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Abstract

This thesis addresses the problem of designing practical vision systems for computing 3-D
representations of scenes from images. A theoretical understanding of the basic geometric
problems has been emerging over decades, yet difficulties associated both with automati-
cally extracting 2-D geometric features from images and in computing stable 3-D geometric
descriptions from 2-D features have impeded progress in building reliable vision systems
that perform useful tasks outside a laboratory setting.

The 3-D computational problems are geometrically poorly leveraged by the image fea-
tures, involve nonlinear relationships, and have non-Euclidean state domains. To model
such domains, a manifold-tangent framework is developed which allows non-Euclidean state
manifolds to be locally described by Euclidean tangent spaces. Coupled with local prob-
abilistic uncertainty models in tangent space, the manifold-tangent representation is used
to generalize classic iterative (Levenberg-Marquardt) and recursive (Kalman) estimators to
operate on nonlinear implicit constraints involving non-Euclidean domains, such as those
found in the 3-D vision geometry problems.

Using this framework, a well-behaved model is developed for the classic problem of
recovering 3-D motion and structure from point correspondences, augmented to include
recovery of camera focal parameters as well. Extensive computer simulations are carried
out to characterize performance in a controlled setting. Several prototype applications
are developed to verify performance in the field and to illustrate the practical capabilities
afforded by reliable 3-D geometry estimation from uncalibrated imagery; these include a
3-D head tracking system for human-computer interface, a video-based tool for building 3-D
texture-mapped models, and a film post-production tool for matching 3-D camera motions.

The automatic feature extraction issue that lingers for point-based systems motivates
analysis of a second class of problem, that of computing 3-D geometry from blob corre-
spondences. Blob features are moment-based spatial descriptions of objects in images that,
unlike traditional features, can be stably and efficiently extracted from noisy image streams
in real-time. The modeling principles used for points are used in a similar way to develop a
computational model for blobs. Performance in estimating 3-D camera geometry and 3-D
blob geometry is characterized through computer simulations and a real-time self-calibrating
3-D person-tracker application developed using the model.
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Chapter 1

Introduction

People have been fascinated with vision for centuries, but until the recent advent of the
computer age have not had the tools with which to build their own “seeing machines”.
Electronic imaging now provides machines with the capability to capture images of light
measurements in very much the same way as the human retina, and digital computers allow
machines to process the images potentially much like the human mind. The hope is that
machines might someday through these tools obtain a visual perception of their surroundings
much like that which most humans depend on every day for most aspects of their lives.

Motivations behind building seeing machines are as varied as the overlapping disciplines
associated with the field of computer vision. Cognitive scientists want to build seeing ma-
chines to investigate theories of human perception and cognition. Artificial intelligence (Al)
scientists want to build machines that have perceptual and mental capabilities of people, pre-
sumably so the machines can do more sophisticated work for us. Robotics scientists want
their machines to be more autonomous through vision and therefore more useful. Other
computer scientists simply want better interfaces to their computing machines. And many
computer users who manipulate large amounts of imagery — including stills, video, and
film — would like their computers to more intelligently search, understand, and manipulate
imagery instead of merely pushing around bits.

However, building a general-purpose seeing machine apparently involves understanding
the entire problem of how intelligent behavior works. Since we do not currently have a
sufficient understanding of how the human mind represents the world, how it remembers
and recognizes objects, or how it classifies and labels things, it is not surprising that we
have not succeeded in building a significantly general-purpose seeing machine. But there
are many aspects of vision that can adequately be separated from the rest of the thorny
issues of intelligence and it has been disappointing that even these special-purpose visual
tasks have been difficult to implement reliably.

In particular, a great deal of computer vision work over the last two decades has been
devoted to obtaining 3-D spatial descriptions of scenes from images. In fact, many scientists
originally considered the prime function of vision to be building these 3-D descriptions,
upon which other higher-level functions, such as object recognition, could function. Today’s
philosophies about vision are more diverse, yet the scientific questions about human 3-D
perception and the engineering questions about machine 3-D perception persist while the
success at building 3-D seeing machines remains quite limited. It is this lack of applicability
and reliability of the basic vision algorithms that is the core motivation for the theoretical
innovation in this thesis.

This research, for example, was originally motivated by the desire to develop a visually-
based human-computer interface, and the first task was to be that of tracking a person’s

17



18 Chapter 1. Introduction

(d) (e) (f)

Figure 1-1: The applications driving the research and serving as benchmarks for the un-
derlying theoretical treatment include (a) 3-D head tracking for human-computer interface,
(b,c) models-from-video for computer graphics and video post-production, (d) 3-D motion
matching for film post-production, (e,f) camera self-calibration for visual interface systems
and 3-D person-tracking for human-computer interaction and visually controlled graphics.

head in 3-D. The location of the person’s head could be used for rendering a model of the
head with the correct motion, leading to a paradigm for low-bandwidth teleconferncing, or
for controlling the viewpoint of the user’s display, which leads to a paradigm for visually
controlled graphics, or “virtual holography”.

A traditional approach to this problem, like many other geometry-based problems in
vision, is tracking 2-D features in images of the person’s head and using some internal
model of the imaging process to then estimate 3-D motion from these features. For this
system, special-purpose commercial hardware was used to track feature points on the face
in real time and the estimation of 3-D motion from these feature tracks was the principal
research problem.

When the camera and the head shape are known, a straightfoward modeling and estima-
tion approach works very well. In general, however, these are not known and the resulting
“structure-from-motion” problem arises, which has been considered a fundamentally diffi-
cult problem in our field. Despite receiving a great deal of attention in the literature and
attracting a wide variety of modeling and estimation solutions, practical applications have
been limited due to poor reliability and accuracy.

An investigation into the nature of the problem when neither motion, object shape, nor
focal length is known has led to most of the basic elements of the modeling and estimation
approach of this thesis. Most importantly, considerations of numerical conditioning fostered
a novel approach to modeling of pointwise structure and camera orientation and a careful
analysis of 3-D rotational representation and estimation motivated the manifold-tangent
framework for modeling the curved state spaces that occur in 3-D vision geometry problems.
Together these resulted in development of the nonlinear probabilistic framework for 3-D
geometry estimation from point correspondences that is a basis for recovering 3-D motion,
3-D pointwise structure, and camera focal parameters from uncalibrated imagery.
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The benchmark of success of this framework has been the successful application of the
new formulation to real-world problems including the real-time head-tracking system and
several interactive systems for processing film and video. The models-from-video application
consists of building texture-mapped polygonal models from moving video of objects for the
purpose of obtaining realistic and metrically correct computer graphics models for virtual
environments. The match-move application consists of recovering camera trajectories of
moving cameras for the purposes of image stabilization, integration of film and computer
graphics, and other film post-production tasks.

However, the demonstrated success of the estimation strategy for points is somewhat
undermined by the lingering problem that points are difficult to reliably correspond in real
imagery, particularly in the low-resolution video quality images that most computer vision
systems must work with. In the head-tracking system, special-purpose commercial hardware
did the job, but the range of motion that could be successfully tracked was somewhat lim-
ited. In the models-from-video application, a similar template-based tracking strategy was
used, but because of jerky camera motions, a large 3-D viewpoint change, and minimalist
implementation, many automatic tracking mistakes either had to corrected by hand using
a graphical user interface or resulted in the feature track being automatically discarded.
Likewise, the film post-production system was mostly automatic but required human in-
teraction at keyframes to constrain the tracking. These interactive systems are perfectly
acceptable for the imagery production applications, but for the grander goal of autonomous
vision systems, further progress on geometrical feature extraction is required.

In particular, to make further progress on human-computer interface it has been nec-
essary to take a new look at feature extraction. The template-based point tracking used
in the head tracking system had the advantage of using high-resolution close-up images of
an essentially rigid object. To track people moving freely about a room or even sitting at
a desk requires tracking nonrigid articulated bodies through a larger field of view, thus at
lower image resolution.

To solve this, a new formulation of 3-D geometry estimation has been devised using a new
type of feature that, unlike traditional features—points, edges, lines, and contours—has been
shown to be reliably and cheaply extractable from even low-quality images of complex objects
such as moving people. Blob features were motivated in fact by a laboratory prototype
system for real-time 2-D visual person tracking. A probabilistic modeling approach using
color and spatial distributions is the basis for the system which reliably extracts image
regions corresponding to parts of a person from noisy low-resolution video. People using
this system can move freely without catastrophic failure of the tracking system.

These blobs can be modeled as moment-based distributions, both in 3-D and 2-D, and can
represent either probability of occupancy or solid-body geometry. Geometric relationships
between the 3-D distributions and corresponding 2-D distributions facilitate the subsequent
estimation of parameters of the 3-D object blobs from the 2-D “feature” blobs. Many of
the estimation and modeling issues are the same as in the points problem and the basic
framework developed for points extends readily to the blob problem.

The success of the blobs formulation is again benchmarked by the success of the applica-
tions, including a scheme for self-calibration of a multi-camera user interface and real-time
3-D tracking of a moving person. The person-tracker uses two cameras and two standard
workstations, runs at 30Hz and has been used by hundreds of people. The self-calibration
technique operates by obtaining blob correspondences from a moving person and is therefore
very simple to use.
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1.1 Contributions

The research results presented in this document offer several potentially important contri-
butions to the field of computer vision, outlined here.

3-D geometry is a non-Euclidean manifold First is the concept that the 3-D geometry
used in vision cannot be adequately represented as a Euclidean state space. The 3-D rotation
in particular is non-Euclidean in nature and can only be represented as a curved manifold.
Another way of saying this is that any numerical parameterization of the problem must
be augmented with constraints, which would lead to a traditional constrained nonlinear
optimization approach to the problem. These two interpretations are somewhat equivalent,
but the manifold formulation is more useful in practical problems and is more naturally
extended to probabilistic recursive estimation.

Most previous work has applied standard batch or recursive estimation techniques, which
are all based on Euclidean domains, to the 3-D geometry estimation problems by modifying
them to normalize the rotation quaternion at each iteration (for batch estimation) or each
time step (for recursive estimation). This can be thought of as a poor ad hoc method of
doing constrained optimization and could, e.g., be improved by using more sophisicated
traditional constrained optimization formulations.

However, the problems become more complicated when probabilistic representations are
required. Traditional constrained optimization techniques are not based on probabilistic
models. For recursive estimators, not only does the estimator have to maintain a single
state on a manifold but it also has to describe a probability distribution over the state
space. Since traditional probabilistic methods are based on Euclidean domains, usually
Gaussian distributions, they simply do not apply straightforwardly. There are no standard
distributions, like the Gaussian, that span the rotation manifold.

The solution offered in this document is the manifold-tangent model for curved state
spaces, in which state manifolds are augmented by a set of tangent hyperplanes at each
state, each of which is a local Euclidean domain in which traditional probabilistic models
and estimation strategies apply.

The model is locally Euclidean and therefore facilitates natural generalization to curved
manifolds of most of the classic nonlinear estimation algorithms, which are themselves
based on local properties. For the purposes of this research, the classic batch (Levenberg-
Marquardt) and recursive (Kalman) estimators are generalized in this way. These gener-
alizations have some precedent — e.g. the generalized batch algorithm is another way of
looking at constrained optimization — but for the computer vision field, they constitute a
new way of solving the probabilistic estimation problem for 3-D geometry and may lead to
new ways of thinking about the problem.

Virtual plane camera model One of two contributions of this thesis to advancement
of thinking regarding the classic point-based structure-from-motion estimation problem is a
novel model for the perspective camera internal and relative orientation which is designed
to remain numerically well-conditioned for any focal length, including an infinite one (or-
thographic projection).

This type of camera model is particularly important when focal length is unknown and
was motivated by the problem of estimating geometry from uncalibrated imagery. The
model formulation also has implications for choosing the scaling of parameters which may
prove to be important in future work.

Reference frame point structure model The second contribution to the point-based
problem is the characterization of tracked points as a location in a reference image (typically
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the first image in which the features were selected) plus a depth.

The model derives from the way features are actually tracked in practice, i.e. by identi-
fying an image point in a reference image and tracking it. For a group of image points, the
unknowns are the depths of those image points in the reference frame, the focal parameters
of the camera, and the relative orientations of subsequent frames. The measurements are
the locations of those points in subsequent frames.

The model has many fewer parameters than traditional object-based formulations and
in particular has more constraints than unknowns at each step of a recursive filter. The
consequence is that the model describes the same geometry, yet is more stable and less
reliant on initial conditions, leading to greater success in application to practical problems.

Blob modeling and 3-D estimation Another potentially significant contribution is
the introduction of the “blob” geometric primitive for 3-D estimation. Blobs are interesting
because they can be reliably and efficiently extracted and tracked in real imagery and because
they can provide a probabilistic, rather than solid-body, interpretation of 3-D geometry.

The motivation for using blobs for 3-D geometry arose from an actual video processing
system that extracted blobs as features on moving people in a complex background envi-
ronment. Using the geometric information contained in 2-D blobs this research has led to a
means for obtaining 3-D geometric properties of blobs from corresponding 2-D blobs.

Blobs represent a departure from traditional thinking about features because instead
of using sharp local geometric features such as points, edges, lines or contours of an ob-
ject, blobs represent the spatial moments of the entire object directly and use these as the
pertinent geometric information.

Furthermore, by representing 2-D and 3-D objects in this way, there is a spatial proba-
bilistic interpretation of the objects which represents a departure from traditional notions
of solid-body geometry or surfaces as 3-D geometric primitives. The blob moments can be
mathematically interpreted as the statistics of a Gaussian distribution, which can in turn be
physically interpreted as the probability distribution of occupancy for either a 3-D object
or 2-D feature.

It remains to be seen what additional benefits or uses of this interpretation might be,
but for the present purposes, the representation is convenient and very useful because it
contains the required parameters for the location, orientation, and dimensions of the object.

Applications Finally, the applications that have been demonstrated as part of this re-
search are probably the most visible, and perhaps most useful, contributions to the field
because they have demonstrated some of the potential practical impact of the underlying
technology, and of 3-D computer vision technology in general.

For example, a prototype 3-D system for image-based modeling has recently been field
tested at a Hollywood production studio on several film shots for which the 3-D motion of
the camera was unknown and required for post-production tasks. The successful extraction
of the 3-D motion using the prototype system was used to verify the performance of the
technique on completely uncontrolled imagery. The successful demonstration of computer
vision technology may foster entirely new ideas about how to approach many media produc-
tion problems because many of the industry’s expensive computer tools are based around
the assumption that 3-D modeling of imaged scenes is too difficult. The results of this re-
search effort with Rhythm & Hues Studios show that not only can it be practical, but that
the precision obtained can live up to the required standards of high-end film production.

In the mainstream computer vision field, the assumption that visually tracking people —
especially in 3-D, in real-time, and without special hardware — is a very difficult problem
may be challenged by the results of the prototype person-tracking application. The proto-
type system built as part of this research was recently demonstrated at the Siggraph ’96
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interactive exhibition where hundreds of people used the vision system to interact with six
different interactive virtual worlds.

A critical part of making the person tracking system practical was the self-calibration
process, which operates entirely by tracking blob features on the person. Demonstration
of this application could change the way many people think about solving problems with
computer vision because there is currently a prevailing assumption that camera calibration
is a difficult and painful process. This assumption drives many aspects of computer vision
research and is a large part of the motivation behind view-based techniques, for example.
For many vision tasks, however, centimeter precision is sufficient, and since it has now
been demonstrated that a calibration technique can achieve this in a matter of seconds
and requires no props, the practical options for solving vision problems, especially human-
computer interaction, may change substantially.



