-2 abee Box-301OWN

12 px-3 aboe #Sx81zf77

13 _x- I aboe & flute Ora1101nB
14 au-2 kbo & fluta #sx-1191
15 set-3 abne A flute Zs-201019
to na boe & flute s-115

aboa 1 111179

cetaie path menu1

Music

IF I I IF 79

resolved. Implicit in this is the need to deal gracefully with
conflicts if instrumental channels are exhausted, or, for example,
to find "best fit" matches if a particular voice requested by a part
can only be approximated by the local setup. The compiler
dealt with some of these issues, however the problem of timbral
mapping remains a research question. It should be noted that
we currently lack automated mechanisms for organizing and
relating musical timbres, and that means there is no good way to
take a request for a particular violin and approximate it with the
local palette. The compiler was designed with the idea that at
least the instrument names could be used, so a request for a
generic "violin" would find something, but this capability was
not developed much further.

Upon selecting a number of graphical parts, a "play" command
runs the compiler to generate a performance data list:

Totentanz.

.Franz Liszt.

Andante. M

(io ..

The editing process proceeded quickly - parts were entered,
assembled, tested, and refined into a performable score. The

Music

orchestra (theme) cymbal crash

piano & arpeggio composite super-glissando

timpani arpeggio

.........

0-

7j

final composition was built by compiling and concatenating all
the principal sections into a single score:

Score Files MIDI Images

a W. T_

- - -VT 2:09

0:32

-. 20945

2-.7-0:45

- 1:27

3.03

027

1F21

Full Score (16:50)

It is illuminating to study the visual patterns and "chicken
scratchings" in this musical data, since this level of coding is,
after all, much of what we would like to derive from acoustic
information. At a glance, the eye easily picks out interesting
shapes or phrases anywhere in the 17 minute work. It is not
hard to imagine many applications in audio browsing that render
the structure of a lot of sound in some sort of "atlas"-like form to
make it rapidly accessible. Commercial music arranging tools
are beginning to develop some of this graphical richness, but
that has been sorely constrained given the tiny screens and

Music

limited capacities of current machines. Nevertheless, there is,
after all, a reason why composers write symphonic scores on
large pieces of paper, and for the same reason, I chose to design
with a large graphical layout in mind.

What of the music? Was it good? And what of the process of
making it? Was it effective? Much of the editing system was
written in a six-month coding "blitz," and test pieces were
orchestrated along the way. The Totentanz was assembled in
about a month, although that was not a full-time effort, and it
was compounded by making a number of changes to the editing
system along the way. A score of that complexity could certainly
be built in about a week. As for the musical quality, a stated
goal was to see if one could approach commercial acceptability.
Cheap synthesizers are of course a very rough approximation to
a symphony orchestra; in particular, most commercial
synthesizers at the time operated at around 10KHz sample rates,
and because of the lack of high frequency information and
overall richness, the net effect was somewhat "muddy."
The piano part was fine, of course, and surpasses what any
human could do; it can be criticized on musical grounds.
Overall, the performance was good enough to be considered
"real" music (and a CD was issued in conjunction with the
USENIX Computing Systems journal, 3(2), 1990).

Two interesting anecdotal observations came from this.
First, using an editing system of this sort, it is easy to take a good
performance and destroy it, but it is very hard to take a bad
performance and make it good. At the moment, it is
emphatically the case that time invested in generating good
musical input to begin with - that is, "practicing" - saves a
great deal of time in the editing stage. I view this mainly as a
limitation of the editing tools: there is a lack of control over high-
level phrasing, but one could imagine some solutions to that.
For instance, it should be possible to take a note-perfect version
of a score and impose it on a lively but sloppy performance to
remove the wrong notes completely yet preserve the character of
the "live" performance. One could also imagine controls for

Music

editing rubato and dynamics; currently these are implemented
simplistically (e.g., a choice of scaling methods to use for

ritardando) but they could be done in much more interesting

ways. For example, after assembling a score, one would like to

"conduct it" into shape, by supplying a rhythm (tapping it would

do) and thereby synchronizing the score to fit. Methods like this

are used in interactive systems like synthetic accompanists, and

they have also been used to synchronize digital sound playback
with SMPTE or MIDI timing data (Poor, 1992), but they have not

fully worked their way into editing systems. The second

anecdotal observation is that, although the synthetic orchestra is
of middling quality by itself, when the counterpoint contains two

or three convincing-sounding instruments (the piano, and a good

synthetic flute or woodwind) the overall effect is remarkably

good - one doesn't really notice the weaknesses in the

background instruments. This is a perceptual phenomenon that

is not clearly understood. It is reminiscent of a similar

observation made by Tom Holman (1991) regarding film sound:

when mixing a movie soundtrack a black-and-white workprint is

used, but when the color reel is finally run, the dialog seems

clearer, the localization of panning is more sharply defined, and

overall, the sound seems quieter, by perhaps 2-3dB. It is as if the

new or interesting information occupies more of the viewer's

perceptual capacity, leaving somewhat less attention for the other

information, but generally sharpening the overall sense of
"awareness."

A piano roll reader

Working with Eran Egozy, a paper player piano roll reader was

constructed. The idea was to convert the roll data to MIDI as a

source of additional musical information. This is a project that is

interesting on simple musical grounds: there are about 100,000
piano rolls in existence from the 1910-1930 era, and a number

of these are "reproducing" rolls containing dynamic information.

The fact that the gestural data rate is so low is what made it

possible to record and reproduce it accurately using punched

paper and an analog, air-powered "computer" in the first place.

Music

Welte master roll with
dynamic indications.
(after Bowers, 1972)

Music rolls are the "fossils" that document the transitionary era
from little or no recording technology, to plenty of it. Like
daguerrotypes they provide a snapshot of a different world.

Paper rolls were made to exacting mechanical standards.
For instance, Clarence Hickman designed a bellows-controlled
servomechanism for Ampico to keep the paper roll accurately
aligned with the tracker bar: its mechanical tolerance was .005"
(cf. Bowers, 1972). Temporal accuracy is such that one must
scan about 100 horizontal lines per second to accurately read a
Welte-Mignon roll in realtime, and for that reason, the governor
that controls the air motor in a player piano is also precisely
engineered. Thus, though we know the data rate will compress
to a few thousand bytes per minute, the raw data rate from
image is about 100 scan lines per second, where each scanline
requires about 500 samples (for about 100 columns of holes and
the gaps between them) or about 50k samples per second.

Originally the idea was to "fax" the roll as it rolled by, using a
homebrew processor with a 1 x1 024 pixel CCD array. That
approach had a few drawbacks: it required a special board, a
dedicated processor and the software for it, custom optics, and
because the particular processor being considered was a bit
slow, an optical shaft encoding system for a servocontrol loop
would be needed to keep the paper running smoothly. In time,
however, a cleaner solution presented itself. Instead of building
custom apparatus for scanning, or a specially-wired tracker bar, it
became possible (using the movie parsing system described in
chapter 4) to read and analyze a live stream of video. So, using
a Sony "Handycam" for input, we were able to filter the image
of the roll and compress it to MIDI in realtime, and all of this
was (barely) within the tolerances required. For instance, the
camera provides a bit more than 500 pixels of horizontal
resolution and was just sharp enough to read the small "fang
mark" holes that encode Duo-Art dynamics; and the NeXT
Dimension video system provided just enough speed to let us
sample the video image in realtime (the roll-filtering process
eventually consumes about 64k pixels per second). Fortuitously,

Music

when reading the image this way, it is not necessary to build a
negative-feedback loop to servocontrol the paper speed: the
system simply aligns the incoming frames by matching up the
holes in the images. Because of this, it was convenient to snap
together a "spoolbox" for the rolls out of LEGO toys:

The scanning application, on the NeXT computer, displays the
video input, and filters the roll data to produce MIDI in realtime:

It does not yet do a thorough job of interpreting Ampico, Welte,
and Duo-Art dynamic codings, although that would not be hard
to develop. (One would scan the calibration rolls built for these
respective pianos, since they provide exhaustive dynamic tests).
The LEGO apparatus is a bit jiggly, although it has worked
surprisingly well.

Music

Summary

The purpose of this discussion has been to demonstrate with a
variety of examples some of the expressive power that derives
from achieving a dense coding of musical content. It only
scratches the surface of what has been done recently, of course;
for instance, I scarcely mentioned the work that has been done
on interactive music systems (e.g., Rowe, 1993) or the great deal
of other recent music systems work. There has been a curious
tendency on the part of computer scientists to trivialize MIDI,
but for all its faults, it delivers much of the content that is, after
all, the goal of a great deal of musical signal analysis. The
following sections deal with abstracting some of that structure
directly from sound, but the musical examples just mentioned
help to remind us of some of what to expect when we succeed.

2.3 A music detector

It would be useful to have a music detector- a little listener a
bit like Neuringer's Stravinsky-sensing pigeons, to comb sound
waves and find music when it occurs. This would be a good step
towards finding the interludes between segments in a television
show, building tools to measure airplay of songs, and so on.

The problem is that, in a sense, one man's data may well be
another man's music. How can one reliably determine whether
music is present without a multitude of other sensations that more
or less describe all the things that music is? It would certainly seem
to help if one could first recognize the constitutive components
the timbre of an instrument, the rhythmic tapping of a drummer,
popular melodies, and so on, to know whether or not the sounds
make music. One could reasonably conclude that a "proper"
music detector ought to weigh a collection of sensibilities to come
up with a believable response. Therein lie many theses.

Instead of that, we'll try the opposite approach. What are the
acoustic features that characterize music? Can we build a
workable detector based on that model? As it turns out, what we
will examine is an exceedingly simple little listener that very

Music

much "combs" signals looking for music, and it works
surprisingly well for many common cases.

Measuring harmonic entropy to find pitched notes

Let us first simplify the problem somewhat by considering only
music that has "pitches" - notes with frequencies that remain
relatively fixed for a finite period of time. That immediately rules
out most drumming, some non-Western musics, and forms like
"rap," but nevertheless, even drums are often pitched, and a
great deal of what we commonly call music has pitched notes
and chords that make melodies and harmonies. An amplitude
envelope, of course, does not reveal that information:

but a spectrum does:

1.0 sec 9.0 sec

Each vertical slice of the spectrum represents one frame of log-
magnitude frequency samples; the greater the magnitude, the
darker the sample, so concentrations of energy at peaks appear
as black points. This spectrum shows about 13s of sound: about
1 s of lead-in music, followed by 8s of speech, then more music.

Music

When music is present, combs of relatively fixed-frequency
harmonics are seen, giving the spectrum a striated appearance:
the music at either end contrasts sharply with the speech in the
middle, which also contains combs of harmonics, but unlike
most music, the harmonics of speech vary rather rapidly in pitch.

One way to measure this is with a filter that senses "striation"
by sliding an analysis window over the spectrum, collecting the
peaks in frequency magnitude, and keeping a running tally of the
average duration of a stationary frequency peak. This reflects the
predictability of a peak (high for music, lower for speech), or
inversely, its entropy (higher for speech, lower for music). When
the predictability of a peak exceeds a threshold, there is likely to
be music present:

music
music

Output of a harmonic prediction filter (a music detector)

In much of the sound I have studied, and especially in
entertainment media, the distinction between music and speech
is so sharp, and there is sufficient music in the sound, that a
histogram of the prediction filter output reveals the two modes
quite clearly:

speech

music

4.0 8.7 17

(The horizontal axis is the average length of a frequency peak in
frames; the threshold here of 8.7 frames is about .05s at 8KHz

Music

with 48-sample frame increments). Now what we wish to do is,
arrange things so that a sound filtering process will output a list
of events or segments that contain music. It is useful at this
point to consider the implementation in a bit of detail because it
yields components that will be handy in other situations. Then
we will test it on some long samples of sound and consider its
limitations.

Implementing the music detector

The form of many filters like this is that of a function applied to
sequential frames of input data, as is familiar from short-time
Fourier analysis. This is implemented in a straightforward way:

filter (func, offset,num frames)

slides a filtering function, func, over the input sound (optionally
beginning at some offset in the stream, and running for some
number of frames; external variables control the frame size and
increment). As the analysis progresses, func (s,n) is called
with successive frames of n samples, s []; in most cases it is
convenient to use one-channel 32-bit samples.

The music filter maintains a sliding window of frames (think of it
as a 2-d rectangle sliding over the image of the spectrum), and
within the window, keeps a moving average of peak duration.
When a new sample frame arrives, the oldest frame is removed,
the new frame is inserted (effectively stepping the window ahead
one frame in time), the peak tallies are updated, and the new
estimate of peak predictability is output. To "insert" the new
frame, we compute its magnitude spectrum

m[i] = log|F [i], where F [i] is the discrete Fourier term

at frequency = i*SampleRate/FrameSize

then locate the peaks in the spectrum m[] to obtain a peak frame

p[i] = 1 if m[i] is a local maximum (in i), else 0

Music

p111.- mli]

magnitudes are converted
to peaks

It is these peak frames that are kept in the analysis window.
This is implemented as a modulo-indexed delay buffer, P where
P (0) gives the current peak frame, P (t) gives the t-th previous
peak frame, and P (t) [i] is true if the i-th bin of the t-th

previous frame contained a peak. In this way, the original
window of magnitudes is efficiently reduced to a binary window
of peaks. We then compute the average length of a run of peaks
in that window, but since we wish to emphasize runs if they are
present, we first drop the singletons (the isolated peaks) and we
"fill in the dotted lines" with a rule that plugs small gaps in runs
of peaks (the rule is simply: 1011 -> 1111). This process of

peak detection in frequency followed by peak tracking in time
can be thought of as analogous to convolution of the 2d spectral
"image" with a horizontal line detection filter. In this way we
obtain an average that adequately reflects the "longish" runs that
characterize sustained musical tones.

The C code for the music filter is this:

naasic (int *s, int n) {
int m[N], h[N], *p3, *p2, *pl, *pO, *pl, n2-n/2;

// decrement peak accumulators:

for (p0=P(0)+MinBin, pl=P(0)+MaxBin; p0 < pl; p0++)
if (*pO > minRun) peakN--, peakT - *pO;

// find a new frame of peaks

Spectrum(m,h, s,n); // m-maagnitude data; h=hartley data

findPeaks(P(0),m,n2); // P(0) [i] = 1 if m[i] is a peak

// 4-pt smoother; emphasize sustained peaks: 1101=>1111
smothPeaks ();

// merge incoming column of peaks

// and increment peak accumulator

for (p2=P(4)+MinBin, p3=P(3)+MinBin, pl=P(3)+MaxBin;

p3<pl; p2++, p3++)

if (*p2 && *p3 && *p2 < naxRun)

*p3 += *p2, *p2 = 0;
else if (*p2 > rninRun)

peakN++, peakT += *p2;

output((float)peakr/(float) (peakN? peakN:1));

CurFrame++;

}

Music

This relatively tidy function follows the method outlined above

(drop the oldest peak frame, decrement counters, find a new

peak frame and insert it, smoothing the peak runs), but a few
other details should be noted. The spectrum is computed using

a discrete fast Hartley transform (DHT) with a raised cosine

window. This is analogous to a discrete Fourier transform (DFT)

except that the complex "cis" kernel in the Fourier transform

F(f) = Jx(t)e-i2ftdt = Jx(t)cis(2nTft)dt

becomes a real "cas" kernel in the Hartley transform:

H(f) = x(t)(cos(2nft)+sin(2nft))dt = x(t)cas(2nft)dt

Thus, Hartley is related to Fourier as:

H(f) = Freal(f) - Fimag(f)

The Hartley transform was due to R.V.L. Hartley (A More
Symmetric Transform, 1942) and has been extensively described

by R. Bracewell (1984, 1986). One of its chief virtues is that the

same real kernel is used in both analysis and synthesis
equations. That is, Hartley is its own inverse (and "more

symmetric"), whereas in Fourier, the complex exponential kernel

changes sign between analysis and synthesis equations, which is

what gives rise to its conjugate pairings and Hermitian matrices.

That represents a twofold redundancy in terms that Hartley

avoids. In computer implementations of Hartley, a single
function suffices for both analysis and synthesis, and the

multiplications are all-real, not complex. There are of course

well-known methods for eliminating redundant calculation in
implementations of Fourier, but use of the Hartley transform
avoids these nits from the start.

As an additional expedient, the choice of the cosine window

means that instead of multiplying the input function by a

"Since, as has been known
for a century and a half
Fourier's coefficients are
complex, it is perhaps hard to
accept that the complex
numbers are a construct of
the human mind rather than
of nature.
Of course we all accept that a

power spectrum, such as an
optical spectrum, is described
by a realfunction ofa real
frequency variable, f but is
not the strength ofaj2+bj of
that power spectrum to be
computed as the squared
modulus of the complex coeffi-
cient af+ib/ Well, yes, that
is one way. The other way is
to compute H(f/+H(-fy,
where H(f) is the (real) Hart-
ley transform."

- Ronald Bracewell
(1986)

Music

window function and then taking the transform, H(xw), one
may convolve the transform of the input with the transform of
the window, H(x)*H(w), which in the case of a cosine
(hanning) window is simply convolution with [.5, 1, .51, and that
can be done with adds and shifts. Synthesis can then be
performed by overlap/add. When combined with a particularly
fast implementation of the discrete fast Hartley transform (by
Massalin, 1992) the result is a neat and efficient function for
spectral analysis. The music filter with conservative settings
shown here runs about 8% faster than real-time on a Motorola
68040 computer; with settings appropriate for skimming hours of
sound, like movie soundtracks, it runs about 5x faster than
realtime.

There are just a few other subtleties to mention regarding the
music function. One is that, in this implementation, the tracking
of peaks is restricted to a band of about 150-1 000Hz.
This decreases the computation by a considerable factor but still
captures most of the musical information. Computation may
also be reduced by skipping the filtering function more quickly
along in the input stream (the default increment is quite
conservative). Another small point is that peak-runs are
truncated if they exceed a certain duration (about 1/3 the
duration of the peak-sampling window). This has the effect of
reducing the impact of long and often non-musical drones, like
harmonics from a buzzing power supply (of course, it may also
reduce the overall responsiveness to very slow-moving music).
Finally, the frame size is chosen so that the discrete frequency
samples in the spectrum are spaced about 16Hz apart, which is
wide enough to track small frequency variations like light
vibrato, yet narrow enough so that most of the musical
harmonics are distinct while most of the pitch variation in
speech crosses the bins.

In order to segment the output of this function as musical events
it suffices to threshold the peaks and then collect these segments
(dropping segments that are too short, and collecting segments

Music

that are close together into a single segment). Because this last
clustering operation is done without regard to spectral content it
may truncate or attach extra "leader" to segments.

The final result of all this is a Unix-style filter that outputs a list
of "music" events, tagged with a weight indicating the likelihood
that they actually do contain music:

usic file.snd

file.snd| 0.00.00| 0.09.55lnusic p=7.94

file.snd| 1.25.251 0.31.63lrmusic p=7. 43

file.snd| 1.59.951 0.27.26rrusic p=8.31

There are certainly many other ways in which a similar overall
measurement might be made, but it is likely that they will seek
essentially the same features. This implementation has the
advantage of being intuitively clear and straightforward to
implement. Now let us see how well it works.

