
A Physically Based Human Figure Model with a
Complex Foot and Low Level Behavior Control

by

Michael Allen McKenna

B.S., Massachusetts Institute of Technology
(1987)

S.M., Massachusetts Institute of Technology
(1990)

Submitted to the Program in Media Arts and Sciences,
School of Architecture and Planning,

in Partial Fulfillment of the Requirements for the
Degree of

Doctor of Philosophy
at the

Massachusetts Institute of Technology
June 1994

© 1994 Massachusetts Institute of Technology
All rights reserved

Signature of Author
Program in Media Arts andSeiences

April 29, 1994

Certified by

Accepted by

David Zeltzer
Principal Research Scientist, Resea c Laboratory for Electronics

Thesis Supervisor

1 .6z J

Stephen A. Benton
Chairperson

Departmental Committee on Graduate Students
Program in Media Arts and Sciences

MASSACHUSETTS INSTrItUTE

JUL 13 1994
LBAR:ES

A Physically Based Human Figure Model with a
Complex Foot and Low Level Behavior Control

by

Michael Allen McKenna

Submitted to the Program in Media Arts and Sciences,
School of Architecture and Planning, on April 29,1994

in Partial Fulfillment of the Requirements for the
Degree of Doctor of Philosophy

Abstract
Advances in computer hardware and software technology allow the simulation of natural
phenomena in increasing levels of complexity. This thesis is concerned with simulating
the articulated movements of humans using the laws of physical motion, and contributes
to the fields of computer animation and biomechanics. A 90 degree of freedom model of a
human figure is developed, and an efficient dynamic simulator is employed to create and
analyze physically based, computer generated motions. The foot of the simulated human
figure has been modeled with a significant amount of kinematic complexity, with 28
degrees of freedom per foot. A joint-level control layer uses springs and dampers to con-
trol postures and movements. A framework for higher level control is implemented,
although specific tasks require tailored control strategies. Several example tasks are simu-
lated and described, including maintaining stable standing postures, rising on the toes, and
reaching with the arm to designated targets. A simulation of the stepping phase of walking
is developed, using passive dynamic effects to generate much of the motion. Together, the
simulator and biomechanical model create a framework which can be used to address
problems in computer animation and biomechanical research, and eventually, in a clinical
setting, to assist doctors in analyzing the problems of specific patients.

Thesis Supervisor: David Zeltzer, Ph.D.
Title: Principal Research Scientist

This work was supported in part by NHK (Japan Broadcasting Company), and equipment
gifts from Hewlett Packard Co. and Apple Computer, Inc.

A Physically Based Human Figure Model with a
Complex Foot and Low Level Behavior Control

by

Michael Allen McKenna

The following people served on the committee for this Thesis:

Committee Member

Committee Member

Marc H. Raibert
Professor of Electrical Engineering and Computer Science

MIT Artificial Intelligence Laboratory

Joseph Rosen
Asociate Professor in Plastic and Reconstructive Surgery

Dartmouth Medical School

Dedication Michael A. McKenna

Dedicated with love to my mother; Lynn S. Evans.

Dedication Michael A. McKenna

Table of Contents Michael A. McKenna

Table of Contents

Abstract..2

Table of Contents... 5

List of Figures .. 8

List of Tables ... 12

List of Scripts...13

1 Introduction..14

1.1 G eneral Problem .. 14

1.2 Specific Problem .. 15

1.3 A pproach...15

1.4 Contributions... 16

2 Background..19

2.1 M otion Sim ulation ... 19

2.2 M otion Control... 24

2.3 H um an Biom echanical Param eters.. 29

2.4 A nalyses of H um an M ovem ent and G ait... 36

2.5 M achine Locom otion... 43

2.6 Computer Animated Simulations of Human Movement 45

2.7 Previous Work by the Author: Hexapod Locomotion 47

3 A pproach..54

3.1 The Program Corpus...54

3.2 D ynam ic Sim ulator .. 55

3.3 Biom echanical M odel... 56

3.4 Sim ulations of H um an Posture and M ovem ent .. 59

3.5 Com puter G raphics and A nim ation .. 65

4 The Program Corpus..67

4.1 O verview ... 67

Table of Contents Michael A. McKenna

4.2 Parser...68

4.3 Dynamic Sim ulator .. 70

4.4 Graphics..71

4.5 M ore Corpus Inform ation.. 72

5 Dynamic Sim ulator ... 75

5.1 Introduction... 75

5.2 Spatial Notation .. 76

5.3 Single Body Dynam ics .. 81

5.4 Articulated Body Forward Dynamics..84

5.5 Hybrid Dynam ics.. 88

5.6 First Order Dynamics.. 90

5.7 External Forces .. 93

Gravity .. 93

Ground Reaction Forces .. 93

Other External Forces .. 98

5.8 Actuator M odel and Joint Forces... 99

5.9 M otor Program s .. 102

6 Biom echanical M odel..104

6.1 Introduction...104

6.2 Kinem atic Param eters ... 105

Digitized Skeleton..105

Anthropom etric M easures..109

Degrees of Freedom ... 110

Anatom ical Illustrations...115

6.3 Dynam ic Param eters ... 121

Inertia...121

Dynam ic Joint Param eters ... 124

6.4 Visual M odel...126

7 Sim ulations .. 128

7.1 General Sim ulations..128

7.2 Standing Posture ... 147

7.3 Reaching Task...153

7.4 Toe Raise Sim ulation..157

Table of Contents Michael A. McKenna

7.5 Passive Step .. 162

Future Work: Extensions and Issues Concerning Walking Simulation...........173

8 Conclusions..176

8.1 H um an Figure M odel..176

8.2 Future D irections .. 177

9 A cknow ledgm ents..180

10 Biographical N ote .. 182

11 Bibliography .. 183

A ppendix A Corpus H elp ... 195

A ppendix B Corpus Tutorial .. 207

B .1 Starting w ith Corpus .. 207

B .2 Graphical O perations..208

B .3 D ynam ics in Corpus...210

B.4 Language Features..216

Appendix C D ynam ics V erification..220

C .1 Constant Linear Force: Gravitational Free Fall Test..220

C.2 Conservation of Momentum: Constant Velocity Tests 222

C .3 O scillatory M otion: Linear Spring Test ... 223

C.4 Damped Oscillation: Linear Spring and Damper Test.......................................225

C .5 Exponential Spring Test ... 227

C .6 D ouble Pendulum : Tw o Link, Tw o Joint A rm .. 228

C .7 Self Consistency: M ultiple G eom etric Structures..237

A ppendix D Body Scripts ... 241

A ppendix E Body Tables..252

List of Term s..264

G eneral N otations .. 264

Operators..264

Term s ... 264

G lossary ... 266

Index of References ... 271

Index .. 274

Michael A. McKenna

List of Figures

Figure 1: The human figure model..17

Figure 2: The shape of the simulated foot model during walking, before toe-off of the

stan ce leg .. 18

Figure 3: The cardinal planes of the human body... 30

Figure 4: Joint motion terminology illustrated on the lower limbs. 31

Figure 5: Body segment lengths as a function of overall body height, H......................33

Figure 6: The human skeleton model created by Stredney. [Stredney]............................34

Figure 7: The skeleton of the human foot. [Goldfinger] ... 35

Figure 8: A mechanical model of the lower leg, using a simple spring and damper actua-

to r...3 7

Figure 9: A photographic time sequence of a male subject walking by Muybridge. [Muy-

bridge]..3 7

Figure 10: The kinematic roach.. 48

Figure 11: A wave gait stepping pattern... 48

Figure 12: The tripod gait. ... 49

Figure 13: The hexapod, "Cootie," from the computer animation Cootie Gets Scared. [McK-

enna 1988]...50

Figure 14: The parametrized dynamic roach. [McKenna 1990-B].....................................50

Figure 15: Block diagram of the dynamic hexapod control and simulation system, imple-

mented in the program corpus. .. 51

Figure 16: Scene from the animation Grinning Evil Death. [McKenna 1990-D]...............53

Figure 17: The basic model of the humanoid biped figure... 58

Figure 18: The basic biped figure falls with and without joint limits........................... 60

Figure 19: A balanced, stable posture, using the basic biped model.............................63

Figure 20: Passive stepping motion, using the basic biped model, compared to a Muybridge

seq u en ce ... 64

List of Figures

Michael A. McKenna

Figure 21: Block diagram of the program corpus... 68

Figure 22: The output image generated by corpus, using Script 1............................... 73

Figure 23: The velocity of a rigid body. From [Featherstone 1987]....................................78

Figure 24: First order simulation of a 3 link pendulum (upper) compared to a second order

sim ulation (below). ... 91

Figure 25: Force response of the friction functions.. 96

Figure 26: Force response of the exponential spring...100

Figure 27: Stredney model of the digitized skeleton overlaid with parametrized model.

Left: "skeletal," articulated layer. Right: the initial "skin" layer...............................107

Figure 28: The right foot of the Stredney model overlaid with the parametrized corpus

m o d el..10 8

Figure 29: The degrees of freedom in the human figure model, above the foot..............111

Figure 30: The degrees of freedom in the foot of the human figure model.....................112

Figure 31: The Tc (talocrural or talar) and Tcn (talocalcaneonavicular or subtalar) joints in

the ankle. [Procter] ... 113

Figure 32: A depiction of the action of the subtalar joint and navicular and cuboid joints in

the hum an foot. .. 114

Figure 33: The final humanoid model, shown with a Goldfinger anatomical diagram, from

a perspective view .. 116

Figure 34: Human figure model, "skeleton" layer, overlaid with anatomical diagram, from

th e fro n t..1 17

Figure 35: (Left) A side view of the human figure model "skeletal" layer, overlaid with an

illustration of the hum an skeleton..118

Figure 36: (Right) The human figure model with its "skeletal" and "skin" layers superim-

p o sed .. 1 18

Figure 37: The human figure model "skin" layer with overlaid anatomical diagrams.... 119

Figure 38: The "foot-box" and the parametrized skeletal model. Anatomical diagrams from

[G oldfinger]...12 0

Figure 39: Skeleton of the right foot: McKenna model compared to Goldfinger illustra-

tio n . .. 12 1

Figure 40: The line formed by the distal heads of the second and fifth metatarsal bones as

measured from humans compared to the human figure model..................................122

Figure 41: The centers of mass of the limbs..125

Figure 42: Computation time for simulation vs. the number of joints included in the artic-

List of Figures

ulated figure. .. 136

Figure 43: An animation sequence of the human figure "drooping" passively under the in-

fluence of gravity...139

Figure 44: The foot shape as the body falls forward. .. 142

Figure 45: An "exercise" animation sequence using the human figure model................144

Figure 46: A motion sequence of "wiggling" the toes of the left foot, driven by motor pro-

g ram s..14 6

Figure 47: Block diagram of dynamic postural control...147

Figure 48: An animation sequence of the human figure rising to a standing posture from a

k nee b en d . .. 15 1

Figure 49: The human figure, in contraposition. ... 153

Figure 50: The setup for the reaching task...155

Figure 51: The reaching task simulation, in the performance phase. 156

Figure 52: Simulation of rising on the toes..159

Figure 53: A close-up view of the foot during the toe raise simulation. 160

Figure 54: Rising on the toes, with an everted foot...161

Figure 55: The model used in "ballistic walking" analyses by Mochon and McMahon. 163

Figure 56: The passive step simulation, using the complex foot model..........................165

Figure 57: A close-up of the complex foot model during the passive step simulation.... 166

Figure 58: A close-up of the front of the complex feet of the human figure model during

the passive step sim ulation...167

Figure 59: Plot of the joint angles as a function of time calculated by Mochon and McMa-

hon compared to the joint angles from the passive step simulation. 168

Figure 60: Joint angles from Mochon and McMahon's simulations with knee lock, com-

pared to the passive step experiment. .. 169

Figure 61: Joint angles from the passive step simulations, with the rigid foot (above) and

the com plex foot (below)...170

Figure 62: Plots of the ground reaction forces measured from humans compared to those

computed in the passive step simulation..172

Figure 63: A preliminary hand model is added to the complex human figure model.179

Figure 64: Results from the constant linear and angular velocity test.............................224

Figure 65: Linear spring oscillations. .. 226

Figure 66: Damped oscillation simulation results. .. 227

Figure 67: Exponential spring oscillation..228

List of Figures Michael A. McKenna

List of Figures Michael A. McKenna

Figure 68: A two-link, two-DOF arm .. 229

Figure 69: Free body diagram for link i...229

List of Tables Michael A. McKenna

List of Tables

Table 1: Link parameters of the basic human figure model. Length values for the thigh,

shank and foot were rounded from measurements by [Dempster]. 58

Table 2: Segment (link) lengths, from joint to joint. ... 109

Table 3: Segment densities and masses ... 123

Table 4: Centers of mass of different body segments..124

Table 5: Computation times for basic simulations. ... 132

Table 6: Results from Simulation 9. The computation time for increasing number of

jo in ts...13 5

Table 7: Results from Simulation 12. The computation time for increasing number of

joints, w hile drooping passively. ... 140

T able 8: Free fall test results..222

Table 9: Kinematic link and joint parameters of the human figure model. 253

Table 10: Mass parameters of the body parts in the human figure model.......................256

Table 11: Joint angles, damping constants, and exponential spring parameters, calibrated to

a standing posture. ... 260

Michael A. McKennaList of Tables

List of Scripts Michael A. McKenna

List of Scripts

Script 1: An example corpus script..73

Script 2: An example interactive session with corpus.. 74

Script 3: A corpus script to pose the human figure to the anatomical position...............131

Script 4: A script to generate motions of the limbs in zero gravity. 143

Script 5: A corpus script which defines motor programs to "wiggle" the toes. 145

Script 6: Script to control the human figure to rise on the toes. 158

Script 7: A corpus script to render an image of a graphical object..................................208

Script 8: A corpus script to create a dynamic object ... 210

Script 9: A script to create a dynamic articulated figure in corpus. 212

Script 10: A corpus script to simulate a body in free fall..221

Script 11: A corpus script to simulate a body moving with a constant velocity. 223

Script 12: A corpus script to simulate a linear spring system..225

Script 13: A corpus script to simulate a linear spring and damper system......................227

Script 14: A corpus script to simulate an exponential spring system..............................228

Script 15: A corpus script to simulate a double pendulum..230

Script 16: A MathematicaTM script to define the equations of motion for a two link pendu-

lu m . .. 2 3 2

Script 17: A corpus script which creates 4 different articulated bodies which have identical

structures, but different links specified as the root link...237

Script 18: Corpus script to build the "skeleton" layer of the human figure model, with the

biom echanical joint param eters. .. 241

List of Scripts Michael A. McKenna

1 Introduction Michael A. McKenna

1 Introduction

1.1 General Problem
The synthesis of "natural" and "realistic" motions of human figures has long been a goal

of animation. The design and control of humanoid robots to perform typical human behav-

iors has also been a goal of our society - the idea of a technologically-created artificial

person has been with us for centuries. [Heppenheimer] At the root of these problems is the

study of human motions and how they are produced, which has a long history of scholarly

pursuit. In recent years, increases in computer performance have allowed the creation of

representations of the real world, with which one can interact in real-time. These virtual

environments (VEs) allow us to unite the pursuits of animation, robotics, and human

motor performance, by using computational models of physical phenomena and theories

of motion control.

In certain VE systems the representation of natural humanoid movements, generated by

computer, is of prime importance. For example, consider systems designed for investigat-

ing human factors and performance, for training among multiple persons, and for assisting

in clinical (medical) environments. In addition, it is not only the motions or kinematics of

the humans which are of importance, but also the kinetics or dynamics which should be

accounted for. Indeed, simulating the "underlying" dynamics of the system may lead to a

more natural representation of the motions.

The simulation of complex, physically based behaviors is still beyond real-time computa-

tion and interaction, except with limited examples. Although real-time VEs cannot cur-

rently support complex simulations as they are computed, VE frameworks are very well

suited to building a dynamic simulation environment. The general purpose, flexible, 3D

environment and tools provided by VEs facilitate the development and visualization of

dynamics.

1 Introduction Michael A. McKenna

1.2 Specific Problem
This thesis is concerned with designing and implementing a computer software system

and biomechanical model for simulating an articulated humanoid figure, using dynamic,

physically based simulation techniques, in a computer animation framework.

The human figure model developed here is fairly complex in its kinematic structure - 90

degrees of freedom are modeled, with 28 degrees of freedom in each foot. In addition,

force generating elements, including dampers, joint limits, and actuators, are present at

each joint. The dynamic simulator system, combined with the biomechanical model of the

human figure, allows us to generate and analyze complex motions.

Increasing the complexity of the kinematics also increases the problems of control, simu-

lation, and analysis, and can obscure mechanical relationships. However, increased com-

plexity also allows for the examination of functions which do not exist without suitable

underlying structural representations. With a complex model subtle effects can be revealed

and studied. For the purposes of animation, the problem is obvious and straightforward -

in order to show a complex or subtle movement, the foundation for such an action must be

present. Although animation has a tradition of "faking it" by presenting images and move-

ments that seem more complex than they really are, without a realistic underlying archi-

tecture, animation systems break down as their artificially imposed limits are exceeded. In

addition, clinical problems demand that details of structure be examined because they can

lead to significant gross effects.

1.3 Approach
A biomechanical model of the articulated human body is developed, based on human

kinematic and dynamic parameters. A number of sources of information are employed to

design the model: literature regarding cadaver and clinical studies, which measure the

properties of limbs and joints; two dimensional anatomical diagrams; and a three dimen-

sional digitized skeleton.

An efficient dynamic simulation computer program, named corpus, is developed to create

and analyze motions of the biomechanical human figure model. Corpus is a general pur-

pose simulation system for articulated, rigid bodies, with a flexible software architecture

that allows for the simulation of a variety of jointed figures and mechanisms. Forward and

Michael A. McKenna1 Introduction

inverse dynamics can be simulated, as well as a hybrid mix of the two, based on the Artic-

ulated Body Method, developed by Featherstone. [Featherstone 1987]

The biomechanical model incorporates joint actuators, based on non-linear springs, which

form a low level control layer and supply the forces needed for postural support and for

motion generation. Motions are controlled by manipulating the spring parameters (prima-

rily the spring rest angles) over time. Passive joint forces are supplied by dampers and

elastic joint limits.

In order to simulate the figure, forward dynamics is used to compute the motions of the

parametrized human figure in response to the internal and external forces. Motions and

postures of the human figure can be "calibrated" using inverse dynamics to compute the

required joint forces, and inverse control to compute the required actuator parameters. For

example, standing, balanced postures and their responses to perturbation forces can be

simulated after using such a calibration process.

Through a variety of simulations, the feasibility and utility of the system is demonstrated.

Examples include maintaining a balanced, standing posture, reaching with the arm, and

rising on the toes. The stepping phase of walking is also simulated, using passive dynamic

effects to generate the limb motions and the shape changes of the articulated feet.

1.4 Contributions
This thesis research demonstrates the feasibility of using dynamic simulation to compute

the motions of a complex human figure model for animation and other applications. The

difficulty in computation arises not only because there are many degrees of freedom in the

model, but also because there are very small links in the figure's feet, placed under large

stress forces. This creates a very "stiff' numerical system, which must be sampled with

very small time steps in order to accurately compute its motion. The rate of simulation

ranges from near real-time to one half hour per frame (where a frame represents 1/30 sec-

ond of real time), depending on the number of degrees of freedom included in the model,

and the type of motion being simulated.

This research contributes a new, complex biomechanical model of the human, with 90

degrees of freedom. The foot of the simulated human figure has been modeled with a sig-

1 Introduction Michael A. McKenna

1 Introduction Michael A. McKenna

Figure 1: The human figure model.

nificant amount of kinematic complexity, with 28 degrees of freedom per foot, represent-

ing the most complex kinematic model known to the author. The human figure model is

shown in Figure 1.

A method is presented for controlling postures and movements, based on spring actuators
and dampers. The actuators can be adjusted manually by the user, in order to examine
"what would happen" under different conditions, or they can be automatically calibrated
to achieve specified postures. Motion is controlled by using motor programs, which vary

1 Introduction Michael A. McKenna

1 Introduction Michael A. McKenna

Figure 2: The shape of the simulated foot model during walking, before toe-off of the stance leg.

the actuator parameters over time. The control system architecture borrows from robotic

control techniques, tailored to use biomechanical elements.

An efficient, general purpose dynamic simulator has been implemented. A recursive for-

mulation is used, which has a computation time linear with the number of joints, allowing

complexity to be explored. Together, the dynamic simulator and biomechanical model,

with its low level actuator control, form a powerful system for the generation and analysis

of human motions. Through a number of example simulations, the utility of the system is

verified. Figure 2 shows a still frame from one such simulation.

1 Introduction Michael A. McKenna

2 Background Michael A. MoKenna

2 Background

This chapter will survey background material and related work pertaining to the field of

human motion simulation, and will cover the general topics of:

Motion Simulation

Motion Control

Human Biomechanical Parameters

Analyses of Human Movement and Gait

Machine Locomotion

Computer Animated Simulations of Human Movement

Previous Work by the Author: Hexapod Locomotion

The reader is directed to the Glossary near the close of this document for clarification of

unfamiliar terminology.

2.1 Motion Simulation
This thesis is concerned with the motion of articulatedfigures, comprised of rigid bodies

or links, connected by joints. Ajoint allows the two bodies which it connects to move rel-

ative to each other in some manner, such as by translating or rotating. Ajoint which allows

motion in a single direction only, e.g. in the positive and negative X direction, provides a

single degree offreedom (DOF). Joints can allow for motions in multiple directions, pro-

viding multiple DOFs. A single body, or an articulated figure, free to move in space has 6

intrinsic DOFs - three translating DOFs and three rotary DOFs.

Within an articulated figure, proximal bodies are ones which lie closer to the center of the

figure, compared to distal bodies, which lie further from the center. For example, the fin-

gers are more distal than the forearm, and the upper and lower ends of the forearm are

2 Background Michael A. McKenna

labelled proximal and distal, respectively. An end effector is a body which lies at the end

("peripheral terminus") of a kinematic chain.

A rigid body has a center of mass (COM), which locates the "average" point of matter in

the body, towards which any external body is attracted by the force of gravity. A linear

force applied at any location other than the COM of a body creates a rotational accelera-

tion in the body (in the absence of a counteracting force or torque). Just as a single body

has a COM, an articulated figure also has an overall COM, which plays an important role

in the dynamics of the figure. Winter points out that the terms "center of mass" and "center

of gravity" (COG) are often used interchangeably, but that COM is the proper term to use

when referring to three dimensions. [Winter 1990] The center of gravity refers to the center

of mass in the vertical, gravity defined direction only.

The motion of articulated figures can be described using kinematics or dynamics. A kine-

matic description of motion uses only geometry to analyze or control a figure's move-

ments. A dynamic description also models the forces which lead to the figure's motions. A

dynamic model essentially includes a kinematic model, as well.

There are two major types of kinematic computations-forward (or direct) and inverse (or

reverse). Forward kinematics describes motion in terms of joint angles and positions.

(Note: the term position will be used in a general sense, to describe either rotational orien-

tations or linear displacements. Similarly, the termforce will be used to generally describe

both rotary torques and linear forces. Later in this document, we will discuss spatial nota-

tion, which unifies the rotational and translational aspects of motion.) Using forward kine-

matics, joint positions are specified, and the position of an end effector is then determined

by the positions of the joints which precede it. Inverse kinematics defines motion in terms

of Cartesian coordinates and other kinematic goals. Thus, the position and/or orientation

of an end-effector is specified in space, and the joint positions of the articulated chain are

then computed.

There are also two major types of dynamic simulation: forward (or direct) and inverse (or

reverse). Forward dynamics refers to computing the motion of a figure from applied

forces. Inverse dynamics refers to computing the forces which must be applied to a figure,

to achieve a specified motion. Consider Newton's second law of motion:

f = ma Eq. 1

2 Background Michael A. McKenna

which reads thatforce equals mass times acceleration. Forward dynamics solves for

acceleration from the specified mass and force, as in:

a = - Eq. 2

Inverse dynamics solves for the force, from the known mass and acceleration, as in Eq. 1.

Hybrid methods for dynamics allow a mixture of forward and inverse techniques, so that,

within an articulated figure, the force can be specified for some joints, and the motion

specified for others, and the system then solves for the unknown values. Physically based

simulation or physically based modeling is the use of dynamics, or the laws of physics, to

generate and analyze a motion process.

Forward dynamics is more analogous to the real world, in which forces result in the accel-

erations of bodies. Inverse dynamics allows us to analyze how motions in the real world

are generated, by computing the forces needed to create the observed accelerations.

To further explain forward dynamics, some assumptions and constraints used for forward

simulation are paraphrased from [Winter 1990]:

- There should be no kinematic constraints whatsoever - bodies are free to fall, joints

are free to move under the influence of forces, etc.

. The initial conditions of the simulation include the positions and velocities of all

bodies.

. The only inputs are externally applied forces and internally generated forces and

moments.

- The model must incorporate all important degrees of freedom, including joint limits,

which are modeled as passive internal forces and moments.

. The external reaction forces which occur between the bodies and the ground must be

calculated.

The forward dynamic simulations performed in this research obey these assumptions.

Other simulations use inverse dynamics, and some use a hybrid mix, to kinematically con-

trol some DOFs, while forward simulating the remainder.

For a good introduction to dynamics, Brady, et al., develops the kinematic and dynamic

equations for a two-link robotic arm. [Brady] In Appendix C Dynamics Verification in

this document, the two-link model is briefly presented, and is developed to work with cor-

pus, the dynamic simulation program employed for this thesis.

Michael A. McKenna2 Background

The algorithms which incorporate the equations of motion into a dynamic simulator can

be formulated in a number of ways. One of the most direct ways to develop a dynamics

algorithm is to use a matrix solution approach. The equations of motion for each body in

an articulated figure or dynamic system are established, taking into consideration the con-

straint forces need to maintain joint relationships between bodies (and other possible con-

straints). A large array is then created from the undetermined variables (such as

accelerations, for forward dynamics). A matrix inversion is required as part of the solu-

tion, which generates a fairly expensive computational cost: 0(n3) where n is the number

of joints or other constraints. Such an approach is well developed in an advanced dynam-

ics system by Isaacs and Cohen, which allows for mixed forward and inverse dynamics,

and forward and inverse kinematics, but at a high computational expense. [Isaacs 1987;

Isaacs 1988]

In many cases, it is possible to take advantage of the constraint relationships, in particular

the joint constraints, to simplify the computation. By carefully examining the equations of

motion, one can discover recursive relationships which relate the motions between the

parent and child links. The solution for the bodies' motions do not have to be computed

simultaneously, but rather, it is computed a piece a time, using local relationships

(although each body will correctly influence every other body). Recursive solutions typi-

cally have a order of complexity, 0(n), that is linear with the number of joints, n, in the

articulated figure. The efficiency provided by the recursive formulations is critical when

complex systems with many degrees of freedom are simulated.

Armstrong developed a recursive algorithm for the forward dynamics of articulated fig-

ures, originally developed for simulation of the US space shuttle's robotic arm, the Shuttle

Remote Manipulator System. [Armstrong 1979] The algorithm's computational expense is

linear with the number of joints: 0(n). All joints in the figures are required to be 3 DOF,

although an algorithm is outlined to remove this restriction, but with a computational cost

penalty. Armstrong and Green employed the system to investigate the use of dynamics for

animation, [Armstrong 1985] including the simulation of a human figure (discussed later).

[Armstrong 1987]

Featherstone describes an efficient technique, which he terms the Articulated Body

Method (ABM), for the forward and inverse dynamics simulation of branching, articulated

figures. [Featherstone 1983; Featherstone 1987] The method is linear with the number of joints,

Michael A. McKenna2 Background

O(n), for forward and inverse computations. In a comparison of different algorithm com-

plexities, Featherstone claims that his method is the most efficient when the number of

joints exceeds nine. Featherstone introduces "spatial notation," which is used to combine

the translational and rotational aspects of motion into unified 6 dimensional quantities.

This simplifies the complexity of the equations of motion, and can allow for more intuitive

manipulation of motion and force terms. Featherstone's ABM is the simulation method

used in this research, and it forms the mathematical foundation for the dynamic simulator.

Another efficient simulation method for forward dynamics is presented by Lathrop, using

the spatial notation introduced by Featherstone. [Lathrop] Lathrop's algorithm is also linear

with the number of joints, but it allows for motion constraints at the end-effectors, and for

the inclusion of kinematic loops in the articulate figure's structure, although at a moderate

computational expense (no worse than O(n) + O(2), where n is the number of joints, and 1

is the number of internal loops). Featherstone's algorithms can be extended to handle

loops, but at a significant reduction in efficiency. [Featherstone 1987] Lathrop's algorithm

was used to build a dynamic simulation system, in a computer graphics framework by

Schr6der. [Schr6der]

An efficient recursive solution to the inverse dynamics problem, using a Lagrangian for-

mulation, is presented by Hollerbach. The algorithm is linear with the number of joints,

O(n), whereas previous Lagrangian dynamics were of O(n4). [Hollerbach] Through an anal-

ysis of the number of required multiplication and addition steps, Hollerbach shows that his

method is comparable in complexity, although still somewhat more expensive, than recur-

sive newton-euler algorithms for inverse dynamics.

We will conclude this sub-section with a discussion of some of the limits in the rigid-body,

articulated figure simulation systems that we have reviewed thus far. Most articulated fig-

ure dynamic simulators, including the system employed in this thesis, treat the links and

joints as idealized, non-flexible entities. In real mechanisms, joints cannot be created per-

fectly, and usually the link can move small amounts in directions which would not be per-

mitted by an ideal joint. In addition, the link and joint structures can flex by some amount,

determined by their material properties, which may or may not have an important influ-

ence over their overall behavior. In a similar manner, vertebrates have flexible skeletons,

which can play a significant role in the energetics of movements such as galloping. [Alex-

ander 1985] Biological joint structures are quite complex, being formed by the bone surface

2 Background Michael A. McKenna

geometry, connective cartilage and ligaments, and the surrounding tissues. These joints

generally allow for very complex motions, in many degrees of freedom, even if the overall

motion is almost entirely limited to one degree of freedom. Dynamic simulators can be

designed to model the flexible properties of joints and linkages, but such systems are com-

plex and computationally expensive. [Pfeiffer; Yang] Nonetheless, taken in the larger view,

these effects ultimately should be present in a complete human model, so that effects such

as energy storage through bone bending, and critical stresses in bones can be examined.

We have not reviewed the dynamics of highly flexible and plastic objects, as we concern

ourselves in this phase of the research with rigid objects only, to simplify the simulation

problem. Computer animated simulation of deformable objects has been demonstrated

with significant success by a number of researchers. These simulation systems employ the

physical laws of motion for continuous, deformable bodies, which have various mechani-

cal properties. The resulting dynamic differential equations are numerically solved to gen-

erate and analyze motion. [Terzopoulos] With respect to this research, simulations of human

tissues are of particular interest. Pieper developed a model of human skin tissue, with an

interactive graphical interface to plan and simulate plastic and reconstructive surgery

operations. [Pieper 1992] Chen has demonstrated a deformable model of human skeletal

muscle, with active and passive internal forces. [Chen] These shape models are all highly

related to the biomechanical and functional models of human organ systems. Future work

would see the unification of these and other functional models and simulation techniques,

which would mutually interact to create a highly complex human body model. The prob-

lem is a difficult one, but the rewards will be similarly considerable. These issues will be

discussed further in the Future Work sub-section in Conclusions (8).

2.2 Motion Control
The control of motion is a complex problem. In the real world, and in dynamic simula-

tions, motions and postures must be controlled through the application of forces and inter-

actions with the environments. The physics involved in the system can complicate the

problem; links have momentum and inertia, there are powerful interaction forces between

the limbs, and disturbances can impinge from a variety of sources.

In biological systems, motions are the result of complex interactions between the central

nervous system, the skeletal system, and the neuromuscular system, as well as the physics

Michael A. McKenna2 Background

of motion and the environment's properties. [McMahon] The ways in which organisms con-

trol motion is highly related to their biomechanical properties, which are discussed in the

following sub-section. The roles of muscle properties, reflexes and other peripheral feed-

back, central motor patters, learning and adaptation mechanisms, and higher order plan-

ning and coordination are all critical to real world motor tasks. These systems are not fully

understood, especially taken in their entirety. High level learning and behavior selection

remains an open question, with active research to develop hypotheses for biological sys-

tems, [Minsky] and computer algorithms. [Maes; Zeltzer 1991]

Bizzi and his colleagues describe an equilibrium position hypothesis, based on experimen-

tal evidence, which forms a theoretical foundation for posture and movement control.

[Bizzi 1982; Bizzi 1984] In many ways muscle acts mechanically like a spring. Muscle stiff-

ness is a function of its activation level, a signal from the central nervous system (CNS).

The muscle exhibits a length/force relationship like a spring. Given a level of muscle acti-

vation in muscle agonist-antagonist pairs, there is a certain limb posture at which the mus-

cle forces balance out to zero. This is an equilibrium point for the limb, at which it will

remain at rest. Different limb postures form different equilibrium positions, each with its

corresponding set of muscle activation levels. To move from one posture to another the

CNS changes the muscle activations to the appropriate levels for the new equilibrium

position. Motion to the equilibrium position is then generated by the mechanical proper-

ties of the innervated muscle. Their experimental evidence, based on studies of monkey

arm movements, indicate that the CNS does not instantly switch the neural signals to spec-

ify the target equilibrium position when motion is initiated, but rather that a trajectory of

equilibrium positions is specified over time by the CNS. The details of such a trajectory

formulation remains an open issue. Features of the equilibrium position hypothesis are

employed in this thesis for motion and posture control.

The control of robotic motion is, not surprisingly, quite rooted in its engineering founda-

tions. Brady, et al., present the general principals of robotic motion. [Brady] The kinematics

and dynamics of a given robotic system, including its control system, are formulated.

Inverse dynamics can be used to compute the required forces for a specified kinematic

goal. The computed control can be applied using open loop control, in which the control

signals are completely pre-computed and are applied over time to generate the specified

motion. Any inaccuracies in the computation or modeling of the robot, or any disturbances

2 Background Michael A. McKenna

will cause the robot to perform the motion incorrectly to some degree. Using feedback

control, the performance of the robot is measured during the motion, and deviations from

the intended path are used by the control system, in real-time, to attempt to compensate.

The feedback can be mapped in a linear fashion, e.g. proportional to the error, yielding lin-

ear control. Non-linear feedback mappings can also be employed, yielding non-linear

control. A complete model of a robot system includes not only the dynamics and kinemat-

ics of the device, but also its control and actuation systems. Model based control takes into

consideration the entire system, or plant. [An]

The planning of trajectories for robot limbs to follow can be approached in several differ-

ent ways. A joint space controller plans a trajectory in terms of the joints angles of the sys-

tem. A trajectory can also be planned in Cartesian space, for example, specifying a path

through 3D space for the end effector of a robot to follow. Inverse kinematics computes

the joint angles associated with that Cartesian trajectory. Compliant motion is used when

part of a robot is in continuous contact with another surface. Rather than controlling posi-

tion in such a situation, it may be more appropriate to control force at the robot manipula-

tor. [Brady] It is also possible to develop hybrid control systems which control

combinations of force and position, or force and acceleration. [An]

The control of motion in computer animation systems began with kinematic techniques.

Using keyframe animation, an animator creates different postures of an articulated figure,

which are stored as "keyframes." To create motion, the computer interpolates the pose of

the figure from one key frame to another, over time. [Sturman] Different interpolation tech-

niques can be used to make the motions appear more smooth, and to impart certain quali-

ties to the motion. [Kochanek; Steketee] Talented animation artists can make much of this

technique, creating realistic motions, and characters that seems "full of life," often incor-

porating traditional animation techniques into their work. [Lasseter] However, creating

quality animation usually requires many keyframes, and it remains a time-consuming pro-

cess, restricted to those with the talent.

Kinematic control can be provided through either forward or inverse kinematics, or a

hybrid mix. Using forward kinematics, the joints angles of the figure must be specified by

the animator. Inverse kinematics allows the animator to specify the positions and motion

trajectories of the end effectors in Cartesian space, a very difficult task using forward kine-

matics. [Girard 1987]

2 Background Michael A. McKenna

Motions for articulated figures can also be input by performance. "Scripting by enact-

ment" is described by Ginsberg and Maxwell, in which a human performer, wearing three

dimensional trackers, acts out movements which are digitized by computer. The recorded

movements can be "replayed" in an articulated figure, which they term a "graphical mari-

onette." [Ginsberg] This technique is attractive because complex, realistic movements can

easily be obtained. It is currently used with mechanical "puppets" to produce character

animation. [Walters] Combining such input with real-time graphics output provides power-

ful feedback for the puppeteers, and allows for real-time performance to audiences.

Animation by enactment can also be used to generate facial animation. Williams presents

a system for animating parametrized three dimensional faces driven by video input of

human actors' faces, which have tracking spots affixed to the skin. [Williams 1990] Recent

work by Pentand, et al., uses video-based input of human actors, which do not require any

special tracking markers. The video input is analyzed, and the actors facial movements

trigger simulated muscles in the facial model to generate expressions. [Essa] The overall

body motion and approximate limb motions of performers can also be also be tracked in

real-time using video acquisition and image analysis. [Darrell]

Motions of articulated figures can also be specified using different forms of motion nota-

tion, such as methods used to "transcribe" the major features of dance compositions.

Singh, et al., describe an interactive graphical system used to edit Benesh Movement nota-

tion, a method for describing human body postures and movements on a 2D "score," anal-

ogous to a musical score. [Singh] The system was used primarily as a tool to assist with the

task of transcribing the score, but did not allow for animation between the different pos-

tures. Keyframe techniques can be used to generate motions from the score data, however.

Such animation is problematic because there is a great deal of ambiguity as to how exactly

the movements are performed. Especially in the case of dance, in which the motions are

highly dynamic and graceful, an underlying model of realistic motion generation is criti-

cal.

Instead of using animator or actor input (guiding control), a programming approach can be

used to control animated movements. [zeltzer 1990] Reynolds describes a computer anima-

tion system which is based on an animation/graphics programming language. [Reynolds

1982] Using an object-oriented approach, independent control structures, called actors, per-

form graphical operations on objects over time to generate animation. Programming meth-

Michael A. McKenna2 Background

ods allow for adaptive animation, in which motion behavior is modified in response to

input, environmental, or internal changes. Animations of bird flocking and fish schooling

behavior have been created by several computer graphics researchers. [Reynolds 1987;

Amkraut] The group behavior of the animals is determined by the aggregate behavior of the

individual animals.

Using a guiding approach, motions are defined explicitly. Using programming control,

animation is described procedurally. Using a task level approach, behavior is implicitly

defined, in terms of events, relationships and goals. [zeltzer 1990]. Task level systems are

created by appropriately combining guiding and programming control at high levels of

abstraction. Zeltzer's work with a goal-directed, walking human skeleton is discussed

below in the "Computer Animated Simulations of Human Movement" sub-section.

Badler and his colleagues have worked for a number of years on high-level control of

human figures, using inverse kinematics and other techniques. [Badler 1985; Badler 1987; Phil-

lips; Lee] By using multiple kinematic constraints, or goals, the posing of human figures

can be simplified, while giving more natural appearing results. Complex goals can be

specified, including a "stability" constraint which keeps the figure's center of mass within

the support region formed by the contact between the figure's feet and the ground. [Phillips]

They have worked with "strength-guided motion" as well, using a kinematic model with

some dynamic elements to simulate a human executing a lifting task. [Lee] The motion is

based in part on an analysis of the forces involved and a "comfort" and "strength" model

of the human.

There has been a more recent move in computer animation to incorporate a dynamic basis

for movements, using physics as a means of generating the motion. The use of dynamic

simulation can be considered a form of motion control, even if there are no controlling

forces or constraints. The "passive" motions generated by the physics alone can be very

complex, and, in general, cannot be duplicated by kinematic techniques alone. Dynamic

motor control can be applied atop of physically based simulation to control the behavior of

animated dynamic objects and figures. The previously discussed issues remain important

topics for physically based animation: kinematics remains intrinsic to the motion, and is

inseparable from the dynamics; guiding and programming control are both applicable; and

task level control can be constructed, so that the behavior of a simulated figure is driven

by high level goals.

Michael A. McKenna2 Background

A number of researcher have investigated physically based animation as a means of

motion production. Barzel and Barr present a system which kinematic constraints are used

with dynamic simulation to construct and simulate articulated structures. [Barzel] The

structures "self-assemble" as constraint forces pull the bodies together, over time, to form

the joints. Control is provided through use of the kinematic constraints, while the dynam-

ics responds passively.

Isaacs and Cohen developed a powerful dynamic simulation system, named DYNAMO

(for DYNAmic MOtion), for animation. [Isaacs 1987; Isaacs 1988] The system allows for a

very general-purpose mix of kinematic constraints in a dynamic framework. Motion can

be controlled by force functions and kinematic specifications. Inverse dynamics can be

applied as well to determine the forces required to accomplish a specified kinematic

motion.

Witkin and Kass describe spacetime constraints as a means of controlling and producing

physically based animations. [Witkin 1988] Spacetime constraints are a form of optimal con-

trol, in which the goals of the motion are specified, and the system solves for the time-

varying actuator forces which will accomplish the goal, using the minimum energy, or

some other measurable parameter to be optimized. The solution of such a system is typi-

cally very complex, because the solution is obtained for the entire time sequence of the

motion. Other optimization control strategies have been used for animation as well. [Brot-

man]

Systems presented by Wilhelms [Wilhelms 1985; Wilhelms 1987] and Armstrong and Green

[Armstrong 1985; Armstrong 1987] use similar means of motion control for the dynamic simu-

lation of articulated figures. Using forward dynamics, forces are applied at joints to gener-

ate movements. A variety of joint forces can be employed, including dampers, springs,

joint limit springs, and direct specification of forces. Similar methods are used in this

research to apply dynamic motion control, using forward dynamics.

2.3 Human Biomechanical Parameters
This sub-section begins with some basic terminology used to refer to human anatomy.

Three orthogonal planes are used to describe the dimensions of the human body: frontal,

sagittal, and horizontal (refer to Figure 3) .

Michael A. McKenna2 Background

Z Figure 3: The cardinal planes of the human body.

Adapted slightly from Williams and Lissner. [Will-
SUPERIOR iams 1977]

FRONTAL Lateral refers to structures which are situated farther
SAG TA from the midline of the body. Medial refers to struc-

I T tures situated towards the midline of the body.

The horizontal plane is also referred to as the trans-
verse plane. The frontal plane is also known as the

X Coronal plane. The sagittal plane is also referred to
as the midsagittal or medial plane.

INFERIOR

The terminology for different types of joint motions is shown in Figure 4, page 31. A rota-

tion at the hip causes the leg to pivot about its long axis. Flexion (or flection) of the hip

brings the leg forward, while flexion of the knee brings the lower leg backwards. Flexion

generally diminishes the angle formed by the joint, whereas, extension increases the angle

and straightens the limb. Abduction at the hip moves the leg outwards, to the side of the

body, while adduction moves the limb towards the center.

In order to simulate the human body, accurate biomechanical data is required- i.e. kine-

matic and dynamic parameters which capture the pertinent information needed to describe

a humanoid figure. The kinematic parameters include the geometry of the limbs, and the

joint DOFs. The limb geometry primarily describes the length of the limb from joint to

joint, often termed the "link" length. The kinematics of the exterior geometric shapes of

the limbs can also be an important biomechanical parameter, when the shapes are used for

geometric collision detection between different objects and between objects and the

ground. The geometric object data can also be used to define the volume of the limb seg-

Michael A. McKenna2 Background

2 Background Michael A. McKenna

FLEXION

4%

EXTENSION

ION

ABDUCTION

kiiJ ADDUCTION Q
Figure 4: Joint motion terminology illustrated on the lower limbs.

From [Huelke].

Michael A. McKenna2 Background

ment, in order to automatically calculate the mass and inertia of the segment (dynamic

biomechanical parameters). These shapes can be used for graphical display as well.

The other primary kinematic parameters are the joint DOFs. These includes the number of

DOFs at each joint, and the directions in which the DOFs allow the limbs to move.

Because the kinematic biomechanical parameters primarily describe the potential rigid-

body motions of the figure, they can be termed the skeletal parameters.

The dynamic biomechanical parameters describe the data needed for dynamic simulations

and include the inertia of the limbs and sources of forces within the figure. The total mass,

the mass distribution, and the center of mass of a limb all influence the motion of that

limb. There are several different sources of data to approximate the limb inertias: cadaver

studies, machine measurement in vivo, and computer approximations based on integrating

volumes of different densities for different tissue types. Biomechanical models of internal

forces are divided into passive and active components. Passive components arise from the

structures in the bones, joints, and surrounding tissues which are not under active neuro-

logical control. These forces include velocity-dependent damping, and position-dependent

joint limits. Active forces are supplied by muscles, which have both active and passive

elements, as well.

In classic cadaver studies by Braune and Fisher in the late 1800's, biomechanical parame-

ters for the major human body parts were measured. [Braune 1988] The kinematic link

length parameters of dissected limbs were measured. The limbs were weighed, and in

addition, the moments of inertia were determined by swinging the limb segments as a pen-

dulum about different axes, and measuring the oscillations.

Dempster directed similar work in more detail in the 1950's, using human cadavers, aug-

mented with studies of living subjects to measure biomechanical information. [Dempster]

Limb joints were studied to measure types and ranges of motion. Link kinematics were

measured, and limb masses, centers of mass, densities and inertias were measured as well.

The data was used to analyze work space requirements for seated operators, to assist in the

design of aircraft cockpits. Drillis and Contini designed a model which parametrizes body

segment lengths as a function of overall body height, as depicted in Figure 5. [Drillis; Winter

1990]

Michael A. McKenna2 Background

Figure 5: Body seg-T 1ment lengths as a
function of overall

-- - - - - -- -- body height, H.

This model was pre-

NkT§ 0.5120H pared by Drillis and

Contini. [Drillis]
Image from [Winter
1990].

0 0.191H Hj-

X

0.720H

O.M

Ci 0.285H

0.055H
Foot breadth 0.152H

Foot length

A three dimensional geometric model of the human skeleton was designed by Stredney to

facilitate animation and to provide a tool for anatomical education. [Stredney] Using three

dimensional modeling techniques such as lofting and solids of revolution, Stredney manu-

ally created polygonal models of skeleton bones using real bones and diagrams as refer-

ences. The skeleton model (also known as "George") is shown in Figure 6. This model

was used by Zeltzer in his skeletal animation system (discussed below). [Zeltzer 1984] This

model was also used as a preliminary guide in constructing the human figure model

designed in this research (discussed in the section Biomechanical Model (6)).

Medical illustration literature is also a useful source of information regarding human kine-

matics. In particular, the structure of the foot has not been examined to the same extent as

the major limbs of the body. A detailed illustration of the human foot skeleton, by Goldfin-

ger, is presented in Figure 7. [Goldfinger] This diagram, as well as others by Goldfinger and

other medical illustrators, [Gray] were used in this research as another source of kinematic

data.

2 Background Michael A. McKenna

2 Background Michael A. McKenna

Figure 6: The human skeleton model created by Stredney. [Stredney]

R

An important aspect of biomechanics is the models that have been developed of the inter-

nal forces in humans. The passive elastic forces, which create joint limits, can be mea-

sured from human subjects. Yoon and Mansour measured the passive elastic moments at

the hip, using an apparatus to measure force (from a load cell) as a function of angle (mea-

sured by a goniometer). [Yoon] They determined that the force could be approximated by a
sum of exponentials. Hof and Van den Berg measured the passive elastic force at the

ankle, and observed an exponential relationship between the ankle angle and the resulting

force. [Hof] Similar testing was performed by Hatze, who also modeled the passive elastic

forces in the leg as sums of exponentials. [Hatze] Audu and Davy use a sum of two expo-

I

2 Background Michael A. McKenna

2 Background Michael A. McKenna

Th* Skeleton - RIGHT FOOT

TALUS

OUTSIDE VIEW FIFTH "MEATAR5AL FRONT VIEW
PO$T.-ANT LAT+ - ME.

INSIDE VIEW
P05T--,ANT. BACK VIEW

MED.*- LAT.

Figure 7: The skeleton of the human foot. [Goldfinger]

nentials to model the passive joint limit forces in the leg, fitted to the more complex model

of Hatze, which resulted in severe numerical problems in their system in its original form.

[Audu] Passive damping, due to viscous drag and friction in the joint and surrounding tis-

sues is usually modeled as a linear element, where the resistive force is directly propor-

tional to the velocity. [Audu; Hatze]

The final biomechanical element to examine is muscle. Human skeletal muscle can be

modeled as combinations of springs, dampers, and force generators. Hill developed a

model of muscle, based on observations of muscle properties. The model included a force

generating contractile element, in parallel with a linear damper and a linear spring, in

series with another linear spring. [McMahon]

As computational models of muscle came into more widespread use, a need developed for

a general purpose skeletal muscle model which could be tailored to match a given mus-

cle's function. Zajac and his colleagues developed a dimensionless, second order dynamic

model of the skeletal musculotendon actuator. [Zajac 1986; Zajac 1989] The model has four

parameters which are specified to scale it to a specific actuator. These parameters are ten-

don slack length, optimal muscle fiber length, pinnation angle, and muscle strength. This

model has been incorporated into several biomechanical simulation systems. [Chen; Delp]

To analyze running motion, McMahon takes a simplified approach to modeling the prop-

erties of muscle, in the context of the human body. [McMahon] The model incorporates the

mechanical properties of isolated muscle, along with the properties that arise from the

muscle's feedback and the central nervous system descending commands. His model is

depicted in Figure 8. The stretch reflex in muscle can be shown to act as a stiffness regula-

tor, yielding a simple spring. The spindle organs feed back information regarding the

length and velocity of the muscle, and effectively create a dampening property in muscle.

A similar model is used in this research to lump together the muscle groups at a limb, with

their feedback properties, yielding "tunable" damped spring actuators at the figure's joints.

2.4 Analyses of Human Movement and Gait
In the late 19th century, Edweard Muybridge conducted some of the first quantitative stud-

ies of gait and other human movements, using time sequence photography [Muybridge].

Figure 9 shows an example photographic sequence by Muybridge.

Michael A. McKenna2 Background

2 Background Michael A. McKenna

Figure 8: A mechanical model of the lower leg, using a simple
spring and damper actuator.

The central nervous system specifies the rest length for the sys-
tem, adjusting the rack and pinion in the illustration. The muscles,
with their feedback systems are modeled by the spring and dash-
pot (damper).

Image and model from [McMahon].

Dashpot

Figure 9: A photographic time sequence of a male subject walking by Muybridge. [Muybridge]

Handle

2 Background Michael A. McKenna

Also in the late 19th century, Braune and Fischer performed pioneering work in human

biomechanics, with a focus on a better understanding of walking. [Braune 1987] Through

photographic studies of human walking, they measured approximate joint motions, and by

using manual calculations, computed joint torques and the motion of the body's center of

mass. Two cameras were used to photographically record the motions of luminous mark-

ers ("Geissler tubes," employing incandescent nitrogen) attached to the limbs. A subject

walked by the cameras, with illumination only from the markers. Using triangulation on

the recorded motion traces, the 3D displacements of the markers were extracted, and from

that they projected back along the limb to determine joint motions. Combining this infor-

mation with their measurements of the inertias of different body segments, [Braune 1988]

they computed the displacement of the body's COM over time, and performed biomechan-

ical analyses of the forces involved in the swinging leg during walking. Their conclusions,

however, were that the muscle forces must be acting more strongly than gravity and inertia

in the swinging leg. Although muscles are active, they do not dominate, [Winter 1978], and

it can be shown that successful stepping motions can be generated without any contribut-

ing muscle force, a subject that we will return to. [Mochon 1980-A; Mochon 1980-B].

With the advent of digital computers, the process of acquiring and processing gait data

became much more feasible. Joint motions can be tracked using goniometers, which are

potentiometers connected to a frame which attaches to the two limbs which span a joint.

[Winter 1990] In addition, optical tracking can be used to triangulate the locations of mark-

ers attached to limbs, and automatically extract their three dimensional location. Mann, et

al., describe their TRACK system, which uses two optical cameras and an LED array

attached to each tracked limb. [Mann] The system has an overall accuracy to within one

millimeter in position and 20 milliradians in orientation.

Another important tool in the study of gait is the force plate. As the subject walks across

the plate, it measures the forces being exerted on it by the feet. These forces are known as

the ground reaction forces (GRF). The vertical force, normal to the ground, reveals how

the feet are pressing down on the ground, and the horizontal, tangential forces reveal the

ways that the feet push forwards, backwards and to the sides, against the forces of friction.

By pairing kinematic acquisition with force plate data and a biomechanical model of a

human figure, we can use inverse dynamics to determine the torques which are applied at

the joints. [Winter 1978] In order to determine how the muscles are activated to generate the

2 Background Michael A. McKenna

computed forces, an optimization process must be used. [Patriarco] Because more than one

muscle spans each joint, and agonist-antagonist pairs can create the same net torque using

different stiffnesses, there are many more muscle activation parameters than their are

input joint torques. An optimization criteria (such as minimum expended energy) is speci-

fied and knowledge about which muscle groups typically work together, etc. is employed

to determine possible muscle activations and forces. Mann, et al., found that accurate

measurements of the joint motions are important when determining muscle force - more

important than the type of optimization method, or criteria used.

The determinants of gait are a way to describe the motions of the limbs during human

walking, put forth by Saunders, Inman, and Eberhart in 1953 [Saunders; Inman]. There are

six determinants of 'normal' gait. In general, each new determinant of gait adds the

requirement for a new degree of freedom in the walking system. [McMahon] It is valuable

to review this work to demonstrate the degree of freedom complexity which should be

included in a system to reproduce the major aspects of human walking.

The first determinant of gait allows for one DOF per leg, at the hip, and results in a "com-

pass gait," a kind of stiff-legged walk, with no motion of any joints except for flexion at

the hip. During the swing phase the hip flexes, swinging the leg forward, and during

stance the hip extends, moving the leg backwards. Such a gait would not be physically

realizable since there is nothing to prevent the body from falling toward the swing-leg side

of the body. In addition, because there is no flexion and extension of the knee for the

swing leg, the swing foot misses the ground with an infinitesimal clearance. The compass

gait results in a "bouncing" motion of the pelvis and COM. The COM sweeps out a series

of arcs, connected by sharp cusps, due to the inverted pendulum motion of the body and

stance leg.