Chapter 2

Background

This research has precedent in a long history of work on 3-D geometry in vision and stands
among a growing array of related current research.

This chapter attempts first to clarify the context of 3-D computational geometry in the
study of vision, making the argument that 3-D representations of some sort are the most
appealing theoretically and the most useful in practice.

Among the various approaches to modeling and estimating 3-D geometry, the second
section argues further that a feature-based approach using nonlinear, dynamic, and proba-
bilistic models offers the highest potential for a general framework that will be effective for
a wide range of computer vision applications.

Finally, the last section reviews the major accomplishments in the field on visually
tracking people to motivate the blob-based approach that is part of this research.

2.1 The role of 3-D geometry in vision

Obtaining a 3-D geometric representation of the visible world has always been one of the
principal goals of computer vision, but it is worth trying to understand the role of 3-D
geometry in vision and applications before entering into how people have tried to compute
it. The important questions include whether a 3-D description is necessary and whether
such a description is useful.

The pioneers of computer vision and artificial intelligence (AI) assumed without a great
deal of hesitation that the primary role of vision is indeed to recover a 3-D representation of
the visible world which could then be used to recognize objects and reason about the world.
For example, Marr defined the vision process in a very geometrically oriented way:

What does it mean, to see? The plain man’s answer (and Aristotle’s too) would
be, to know what is where by looking. In other words, vision is the process of
discovering from images what is present in the world, and where it is. (Marr

[46])

and, indeed, this interpretation of the visual process pervaded the field in the 1980’s as much
computer vision research focused on the recovery of 3-D geometry as the basis for higher
levels of processing, including recognition and reasoning.

For example, some early hallmark achievements included the basic understanding of
recovering 3-D scene structure from stereo (e.g. Marr & Poggio [47]) and from motion (e.g.
Ullman [78, 79]). Both of these geometric solutions relied on correspondence of features
in images taken from different points of view. Other image cues including shading, retinal

23
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velocity fields (optical flow), and de-focus were also used to extract 3-D shape information
[36].

In nearly all of this work the problems neatly separate into two sequential stages: feature
extraction (point correspondence, image gradients, optical flow) and shape estimation. In
the case of correspondence-based methods, both stages have been well understood theoret-
ically for years but nonetheless have presented difficulties to those trying to build imple-
mentations. This meager progress towards building practical systems, in part, has led many
researchers to doubt the requirement for 3D analysis as the initial step in vision off of which
everything else builds.

In particular, it is unlikely that 3-D representations can be computed before segmentation
and recognition because extraction of features is so intimately related to these processes.
Understanding and organizing an image is not purely a matter of signal analysis, as “the
correspondence problem” has usually been approached, because there are always an infinite
number of 3-D interpretations for each signal; the correct one corresponds to regularities
in the natural world which, in the human visual system, are either learned or acquired
genetically [57]. Thus, ultimately 3-D analysis cannot happen in isolation; as a practical
matter, however, 1t is difficult to study the entire visual perception problem at once, so 3-D
analysis continues to be studied in isolation despite these theoretical drawbacks.

Other researchers have rebutted the role of 3-D analysis further and have suggested that
3-D representations may not be required at all. Two important emerging schools of thought
include that of non-metric 3-D geometry and that of view-based (2-D) representation.

Non-metric geometric descriptions are 3-D descriptions, but not in the way we usually
describe 3-D properties, i.e. locations, distances, and angles (Euclidean geometry). Recent
developments on the recovery of non-metric structure invariants [39, 25, 64] arise from certain
convenient linear relationships between points and lines in displaced cameras. The resulting
descriptions of geometrical structure encode somewhat abstract relationships between 3-D
points rather than what we consider to be actual physical locations of 3-D points.

This work is partially a reaction to the difficulty of the numerical estimation part of
recovering 3-D geometry from traditional correspondences and has some attractive prop-
erties, primarily that computation is algebraically elegant and simple. However, this line
of research still has all the problems associated with getting the correspondences in the
first place. Also, since non-metric representations are somewhat abstract and do not have
simple physical meaning, they are difficult to use as an end-product and difficult to com-
pute with. For example, the solutions to certain numerical estimation problems involve
using probabilistic models for describing uncertainty in physical parameters; the numeric
values for these models are easy to specify for most problems since they correspond to real
physical quantities that we as humans understand. Physically-based parameters also pro-
vide a common language that is useful for both relating computation to the real world and
communicating information between visual subsystems.

The other school challenging traditional 3-D geometry is that of view-based represen-
tations. The basic tenet is that, since several different views of an object encode the 3-D
geometry of the object, the views themselves constitute a representation of the object. This
approach is attractive from a practical standpoint because the difficulties of 3-D estimation
can be avoided completely and only images need be stored. This approach has been used
successfully for some recognition tasks [77, 49, 9, 85, 20, 13, 83] and has even been proposed
as a way of doing synthesis (computer graphics) [10].

However, the tasks that have been successfully solved using these techniques are either
essentially 2-D in nature, for which a 2-D representation is entirely appropriate, or require
a large number of images from various points of view to solve problems with a significant
3-D component. In the latter case, certain 3-D geometry is implicitly being used (presumed
known) to specify the viewpoints of the multiple images; it is unclear that it would be easier
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to recover these viewpoints than to build an equivalently descriptive 3-D model from the
images. It is also quite certain that a 3-D model containing the same information in the
multiple images would be a far more compact description.

Thus, despite the branching of intellectual thought on internal representations for vision,
there is still no alternate approach to implementing 3-D visual perception that is more theo-
retically appealing than the process of representing and computing 3-D geometry. The slow
progress of the last decade or so can probably be attributed to various circumstances other
than fundamental difficulty, some of which are addressed in this thesis. First, numerical
estimation on traditional problems has proven difficult even when the geometry is well un-
derstood; the mathematical modeling issues of this thesis highlight the role of representation
in achieving stable numerical estimation for pointwise geometry. Second, traditional fea-
tures (points, lines, contours) upon which classic formulations are based are difficult to find
and not particularly well-suited for natural imagery such as that of people; the investigation
of this thesis into the geometric properties of blob features arises from trying to formulate
a new estimation approach based on geometric features which have been shown ahead of
time to be reliably extracted from real video imagery. Third, traditional formulations have
over-emphasized the importance of precision and under-emphasized the importance of stable
representations. Fourth, the traditional placement of 3-D recovery before segmentation and
recognition is unrealistic. Fifth, integration of geometric information acquired from various
cues (correspondence, shading, motion, internal models) has largely been ignored, leaving
each separate module somewhat fragile.

These areas of continuing research, among others, suggest that 3-D geometrical repre-
sentation and computation are subject to vast improvement and will indeed continue to play
an important role in understanding human and computer visual perception. But, aside from
studying the role of 3-D geometry in intelligence, there are many computer applications that
drive this sort of technology.

Obvious applications include vision-based modeling, i.e. developing models from pictures
for computer-aided design (CAD), computer graphics (CG), virtual environments (VE), and
architectural surveying [6]. In these cases, the very goal is the 3-D geometric model and the
only available input are the images. Although these problems closely resemble the vision
problem, there is no debate as to the final representation because a 3-D representation is
the stated goal.

Other applications include computer vision systems which do not need to be fully in-
telligent, but do need to be able to automatically and correctly interpret a scene and react
accordingly. For example, there is great interest in tracking people in rooms for various
reasons, including security and monitoring, marketing, and computer-human interface. It is
not clear that 3-D representations are required for all tasks; for example, recognizing certain
gestures in an interface application can often be done with 2-D processing. However, other
actions, such as pointing at an object requires a 3-D analysis except in special restricted
cases.

Since a 3-D description contains all the information of any set of 2-D projections and is
more compact, there is little reason not to use a 3-D description if it is available. Thus for
most of the cases in which there is a choice of representations, 3-D approaches will likely
win out eventually because they are more general and their output is more readily useful to
users.

2.2 Modeling and estimation of 3-D geometry

In computer vision there have been many ways of approaching mathematical modeling and
estimation of 3-D geometry. The choices of modeling critically affect what kind and quality
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of information can be extracted and what kind and quality of input can be processed.

This section motivates the use of corresponding geometric features in multiple images
along with nonlinear, dynamic, and probabilistic modeling as the most fruitful approach to
solving practical problems.

2.2.1 Single versus multiple images

The first way of distinguishing the various techniques is whether they attempt to infer 3-D
geometry from one viewpoint of a scene or from multiple viewpoints.

The information contained in a single 2-D image of a scene is inherently ambiguous in
the third dimension. If a computer is given no rules about the natural structure of the 3-D
world, there is an infinite number of valid interpretations of how geometry projects into
any image and 3-D interpretation is impossible [57]. The reason people can understand 3-D
scenes from single images, such as photographs, is because we have an understanding of 3-D
natural constraints and have been trained through our experience in the world to visually
interpret them properly.

The implication for computational geometry is that 3-D interpretation from single images
requires some prior internal modeling of the 3-D world. Indeed, some of the early work in
computer vision, most notably that of Roberts [58], used arrangements of features in the
image along with known 3-D properties of solid objects to infer the 3-D pose of 3-D objects
from a single image.

However, the “blocks world” of these early experiments dealt with a highly limited
toy world and the desire for processing a wider variety of natural scenes inspired work
towards more general representations, including work using multiple images from different
viewpoints.

Traditional stereo (inspired from animate vision) consists of simultaneous pictures from
two closely displaced viewpoints, motion consists of multiple pictures from closely displaced
times taken from a single camera of a moving scene (or from a moving camera, or both),
and wide baseline stereo consists of a collection of pictures from widely spaced viewpoints.

Binocular stereo and motion are both inspired by animate visual systems and therefore
have some natural relevance to the visual and intelligence process. Wide baseline stereo is
not natural, but very useful for computers, as in the fields of photogrammetry and surveying
where multiple pictures are taken of a scene to build 3-D models to high precision.

The underlying geometrical reason that multiple images from binocular sensors or mo-
tion are powerful is that, unlike with single images, 3-D geometry can be recovered from
image-image correspondences alone with no prior models or understanding of the 3-D world.
Therefore, some sorts of general 3-D representations can theoretically be built without the
need to have an internal database of all types of objects in the scene. In fact, this idea was
largely the basis for Marr’s bottom-up theory of computational vision [46].

In practice the approach is not so easily implemented, partly because the numerical
problems are poorly conditioned [30], but because the use of multiple images provides a
more general framework for studying and understanding 3-D geometric estimation it has
become a more popular vein of research and is the basis for the research presented here.
Using specific world knowledge, as required in single image analysis, is much more difficult
because it is intimately related to so many other aspects of intelligence, including object
recognition, representation, memory, knowledge, and learning. Therefore, it is currently
practical only in computer systems operating in highly limited visual domains.

Model-based and image-based analysis can benefit from each other and ultimately should
be merged in applications where world object types are limited in number. This research
focuses on the problems of image-based analysis alone, seeking reliability and probabilistic
measures of precision that can eventually be used to merge these techniques.
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2.2.2 Symbolic modeling

Among the many ways of processing multiple images, the first principal distinction between
methods is whether they use iconic or symbolic representations to describe the images.

In traditional stereo, disparity measurements are an iconic representation of image-image
correspondences at each pixel [36]. In motion analysis, optical flow is an iconic representation
of image-image correspondence at each pixel [36]. In both domains, symbolic features are
an alternative that provide sparse scene-oriented correspndences.

With only two images, the two representations of correspondence are somewhat equiva-
lent, but with more images, the two types of image measurements provide different quality
of information. The right choice for a particular application depends largely on the goals of
the application.

Iconic correspondence is image-centered whereas symbolic correspondence is scene-centered.
The advantage of iconic correspondence is that a large number of pixels contribute to the
compuation. (A disadvantage on serial computers is that all of these contributions must
be computed!) The disadvantage is that the lack of a scene-centered representation re-
sults in image-centered representations of 3-D, i.e. depth maps. Although these are useful
instantaneous representations, there are two problems to going beyond the depth map.

The first arises from the well-known scale ambiguity [36] in 3-D geometry recovery from
two images. In motion problems, this is usually expressed as “only the direction of transla-
tion can be recovered”, i.e. the magnitude of the translational motion is ambiguous, as is
the scale of the scene. For any optical flow field, and associated 3-D interpretation of cam-
era motion and scene structure, the same flow field occurs if the translational motion and
scene structure are scaled by the same factor [36]. Thus, rotational motion and direction
of velocity relative to the instantaneous scene description can be determined uniquely, but
scene structure and absolute motion cannot.

For stereo, there is typically a known baseline, so scale factor is not a problem and
absolute instantaneous motion can be determined. However, there is still the problem that
the scene representation is image-based. Again, a single depth map is a good instantaneous
representation, but if the goal is to refine the scene geometry or to track absolute 3-D
motion, a 3-D scene representation must be instantiated as in [33].

Thus, iconic modeling can be useful in some limited cases, but when 3-D scene structure
or absolute 3-D motion tracking is the goal, symbolic modeling is required. For that reason,
feature-based techniques are generally more useful. They are also more common because
they are usually more computationally efficient, particularly on serial computers.

There are good perceptual reasons for favoring symbolic representations as well. People
consciously perceive objects in the world as 3-D objects and not as projections on retinal
images coupled with a depth map. We quite clearly think and reason in 3-D and we generally
want our computers to do so as well because we can relate to the 3-D representation. The
first step in arriving at such a representation is segmentation of the scene into symbolic
entities.

This research focuses solely on symbolic modeling and recovery of parameters of the
symbolic representations from multiple images. This is primarily because of the application
areas of interest, in which absolute 3-D shapes and motion are the goal. For other appli-
cations, particularly navigation of mobile robots, the iconic approaches may be appropriate
for much of the visual functionality.

2.2.3 Nonlinear modeling

The relationship between 3-D geometric parameters and 2-D geometric observations in the
images is nonlinear. A natural approach to solving the problems, then, is to mathematically
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model the nonlinear system and use one of a variety of nonlinear search techniques [61, 21]
to solve for the 3-D parameters from the 2-D observations.
That is, an equation of the form

y = h(z) (2.1)
is set up where y contains 2-D geometric observations, x contains desired 3-D parameters,
and A is a nonlinear mapping. An error function,

(2,y) = h(z) — y (2.2)
is the basis for an objective function, such as square error
F(z,y) =" (z,y)e(z, y) (2:3)

which is minimized with respect to x to find the optimal set of 3-D parameters for the
observations y.

For point geometry, a simple formulation for two images leads to an observation vector
y containing (ur, vy, ur, vg) pairs of corresponding locations in the images, the state vector
@ contains six relative motion parameters and (X,Y, Z) triplets for each scene point, and

h RPN — R (2.4)

where N is the number of point correspondences.

In fact, the bundle adjustment approach of photogrammetry [8, 17, 38, 65] is an iterative
search procedure based on this objective function and weighted Gauss-Newton iterations
[61] and has been used for high-precision measurement of 3-D points from images since the
1950’s. This iterative procedure results from deterministic or statistical least-square-error
optimization criteria.