Testing the music detector - All Things Considered

in his master's thesis (A Graphical Interface to Audio News,
1993) Chris Horner used this music filter to parse broadcast
radio programs. Music is used as a kind of "signpost" to delimit

the segments of many radio shows, so it is a valuable cue to
find. After a little bit of trial-and-error work, Horner set
thresholds so that the filter ran about 2x realtime (that is, a 30-
minute radio show was parsed in 15 minutes) and it found most

of the musical segments with relatively good success - perhaps
2 errors per hour. What is somewhat more interesting is the
degree to which music figures, structurally, in radio shows.

Logs of the National Public Radio program A// Things
Considered showed an average of seven musical segues per
show. Frequently the music is used to tag unannounced stories -
not so much "hard news" pieces as interviews, editorials or color

stories. Some radio programs are sufficiently well-structured that

Music

min dur desc
0:00 65 summary/top story
7:00 38 still to come...

12:55 10 feature story
15:39 30 corporate news
17:27 46 stock report
18:38 10 daily business press
19:36 10 feature story 2
23:36 10 feature story 3
26:37 91 final notes

The Marketplace radio format
(after Horner, 1993)

the segments within a show occur at approximately the same
interval, and are tagged with music in consistent ways. In
particular, the half-hour NPR show Marketplace consists of about
9 segments punctuated with musical segues ranging between 1 Os
and 91s in duration. These segments are rather reliably
positioned (for instance, segment 3 is generally a feature story,
and segment 5 the stock report). With the music detector,
Horner's software could use the overall pattern of musical
interludes to identify the radio program, as well as to locate
individual segments within the program like the feature stories.
A browsing interface could then fetch particular segments as
needed. Horner noted that sometimes the musical segues (the
long ones) overlapped the next introduction (that is, the
announcer starts talking while the "band plays on"). By design,
the music filter still signals high while the music is fading, even
though other sounds (like an announcer) may be mixed in, so
other methods were needed to find accurate starting locations for
some segments.

The music detector makes two sorts of errors - errors of
omission (failing to find a segment of music), and false hits.
Very roughly, these rates were about 2 errors per hour, and
generally, they were false hits. In the Marketplace study, Horner
found that during a week of broadcasts, only two of the music
tags were not detected at all by the music filter, and there were
an additional eight false hits (1.6 per day) one of which actually
was music playing in the background during an interview (an
appropriate find, but it might confuse a higher-level pattern
matcher).

Limitations and extensions

The music detector as described works surprisingly well
considering what should be obvious shortcomings. For instance,
touch tones and car horns would be marked as probable musical
segments. Perhaps they are, in a certain definition, but many
such mislabellings can be correctly dropped by higher-level

Music

agencies. It is often reasonable, for example, to ignore short

segments (we expect music to last for more than 5 or 10
seconds) and treat the quick bursts as strongly-pitched effects to

be handled by some other agency. In addition, when sustained

stretches of music occur, there are sometimes lulls or pauses that

break up what should be a contiguous segment, and the short
dropouts can be ignored. This amounts to gestalt-like clustering

of events according to temporal proximity.

The music detector also misses certain things. As already

mentioned, it won't catch most rhythm-only tracks. However,
these might be found by autocorrelating the power spectrum to

obtain the regular beats, and if not that, by using a click finder to

send beats to a rhythm extraction process. Rosenthal (1993)
showed some ways in which a stream of individual events can

be parsed to find their rhythmic underpinnings, if any. Mont-
Reynaud and- Goldstein (1985) have also studied this problem,

although their interest was more in analyzing pitched music.

The trouble is, in the absence of other intelligence, any periodic

tapping (like footsteps, or a clanking piece of machinery) would

pass by that measure. This suggests that some sense of timbre be

used - e.g., recognize the specific percussion instruments.
Although Schloss (1985) had some luck at transcribing drum

sounds, percussion instrument sounds can not yet be identified

well. Likewise, the effect of "Hitchcock strings" (the shrieking

violin glissandi famous from Psycho) would never be construed

as music unless one could infer that the sound came from an

orchestra. Probably most people can't (and certainly few do
when they are watching a horror movie climax). There will

always be a gray area between special effects that function

musically, or quasi-musical elements used for effect.

Music removal

In the classic Dr. Seuss movie The 5000 Fingers of Dr. T, the

hero invents an atomic "music fix" to suck music out of the air,
the key to stopping the evil Dr. Terwilliger. It is often useful to

separate the music from other sounds for quite pragmatic

Music

0- WA

reasons. This is not easy to do well, in general, but the music
detection filter can be adapted into a music separation filter (and
in fact, this is a useful way to verify that the music detector is
actually latching correctly on musical information).

The idea is to select only the music-bearing components for
resynthesis (or the non-musical ones as the case may be).
The problem, of course, is to accurately identify those
components, and as suggested, one way to do this is by applying
an edge enhancement filter to the spectral image so that
primarily the sustained musical harmonics are marked for
resynthesis (or removal). The program musyn (appendix 1) does
exactly this; in particular, the command

musyn [-m] soundfile / pplay

extracts and plays the "musical" part of a soundfile (or if the -m
option is given, plays the nonmusical portion). This is a useful
technique for roughly separating speech from background music,
and in this way the music can be operated upon independently;
at least, enough of the primary pitch content is present to be
useful, as will be seen in chapter 4.

There are, of course, several shortcomings to this method.
First, the musical portion of the signal, in practice, is not
completely characterized by line spectra: vibrato, particularly in
high harmonics, will be missed, as will noise or the blurring of
peaks near attacks, and harmonics from monotonous speech will
be collected by mistake with the music. Second, the filter
function of the collective musical source is not easily
ascertained, which means that simply combing out peaks will
not cleanly remove the musical parts. Third, when other sources
are mixed, unless one takes care to estimate the amplitude and
phase of sustained musical harmonics so that the right amount of
energy can be removed, unwanted bursts of sound will be
included in those cases.

Music

MMOW . _ 6 _ -. 11-- "I'll- - - .1. 1 - 1 -1 -I I ft"*0000"WOM I I

There have been other approaches to this sort of separation task.
The homomorphic vocoder (Oppenheim, 1969) uses cepstral
analysis (the Fourier transform of the log-magnitude spectrum) to
determine pitch and impulse response of speech signals, and
Miller (1973) used this technique to separate singing voices from
orchestral backgrounds, but because the cepstrum tracks the
most prominent pitch (which is not always the singer) numerous
errors had to be corrected by hand. That is, in the absence of
other disambiguating information, it is difficult to precisely sift
out the components of the signal that belong to a particular
source, especially one so variable as "music." However, voiced
speech is so distinctive that it often can be separated with some
degree of accuracy. Parsons (1976) showed a method of
detecting and selecting the harmonics in speech when another
unwanted voice overlapped; the method worked well but had
difficulty in dealing with consonants and non-vocalic speech.
Ellis (1993) has been developing perceptually-oriented
approaches. One can imagine several ways of dealing with this
problem, but the simple approach used here works well enough
for many applications. This illustration shows a sample of sound

"music" only music + speech "speech" only

separated into music and speech by this method. The "music
only" separation contains some speech harmonics, and the
"speech only" separation includes some residual music, but the
separation is sufficiently clear to be useful.

2.4 A polyphonic pitch extractor: the inverse piano "Severalyears ago, I recorded
four piano notes - the lowest

The "inverse piano" is reminiscent of an ordinary piano, except four D' mf no pedal
instead of putting gesture in and getting piano sound out, you put They were digitized and then

piano sound in to get gestural data out. Thus it is a special
-Richard Cann (1980)instance of an audio event filter, but nonetheless an interesting r

Music

one, for several reasons. First, polyphonic pitch transcription is
an extremely difficult problem, but the piano is a relatively
simple instrument: notes are struck strings with no vibrato or
amplitude modulation, and notes are largely superposed to form
chords. But the apparent simplicity of the instrument contrasts
with what happens when it is vigorously played: it is one thing to
identify an isolated note, but quite another thing entirely to
transcribe Art Tatum playing at full speed. Second, it is a useful
problem in and of itself, for reasons not unlike those that apply to
reading piano rolls, except that in the case of recorded piano
music, there is nearly a century of interesting musical information
that would potentially be available for analysis if this technique
were perfected. And third, as we will see, it leads to other ideas
for future recording systems.

Two Clues

Here are two clues before we begin, one dealing with the
distribution of harmonic energy in conventional piano playing,
the other dealing with the nature of piano chords.

Consider an analysis/synthesis filter that, for each input frame of
sound samples, obtains a magnitude spectrum, finds and sorts
the peaks in order of magnitude, and then resynthesizes only the
N most prominent peaks in each frame. The following Unix filter

anasyn -p 4 soundfile / pplay

does exactly that. We observe that by resynthesizing 1 peak in
speech (in a 51 2-sample frame) the result is unintelligible -
a skittering sine wave that roughly follows the inflectional
contour. But with 2 peaks, the speech can almost be
understood. With 4 peaks, the speech can be understood and
the speaker can be pretty reliably recognized. With 8 peaks it
sounds like a slightly strange but basically acceptable analog
telephone connection. These represent compression rates that
are already in the 50:1 to 100:1 range (about 80 bytes/second)
and we have done little to intelligently track and code the
formants and many redundant harmonics.

Music

In music, the same thing is observed: a piano recording of Glenn
Gould playing Bach is resynthesized using just 4 peaks, and we
perceive most all the polyphony. Of course, with just 4 peaks,
the noisy "crack" of the attack is not resynthesized, so the effect
is rather like a glass harmonica. Nevertheless, most all the pitch
content comes shining through. This immediately tells us that,
as a "first pass" in a pitch extraction process, we can narrow the
search from several hundred frequency magnitude samples to a
small handful (a dozen, say).

The second clue involves what happens with piano notes when 4kHz

chords are played. A physicist excited about the prospect of
finding chaotic, nonlinear couplings came to my lab eager to
take a close look at vibrating piano strings: surely there would be
some interesting interactions between the notes. I was skeptical,
since simple sampling synthesizers sounded pretty good, but he
insisted that with a little nonlinear coupling between the string
synthesis elements they would sound even better. We tried the
following little experiment: the B6sendorfer was programmed to
play three notes, C4, G4, B4, first in sequence, then as a chord.
Each note was played for Is at the same amplitude, as was the
chord (the spectrum and the notes are shown). The piano's
performance was recorded (in stereo, at 44.1 KHz, with 16-bit
samples). Using this soundfile, the same 3-note chord was then
synthesized by simply taking the three individual note samples
and adding them together (this was done by simply eyeballing
the attack points). We then compared the two chords, listening
and looking at spectra; could we perceive a difference?
The answer was: no. The chords were utterly indistinguishable.
This doesn't mean that there aren't interesting cross-couplings to
be found, only that the piano sound is additive to a very high
degree. These two clues give us some hope that we can indeed
write a program to perform this deconvolution.

The nature of piano sound

Before plunging into an implementation, it is useful to examine
the sound of piano notes more closely. A typical note begins

Music

Is

Piano spectrum

with a noisy "crack" and then quickly settles into periodic
oscillation as the resonant strings decay:

0.070 0 O80 0.090 ,0.100 -0.110 0. 120 0.130 :0.140 :0.150 . 0

0.500 0 510 0 620 0.530 O.54 .50 .560 -0.570 0.6&0 0-590

The attack portion of this note (a C3 around 140 Hz) begins at
.088s and by 11 Os (.02s into the sound) a just-discernible period
begins to appear. In fact, if just a few cycles of the note at the
attack are played, say from .088-.11 5s, the pitch can often be
discerned! This is somewhat puzzling until one realizes that the
sensation of pitch at that frequency may be conveyed by a few
high frequency harmonics, before the fundamental settles in
if indeed it ever does: many low bass notes do not have a
discernible fundamental (which makes sense since the hammer is
striking a long string very near one end, so it is not inclined to
vibrate in one piece). The case of the missing fundamental is
well-known, and easily understood when one looks at the

415

44 W8O 1320 1760 2200 24 300 3520 3960 4400 48140 5280

frequency spectrum of a note. Shown above are the first 18

92 Music

harmonics of C4, fo=262Hz, and the upper partials occur in a
comb at roughly integer multiples of the fundamental, f, = nfo (in
the case of pianos, string stiffness causes the harmonics to stretch
sharp slightly). We remember from Helmholtz' studies of
combination tones that when two tones fi and f2 are played, we
may also perceive a "beat" frequencies or difference tones at If1-
f2 l and f1+f2. A similar effect applies here, and the gaps between
harmonics in the comb all indicate fo.

When the note is struck, a noisy "crack" appears as a broadband
click (a vertical line) in the spectrum, although if it is played very
softly, that click may not be present. After the note is struck, the
strings decay exponentially (which is to say, linearly in decibels)
until the note is released, at which point the felt damper settles f14=3676 Hz

upon the string. That contact often makes a very faint "fzzz" as
can be seen in this close-up of the spectrum: flat harmonics

60Hz "hum"
of power supply "fuzz" caused by felt damper settling on string

In addition, many of the notes on the piano are composed of
multiple strings (on the B6sendorfer, notes from D2 on up have
three strings), and if one of these slips slightly flat, the tone
sounds "shimmery" because of the summation tones caused by f9=2363 Hz

the not-quite-aligned combs. The diagram at the right shows this.
We can see that the first C is pulling slightly flat: starting at about
the 9th harmonic (3676 Hz), the "ghost" of a flatter harmonic One of the three strings

begins to appear just underneath the "true" one, and it becomes has pulled slightly flat.

quite prominent around the 13th harmonic (3676 Hz).
This indicates some of the precision with which we can filter.
A great deal more information about piano acoustics can be
found in Hall's series of six articles in the Journal of the
Acoustical Society of America (1992).

Music

It is clearly possible to identify a single pitch reliably - it is safe
to assume that the strongest harmonic is either fo or f1 and
proceed to use an interpolating comb to single out the pitch.
Similarly, the amplitude of the note may be taken to be the sum
of the energy in the separate harmonics: Bruno Repp (1993) has
shown that overall amplitude may be adequately determined
from the power of just the first two harmonics. Amplitude may
be subjectively altered, but in any case it is easy enough to
derive a table to map dB in amplitude to amplitude (hammer
velocity) on the reproducing instrument; for the Bbsendorfer, the
scaling is approximately linear:

midi-amp dB@120
60 34.00
70 40.12
80 46.17

90 53.28....

100 60.79 Ra
110 68.01

Finding and identifying note onsets

To detect note onsets, at first it seems sufficient to look for that
"crack" of the hammer (which appears as a vertical line in the
spectrum:

Aria

J. S. Bach, Goldberg Variations
Bach-Gesellschaft edition (1863)
(Dover, 1970)

Glenn Gould
Salzburg Music Festival (1959)
(Price-Less CD D15119)

but on closer inspection we see that very soft note attacks don't
have much noise component; the last D4 in the example above

94 Music

is quiet enough so that the new harmonic is the primary (and
almost the only) cue. New notes are better characterized by the
advent of new harmonics. Filtering for this (essentially by
convolution with a bipolar operator, which smooths and
differentiates) we can accurately find the possible onsets:

In this case, the differentiation is being done on log-magnitude
values obtained by incrementing the analysis frame in 32-sample
(.003s) "hops." Notice that the first attack is slightly "fat," i.e.,
spread in time: in fact, two attacks are barely discernible. That is
because the first two notes of the aria, G3 and G5, perceived as
an octave chord, are actually skewed by about .05s (other
studies of piano playing, e.g., Palmer 1989, have shown that
melody/accompaniment attacks are often slightly skewed in
time). This can be easily seen in a closer look at the spectrum:

G3-

.897s .950s

(This image was made by sliding the analysis window in .001s
increments). This is not quite a just-noticeable difference,
although it can be measured.

Music

IF[fol

I t -

Harmonic of a probable attack

t -

a nearby harmonic shows the
noise of the attack, but not the
sustained resonant energy.

Having located probable attacks, we now identify the pitches by
analyzing the new harmonics. In particular, around a given
attack time, t, we analyze the magnitude spectra to find those
harmonics that have increased significantly in magnitude, taking
care to look for "steps," not impulses. We then sort the
harmonics in decreasing order of energy and build a table to
weight the likely notes: that is, each strong harmonic could be f0,
fl, or f2 of some note, and the table n[pitch] contains the number
of harmonics tallied for a given pitch. Then, starting with the
loudest low note, we subtract its harmonics from the spectrum at
that point and consider the residual in the same way until all the
new note onsets have been identified.. Having found the note
onsets and identities, the harmonics are summed to obtain
amplitudes, and tracked to locate offsets.

Implicit in the subtraction is some sense of the shape of the
harmonic envelope: upper partials decay in energy. A common,
troublesome idiom is shared harmonics due to fifths, and
especially octave-playing, since all the harmonics overlap:

I I I I

If the upper note is so soft that it appears to be the second
harmonic of the lower one, the problem is more difficult, and
can be compounded by phase cancellation. This case is quite
common with right-hand (treble) octaves, and often to an astute
human listener, the "octaveness" of the sound is barely
discernible as a slightly brighter timbre caused by the "tilt" due
to the energy added in the upper partials by the higher note.
To the extent that the spectrum of the lower note is accurately
known, it can be accurately subtracted, leaving the residue of
the upper note which will be collected by a subsequent
iteration. That will work.

Music

Testing the polyphonic pitch extractor

The result of all this work is another event-producing filter to add

to our repertoire:

polyp aria. snd

1 0.8861 1.0451 G5 798.15|25.23

/ 0.956/ 1.652/ G#3 203.45/20.98

Hm; seems a little sharp! A440 => 446.713074

startl durlnotel db(abs rel)lfreq

/tnp/tl.snd

0.8511 1.0691 G5125.23 62.121 798.152

/ 0.891/ 0.652/ G#3/20.98 49.21/ 203.451

1.9291 1.1421 G5125.97 45.671 798.152

1 3.0111 0.0921 A5128.15 54.331 892.052

1 3.1071 0.1481 G5127.96 54.281 798.152

1 3.1951 0.4711 A5127.76 41.841 892.052

3.974/ 0.256/ C6128.41 52.29/1017.603

1 4.1371 0.8711 A5129.06 50.341 892.052

1 4.6841 0.6831 G5127.85 53.351 798.152

1 4.8161 0.4231 F#5126.75 45.481 751.202

1 5.1361 1.4221 E5127.25 54.871 672.952

1 5.6351 1.3021 D5126.54 52.041 594.702

1 6.1781 0.9621 D4123.45 52.671 297.351

Two small mistakes were made: the second G3 (203.45Hz) was

marked as G#3, and the high B5 (1017.25 Hz) was marked as C6.

These errors are because the piano on this recording is slightly

sharp, by about 1O% (for G5, 798.15/783.991 = 1.02%), so A4

should be set at about 440x1.02 = 448Hz. The addition of an

auto-tuner fixes these note-spelling problems:

Hm; seems a bit sharp! A440 => 446.713074

This is straightforward: relative to A4=440, some of the pitches

will be either sharp or flat; if the majority of notes are sharp

(say), a few sharp notes frequencies are compared with their

correct frequencies at 440Hz to obtain the percentage by which

to retune the filterbank.