The second determinant of gait adds rotation of the pelvis, about the vertical axis, to the

compass gait. The magnitude of this rotation is approximately ±30 for normal walking,

with a greater magnitude for faster walking speeds. Pelvic rotation serves to extend the

effective length of the legs, increasing the step length, and thus walking speed, and also

somewhat flattening the arcs formed by the motion of the COM. The addition of pelvis

rotation necessitates the addition of rotation at the hip, adding another DOF to the leg.

Michael A. McKenna2 Background

The third determinant of gait adds pelvic tilt to the two previous determinants. Just before

toe-off of the swing leg, the pelvis dips down approximately 3 towards the swing leg side,

then rises more slowly, until it is again level, when the swing leg makes heel-strike with

the ground. Pelvic tilt serves to flatten the arcs formed by the motion of the COM, since

the center of the pelvis no longer rises as far as the stance leg side. Pelvic tilt adds the

requirement of hip abduction/adduction, so that the hip now has three DOFs (as is anatom-

ically correct). Pelvis tilt also necessitates the addition of flexion of the swing leg's knee,

so that the foot clears the ground.

The fourth determinant of gait is flexion of the stance leg knee. The knee bends slightly

during stance, with maximal flexion near the middle of support. This further flattens the

path of the COM, since the pelvis does not rise as far in mid-stance, when knee flexion is

maximal. A new DOF does not need to be added for this determinant, since flexion and

extension of the knee (during swing) was added with the third determinant.

The fifth determinant is plantar flexion of the stance ankle and foot- i.e. bending of the

ankle and sole. During touchdown of the heel, the ankle plantar flexes (while the knee

flexes), absorbing impact energy. During double support, before toe-off of the swing leg,

the foot plantar flexes, smoothing the transition to the swing phase. Plantar flexion of the

foot plays a role in establishing the initial conditions for the swing. The cusps between the

arcs formed by the motion of the COM are smoothed by this determinant. Two DOFs are

added- one flexion/extension DOF at the ankle, and one in the foot to represent the joints

between the metatarsals and phalanges as a group (although using only one DOF in the

foot is a gross simplification of the actual structure).

Lateral displacement of the pelvis is the sixth determinant of gait. The center of mass of

the body moves laterally, moving the COM closer to the supporting foot in mid-stance,

such that the body rocks from side to side somewhat as locomotion progresses.

An additional important factor of gait is the inversion-eversion-inversion sequence at the

subtalar (lower ankle) joint, during the support phase of walking. There is a slight inver-

sion at heel strike, followed by eversion during most of the stance, followed by an inver-

sion at heel-off. The sub-talar joint acts in large part to allow the leg to rotate during

stance, while keeping the foot in non-slipping contact with the ground. [Inman]

2 Background Michael A. McKenna

The gait determinants serve in part to flatten the motion of the COM of the whole body.

The motion is not completely flat, but rather, it oscillates in a sinusoidal pattern, vertically

and horizontally. However, the total energy of the entire system is maintained at a nearly

constant level. There is a trade-off between the kinetic and potential energies; the two are

out of phase, and so energy is exchanged between the two. As the COM loses potential

energy- moving to a lower height- the COM accelerates, gaining kinetic energy. The

opposite occurs as the COM rises.

Mochon and McMahon studied some of the passive aspects of walking in work they

dubbed "ballistic walking," since the limb motions they studied were produced by the

forces of inertia and gravity. [Mochon 1980-A; Mochon 1980-B] Using computer simulations of

simplified biomechanical models of the legs and pelvis, in the sagittal plane, they demon-

strated that the swing leg successfully steps without any muscle force, if the correct initial

conditions (joint angles and velocities) are satisfied. A number of simulation were investi-

gated, with an increasing biomechanical complexity (introducing more of the gait determi-

nants). As the model's complexity increased, a closer correspondence was found between

the computed ground reaction force, and the ground reaction force measured for humans.

Their initial work covered basic limb motions only. [Mochon 1980-A] Later work added

stance leg knee flexion and foot flexion [Mochon 1980-B]. McMahon presents further mate-

rial on ballistic walking, including the addition of pelvic tilt, as well as an excellent review

of muscle and reflex properties. [McMahon]

Alexander examines the mechanics and energetics of locomotion. [Alexander 1976; Alexander

1985; Alexander 1990] He has analyzed different types of bipedal gaits, and computed the

energy required to achieve them. The role of springs in locomotion has figured heavily in

his work. Elastic components are present in flexible bone, in muscle and ligament tissues,

and in feet or animal paw pads. These elements can store energy from one phase of walk-

ing and return it in another. Flexible interactions between the foot and ground create a

more stable foothold by creating a compliant interface and by reducing "chatter," in which

the foot vibrates off of the ground and slips.

Frank analyzes the stability of an "algorithmic" walking biped at low speeds. [Frank] The

biped's motions are algorithmic, in that the feet and legs of the system are algebraically

related, like a clockwork system. Analyzing slow walking speeds, in which both feet

remain on the ground for most of the time, Frank shows that such a biped is inherently sta-

Michael A. McKenna2 Background

ble, and is able to recover from disturbances within a given range. He describes a potential

energy surface which provides an estimate of the energy required to destabilize the biped.

Gubina, et al., have simulated biped locomotion, including an active control system.

[Gubina] The simulation is greatly simplified compared to a real robotic or biological sys-

tem. Motion is restricted to the sagittal plane, and the legs are treated as massless entities.

The non-linear equations of motion for the system are developed, and a control system is

then designed based on a linearization of the dynamics equations with feedback control.

Body attitude and altitude are controlled, as well as step length and frequency. The system

produces stable results, even in the presence of large disturbances.

Siegler, et al., describe a simple model of the lower body, which they use to simulate the

stance phase of walking. [Siegler] Using straight, telescoping legs, the initial conditions of

the limbs are established just before heel strike, and the system then responds passively,

using gravity and inertia. Because passive dynamics are used, this work is similar to

Mochon and McMahon's "ballistic walking." The upper body is modeled as a point mass

at the hips, and the legs have 1 DOF at the hip, and 1 telescoping "knee" joint. In some

simulations, they allowed the body to move laterally, creating a three dimensional simula-

tion for the body movements.

Onyshko and Winter use forward dynamics to generate a simulation of human walking.

[Onyshko] A seven segment, six joint model of the body, limited to the sagittal plane, is

used. Initial conditions for the positions and velocities of the limbs are established, and a

set of joint torque profiles are applied at the joints, in an open-loop manner. The joint

torques were developed through a trial and error process, until one full cycle of walking

was successfully generated.

Amirouche, et al., present a system, DYAMUS, for the simulation of human movements.

[Amirouche] The system is capable of forward and inverse dynamics, with constraints.

Internal joint springs and dampers can be included in the human figure model. A simula-

tion of walking is discussed, based on a five segment, five DOF model, which uses kine-

matic constrains that prescribe the motions of the swing leg's foot and the body's COM.

Morlock describes a biomechanical analysis of the foot and ankle, using a six-segment

model. [Morlock] The following segments are represented in the system: the talus; the cal-

2 Background Michael A. McKenna

caneus; a link which lumps together the three medial metatarsals and the cuneiforms; a

link for the two lateral metatarsals, the cuboid, and the navicular; a link for the phalanges

in the three medial rays; and a link for the phalanges in the two lateral rays. Ten muscles

from the leg, and five ligament structures were also included in the model. The model was

used to analyze a "lateral side shuffle movement," which was recorded from a subject

using gait acquisition equipment. Inverse dynamics was employed to determine the joint

forces, from the subjects's motions. An optimization analysis was then performed to esti-

mate muscle forces.

Simkin created a foot model used to analyze standing posture. [Simkin] The model incorpo-

rated 17 joints, and 14 ligaments, with 6 points for support. The foot-ground pressure dis-

tribution forces and internal forces and torques were computed as the foot model was

incrementally loaded from above, at the ankle joint. The ground reaction force was com-

pared to measured pressure distributions in standing adults and was found to be similar to,

but less uniform than the measured values.

Meglan developed a passive mechanical model of the foot based on a set of viscoelastic

spheres jointed together by a rigid frame. [Meglan] The foot model was included in a full

body model, and was used to analyze the ground reaction forces during walking, and to

simulate simple human motions. The system was capable of reproducing an approxima-

tion of the ground reaction forces recorded during human walking. Forward simulation

was more successful than inverse dynamics at generating realistic ground reaction forces

in his system, due to problems of accurately measuring foot kinematics from human sub-

jects.

2.5 Machine Locomotion
Robots that walk and run will be covered briefly, here. The control of robots presents a

similar problem to the dynamic control of a physically-based simulation of an articulated

figure - forces are used in both types of systems to control motion.

There have been a number of statically-stable machines designed with four or more legs.

Liston and Moser describe a quadruped "truck" which is controlled by a human pilot. [Lis-

ton] Pugh, et al., present the adaptive suspension vehicle, a large (over 19 feet long, 7 feet

wide, and 10 feet high), six-legged, human piloted walking machine. [Pugh]

2 Background Michael A. McKenna

Autonomous walking robots include the OSU (Ohio State University) hexapod, [McGhee]

the CMU (Carnegie Melon University) hexapod, [Sutherland], and the ODEX hexapod,

intended as a telerobot for nuclear applications. [Russel] All of these statically stable robots

are designed to keep enough legs on the ground at a time in order maintain stability. The

COM of the machines must always lie within the support region formed by the supporting

legs in order to remain statically stable, and forward speed must be low enough that

momentum effects do not dominate.

Bipedal robots complicate the problem of maintaining balance, especially then the gait is

dynamic, i.e. there are phases of activity during which the system is not statically stable. In

general, bipedal gaits are dynamic, with the exception of very slow, careful gaits. During

walking at normal speeds in humans, the gait is quite dynamic, with few, if any periods

during which the COM of the body falls within the region of the supporting foot. Running

is a highly dynamic activity.

Kato, et al., describe a quasi-dynamic walking biped. [Kato] The robot had a wide foot

base, and, in general, maintained its COM within the region of the supporting foot. How-

ever, when the robot was ready to transfer weight to the other foot, it executed a short,

dynamic "fall" to that foot, using a model of an inverted pendulum to plan the motion. The

robot had 10 DOFs and was hydraulically powered. Later work employed a robot with a

large, 3 DOF upper body, which acted as an inverted pendulum used to stabilize walking.

[Takanishi]

One of the earliest, fully dynamic gaits for a biped robot was demonstrated by Miura and

Shimoyama. [Miura] The robot employed active balance, using straight stilt-like legs with-

out extra foot bases, so that statically stable support could never be provided. The robot

constantly and rapidly stepped from foot to foot, yielding a stable gait, but with a some-

what "twitchy" look. The motion control was based on utilizing the motion of an inverted

pendulum, which was decomposed into two components: one in the sagittal plane, and one

in the frontal plane. Stepping was planned to retain stability and achieve motion goals,

using a simplified model of the inverted pendulum system, with linear feedback control.

Furusho and Masubuchi present a biped robot capable of steady state walking. [Furusho]

The robot employs a stepping cycle speed of 0.45 sec, with a walking speed of 0.8 m/sec.

A hierarchical control system is used, with lower-level local feedback. A simplified model

2 Background Michael A. McKenna

of the robot is employed by the control system to maintain stability. Wide "feet" structures

are used to provide lateral stability, and the motion is thus limited to the sagittal plane.

The work of Raibert has focused on the design and control of running robots. [Raibert 1986]

Raibert has developed a variety of robots, including monoped, biped and quadruped mod-

els, which use a uniform approach to control- de-coupling the control of a set of sub-

goals, such as "hopping" height and running speed. Recently, Raibert has employed his

models of robotic control to simulate dynamic locomotion for the purposes of computer

animation, including non-humanoid bipedal running. [Raibert 1991]

To conclude the discussion of walking mechanisms, we review the work of McGeer, who

examined unpowered, passive bipedal walking machines. He created and analyzed simple

mechanisms which were capable of walking down a shallow incline, without any form of

internal power. Gravity provided the power for the machines, and the mechanical design

created stable walking patterns. One mechanism used a stiff-legged bipedal walk, using

small motors to rotate the foot to the side as it swung forward, so that it would clear the

ground. [McGeer 1990-A] Another mechanism used a mechanical design with bending

"knees," which allowed the foot to clear the ground as it swung forward, without the use

of any internal power. [McGeer 1990-B] McGeer's mechanisms were bipedal in form, and

created natural appearing humanoid movements, although they actually employed two

pairs of legs, which provided side to side stability, essentially by-passing the problem of

lateral balance. McGeer has also analyzed bipedal running as a passive activity. [McGeer

1990-C]

2.6 Computer Animated Simulations of Human Movement
In the early 1980's Zeltzer developed the skeleton animation system which was used to

animate the motions of articulated figures. His primary research concerned task level

interaction with a simulated human capable of walking over moderately uneven terrain,

using a skeletal model. The simulation employed a hierarchy of finite state machines and

kinematic motor programs to control joint motions. [Zeltzer 1982; Zeltzer 1984]

The simulations were kinematic in nature, using geometric rules to create motion. Because

the simulated motions were based on clinical data describing normal human gait, [Inman;

Saunders] the motions appear quite realistic for slow walking over planar terrain. However,

Michael A. McKenna2 Background

rapid movements, or motion over uneven terrain, cannot be accurately simulated without

at least accounting for the rigid-body dynamics of jointed figure motion. Thus, the strictly

kinematic nature of the skeleton animation system limits its adaptability and restricts what

can be learned from the simulation.

Sims employed inverse kinematics and dynamic elements to simulate various adaptive

gaits, over uneven terrain [Sims]. Sims' system allowed for the rapid, interactive creation

of animal (non-human) forms with varying numbers of legs and limb configurations. The

animals could then be automatically controlled to walk, trot, run, hop, etc. Sims designed

and implemented afigure editor, a visual tool for designing jointed figures. The editor pro-

vides a MacDraw-style interface which allows the drawing of 2D schematics of 3D,

jointed figures. These 2D representations are automatically transformed into three dimen-

sional, articulated figures - which can then be made to walk over uneven terrain using

inverse kinematics and a gait sequencer. Once a jointed figure has been created, the user

simply selects the desired gait for the figure to use, and the system automatically generates

the animated motions required to negotiate a given terrain. Different gaits are generated by

specific functions which sequence the stepping of the legs, relative to each other. The leg

motions are controlled using inverse kinematics, such that the target positions for the

"feet" are specified, relative to the body, and the system computes the joint angles needed

to reach that target.

Girard developed interactive methods for the specification of animal and human gaits for

computer animation. [Girard 1985; Girard 1987] Limb motions and stepping patterns could be

interactively specified by the user, and the system automatically sequenced the motions to

generate walking and running actions. Girard used kinematic control, but added certain

elements of dynamics, in order to create motions which appeared more realistic. For

example, when all of the legs of a figure left the ground, a ballistic trajectory for the body

would be used, and during turns the body would "bank" to the side.

Bruderlin, et al., developed a model of human walking which used a mixed (or hybrid)

method of kinematic and dynamic control. [Bruderlin 1988; Bruderlin 1989] Simplified models

of the legs were dynamically simulated, and kinematic methods were then used to com-

plete the simulation, adding motions of the foot, leg, pelvis, and upper body. More than 20

locomotion parameters could be specified to tailor the walking characteristics.

Michael A. McKenna2 Background

Wilhelms and her colleagues have experimented with animated simulation of human fig-

ures. [Wilhelms 1985; Wilhelms 1987] Using forward dynamics, based on the Gibbs-Appell

formulation (O(n4) where n is the number of DOFs) motions are simulated, based on the

application of forces. Modeled forces include gravity, ground and collision springs, and

joint springs, dampers, joint limit springs, and direct open-loop torques. Few examples are

presented of simulations of human movement, however. Typical simulations include fall-

ing passively to the ground, or applying a joint torque in zero gravity.

Armstrong, et al., present a near-real time forward dynamic simulation of a human figure

model. [Armstrong 1985; Armstrong 1987] Using their recursive dynamics formulation, of

O(n), the motions of a human figure, with approximately 9 spherical joints, is computed in

response to forces. Joint springs and dampers are simulated, and limb motions are con-

trolled by switching the spring rest angles to new positions, and imposing limits on the

maximum forces and the rate of change of the forces. The development of the human fig-

ure model is not presented, and few examples of simulated motions are presented.

2.7 Previous Work by the Author: Hexapod Locomotion
The Background Section ends with the author's previous work in the field. The roach, a

real-time, kinematic simulation of a hexapod was developed by McKenna, et al. [McKenna

1990-A] The user interacts with the hexapod in the virtual environment system bolio. [Zelt-

zer 1989] (See Figure 10). Using a gestural interface, the user guides the walking behavior

of the hexapod, issuing commands, specifying walking directions or positions, etc. The

hexapod controls its own low-level behavior, and can act autonomously in response to

environmental "stimuli."

The coordination mechanism of the roach, which generates the walking gait is based on

neurological features found in the cockroach and other insects. [Wilson; Pearson] Oscilla-

tors, or pacemakers, trigger stepping at each leg. Coupling between the oscillators gener-

ates the coordinated stepping pattern, dependent on the frequency of the oscillators.

Reflexes serve to reinforce the basic stepping pattern, and to provide enhanced stability.

Kinematic motor programs move the positions of the feet and the body, and the leg angles

are calculated by inverse kinematics. The stepping patterns generated by the coupled

oscillators are virtually identical to the real patterns displayed by insects.

Michael A. McKenna2 Background

2 Background Michael A. McKenna

Figure 10: The kinematic roach
follows a collision-free path in
the bolio virtual environment
system. [McKenna 1990-A; Zelt-
zer 1989]

Different oscillator frequencies create different stepping patterns, and different walking

speeds. The slow gaits are "wave" gaits, in which a wave of steps travels up each side of

the body, from back to front (see Figure 1 1).The fastest gait generated by the coupled

oscillators is the tripod gait, in which a stable tripod of legs supports the body, while the

FL
ML
BL
FR
MR
BR

computer model stepping pattern

BL

FR
MR

____R

BR cockroach stepping pattern
time -

Figure 11: A wave gait stepping pattern
generated by the coupled oscillator mechanism,
compared to a slightly different wave gait step-
ping pattern, exhibited by the cockroach. The
white regions in the patterns denote stepping
activity. The boxes and sine wave segments at
the left depict the computational model of the
oscillators over a short period of time. An oscil-
lator will trigger stepping activity in its leg
when the oscillation reaches its peak. The phase
differences between oscillators can be seen in
the diagram.

FL EFR

ML

SBL

2 Background Michael A. McKenna

other three legs step (see Figure 12). The coupled oscillator mechanism generates smooth

gait changes, as the oscillator frequency is smoothly varied.

We have also experimented with reflexive feedback from the environment. A step reflex

triggers stepping when the leg angle, relative to the body, exceeds a specified value. A

simulated "load-bearing " reflex prevents a leg from stepping when an unstable leg config-

uration would result. These reflexes serve to reinforce the basic stepping pattern generated

by the coupled oscillators, while making the system more robust.

The gait controller triggers "step" and "stance" motor programs in the legs. The "step"

program moves the leg up and forward, then down and forward, relative to the body. The

"stance" program keeps the "foot" in place on the ground, as the body moves forward.

Inverse kinematic is used to compute the leg joint angles from the specified foot location.

The roach software was used to create an animated character in the short animation Cootie

Gets Scared, [McKenna 1988] (see Figure 13). The control of the Cootie was "scripted"

using high-level commands to control the walking speed and direction, as well as other

character properties, such as head turning, etc. The leg and body motions were kinemati-

cally-controlled. However, the head and antennae of the Cootie were dynamically-simu-

lated, to realistically respond to the force of gravity, and the accelerations of the body.

The hexapod locomotion research was extended to a incorporate a dynamic model for

motion simulation and control. [McKenna 1990-B; McKenna 1990-C] The kinematic structure

of the dynamic roach, shown in Figure 14, was based on the general biomechanical prop-

erties of insects, in particular, the cockroach. The motions of the roach are forward simu-

lated; acceleration is the result of applied force. Coordinated locomotion is generated by

the gait controller, as described above for the kinematic roach. Motor control for the legs

is provided by dynamic motor programs and spring actuators, which deliver forces to the

......... ___ ___ ___ Figure 12: The tripod gait.

MLZXEE=M

BL~ The primary difference between the computerFR R

______________________MEBR model and the cockroach stepping pattern is that
computer model stepping pattern the computer model produces longer step and

ML M____________~ shorter stance phases. This is due to the ideali-
MR BLth

................... __ FR zation of tekinematic model- a leg can
MR

..... ____ B R change from step to stance and take up the load

BL BRcockroach stepping pattern BR shorintertane ss.T
Itime---

Figure 13: The hexapod, "Cootie," from the
computer animation Cootie Gets Scared.
[McKenna 1988]

The Cootie's high level actions were 'scripted'
by the animator. The motions of the legs, body
and antennae were automatically generated by
the software. The Cootie's movements were
kinematically controlled, in general, with the
exception of the head and antennae, which were
dynamically simulated.

Figure 14: The parametrized dynamic roach.
[McKenna 1990-B]

The figure begins to step with three legs using
the tripod gait in this illustration. It has 5
degrees of freedom (DOFs) per leg, and a head
and abdomen joint. The entire system has 3
translating and 3 rotating DOFs, for a total of
38.

leg joints. Forward body motion is the result of traction at the ground, as the legs "push"

backwards. The simulated roach displays stepping patterns very similar to those of real

insects, as well as realistic walking behaviors.

The program corpus was developed by the author for the simulation and control of

dynamic locomotion. The flow of control in corpus to simulate dynamic hexapod locomo-

2 Background Michael A. McKenna

tion proceeds basically as follows (see Figure 15). At the highest level of control the ani-

mator, or another program, sets the desired speed and other parameters. The gait controller

coordinates the stepping pattern based on the specified speed, and sends appropriate step

and stance commands for each leg to the motor programs. The motor programs compute

leg joint forces which are sent to the dynamic simulator. The simulator incorporates these

forces with externally applied forces, such as gravity and contact forces, and computes the

motion of the figure. The graphics system then renders the figure and its environment,

based on the computed positions. Each module has several parameters which can be set in

a scripting language. These parameters include such factors as stepping speed, spring stiff-

nesses, the kinematic structure of the figure, and link size, shape and density. Corpus has

been extended and remains the platform for the current work, and it is discussed in more

detail in Section 4, The Program Corpus.

The dynamic simulator employs the Articulated Body Method (ABM) for dynamic simu-

lation, based on the work of Roy Featherstone. [Featherstone 1983; Featherstone 1987] See Sec-

tion 5, Dynamic Simulator for further discussion of the ABM and dynamic simulation in

the corpus environment.

In order to derive the articulated figure we used in our locomotion experiments, we

referred to diagrams of the insect Blatta and Periplaneta Americana, and descriptions of

insect physiology written by entomologists. [Hughes] We then derived the hexapod shown

in Figure 14. This articulated figure is modeled as being 2.9 cm long, and has a mass of 2.1

gm. There are 38 unconstrained degrees of freedom in the figure.

Figure 15: Block diagram of the dynamic
High level control: sets hexapod control and simulation system,
speed, gait parameters implemented in the program corpus.

2 Background Michael A. McKenna

The stepping pattern is generated using the coupled oscillator mechanism, described pre-

viously for the kinematic hexapod. The gait controller triggers motor activity, but the

actual motion is controlled in corpus using dynamic motor programs. These functions

operate at each joint at which the motion must be controlled, and can be grouped together

to create more complex motor programs, such as "step" or "stance" for an entire leg.

The motor programs generate forces by modeling the force response of exponential

springs, in combination with linear velocity dampers. As their name implies, exponential

springs have an exponential relationship between the force they generate and the displace-

ment of the joint from the spring rest angle, as in:

f = sign (x, - x) a e(Ixs~x) -b i Eq. 3

wheref is the generated force, x is the joint angle, is the joint velocity, xs is the spring

rest angle, a is the linear spring constant, P is the exponential spring constant, and b is the

damping constant. The "signo" function returns -1, 0, or 1, depending on the sign of the

argument. In a sense, the exponential spring forces create a steep potential well, such that

the controlled joint will likely stay near the rest angle of the spring.

In order to generate motion, the motor programs move the spring rest angles from their

current angle to a target angle. This moves the potential well and in effect, "drags" the

joint along with spring. In some sense, this method "keyframes" the controlling space of

the springs.

The motor programs were progressively "tuned" by the author, over the course of several

simulations, using a trial and error method. For example, initially the posture was too low

to avoid dragging the abdomen, so the joints were extended further, raising the posture.

Also, the legs did not step high enough initially, so the motor programs were modified to

retract the legs further during stepping.

The "springy" method of motor control, with trial and error calibration, may not be suit-

able for actions which require exact movements, such as grasping and manipulating

objects. However, the fact that the springs create a compliant system can be of great bene-

fit. For example, we have experimented with simulations over uneven terrain, which

employed the level terrain motor programs, and the hexapod conformed to the uneven sur-

face due to the springy compliance at the joints.

Michael A. McKenna2 Background

Figure 16: Scene from the
animation Grinning Evil
Death. [McKenna 1990-
D]
As the Roach walks for-
ward, it generates colli-
sion forces against the
wires.

The dynamic roach and other simulated figures played key roles in the award-winning

computer animation, Grinning Evil Death, by McKenna and Sabiston [McKenna 1990-D]

(see Figure 16).

2 Background Michael A. McKenna

3 Approach Michael A. McKenna

3 Approach

This thesis is concerned with the creation of a physically based model of a human figure,

which can be simulated to perform and analyze motion based tasks. One major component

of this work is an efficient simulation system which incorporates the physics of motion.

Another major component is the biomechanical model of the human figure. The final com-

ponent is a dynamic control system used to influence the motions of the figure, resulting in

animated simulations of movement.

In this section we cover these major areas, and in the process, we will develop a basic

human figure model to demonstrate some of the concepts. The following sections present

the complex model development and the results in detail.

3.1 The Program Corpus
Corpus is a computer program, developed by the author, for the simulation and animation

of articulated figures. It is the primary research tool used to investigate this thesis topic.

Corpus includes a 3D computer graphics system integrated with a dynamics simulation

system. Biomechanical models are incorporated in corpus, partly as supporting simulation

software, and partly as the structural definition of the articulated figures and dynamic envi-

ronment.

Corpus is a flexible system, with an interactive, programming-type of interface. This

allows the user to explore different configurations of articulated figures, different simula-

tion parameters, various graphical properties, etc., all in the same environment.

The section The Program Corpus (4) provides an overview of the system.

Michael A. McKenna3 Approach

3.2 Dynamic Simulator
The use of the dynamic simulator is central to this thesis. This works focuses primarily on

the forward dynamics of the human figure model - the animated motions (or stationary

postures) of the figure are computed in response to the applied forces. In addition, inverse

dynamics is used to compute what forces are exerted, and what control parameters are

used for different postures or motions.

Dynamic simulation is an excellent tool for the generation of "realistic" movements,

because the motion is physically based. Although dynamic simulation is complex and

compute-intensive, and the dynamic control of multiple DOFs can be a difficult task,

dynamics simplifies other aspects of the control problem. In comparison to manual anima-

tion, in which the animator must specify the motions or key poses for every DOF, the

advantage is significant; dynamics generates the motions of all DOFs automatically,

although the animator loses much of the direct control over those motions. In comparison

to kinematic techniques, dynamics generates realistic motions, without artificial means to

compensate for the lack of physics in the model. With passive dynamics motions in partic-

ular, the dynamic control problem is minimized, yet complex motions are generated in the

figure. Kinematic methods would require very complex control methods to emulate such

passive dynamic movements.

Because the dynamics equations are based on the laws of motion that are experienced in

the real world, a dynamics simulator forms a platform from which we can explore hypoth-

eses of motor control, including biological or robotic control strategies. Just as real ani-

mals and people must supply forces through their muscles, and robots through their

motors, the simulated figures use forces to control motion.

The dynamics simulator also serves as a tool for motion analysis. Using inverse dynamics,

the forces exerted during movements are computed. Using additional techniques, we can

compute the control parameters which are used to drive those motions. When complex

muscles models are incorporated into the simulator and biomechanical model, we can

compute how the muscles might be activated to perform a given movement.

Featherstone's Articulated Body Method (ABM) [Featherstone 1983; Featherstone 1987] is the

algorithm employed for dynamic simulation. The ABM is an efficient method for forward

and inverse dynamics simulation, due to its recursive nature. The computation time grows

Michael A. McKenna3 Approach

linearly with the number of joints: O(n). The mathematics of the ABM are given in Feath-

erstone [Featherstone 1983; Featherstone 1987] including descriptions of spatial algebra and

spatial notation, in which the ABM is written. Spatial notation allows the translational and

rotational aspects of motion to be treated together, uniformly, in six dimensional vector

and matrix quantities.

The ABM, spatial algebra, and other aspects of the simulator in corpus are covered in the

section Dynamic Simulator (5).

3.3 Biomechanical Model
In order to simulate the human body, accurate biomechanical data are required- i.e. kine-

matic and dynamic parameters which capture the pertinent information needed to describe

a humanoid figure. The kinematic parameters include the geometry of the limbs and the

joint degrees of freedom (DOFs). The dynamic biomechanical parameters describe the

data needed for dynamic simulations and include the inertia of the limbs and sources of

forces within the figure.

As it operates within the dynamic simulator, the biomechanical description allows us to

examine function, which arises from the kinematic and dynamic structure. With biome-

chanical data that is tailored to match a given person, we can examine the specific function

of that person's structure. If "normal" function is disrupted, patient specific data allows a

doctor to examine the problems particular to that patient. Using a simulation system, the

doctor can attempt to determine what can be done to best repair the problems, and restore

maximal function to the patient. Such analyses can be performed today, using systems

such as SIMM, which includes a detailed model of the human legs, with representations

for all of the major muscles. [Delp] This thesis does not deal directly with patient specific

data, but it is an important issue for future research. This thesis lays the groundwork for

such investigations, and advances the complexity of simulated foot models, allowing new

function to be examined.

The mechanical data and models used in this thesis are based on the biomechanics of

humans. A fairly complex 3D model is developed for the kinematic structure of the figure,

based on the sizes and inertias of "typical" human limb segments, which are determined

by cadaver and clinical studies. [Braune 1988; Dempster] The major degrees of freedom in the

Michael A. McKenna3 Approach

human body (arms, legs, neck) are defined. A complex spine is not modeled, but a 3 DOF

"waist" is included. The hand is a single object with a 3 DOF connection to the forearm,

but the foot is modeled with a significant complexity - 28 DOFs per foot. The degrees of

freedom used in normal walking, as defined by the determinant of gait [Inman; Saunders], are

all supported. The joint axes are based on anatomical studies of joint motions. [Murphy;

Procter]

For the purposes of illustration, we examine a basic biomechanical model of a human fig-

ure here. The model is very fundamental; simple geometric block objects are used to form

an armless, simplified human figure model. Two very similar basic models were created,

one based on an informal measurement of the author's limb lengths, and another based on

clinical studies of human anthropometrics. [Dempster] The differences between the two

models are not important for the examples which follow, and in general we will not bother

to make a distinction between the two, referring to both as the "basic human figure."

The entire articulated figure is free to move and rotate in any direction, with 3 DOFs for

translating motions, and 3 DOFs for rotating motions. There are two legs, each leg being

composed of three links - one object for each thigh, shank, and foot. There is 1 DOF at

the hip, one at the knee, and one at the ankle. All of these DOFs work in the sagittal plane,

providing flexion and extension at those joints. There is no waist or spine model, nor are

there any arms. A head with one neck joint was added, yielding a 13 DOF model. The

masses of the links were not matched directly to values measured from humans, as was

done with the complex model. The masses were determined by the geometric volume of

the graphical link objects, using a density of 800 kg/m 3 (which is somewhat low, 1100

would be more appropriate). The values of the link lengths, masses and densities are pre-

sented in Table 1.

The kinematic structure of the basic figure model is shown in Figure 17. This human fig-

ure model is similar in complexity to many dynamic models used in computer graphics

and animation, and in walking biomechanical research. [Mochon 1980-A; McGeer 1990-A; Wil-

helms 1987; Bruderlin 1989; Pai]

The biomechanical model also incorporates a model of passive joint forces. Joint damping

results from the frictional and viscous properties of the joints, muscle, and other surround-

ing tissues. A linear damping model based on joint angular velocity is used to approximate

Michael A. McKenna3 Approach

3 Approach Michael A. McKenna

Figure 17: The basic model of the humanoid biped figure.

There are three DOFs per leg- flexion and extension at the hip, knee,
and ankle. There are 3 translating and 3 rotary DOFs for the overall body
motion, and a rotary DOF for the head, for a total of 13 DOFs.

Table 1: Link parameters of the basic human figure model. Length values for the thigh, shank and foot were
rounded from measurements by [Dempster].

link length (m ~ mnass (kg) density (kg/mn3)

thigh 0.4 5.3 800

shank 0.4 2.8 800

foot 0.25 0.8 800

head 0.22 6.0 800

total body 1.71 61.7 800

these forces in the simulator. Joint limit forces are due to the passive elastic elements of

the musculotendon organs and surrounding tissue, as well as contact forces between joint

and bone structures. Joint limit forces can be modeled as sums of exponentials as a func-

tion of joint angle. [Audu; Hatze; Yoon]

Controlled, active joint forces are provided by an actuator/muscle model, which is based

on the general features of muscle, modeling its viscoelastic properties. Muscle is consid-

ered as a "tunable" spring, [Bizzi 1982; McMahon] and the force response of the simulated

actuator is modeled as an exponential spring, which provides control by moving the rest

position and modifying the stiffness parameters. This approach is based in part on the gen-

3 Approach Michael A. McKenna

eral features of the equilibrium position hypothesis, an attempt to explain biological

motion control. [Bizzi 1982; Bizzi 1984] This hypothesis states that different postures are

formed by different state configurations in the control space of the neuromuscular system.

Motions are controlled by moving the control state from one configuration to another. In

this system, motor programs are used to modify the actuator parameters from one configu-

ration to another, in order to control motion.

The biomechanical properties are very important to the simulation, because they deter-

mine, in part, what motions result. They are especially important to passive motions,

because they are highly governed by the mechanical design. As an example, Figure 18

shows the basic biped figure falling to the ground, with and without joint limit forces.

To create the complex human figure model used in this research, several sources of infor-

mation were employed. To define the kinematic structure, a digitized skeleton model

[Stredney] was used as a 3D geometric reference, the link lengths were established to match

published anthropometrics data [Drillis], and the model was refined using anatomical dia-

grams. [Goldfinger]. Masses of the links were based on human body studies. [Winter 1990]

The complex biomechanical human figure model is described in the section Biomechani-

cal Model (6).

3.4 Simulations of Human Posture and Movement
Using the biomechanical figure model in the dynamic simulator, a number of human

motion simulations were investigated, including simulations of standing posture, a reach-

ing task, and the swing phase of human walking.

The different simulations use the same low-level behavior control provided through the

joint actuators, dampers and joint limits. Higher level control is achieved by manipulating

the parameters of these low-level mechanisms. There is no single high-level control layer

incorporated into the system, to control all actions. Given a particular task, high-level con-

trol is developed, based on the requirements of the action. The high-level control strate-

gies that have been employed in this research share some common aspects, such as: using

joint spring actuators to maintain posture or generate movement, using motor programs to

vary the control state of the actuators over time, using inverse dynamics to calibrate differ-

ent control states for the actuators, and using passive dynamic effects to generate motion.

3 Approach Michael A. McKenna

3 Approach Michael A. McKenna

Figure 18: The basic
biped figure falls
with and without
joint limits.

Left: Without limits,
the figure takes on a
very unnatural limb
configuration, as the
knees hyperextend
"backwards."

Right: With the addi-
tion of passive joint
limits, the figure
responds in a much
more "natural" man-
ner, without active
control.

3 Approach Michael A. McKenna

First, we will examine the simulation of standing. Maintaining a standing posture with a

simulated figure requires that the figure deliver the appropriate forces (torques) at the

joints to resist the forces created by gravity and contact with the ground. The figure must

be posed such that its overall center of mass (COM) lies within the region of support,

formed by the points of contact between the figure and the ground.

The use of inverse kinematics would be an appropriate way to generate such a posture.

This is demonstrated well by the system Jack, by Badler, et al. [Phillips] Because kinemat-

ics were of a lesser importance in the current phase of this research, corpus was not given

facilities for inverse kinematics. In this research, the standing postures were generated

"manually," by the author using scripts to control the joint angles of the figure. In some

instances, poses were mimicked from drawing and photographs of humans. In other simu-

lations, dynamic methods were used to generate non-standing postures.

Once a given posture has been defined, it must be maintained by the figure. There are a

number of approaches that can be used to achieve this. The most basic (and limited) way

to maintain a posture is to make the figure one rigid object, creating a figure similar to a

stone statue. Because the posture is already stable, and there are no joints to move, the fig-

ure "stands" on its own, but the figure cannot move in any way, except to topple and fall if

the support surface moves or the figure is disturbed by sufficient external forces.

In a similar manner, without transforming the figure into one rigid object, the joints of the

figure can be kinematically locked, so that they cannot move. Now, as the figure stands,

inverse dynamics can be used to compute the torques which are active at the locked joints.

These forces are the ones needed to satisfy the condition that the joints remain motionless,

with no velocities or accelerations introduced, against the externally applied forces of

gravity and ground contact. The figure still behaves as a stone statue, albeit one that incor-

porates accurate strain gauges at its joints.

Now that we know what joint forces are need to maintain the posture, we can employ that

information to simulate the human figure using forward dynamics. The joints of the figure

are "unlocked" and are free to move under the influence of applied forces. To maintain the

posture, the forces computed by inverse dynamics are applied, analogous to the forces

which are generated by the muscles in humans. One method of applying these forces is

through "open loop control," in which the computed torques are simply applied directly at

Michael A. McKenna3 Approach

the joints. The same force is continually applied over time; there is no feedback from the

system to change this force, thus the "open-loop" nature of the control. Because the pos-

ture is intended to be stable and non-moving, it would seem that this approach would be

successful. However, any error or inaccuracy in the computations of the inverse dynamics

or of the forward dynamics over time will allow small amounts of motion to be generated

at the joints, creating a small change in the posture. There is no mechanism to counteract

the motion, and the computed forces are valid for the initial posture only, and so the errors

and motion then build rapidly. In practice, this breakdown occurs almost immediately in

the simulator, resulting in a falling figure. Even without errors, any externally applied per-

turbation to the figure would not be counteracted. In order for this approach to work, the

inverse dynamics analysis would have to continually re-applied to recompute the joint

forces to account for any error or perturbations.

Instead of directly applying the computed forces at the joints, we can use the spring-based

actuators to deliver the forces. After performing inverse dynamics, we need to determine

the control parameters required to deliver the given forces. We can term this process

inverse control, which is analogous to inverse dynamics. We can also defineforward con-

trol as the process of specifying control parameters for the actuators, which then compute

the applied forces. Using inverse control, the control parameters of the springs are "cali-

brated" to match their force goal, defining an equilibrium position of the control state. In a

sense, this "pre-loads" the springs so that they are prepared to support the body and coun-

teract gravity. Using inverse control to calibrate forward control is the approach used in

this thesis to control standing and other postural goals.

The control parameters of the springs are their rest angles and stiffnesses. Inverse control

could be used to adjust any combination of these parameters, although when more than

one parameter per joint must be computed, the solution is underconstrained, with multiple

possible solutions from which one solution must be selected. To simplify, inverse control

is used to solve for the rest angles only, with specified stiffnesses.

After performing the inverse dynamics and inverse control analyses, we can successfully

simulate the standing posture of the figure using forward dynamics. The standing figure is

not rigid, and the joints will deviate from their initial positions in response to perturbation

forces. Applied forces which are not too great in magnitude will cause the figure to change

its posture, away from the force, but a stable posture will be maintained as long as the fig-

Michael A. McKenna3 Approach

Figure 19: A balanced,
stable posture, using the
basic biped model.

The COM of the body is
indicated by the 3D cross-
bars, which intersect
within the torso.

This posture is main-
tained against the force of
gravity and the reaction
forces at the ground by the
actuators. The dampers
and exponential springs
employ feedback to reject
a range of perturbations
and errors.

ure's COM remains within the region of support formed by the foot-ground contact.

Larger forces will cause the COM to move too far, and stability will be lost and the figure

will topple. These external forces can also be taken into account by the inverse dynamics

and control analyses to counteract the forces (within limits) with the actuator springs.

Figure 19 depicts a stable posture of the basic human figure, maintained over time by the

joint actuators.

Human walking, using the complex model, is also explored through simulation, although

the model of locomotion is not a complete control system. In the walking simulations, we

attempt to take advantage of passive dynamic effects, where the natural system dynamics,

including the biomechanical model, create the motions. Walking is a complex control

problem - especially in the case of human walking, which is highly optimized. By simu-

lating the passive effects, we can examine the system behavior which arises not from high

level control, but rather from the inherent mechanical design. In some sense, passive

dynamics is a very "pure" form of forward simulation, because the motions which are gen-

erated are based purely on the mechanical properties, without the addition of any poten-

tially "arbitrary" control changes. Under the right conditions, the passive system behavior

can generate very realistic motions when compared to the real motions of humans. Human

walking is, of course, not a purely passive activity. Muscular forces are required to support

3 Approach Michael A. McKenna

W- 7-J

3 Approach Michael A. McKenna

Figure 20: Passive stepping motion, using the basic biped model, compared to a Muybridge sequence.

the stance leg and upper body. In addition, electromyographic studies and inverse dynamic

simulations [Winter 1978] show that muscles are not completely inactive in the swing leg,

although they are mostly inactive. [McMahon]

The walking simulations investigated in this research are not purely passive either, but

passive effects are employed where possible, and the walking simulation is limited to the

phase of walking during which the passive forces are more significant - during the swing

phase, from the time of toe-off of the swing leg to its heel-strike.

As an example, we will examine the passive stepping activity of the basic human figure

model (see Figure 20). This simulation reproduces some of the results from Mochon and

McMahon's passive "ballistic walking" experiments. [Mochon 1980-A; Mochon 1980-B] A

hybrid dynamics approach was used for the motion simulation in order to simplify the

problem. The stance knee was kinematically locked, and the stance hip and ankle were

kinematically controlled to undergo a constant angular velocity rotation. Initial conditions

were established for the joint positions and velocities of the step leg and for the initial

overall body velocity. The system was then allowed to simulate forward, and a successful

stepping motion resulted. The step leg acts as a passively-swinging double pendulum, and

the stance leg acts as a passive inverted pendulum. The coupling of these two types of

motions results in a natural appearing human step. The feet were made very wide to tem-

porarily bypass the problem of maintaining lateral stability.

The passive effects during stepping are explored further with the complex body model.

Passive effects are added to generate arm swinging motions, lateral body motion, and

most notably, the stance leg foot shape. The results are compared to other simulations and

to human walking.

Other simulations are investigated as well, including a near real-time simulation of a

reaching task using the figure's arms. The simulation results are presented in the section

Simulations (7).

3.5 Computer Graphics and Animation
The dynamic simulation and control system within corpus is embedded in a graphics and

animation system also part of corpus. Animation aids in the study of the motions, and is

certainly a tool for creative expression and communication. Using interactive graphics, we

can directly observe the results of the simulations and the user inputs. The simulation

results (joint accelerations, velocities, positions, etc.) are shown in context; we do not have

to examine plots of joint angles over time, but instead (or in addition) we can observe the

movements of the limbs of the figure.

The geometric data used to display the body segments shares relationships with the

dynamic properties of those bodies. The graphical objects can be used in the geometric

collision detection between bodies and the ground, and between different bodies. The

mass and inertia can be automatically calculated from the geometric volume, with a speci-

fied density. Each body segment is composed of any number of graphical objects. Each

object is specified as to whether or not it contributes to the body's inertia, and whether or

not it is a "colliding" object. In this manner, complex body inertias can be created from

multiple objects of different densities, and collision detection can be performed on simpli-

fied objects for increased speed performance.

Michael A. McKenna3 Approach

3 Approach Michael A. McKenna

The integration of a rendering and animation system with the dynamic simulator adds

many visual parameters which have no direct effect on the dynamics, such as color, shad-

ing, lighting, etc. These parameters may not influence the realism of the motions, but it

can be used to enhance the realism of the images. Facilities are also supported in corpus

for manipulating 2D elements, allowing for the creation of animated 'diagrams.' These 2D

elements include antialiased text and lines, and bitmaps, with matting functions.

The Program Corpus Michael A. McKenna

4 The Program Corpus

4.1 Overview
Corpus is a computer program, written by the author in the C language. Corpus provides

functionality for creating dynamic simulations of articulated bodies, which can be ani-

mated over time using computer graphics. The program corpus derives its name from the

Latin word. The definition of "corpus" reads: "the body of a man or animal..." [Webster's]

Corpus is a system for simulating mechanical, animal and human structures.

Corpus provides a flexible system for generating graphics, animation and dynamic simula-

tion. Corpus is controlled by giving it text commands, which it interprets in real-time.

Thus, the system behaves like an interpreted computer language. This is accomplished by

the parser sub-system in corpus, which converts the input text commands to executed

commands. The graphics sub-system generates rendered images, based on the 3D data-

base. The dynamic simulator subsystem creates and analyzes motion, based on its

dynamic object database (see Figure 21).

These three sub-systems are the primary procedural elements in corpus, providing its

computational functionality. [zeltzer 1990] The procedural elements perform the simulation,

graphics and other functions, but they require data and instructions in order to implement a

given simulation. The structural elements in corpus define the objects, data, and simula-

tion forms, such as: the articulated body kinematic definitions; body sizes, shapes, and

masses; gravity, ground stiffness, and other environmental parameters; internal actuator

parameters; motor programs; etc.

Because corpus uses an interactive interpreter, command sequences do not have to be

established beforehand. Therefore, it is not necessary to re-compile corpus in order to gen-

erate different simulations. The user can construct a simulation or three dimensional envi-

Michael A. McKennaThe Program Corpus

Figure 21: Block dia-

text Interactive gram of the program

inputs corpus.

Scripts

Database - Programs u-
files

corpus 9text

Parser
outputs

Database

Dynamic Graphics output Rendered
Simulator System Images

ronment and vary parameters as events progress, using input commands. This allows for

exploration and experimentation, since different commands can be "tried out" very rap-

idly. In addition, external programs can connect to corpus in real-time, either as a control-

ling or controlled process, without "linking" to corpus. Because it is interpreted in real

time, corpus provides some of the advantages of a true interpreted language, such as lisp,

but with the added advantages of higher execution speed and a larger hardware and soft-

ware support base (because it is implemented in C). The disadvantage of a parser

approach, as opposed to an interpreted language, is that internal commands cannot be con-

structed or re-defined in real-time (re-compiling is needed), and the language structure is

less sophisticated.

4.2 Parser
The parser accepts text input, and generates text output in corpus. A number of input

sources can be given to corpus: interactive (typed) text commands, script files, and other

computer programs. The input text is commands and data, which the parser interprets.

Some command examples are "render", to generate an image of the 3d scene, and "eye

10 . 2 5 . 5 1" to set the rendering eyepoint (or viewpoint) to the {x,y,z} coordinate:

Michael A. McKennaThe Program Corpus

{ 10.2, 5.5, 1.01. The text output consists of command feedback, results and requested

data.

This interface to corpus can be considered a programming interface, because corpus acts

as a language, which is programmed via its input. [zeltzer 1990] However, guiding inter-

faces can be created in corpus, as well, by combining corpus with other 1/0 programs

which map user inputs to corpus commands and data. For example, corpus has been used

to experiment with viewpoint dependent imaging, in which the graphical display of a three

dimensional environment is updated in real time, based on the position of the viewer's

head. [McKenna 1992] Tracking devices were used to locate the user's head and hand, so

that the graphical viewpoint could be adjusted and the user could manipulate objects.

In addition, task level interfaces can be created in corpus, by establishing high-level simu-

lations, which are task, or goal, driven. [Zeltzer 1990] These task level interfaces are created

by using the programming interface to create a simulation environment, possibly in com-

bination with guiding interfaces to manipulate data and controls. For example, the simu-

lated roach, discussed in the Background section, uses high-level parameters, such as

walking speed and direction, to control the task of walking. [McKenna 1990-A; McKenna 1990-

B; McKenna 1990-C]

The basic use of corpus is from a keyboard with a text display. The interactive text input is

typed by the user from the keyboard. Corpus displays an input prompt, (such as "cor-

pus>") after which the user types in command text. Corpus may then display text output,

providing command feedback and results.

Scripts are text files which contain commands. They are read into corpus and executed,

essentially as if a user had typed them. Scripts are useful for storing command sequences

which are used repeatedly, such as a script to construct and initialize an articulated figure,

or a script to vary a set of rendering parameters. Scripts are a key component for corpus,

because they are typically the means of storing articulated body definitions, simulations

and parameters. Corpus alone has no "built-in" simulations or objects, so we use com-

mands and scripts to define them. Thus, scripts store both structural descriptions which are

loaded into the corpus database, as well as commands which control procedural execution.

Scripts do not employ the text output from corpus, although their execution may be condi-

tionally based on parameters within corpus.

Michael A. McKennaThe Program Corpus

Other programs can function in cooperation with corpus. The output of an external pro-

gram can be used as a substitution for, or an augmentation of, the interactive text input to

corpus, sending commands to corpus for it to execute. The text output from corpus can

then be used as feedback to the external program. In such as situation, the external process

is the "parent" process in relation to corpus, and it acts as the controller, or "master," while

corpus serves as the "slave" process. For example, a simpler version of corpus was used

as a "child" of the virtual environment program bolio. [zeltzer 1989] In this example, corpus

computed the motions of a kinematic hexapod, and bolio handled the device I/O, the

graphics rendering, other simulations, and the overall virtual environment coordination.

[McKenna 1990-A]

Alternately, an external process can be started as a slave to corpus, with corpus function-

ing as the master. Corpus issues commands to its "child" process and receives feedback

commands and data from it. A simple example of this is the spline program, which per-

forms interpolation computations and returns data for corpus to use. A more complex

example is provided by the following situation: the programs corpus and vestool (another

dynamics simulation program [Schr6der]) have been used to cooperate in the simulation of

multiple, interacting dynamic objects. Vestool computed the free motion of the objects,

and corpus computed the impact responses during collisions.

The corpus parser includes some basic language-related commands, including integer

variable manipulation, arbitrary data lists, conditional execution, and simple function def-

initions. A more complex language could be used within the corpus parser. The author cre-

ated the corpus parser as a means to rapidly prototype different situations, with the ability

to add new commands very easily. In recent years, however, standard packages have

become available which provide a similar type of parsing function, but with more sophis-

ticated language capabilities. Notably the Tcl system provides a flexible command inter-

pretation language. [Ousterhout]

4.3 Dynamic Simulator
The dynamic simulator performs the computations required to simulate the dynamic

motion of the articulated figures described within its database. The parser is first used to

define the simulations, setting the parameters and defining the dynamic objects for the

simulator to operate with. The dynamic simulator sub-system is linked to the graphics sub-

The Program Corpus Michael A. McKenna

system, and they share some common data. There are also significant regions of the data-

base which are not shared, but which are unique to either the simulator or graphics system.

Parser commands are used to control the dynamic simulator, and to query for simulation

results. After defining a simulation environment, the parser command "go" instructs the

simulator to perform the computations required to simulate forward in time. The simulator

returns, after computing the motions and/or forces of the articulated figure(s). The simula-

tor "moves" forward in discreet steps in simulation time, returning control to the parser

between each "step." Results can be saved to or loaded from files, via parser commands.

The dynamic simulator is covered in detail in the following section, Dynamic Simulator.

4.4 Graphics
The graphics sub-system in corpus generates the rendered image output. The output can

be in the form of a "bitmap" file, using software rendering, or a screen image using spe-

cial-purpose rendering hardware which greatly accelerates the process. Software render-

ing offers enhanced anti-aliasing and lighting effects, and is compatible with all hardware

platforms which support standard C. Hardware rendering is rapid enough to offer real-

time rendering (depending on the scene complexity). Hardware support for rendering in

corpus is provided on Hewlett Packard and Silicon Graphics workstations.

The graphics system can also optionally output additional data with it's rendered image

files. "Depth map" files contain a floating point value for each image pixel, which speci-

fies how far (or deep) that image element was from the rendering viewpoint. "Alpha map"

files contain opacity/masking values for each image pixel, and are especially useful for

digital matting.

Commands are provided to load and manipulate graphical objects. A number of com-

mands are used to transform (scale, rotate, translate, and shear) the objects in space. Addi-

tional commands affect the rendering properties of the objects, such as color, transparency,

surface specularity, etc. A set of commands controls the environment lighting. Another

controls the rendering camera parameters (eye position, lookat point, field of view, etc.).

The rendering sub-system is activated to generate the current image with the parsing com-

mand "render."

Michael A. McKennaThe Program Corpus

There are a set of additional graphics functions which are not an intrinsic part of the major

graphics sub-system. The functions are provided by smaller-scale sub-systems, which

operate largely independently from the primary graphics system. However, these smaller

systems cooperate with the graphics system, sharing framebuffer resources. One set of

functions perform anti-aliased line drawing. Another renders anti-aliased fonts. Another

set handles bitmap manipulation, including digital matting, and frame-buffer and file 1/0.

Although they are not strictly graphical, a video-deck control set is also included.

4.5 More Corpus Information
Corpus is not the sole creation of the author. A number of object libraries by others are

linked with corpus to provide functionality. However, the overall structure of corpus, and

its development are due to the author. The parser and dynamics simulator were written

nearly entirely by the author. The primary graphics system (without its parser interface) is

provided by rendermatic, a rendering package written primarily by David Chen. Please

see the Acknowledgments for other contributors to corpus.

A list of the corpus commands is given in Appendix A, Corpus Help. More detail on the

usage of corpus in provided in Appendix B, Corpus Tutorial. Examples of using corpus

for dynamic simulation are presented in Appendix C, Dynamics Verification.

A simple example script for controlling corpus is shown in Script 1. This sort of instruc-

tion list could be typed in by the user directly to corpus, or, it could be stored in a script

file which is read into corpus, using the "do" command. The image generated by the

example script is shown in Figure 22.