This approach is so straightfoward that, although “iterative methods” [36] were used
in early computer vision research to solve the geometric equations, little specific attention
was paid to the difficulties associated with the modeling or estimation process. Instead, far
more energy in computer vision was spent on the problem of obtaining the correspondences
from the images, which was a prerequisite to performing any 3-D estimation.

Later approaches in computer vision [14, 16, 41, 81, 72] returned to the nonlinear problem
largely as a result of poor performance of “linear” techniques (discussed below) but not with
the typical success exhibited by work in photogrammetry. This is partially due to the fact
that vision problems contain a dynamic component, involve closely spaced images, and are
expected to be a great deal more general and automatic. In photogrammetry, the images
are discrete, spaced widely, and initial conditions can be set on a case-by-case basis by
hand. The relatively unfavorable conditions that occur in the vision problems call for a
more careful treatment of the modeling and estimation problems.

A key event in computational geometry research in computer vision was the discovery of
a “linear” technique for recovery of 3-D geometry from point correspondences in two images
[76, 43]. The epipolar constraint results in an error function

) (a,y) = 0 (2.5)

where z contains only the six motion parameters, y again contains the image point corre-
spondences and .
P RS x RN — RV (2.6)

contalns one scalar constraint per point.
Although it is not a complete model of the geometry—it neglects the scene parame-
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ters and uses a constraint which ignores errors along epipolar lines—the attraction to this
formulation is that it can be written in a linear form

M(y)E(z)=0 (2.7)
where
M e RN*® (2.8)
and
EeR’ (2.9)

contains a set of nine parameters, called essential parameters, that depend only on the
motion parameters, translation and rotation.

There is a scale ambiguity in E, so there are eight free parameters. Eight or more
corresponding points can be used to recover E up to a scale factor, as long the 3-D points
do not lie in a number of degenerate configurations. The nine parameters of E form a (3,3)
matrix which can be decomposed into two matrices, one containing translation parameters
and the other containing a rotation matrix [76]. Thus, motion can be recovered with linear
techniques and independent of depth parameters.

The essential matrix is the basis for each row of Eqn. 2.7, which can be written

p1.EpR (2.10)

where py and pg are image points of the form (u,v, f) where f is the focal length of the
camera.
A more general form of this epipolar constraint is written

pLFpr (2.11)

where (3,3) matrix F is called the fundamental matriz [24] and the projected points pr, and
pr are expressed as 2-D projective points (u, v, 1). This formulation has led to a great deal
of research in obtaining 3-D geometric parameters in a projective coordinate frame [25].
Again, solutions are obtained using linear techniques. Since this whole class of solutions
to the point geometry problem, refered to as linear or epipolar solutions, has dominated
the computer vision field in the last decade, it deserves special attention as a competing
approach to nonlinear modeling.

The arguments for using linear formulations include that linear systems are easy to
solve and that, since scene structure is eliminated from the state, motion can be estimated
without the need for maintaining a representation of the scene. Scene structure can be
obtained later, if desired, by using the recovered motion and the point corrspondences. The
further argument that nonmetric projective solutions are desirable is that useful projective
descriptions of objects can be obtained with linear techniques without the need even for a
calibrated camera. Many robotics tasks, for instance, might be solvable without recovering
metric geometry [25].

The resulting mathematics from these formulations have a lot of structure and beauty
to them because they are linear and can manipulated easily. However, there are serious
flaws with the entire approach for metric 3-D estimation which stems from the fact that the
epipolar constraint does not capture all of the geometric information present in the available
point correspondences. This causes the entire range of techniques based on this formulation
to suffer from extreme sensitivity to measurement noise [81, 32], unnecessary degenerate
cases [76, 67], and the inability to solve for absolute scene structure or absolute motion in
a natural or accurate way.

The underlying reason for sensitivity to measurement noise is that the active constraint
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for a pair of corresponding points is actually valid for one of the points and the entire
corresponding epipolar line in the other image. Thus noise properties in the image are
not isotropic, with any noise along the epipolar line completely unpenalized in the epipolar
constraint. (See Section 4.1.4 for a discussion and experimental analysis of this issue.) Thus
solutions will tend to produce high residual errors along the epipolar lines, which makes
subsequent scene reconstruction very poor.

The sensitivity properties are also drastically affected by the particular configuration
of cameras, with complete degeneration ocurring in any configuration with zero relative
translation between the two cameras. This is disasterous for motion estimation because the
most trivial case of zero motion cannot even be solved! Since the sensitivity degrades for
small motions, enormous numerical errors can occur in image sequence processing where
interframe motions are small. Thus these techniques are very poorly suited for real-time
image sequences or any motion analysis where there is not a known minimum displacement
between frames.

A further problem arises in sequence processing from the fact that scene structure is
discarded entirely. This problem is similar to the problem discussed in Section 2.2.2 in that
every pair of frames will have a different scale factor associated with it and they cannot be
rectified without resorting to a 3-D representation of the scene, which as proposed above is
very poorly conditioned with these formulations. Dynamic sequence analysis has been tried
(67, 51], but the systems are complicated, probably fragile, and almost certainly inaccurate.

If stereo is used, the problem with scale ambiguity disappears because the cameras can
be self-calibrated and scene models can be built up as in [25]. But the numerical problems
in obtaining accurate scene models persist and a large part of the reason is that, with
traditional stereo systems, the self-calibration errors using epipolar constraints will be most
serious in the directions which most critically affect scene reconstruction. This is a direct
result of scene structure being removed completely from the objective function in the first
place.

Thus these “linear” formulations pose a tradeoff between simplicity of computation cou-
pled with algebraic beauty versus accurate 3-D scene reconstruction and absolute 3-D motion
estimation. The nonlinear techniques do not have the same sensitivity problems so the only
remaining reason not to use the nonlinear techniques are the questions of global convergence,
which are difficult to obtain with nonlinear systems.

A large part of this thesis is understanding the state space structure of the nonlincar
vision geometry problems and formulating solution techniques that are appropriate and
stable. In this way, the advantages of full modeling of the geometry remain.

Other advantages of pursuing the nonlinear modeling issue is that not all 3-D geometry
problems are as simple as points. Many of the same geometric issues encountered with points
are found in other classes of vision geometry and thus a successful nonlinear approach can
have broad applicability. An example is the blob geometry that forms the second class of
problems addressed by nonlinear modeling in this thesis.

2.2.4 Dynamic modeling

The principal difference between vision and photogrammetry is that vision has a dynamic
component whereas photogrammetry deals with collections of pictures usually with no tem-
poral coherence. Dynamic image streams present special problems and also special oppor-
tunities for image processing and estimation.

A dynamic image stream is not an arbitrary collection of multiple pictures but a tem-
porally ordered sequence of pictures, usually with a short interframe time interval, such as
from video (.017-.040 sec) or film (.042 sec). Enforcing temporal continuity on the image
stream provides a useful constraint.
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This is especially necessary for “actual” vision systems that need to operate and compute
in real time (as opposed to photogrammetry or other image analysis that can be processed
offline and non-causally). In this case, causality is a strict constraint and all 3-D information
at the current time must be based only on information at the current time instant and
earlier. Even for offline systems, however, dynamic models can be useful for processing
temporal image sequences. Post-processing of video and film clips, for example, is one class
of applications where real-time operation is not necessary, but the imagery is nevertheless
dynamic and dynamic modeling can add important constraint to the estimation. Also,
long sequences are solvable in principle using batch estimation, but are solved much more
efficiently recursively.

In computer vision, much work has employed the Kalman filter for this purpose. The
Kalman filter is an optimal linear filtering technique which relies not only on a linear obser-
vation model but also on a linear dynamic model. The extended Kalman filter (EKF) is an
extension to nonlinear systems which uses local linearization and has been the basis for a va-
riety of dynamic estimation problems in visual geometry [1, 15, 14, 22, 26, 33, 48, 86, 5, 4, 3].

Although it has several computational and practical advantages, the requirement for
causality often causes the estimation to be unstable under noisy conditions. This stability
issue is the original motivation for much of the analysis in this research, because the lack of
reliability exhibited by these formulations had made it difficult to use them in real vision
systems.

One reaction in the theoretical domain to the perceived performance problems of EKF
methods has been to resort to batch optimization based on more sophisticated iterative
estimation strategies, such as Levenberg-Marquardt [81, 41, 72]. Other methods include
batch minimization using epipolar constraints [68], a linear solution called the factorization
method which applies to orthographic projection [75], and an extension of this to paraper-
spective projection [55]. These all have better convergence properties than the EKF but, of
course, they are non-causal and they do not take advantage of the temporal coherence of
the image sequences, thus they do not address the critical real-time issues.

Dynamic modeling is a foundation of this work because of the application domains of
interest—film, video, and real-time interfaces. The implications of dynamic problems on
modeling, particularly in the context of real-time systems, include the need for recursive
processing, which in turn necessitates representations for information, memory, and learning.

For dynamic problems, image sequences are of arbitrary and unknown length. Therefore,
observation data cannot be accumulated indefinitely and somehow information has to be
compressed and represented in the 3-D domain if it is to be accumulated. Since current
information has to be computed at every frame, estimation has to be recursive. The com-
bination of recursive computation and compression and memory of information is the basis
for recursive estimation, such as the Kalman filter.

The medium for compressing and maintaining information in the Kalman filter is prob-
ability models.

2.2.5 Probabilistic modeling

The principal difference between batch processing and recursive processing is that in batch
processing all the observation data is available at once and in recursive processing only a
portion is available at any time and, furthermore, previous data must be discarded at some
point.

Thus there is a need in recursive processing to record all learned information in a compact
form. The way that probabilistic modeling can do this is through uncertainty modeling
[1, 70, 48, 71, 82, 66]. The current value of all relevant parameters is stored along with
parameters of an uncertainty model, which is usually a Gaussian distribution centered at
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the value of the estimated parameters.

This is, in fact, the basis of the Kalman filter techniques. However, the KF models
are only strictly valid for linear systems mapping between linear vector spaces. This thesis
analyzes the problems encountered by vision geometry problems when these models cannot
be used.

2.3 Person tracking

Most of the work discussed above is associated with point correspondences in multiple
images. Although points are the simplest geometry and can serve as a building block for
many types of problems, there are applications of 3-D geometry estimation in which point
correspondences are not a useful starting point.

For example, an important application of interest for human-computer interface is vi-
sually tracking moving people. Besides the traditional problems of finding corresponding
points across two images, there is the additional problem that people typically do not have
a large number of fixed points that can be identified, and certainly not enough identifiable
points on each rigid body segment so that 3-D estimation could take place even if points
could be found.

For this reason and others, person tracking has been a formidably difficult problem in
computer vision. There have been only a few serious attempts at performing this task,
which are reviewed here. The blob-based method developed in this thesis solves many of
the outstanding problems associated with these and has made possible the first real-time
visually-based full-body human-computer interfaces that does not use special hardware or
special markers.

2.3.1 Top-down approaches
O’Roarke and Badler

In 1980, O’Roarke and Badler [52] proposed a “top-down” approach to visual analysis of
human motion, using a complex parameterized 3-D model of the human body and constraint
propagation. The research concentrates on the 3-D modeling aspect using only synthetic
imagery as input.

The computational framework requires predicted 3-D regions for the location of several
features on the human body at each image, but does not treat the initialization problem.
The system verifies these locations from the (synthetic) image, resulting in updated (and
smaller) 3-D regions, interprets these feature movements as semantic body movements which
drive a constrained internal model yielding full body position and new predictions for the
next image frame.

The body model is a detailed articulated human body consisting of segments, joints,
and surfaces. The rigid segments correspond to human limbs, the joint constraints include
anatomical restrictions, and the surfaces, representing flesh, are modeled using overlapping
spheres.

The observations are 2-D spatial locations of model features, which include head, neck,
shoulders, elbows, wrists, hands, waist, hips, knees, ankles, and feet. In this paper, only
synthetic images are used, however, so these features are not actually extracted from realistic
imagery.

This system is a highly model-based approach which, as discussed in Section 2.2.1, can
be very effective in cases where the subject of the images is known ahead of time. However,
Just as the processing approach is top-down, so is the motivating force of this work and
consequently the important low-level vision-oriented problems of relating image features
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to model features is completely ignored. In the PFINDER work discussed below, many of
the image features required by the O’Roarke system can be found, but perhaps not to the
precision assumed by their system. Yet, there is potentially a fruitful marriage between
coarse blob tracking and strong internal modeling of people, as being explored in [84].

Hogg

The work published by Hogg in 1983 [34] also uses a top-down procedure, but with real
imagery. Due to the difficulty of handling real data, the application domain is much more
limited, i.e. a walking person in profile.

The computational framework consists of both an initialization and a tracking stage.
The initialization step uses change detection, which assumes the person is the major moving
scene component. This results in a range of possible initial poses. The tracking procedure
follows a hypothesize-and-verify strategy. Hypothesis poses are generated in a portion of
state space that is constrained by spatio-temporal continuity and connectedness of parts
in the internal model. Verification is achieved by choosing the hypothesis pose with the
highest plausibility measure, which is generated for each pose by comparing image edges to
predicted edges.

The model, inspired by Marr and Nishihara [45] (and earlier from Binford [11]), consists
of elliptic-cylindrical body segments connected hierarchically. A PERSON consists of TORSO,
HEeAD, two ARMs, and two LEGs. Each ARM consists of UPPER-ARM and LOWER-ARM,
which consists of FOREARM and HAND. Similarly for LEG.

The observations are occluding edges in the images, which can work as features in well
constrained environments, but noisy video makes localized features such as edges, lines,
points, and contours difficult to extract reliably.

Rohr

Research published later in 1994 by Rohr [59] follows a similar approach to Hogg’s using the
same internal model, but with various improvements. Where the Hogg experiments were
performed partially interactively, the Rohr system is more automatic. The Rohr system is
more sophisticated in the way it performs model verification (removing hidden surfaces) and
in the way it enforces spatio-temporal continuity (with the Kalman filter).

2.3.2 Probabilistic approach

Unlike the work described above, the PFINDER person-tracking system [84] (see Fig. 2-1)
was designed as a user interface system and thus bore the firm task requirement that it
must operate in real-time and with people dressed in ordinary clothing undergoing general
unpredictable motion. These constraints imposed that stability, speed, and generality of the
scene were paramount concerns relative to accuracy or generality of function. As a result,
the system is fast, stable, and can readily accommodate various users but it is limited in
the configurations which it can make a correct interpretation.

The system assumes a static background so that it can first classify the person in the
foreground from the rest of the scene, resulting in a silhouette region. It then uses classi-
fication over spectral and spatial dimensions within the silhouette region to track “blobs”
which represent the head, hands, feet, and upper- and lower-body. The blob-tracking is
continuously bootstrapped and stabilized by analysis on the contour of the silhouette.

The analysis is not completely 3-D as it represents the person as being in a vertical
plane, but the blob features are the inspiration for the approach to true 3-D tracking using
stereo cameras that is the topic of the research presented in Chapter 5.
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Figure 2-1: The PFINDER system extracts regions using heirarchical clustering based on
color classification and models these regions as blobs. The left image depicts a typical video
image, the center depicts the clustered regions, and the right depicts the computed 2-D blob
features.

2.3.3 Volumetric geometry

Although the blob objects used in this thesis are treated as probabilistic distributions,
they could be interpreted as a simple sort of volumetric primitive since they contain the
important basic geometric properties of objects—the static dimensions, and the dynamic
motion including location and orientation.