Music

Now we can run the test sample through:

polyp aria. snd I e2midi | ridi2ps

The two filters convert to MIDI and then PostScript, respectively
(gray scale indicating relative amplitude):

Aria -- 00:07.147

The tracking of sustained notes is somewhat delicate; essentially,
the process follows resonant harmonics until they decay rapidly
or fall below a threshold. These constants are currently set by
measuring the recording, which is not yet done automatically.
Setting the decay threshold too low produces a staccato effect
which is useful for rapid auditioning:

Aria -- 00:06.305

Limitations and Extensions

Built into this extraction process are basic properties of piano
acoustics - for instance, that chords are superposed; that note
onsets are relatively abrupt and can thus be detected by a simple
differentiator; that note decays are exponential, so offsets can be
found similarly; that the relative strength of the harmonics is
such that the strongest harmonic is usually fo or fi; and that there
is no vibrato or amplitude modulation to speak of, which means
the filter is well-suited to the task of deconvolving piano or
piano-like sound as opposed to saxophone playing. But there is
no knowledge of higher-level idioms that could be used to "fill in

Music

the blanks" for instance, to find notes that may be so poorly

articulated or buried in the texture of a thick chord that other

expectations are required in order to sense them. Clean, two-

voice Bach playing poses few problems; fast left-hand boogie-

woogie octave tremolos are nasty.

Pedalling is essential in beautiful piano playing, but it is
currently not dealt with at all in this filtering process. It is

expected that damper-pedalling will change the decay rate

overall and perhaps boost the higher harmonics. It changes the

sound quality in ways that can be appreciated but are still

difficult to precisely intuit even for an expert human transcriber.

In any case, the problem has not been well-studied. The "soft"

pedal (or una corda pedal, so-called because it shifts the

hammers so that they strike fewer than the three strings, or in the

case of the B6sendorfer, simply causes the hammers to strike the

strings with less-worn parts of the felt) also changes the sound

quality, "softening" the tone. Again, this should be measureable

in the spectrum, but is even subtler than the use of the damper
pedal, and likewise has not been studied.

This study reveals a few important things. First, as hoped, piano

sound is straightforward enough so that automatic transcription

can be done. However, filtering must be done extremely
precisely, and the detection of faint or obscured notes needs to

be improved either by knowledge of the musical idioms (octave

playing is a common example) or by precise knowledge of the

instrument itself. The use of idiomatic knowledge depends on

the source or style of playing; for example, Bach playing is often

simple enough that all the notes can be clearly heard by a
human as well as a machine, but blues and jazz require more

information to resolve. On the other hand, the small study of

chord superposition indicates that, because notes are primarily

added, they can also be subtracted cleanly. Thus, given a

complete "sampled" model of the piano we should be able to

remove notes from the texture to accurately "unravel" complex

chords. Further research is required to perfect the low-level

Music

"Permeating the work of
many ofthe great and
prolific composers, we find a
certain combination of notes,
a certain 'melos.'
This 'melos' or melodic line
seems to be a strong ingredi-
ent of their style."

-Sam Morgenstern
(1948)

filtering and to explore the use of higher-level knowledge to
improve the process.

2.5 Name that tune

"The essential basis of music is Melody," wrote Helmholtz,
noting that harmony was a relative latecomer to western music,
and that many non-western musics have no harmony, but nearly
all have melody. Like the words in speech, melodies carry much
of the critical meaning in music. The ability to appreciate a
melody clearly ought to be in the skillset of a listening machine;
it is not just a game of "name that tune"!

In 1948 Clarence Barlow and Sam Morgenstern assembled a
dictionary of musical themes - a collection of about 10,000
famous melodies, indexed by title and by tune. As Morgenstern
was acutely aware, one can tell a lot from a melody: obviously,
the tune bears a certain "fingerprint" of the composer, but it is
also true that melodies from the same era sound similar, as do
melodies from the same country (Hungarian tunes, Russian
tunes, French tunes, and so on). The indexing method used by
Barlow and Morgenstern consisted of transposing the melody to
the key of C; thus, only the relative pitch sequence was used.

Name that tune for MIDI

[

L Bernstein
West Side Story

A. Courage
Star Trek theme

In 1988 I wrote a "name that tune" interface for the MIDI
system. The ntt program took a melody played at the keyboard
(i.e., input from MIDI) and found possible matches in a database
of musical themes. Melody lookup was straightforward: the
input MIDI events were filtered so as to remove very short notes,
like ornaments or glitches; the relative pitch interval sequence
was taken as the sequence of pitch changes in half steps (which,
for a melody like There's a Place for Us, G4 F5 E5, is [11, -11, that
is, a rising major 7th followed by a descending half-step); and
this was then mapped around '0' in the middle of the ASCII

Music

table to obtain a printable string (in this case, 'ZN'). A system
search command, like Unix grep, could then be invoked to find

the melody string in the known list. This was evidently the first

interactive melodic dictionary, although recently commercial

products have begun to appear in this vein.

One idea implicit here, and in Barlow and Morgenstern, is that

relative pitch is generally a more salient feature than rhythm.

This relates to the combinatorial fact that a melody of N notes

can contain 12 N pitch strings if leaps are restricted to an octave.
Rhythm provides less variation (it is often roughly binary, so the

exponential base is small), hence less information. Psychological

studies of human memory support this. For example, Dewitt

(1986) studied factors of rhythm and pitch, and concluded that

pitch contour is the more important feature. Sloboda (1985)
studied the memory of a musical idiot-savant, an individual who

could play back a piano piece after only 2 or 3 hearings.

He observed that gross and highly structural substitution errors
occurred later: for example, the savant subject mistakenly folded

the rhythm from one phrase onto the pitches of another. All of

this also tends to favor pitch as the more persistent feature, and

thus, although there are other ways to do melodic string

matching, there is some basis for this method.

The program worked fine but progressed no further, for two main

reasons. First, recognizing melodies is productive when there is
a large dictionary on hand but annoying when there isn't (we

didn't want to keystroke all of Barlow and Morgenstern or the

ASCAP collection), and second, the need to use it at the moment
is fairly infrequent. Of course, it is not hard to imagine a music

system that lets the user hum a tune to retrieve songs; in fact, if

the song library were large, a "hum a few bars" interface might

often be preferred.

It would be interesting to make a more thorough study of

melodies along these lines - for example, attempting to create a

similarity metric for melodies so that labels like "French" or

fr es side toy

a name-that-tune interface

Music

"early 1 9th century" could be applied, or attempting to find
melodies in polyphonic MIDI data. To my knowledge, that has
not yet been done.

Name That Tune from polyphonic audio

Now, suppose we want to extend the smart radio mentioned
earlier so that it not only recognizes music, but recognizes
particular musical tags, like theme songs. Is there some way to
do melodic recognition from a complex audio signal?

The natural approach seems clear: if we can find the music, and
extract the pitches, and then if we can locate the melody-bearing
line, we can pass the result into a melodic dictionary as just
described. There are two main difficulties with this. First, for
the case of complex musical textures, a robust polyphonic pitch
extractor does not yet exist, and second, determining which line
is the melody may not be easy, particularly in an orchestral
situation. As it turns out, though, there are many useful
applications for which neither of these restrictions is severe.

One way to find specific pieces of music in an input signal is by
brute force - sampling the melody to make a search pattern,
then correlating it against the input music stream:

search pattern

~~ input sound

This will work, and simple, literal string searching (or matched
filtering) is not necessarily a bad approach. As with other forms
of string searching, there are many ways to improve
performance. One would of course perform the correlation in
magnitude to avoid distortions due to phase changes; and, the
signals can be considerably compressed to reduce computation,

Music

and it is sufficient to probe for the search pattern at significant
attack-points in the signal. So, for example, a system could
operate on greatly subsampled audio streams, and a note-
detector (the one-note case of the music filter already mentioned)
could skip along in the input stream to invoke further testing as
necessary. Because much of the musical content is conveyed in
a few peaks, the frequency data can be compressed by a factor
of 100 or so before matching. One could imagine using this
method to find specific sound segments, or equivalently, in a
video stream to spot particular key frames. It is a practical
search technique and doubtless will find many applications.
There are obvious drawbacks, however. This method is sensitive
to changes in pitch, tempo, instrumentation, and so forth; it may
have difficulty if there is a voice-over or other sound in the mix;
and it requires a search sample that is already known.

What we would like to do, of course, is perform the search in a
transform domain that escapes these problems. Although we
cannot quite extract an arbitrary melody, we can get close
enough to perform an effective match, and fortunately, in a great
number of musical situations, the composer makes the melody
easy to spot: it is usually the loudest, highest line in the music.
Consider the following tune:

A L I , .

This is the theme from / Love Lucy; the spectrum of that melody
sample looks like this:

V ~ y.yy

Music

The syncopated "rest" is easy to see (it is the vertical white band
in the spectrum). The upward-sweeping harp glissando and note
changes are faint but can be made out; bongos and the bass line
are very difficult to see, but can be heard. Drawn below the
spectrum is the output of an attack detector (the positive-going
difference in the magnitude spectrum, d[i] = M[i] ,,,-M[i1old
or zero when M[i],,, < M[i]old) is shown below. At each
attack point we wish to locate the most prominent note. The
method used is a correlation made by summing a combed sum
of h harmonics stretching over the samples of the magnitude
spectrum, M, namely:

M[i] ... ocub(S, M,n,h) int *S, *M, n, h; {

for (i=O; i<n; i++)

for (k=1;k<=h;k++){

S[i]| ... f = muldiv(k,i,h);

comb correlator S[i] += fin(M,f);

where muldiv(k,i,h) = k*i/h in double-precision, and

fin(array, i) is the linearly interpolated value of array[i]
where i is a floating-point index. This was found to be
preferable to a cepstrum because, unlike speech which generally
exhibits a dozen or more well-defined harmonics and
consequently shows a sharp peak in the cepstral "quefrency"
response, musical harmonics, particularly in old recordings, are
often fuzzy and fewer in number, and the cepstrum is noisy.
For the same reason, the piano pitch separation method no
longer works because one cannot assume that the first or second
harmonic of a note is the strongest one, and because the "peaks"
are often ill-formed. Additionally, this comb is convenient to
apply within a narrow band of frequencies, and the resulting
frequencies are interpolated typically to within about 2Hz (that
is, if samples in Mare spaced by f Hz, then samples in sare
spaced by f/h Hz, where h is the number of harmonics in the
comb). Initially, the result of combing in this way is a set of

Music

possible pitches; the following plot shows the four best choices
for each input magnitude frame, with the likeliest pitch in black:

oC54

A4N

E4-" F4i F4 - --
000

O0 00 0'@ 000 0C 0 0 C
00 -0as ooooo1o 000 0oo0e00o

'C

Collecting the horizontal runs into notes and favoring the
strongest note at each attack produces this:

)

C' - -eEeeeso ~ e~I0.

040~~0 000000000 0C" 00'~~0

0 0C C uC

,O0 aqo 0, oo 0 0 o00

Once all the "votes" are tallied, the pitch extraction does indeed
tend to collect the melody-bearing notes. Notice that one note
was missed: the pitches as found are: E4 F4 G4 E4 F (C5) C5 A4,
which corresponds to an intervallic string of [1, 2, -3,1, 7, (0), -31:

The missing note won't matter when doing literal searching
provided the same pitch extraction filter is used on the input,
and that the matching software is tolerant of some variance.

Music

"In music, the sensations of
tone are the material of the
art. -

- Hermann Helmholtz

At this point, having obtained some representation of the primary
pitch content, the matching may proceed in a number of ways.
For very fast matching, a string search on the relative pitch string
will do just what we expect: it will find the prominent pitch
sequences and is fairly resilient to transpositions and tempo
changes. In this way, the transformed input stream can be
efficiently compared with a set of melodic templates. This
method is explored further in chapter 4. A more thorough
approach that attempts to avoid the problem of ambiguous
melody lines might check for a melodic pattern beginning at
each possible new note in the input; this might have to be used
in listening to "fugues," for example, in order to find lines that
are buried in the counterpoint. That has not been tried, although
it seems straightforward.

2.6 Remarks

The buildup of musical tools leads to a certain synthetic
extreme. One would say "leading steadily" were it not for the
boom of information technology which, practically and
potentially, puts so much musical information in such a
malleable form. This makes a remarkable contrast with the
historical marriage of music and technology to date. That is easy
to see in the "thought experiment" that shows that years of music
could fit on today's 600-megabyte compact disk, but concrete
examples of savant-like instruments and experiments in
synthesizing both musical content and signal were cited.

To make intelligent use of that musical information, machines
need to listen in many ways. If the information is concentrated,
like MIDI data is, that can involve statistical sensors to guess the
key, find the rhythm, recognize the melody, and so on. That is
an abstract and powerful form of listening, since it is attached to
such a dense form of content, and quickly provided the basis for
Rowe's approach to interactive music systems (1993). But some
basic questions were also asked. Forgetting about guessing

Music

-- - -. I RW-W -!- - UNNOSSOMWAkft-

composers, idioms, and affects, one of the most basic questions

of all is, how can a machine recognize that a sound might be
music? How can this be implemented today? How can that

ability find a useful place in the larger repertoire of listening

processes? The simple solution (measuring the stability of

harmonics) not only worked well, but in the context of listening

to radio shows, demonstrates how useful high-level structure can

be gleaned. Without recognizing theme songs or lyrics, but
simply knowing that music is playing, one can often do a
surprisingly good job of recognizing which radio show is on, and

what segment (headlines, features, etc) is playing, provided the

format of the show is distinctive and well-known.

Beyond that, of course, we naturally do want to know what the

musical content is - what notes are being played, what

instruments are being used, what composer wrote them, and so

on. Study of the piano transcription problem showed that that
problem appears to be largely solvable, if not quite solved.
Some improvements are needed to make it work - namely,

much as speech understanding improves when one anticipates

the syntax and semantics of the language, music deconvolution

needs to be improved with more knowledge of musical idioms (a

sense of tonality, melody, harmony, and special-case figures like

octaves and rolled chords). In any case, further research should

consider not only making the piano gestural deconvolver work,
but ought to seek to derive a fuller model: the analytic process

should yield not just the gesture, but a sampled piano and

perhaps some sense of the room. That would be an exciting and
practical direction for future music recording systems to pursue.

Having found the notes, one is in a position to "name that

tune." Examples from MIDI processing showed how melody

recognition is analogous to dictionary word lookup. Indeed, the

ntt program showed how a relative interval sequence (like

[0,O,-41 for the opening theme of Beethoven's Fifth) makes a

simple and effective search key. But what about the problem of

searching from the musical audio signal? That is quite a bit

Music

trickier since so much interesting music is polyphonic,
polyinstrumental, and may contain other noise besides.
Thus what constitutes the melody line in a complex musical
texture is not always clear. But some assumptions often fit with
reality. A pitch extraction process that attempts to trace that
loudest upper line will often find the useful melody string.
This yields a search string that has the happy property of being
independent of key and tempo, so that other transpositions of the
melody can be found later. In fact, this method is not so kludgy
as it seems, and is intuitively reasonable.

Overall the desire has been to show how we might couple low-
level audio sensors to high-level processes that leverage the
dense musical content. Although we are still not adept at teasing
that information out of musical sound a number of interesting
operations can be implemented and applied. All of this can be
readily seen in the domain of music, for which so many sorts of
sound-structuring rules, and content-oriented manipulative
technologies already exists. Surprisingly, that is much less true of
speech, which is the topic of the next chapter.

Music

- . Om'! 6wq 10 10"im - - - - - I I 1 1- 1 . jolmolijohillpApo-

3: Listening to Speech

3.0 Overview

This chapter briefly considers techniques for location and

segmentation of speech in a soundstream, speaker identification,
and the novel possibility of "supersynthesis" of speech from large

collections of recorded utterances. The immediate purpose is to

develop a few more sound-content filters to add to our

repertoire; a longer-term goal is to explore some of the things

that might be done as substantial archives of digital speech

become available. For instance, it is worth noting that although

problems like talker identification have been extensively studied,

they have not yet been studied in the context of indexing long

conversations, like radio talk shows or movie dialogs, to find

particular personalities. It seems certain that the nature of future

digital information and entertainment systems will make such

capabilities a necessity.

In particular, 3.1 roughs out the requirements for mass speech

storage, making it clear that just as global transmission of speech

became commonplace in this century, the casual storage,

searching, and reuse of large amounts of speech may become

common in the next. Section 3.2 considers speech identification

and segmentation, and presents a filter akin to the music detector

of chapter 2, but for locating speech events. It also discusses a

spectral sound editor, called Spectre, that has proven to be a

useful tool in this work. Section 3.3 considers methods for

-- ---- -----

identifying the talker, or at least approximately segregating
utterances based on talker, and section 3.4 looks at the intriguing
opportunities for synthesis of speech by assembling sampled
words and phrases into whole utterances.

3.1 Sizing up Speech

There are many things we listen to and listen for in speech -

not simply the textual content of the message, of course, but also
the ways in which it was said: for example, who spoke (age,
gender, identity), or what expression, intonation, or emotional
affect was used. We can tell in an instant whether the voice is
happy, angry, or sad, whether it belongs to a little girl or a big
man, to someone who is sick, tired, drunk, or, by hearing the
trace of an accent, whether the speaker grew up in Yonkers or
Houston. Qualities like these are all natural indices to envision
using to browse or manipulate large amounts of speech.

A somewhat startling fact about spoken information is how little
of it there actually is. As with music, we expect that speech
accumulates at a finite rate, but the coding of large amounts of
speech, and consequently how much of it might be retained in
the memory of machines or appliances, is a little more difficult
to estimate than the keystroking of a piano because the
"instrument" is not so easily separated from the "gesture."

Supposing that an individual speaks for about 4 full hours in
every 24 hour day (after compressing away the silences), we
might assume roughly 1500 hours of speech per person per
year. At a coding rate of 8,000 bytes per second, that is about
40 gigabytes per person per year - still a lot by today's
standards although it certainly won't seem so forever.
Fortunately the redundancies in speech make it compressible.
Honda and Itakura (1992) evaluated a "split-band" adaptive-
predictive speech coder at low to medium bit rates (from 4K to
1 6K bits per second); in general, for "toll-quality" telephony,
coding rates down to about 1000 bits per second are cited as a

Speech

tenable lower bound (Rabiner, 1993; cf. fig 2.2), which puts the

size at about 670 megabytes per person-year of speech.

Of course, such coders use relatively small codebooks and are

designed for purposes of voice transmission, like telephony, and

that is rather different than coding for content, or coding to

facilitate the manipulation of expressive or deep structural

qualities. The textual content of a year of speech would be

something closer to 50 megabytes per person (it takes about a

minute to read two hundred words out loud) but as is well-

known, people's speaking vocabularies are relatively fixed and

quite small compared to writing or reading vocabularies -

though just how small is not easy to estimate and likely to be

highly dependent on the individual. One could imagine that a

codebook of several thousand entries for a talker's commonly-

used words and phrases could be employed in conjunction with

information to abstract inflection. That would achieve a dense

compression.

In any case, even ignoring what are likely to be considerable

savings to be had due to long-term redundancies in individual

vocabularies and articulatory habits, it seems safe to assume that

a person-year of speech at modest code rates is about a gigabyte,

which could be reduced another ten-fold by Lempel-Ziv-like

methods. Given the rate at which memory capacity of personal

information appliances is increasing, the idea of a medium that

records a lifetime of spoken output may not be so far-fetched.

Of course, all this is speculative since nobody has ever

attempted to code substantial amounts of speech in this way,
and no application has really demanded it yet. Nevertheless,

considering the effect that massive, pervasive transmission of

speech has had in the past hundred years, as well as trends in

digital media technology, it would be wise to contemplate ways

of working with large amounts of recorded speech. If nothing

else, speech will accompany televised information, which we

will certainly wish to index by spoken content.

speech:

1 gigabyte per person-year
70 gigabytes per lifetime

Speech

........ ...