An example session with corpus is shown in Script 2. Both the text inputs to and outputs

from corpus are shown in the script, as a user would interact with the corpus parser.

The Program Corpus Michael A. McKenna

Script 1: An example corpus script.
This script loads an object, transforms it, sets its properties, and renders an image.

comment lines begins with '#'

load the object from a file
get block from data/unit-cube

transform the object
use post-multiplication order
postmult
scale block 2 2 2
rotate block z 45
move block 10.2 2.5 0

set object graphics properties
color block .5 .2 .2
shadeparam block .8 .4 30 .5
facet block

set camera position, etc.
lookat block
eye 10 10 10
fov 30

set the color of the "background"
backgroundcolor 1 1 1

add a new light
lightmake light.2
lightpos light.2 100 200 100
lightcolor light.2 1 .9 .8
lightdimmer light.2 .7

render the image
render

Figure 22: The output image generated by corpus, using Script 1.

The Program Corpus Michael A. McKenna

The Program Corpus Michael A. McKenna

Script 2: An example interactive session with corpus.
Both the inputs from the user, and the output from corpus are shown. The output is shown in italics, for
illustration purposes.

corpus> get b from . . /data/unitcube
corpus> eye 3 2 . 5 1

corpus> lookat b
corpus> eye
eye: 1 2 1
corpus> lookat
lookat: 0 0 0
corpus> render
rendering... done
corpus> move b .1 .1 0
corpus> render
rendering... done
corpus> move b .2 0 .1
corpus> render
rendering... done
corpus> whereis b
b: .3 .1 .1
corpus> lookat b
corpus> render
rendering... done
corpus> quit
UNIX>

5 Dynamic Simulator Michael A. McKenna

5 Dynamic Simulator

5.1 Introduction
The dynamic simulator is a core element of this research, as it forms the underlying basis

for all movements. Featherstone's Articulated Body Method (ABM), as introduced in the-

Background (2) and Approach (3) sections, has been implemented and extended as part

of corpus. This section describes the equations which define the simulator system, pro-

vides information on the implementation of the simulator, and explains the ways in which

the simulator system in used to generate and analyze physically-based motion.

The corpus dynamic simulator operates on rigid bodies, and articulated structures com-

prised of rigid bodies connected by joints. The articulated structures must be branching in

nature, i.e. without closed kinematic loops. Loops can be approximated using closure

spring forces, and the algorithm can be extended to handle loops exactly, but with a signif-

icant loss of efficiency. Contact between an articulated figure and the ground can create

closed loops - when more than one part of an articulated figure touches the ground, it can

be said that a closed loop is formed, with the ground itself forming part of the kinematic

loop. These kinds of loops are not treated explicitly as closed loops in corpus, but are han-

dled through contact forces, which simulate the supporting and friction forces at the con-

tact between the figure and the ground.

Corpus simulates forward, inverse and hybrid dynamics on articulated figures. In addition,

corpus provides first order (or "aristotelian") dynamic simulation, in which velocity is

proportional to force. First order dynamics allows for rapid convergence to final resting

states.

The simulation of articulated figure is performed in the context of applied forces, both

internal, joint forces, and external, environmental forces. Internal forces are those forces

Michael A. McKenna5 Dynamic Simulator

generated "within" the figure, and are applied at the joints as torques or forces. These

include elements such as joint dampers and springs. External forces comprise the forces

applied to the figure from sources outside of its own body, from the environment. These

include gravity and contact forces.

The central element of the simulator algorithm is the Articulated Body Method (ABM) for

forward, inverse and hybrid dynamics as described by Featherstone, [Featherstone 1983;

Featherstone 1987] and his original texts should be consulted concerning the derivation of the

algorithm and for additional details. This section provides the final equations required for

implementation of the algorithm, as well as the required background in spatial notation.

The material here is presented from a somewhat different perspective on the issue, focus-

ing more on a complete dynamic simulation environment, which should be complimentary

to Featherstone's texts. In addition, this section expands on Featherstone's algorithms, and

covers additional topics required for a complete simulation system, such as internal and

external forces.

The dynamic simulator in corpus is a general purpose system, capable of simulating a

wide variety of articulated structures, over a wide range of conditions. Different figures

and simulations are constructed using different command sets or scripts in corpus. As

described in the previous section, The Program Corpus, the dynamic simulator is linked

to a parsing sub-system, which allows dynamic parameters to be set and queried, and pro-

vides the commands for constructing and controlling articulated figures and simulations.

The simulator in corpus was tested for correct implementation and numerical accuracy

using a variety of test cases. These are discussed in Appendix C, Dynamics Verification.

The tests in the Dynamics Verification appendix are also useful examples of how simula-

tions are constructed using scripts in corpus.

Also, see the List of Terms, page 264, for reminders of the various terms used, and the

Glossary, page 266, for unfamiliar terminology.

5.2 Spatial Notation
Before the dynamics algorithm is presented, we must cover "spatial notation," the mathe-

matical notation in which the ABM is written. Spatial notation was developed by Feather-

5 Dynamic Simulator Michael A. McKenna

stone as a way of combining the linear and angular components involved in rigid body

motion. Spatial vectors are 6 dimensional quantities, which contain both the 3 dimensional

linear, or translating, degrees of freedom (DOFs), and the 3 dimensional angular, or rotary

DOFs. The equations of motion can be expressed in a more compact form using spatial

algebra, than by using traditional 3-dimensional vector math.

Featherstone describes a spatial vector as "a 6-dimensional vector which can be used to

represent the combined linear and angular components of the physical quantities involved

in rigid-body dynamics." [Featherstone 1987]

Spatial quantities are denoted by a carat (" ") above them, as in a . Spatial vectors are

6 x 1 column vectors, and spatial matrixes are 6 x 6 matrixes. Column vectors (such as

spatial vectors) are commonly used in robotics research, whereas row vectors have histor-

ically been used in computer graphics literature and software implementations (so that

vectors and matrixes must be transposed to convert from one system to another). It is

important to keep this difference in mind when reviewing simulation and computer graph-

ics publications. Spatial algebra is based on standard matrix arithmetic; however a differ-

ent transpose operation is used (the "spatial transpose").

We will now discuss some different spatial quantities. Spatial velocity, v^, defines the 6

dimensional velocity of a body, from the point of reference of the coordinate frame origin.

It is given as:

x

wyWX

9= [cOTv]TOr9 = , as ini = . Eq. 4

VOx

voz

Michael A. McKenna5 Dynamic Simulator

5 Dynamic Simulator Michael A. McKenna

Figure 23: The velocity of a rigid body. From
[Featherstone 1987].

v 0
P

vO x

0

P

It is composed of the angular velocity, o, and the linear velocity of the rigid body at the

origin of the coordinate frame, v0 . See Figure 23. If the linear velocity, vp, of another

point P within the body is known, it is transformed to the origin using the following rule:

vo = v,+ OPx) , Eq. 5

where OP is the vector from the origin to the point P. There is a similar transformation for

finding the linear velocity at any other point, as in:

vQ = v +QPxaO . Eq.6

The angular velocity, o, remains the same at all points.

The spatial acceleration, a, of a rigid body is given as:

a = ,Eq. 7
ao

where ao is the linear acceleration of the point in the rigid body which is instantaneously

passing through the origin, and 6 is the angular acceleration. If the linear acceleration and

velocity of the body is known at a point P, the linear acceleration at the origin is given as:

ao = a,+vxWo+OPx(b . Eq. 8

Spatial force, f , is given as:

f = Eq. 9

wheref is the linear component of the force, and t 0 is the torque at the origin. If the linear

force is applied to the body at a point P, then the torque at the origin is computed as fol-

lows:

to = -rT+ OPxf , Eq. 10

where r, is the torque, if any, at point P. The linear component of the force,f, does not

change with respect to different locations.

Before introducing the next spatial quantity, the spatial inertia tensor, we will introduce a

few operators. The cross operator takes a "standard" (non spatial) 3 dimensional vector

and creates a 3 x 3 matrix, which "encodes" the multiplication products from a standard

cross product operation. The operation is given as follows:

x 0 -z y
ax = [jx z 0 -X Eq. 11

z -y x 0_

Thus, the operation (a x) b (matrix times vector) is equivalent to a x b (cross product of

two vectors). This operator is also known as the anti-symmetric matrix, [Featherstone 1987]

or the skew-symmetric matrix, which is often designated with a tilde ("~"), as in a, in

other notations. [Armstrong 1985]

The spatial cross operator, (a :^), is the spatial algebra equivalent of a three dimensional

cross operator, and it is defined as:

aax 0 Eq. 12
b b x ax

Michael A. McKenna5 Dynamic Simulator

5 Dynamic Simulator

The spatial transpose operator (denoted by a superscript S, as in as) is used in place of a

standard transpose operator in spatial algebra. For a spatial vector:

a _b b Ta T] Eq. 13

For a spatial matrix:

S A B D TBTA =] Eq. 14

The spatial rigid body inertia tensor, I, can be constructed from 3 x 3 sub-components, as

follows:

= [HT M] , Eq. 15

I H_

where:

H=mOPx , Eq. 16

where m is the scalar value of the rigid body's mass, and the center of mass is located at

point P, with respect to the origin, 0. The mass matrix, M, is given as:

M= m 0 10 Eq. 17

0 0 1

The rotational inertia of the rigid body at the coordinate frame origin, I, is given as:

I= I +OPxm POx , Eq. 18
*

where I is the 3 x 3 rigid body inertia tensor, as in:

IX -I, -I,
I = -I I -I . Eq.19

x yz y yz

Michael A. McKenna

[Wilhelms 1985; Winter 1990] The moments of inertia are defined as:

I = f(y + z2) dm , and etc., Eq. 20

where dm is the differential mass element. [Marion] The products of inertia are given as:

I = fxy dm , and etc. Eq. 21

Spatial transformation matrixes convert spatial values from one coordinate frame to

another. The matrix pXO is the spatial transform which transforms values from the coordi-

nate system "0", to the coordinate system "P". This spatial matrix can be constructed

from 3 x 3 sub-components:

= E 0 1 0 E 0 Eq. 22PX0 T T
0 E OPx 1 EOPx E

which corresponds to a shift of origin from 0 to P, followed by a rotation about the point

P. The E matrix is a 3 x 3 rotation matrix. Note the order of multiplication where the rota-

tion and translation spatial matrixes are concatenated. The inverse transformation, repre-
S

sented by OXk, is the spatial transpose of pXo (i.e. oXp = pXO).

Multiple spatial transformation matrixes are combined as follows:

QX0 = QXP PX 0 . Eq. 23

A spatial vector is transformed in the following manner:

= yo o. Eq. 24

A spatial tensor is transformed with the following multiplications:

Z, = pXy Zo oXe. Eq. 25

5.3 Single Body Dynamics
We will now discuss the dynamics of a single rigid body, before proceeding to the algo-

rithms for articulated body motion. In spatial notation, the equations of motion are quite

compact. The equations of motion for a rigid body, free to move in space are given as:

f = + , Eq. 26

Michael A. McKenna5 Dynamic Simulator

and

p = ^I>< , Eq. 27

where f is the spatial force applied to the body, I is the body's spatial inertia tensor, a is

the spatial acceleration, 9- is the body's spatial velocity, and pV is the bias force, which

accounts for velocity-dependent spatial accelerations. The bias force is required due to

coupling between rotation and linear velocity. Even in the absence of any applied force, a

spatial acceleration can be generated when the body has a non-zero spatial velocity, and

the bias force accounts for this. To paraphrase Featherstone, the bias force is equal to the

force which must be applied to a body in order to give it zero spatial acceleration, in the

absence of any other applied forces.

To solve the forward dynamics problem, we solve for the acceleration, as in:

a = (I) (fj- P) Eq. 28

To solve the inverse dynamics problem, we solve for the net applied force, from a speci-

fied acceleration, as in Eq. 26.

The dynamics computations give us an instantaneous solution to the problem. The core of

the simulator is formed by these equations, and thus it provides an instantaneous solution.

In order to move forward in time, we must integrate the time-dependent variables. Numer-

ical integration uses discrete, instantaneous samples, such as those computed by the simu-

lator, to approximate the actual integration.

For example, when we solve the forward dynamics problem, the body's acceleration is

computed, based on the applied forces and current velocity, at a given instance in time (ti).

In order to determine the velocity at a future time (t2) we need to integrate the acceleration

over that period, as in:

t2

92 = V + fa dt . Eq. 29

tl

Numerical integration techniques approximate the above, using discrete values of the

acceleration. There are three integration techniques available in corpus: euler, fixed-step

runge-kutta, and adaptive step-size runge-kutta. The euler algorithm is the simplest of the

Michael A. McKenna5 Dynamic Simulator

integrators, but it provides the basic concept of the numerical integrator. To update the

value of the spatial velocity:

vnew Vold+adt , Eq. 30

where dt is the amount of time over which to integrate (t2 - t1). We refer to dt as the

timestep, or the amount of simulation time which passes between each simulation step.

The fixed-step runge-kutta algorithm takes four sub-steps for each timestep. [Press] In other

words, the dynamics equations are evaluated four times, at different time points between

ti and t2, each point being a different sub-step. The results from the sub-steps are com-

bined, using weighting factors, in order to obtain a 4th order solution.

The adaptive runge-kutta algorithm takes six sub-steps, and uses two different sets of

weighting coefficients to combine the results into both a 4th order and 5th order solution.

[Forsythe] The difference between the two results is used as an error measure. If the error is

greater than the specified error tolerance, the algorithm discards the results, and sets a

smaller step size, based on the error. The previous state is restored, and the integrator

begins again with the smaller step size. This allows the integrator to return a result with a

certain accuracy, regardless of the complexity, or changing conditions within the simula-

tion.

For most simulations, the best results are obtained with the adaptive integrator, because it

is designed to adjust itself to the "stiffness" of the problem. At times it will take a few

large steps, at other times it will take many small steps, adapting to variations in the sys-

tem which mandate a change in step-size in order to maintain a certain level of accuracy.

The non-adaptive algorithms are appropriate if the computation must be completed at reg-

ular, or very short intervals. However, adaptive algorithms can be instructed to halt further

sub-division after a specified limit. In general, the 4th order, non-adaptive integrator will

compute a more accurate solution than the euler integrator, for the same amount of com-

putation time. The euler integrator's primary usefulness lies in its simplicity, which can be

of value during the debugging process.

Comparisons of the different integrators are provided in Appendix C, Dynamics Verifi-

cation, along with some examples of single body simulations.

Michael A. McKenna5 Dynamic Simulator

5.4 Articulated Body Forward Dynamics
Articulated figures in corpus are collections of rigid bodies, connected together by ideal-

ized joints. The joints constrain the relative motion of the two connected bodies, allowing

the bodies to rotate or translate with respect to each other. Articulated figures in corpus are

defined as branching structures, without closed kinematic loops.

An articulated figure is composed of n bodies. Different bodies within an articulated figure

are referred to by an index, i, which ranges from 1 to n. Quantities which are associated

with a given body carry its index as a subscript after the term. For example, the spatial

velocity for body i is 9,.

One body within the articulated, branching structure, is designated as the root or base

body, and it is defined as body 1. The root is proximal to all other bodies. Any body could

be chosen as root, however, it is often logical to choose a central object as the root. "Leaf'

bodies are bodies which lie at the distal end of a kinematic chain.

The joints between connected bodies are defined by the spatial joint axis, ^vi. In corpus,

every joint has one degree of freedom (DOF). The equations of the ABM can be extended

to handle multiple DOF joints, [Featherstone 1987] and corpus could be extended to handle

these cases as well. The joints can be rotary (1 degree of freedom "hinge" joints), or trans-

lating ("prismatic" or "sliding" joints). Multiple degree of freedom joints are created in

corpus by concatenating bodies, with their joint axes aligned in different directions.

A rotary joint axis is given as follows:

S = [x y z 0 0 T , Eq. 31

where { x y z } is the normalized vector which defines the axis about which rotations occur.

A translating joint axis is defined as:

S = [000 , Eq. 32

where {x y zI is the normalized vector which defines the axis along which translations are

allowed. As defined above, these joint axis are positioned to lie at the coordinate frame

origin. The spatial joint axis can be transformed using a spatial transformation matrix.

Michael A. McKenna5 Dynamic Simulator

The joint position of body i is given by the scalar q,, in meters or radians. Joint velocity is

4,, and joint acceleration is 4i. The joint force of body i is given as Q,.

The joint constraint maintains that there can be no transmission of force through the joint,

from one body to another along the direction of the joint, when the joint is un-powered:

-S ̂S f1 = 0, Eq. 33

where f, ,is the net force transmitted to body i from its parent, body i-1, through joint ^i
(recall that the superscript S denotes a spatial transpose). If there is an active force at the

joint, then it is included in the net force applied from one body to another through their

connecting joint. The component of the net force on the joint axis is:

Q, = ^i , Eq. 34

Due to the hierarchical structure of the articulated figure and the constraints of the joints,

many relationships exist between parent and child bodies. The spatial velocity of body i is

the sum of its parent body's spatial velocity and the spatial velocity created by its own

joint velocity:

9i= 9 s_ I + . Eq. 35

The acceleration of body i is the sum of its parent's spatial acceleration, and the spatial

acceleration generated by the joint velocity and acceleration:

a = a _ +Vi X dA+^jg . Eq. 36

The central equation of motion in the ABM is:

f i ai + pi Eq. 37

where fg is the net spatial force applied to body i, P is the articulated body inertia, a is

the spatial acceleration, and p, is the bias force, all of the ith body in the articulated figure.

The articulated body inertia allows us to establish a linear relationship between the applied

force and the acceleration of a rigid body, even though the motion of the body is con-

strained by its connection to other bodies through joints. The bias force incorporates the

velocity dependent bias force, p vi, and forces transmitted through the joints.

Michael A. McKenna5 Dynamic Simulator

5 Dynamic Simulator Michael A. McKenna

The recursive relationship for the articulated body inertia is derived

determined to be:

by Featherstone, and

A~

i A S A

i+1 i+1 i+1

Eq. 38

and

-A A
in = In, Eq. 39

where n = the index of any body which lies at the end of an articulated chain (a leaf link).

The recursive formulation for the bias force is given as:

A A ext A
i = p -f +pi+I +Ii+1 i i+1 qi+1

S A SA i+1A
i+1-Qi+1 i+1 i+1 X Si+1 Gi+1-si+ i+1^A

+ AS -A Ii+1 S i+1'

si i I; si, +

pY = V i X Zi 9 ,

A.ext

in = Pn' - fn .

I ext
I have included the external force, fi , explicitly in the bias force, in a slightly different

form than Featherstone.

Starting with the outermost, or "leaf," bodies in the articulated figure, the articulated body

inertias and bias forces are computed inwards to the base body. The root acceleration is

then computed, using:

-1
a1 = (I) (-P^) - Eq. 43

The joint accelerations are then computed outwards, from the base to the leaf bodies, as

follows:

A
4i = Eq. 44

S -A,
si I si

Eq. 40

and

Eq. 41

Eq. 42

5 Dynamic Simulator Michael A. McKenna

S IA V S S S i
Q i -; i(i i ^i Pi -^i S i

5 Dynamic Simulator Michael A. McKenna

The above equations were derived in a uniform, unchanging coordinate frame. However,

there are advantages to using body-local coordinate frames, in which each body has its

own local coordinate frame, which travels along with the body. Using body-local coordi-

nates, the COM of the body, and thus the spatial inertia tensor, are unchanging. Integration

in a local frame is more efficient, as well.

When using body-local coordinate frames, transformation matrixes are used to translate

the values from one body into the coordinate system of a second body, so that they can be

combined in the equations of motion. The matrix iXj is the spatial transform which trans-

lates values from the coordinate system of body j, to the coordinate system of body i.

The following is the set of equations for the ABM, written using local coordinate frames:

i ~ i i Eq.45

i i - 1 +9'<~i Q4+s 1 qg , Eq.46

pY = V^.x i9;, Eq. 47

^A ^S ^A

^A ^ A Ii+1$i+1$i+1/i+ 1
Ii + AX+ Ii+I - S ^A I* X Eq. 48

si+1 i+1 i+1I

I = in, Eq. 49

-ext ^A
pi= P--fi +,X;i+(p +I 19 x^j+ q4j+1 Eq.50

S ^A . S
ij+1 - Si+1 II+1 i+ XSi+1 qi+1 -si+1pi+1 ^A

+ ^S A Ii+1 i+1'

i+1 ii+1&i+1

ext
Pn =v --fn ,Eq. 51

and

S-A (S S aA
. O- IL (ii ei)-i i-Si Ii iX _1 a ._

q. = Eq. 52
S IA

I Si

Note that there are common sub-expressions in the global and local forms of the ABM

equations (such as 9, X si 4). These can be extracted, computed first, and substituted into

the equations to increase computational efficiency. [Featherstone 1987] This is the way that

corpus is implemented.

5.5 Hybrid Dynamics
The forward dynamics computations can be augmented to perform inverse and hybrid

dynamics. [Featherstone 1987] Inverse dynamics is used to compute the force (unknown)

required to accomplish a specified motion (known). Hybrid dynamics allows a mix of for-

ward and inverse dynamics; at every joint, either the applied force or the acceleration is

specified, and the unknown value is then computed during the simulation recursion. Using

hybrid dynamics, part of a figure can be "driven" through a kinematic trajectory, while the

remainder of the body is dynamically simulated, so that it responds to the applied forces,

as well as the motions of the kinematically controlled joints. Hybrid dynamics are imple-

mented in corpus, and will be used in this thesis to perform inverse dynamics on the biped,

as part of the control system computations to automatically derive the control parameters

necessary for standing and other postures.

When the joint between body i and i+l is kinematically controlled (joint ^i +), the fol-

lowing relationship is used (see [Featherstone 1987]):

fi = Ii ai+j i+Zi+1 (i+9i + I 1 + +^,A I Pip) +v ys , Eq. 53

where i + is the spatial velocity, ^i i+, is the spatial vector which represents the joint

axis, 4i + I is the scalar joint velocity, and 4g i is the joint acceleration, all of body i+1,

the distal "child" of body i.

From Eq. 53, we can extract the recursive relationships for IZ and

Z = Zi+1 Eq. 54

i= ^e xt+ +^(A ,< ^ i + ^I q) . Eq. 55

(This is in slightly different form than Featherstone, to incorporate the external force). It

can be seen from Eq. 54 that articulated body inertias essentially sum when the joint

between two bodies is kinematically controlled.

5 Dynamic Simulator Michael A. McKenna

When joint i is kinematically controlled, the joint force can computed as:

S -A
Q, = ^, (It a+ p) Eq. 56

These inverse calculations (Eq. 54 and Eq. 55) were extended to local frames, by the

author:

-A A

I i =I+ A~g + I+ + A X Eq. 57

V - ext Eq. 58
Pi Pi ~ fi + AX, p+ Eq 58+

+ A~, (Igi 5 Vi X si, + , qi+I + si, + i + J)) g,+IX, .

Inverse dynamics can be calculated for the root (most proximal) body, as well, using Eq.

37, so that the overall 6 dimensional body motion is kinematically controlled. In this case,

however, an external force, fi , not a joint force, must be applied to the root body in order

to achieve the specified acceleration, a . Unless there is a realistic source for their genera-

tion, arbitrary constraint forces should not be used. Using forward dynamics methods, it is

a control problem to generate the desired body motion, using applied joint forces. In some

cases, constraining the root motion is appropriate. For example, when the base is fixed, the

root acceleration can trivially be set to zero.

The joint forces calculated by the inverse dynamics are very susceptible to the stability of

the dynamic system being simulated. Some examples of sources of numerical instability

are given below, in the discussion of contact forces. Because the joint forces computed by

the inverse dynamics can vary widely, even over a short period of time, an average is

made of the joint force. In corpus the numerical integrator, which is typically used to

update velocity and position from acceleration, was augmented to compute an average

joint force, over a range of time, with increased numerical stability, as in:

t
2Q dt

Qave = tt Eq. 59t2 -t

5 Dynamic Simulator Michael A. McKenna

5.6 First Order Dynamics
First order dynamics is an implementation of Aristotle's theory of dynamics, in which

objects have a "preferred rest." In other words, unless a force is applied to an object, it will

not move; the instantaneous velocity is proportional to the applied force. First order

dynamics have been used in interactive computer graphics systems, in order to ease cer-

tain kinds of interactions. [Witkin 1990]

First order dynamics are very useful for quickly simulating the final rest state of a second

order dynamic system. A first order simulation behaves somewhat like a damped, very low

mass system, since the system has no momentum (using familiar terms from second-order

dynamics). For example, a three-link pendulum, falling under the influence of gravity, is

shown in Figure 24. When first order dynamics are used, the pendulum smoothly "falls"

downward, to its fully vertical, extended position, without any overshoot or oscillations.

But when second order dynamics are used, the pendulum overshoots its final equilibrium

position, and oscillates back and forth. Depending on the damping factor, the pendulum

may continue to move for a very long time. The final resting state of the pendulum is quite

obvious. Other systems may be significantly more complex, however, with non-obvious

final resting states. For example, a postural system may combine internal and external

forces which must be balanced out.

The equations of motion for aristotelian dynamics are a straightforward extension to

Featherstone's methods. The equations were derived by the author, and implemented in

corpus.

The net applied force is proportional to body's velocity:

= i vi+Pip . Eq. 60

Solving the forward dynamics problem, for the spatial velocity:

vi = (h (fi--Pg) . Eq.61

The articulated body inertia computation is the same as before:

^A , S ^A

= Z Z Ii+1 i+si+ 'i+1
S +1A Eq.62

Michael A. McKenna5 Dynamic Simulator

5 Dynamic Simulator Michael A. McKenna

Figure 24: First order simula-
tion of a 3 link pendulum
(upper) compared to a second
order simulation (below).

In both examples, the pendu-
lum moves from left to right
over time.

Using first order dynamics,
the system has no momen-
tum. The force of gravity
applied to the links creates a
'downward' velocity at the
joints. As soon as the pendu-
lum is extended straight
down, the force of gravity
create no torques at the joints,
and thus, there is no resultant
velocity.

5 Dynamic Simulator Michael A. McKenna

and

n n- Eq. 63

The bias force now has no velocity-dependent terms:

Pi - i+ I
+ + I-si+ Iij+ I -A

S -A Ii+1
i+1 1i+1^

i+1 , Eq. 64

and

Pn = -fn . Eq. 65

The joint velocity is computed outwards, from the root body to the leaf bodies, using the
following:

4i =

Qi S _ S - AOi-Si Pi - Si I;vi _I
^S ^A
s. Ii s

j S i

Eq. 66

Using body local coordinate frames:

A , S A
+1$i +1 i+1 i+1

S ^A -
S i+1 i+13i+ 1

In n
in = In ,

-+ +i+-si+lPi+1^A
Pi + S -A Ii+1

i+ I i +1

Pn = -fn

Q S S A-S V
i Pi-Si IiX,_ 1

'S -A -
s, I; si

^A ^ ^ A
I = I;~+, I+1 j+X , Eq. 67

Pi = fi+iXi+{

and

i

i+1

Eq. 68

Eq. 69

Eq. 70

Eq. 71

5 Dynamic Simulator Michael A. McKenna

As an implementation note, it is not necessary to include a separate set of computations, as

above, to implement first order dynamics in a second order dynamics simulator. Rather,

we can simply zero all of the velocities in the system as we enter the dynamics computa-

tions, and solve for the velocity, rather than acceleration. This eliminates all velocity-

dependent terms automatically. However, this is not as efficient, since the zero accelera-

tions are still integrated, and the velocity-dependent terms are still calculated (to be zero).

Velocity-dependent damping should not be used when simulating first-order dynamics,

since the system would directly oppose its own motion. Velocity-dependent dampers are

automatically eliminated from the system, if the velocities are set to zero before the simu-

lation computations are initiated.

5.7 External Forces
External forces may be applied to any body in an articulated chain, in order to influence its

motion, or simulate an environmental effect. These external forces are "environmental

forces," because the forces are applied to the articulated figure from influences outside of

itself, in the environment. These sources include: gravity, contact and collision forces,

attachment forces, etc.

Gravity
Gravity is easily incorporated into the simulation system. The "downward" force due to

gravity, m g, is applied to the center of mass (COM) of every rigid body in the simulation

(including each body in an articulated figure). The gravitational constant, g, is a three

dimensional vector, which specifies the strength and direction of gravity, and it is usually

set to the normal value in the MKS system: [0, 0, -9.81] m/sec2. The "Z' axis defines the

vertical in the default corpus environment, with positive values representing the "up"

direction. The g parameter can be set to any value (or direction) in the corpus parser. The

gravitational force has been verified to induce the correct acceleration in several different

simulation tests. (See Appendix C).

Ground Reaction Forces
The ground reaction forces, or, more generally, collision and contact forces, have two

main components: normal and tangential forces. On "level" ground, these elements can be

considered the vertical and horizontal force components. We will discuss the simple case

Michael A. McKenna5 Dynamic Simulator

of level ground forces. Contact (or support) and collision (or impact) between the articu-

lated body and the ground are handled uniformly, by applying reaction forces at the point

of contact, based on a spring and damper model.

The vertical reaction force is applied when the 3 dimensional geometric model of the body

passes under the level of the ground. The ground model default in corpus is defined by the

Z=0 plane. At all points (vertexes) of ground penetration a force is applied, dependent on

the vertical penetration of the point, and the velocity of the point:

{a (e4 -1)-kx - b if x <0 Eq. 72
0 if x,>0

wherefv is the vertical reaction force, av and v are the linear and exponential spring con-

stants for the exponential collision spring, k, is the linear spring constant, and by is the col-

lision damping constant. Damping is used in the above equation to dissipate energy in the

collision; the percentage of kinetic energy lost depends on the spring constants as well as

the damping constant. Alternately, the loss of energy can be directly parametrized by the

coefficient of restitution, as in:

lOut = e lin , Eq. 73

in which in is the velocity of the point of contact before the collision, xOUt is the velocity

after the collision, and e is the coefficient of restitution. A value of 1.0 for e would repre-

sent a perfectly elastic collision, with no loss of energy. The coefficient can be used to

directly control the elasticity of a collision by modulating the vertical reaction force, as in:

= { f if xV <0 Eq. 74
efv if v > 0

This technique was introduced to the computer graphics community by Moore and Wil-

helms, [Moore] and was used by the author in previous work, with good results. The benefit

of using the coefficient is that energy loss during collision can be directly specified, with-

out matching damper constants to other simulation parameters (particularly, the ground

spring stiffness constants). However, because the reaction force function is no longer con-

tinuous, a numerical instability is introduced, which creates a "microscopic" vertical jitter,

especially during continuous contact (as opposed to collision). The magnitude of the jitter

is dependent on the integrator time step size (and thus, on the adaptive integrator error tol-

erance). Numerical integrators which are dependent on the state history (such as predictor-

Michael A. McKenna5 Dynamic Simulator

correctors) would have to initialized when such discontinuities occur (including the

change between contact and non-contact) This greatly reduces the efficiency of such inte-

grators.

The stability problems encountered using the coefficient of restitution (as in Eq. 73) inter-

feres with the stable calculation of the joint force during a hybrid or inverse simulation.

The instability also slows the simulation speed, because the integrator must take more sub-

steps in order to calculate an accurate result. Because of this, the use of the coefficient of

restitution was abandoned, in favor of the continuous vertical damper function, included

in Eq. 72.

A similar vertical reaction force equation is used by Manko as a model of foot-soil interac-

tion, between a robot and the ground. His equation is presented here, in a slightly different

form:

f = (e-(ko-k f)x-k x -1) if < Eq. 75

0 if X >0

where ko and kf are slope parameters. [Manko] Robot simulations using these functions

have been experimentally confirmed using real robots.

Several different approaches have been used in corpus to model the tangential contact

forces, which are due to friction. The friction models function primarily as velocity-depen-

dent dampers to oppose sliding at the points of contact. Different models were added in

order to reduce stability problems, similar to those encountered using the coefficient of

restitution.

Early work by the author used a model of Coulombic friction in which a horizontal force

is applied at the point of contact, in a direction to oppose the velocity, proportional to the

vertical reaction force, as in:

fh = - fv h Eq. 76

where fh, is the horizontal friction force, y is the coefficient of friction, and .h is the hor-

izontal velocity of the point of contact. This model was introduced to the graphics commu-

nity by Wilhelms and Barsky. [Wilhelms 1985] The force response of this model is shown in

Michael A. McKenna5 Dynamic Simulator

5 Dynamic Simulator Michael A. McKenna

-F

0. 4

-0.01 -0.005

-0.2

-0.4

0.O5 o.MoY (m/sec)

-F

0.

0.0 . ..

-0.01 -0.005

.4

0.005 0.
(m/sec)

Figure 25: Force response
of the friction functions.

top: Force is constantly
applied, proportional to
the normal force, as in Eq.
76.

The three plots are in terms
of velocity (of the point of
contact) and normalized
force (-F = f'fU,), with a
coefficient of friction, y, of
0.5.

middle: The force
response of the damper
model of friction, with a
clamped maximum/mini-
mum, as in Eq. 77. The
damping constant, bh, is
equal to 500 (N sec/m).

-F

.4-

0.

-0.01 -0.005

0.2

-0.40

r) n (m/sec)

bottom: The force response
of the arctangent friction
function, as in Eq. 78. The
damping constant, bh, is
equal to 500 (N sec/m).

Michael A. McKenna5 Dynamic Simulator

01

Figure 25. This friction model has been used with success in previous research. However,

this model creates instabilities due to the discontinuity in the friction force, when the

velocity reverses direction. This disrupts the analysis of joint forces during inverse or

hybrid simulation, and can slow simulation speed by creating a "stiffer" system.

A smoother friction function was implemented, using a clamped linear damping force:

Y fv if bh h > Yfv

fh = -bh vh i fb h h>yfv , Eq. 77

Sy fv bh h < -Y fv

where bh is the horizontal, "friction" damping constant. This increased the stability of the

calculated joint forces, and decreased the number of simulation sub-steps required to inte-

grate over a given time step, for a given error tolerance (decreased the stiffness of the sys-

tem). The force response of this function is shown in the middle plot of Figure 25.

A similar, but smoother, more continuous friction function is used in simulations by

Bogert, et al [Bogert]:

2 y f ' bh
f=- 7 arctan 2 .1 Eq. 78
fh- 2ffbh v

This is slightly more complex to compute, but it could lead to lower stiffness in the inte-

grator, saving simulation steps, because the force response has a higher degree of continu-

ity. This function has not, as yet, been implemented in corpus, however. The arctan

friction function is shown in the lower plot of Figure 25.

Corpus also supports collision forces between articulated bodies and an uneven ground

defined by a triangularized height array, similar to that used for uneven terrain in [zeltzer

1982]. The same normal and tangential friction forces are used, but the direction of the nor-

mal force is no longer necessarily vertical, but is rather in the direction of the normal of

the polygon which is penetrated by the body's geometry.

Collision forces between different bodies in corpus can also be simulated, using the same

normal and tangential force models. Forces are applied equally and oppositely to the bod-

ies involved. The normal of the penetrated polygon defines the normal and tangential

directions.

5 Dynamic Simulator Michael A. McKenna

For non-articulated, single bodies in corpus, a non-spring model can be used to simulate

collisions. Using collision analysis, the momentum exchange of the colliding bodies is

computed, such that their velocities are directly modified based on elastic impact dynam-

ics in a single step. This is typically much more efficient than modifying the velocity of

colliding bodies through the influence of acceleration, over a simulated interval of time.

However, collision analysis responds poorly for situations involving continuous contact

and support. This kind of collision model is discussed in [Moore] and [Hahn].

Other Extemal Forces
Other environmental forces can be simulated in corpus. Attachmentforces are linear and

exponential springs, with dampers, which can be used to "attach" two bodies together. A

point is specified on each body, and the distance between those two points is used as the

feedback parameter for the spring. Equal and opposite linear forces are applied by the

attachment spring to each body, at the attachment points. Muscle models which use linear

attachment points can be simulated using these types of models. Attachment forces are

considered external forces when the two bodies that they connect do not lie within the

same articulated figure. If the attachment forces connect two bodies within the same artic-

ulated figure (as a muscle model would), the attachment forces are considered to be inter-

nal forces.

Terrestrial gravity, on a planetary surface, produces a constant acceleration. Corpus also

supports gravitational attraction forces in which each body exerts a force on every other

body, proportional to the two masses, as in:

F =G mM Eq. 79
g 2

r

where m and M are the masses of the two bodies, G is the universal gravitation constant

(6.673 x 10-11 N m2fkg2), and r is the distance between the two bodies' COMs. This can

be used to simulate astronomical motions, such as orbital paths.

In addition, corpus commands and scripts can be used to set arbitrary applied forces to any

body. In this manner, external programs can be used to provide force functions, and forces

can be scripted.

Michael A. McKenna5 Dynamic Simulator

5.8 Actuator Model and Joint Forces
Internal forces are applied within an articulated figure. These forces are related to the bio-

mechanical model of the figure, since internal forces in real animals and people are gener-

ated by the mechanical properties of muscles and other tissues. Simulations in corpus

typically use internal joint forces to control motion. Joint forces are forces which are

applied directly at a joint location, in the direction of motion allowed by that joint. The

force is applied to the two bodies that the joint connects, equally and oppositely. Corpus

also allows for motion control using linear forces which are applied as internal forces to

articulated bodies (via the attachment forces described above). The use of joint forces in

the human figure model is discussed in the section Biomechanical Model (6).

There are several sources of joint forces available in corpus. Actuators, which deliver

forces for active joint control, are based on spring models. Dampers create forces to

oppose motion, and model the viscous properties of joints. Joint limit forces are created

using springs and dampers which become active when the limb passes beyond a specified

range. Joint limit forces model the ways in which the joints of real mechanisms, animals

and people resist and stop movements beyond their ranges of motion.

For a body i, the total joint force, Qg, is given as the sum of contributing joint forces:

Qi = QS+QD+QL+.' , Eq. 80

where Qs is the exponential spring/actuator force, QD is the damping force, and QL is the

(exponential) joint limit force. Other joint forces are available in corpus, including linear

springs, linear spring joint limits, joint limit dampers, and bias forces (direct specification

of a contributing joint force). Any number of springs, dampers, etc. can be set to operate at

a joint.

Exponential springs are typically used at joints to control postures and motions of articu-

lated figures in corpus simulations. These springs have an exponential relationship

between the displacement of the joint position from the spring rest position and the result-

ing force. The force response of the springs is given as:

{Se o eo ~ - 1) if q < qtarget Eq. 81

-x (e ~arge) - 1) if q > qtarget

Michael A. McKenna5 Dynamic Simulator

5 Dynamic Simulator Michael A. McKenna

Q (Nm)

-0.6 -0.4 -

-100-

-200-

-300-

Q (
3010

20 0

0 0

-0.6 -0.4 -0.2

-100

-200j

-300--

Nm).I

Figure 26: Force response
of the exponential spring.

top: Varying the linear
spring constant a = 5, 10,
15, 20. $=10

(rad)

lower: Varying the exponen-
tial spring constant: P = 5,
10, 15, 20. a = 10. The expo-
nential constant has a much
more powerful influence on
the force response, as com-
pared to the linear parameter.

.4 0.
(rad)

where a is the linear stiffness constant for the spring, P is the exponential stiffness con-

stant, q is the joint position, and qtarget is the spring rest position. This model was intro-

duced to the graphics community by Armstrong, et al. [Armstrong 1987] The force response

of the spring, for varying constants if shown in Figure 26.

An inverse model of the exponential springs is used to determine what spring rest angle

corresponds to a specified joint force. When coupled with inverse or hybrid dynamics, this

inverse actuator model provides not only the forces, but also the actuator control parame-

100

Michael A. McKenna5 Dynamic Simulator

ters that are need to execute the specified kinematics. Given the joint force and exponen-

tial spring stiffness parameters, the rest position is given as:

Q IS + 1
qtarget Qq . Eq. 82

Linear springs can be used at joints to generate forces in corpus as well. The force of a lin-

ear spring, QSL, with a stiffness constant, k, is given as:

QSL = k (qtarget - q) . Eq. 83

Dampers in corpus provide joint forces which oppose joint velocity. These forces dissipate

kinetic energy, and model the viscous drag which arises from many sources in the real

world. The force is linearly proportional to the velocity, and is applied in the opposite

direction:

QD = -b4, Eq. 84

where b is the joint damping coefficient.

Joint limits in corpus are springs which become active when the joint position passes

beyond a specified range. These springs approximately model the resistive force in biolog-

ical forms which are due to passive joint structures, including the elastic elements of the

muscles, tendons, and other surrounding tissue. Exponential joint limits employ exponen-

tial springs in a similar form to those discussed above:

QL= a (e (q imiti - q) - 1) if q < qlimit1 Eq. 85
-x (e (q- imit2) - 1) if q > qlimit2

Linear spring joint limit models can also be employed in corpus, and are given as:

F k (qlimit1 - q) i q < qlimit1

L2 -k (q - qlimit2) if q > qlimit2

101

Michael A. McKenna5 Dynamic Simulator

Joint limit dampers are also available in corpus, such that dissipating forces become active

when the joint position passes into the joint limit region, as in:

QLb (-b 4 if q,< q1imit1 Eq. 87
-b 4 if q > qlimit2

5.9 Motor Programs
Dynamic motor programs are used to modify the actuator parameters over time in order to

generate actively-controlled movements. A motor program moves a spring's rest position

from a start to an end position. Both exponential and linear springs can be used with motor

programs in corpus. The spring rest angles are generally used as the means of motion con-

trol in corpus, therefore motor programs allow us to vary the control state from one setting

to another. These control states could potentially have been "calibrated" using inverse/

hybrid dynamics and the inverse actuator model.

Motor programs currently use a linear interpolation method, moving the spring rest posi-

tion with a constant velocity until the goal position is reached. The spring rest position is

set by the motor program as follows:

(end ~ qstart) 0~
qtarget - t-ur (t - tstar + qstart Eq. 88

dur

where qtarget is the new spring rest position, qstart is the spring rest position at the begin-

ning of the motor program qend is the final spring rest position specified for the motor pro-

gram, tdur is the duration specified for the motor program, t is the current time, and tstart is

the motor program starting time. Once the end goal is reached by the spring rest angle, the

motor program terminates. The motor program function must be evaluated within the

dynamics simulation step, not at a reduced sampling rate; because it is time-dependent, it

must be sampled with the integrator's timestep, as opposed to the overall frame rate.

102

Michael A. McKenna5 Dynamic Simulator

An alternate form of executing the motor program interpolation has also been explored in

corpus, in which the numerical integrator is used to interpolate the spring rest position, as

in:

tend

qtarget start + f 4targetdt , Eq. 89
tstart

with a one-time calculation of:

_target - ~ - start Eq. 90
dur

The numerical integrator then automatically updates the spring rest position over time,

based on the spring rest position's velocity. Although it is an interesting approach to mod-

ifying the time-dependent rest position, use of the integrator does not offer any real advan-

tage over Eq. 88, and likely runs at a slower execution speed.

New methods of interpolating the actuators via motor programs can be added to the sys-

tem as necessary. Possibilities include smooth "in-out" functions, such as trigonometric

functions or splines, and table-based interpolation, for matching recorded human move-

ments or using pre-computed control trajectories.

Other types of motor programs can also be added to corpus in order to interpolate addi-

tional control values. For example, corpus supports motor programs to vary the linear

stiffness constant (ea) of an exponential spring, from its starting value to a target value

over time, providing a form of stiffness control.

103

Michael A. McKenna5 Dynamic Simulator

6 Biomechanical Model Michael A. McKenna

6 Biomechanical Model

6.1 Introduction
This section describes the development of the human figure model, with all of its biome-

chanical parameters. These include both kinematic and dynamic elements. The kinematic

structure describes how the figure is "put together," and in general it is defined by the

anthropometrics of the human form. Kinematic parameters include the lengths of the limb

segments (or "links"), the joint motions, and the three dimensional geometries that form

the surfaces of the figure. In order to perform a kinematic simulation, these are the only

parameters needed. To compute dynamic simulations, a number of dynamic parameters

must be specified as well. These include the mass and inertia of the links (including the

locations of their centers of mass) and the parameters for the force generators, such as the

dampers, joint limits, and actuators.

The model developed here is fairly complex in nature, especially with regard to the foot.

By including a higher level of kinematic complexity, the model is brought closer to the

real structure of the human. This allows for the simulation and inspection of more nuances

in motions such as walking, etc. Structure and function that are presently missing from

animations and biomechanical analyses can be explored. Complexity can be a key ingredi-

ent in making animation seem interesting and realistic. In the real world, a physician obvi-

ously cannot ignore complexity and detail in the human body, because each part contrib-

utes to function.

A simplified version of the scripting commands used to "construct" or "build" and initial-

ize the human figure model, with its biomechanical parameters, are given in Appendix D

Body Scripts. Many of the kinematic and dynamic parameters for the model are listed in

Appendix E Body Tables.

104

6 Biomnechanical Model Michael A. McKenna

6.2 Kinematic Parameters
The kinematic model of the human was created in multiple steps. First, an intermediate

kinematic model was generated, using a digitized skeleton [Stredney] as a three dimensional

reference. The joints were parametrized from joint insertion to joint insertion, as matched

to the geometric skeleton model, in its default, anatomical position. The kinematic model

parametrized from the skeleton does not encompass the actual human bone shape, but sim-

ply the measurement from joint to joint, or the "link" length. The next step was to refine

the model, using published anthropometric data, including link lengths and inertias. The

joint axes, which specify the degrees of freedom in the figure, were based on the "major"

degrees of freedom in the human body, and the "major" degrees of freedom in the foot.

Finally, the model was completed using a set of scanned, 2D medical illustrations to "fine-

tune" the model, filling in details that were difficult to extract from the literature.

Digitized Skeleton
A three dimensional geometric model of the human skeleton was manually digitized by

Stredney, for the purposes of animation and medical education. [Stredney] This model was

employed by Zeltzer, in his kinematic simulations of human walking. [zeltzer 1984] The

skeleton model, which we will refer to as the "Stredney" model henceforth, was used as a

reference to assist in the initial design of the human figure model developed with this the-

sis (the "McKenna" model).

The Stredney model was loaded into the 3D corpus environment, and was used as a graph-

ical "template" to construct the hierarchical, kinematic structure of the preliminary human

figure model. Using corpus scripting commands, in an interactive fashion at the keyboard,

the approximate locations of the joints of the skeleton were located. Simple representa-

tions of the body segments were placed along the length of the skeleton bone, from the

proximal joint to the distal joint, adjusting the link length and direction appropriately.

Thus the actual shape of the body is not encompassed in the kinematic description, only

the locations of the joints, relative to one another. The actual bone shape is not important

to the simulation, unless the internal stresses of the bones are of interest, or if detailed ana-

tomical information is required for illustration or medical examination.

Higher level interactive techniques would have been of use during this process, to elimi-

nate the time and tedium of using scripting commands. For example, graphical tools to

automatically "surround" indicated bones would have helped to automatically locate their

105

6 Biomnechanical Model Michael A. McKenna

position in 3D. Also, interactive devices which allow for direct control over 3D cursors

would have been of use to locate points of interest such as approximate joint centers of

rotation. Nonetheless, scripting commands were sufficient to build the model, especially

since only one model was being created. Because commands were used to build the

model, this led to the direct building of the corpus scripts which construct and initialize

the model. These scripts could then be edited to further adjust the figure, as was done in

later stages of the modeling.

The human figure model was designed with three different "layers," such that each body

segment has associated with it three different graphical objects. An internal structure is

named the "skeletal" layer, which is the kinematic description derived from the Stredney

model. In the dynamic simulation environment, these bodies form the articulated structure

of the human figure model, defining the joints and the link lengths. These bodies are

defined as being "non-colliding" such that no collision detection operations are performed

between those bodies and the ground or any other body. Because they are internal and can-

not collide with any objects, collision detection would be a waste of computation.

The skeletal layer is surrounded by two "skin" layers, which are essentially equivalent to

each other. The skin layers approximate the human body's outer envelope, and serve three

main purposes: they are used as the geometric surfaces for collision detection, the volume

defined by their surfaces is used to compute the bodies' inertias, and they create a more

realistic appearance for rendering (especially as compared to the skeletal layer). The "sim-

ple skin" layer is composed of objects that are very basic in nature, with few polygons.

This layer is used to compute the bodies' inertias, for collision detection, and for display

when rapid rendering is desired. The second skin layer is the "display skin" which is com-

posed of graphical objects of the same size as the simple skin, but with rounded, beveled

edges for more appealing visual rendered images. The intermediate model of the human

figure, with its skeletal and skin layers, is shown with the Stredney skeleton in Figure 27.

The Stredney model was particularly useful in modeling the foot structure. Because the

foot is a complex 3D form, difficult to describe and understand from text descriptions, a

3D model allowed for a rapid understanding of the relationships between bones. The

Stredney model for the foot skeleton is shown together with the McKenna foot model in

Figure 28.

106

Michael A. McKenna6 Biomechanical Model

6 Biomechanical Model Michael A. McKenna

Figure 27: Stredney model of the digitized skeleton overlaid with parametrized model. Left: "skeletal,"
articulated layer. Right: the initial "skin" layer.

The rigid skin layer is used in the inertia computation. (The tapered cylinders in the legs and arm provide
for the correct location of the limb segments' centers of mass.) The skin layer is also used for geometric
collision detection and for a more realistic surface rendering.

107

6 Biomnechanical Model Michael A. McKenna

6 Biomechanical Model Michael A. McKenna

Figure 28: The right
foot of the Stredney
model overlaid with
the parametrized cor-
pus model.

108

6 Biomechanical Model Michael A. McKenna

Anthropometric Measures
The initial kinematic model was refined using anthropometric measures, published in the

literature. The Stredney model was somewhat anomalous in the relative sizes of the differ-

ent limb segments, in comparison to "average" values.

After considering a number of published studies of human anthropometrics, [Braune 1988;

Dempster; Williams 1977] a model developed by Drillis and Contini was selected. [Drillis; Win-

ter 1990] They present an averaged set of segment lengths, which are parametrized as a per-

centage of overall body height. A graphical representation of their model is shown in

Figure 5, page 33. The body height was set to match an average male height. [Dempster] A

table of the body segment lengths from different sources, including the final McKenna

human figure model is given in Table 2.

Adjusting the McKenna model to the Drillis and Contini model was quite straightforward,

since the kinematic structure had already been established. The corpus scripts which

"build" the human figure model were easily modified simply by directly changing the nor-

malized scaling factors for the limb segments.

Table 2: Segment (link) lengths, from joint to joint.

segment Stredney Dempster Cii McKenna

total height 1.73 1.77 1.77 1.77

femur link 0.380 0.434 0.432 0.432

tibial link 0.380 0.409 0.434 0.434

foot length 0.274 0.267 0.268 0.28

mid-talus to floor 0.057 0.081 0.069 0.063

femur separation at pelvis 0.170 0.337 0.20

shoulder separation 0.350 0.457 0.36

head height 0.247 0.229 0.229

humerus link 0.302 0.328 0.328

radius link 0.272 0.258 0.258

hand length 0.191 0.191 0.191

femur to humerus height 0.508 0.498

109

6 Biomechanical Model Michael A. McKenna

Degrees of Freedom
The degrees of freedom in the figure were specified to capture the major ways in which the

overall body moves, and also the major ways in which the foot moves. It is difficult to say

what the "major" degrees of freedom are, but some choices were more clearly defined. For

example, the knee allows primarily for flexion and extension, but small amounts of abduc-

tion/adduction and rotations are possible. In addition, the motion of the knee is not exactly

defined by a hinge joint, but it actually has complex 6 dimensional motion. The knee is

quite well approximated by a hinge joint, however, which is the model used in most ani-

mation and biomechanical models. Similarly, the middle and distal phalanges of the toes

primarily flex and extend, but small amounts of abduction and adduction and rotation can

occur there are well. These joints were also modeled as hinge joints. The other notable

degrees of freedom that were not modeled are a complex spine and neck, and a jointed

hand. A preliminary step was made in modeling the hand, described in the Future Direc-

tions subsection in the Conclusions section (8). Ultimately, all of the degrees of freedom

in the human should be included in the human figure model, including very minor

motions. Starting from the most sophisticated model, the complexity can be reduced to a

level suitable for a given animation or simulation, and from that point, the complexity

could be increased to observe the effect, if any, of additional DOFs.

A diagram of the degrees of freedom that were modeled in the body, except for the feet, is

given in Figure 29. The DOFs modeled in the feet are shown in Figure 30.

The overall body has six degrees of freedom; it can translate in three directions, and rotate

to any orientation in three dimensions. These six DOFs are associated with the abdomen

(or torso) of the figure, which is the "root" object in the hierarchical kinematic structure.

These degrees of freedom can be "free," when forward dynamics computes the accelera-

tion of the figure, or they can be constrained to be motionless or to follow a specified

acceleration.

Although a complex spine/neck has not been modeled, a number of degrees of freedom

were included to approximate its motion. Three DOFs are included between the head and

the neck, which allows the head to tilt or rotate in any direction with respect to the neck/

abdomen. Similarly a three DOF "waist" is included, above the pelvis, about the location

of the belly button. These DOFs are required to allow the pelvis and lower body to tilt and

rotate without forcing the upper body to follow.

110

6 Biomnechanical Model Michael A. McKenna

6 Biomechanical Model Michael A. McKenna

3 DOF Neck

3 DOF Shoulder

1 DOF Elbow
3 DOF Waist

3 DOF Hand

3 DOF Hip

1 DOF Knee

2 DOF Ankle

Figure 29: The degrees of freedom in the human figure model, above the foot.

The entire body also has 6 degrees of freedom, 3 translating and 3 rotating degrees of freedom, which
allow the body to be positioned and oriented anywhere in space.

111

6 Biomnechanical Model Michael A. McKenna

6 Biomechanical Model Michael A. McKenna

I DOF
Cuboid

Calcaneus
1 DOF
I DOF
Talus

1 DOF
Navicular

I DOF
Metatarsals

2 DOF

Proximal
Phalanges

Middle
Phalanges

Distal
Phalanges

Figure 30: The degrees of freedom in the foot of the human figure model.

One of the 1 DOF ankle joints is above the talus, and one is below.

112

< 1 DOF

6 Biomnechanical Model Michael A. McKenna

a) Superior view -Jcn axis Figure 31: The Tc (talocrural or talar) and Tcn (talo-
Tc axis calcaneonavicular or subtalar) joints in the ankle.