There has been much work on recovering other types of volumetric models from images,
including pioneering work in the 1970’s on the use of generalized cones and cylinders [11,
50, 45], and work in the 1980’s and 1990’s on superquadrics [53, 73, 63]. These are generally
based on measurement of contours or 3-D range data, where as the blob models are based
directly on the more stable measurements of 2-D moments.

The principal problem with applying these in practical vision systems is that the required
contour features are difficult and computationally intensive to compute. Recently, work on
recovering 3-D shape and motion of a person’s upper body from multiple camera viewpoints
has achieved good results [28], but the multiple viewpoints were very favorable (four orthog-
onal views), the subjects wore carefully designed tight clothing, and the processing still had
to be performed offline because of the expense.

For real systems, it is unusual that orthogonal views are available; the more common sit-
uation of two relatively close cameras is a less well-conditioned problem, indicating that the
numerical estimation problems are important ones to confront. Also, to be more generally
useful, systems should work with people dressed in ordinary clothing and to be applicable
to human-computer interface they should work in real-time. These are some of the issues
successfully addressed by the blob-based technique.
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This chapter formulates a manifold-tangent state model in which state space is parameter-
ized as a curved manifold and the local tangent hyperplane is a Euclidean domain. Functions
on the curved domain can be expanded and linearized so that first-order (linear) differential
properties of the function are on the Euclidean tangent space.

In this way, existing nonlinear estimation routines, which only apply to Euclidean do-
mains, can be simply and naturally extended for problems with curved domains. In partic-
ular, this chapter shows how a generalized Levenberg-Marquardt strategy and a generalized
extended Kalman filter arise from this modeling approach.

Further mathematical background is provided for the purposes of error analysis. Fi-
nally, several generic manifold-tangent models associated with vision-based 3-D geometry
are described for subsequent use in the chapters on point and blob geometry.

3.1 Manifold-tangent state space modeling

Traditional optimization frameworks assume state space is IR". If the natural domain of
the state is a curved manifold, special techniques are employed for constrained optimization
by specifying additional functions which encode the constraints defining the manifold. The
job of modeling the system consists merely of specifying the dimension of the state space
and any applicable constraint equations and it is the job of the optimization strategy to
effectively apply those constraints.

In this section, a modeling paradigm is introduced in which the structure of the state
space is encoded in the model so that the issue of taking steps in state space is a property
of the model and not of the particular optimization technique. In this way, both recursive
and iterative optimization techniques can be developed using a single interface to the model
and the critical numerical conditioning issues associated with the model can be taken care
of in the modeling stage instead of being discovered in the estimation stage.

The manifold-tangent modeling paradigm consists of not just a parameter space but a
structure

M = {Ps, 8, {Pr(z), T(z), Z(z)|z € S}, A} (3.1)

where any particular model M@ contains

35
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Py= SINIE_DARAMETER SACE

5= Sikte SAE maniroLd
TUx%) = TANGENT HITERPLANE

Figure 3-1: The manifold-tangent model for curved state spaces. State parameter space is
a Euclidean space, i.e. Ps = IR™, but the state space manifold itself is not, i.e. & C Ps.
At each state £ € § a tangent hyperplane 7(Z) provides a reduced-dimension Euclidean
domain in which to perform local function linearization. A local homeomorphic transform
between tangent space and state space facilitates this.

MO .
’pg) = IR™, state parameter space
S0 ¢ ’PE;) = {z¢ 7??)|z is a physical state}
']D;i)(aj)’ res® = R", tangent parameter space
TO@),ee8Y = {ze Pg)|z is in n-D tangent hyperplane of S() at z}
Z0(z),e € 8P = homeomorphism between Py (z) and 7 (z)
A% = addition function : S®) x ’Péf) - S

(3.2)

where Pg is the state parameter space, S is the state space manifold, 7(z) is the local
tangent hyperplane at state x, Pr(x) is a tangent parameter space homeomorphic to 7 (),
Z(z) is the homeomorphism, and A is an “addition” or “composition” function which adds
together a state and a tangent state to form a new state. These are discussed further below.

3.1.1 State parameter space and state space manifolds

State space is a mathematical space associated with the physical state of the world. Every
point in state space should correspond to a physical state of the system being modeled. It
is preferable that the relationship is also one-to-one.

For example, the physical location of an object in a scene can be described by a point
r € R3 by associating the three dimensions of IR® with three orthogonal physical directions
and associating the values of the components of  with the physical distance (at some scale)
along each of these directions from a fixed point.

The orientation of an object, however, cannot be so simply modeled because the set of all
rotations does not form a Euclidean vector space such as IR". In vision geometry problems,
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Figure 3-2: A possible state manifold for parameterizing 2-D rotation is the unit circle,
(z,y) = (cosf,sin0).

3-D rotation in particular requires special treatment and inspires the following generalized
formulation of state spaces.

A state vector z is a member of state space S which is in general an n-D manifold
embedded in a larger m-D state parameter space R™

r€SCPs=R™ (3.3)

where, of course, n < m. Although state parameter space is R™, not all m-vectors represent
feasible states. Only those points on the state space manifold S are feasible and are called
“states”. An m-vector which is not on the state space manifold is not physically meaningful.

Example For illustration purposes, consider 2-D rotation, which has one degree of free-
dom and may be parameterized in IR? as (cos(f),sin(8)) (see Fig. 3-2). In this case, state
parameter space 1s IR? and state space S is the unit circle, a 1-D manifold. That is,

Ps = R? (3.4)
S=A{(z,y)lz*+y* =1} C Ps (3.5)
Any 2-vector on the unit circle is a feasible state; any other 2-vector is physically meaningless.

3.1.2 Tangent spaces

To extend existing general methodologies of estimation, it is necessary to formulate a way
of taking numeric steps to get from one state # € S to another nearby state ¢ € §. In
traditional estimation, steps are taken by using vector addition, but vector addition does
not apply on curved manifolds.

A poor ad hoc method of extending existing methods is to take a step using vector
addition and then apply the manifold constraint to project back onto state space. A better
idea, taken from constrained optimization, is to take a step in the tangent hyperplane and
then project onto state space. The state space model M includes a set (bundle) of tangent
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hyperplanes, one for each state,

{7T(z)|z € S} (3.6)

as part of the model specification.

The tangent hyperplane
T(x) C Ps (3.7)

defined at # € § is a tangent hyperplane to § through « and is homeomorphic to IR”.
Equality holds only in the case when the whole parameter space is state space.

A basis for 7 in state parameter space, IR™ will consist of n mutually orthogonal unit
m-vectors which are each tangent to §. If § is a parameterized manifold defined by a
vector-valued constraint equation, for example,

c(z)y=0€R™™" (3-8)
then any full rank matrix Z € IR™*" of orthogonal column (unit) vectors that satisfy
Jo(2)Z =0 g R(M—m)xn (3.9)

can serve as a basis set of 7(z), where

Jo(a) = 29 (3.10)

is the Jacobian matrix of partial derivatives of ¢(z) at .
This matrix Z can define the homeomorphism

Pr(z) = R" = T(z) (3.11)

between tangent parameter space Pr(x) and the tangent hyperplane 7(z). However, in
general, any homeomorphic function

R Z T () (3.12)

can be used and thus for generality the model contains a set of homeomorphic functions,
one for each state,

{Z(z)|z € S} (3.13)
such that
Z(z)
Pr(z) = T(2) (3.14)

holds, where Pr(z) = IR" is a linear vector space.
Then a step 6 € Pp(x) can be taken in the tangent parameter space and the equivalence

z=1a+ Z(z)(bx) (3.15)

holds where 2z € 7 () C Ps and 6z € Pp(z).

Example For example, in the 2-D rotation parameterization of Fig. 3-2, the tangent space
7 (z) at any state x on the unit circle is the line through = orthogonal to the vector from
the origin to z, producing a 1-D tangent space 7 (z) parameterized by the scalar §z. Thus,

Ps = R? (3.16)
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Figure 3-3: The tangent space of a 2-D rotation manifold.

S={zeR’ei+e5=1}CPs (3.17)
7(2) = {z € R?|(z,&) = 1} C Ps (3.18)

and
Pr=R' (3.19)

is the tangent parameter space.
The homeomorphism

sreR o8) 593( 2 ) (3.20)

—21

specifies a step along the tangent line that defines a move from z to

2= ( o )+6x( o ) (3.21)

which is a point on the tangent line a distance 6z away from z.

3.1.3 Composition function

To complete the model interface, we add a projection function after the tangent step to
create a state composition function

A:SxPr—S8 (3.22)

which parallels vector addition for taking steps in linear vector spaces.
The tangent step is taken in a local tangent hyperplane and the resulting tangent point
is projected onto state space. That is,

A(z,b6z) = P(z + Z(z)(6z), z) (3.23)

where the projection function
P(z(z,6x),z) (3.24)

P:T(x)xS8—S (3.25)
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Figure 3-4: The composition function combines a local “tangent basis” homeomorphism
Z(z) : Pp — T (x) with alocal “projection” homeomorphism P(z) : 7(z) — S to create an
invertible “addition” function A : S x Pr — S.

projects z onto S along a perpendicular to the tangent hyperplane 7 ().
The difference function

AL S xS Pp (3.26)

is an inverse of the composition function and maps two states to a tangent step relative to
one of the two states.
Specifically,
AN a, ) = ZT ()P~ (2;2) — &) (3.27)

consists of projecting x € § onto the tangent hyperplane 7 (&), subtracting from z and
putting through the homeomorphic mapping to get a result in Pr.
These properties of A

A(z,0) = = (3.28)
A (z,z) = 0 (3.29)
“HA(z,b2),2) = bz (3.30)
Nz, Az, 6z)) = —bz (3.31)
.4( ANz, 2) = =2 (3.32)

follow directly from the definitions.
It will be necessary for various reasons to linearize these two functions. To this end the
following Taylor series expansions apply:

DA(E, 8¢)
o8¢ | E==
8¢ =0

Az, bz) = dx 4+ - (3.33)
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and
OA~1(£1,62)

~1 N
A (z,2) =0+ 9.

f=p G+ (3.34)

2=2

which are obtained straightforwardly with use of the properties above. The abbreviations

0A _ DA(E, 6¢) mxn
déx 08¢ gg:_xo €R (3.35)
AL BAT(61,6) nxm
e 56 gl = eR (3.36)
2=1I
are used for brevity when the context is clear.
Some other useful properties include
0A~Y (€, Q) OA(E, 6¢) _ bz _
B =z e |6z T B6z ~ Lom (3.37)
= =
AN Q) AA(E, 6¢) bz
TR gz e |gEE T a6s = Tl (3.38)
==z =

which arise from Eqn. 3.30 and Eqn. 3.31. These relationships, since they produce identity
matrices, are pseudoinverse relationships (because in general the matrices are not square).

An example of a nontrivial state composition function is developed in Section 3.7.2 for
modeling 3-D rotation.

3.1.4 Euclidean state models

The state model developed above has gone to great extent to generalize the concept of state
space beyond a simple Euclidean vector space. A Euclidean vector space is, however, a
trivial case of this model in which state space is equivalent to the state parameter space

Ps=S=R" (3.39)

or, in other words, every element of state parameter space Pg corresponds to a physically
meaningful state of the system.
The tangent space is coincident with the state space

Pr(z) =T(z)=R"=R™",Vz €S (3.40)

and the homeomorphism
Z(zy=IL,Vz e S (3.41)

is therefore trivial.
The state composition function

Az, bz) =z + bz (3.42)

where

z,6r € R" (3.43)
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reverts to Cartesian vector addition and the difference function
ANz, 2) =2 —2 (3.44)

is simply Cartesian vector subtraction.
Whenever a state model consists of n independent parameters, it can be modeled using
a standard Euclidean model. For convenience, the notation

M= M, (3.45)

will indicate a n-D Euclidean state model.

3.1.5 Composite and component state models

Often, parts of the state space can be modeled separately and independently. It is straight-
foward to combine a set of N component state models M) i = 1... N into a composite
state model, expressed as

M=MDx...x M) (3.46)
where
Ps = PYx. xpM (3.47)
S = SWy...us™ (3.48)
Pr = P x.ox PV (3.49)
T(z) = TOEDY U uTW (M) (3.50)

prescribes that the composite parameter space is the Cartesian product of the component
parameter spaces, the composite tangent parameter space is the Cartesian product of the
component tangent parameter spaces, the composite state space set is the union of the
component state space sets, and the composite tangent hyperplane set is the union of the

component tangent hyperplane sets.
The component Z¢) and .A®) functions can be combined straightfowardly to form com-

posite Z and A functions.

3.2 Functions having manifold-tangent domains

The intent with manifold-tangent models is to model the state on a manifold and first-order
perturbations on the tangent hyperplane. To this end, we would like to define real functions
on manifold-tangent spaces

M= (3.51)
where £ € IR” such that if M = {S,Pr(z),...} then there is a forward function

g:8—¢& (3.52)

mapping from the state space manifold, but the first-order differential properties at some
reference state &, encoded in a Jacobian matrix,

J(&) : Pr(d) — & (3.53)

map from the local tangent space. This can be accomplished through a straightforward
compound linearization including g and the manifold-tangent composition function .A.
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Figure 3-5: The manifold-tangent state model allows functions to have a S domain and a
linearization that has a Py domain. Here, a function g : § — & has a manifold domain but
its Jacobian J : Pr(&) — & has a tangent domain.

3.2.1 Linearization

If a function
g:8—& (3.54)

maps a curved state space S onto a Euclidean space &, then a Taylor series expansion around
a reference state z

g(z) = g(A(&,bz)) (3.55)
= g(.A(f:,O)+§6AA‘1(w,§)+~-') (3.56)
&\A,_/ xr
9(2) + g—i%A—l(x, E) 4 (3.57)
J bx

can be set up involving the tangent parameters éz and leads to the linearized system

bg = J(&)bx (3.58)
where
89 = g(z)—g(2) (3.59)
be = A7(z,2) € Pr(z) (3.60)
R (3 0A(E, 6¢)
J@&) = 577 T | =4 (3.61)
% L =z 08¢ gf =0

hold by definition.
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3.2.2 Dual domains
We will be concerned with dual-domain functions of the form
g:8M x 8P ¢ (3.62)

in which case a similar expansion of g(z,y) results in the linearized system

bg ~ Jo(2,9)0x + Jy(2,9)0y (3.63)
where
o 99(£,¢) 9A(E, 68)
Jo(2,9) = 5 }5:? T ‘gzﬁ (3.64)
=y 6§ =
L. 0g(&,0) dA(C, 8¢)
Jy(z,9) = o ‘ €=i ~pic ‘ C=4 (3.65)
b=y 8¢ =10

hold by definition.

3.3 Batch optimization for manifold-tangent state mod-
els

With these tools, we can now state a general least-squares optimization algorithm in terms
of manifold-tangent state models and show how all major batch optimization algorithms on
continuous linear and nonlinear systems relate to it. The discussion of nonlinear algorithms
leads to a generalized formulation for manifold-tangent models of the Levenberg-Marquardt
strategy, which will be used in Chapter 5 for the static problem of self-calibration from a
batch of blob correspondences. For completeness, the illuminating but somewhat peripheral
discussion of linear algorithms can be found in Appendix B.