3.2 Finding and Segmenting Speech

As with music, before understanding the content, like words or
notes, we would like to simply locate segments of speech.
Just as a musical spectrogram reveals certain distinctive
characteristics, so too does a speech spectrogram. The most
apparent features are the harmonics of the vocal cords (the thin
horizontally-oriented stripes); the darker, thicker bands imposed
on them are the formants that shape the vowels:

4KHz

formant

h e l1 o w o r I
1.13s

d

Of course if the speech is unvoiced (like whispering) one will see
formants without vocal cord harmonics. In longer phrases, there
are pauses and consonants that look like short puffs of noise:

support for "Car Talk" comes from our contributing listeners, and

There are several ways one might devise a filter to detect
speech. If the problem is just to distinguish speech from
background noise, a thresholded measure of average magnitude,

Speech

possibly with some adaptive ability, will often suffice (Lamel
1981). The presence of speech can also often be found by
considering zero-crossing rates (ZCR), linear predictive coding
(LPC) coefficients, and autocorrelation measures to detect
periodic energy. Usually these are combined with subsequent
heuristics to fill in short gaps or remove isolated "islands" so that
a sensible grouping of utterances is found. Techniques like these
have been reviewed and applied most recently by Hindus (1992)
in her work on capture and display of telephone conversations,
and by Arons (1993) in his work on speech browsing interfaces.

A split-comb to locate voiced speech

A slightly different segmentation method is used here. Because
we expect background music and sounds of many sorts, because
we wish to measure pitch accurately, and because we may
already have done the work to obtain short-time spectra, a comb
filter is used to sense harmonic energy. In particular, when
speech is present we expect to see several harmonics pitched
within a speech-like band, so the detector stretches a comb of nh
harmonics over a range of frequency samples. When each
harmonic settles on or very near a magnitude peak the comb
output will be maximized and the pitch of the speech will be the
frequency of the topmost harmonic in the comb divided by nh.

However, a simple comb will also respond to broadband noise
and may mistakenly collect energy pitched at multiples of the
correct frequency. To prevent this a "split comb" is used.
This simply involves subtracting the same comb shifted up in
frequency by half the pitch:

c[i = Y m[ih/nh| - m[ih/nh + h/2nhI

where

m = log-magnitude frequency spectrum
h = harmonic index in comb (from 1 to nh)

nh= number of harmonics in comb
i= magnitude index of topmost harmonic

(at frequency i -SampleRate/FrameSize)

A split-comb:

YEm ih/nh) - m ih/nh + h/2nh]

\M...]

Speech

The index i is run over the range of frequencies of interest (so
that the comb can be implemented to efficiently follow in the
vicinity of a known frequency). In this way, when the positive
comb settles on the peaks and the negative comb settles in the
valleys between them, an emphatic maximum is found and the
pitch of the fundamental is simply i -SampleRate/FrameSize.
Since the teeth of the comb generally do not all fall at integral
multiples in the frequency sample array it is often desirable to
interpolate between samples, replacing references to

m[i]

by an interpolating index such as

#define fin(d, f) (((1.0-((f)-(int) (f)))*(d) [(int) (f)]) +\

((f)-(int)(f)) *(d)[(int)(f+1)]))

fin(m, i)

This works quite nicely for detecting presence and pitch of
voiced speech. For example, running the comb over the
"hello, world" spectrum above produces this output:

pitch
comb respodse

The red trace indicates the response of the comb; it rises sharply
when new voiced speech and stressed syllables occur. During
these time segments, the pitch output (in black) is valid. For this
utterance, the pitch ranges from 86 to 135 Hz.

Speech

The speech event detector

Speech can be readily distinguished from stationary-pitch

information like music by filtering for the frequently-interrupted

and frequency-varying pitches that are characteristic of speech.

This then gives us the information we need to locate voiced

segments of speech, including syllables and stressed utterances if

necessary, and additionally, to accurately determine pitch

contours. Thus, we have another filter to add to our kit:

speech file.snd

file.snd| 10.821 2.64| speech

In the same way that the music detector was adapted to make a

kind of music separator, the speech detector can be used to

separate vowels, by using the comb to select samples in the

frequency spectrum for resynthesis, or simply to modulate a bank

of oscillators. The method of Macaulay and Quatieri (1986) is

essentially that.

There are certainly many other ways to derive similar

measurements for speech. For instance, the Rabiner-Gold

algorithm (described in Rabiner (1 975), p. 681) uses a bank of

pitch period estimators to detect coincident harmonics, and this

can also easily be adapted to do voiced-unvoiced detection.

Hess (1983) presents a 700-page monograph on the subject of

pitch alone. The problem here is somewhat different in that we

need to locate speech in what may be a rather noisy soundtrack

containing interesting background information. In addition,
we will want to perform other sorts of tasks, like speaker

identification, which will be derived from measurements of the

speech spectrum. For these reasons, combing for vowels has

proven useful.

Spectre: a spectral sound editor

Techniques like these were developed much more rapidly using

a spectrally-oriented sound editor, called Spectre, written for this

Speech 115

purpose. This displays sound spectra with options for zooming,
scaling, peak-finding, and other such functions. A typical
display looks like this:

The crosshairs over the main spectral view select time and
frequency slices of magnitude data to be displayed in the
adjoining red line graphs; the lower horizontal view (in red and
blue), essentially a scroller, shows the full spectrum of the file
(with red indicating increasing energy, blue indicating decreasing
energy, and the clear portion of the scroller visible in the main
spectral view). In this way it is easy to inspect values, adjust
frame "hop" sizes, and play back portions of the data.
For instance, one can play bands of frequencies by setting the
"bandpass" switch and selecting a block of data: the result is
synthesized by the anasyn program, mentioned in section 2.4.

In addition to these basic functions, other inspectors have been
added as needed to provide other analytic views. This
Differential view shows the magnitude change between the red

Speech

vertical band of the main spectral view (the "new" information)
and the previous grey vertical band (the "old" information):

The upper view shows new and old frequency samples (in red
and grey, respectively); the middle view shows their difference
(with blue segments to indicate the novel peaks); and the lower
view shows the phase-correct difference. This is especially
convenient for inspecting things like subtle note onsets in music.
One maneuvers the crosshairs with the mouse while watching
the differential harmonic changes at the same time.

In the following figure, the Harmonic Analyzer shows cepstral,
split-comb, peak-comb, and possibly other data views for a
selected timeslice. This also illustrates why the split-comb is
often preferable to a cepstrum for tracking pitch: as noted in 2.5,
even when the cepstrum exhibits no distinct peak, the split-comb
response shows a strong one, and the pitch has already been
interpolated typically to within one or two hertz.

Speech

a htomb of s 46733 3100 COMMY ad V:i(
..but ysho.M hm 6195 2019 40M + fad

Itakwd naziMej 26M0 20195
Nbe GWOM of " C"9=73 17980 doo* +dmisy
'*A huulmiwn 61 1239.90 1750 (icatom)+fW

'taeeathof pd.w 1279 1600 fa~d
*ocsin dfot 137M73 3100 coimuy+ fod

a *A ydI.1q toon 146227 1100 fl
"Ws Ip of %Wd 149415 4100 V99811

galtuns 674.833333 7-05

event list editor

Finally, Spectre incorporates an event list

editor to facilitate logging soundfiles by
hand, or browsing and touching up event
lists that were generated elsewhere.
For example, speech-to-text systems can
currently produce only rough event lists to
annotate a sound file; using Spectre, it is
easy to precisely spot the locations of
consonants and vowels so that endpoints
of words can be accurately adjusted.

3.3 Identifying Talkers

Having located utterances we would like to segregate them
according to who is speaking. This may occasionally be done
using gross spectral differences; for example, to automatically
find the callers in a phone-in radio talk show like Car Talk, it is
easy enough to find speech that is band-limited to about 4KHz,
as this spectrum shows:

Speech

X-:1;.: X-:': X X,

10kHz

It is also the case that the "telephone" spectrum on radio is
generally weak in low frequencies (it tends to have very little
energy below about 1 75Hz) which gives it a characteristically
muffled sound:

4kHz

[TeL fCalift-j

indeed, the gap in the lower frequency band has proven the
more reliable discriminator, and let us just note the utility of this
by mentioning that the filter find-caller writes out an event
list of speech segments from phone-in voices:

find-caller cartalk. snd

cartalk.sndl 4.171 5.231 phone-speech

Speech

5.30s

The command eplay plays back event lists (with a number of
options to control concatenation, mixing, etc), so one can skim
the radio show to play only the phone-in comments in this way:

find-caller cartalk.snd I eplay

In most cases, of course, the problem of determining speaker
identity is considerably more complex than looking for a band-
limited voice. Speaker identification has been studied for several
decades. Comprehensive summary articles by A. E. Rosenberg
and S. Furui can be found in Sondhi and Furui (1992); others can
be found in Parsons (1986), Saito (1992), or most recent texts on
speech science.

Typical approaches to speaker recognition

Briefly, the problem of speaker recognition is usually divided into
verification (accepting or rejecting the claimed identity of a
speaker typically by comparing pronunciation of a password
with a known key; cf. Jayant, 1990); and identification
(determining which speaker among a known set most closely
matches an input voice). In many cases, the procedures for
doing this are so well-established and robust that systems are in
some ways superior to humans; the technology is expected to be
applied in place of other signatures in numerous secured-access
situations, like telephone banking. Algorithms naturally
concentrate on vowels, for the steady-state resonance of the
vocal tract and formation of vowels captures much of the
speaker's vocal physiology and performance (Johnson 1990).

A typical algorithm, like the one described by Furui (1992),
extracts a number of statistical features (mean, standard
deviation, cross correlation, and Fourier coefficients derived from
linear predictive filter parameters and fundamental frequency)
and performs a correlation to determine the speaker. Furui
showed error rates (false acceptance and false rejection) of about
2% for a task involving identification of an unknown speaker
from a known population of 34 talkers, both over the phone and

Speech120

in the laboratory. Using 'high-quality" audio and a fixed
password, the reliability rate was 100% for a pool of nine
speakers. An algorithm can also look for specific vowels,
and Fakotakis et al. (1993) used a "vowel spotting" technique for
identifying speakers independent of spoken text.

In any case, there are many robust techniques to pick from.
For the purposes of this work, we need only segregate utterances
by deciding from among a small number of speakers (perhaps
half a dozen in a given movie), which is a simple form of the
identification problem. As it turns out, many of the alternations
in speaker can be detected by considering the change in the
average baseline pitch of fo, which can be conveniently
implemented as follows.

Average baseline pitch in determining speaker identity

The speech segmenter, speech, is modified slightly to append to
each utterance the statistics of fundamental pitch. In particular,
each utterance consists of a number of pitched (voiced)
segments, and the "baseline" pitch is taken to be the low point
of each segment. For example, if an utterance has the following
pitch contour:

p tch

stress pause as

the average baseline pitch is the average of the minima of the
frequency of the voiced segments (the points shown in blue;
a similar statistic, instead of collecting baseline pitch, is to
simply sample the pitch whenever the stress contour is a local
maximum). This approximately reflects the "natural" frequency

Speech

of the voice. Such a measure is adequate for most male/female
adult/child distinctions, but it has proven to work well for
segregating among a few talkers in general, like actors in a film.
For example, in Car Talk, the two hosts, Tom and Ray Magliozzi,
speak at slightly different average baseline pitch:

Ray TOMn

127Hz 192Hz

Tom, who has the higher-pitched voice, also tends to yell a lot
more, so the upper mode of the histogram is wider.

The output of the speech filter now looks like this:

speech cartalk.snd

cartalk.sndl 4.171 5.231 phone-speech| fO:158 175.8 140.6

indicating that in the given utterance, fo consisted of two
segments with minimum pitch 175.8 Hz and 140.6 Hz, the
average of which was 158 Hz. It is straightforward to organize
the utterances by considering the distribution of baseline pitch.
This then lets us build a postfilter for the speech segmenter to
assign voices to utterances:

speech cartalk.snd I speaker -f 127:"Ray" -f 192:"Tcn"

cartalk.snd| .451 3.321 speech Ray

cartalk.snd|4.251 2.571 speech Tom

We know this is not an especially accurate method for speaker
identification, and there are certainly many other techniques in

Speech

the literature that could be used. Nevertheless it works well
enough for many applications, and in particular, for
distinguishing a small number of actors in a movie soundtrack.
What is somewhat more important is that the speech and its
pitch are fairly accurately found in the presence of other noise;
after that, the work on speaker identification begins.

Another problem that should be mentioned is overlap of voices.
When two voices overlap in what appears to be a single
utterance, a more thorough pitch analysis usually reveals two
distinct pitch paths. This is the basis of typical speaker
separation techniques, like that of Parsons (1978). Here, a
second stage in speech segmentation could consider each
candidate utterance more closely to determine whether or not it
contains overlapping voices. In natural conversation, voices
overlap all the time; for instance, the two hosts of Car Talk
constantly interrupt one another, and squelch their callers.
A more realistic segmenter would take this into consideration.
In slightly less natural situations, like movies, the dialog rarely
overlaps, besides which there is frequently other pitched noise in
the background that might be confusing to a naive algorithm.
For the purpose of the work done here, voice overlap detection
has not been implemented.

3.4 Supersynthesis

If recorded speech is of consistent quality and contains a
sufficient vocabulary, it can be used in high-level synthesis by
reassembling whole words and phrases. This can be illustrated
with a small example.

The printer in the NeXT computer uses a number of spoken error
messages:

Your printer is out of paper.

Your printer is waiting for paper:

Paper is jammed in your printer.

Your printer cover is open.

Ray

Voices overlapping

Speech

In the NeXT system these utterances are stored as soundfiles to
be played as needed. Words may be tagged as events as follows:

nopaper.snd |0.0061 0.152| printer lady I your
| 0.157 | 0.5111 printer lady I printer
| 0.644 | 0.225 | printer lady I is
| 0.863| 0.3651 printer lady | out of
I 1.216| 0.483 | printer lady I paper

To play back a message, these events can be piped through
eplay as mentioned, which assembles a sound by joining the
segments with micro-fades (of about .01 5s):

your)(printer isNout of)(paper

The result is indistinguishable from the original (each word may
positioned in the mix at the same position at which it occurred
in the original, or the words may simply be concatenated, as
suggested in the example). eplay also interprets directives that
may be appended as extra fields to the events. For instance,

I 0.157 | 0.5111 printer lady I printer I @gain 1.5

multiplies the amplitudes by the given gain envelope (in this
case, 1.5x). The following directives are recognized:

@dur n truncate segment to n seconds
@stretch n stretch segment to n seconds
@gain n1 n2... multiply the amplitudes by the given envelope
@rev n reverse the segment
@t n position the segment at time tin the output
@pan n pan the segment left or right

These are meant to be illustrative, not comprehensive;
many more processing functions could be added.

Now, new sentences may be generated by assembling
appropriate words:

Speech

go OMMUMMMOW-1

"Your printer cover is jammed."

printeropen.snd |0.0041 0.1611 printer lady I your

\ 0.148 10.428| printer lady I printer

\ 0.5701 0.449\ printer lady I cover
1 1.0051 0.2181 printer lady I is

paperjam.snd \ 0.601 0.54\ printer lady \ jammed) @stretch 1.02

"Jam is in your paper."

paperjam.snd | 0.601 0.451 printer lady) jam I @gain 1.5
printeropen.snd | 1.0051 0.2181 printer lady I is
paperjam.snd 1 1.14\ 0.31 printer lady I in your
nopapersnd \ 1.216 | 0.483! printer lady I paper

These utterances sound perfectly natural provided they are

grammatically correct, and the words join together smoothly.

There are a number of ways in which a good fit between words

can be found. By taking care to preserve as much global context

as possible, and by beginning with a reasonably homogeneous

speech corpus, the overall sentence contour can be preserved;

e.g., one can replace objects and verbs in a template sentence:

'Your x is out of y."

When picking a word to fill a slot, in general there may be

several performances of it to choose from in the database.
There are various criteria one might use in selecting the best fit,

including picking the replacement word that occurs in a similar

position in the sentence as the slot to be filled, and picking a

replacement that occurred in a surrounding context that best
matches the phonemes in the destination context. This will help

to ensure that the transitions at the head and tail of the

replacement are phonetically smooth, and that it fits the sentence

intonation. I have not yet automated these functions, but

anecdotal experience in assembling sentences by hand is

promising.

Speech

In addition, once the replacement word or phrase is put in place,
just as we cross-fade in amplitude to remove clicks, it would be

useful to smooth the fit by taking care to keep the pitch locally

smooth, and perhaps also altering the emphasis by changing
pitch and amplitude. Intonational structure is intricate but the

work of Silverman (1987) on fundamental frequency contours

and Pierrehumbert (1981) on intonation, as well as Cahn's work

on synthetic affect (1990) all indicate that intonation can be

analyzed and synthesized. In the examples above, for instance,
certain words were emphasized by stretching or boosting

amplitude slightly when putting them into sentence-initial and

sentence-final positions. At the moment, eplay lacks the

analysis and resynthesis functions required to facilitate proper

pitch and time scaling (e.g., pitch shifting without affecting

formant positions or consonants); nor can it make more

meaningful intonational adjustments.

By contrast, previous techniques for synthesizing speech have

generally focused at lower levels. Formant synthesis from text

has been popular for years (Rabiner 1967), and the work of Klatt

and others is well-known through DECtalk and MITalk (cf. Allen,
1987). The general difficulty with these systems is that overall

sentence intonation and rhythm is awkward, and vocal timbre is
unnatural. The timbral problem can be overcome by using

sampled data (for instance, Hauptman (1993) at CMU has been
experimenting with the application of the Sphynx speech
recognition system for the automatic assembly of triphone
databases specifically for use in rule-based synthesis). However,
triphone samples can be difficult to assemble cleanly, and the
overall contour of the speech produced is still not convincing.
By using large speech corpora as suggested here, one can
rearrange whole sentences so that the overall affect remains

natural. This then leaves the problem of what to do about
missing words; probably they would be cobbled together by a
phonemic synthesizer.

Speech

3.5 Remarks

The problem of finding speech events has been considered very

briefly, mainly because it is a large topic about which a great

deal is already known. The goal here was to implement a few

techniques relevant to our event filtering framework so that at

least some useful information can be gotten out of the speech

parts of soundtracks. To that end, a number of event filters were

introduced, including speech (a speech segmenter), speaker

(to segregate utterances by speaker), and eplay (an event list

playback utility), as well as spectre (a general application for

investigating audio spectra).

One could easily imagine that a future speech transcription

system would deal with all the issues discussed here, and others

besides, but even in that scenario the value of the simple event

list approach and composable parts used here should be easy to

see. For instance, in movie-like applications, it is common to

want to rearrange dialog, for purposes of synchronization,

replacement, enhancement or muting of the emotional content,

and so on. This will probably be a common operation in future

entertainment systems as well. When the structure in the

soundtrack is well-annotated the parts can be easily rearranged.

Although the conventional wisdom is that the "Frankenstein"

approach to synthesis from a large speech database won't work,

this discussion argued that not only is storage of large amounts of

speech quite feasible, and even imminent, but with a few

operations sensitive to grammatical, phonetic, and articulatory

continuity, the resulting speech sounds natural. In fact, even

without second-order operations for smart splicing of speech,

it is often possible to put together phrases quite convincingly.

This is therefore a promising area for future research.