16 [Procter]

23'

96'

b) Lateral view
-- TOn axis

'41. 42'

10'
Tc axis

The shoulders each have three DOFs, allowing the arm to rotate in any direction with

respect to the abdomen. The elbows have one DOF each, allowing flexion and extension.

The wrist, between the forearm and hand provides three DOFs. In the human, the rotation

of the wrist (as opposed to flexion or abduction) occurs along the length of the forearm. In

the human figure model, the wrist rotation is lumped together with the other two DOFs

directly at the connection between the forearm and the hand. The hand itself (the palm,

thumb, and fingers) is modeled as a single object, with no DOFs below the wrist. (How-

ever, a preliminary model of the hand was created, based on the foot's kinematic structure.

See the Future Directions subsection in the Conclusions section (8)).

The hips, above the thighs are modeled with three DOFs each, like the shoulders. The

knees have one DOF each, allowing flexion and extension. The ankles are modeled with

two DOFs each, placed and aligned according to published biomechanical measurements.

[Procter]. The talocrural (Tc) or upper ankle joint or talar joint allows for flexion and exten-

sion of the foot, and talocalcaneonavicular (Tcn) or lower ankle joint, or subtalar joint

allows the foot to invert and evert. See Figure 31. The talar joint connects the distal end of

the lower leg to the talus. The subtalar joint connects the "bottom" of the talus to the calca-

neus, or hindfoot (the "heel bone").

The DOFs which articulated off of the hindfoot are based on Inman and Mann's analysis

of foot movements, which is a simplified model compared to the complex sliding move-

113

Michael A. McKenna6 Biomechanical Model

6 Biomechanical Model Michael A. McKenna

A

B/

Figure 3 2: A depiction of the action of the subtalar joint and navicular and cuboid joints in the human foot.

First, consider the upper left quadrant, labeled "A." The hinge joint represents the subtalar joint. When the

upper leg rotates, the subtalar joint everts and inverts the forefoot. In the lower left quadrant, labeled "B," a
pin joint has been added which represents the combined action of the navicular and cuboid joints. Now,
when the upper leg rotates, the hindfoot everts and inverts due to the subtalar joint, yet the forefoot remains
flat and connected to the ground, due to the added pin joint. On the right side, the models include two pin
joints between the hindfoot and forefoot. The medial joint represents the joint between the hindfoot and
navicular. The ray emerging from the navicular represents the three medial rays in the foot (three metatar-
sals and their associated phalanges). The lateral pin joint represents the cuboid, and its single ray represents
the two lateral rays which articulate off of the cuboid.

Image and model from [Inman].

ments which occur between the bones in the tarsal region of the foot (rear foot). The nav-

icular and the cuboid bones articulate from the hindfoot, with one DOF each, using a

rotary joint. The combination of their rotations and the rotations of the subtalar joint allow

the leg to rotate while the forefoot maintains a non-sliding contact with respect to the

ground. See Figure 32.

On each foot, the three medial metatarsals articulate off of the navicular, with one DOF

each, allowing extension/flexion). The two lateral metatarsals articulate off the cuboid.

The three cuneiforms, which lie between the medial metatarsals and the navicular are

114

6 Biomnechanical Model Michael A. McKenna

lumped together into the metatarsals. There is very little articulation provided by them,

[Gray] although a more complete model should include the DOFs they provide. The meta-

tarsals do not move very much in the foot, and stiff springs in the model restrict motion.

The flexion and extension that they do provide allows the arches of the foot to change

shape.

The proximal phalanges (singular "phalanx") articulate off of the metatarsals, with two

DOFs each, allowing flexion/extension, and abduction/adduction. This is the start of toes,

which would remain more flat on the ground, throughout the stance phase of walking. The

middle and distal phalanges articulate with 1 DOF each, allowing flexion/extension. The

big toe does not have a middle phalanx, but the other four toes do.

Anatomical Illustrations
A set of 2D anatomical illustrations were used in the final stages of modeling. Illustrations

from [Gray] and other sources were used for general reference, but the primary source was

[Goldfinger]. The illustrations were "scanned" into the computer, using a flatbed scanner,

and were used as semi-transparent texture maps in the 3D corpus environment. The

human figure model with one such illustration is shown from a perspective view in

Figure 33. When an orthographic view is taken of the front or a side of the human figure

model, and the illustration is appropriately scaled and positioned, the two graphical

images overlap and the illustration can be used as a template for modeling or as a visual

augmentation of the figure.

Illustrations of the skeleton were useful to adjust the kinematic structure of the human fig-

ure model. The illustrations indicated the locations of the attachment points at the head,

shoulders, and hips. They also served as a validation of the established kinematic struc-

ture. Finally, they were used as a postural template, to position the various joint angles into

a more "appealing" and more standardized anatomical position than had been constructed

from the Stredney model. Front and side views of the skeleton structure are shown in

Figure 34 and Figure 35.

Similarly, anatomical illustrations of the skin and musculature by Goldfinger were useful

in refining the model of the skin layer of the human figure model. The final skin and skel-

etal layers are shown together in Figure 36. The Goldfinger musculature diagrams were

used as a template for the specification of the location of the skin objects with respect to

115

6 Biomnechanical Model Michael A. McKenna

Figure 33: The final humanoid model, shown
with a Goldfinger anatomical diagram, from a
perspective view.

their internal skeletal objects. In some cases, especially with the torso, hands, neck and

head, the diagrams were used as a visual template to help model the shapes and sizes of

the skin objects. Front and side views of the skin layer, with the overlaid musculature dia-

grams are shown in Figure 37.

The "foot-box" is a set of four texture maps, scanned from [Goldfinger], which shows the

skeleton of the foot from four different views. The maps are arranged in a box, which sur-

rounds the model of the foot in the virtual environment. By viewing the model and the

116

6 Biomechanical Model Michael A. McKenna

6 Biomechanical Model Michael A. McKenna

SKULL

MANDIBLE
VERTEBRAL cOLUMN
HYLD
CLAVICLE

Figure 34: Human figure
model, "skeleton" layer,
overlaid with anatomical
diagram, from the front.

Drawing from [Goldfinger].

SCAPULA
------ STERNUM

RIB CAGE

HUMERUS

__-VERTEBRAL. COLVMN
.---. -- -- PELVIS

R ADIUS

- A C R UM
coScyx

PEMUR

PATELLA

.-...-.......................---------- TIBIA

FIBUL.A

FOOT SKELETON

semi-transparent foot-box from orthographic views, the two overlap, which allows for

additional "fine-tuning" of the model, and also provides an augmented rendering of the

model, with descriptive labels and detail from the illustrations. The foot-box and the skel-

etal layer of the foot model are shown in perspective views in Figure 38. An orthographic

view, overlaying the illustration and model is shown in Figure 39.

After the Goldfinger diagrams had been scaled appropriately to match the height of the

human figure, the link lengths were not adjusted, yet the diagrams matched very closely to

117

)

6 Biomechanical Model Michael A. McKenna

SKULL-

MANDIOLE
VERTE8RAL COLUMN
HYOID --- -
CLAVI.LE

SCAPULA-
STERNUM-- -
RZB CAGE -.

HUMERUS --

VERTEBRAL COLUMN -
P ELVIS LA -

R ADIUS
ULNA
SACRUMA
COCCYX

HAND SKELETON

FEMUR

PATiELLA

TIBIA -

FOOT SKELETON - 1

Figure 35: (Left) A side view of the human figure model "skeletal" layer, overlaid with an illustration of
the human skeleton.

Drawings from [Goldfinger].

Figure 36: (Right) The human figure model with its "skeletal" and "skin" layers superimposed

The two layers are graphically "mixed" by making the two layers semi-transparent and rendering them
both together.

118

Figure 37: The human figure
model "skin" layer with over-
laid anatomical diagrams.

Drawings from [Goldfinger].

the model. This helps to show that both the illustrations and parametrized model are rea-

sonably accurate.

As a final inspection of the kinematic structure of the human figure model, a comparison

was made of the locations of the metatarsal heads relative to each other in the foot. Inman,

et al., measured the angle formed by the distal heads of the second and fifth metatarsal

heads. [Inman] The third and fourth metatarsal heads also roughly lie on this line. This is

the line along which the toes bend during walking. As shoes are "worn in," a crease will

form along this line as well. The average angle measured by Inman was 62', with a range

119

6 Biomnechanical Model Michael A. McKenna

6 Biomechanical Model Michael A. McKenna

Figure 38: The "foot-box" and the parametrized skeletal model. Anatomical diagrams from [Goldfinger].

120

6 Biomnechanical Model Michael A. McKenna

NECK NA4V(AJLAR

L&TERAL CUNEIFORM

I NTERPMEDIATE CUNPEIFORM
SLCONO MEATARSAL

* y PROXIJMAL
PIIALANX MDL

OUTS~IDE VIEW
P'OST *--ANT.

PiFTH MrTATARSAL
PHIALA.'

6 Biomechanical Model

from 52"-74'. The angle formed by the human figure model is 540, within the range mea-

sured, but near one of the extremes. See Figure 40.

The kinematic structure of the complete figure is provided in tabular form in Appendix E

Body Tables.

6.3 Dynamic Parameters
In order to perform dynamic simulations, there are a number of parameters which must be

specified beyond the kinematic structure. The mass and inertia tensors of the limbs are

required for the equations of motion. The biomechanical models of the actuators, dampers,

and joint limits have their associated parameters which are used in the force computations.

Inertia
The masses and centers of mass of the different body segments were set to match the val-

ues measured from humans. [Braune 1988; Dempster; Williams 1977; Winter 1990] The complex-

ity of the mass distribution in the human figure model is tied to the level of detail present

in its kinematic structure. Each link has its own mass, density and inertia. In corpus, the

mass and inertia of the body segments is automatically defined from the specified density

and the surface geometry of the "skin layer" graphical objects. A method is used to com-

pute the mass, the rotational inertia tensors, and the center of mass, using a summation of

the volume formed by each polygon and a reference point within the body.

121

Michael A. McKenna

Figure 39: Skeleton of the
right foot: McKenna model
compared to Goldfinger
illustration.

There are some mis-matches
between the illustration and
the model, as can be seen in
the diagram. However, the
differences may be within
the range of variation seen
between different people. A
new posture (not shown
here) was assigned to the
foot, which gives the toes a
more natural bend.

TR

Line connecting heads of
second & fifth metatarsal bones

mean 62* A4

range= 53* to 72*

Axis of the foot

Figure 40: The line formed by the distal heads of the second and fifth metatarsal bones as measured from

humans compared to the human figure model.

Left: The mean angle of a set of measurements from human subjects. From [Inman]

Right: The angle formed by the computer model. The angle is near the extreme of the range measured by
Inman, et al. The third through fifth metatarsals seem to be somewhat short in the computer model, as
parametrized from the Stredney model.

The densities of the body segments rises as more distal members are examined. [Winter

1990] This is because bone is more dense than other body tissues, and the distal members

are composed of a greater proportion of bone.

For the arm and leg segments, the density of the objects were set to the values measured

from humans. By then scaling the objects' diameters appropriately, their masses are com-

puted to match the values measured from humans. Similarly, the cylindrical objects that

make up the arms and legs were tapered, using geometric shearing operations, such that

the segments' centers of mass shifted from the centers of the objects to the more proximal

locations as measured from humans.

122

6 Biomnechanical Model Michael A. McKenna

In contrast, the head, neck, abdomen, pelvis and foot objects were first scaled to a size to

form the skin layer matching the Goldfinger illustrations. The density of the objects were

then set so that the masses would result in the measured values.

A listing of the masses of the major body segments, as measured from the human body,

and as modeled in the final human figure (McKenna) model is given in Table 3. The over-

all body weight of the model is 68 kg, or 150 lbs.

Table 3: Segment densities and masses

Demnpster 1955 Winter 1990- Winter 1990 McAenna. McKenna
mass (kg) mass (kg) density (kg/m3).mass (kg) density (kg/m3)

total 68.0 68.00 1078 68.01

head 4.7 - - 4.71 545

neck 0.7 - - 0.70 565

head and neck 5.4 5.51 1110 5.41

trunk 34.8 33.80 1030 33.93 780

thigh 6.6 6.80 1050 6.81 1050

shank 3.1 3.16 1090 3.15 1090

foot 1.0 0.99 1100 0.99 1413

upper arm 1.9 1.90 1070 1.90 1070

forearm 1.1 1.09 1130 1.08 1130

hand 0.4 0.41 1160 0.41 1160

123

6 Biomechanical Model Michael A. McKenna

The centers of mass for the major body segments, as measured from human studies and in

the final human figure model are given in Table 4. A diagram by Dempster shows the

COMs in a graphical form (see Figure 41).

Table 4: Centers of mass of different body segments.

The "COM/seg len" columns define the location of the center of mass, measured from the proximal joint, as
a fraction of the segment length. The "dist from prox joint" columns give the distance of the COM from the
proximal joint, in meters.

Clauser, et al., data is from [Williams 1977].

Braune Clauser, Winter De Dempster McKenna McKenna
1889 1969 1990 distfrom sr

COM/ COM/ COM/ COM/
seg len seg len seg len l joint (m) ee joint (m)

head 0.466 0.433 0.500 0.124

thigh 0.440 0.433 0.433 0.187 0.433 0.187

shank 0.420 0.371 0.433 0.433 0.188 0.433 0.188

foot 0.444 0.449 0.500 0.429 0.2 0.053

upper arm 0.470 0.513 0.436 0.436 0.143 0.436 0.143

forearm 0.421 0.390 0.430 0.430 0.111 0.434 0.112

hand 0.506 0.506 0.097 0.424 0.081

Information regarding the masses of all of the

given in Appendix E Body Tables.

body parts in the human figure model is

Dynamic Joint Parameters
This research uses joint forces to control motion, in order to simplify the problem of mod-

eling muscles. In humans, multiple muscles span each joint, and they attach at various

locations along the limb (not simply at the joint). Although corpus has facilities for simu-

lating multiple actuators, with attachment points onto limbs, the human figure biomechan-

ical model uses actuators and other forces which work directly at the figure's joints. This

choice was made in order to greatly simplify the modeling and control problem so that

simulation work could begin in a timely manner with the kinematically complex model.

124

6 Biomechanical Model Michael A. McKenna

6 Biomechanical Model

HEAD
NECK
AND
TRUNK

ARM

56.4%

Figure 41: The centers of mass of the limbs.

Diagram by [Dempster], from Williams and
Lissner. [Williams 1977]

43.0%
FOREARM I

LEG I

56.r/.

FOOT
57.19J

The motivation for using dampers, spring actuators and exponential spring joint limits has

been discussed previously in the Background (2) and Approach (3) sections. Dampers

generate a force proportional to the joint velocity, in the direction to oppose the motion.

The use of the dampers is twofold; they model the passive joint damping properties, and

they model the damping effects generated by active muscle tissue. It might be more appro-

priate to include two dampers at each joint, one which is weaker to model the passive joint

damping, and a stronger one which is activated along with the actuators. The joint limits

are created by using exponential springs, which is a model that approximates the passive

force response of the human limbs. The actuators are modeled as exponential springs as

well, although human skeletal muscle is typically modeled as a linear spring. The author

has had more success with motion and postural control for animation using exponential

rather than linear springs. They have the attractive property that the limb will not stray

125

Michael A. McKenna

grossly from the spring rest angle, because the force response rises so rapidly at larger dis-

placements. In some simple ways, this approximates the higher level control in humans

that allows us to begin to exert more when we encounter resistance, changing the stiffness

and activation of the muscles to compensate. Also, informal observations have indicated

that there are fewer numerical stiffness problems when exponential, rather than linear

springs are used.

The force models for the dampers, exponential spring actuators, and exponential spring

joint limits were described in the Actuator Model and Joint Forces subsection (5.8,
page 99). The equations which describe the motor programs are discussed there as well.

The default values of the damping and spring constant for all of the joints in the human

figure model are given in Appendix E Body Tables. Examples of using the biomechani-

cal joint force models are given in the Simulations section (7).

The complete system for simulation is a synthesis of the dynamic simulator, the articu-

lated figure, with its inertia and mass, the joint force model, and the environment. It is only

after all of the elements have been combined that we can begin to perform meaningful

simulations.

6.4 Visual Model
Although this work was driven primarily by academic and research goals, some aspects of

the effort were of a visual nature as well. It was intended to design a visual form which

was "appealing," with a level of detail that engages the eye, without detracting from the

fundamental goals of articulated motion research. Fortunately, these two aspects were not

at odds with one another, but rather, they were complimentary. Through the biomechanical

modeling, form and complexity were "automatically" included in the structure.

Obviously, the modeling effort was directed towards generating an anthropomorphic form,

but the human figure was intentionally designed without visual 'false detail' of structure

that was not really present in the underlying biomechanical model. There were a few

minor exceptions to this rule. The torso/abdomen link in the figure is modeled with three

separate sheared cubes, and a cylinder for the neck, even though those separate objects

cannot move with respect to one another, which may make the model appear to have more

126

6 Biomechanical Model Michael A. McKenna

DOFs than it truly has. The other exception was the inclusion of rounded, bevelled objects

to create a more appealing form, with more shading effects.

The three dimensional graphical environment was designed with a number of supplemen-

tal texture maps, to create a stronger sense of space, as opposed to a featureless void, com-

mon in many virtual environments. These elements work well with video displays and

continuous tone outputs, but not as well with dithered print media, such as this document,

because they reduce the foreground-background contrast and can make the image seem

cluttered. Therefore, they have been absent from most of the images in this document.

However, Figure 1, page 17 and Figure 63, page 179 show some of these background ele-

ments. "Walls" were made to form a 3x3 meter room around the human figure, composed

of texture maps which depict "grid-lines," spaced every 10 cm, with primary lines every

meter. These elements were inspired by the backgrounds used by Muybridge in his photo-

graphic motion studies. These help give a better sense of scale and three dimensional loca-

tion.

127

6 Biomechanical Model Michael A. McKenna

7 Simulations Michael A. McKenna

7 Simulations

A number of simulations were generated using the human figure model in the corpus

dynamics simulation system. A set of basic simulations are presented first, including

examples of the body passively falling to the ground, or drooping while the torso is rigidly

held in place. Simple motor program examples are also demonstrated. This is followed by

simulations of balanced standing posture, and its response to external perturbation forces.

Next, an arm reaching task which is simulated in near real-time is described. A simulation

of rising on the toes is then presented. This section closes with simulations of passive step-

ping, or "ballistic walking," which include passive dynamic motions of the complex foot.

7.1 General Simulations
These first simulations are fairly simple in design. They serve as a general introduction to

the process of simulating the human figure model. Basic tests such as these were useful in

the development of the model, including its biomechanical parameters. They also serve as

a good introduction to creating simulations with the complex model.

Timings were made of many of the following example simulations. The computer plat-

form used for these simulations is a Silicon Graphics Onyx workstation, using a 150 MHz

R4400 processor which performs 128 million instructions per second (MIPS). The system

also has real-time rendering hardware, the Reality Engine2 (RE2). The manufacturer, Sili-

con Graphics, rates the performance of the RE2 as being capable of rendering 900 thou-

sand anti-aliased triangle mesh elements per second, and drawing 320 million texture-

mapped pixels per second.

To begin a simulation, the program corpus is started, and the human articulated figure is

created, using a corpus script which defines and initializes the model. Part of this initial-

128

7 Simulations Michael A. McKenna

ization script is presented in Appendix D Body Scripts. This initialization takes approxi-

mately 6 seconds.

There are a number of global simulation parameters which can be set, including ones to

control integration, and ground and gravity forces. With the human figure model, the adap-

tive step size integrator (runge-kutta "RK 4/5") should always be used. In all but the most

trivial cases, the varying conditions of the simulation require the integrator to vary the

number of sub-steps it must take in order to maintain a stable solution. Use of the adaptive

integrator is specified with the corpus command: integration rkf.

The timestep size for the simulation is specified to 0.0333333, so that for every second of

simulation time (time "experienced" by the human model), 30 frames of simulation results

are generated. This matches the NTSC video frame rate (30 frames/sec), which allows

simulation results to be animated directly to video. In some instances, the timestep is low-

ered, so that more samples are returned from the simulator, and the motions can be exam-

ined in more detail. In general, there is no extra expense, except for marginal data storage

requirements, involved in using a smaller timestep, because the adaptive step size integra-

tor takes multiple sub-steps per frame to compute the dynamics, in all but the most simple

cases. The timestep is specified with the corpus command: dt 0 . 0 333333.

The adaptive step size integrator has an error tolerance parameter which, in part, controls

how many sub-steps the integrator uses to compute the dynamics. This parameter is typi-

cally set to 0.0001 in the human figure simulations. This specifies that the difference

between the 4th and 5th order solutions for any term in the integrator computations cannot

be greater than 0.0001. This is set in corpus using: eps 0 . 0001.

Ground collision and contact forces are delivered by the exponential spring and linear

damping models. The ground force parameters which are typically used in the human fig-

ure simulations are set using the following corpus commands (refer to Eq. 72, page 94 and

Eq. 77, page 97):
groundea 100
groundeB 100
groundb 100
groundfricb 100
coefficient of friction: 1
groundfric 1

129

7 Simulations Michael A. McKenna

The gravitational acceleration constant is -9.81 m/sec2 in the default corpus environment

matching the real terrestrial value. Corpus uses the MKS (meters-kilograms-seconds) con-

vention, so that length units are in meters, masses are in kilograms, etc. The gravitational

constant can be set to any acceleration using the setgrav command, and the global

application of gravitational forces is controlled with the grav on and grav of f com-

mands.

The simulations that we will examine first are very basic in nature, and are presented pri-

marily to establish baseline computation rates. They should also help the reader become

more familiar with simulation in the corpus environment.

Simulation 1: Basic rigid body
This is the simplest type of simulation, which uses a single rigid body for the human fig-

ure. To reduce the model to a single body, we first pose the figure into the desired configu-

ration, and then "delete" all of the joints, which merges all of the bodies into a single rigid

body. The posture is specified by loading a pre-saved configuration, or by setting it with

joint commands. Interactive techniques could be added to simplify the problem of manu-

ally forming a posture, or inverse kinematics could be used to assist in the problem, as dis-

cussed previously. [Phillips] Programs which interface to knobs or other devices can be

interfaced easily to corpus, via its parsing system, [McKenna 1992] or they could be added

internal to the program itself. A command sequence which poses the figure to the anatom-

ical position, is shown in Script 3. Once we have the desired posture, all of the joints are

deleted, using the dele te j oint command in corpus. The system will no longer per-

form any calculations regarding any of the joints, although the complex shape is still used

for collision detection and display.

This rigid body is free to move under the influence of gravity, or any other external force.

For the purposes of this simple simulation, no forces are applied, and thus, no motion is

induced. Running this most basic simulation allows us to measure a baseline for the com-

putation time involved in the dynamics equations. The script to setup this simulation is as

follows:
form anatomical posture, using pre-defined commandlist "anat"

anat
delete all joints from the figure
commandtree deletejoint **

ground off

130

7 Simulations Michael A. McKenna

grav off

This simulation operates very quickly. In this and the following tests, the simulation was

run for 1000 frames, yielding a little more than 33 seconds of simulation time. This simple

simulation took 39 seconds of compute time, slightly slower than real-time. The simula-

tion frame update rate was 25.6 frames/sec. Each timestep was calculated using a single

step of the integrator; no subdivision occurred because of the trivial, unchanging integra-

tion. In fact, because this simulation is so simple, if we specify the timestep to cover the

entire simulation time of 33 seconds (dt 33), the integrator returns after a single step,
computing the solution in a fraction of a second. Nonetheless, this simulation provides us

with our baseline simulation update rate for the complex model, of 25.6 frames/sec.

Table 5 lists the timing results for this and the following simulations.

Note that, although we have reduced the complex model to a single dynamic object, there

is still a significant overhead associated with the complexity of the numerous graphical

objects that comprise that object. In a simulation test run with a single body, the simula-

tion update rate was 143 frames/sec, over five times faster. The system could be optimized

to remove much of the extra overhead associated with a deleted joint, but some flexibility

in the system would be lost. In addition, the issue is not so important, since we are prima-

131

7 Simulations Michael A. McKenna

Table 5: Computation times for basic simulations.

33.3 seconds of simulation time are generated, from 1000 frames of 0.0333 seconds each.

Si n tcompute frames eintegrator integrator
time (sec). sec se/rm tp! steps/sec

frame real-time

1 - basic simulation 39 25.6 0.04 1 25.6 1.17

2 - gravity 39 25.6 0.04 1 25.6 1.17

3 - ground detection 55 18.2 0.06 1 18.2 1.65

4 - ground contact 850 1.2 0.85 11 13.2 25.5

5 - basic w/ subdivision 690 1.4 0.69 20 28.0 20.7

6 - fast rendering 28 35.7 0.03 - - 0.84

7 - slow rendering 69 14.5 0.07 - - 2.07

8 - basic sim w/ fast ren 60 16.7 0.06 1 - 2.0

rily interested in simulations which do use the joints, and, as we shall see, the computation

time for the joint dynamics dominates when more than a few are included.

Simulation 2: Gravity
The second test is identical to the first, except that the force due to gravity is applied to the

figure. The only change in the simulation script is that the command grav on was spec-

ified. There is no ground or other element to impede the acceleration of the figure. After 33

seconds of simulation time, the body had dropped over 5 kilometers, and was moving

downward with a velocity over 300 meters/sec.

This simulation was also trivial for the integrator to compute, and it took a single step per

frame, without subdividing. The simulation timings were the same as the first basic test of

Simulation 1. The computations required to add in the force due to gravity is trivial in

comparison to the main dynamics equations.

Simulation 3: Ground detection
In this simulation test, the ground detection and forces are activated, using the command

ground on. Gravity is not applied, however, so that the body remains in place, "hover-

ing" over the ground. This test was executed in order to measure the extra computational

132

7 Simulations Michael A. McKenna

expense incurred by the ground collision detection algorithm. The timings are presented in

Table 5.

The computation time slowed somewhat, yielding an update rate of 18.2 frames/sec,

nearly 30% slower than the previous tests. The extra time is due to the ground collision

detection, as each body is tested to check if it is penetrating the ground.

The collision detection algorithm uses a bounding box test, to quickly check if the graphi-

cal objects might be below the ground. If the values of the Z coordinates of an object's

bounding box are greater than zero, it is not necessary to examine the actual surface geom-

etry of the object. So, in this case, in which the body is completely above the ground, all of

the bodies are trivially rejected. The system could incorporate additional methods to accel-

erate the computations of trivial rejections. A hierarchy of bounding boxes, encompassing

a whole group such as the foot, or the whole body, could be used. In addition, the system

could examine the velocities of the bodies to predict when collision detection will actually

be necessary. [Dworkin] Because the body in this simulation was unmoving (as was the

ground), the system could have bypassed all but the first collision detection pass.

Simulation 4: Ground collision
In this simulation, the ground is "activated" as well as gravity, and the body falls to the

ground as a rigid body. This is the first test in which the integrator sub-divides, as the body

impacts and is then supported by the ground, and the contact springs and dampers are acti-

vated. As a result, a simulation over the same interval takes much longer.

In the simulation, the body falls about 10 cm, starting from an upright, vertical position,

with the anatomical posture "hardened" into one rigid object. This posture happens to be

one which can stably support the body, i.e. when the feet rest flat in the ground, the COM

of the entire body lies between the feet, and it does not topple and fall. After the body is

pulled to the ground, it rocks slightly, because the initial orientation of the body was

slightly tilted back with respect to the final, resting standing posture. After about 4 seconds

of simulation time, the body has stopped rocking (due to damping in the ground). At this

point the simulation timing for this test begins.

In the resting, standing state, the integrator took 11 sub-steps per frame, to maintain a sta-

ble, unchanging system, as the stiff ground springs pushed up on the figure's feet. For

133

7 Simulations Michael A. McKenna

Michael A. McKenna

1000 frames of simulation, corresponding to 33 seconds of simulation time, the computa-

tion time was 850 seconds, yielding a frame update rate of 1.2 frames/sec. However,

because the integrator took 11 steps per frame, the internal update rate for the integrator

was 13.2 steps/sec (1.2 * 11) - much more comparable to the previous test which exe-

cuted 18.2 steps/sec. The extra computation time is required for the extra collision detec-

tion calculations that must be performed on the objects that are penetrating, or are very

close to, the ground. The ground force computations also contribute to the slower rate.

Simulation 5: Basic simulation, with forced integrator subdivision
In order to verify that using additional integrator steps per frame does not create any addi-

tional overhead, this simple test was executed. The basic example from Simulation 1 was

used, but the integrator was forced to subdivide, and use 20 steps/frame. The overall com-

putation rate slowed, of course, by approximately 20 times. However, the integrator step

frame rate was slightly faster, at 28 integrator steps/sec, compared to 25.6 steps/sec. There

is a slight overhead involved with the internal programming interface to the integrator,

which is reduced when the integrator subdivides internally.

Simulation 6: Rendering time, using simple objects
A simple test (not an actual simulation, however) was run to measure the time required to

render the geometric human figure model, using the real time graphics hardware provided

by the Silicon Graphics Onyx workstation with Reality Engine2 graphics. The scene was

composed so that the entire body model was visible, filling the frame vertically. This first

test timed the rendering speed when the basic objects in the simple "inertial skin" layer

were displayed. There are only eight polygons for most of the objects, and the total poly-

gon count is 1160. The rendering performance is fairly impressive, at 35 frames/sec, yield-

ing 40 thousand anti-aliased polygons/sec.

Simulation 7: Rendering time, using smooth objects
This test is identical to the previous test, except that the smoother, more complex geomet-

ric objects were used for display of the human model (the "display skin"). This model

incorporates a total of 10420 polygons. The update rate was reduced to 14.5 frames/sec,

however the system drew 151 thousand anti-aliased polygons/sec, showing a greater over-

all efficiency, in terms of polygon rendering speed. This is presumably because the render-

ing hardware processing pipelines are used more effectively.

134

7 Simulations

7 Simulations Michael A. McKenna

Simulation 8: Basic simulation, with rendering
In this test, each simulation step was accompanied by a rendering step, essentially com-

bining Simulation 1 with Simulation 6. The simple "inertial skin" objects were used for

rendering. The overall update rate was lowered because more work was done. However,

the overall computation time for this simulation was less than the sum of the times for

simulation and rendering performed individually, by approximately 11%. The final stages

of rendering can be completed using the rendering hardware alone, allowing the simula-

tion to begin in parallel. The system could be modified to render completely in parallel

with the simulations, using another CPU in the system. In general, the simulations are too

slow to make this of real benefit.

Simulation 9: Add joints
Simulation 9 actually represents several simulations, in which more and more joints are

successively added to the articulated figure, and the computation time is measured. The

joints are "added" by removing them from a list of joints which are deleted from the

default, fully complex figure. In the final simulation, no joints are deleted. The joints are

completely unpowered, and passive, and no external forces are active. In all simulations,

the integrator took a single step per frame, with no subdivision.

Table 6: Results from Simulation 9. The computation time for increasing number of joints.

number of compute time frames/sec sec/frame pute time/
joints (s) real-time

0 39 25.6 0.04 1.2

1 46 21.7 0.05 1.4

2 53 18.9 0.05 1.6

4 55 18.2 0.06 1.7

8 82 12.2 0.08 2.5

16 146 6.8 0.15 4.4

32 277 3.6 0.28 8.3

64 554 1.8 0.56 16.6

84 762 1.3 0.76 22.9

135

compute time (s)

800

700

600

500

40 04 08

300

200

100

Figure 42: Computation time for simulation vs. the number of joints included in the articulated figure.

The plotted points, connected by the solid line, show the results of the simulation timings, from Table 6.
The expense is linear with the number of joints, after the first few are included.

The simulations ran for 1000 frames, with a timestep of 0.03333. This yields 33.33 seconds of simulation
time.

The dashed line shows a projection of the computation time for an order 0(n 3) system, such as the Walker-
Orin method, which is efficient for figures with few joints. [Walker] The projection is based on Feather-
stone's calculation that the ABM becomes more efficient when more than 9 joints are included. With all 84
joints included, the Walker-Orin method would take nearly 100 times longer than the ABM. This empha-
sizes the importance of using a 0(n) simulation method with the complex model.

The timing results of the simulation are given in Table 6. When the first few joints are

added, the computation time increases only marginally, since the equations for the root

motion dominate. After approximately eight joints are added, the computation time of the

joint accelerations dominates. From that point on, the computation time grows linearly

with the number of joints, as is to be expected using Featherstone's recursive Articulated

Body Method. After all joints are added, a single step of the integrator takes nearly one

second (0.76 sec). The computation time vs. the number of joints is plotted in Figure 42.

Simulation 10: Inverse dynamics
In another simple simulation, inverse dynamics, instead of forward dynamics, was com-

puted at all joints. The joints were kinematically controlled using the j ointmotion

command, and since there was no velocity or acceleration at the joints in the default initial

state, a motionless state was maintained. The commands to generate this simulation are

given as:

grav off

136

Michael A. McKenna7 Simulations

7 Simulations Michael A. McKenna

ground off
commandtree jointmotion ** kinematic

The compute time for 1000 steps was 714 seconds, slightly faster than the forward dynam-

ics time of 762. The inverse dynamics equations are slightly less complex than the forward

dynamics, yielding approximately a 6% increase in efficiency.

Simulation 11: Control equations
This simulation was used to time the additional overhead which arises from computing the

typical joint forces used to control the figure, using forward dynamics. At all of the joints,

a damper, an exponential spring, and a joint limit exponential spring/damper pair were

activated. The control constants and the timestep size were set very low, to avoid any stiff-

ness issues that would cause the integrator to sub-divide. The script for this simulation is:

grav off
ground off
activate damper (1), exp spring (16) and exp joint limit (32) = 49

for all bodies in the articulated figure

commandtree joint ** Qtype 49
commandtree joint ** b .00001

commandtree joint ** ea .00001

commandtree joint ** eB .00001

commandtree joint ** e_q .001

commandtree joint ** jlim-eal .00001

commandtree joint ** jlimea2 .00001

commandtree joint ** jlimeB1 .00001

commandtree joint ** jlimeB2 .00001

commandtree joint ** jlim-bl .00001

commandtree joint ** jlim-bl .00001

commandtree joint ** jlim_q1 .001

commandtree joint ** jlim-q2 .002

dt 0.0000001

The addition of the three joint force functions at each joint slowed the simulation only

slightly, by approximately 2%, retaining an update rate of 1.3 frames/second. The control

is very fast, computationally; the force calculations are negligible compared to the dynam-

ics equations. The control parameters may need to be calibrated using inverse dynamics

and inverse control (discussed below), which is considerably slower than the forward con-

trol computations (not including the forward dynamics). However, the inverse computa-

tions are still quite fast in comparison to the forward simulation, because the equations are

much less "stiff' and fewer integrator steps are required.

137

Simulation 12: Droop with joints
At this point we begin to examine more interesting simulations, which involve motion and

control. First we will examine a number of passive simulations, which do not employ

higher level motor control.

A set of simulations were run to examine the general behavior of the human model's bio-

mechanical parameters, such as the dampers and joint limits. One class of these simula-

tions are termed "drooping" tests, in which the abdomen (the central "root" body in the

figure) is held rigidly in place, and the limbs of the body are allowed to fall passively, or

"droop," under the influence of gravity. Dampers and joint limit exponential spring/

damper pairs influence the resulting motion. This type of test can reveal much regarding

the properties of the specified parameters. For example, an order of magnitude change in a

parameter such as a joint damping constant almost always creates a gross change in the

motion, which can easily be seen when animated. Direct comparisons to a real human

body "drooping" was not performed. Nonetheless, whole ranges of values for the biome-

chanical parameters can be ruled out through simple simulations. For example, the damp-

ing constant for a limb can be varied, and through animation the changes can be examined,

ruling out most values as far too weak or strong.

A command sequence to set up an example droop simulation, which uses all of the joints

except for the ones in the foot below the ankle, is given as follows:

rotate abdomen y -45
after transforming the graphical object, inform simulator

setrootpos
lock abdomen in place
rootmotion fixed
grav on
ground off
foreach list-of-foot-bodies deletejoint **

By default, the biomechanical model is passive, using dampers and joint limits at the fig-

ure's joints, so this is not specified in the script. The resulting passive motion is shown in

Figure 43. This simulation is quite rapid, using approximately 6 integrator steps per frame.

With the 32 included joints, the simulation runs at about 0.6 frames/sec.

When the joints in the foot are included, the simulation slows considerably, not only

because more joints need to be computed, but primarily because the stiffness of the system

138

7 Simulations Michael A. McKenna

Michael A. McKenna

Figure 43: An animation
sequence of the human
figure "drooping" pas-
sively under the influ-
ence of gravity.

The torso is held in
place, and the limbs are
pulled down by gravity.
The motion is resisted
by the internal dampers

0Z and joint limits.

139

7 Simulations

increases, and more sub-steps must be used in the integrator. Adding the five joints at the

proximal end of the metatarsals, for a total of 42 joints in the figure, drives the simulator to

take approximately 27 steps/frame, when their default dampers and springs are included.

The corresponding simulation update rate falls to 0.1 frames/sec (10 sec/frame). Adding

the flexion/extension joints at the proximal heads of the proximal phalanges (upper

"toes"), increases the stiffness of the system again, so that the integrator takes approxi-

mately 56 integrator steps per frame, taking approximately 26 seconds per frame. Adding

the abduction/adduction joints at the proximal heads of the proximal phalanges does not

increase the integrator stiffness, but slows the computation linearly with the 10 added

joints. Adding the medial and distal phalanges (the rest of the toes) slightly increases the

stiffness, so that 61 integrator steps per frame are taken, slowing the computation to about

44 seconds/frame. The final joints are at the proximal ends of the navicular and cuboid in

the foot. These joints increase the stiffness of the system somewhat, causing the integrator

to use 79 steps/frame. The simulation timings are provided in Table 7.

Table 7: Results from Simulation 12. The computation time for increasing number of joints, while drooping

passively.

integration compute.-
number ofjoints oa frames/sec sec/frame ntegrator tie

sesfaesteps/see eltm..

32- w/ major joints 6 0.60 1.7 3.6 100

42- w/ metatarsals 27 0.10 10 2.7 300

52- w/ proximal phalanges 56 0.039 26 2.2 770

62 - w/ proximal phalange 56 0.034 29 1.9 880

abductors

80 - w/ medial and distal 61 0.023 44 1.4 1300

phalanges

84 - w/ navicular and 79 0.018 55 1.4 1670

cuboid

The small bodies in the foot have much lower mass than the larger bodies in the figure,

and so they are much more sensitive to applied forces. Their associated spring and damper

constants are much lower than those of the larger bodies. Nonetheless, because they have

lower mass, they will oscillate under the influence of the spring, or gravity, with a higher

frequency. Consider a short pendulum which swings rapidly vs. a long pendulum which

140

Michael A. McKenna7 Simulations

swings slowly. The integrator must sample the motion more finely, because they move

more rapidly, and with greater accelerations and changes in accelerations.

Simulation 13: Falling to the ground
Another very basic kind of simulation which can be executed is letting the figure fall pas-

sively to the ground. In a manner similar to the "drooping" experiments, these simple tests

can be very informative regarding the damping, joint limit, actuator, and ground force

parameters, as the model is developed.

In some tests, the figure falls passively, without the actuator springs included as force gen-

erators. In other simulations, the actuators are activated, but they are not calibrated to sup-

port the posture, and the figure topples. These latter experiments allow for a visual

inspection of the effects of given actuator stiffnesses. An image sequence of the foot shape

bending as the body falls to the ground and tips forward, with its actuators active but

uncalibrated, is shown in Figure 44.

Simulation 14: Motor programs in zero gravity
In this example animation, we add active control of the figure's motion, using the expo-

nential spring joint actuators. The figure hangs in zero gravity, and uses motor programs to

move the spring rest positions to create motions in the figure's limbs. One motor program

set is designed to draw the limbs inwards, and another extends the limbs outwards.

The joints in the foot, below the ankle are deleted, to simplify the simulation. The integra-

tor took 6 steps per frame, with 26 joints included. The update rate was 0.77 frames per

second.

A script which specifies the motor programs used to generate the limbs motions is pro-

vided in Script 4. An animation sequence of the body motions is shown in Figure 45.

141

Michael A. McKenna7 Simulations

7 Simulations Michael A. McKenna

Figure 44: The foot
shape as the body
falls forward.

The joint actuators
are activated, but
their rest angles are
simply set to match
the current joint
angles. Because
the springs are not
"preloaded" to sup-
port the body
weight without
first flexing some-
what, a balanced
posture is not main-
tained, and the
body pitches for-
ward and falls.

142

7 Simulations Michael A. McKenna

7 Simulations Michael A. McKenna

Script 4: A script to generate motions of the limbs in zero gravity.

add in ex spring (16) to 33
(damper + exp joint limit)
commandtree jointmatchexp **

first raise arms out
motor 1_humerusi etarget 0 1.0
motor 1_humerus2 etarget 1.3 1.0
motor 1_humerus3 etarget 0 1.0
motor 1_forearm etarget 0 1.0

motor rhumerus1 etarget 0 1.0
motor rhumerus2 etarget -1.3 1.0
motor rhumerus3 etarget 0 1.0
motor rforearm etarget 0 1.0

grav off
ground off

cl move-in
motor 1_forearm etarget -2.5 1
motor rforearm etarget -2.5 1

motor lthighl etarget -2 1
motor r-thighl etarget -2 1

motor 1_shank etarget 2.5 1
motor rshank etarget 2.5 1

motor pelvis1 etarget -0.5 1

cl move-out
motor 1_forearm etarget 0 1
motor rforearm etarget 0 1

motor lthighl etarget 0.09 1
motor r-thighl etarget 0.09 1

motor 1_shank etarget 0 1
motor rshank etarget 0 1

motor pelvisi etarget 0 1

143

7 Simulations Michael A. McKenna

7 Simulations Michael A. McKenna

Figure 45: An "exercise"
animation sequence

- using the human figure
model.

The figure hangs in zero
gravity, and uses motor
programs to draw the
limbs inwards then
extend them outwards.

....0..

1~

144

7 Simulations Michael A. McKenna

Simulation 15: Motor program to wiggle the toes
This simulation is similar to the previous. Motor programs are used to move the phalan-

ges, flexing and extending the joints, with small amounts of abduction and adduction. The

resulting motion is similar to "wiggling" the toes. The motor programs and initialization

commands are given in Script 5.

The joints not in the left foot were deleted to simplify. Using the 26 joints in the left foot,

the integrator took 54 steps per frame. The update rate was 0.083 frames per second, or 12

seconds per frame. The animated motions of the toes are shown in Figure 46.

145

Michael A. McKenna7 Simulations

Figure 46: A motion sequence of
(D "wiggling" the toes of the left foot,

driven by motor programs.

0s

146

7 Simulations Michael A. McKenna

7 Simulations Michael A. McKenna

Motor s-ng
>rogram positions

.targetisg_
positions

Actuator
Model:
Forward
Control
Inverse
Control

Balance ----

. Graphics
System

nh

Figure 47: Block diagram of dynamic postural control.

The dashed lines represent control paths which are traversed less frequently than the solid, forward control

paths. The 'Balance' block supplies a definition for a stable kinematic posture, and feeds the target posture

into the dynamics simulator. Inverse (hybrid) dynamics is computed using the limb configuration and envi-

ronmental forces to compute the joint forces required to achieve that posture. Inverse control then computes

the actuator parameters which will deliver those forces. Motor programs mediate between the target actuator
parameters and the current ones. The forward control loop takes the current actuator parameters, computes
the joint forces, forward simulates the figure motion, and feeds the limb configuration back to the actuators

to compute an updated force.

7.2 Standing Posture
The general approach to controlling a stable, balanced posture was covered in the

Approach section (3). There are three main components of the static balance system. The

first part defines a kinematic description for the figure, such that it has a stable posture.

The second part uses hybrid dynamics and inverse control to calibrate the actuators to the

specified posture. The third major component is the actual execution of balance through

force application; the actuators control and maintain the posture by generating force, and

the dynamics simulator generates the motion (or lack of motion). The actuators employ

feedback which allows the system to adapt to and reject errors and perturbations to the

system, to a limited degree. The balancing mechanism is depicted in block-diagram form

in Figure 47.

The first major step in the calibration is to define the kinematic posture, in this case, a

standing posture. This component could use kinematic analyses to determine the joint

angles needed to maximize the stability of the figure, by centering the COM of the entire

body within the support polygon formed by the points of contact with the ground, as the

JackTM system does. [Phillips] The main goal of this system is to maximize the stability

147

Michael A. McKenna7 Simulations

margin, which is defined as the shortest distance from the projection of the COM onto the

support surface to the boundary of the support polygon.

In this work, stable postures were interactively generated using the scripting language in

corpus to create joint configurations which placed the COM of the figure within the region

of support formed by the feet. To aid in this task, a COM marker was added to the system,

as a visual guide to stability. The COM of the entire body is the average of the COMs of

all the segments, weighted by their mass:

n

I Ci 1X, m.

c 1 , Eq. 91
n

where c is the three dimensional row vector defining the location of the body COM in

world space, c; is the (static) COM of body i in its local space, ;X, is the 3x3 matrix which

transforms values from the space of body i to world space, and m; is the scalar mass of

body i.

Once a posture has been defined, the second step is to calibrate that posture for the control

system. Hybrid dynamics uses the defined kinematic posture to compute the required joint

forces, and inverse control then uses those forces to compute the required actuator param-

eters. The analysis phase employs the dynamics simulator to perform its calculations.

However, this phase is "outside of' the normal, forward dynamics simulation which ani-

mates the figure; the simulation time spent in the analysis in not included in the overall

simulation of the biped. The hybrid analysis could be considered a sort of detailed

"thought experiment" performed by the control system.

The calibration process uses hybrid dynamics rather than inverse dynamics, because the

overall body motion is unconstrained, and is forward simulated. The joints however, are

kinematically constrained, and forces are computed using inverse dynamics. Some joints

could be left to be forward simulated as well, with their posture being defined by the actu-

ators at the joints and the other applied forces.

The hybrid analysis operates as follows: the joints are "locked" into the specified kine-

matic posture by setting the joint angles to the given target, and by setting the joint veloci-

ties and accelerations to zero. The figure then becomes essentially one rigid object. The

148

7 Simulations Michael A. McKenna

motion of the entire body remains unconstrained, in 6D, and is simulated using forward

dynamics. Gravity "pulls" the figure downwards, and support and friction forces are gen-

erated at the contact between the body and ground. This figure "settles" to the ground,

coming to rest. Once the figure is unmoving, it is in a static case with respect to the exter-

nal forces. There are small initial settling motions because it is difficult to place the figure

exactly on the ground, in its final resting state, with the correct configuration of the feet

touching the ground surface (and slightly penetrating by specific amounts at different

points on the feet).

If the system is already in an operating state, the system does not have to "settle" before

the hybrid analysis can begin. For example, if a standing posture, with its associated con-

trol state, is already defined, hybrid dynamics could be used to determine the control

parameters to achieve an acceleration goal for a limb. The system does not need to settle

because it is already in the proper starting configuration for the new goal.

During the hybrid simulation, joint forces are computed at the locked joints. These forces

are integrated using the numerical integrator, in order to obtain a more stable "average"

joint force, as described previously, in the sub-section Hybrid Dynamics (5.5) and Eq. 59,

page 89. The forces are integrated over a short period of simulation time (typically one

second).

Once a stable joint force has been computed, inverse control is used to compute the

required "target" actuator parameters, as in Eq. 82, page 101. Motor programs mediate

between the target actuator parameters and the current ones, so that the previous control

state is interpolated to the newly determined state. The new actuator state can also be set

instantaneously, which is the method used if no valid control state existed previously.

After the control system has been calibrated, forward dynamics can be used to simulate

the figure. The actuators employ feedback which allows the system to adapt to and reject

errors and perturbations to the system, to a limited degree. A certain range of error is intro-

duced in the dynamic simulation due to numerical instabilities in the force functions, lim-

ited sampling of the dynamics function by the numerical integrator, and ultimately the

numerical limitations of the machine. The actuators also allow for the adaptation to pertur-

bation forces applied to the biped. When a perturbing force is applied, the figure will devi-

ate from the specified posture. The magnitude of the deviation depends on the stiffness of

149

Michael A. McKenna7 Simulations

the actuators, and the magnitude of the force. Forces above a certain level will cause the

COM to move beyond the support polygon, and the biped will fall. When the force is

removed, the actuators will return the figure to the original posture, assuming it has not

fallen. The actuators are analogous to skeletal muscle with their proprioceptive feedback

allowing for length and stiffness regulation.

In previous work by the author, simulating the locomotion of a hexapod, [McKenna 1990-B;

McKenna 1990-C] a trial and error method was used to determine the actuator control param-

eters. The hybrid analysis system represents a significant advance over that method,

because more control parameters are automatically determined, with much greater accu-

racy. An important issue from the previous work is that forward dynamics, rather than

inverse dynamics, should be the means of motion production in the simulation. The con-

cern is that motions and postures should not be overly constrained or prespecified, or

much of the motivation for performing a detailed dynamic simulation will be lost. If

motions are already kinematically specified, there is little point in dynamically simulating

them for the purposes of animation. This philosophy remains important in this work. An

emphasis is placed on producing motion using forward simulation. Inverse and hybrid

analyses are used in lieu of trial and error methods. It should be noted that in some cases it

is more beneficial to apply kinematic control, and in many case, the control is greatly sim-

plified using kinematic constraints. Inverse dynamic control of some joints can also reduce

the stiffness of the system, decreasing computation time. Because corpus allows for a mix

of dynamic and kinematic control, the flexibility is provided to try different approaches for

control.

The "anatomical position" posture for the human figure model that was set to match the

Goldfinger illustrations turned out to be a stable, balanced posture which placed the COM

of the entire body within the support region. This stable posture, and others, including a

low squat were calibrated in the control system, and were maintained over time by the

joint actuators when forward simulated. In one experiment, motor programs were used to

vary the actuator control parameters from the state for a squatting posture to the state for

the upright standing posture, successfully generating a "standing" motion. The motion

sequence is shown in Figure 48. In general, a more sophisticated mechanism would be

required to ensure that the COM remains within the support region during movements

such as the one described. One solution would involve a subdivision of the movement tra-

150

7 Simulations Michael A. McKenna

7 Simulations Michael A. McKenna

Figure 48: An animation
sequence of the human fig-
ure rising to a standing
posture from a knee bend.

© @

@ @

©|

151

jectory, with the kinematic posture formulation and hybrid analyses performed at several

"points" along the way.

Other experiments dealt with the adaptive properties of the postural system to the applica-

tion of an external force. There were two main types of experiments: ones in which the fig-

ure adapted passively using the actuators, and ones in which the control system actively

adapted to the force. In all of the experiments, a linear external force was applied to the

mid-region of the torso, with magnitudes in the range of 10 N (approximately equivalent

in magnitude to the weight of 1 kg, on earth). The direction of the force was horizontal,

parallel to the ground.

In the passively adaptive experiments, the body posture shifts, as the force is applied, in

the direction of the force. The magnitude of the postural change depends on the stiffness

of the actuators (the a and P parameters, Eq. 81, page 99). Beyond a certain level of

applied force, the body COM shifts beyond the support region, and the figure falls.

When the complex model of the foot is included, the figure becomes much more sensitive

to a perturbation force, and the body moves more. With the foot joints, there are many

more places where the stress can be absorbed by spring deflection. In contrast, the rigid

foot will supply any force needed to prevent bending. Although the complex foot makes

the control task more difficult, the problem is more realistic.

In the actively adaptive experiments, the hybrid analysis takes into account the externally-

applied force, so that, after the inverse control calculations, the actuators counteract the

perturbing force. In these experiments, the body would move only very slightly in

response to the force. It is likely that the small movements that occur are due to the com-

pliant nature of the ground reaction forces. Even with the active control, forces can be

applied which would push the figure over. At its best, the figure can respond only as a rigid

object, and we all know that rigid objects can be toppled over. One potential drawback of

the active adaptation is that it requires knowledge of the specifics of the applied force. In

the real world, this information is not directly available to a robot or human, although the

information is indirectly available though the various sense organs that are stimulated

though the effects of the force (e.g. motion, pressure).

152

7 Simulations Michael A. McKenna

7 Simulations Michael A. McKenna

Figure 49: The human figure, in contraposition.

Photo on left from [Goldfinger].

To conclude the discussion on standing postures, the figure in contraposition is presented.

"Contraposition" is a posture of the depicted human body, common in late Renaissance

sculptures and paintings, in which twisting of the vertical axis of the body results in the

head, shoulders, and hips being oriented in different directions. All of the major degrees of

freedom are employed to form the pose, and the toes are bent on the figure's left foot. See

Figure 49.

7.3 Reaching Task
A simulation, which could be computed in near real-time, was generated of a reaching

task with the arm. The task is to reach out with the left arm to touch, with the tip of the

hand, one of five buttons arranged in a two dimensional array. The head also turns to

"look" towards the indicated button. The approach for the control is similar to that used

153

Michael A. McKenna7 Simulations

for the standing posture simulations. The actuators are first calibrated to a set of key pos-

tures, and during the execution of the task, motor programs are used to modify the actuator

rest angles over time, from one posture setting to another, to generate the reaching

motions.

The kinematic complexity of the model is greatly reduced, for efficiency, by deleting most

of the joints. The overall body motion is fixed in place, and six joints are included: three

DOFs at the shoulder, and one DOF at the elbow of the left arm. Two DOFs are included

in the head/neck joint.

There are two main phases to the overall simulation: a "training" phase and a "perfor-

mance" phase. The training process is used to form and calibrate key postures. Training

occurs only once, before "performance" begins. During performance, forward dynamics is

used to simulate the motion of the figure, as it reaches and looks towards the indicated tar-

gets.

The goal of the training phase is to generate one posture for each of the buttons, with the

tip of the hand touching the given button, and the gaze of the head looking towards that

button. Once the posture is specified, the training process calibrates the actuators for that

posture, as they resist gravity and support the limb. The training calibration process could

use an inverse kinematics technique to form the posture of the limb, as the hand touches a

given button. Instead, a dynamic simulation process is used to form these key postures.

This simulation process is part of the calibrating phase for the control system, and it is not

intended to be a simulation of the figure's motion in the proper sense (for example, there is

no gravity during most of the calibrating process).