3.3.1 General manifold-tangent least squares

The following is a general iterative strategy for least-squares optimization expressed in terms
of a manifold-tangent state model.

Algorithm 1 (General Manifold-tangent Least Squares) Given a manifold-tangent
state model M, an observation space O = IR?, and an implicit error function e(z,y) = 0
where

e:SxO0O—E&=IRF
the least squares objective function is
F(z,y) = el'(z,y) R te(z, v)

wherez € S, y € O and R € IRP*? is a positive definite weighting matriz. A general strategy
for finding the solution & that minimizes F(z,y) is
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1 input zo,y
2 fork=0,1,...repeat
3 expand and linearize
4 e(z,y) = e(zk,y)+ Jrbx+---=0
5 be = —e(zy,y) ~ Jpbz, bz = A7 (z, k)
6 fori =0,1,... repeat
7 choose Pz-~1
8 solve
9 bz; = (JIR VI, + P~ VIT R 16e
10 move
11 :i',' :A(:ck,éAa:,-)
12 end until F(&;,y) < F(zk,y)
13 update 41 = &;
14 end until || JE R~16e ||< tolerance
where
) 2 06060
d6¢ g =z

and P~1 is a positive semi-definite matriz.
|

The “general” least squares strategy is so-called because it contains the classic nonlinear
estimators as special cases when the state space is chosen to be Euclidean and P~land R°!
are chosen appropriately. The strategy also contains all the classic optimal linear estimators
when in addition to Euclidean spaces a linear constraint is used.

The special cases of linear estimators are reviewed in Appendix B. The special cases
of nonlinear estimators are reviewed here to motivate the generalization of Levenberg-
Marquardt.

3.3.2 Euclidean nonlinear systems

For Euclidean nonlinear systems, Alg. 1 can be simplified in that the step 6z becomes
simply z — &y, the Jacobian becomes simply de/dz, and the move becomes simply vector
addition. These simplifications lead to a general approach, outlined in Alg. 2 below in which
various interpretations of the weighting matrices lead to traditional nonlinear optimization
techniques including Newton’s method, the Gauss-Newton method, and various so-called
modified Newton’s methods such as the Levenberg-Marquardt method.

The nonlinear techniques look a lot like linear techniques (see Appendix B) in the inner
loop, but are extended to allow iterative re-linearization in the outer loop. The manifold-
tangent algorithm can then be seen as a further extension following the same general ap-
proach but taking steps through the homeomorphic tangent space rather than through state
parameter space.

The following algorithm specializes Alg. 1 to Euclidean domains and the subsequent
sections explain how choices of weighting matrices result in the traditional nonlinear opti-
mization techniques. Arrows indicate where Alg. 2 specializes from Alg. 1.

Algorithm 2 (General Euclidean Nonlinear Least Squares) Given a Euclidean state
space S = IR", an observation space O = IR?, and an implicit error function e(z,y) =0
where

e:8SxO0—E=1IRP
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the least squares objective function is
F(z,y) = eF' (2, y) R e(x, y)

wherexz € 8, y € O and R € IRP*? is a positive definite weighting matriz. A general strategy
for finding the solution & that minimizes F{xz,y) is
1 input xo

2  fork=0,1,...repeat
3 expand and linearize
4 e(z,y) =e(er,y) + Jebx+---=0
= 5 be = —e(xp,y) ~ Jpbx, bz =2 — a;,
6 fort=0,1,... repeat
7 choose PZ-_1
8 solve
9 bz; = (JTR™ VU + P71 JT R 16e
10 move
= 11 T; =2+ ({.’B,’
12 end until F(Z;,y) < F(zk,y)
13 update zp41 = &;
14 end until || JT R6e ||< tolerance
where
L Be(60)
= k= o¢ E =y

(=y

and P~ is a positive semi-definite matriz.

Alg. 2 contains several classic optimization algorithms as special cases.

Newton’s method

In the most basic Newton’s method, with a weighted least-squares objective function, P~1
stands for the second derivative terms of the Taylor series expansion of e(z,y), i.e. P71 =S

where .
8 Oe;
_ -1y, | 227
S = ;(R e)i [(% 817] (3.66)
1=
Hessian

where R™'e represents the weighted error vector.
Newton’s method is easily derived by considering a Taylor’s series expansion on the
gradient of the objective function F(z,y)

Lo = Lays 22
oz Y T g\ 0r Oz

(z—2)+--- (3.67)

r=1=

Hessian matrix
g(z) = g(&)+ H(2)bz (3.68)

where the gradient vector of ' at « has been abbreviated g(z), the Hessian matrix of F' at
z has been abbreviated H(z), and the assumption of Newton’s method that F' is quadratic
in form near the solution has eliminated the higher-order terms.
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The minimum of F requires that g(z) = 0 leading to
H(2)bx = —g(&) (3.69)

br = —H 1(2)g(2) (3.70)

after performing the inverse. (Note that a singular Hessian means trouble.)
With a least squares error function and its derivatives

F(z,y) = el(z,y)R e(a,y) (scalar objective) (3.71)
%f—(x,y) = 2J7(z,y)R te(z,y) (gradient vector) (3.72)
%g—f(x,y) = 2J7(z,y)R™ I (2,y) +25(z,y) (Hessian matrix)  (3.73)
(3.74)
where S is as in Eqn. 3.66, it is easy to recover the solution step
s = (JT(@)R™1JI(&) + S(&) T (2)R™ (—e(2)) (3.75)
= (JTR'J+S) 'R 6e (3.76)

of Alg. 2.
Since S is usually expensive to evaluate and can fail to be postive definite, other methods
ignore or replace it with a useful approximation that is positive definite.

The Gauss-Newton method

For instance, the Gauss-Newton method ignores S completely, using P~ =0 resulting in
be = (JTI)~1IT 6y (3.77)

where R~! has been chosen to be scaled identity. This is the Moore-Penrose pseudoinverse
(see Section B.5). It can be singular, however, and is therefore not generally reliable.

Modified Newton’s methods

Since the matrix JTJ can be singular and non-invertible, it is preferable to replace S with
something other than zero. The class of modified Newton’s methods [61] look like Newton’s
method, but replace S with a positive definite P~! to ensure invertibility.

For example, the Levenberg-Marquardt solution uses P~ = i I where py, is a real scalar
that is modulated up and down according to progress being made in reducing the error.
When p; is large, the iteration step becomes a small step in the steepest descent direction.
When py; is zero, the iteration is the same as Gauss-Newton.

The Levenberg-Marquardt strategy is simple and quite effective in practice and thus it
is chosen as the basis for a batch algorithm for manifold-tangent domains.

3.3.3 A generalized Levenberg-Marquardt algorithm

Following is the basic Levenberg-Marquardt optimization strategy [61] generalized to manifold-
tangent state models. The line numbering is in reference to Alg. 1.
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Algorithm 3 (Generalized Levenberg-Marquardt) Given a manifold-tangent state model
M, an observation space O = IR?, and an implicit error function e(x,y) = 0 where

e:SxO0—E&=IRF
the least squares objective function is
F(z,y) =" (z,y) R "e(z,y)

where € S, y € O and R € IRF*? is a positive definite diagonal weighting matriz. A
strategy for finding the solution & that minimizes F(xz,y) s

1 input zg,y

choose pg,v = 10

2 fork=0,1,...repeat
3 expand and linearize
4 e(z,y) = e(zp,y) + Jpbx +---=0
5 be = —e(ap,y) & Jpbx, bz = Az, zy)
6 fori =0,1,...repeat
7 choose P! =y 1
8
9
1
1

solve
de; = (JTR™ Yy + PP Y L IT R 6e
0 move
1 i‘l = A(’L’k s (SA:L'l)
if I'(&;,y) > F(xk,y) then
set pp = ppv
end
12 end until F(2;,y) < F(ag,y)
13 update zpy1 = &;

set pip1 = p/v
14 end until || JF R~ '8¢ ||< tolerance
where

18 the Jacobian.
n

When Euclidean assumptions are placed on the model, the algorithm is the classic
Levenberg-Marquardt algorithm [61, 56]. The major difference is the use of a tangent
step for updating the state estimate at each iteration. Without the manifold-tangent state
model, either an inefficient ad hoc technique would have to be used in conjunction with
Levenberg-Marquardt or one would have to resort to some kind of constrained optimization
technique.

3.4 Probabilistic error modeling in manifold-tangent
domains
The constraint model contains an idealized physical model of the process, but in order

to obtain a numerically stable solution and to weight various parameters in a physically
meaningful way, it is often necessary to model the process errors, the deviation from ideality.
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N

Figure 3-6: Parameter uncertainty modeling in manifold-tangent domains can be accom-
plished by a zero-mean distribution in local tangent space.

Traditionally, for Euclidean domains, uncertainty models are based on Gaussian distri-
butions in state space (cf. Section B.2 and Section B.4). For curved domains, Gaussians
cannot be applied directly, but they can be applied in the local tangent space, leading to a
way of using manifold-tangent models to extend recursive probabilistic techniques to vision
problems.

For a manifold-tangent model, we can define the notation

z=N(z,P) (3.78)
to specify a manifold random variable
r = A(Z,oz) (3.79)
described by the normal probability distribution on Euclidean random variable
bz = A~ Yz, &) (3.80)
where
p(bz) = W exp (—%&cTP_léa:) (3.81)

is a zero-mean Gaussian distribution in Pr(&).

Using this model for local probability distributions, we can describe local uncertainty in
state space parameters. In conjunction with the function linearizations of Section 3.2, this
leads to a means for generalizing the extended Kalman filter strategy to one which applies
to recursive estimation on a curved state space.

3.5 Recursive optimization for manifold-tangent state
models

The Kalman filter is based on an observation model (external constraint), a dynamic model
(internal constraint), and probability distributions for characterizing modeling error and
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measurement error as random variables. Here the Kalman filter framework is generalized in
two principal directions.
First, the state space is treated as a manifold-tangent model and, second, implicit rela-
tionships rather than forward models are used for the internal and external constraints.
The same implicit error function as used in batch optimization is used here

e(z(t),y(t)) +v(t) =0 (3.82)

but the arguments are now dynamic and the extra term v(t) is a zero-mean random variable
expressing modeling error in the external constraint function.
In addition, dynamic constraint is expressed as an internal constraint implicit function

i(x(t), x(t+ 1)) +w(t) =0 (3.83)

where w(?) is a random variable expressing modeling error in the internal constraint function.

3.5.1 Internal constraint and state transition function
Internal constraint implicit function

For dynamic problems, one way of modeling temporal constraints in discrete time is through
constraints imposed by temporally neighboring states. In general, the implicit function

i(z(t),z(t+1)+w(t)=0 (3.84)
where
i:SxS—I=R" (3.85)

can impose a constraint between 2(t) and z(t + 1).
Existing versions of the Kalman filter, which use Euclidean domains, model this con-
straint using a state transition function

Fi8—S (3.86)
such that
c(t+1) = f(2(t)) + w(?) (3.87)
where z(t), z(t + 1), w(t) € S, leading to

i), z(t+1)) = flz(t) —a(t+1) (3.88)

as an equivalent implicit function.

Although all the problems treated in this thesis are modeled using simple state transition
functions, the implicit function formulation is presented to maintain generality.

For the general case, the linearization is obtained from the Taylor series expansion about
two adjacent reference states &(¢) and (¢ 4 1) and proceeds as in Eqn. 3.63

i(z(t). 2t + 1))+ w(t) = (3.89)
<i(a“:(t), B(t+1) + 3’(52’ ) g(S—A;A‘l(x(t),i(t)) (3.90)
+%?Z%A‘l(x(t +1),2(t +1)) + ) + w(t) (3.91)

=0 (3.92)



3.5. Recursive optimization for manifold-tangent state models 51

leading to a linearized system

81~ Jybz(t) + Jegr162(t + 1) + w(t) (3.93)
where
§i = —i(&(t),2(t+1)) (3.94)
be(r) = ANz(r),2(r)) (3.95)
9i(¢,¢) AA(E,66)
Ji —3 | e=3 (3.96)
ez, Tl
. 01,0 BA(E, 6¢)
Jt+1 = :i‘ — — 4 (397)
ez, Tw g

as in Eqn. 3.64 and Eqn. 3.65.

Error propagation

Part of the Kalman filter is to propagate error parameters forward in time using the internal
dynamic constraint. For the implicit constraint equation this means computing

z(t+1) = N(&(t+1),P(t+1)) (3.98)
given
z(t) = N(&(t), P(t)) (3.99)

and the implicit constraint relationship #(z(t), (t + 1)).
This can be done to first-order using the linearization of Eqn. 3.93. We can rearrange
to obtain

— Jip162(t + 1) = =81 + Jibx(t) + w(t) (3.100)

where
sz(t) = N(0,P(t)) (3.101)
w(t) = N(0,Q(1)) (3.102)

are the initial error and noise statistics.
This leads to
Szt + 1) = JI 180+ (=T} ) (Je6z(t) + w(t)) (3.103)

where J;f 41 is some pseudoinverse of Ji41.
The new tangent space mean is

ESz(t +1) = J},  6i (3.104)
leading to
szt +1) = N(J], 66, P(t + 1)) (3.105)
where
P(t+1) = (I J)POU0 )" + ()@@ ()T (3.106)

is the covariance.
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Equivalently, we can say
a(t+1) = N(A&(t + 1), J1,,81), P(t + 1)) (3.107)
where #(¢ + 1) is provided from the prediction stage of the Kalman filter.

State transition function

When the constraint is in terms of a state transition function

f:8§—S8 (3.108)
such that
r(t+1) = f(z(t)) (3.109)
and the state space is not Euclidean, the implicit constraint becomes
i(e(t), et + 1)) = AN f(z(1), z(t + 1)) (3.110)
leading to
9i(€, <) 9A~ 1(6 9) } as(€) ‘
. = L/ ——= (3.111)
= z(t 2 .
S S % e
0i.0) - 260 G1)
= z(t - = f(a(t ’
IS A 1)
and to the relationship
z(t+1) = f(z(t) (3.113)
which together lead to
i = —i(z(?),2(t+ 1)) (3.114)
= —f@@)+z(t+1) (3.115)
= 0 (3.116)

and to the linearized system

where
9A~ 1(E 9 } 9f(£)‘ 9A(¢, 6€)
Jp = ———>>~ . — —_— s _ . (3.118)
! f fEf t)%) 9 e =z 08 gg—: (gt)
Jt+1 = I (3119)

which arise from Eqn. 3.96, Eqn. 3.97, Eqn. 3.111, Eqn. 3.112, and the identity of Eqn. 3.38.

Thus, if we start with
z(t) = N(&(t), P(t)) (3.120)

the error propagation rule is

2(t+1) = N(f(&(1)), P(t + 1)) (3.121)
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TiiR))

Figure 3-7: Error propagation with a state transition dynamic constraint

where
P(t+1) = K@) POIT W) + Q) (3.122)
and J;
oy . OATIHE) 0f(¢) AA(E, 6¢)
T(E) = —=225 e = #68)) “Be |, o T A | E=d (3.123)
ey W

which follows directly from Eqn. 3.118 and Eqn. 3.113.

3.5.2 Observation and modeling errors

There are two sources of errors that will prevent the constraint equation e(z,y) from van-
ishing exactly: measurement errors (noise) and modeling errors. Neither can be avoided in
general, but both types of errors can be modeled probabilistically.