Speech

Speech

W I-.-- - -1 -A - - I - samiffimmmmmow

4: Looking for the Holy Grail:
Movie Scene and Sound Analysis

4.0 Overview

Feature films and television shows are made to be
taken apart: plot, dialog, scene and soundtracks
are composed to help viewers follow characters
through a story. Often the parts are used

deliberately to push emotional "hot buttons."
Compared to the problem of sensing sound in the
natural world, movies are highly artificial but
nonetheless challenging and illuminating to May he who illuminated this..

analyze, because they contain a microcosm of sights and sounds, illuminate me

as realistic or fantastic as one might like. We won't expect a (from Indiana Jones and theLast Crusade)
machine to understand the gags in an Ernie Kovacs episode any
time soon - such depth of understanding is as much the "holy
grail" of machine intelligence as anything - but on the other
hand, with the apparatus assembled so far in this dissertation and
a bit of extra picture analysis it ought to be possible to get
something interesting out of a big-screen drama.

We recognize the opportunity that structure in the film -
the database that is the movie - can be transmitted and
synthesized in a smart receiver. The receiver could switch off
this information and use it for filtering, browsing, abstracting,
and reconstructing the film in many ways. The goal of this
chapter is not to develop techniques for playing synthetic
movies; it is to explore the lower level picture and sound

contents to find ways of locating important parts. Of course, the
accessibility of those parts invites new ways of watching them.

Section 4.1 takes the audio content filters already developed and
applies them to a mini-example - taking apart some of the
soundtrack to Mr. Ed, the 1950's TV sitcom. Section 4.2 presents
a movie analysis application that performs real-time image
analysis (detecting clips, fades, wipes, pans, etc); this tool makes
it possible to index the gross picture elements in a feature film,
in effect parsing out the "storyboard." This is used in section
4.3, which studies an entire movie (the third "Indiana Jones"
film: Indiana Jones and the Last Crusade, in which Indy (Harrison
Ford) and his father (Sean Connery) race against the Nazis to
uncover the Holy Grail). This is a classic adventure film, and
telltale features can be found in both picture and soundtrack.
Of particular interest is John Williams' musical score which
contains a multitude of leitmotivic musical clues that point the
way the way to the Grail. Section 4.4 discusses this work overall.

4.1 A Close Listen to Mr. Ed

Indexing the elements of a sitcom

Here is 20s of sound from the beginning of a scene in Mr. Ed:

4kHz

2s 4s 6s 8s 10s 12s 14s 16s 18s 19.Ols

130 Movies

By now, we are adept at recognizing various features in the

audio spectrum: the lead-in music is easy to spot (through about

4.75s; the vibrato that becomes noticeable around the 1 5th

harmonic may indicate string or orchestral music of some kind);

speech occurs intermittently (starting at about 4s); there are some

broadband vertical clicks (between 2s and 4s, and at about 19s);

and then there is some fuzzy-looking stuff (from 8s - 1 Os, and

15s - 1 7s, respectively). The music and speech filters account

for much of this sound:

musicspeech

2s 4s 6s 8s 10s 12s 14s 16s

This leaves gaps at 6s, 8.5s, 11.5s, 13s, 1 5s, and 19s, of which

all but two contain silence (background hiss); the two gaps that

are still unaccounted for (shown in green) contain the "fuzzy-

looking stuff" that turns out to be laugh tracks. In addition, the

broadband clicks have not yet been labelled; we will consider

these next.

Footsteps and doorslams

It is useful to add a click detector to the set of event filters as a

building block for finding footsteps and other noises. The

program click does just that (by looking for abrupt broadband

amplitude increases), however when we run it over this segment

of sound, we get more than we bargained for:

Movies

click ed.snd

ed.snd

I 00.0410.20|clickll .88|tilt - 30 26 27

1 02.1010.20|clickl15.40|tilt v 25 22 38

1 02.7810.20|click|l6.67|tilt - 15 15 18

1 03.17|0.20|click|l4.15|tilt v 36 30 39

1 03.3710.20|click|l4.27|tilt v 39 34 41

1 05.6810.20|click|13.14|tilt - 30 25 27

05.7810.20|click|12.341tilt - 25 25 28

06.1510.20|click|12.10tilt - 29 31 22

06.7110.20 click|15.45|tilt - 23 33 34

12.3810.20|clickl14.97|tilt / 4 9 21

12.7110.20|click|14.241tilt -22 24 26

1 14.1210.20|clickl15.01|tilt v 17 13 23

1 16.56|0.20|click|14.20|tilt v 30 16 31

1 16.58I0.20|click|14.86Itilt / 17 24 30

16.83|0.20|clickI14.49|tilt / 13 17 31

17.26|0.20|click|14.90|tilt ^ 29 33 24

18.1110.20|click|14.83Itilt v 15 10 28

1 19.3010.63|click|l6.45|tilt / 20 25 34

The problem with clicks, of course, is that interpreting their
origin is not easy. The clicks in bold are the ones we will be
interested in - the ones that stand out on visual inspection.
The remainder are "false" hits, although they are not so easy to
dismiss. They might be removed by appropriate thresholding
(ignoring clicks fainter than 1 6dB except when they occur in
temporal proximity), but what is an "appropriate" or proper
threshold is not easy to reliably ascertain. The first click (at
00.04s) is the onset of sound: this particular file begins with
some blank leader, complete silence after which the sound,
starting with background noise just before the music, is spliced
directly in. That click causes only a faint amplitude change
(11.88 dB) and can be dropped for that reason alone.

The remaining clicks are mostly artifacts of speech - hard
consonants like /k,g,t,d,ch/ and a few sharp vowel onsets
(so sharp that they are almost glottal stops; remember that actors
in old television and radio programs often spoke in pointed,

Movies

nasal tones so their speech would carry over the airwaves).
Without understanding the speech well enough to label these

clicks as part of an utterance (as opposed to part of a footstep
that might be mixed in with the speech), they are tricky to

reliably separate. One heuristic that works fairly well is to

simply ignore all the clicks that co-occur with speech. That is

essentially the "eyeball" heuristic of ignoring all but the ones that

"stand out," visually - which is to say, the Gestalt principle of

similarity. In this case, that actually does remove all but the

boldface clicks we are interested in, but in general it will throw

away "good" clicks that are mixed with speech. To avoid

throwing out the "good" clicks, apart from understanding the

speech, it might be helpful to look for clicks that cut across a

vowel (as opposed to clicks that occur at the onset of a vowel, or

in the transition between two vowels). It is hypothesized that

this could be done by looking at the pitch contour of the vowels

(for instance, as obtained by the combing method described

earlier), and keeping only the clicks that occur in the midst of a

smoothly-varying pitched vowel. That of course is the Gestalt

principle of "good continuation" mentioned in 1.3. Brown's

thesis (1992) considered problems like this in more detail;

these ideas are not implemented here.

In any case, we are left with the following clicks:

ed.snd

I 02.10|0.20|clickIl5.40|tilt v 25 22 38

| 02.78|0.20|click|l6.67|tilt - 15 15 18

| 03.1710.201click|14.15|tilt v 36 30 39

| 03.3710.20Iclick|14.27|tilt v 39 34 41

| 19.3010.63|click|16.45|tilt / 20 25 34

In general a click or scrape could originate from a wide variety

of sources - not just doors or shoes but chewing noises, coughs,
or mechanical collisions of all sorts - and there is no easy way,

a priori, to resolve them to a particular source without

understanding the surrounding pattern or context. In this case,

both clicks are door noises. That would be a likely supposition

anyway, since at the opening of a sitcom or some other dramatic

Movies

scene, our expectation is that the entrance of a character will be
accompanied by walking-in noises.

In many cases, footsteps are distinctive enough that they can be
identified as such somewhat reliably: a single footstep is usually
performed after the fact by a "Foley" artist, and although they
come in many varieties (for at least as many kinds of shoes and
Foley-pit walkways as are on-hand during the mix), they are
generally exaggerated for effect. A footstep is most always a
"heel-TOE" pair of clicks; it is occasionally a singleton and rarely
a triplet. In addition, footsteps often are vaguely pitched - they
have a somewhat clunky, "hollow" sound, usually higher for
women's shoes than for men's but in either case, with energy
skewed toward the bottom of the frequency spectrum. Door
noises may be pitched, too, but typically have a louder, more
even, broadband "slap" before the pitched nature becomes
apparent. For instance, here is a doorclick:

22kHz
door noise

In this case, the picture of the broadband clicks is a little
misleading. Of the main group of five dark, vertical lines, what
is actually heard is a triplet, "clunk-clunk-clunk," spaced at .15s
intervals denoted by the red wedges; notice that most of the
energy, in black, is concentrated in the "blobs" at the bottom of
the spectrum. The subsequent (and preceding) clicks are almost
too faint to be heard, and are echoes, or part of the latch noise.
By contrast, a typical footstep looks rather different: there are
usually two noises, the heel (which is a lower-pitched "clunk")
and the toe (a louder and higher-pitched "chink"):

Movies

22kHz

toe

Certainly not all tootsteps look like this, but the pattern is quite
common. The "tilt" field in the events output by the click
program roughly indicates the skew of the spectrum so that these
kinds of characterizations can be made: e.g, "/" indicates that

the energy is tilted toward the high end; "-" indicates fairly flat,
broadband noise; and "A" indicates a bulge in the middle. Most
door noises are of these sorts, whereas most footsteps consist of a
heel-noise tilted toward the low end ("\") followed by a toe-
noise tilted to the middle or high end ("^" or "/"). If a pattern

such as this can be reliably matched, that of course provides a
third way to detect footsteps that might be mixed in with speech.

In any case, for the Mr. Ed example, the upshot of this analysis is
that the output of the click detector is filtered by ignoring clicks
that co-occur with speech, leaving us with the door noises at the
start and end of the segment:

I 02.10|0.20|clickjtilt
I 02.78|0.20|clickitilt
03.1710.20|clickItilt

I 03.3710.20|clickltilt
I 19.3010.63|clickltilt

seeh_

2s 4s 6s 8s 10s 12s 14s 16s 18s 19.97s

Movies

v 25 22 38

- 15 15 18

v 36 30 39

v 39 34 41

/ 20 25 34

I

Cows, horses, laughtracks and other effects

There is no easy way to recognize that the unaccounted sounds
(in green) happen to be laughter, and this is a good opportunity
to introduce the general topic of effects recognition. As Serra's
thesis implicitly showed, and our intuitions based on visual
inspection of audio spectra corroborate, we observe pitched
sounds of many sorts (vowels, pitched music, etc; in general,
these are sounds that arise from a vibrating, "driving" source in a
system of resonators), and noisy sounds (clicks, scrapes, and
longer-lasting noise of a highly stochastic nature, like whirring
fans, ripping cloth or bubbling water). It appears that a well-
refined analysis of pitch and the resonating filter system around
it, perhaps combined with a little knowledge of noisebursts (as
we have begun to indicate through the discussion of clicks) will
go a long way towards helping to formalize, at least statistically,
many sorts of sounds. For instance, a "cow-like" pattern:

.....

cowt"moo")

can often be easily recognized by the characteristic "hook"
shape of its pitch contour:

Movies

A "whinnying" horse also has quite distinctive patterns of pitch

and noise:

....

horse

On the other hand, the recognition of highly stochastic sounds,
including complex mixtures like shattering glass or applause,
which can be thought of as "aural textures," has not yet been
studied. The noisy, canned audience laughter in Mr. Ed is an
example of that:

ur ("Hmmm!) laughter

This is a case where straightforward spectral analysis does not
reveal much obvious structure. A comb-filtered analysis of the
coherent pitched components does show some hoots, but not
enough to form discernible patterns. More research will have to
be done in this area. The best a naive event filter can do for
now is label such sounds as "unidentified" in the hope that the
source can be determined by some subsequent analyzer.

Movies

I

4.2 Visual Scene Analysis

We now turn our attention toward the more integrated analysis
of picture as well as sound in a film. Recognizing objects in the
picture, like faces of actors or settings, is still a daunting job and
not likely to be practical anytime soon. On the other hand, it is
possible to track many of the camera and editorial features in the
picture. This section describes an application that has been
useful in the analysis of video streams. The program, called
Media Whacker, reads a stream of video from an external
randomly-accessible video source (a laser disc player, or a VISCA-
controlled source). Several controls let the user navigate through
the source, view lists of clips, browse video event lists, and so on:

snuren enntrni

Movies

Scene parsing with Media Whacker

Several research projects have considered or implemented the

parsing of a movie into its constituent "clips." As early as 1986

Sasnett described a scene boundary detector based on the used

of a sampling grid (Sasnett, 1986). David Small (1992) used a

differentiator trained on the red-green-blue color distance

between successive frames in a decimated stream. Elliott (1993)

used a collection of heuristics (above all, the continuity of image

along the edges of the frame) to locate shot boundaries. Ueda et

al (1992) used optical flow estimates on small samples of a frame

(like Sasnett) to obtain information about cut boundaries,

panning, and zooming. Tennenhouse and his group (1993) have

also built a video clip detector and experimented with a number

of programmatic applications of video event filtering (for

example, matching of key frames - like title frames - to index

television broadcasts).

Much of this work seems to have occurred around 1992 with the

general advent of some amount of free-flowing video input and

output in common computers. Media Whacker is a similar case

in point. The basic program, including video analysis and

automatic clip detection, was written in a day and worked the

first time. It was needed mainly to provide primitive parsing and

inspection of video streams, much like Spectre for sound.

The program is chiefly used to read video and write out clip lists,

which are event lists of the clips that make up a film. Like other

similar analyzers, it does frame-to-frame differentiation on a

decimated stream to locate clips in running video streams.
However, this alone misses a number of cuts, particularly fades,

wipes, and cuts in low-light scenes. The low-light problem can

be avoided by using an automatic gain control that is keyed to

the overall luminance in the frame (that is, sensitivity to changes

is increased in low-light conditions, so that dark cuts will not be

missed). Fades and wipes are detected by special processes that

oversee a longer buffer (a few seconds). This seems to find

nearly all the principal shot boundaries. In any case, the errors

that remain are difficult to correct. They involve false hits (mis-

Movies

thead frame

frame-to-frame distance

a "clip"

classifying explosions and other visually disruptive effects), as
well as missing other visual effects (like very long visual
crossfades, mixtures, or extremely fast, choppy cutting).
In practice, those are small problems. A comparison with by-
hand analysis shows that the automatic cut detection for a
feature film is about 95% accurate; typical two-hour movies
have about 1200 cuts (that number is sometimes higher in the
case of "action" films).

tail frame The clip list output by Media Whacker includes not only the
basic shot boundary information, but for each clip, its overall
luminance and "pixel activity" profiles. These represent
measures of luminance and interframe distance over the frames
in the clip. For example, a slow-moving clip (like a conversation
over a dinner table) has rather low pixel activity. The image
analysis software for a time also tracked camera motion, but
since this has not been found to be a particularly meaningful
index into the content (except for anomalous cases, or perhaps
for film editing applications), it was dropped.

Limitations and extensions

Because of the environment in which it runs (a NeXTDimension
24-bit video system), incoming frames are analyzed only with
difficulty. In particular, to do the scene parsing on a live video
stream as described here the system is able to perform about 6
frame comparisons per second on frames that have been
decimated to 64x48 pixels. It was found that frames as small as
1 6xl 2 could be used, although accuracy began to degrade
noticeably. Some video sources, like disks, can be stepped a
frame at a time, but although it would be possible to compute in
much more depth, this has not been necessary. Much of the
same video analysis software was used in the piano-roll reader
described in chapter 2. While this does demonstrate the utility
of having a somewhat flexible video input software library, it
does not extend as far as Tennenhouse and others have gone,

Movies

primarily due to the awkward nature of managing video frame
analysis in the NeXTDimension i860 architecture.

For similar reasons, it is not really feasible yet to integrate live
audio and video analysis from signal into a compelling system.
Although this can be done with MIDI, VISCA, and other control-
protocol systems, general systems are not quite advanced enough
yet to afford the signal processing capacity required. This is a
natural avenue to work along, however.

4.3 The Holy Grail

The quintessential adventure

We are now in a position to begin to consider
some of the high-level features observable in the
picture and sound of a full-length feature film.
Indiana Jones and the Last Crusade (@1989

Lucasfilm, LTD; 1990 Paramount Pictures) is the
third film in the Indiana Jones trilogy that began "he Holy Grail, Doctor Jones...

with Raiders of the Lost Ark (1981). It is an The chalice used by Christ during the last supper

archetypal adventure movie: Indy and his father, (from Indiana Jones and theLast Crusade)
Henry Jones, are hot on the trail toward recovering
the Holy Grail. The path to the Grail is revealed
through a series of clues - a fragment of a stone tablet, a
knight's tomb, a sphynx-like series of riddles to gain access to the
grail - and the chase scenes involve cars, trains, horses, boats,
motorcycles, airships, and armored vehicles, among other things. t

As a first pass, we filter the video through the clip-finder in
Media Whacker. This yields approximately 1200 clips, the
statistics of which are interesting. The following plot shows the
"activity" in a clip (that is, the average amount of net pixel
change during the clip), the duration of the clip, and the
brightness of the clip, all shown as a function of time during the
film:

Movies tThere is a compelling theory (c.f. Hancock, 1992) that the grail that was the object of Parsifal's quest and the 141
crusades of the Knights Templar was not the chalice used at the Last Supper, but rather, stones bearing a message
from God - i.e., the stones carrying the ten commandments, housed in the Ark of the Covenant.
The "one, true" Ark is thought to reside in the church of Mary in the holy city of Axum, Ethiopia.

activity

duration

Indiana Jones and the Last Crusade 2:06.00

It is easy to see from the general activity level that there are four

main action sequences in the film - three introductory chases

followed by a fourth long, slow-building sequence that gives way

to the final denouement. This is mirrored somewhat in the other
statistics: the average duration of a clip tends to get shorter as the
action picks up - that is, when the "activity" graph begins to
run high, the "duration" graph runs low. The same is somewhat
true even of luminance: action-packed scenes tend to be
brighter. All of these measures reflect the long-term pace of the
film. It would be interesting to study other less-adventure-prone
movies along these lines.

Hearing the clues

At first, the soundtrack yields up its clues less willingly.
For example, a cursory run of the music detection filter shows us
that there is music throughout:

0:40.00

In fact, in the first 40 minutes, there are only about 7 minutes
without music. As it happens, it is these non-musical moments

Movies

that are most interesting, for they contain set-up scenes and
dialog that reveal essential parts of the plot - dialog that is too
important to be obscured by music. In fact, in the second gap
Indy learns that the Grail is about to become the object of his
search; when the music comes in (highlighted with a gong in the

score, circled in red on the graph), a very special tune is played:
it is the stately "Grail" melody that is used throughout the film to
underscore the clues to the Grail as they unfold.

Using our other content filters proves somewhat less interesting;

while it is possible to find dialog uttered by Indiana Jones, or by
other characters, this is somewhat difficult to associate with
features in the plot particularly since most of the principal
characters speak throughout.