The simulation and training start from an initial configuration, such that the figure looks

straight ahead, with the arm held at its side. This initial posture is shown in Figure 50. A

linear spring, in three dimensional space, is used to "pull" the tip of the hand to a given

button. One end of the spring attaches to the button, and the other attaches to the tip of the

hand. First order dynamics (see First Order Dynamics, page 90), rather than standard

second order dynamics, is used to simulate the motion of the hand as it is drawn to the tar-

get button. First order dynamics allows a rapid descent to the solution, without overshoot-

ing the target.

154

Michael A. McKenna7 Simulations

Michael A. McKenna

Figure 50: The setup for the reaching task.

This "over the shoulder" shot shows the
initial, starting posture. The left arm is
used to reach forward to press a specified
button from the array of five grey boxes.

During this calibrating simulation, gravity and all internal forces in the arm are inactive.

The limb takes a short path from its starting posture to the final posture, at which point the

tip of the hand has been drawn almost completely to the target by the spring. The orienta-

tion of the head is similarly drawn towards the buttons. A linear spring is attached from

the target button to a point in front of the head, similar to a "gaze" vector. Originally, the

head motion seemed too exaggerated as it turned to orient the head directly at the target;

presumably a person's head would turn towards the target, but their eyes would rotate fur-

ther to center their gaze on the target. In order to modify the target head postures, springs

were included in the head/neck joints, with the rest angles set to the initial, forward look-

ing posture. The linear spring then pulls the head's gaze towards the target, but the neck

springs resist, and the head moves until the forces are in equilibrium. The result is that the

head turns towards the target button, but without directing the gaze completely at it. The

neck springs provide a default posture, towards which the head will be biased. In general,

such springs can be used to influence the type of posture that is formed. For example, joint

limits can easily be included to keep movements within valid ranges, actuator springs can

be used to bias towards a default posture, gravity can be included to influence the posture,

and extra external springs (attractors or repulsors) can be used to shape the limb in a

desired manner.

155

7 Simulations

Figure 51:
The reaching
task simula-
tion, in the
performance
phase.

As each target
is indicated
(by turning
white), the
figure turns
the head
towards it and
reaches to
touch it.

156

7 .Simulations Michael A. McKenna

After reaching the target, the posture is calibrated for the spring controls, using inverse

dynamics and inverse control. Gravity is activated, so that the springs will incorporate that

force, and counteract it. The posture for touching each button is calibrated, and the initial

posture with the arm at the figure's side is also calibrated.

In the performance phase, the motions of the figure are computed using forward dynamics,

as different button targets are indicated, and the figure looks towards and reaches to touch

the target. When a button is indicated, the control settings which correspond to the posture

that touches that button are selected. If no target is indicated the control settings for the

initial posture, with the arm at the side, are selected. Motor programs are then activated to

move the spring controls to the selected, pre-calibrated posture. The spring angles move

over time, pulling the limb to the target position, and the dampers dissipate the kinetic

energy and smooth the motion. An animation sequence of the task is given in Figure 51.

The performance simulation runs at approximately 6.8 frames per second, about 1/4 real-

time, including the time for both simulation and rendering. The training process is com-

puted at a similar update rate. The entire training phase lasts approximately 40 seconds.

7.4 Toe Raise Simulation
In this simulation, the human figure is controlled to rise up on its toes, starting from a nor-

mal standing posture. Motor programs are used to vary the actuator parameters to generate

motion. To simplify the balance problem, the figure is first controlled to raise its arms out

in front of the torso, so that it leans against a "wall" in front of it. The proximal phalanges

are then hyper-extended to push the foot and body upwards.

Starting from a calibrated standing posture, motor programs are used at the shoulders,

elbows and wrists to raise the arms. As the arms are raised, the body's COM shifts for-

wards, the body tilts forward slightly. The hands touch a "wall" object in front of the fig-

ure, and collision and friction forces are exerted at the points of contact, preventing the

figure from falling forward. Motor programs are then used at the proximal joints of the

proximal phalanges, in both feet, to extend the phalanges, which has the effect of pushing

up the hindfoot and the upper body, as the phalanges push down against the ground. There

is a motor program which acts at the talar joint as well, to compensate for the change of

orientation of the hindfoot as it rises, so that the upper body remains upright. The script for

157

Michael A. McKenna7 Simulations

Script 6: Script to control the human figure to rise on the toes.

addcorpus wall
get wall from ../data/unit-cube

facet wall

postmult
move wall .5 0 0
scale wall 100 100 100
addbody wall wall 0 0 1 rotary 1

setroot wall
corpusinit
move wall .73 0 0
setrootpos

rootmotion fixed
integrate wall off

setcorpus biped

collide 1_hand3 wall
collide rhand3 wall
collide 1_forearm wall
collide rforearm wall

collision on
collisionea 100
collisionb 100
collisionfric 1.0
collisionfricb 100
collisioneB 100

cl arms-out
motor 1_humerusi etarget -1 1.5
motor 1_humerus2 etarget .4 1.5

motor 1_humerus3 etarget -.5 1.5

motor rhumerus1 etarget -1 1.5

motor rhumerus2 etarget -.4 1.5

motor rhumerus3 etarget .5 1.5

motor 1_forearm etarget -1 1.5
motor rforearm etarget -1 1.5

motor 1_handi etarget -1.5 1.5
motor 1_hand2 etarget 0.8 1.5
motor 1_hand3 etarget -3.2 1.5

motor rhandl etarget -1.5 1.5
motor rhand2 etarget -0.8 1.5
motor rhand3 etarget 3.2 1.5

cl flex
move phals up
motor lphall.2
motor lphal2.2
motor lphal3.2
motor lphal4.2
motor lphal5.2

motor rphall.2
motor rphal2.2
motor rphal3.2
motor rphal4.2
motor rphal5.2

etarget -. 8

etarget -. 8

etarget -. 8

etarget -. 8

etarget -. 8

etarget -. 8

etarget -. 8

etarget -. 8

etarget -. 8

etarget -. 8

compensate at ankle too
toe's moved about .8, move
e-q about .7 on ankle...
motor 1_talus etarget .7 1

the

and move hindfoot in a little
motor 1_hindfoot etarget 0 1

motor rtalus etarget .7 1
motor rhindfoot etarget 0 1

the toe raise simulation is given in Script 6. An animation sequence of the body rising is

shown in Figure 52. A close-up of the side and front of the foot is shown in Figure 53.

The first simulation of the toe raise resulted in a final posture which employed mostly the

big toes and the second toes, rather than rising evenly across all of the toes. Although it is

certainly possible to perform a toe raise which places most of the stress on the big toes, it

158

Michael A. McKenna7 Simulations

Figure 52: Simulation of
rising on the toes.

@ I
I I
I I

159

Michael A. McKenna7 Simulations

7 Simulations Michael A. McKenna

Figure 53: A close-up
view of the foot during
the toe raise simula-
tion.

160

7 Simulations Michael A. McKenna

7 Simulations Michael A. McKenna

Figure 54: Rising on
the toes, with an
everted foot.

161

7 Simulations Michael A. McKenna

is not as comfortable as rising with the stress divided across the toes, bending evenly

along the line of the distal heads of the second through fifth metatarsals (the "crease" of

the toes).

A second simulation was run to generate this more natural posture. A motor program was

added at the subtalar joint to evert the foot, which modified the posture to bend evenly at

the toes, across the foot. An animation sequence of this second toe raise simulation is

shown in Figure 54.

Informal comparisons were made between the animated simulations and video sequences

that were shot of a human subject performing similar toe raises. The results were quite

comparable, especially in contrast to any previous model of the foot used for animation.

The most notable difference between the real and simulated were visible in the second toe

raise simulation, with the everted foot. In the simulation, the toes rotated along their length

axis, as the foot everted. In reality, this rotation is not seen, either because the toes joints

(or some other parts of the foot) allow for rotational compensation, or because the sur-

rounding tissues "mask" the rotations of the interior bones.

7.5 Passive Step
A set of "passive step" simulations were developed using the complex figure model, simi-

lar to Mochon and McMahon's passive "ballistic walking" experiments. [Mochon 1980-A;

Mochon 1980-B] An emphasis was placed on using passive dynamic effects to generate the

body motions, but a hybrid dynamics approach was used in order to simplify the problem.

Some degrees of freedom were eliminated entirely, such as the waist and neck joints. The

hips and shoulders were reduced to one DOF, allowing flexion and extension only. Even-

tually, it would be desirable to include all of the DOFs in the model, using either forward

dynamics or kinematic constraints at the joints to make the motions more complete, with

respect to real walking. The stance knee was kinematically locked, and the stance hip was

kinematically controlled to undergo a constant angular velocity rotation, which is an

approximation of the real motion in the human. The joints in the swing leg and the stance

ankle were forward simulated, with no active joint forces, except for very weak dampers.

Initial conditions were established for the joint positions and velocities of the step leg, the

stance ankle, and for the initial overall body velocity. The system was then allowed to sim-

ulate forward, and a successful stepping motion was generated. The step leg acts as a pas-

162

7 Simulations Michael A. McKenna

Figure 55: The model
used in "ballistic walk-
ing" analyses by Mochon
and McMahon.

Point 2 is the moment of
toe-off for the swing leg.
Point 3 indicates when
heel strike of the swing
leg occurs. The ballistic
walking and passive step
simulations generally run

X from point 2 to 3.

From [Mochon 1980-A].

SL SL

sively-swinging double pendulum, and the stance leg acts as a passive inverted pendulum.

The coupling of these two types of motions results in a natural appearing human step.

The model of the ballistic walking biped used by Mochon and McMahon is illustrated in

Figure 55. If the joints in the arms and feet are also removed from the complex human fig-

ure, the result is a model that has a complexity similar to that used by Mochon and McMa-

hon, except that their model was also restricted to the sagittal plane.

Because the passive step simulation was three dimensional, the human figure began to tilt

laterally towards the swinging leg, as the center of mass was not above the region of the

supporting foot. To address this, a simple ballistic motion was added to the simulation. As

part of the initial conditions, a lateral velocity of the body was specified, so that the body

moved towards the side of the supporting foot. About mid-stance, the body began to pas-

sively fall back towards the swinging leg. This motion takes advantage of the passive

inverted pendulum formed by the stance leg, adding a new dimension to the one used pre-

viously.

Another problem arose because the simulation performed was not restricted to the sagittal

plane. The momentum of the swing leg caused the body to rotate around its vertical axis,

along with the swinging leg. Passive arm swinging was added to the simulation, which

served to counteract the leg inertia and greatly reduce body rotation. The initial conditions

163

7 Simulations Michael A. McKenna

for the arms to swing as passive double pendulums were established. The elbow of the left

arm was kinematically constrained to maintain the same velocity, flexing the forearm,

because passive motions were not sufficient to carry the arm up and forward.

Simulations of the passive step were executed both with and without the complex foot

model. When the articulations were included in the foot, the foot shape was passively

driven by the other body motions. When the stance leg became vertical, aligned straight

upwards, the actuator spring in the talar (ankle) joint was activated, with its rest angle set

to match the current joint angle. The motion of the ankle continued to bend somewhat,

then stopped, as the spring deflected and took up a force load. As the body continued to

move forward, it caused the angle between the leg and the ground to be reduced, which

forced the foot to flex passively, since the ankle had stopped flexing. The foot flexion

occurred at many DOFs, but primarily at the proximal joint of the proximal phalanges,

bending the "toes."

An animation sequence of the passive step experiment, which shows the entire body, is

given in Figure 56. A close-up image sequence of the side of the complex foot during the

passive step is shown in Figure 57. A close-up of the front of the foot is shown in

Figure 58. An informal comparison of the animated motions verses a video sequence of a

human subject's stance foot revealed a reasonable correspondence between the two.

The simulation time varies during different parts of the simulation, depending primarily

on how much stress the toes are placed under. The integrator took from 240 steps per

frame to 2100 steps per frame (1/30 sec). The average time of computation was approxi-

mately ten minutes per frame, with 64 DOFs included in the model.

In addition to visual inspection of the animated results, we can also compare other aspects

of the simulation to other simulations and to values measured from the real-world. A com-

parison between the motions of the joint angles in the legs from the ballistic walking

experiments of Mochon and McMahon and from the passive step experiments with the

complex model is shown in Figure 59. In this example, the ballistic walking simulation

was designed such that the knee of the swing leg comes to full extension exactly at the

time of heel strike. In the passive step simulation, the knee extends before heel strike.

When the knee is nearly extended, its actuator is activated to maintain the knee position,

with some flexion allowed from the spring. Mochon and McMahon also performed simu-

164

Michael A. McKenna7 Simulations

7 Simulations Michael A. McKenna

Figure 56: The passive
step simulation, using
the complex foot
model.

165

7 Simulations Michael A. McKenna

7 Simulations Michael A. McKenna

Figure 57: A close-up
of the complex foot
model during the pas-
sive step simulation.

166

Michael A. McKenna7 Simulations

7 Simulations Michael A. McKenna

Figure 58: A close-up
@ of the front of the com-

plex feet of the human
figure model during
the passive step simula-
tion.

167

7 Simulations Michael A. McKenna

7 Simulations Michael A. MoKenna

80*

60*

40*

20.

-0
/C

McKenna

time (s)

Figure 59: Plot of the joint angles as a function of time calculated by Mochon and McMahon com-
pared to the joint angles from the passive step simulation.

In this case, the ballistic walking simulation was designed such that the knee fully extends at the
exact moment of heel strike in the swing leg. The foot in McKenna's passive step experiment was
simplified to a single rigid body, in this example. Top image from [Mochon 1980-A].

168

Mochon and
McMahon

angle

7 Simulations Michael A. McKenna

7 Simulations Michael A. McKenna

Mochon and
McMahon

angle

-0
IC

McKenna

time (s)

Figure 60: Joint angles from Mochon and McMahon's simulations with knee lock, compared to
the passive step experiment.

The swing leg knee comes to full extension before heel strike, and is "locked." Again, the pas-
sive step simulation used the rigid foot. Top image from [Mochon 1980-A].

169

7 Simulations Michael A. McKenna

7 Simulations Michael A. McKenna

angle

(s) Rigid Foot

angle

-K

time (s)
0.4

Complex Foot

Figure 61: Joint angles from the passive step simulations, with the rigid foot (above) and the complex

foot (below).

170

Michael A. McKenna7 Simulations

lations in which the swing knee fully extends, and then locks rigidly, before heel strike. A

comparison of the passive step simulation with this type of ballistic walking is given in

Figure 60. The comparison is quite favorable. The deflection of the knee when it "locks"

in the passive step experiment is probably more realistic than the hard, rigid lock in the

ballistic walking simulation. The major difference between the two is that the stance leg

extended further before heel strike in the passive step simulations. This may be due to the

manner in which Mochon and McMahon locked the swing leg. If its momentum was dissi-

pated without being shifted to the thigh and body, the swing leg would extend less.

A comparison of the joint angles between passive step simulations that employ the rigid

foot and the jointed foot is shown in Figure 61. The major difference is in the plot for the

ankle joint. Because the ankle joint is locked with an actuator spring in the middle of the

support phase, when the complex foot is modeled, its angle is not comparable unless the

total deflection of the foot joints are also included.

We can also examine the ground reaction forces. The ground reaction forces (GRFs) as

measured from the human are compared to the GRFs computed during the passive step

experiments, both with and without the complex foot. See Figure 62. The GRFs are quite

similar, and certainly have the same overall characteristics. When the complex foot is

included in the model, more variation is seen in the force plots, in some ways bringing

them closer to the measured GRFs, in other ways making them less similar.

The simulator, with the biomechanical model, can be used to generate "what-if' types of

experiments. As a simple and preliminary example of the kind of clinical application that

could be developed from this work, simulations of the passive step experiment were

developed, in which parts of the big toe of the stance leg were removed, to observe the

effect on the developing motion. It is a fairly common reconstructive surgery practice to

transfer some part of the toes in order to create a replacement for an amputated thumb.

There are several different options regarding how much of a toe to remove, and whether to

use the big toe or the second toe. [Wei] A simulator system, with a biomechanical model

tailored to a given patient could be used to help examine some of the trade-offs between

the different options.

In the first simulation, the distal phalanx of the big toe of the left foot was removed (the

stance leg in the simulation). The same passive step simulation was executed, and the

171

Michael A. McKenna7 Simulations

7 Simulations Michael A. McKenna

1.0

g

0.5

0'
0.2

9

0

0.2

Cavagna

' I I I

0.5
time. s

Fv

I I

i \Fv
0.5[

FH

0.1 0.3 0.1 0.2 0 4

Figure 62: Plots of the ground reaction forces measured from humans compared to those computed in the
passive step simulation.
The ground reaction forces during normal human walking, as measured by Cavagna and Margaria are
shown in the upper plots. The solid arrow to the left indicates the time of toe-off for the swing leg. The
dashed arrow to the right indicates when heel strike of the swing leg occurs. Top plot from [Cavagna
1966]
The ground reaction force computed during the passive step experiment are shown in the bottom plots.
The left plots show the forces from the rigid foot, the right ones show the forces from the articulated foot.
The left plots are approximately aligned to the corresponding time below the Cavagna plots. The upper
plot shows the vertical reaction force (Fv) on the supporting foot. The lower plot shows the forward, hor-
izontal reaction force (FH).

172

7 Simulations Michael A. McKenna

-0.2[

change in the motion could be observed. In fact, there was not much change in the motion,
except that the body tilted further laterally, towards the swing leg, near the end of the sup-

port phase, because there was less of a support on the medial side of the stance foot. A sec-

ond simulation was run, in which the proximal phalanx of the big toe was also removed. In

this case, the lateral body tilt was greater, but overall, the change in motion was not very

large. With both phalanges missing from the big toe, the relative lateral distance between

the body's center of mass and the point of heel strike was reduced by 1 cm, in comparison

to the simulation that had an intact foot. In reality, a person would certainly attempt to

compensate for the missing toe, but this type of simulation at least provides a sort of base-

line, to examine the effects of a structural change without any compensation.

Future Work: Extensions and Issues Concerning Walking Simulation
Human walking is certainly not a completely passive activity. The muscles are not inactive

during locomotion - muscles are active to support the stance leg, muscles are used to

accelerate and decelerate the swing leg, [Yoon] and many other muscles are used to support

the upper body, etc. These factors are "designed-around" in McGeer's purely passive

walking mechanisms, and they are ignored in McMahon and Mochon's Ballistic walking

work.

Active control can be provided through motor programs, by modifying actuator control

parameters over time. Active control can be used, in part, to "guide" the passive control,

establishing initial conditions which allow passive motions to be successfully executed.

Kinematic constraints can also be used to setup initial conditions by accelerating the limbs

to match target velocities. These constrains could also be formulated as a type of motor

program. How can the motor programs for walking be established? By careful examina-

tion of the requirements; trial and error; and hybrid analyses. Hybrid dynamics and inverse

control can be used to calibrate the actuators to target motions, either on the boundary con-

ditions of the motions, or throughout entire motions, using a more continuous method to

calibrate the motor program parameters over a time interval - forming table-based motor

programs. The target motions could be derived from clinical gait studies. However, this

method is less desirable, because the motions become more prescribed. However, it is not

assured that table-based motor programs would completely dictate the motion, because of

the forward nature of the motion simulation, especially in the presence of errors or unex-

pected force or terrain perturbations.

173

7 Simulations Michael A. McKenna

The trade-offs of kinematic versus dynamic control, and the mix of the two, is an interest-

ing issue. Hybrid dynamics can be used as a means of determining control parameters for

forward simulation, and it can also be used as a direct part of the motion simulation. Thus,

certain DOFs can be kinematically controlled at certain times, while others are dynami-

cally simulated. This can greatly increase the computational efficiency of the simulation,

since the inverse dynamics calculations are somewhat more efficient than the forward

dynamics computations, and problems of numerical stiffness are greatly reduced at a kine-

matically-controlled joint. In addition, mixing kinematics and dynamics can provide more

flexibility of control- an important consideration for animation. An example of hybrid

control for walking can be given: before toe-off, the step leg is kinematically accelerated

to the correct initial conditions required for a dynamic, passive step. Dynamics can be

employed where they are most critical to the motions- passive motions being a case in

point.

In previous work by the author, a gait controller, based on coupled oscillators, was used to

coordinate the stepping actions of a simulated hexapod, i.e. designating when each leg

should step and when it should stand. [McKenna 1990-B; McKenna 1990-C] The same mecha-

nisms can be used to control figures with any number of opposing legs, including bipeds.

However, the complexity of this mechanism is not especially required for biped stepping

coordination. In fact, a central pattern generator may not be appropriate for this system.

The biped stepping pattern may result more from the system dynamics than from central

planning, especially when the passive effects dominate. Also, free gaits (non-periodic

gaits, such as those used to walk across stepping stones) would rely far less on a central

stepping pattern. Under highly controlled conditions, such as walking on level ground

without disturbances, a gait controller would be an appropriate means to sequence motor

programs. Otherwise, motor programs could be sequenced by higher order planning con-

trollers, and/or 'reflexively' triggered, based on events that occur during the walking cycle

(such as heel strike, etc.).

Another topic of interest is the use of passive "return springs" during walking. These

springs deform during part of the locomotion cycle, and return their energy in another part

of the cycle. Alexander describes the use of return springs in locomoting animals. [Alex-

ander 1985; Alexander 1990] The use of passive joint limit forces, as well as the actuator spring

forces, can be used as return springs. The toes bend significantly during the passive step

174

Michael A. McKenna7 Simulations

simulation, near the end of the stance phase. The springs become compressed and store

energy, which could be used, if properly "channeled," to launch the leg and push the body

forward, restoring lost energy.

175

Michael A. McKenna7 Simulations

8 Conclusions Michael A. McKenna

8 Conclusions

8.1 Human Figure Model
This work has demonstrated that complex human kinematics can be dynamically simu-

lated, including small bones placed under high stress forces. Simulation times can range

from real-time for simplified models, to approximately half an hour per frame (1/30 sec-

ond of simulated time) for complex models involving standing postures, using high-end

computer workstations.

Corpus, a computer program for the simulation and animation of articulated figures has

been developed and implemented by the author. Physically based motions are generated in

corpus by the efficient dynamic simulator sub-system, based on the Articulated Body

Method algorithm by Featherstone. [Featherstone 1987] The system is flexible and general

purpose, allowing for the simulation of any branching articulated figure using forward,

inverse, hybrid, and first order dynamics. Gravity, collision, contact, friction, damping,

joint limit, actuator, and other force models are available in the system. The simulator is

integrated with a graphics sub-system that provides a three dimensional environment for

real-time computer graphics and animation.

A new, complex human biomechanical model has been developed and described. The fig-

ure has 90 degrees of freedom overall, with a foot model that incorporates 28 DOFs each.

The kinematic and dynamic structure of the model has been designed based on anthropo-

metrics and other measures from humans. This model is useful as a structural basis for

physically based computer animation and biomechanical research, and ultimately, with

additional modeling and verification, the system should prove useful as a tool for clinical

analyses.

176

Michael A. McKenna8 Conclusions

A low level control system for movement and posture forms a foundation for a variety of

dynamic tasks. The use of spring actuators and dampers at the joints provides a stable

feedback system capable of generating postural support and motion control. The control

state for the actuators can be calibrated using inverse dynamics and inverse control to

automatically determine the parameters required for a specified postural goal.

The dynamic simulation system and the biomechanical model, with its low level behavior

control for motion have been used to generate a number of animated simulations, demon-

strating their utility. From simple simulations of passively falling under gravity, to com-

plex simulations of rising on the toes and walking, the human figure model has proven to

be a sophisticated tool for the creation of realistic animation.

8.2 Future Directions
The corpus system can be used as a platform for performing simulations for biomechani-

cal studies. For example, recently a dynamic simulation of a frog leg, with a hip, 'knee'

and 'ankle' has been developed to verify a model developed by experimental biologists.

After activating the joint spring actuators in the simulated frog leg, we measure the force-

field that is generated at the end of the foot or at the ankle, as the foot is pulled through a

range of kinematic locations. The results of the simulations are compared to the measured

force fields from in vivo experiments. The simulation model can be used to test and vali-

date the biologists' hypotheses. The results from the frog simulation also shed some light

on more general motion control issues, which could lead to control techniques for dynam-

ically simulated animation. Using the human figure model, biomechanical analyses of

human motions can also be investigated.

The human figure model developed in this work represents a single human form. In order

to adjust the model to a given person, accurate information regarding their body structure

is required. The technology currently exists to extract bone and tissue geometry from MRI

or CAT scans, and to tailor the kinematic structure and biomechanical function to that per-

son-specific, or "patient-specific," geometry. The technology also exists to manipulate that

data and biomechanical model in three dimensions, in real-time. [Delp; Pieper 1994] The use

of patient-specific data will be a crucial element in the surgical planning systems of the

near future.

177

Michael A. McKenna8 Conclusions

As our models increase in kinematic and biomechanical complexity, the computational

and organization complexity also grows steeply. However, the number of real problems

and questions that can be addressed also grows with the details from which the models are

formed. In a well designed system, all functionality and complexity need not be employed

simultaneously, in order to simplify computation and control. Localized areas and func-

tions can be simulated, and "multi-resolution" simulations can be run, at different levels of

complexity, to see if and how changes in one system affect another.

With the addition of other kinds of models to the human figure model, we can investigate

new, multi-faceted problems. Three dimensional, biomechanical models of human skeletal

muscle [Chen] and human skin tissue [Pieper 1992] have been demonstrated. There is no

intrinsic barrier to the unification of these finite-element models with the rigid, articulated

body model. With the inclusion of other models, such as organ function, a highly sophisti-

cated human figure model can be developed, creating a computationally based, artificial

physiological person.

It is also desirable to enhance the current biomechanical model of the articulated figure.

The current kinematics could be refined and verified. Additional degrees of freedom, to

make the model more complete, should also be added. In particular, a complex spine,

neck, and hand would be welcome. In addition, more complete biomechanical models of

the many muscles, ligaments, and passive forces should be included, so that their func-

tions can be analyzed as well.

Because the structure of the hand is similar to the structure of the foot, a preliminary

model of the hand was generated, using the structural definition of the foot as a starting

point. The resulting model is shown in Figure 63. The entire human figure, with the newly

modeled hands, includes 136 joints, for a 142 DOF model. Although the kinematic struc-

ture was defined, other biomechanical parameters have not yet been modeled, so simula-

tions have not yet been performed using the hand.

Finally, high level behavior control is required in order to select from and control different

behaviors, based on the stimulus the model receives and its internal goals.

178

Michael A. McKenna8 Conclusions

Michael A. McKenna

Figure 63: A preliminary hand model is added to the complex human figure model.

179

8 Conclusions

9 Acknowledgments Michael A. McKenna

9 Acknowledgments

I would like to thank a number of people who were influential in seeing this project

through.

To my sets of parents: Lynn and Don, Paul and Debbie, and Howard and Phyllis, thanks

for the many years of love and support.

More than thanks go to my academic advisor of seven-plus years, David Zeltzer - this

work would never have happened without his guidance and encouragement. Others on my

thesis committee were Professors Marc Raibert and Joe Rosen. I'd like to thank Marc for

his support and interest in my work - his respect has always meant a lot to me. And to

Joe, many thanks for the boundless enthusiasm and generous friendship.

Thanks to Nicholas Negroponte for creating a remarkable environment for technical and

creative work with media technology. And thanks as well to Steve Benton for advice and

guidance over the years.

Dave Small gets more than my thanks for his many years of standing by me.

A resounding "HOOT" to Stevie Pieper, Dave Chen, Peter Schr6der, Steve Drucker, and

Tinsley Galyean - otherwise known as the playpen guys - for all the required diversions

and inspirations, long discussions on dynamics, animation, simulation - the works! And,

of course a "HOOT" to the rest of the Snakepit crew over the years: Michael Johnson,

Paul Dworkin, Karl Sims, Steve Strassmann, Clea Waite, Jim Puccio, Fran Taylor, and

Margaret Minsky. Lots of other Media Lab students, staff and faculty deserve my thanks

and regards as well, so I'd like to offer my thanks to the following friends, in no particular

order: Henry Holtzman, Bob Sabiston, John Underkoffler, Janet Noss, Greg Tucker, Steve

Librande, Chris Schmandt, Michael Halle, Anne Russell, Peg Schafer, Alan Lasky, Walter

180

9 Acknowledgments Michael A. McKenna

Bender, John Wadlington, Toru Nagamachi, Alice Markunas, Patti Maes, Ron MacNeil,

Betsy Connors, Muriel Cooper, Tod Machover, Gayle Sherman, David Berger, Michael

Klug, Anh V. Ho, Lena Davis, Gloriana Davenport, David Blank-Edelman, Laura Robin,

Dave Young, Irfan Essa, Janet Cahn, Barry Arons, Judith Donath, Gilberte Houbart, Robin

Kullberg, Suguru Ishizaki, Michael Travers, Alice Lei, Grace Colby, Mark Lucente,

Wendy Plesniak, Stan Sclaroff, Radhika Nagpal, Jory Bell, Wayne Ross, and Pierre St.

Hilaire. I know I'm bound to leave out people I want to thank, so please forgive me!

Of course, I extend many thanks to the course secretaries, Linda Peterson and Santina

Tonelli. Thanks for the help and friendship.

I would like to thank and acknowledge Simon Giszter, for the collaborative frog simula-

tion work.

A number of individuals contributed their computer software for use in this research, and

so I would like to thank: David Chen, for rendermatic and librobot; Peter Schr6der for

retepmatic (enhanced anti-aliasing scan converter) and the inertia computation function;

John Underkoffler for awf (anti-aliased wire-frame rendering) , and David Small and oth-

ers from the Visible Language Workshop, for anti-aliased text and line functions.

I would like to acknowledge Donald Stredney for creating the skelton model "George,"

used as an initial template for the human figure model. He created the model under a grant

from the National Science Foundatation, Project NO. MCS-7923670, titled Complex Ani-

mation and Complex Object Synthesis, at the Advanced Computing Center for the Arts and

Design, The Ohio State University.

I would like to gratefully thank the following organizations for their support of my work at

MIT, through research and equipment grants: NHK (Japan Broadcasting Corp.), the

National Science Foundation (NSF), MIT UROP Program, Hewlett Packard Co., Apple

Computer, Inc., Silicon Graphics, Inc., Bitstream, Inc., Stardent Computer Corp., Symbol-

ics, Inc., Thinking Machine Corp., and Wacom, Inc.

I would also like to thank Medical Media Systems (MMS) for the use of equipment which

greatly facilitated the timely completion of this thesis. I'd also like to thank all of the staff

of MMS for their generous personal support.

181

Michael A. McKenna9 Acknowledgments

10 Biographical Note Michael A. McKenna

10 Biographical Note

Michael Allen McKenna was born and raised in southern Florida. He had an early interest

in science and mathematics, and spent a summer with the Florida Foundation for Future

Scientists at the University of Florida, in Gainesville while in high school. He graduated

valedictorian from a small private school.

Mike is a member of the Massachusetts Institute of Technology undergraduate class of

1987. He studied both Computer Science and Visual Arts, and had an undergraduate

research position at the Architecture Machine Group, and then its successor, the Media

Laboratory. Mike received a Bachelor of Science from the Department of Architecture in

1987.

Continuing his education at MIT, Mike attended graduate school at the Computer Graph-

ics and Animation Group in the Media Laboratory. While conducting his research, Mike

created the award winning computer animations Cootie Gets Scared and Grinning Evil

Death (the latter with Bob Sabiston). Mike received a Master of Science in 1990.

Mike has authored and co-authored over a dozen articles in conference proceedings, jour-

nals, and books. He has given numerous presentations on his research, around the world.

Mike's interests include Lego bricks, visual arts, science fiction, and home repair. Mike

currently lives in Cambridge, Massachusetts with his partner, David Small.

182

Michael A. McKenna10 Biographical Note

11 Bibliography Michael A. MoKenna

11 Bibliography

1. Alexander, R.M. (1976). Mechanics of Bipedal Locomotion. Perspectives in Experi-
mental Biology. Edited by P.S. Davies. Pergamon Press, Oxford.

2. Alexander, R.M., N.J. Dimery and R.F. Ker. (1985). Elastic structures in the back and
their role in galloping in some mammals. J. Zool., Lond. 207:467-482.

3. Alexander, R.M. (1990). Three Uses for Springs in Legged Locomotion. International

J. Robotics Research. 9(2):53-61.

4. Amirouche, F.M.L., S.K. Ider and J. Trimble. (1990). Analytical Method for the Anal-

ysis and Simulation of Human Locomotion. Journal of Biomedical Engineering. 112

(November):379-386.

5. Amkraut, S. and M. Girard. (1989). Eurhythmy. Computer animation. ACM SIG-
GRAPH, Film Video Show 1989.

6. An, C.H., C.G. Atkeson and J.M. Hollerbach. (1988). Model-Based Control of a Robot
Manipulator. MIT Press, Cambridge, MA.

7. Armstrong, W.W. (1979). Recursive solution to the equations of motion of an n-link

manipulator. Proc. of 5th World Congress Theory Mach. Mechanisms (Montreal).
2:1343-1346.

8. Armstrong, W.W. and M. Green. (May 1985). The Dynamics of Articulated Rigid Bod-

ies for Purposes of Animation. Proc. Graphics Interface 85 (Montreal, Canada).
pp.407-41 5 .

9. Armstrong, W.W., M. Green and R. Lake. (June 1987). Near-Real-Time Control of Hu-

man Figure Models. IEEE Computer Graphics and Applications. 7(6):52-61.

10. Audu, M.L. and D.T. Davy. (1985). The Influence of Muscle Model Complexity in

Musculoskeletal Motion Modeling. Journal of Biomechanical Engineering. 107:147-

157.

183

Michael A. McKenna11I Bibliography

11. Badler, N.I., J.K. Korein, J.U. Korein, G.M. Radack and L.S. Brotman. (1985). Posi-
tioning and Animating Human Figures in a Task-Oriented Environment. Visual Com-
puter. 1(4):212-220.

12. Badler, N.I. (June 1987). Articulated Figure Positioning by Multiple constraints. IEEE

Computer Graphics and Applications. 7(6):28-38.

13. Barzel, R. and A.H. Barr. (August 1988). A Modeling System Based on Dynamic Con-
straints. Proc. SIGGRAPH '88 (Atlanta, Georgia), in Computer Graphics 22(4):179-
188.

14. Bizzi, E., W. Chapple and N. Hogan. (1982). Mechanical Properties of Muscle: Impli-
cations for Motor Control. Trends in Neuroscience. 5(11):395-398.

15. Bizzi, E., N. Accornero, W. Chapple and N. Hogan. (1984). Posture Control and Tra-

jectory Formation During Arm Movement. Journal of Neuroscience. 4(11):2738-
2744.

16. Bogert, A.J. von den., H.C. Schamhardt and A. Crowe. (1989). Simulation of Quadru-
pedal Locomotion Using a Rigid Body Model. Journal of Biomechanics. 22(1):33-41.

17. Brady, M., J.M. Hollerbach, T.L. Johnson, T. Lozano-Prez and M.T. Mason. (1982).
Robot Motion: Planning and Control. MIT Press, Cambridge, MA.

18. Braune, W. and 0. Fischer. (1987). The Human Gait. Springer-Verlag, Berlin. (Origi-
nally published in German, between 1895 and 1904).

19. Braune, W. and 0. Fischer. (1988). Determination of the Moments of Inertia of the Hu-

man Body and Its Limbs. Springer-Verlag, Berlin. Translators: P Maquet, R. Furlong
(originally published in 1892).

20. Brotman, L.S. and A. Netravali. (August 1988). Motion Interpolation by Optimal Con-
trol. Computer Graphics. 22(4):309-315.

21. Bruderlin, A. (1988). Goal-Directed, Dynamic Animation of Bipedal Locomotion.

Master's Thesis, School of Computing Science, Simon Fraser University. CMPT TR

88-10.

22. Bruderlin, A. and T.W. Calvert. (July 1989). Goal-Directed, Dynamic Animation of

Human Walking. Proc. of SIGGRAPH '89 (Boston, MA), in Computer Graphics
23:233-242.

23. Cavagna, G.A. and R. Margaria. (1966). Mechanics of walking. Journal of Applied
Physiology. 21:271-278.

184

Michael A. McKenna11 Bibliography

24. Cavagna, G.A., N.C. Heglund and C.R. Taylor. (1977). Mechanical Work In Terrestrial
Locomotion: Two Basic Mechanisms For Minimizing Energy Expenditure. Am. J.
Physiology. 233(5):R243-R261.

25. Cavagna, G.A. (1985). Force Platforms as Ergometers. J. Applied Physiology.
39(1):174-179.

26. Chen, D.T. (1991). Pump It Up: Computer Animation of a Biomechanically Based
Model of Muscle using the Finite Element Method. Ph.D. Thesis, Massachusetts Insti-
tute of Technology.

27. Darrell, T., P. Maes, B. Blumberg and A.P. Pentland. (1994). Situated Vision and Be-
haviorfor Interactive Environments. M.I.T. Media Laboratory Perceptual Computing
Technical Note No. 261. Jan. 1994.

28. Delp, S., P. Loan, M. Hoy, F. Zajac, S. Fisher and J. Rosen. (1990). An Interactive

Graphics-Based Model of the Lower Extremity to Study Orthopaedic Surgical Proce-
dures. IEEE Transactions on Biomedical Engineering. 37. Special issue on interaction
with and visualization of biomedical data.

29. Dempster, W.T. (1955). Space Requirements of the Seated Operator: Geometric, Ki-

nematic, and Mechanical Aspects of the Body With Special Reference to the Limbs.
Wright-Patterson Air Force Base, Ohio. WADC-TR-55-159.

30. Drillis, R. and R. Contini. (1966). Body Segment Parameters, Rep. 1163-03. Office of

Vocational Rehabilitation, Department of Heath, Education, and Welfare, New York.

31. Dworkin, P. and D. Zeltzer. (1993). A New Model for Efficient Dynamic Simulation.

Proc. Fourth Eurographics Workshop on Animation and Simulation. pp.35-147.

32. Essa, I.A. and A. Pentland. (1994). A Vision System for Observing and Extracting Fa-

cial Action Parameters. Proc. 1994 Computer Vision and Pattern Recognition Confer-
ence. IEEE Computer Society. (to appear).

33. Featherstone, R. (1983). The Calculation of Robot Dynamics Using Articulated-Body
Inertias. Robotics Research. 2(1):13-29.

34. Featherstone, R. (1987). Robot Dynamics Algorithms. Kluwer Academic Publishers.

35. Foley, J.D., A. van Dam, S.K. Feiner and J.F. Hughes. (1990). Computer Graphics:

Principles and Practice. 2nd edition. Addison-Wesley, Reading, MA.

36. Forsythe, G.E., M.A. Malcolm and C.B. Moler. (1977). Computer Methods for Math-

ematical Computations. Prentice-Hall, Inc., New Jersey.

185

Michael A. McKenna11I Bibliography

37. Frank, A.A. (1971). On the Stability of an Algorithmic Biped Locomotion Machine.
Journal of Terramechanics. 8(1):41-50.

38. Freeman, P.S. and D.E. Orin. (1991). Efficient Dynamic Simulation of a Quadruped
Using a Decoupled Tree-Structured Approach. International J. Robotics Research.
10(6):619-627.

39. Furusho, J. and M. Masubuchi. (1986). Control of a Dynamical Biped Locomotion
System for Steady Walking. ASME J. Dyn. Sys. Meas. Control. 108:111-118.

40. Ginsberg, C. and D. Maxwell. (April 1983). Graphical Marionette. Proc. ACM SIG-

GRAPH/SIGART Workshop on Motion (Toronto, Canada). pp.172-179.

41. Girard, M. and A.A. Maciejewski. (July 1985). Computational Modeling for the Com-
puter Animation of Legged Figures. Computer Graphics. 19(3):263-270.

42. Girard, M. (June 1987). Interactive Design of 3D Computer-Animated Legged Animal
Motion. IEEE Computer Graphics and Applications. 7(6):39-5 1.

43. Goldfinger, E. (1991). Human Anatomy for Artists: The Elements of Form. Oxford
University Press, New York.

44. Gray, H. (1977). Gray's Anatomy. Gramercy Books, New York. (American edition
originally published in 1901).

45. Gubina, F., H. Hemami and R.B. McGhee. (1974). On the Dynamic Stability of Biped
Locomotion. IEEE Transactions on Biomedical Engineering. BME-21(2):102-108.

46. Hahn, J.K. (August 1988). Realistic Animation of Rigid Bodies. Computer Graphics.

22(4):299-308.

47. Hatze, H. (1976). The Complete Optimization of a Human Motion. Mathematical Bio-

sciences. 28:99-135.

48. Heppenheimer, T.A. (1985). Man Makes Man, in Robotics. Edited by M. Minsky.
Omni Press (Anchor Press/Doubleday), Garden City, New York. pp.28-69.

49. Herman, R., T. Cook, B. Cozzens and W. Freeman. (1973). Control of Postural Reac-

tions in Man: The Initiation of Gait. Control of Posture and Locomotion. Edited by

R.B. Stein, K.G. Pearson, R.S. Smith and J.B. Redford. Plenum Press, New York.

50. Hof, A.L. and Jw. Van den Berg. (1981). EMG to Force Processing II: Estimation of

Parameters of the Hill Muscle Model for the Human Triceps Surae by Means of a Cal-

fergometer. Journal of Biomechanics. 14(11):759-770.

186

Michael A. McKenna11 Bibliography

51. Hollerbach, J.M. (1980). A Recursive Lagrangian Formulation of Manipulator Dy-
namics and a Comparative Study of Dynamics Formulation Complexity. IEEE Trans-
actions on Systems, Man, and Cybernetics. SMC-10(11):730-736.

52. Huelke, D.F. (1986). Anatomy of the Lower Extremity - An Overview. Biomechanics
and Medical Aspects of Lower Limb Injuries (P-186). Society of Automotive Engi-
neers, Warrendale, PA.

53. Hughes, G.M. and P.J. Mill. (1974). Locomotion: Terrestrial. The Physiology of Insec-
ta. Edited by M. Rockstein. Academic Press, New York and London. pp.335-379.

54. Inman, V.T., H.J. Ralston and F. Todd. (1981). Human Walking. Williams & Wilkins,
Baltimore.

55. Isaacs, P.M. and M.F. Cohen. (July 1987). Controlling Dynamic Simulation with Ki-
nematic Constraints, Behavior Functions and Inverse Dynamics. Computer Graphics.
21(4):215-224.

56. Isaacs, P.M. and M.F. Cohen. (1988). Mixed Methods for Complex Kinematic Con-
straints in Dynamic Figure Animation. Visual Computer 4(6):296-305.

57. Kajita, S., K. Tani and A. Kobayashi. (1990). Dynamic Walk Control of a Biped Robot
along the Potential Energy Conserving Orbit. Proc. of IEEE International Workshop

on Intelligent Robots and Systems (Tsuchiura, Ibaraki, Japan). 2:789-794.

58. Kato, T., A. Takanishi, H. Jishikawa and I. Kato. (1983). The Realization of the Quasi-
Dynamic Walking by the Biped Walking Machine. Fourth Symposium on Theory and

Practice of Robots and Manipulators. Edited by A. Morecki, G. Bianchi and K. Kedzi-
or. Polish Scientific Publishers, Warsaw. pp. 34 1-351.

59. Kochanek, D.H.U. and R.H. Bartels. (July 1984). Interpolating Splines with Local
Tension, Continuity, and Bias Control. Computer Graphics. 18(3):33-41.

60. Lasseter, J. (1987). Principles of Traditional Animation Applied to 3D Computer Ani-
mation. Computer Graphics. 21(4):35-44.

61. Lathrop, R.H. (1986). Constrained (Closed-Loop) Robot Simulation By Local Con-

straint Propagation. Proc. 1986 IEEE Int. Conf. on Robotics and Automation (San
Francisco). 2:689-694.

62. Lee, P., S. Wei, J. Zhao and N.I. Badler. (1990). Strength Guided Motion. Computer
Graphics. 24(4):253-262.

187

Michael A. McKenna11 Bibliography

63. Liston, R.A. and R.S. Moser. (1968). A Versatile Walking Truck. Proc. Transportation
Engineering Conf (Institution of Civil Engineers, London).

64. Maes, P. (1990). Situated Agents Can Have Goals. Journal of Robotics and Autono-
mous Systems. 6 (1&2).

65. Manko, D.J. (1992). A General Model of Legged Locomotion on Natural Terrain. Klu-
wer Academic Publishers, Boston.

66. Mann, R.W. and E.K. Antonsson. (1983). Gait Analysis- Precise, Rapid, Automatic,
3-D Position and Orientation Kinematics and Dynamics. Bulletin of the Hospitalfor
Joint Diseases Orthopaedic Institute. Vol. XLIII(2):137-146.

67. Marion, J.B. and W.F. Hornyak. (1982). Physics for Science and Engineering, Part 1.
Saunders College Publishing, Philadelphia.

68. Marsolais, E.B. and R. Kobetic. (1987). Functional Electrical Stimulation for Walking
in Paraplegia. Journal of Bone and Joint Surgery. 69-A(5):728-733.

69. McGeer, T. (1990-A). Passive Dynamic Walking. The International Journal of Robot-
ics Research. 9(2):62-82.

70. McGeer, T. (1990-B). Passive Walking with Knees. Proc. of the 1990 IEEE Robotics

and Automation Conference.

71. McGeer, T. (1990-C). Passive Bipedal Running. Proc. of the Royal Society of London.
B 240:107-134.

72. McGhee, R.B. and G.I. Iswahdhi. (April 1979). Adaptive Locomotion of a Multi-

legged Robot over Rough Terrain. IEEE Trans. on Systems, Man, and Cybernetics.
SMC-9(4):176-182.

73. McKenna, M. (1988). Cootie Gets Scared. Computer animation. Produced at the Com-

puter Graphics and Animation Group, Media Laboratory, Massachusetts Institute of

Technology.

74. McKenna, M.A., S. Pieper and D. Zeltzer. (1990-A). Control of Virtual Actor: The

Roach. Proc. of the 1990 Symposium on Interactive 3D Graphics (Snowbird, Utah). In

Computer Graphics, 24(2):165-174.

75. McKenna, M.A. (1990-B). A Dynamic Model of Locomotion for Computer Animation.

Master's Thesis, Massachusetts Institute of Technology.

188

Michael A. McKenna11 Bibliography

76. McKenna, M. and D. Zeltzer. (1990-C). Dynamic Simulation of Autonomous Legged
Locomotion. Proc. of SIGGRAPH '90 (Dallas, TX). In Computer Graphics 24(4):29-
38.

77. McKenna, M. and B. Sabiston. (1990-D). Grinning Evil Death. Computer animation,
produced at the Massachusetts Institute of Technology's Media Laboratory.

78. McKenna, M. (1992). Interactive Viewpoint Control and Three Dimensional Opera-
tions. Proceeding of 1992 Symposium on Interactive 3D Graphics (Cambridge, MA).
Association for Computing Machinery, New York, NY pp.53-56.

79. McMahon, T.A. (1984). Muscles, Reflexes, and Locomotion. Princeton University
Press.

80. Meglan, D.A. (1991). Enhanced Analysis of Human Locomotion. Ph.D. Thesis, The
Ohio State University.

81. Messuri, D.A. and C.A. Klein. (1985). Automatic Body Regulation for Maintaining
Stability of a Legged Vehicle During Rough-Terrain Locomotion. IEEE Journal ofRo-
botics and Automation. RA- 1(3):132-141.

82. Minsky, M. (1987). The Society of Mind. Simon and Schuster, New York.

83. Mochon, S. and T.A. McMahon. (1980-A). Ballistic Walking. Journal of Biomechan-
ics. 13:49-57.

84. Mochon, S. and T.A. McMahon. (1980-B). Ballistic Walking: An Improved Model.
Mathematical Biosciences. 52:241-260.

85. Moore, M. and J. Wilhelms. (August 1988). Collision Detection and Response for
Computer Animation. Computer Graphics. 22(4):289-288.

86. Morlock, M. (1989). A Generalized Three-Dimensional Six-Segment Model of the An-
kle and Foot. Ph.D. Thesis, The University of Calgary.

87. Murphy, M.C. and R.W. Mann. (1988). A Method for Estimating The Total Freedom

of the Knee. Modeling and Control Issues in Biomedical Systems. DSC-Vol 12, BED-
Vol. 11:55-65.

88. Muybridge, E. (1955). The Human Figure in Motion. Dover, New York.

89. Nashner, L.M. (1980). Balance Adjustments of Humans Perturbed While Walking. J.
Neurophysiology. 44(4):650-664.

189

Michael A. McKenna11 Bibliography

90. Onyshko, S. and D.A. Winter. (1980). A Mathematical Model for the Dynamics of Hu-
man Locomotion. Journal of Biomechanics. 13:361-368.

91. Ousterhout, J.K. (1993). Tcl and the Tk Toolkit. Addison-Wesley Publishing Co., Inc.,
(in press).

92. Pai, D.K. (1991). Least Constraint: A Framework for the Control of Complex Mechan-
ical Systems. Proc. of 1991 American Control Conference (Boston, MA).

93. Pandy, M.G. and N. Berme. (1989). Quantitative Assessment of Gait Determinants
During Single Stance Via a Three-dimensional Model- Part 1. Normal Gait. J. Bio-
mechanics. 22(6/7):717-724.

94. Patriarco, A.G., R.W. Mann, S.R. Simon and J.M. Mansour. (1981). An evaluation of
the approaches of optimization models in the prediction of muscle forces during hu-
man gait. Journal of Biomechanics. 14(8):513-525.

95. Pearson, K. (December 1976). The Control of Walking. Scientific American.
235(6):72-86.

96. Pfeiffer, F. and B. Gebler. (1988). A Multistage-Approach to the Dynamics and Con-
trol of Elastic Robots. IEEE International Conf on Robotics and Automation (Phila-
delphia). 1:2-8.

97. Phillips, C.B. and N.I. Badler. (1991). Interactive Behaviors for Bipedal Articulated

Figures. Proc. of SIGGRAPH '91 (Las Vegas, Nevada). In Computer Graphics
25(4):359-362.

98. Pieper, S., J. Rosen and D. Zeltzer. (1992). Interactive Graphics for Plastic Surgery: A
Task-Level Analysis and Implementation. Proc. of 1992 Symposium on Interactive 3D
Graphics (Cambridge, MA).

99. Pieper, S., M. McKenna, D. Chen and I. McDowall. (1994). Computer Animation for
Minimally Invasive Surgery: Computer System Requirements and Preferred Imple-
mentations. SPIE '94: The Engineering Reality of Virtual Reality Edited by S. Fisher
and M. Bolas.

100.Press, W.H., B.P. Flannery, S.A. Teukolsky and W.T. Vetterling. (1988). Numerical

Recipes in C. Cambridge University Press, Cambridge.

101.Procter, P. and J.P. Paul. (1982). Ankle Joint Biomechanics. J. Biomechanics.

15(9):627-634.

190

Michael A. McKenna11I Bibliography

102.Pugh, D.R., E.A. Ribble, V.J. Vohnout, T.E. Bihari, T.M. Walliser, M.R. Patterson and
K.J. Waldron. (1990). Technical Description of the Adaptive Suspension Vehicle. The
International Journal of Robotics Research. 9(2):24-42.

103.Raibert, M.H. (1986). Legged Robots That Balance. MIT Press, Cambridge, MA.

104. Raibert, M.H. and J.K. Hodgins. (1991). Animation of Dynamic Legged Locomotion.
Proc. of SIGGRAPH '91 (Las Vegas, Nevada). In Computer Graphics 25(4):349-358.

105.Reynolds, C.W. (1982). Computer Animation with Scripts and Actors. Computer
Graphics. 16(3):289-296.

106.Reynolds, C.W. (July 1987). Flocks, Herds and Schools: A Distributed Behavioral
Model. Computer Graphics. 21(4):25-34.

107.Russell, M. (1983). Odex 1: the first functionoid. Robot. Age. 5(5):12-18.

108. Saunders, J.B., V.T. Inman and H.D. Eberhart. (1953). The major determinants in nor-
mal and pathological gait. Journal of Bone and Joint Surgery. 35A:543-558.

109. Schr6der, P. and D. Zeltzer. (1990). The Virtual Erector Set: Dynamic Simulation with
Linear Recursive Constraint Propagation. Proc. of the 1990 Symposium on Interactive
3D Graphics (Snowbird, Utah). Association for Computing Machinery, New York,
NY pp.23-31.

110. Siegler, S., R. Seliktar and W. Hyman. (1982). Simulation of Human Gait with the Aid
of a Simple Mechanical Model. Journal of Biomechanics. 15(6):415-425.

111. Simkin, A. (1982). Structural Analysis of the Human Foot in the Standing Posture.
Ph.D. Thesis, Tel-Aviv University.

112. Sims, K. (June 1987). Locomotion of Jointed Figures over Complex Terrain, M.S.V.S
Thesis. Massachusetts Institute of Technology.

113.Singh, B., J.C. Beatty, K.S. Booth and R. Ryman. (1983). A Graphics Editor for Be-
nesh Movement Notation. Computer Graphics. 17(3):51-62.

114. Steketee, S.N. and N.I. Badler. (1985). Parametric Keyframe Interpolation Incorporat-
ing Kinetic Adjustment and Phrasing Control. Computer Graphics. 19(3):255-262.

115. Stokes, V.P. and C. Anderson. (1989). Rotational and Translational Movement Fea-
tures of the Pelvis and Thorax During Adult Human Locomotion. J. Biomechanics.
22(1):43-50.

191

11I Bibliography Michael A. McKenna

116.Stredney, D. (March 1982). The Representation of Anatomical Structures Through

Computer Animation for Scientific, Educational and Artistic Applications. M.A. The-
sis. The Ohio State University.

117. Sturman, D. (1986). Interactive Keyframe Animation of 3-D Articulated Figures.
Graphics Interface '86, Tutorial on Computer Animation.

118. Sutherland, I.E. (1983). A Walking Robot. Marcian Chronicles, Inc., Pittsburgh, PA.

119. Takanishi, A., H. Lim, M. Tsuda and I. Kato. (July 1990). Realization of Dynamic Bi-

ped Walking Stabilized by Trunk Motion on a Sagittally Uneven Surface. Proc. of
IEEE International Workshop on Intelligent Robots and Systems (Tsuchiura, Ibaraki,
Japan). Vol 1:323-330.