The measurement is modeled as a random variable

y(t) = N(g(t), R(?)) (3.124)

y(t) = g(t) + 8y(t) (3.125)

where y(t) is the recorded measurement, g(t) is a noiseless measurement, and éy(1) is a
random variable added to a noiseless measurement representing noise in the measurement
process.

The random variable 8y(t) thus is zero-mean with

Eby(t) =0 (3.126)
and
R(t) = Eéy(t)sy" (t) (3.127)

and is Gaussian distributed with covariance matrix R(t).
Constraint modeling error is modeled as a random variable v(t) added to the noiseless
constraint:

e(z(t),y(t)) +v(t) =0 (3.128)
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where e(x,y) is the noiseless constraint.
The random variable v(t) is usually modeled as zero-mean with

Ev(t) =0 (3.129)

and

S(t) = Bu(t)wT(t) (3.130)

and is modeled as Gaussian distributed with a covariance matrix S(t).
It will be convenient to express both the measurement and modeling errors in error
space. To this end, the linearization Eqn. 3.63 leads to

be(a(t), y(t)) = Jo(2(1), y())ox + Jy (2(2), y(1))by + v(&(1), y(t)) (3.131)
v'(2(1), y(t))

in which ¢’ is a new random variable. Based on the linearization, the mean and covariance
of v/ can be computed as

Ev(&(t), y(1) = Jy(2(t), y(t)) Eby + Ev(z(t), y(t)) = 0 (3.132)

B (@), wt) (2(0), y()T = J(&(0), s RWOIT (2(0),y(0) + S@©)  (3.133)

a result which will be used later.

3.5.3 A generalized EKF for manifold-tangent models

A generalization of the extended Kalman filter for manifold-tangent models is relatively
straightforward using the tangent-space linearizations discussed in Section 3.2 and the prob-
ability models discussed in Section 3.4. Below is an algorithm for a generalized extended
Kalman filter (GEKF) based on these properties of the manifold-tangent models. It follows
the same approach as the traditional EKF but represents state probability distributions in
tangent spaces and uses implicit constraints for internal and external constraint.

The algorithm is summarized here, and its relationship to the original Kalman filter (KF)
for Euclidean linear systems and the extended Kalman filter (EKF) for Euclidean nonlinear
systems are taken up in the following two sections.

Algorithm 4 (GEKF) Given a manifold-tangent state model M and internal and external
constraint models
i(e(t),z(t+ 1)) +w() =0 « internal constraint
e(x(t),y(t)) +v(t) =0 « external constraint

the following random variables

e(titz) = N(2(tiltz), P(t1]t2)), Y, b
6y(t) N(0, R(1))
v(t) N(0,S(t))
w(t) = N(0,Q(t))

and the following abbreviations

be(t) = —e(2(t|t —1),y(t))
L) = JLGEt-1),4t) < (Equ. 3.64)

I

-
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Figure 3-8: The Kalman filter (KF) is for a linear function mapping a Euclidean space to
an error metric. The extended Kalman filter (EKF) is for a nonlinear function mapping
a Euclidean space to an error metric. The generalized EKF is for a nonlinear function
mapping a non-Euclidean space to an error metric.

Jy(&(t]t — 1), y(t)) — (Eqn. 3.65)
L(2(tt))  — (Eqn. 3.123)

Il

Iy(t)
Ji(t)

the GEKF can be summarized as follows:

1 input 2(1]0), P(1|0)

2 foreacht=1,2,...

3 input y(t))R(t))S(t):Q(t)

4 solve linearized system

5 K(t) = P(t|t — 1)JT (t) [T (&) P(¢lt — DIT () + Jy (t)R(E)IT () + S(t)] -
6 Sa(tlt — 1) = K(t)be(t)

7 update

8 2(t[t) = A(&(t[t — 1), sz(t]t — 1))

9 P(t|t) = (I — K(t)J:(t))P(t|t — 1)
10 predict

11 2(t + 1Jt) = f(2(t|t))

12 P(t+1|t) = L{)PR)JIF () + Q(1)

13 end
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The notation &(t;|t2) is meant to indicate an estimate of state vector z(t) at ¢ = t1 given
measurements through time ¢s.

Note that covariance matrices R(t), S(t), and Q(t) are inputs to the system. They can
be considered static priors, or determined dynamically by the measurement process (R) and
an internal model (S,Q).

3.5.4 Euclidean nonlinear systems and the EKF

For Euclidean systems, the tangent space is coincident with the state space and so the state
error probability distribution covariances

P@lt—1) = E(z(t) — &(t|t — D)) () — &t —1)T (3.134)
P(tlt)y = B(z(t) — &(t]))(x(t) — 2(t]t)T (3.135)
Pt+11t) = B(z(t)—&(t+ 1)(x(t) — &t + 1|t)T (3.136)

can be expressed as covariances on vector differences in the state space.
In the KF and EKF formulations, only direct forward models

u(t) = h(a (1)) +v'(1) (3.137)

are considered. This equation can be rewritten as

e(z,y —by)
e(z(),y(1) + o) = h(a(t)) - y(t) + y(t) + v(t) (3.138)
N————
v'(t)
=0 (3.139)

to elucidate the relationship with the generalized version. It is clear that the Jacobian
matrix

Jo(t) = Oe(Alz, ), y) (3.140)
0oz z =&t —1)
_ on (3.141)
Jz |y = p(t]t — 1)
becomes simply the Jacobian of the forward model A(z) and the Jacobian matrix
. Oe(A(z,éz),y)

Jy(t) = ———= .
(0 - (3.112)
= -] (3.143)

becomes the (negative) identity matrix.
In the traditional EKF, the measurement noise §y(¢) and measurement modeling error
v(t) are bunched up into a single term v’ (¢) with a covariance

R(t) = BV (t)v' ()T (3.144)

which can be done here because both errors enter the equation in the same place. (Actually,
the way the KF is usually described, the assumption is that the model is perfect but there is
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measurement noise; since mathematically it does not matter whether the errors are due to
measurement noise or modeling error, it is not really an issue. But in the GEKF, the mod-
eling error and measurement error enter in different locations and are therefore represented
separately.) In any case, in relation to the GEKF the covariance matrix

R'(t) = JyR(t)J] + 5(¢) (3.145)

represents all error in the measurement equation where J, = —I. One can therefore assume
that there are perfect measurements (R = 0) in which case R’ = S describes modeling error,
or that there is a perfect model (S = 0) in which case R’ = R describes measurement error,
or that neither is perfect and that R’ = R+ S is a combination of both.

The “innovation”

Se(t) —e(#(t]t — 1), y(t)) (3.146)

= y(t) — h(&(t|t - 1)) (3.147)

becomes the usual vector difference between observed and predicted measurement vectors.
The Jacobian of the dynamic constraint

Ji(t) = Jy(&(t]t)) (3.148)
8f(x)
5 (3.149)
becomes simply the Jacobian of f.
And the dynamic process noise
Q1) = Ew)wT(t) (3.150)

can be written as a covariance matrix in state space where the dynamic constraint
z(t+1) = f(z(t)) + w(t) (3.151)

can be written as vector addition in state space.
These specializations of the GEKF yield the following algorithm, which is the traditional
extended Kalman filter [18, 29].

Algorithm 5 (EKF) Given a dynamic model
o(t+1) = f(z(t)) +w(t)
with Ew(t) = 0 and Ew(t)w? (t) = Q(t) and an measurement model
y(t) = h(z(t)) + v'(2)
with Ev(t) =0 and Ev'(¢)v'T(t) = R'(t) and a state error covariance
P(i|t') = E(a(t) — &(t|t)(=(t) - &(t|t))”

and the following abbreviations

Oh(z)

Iz g = s(t|t—1)
Se(t) = y(t) —h(&(tlt — 1))

[

Jz(t)
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3f(93)
9z | = z(t)t)

St =

the EKF can be summarized as follows:

1 input 2(tt — 1), P(¢]t — 1)

2 foreacht=1,2,...

3 input y(¢), R(t)

4 solve linearized system

5 K(t) = P(tlt = )IT(0) [J()P(tlt = DIL () + R(1)]
6 Sa(t|t — 1) = K(1)6e(t)

7 update

8 2(t|t) = &(t|t — 1) + 6m(t[t -1

9 P(t]t) = (I - K(t)J-(t))P(t]t — 1)
10 predict

I et 1) = £ ()

12 P(t+1[t) = J.()P(t|t)JF(t) + Q1)
13 end

|
3.5.5 Euclidean linear systems and the KF
Finally, if the constraint and dynamic models are both linear
h(xz(t)) = Jo(t)z(t) (3.152)
flz(t)) = Ji(t)x(t) (3.153)

where z € R", J, € RP*" and J; € IR"*", then we recover the traditional Kalman filter,
which is a provably optimal filter for Euclidean linear systems in the sense of producing the
minimum variance estimate [29, 18].

The algorithm is summarized here.

Algorithm 6 (Kalman filter (KF)) Given a linear dynamic model
(t+1) = J(t)z(t) + w(t)
with Ew(t) = 0 and Ew(t)w? (1) = Q(t) and a linear measurement model
y(t) = Joz(t) + /(1)
with Ev(t) =0 and Ev'(t)o'T(t) = R'(t) and a state error covariance
P(tt') = E(x(t) — 2(t]t"))(=(t) — 2(t|t')"

the Kalman filter (KF) can be summarized as follows:
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| GEKF | EKF | KF [
teR™,6zeR", m>n | z,8z € R"
Perturbation:
.A($1,6.’L‘)=(l72 | 21+ 6x =z
Inverse Perturbation:
A Yzy,20) = bz | To— 21 =6z
Linearized Perturbation:
% € ]Rmxn I % — Inxn
Linearized Inverse Perturbation:
-1 nxm -1
ag:v € R X ! % = inxn
Dynamic Model:
z(t+1) = A(f(z(1),w@®) | et +1) = fe()) +w(t) | =+ 1) = Jiz(t) + w(t)
Observation Model:
e(2(),y®) +v(t) =0 | hla(t)) = y(®) + () = 0 | Ju()a(t) = y(t) + v(t) = 0

Figure 3-9: Comparison between the models used in the traditional KF and EKF versus the
generalized version used here.

1 input 2(t|t — 1), P(t}t — 1)

2 foreacht=1,2,...

3 input y(t), R(t)

4 solve linearized system

5 K(t) = P(tlt— 1)IT @) [P - )IT@) + R (®)]
6 sz(t|t — 1) = K(t)be(t)

7 update

8 2(t]t) = &(t]t — 1) + dx(t|t — 1)

9 P(t|t) = (I — K(t)J(t))P(t|t — 1)
10 predict

11 E(t+ 14t) = f(&(t)t))

12 P(t + 1]t) = L(t)P(t[t)JT(t) + Q(¢)
13 end

The table in Fig. 3-9 summarizes the GEKF and its relationship to the KF and EKF.

3.6 Model and error analysis

This section formulates a probabilistic method for estimating state covariances and evalu-
ating constraint models.

3.6.1 Probabilistic error propagation

The basic mathematical problem is to evaluate the quality of a state estimate with respect
to set of measurements given a constraint model

e(z,y) =0 (3.154)

relating the state # to the measurements y. This section derives the basic mathematical
relationships which can then be used as a tool to evaluate various models with respect to a
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given physical state (“model analysis”) or to evaluate various state estimates with respect
to a given model (“error analysis”).
The linearization of Eqn. 3.63 leads to the relationship

e(&,g) + Jo (&, 9)bx + Jy(2,9)by +--- =0 (3.155)

where & is a state estimate compatible with measurement vector §. In overdetermined
systems, e(&, ) will not vanish exactly, but it will be small. The linearization leads to

Jebe = —e—Jyby (3.156)
Il = —Jre—JTJ,6y (3.157)

which is the system of normal equations for the first-order variations in the system.
The Moore-Penrose pseudoinverse 1s

JIo= (Jr)~tur (3.158)
= (vzutusvh)-tysu” (3.159)
ve-iyT (3.160)
where
J.=UxVT (3.161)

is the singular value decomposition (see Section B.6) of the Jacobian matrix and exists if
and only if £~ exists.

3.6.2 Nonsingular normal equations
If the pseudoinverse exists, the relationship
br = —Jle—JlJ1,by (3.162)

expresses the forward relationship between 6y and éz. Using this relationship, if we model
8y as a zero-mean random variable with covariance R = EéyéyT , then the random variable
bz can be characterized as

Eér = —Jle (3.163)
P = E(6z+ Jle)(éx+ Jle)T (3.164)
= (J1)R(ILI)T (3.165)

where P is the covariance of the state variation éz. This matrix can be related to the Fisher
information matriz and the Cramér-Rao inequality expressing a lower bound on parameter
uncertainty [42].
Thus,
by~N(0,R) = ba~N(=Jle (J1J,)R(JII)HT) (3.166)

expresses the propagation of error from measurements to state.

3.6.3 Singular normal equations

However, if the diagonal matrix ¥ is singular, then a singular analysis must take place. If
the normal system (Eqn. 3.157) is singular then some number of the diagonal elements of &
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will be small compared to the rest and the matrix can be expressed as

E/
Y= ( 0 ) e R"*"? (3.167)
where
¥ e R™" (3.168)
0 € R (3.169)

where m < n and Y’ is invertible.
The orthonormal matrices

V=(V' V°)eR™" (3.170)
U=(U U°)eRP*" (3.171)
can be decomposed in a corresponding way, where
V' e R™™ (3.172)
U e RP™ (3.173)

represent the nonsingular subspaces and with some algebra lead to

bz VHEY T UNT (~e = Ty by) (3.174)
(VhTsz = () U) (—e - Jyby) (3.175)

where the second form emphasizes that only a subspace of state tangent space is actually
constrained by the measurements.

The rest of the space, represented by V° is not reached by the measurements and
therefore remains completely unconstrained, with infinite variance along these directions.
Any state parameters represented in the basis set V0 will be unreliable.

3.6.4 Numerical model analysis

Given a state and a measurement that are known to be physically well-conditioned, we can
use the above mathematics to see which of several models is best conditioned numerically.

Each model along with the known state # and associated measurement g will yield
e(#,9) = 0. Each nonsingular model will have a precision relationship

sy~N(,R) = &z~N(0,(J1I)RIITHT) (3.176)

and can be compared to see which one is more precise. If one constraint model produces
lower parameter variances than another model for the same state and measurement pair,
one can say that the first model is more precise with respect to that region of state space.

If one model is nonsingular and the other is singular, the nonsingular model clearly
performs better in that region of state space.

If the physical situation is not singular, the goal of modeling should be first to find a
numerically nonsingular model for the regions of state space that are of interest. Secondary
modeling steps can be taken to find models that are better conditioned numerically.

This model analysis is used in Section 4.1.4 to compare linear and nonlinear models of
the same geometry.
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3.6.5 Numerical error analysis

Given a model, a set of measurements, and a state estimate, we can use the same mathe-
matics to compute the precision of the state parameter estimates.

If the normal system is nonsingular, then the measurements sufficiently constrain the
state and the precision can be computed using Eqn. 3.166.

Assuming the constraint model is well-designed and sufficient, a singular normal system
indicates that the measurements are insufficient to constrain the state. The state may be
partially constrained and the constraint structure can be seen in the SVD. The important
information is which directions of state space are degenerate and is contained in the null
space matrix V?. Any state tangent parameters represented in the n — m vectors of V° are
unreliable and can be considered to have infinite, or very large, variance.