Finding the Grail

The important elements in this movie are all given special

melodies in the soundtrack: the familiar "Raiders March" is

played whenever Jones makes a safe getaway; the Nazis always

are accompanied by an evil tune; and the objects of the search,

like the Ark of the Covenant, the Holy Grail, and the knights

who guard it, all have special melodies accompanying their

appearance, or often even a hint of their presence. For instance,
whenever Indy leafs through his father's "Grail diary," we hear
the Grail theme. In all, the Grail theme appears 19 times in the

movie, of which the melody-finding program discussed in

chapter 2 currently finds about half. It misses the others due to

noise or subtlety in the soundtrack; for example, in one instance,
the melody is played quietly, by slightly detuned instruments for

a spooky effect while there is rustling paper and speech in the
acoustic foreground; this fools the pitch extractor. In another
case, at a particularly confusing moment (the "Leap of Faith"

scene), the Grail theme is turned into a sort of fugue played
quickly on high strings, probably unnoticeable to all but the

most musically astute listeners anyway. But the recognizer does

find the longest, loudest rendition of the theme, which occurs at

the climax, the moment when Indy finally finds the Grail.

The "Raiders" march:

[1, 2, 5 -10, 2 1]

The "Grail" theme:

[5 -2 2, ZZ1, -1, -2 -11

Movies

"May he who illuminated this
illuminate me."

\"The Holy Grail, Dr Jones..."

Occurrences of the "Grail" melody 2:06.00
(Indiana Jones and the Last Crusade)

Because the shot boundaries are known, the clips that bracket

each appearance of the Grail theme can be selected to abstract
a certain thread of the story. It takes about 8 minutes to watch
this condensed version of the film.

4.4 Remarks

This chapter brought together most of the audio event filtering

techniques developed in earlier chapters, and worked towards a
more unified tool for analysis of cinematic material. It pointed
out how easy it is to locate the gross editorial features in a
picture stream, like shot boundaries. Picture content analysis on
live video is much harder. Neverthless, the rudimentary
information available from analysis of clips correlates quite well
with the general content of the film - for example, one can
easily find the important chase scenes, and the "crescendo" of
action sequences in a movie. To find equivalent sorts of
information in the soundtrack seems harder, at first, for the sound
needs to be transformed, filtered, possibly separated to a degree,
and analyzed for content. It is thus quite a bit more difficult to
determine "aural continuity" than "pictorial," for instance,
because there is no straightforward way to measure such things
as the coherence of instruments or sound sources, compared to
simply tracking overall color coherence in the picture.

On the other hand, we now do know how to locate useful
events in the soundtrack: speech, speakers to a degree, music,
melodies, and a few basic sound effects. Even these primitive
techniques can afford a powerful index into the content of a
movie. For instance, by doing melodic searching throughout the

Movies144

soundtrack we showed how a movie can be abstracted into its
key thematic components. Because melodic extraction from
orchestral sound is still a noisy process, it is not quite possible to
perform a "common melodic substring" search on the full
musical score in order to find all the important themes in
advance. Clearly, though, that is something that needs to be
done, because it is only by recognizing the repetition of
elements like melodies, that we ourselves learn to associate them
with essential aspects of the plot.

The choice of a leitmotivic film like the epic Indiana Jones
adventure used here can be called contrived. Very few movie
scores (or "real life" experiences) make such powerful use of
melodies. Of course, it is precisely because the associations are
so powerful that they beg to be noticed: after two hours of
action, when the "Holy Grail" theme appears for the nineteenth
time and is finally played fortissimo by the brass section, that is
not a subtle event. It is essential to first be able to understand
the obvious, recurring symbols if one hopes to eventually sense
the subtler things in life.

Movies 145

Movies

5: Conclusions

5.0 Recap - What about the Pigeon?

This thesis began with an extremely broad premise -
that lack of general audio capability is a serious detriment;

that machines ought to function fluently in the acoustic world;

and that the ability to do this hinges on understanding the

meaningful structures conveyed in sound. Therefore, to enable

functional as well as imaginative applications, we need to build

a deeper understanding of general sound into the architecture.

This may seem so blatantly obvious as to be self-evident, but it

was not until 1990 that the problem of auditory scene analysis in

and of itself was even well-articulated, and until quite recently,

audio applications were at best peripheral and piecemeal in the

world of general computing. For example, digital television will

drive sound through computers perforce, and increased

computational power will leave plenty of room for audio

processing, but even that does not mean that sound will be more

than an adjunct - unless integral schemes for understanding the

sound more deeply are developed.

This thesis has taken a fundamentally different tack from all

previous approaches. Classical methods seek to model systems

mathematically and then derive a system design that meets those

constraints; this is often difficult to relate to high-level tasks.

Perceptual and other "neo-classic" methods (including

implementations of auditory scene analyzers, speech systems that

"There are two things which
I am confident I can do
very well.
One is an introduction to
any literary work, stating
what it is to contain, and
how it should be executed in
the most perfect manner;
the other is a conclusion,
shewing from various causes
why the execution has not
been equal to what the
author promised to himself
and to the public."

- Samuel Johnson

(1709-1784)

use blackboard architectures and other Al techniques) have met

with better success, generally (it is argued) because of a richer

and more robust representational core. But these systems are

seldom enjoyed for their pragmatic utility.

This thesis argued for rich representations and the need to apply

classical and other techniques, but above all, it emphasized

abstracting the contents of sound in a way that fuels a fertile and

flexible general information environment. I showed that event

filters can be built to perform such diverse tasks as speaker

identification, music transcription, and indexing of sounds in

movie soundtracks. These are all viewed as instances of audio

recognizers or indexers, and they can all write into the same

representation, and hence interoperate to a large degree.

At first, making all those special purpose parts might seem

sloppy or ad hoc. So, why not model human perception,
which is, after all, our touchstone for this domain?
The pigeon reminded us that even without much general

intelligence a machine can glean enough from an audio signal to

draw important conclusions about its content. As I argued in
chapter 1, humans and other animals themselves accrete a
lifetime memory of special-purpose mental mechanisms that, to
some extent, mirror the structures in the outside world. We gain
deeper understanding by learning how to fit those mental pieces
together. In much the same way, it is natural to build a
repertoire of sensors and learn to connect them in the larger
system. The thesis demonstrated that with several examples.

Implicit in the argument was the idea that there is much to learn
by studying not only speech, but a wide variety of sounds.
A bit like cinema in the last 70 years, information systems are
undergoing a transition into an epoch of fuller and richer audio
and video. Movie fans may recall that, by the 1970's, sound in
feature films became sufficiently complex that a new specialist
was needed - the sound designer (first played by Ben Burtt in
his 1977 Oscar-winning role for Star Wars). As heirs to
broadcast and entertainment technology, computers will

Conclusions

recapitulate some of this. Film craft also offers a simple de facto

taxonomy for organizing sounds (dialog, music, effects, and
ambiences). It was useful to operate in that scheme not only
because of the variety of sounds, but because the important

sounds are generally played up in the mix to ensure that they are

heard. Dialog does not often overlap, for instance. This gives
modest software a chance in some applications.

5.1 Contributions

Besides articulating the problem of abstracting structure from
sound as one that is of compelling and increasing interest in

general computing, a number of specific questions were
addressed in the course of this work. To briefly summarize them:

" How can many high-level audio sensors be integrated?

Normalize audio sensors so that they produce uniform

descriptions of acoustic events. The event lists used here are

one of the simplest and most useful ways of doing that; like

MIDI data formats, or ASCII codes, they permit an adequate

notation of audio contents around which many tools can be

built. This serves as a convenient link to the rest of the system.

" How is a music event finder made?

If "music" is defined to be a "sound containing waves created

by instruments that play periodic notes" (i.e., it has to have
"melodies" or "chords"), then a music event finder can be

built by measuring the average longevity of harmonics (in
other words, how stationary the frequency content is, or how

striated it appears in a spectral image over time), and then

collecting the segments that exceed an acceptable threshold.

" Yes, but does it work?

It works well for detecting what commonly passes for music;

this was demonstrated on film soundtracks and radio

Conclusions 149

programs. Because the spectrum is computed at modest
resolution, vibrato is not generally a difficulty. Occasionally,
false hits occur (like a telephone ringing, or low, monotone
speech), though it is not unreasonable to consider these as
minimalist music; anwyay, a higher-level filter often disposes
of spurious "blips" of music, or collects the dropouts. The
filter can be extended or adjusted in straightforward ways for
other models of music (like rap, or purely rhythmic forms), or
to ignore too-short segments (like a doorbell) or sounds that
contain no pitch variability (like a beeper). Obviously there
are many other cases that are ambiguous - the "Hitchcock"
string effect in horror movies, for example, consists of
screeching high glissandi that might be called music only if
one can discern that it is being played on a violin. Certainly
many people can't.

How is a polyphonic pitch extractor for piano music made?

The process first finds note onsets (places where new harmonic
information abruptly enters the signal). At each such onset,
the previous (resonant and decaying) wave is compared to the
new information by considering the differential change in the
spectrum (accounting for phase). This contains the harmonics
that identify the new note(s). Chords are resolved subtractively.

o Does it work?

With some acute shortcomings. Partly because of the simple
method used here (a short-time magnitude spectral estimate),
low bass note chords, rolled chords, octave playing, and very
fast moving bass notes are fuzzy or otherwise ambiguous in
the spectrum. The amount of ambiguity depends on the kind
of music - two-voice Bach playing is fairly straightforward,
but two-fisted boogie-woogie is not. The current chord-
resolver is buggy, and only about 75-80% accurate (and is
particularly erroneous when low bass notes are played).
It is expected that high-level knowledge (of melodies and
harmonies, for instance) could resolve many of these

Conclusions

problems. In addition, the current process does not attempt to
sense pedalling; except for certain obvious cases (like long
sustained notes) this may prove difficult to estimate.

" What about indexing of conversations?

As with music detection, the process seeks a comb of
harmonics, but a comb that varies rapidly in pitch (unlike
music). This is characteristic of vowels. The window around
each vowel is extended to include surrounding consonants.
The measurement of average baseline pitch was, somewhat
surprisingly, found to be adequate for distinguishing between
many speakers.

" Does that really work?

The algorithm has been found to perform well except when
voices cross, when there is much background noise, and when
multiple speakers really do have the same intonational
frequency. It would be interesting to know, by studying many
conversations, how often those problems actually arise.
Crossings and mixtures are difficult to resolve (that is the
source separation problem, for which methods of attack are
known, but no general working solution exists). Guessing the
speaker identity based on pitch has shortcomings, but tends to
work well in small conversations. One extension would be to

filter vowels per speaker for average timbre. Because voice
quality can change dramatically in an entertainment piece,
one will inevitably need other information to make robust

talker assignments; for instance, it may be necessary to
understand what is being said.

" How does the soundtrack analyzer work?

It works with several predictable difficulties. Gross features
(music, speech, occasionally footsteps and door slams) can be
found providing the texture is not a "swampy" mix. Even

when the mix is complicated, in movie or radio soundtracks,

the principal elements are usually so prominently mixed that

Conclusions

they are easily found. Lacking good models for many sorts of
sound effects, though, the only recourse for the many
unknown sounds is to try and lump them together and label
them as such. When sounds contain a distinctively pitched
component, they can likely be matched from a collection of
known sounds. With only a few exceptions (some footsteps
and doorslams) we have no apparatus for matching the large
class of sounds of a stochastic nature (such as bubbling water,
sniffling and sneezing, motors running, or other complex
sounds).

How does the movie parser work?

The picture stream is segmented into clips: a frame-to-frame
comparator finds hard "butt" cuts, most fades and fast wipes.
The clips are grouped according to events in the soundtrack.
For example, a long run of dialog between two characters, or a
long segment of music indicates that several clips may be
grouped into a meaningful unit. It is then possible to index the
film based on the logical content of the sound; retrieving the
clips containing a particular actor's dialog, or the clips
containing a particular musical theme (a "leitmotif") were
demonstrated.

e What are its limitations?

The picture parser has some shortcomings (it does not catch
long dissolves, occasionally misses cuts in low-light conditions
and sometimes falsely detects special effects, like explosions);
most of these problems can be fixed in a straightforward
manner, particularly as video processing systems become more
powerful.

The limitations previously mentioned in the case of the
soundtrack analyzer naturally carry over. Operations like
indexing the film on some aspect of acoustic content are, of
course, successful to the extent that the sound is correctly
identified, and has meaning in the context of the film.

Conclusions

5.2 Lacunae and Future Work

This thesis presented a framework in which many problems in
content-oriented sensing and manipulation of sound can now be
explored. Each of the examples invites further study, but a few
prospects seemed to be of particular interest.

In the area of music processing, the piano deconvolution
problem can probably be brought to a level acceptable for
commercial application. A more interesting implication, though,

is that it appears an analyzer could be built that not only finds

the pitches, but goes further so as to winnow out the samples for

every note. Because experiments as well as experience with

sampling music synthesizers show that coupled interactions

between vibrating strings are often so small as to be barely
noticeable, it seems likely that research in this area would be a

useful step towards building a music recording system that

produces both gestural and instrumental data in separate forms.

The same question applies to concert hall effects: we know that

any large and acoustically interesting room has a response that is

not information-preserving (that is, the impulse response contains

zeros), and further, is time-varying. But surely some component
of the hall - like its principal echoes - can be detected and

cancelled. This would allow some dereverberation of the signal,

and may provide enough information to intuit some possible hall

sizes. The question is, how well can the room and the

instruments be separated, and is this enough to be interesting?
Questions like these are important because the ability to abstract

a full model of the components in a musical performance will
have a deep impact on future audio systems.

In the area of speech processing, the small experiments in
working with sampled speech databases for purposes of adjusting

rearranging dialog were very promising. In the past, speech

synthesis from large samples of continuous speech was thought
to be untenable. Not only is this not true, but as significant

databases of conversation begin to accumulate and are indexed

Conclusions

mmm~

by speech recognition systems, they will furnish an engine for
many interesting speech applications. This thesis sketched the
beginnings of an approach. When a sentence is well-tagged, so
that a system can operate on each word or phrase, it is possible
to alter the inflection or timing of words, or to substitute wholly
new words or phrases. These can be selected from other
utterances in the database and spliced into place, taking care to
warp the replacement word to fit smoothly. To make an analogy,
when computer memory became plentiful and processing grew
fast enough, sampled music synthesizers and "layered"
bitmapped displays became feasible. A similar process seems
likely to occur when large sampled speech databases and some
speech manipulation technology become common. Linear
predictive analysis and synthesis should probably be brought to a
refined state for this; that was not explored in this thesis.

Many other topics were unexplored here, of course, but in the
words of Helmholtz, "a natural philosopher is never bound to
construct systems about everything he knows and does not."

Conclusions

6: References

article, journal, book, network link

Robert Alberti
Farhad Anklesaria
Paul Lindner
Mark McCahiIl
Daniel Torrey

Jonathan Allen
M. Sharon Hunnicutt
Dennis H. Klatt

Barry Arons

J. S. Bach

David Backer

Harold Barlow
Sam Morgenstern

1992 The internet Gopher protocol
University of Minnesota Microcomputing
and Workstation Networks Center
ftp boombox.micro.umn.edu:/pub/gopher

1987 From Text to Speech: the MITalk System
Cambridge University Press, Cambridge; New York.

(1993) Speech Skimmer: Interactively Skimming Recorded Speech
Proceedings, ACM User Interface Software and Technology
Conference, Atlanta.

(1970) Aria mit 30 Veranderungen
in Bach Keyboard Music, Dover, New York.

1988 Structures and Interactivity of Media:
A Prototype for the Electronic Book
MIT Media Laboratory PhD dissertation.

1948 A Dictionary of Musical Themes
Crown Publishers, New York.

155

Georg von B6k6sy

David Berkley
James Flanagan

Jon Bentley
Donald Knuth
M. D. McIlroy

Tim Berners-Lee
Robert Cai||iau
Jean-Francois Groff
Bernd Pollerman

Q. David Bowers

Albert S. Bregman

Ronald Bracewell

Ronald Bracewell

Guy Brown

C. S. Burrus
M. T. Heidemann
D. H. Johnson

Vannevar Bush

1960 Experiments in Hearing
McGraw-Hill, New York.

1990 HuMaNet: an experimental human-machine
communications network based on ISDN wideband audio
AT&T Technical Journal, September 1990, p87 .

1986 Programming Pearls: a Literate Program
Communications of the ACM, 29(6):364, May 1986.

1992 World-Wide Web: the information universe
Electronic Networking: Research, Applications,
and Policy, 1(2), Spring 1992.

1972 Encyclopedia of Automatic Musical Instruments
Vestal Press, Vestal NY.

1990 Auditory Scene Analysis
MIT Press, Cambridge.

1984 The Fast Hartley Transform
Proceedings of the IEEE, 72(8), August 1984.

1986 The Hartley Transform
Oxford University Press, New York.

1992 Computational Auditory Scene Analysis:
a Representational Approach
University of Sheffield PhD Thesis.

1988 Archive for History of the Exact Sciences

1945 As We May Think
Atlantic Monthly 176:101-108.

References

Vannevar Bush

William Buxton

William Buxton
William Reeves
Ronald Baecker
Leslie Miezei

Janet Cahn

John Chowning
Loren Rush
Bernard Mont-Reynaud
Chris Chafe
W. Andrew Schloss
Julius Smith

Arthur C. Clarke

Peter Danzig
Katia Obrazcka
Shih-Hao Li

Hans T. David
Arthur Mendel

Lucinda Dewitt
Robert Crowder

Edward Lee Elliott

1967 Science is Not Enough
William Morrow, New York.

1978 Design Issues in the Foundation of a Computer-Based Tool
for Music Composition
University of Toronto CSRG-97, October 1978.

1978 The Use of Hierarchy and Instance in a Data Structure
for Computer Music
Computer Music Journal, 5(3):50-56.

1990 Generating Expression in Synthetic Speech
MIT Media Laboratory Master's thesis.

1982 Intelligent Systems for the Analysis of Digitized
Acoustic Signals
Stanford Department of Music Report STAN-M-1 5.

1992 How the World Was One: toward the tele-family of man
Bantam, New York.

1992 Internet Resource Discovery Services
USC-LA Computer Science Department
e-mail danzig@usc.edu

1966 The Bach Reader: a life of Johann Sebastian Bach
in letters and documents.
W. W. Norton, New York.

1986 Recognition of Novel Melodies after Brief Delays
Journal of Music Perception, 3(3):259-274, spring 1986.

1993 Watch - Grab - Arrange - See
MIT Media Laboratory Master's thesis.

References

Daniel P. W. Ellis

Daniel P. W. Ellis

Alan Emtage
Peter Deutsch

D. C Engelbart

N. Fakotakis
A. Tsopanoglou
G. Kokkinakis

James Flanagan
Charles Del Riesgo

Scott Foster
W. Andrew Schloss
A. Joseph Rockmore

Otto Friedrich

Wilhelm Fucks

Sadaoki Furui

Glenn Gould

1993 A Computer Implementation of Psychoacoustic Grouping Rules
MIT Media Laboratory, Perceptual Computing TR#224.

1993 Hierarchic Models of Hearing for Sound Separation
and Reconstruction
MIT Media Laboratory, Perceptual Computing TR#219.

1992 archie: An electronic directory of services for the internet
Usenix Conference Proceedings, January 1992.
ftp sifon.cc.mcgill.ca:/pub/archie

1969 Human intellect augmentation techniques
NASA; for sale by the Clearinghouse for Federal Scientific
and Technical Information.

1993 A text-independent speaker recognition system based on
vowel spotting
Speech Communication, 12(1):57-68.

1990 Speech Processing: a perspective on the science
and its applications
AT&T Technical Journal, September 1990, p2 .

1982 Toward an Intelligent Editor of Digital Audio:
Signal Processing Methods
Computer Music journal, 6(1):42-51.

1989 Glenn Gould: a life and variations
Random House, New York.

1962 Mathematical Analysis of Formal Structure of Music
IRE Transactions on Information Theory, 18(5):224-229,
September 1962.