120.Terzopoulos, D. and K. Fleischer. (1988). Deformable Models. Visual Computer.
4(6):306-331.

121.Townsend, M.A. (1981). Dynamics and Coordination of Torso Motions in Human Lo-

comotion. J. Biomechanics. 14(11):727-738.

122. Walker, M.W. and D.E. Orin. (1981). Efficient dynamic computer simulation of robot-
ic mechanisms. Proc. Joint Automatic Contr Conf. (Charlottesville, VA).

123.Walters, G. (August 1989). The Story of Waldo C. Graphic. ACM SIGGRAPH '89
Course Notes, 3D Character Animation by Computer.

124. Webster's Third New International Dictionary. (1986). Merriam-Webster, Inc., Spring-
field, MA.

125.Wei, F.-C., H.-C. Chen, C.-C. Chuang and S.H. T. Chen. (1994). Microsurgical Thumb
Reconstruction with Teo Transfer: Selection of Various Techniques. Plastic and Re-

constructive Surgery. February 1994:345-357.

126.Wilhelms, J. and B. Barsky. (May 1985). Using Dynamic Analysis to Animate Articu-

lated Bodies Such As Humans and Robots. Proc. of Graphics Interface 85 (Montreal,
Canada). pp.97-115.

127.Wilhelms, J. (June 1987). Using Dynamic Analysis for Realistic Animation of Articu-

lated Bodies. IEEE Computer Graphics and Applications. 7(6):12-27.

128.Williams, M. and H.R. Lissner. (1977). Biomechanics of Human Motion. B. Le Veau,
Editor. W. B. Saunders Company, Philadelphia.

192

Michael A. McKenna11 Bibliography

129.Williams, L. (1990). Performance-Driven Facial Animation. Computer Graphics.
24(4):235-242.

130. Wilson, D.M. (1966). Insect Walking. Annual Review of Entomology. 11:162-169.

131.Winter, D.A. and D.G.E. Robertson. (1978). Joint Torque and Energy Patterns in Nor-
mal Gait. Biological Cybernetics. 29(3):137-142.

132.Winter, D.A. (1990). Biomechanics and Motor Control of Human Movement. John
Wiley & Sons, Inc., New York.

133.Witkin, A. and M. Kass. (August 1988). Spacetime Constraints. Proc. of SIGGRAPH
'88 (Atlanta, Georgia). In Computer Graphics 22(4):159-168.

134. Witkin, A., M. Gleicher and W. Welch. (1990). Interactive Dynamics. Proc. of the 1990

Symposium on Interactive 3D Graphics (Snowbird, Utah). In Computer Graphics
24(2):11-21.

135.Wolfram, S. (1988). MathematicaTM , A System for Doing Mathematics by Computer.
Addison-Wesley Publishing Co, Inc., Redwood City, CA.

136.Yaeger, L. (1994). Computational Genetics, Physiology, Metabolism, Neural Systems,
Learning, Vision, and Behavior or PolyWorld: Life in a New Context. Artificial Life
III. Edited by C.G. Langton. Addison-Wesley, Reading, MA. pp.263-298.

137.Yamaguchi, G.T. and F.E. Zajac. (1989). Restoring Natural Gait to Paraplegics
Through Functional Neuromuscular Stimulation: A Feasibility Study. Issues in the

Modeling and Control of Biomechanical Systems. DSC-Vol. 17:49-57.

138.Yang, G.-B. and M. Donath. (1988). Dynamic Model of a One-Link Robot Manipula-
tor with Both Structural and Joint Flexibility. IEEE Int. Conf on Robotics and Auto-
mation (Philadelphia). 1:476-481.

139. Yoon, Y.S. and J.M. Mansour. (1982). The Passive Elastic Moment at the Hip. Journal
of Biomechanics. 15(12):905-9 10.

140.Zajac, F.E., E.L. Topp and P.J. Stevenson. (1986). A Dimensionless Musculotendon

Model. Proc. 8th Annual Conf of the IEEE Eng. in Med. and Biol.

141.Zajac, F.E. (1989). Muscle and Tendon: Properties, Models, Scaling, and Applications

to Biomechanics and Motor Control. Critical Reviews in Biomedical Engineering.
17(4):359-411.

193

Michael A. McKenna11 Bibliography

142. Zeltzer, D. (November 1982). Motor Control Techniques for Figure Animation. IEEE
Computer Graphics and Applications. 2(9):53-59.

143.Zeltzer, D. (August 1984). Representation and Control of Three Dimensional Comput-
erAnimated Figures. Ph.D. Thesis., Dept. of Computer and Information Science, Ohio
State University.

144.Zeltzer, D., S. Pieper and D. Sturman. (1989). An Integrated Graphical Simulation
Platform. Proc. of Graphics Interface 89 (London, Ontario). pp.266-274.

145.Zeltzer, D. (1990). Task Level Graphical Simulation: Abstraction, Representation and
Control. Making Them Move: Mechanics, Control and Animation of Articulated Fig-
ures. Edited by N. Badler, B. Barsky and D. Zeltzer. Morgan Kaufmann Publishers,
San Mateo, CA. pp.3-33.

146. Zeltzer, D. and M.B. Johnson. (1991). Motor Planning: An Architecture for Specifying
and Controlling the Behavior of Virtual Actors. Journal of Visualization and Computer
Animation. 2:74-80.

194

Michael A. McKenna11 Bibliography

Appendix A Corpus Help Michael A. McKenna

Appendix A Corpus Help

The following is the help file available in corpus, by typing "help."

Parser/Control commands:
quit
version (print executable name)

searchpath path-list

do filename <off> <#_of-times> (read in and execute a file script)

dostop (in a script (do) file - terminates execution of script)

toplevel (return to interactive input, from script)

if vall['=' | '<' | '>' j'#']val2 commandstring(# remainder-see blocksize)

blocksize (denominator for '#' remainder function, see 'if' above

(Integer Variable commands)

set var value (eg "set F 10")

%V=value (set integer variable. eg "%F=10")
%V+ (increment variable. eg "%F+")

%V+value (increment variable by value. eg "%F+10")

%V- (decrement)
%V-value (decrement)
%V*value (multiple variable by value. eg "%F*10"

%V/value (divide)
%V#value (set variable to variable modulo value. eg "%F#10")

COMMENT (eg "# This is a comment line")
! Printed COMMENT
@ Printed comment w/o '@' - ALWAYS printed

verbose [silent, basic, extra, super or detailed]

(set level of printed information for dynamics statistics)

help (how else did you get here?)

basicin [onloff] (set basic non-line-editiing input)

silent (stop all optional output printing (such as the prompt))

unsilent (restore normal output)

"command" > "filename" (write 'printed' result of "command" into file

"command" >> "filename" (append 'printed' result of "command" into file

write file name (multple lines until 'newline-.'1 (write to a file, like
UNIX 'cat'. e.g. :

write /tmp/ba
this is the first line written...

195

Appendix A Corpus Help Michael A. McKenna

this is the second line

commandlist cl command-list-name {multiple lines till newline-.}

The list can then be called using its command-list-name.

Valid calls for a commandlist named "func" :
func (execute each command in the list "func")

func 10 (execute "func" 10 times)
func param(execute "func", and replace each "**" with "param")

func param 10(execute "func" 10 times, substituting "**")
(Warning: avoid mixing "**" substitutions with "%" variables)

commandloop I cloop [#_of-times] {multiple lines till newline-.}

savelist sl savelistname (multiple lines till newline-.}

playlist | pl savejlistname [command preamble]
(execute next command in save-list with command preamble)

playlistn | pln savelistname listindex_# [command preamble]

(execute nth command in save-list with command preamble)

playlistfull savelist name [command preamble]

(execute every command in save-list with command preamble)

foreach savelistname command-string (command-string is executed, once

for each element in the savelist, replacing "**" with the element)

(Warning: avoid mixing "**" substitutions with "%" variables)

frame [frame#] (set internal frame #)

trackflush (remove all tracks)

track startframe endframe command-string (Sets %A to rel frame #- called

only in the start-end interval)

trackf startframe endframe command-string (appends rel frame # to command

end- called for all frames, less than start passes 0, greater than

end passes (end-start))

tracka startframe endframe command-string (Sets %A to frame number- called

for all frames, less than start %A=0, greater than end %A=(end-start))

trackc startframe endframe command-string (Sets %A to frame number-

cycles, called all frames)
frametrack | ft - execute track commands for current frame

system shell-command-string
wait (performs wait() to wait for a vforked process to finish)

vfork shell-command-string (five arg's max, fork off shell command)

ppopen name command-string
ppread name
ppwrite name command-string
ppdo name

Animation control commands:
render <{onloff}>
renderprint {onloff} (toggle whether or not "rendering.. .done" is printed)

wireframe | wf
retep (render using alternate scan converter)

filtertype val (val: box=0, pyramid=l, bartlet=2, stochastic=3) RETEP ONLY

dither floatval
renderwindowsize x y [not yet implemented in retep]

196

Appendix A Corpus Help Michael A. McKenna

renderwindow (onloff}
renderpasses #_ofstrips
renderdisplay (enable rendering to display)

render2file filename alpha-filename z-filename

autofilename filename (for auto file2render)

autofilenumber #_totagonto-autofilename
incrfilenumber
autorender2file

antialias I aa {onjoff}
mssize samples z-buffer-bits stencil-buffer-bits(O) (sgi antialiasing params)

hardware | hw {onloff}
clear {onloff} (clear between renders)
doublebuffer I db {onloff}
doublebufferautoswitch I dbas (on I off} (switch double buffer on render)

doublebufferswitch I dbs (switch double buffer)

fb open (open the framebuffer)

fb-close (close the framebuffer)

backgroundcolor r g b
setpenwidth #_ofpixels (for wireframe)

setpencolor r g b

(Hardware Drawing Modes)
edgeson r g b
edgesoff
hatch
hollow
outline
point
solid

(Camera commands)
lookat <obj> <x y z>
eye <obj> <x y z>
forward distance (move forward along view normal)

back distance (move back along view normal)

.roll angle
up x y z
uprel [obj] x y z (up direction relative to eye)

perspective fieldofviewdegrees aspectratio near far

apectratio | ar [screen aspect ratio]
fov [field-ofviewvalue]
nearfar | nf [near-dist far-dist]

windowsize center-x center-y half-size-x y

windowcenter center-x center-y

windowhalfsize half-size-x y

viewdistance I vd {val}

screenmix x y z
screenmax x y z
screensize x y

(Special camera commands)

197

Appendix A Corpus Help Michael A. McKenna

holoshear frame_# (0-99, special purpose shearing for stereogram)

dumpcam {file-name} (dump (some) camera information)

dumpcambob { file-name)
(dump camera information in a different aspect ratio format)

vdcam <obj> <x y z> (special view-dependent camera)

(Transformation modes, for "move", "rotate", "scale")

premult
postmult

localxforms
xformcenter x y z

get obj-name [from] instancefilename

closeobj obj_name
whereis obj_name (dump x y z of centroid of object in world space)

setmatrix obj [next four lines are matrix

dumpmatrix obj <filename>
dumpmatrixa obj <filename>

dumpmatrixwsp obj <filename> (dump world space matrix)

mcopy obj-src obj-dest
mcopywsp obj-src obj-dest
boliodump (dump ascii matrixes of all objects)

countpolys
countpostedpolys
filtermat obj-name filter-obj-name preditionscale(try 1)

(filter an objects motions, based on current and last matrix)

sharememory onjoff (duplicate instance point data with share memory off)

(Hierarchy commands)
pushobj obj-name (specify a parent object-

until "popobj" any object which you "get" will be a child)

popobj

(Graphical Object Transformation commands)

init obj
harden obj (harden object points based on xform matrix, then init matrix)

scale obj x y z
transscale obj x y z (scale an objects translationsl values only)

center obj (puts centroid at origin)

placex obj (puts objects centroid at a specific x loc)

placez obj (puts objects centroid at a specific z height)

move obj <obj> <x y z>
movely obj1 obj2 x y z (move objl by the amount of (x y z)

transformed from the coordinate frame of obj2

rotate obj {xlylz} angle

rotateaxis obj x y z angle
align object objectaxis x y z alignaxis-x y z

interpolateobj obj1 obj2 t(0-1) obj_dest (point interpolation)

shear obj axis-x y z scale-initial scale-slope

(shear an object- proportional scale along an axis - hardens object)

shearld obj axis-x y z up-x y z scale-initial scale-slope

(shears along one direction only - 'up' vector is unaffected)

(Graphical Object Shading commands)

color obj r g b (0-1)

198

Appendix A Corpus Help Michael A. McKenna

icolor obj r g b (0-255)
pcl obj pcl-filename (reassign poly colors with pcl file)

joinall .asc-filename (merges all objects into one, in wsp)

defaultcolor obj r g b (0-1, set color for all new objects)

defaulticolor obj r g b (0-255)
defaultdefaultcolor (restores default (1, 1, 1))

specularcolor obj r g b (0-1)

ispecularcolor obj r g b (0-255)

defaultspecularcolor r g b (0-1, set specular color for all new objects)

defaultispecularcolor r g b (0-255, set specular color for all new objects)

defaultdefaultspecularcolor (restores default (1 1 1))

shadeparam obj diffuse% specular% specular-exponent ambient%

defaultshadeparam diffuse% specular% specular-exponent ambient%

defaultdefaultshadeparam (restores to .6 .4 30. .025)

trans obj val (0-1, 0=opaque)

pointtrans obj index val (0-1, 0=opaque, set transparancy at point)

polycolor obj poly# [r g b]
polyicolor obj poly# [r g b]

shademodel obj {plglh} (phone or gouraud or hand-grenade)

defaultshademodel {plglh} (phone or gouraud or hand-grenade)

cull obj {onloff) (perform back-face cull)

concave obj {onjoff) (set concave polygons for an object, so that it renders

correctly (currently needed on SGI hardware)

facet obj
defaultfacet
smooth obj
defaultsmooth
groupsave filename (??)

post obj (show object)

unpost obj (hide object)

(Special Object Commands)
objbound objname x1 y1 x2 y2 filename.asc

(write out .asc file, clips object to x-y bounds, obj local space)

objibound objname x1 yl x2 y2 filename.asc

(write out .asc file, clips object outside of x-y bounds, local space)

objzlimit objname z-min z-max filename.asc
(writes out object setting all points to fit into z-min, max in wsp)

objxyuv objname [filename.uv]
(writes out a uv file using the xy bounding box to map flat,

AND sets the object uv)
renderuv objname filename

(writes out uv file using display space as texture coords-

like a slide projector over rendered image, AND sets obj uv)

objuv inst-name file-name(.uv file) (loads uv file for an object)

(Texture and Transparency Map commands)

getmap <mapname> from <fname> x-size y-size x-repeat y-repeat\n");

getmapa <mapname> from <fname> x-size y-size x-repeat y-repeat\n");

(get rgba texture map)

getmapbw <mapname> from <fname> x-size y-size x-repeat y-repeat\n");

(get black & white map (one byte))

getmapbwa <mapname> from <fname> x-size y-size x-repeat y-repeat\n");

(get black & white map with an alpha channel)

objmap objname textmap reflmap obj% text% refl%

199

Appendix A Corpus Help Michael A. McKenna

transmap objname map-name (assign transparency map)

pointuv instname vertexind# textureu texture_v

mergergba rgb-file alpha-file width height rgba-file-dest

(make rgba file from rgb and alpha file)

makemip rgb-file width height mip-file-dest mip-dimension
makemipa rgba-file width height mip-file-dest mip-dimension

makemipbw a-file width height mip-file-dest mip-dimension

(Light commands)
(default light is light.1)

lightmake light-name (make light in global, default list)

lightmakeone light name (make light not in default list)

lightclose lightname (kill light)

lighton lightname
lightoff light-name
pointlight light-name (make light point source)

lightobj light name objname (light object with light- private list)

defaultlightobj obj_name (lightobject with default lights- private list)

defaultlightallobj (light al objects with default lights- private list)

unlightobj light-name obj_name (remove light from object- private list)

lightcolor light-name [r g b] (0-1)

ilightcolor light-name [r g b] (0-255)

lightwhite light-name b (0-1)

lightdimmer light name val (0-1, set brightness (not color) of light)

lightlinear light-name (linear falloff)

lightconstant light-name
lightexp light-name
lightexponent light name exponent (exponent for exponential falloff)

lightpos light name <obj> <x y z>

lightpoint light-name <obj> <x y z>

lightangle light-name theta

lightdeltaangle lightname theta (falloff angle for cone light)

lightshadow light-name [file-namel NULL

(Shadow commands)
shadow obj
shadows (onjoff}
unshadow obj
shadowbias biasl bias2
shadowres resfactor
shadowminsize val
shadowmapsize width height
shadowlightdensity lightname density(0-1, 1=fully dark)

hazelevel val
hazediatance val

(Video Deck Control commands)

animate {onloff}
(when "animate off", "vpranimate" and " bvw-animate" will do nothing)

vpranimate #_ofjframes (ampex or beta)

bvw-animate #_offrames (beta)

animateinit (set new animation starting timecode to current value)

bvw-search hh:mm:ss:fr

200

Appendix A Corpus Help Michael A. McKenna

bvw-forward hh:mm:ss:fr
bvw-readtc
eject

(General Bitmap Manipulation commands)
blitread {filenamel'screen'} blitname w h [x-start y-start] [alphafile]

(save bitmap on screen for specified size in memory blit)
blitreadblur (filenamel'screen'} blitname width height

(same as blitsave, but with a 'blur' style file- argb banks)
blitreadbyte filename blitname x-width y-height
blitwrite filename blitname
blitwritebyte filename blitname - save only red
blitmake newblitname width height red green blue (ints)
blit blitname x y (put up memore blit starting at x y)
blitlayer blit-background blit-foreground blit-dest
blitlayerb blit-background blit-foreground blit-dest (alpha reduction not

built into blit-foreground-rgb)
blitcopy blitsrc blitdest startx y width height
blitinsert blitsrc blitdest dest-x y
blitlayertrans blitl blit2 blitdest trans-factor
blitlayerred blit-background blit-foreground blit-dest (uses red as alpha)
blitramp blit blit-dest ramp (brightness scale)
blitscale blit blit-dest int-scale (size scale)
alphablit rgbfile alpha-file (mat in file over saved memorey blit)
glopen width height - special window open for using blits w/ gl on SGI

(Screen Bitmap Manipulation commands)
bitsave x y width height filename
bitload x y width height filename
bankload x y width height filename
bitmove xsrc y-src xlen y_len xdest ydest
alphaload bitfile alpha-file (mat in 640x512 file over upper left 640x512)
turnover x y width height (mirror bitmap 180 degrees)
turnaround x y width height (mirror bitmap 180 degrees)
bitgamma x y width height gamma (perform hard gamma correct on bitmap-

permanently changes bitmap)
bitramp x y width height val (perform hard brightness scale on bitmap)
bitrotate x y w h

(Save potion of screen, in the old "bob" file format)
bobdump xsrc ysrc xlen y_len filename (old bob-format bitmap save)
bobload x y filename
bobloadb x y file r g b (0-255, load with transparant background color)
bobloadt x y t file-name (load with transparancy=(255 0 0))

enlarge (pixel duplicate for 4x enlargement)

label (draw fonts to screen. see /cga/bin/label for options)

(Antialiased Line Drawing commands)
lineinit
linecolor r g b (0-255)
linetrans val (0-255)
lineclip x-min y-min x-max y-max
lineclipoff

201

Appendix A Corpus Help Michael A. McKenna

linemove x y thick
linedraw x y thick
linedone

fillcolor r g b (0-1 doesn't do much)
rectangle x1 yl x2 y2 (doesn't do much)

Dynamics:
addworld worldname (create a dynamic environment for bodies)
setworld world-name

addcorpus corpus-name
(create an articulated body collection, in the current world)

setcorpus corpus-name
corpusinit
addbody bodyname instancename joint-axisx y z { sliding I rotary }

density [1=inertial 1=colliding 1=convex 1=collidingvel_normaltest)
(create a rigid body, in the current corpus)

addpart partname instname bodyname density
[1=inertial 1=colliding 1=convex 1=colliding_velnormal-test]

setroot bodyname
setjoint bodyname { joint-axis-x y z joint-type }
setjointp bname jointaxisx y z joint-type

(set joint axis direction in parent's frame)
jointalign body object objectaxisx y z
deletejoint body-name

(removes body as one with a joint- making it a rigid part of parent)
killjoint body-name

(entirely removes body- no more mass or collision detection)
bodygroundstick bname onjoff
bodygroundtest bname onjoff (set individual body ground testing on or off)
maxv bodyname maxlinear max-angular
addv body-name linearx y z angular-x y z (specified in WORLD space)
setv bodyname [linear-x y z angularx y z] (specified in LOCAL space)
rmsv (returns the RMS of all of the joint velocities, for the current corpus)
ifrmsv tolerance command (if the RMS velocity of the joints is below the

given tolerance, then do the command-string)
setrootmatrix [4 lines of 4 floats, the transform matrix for the local space]
setrootpos (harden current position of the corpus)
xform (update the xforms for current corpus)
updatev (update all spatial velocities in the current corpus,
useful after reading in a state file)

scalelengthv scale-val - scale all bodies linear velocities
scaletimev scale-val - scale all bodies velocities by a time factor
linkbodies parent child
integrate corpus name [onloff]
go { # of frames }
motor body { etarget | ... } valuel value2

motor etarget target-joint-pos motor-time (exp spring)
motor eatarget target-exp-spring-ea motor-time (exp spring ea param)

motor ktarget target-joint-pos motor-time (linear spring)
motorfile motor-state-file etarget duration
jointmatchexp bodyname (set exp spring to the current joint angle)

jointmatchqtoexp bodyname (set joint angle to the current exp spring)
joint body { q | dq I ... } value (set a joint parameter)

202

Appendix A Corpus Help Michael A. McKenna

q, dq, ddq, Q, b, k, kq, ea, eB, eq, e-maxq,
jlimql, jlimq2, jlim-k1, jlim-k2, jlim-bl, jlim-b2,

jlim-eal, jlim-e2, jlim-eB1, jlim-eB2,
springtype: constant, mass, distalmass, totalmass
Q_type: QOPEN (0), QDAMP (1), QSPRING (2), QDAMPSPRING (3), QBIAS (4),

QJLIM (8), QEXPSPRING (16), QJLIMEXP (32) - "or" these together
jointstatus bodyname
jointQsum body [0 | off]
jointQabssum body [0 | off]
jointQsumtoQ body
QtoQbias - copy each body's Q force to the Q bias term
QbiastoQ
QtoEq - do inv control from Q force to exp spring rest angles

addmuscle muscle-name body-name
muscle muscle-name { k I b I ... } [value]

(set or query a "muscle" force parameter)
Q (bias force),
b (linear damping),
k, kq (linear spring stiffness and rest angle),

ea, eB, eq, e-maxq (exponential spring stiffness parans, rest angle,

maximum clamping force),
jlim_ql, jlimq2, jlim-kl, jlimk2, jlim-bl, jlim-b2,

jlim-eal, jlim-e2, jlim-eB1, jlim-eB2 (joint limit angle, stiffnesses,

linear dampers, and exponential springs),

springtype: constant, mass, distalmass, totalmass (scaling factor for

forces),
body2 (name of second body for 2 joint springs, attach forces, etc.),

k2a, k2b, k2aq, k2bq, (2 joint spring stiffness, rest angles)

attach-k, attachea, attach-eB, atatch-e, attachbreak,

attachinsertl (x y z), attachinsert2 (x y z) (spatially linear

forces- linear and exponential stiffnesses, w/ an

optional break length, and 2 insertion coordinates local

to the 2 bodies)
pulleypos [x y z], pulleyaxis [x y z], pulleybody [body-name],

pulleyr [value]
Q_type: QOPEN (0), QDAMP (1), QSPRING (2), QDAMPSPRING (3), QBIAS (4),

QJLIM (8), QEXPSPRING (16), QJLIMEXP (32), Q2LINEAR (64),

QATTACH (128), QPULLEY (256)
(reference # for the "type" of muscle; "or" these together)

extbias bodyname wsp_linear_force-x y z local-bodypoint-x y z

(constant external linear bias force applied to body-wsp force,local point)

rootmotion (fixedlfreelkinematic constrained)
jointmotion {freelkinematic)
treepoints body-name localx y z [file-name]

totaljoints (print total # of DOF's (degree of freedom) of current corpus)

totalmass (print total mass of corpus)

mass bodyname (mass of body, distal mass, total-fraction...)

massonly bodyname (only the mass of the one obj- ok before corpusinit)

partmass partname (mass of a 'part' in a body)

density bodyname (returns d of first part only)

corpuscog marker-obj [NOTE: sets localxforms]

(State Saving and Loading Commands)
dumps file-name (dump main state of corpus)

203

Appendix A Corpus Help Michael A. McKenna

loads filename
dumpQs file-name (dump joint force values)

dumpas file-name (dump acceleration values)

loadas filename
dumpmotors filename (dump motor progams state)

loadmotors filename
dumpmatcorpus filename (dump script to position all objects for rendering)

dumpIs (show Inerta tensor)
dumppv (show bias force)
dumpcog bodyname (show center of gravity for a body)

listbodies (file-name}
dumpbodyq body-name [file-name]
dumpbodyqa body-name file-name (append to file

dumpbodyX body-name [file-name] (dump body 6x6 Xforms)

dumpcontacts filename (dump special contact data)

loadcontacts filename
dumpcontactforces [file-name]
dumpcontactforce body-name [file-name]

contactfsum body-name [0 | off]

commandtree command-string-for-each-body(**=body-name)
commandtreeparts command-string-for-each-part(**=part-name)
commandtreein command-string-for-each-body(**=body-name) (leaves-inward)

commandtreeout command-string-for-each-body(**=body-name) (leaves-outward)

addmatlist
initmatlist
setmatlist
loadmatlist

(Integrator Commands)
iter int (loop each frame int times)
dt [time] (set time step for frame)

h [time] (set time step for next integration)

eps [val] (set integrator error tolerance)

time [val] (set current time)

inctime (increment time by dt)
pushtime
poptime (one level of push only)

integration [rkfixed I rkvar | rkf I euler]

order newtlarist (set 2nd order (Newtonian) or 1st order (Aristotelian)

dynamics solution)

(Constant Acceleration Gravity)

setgrav val (set gravitational acceleration value)

setgvect x y z xr yr zr (set gravitational acceleration value)

grav [onjoff]

("Equal-Attraction" Gravity Commands)

SetG val (set Newtonian gravitational constant)

Gravity [onjoff]
Gattract bodyl body2 (put two bodies on gravity attaction list)

ground [onjoff]

204

Appendix A Corpus Help Michael A. McKenna

groundtype [flat I trigrid]
addtrigrid grid-name instancename
groundk [val] (set ground linear spring const)
grounde [val] (set ground coefficient of elasticity) NOW INACTIVE
groundfric [val] (set coefficient of sliding friction)
groundfricb [val] (set damping for pseduo-static friction)
groundb [val] (set ground damping const)
groundea [val] (set ground exponential spring linear strength)

groundeB [val] (ground exp rise val)
groundstickea [val] (sticky ground exp spring linear strength)

groundstickeB [val] (sticky ground exp spring rise strength)
groundstickemaxz [val] (maximum force penetration val)
groundsticke [val] (ground stick force coefficient of restitution)

groundz [val] (set world space value for z-ground plane)
groundmassscale [onloff]

(scale all vertical reaction forces by the corpus mass)

collide bodyl body2 (set collision detection between bl and b2)

collision [onloff]
collisionanalysis [onloff]
collisione [val] (set collision restitution for collision analysis)

collisionfric [val] (sliding friction value for collisions)

collisionfricb [val] (sliding friction damping value for collisions)

collisionb [val] (set collision damping)
collisionea [val] (exp spring linear strength)

collisioneB [val] (exp spring rise)
collisionemaxz [val] (maximum force depth value)
collisionlog file-name

attach bodyl body2 bodylx y z body2_x y z k ea eB e [break-length]

attachb body damping_value
attachf body (prints last attach force vector)

attachfsum body-name [0 | off]

alarm time commandstring
timer deltatime commandstring
timerflush (activate all timers which are triggered by current time)

Hexapod Gait control commands:
addroach roachname
setroach roachname (set current roach for other commands below)

metabolism time (set's protraction, dleg, retraction, cycle time)

speed val (1.0=top speed, 2.0=1/2 speed of 1.0)

deltaspeed val
incrspeed
topspeed val
bottomspeed val
protime time
rettime time
cycletime time
dlegtime time
gaitgo
gaitinit
procom legnumber [list of commands for protraction]

retcom legnumber [list of commands for retraction]

stepreflex {onloff}

205

legstepreflex leg-number body_name triggerangle trigger-dir('+' or '-)

loadreflex (onloff}
legloadreflex leg-number bodyname jointforce
legstatus legnumber

206

Michael A. McKennaAppendix A Corpus Help

Appendix B Corpus Tutorial Michael A. McKenna

Appendix B Corpus Tutorial

B.1 Starting with Corpus
This appendix is intended to help familiarize the reader with the control of corpus. This

section is not intended to be a complete manual for corpus, but rather, it should serve as a

guide to the basic operations and concepts in corpus. Users of corpus need to be familiar

and comfortable with standard computer graphics concepts such as polygonal graphical

objects, viewing parameters, object transformation, rendering concepts, etc. To fully uti-

lize corpus, users should also be adept with command line interfaces and programming

concepts.

ASCII commands are used to control corpus, either through keyboard input, or through

file scripts. "Keyboard input" actually refers to UNIX stdin, therefore input to corpus

can be redirected from any text source, including files, and the output of other programs.

Corpus is invoked at the command line by typing:

corpus

Corpus can be invoked in a "silent" mode in which it prints out information only when

specifically instructed to, using a command. This silent mode can be useful when the input

and output of corpus is linked to another controlling program. To run corpus in the

"silent" mode, type:

corpus -s

The "silent" mode can also be toggled with the corpus command s ilent, as in:

silent on

207

Appendix B Corpus Tutorial Michael A. McKenna

silent off

Be sure to refer to Appendix A Corpus Help where the full corpus command set is listed.

Not all corpus commands will be discussed here, but Corpus Help should be a useful

guide, once the basic concepts are learned from this Appendix. In addition, Appendix C

Dynamics Verification presents a set of dynamic simulation scripts for corpus, which can

provide additional tutorial material.

B.2 Graphical Operations
This first corpus script performs some basics: loading an object from a file and rendering a

view of it.

Script 7: A corpus script to render an image of a graphical object

any line which begins with a "#" symbol is a comment, in corpus

set a dark blue background color for rendering

backgroundcolor 0 0 .2

load a graphical object in the "osu" format

the object will be named b, the file name is cube.asc

get b from cube.asc

set some object shading parameters: color, etc.

color b .5 0 0
shadeparam obj diffuse% specular% specular-exponent ambient%

we want an object which is mostly diffuse, with a little ambient color

shadeparam b .8 0 0 .2

By default objects are smooth shaded, but the cube should appear
faceted
facet b

set some viewing parameters
set the camera or "eyepoint" location in space

eye 5 5 1
lookat 0 0 0
alternately, we could look at the object's centroid, using:

#lookat b

render the scene.
render

by default, rendering will be accomplished using high speed hardware

to turn off hardware rendering, to use software rendering:

hw off

208

Michael A. McKennaAppendix B Corpus Tutorial

set the file to render into
render2file /tmp/frame

set the size of the rending output

screensize 320 256

we will have 'square' pixels- set the aspect ratio (320/256=1.25)

ar 1.25

turn on anti-aliasing
aa on

render the scene, using software scan conversion

render

we can execute a shell command or program at any time.

call compress function to reduce the size of the file

which was just rendered
system compress /tmp/frame

Graphical objects can be transformed in a number of ways in corpus. Transformations

effect an object's transformation matrix, used for display and geometric computations.

The following is a partial list of commands that transform graphical objects:

init obj
scale obj x y z
move obj <obj> <x y z>
rotate obj {x~yjz} angle
rotateaxis obj x y z angle

These commands create transformation matrixes using the standard computer graphics

forms. [Foley]

The way in which each of the transformation commands affects the object's matrix

depends on the current transformation mode. The premult command sets the transfor-

mation mode to "pre-multiply," such that additional transformations to a graphical object

will be pre-multiplied into the objects transformation matrix. The effect is as if the trans-

formation becomes the "first" one performed on the object. In contrast, the pos tmul t

command specifies the "post-multiply" transformation mode, such that an additional

transformation command is the "last" one performed. For example, consider the sequence:

move obj 1 0 0
scale obj 2 2 2

209

Michael A. McKennaAppendix B Corpus Tutorial

In post-multiply mode, the object would first move by 1 in X, and then, when it is scaled, it

will not only double in its linear dimension, but also move an additional 1 in X, because

the previous transformation is taken into consideration and the original offset of 1 is

scaled by 2 as well. In pre-multiple mode, the object moves, and then doubles in size,

without moving again, because the scale is performed "first," before the move. When mul-

tiple transformations are made on an object, the pre-multiply mode can become difficult to

conceptualize; in post-multiply mode, all new transforms are taken with respect to the pre-

vious ones.

The localxf orms command is a post-multiply mode which allows scale and rotate

transforms to occurs with respect to an object's geometric centroid, so the object scales or

rotates about that point, without regard to the object's location in worldspace. Similarly,

the xf ormcenter command allows the user to set the point in worldspace about which

rotations and scales will occur.

B.3 Dynamics in Corpus
The first step to use dynamics in corpus is to create a "world," or a dynamic environment.

The corpus command addworld is used for this purpose. The first addworld com-

mand prepares corpus to begin handling dynamic objects. A "world" hold parameters,

such as the gravitational force vector and ground contact parameters, which are shared

among multiple dynamic objects. Multiple "worlds" can be created in corpus, represent-

ing different environmental conditions.

The next step to using dynamics in corpus is to create a new (potentially articulated) body,

known as a "corpus." The addcorpus command is used for this purpose. "Bodies" and

"Parts" (discussed below) are then added to the new "corpus." When the articulated body

(or single rigid body) has been constructed, the new "corpus" is initialized, with the cor-

pus init command. A new "corpus" could now be defined, or we could begin simula-

tion.

As an example, let us now look at a simple script to construct a single "corpus," which

consists of a single cube.

Script 8: A corpus script to create a dynamic object

create a default dynamic environment

210

Appendix B Corpus Tutorial Michael A. McKenna

addworld w

create a new dynamic object (a corpus)

addcorpus cube-corpus

load a graphical object
get cube-obj from .cube.asc

addbody body-name instname joint-axis-x y z {slidingirotary} density

Add a dynamic body (bodyname), defined from a graphical object

(inst-name) to the current corpus

Bodies in general have a joint axis, for a single body the joint

params do not make a difference

the density is in kg/m^3 . 1000 = water

addbody cube-body cube-obj 0 0 1 rotary 1000

set that body to be the "root" object in the corpus (even though there

is only one body), and initialize

setroot cube-body
corpusinit

We could now simulate the motion of this body. For example, we could simple activate the

gravitational force with the corpus command grav on, and the simulator would generate

a downward acceleration in the body (See Appendix C Dynamics Verification). To com-

pute the simulation, the corpus command go is used, which instructs the system to simu-

late forward in time, for the duration of the current timestep, which is specified by the dt

command. For example:

set the timestep to 1/30 of a second (like video)

dt 0.033333
simulate 1/30 sec ahead
go
look at the results
render
simulate 30 timesteps- 1 second

go 30

There are a number of parameters in corpus used to control the numerical integrator. The

integration command selects the type of integration: euler, rkf ixed (the 4th

order fixed step Runge-Kutta), and rkf (the 4-5 order adaptive step size Runge Kutta).

The error tolerance of the rkf method is set with the eps command. For example:

211

Michael A. McKennaAppendix B Corpus Tutorial

integration rkf
if the diff between the 4th and 5th order solution is > 0.0001, subdivide
eps .0001

To construct an articulated figure, multiple links or "bodies" are added to the corpus. First,

their local coordinate frames and joint axes are defined. Then, the parent and child connec-

tions are established. To conclude the initialization process, the rootbody is specified,

and the corpus init command is entered.

To define the local coordinate frames for the bodies, the first step is to load the graphical

objects which correspond to them. Using the appropriate transformations, the graphical

objects are placed into their local coordinate frame (using the standard corpus transforma-

tion commands, such as scale, move, etc.). During this process the graphical object

must be scaled to the intended size of the dynamic object (corpus uses the MKS system

(Meter-Kilogram-Second), so a distance of 1 in the graphical environment correspond to 1

meter). The root body can be placed anywhere within its own local frame, but every other

body must be positioned (at this stage of the process) such that its joint axis has its origin

at the world-space origin. For example, let's examine the process of creating a 2-link pen-

dulum with the following script.

Script 9: A script to create a dynamic articulated figure in corpus.

addworld w
addcorpus c

get base from ../data/unit-cube

the base will be fixed in place. It serves as the immobile connection

for the top of the pendulum. (it is the root object)

make the base object 1 cm per side

scale base .01 .01 .01
unpost base

get bl from ../data/unit-cube.asc

get b2 from ../data/unit-cube.asc

scale it to be 1 long in Y, w/ a cross-section of .05 m

postmult
scale bl .05 1 .05
scale b2 .05 1 .05

move the joint to the origin

move bl 0 .5 0
move b2 0 .5 0

212

Michael A. McKennaAppendix B Corpus Tutorial

Both of the pendulum body-link segments, b1 and b2, have been scaled so that they are 1

meter long in y, and 5 cm wide in x and z. This is their "physical" size, which they will

maintain from this point on. They have both been positioned, currently overlapping in

space, such that one of their long ends lies at the worldspace origin (the point {0, 0, 0 in

the graphical environment). By positioning each body in this manner, we have defined the

location of the body's joint (at {0, 0, 01) with respect to its graphical object (at one of its

ends). Now that the local coordinate frames are ready, they are set using the addbody

command.

'base' is the rootbody,without a real joint
addbody base base 0 0 1 rotary 1000

addbody bodyname instname joint-axis-x y z {slidinglrotary} density

Add a dynamic body (bodyname), defined from a graphical object

(inst-name) to the current corpus
addbody bl b1 1 0 0 rotary 1000
addbody b2 b2 1 0 0 rotary 1000

We have specified rotary joints, along the X axis, and a density of 1000 kg/m 3 (like water).

The next step is to define the transformations which are used to place each body into the

coordinate frame of its parent body. In our example, the body "b " does not need any

additional transformation to connect to its parent, the "base." This body can now be con-

nected to its parent. We define the parent-child relationship with the linkbodies com-

mand:

define transform between parent and child, and define link

linkbodies parent-body-name child-body-name
linkbodies base bl

The joint of body "b2" is located at the distal end of body "b ." The location of the distal

end of body "b2," in its initial configuration is {0, 1, 01. Recall that "b2" is 1 meter long.

We place "b2" in the frame of "bl" by moving it as follows:

move b2 0 1 0
linkbodies b1 b2

We can now initialize the articulated corpus:

setroot base
corpusinit

we do not want the base to move.

rootmotion fixed

213

Appendix B Corpus Tutorial Michael A. McKenna

grav on
ground off

integration rkf
dt .03333333
eps .0000001

Additional graphical objects can be added to a link during the corpus building process.

Additional objects are called "parts." "Bodies" are the main objects associated with a link

and its joint. The joint and link properties are accessed through the "body's" name. When

a "part" is added to a body, it is attached to it rigidly, as if it were a part of the link. The

part (optionally) contributes mass to the link, and (optionally) its geometric surface is used

for collision detection. The addpart command adds additional objects to a link (body):

addpart partname instname body-name density

Other options exist for the addbody and addpart commands. Four binary flag terms

may be added to the end of either command:

addpart partname instname body-name density
[1=inertial 1=colliding 1=convex 1=collidingvelnormaltest]

The first flag (a "1" or "0") is the "inertial" flag, which sets whether the body or part

should contribute any mass to the articulated figure. Each link should always have some

mass associated with it, whether from its primary body or an added part (or any combina-

tion). The second flag, the "colliding" flag indicates whether the body or part should be

used for collision detection. The final two flags are less important, and are used to assist

the collision analysis (impulse mechanics, for non-articulated bodies only). The third flag

is used to indicate if the part of body is geometrically convex. The fourth flag indicates

whether or not to use a particular test in collision analysis (the "colliding-velocity-normal-

test," which will cancel an impulse response of the "colliding" bodies if they are moving

apart from each other). Without specifying these flags they are assumed to all be "1."

Use of these flag allows for special structure to be built into an articulated figure. For

example, parts could be added to a link which have a great amount of geometric detail, but

which are not considered during collision detection for efficiency. Or, geometrically sim-

plified objects can be added as parts which contribute no mass, but are used for collision

214

Michael A. McKennaAppendix B Corpus Tutorial

detection to reduce computation time. Different densities can be used with different parts

to encode special geometric mass distribution of a link.

Joint parameters are accessed through the j oint command. Values such as the joints

position (q), velocity (dq), and acceleration (ddq) can be set or queried, as follows:

joint body-name q 1
joint body-name dq 10.2
joint body-name dq

10.2

Parameters pertaining to joint spring, dampers, etc. are also set using j oint:

set joint damper constant to 10

joint body-name b 10
set joint linear spring constant to 1.2

joint body-name k 1.2

set joint linear spring rest angle to 3.1 (radians)

joint body-name k-q 3.1

The j oint status command displays the values of the major joint parameters. The

joint parameter, "Qjtype," sets the kind of joint forces which are active at the joint. Each

type of joint force generator (damper, spring, etc.) has a unique value (see Appendix A

Corpus Help), and to combine types, their values are added (or logically ORed) to form

the Qtype. For example:

set active joint forces to damper (1) and linear spring (2).(1 + 2 = 3)
joint body-name Q-type 3

Additional force generators can be added to a body, using the addmuscle command. A

"muscle" in corpus contains the same type of force generators that are available via the

j oint command (as well as a few additional types). The muscle parameters are accessed

via the musc le command, in the same manner as the j oint command.

The root body of a given corpus can be free to move about in space, under the influence of

the applied forces, or it can be constrained to be immobile, with the remainder of the artic-

ulated body behaving appropriately. To allow free motion of the root body of the current

corpus, use:

rootmotion free

To constrain the base to be immobile, use:

215

Michael A. McKennaAppendix B Corpus Tutorial

rootmotion fixed

Similarly, the motion of any joint can be left free, to respond to the forces (forward

dynamics), or constrained to follow a specified joint velocity and acceleration (inverse

dynamics). Free motion is specified with:

jointmotion body-name free

Constrained joint motion is specified with:

jointmotion body-name kinematic

In such a situation, the joint moves according to its kinematic joint parameters, so to gen-

erate a joint acceleration of 1.0 radians/sec 2 , starting from rest use the following com-

mands:
joint body-name dq 0
joint body-name ddq 1.0

When a joint's motion is kinematically controlled, the joint force required to maintain the

motion constraint is computed during the dynamics computations. The computed joint

force (Q) can be accessed with the j oint or j o int s tatus commands.

B.4 Language Features
Corpus has rudimentary commands to control execution flow, create loops, etc. Corpus

can be successfully used without knowledge of these language features, however complex

environments are more easily managed when using them. The scripts used to generate the

humanoid figure studied in this thesis, as presented in Appendix D Body Scripts, make

use of these language commands, as do some of the simulations presented in Appendix C

Dynamics Verification.

The text output response from any corpus command can be redirected from the screen out-

put to a file, using the special characters ">" and ">>". For example, the command: eye

> /tmp/eyepoint will write the output "eye 0 0 0" in the file:

/ tmp / eyepoint. The characters ">>" will append the output to the specified file,

rather than overwrite.

Integer variables may be used with corpus commands. This simple mechanism is typically

used to store and access quantities such as the current "frame number" or status flags. Inte-

216

Appendix B Corpus Tutorial Michael A. McKenna

ger variables are accessed using the special character '%' followed by the variable name,

which is a single ASC-II character. If a line begins with '%', a numerical operation or

assignment is performed on the variable. At any other location on a command line, the '%'

character is replaced with the variable's value, and the command-line is executed. For

example:
%A=10
%F=%A
%F+1

lines which begin with the '!' character are printed comments.
! lines which begin with the '!' character are printed

comments.
! The current value of 'F' is %F

! The current value of 'F' is 11

load a dynamic state, for the current Frame

loads StateData/StateFile%F

Appendix A Corpus Help lists the operations available for the integers.

The integers can be used to test basic conditionals using the i f command. The tail end of

the i f command line is executed if the testing condition is true. For example:

if %F=10 !this comment will print if F = 10

should we simulate?
if %s=1 go

should we render?
if %r=l render

if %a<%g %a=%g

Using a command-list, described below, a sequence of commands can be triggered to exe-

cute after the test.

A "command list" is a sequence of corpus commands which are executed when the com-

mand list's name is entered (like a simple macro). A command list is defined using the

commandlis t command or with the abbreviation cl. For example, the following script

creates a command list named "sim" which would simplify generating a simulated anima-

tion:

a command list is defined using "cl cl-list-name", followed by a list

of command lines. The list is terminated with a line starting with "."

cl sim

217

Michael A. McKennaAppendix B Corpus Tutorial

go
render

We could then simulate a step and render the results by entering s im. Command lists can

be instructed to run multiple times. We could watch 30 sequential simulation steps by

entering s im 3 0. The following is a more sophisticated simulation command list:

cl sim
go
! done simulating frame %F
render
save the current dynamic state
dumps StateData/StateFile%F
%F+

Note that the integer variables can be used within the command lists. Command lists func-

tion as loops when run multiple times, as described above. (Loops can also be made using

the commandloop or c loop commands, without naming and saving the commands as a

command list.)

Command lists can also accept an input string variable. Each occurrence of the character

sequence '**' is replaced with the input string, which is specified when invoking the com-

mand list. For example:

cl shade-em
facet **
shadeparam ** .8 .1 30 0

color ** .1 .2 .8

shade-em object1
shade-em object2

A list of arbitrary text lines can be stored using the s ave lis t command. A savelist is

named and entered in the same manner as a command list. For example:

savelist body-list
head
torso
left-arm
right-arm

218

Michael A. McKennaAppendix B Corpus Tutorial

Savelists can be used to execute corpus command, based on their contents. The f oreach

command loops over a savelist, and substitutes each element of the savelist into a com-

mand string, which is executed. For example:

color all body parts red
foreach body-list color ** 1 0 0

The playlis tn command uses a specific element from a savelist to build a corpus com-

mand. For example:

unpost the 2rd element (left-arm) of body-list (starting from 0).
playlistn body-list 2 unpost

A command can be executed for each body in an articulated figure using the com-

mandtree command. For example:

set the joint velocity of every body in the current corpus to 0

commandtree joint ** dq 0

Similarly, a command can be executed for every "part" in an articulated figure (which

includes every "body") using the commandtreeparts command, as in:

color each part of the current corpus green. (requires the graphical

object and part to share the same name)

commandtreeparts color ** 0 1 0

Rather than improve the computer language facilities built into corpus, effort would be

better directed into replacing the command line parsing interface sub-system with a well-

developed system such as the tcl library. [Ousterhout] Such a task is considerable undertak-

ing, however, due to the large number of corpus parsing commands which would have to

modified to be compatible with a new system.

219

Appendix B Corpus Tutorial Michael A. McKenna

Appendix C Dynamics Verification Michael A. McKenna

Appendix C Dynamics Verification

A suite of test simulations were developed to verify that the dynamics computations per-

formed by corpus were properly implemented, and result in numerically "accurate"

results. Because the computations are numerical, the results will usually not be exact. We

can define an "accurate" result as one in which the errors are insignificant when compared

to the results, and one in which the error does not lead to gross changes in the dynamics of

the system. With each test case, we will discover how accurate the dynamics computations

are with respect to the given conditions.

To solve the forward dynamics problem, there are several key factors which must be cor-

rectly computed: spatial and joint accelerations are solved based on the applied forces, the

accelerations are integrated to velocities and positions, and the forces functions are com-

puted based on their underlying model.

For the inverse dynamics problem, based on specified velocities and accelerations, the

forces are computed, accelerations are integrated to velocities and positions, and accelera-

tion functions are computed.

The most difficult equations to evaluate are the force functions (for forward dynamics)

and acceleration functions (for inverse dynamics). We can verify that the functions create

the appropriate accelerations or forces. However, it is more difficult to evaluate their cor-

respondence to real world phenomena.

C. 1 Constant Linear Force: Gravitational Free Fall Test
The most basic test verifies that bodies accelerate correctly under the influence of a linear

force. To test this, simulated gravitational forces are applied to a single dynamic body

(non-articulated). The gravitational force applies a constant linear force of -9.81, in the z

direction, to the body's center of mass. After one simulated second of free fall, the body's

220

Appendix C Dynamics Verification Michael A. McKenna

position and velocity are queried, and the results are compared to the analytic result. For

one second of free fall, an analytic solution gives us:

1

v = -9.81 m/sec2dt = -9.81 t = -9.81 m/sec Eq. 92

0

1

p = ff-9.81 m/sec 2dt = (-9.81) t2 = -4.905 m

0

Eq. 93

A corpus script to simulate a falling body is shown in Script 10. Because the acceleration

is unchanging, the simulation is trivial to solve accurately. In fact, euler integration is

implemented using equations similar to those given in equations Eq. 92 and Eq. 93, and

the exact solution can be computed using a single euler step. The more advanced integra-

tion methods - the fixed-step, fourth-order runge-kutta (RK4), and variable step-size

runge-kutta (RK4/5) - also give exact solutions in one step.

Script 10: A corpus script to simulate a body in free fall.

create a default dynamic
environment
addworld w

create a new dynamic object
(a corpus)
addcorpus c

load a graphical object
get b from ../data/unitcubeb.asc

add the graphical object (a body)
to the current corpus
addbody b b 0 0 1 rotary 1000

set that body to be the root
object in the corpus, and
initialize
setroot b
corpusinit

set some world properties
grav on
ground off

pick integration type
#integration euler
#integration rkfixed
integration rkf

set simulation timestep
dt .03333333333333333333333

set the rkf error tolerance
eps .0000001

print more dynamics status
during simulation
verbose extra

simulate 30 steps (1 sec)
go 30

print out information on the
body. It should be at 0 0 -4.905,
v: 0 0 -9.81
whereis b
setv b

221

Appendix C Dynamics Verification Michael A. McKenna

In a typical simulation, using a smaller simulation step-size will generally result in a more

accurate result, because the integrator samples the changing state variables more fre-

quently. In this simple test case, however, the result becomes slightly less accurate with a

smaller time step, presumably because the numerical limits of the computer allow more

errors to accumulate when more mathematical operations are executed (See Table 8).

Table 8: Free fall test results.

St ethcd simulation steps! position velocity
sec (M) (m/sec)

Analytic Solution 1 -4.905 -9.81

Euler 1 -4.905 -9.81

Euler 30 -4.905 -9.81

Euler 300 -4.90498 -9.80993

Euler 3000 -4.90496 -9.80989

RK4 1 -4.905 -9.81

RK4 300 -4.90495 -9.80987

RK4 3000 -4.90496 -9.80989

RK4/5 1 -4.905 -9.81

RK4/5 300 -4.90499 -9.80998

RK4/5 3000 -4.90496 -9.80988

No rotational accelerations were inadvertently introduced when simulating a gravitational

acceleration. In addition, no rotations, or joint accelerations, were introduced when simu-

lating a falling articulated body. Bodies which have their center of mass offset from the

coordinate frame origin also simulate correctly, even though technically the gravitational

force creates a torque at the coordinate frame origin, where the computations occur. No

rotational acceleration is created because the spatial inertia tensor also encodes the offset

of the COM.

C.2 Conservation of Momentum: Constant Velocity Tests
Another set of basic tests validates that, in the absence of applied forces, a body moves

with a constant velocity. The first test simulates a body moving with a constant linear

velocity. The second tests a body with a constant angular velocity. The third tests the

222

Michael A. McKennaAppendix C Dynamics Verification

Script 11: A corpus script to simulate a body moving with a constant velocity.

addworld w # set the linear velocity of the
addcorpus c # body. Set angular v to 0
get b from ../data/unitcubeb.asc setv b 1.1 2.2 4.432 0 0 0
addbody b b 0 0 1 rotary 1000
setroot b # set angular velocity:
corpusinit #setv b 0 0 0 1.1 2.2 4.432
grav off
ground off # set both linear and angular v:

#setv b 1. 1 2. 2 4. 432 1. 1 2. 2 4. 432
integration rkf
dt .0333333333333333333333 # simulate 30 steps (1 second)
eps .0000001 go 30

whereis b
setv b

motion of a body with a constant linear and angular velocity. The computations involved

in the third test are more complex than they might seem upon first examination. Because

local coordinate frames are used in corpus, a motion involving rotations and translations

requires that the body move in a locally rotating space. Although the motion is straight-

line in world space, an examination of the linear velocities in local space reveals a curving

path. This curve must be accurately integrated, or errors in the motion will result.

The corpus script to simulate a body moving with a constant linear velocity, in the absence

of external forces, is given in Script 11. This test is even more basic than the gravitational

test above, and it is not surprising that exact results are computed by the three different

integrators, at a variety of simulation step sizes. Similarly, for the second test, which

examines constant angular velocities, exact results can be obtained from any of the inte-

grators.

The third test verifies that bodies with both a constant linear and angular velocity continue

to move with that same velocity along a straight line. This test reveals some differences in

the accuracy of the integrators; the euler integrator introduced errors which built up over

time, while the other integrators created an accurate, stable result. See Figure 64.

C.3 Oscillatory Motion: Linear Spring Test
The following experiment/test simulates a simple translating joint with a linear spring. An

oscillatory movement is created when the joint position is offset from the spring rest

223

Appendix C Dynamics Verification Michael A. McKenna

Appendix C Dynamics Verification Michael A. McKenna

pos (m) Figure 64: Results from the con-

stant linear and angular velocity

14 . test.

12- The plots to the left show the x

10 position for the dynamic body
over time, using the script given

8 in Script 10. After 10 seconds of
simulation time, the Euler plot

(dashed) begins to deviate from a

4 straight line, gaining energy. The
lower, solid-line plots shows the

2 RK4, RK4/5, and analytic solu-
tions (which co-exists on the

2 4 6 8 10 same straight line).

angle. The simulation progresses forward in time, simulating accelerations from the

applied spring forces. A feedback system is created, as the acceleration integrates to veloc-

ity and position, and the spring changes its force, based on the changing joint position.