3.6.6 Analytical Jacobian analysis

A sufficient (but not necessary) condition for the normal equations to be singular is if J,
has deficient column rank (i.e. rank < n). Since the Jacobian matrix J, can usually be
described analytically, this condition can be checked analytically, and singular cases can be
spotted in the modeling process.

If the Jacobian is described via a chain of matrices, e.g.

Jx:J1J2~-~JN (3177)

then each matrix in the chain must have rank at least n.

Although linear dependencies can be checked for analytically, the easiest case to spot
by far 1s when a column of J; can become zero. This technique is used in Section 3.7.5 to
develop a representation for relative orientation of a camera that remains nonsingular over
the desired range of parameters.

3.7 Some models for vision-based geometry

This section develops model parameterizations for important geometric entities, including
translation, rotation, and camera.

3.7.1 3-D translation model

The translation model is a parameterization for the physical concept of a translated 3-D
reference frame. The translation parameters correspond directly to the distance in one
reference frame of the origin of another.

Fig. 3-10 illustrates the physical meaning of the three parameters associated with 3-D
translation.

Since every finite point in R® is a possible translation, the translation state space can
be modeled as a simple Euclidean space with three parameters, i.e.

M) = A3, (3.178)

or, explicitly, the model specification
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Figure 3-10: Physical model of reference frame translation.

M(tra) .
,Pgtra) - IR,B
S(tra) C Pé"“) — IR,3
,P’g_‘tra)(m),w € slira) — R3

T(tra)(m)’x c S(tra) — IR3
Z(tra)(lt),li € S(tra) = 7T

Altra) — 4o je. 3-D Cartesian vector addition
(3.179)
summarizes the state space.
Under this parameterization, a translation function
Rtra) . §(tra) « R3 — R3 (3.180)

maps the coordinates of a physical point relative to a translated reference frame “B” into
the coordinates of the same physical point relative to reference frame “A” according to

pa = AEO(a) pp) (3.181)
2 4 pp (3.182)

where the 3-D translation represents the physical location of the “B” reference frame relative
to the “A” reference frame (see Fig. 3-10).

3.7.2 3-D rotation model

The rotation model is a parameterization for the physical concept of a rotated 3-D reference
frame. The rotation parameters correspond indirectly to a 3-D axis of rotation and an angle
of rotation.

Fig. 3-11 illustrates the physical meaning of an axis-angle parameterization of rotation,
where n represents a 3-D vector called the axis and 0 represents the angle of rotation.
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Figure 3-11: Physical model of reference frame rotation
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Figure 3-12: Depiction of the rotation parameter space and the state manifold. The rotation
quaternion inhabits a 4-D unit hypersphere.

Hamilton’s unit quaternion representation [31, 35] (see Appendix A) consists of four
parameters which bear a simple relationship to the physical interpretation. The scalar “real
part” of the unit quaternion

¢o = cos(0/2) (3.183)
and the vector “imaginary part”

x

qv | = nsin(6/2) (3.184)

4z

combine to form a 4-vector of unit length.

Topologically, the unit 4-vector parameterizes the set of all points on a 4-D unit sphere.
However, since ¢ and —q represent the same physical state, the state space can be thought
of as a hemi-4-sphere with a one-to-one mapping or a 4-sphere with a two-to-one mapping
between parameter states and physical states.

Fig. 3-12 depicts the relationship between state parameter space and the state manifold.

We can use quaternion algebra to find a suitable and physically meaningful specification
of tangent space at a given rotational state and to specify a rotation composition function,

A(rot).
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First, consider the composition of any rotation ¢* with an additional small rotation
quaternion §q to produce a new rotation q. Consider the axis/angle interpretation of the
quaternion

8¢ = (cos(8/2),nsin(6/2)) (3.185)

where n is a unit 3-D rotational axis and 6 is the magnitude of rotation around that axis,
and is small (say, less than 30 degrees). Then ¢ can be approximated as

bg= (VI-cwx/2,wy/2wz/2) (3.186)
where
€= (Wx +wi +wz)/4 (3.187)

and wxy = nx0, wy = nyf, wz = nz# are approximately Euler angles, provided the
magnitude 6 remains small.
The composition of ¢* with 8q is

% —4 -9 —93 6q0
i w6 9 6 bq1
= * * " " 3.188
1 92 —93 Qo @ 0q2 ( )
% G -4 B© g3
690
= ¢ v V2 vs) gg; (3.189)
bq3
U.)X/2
= q* + V1 V2 V3 wY/Q + (\/ 1—¢e— 1) q* (3190)
wz/2
wx /2
P(rOt) q* + U1 V2 U3 {,UY/2 (3191)
wz /2
Prod(g* + 2D (g*)(Q)) (3.192)
= Alrot)(g* Q) (3.193)

where

(%)
Q= wy (3.194)
wz

represents the tangent space parameters.
With these results from quaternion algebra, the following specification
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M(rot) .
rot
Py = R
S(rat) c pgrot) — {Z c 7)5| (z’ Z> — 1}
'P:g,rot)(l‘),l‘ € S(rot) — ]RB
TUO(2),2 € S0 = {z€Ps|(z,) = 1}
20 (), 2 € 87 = Defined by Eqn. 3.191, Eqn. 3.192, and Eqn. 3.187
AU = Defined by Eqn. 3.193
(3.195)
summarizes the manifold-tangent model for rotation.
Under this parameterization, a rotation function
hrot); §rot) o« IR3 — 1IR3 (3.196)

maps the coordinates of a physical point relative to a rotated reference frame “B” into the
coordinates of the same physical point relative to reference frame “A” according to

pa = ACO(0 ppo) (3.197)
@ +ax —ay —4%  2(axay —qoqaz)  2(qxdqz + qoqy)
= 2(qxqy +q0qz) 9 —dx +d¥ —az  2(avaz — qoqx) PB
2(gxaz — doqy)  2(avaz +aoax) @t —ak —a% + ¢
(3.198)
where

qo

I (3.199)
qy
9z

represents the physical 3-D rotation of the “B” reference frame relative to the “A” reference
frame (see Fig. 3-11).

3.7.3 Camera model—interior orientation

The interior orientation is a parameterization for the physical concept of a pinhole projection
imaging system, which is an adequate approximation to the lens-based imaging systems used
in practice. The interior orientation parameterization should specify the internal imaging
geometry, i.e. the extent of the perspective distortion induced by the projection.

Fig. 3-13 illustrates the physical model of the pinhole imaging process. All light rays
emanating from some point in the scene that pass through the pinhole become imaged
at a particular point on a a physical surface by following a straight-line path. Typically,
a rectangle centered on the optical axis and lying in a plane normal to the optical axis
1s the image sensor, which records the intensity and spectral characteristics of the light.
These rectangular spatial distributions of light measurements, quantized in space and time,
constitute the digital images which we use as the visual measurements for computer vision.
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Figure 3-13: Camera pinhole model and the geometry of similar triangles.

COP-based coordinate system

The important geometric relationship between a scene point p and its associated image point
¢ in the pinhole model is captured by similar triangles. As depicted in Fig. 3-13, if O is the
COP, p’ is the projection of p on the optical axis, and ¢’ is the center of the image rectangle,
then the triangle similarity relationship

Oqq’ ~ Opy’ (3.200)

holds for every point p and its associated projection q.

Analytically, we can establish a natural coordinate system where the origin is the COP,
the z-axis is along the optical axis, and the zy-plane is parallel to the image plane. Then,
if p has coordinates (X,Y,Z) and ¢ has coordinates (—u, —v, —f), the relationship

u/f\ _ [ X/Z
(v/f)_(y/z) (3.201)
encodes the similar triangles relationship.

Virtual plane coordinate system

There is another, perhaps more useful, interpretation of the geometry, which starts with a
virtual image and establishes a “collinearity” relationship between each point in the virtual
plane and the scene point that lies on the same ray. Fig. 3-14 depicts the geometric concept
in which a virtual image plane normal to the optical axis is constructed a distance Z; on the
scene side of the COP. Each optical ray from a scene point p intersects the physical image
plane at ¢ and the virtual image at a point . The scene point

p=Q+oagqp (3.202)

can be expressed as being located some distance « along the ray passing through @, ¢, and

p.
Analytically, we can establish a coordinate system in which the origin is at the inter-
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Figure 3-14: Camera pinhole model and the virtual plane coordinate system.

section of the optical axis and the virtual image plane, the XY -plane is the virtual image
plane, and the Z-axis is along the optical axis. In this coordinate system, if Q = (U,V,0),
the scene point

X U u/f
Y =V |+al vf (3.203)
Z 0 1

can be described as a point plus a scaled ray. The relationship

u/f N _ ([ U/Z
(wf)=("z) (3209
is used to express the ray in terms of the internal camera geometry only.

The advantage of this wvirtual-plane “collinearity” interpretation over the COP-based
“similar triangles” interpretation is that there is no necessity for a finite COP, which e.g.
admits the theoretically interesting special case of orthographic projection, in which all
rays from the scene intersect the image rectangle orthogonally. Geometrically the image-
based interpretation (Fig. 3-14) is well-suited to describe orthographic projection as well as
perspective projection of any focal length by simply specifying the the ray direction at each
virtual image point. In the COP-based interpretation (Fig. 3-13), orthographic projection
occurs only in the limit as the COP is infinitely far from both the image plane and the
scene, in which the image size and scene size must both become zero!

Indeed, analytically we can see that Eqn. 3.201 becomes degenerate when f — oo whereas
Eqn. 3.203 does not.

More importantly than the theoretical interest of orthography is the practical concern of
estimation with well-conditioned parameters. The COP-based model, in which the values
for Z can be an order of magnitude or more different than the values for X and Y can
present numerical conditioning problems. This problem is especially of concern when the
value of f is unknown, because the conditioning of the problem will vary with f.
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The scale issue and derivation of the camera model

Consider a physical scene point with coordinates (X,Y, Z) projecting to a physical image

sensor point with coordinates (—u, —v, —f) in an ideal pinhole imaging system of focal length

f where the size of the image sensor is s. All the above distance values are physical distances

(say, meters) and the points are in the COP-based coordinate system (see Fig. 3-13).
From Eqn. 3.201, we know the relationship

v X
77 (3.205)
holds. (A similar relationship holds for the v coordinate and all the following derivation
applies in a parallel way to the v coordinate.)
In practice, however, we do not know the physical size of the image sensor, so we do not
measure u directly. Instead, we can only measure u/s, which is an image-frame-normalized
value. By dividing each parameter in the left-hand ratio by s we obtain the relationship

u/s _ X
fls  Z

in terms of the measured image coordinate u/s. The important focal parameter becomes
f/s rather than f to maintain the ratio.

We also do not know the physical scale of the world and cannot hope to recover it
from image geometry alone because any scaling of the world produces the same image. So,
instead, we can choose a virtual image rectangle at a depth Z; which has a finite and fixed
physical size d. Regardless of what value we choose for Z;, we can be assured that

(3.206)

d/Z; = s/f (3.207)

or, equivalently,
(Z;/d)(s/f) =1 (3.208)

by geometry of similar triangles. In practice, we want to choose Z; to be a value close to
the Z values of the scene points so that d will assume a value on the same order as the size
of the actual object. This can be done, e.g. by choosing Z; = Z where Zg is the depth of
one of the points.

The derivation continues, however, for any choice of Z;, leaving the question of how to
set scale to the particular problem being solved. The similar triangle relationship can be
written as / X/d

u/s
s m (3.209)
where d is the size of the virtual image rectangle located at a depth Zj.

There is a numerical problem with this equation when f/s gets large as both sides of the
equation vanish. The solution to this numerical has two parts, corresponding to keeping the
representation of focal parameter finite and keeping the representation of depth (Z) finite
for long focal lengths (f/s — o).

First, we would like to establish a finite focal parameter for describing long focal lengths.
In particular, we would like to accommodate the range of focal lengths roughly

/s €[.3,00) (3.210)

because these represent a realistic range of physical imaging parameters. Although this
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range of f/s is extremely large, the range of the inverse
s/f €(0,3.33] (3.211)

is finite and relatively compact. Thus, s/f is a useful parameter for the interior orientation
and the state vector for interior orientation

2 = {s/f} € M. (3.212)

is an element of a one-parameter Euclidean space.

Second, we would like the description of scene points to remain finite for long focal
lengths. To solve this, we can move the coordinate system from the COP to the virtual
plane so that new plane-based coordinates

X' X
v = Y (3.213)
7z 7 — 4

have the z-coordinate shifted by Z;.
The coordinate frame shift results in

u/s  _ X/d
/s = Zi]d+(Z - Z;)/d (3.214)
_ X/d
T Zijd+2']d (3.215)
which can be rewritten as a forward imaging equation
_ X/d
u= (Zg/d)(s/F) + ((Z = Z;)/d)(s/ ) (3.216)
I U7
T 1+ (Zd)(s/ 1) (3.217)

mapping image coordinates (X', Y’,Z’) and focal parameter s/f to an image coordinate
u/s. Here Eqn. 3.208 has been used to simplify the denominator.
If this derivation is now carried out for both image coordinates, the relationship

( Z;j ) - ( i’(:;g ) TZ’/Z)W (3.218)
results.

This relationship can be used to construct a mapping

hPrel)  R® x R — IR (3.219)
X'/d :
(proj)
vid | s T ( Z;; ) (3.220)
Z'/d

of scene point parameters and focal parameter to image point parameters.
Alternatively, it represents a mapping

h#roi’)  R3 IR (3.221)
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X'/d ”
(proj')
Y'/d R ( ’;;j ) (3.222)
(Z'/d)(s/1)
of projectively scaled scene point parameters to image point parameters.

The motivation for the second alternative is associated with the estimation properties
when the focal length is unknown, as discussed below.

Degeneracy of Jacobian at long focal lengths

To see the degeneracy, consider the constraint equation Eqn. 3.219 and its Jacobian matrix

Lo XD

ORCToi) (z)
|, 1 -l Az (3229)
D D? D?
where
D=1+ (2'/d)s/f) (3.224)

is the denominator.

For long focal lengths, or orthographic imaging, the third column vanishes for all points
resulting in rank-deficient Jacobian. As discussed in Section 3.6, this will make the inter-
mediate parameter Z’/d extremely sensitive to noise at long focal lengths.

For the alternative model, Eqn. 3.221, the Jacobian becomes

, L o = X/d

OnProi’)(z) D D2

5 " v/d (3.225)
’ 0§

and the degeneracy disappears. Thus, for estimation with an unknown focal length, the
intermediate parameters in the domain of h(®roi") will be used in combination with the rela-
tive orientation parameters and forward function. This is discussed further in Section 3.7.4
and Section 3.7.5

3.7.4 Camera model—relative orientation

The relative orientation is a parameterization for the physical concept of the displacement
and orientation of one camera with respect to another camera (in the case of stereoscopy),
or with respect to itself at a different time (in the case of motion). The relative orientation
parameters correspond to displacement and rotation of one 3-D reference frame with respect
to another.

The relative orientation of two cameras consists of a physical translation and rotation of
virtual plane reference frames of the two cameras.