1992 A Speaker Recognition System for Telephone Speech
reprinted in Saito (1992):300. cf. Sondhi & Furui (1992).

1964 Strauss and the Electronic Future
Saturday Review, May 30 (cf. Gould and Page, 1984).

1 r References

Glenn Gould

Glenn Gould

Jonathan Cott

Glenn Gould
Tim Page

Donald E. Hall

Graham Hancock

1983 Glenn Gould, by himself and his friends
Doubleday, Toronto.

1984 Conversations with Glenn Gould
Little, Brown, Boston.

1984 The Glenn Gould Reader
Knopf, New York.

1992 Piano string excitation: V/: Nonlinear Modelling

Journal of the Acoustical Society of America, 92(1):95.

1992 The Sign and the Seal:
The quest for the lost Ark of the Covenant
Simon & Schuster, New York.

Stephen Handel 1989 Listening: an introduction to the
auditory events
MIT Press, Cambridge.

R. V. L. Hartley

R. V. L. Hartley

Michael Hawley
Samuel Leffler

Alex Hauptmann

Michael Hawley

Michael Hawley

Michael Hawley

1928 The Transmission of Information

Bell System Technical Journal

1942 A More Symmetric Transform

Proceedings of the IRE

1985 Windows for Unix at Lucasfilm

Usenix Proceedings, summer 1985.

1993 Speak EZ: High-Quality Speech Synthesis at CMU
Proceedings, Eurospeech, 1993.

1986 MID/ Music Software for Unix

Usenix Proceedings, summer 1986.

1987 The Digital Librarian (NeXT software)

NeXT Computer, Inc, Redwood City, CA.

1988 Webster (first digital edition) (NeXT software)

NeXT Computer, Inc, Redwood City, CA.

References

perception of

Michael Hawley

Michael Hawley

Michael Hawley

Hermann Helmholtz

Wolfgang Hess

Debbie Hindus

Tomlinson Holman

M. Honda
F. Itakura

Chris Horner

Jean-Marie Hullot

David Jaffe

Julius Smith
Douglas Fulton et al.

1989 Totentanz: an experiment in symphony emulation

MIT Media Laboratory memorandum.

1990 The Personal Orchestra, or,
Audio Data Compression by 10000:1

Usenix Computing Systems Journal, 3(2)
University of California Press, Berkeley.

1992 Library of Congress interface (NeXT software)

ftp sonata.cc.purdue.edu:/pub/next

1863 On the Sensations of Tone
Dover, New York (1954).

1983 Pitch Determination of Speech Signals
Springer-Verlag, New York.

1992 Semi-Structured Capture and Display of

Telephone Conversations
MIT Media Laboratory Master's thesis.

1991 New Factors in Sound for Cinema and Television

journal of the Audio Engineering Society, 39(7):529-539.

1992 Low Bit-Rate Speech Waveform Coding

reprinted in Saito, p. 189.

1993 NewsTime: a Graphical Interface to Audio News

MIT Media Laboratory Master's thesis.

1989 Interface Builder (NeXT software)

NeXT Computer, Inc: Redwood City, CA.

1992 NeXT Music Kit Documentation

ftp ccrma-ftp.stanford.edu:/pub/MusicKit. README

References

N. Jayant

Ibn al-Razzaz al-Jazari
(Donald Hill, trans.)

Keith Johnson

Brewster Kahle

Brewster Kahle
Art Medlar

Robert Kahn
Vinton Cerf

James F. Kaiser

Alan Kay
Adele Goldberg

Alan Kay

Andrew Kazdin

1990 Speaker Verification: a Tutorial
IEEE Communications Magazine, 28:42-48 (january).

1974 The Book of Knowledge of Ingenious Mechanical Devices
Reidel Dordrecht, Boston.

1990 The Role of Perceived Speaker Identity in F
Normalization of Vowels
Journal of the Acoustical Society of America, 88:642-654.

1991 Wide-area information server concepts,
alpha release documentation
ftp think.com:/wais

1991 An information system for corporate users:
Wide-area Information Servers
ConneXions - the Interoperability Report, 5(11)
November 1991.

1988 The digital library project, volume 1:
The world of knowbots
Corporation for National Research Initiatives

1983 Some observations on vocal tract operation
from a fluid flow point of view
Proceedings of the conference on physiology
and biophysics of voice, Iowa City, Iowa, May 4-7 1983.
(ISBN 0-936947-53-5)

1979 Personal Dynamic Media
Computer, 10(3), March 1977.

1984 Computer Software
Scientific American, 251(3):52-59.

1989 Glenn Gould at work: creative lying
Dutton, New York.

References

Donald Knuth

L. F. Lamel
L. R. Rabiner
A. E. Rosenberg
J. G. Wilpon

Peter Langston

Paul Lansky
Kenneth Steiglitz

V. Lesser
R. D. Fennell
L. Erman
D. R. Reddy

J. C. R. Licklider

Eric Lindemann
Miller Puckette

Arthur Loesser

M. Lottor

Gareth Loy

Richard Lyon

1992 Literate Programming
CSLI (Stanford University), Palo Alto.

1981 An Improved Endpoint Detector
for Isolated Word Recognition
IEEE Trans. Acoustics, Speech, and Signal Processing
ASSP-29:777-785.

1990 Little Languages for Music
Usenix Computing Systems, 3(2).

1978 Synthesis of Timbral Families by Warped Linear Prediction
Computer Music journal, 5(3):45-49.

1975 Organization of the Hearsay-Il Speech Understanding
System
IEEE Trans. on Acoustics, Speech, and Signal Processing
ASSP-23, 11-24.

1965 Libraries of the Future
MIT Press, Cambridge.

1991 Animal - a rapid prototyping environment for
computer music systems
Computer Music Journal, 15(3):78-100.

1954 Men, Women & Pianos
Simon and Schuster, New York.

1992 Internet Growth (1981-1991)
ftp nic.ddn.mil:/rfc/rfc1296.Z

1985 Musicians make a standard: the MIDI phenomenon
Computer Music journal, 13(1):36-46.

1986 Experiments with a computational model of the cochlea
Proc. IEEE International Conference on Acoustics,
Speech, and Signal Processing, 1986.

References

R. Macaulay
T. Quatieri

Tod Machover
Joe Chung

Tod Machover
Joe Chung
Andy Hong
Neil Gershenfeld

Pattie Maes
Beerud Sheth

Robert Maher

David Marr

Henry Massalin

Henry Massalin

Henry Massalin

Max V. Mathews
Joan E Miller

1986 Speech analysis/synthesis based on a sinusoidal represen
tation, IEEE Trans ASSP-34:744-754.

1989 Hyperinstruments: Musically Intelligent and Interactive
Performance and Creativity Systems
Proceedings International Computer Music Conference
Computer Music Association, San Francisco.

1991 Hyperinstruments: Musically Intelligent/Interactive
Performance and Creativity Systems
Yearly report to the Yamaha Corporation,
MIT Media Laboratory.

1993 Evolving Agents for Personalized Information Filtering
IEEE Conference on Applications of Artificial Intelligence
Orlando, Florida.

1989 An Approach for the Separation of Voices in Composite
Musical Signals
University of Illinois (Urbana) PhD dissertation.

1982 Vision: a computational investigation into the human
representation and processing of visual information
W. H. Freeman, San Francisco.

1987 SuperOptimizer: A Look at the Smallest Program
in Proceedings of the Second Conference on Architec-
tural Support for Programming Languages and Operat-
ing Systems, Palo Alto, California.

1990 Fast Discrete Hartley Transform implementation
(personal communication).

1992 Efficient Implementation of Fundamental
Operating System Services
Columbia University PhD dissertation.

1969 The Technology of Computer Music
MIT Press, Cambridge.

References

Max V. Mathews
John R. Pierce

John McCarthy

H. Marshall McLuhan

David Mellinger

Jonathan Miller

G. A. Miller

Neil Miller

S. Millman (ed)

S. Millman (ed)

Marvin Minsky

Bernard Mont-Reynaud
Mark Goldstein

1989 Current Directions in Computer Music Research
MIT Press, Cambridge.

1966 Information
Scientific American, 215(3):65-95, September 1966.

1964 Understanding Media: The Extensions of Man
McGraw-Hill, New York.

1992 Event Formation and Separation in Musical Sound
Stanford University PhD dissertation.

ftp ccrma-ftp.stanford.edu:/pub/Theses/DAVEMThesis.ps.Z

1971 Marshall McLuhan
Harcourt, Brace & World, New York.

1956 The Magic Number Seven, Plus or Minus Two:
some limits on our capacity for processing information
Psych. Review, 63(2):81.

1975 Filtering of singing voice signal from noise by synthesis
University of Utah PhD Thesis.

1975 A History of Engineering and Science in the Bell System:
the Early Years
AT&T Bell Laboratories, Indiana.

1984 A History of Engineering and Science in the Bell System:
Communication Sciences
AT&T Bell Laboratories, Indiana.

1986 The Society of Mind
Simon and Schuster, New York.

1985 On finding rhythmic patterns in musical lines
Proceedings, International Computer Music Conference
p391-397.

References

Bernard Mont-Reynaud
David K. Mellinger

James A. Moorer

James A. Moorer

James A. Moorer

S. Hamid Nawab
V. Lesser

S. Hamid Nawab
Alan Oppenheim (eds)

S. Hamid Nawab
Daniel Beyerbach
Erkan Dorken

Nicholas Negroponte

Nicholas Negroponte

Nicholas Negroponte

Theodor H. Nelson

1989 Source Separation by Frequency Co-Modulation
Proceedings, First International Conference on Music
Perception and Cognition, Kyoto, Japan.

1975 On The Segmentation and Analysis of Continuous
Musical Sound by Digital Computer
Stanford University PhD Dissertation.

1979 The Use of Linear Prediction of Speech
in Computer Music Applications
Journal of the Audio Engineering Society, 27(3):134-140.

1984 The Lucasfilm ASP
Computer Music Journal.

1989 High-Level Adaptive Signal Processing
NAIC Final Report, 17.

1992 Symbolic and Knowledge-Based Signal Processing
Prentice-Hall, Englewood Cliffs, NJ.

1993 Principal Decomposition of Time-Frequency Distributions
Unpublished manuscript (Boston University, Department.
of Electrical, Computer, and Systems Engineering).

1970 The Architecture Machine
MIT Press, Cambridge.

1979 Books Without Pages
IEEE Proceedings.

1993 Debunking Bandwidth: from Shop Talk to Small Talk
WIRED 1.3, July/August.

1974 Computer Lib / Dream Machines
Reissued (1987) by Microsoft Press, Redmond, WA.

References 165

B. Clifford Neuman

Allen Neuringer
Debra Porter

Harry Nyquist

Harry Nyquist

Harry Ferdinand Olson

Alan Oppenheim

Arthur W. J. G Ord-Hume

Caroline Palmer

Thomas W. Parsons

Thomas W. Parsons

Richard Phillips

1991 The Prospero File System
University of Washington (Seattle)
Department of Computer Science
ftp cs.washington.edu:/pub/pfs

1984 Music Discrimination by Pigeons
journal of Experimental Psychology:
Animal Behavioral Processes, 10:138-148

1924 Certain Factors Affecting Telegraph Speed
Bell System Technical journal, 3:324-326.

1928 Certain Topics in Telegraph Transmission Theory
Transactions of the American Institute for Electrical
Engineering, 47:617-644.

1967 Musical Engineering
Dover Publications, New York.

1969 Analysis-synthesis system based on homomorphic
analysis of speech
journal of the Acoustical Society of America, 45(2):458-465.

1984 Pianola: the History of the Self-Playing Piano
George Allen & Unwin, London and Boston.

1989 Timing in Skilled Music Performance
Cornell University PhD dissertation.

1976 Separation of speech from interfering speech by means of
harmonic selection
journal of the Acoustical Society of America, 60(4):911-918.

1986 Voice and Speech Processing
McGraw-Hill, New York.

1991 MediaView: a General MultiMedia Digital Publishing System
Communications of the ACM, 34(7):75-83.

166
References

166 References

Janet Pierrehumbert

Rob Poor

1981 Synthesizing Intonation
journal of the Acoustical Society of America, 70(1):985-995.

1992 TimeWarp (NeXT software)
personal communication.

Ralph K. Potter

George Kopp
Harriet Green

Miller Puckette

John S. Quarterman

L. R. Rabiner

L. R. Rabiner
Bernard Gold

L. R. Rabiner

Bruno Repp

Curtis Roads
John Strawn

David Rosenthal

Robert Rowe

1947 Visible Speech
Van Nostrand: New York.

1991 Combining Event and Signal Processing in the MAX
Graphical Programming Environment
Computer Music Journal, 15(3):68-77.

1993 personal communication.

1967 Speech Synthesis by Rule: an Acoustic Domain Approach
MIT PhD dissertation.

1975 Theory and Application of Digital Signal Processing
Prentice Hall: New York.

1993 Fundamentals of Speech Recognition
Prentice Hall: New York.

1993 Some empirical observations on sound level properties of
recorded piano tones
journal of the Acoustical Society of America, 93(1):1136-44.

1985 Foundations of Computer Music
MIT Press, Cambridge.

1993 Machine Rhythm: Computer Emulation of Human
Rhythm Perception
MIT Media Laboratory PhD dissertation.

1991 Machine Listening and Composing: Making Sense of
Music with Cooperating Real-Time Agents
MIT Media Laboratory PhD dissertation.

References

Robert Rowe

Curt Sachs

Oliver Sacks

Shuzo Saito, ed.

David Sarnoff

Russell Mayo Sasnett

W. Andrew Schloss

Michael Schwartz

Edmund Willer Scripture

Xavier Serra

Claude Shannon

1993 Interactive Music Systems
MIT Press, Cambridge.

1940 The History of Musical Instruments
W. W. Norton & Company, New York.

1989 Seeing Voices: A Journey into the World of the Deaf
University of California Press, Berkeley.

1992 Speech Science and Technology
IOS Press, Washington.

1968 Looking Ahead; the papers of David Sarnoff
McGraw-Hill, New York.

1986 Reconfigurable Video
MIT Master's thesis.

1985 On the Automatic Transcription of Percussive Music:
From Acoustic Signals to High-Level Analysis
Stanford University PhD dissertation.

1991 Resource discovery in the global internet
TR CU-CS-555-91, University of Colorado, Boulder.
ftp cs.colorado.edu:/publcs/techreports/schwartz

1904 Elements of Experimental Phonetics
Charles Scribner, New York.

1988 An Environment for the Analysis, Transformation,
and Resynthesis of Musical Sounds
Stanford University PhD dissertation.

1948 A Mathematical Theory of Communication
Bell System Technical Journal, 27:379-423.

References168

Mark Sheldon
David Gifford
Pierre Jouvelot
James O'Toole, jr.

Roger Shepard

Kim E. A. Silverman

Herbert A. Simon

Herbert A. Simon
Richard K. Sumner

Herbert A. Simon

John Sloboda
B. Hermelin
N. O'Connor

David Small

Mohan Sondhi (ed.)
Sadaoki Furui

William Leslie Sumner

1991 Semantic File Systems
Proc IEEE InfoCom, June 1990.

1981 Psychophysical complementarity
in Perceptual Organization, Kubovny & Pomerantz (eds)
Erlbaum Press, Hillsdale, New Jersey.

1987 The Structure and Processing of Fundamental Frequency
Contours
Cambridge University PhD dissertation.

1960 The Shape of Automation
in Perspectives on the Computer Revolution, Z. W. Pyly-
shyn (ed.), Prentice-Hall, Englewood Cliffs, NJ (1970).

1968 Pattern in Music
in Formal Representations of Human Judgement,
B. Kleinmuntz (ed.), John Wiley and sons, New York.

1985 The Sciences of the Artificial (second edition)
(1969) MIT Press, Cambridge

1985 An Exceptional Musical Memory
Journal of Music Perception, 3(2):155-170, winter 1985.

1992 "Wizard of Oz" scene detector
personal communication.

1992 Advances in Speech Signal Processing
M. Dekker, New York.

1981 The Organ: its Evolution, Principles of Construction and Use
St. Martin's Press, New York, N.Y.

References 169

Ivan Edward Sutherland

David Tennenhouse

Hirotada Ueda
Takafumi Miyatake
Satoshi Yoshizawa

Barry Vercoe

Pierre Wellner

Peter F. Williams
Barbara Owen

Emanuel Winternitz

Nicole Yankelovich
Norman Meyerowitz

1963 Sketchpad: a man-machine graphical communication system
MIT PhD dissertation.

1993 Research group annual report
MIT Lab for Computer Science.

1992 Impact: an Interactive Natural-Motion-Picture
Dedicated Multimedia Authoring System
Hitachi Central Research Lab memorandum
email: ueda@cri.hitachi.co.jp

1984 The Synthetic Performer in the Context of Live Performance
Proceedings of the International Computer Music Conference
San Francisco, CA.

1991 The Digital Desk Calculator: Tactile Manipulation on a
Desktop Display
Proc. ACM Symposium on User Interface Software and
Technology, November 1991, p2 7-33 .

1988 The Organ
W.W. Norton, New York.

1982 Leonardo da Vinci as a Musician
Yale University Press, New Haven.

1985 Reading and Writing and the Electronic Book
IEEE Computer Magazine, 18(10), October.

References

appendix 1:

Software in this thesis

al.1 Overview

This appendix provides a summary of the software discussed in

this dissertation. The document (a Frame MakerTM document)

and most of the software described in it were written on a NeXT

computer. The material may be available on-line and if you

have a NeXT system, it is worthwhile to read it that way.

On-line organization is as follows:

ascii/ plaintext ascii dump of the thesis

j extra PostScript fonts

PostScript of the dissertation

software on-line in:
Thesis/src

Stncture
out of Sound
Michae Hawley

My teiW ed relldefui-

asi - bb stx forth typograhicalY -halengpd

P'i - Pe rp for th dia & slide
.-e -suc c W.omnyporm

fupm nt Adne d11rv,

source code and experimental data

is/ FrameMaker dissertation document

The source code to most of the programs mentioned here (like

the music and speech filters, the spectre sound editor, etc)

are in Thesis/src. So are a number of general utilities

(including the Library of Congress program). Most of the code is

in C or Objective-C written for NeXTSTEP 3.0, and some of it

was written in an experimental "rich text" format (see the next

appendix for details on that). All of it is evolving: much of this is

impromptu-style research software, not a consumer product, and

what is frozen in this thesis is just a snapshot. Following are
descriptions of the main parts.

Software in src....

Contains four categories of software:

sound a library of sound analysis utilties (libanal.a),
shell-level commands (like music and speech),
and other audio applications (like spectre).

Discussed in more detail below.

midi a small library of midi-related utilities and
applications, including:
libmidi.a - C utilities for midifile processing
da - a midifile dis-assembler

ra - a midifile re-assembler
midi2ps - render a midifile as PostScript

mpu - convert MPU-401 -format to midifile format
play- play a midifile
This code follows the rough paradigm established by
Hawley (Personal Orchestra, 1992) and Langston

(1990).

event a library of utilities for manipulating fielded event
lists. Discussed in more detail below.

misc miscellaneous software and applications, including:
Opener- software archiving utility
Library of Congress - book-buying interface

Weather- network weather interface)
PianoRoll - experimental piano roll reader

ediaWhacker- laser disc movie indexer

al: software in this thesis

quarto - PostScript pagination utility
ref-o-matic - reference formatter

rtf-utilities - see appendix 2

graph - simple graph-plotting software

Audio Software in src/sound/...