Without any damping in the system, the oscillation continues indefinitely.

The analytic solution to this spring/body system is:

Fk = -k Ax , Eq. 94

where k is the sprint constant, Fk is the spring force, and x is the joint position. The natural

frequency, co , is given as:

k
coo = -Eq. 95

where m is the body mass. The amplitude of the oscillation is given as:

A = Fx02 +v02/0 2 , Eq. 96

where vo is the starting joint velocity, and xO is the starting joint position. The phase of the

oscillation is defined using:

tanO = 0o 0 Eq. 97
V

0

The value of the joint position at a time, t, is then:

x(t) = A sin (ot+$0) . Eq. 98

224

Script 12: A corpus script to simulate a linear spring system.

addworld w
addcorpus c
get b from ../data/unitcubeb.asc

get b2 from ../data/unit-cubeb.asc

addbody b b 0 0 1 rotary 1000
addbody b2 b2 1 0 0 sliding 1000

linkbodies b b2
setroot b
corpusinit
grav off
ground off
integration rkf
dt .03333333

verbose extra
joint b2 q 4
joint b2 Qtype 2
equal to mass of b2
joint b2 k 984.857
joint b2 k-q 3
rootmotion fixed

for 3 integrator steps/frame
eps .000000000001
for 1 step/frame
#eps .1

The corpus script to simulate such a system is given in Script 12. The RK4/5 integrator

provided excellent results, matching the analytic solution with great accuracy. Even after

100 seconds of simulation time, the simulated solution remained in step with the analytic,

and there was no net energy gain or dissipation. A plot of the simulation results, vs. the

analytic solution is shown in Figure 65.

C.4 Damped Oscillation: Linear Spring and Damper Test
The following test compares the analytic solution to the simulated corpus solution for a

body moving under the influence of a spring and damper combination. The resulting

motion, when the body is released from a position offset from the spring rest position is an

oscillatory movement, which reduces its amplitude over time.

The differential equation describing the body's motion is given as:

m-d2+b- +kx = 0,
dt2 dt

Eq. 99

where b is the damping constant (other terms carry over from previous examples).

The position of the body, as a function of time then is given as:

x (t) = A e-tsin (wot +<p0) Eq. 100

225

Michael A. McKennaAppendix C Dynamics Verification

Appendix C Dynamics Verification Michael A. McKenna

pos (m) pos (M)

4 4

3.5 3.51

3 3

2.5 2.5

time (s) ' time (s)
2 4 6 8 10 102 104 106 108 110

pos (M) pos (M)

4 4

3.5 3.5

3 3

2.5 2.5

-time (s) time (s)
2 4 6 8 10 102 104 106 108 110

Figure 65: Linear spring oscillations.

The plots show the motion of the body over time, as it is driven by the spring force.

Two different simulations are shown, at two different times ranges. The upper row shows a simulation

which took one integrator step per frame (using the RK 4/5 integrator). The bottom row shows a simula-

tion which took three integrator steps per frame for increased accuracy. On the left, the plots show the

results from time 0-10 seconds. The simulation results match the analytic very closely; on the plots, the

two curves overlap and cannot be distinguished. The right plots show the results for simulation time 100-
110 seconds. Here, the top plot shows that the simulation has lost approximately 30* of phase with the

analytic solution, which is shown as the dashed line. Note, however, that the simulation has remained sta-

ble, with a constant net amplitude. The lower plot shows that the simulation which took three times more

integrator time steps remains exactly in sync with the analytic solution.

226

Script 13: A corpus script to simulate a linear spring and damper system.

addworld w
addcorpus c
get b from ../data/unitcubeb.asc

get b2 from ../data/unit-cubeb.asc

addbody b b 0 0 1 rotary 1000

addbody b2 b2 1 0 0 sliding 1000

linkbodies b b2
setroot b
corpusinit
grav off
ground off

pos (m)

integration rkf
dt .03333333
eps .1
joint b2 q 4
joint b2 Qtype 3
equal to mass of b2
joint b2 k 984.857
joint b2 k-q 3
joint b2 b 100
rootmotion fixed

Figure 66: Damped oscillation
simulation results.

The solid line on the plot shows
the motion of the body over
time, in response to the applied
spring and damper forces. The
outer dashed lines show the ana-
lytic solution for the envelope
of the damped oscillation. The
analytic solution and simula-
tion results for the body motion
are extremely similar; another
dashed line is plotted for the

time (s) analytic solution, but it is very
difficult to discern from the sim-
ulation plot (solid line).

The corpus script to simulate this spring and damper system is given in Script 13. A plot

of the analytic and simulated solutions is given in Figure 66. The results agree with great

accuracy.

C.5 Exponential Spring Test
The next test examines the motion of a body which is influenced by an exponential spring.

The equation of motion for the body, derived from the exponential spring equations

described in Dynamic Simulator (5), is given as:

Eq. 101

227

mdit,+ sign(x-x) x ep II = 0
dt2'"

Appendix C Dynamics Verification Michael A. McKenna

Script 14: A corpus script to simulate an exponential spring system.

addworld w
addcorpus c
get b from ../data/unitcubeb.asc

get b2 from ../data/unit-cubeb.asc

addbody b b 0 0 1 rotary 1000

addbody b2 b2 1 0 0 sliding 1000

linkbodies b b2
setroot b
corpusinit
grav off
ground off

integration rkf
dt .03333333

pos (m)

eps .000000000001
verbose extra

joint b2 q 4
joint b2 Qtype 16

b2 mass: 984.857

joint b2 ea 1
joint b2 eB 10
joint b2 e-q 3

rootmotion fixed

Figure 67: Exponential
spring oscillation.

The plot shows the position
of the body over time, in
response to the applied forces
from an exponential spring.

Again, the plots of the simu-
lation results and analytic
solution overlap.

X / ._. . time (s)

The script to simulate a body moving under the influence of an exponential spring in cor-

pus is given in Script 14. The motion of the body was first simulated in corpus, and then

computed in the math analysis program MathematicaTM, [Wolfram] which was used to

numerically integrate Eq. 101. The results, once again, were in very close agreement. A

plot of the simulation results is shown in Figure 67.

C.6 Double Pendulum: Two Link, Two Joint Arm
The following test creates a simulation of a two link arm. The equations of motion for

such a system are developed in Brady, et al. [Brady] Part of that work is reviewed here. The

introduction of joints greatly complicates the equations of motion, even in such a simple

228

Appendix C Dynamics Verification Michael A. McKenna

Figure 68: A two-link, two-DOF arm.

y

1 -

0 x

Figure 69: Free body diagram for link i.

y
di

system. Construction of the simulation in corpus, however, remains a simple matter. The

equations of motion for the two link arm were entered into MathematicaTM, to allow com-

parison to the results of the corpus computations.

For reference, a diagram of the two link arm system is shown in Figure 68. A free body

diagram for one of the links in the arm is shown in Figure 69. A corpus script used to con-

struct such a system for simulation is given in Script 15.

The arm kinematics are defined in terms of the link lengths and the joint angles. The cen-

ters of mass of the two links are given as:

1i cosol
12 sin 0

r2 = 11 cos o + 0.5 l2cos (01 + 02)1

211i sinOI +0.5 12 sin (0 + 02)

Eq. 102

Eq. 103

The velocity of the body i's center of mass, ri, and acceleration, F,, are found by differen-

tiating the position vector, ri, yielding fairly complex terms (not given here).

229

Michael A. McKennaAppendix C Dynamics Verification

Appendix C Dynamics Verification Michael A. McKenna

Script 15: A corpus script to simulate a double pendulum.

postmult

addworld w
addcorpus c

get base from ../data/unit-cubeb

unpost base

cyl: aligned w/ Y axis-
{-10 10, -5 5, -10 10}
get b1 from ../data/cylinder.asc

get b2 from ../data/cylinder.asc

scale it to be 1 long in Y, w/
a radius of .05 m
scale b1 .005 .1 .005
scale b2 .005 .1 .005

move the joint to the origin
move b1 0 .5 0
move b2 0 .5 0

addbody base base 0 0 1 rotary 1000

addbody b1 b1 1 0 0 rotary 1000
addbody b2 b2 1 0 0 rotary 1000

define transform between parent
and child, and define link
linkbodies base bl

move b2 0 1 0
linkbodies b1 b2

setroot base
corpusinit

rootmotion fixed

grav on
ground off

integration rkf
dt .03333333
eps .0000001
verbose extra

The vector p; defines the location of the center of mass of body i, taken from the body's

proximal joint, and d; defines the center of mass taken from the body's distal joint:

pI = - , Eq. 104
2 I-

P2 = 1COS(0 1+ 02)
2 [sin (0, + 02)

di = -pi .

Eq. 105

Eq. 106

230

Appendix C Dynamics Verification Michael A. McKenna

Appendix C Dynamics Verification Michael A. McKenna

The dynamics equations relate the applied force (fg) and torque (ng) to the linear and rota-

tional accelerations:

f= m , , Eq. 107

n= Ii (0i + o0ix Ii (o . Eq. 108

In our two dimensional case, we can simplify:

(O) X I o = 0, Eq. 109

and, in terms of the joint angles in our 2-link arm case:

n = I 1 Eq. 110

n2 = 12 (01 + 02). Eq. 111

The net forces and torques are computed by the statics equations, given as:

f = fi_-1,i-f,+ 1 +mi g , Eq. 112

ni = n f -, ni, 1 - p xf i1,i+di xf, i1 Eq. 113

In our example, there are no external forces applied except for gravity, thus no forces are

applied at the arm's tip, so that f 2, 3 = 0, and n2, 3 = 0. The gravitational vector is given

as:

g = L Eq. 114
-9.81

We can now solve the inverse dynamics equations, by substituting the dynamics equations

(Eq. 107 - Eq. 111) into the statics equations (Eq. 112 - Eq. 114), and extracting the

applied joint torques, given joint positions, velocities, and accelerations:

no, = 1 01 +n 1,2 + p 1 x (mi Y1 + m2 2 mlgm -I2 g) Eq. 115

-di x (m 2 '2 - m 2 g) '

n1, 2 = 12 (1 + 0 2) + p 2X (M2 2 - m 2 g) . Eq. 116

231

Appendix C Dynamics Verification Michael A. McKenna

We next insert our kinematics equations (Eq. 102-Eq. 106), and simplify and collect

terms. The inverse dynamics solution for the joint torques can then be given as:

S m2 1 1 2 I2 1_2_

nI,2= $1 I2S02+cos 2 +4 +52 2 + 4 Eq. 117

m21112 .2

+ 2 01 sin0 2 + 4.905 m2 12cos (0, + 02)

2In 1+M 12 22

no, 1i 1 + I 2 + m 2 111 2cos02+ 14 2 2 + m21 Eq. 118

I2 12 I2 1 2 1 2
+2 2+ 22 + 2 cos 2 2 O2sinO2

-m 2 I1I2$10 2 sin0 2 +4.905m 2 2cos (01 + 02) + 9.81 l1 (+ m2)cos01

To solve for the forward dynamics, we apply a torque function, and solve for the joint

accelerations. For our test, we allow the arm to passively fall, as a double pendulum, under

the force of gravity, so that:

no = nI,2 = 0 Eq. 119

The rather lengthy solution for the forward dynamics to compute joint accelerations is

given below in the MathematicaTM script, Script 16. These equations are too complex for

Mathematica to integrate, and since we have already verified the accuracy of the integrator

in corpus, we compare instantaneous solutions for the joint accelerations. Examining

these instantaneous solutions (given joint angles and velocities) shows that the Mathemat-

icaTM and corpus equations of motion yield exactly the same results.

Script 16: A MathematicaTm script to define the equations of motion for a two link pendulum.

(* 2- link arm- statics (net force) *)

f01[t_]:=f1[t] + f12[t] - ml g

f12[t_]:=f2[t] - m2 g

232

Appendix C Dynamics Verification Michael A. McKenna

Cross[a_, b_]:= a([1]] b[[2]] - a[[2]] b[[1]]

nOl[t_]:= n1[t] + n12[t] + Cross[(pll[t] + rl1[t]), f0l[t]] -

Cross[r11[t], f12[t]]

n12[t_]:= n2[t] + Cross[(pl2[t] + rl2[t]), f12[t]]

(* 2 link dynamics *)

fl[t_]:= ml rl''[t]

f2[t_]:= m2 r2''[t]

g:= {0, -9.81}

n1[t_]:= il thl''[t]

n2[t_]:= i2 (thl''[t] + th2''[t])

(* Kinematics *)

(* pl is the 'local' vector- from proximal to distal *)

pll[t_]:= { 11 Cos[th1[t]], 11 Sin[thl[t]] }

p12[t_]:= { 12 Cos[th1[t] + th2[t]], 12 Sin[thl[t] + th2[t]]}

(* rl is 'local' vector - from distal to COM *)

rl1[t_]:= -0.5 pll[t]
rl2[t_]:= -0.5 p12[t]

(* p - vector from base to distal end *)

p1[t_): p11[t]

p2[t_]:= pll[t] + p12[t]

(* r- vector from base to COM - r1 also equals p1 + r1 *)

rl[t_]:= 0.5 p1[t]
r2[t_]:= p2[t] + r12[t]

(* Define derivatives *)

rl'[t_]:= D [rl[t], t]

r1I''[t_]: D[r1' [t] , t]

r2'[t_): D [r2[t], t]

r2''[t_]:= D[r2'[t], t]

(* Simplify and Collect terms for the joint torques: nOl, n12 *)

nn0l[t_]:= Simplify[n01[t]]

nnl2[t_]:= Simplify[n12[t]]

nnNl2[t_]:=Collect[nnl2[t], thl''[t]]

233

Appendix C Dynamics Verification Michael A. McKenna

nnn12 [t]

nnN01 [t_]
nnn01 [t_

(* Make a

th'':= So

(* aa[t]
aa[t_]:=j
(* bb[t]

bb[t_]:=

:=Collect[nnN12[t], th2''[t]]

:=Collect[nnO1[t], thl''[t]]
:=Collect[nnNO1[t], th2''[t]]

2D array, solving for joint accelerations when torques are zero *)

lve[{nnn0l[t]==0, nnnl2[t]==0},
{thl''[t], th2''[t]}]

is the joint acceleration of the 1st joint *)
th '[t] /. th''[[1,1]]
is the joint acceleration of the 2nd joint *
th2''[t] /. th''[[1,2]]

nnn0l [t]

4.905 11 ml Cos[thl[t]] + 9.81 11 m2 Cos[thl[t]] +

4.905 12 m2 Cos[thl[t] + th2[t]] -

.1. 11 12 m2 Sin[th2[t]] thl'[t] th2'[t] -

2
0.5 11 12 m2 Sin[th2[t]] th2'[t] +

2 2 2
(il + i2 + 0.25 11 ml + 1. 11 m2 + 0.25 12 m2 +

1. 11 12 m2 Cos[th2[t]]) thl''[t] +

2

(i2 + 0.25 12 m2 + 0.5 11 12 m2 Cos[th2[t]]) th2''[t]

nnn12

4.905

[t]

12 m2 Cos[thl[t] + th2[t]] +

2

0.5 11 12 m2 Sin[th2[t]] thl'[t] +

2

(i2 + 0.25 12 m2 + 0.5 11 12 m2 Cos[th2[t]]) thl''[t] +

2

(i2 + 0.25 12 m2) th2''[t]

Simplify[aa[t]]

234

Appendix C Dynamics Verification Michael A. McKenna

2

-(((1. i2 + 0.25 12 m2 + 0.5 11 12 m2 Cos[th2[t]])

(4.905 12 m2 Cos[th1[t] + th2[t]] +

0.5 11 12 m2 Sin[th2[t]] th1'[t]

2

)) /

2

(-1. i1 i2 - 0.25 i2 11 ml - 1. i2 11 m2 -

2 2 2

0.25 il 12 m2 - 0.0625 11 12 ml m2 -

2 2 2

0.25 11 12 m2 + 0.25 11
2 2 2

12 m2 Cos[th2[t]]

2

((-1. i2 - 0.25 12 m2)

(4.905 11 ml Cos[th1[t]] + 9.81 11 m2 Cos[thl[t]] +

4.905 12 m2 Cos[thl[t] + th2[t]] -

1. 11 12 m2 Sin[th2[t]]

0.5 11 12 m2 Sin[th2[t]]

2

(-1. i1 i2 - 0.25 i2 11 ml

th1'[t] th2'[t]

2

th2'[t])) /

2

- 1. i2 11 m2 -

2 2 2

0.25 il 12 m2 - 0.0625 11 12 ml m2 -

2 2 2

0.25 11 12 m2 + 0.25 11

2 2 2
12 m2 Cos[th2[t]]

Simplify[bb[t]]

2

-(((-1. il - 1. i2 - 0.25 11 ml

2 2

- 1. 11 m2 - 0.25 12 m2 -

1. 11 12 m2 Cos[th2[t]])

(4.905 12 m2 Cos[th1[t] + th2[t]] +

0.5 11 12 m2 Sin[th2[t]] thl'[t]

235

)) /

Appendix C Dynamics Verification Michael A. McKenna

(-1. il i2 - 0.25 i2 11 ml - 1. i2 11 m2 -

2 2 2

0.25 il 12 m2 - 0.0625 11 12 ml m2 -

2 2 2 2 2 2

0.25 11 12 m2 + 0.25 11 12 m2 Cos[th2[t]]

2

((1. i2 + 0.25 12 m2 + 0.5 11 12 m2 Cos[th2[t]])

(4.905 11 ml Cos[th1[t]] + 9.81 11 m2 Cos[th1[t]]

4.905 12 m2 Cos[thl[t] + th2[t]] -

1. 11 12 m2 Sin[th2[t]] thl'[t] th2'[t]

2

0.5 11 12 m2 Sin[th2[t]]

2

(-1. il i2 - 0.25 i2 11 ml

th2'[t])) /

2

1. i2 11 m2 -

2 2 2

0.25 il 12 m2 - 0.0625 11 12 ml m2 -

2 2 2 2 2 2

0.25 11 12 m2 + 0.25 11 12 m2 Cos[th2[t]]

236

Appendix C Dynamics Verification Michael A. McKenna

C.7 Self Consistency: Multiple Geometric Structures
Four different articulated bodies were created in a corpus simulation. The four structures

were identical in their overall geometric structures, however, each articulated figure was

specifically created in a different manner. Each 4-link articulated body had a different link

specified as its root object. The root object is the only object whose spatial acceleration is

directly calculated; otherwise joint accelerations are computed. Therefore, very different

root motions must be calculated for the different structures.

The structures are given energy by the constant application of a torque at a single joint in

each structure. The different structures undergo very similar simulated motion. They do

begin to drift apart slightly in their solutions after simulating for some time. After approx-

imately 5 seconds of simulation time, a very large amount of energy had been entered into

the systems, through the constant application of the joint torques. Each powered joint had

been accelerated to a velocity of over 18 radians/sec, within a structure 4 meters in length.

The joint parameters between different structures were still within 99% agreement.

The following, Script 17, creates the multiple articulated body test.

Script 17: A corpus script which creates 4 different articulated bodies which have identical structures, but

different links specified as the root link.

postmult
addworld w

define the first of 4 corpora ("corpus"es)

addcorpus ci

Define a "commandlist" (cl), like a simple procedure, to load and

initialize bodies.
The "%" symbols indicate an integer variable.

This list is names 'load1'.

Lists are terminated by "." as the first character of a line.

cl load1
get b.%c.%b from ../data unitcubeb.asc

scale b.%c.%b 1 .1 .1
move b.%c.%b .5 0 0
addbody b.%c.%b b.%c.%b 0 0 1 rotary 1000

237

Michael A. McKennaAppendix C Dynamics Verification

Appendix C Dynamics Verification Michael A. McKenna

%b+

set the corpus number to 1
%c=1
set the body number to 1
%b=1
call the load command list, 4 times, to load 4 bodies into the corpus, ci

load1 4

define the transformations between parent and child links, and specify

the hierarchy
move b.1.2 1 0 0
linkbodies b.1.1 b.1.2
move b.1.3 1 0 0
linkbodies b.1.2 b.1.3
move b.1.4 1 0 0
linkbodies b.1.3 b.1.4

setroot b.1.1
corpusinit

define the second corpus, with a different root body, and different

local connections, but the same overall geometry

Subsequent operations are performed on the new, current corpus

(see "setcorpus")
addcorpus c2
%c=2
%b=l
load1 4

move b.2.2 1 0 0
linkbodies b.2.1 b.2.2
move b.2.3 1 0 0
linkbodies b.2.2 b.2.3
rotate b.2.4 z 180
linkbodies b.2.1 b.2.4

setroot b.2.1
corpusinit

move the entire articulated corpus by moving the root body and

dynamically setting the new position with "setrootpos"

setrootpos

addcorpus c3
%c=3
%b=1
load1 4

move b.3.2 1 0 0

238

linkbodies b.3.1 b.3.2
rotate b.3.3 z 180
linkbodies b.3.1 b.3.3
#rotate b.3.4 z 180
move b.3.4 1 0 0
linkbodies b.3.3 b.3.4

setroot b.3.1
corpusinit

move b.3.1 2 0 -.6
setrootpos

addcorpus c4
%c=4
%b=1
load1 4

rotate b.4.2 z 180
linkbodies b.4.1 b.4.2
move b.4.3 1 0 0
linkbodies b.4.2 b.4.3
move b.4.4 1 0 0
linkbodies b.4.3 b.4.4

setroot b.4.1
corpusinit

move b.4.1 3 0 -.9
setrootpos

grav off
ground off

integration rkf
dt .03333333
eps .000000001
verbose extra

set the joint force type to be a "bias force" (type 4)
the bias force value is set by specifying the "Q".
In this manner, a constant torque of 10 is set for the joints below.
The remaining joints are unpowered, with zero applied force.
joint b.1.2 Q-type 4
joint b.1.2 Q 10

joint b.2.4 Q-type 4
joint b.2.4 Q -10

joint b.3.4 Qtype 4

239

Appendix C Dynamics Verification Michael A. McKenna

Appendix C Dynamics Verification Michael A. McKenna

joint b.3.4 Q -10

joint b.4.4 Qtype 4
joint b.4.4 Q -10

color the root objects
color b.1.1 1 0 0
color b.2.1 1 0 0
color b.3.1 1 0 0
color b.4.1 1 0 0

for convenience, define a command list to simulate one step, then render

cl s
go
render

set some viewing parameters
backgroundcolor 0 0 .3
eye 2 -10 3
lookat 2 0 0
fov 30

run the simulation, and display the animated results,

for 5 simulation second
s 150

240

Appendix D Body Scripts Michael A. McKenna

SKEL OBJECTS

defaultshadeparam ** .8 0 0 0

defaultshademodel p
defaulticolor ** 162 162 162

sharememory off

Appendix D Body
Scripts

get head1 from
get head2 from
unpost head1
unpost head2
get head3 from
pushobj head3

../data/unit-cubeb

../data/unit-cubeb

../data/unitcubeb

The following is a simplified corpus script,

used to assemble the articulated biped used

in this research, and to initialize its

dynamic parameters. In the interest of sav-

ing space, only the "skeletal" kinematic-

definition layer of the humanoid model is

described here. The "skin" layer definitions

are not included.

Script 18: Corpus script to build the "skeleton"
layer of the human figure model, with the biome-
chanical joint parameters.

DEFINE WORLD, AND SET GLOBAL PARAMETERS

abdomen the root object- main dyn body

is a small, internal body

the abd skin will have the tapered
body, w/ inertia

get abdomen from ../data/unit-cubeb

parts for abdomen skel
get abdomenl from ../data/unitcubeb

get abdomen2 from ../data/unitcubeb

get abdomen3 from ../data/unit-cubeb

get neck from ../data/unitcyl.asc

get pelvisl from ../data/unitcubeb

get pelvis2 from . . /data/unitcubeb

get pelvis3 from ../data/unitcubeb

get
get
get
get
get
get

1_humerusl
1_humerus2
1_humerus3
r_humerusl
r_humerus2
r_humerus3

from
from
from
f rom.
f rom.
f rom.

. . /data/unit-cubeb

. . /data/unit-cubeb

. . /data/unitcubeb

. . /data/unit-cubeb

. . /data/unitcubeb

. . /data/unitcubeb

get l_forearm from . ./data/unitcubeb

get rjforearm from ../data/unitcubeb

addworld w
get
get
get
get

ground on
groundtype flat
grounde 0
groundk 0
groundb 100
groundfric 1.0
groundfricb 100
groundea 100
groundeB 100

1_handl from
1_hand2 from
r_handl from
r_hand2 from

get lhand3 from
Hand.asc

get r-hand3 from
Hand.asc

facet 1_hand3
facet r_hand3

concave 1_hand3 o
concave r_hand3 o

eps .0001

grav on

BODY DEFINITION
addcorpus biped

get lthighl
get lthigh2
get lthigh3
get rthighl
get rthigh2
get rthigh3

from.
from
from.
from
from.
from

. . /data/unit-cubeb

. . /data/unitcubeb

. . /data/unit-cubeb

. . /data/unitcubeb

/u/mikey/ribconv/hand2/

/u/mikey/ribconv/hand2/

n

n

/data/unitcubeb
/data/unitcubeb
/data/unitcubeb
/data/unitcubeb
/data/unitcubeb
/data/unitcubeb

241

Appendix D Body Scripts Michael A. McKenna

get 1_shank from ../data/unitcubeb
get rshank from ../data/unit-cubeb

talus = upper ankle, hindfoot- lower

ankle
get 1_talus from ../data/unit-cubeb

get 1_hindfoot from ../data/unit cubeb

get rtalus from ../data/unit-cubeb

hindfoot- like "os calcis"

get rhindfoot from ../data/unit-cubeb

get 1_nav from ../data/unit-cubeb

get 1_cuboid from ../data/unit-cubeb

get rnav from ../data/unitcubeb

get rcuboid from ../data/unit-cubeb

1_metati
1_metat2
1_metat3
1_metat4
1_metat5
r_metatl
r_metat2
r_metat3
r_metat4
r_metat5

from
from
from
from
from.
from.
from
from.
from.
from.

./data/unit-cubeb

./data/unit-cubeb

./data/unit-cubeb

./data/unit-cubeb

./data/unit-cubeb

./data/unit-cubeb

./data/unit-cubeb

./data/unit-cubeb

./data/unit-cubeb

./data/unit-cubeb

phal#.1 = abd/add joint
phal#.2 = flex/ext joint

lphall .1
lphall .2
lphal2 .1
lphal2.2
lphal3.1
lphal3.2
lphal4.1
lphal4.2
lphal5.1
lphal5.2

r_phall .1
r_pha 11.2
r_phal2.1
r_phal2.2
r_phal3.1
r_phal3.2
r_phal4.1
r_phal4.2
r_pha15.1
r_phal5.2

from.
from
from
from
from
from.
from
from.
from.
from

from.
from
from
from
from
from.
from.
from
from
from

./data/unit cubeb

./data/unit cubeb

./data/unit cubeb

./data/unit cubeb

./data/unit cubeb

./data/unit cubeb

./data/unit cubeb

./data/unit cubeb

./data/unit cubeb

./data/unitjcubeb

./data/unit cubeb

./data/unit cubeb

./data/unit cubeb

./data/unit cubeb

./data/unit cubeb

./data/unit cubeb

./data/unit cubeb

./data/unit cubeb

./data/unit cubeb

./data/unit-cubeb

toe#.l = mid phalange (big toe (#1)

doesn't have the third phalange)

toe#.2 = distal phalange
get 1_toel from ../data/unit-cubeb

get 1_toe2.1 from ../data/unit-cubeb

get 1_toe3.1 from ../data/unit-cubeb

get 1_toe4.1 from ../data/unit-cubeb

get 1_toe5.1 from ../data/unit-cubeb

get rtoel from ../data/unitcubeb

get
get
get
get
get
get
get
get
get
get
get
get

r_toe2.1
r_toe3.1
r_toe4.1
r_toe5.1
1_toe2.2
1_toe3.2
1_toe4.2
1_toe5.2
r_toe2.2
r_toe3.2
r_toe4.2
r_toe5.2

from
from
from.
from.
from
from
from
from.
from.
from.
from
from

./data/unit_cubeb

./data/unit_cubeb

./data/unitcubeb

./data/unit_cubeb

./data/unit-cubeb

./data/unitcubeb

./data/unitcubeb

./data/unit-cubeb

./data/unitcubeb

./data/unitcubeb

./data/unitcubeb

./data/unit-cubeb

abductor mini-links- do not display

unpost l-phall.1
unpost r-phall.1
unpost lphal2.1
unpost r-phal2.1
unpost lphal3.1
unpost r-phal3.1
unpost lphal4.1
unpost r-phal4.1
unpost lphal5.1
unpost r-phal5.1

defaultdefaultcolor
defaultdefaultshadeparam

DEFINE OBJECTS IN THEIR LOCAL FRAMES

postmult

main root object abdomen

dummy body
its has 3 torso parts

scale abdomen .01 .01 .01

postmult
scale headl .01 .01 .01

scale head2 .01 .01 .01

is a small,

move head3 0 0 .5

match Drillis and Contini for height:

0.229
scale head3 0.21 0.167 0.229

move to match anat illustation
move head3 .02 0 0

move neck 0 0 .5
scale neck 0.05 0.07 0.11

rotate neck y 15

move up above of abdomen

move neck 0 0 .22

matched to skel illustation

move neck -.025 0 0

scale pelvisl .01 .01 .01

scale pelvis2 .01 .01 .01

cl pelvis3-make

242

get
get
get
get
get
get
get
get
get
get

get
get
get
get
get
get
get
get
get
get

get
get
get
get
get
get
get
get
get
get

Appendix D Body Scripts Michael A. McKenna

unpost r-thighl
unpost rthigh2

move ** 0 0 -.5
scale ** .18 .29 .2

rotate ** y 18

move ** 0.026 0 -. 1

move ** 0 0 0.016
move ** 0 0 0.06

move ** 0.02 0 -. 022

move ** .02 0 0

move lshank 0 0 -.5

match Drillis & Contini
scale 1_shank .03 .03 .434

move r shank 0 0 -. 5

scale r-shank .03 .03 .434

pelvis3-make pelvis3

move 1_humerus3 0 0 -.5

scale 1_humerusl .05 .05 .05

scale 1_humerus2 .05 .05 .05

match Drillis & Contini: 0.328

scale 1_humerus3 .03 .03 .328

rotate lhumerus3 x 2

unpost lhumerusl
unpost lhumerus2

move rhumerus3 0 0 -. 5

scale rhumerusl .05 .05 .05

scale rhumerus2 .05 .05 .05

scale rhumerus3 .03 .03 .328

rotate rhumerus3 x -2
unpost rhumerus1
unpost r-humerus2

move 1_forearm 0 0 -. 5

scale 1_forearm .03 .03 .258

move rforearm 0 0 -. 5

scale r-forearm .03 .03 .258

scale lhandl .01 .01 .01

scale lhand2 .01 .01 .01

scale rhandl .01 .01 .01

scale r-hand2 .01 .01 .01
scale lhand3 1 1 2
scale r hand3 1 1 2

rotate lhand3 x 90
rotate lhand3 z 90
taper hand distally, but not in y

(width) direction
shearld lhand3 0 0 -1 0 1 0 1 -2

move 1_hand3 0 0.01 0

rotate r-hand3 x 90

rotate r-hand3 z -90

shearld r-hand3 0 0 -1 0 1 0 1 -2

move rhand3 0 -0.01 0

scale lthighl .1 .1 .1

scale lthigh2 .1 .1 .1

move lthigh3 0 0 -. 5

scale lthigh3 .03 .03 .432

unpost lthighl
unpost lthigh2
move rthigh3 0 0 -.5

scale rthighl .1 .1 .1

scale r-thigh2 .1 .1 .1

scale rthigh3 .03 .03 .432

upper ankle - move down so axis is on

top of talus
move ltalus 0 0 -. 5

scale ltalus .045 .035 .022

move r talus 0 0 -. 5

scale r-talus .045 .035 .022

offset hindfoot, to simplify scales &

moves
move 1_hindfoot 0 0 -. 5

scale lhindfoot .04 .04 .055

move r-hindfoot 0 0 -.5

scale r-hindfoot .04 .04 .055

rotate 1_hindfoot y 60

rotate 1_hindfoot z 5

move 1_hindfoot 0 .007 0

rotate rhindfoot y 60
rotate r hindfoot z -5
move r-hindfoot 0 -.007 0

move points to "low" part of hindfoot-

the part that hits the ground

points run along x axis- rotate to y

rotate 1_hindfoot.points z 90

move lhindfoot.points .5 0 -.5

move lhindfoot.points 0 0 -.5

scale lhindfoot.points .05 .05 .065

rotate 1_hindfoot.points y 60

rotate 1_hindfoot.points z 5

move 1_hindfoot.points 0 .007 0

rotate rhindfoot.points z 90

move r-hindfoot.points .5 0 -.5

move r-hindfoot.points 0 0 -.5

scale r-hindfoot.points .05 .05 .065

rotate rhindfoot.points y 60

rotate rhindfoot.points z -5

move r-hindfoot.points 0 -.007 0

navicular & cuboid 'bones'

move lnav .5 0 0
move rnav .5 0 0

move lcuboid .5 0 0

move r-cuboid .5 0 0

these scales do not include the

cuniforms !
scale 1_nav 0.022 0.031 0.022

scale rnav 0.022 0.031 0.022

scale 1_cuboid 0.026 0.028 0.022

scale rcuboid 0.026 0.028 0.022

rotate lnav y 15

rotate r-nav y 15
rotate lcuboid y 15

243

0.434

Appendix D Body Scripts Michael A. McKenna

rotate r-cuboid y 15

move 1_metati
move 1_metat2
move 1_metat3
move 1_metat4
move 1_metat5
move r metat1
move rmetat2
move rmetat3
move r metat4
move rmetat5

scale
scale
scale
scale
scale
scale
scale
scale
scale
scale
rotate
rotate
rotate
rotate
rotate
rotate
rotate
rotate
rotate
rotate

1_metatl
r metatl
1_metat2
r_metat2
1_metat3
r_metat3
1_metat4
r_metat4
1_metat5
r_metat5

1_metati
r_metatl
1_metat2
r_metat2
1_metat3
r_metat3
1_metat4
r_metat4
1_metat5
r_metat5

0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0

.091

.091

.098

.098

.088

.088

.070

.070 .

.063

.063 .
z -1
z 1
z 6
z -6
z 9
z -9
z 10
z -10
z 13
z -13

02 .02
02 .02
0089 .0089
0089 .0089
0089 .0089
0089 .0089
0089 .0089
0089 .0089
0089 .0089
0089 .0089

rotate lmetatl
rotate r metatl
rotate lmetat2
rotate r metat2
rotate l metat3
rotate r metat3
rotate lmetat4
rotate r metat4
rotate lmetat5
rotate r-metat5

move lphall.1
move lphal2.1
move lphal3.1
move lphal4.1
move lphal5.1
move lphall.2
move lphal2.2

move lphal3.2
move lphal4.2
move 1_phal5.2
move rphall.1
move rphal2.1
move rphal3.1
move rphal4.1

move r-phal5.1
move rphall.2

move r-phal2.2 .5 0 0
move rphal3.2 .5 0 0
move rphal4.2 .5 0 0
move rphal5.2 .5 0 0

scale 1_phall.1 0.016 0.016 0.016
scale rphall.1 0.016 0.016 0.016

rotate lphall.1 z 7
rotate rphall.1 z -7
scale lphall.2 0.048 0.016 0.016
scale rphall.2 0.048 0.016 0.016
rotate lphall.2 z 7
rotate r-phall.2 z -7
scale lphal2.1 0.0089 0.0089 0.0089
scale r-phal2.1 0.0089 0.0089 0.0089
rotate lphal2.1 z 7
rotate r-phal2.1 z -7
scale lphal2.2 0.042 0.0089 0.0089
scale rphal2.2 0.042 0.0089 0.0089

rotate lphal2.2 y 5
rotate r-phal2.2 y 5
rotate lphal2.2 z 7
rotate r_phal2.2 z -7
scale lphal3.1 0.0067 0.0067 0.0067
scale r-phal3.1 0.0067 0.0067 0.0067

rotate lphal3.1 z 7
rotate r-phal3.1 z -7
scale lphal3.2 0.04 0.0067 0.0067
scale rphal3.2 0.04 0.0067 0.0067
rotate lphal3.2 y 5
rotate rphal3.2 y 5
rotate lphal3.2 z 7
rotate r-phal3.2 z -7
scale lphal4.1 0.0067 0.0067 0.0067

scale r-phal4.1 0.0067 0.0067 0.0067

rotate lphal4.1 z 7
rotate r-phal4.1 z -7
scale lphal4.2 0.037 0.0067 0.0067
scale rphal4.2 0.037 0.0067 0.0067

rotate lphal4.2 y 10
rotate rphal4.2 y 10
rotate lphal4.2 z 7
rotate r-phal4.2 z -7
scale lphal5.1 0.0067 0.0067 0.0067
scale r-phal5.1 0.0067 0.0067 0.0067
rotate l-phal5.1 z 6
rotate r-phal5.1 z -6
scale lphal5.2 0.038 0.0067 0.0067

scale r-phal5.2 0.038 0.0067 0.0067

rotate lphal5.2 y 10
rotate r-phal5.2 y 10
rotate lphal5.2 z 6

rotate r-phal5.2 z -6

move 1_toel .5 0 0

move ltoe2.1 .5 0

move ltoe3.1 .5 0

move ltoe4.1 .5 0

move ltoe5.1 .5 0

move ltoe2.2 .5 0
move ltoe3.2 .5 0

244

Appendix D Body Scripts Michael A. McKenna

move 1_toe4.2 .5

move 1_toe5.2 .5
move rtoel .5 0

move rtoe2.1 .5
move rtoe3.1 .5
move r toe4.1 .5
move r toe5.1 .5

move rtoe2.2 .5
move rtoe3.2 .5
move rtoe4.2 .5

move rtoe5.2 .5

0 0
0 0

scale 1_toel 0.027 .013 .013

scale rtoel 0.027 .013 .013

rotate ltoel z 6

rotate r-toel z -6

scale 1_toe2.1 .017 .0067 .0067

scale rtoe2.1 .017 .0067 .0067

rotate ltoe2.1 z 7

rotate rtoe2.1 z -7

scale 1_toe3.1 .013 .0067 .0067

scale rtoe3.1 .013 .0067 .0067

rotate 1 toe3.1 z 7
rotate rtoe3.1 z -7

scale 1_toe4.1 .011 .0067 .0067

scale rtoe4.1 .011 .0067 .0067

rotate 1_toe4.1 z 7

rotate r toe4.1 z -7

scale 1_toe5.1 .0089 .0067 .0067

scale rtoe5.1 .0089 .0067 .0067

rotate 1 toe5.1 z 5

rotate r toe5.1 z -5

scale ltoe2.2 .013 .0067 .0067

scale r toe2.2 .013 .0067 .0067

rotate ltoe2.2 z 5

rotate r toe2.2 z -5

scale 1_toe3.2 .013 .0067 .0067

scale r-toe3.2 .013 .0067 .0067

rotate ltoe3.2 z 5

rotate r-toe3.2 z -5

scale 1_toe4.2 .011 .0067 .0067

scale r toe4.2 .011 .0067 .0067

rotate ltoe4.2 z 5

rotate r toe4.2 z -5

scale ltoe5.2 .0089 .0067 .0067

scale rtoe5.2 .0089 .0067 .0067

rotate ltoe5.2 z 5

rotate r-toe5.2 z -5

abdomen1 is the upper, double sheared
object

move abdomenl 0 0 -.5

scale abdomenl 0.255 0.40 0.16

shearld abdomenl 0 0 -1 1 0 0 1 -1.8

add 2nd shear, in 1 direction only

move up (by its height), so bottom stays

the same

move abdomen1 0 0 .16

move, so one side is more affected than

the other

move abdomen1 .06 0 0

Taper the thickness down, upwards

direction
shearld abdomen1 0 0 1 0 1 0 1.0 -3

move back to center
move abdomen1 -.06 0 0
#move back down
move abdomen1 0 0 -.16

move to place in abdomen frame (about 1/

2 of the total abdomen height)

move abdomenl 0.01 0 .225

abdomen2 is the middle part of the chest

move abdomen2 0 0 -.5
scale abdomen2 0.255 0.40 0.05

move abdomen2 0 0 -.16

shearld abdomen2 0 0 -1 1 0 0 1 -1.8

scale abdomen2 .9 1 1
move abdomen2 0 0 .16
shearld abdomen2 0 0 -1 1 0 0 1 4.5

move abdomen2 .3 0 0
shearld abdomen2 0 0 -1 0 1 0 1 .5

move abdomen2 -.3 0 0
move abdomen2 .008 0 0

move abdomen2 0 0 -.16

move abdomen2 0.01 0 .225

move abdomen3 0 0 -.5

scale abdomen3 0.2352378 0.30478 0.17

move abdomen3 0.0255 0 0

shearld abdomen3 0 0 -1 1 0 0 1 -1.1

move abdomen3 -.05 0 0

shearid abdomen3 0 0 -1 0 1 0 1 -2.6

move abdomen3 .05 0 0

move abdomen3 0 0 .015

make into bodies

density: 0.8 water
addbody abdomen abdomen 0 0 1 rotary 10 1

0 1 1
addpart abdomenl abdomenl abdomen 0.0 0 0

1 1
addpart abdomen2 abdomen2 abdomen 0.0 0 0

1 1
addpart abdomen3 abdomen3 abdomen 0.0 0 0

1 1
addbody pelvis1 pelvisl 0 1 0 rotary 10 1

0 1 1
addbody pelvis2 pelvis2 1 0 0 rotary 10 1

0 1 1
addbody pelvis3 pelvis3 0 0 1 rotary 0.0 0

0 1 1

head joints: y, x, then z: nodding,
tilting (abd, add), rotation

addbody head1 head1 0 1 0 rotary 10 1 0 1

1
addbody head2 head2 1 0 0 rotary 10 1 0 1

1

245

Appendix D Body Scripts Michael A. McKenna

addbody head3 head3 0 0 1 rotary 0.0 0 0

1 1
addpart neck neck abdomen 0.0 0 0 1 1

addbody l-humerus1 lhumerusl
10 1 0 1 1

addbody lhumerus2 lhumerus2
10 1 0 1 1

addbody lhumerus3 lhumerus3
10 1 0 1 1

addbody r-humerusl r-humerusl
10 1 0 1 1

addbody rjhumerus2 r-humerus2
10 1 0 1 1

addbody r9humerus3 r-humerus3
10 1 0 1 1

addbody liforearm liforearm 0

10 1 0 1 1
addbody r_forearm rjforearm 0

10 1 0 1 1

addbody lhandl 1_handi 0 1 0

0 1 1
addbody lhand2 1_hand2 1 0 0

0 1 1
addbody lhand3 lhand3 0 0 1

0 1 1
addbody r-handl rhand1 0 1 0

0 1 1
addbody rjhand2 rhand2 1 0 0

0 1 1
addbody r-hand3 r-hand3 0 0 1

0 1 1

addbody lthighl lthighl 0 1
1 0 1 1

addbody lthigh2 lthigh2 1 0
1 0 1 1

addbody lthigh3 lthigh3 0 0
1 0 1 1

addbody rthighl r-thighl 0 1
1 0 1 1

addbody rthigh2 r-thigh2 1 0

1 0 1 1
addbody rthigh3 r-thigh3 0 0

1 0 1 1
addbody lshank lshank 0 1 0

0 1 1
addbody r-shank rshank 0 1 0

0 1 1

1 0 rotary

0 0 rotary

0 1 rotary

1 0 rotary

0 0 rotary

0 1 rotary

0 rotary

0 rotary

rotary

rotary

rotary

rotary

rotary

rotary

10 1

10 1

0.0 0

10 1

10 1

0.0 0

0 rotary 10

0 rotary 10

1 rotary 10

0 rotary 10

0 rotary 10

1 rotary 10

rotary 10 1

rotary 10 1

see Procter and Paul- Ankle Joint

Biomech paper for joint angles

addbody ltalus ltalus -0.104528 0.994522

-0.018431106 rotary 10 1 0 1 1

addbody rtalus r-talus 0.104528 0.994522
- 0.018431106 rotary 10 1 0 1 1

addbody lhindfoot lhindfoot -0.920505

0.390731 -0.828826 rotary 10 1 0 1 1

addbody rjhindfoot r-hindfoot 0.920505

0.390731 0.828826 rotary 10 1 0 1 1

addbody 1_nav 1_nav 1 0 0 rotary 10 1 0 1 1
addbody 1_cuboid 1_cuboid

1 0 1 1
addbody rnav rnav 1 0 0
addbody r-cuboid rcuboid

1 0 1 1

addbody 1_metati 1_metati
1 0 1 1

addbody 1_metat2 1_metat2
1 0 1 1

addbody 1_metat3 1_metat3
1 0 1 1

addbody 1_metat4 1_metat4
1 0 1 1

addbody 1_metat5 1_metat5
1 0 1 1

addbody rmetat1 rmetat1
1 0 1 1

addbody rmetat2 rmetat2
1 0 1 1

addbody rmetat3 rmetat3
1 0 1 1

addbody rmetat4 rmetat4
1 0 1 1

addbody rmetat5 rmetat5
1 0 1 1

addbody 1phall.1
10 1 0 1 1

addbody lphal2.1
10 1 0 1 1

addbody lphal3.1
10 1 0 1 1

addbody lphal4.1
10 1 0 1 1

addbody lphal5.1
10 1 0 1 1

addbody lphall.2
10 1 0 1 1

addbody lphal2.2
10 1 0 1 1

addbody lphal3.2
10 1 0 1 1

addbody lphal4.2
10 1 0 1 1

addbody lphal5.2
10 1 0 1 1

addbody r-phall.1
10 1 0 1 1

addbody rphal2.1
10 1 0 1 1

addbody r-phal3.1
10 1 0 1 1

addbody r-phal4.1
10 1 0 1 1

addbody r-phal5.1
10 1 0 1 1

addbody r-phall.2

l_;hall. 1

lphal2 .1

lphal3.1

lphal4 .1

lphal5.1

lphall .2

lphal2.2

lphal3 .2

lphal4 .2

lphal5.2

r_phall. 1

r_phal2.1

r_phal3.1

r_phal4 .1

r_pha15 .1

r_phall .2

1 0 0 rotary 10

rotary 10 1 0 1 1
1 0 0 rotary 10

rotary 10

rotary 10

rotary 10

rotary 10

rotary 10

rotary 10

rotary 10

rotary 10

rotary 10

rotary 10

rotary

rotary

rotary

rotary

rotary

rotary

rotary

rotary

rotary

rotary

rotary

rotary

rotary

rotary

rotary

rotary

246

Appendix D Body Scripts Michael A. McKenna

10 1 0 1 1
addbody r-phal2.2 rphal2.2 0 1 0 rotary

10 1 0 1 1
addbody rphal3.2 r-phal3.2 0 1 0 rotary

10 1 0 1 1
addbody rphal4.2 r_phal4.2 0 1 0 rotary

10 1 0 1 1
addbody rphal5.2 r-phal5.2 0 1 0 rotary

10 1 0 1 1

addbody ltoel 1_toel 0 1 0 rotary 10 1 0

1 1
addbody ltoe2.1 1_toe2.1 0 1 0 rotary 10

1 0 1 1
addbody ltoe3.1 1_toe3.1 0 1 0 rotary 10

1 0 1 1
addbody ltoe4.1 1_toe4.1 0 1 0 rotary 10

1 0 1 1
addbody 1_toe5.1 ltoe5.1 0 1 0 rotary 10

1 0 1 1
addbody ltoe2.2 1_toe2.2 0 1 0 rotary 10

1 0 1 1
addbody ltoe3.2 1_toe3.2 0 1 0 rotary 10

1 0 1 1
addbody ltoe4.2 ltoe4.2 0 1 0 rotary 10

1 0 1 1
addbody ltoe5.2 1_toe5.2 0 1 0 rotary 10

1 0 1 1
addbody r-toel rtoel 0 1 0 rotary 10 1 0

1 1
addbody r-toe2.1

1 0 1 1
addbody r-toe3.1

1 0 1 1
addbody r-toe4.1

1 0 1 1
addbody r-toe5.1

1 0 1 1
addbody r-toe2.2

1 0 1 1
addbody r-toe3.2

1 0 1 1
addbody rtoe4.2

1 0 1 1
addbody r-toe5.2

1 0 1 1

r_toe2.1 0 1 0 rotary 10

r_toe3.1 0 1 0 rotary 10

r-toe4.1 0 1 0 rotary 10

r_toe5.1 0 1 0 rotary 10

r_toe2.2 0 1 0 rotary 10

r_toe3.2 0 1 0 rotary 10

r_toe4.2 0 1 0 rotary 10

r_toe5.2 0 1 0 rotary 10

move to parent positions

movely
movely
movely
movely
movely
movely
movely
movely

1_toe2.2
1_toe3.2
1_toe4.2
1_toe5.2
r_toe2.2
r_toe3.2
r_toe4.2
r_toe5.2

1_toe2.1
1_toe3.1
1_toe4.1
1_toe5.1
r_toe2.1
r_toe3.1
r_toe4.1
r_toe5.1

move toes (also phalanges, actually)

down the full proximal phalange lengths

movely ltoel lphall.2 .5 0 0
movely r-toel r-phall.2 .5 0 0
movely 1_toe2.1 lphal2.2 .5 0
movely r_toe2.1 rphal2.2 .5 0

movely 1_toe3.1 lphal3.2 .5 0
movely r_toe3.1 rphal3.2 .5 0
movely 1_toe4.1 1_phal4.2 .5 0

movely r_toe4.1 rphal4.2 .5 0

movely 1_toe5.1 lphal5.2 .5 0
movely r_toe5.1 rphal5.2 .5 0

move phalanges down the metatarsal
lengths

movely lphall.1 1_metatl .5 0 0

movely rphall.1 rmetatl .5 0 0

movely lphal2.1 1_metat2 .5 0 0

movely rphal2.1 rmetat2 .5 0 0

movely l_phal3.1 1_metat3 .5 0 0

movely rphal3.1 rmetat3 .5 0 0

movely lphal4.1 1_metat4 .5 0 0

movely rphal4.1 rmetat4 .5 0 0

movely lphal5.1 1_metat5 .5 0 0

movely r-phal5.1 rmetat5 .5 0 0

move metatarsals down the nav/cuboid
lengths + the cuniform size

measurements from Gray
move 1_metat1 0.025 0 0

move r-metatl 0.025 0 0
move 1metat2 0.022 0 0

move r-metat2 0.022 0 0

move 1metat3 0.016 0 0
move r-metat3 0.016 0 0

move lmetat4 0.027 0 0

move r metat4 0.027 0 0

move 1_metat5 0.022 0 0

move r metat5 0.022 0 0

move metat's off to side, on their nav/
cuboid

move 1metatl 0 -0.003 0

move r metat1 0 0.003 0
move lmetatl 0 0 -.005
move r-metatl 0 0 -.005

move lmetat2 0 0.014 0
move r-metat2 0 -0.014 0

move lmetat2 0 0 .005

move r-metat2 0 0 .005
move 1metat3 0 0.024 0

move r-metat3 0 -0.024 0

move lmetat3 0 0 .003
move r-metat3 0 0 .003

move lmetat4 0 .005 0

move r-metat4 0 -.005 0

move lmetat4 0 0 .003

move r-metat4 0 0 .003

move lmetat5 0 .014 0

move r-metat5 0 -.014 0

move 1metat5 0 0 -.005

move r-metat5 0 0 -.005

movely 1_nav 1_hindfoot 0 0 .5

247

Appendix D Body Scripts Michael A. McKenna

movely r-nav rjhindfoot 0 0 .5

move 1_nav .016 0 0

move r nav .016 0 0

movely lcuboid ljhindfoot 0 0 .5

movely r-cuboid r-hindfoot 0 0 .5

move 1 cuboid .007 0 0
move rcuboid .007 0 0

move 1 nav 0 -.020 0

move rnav 0 .020 0

move 1_cuboid 0 .016 0

move rcuboid 0 -.016 0

move 1_cuboid 0 0 -.01

move rcuboid 0 0 -.01

down full talus height

movely lhindfoot ltalus 0 0 -. 5

movely r.hindfoot r-talus 0 0 -.5

movely ltalus 1_shank 0 0 -.5

movely r-talus rshank 0 0 -.5

move 1_talus 0 -.01 0

move rtalus 0 .01 0

move 1_talus .0075 0 0

move rtalus .0075 0 0

move
move
move
move
move
move
move
move
move
move
move
move
move
move
movel
movel

movel
movel
mov
movel
movel

lthighl 0 0 -.24

lthighl 0 0 0.016
lthighl 0 0.1 0

lthighl .03 0 0

lthighl 0 0 -.01

lthighl 0 0 .06

lthighl .02 0 0

r_thighl 0 0 -.24

r_thighl 0 0 0.016
r-thighl 0 -0.1 0

r_thighl .03 0 0

r_thighl 0 0 -. 01

r_thighl 0 0 .06
r_thighl .02 0 0

y lshank lthigh3 0 0 -.5

y r_shank rthigh3 0 0 -.5

1_handl 1_forearm 0 0 -.5
r_handl rforearm 0 0 -.5

down humerus length
1_forearm lhumerus3 0 0 -.5

r_forearm r-humerus3 0 0 -. 5

half abdomen = .225
move 1_humerusi 0 0 .195

move 1_humerusl 0 0 -.01

move 1_humerusi 0 0.18 0

matched to skel illustration
move 1_humerus1 -0.01 0 0

move rhumerus1 0 0 .195

move rhumerusl 0 0 -.01

move rhumerusl 0 -0.18 0

matched to skel illustration

move rhumerus1 -0.01 0 0

move pelvisl 0 0 -.105

move pelvis1 0 0 0.016

move pelvis1 -0.02 0 -.06

move head1 0 0 .295

create tree structure

linkbodies abdomen head1
linkbodies head1 head2
linkbodies head2 head3

linkbodies abdomen pelvis1
linkbodies pelvis1 pelvis2
linkbodies pelvis2 pelvis3
linkbodies abdomen 1_humerusl
linkbodies abdomen rhumerus1

linkbodies 1_humerusi lhumerus2
linkbodies lhumerus2 1_humerus3

linkbodies rhumerusl rhumerus2
linkbodies rhumerus2 r-humerus3

linkbodies l-humerus3 ljforearm

linkbodies rhumerus3 r.forearm

linkbodies 1_forearm 1_hand1

linkbodies rjforearm rhand1

linkbodies 1_handl 1_hand2
linkbodies rhandl rhand2

linkbodies lhand2 1_hand3

linkbodies rhand2 rhand3

linkbodies pelvis3 lthighl

linkbodies pelvis3 rthighl

linkbodies lthighl lthigh2

linkbodies 1_thigh2 lthigh3

linkbodies rthighl rthigh2

linkbodies r-thigh2 rthigh3

linkbodies lthigh3 lshank

linkbodies lshank 1_talus
linkbodies r-thigh3 r_shank

linkbodies r-shank rtalus

linkbodies ltalus 1_hindfoot
linkbodies rtalus rhindfoot

linkbodies 1_hindfoot lnav

linkbodies rhindfoot r-nav
linkbodies 1_hindfoot licuboid
linkbodies r-hindfoot r-cuboid
linkbodies lmnav 1_metatl
linkbodies 1_nav 1_metat2
linkbodies 1_nav 1_metat3

linkbodies rnav rmetat1
linkbodies rnav rmetat2
linkbodies rnav rmetat3
linkbodies lcuboid lmetat4
linkbodies lcuboid lmetat5

linkbodies r-cuboid rmetat4

linkbodies r cuboid r-metat5

linkbodies 1_metatl lphall.1

linkbodies lmetat2 lphal2.1

linkbodies lmetat3 lphal3.1

linkbodies lmetat4 lphal4.1

linkbodies 1_metat5 lphal5.1

linkbodies r-metatl rphall.1

linkbodies r-metat2 rphal2.1

linkbodies r-metat3 rphal3.1

248

y
y
e
y
y

Appendix D Body Scripts Michael A. McKenna

linkbodies
linkbodies
linkbodies
linkbodies
linkbodies
linkbodies
linkbodies
linkbodies
linkbodies
linkbodies
linkbodies
linkbodies
linkbodies
linkbodies
linkbodies
linkbodies
linkbodies
linkbodies
linkbodies
linkbodies
linkbodies
linkbodies
linkbodies
linkbodies
linkbodies
linkbodies
linkbodies
linkbodies
linkbodies
linkbodies

r_metat4 rphal4.1
r_metat5 rphal5.1
1.phall.1 lphall.2
1_phal2.1 lphal2.2

lphal3.1 lphal3.2
lphal4.1 lphal4.2

lphal5.1 1phal5.2
r_phall.1 rphall.2
r-phal2.1 r-phal2.2
r_phal3.1 rphal3.2
r_phal4.1 rphal4.2
r-phal5.1 r-phal5.2
lphall.2 1_toel
r_phall.2 r_toel
lphal2.2 1_toe2.1
lphal3.2 1_toe3.1
1_phal4.2 1_toe4.1

lphal5.2 1_toe5.1
r-phal2.2 r_toe2.1
r-phal3.2 r_toe3.1
r_phal4.2 r_toe4.1
r-phal5.2 rtoe5.1
1_toe2.1 1_toe2.2
1_toe3.1 1_toe3.2
1_toe4.1 1_toe4.2
1_toe5.1 ltoe5.2
r-toe2.1 r-toe2.2
r_toe3.1 rtoe3.2
r-toe4.1 r-toe4.2
r-toe5.1 r-toe5.2

initialize the articulated figure

setroot abdomen

corpusinit
rootmotion free

move abdomen 0 0 1.4
setrootpos

JOINT BIOMECHANICAL PARAMETERS

initial setting for all
commandtree joint ** springtype constant
commandtree joint ** dq 0

commandtree joint ** ddq 0

commandtree joint ** Qtype 33

setting for abdomen dummy 'joint' to
avoid error during inverse control

joint abdomen ea 1

cl head-params
joint ** ea 62

joint ** eB 1

joint ** eq 0
joint ** b 1

joint ** jlim-eal 6.2

joint ** jlimea2 6.2

joint ** jlim eB1 1
joint ** jlim-eB2 1
joint ** jlim-b1 .62

joint ** jlim-b2 .62

head-params head1
head-params head2
head-params head3

joint limits:
tilt back a fair amount
joint head1 jlim-ql -0.8
bend forward- chin to chest (penetrates

a little)
joint headl jlim-q2 0.9
tilt to the side some - symmetrical
joint head2 jlim-ql -0.8
joint head2 jlim-q2 0.8
rotate to the side somewhat less than 90

degrees: 1.571 rad
joint head3 jlim-ql -1.3
joint head3 jlim-q2 1.3

cl leg-params
joint ** ea 62

joint ** eB 10

joint ** eq 0
joint ** b 10

joint ** jlim-eal 6.2

joint ** jlim-ea2 6.2

joint ** jlimeBl 10

joint ** jlim-eB2 10
joint ** jlimbl .62

joint ** jlim-b2 .62

leg-params
leg-params
leg-params
leg-params
leg-params
leg-params
leg-params
leg-params
leg-params
leg-params
leg-params
leg-params
use same
leg-params
leg-params
leg-params

lthighl
r_thighl
lthigh2
r_thigh2
lthigh3
r-thigh3
1_shank
r_shank
1_talus
r_talus
lhindfoot
r_hindfoot
values for pelvis
pelvisl
pelvis2
pelvis3

joint limits
bend forward quite a bit
joint lthighl jlim-ql -2.2
bend back somewhat
joint lthighl jlim-q2 1
joint rthighl jlim-ql -2.2
joint rthighl jlim-q2 1
don't bend in too much

249

Appendix D Body Scripts Michael A. McKenna

joint lthigh2 jlim_ql -.3
bend out somewhat
joint lthigh2 jlimq2 0.7
joint rthigh2 jlim-ql -. 7
joint r.thigh2 jlim-q2 .3
foot rotates in some
joint lthigh3 jlim-ql -0.7
foot rotates out a fair amount- about 90

degrees
joint 1_thigh3 jlim-q2 1.4
joint rthigh3 jlim-ql -1.4
joint rthigh3 jlimq2 0.7

knee bends forward just a little
joint 1_shank jlim_ql 0
knee bends back quite a bit -

joint 1_shank jlimq2 2.5
joint rshank jlimql 0
joint rshank jlimq2 2.5

foot bends forward some
joint 1_talus jlim-ql -0.8
joint 1_talus jlim-q2 0.8
joint rtalus jlim-ql -0.8
joint rtalus jlimq2 0.8
allow only a little motion
joint 1_hindfoot jlim-ql -0.5
joint 1_hindfoot jlim-q2 0.5
joint rhindfoot jlim-ql -0.5
joint rhindfoot jlimq2 0.5

bend forward a fair amount
joint pelvis1 jlimql -1.5
bend back a little
joint pelvisl jlim-q2 0.5
bend from side to side somewhat
joint pelvis2 jlim-ql -1
joint pelvis2 jlim-q2 1.0
twist (rotate) about a fair amount
joint pelvis3 jlim-ql -1.2
joint pelvis3 jlimq2 1.2

cl arm-params
joint ** ea 1.0

joint ** eB 10

joint ** eq 0
joint ** b 5

joint ** jlim-eal 1.0

joint ** jlim-ea2 1.0

joint ** jlim-eBl 10

joint ** jlim-eB2 10
joint ** jlim-bl .1

joint ** jlim-b2 .1

arm-params
arm-params
arm-params
arm-params
arm-params

arm-params
arm-params

1_humerusl
1_humerus2
1_humerus3
r_humerusl
r_humerus2
r_humerus3
1_forearm

arm-params rforearm

joint limits
bend forward and up quite a bit
joint lhumerusl jlim ql -3.0
bend back a little
joint lhumerusl jlimq2 0.5
joint r-humerusl jlim-q1 -3.0
joint r-humerusl jlim-q2 0.5
although the arm can bend in, I will

restict it away from the body
joint lhumerus2 jlim_ql 0.1
bend out quite a bit
joint lhumerus2 jlim-q2 2.5
joint r humerus2 jlimql -2.5
joint rhumerus2 jlimq2 -0.1
staring at default, w/ thumbs pointed

outwards
rotate inwards a fair amount
joint lhumerus3 jlim_ql -1.7
bend backwards just a little more
joint 1-humerus3 jlim-q2 1.2
joint r -humerus3 jlim ql -1.2
joint r humerus3 jlimq2 1.7
bend up a fair amount
joint ljforearm jlim-ql -2.5
bend back none
joint lforearm jlim-q2 0
joint rjforearm jlim ql -2.5
joint r.forearm jlimq2 0

cl hand-params
joint ** Qtype
joint ** b 1

joint ** ea 1

joint ** eB 10

hand-param
hand-param
hand-param
hand-param
hand-param
hand-param

1_handl
1_hand2
lhand3
r-handl
r-hand2
r-hand3

cl nav-params
joint ** Qtype 17
joint ** b 0.5

joint ** ea 5

joint ** eB 10

nav-params 1_nav
nav-params 1_cuboid
nav-params r_nav
nav-params rcuboid

cl metat-params
joint ** Qtype 17
joint ** b 0.2

joint ** ea 5

joint ** eB 10

250

Appendix D Body Scripts Michael A. McKenna

metat-params lmetatl
metat-params lmetat2
metat-params lmetat3
metat-params lmetat4
metat-params lmetat5
metat-params rmetatl
metat-params rmetat2
metat-params rmetat3
metat-params r-metat4
metat-params rmetat5
bigger toe gets more
joint lmetatl b 0.4
joint r-metatl b 0.4

cl phal-param
joint ** Q-type 17

joint ** b .003

joint ** ea .25

joint ** eB 10

cl phal-param.1
joint ** Qtype 17
joint ** b .003

joint ** ea .05

joint ** eB 10

phal-param.1 lphall.1
phal-param.1 lphal2.1
phal-param.1 lphal3.1
phal-param.1 lphal4.1
phal-param.1 lphal5.1
phal-param lphall.2
phal-param lphal2.2
phal-param lphal3.2
phal-param lphal4.2
phal-param lphal5.2
bigger toe gets more
joint lphall.1 b .01
joint lphall.2 b .01
big phals stiffer
joint lphall.2 ea .75
joint lphall.2 eB 10

phal-param.1 r-phal2.1
phal-param.1 r-phal3.1
phal-param.1 r-phal4.1
phal-param.1 r-phal5.1
phal-param r-phal2 .2
phal-param r-phal3.2
phal-param r-phal4.2
phal-param r-phal5.2
bigger toe gets more
joint rphall.1 b .01
joint rphall.2 b .01
big phals stiffer
joint rphall.2 ea .75
joint rphall.2 eB 10

cl toe-param
joint ** Qtype 17
joint ** b .0001

joint ** ea 0.005

joint ** eB 10

toe-param 1_toel
toe-param 1_toe2.1
toe-param 1_toe2.2
toe-param ltoe3.1
toe-param ltoe3.2
toe-param 1_toe4.1
toe-param 1_toe4.2
toe-param 1_toe5.1
toe-param ltoe5.2
big toe more
joint litoel b .000333
joint ltoel ea 0.015

toe-param rtoel
toe-param rtoe2.1
toe-param rtoe2.2
toe-param rtoe3.1
toe-param r-toe3.2
toe-param rtoe4.1
toe-param rtoe4.2
toe-param rtoe5.1
toe-param r-toe5.2
big toe more
joint r-toel b .000333
joint r-toel ea 0.15

251

Appendix E Body Tables Michael A. McKenna

Appendix E Body Tables

This appendix provides extra details on the structure of the humanoid model.

Table 9 provides a list of the kinematic parameters (excluding the geometric surfaces) for

the complex human figure model. The "Parent" body name is the name of the body seg-

ment to which the body connects with its proximal joint. The three "Joint Axis" columns

give the 3D orientation of the rotary joint axis of the body's proximal joint, in world-

space. The three "Joint Offset" columns give the translational offset of the body's proxi-

mal joint, from the proximal joint of its parent.

Table 10 lists some of the mass parameters of the different body segments in the human

figure model. The mass of each body segment is listed, as well as the fractional weight of

each body part with respect to the whole body weight (68 kg). The weight of all of the

body segments distal to a given body, including its own weight is also listed. Finally, the

translational distance of a body's center of mass, from its proximal joint is provided.

Table 11 gives the joint parameters for the dampers and exponential springs, for all of the

joints. The joint position (angle) and spring rest position for each joint is listed, as cali-

brated to a standing posture, in the anatomical position. The b, C, P, q, and qtarget parame-

ters are those used in Eq. 81, page 99 and Eq. 84, page 101.

252

Appendix E Body Tables Michael A. McKenna

Table 9: Kinematic link and joint parameters of the human figure model.

Body Name Parent Joint Joint JoIi JJoint oint Joint
AxisX AxisY AxisZ Offs etX OffseY.OffseZ

r-hand3 r-hand2 0 0 1 0 0 0

r-hand2 r-hand1 1 0 0 0 0 0

r_hand1 rforearm 0 1 0 0 0 -0.258

r_forearm rhumerus3 0 1 0 0 -0.0114 -0.328

r_humerus3 rhumerus2 0 0 1 0 0 0

r_humerus2 r-humerusl 1 0 0 0 0 0

r_humerusl abdomen 0 1 0 -0.01 -0.18 0.185

l-hand3 lhand2 0 0 1 0 0 0

lhand2 lhandl 1 0 0 0 0 0

1_handi 1_forearm 0 1 0 0 0 -0.258

1_forearm 1_humerus3 0 1 0 0 0.0114 -0.328

1_humerus3 1_humerus2 0 0 1 0 0 0

1_humerus2 1_humerusl 1 0 0 0 0 0

1_humerusI abdomen 0 1 0 -0.01 0.18 0.185

r_toe5.2 rtoe5.1 0 1 0 0.00887 -0.00078 0

r_toe5.1 r-phal5.2 0 1 0 0.0372 -0.00391 -0.0066

r-pha5.2 r-pha5.1 0 1 0 0 0 0

r-phal5.1 rmetat5 0 0 1 0.0593 -0.0142 -0.0159

r metat5 r cuboid 0 1 0 0.022 -0.014 -0.005

r toe4.2 r toe4.1 0 1 0 0.0109 -0.00134 0

r_toe4.1 r-phal4.2 0 1 0 0.0362 -0.00444 -0.00642

r-phal4.2 r-phal4.1 0 1 0 0 0 0

r-phal4.1 rmetat4 0 0 1 0.0648 -0.0122 -0.0236

r metat4 r cuboid 0 1 0 0.027 -0.005 0.003

r_cuboid rhindfoot 1 0 0 0.007 -0.023 -0.01

r toe3.2 r toe3.1 0 1 0 0.0129 -0.00158 0

r_toe3.1 r-phal3.2 0 1 0 0.0396 -0.00486 -0.00349

r-phal3.2 r-phal3.1 0 1 0 0 0 0

253

Appendix E Body Tables Michael A. McKenna

Table 9: Kinematic link and joint parameters of the human figure model.

Joint Joint Joint Joint Joint Joint
Axis X Axis Y Axis-Z OffsetX OffsY OffsZ

r-phal3.1 rmetat3 0 0 1 0.0788 -0.0138 -0.0367

r_metat3 rnav 0 1 0 0.016 -0.024 0.003

r_toe2.2 rtoe2.1 0 1 0 0.0169 -0.00207 0

r_toe2.1 rphal2.2 0 1 0 0.0415 -0.0051 -0.00366

rphal2.2 rphal2.1 0 1 0 0 0 0

rphal2.1 r-metat2 0 0 1 0.089 -0.0102 -0.0396

r_metat2 rnav 0 1 0 0.022 -0.014 0.005

r_toel r_phall.2 0 1 0 0.0476 -0.00585 0

r-phall.2 rphall.1 0 1 0 0 0 0

r-phall.1 rmetatl 0 0 1 0.0865 0.00159 -0.0281

r_metati rnav 0 1 0 0.025 0.003 -0.005

r_nav rhindfoot 1 0 0 0.016 0.013 0

r hindfoot rtalus 0.70872 0.300834 0.638134 0 0 -0.022

r_talus rshank 0.10451 0.994353 0.018428 0.0075 0.01 -0.434

r_shank rjthigh3 0 1 0 0 0 -0.432

r_thigh3 rjthigh2 0 0 1 0 0 0

r-thigh2 rjthighl 1 0 0 0 0 0

r_thigh1 pelvis3 0 1 0 0.05 -0.1 -0.174

1_toe5.2 1_toe5.1 0 1 0 0.00887 0.000776 0

1_toe5.1 Lphal5.2 0 1 0 0.0372 0.00391 -0.0066

lphal5.2 1_phal5.1 0 1 0 0 0 0

Lphal5.1 lmetat5 0 0 1 0.0593 0.0142 -0.0159

1_metat5 1_cuboid 0 1 0 0.022 0.014 -0.005

1_toe4.2 1_toe4.1 0 1 0 0.0109 0.00134 0

Itoe4.1 l-phal4.2 0 1 0 0.0362 0.00444 -0.00642

lphal4.2 Lphal4.1 0 1 0 0 0 0

lphal4.1 1_metat4 0 0 1 0.0648 0.0122 -0.0236

lmetat4 1_cuboid 0 1 0 0.027 0.005 0.003

254

Appendix E Body Tables Michael A. McKenna

Table 9: Kinematic link and joint parameters of the human figure model.

Joint Joint Joint Joint Joint. Join.
Body Name Parent Axis X Axis Y Axis Z OffsetX Offset Y OffsetZ

1 cuboid 1_hindfoot 1 0 0 0.007 0.023 -0.01

1_toe3.2 1_toe3.1 0 1 0 0.0129 0.00158 0

1_toe3.1 Lphal3.2 0 1 0 0.0396 0.00486 -0.00349

Lphal3.2 lphal3.1 0 1 0 0 0 0

lphal3.1 1_metat3 0 0 1 0.0788 0.0138 -0.0367

1_metat3 Inav 0 1 0 0.016 0.024 0.003

1_toe2.2 1_toe2.1 0 1 0 0.0169 0.00207 0

Itoe2.1 Lphal2.2 0 1 0 0.0415 0.0051 -0.00366

1_phal2.2 Lphal2.1 0 1 0 0 0 0

Lphal2.1 1_metat2 0 0 1 0.089 0.0102 -0.0396

1_metat2 1_nav 0 1 0 0.022 0.014 0.005

1_toel Lphall.2 0 1 0 0.0476 0.00585 0

lphall.2 Lphall.1 0 1 0 0 0 0

lphall.1 1_metati 0 0 1 0.0865 -0.00159 -0.0281

1_metati 1_nav 0 1 0 0.025 -0.003 -0.005

1_nav 1_hindfoot 1 0 0 0.016 -0.013 0

1_hindfoot 1_talus -0.70872 0.300834 -0.63813 0 0 -0.022

1_talus 1_shank -0.10451 0.994353 -0.01843 0.0075 -0.01 -0.434

1_shank lthigh3 0 1 0 0 0 -0.432

1_thigh3 lthigh2 0 0 1 0 0 0

1_thigh2 Lthighl 1 0 0 0 0 0

1_thighi pelvis3 0 1 0 0.05 0.1 -0.174

pelvis3 pelvis2 0 0 1 0 0 0

pelvis2 pelvisI 1 0 0 0 0 0

pelvisI abdomen 0 1 0 -0.02 0 -0.149

head3 head2 0 0 1 0 0 0

head2 head1 1 0 0 0 0 0

head1 abdomen 0 1 0 0 0 0.295

255

Appendix E Body Tables Michael A. McKenna

Table 10: Mass parameters of the body parts in the human figure model.

Mass/. Distal Mass COM dist from
BodyMass (including self) (kg) proximal (m)

r hand3 0.408 0.006 0.408 0.0824

r hand2 9.85e-06 1.45e-07 0.408 0

r handl 9.85e-06 1.45e-07 0.408 0

r forearm 1.08 0.0159 1.49 0.112

r humerus3 1.9 0.0279 3.39 0.143

r humerus2 0.00123 1.81e-05 3.39 0

r humerus1 0.00123 1.81e-05 3.39 0

1_hand3 0.408 0.006 0.408 0.0824

1_hand2 9.85e-06 1.45e-07 0.408 0

1 handl 9.85e-06 1.45e-07 0.408 0

1_forearm 1.08 0.0159 1.49 0.112

1_humerus3 1.9 0.0279 3.39 0.143

1_humerus2 0.00123 1.81e-05 3.39 0

1humerusi 0.00123 1.81e-05 3.39 0

r toe5.2 0.00283 4.17e-05 0.00283 0.007

r toe5.1 0.00153 2.24e-05 0.00436 0.00445

rphal5.2 0.0116 0.000171 0.016 0.0185

rmpha5.1 2.96e-06 4.36e-08 0.016 0.00335

r metat5 0.0239 0.000352 0.0399 0.0304

r toe4.2 0.00324 4.76e-05 0.00324 0.008

r toe4.1 0.00189 2.77e-05 0.00512 0.0055

rphal4.2 0.0133 0.000196 0.0184 0.0179

r-phal4.1 2.96e-06 4.36e-08 0.0184 0.00335

r metat4 0.0338 0.000497 0.0522 0.0334

r cuboid 0.0564 0.000829 0.149 0.013

r toe3.2 0.00392 5.77e-05 0.00392 0.009

r toe3.1 0.00243 3.57e-05 0.00635 0.0065

r-pha3.2 0.0133 0.000195 0.0196 0.0185

256

Appendix E Body Tables Michael A. McKenna

Table 10: Mass parameters of the body parts in the human figure model.

Mass! Distal Mass COMdst. from
Body Name Mass (kg) BodyMass (including self)(kg) proximal (m)

rmphal3.1 2.96e-06 4.36e-08 0.0196 0.00335

r metat3 0.0472 0.000694 0.0668 0.0414

r toe2.2 0.00392 5.77e-05 0.00392 0.009

r toe2.1 0.00318 4.67e-05 0.0071 0.0085

rphal2.2 0.0216 0.000317 0.0287 0.0188

r-phal2. 6.94e-06 1.02e-07 0.0287 0.00445

r metat2 0.0794 0.00117 0.108 0.0485

r toel 0.0212 0.000312 0.0212 0.016

rphall.2 0.0427 0.000628 0.0639 0.0218

rphall.1 4.03e-05 5.93e-07 0.064 0.008

r metatl 0.113 0.00166 0.177 0.0456

r nav 0.0505 0.000743 0.402 0.011

r hindfoot 0.23 0.00339 0.781 0.0327

r talus 0.204 0.003 0.985 0.0234

r shank 3.15 0.0463 4.13 0.188

r_thigh3 6.79 0.0999 10.9 0.187

r_thigh2 0.00985 0.000145 10.9 0

r_thigh1 0.00985 0.000145 10.9 0

1 toe5.2 0.00283 4.17e-05 0.00283 0.007

1toe5.1 0.00153 2.24e-05 0.00436 0.00445

lphal5.2 0.0116 0.000171 0.016 0.0185

lphal5.1 2.96e-06 4.36e-08 0.016 0.00335

1_metat5 0.0239 0.000352 0.0399 0.0304

1toe4.2 0.00324 4.76e-05 0.00324 0.008

1 toe4.1 0.00189 2.77e-05 0.00512 0.0055

lphal4.2 0.0133 0.000196 0.0184 0.0179

lphal4.1 2.96e-06 4.36e-08 0.0184 0.00335

1_metat4 0.0338 0.000497 0.0522 0.0334

257

Michael A. McKennaAppendix E Body Tables

Table 10: Mass parameters of the body parts in the human figure model.

Bodyas Distal Mass COM dist from
Bo m MBodyMass (including self) (kg) proxima1(m)

I cuboid 0.0564 0.000829 0.149 0.013

1toe3.2 0.00392 5.77e-05 0.00392 0.009

1_toe3.1 0.00243 3.57e-05 0.00635 0.0065

lphal3.2 0.0133 0.000195 0.0196 0.0185

lphal3.1 2.96e-06 4.36e-08 0.0196 0.00335

1_metat3 0.0472 0.000694 0.0668 0.0414

1toe2.2 0.00392 5.77e-05 0.00392 0.009

Itoe2.1 0.00318 4.67e-05 0.0071 0.0085

Lphal2.2 0.0216 0.000317 0.0287 0.0188

lphal2.1 6.94e-06 1.02e-07 0.0287 0.00445

1_metat2 0.0794 0.00117 0.108 0.0485

1_toel 0.0212 0.000312 0.0212 0.016

lphall.2 0.0427 0.000628 0.0639 0.0218

lphall.1 4.03e-05 5.93e-07 0.064 0.008

1_metati 0.113 0.00166 0.177 0.0456

1_nav 0.0505 0.000743 0.402 0.011

1_hindfoot 0.23 0.00339 0.781 0.0327

1talus 0.204 0.003 0.985 0.0234

1shank 3.15 0.0463 4.13 0.188

1_thigh3 6.79 0.0999 10.9 0.187

1_thigh2 0.00985 0.000145 10.9 0

1_thigh1 0.00985 0.000145 10.9 0

pelvis3 11.1 0.163 33 0.145

pelvis2 9.85e-06 1.45e-07 33 0

pelvis1 9.85e-06 1.45e-07 33 0

head3 4.71 0.0692 4.71 0.116

head2 9.85e-06 1.45e-07 4.71 0

head1 9.85e-06 1.45e-07 4.71 0

258

Appendix E Body Tables Michael A. McKenna

Table 10: Mass parameters of the body parts in the human figure model.

Body Name Mass (kg) Mass! Distal Mass COM dist. from
BodyMass (including self) (kg) proximal (i)

259

Appendix E Body Tables Michael A. McKenna

Table 11: Joint angles, damping constants, and exponential spring parameters, calibrated to a standing
posture.

Body Nane Joint Angle - q Damper - b SpringLinear Spring Exp. Spring Rest
Stiffness.. Stiffness - q Ange - r

r_hand3 1 0.1 1 10 1

r_hand2 0.3 0.1 1 10 0.303

r_handi 0.2 0.1 1 10 0.19

r_forearm -0.35 1 1 10 -0.417

r_humerus3 -1 1 1 10 -1.01

r_humerus2 -0.1 1 1 10 -0.203

r_humerusl 0.05 1 1 10 0.0882

lhand3 -1 0.1 1 10 -1

1_hand2 -0.3 0.1 1 10 -0.303

1_handi 0.2 0.1 1 10 0.19

1_forearm -0.35 1 1 10 -0.417

1_humerus3 1 1 1 10 1.01

1-humerus2 0.1 1 1 10 0.203

1_humerusi 0.05 1 1 10 0.0882

r toe5.2 0.3 0.0001 0.005 10 0.491

r toe5.1 0.3 0.0001 0.005 10 0.541

r-pha5.2 -0.4 0.003 0.25 10 -0.355

rpha5.1 0 0.003 0.05 10 -0.00255

rmetat5 0.14 0.2 5 10 0.146

r toe4.2 0.3 0.0001 0.005 10 0.63

r toe4.1 0.3 0.0001 0.005 10 0.689

rphal4.2 -0.38 0.003 0.25 10 -0.257

r-phal4.1 0 0.003 0.05 10 0.0118

rmetat4 0.12 0.2 5 10 0.149

r cuboid 0 0.5 5 10 0.0087

r toe3.2 0.3 0.0001 0.005 10 0.761

r toe3.1 0.3 0.0001 0.005 10 0.826

260

Appendix E Body Tables Michael A. McKenna

Table 11: Joint angles, damping constants, and exponential spring parameters, calibrated to a standing
posture.

Body Name Joint Angle - q Damper - b.Spring Linear Spring Exp. Spring Rest
Stiffness- a Stiffess.- Angle -qrget

rphal3.2 -0.27 0.003 0.25 10 -0.0358

r-pha13.1 0 0.003 0.05 10 -0.0101

r metat3 0.06 0.2 5 10 0.135

r toe2.2 0.3 0.0001 0.005 10 0.788

r toe2.1 0.3 0.0001 0.005 10 0.866

rmpha2.2 -0.23 0.003 0.25 10 0.0372

r-phal2.1 0 0.003 0.05 10 -0.0223

r metat2 0.03 0.2 5 10 0.144

r toel 0.4 0.000333 0.015 10 0.834

rphall.2 -0.1 0.01 0.75 10 0.0635

r phall.1 0 0.01 0.15 10 -0.0176

r metatl 0 0.4 5 10 0.0838

r nav 0 0.5 5 10 0.0619

r hindfoot -0.04 1 62 10 -0.0246

r talus -0.07 1 62 10 -0.0361

r shank 0 10 62 10 0.0166

r_thigh3 0 10 62 10 -0.00193

r_thigh2 0.05 10 62 10 0.0335

r-thigh1 0.09 10 62 10 0.0864

1_toe5.2 0.3 0.0001 0.005 10 0.491

1toe5.1 0.3 0.0001 0.005 10 0.541

lphal5.2 -0.4 0.003 0.25 10 -0.355

lphal5.1 0 0.003 0.05 10 0.00255

1_metat5 0.14 0.2 5 10 0.146

1toe4.2 0.3 0.0001 0.005 10 0.63

1 toe4.1 0.3 0.0001 0.005 10 0.689

Lpha4.2 -0.38 0.003 0.25 10 -0.257

261

Appendix E Body Tables Michael A. McKenna

Table 11: Joint angles, damping constants, and exponential spring parameters, calibrated to a standing
posture.

Body Name Joint Angle - q Damper b Spring Linear Spring Exp..Spring Rest
Stiffness- a Stiffness - Angle -

Lphal4.1 0 0.003 0.05 10 -0.0118

1_metat4 0.12 0.2 5 10 0.149

1_cuboid 0 0.5 5 10 -0.0087

1toe3.2 0.3 0.0001 0.005 10 0.761

1toe3.1 0.3 0.0001 0.005 10 0.826

lphal3.2 -0.27 0.003 0.25 10 -0.0358

lphal3.1 0 0.003 0.05 10 0.0101

1_metat3 0.06 0.2 5 10 0.135

1toe2.2 0.3 0.0001 0.005 10 0.788

1toe2.1 0.3 0.0001 0.005 10 0.866

Lphal2.2 -0.23 0.003 0.25 10 0.0372

lphal2.1 0 0.003 0.05 10 0.0223

1_metat2 0.03 0.2 5 10 0.144

1toel 0.4 0.000333 0.015 10 0.834

Lphall.2 -0.1 0.01 0.75 10 0.0635

Lphall.1 0 0.01 0.15 10 0.0176

1_metatl 0 0.4 5 10 0.0838

1_nav 0 0.5 5 10 -0.0619

1_hindfoot -0.04 1 62 10 -0.0246

1talus -0.07 1 62 10 -0.0361

1_shank 0 10 62 10 0.0166

1_thigh3 0 10 62 10 0.00193

1_thigh2 -0.05 10 62 10 -0.0335

1_thighl 0.09 10 62 10 0.0864

pelvis3 0 10 62 10 0

pelvis2 0 10 62 10 0

pelvis1 0 10 62 10 0.0183

262

Appendix E Body Tables Michael A. McKenna

Table 11: Joint angles, damping constants, and exponential spring parameters, calibrated to a standing

posture.

Spring Linear Spring Exp. Spring Rest
Stiffness- a Stiffness - % Angle - qtarg

head3 0 1 62 1 0

head2 0 1 62 1 0

head1 0 1 62 1 -0.0172

263

Michael A. McKennaAppendix E Body Tables

List of Terms Michael A. McKenna

List of Terms

General Notations
a , A: the carat ("^")above a quantity denotes that it is in spatial notation. [Featherstone

1983; Featherstone 1987] Lowercase letters in spatial notation (a) refer to a six dimen-

sional spatial vector. Capital letters with a carat above them (A) refer to 6 x 6 spatial

matrixes.

ai, Ag: a spatial quantity associated with body i.

Operators
a x : cross operator, see Eq. 11, page 79. from a 3 x 1 to a 3 x 3.

: x : spatial cross operator, Eq. 12, page 79. From 6 x 1 to 6 x 6.

a, Ai : spatial transpose of a spatial vector or matrix, see Eq. 13 and Eq. 14, page 80.

Terms
a : spatial acceleration, see Eq. 7, page 78.

b: generally used as a damping constant, a scalar.

e: generally used as a coefficient of restitution, a scalar.

f: 3 dimensional linear force vector, see Eq. 9, page 79.

f : spatial force.

g: gravitational constant: -9.81 meters/second2 .

i: the index number of a body within an articulated figure, from 1 to n.

I: spatial inertia tensor, a 6 x 6 spatial matrix, see Eq. 15, page 80.
'A
I : articulated body inertia, a 6 x 6 spatial matrix.

m: mass, a scalar.

n: the number of bodies in an articulated figure.

v: bias force.

264

Michael A. McKennaList of Terms

pi: the bias force of body i. This includes the p,, bias force, as well as other components.

q: joint position, in meters or radians, a scalar.

4: joint velocity, in meters/second or radians/second, a scalar.

4: joint acceleration, in meters/second 2 or radians/second 2, a scalar.

Q: joint force, a scalar, either a linear force or torque, depending on the joint type.

^.: the spatial joint axis for body i.

t: time.

v: spatial velocity, see Eq. 4, page 77.

vo: the linear velocity at the origin of the coordinate frame.

Xj: the spatial transformation, which transforms values from the coordinate system of

body j, to the coordinate system of body i (or, more generally, from coordinate frame j
to frame i).

x: the stiffness constant which multiplies linearly with an exponential term. See Eq. 81,

page 99.

: the stiffness constant in the exponential term of an exponential spring. See Eq. 81,

page 99.

7: the coefficient of friction, a scalar.

t : 3 dimensional torque vector.

o: 3 dimensional angular velocity.

d>: 3 dimensional angular acceleration.

265

Michael A. McKennaList of Terms

Glossary Michael A. McKenna

Glossary

abduct: to move a limb in a direction away from the median axis of the body ("outwards"

to the side); to separate. See adduct.

ABM: see Articulated Body Method.

adduct: to move a limb towards the median axis of the body ("inwards" from the side); to

bring together. See abduct.

active control: a mechanism used to regulate or guide the operation of a machine, appara-

tus, or system. In this context active control refers more specifically to the variation of

the actuator parameters in order to control motion.

actuator: a mechanism, such as a muscle or motor, used for moving or controlling a sys-

tem. In this context: a force-producing agent which operates at the joint of an articu-

lated figure to control motion.

Articulated Body Method (ABM): an efficient dynamic simulation method, developed by

Roy Featherstone, for branching articulated figures, comprised of rigid bodies. This

recursive algorithm has a computational expense of O(n) where n is the number of

joints (a linear computational expense). The algorithm is developed in [Featherstone

1983; Featherstone 1987].

articulated body: see articulated figure.

articulatedfigure: A set of bodies, connected by joints, which creates an overall bodily

shape or form, such as a person or mechanism.

articulated structure: see articulated figure.

biomechanics: the study of biological motions, and the forces and energies which create

them.

body: in this context: an individual rigid object, which can be free to move independently,

or can be connected to other bodies via joints to form an articulatedfigure. "Body" is

usually used in this context to refer to a simulated body, as part of a dynamic simula-

tion system. Bodies have properties such as shape, mass, density, center of mass, etc.

266

Glossary Michael A. McKenna

center of gravity (COG): See center of mass.

center of mass (COM): The center of mass of a body (or a set of bodies considered as a

whole) is the mean point of the collective mass. A linear force applied at this point will

induce no rotational acceleration. In order to remain statically stable, an articulated

figure must keep its body's center of mass within the region formed by its supporting

feet. The terms "center of gravity" and "center of mass" are often used interchange-

ably, although a distinction exists. "Center of gravity" refers to a body's center of mass

in one dimension only, in the vertical, gravity-defined direction. [Winter 1990]

COG: see center of gravity.

COM: see center of mass.

corpus: a computer program developed by the author for the dynamic simulation and con-

trol of articulated figures.

degree offreedom (DOF): "one of a limited number of ways in which a point or a body

may move or in which a dynamic system may change, each way being expressed by an

independent variable and all requiring to be specified if the physical state of the body

or system is to be completely defined." [Webster's] A DOF is an unrestricted or uncon-

strained direction in which motion (as in a joint) is possible. An unconstrained body,

free to move in space, has 6 DOFs, 3 translating and 3 rotating. Ajoint can provide

from 1 to 6 DOFs, depending on its nature. A single joint in corpus provides 1 DOF.

Simply because a DOF is present does not mean that movement is completely uncon-

strained in that direction, as there may be forces inhibiting such movement, just as the

human elbow has a limited range of motion.

determinants of gait: a set of motion characteristics of human walking put forth by Saun-

ders, Inman, and Eberhart, 1953. These six determinants describe the motions of the

limbs, and together, they capture the major types of motions of the lower body which

occur during walking.

distal: located away from the center of the body. The forearm is more distal than the upper

arm. See proximal. [Webster's]

DOF: see degree offreedom.

dynamics: the study of forces and their relationship to the motions of bodies of matter.

end effector: a body which lies at a peripheral terminus of an articulated figure.

equilibrium position hypothesis: a theory of biological motion control, which states that

controlled movements are the result of shifts of the equilibrium, or postural, state of

267

Glossary Michael A. McKenna

the motor system, developing a relationship between posture and movement. [Bizzi

1982; Bizzi 1984]

extension: the bending of a joint, such that the angle between the two adjacent limbs is

increased, in order to straighten out a flexed limb.

figure: see articulated figure.

flexion: the bending of a joint, such that the angle between the two adjacent limbs is

diminished.

force: a strength or energy brought to bear; an agency or influence that results in the accel-

eration of a free body. [Webster's] Used in this text in a general sense, to include both

linear forces and rotational forces, or torques.

forward control: the calculation of an output force from specified actuator control parame-

ters.

forward dynamics: the calculation of the motion (acceleration) of a body (or articulated

figure), based on the applied force.

forward kinematics: the calculation of the positions and orientations of the bodies in an

articulated figure, based on the joint positions and/or angles.

gait: a manner of walking or moving on foot. [Webster's]

hybrid dynamics: a combination of forward and inverse dynamics; the calculation of the

unresolved accelerations and forces within an articulated figure, based on a comple-

mentary set of specified forces and accelerations.

inverse control: the calculation of the control parameters required to achieve a specified

force.

inverse dynamics: the calculation of the force required to achieve a specified acceleration

of a body (or articulated figure).

inverse kinematics: the calculation of the joint positions and/or angles within an articu-

lated figure in order to achieve specified kinematic goals, such as the cartesian position

of an end effector.

kinematics: the study of motions, apart from considerations of mass or force. [Webster's]

kinetics: the study of the forces which give rise to motions, and their resulting energetics.

medial: of or relating to the plane which divides a bilateral animal into left and right

halves. [Webster's]

motor program: a theorized underlying representation for the production of movements in

biological systems, based largely on centrally "stored" sequences of muscular activa-

268

Michael A. McKennaGlossary

tion. In this context: a mechanism which varies actuator control parameters in order to

achieve a specific motion.

passive control: a means of producing motion which does not employ active control- the

motions are accomplished without variation of the control parameters. Gravity, inertia,

and the mechanical properties of the system govern the motion.

parser: in corpus, the program sub-system which takes text input and converts, or

"parses," it into functions which are then executed.

physically based model: a computational model of a natural phenomena, using the laws of

physics as the basis of the simulation.

posture: a kinematic configuration of an articulated figure; the relative positions of the

limbs with respect to each other.

proximal: located toward the center of the body. [Webster's] The upper arm is more proxi-

mal than the forearm. See distal.

rigid body: A rigid body is a body which does not undergo any internal deformations. The

shape of the body is constant, and it perfectly transmits forces through itself. No real-

world objects are completely rigid, and simulations which use See body.

rotation: 1) an angular displacement about an axis 2) the turning of a limb about its long

axis, as if on a pivot. [Webster's]

rotoscoping: the technique of mimicking the real-world motions of humans, animals or

some other moving system, through film or a similar imaging medium. When

rotoscoping, artists design their animated drawings, copying from the recorded mov-

ing image. Rotoscoping techniques are also used with computer models, as artists cre-

ate motions for their articulated figures, "copying" from real-world moving images.

sagittal: of, relating to, or situated in the median plane, or any plane parallel thereto. [Web-

ster's]

script: in corpus, a script is an ACSII text file, which contains functions and commands

which are interpreted and executed by the corpus parser. Scripts (and typed input) are

the means by which corpus is controlled.

spatial algebra: the algebra of spatial notation, using the standard operations of matrix

arithmetic, with the primary exception of a unique transposition operator.

spatial notation: a mathematical representation which combines the linear and angular

components of physical quantities into 6 dimensional vectors and 6x6 matrixes, which

allows for fewer and simpler quantities and equations. Quantities in spatial notation

are denoted with a carat ('^'), as in a.

269

Michael A. McKennaGlossary

stability margin: (or static stability margin) the distance from the vertical projection of the

center of gravity onto the support surface to the closest point of the boundary of sup-

port polygon. [Messuri; McGhee]

stiff; stiffness: there are several related meanings for "stiff." A "stiff' spring is one that

strongly resists deviating from its rest position. During integration, "stiff' refers to the

"difficulty" in getting accurate results. The stiffer the system, the smaller the integrator

time-steps must be, which means more computation must be taken to cover the same

time interval. Stiff springs will lead to a stiff system (with stiff equations of motion)

because the springs' feedback loops (from position to force to acceleration and back to

velocity and position) becomes tighter, and typically more integrator samples are

needed to accurately follow the variations in spring force.

support region: the convex hull area formed by the points of contact between a figure and

the support surface.

support polygon: (or support pattern) the boundary of the support region.

timestep: the amount of simulation time, in seconds, which passes between each call to the

dynamics simulator. Acceleration, velocity, and other values in the simulator are inte-

grated over this discrete time period, dt.

torque: a rotational force; an unopposed torque applied to a body will induce a rotational

acceleration (or "angular acceleration"). The termforce is used in this text in a general

sense, including torques as well as linear forces.

virtual environment: an interactive computer model which represents an "environment,"

which is based on a set of rules, and typically represents some aspect(s) of the real-

world.

270

Michael A. McKennaGlossary

Index of References Michael A. McKenna

Index of
References

A
Alexander 1976................................... 41
Alexander 1985........................ 23, 41, 174
Alexander 1990.............................. 41, 174
Amirouche.. 42
Amkraut .. 28
An... 26
Arm strong 1979 22
Armstrong 1985 22, 29, 47, 79
Armstrong 1987 22, 29, 47, 100
Audu... 36,58

B
Badler 1985... 28
Badler 1987... 28
Barzel.. 29
Bizzi 1982.......................... 25, 58, 59, 268
Bizzi 1984................................ 25, 59, 268
Bogert... 97
Brady.................................. 21, 25, 26, 228
Braune 1987....................................... 38
Braune 1988............... 32, 38, 56, 109, 121
Brotm an.. 29
Bruderlin 1988 46
Bruderlin 1989 46, 57

C
Cavagna 1966....................................... 172
Chen... 24,36, 178

D
Darrell .. 27
Delp.. 36, 56, 177
Dempster...... 32, 56, 57, 58, 109, 121, 125
Drillis 32, 33, 59, 109
Dworkin ... 133

E
Essa .. 27

F
Featherstone 1983. 22, 51, 55, 56, 76, 264,

266
Featherstone 1987 ... 16,22,23,51,55,56,

76,78,79,84,88,176,264,266
Foley .. 209
Forsythe.. 83
Frank .. 41
Furusho ... 44

G
Ginsberg.. 27
Girard 1985... 46
Girard 1987...................................... 26, 46
Goldfinger. 33, 35, 59, 115, 116, 117, 118,

119, 120, 153
Gray.. 33, 115
Gubina.. 42

H
Hahn.. 98
Hatze .. 34, 36, 58
Heppenheimer 14
Hof .. 34
Hollerbach... 23
Huelke.. 31
Hughes ... 51

1
Inm an 39, 40, 45, 57, 114,119,122
Isaacs 1987....................................... 22, 29

Isaacs 1988....................................... 22, 29

271

Michael A. McKennaIndex of References

Index of References Michael A. McKenna

K
Kato... 44
Kochanek ... 26

L
Lasseter .. 26
Lathrop.. 23
Lee.. 28
Liston .. 43

M
M aes... 25
M anko .. 95
M ann .. 38
M arion... 81
M cGeer 1990-A 45, 57
M cGeer 1990-B 45
M cGeer 1990-C 45
M cGhee.. 44, 270
M cKenna 1988................................. 49, 50
McKenna 1990-A................. 47,48, 69, 70
McKenna 1990-B....... 49, 50, 69, 150, 174
McKenna 1990-C............. 49, 69, 150, 174
M cKenna 1990-D 53
M cKenna 1992............................... 69, 130
McMahon........... 25, 36, 37, 39, 41, 58, 64
M eglan .. 43
M essuri... 270
M insky .. 25
M iura... 44
Mochon 1980-A.. 38,41, 57, 64, 162, 168,

169
Mochon 1980-B 38, 41, 64, 162
M oore... 94,98
M orlock.. 42
M urphy... 57
M uybridge.. 36, 37

0
Onyshko .. 42
Ousterhout...................................... 70, 219

P
Pai ... 57

Patriarco ... 39
Pearson.. 47
Pfeiffer .. 24
Phillips 28, 61, 130, 147
Pieper 1992 24, 178
Pieper 1994 .. 177
Press .. 83
Procter.. 57, 113
Pugh .. 43

R
Raibert 1986 45
Raibert 1991 45
Reynolds 1982............................. 27
Reynolds 1987............................. 28
Russel 44

S
Saunders 39, 45, 57
Schr6der 23, 70
Siegler .192................................... 42
Simkin .197................................... 43
Sim se.. 46
Singh 27
Steketee ... 26
Stredney 33,34,59, 105
Sturm an.. 26
Sutherland .. 44

T
Takanishi .. 44
Terzopoulos.. 24

w
Walker 136
W alters ... 27
Webster's 67,267,268,269
W ei s.. .. 171
Wilhelms 1985.....................29,47,81,95
Wilhelms 1987...........................29,47, 57
Williams 1977 30,109, 121,124, 125
W illiams 1990.. 27
W ilson.. 47
W inter 1978 38, 64

272

Index of References Michael A. McKenna

Index of References Michael A. McKenna

Winter 199020, 21, 32, 33, 38, 59,81, 109,
121, 122, 267

Witkin 1988 .. 29
Witkin 1990 .. 90
Wolfram... 228

Y
Yang.. 24
Y oon... 34,58

z
Zajac 1986... 36
Zajac 1989.. 36
Zeltzer 1982..................................... 45, 97
Zeltzer 1984............................. 33, 45, 105
Zeltzer 1989 47, 48, 70
Zeltzer 1990 27, 28, 67, 69
Zeltzer 1991 .. 25

273

Index Michael A. McKenna

Index

Note

Page numbers in italics refer to illustra-

tions.

A
abduction 30, 31,40, 266
ABM, see Articulated Body Method
acceleration 78, 85
active control, see control, active
actuator 16, 29, 36, 37, 63, 99, 102, 125,

141, 147, 149, 154, 266
adaptive28, 83, 152
adduction30, 31,40, 266
anatomical illustration .115, 116, 117, 119,

120
animation 15, 26, 45, 65, 71
ankle 113, 113, 157, 162, 164, 171
anterior ... 30
anthropometrics 57, 109
arm ... 163
articulated body inertia 85
Articulated Body Method ...16, 22,51,55,

76, 136, 266
articulated figure 15, 19, 46, 57, 75, 84, 266

B
balance ... 44, 147
ballistic walking 41, 42, 64, 162, 163
bias force, see force, bias
biomechanics 15, 30, 41, 56, 99, 266
body 19, 23, 81, 84, 130, 266
bolio ... 47, 70

C
calibration 16, 52, 148, 154
center of gravity 20, 267
center of mass ...20, 39, 93, 124,125,147,

163, 267
central nervous system 24, 36
cockroach .. 49
cockroach, also see roach
coefficient of friction 95, 129
coefficient of restitution 94, 95
COG, see center of gravity
collision 93, 94, 97, 129, 133
collision detection 65, 106, 133
COM, see center of mass
compass gait 39
complexity .. 104
compliance 26, 52
computer animation, see animation
constraint .. 22, 28
contact 94, 129, 147
contraposition 153
control ... 15

active 42, 152, 173, 266
feedback 26
forward 62, 137, 268
inverse 16, 62, 147, 157, 268
motion .. 24-29
m otor .. 16,49
openloop 25,61
passive .. 269

Cootie Gets Scared 49, 50
Coronal ... 30
corpus 15, 50, 54, 65, 67, 89, 99, 105, 128,

148, 267, 269
Coulombic friction 95
cross operator 79
cuboid ... 114
cuneiform ... 114

D
damper 29, 36,52,57,94,99, 101,125,138,

157
deformable .. 24

274

Michael A. McKennaIndex

Index Michael A. McKenna

degree of freedom ... 15, 19, 30, 56,58, 84,
110,111,112,135,267

delete .. 130
density .. 122
determinants of gait 39-41, 267
DOF, see degree of freedom
double support 40
dynamics14, 20, 55, 67, 70, 75, 81, 267

first order 90, 154
forward 20, 29, 42,47, 49, 150,157,268
hybrid21,46,88-89, 147, 150, 162,

174, 268
inverse ...20, 38, 88-89, 136, 150, 157,

268

E
elbow113, 154, 157
end effector 20, 267
energetics .. 23
energy

kinetic 4 1, 157
potential .. 41

equilibrium position hypothesis 25, 59, 267
error tolerance 83, 129
euler .. 82
evert 113, 161, 162
exponential spring, see spring, exponential
extension 30, 31, 39, 268

F
feedback36, 42, 44, 147, 149
feedback control, see control, feedback
flection, see flexion
flexible ... 24, 41
flexion 30, 31, 39, 40, 268

plantar .. 40
foot ..35, 42, 108, 112, 116, 120, 121, 142,

161, 166, 167
force 20, 79, 93, 98, 100, 268

bias ... 82
ground reaction 38, 41, 43, 93, 171, 172
joint16, 57, 99-102, 124, 137

force plate ... 38
forearm ... 113

forward control, see control, forward
forward dynamics, see dynamics, forward
forward kinematics, see kinematics, for-

ward
fram e .. 129
friction .. 95, 96
frontal ... 29

G
gait 36, 44,46, 47, 268

compass .. 39
determinants of 39-41

gait controller 49
gravity 41, 45, 49, 93, 98, 130, 132

center of, see center of gravity
GRF, see force, ground reaction
Grinning Evil Death 53
ground reaction force, see force, ground re-

action
guiding ... 27, 69

H
hand ..113, 157
head ..110, 153
hexapod47, 49, 150, 174
hindfoot ..113
hip .. 113
horizontal .. 29
hybrid dynamics, see dynamics, hybrid

I
illustration, see anatomical illustration
inertia 32, 41, 65, 79, 106, 121

articulated body, see articulated body
inertia

inferior ... 30
integrator 82, 103, 129, 134, 140
inverse control, see control, inverse
inverse dynamics, see dynamics, inverse
inverse kinematics, see kinematics, inverse
invert .. 113
inverted pendulum, see pendulum, inverted

275

Index Michael A. McKenna

Index Michael A. McKenna

J
joint .. 19, 23, 135
joint axis ... 84
joint force, see force, joint
joint limit 29, 34, 58, 60, 99, 101, 125, 138

K
keyframe 26, 27, 154
kinematic motor program, see motor pro-

gram, kinematic
kinematics 14, 20, 28, 45, 47, 268

forward 20, 26, 268
inverse 20, 26, 47, 61, 154, 268

kinetic energy, see energy, kinetic
kinetics ... 14, 268
k nee .. 113

L
lateral .. 30
link ... 30, 105

M
mass 32, 80, 121, 123

center of, see center of mass
m edial ... 30, 268
metatarsal 114,119, 122, 162
motor control, see control, motor
motor program 17,49, 52, 59, 102-103,

141,145,149,154,157,173,268
kinematic 45, 47

muscle 24, 32, 36, 37
Muybridge .. 37, 64

N
navicular ... 114
neck .. 110,154
numerical instability 89, 94, 149

0
O nyx ... 128, 134
open loop control, see control, open loop
optimization 29, 39,43
oscillator ... 47, 174

P
parser .. 67, 68, 269
passive 28, 32, 34, 41, 45, 55, 138, 139, 141
passive control, see control, passive
passive step 162, 165, 166, 167
pelvis .. 110
pendulum 90, 91, 140, 163

inverted 39, 44, 65, 163
phalanx 115, 145, 157, 164, 173
physically based modeling .. 14, 21, 28, 55,

269
plant .. 26
plantar flexion, see flexion, plantar
position ... 20
posterior 30
posture ...16, 25, 61,63,63, 130, 147,147,

150, 153, 154, 269
potential energy, see energy, potential ...41

R
reach 153, 155, 156
reaction force, see ground reaction force
Reality Engine 128, 134
reflex .. 36,47
rendering 128, 134
rendermatic .. 72
RK, see runge-kutta
roach ... 47,48,50
root ... 110
rotation 30, 31, 39, 269
rotoscoping ... 269
runge-kutta 82, 129

S
sagittal 29, 163, 269
script 69, 106, 128, 269
shoulder 113, 154, 157
Silicon Graphics 128, 134
skeleton .32, 34, 35, 45, 59, 105, 107, 117,

121
skin ... 24, 119, 121
spatial algebra 56, 269
spatial notation 20, 23, 56, 76, 269
spine ... 110

276

Michael A. McKennaIndex

Index Michael A. McKenna

spring 25, 29, 58, 155, 174
exponential 34, 52, 94, 99, 100, 125

stability ... 41
stability margin 147, 270
stiff ... 16, 97, 270
stiffness 25, 62, 83, 97, 126, 140, 149, 270
subtalar ... 113, 162
superior ... 30
support .. 147
support polygon 147, 270
support region 28,44,61, 152,270

T
talar 113,157, 164, 171
talocalcaneonavicular, see subtalar
talocrural, see talar
task level 28, 45, 69
Tc, see talar
Tcn, see subtalar
texture map 115, 116, 127
thigh ... 113
timestep 83, 129, 270
toe 115, 146, 157, 160, 161, 164, 171
torque ... 270
transform .. 81, 87
transpose .. 80

V
velocity 77, 85, 90
virtual environment .. 14, 47, 116, 127, 270

W
w aist ... 110
w rist .. 113, 157

277