The libanal.a library contains utilities for reading and writing

sound streams. For writing event filters it is usually sufficient to

work with 8KHz monophonic audio data, but in any case, the

library provides a simple, uniform interface wherein input sound

data is converted to 1-channel 32-bit samples. The Hartley

transform functions (for obtaining log-magnitude spectra), vector

arithmetic functions, and other filtering elements (tapped delay

lines, data queues, etc) are all had by linking with this library.

Shell-level utilities include:

amp soundfile -> amplitude envelope graph

amp2tiff soundfile = amplitude intensity graph

anasyn analysis/resynthesis/filtering of a soundfile

avgspec compute average spectrum for a soundfile

bias calculate background noise bias

click locate "click" events in a soundfile

echocancel comb filtering utility
find-callerlocate "telephone"-like speech in talk shows

music music event detection filter
musyn music removal filter

pcorr pitch correlation filter
pitch pitch calculation utility

polyp polyphonic pitch extractor
pplay play a soundfile from piped input

sndps soundfile => postscript waveform

splay play cross-faded soundfiles; cf. Eventleplay

spec2tiff render a spectrum (all the spectral illustrations

in this document were generated with this)

speaker attempt to recognize speakers

speech locate "speech" events in a soundfile

al: software in this thesis

Soun Md igna prosirg Utitils for t NeXT.

Te lbir ay libW omar Mport cde -spedAl anNeo

pera tion -Wvecm Pdk .onfieltrigtesiad)

defiio for queu and ..pe hIy lir4 (n Ms. 1), 9ndrouir for

pach 4-caVingVre . Ppclya wt Wna

ue ec e cl[. P-~S fil- n

Event Lists in src/event/...

Evet Library and Utiiie ..- .

Ler- h. fles (.e fil) are .panetnntorofvrindta t tem

ifr sudan l fis N nt i, nl - i tnp MI ne -l I n, ee~ e

Th follwin cmaline ut_ m se h.Em:4

ici m cnctnae -il with opter to Ed. elec a - T teom fit) 1 ds

e Om - rw aefie as Piifc r

Pk- i - covg " nefl osadr IIfkfra

g ki 7 - p 3ty 1ie 9ie(9u 3 a v

al: software in this thesis

The libE.a library contains utilities for reading and writing
Event lists. These are textual annotations of events in data streams
like sound and video files. The idea is to have a simple way to
describe the meaningful contents of such data, at most any level
of detail. By convention, the notation is one line per event, with
named fields describing attributes of interest:

x.snd|1.275|.725|g4|42.5

describes a sound that in the file x.snd starting at 1.275
seconds, is .725 seconds long, and is a note ("g4") of amplitude
42 .5 db. Event lists have provisions for collecting events into
groups (that is, they form a general graph, not a strict hierarchy).
The location information is flexible and may be in seconds,
video timecode, samples, or some other forms.

Two simple shell-level commands are included (e2midi, to
convert an event list to midifile format; and eplay, to play an
audio event file, with various options to control the manner of
mixing and splicing). Several sound/... utilities read and write
event lists, as do the Spectre and ediahacker applications.

appendix 2:

Rich Text Programming

"What is the use of a book," thought Alice,
"without pictures or conversations?"

- Lewis Carroll
Alice's Adventures in Wonderland

a2.0 Introduction

... Or, what is the use of source code written in monofont ASCII?
We increasingly demand multimedia systems with high aesthetic
quality, yet most coding is still done using the crudest sort of
plaintext, trimmed to fit the 24x80-character view of an antique software on-line in:

Thesis/src/rtf-utilitiesglass terminal. This is worth reconsidering.

Some of the programs discussed in this dissertation were written
in a format that is replete in its use of typography, color,
illustrations, and other attachments or links. In this case, "rich
text format" (RTF) was used, and parsers (as for C, awk, make,
and other development tools) were modified slightly to cast RTF
input to plaintext ASCII as needed.

This appendix describes the way I did that, and a few other tools

germane to programming with rich text. These include RTF- R

tolerant system tools and other filters for RTF documents (for
example, a template filter, a rubricator, etc). - Bre m s me o siMma .

Brief ~~~~~ ~2amse metin s aeaf imlrior aon hee ins

a2.1 What rich-text code looks like

Muske Detection Filter

One indication of the presece of rmsic in a sound stream s frequencies that are sustained over several
frames Of a short-time magniinde spIct . The horizontal striations ae probably pitched mu sical notes

This spectrm shows a segment of music, a segmet of vice, and a segment of music. Over
spmmtun in fed is the output of the music function, below, that can be threshotp rsic-like
segments. The function essentially measures how stationary the peaks utsgnalare, as follows:

Slide the analysis frami in short hops o tF f I the peaks in t argnitude
spectrm creatinga vectrp 1 f 1tt
nnFra (128), with rterngu to

ifapariculrpeakp[iJgoes 1101 it'
if peak-munis longerthan minRunfr-

Thekaverage lengthofthepeakrunme # (2)
"ongish" peak) passes a threshold (a

We only consider mans that are long enm 3

are set for analyzing 8KHz input, athou M k/s
input perhaps hissy consonants cloud s c t

Note thatw onlyconsider peaks ink a

Most of the information we need lies iMia Mxeakthde

float Cunat ela. 7

M. J. Hawley **eot 0.0;/ h u

MIT Media Laborat df, p P

nikeqmedia-labmil - uPeaks It
October. 1992 * perm i

It P, int*
#include util .h

ai r
#deine Maxitake 128 1 l*iPeffntse

#dfiePi ze52" ir 13+=Mi 3

n22 /

f13 11

f p3 acumlap

X1 PPPN
1

P'p

// fj PC - *0;

findaks pO,

C p2= t4+ +Mi Bae k .
p t *P 133&1 *2&&++0+ S

P(4)+Ming P(3 c+mmax as n

P P I P

P-kN P4
13

N 'lfl pPp
if (*p2 ll

un

The compiler and development tools are
enhanced to accept code containing
typographic detail (for clarity) and other
attachments. This program contains a
spectrum illustrating the output of the
function, and the sound that was input.
It a so contains a link to an external
document (a header file in this case).
Programs should be dynamic, first-class
documents, not low-grade plaintext.

st run, cll[p

en9th t E b

r buff, cr

"In n this ran

delaYed fra, oPeaks

0+

PO+MinB e

p-*

int. the file P)

pek (td frame)1"
inRu)

Case P Offset = atof rgu t);

C ''nuPaks = atoiargument)
De.f ault :ue)

xi (0);

a2: rich text programming

a2.2 Quick overview

1. If you have a NeXT system, read this on-line:
start with *Thesis/src/rtf-utilities/Readme.rtfd

2. What is RTF source code?
Code written in RTF ("rich text format") may contain fonts and
other formatting information, and, per NeXT's extensions,
embedded graphics, attached files, and active "links."
RTF source files come in two varieties: simple files (with no
graphics or attachments), or directories (named with a .rtfd
extension) that contain the RTF file and any included pictures.
If the file begins

{\rtfO\ansi . . .

it's an RTF file.

3. Why would a programmer want to compose in RTF?
A program is a communication vehicle for people as well as
machines. Most programmers who trouble to write clear code
appreciate being able to insert a bit of mathematics, or a
picture or a sound when it helps describe what's going on, or
being able to change the typeface or the color when code
needs to be highlighted. Much more code is read than
written, so a clear presentation is valuable. It is reasonable, in
this day and age, to expect to be able to write or read a
program using the same fully-featured word processort you
use to write a business letter.

4. My compiler won't appreciate that.
Probably not; your compiler will need to be fixed.
The instructions in rtf-utilities describe a way to do that.
For the case of C, it suffices to change the preprocessor (cpp) $
so that on opening a file, if it turns out to be RTF it is first run
through a filter to convert it to palatable ASCII. A modified
version of the GNU preprocessor is included.

a2: Anbteteogramming

RTF specification on-line in:
+ rtf-utilities/RTF-spec.rtf

The new poll shows Bush with a
narrow edge in Texas, with the
backing of 41 percent of the
voters to 37 percent for Clinton,
a lead that is within the poll's
margin of sampling error

rubric -c red,bold, italic
-w clinton

The new poll shows Bush wi a
narrow edge in Texas, with th
backing of 41 percent of
voters to 37 percent for Clinton,
a lead that is within the poll's
margin of sampling error

5. What about my other development tools?
What about the rest of Unix, and NT, and ... ?!
You may want to fix those to be RTF-literate as well.
The utilities here include enhanced versions of: ctags, lex,
gawk, grep, and make. 4 In each case the source code is
given along with a description of the modification, which
usually involves simply inserting an rtf-ascii conversion when
appropriate, and that has been packaged in the form of
routines that can be used in place of openO/fopeno.

6. Ugh. You really must be joking.
What if I want to use this code but I can't edit in RTF?
You probably can, using WriteNowrM, WordrM or some other

contemporary word processor. Otherwise, convert the RTF
material to ASCII. (The rtf-utilities/... themselves are in plain
ASCII for that reason.) Use the command:

rtf-ascii [files...]

It is a conventional Unix filter, so you will need to cache the
output in a temporary file:

rtf-ascii x.c > /tmp/x; cp /tmp/x x.c

7. What other tools are present?
The subdirectory samples$4 contains a number of examples,
and the Makefile (n.b., an RTF Makefile) runs through them.
A highlighter, called rubric, can be used to filter RTF
documents and highlight words (rubric comes from the Latin
ruber meaning red, and referring to the -red words in old
illuminated bibles). This provides one example of a way to
edit the typography of a document; it has been used, for
example, in a news filtering and delivery system.

Another example is rtfcast which extrudes plaintext files
through rich-text templates. This is useful when one wants to
shape text according to a particular form, as shown:

a2: rich text programming

rtfcast tenplate article

An example of document extrusion, passing article through
an RTF template.

8. How is this relevant to the thesis on sound? It seems prissy.
In this field, software is the medium for communicating
research, and software ought to be dynamic, not frozen in a
book. Persons interested in the audio work here may also be
interested in the code, so it was important to take time to try
to write it clearly, and since they will inevitably stumble on
the RTF parts, an explanation was warranted. When programs
operate in obscure ways on Obund, it can be very instructive
to add an illustration and a sound to the source code; at least,
it was helpful for me.

a2: rich text programming 179

9. It seems obsolescent. There are better text representations
than RTF, better languages than C, and much of your code is
twangingly tuned to the NeXT environment anyway.
Systems will continue to change. C and RTF are both
somewhat baroque languages, but they are sufficiently
widespread that they are likely to continue being readable
through software for some time. There are choices other than
RTF for the purpose of enhancing the format of programs;
almost any reasonable choice will serve the purpose of
helping to evolve systems that are more fluent in a variety of
document types. While I would not leap to the defense of
RTF (or NeXT's extensions) on intrinsic technical grounds, at
the present time, RTF is the most prevalent markup language
for document exchange, and it is integrated fairly well in the
NeXT system, which has become popular in the audio
research community. More important than the mechanics,
though, is the idea of advancing systems by improving the
quality of interactive documents for programmers as well as
end users. (in fact, it could be argued that compound
document architectures won't improve much until
programmers use them for their daily coding.)

10. Hasn't this been done already? by Knuth, for instance?
Read the next section.

a2.3 Remarks

Better things for better programming ...

Information science is metalingual. It has learned that particular
problems are often best described in private notations, or "little
languages," to use Kernighan's phrase. Above all it has learned
that it is useful to have languages for writing languages.

Languages are most often textual, but they certainly don't have to
be. People communicate with schematic pictures and through

a2: rich text programming

. - --I--- - -l" - -'I L I I I IN "- 1 #*

180

sign languages, and there are a number of important "visual"
languages in use today. Music scores are an obvious example of
a quasi-textual graphical language; so are computer "window"
systems and nearly all graphical applications, as well as some of
the tools for creating them. Hullot's Interface Builder (1988) is an
example of a graphical meta-tool that allow one to sketch the
layout and interconnection of algorithmic building blocks. Many
such tools sprouted from Sketchpad (1963), but have flourished
noticeably in recent years, perhaps simply because the supply of
graphical workstations and the demand for well-designed
graphical interfaces in turn favors design tools that are suited to
that domain. The tasks managed by a visualization system are
seldom well-described in Fortran.

There are many other not-overtly-textual programming systems
that permit the user to communicate through gestures, spoken
utterances, or other sorts of data samples so as to induce
agencies to perform the desired task. Often, though, when a
description is boiled down to its most abstract and powerful
form, it is expressed as text, and most any tool that amplifies the
ability to work with forms of text also improves one's ability to
manipulate the problem described in it. (What we have come to
think of as "text" is not a purely alphabetic concept - like
"technology" it derives from a craftly weaving together of ideas
and symbols, as in texere, tictov, and TEXvE).

Computer representations of languages have improved in fits and
starts, from the early days of physical wiring, punched cards, and
op-codes, through to "softer" and richer representations, like
EBCDIC and ASCII. The sheer volume of code being produced
has required legible programs, and humane coding practice
hence the trend towards "structured" languages, and a
heightened sensitivity to good programming style. To that end,
Kernighan and Plauger's Elements of Programming Style (1974)
attempted to do for programs what Strunk and White did for
prose.

a2: rich text programming

From 5-bit Baudot to 8-bit ASCII to ... ?

The time is ripe for another transition. 1 6-bit character coding
standards like Unicode are being developed as the successor to
ASCII to accommodate worldwide languages. At the same time,
digital document structures are improving to bring computer
media up to par in design quality with traditional print media.
Document casting and translation mechanisms will be needed.
One can imagine that, someday, it will be common for users to
request that whatever material being presented be cast into their
preferred language and style. Clearly, the future holds not just a
bigger "byte" but a variety of compound document architectures,
and it is time that they became a part of day-to-day programming.

WEB considered harmful.

Recognizing these problems and trends, Knuth (1984) began to
develop a system for what he called literate programming - he
viewed programs as artistic works of literature: "Instead of
imagining that our main task is to instruct a computer what to do,
let us concentrate rather on explaining to human beings what we
want a computer to do." For this he devised a language called
WEB that fused documentation and code into a single package:
essentially, it mixed the typesetting facilities of TEX with the
programming style of Pascal, along with a bit of "glue" for
indexing and cross-referencing of variables and modules. The
WEB program could be filtered through TEX to generate a printed
book, or through a PASCAL interpreter to generate a working
program. (Refer to Knuth's Literate Programming for a lengthy
review of the subject, as well as numerous examples of WEB
programs).

There are some disturbing problems with this. One can hardly
disagree with the desire to write human-readable code - but
let's disagree anyway. Programs are not illuminated
manuscripts. Fundamentally, a program is not a work of
literature, and a programmer's job is not, first and foremost, to

a2: rich text programming182

explain his or her intentions to other people. It is important that
code be human- as well as machine-readable, but a program is a
tool for cutting through problems, and its form follows that
function: it needs to fit the problem, and also needs to afford
some economy of expression and usability for the programmer.
Programs do not necessarily benefit from fancy presentation.
To dress a program up as literature can be like taking a chainsaw
and making it into a comfortable piece of sculpture.

Another difficulty with Knuth's approach is that it tends to violate
a number of engineering sensibilities. WEB extends only with
difficulty to other languages (a new dialect of WEB must be
wrapped onto any new language, and although there are tools to
automate this, the result is - another new dialect). Worse, it is
not conducive to debugging, since a special debugger must be
constructed to interpret WEB code in the dialect to which it has
been adjusted (alternatively, one can debug in the intermediate
language, thus working with two versions of the source).
Overall, by overemphasizing the literary bent and by attempting
to mingle the previously separate structures of programming
languages with document structures, WEB code tends to yield
what McIlroy once called "rococo, Faberg6 eggs" - ornate
museum pieces, instead of snappy, constructive components
(c.f. Bentley 1986 for Mcllroy's discussion of why his one-line
shell script was better than Knuth's 1 7-page WEB solution to a
word counting problem). That is a serious liability, which is
unfortunate because the original motivation, to improve the
quality and communicability of software, can exist in harmony
with the utilitarian aspects.

right:

/* A working program. */
#include <stdio.h>

m-ain() {
printf("hello world.\n");

}

wrong:

/* N't onb dtutte. */
#indnbt <Wtbio.b>
#btfint Ft
#bttint olb
/* Ibtr begfiuti pt main)*
pt OWle main()

pz pritf("Iptilo Wordb.\n");

/* 3t t"bt. *.A.# *

programs do not necessarily
benefit from fancy presentations

Is a rich-text approach any better?

Yes. It does not suffer from the fatal flaws of Knuth's approach.
One can still write an unadorned program, but the option of
using fonts or illustrations to highlight a point is available.

a2: rich text programming

It encourages writing nice-looking code but not at the expense of
writing workable code. Because it does not tangle with the
private syntax of programming languages, any program including
compilers and debuggers can transparently process rich forms of
text given a bit of system support for converting documents.
In fact, this suggests an important missing piece in current system
architectures; namely, that a process that is reading or writing
data be able to request that a high-level format converter be
interposed (e.g., "open as English text"). Ritchie's streams for 8th
edition Unix (1989) did this to a degree; missing is the support
for writing converters, and for describing formats so that these
casts can be automatically managed.

A drawback of sorts is that rich-text documents can be
complicated structures, and that may require considerable
supporting code. For example, the NeXT "text object" that
provides enough of an interface for multifont editing, editing of
links and attachments, etc, is extremely complex.

Another drawback is that it can be difficult to edit rich-text
documents on antique, non-graphical terminals, of which there
are still many in the world, but that is a little like pointing out
that it can be difficult to pedal a bicycle after a 50-horsepower
engine has been bolted onto the frame. This restriction will not
apply in a few years.

a2.4 Summary

There are virtues in applying richer document forms to
programming. The approach with RTF taken here shows a path
towards a more humane and dynamic form of code. In that
sense it achieves most of the goals of Knuth's approach without
the insidious problems. It is also immediately useful because
once good rich-text support exists in the system, with negligable
overhead, other components like compilers can function
transparently with the richer forms of text. More important, this
is a path that clears the way toward making the overall system

a2: rich text programming

. ... *Y 4666#6010awk

fluent in compound document architectures. That is useful

because it could make the richest forms of documents as useable

as the simplest ones.

In addition, in keeping with the well-known property of good

abstraction, when the design of an integral document
representation is extended, the whole system benefits.
For example, extensions to RTF already include attachments and
links that are useful in programs as well. It is not hard to imagine
including "active" objects like meters or video windows.
This may seem unnecessary in the minimalist view of a "hello,
world" program, but can be extremely useful when writing
programs to manipulate other media, like some of the audio code
in this thesis. Related to structurally-oriented sound processing, a
promising extension not yet tried is the idea of attaching
soundfile pointers to text in the document. For example, a

speech-to-text converter might produce as output a rich-text
document in which each textual word is mapped to the
underlying sound samples. In this way one could build a dialog
editor that works by cutting and pasting text to effect analogous
operations on the underlying sounds, perhaps with some
intelligence added to improve the splicing and editing of the
sounds (e.g., selecting a word and italicizing it could add
emphasis to the underlying utterance).

a2: rich text programming