Using the forward functions based on translational and rotational parameterization de-
veloped in Section 3.7.1 and Section 3.7.2, the composite relative orientation can be described
as

pa = AO(T, AU (g, pB)) (3.226)
XA TX XB
Ya = Ty + R(q) YB (3.227)

Za Tz ZB
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indicating the transformation of a 3-D point pg from one virtual plane reference frame “B”
to another virtual plane reference frame “A” where (Tx,Ty,17) = 279 and ¢ = 2oV
and R(q) is the rotation matrix corresponding to the unit quaternion as in Eqn. A.48.

If we choose the same virtual plane depth Z; for each of the two camera reference
frames we get the same scalar d in which to parameterize the coordinates of both ps and
pp resulting in the relationship

XA/d Tx/d XB/d
Ya/d = Ty/d + R(q) Yg/d (3.228)
Zald Ty /d Zg/d

which requires a translation scaling of the same degree.

We will want to use this function in conjunction with the interior orientation model
discussed in Section 3.7.3 and thus the parameters on the left should be in the domain of
the function A(Pres”) (Eqn. 3.221). To this end, the equation can be rewritten

Xa/d
YA/d =
(Za/d)(s/])
Tx/d 1 Xgp/d
Ty /d + 1 R(q) Yg/d (3.229)
(Tz/d)(s/ ) s/f Zp/d
and thus the parameters z("¢) of relative orientation become
Tx/d
Ty /d = translation (projectively scaled)
(Tz/d)(s/ f)
qo0
?IX = rotation (unit quaternion)
Y
9z
s/f = focal parameter (3.230)
and the relationship Eqn. 3.229
ReD  g(rel) 5 R® — R® (3.231)

can be combined with the projection relationship Eqn. 3.221 to obtain a composite function
for the projection of a 3-D point in one camera frame into the image of another camera
frame.

3.7.5 Composite camera model

We can combine the parameterizations discussed in Section 3.7.3 and Section 3.7.4 into
a composite camera model that describes both relative and internal orientation and is a
well-behaved parameterization when focal length is unknown.

The following specification
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M(cam) .

cham) - IR8
Steam) cham) — RYx S
Py (2),z € ™ = RT
TCom (z) 2 € SCm = R x Tro)(a)
2(eam) (z) ¢ ¢ Sleam) Iy x 2(rot)
A(cam) = 44X A(rot)

(3.232)

summarizes the manifold-tangent parameterization M(¢*™). The notation +4 indicates
Euclidean vector addition in IR*.
The state parameters of £(¢*™) can be summarized as

s/f = Iinterior orientation

Tx/d
Ty /d = relative orientation, translation

(Tz/d)(s/f)

qo
ax
qy
4z

= relative orientation, rotation (3.233)

where the first four parameters form a 4-D Euclidean space and the last four parameters
form a rotation manifold, as modeled in Section 3.7.2.
The associated composite forward mapping from scene parameters in one frame to image
parameters in another
pleam) . gleam) o R3 y IR? (3.234)

is the composite
pleam) — plproj') o plrel) (3.235)

of the projection function A(?r%") (Eqn. 3.221) and the relative orientation function ("¢
(Eqn. 3.231).
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Chapter 4

Point Geometry

This chapter develops an image-based point geometry model that is motivated by and
well-suited to the problem of “structure-from-motion”. More precisely, the idea is that an
image sequence is taken from a moving camera (the “motion”) and the 3-D geometry (the
“structure”) is obtained by estimating camera interior and relative parameters and 3-D
locations of points.

The first section treats the modeling of the pointwise geometry and combines this with
the camera model developed in Section 3.7.5 to obtain a complete estimation model for the
problem.

Various aspects of the performance, in various regimes of state space, are systematically
evaluated by a set of computer simulation experiments in the subsequent two sections.

The final three sections describe three applications based on the estimation model and
present a realistic picture of the utility of the fundamental technique and the quality of
performance in the field.

4.1 Modeling

4.1.1 Image-based point structure

An image-based structure model is appropriate to the paradigm of motion-based estimation,
in which feature points are selected in the first image and tracked in subsequent images.
The first image is the structure reference frame and the unknown parameters are the depths
of the selected points in this reference image.

Specifically, each 3-D point p; is represented in the virtual-plane coordinate system (see
Section 3.7.3) of the reference image by a depth parameter Z;/d, where

i = 7P — 7{°°P) (4.1)

is the distance from the virtual reference plane to the point, ZJ(,COP) is the COP-centered
depth of the plane, Zz-(COP) is the COP-centered depth of the point, and

d =27\ (s/) (4.2)

is the induced dimension of the virtual image rectangle (see Fig. 4-1).
The virtual plane Z}COP) is chosen by fixing the depth of one of the points, say ¢« = 1,
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Figure 4-1: Image-based pointwise structure model.

to be zero, i.e. let
Z{EOP 7" — ¢ (4.3)

hold for p;.
The 3-D coordinates of point p; can be expressed in terms of the unknown depth param-
eter Z;/d as

X;/d (L+ (Zi/d)(s/ 1) /)
Yifd | = (14 (Zifd)(s/ ) /5) (44)
Zi/d (Zi/d)
which follows directly from the forward projection equation (Eqn. 3.218) where
a0
o = ( h ) (45)

is the selected image location that defines p;.
The expression in Eqn. 4.4 can be interpreted as a back-projection mapping

hheek)  R? x IR x IR, +— IR (4.6)
or /d
(0) back Xz
w; /s plback)
( UEO)L ) x (s/f) x (Zi)d) " Yi/d (4.7)
i Zi/d

from a selected 2-D image location to a 3-D point in the reference image frame. The mapping
depends on the internal orientation of the reference camera and the depth of the point in
the reference frame, both of which are typically unknown and have to be estimated along
with the motion parameters.

If we model each point p;, then, with the parameterization

2B = {7;/d} € Mk, (4.8)

which is a single Euclidean parameter, a composite mapping can be made between the
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defining reference image location q(O)

. and the projection ¢;(t) in the camera image at time ¢

gi(t) = htcem (x(c“m)(t), p(back) (qEO), z(int), x<3pt>)) (4.9)

which is a function of the interior orientation of the reference image z(**), the 3-D point
237t and the camera parameters of the current camera z(°®™)(t). The function A(°*™) is
defined in Eqn. 3.234 and 2(°®™)(t) in Eqn. 3.233.

We define the composite mapping of Eqn. 4.9

P L R? x P 5 PEO™ x PP s IR (4.10)

as the point correspondence mapping for a single point. It maps the reference image point
to its location in the current frame as a function of the interior orientation of both cameras,
the relative orientation and the depth of the point.

4.1.2 Complete model for motion-based point geometry

For the motion-based geometry estimation problem, we are interested in solving the 3-D
geometry for the case in which N points are selected in the first image and tracked through
an arbitrarily long image sequence.

To do this with the GEKF algorithm for this points problem, we require a state model
M) an external constraint model e(z(t), y(t)), an internal dynamic model i(z(t), z(t+1)),
and an error model consisting of error characterization of initial knowledge P(t|t — 1),
measurement error R(t), constraint modeling error S(t), and dynamic modeling error Q(2).

State model

The state model for this problem

N
M(pts) — M(Cam) X HM(spt) (4.11)

i=1

consists of a camera state and N instances of the 3-D image-based point model discussed
above.
The state parameters

s/f = Iinterior orientation
Tx/d
Ty /d = relative orientation, translation
(Tz/d)(s/f)
90
“le = relative orientation, rotation
Y
9z
Z1/d = structure point 1
Zn/d = structure point N (4.12)

collectively form the state vector z(**) ¢ RETY.

The manifold-tangent model specification
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Mpts) .
,Pépts) — IR,8+N
S(pts) C ngts) — IR4+N « S(rot)
PEN @),z € S¥) = RV
T(pts)(lr), = S(pts) — ]R4+N % T(rot)(z)
2P () e e SP) = [y x 200N
A(pts) = 4apn X A(rot)

(4.13)

summarizes the state space manifold.
[Note: technically the parameter s/f is a non-negative ratio and thus the state space
could be further restricted to only non-negative reals for that parameter.]

Constraint model

A constraint model can be built on the composite forward model for the set of N points
hpte) - PP s RN RN (4.14)

which maps the state parameters z(P**) and a vector ¢(%) of defining reference image locations
to the set of image locations ¢(t) in the current frame.

Symbolically,
q(t) = AP (@P)(1), ) (4.15)
which can be broken down into a set of parallel single point relationships
a(t) = AP g0 (4.16)
: 4.17)
gn(t) = APIEE), Q) (4.18)

where ¢;(t) € IR? represents one of the N feature measurements and A(*?) is from Eqn. 4.10.
Since we have a forward model, the most appropriate composite constraint is then the

error vector
eP) (2(P)(1) 4 Pt) (1)) = h(ptS)(x(Pw)(t), g9y — y Pt (1) (4.19)

where y(p“)(t) represents the measurement at time ¢ of the feature point locations ¢(#).
The internal constraint function is based on an identity state transition function, i.e.

z(t+1) = flz(t)) (4.20)
= z(t) (4.21)

which is exact for the static parameters of 2(°¢™) and z(**") and expresses temporal coherence
for the dynamic parameters. The extent of the temporal coherence is dictated by the
variances in the Q(¢) matrix discussed below.

Error model

The final requirement for the Kalman filter implementation using the GEKF algorithm, is
to specify the various error characteristics of the model.
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Figure 4-2: Camera error model. A Gaussian distribution in (s/f) space with a standard
deviation equal to one-third the focal parameter gives a distribution on focal length like the
one above. Here (s/f)o = 1.

In any practical application, knowledge of the domain may allow better estimates of
error parameters, but in general, with the scaled distance parameters and the virtual plane
coordinate system of the model M) 3 quite generic set of error variances apply to a wide
range of imagery.

First, we must specify the initial state

z(t|t — 1) = N(&(t]t — 1), P(t|t — 1)) (4.22)

where z can be partioned into four parts corresponding to interior orientation, relative
translation, relative rotation, and point depths

(s/£)o
ditlt—1)= Oqf") (4.23)
Oy

and the error covariance matrix P(t|t — 1)

(int)
P(l x1)
P(tra)
p- (3x3) (4.24)
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can be partitioned into four corresponding blocks on the diagonal. The notation

(4.25)

=
b~y
[l
oo o

is the identity unit quaternion indicating no initial rotation and (s/f)o is an initial focal
length estimate.
The values of the error covariance matrix P can be set quite generically as

; 1
plint) (g(s/f)0)2 (4.26)
P(t"'a) = 0(3)(3) (427)
plroty  _ O(3x3) (4.28)
0
P = 4.29
( O epenl(N-1xN-1) > (4.29)

where 04epen € [2,10], depending on what is known of depth of field.

These values express that the focal length parameter is between orthographic and twice
the initial value with 98% certainty, that the initial motion is known to be exactly zero, and
that the depth of each point p;, i # 1 is not known well at all, except that it is unlikely to be
greater than ogcpp times the field of view away from the virtual reference plane. There are
very few scenes in practice where the depth of the object is greater than five or ten times
its depth.

Recall from Section 4.1.1 that the reference plane is physically defined by setting Z; /d =
0, which is why the variance for p; is exactly zero.

The internal constraint covariance matrix Q(t) can also be set quite generically as

Qi — g (4.30)
Qlra) = (%(MAXVEL)At)QI (4.31)
QY = (%(MAXROT)At)ZI (4.32)
QP = 0,¥i=1...N (4.33)

where MAXVEL is the maximum translational velocity expected for the sequence, MAXROT
is the maximum rotational velocity expected, and At is the interframe time interval.
Coupled with an identity state transition function

fz(t)) = (t) (4.34)

this choice of values expresses that the focal parameter of the camera and the location of the
points in the reference frame are static parameters and that the velocities of the translation
and rotation are not likely to be larger than certain limits MAXVEL and MAXROT.
Finally, the measurement covariance matrix R(¢) can be set up as
R(t) =02

image

I (4.35)

where o ge 1s the measurement noise variance for each measured coordinate and can be
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set as

1 ( PIXACC )

Oimage = § PIXRES (436)

and PIXACC expresses the coordinate accuracy in terms of maximum (98% probability) error
in pixels, and PIXRES is the resolution of the image in pixels, i.e. s measured in pixels. For
subpixel accuracy tracking in video resolution imagery, 0image = .0005. A more realistic
value in noisy video is Gimage = .0015.

The external constraint modeling error S(t) can be set to zero or to a small diagonal
matrix to augment the constraint error induced by R(t). The only practical reason for
adjusting S independent of R is if lens distortion moves the model considerably away from
a pinhole projection. But in this case, S should depend on the image location of the
measurement (higher variance further out), or the projection model should be replaced to
introduce lens distortion parameters.

4.1.3 Comparison to traditional nonlinear models

The computational model developed above arises from a particular way of looking at and
understanding the physical geometrical problem. Other viewpoints can lead to other non-
linear formulations. All of them are geometrically correct, but some may perform better
numerically.

The most similar nonlinear modeling approaches are found in several batch estimation
approaches [8, 72, 41, 81, 16] and recursive approaches [14, 5]. There are significant dif-
ferences between these and the proposed model, each of which is important for different
reasons.

Camera model

Our camera model is based on a nondimensional parameter s/f and the virtual plane co-
ordinate system described in Section 3.7.3. Other than [72], which uses a similar camera
model to ours, all other formulations assume the camera focal length f is known relative to
s and use a coordinate system based at the COP.

The motivation behind using the virtual plane coordinate system and the inverted ratio
of focal length to image size came from the desire to estimate focal length in uncalibrated
imagery and to allow for the widest range of realistic focal parameters. The details behind
why the traditional model is inappropriate are discussed in Section 3.7.3.

Since our model addresses a more general class of problem, no direct comparison can
be made. In the case of known focal length, the effects on computational performance are
probably small. But to address the more general problem, a straightforward generalization
of previous formulations (i.e. using f as a parameter) will encounter numerical problems in
certain ranges of state space, particularly for long focal lengths.

Even if it is known, however, that the focal length is not long, the arbitrary choice of
scaling that is required by dimensional representations of lengths can cause poor and uneven
conditioning throughout the state space. For example, a popular choice of arbitrary scaling
is to choose f = Z; = 1, s = d, and to set d somehow by fixing the coordinates of a point
or the centroid of points. Scaling issues may be part of the problem in the poor numerical
estimation performance exhibited by earlier formulations.

Translation model

Our translational model is based on nondimensional parameters scaled to a distance d that
is meaningful to the scene. In particular, it is the width of the field of view of the reference
frame camera at the depth of one of the scene points. Therefore it is a distance on the
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order of the size of the scene and one can be sure that, regardless of the physical scale of
the scene, the translational magnitude will usually be less than 2 and almost certainly less
than 10 for any realistic sequence containing a fixed set of points.

Additionally, the z-coordinate of the relative translation is further scaled to the focal
parameter of the camera. This is important for long focal length estimation because of
degeneracies that arise in this case, which is discussed in detail in Section 3.7.3.

For most other models, the camera translational parameters are a scaled representation
of the vector between the COPs of two camera stations. The degeneracy at long focal
lengths is that this vector will become infinite in length. When the focal length 1s known to
be small, the difference in parameterization is probably not significant.

Rotation model

Our rotational model is a manifold-tangent model based on the unit quaternion manifold
and its tangent hyperplanes.

Other models use the quaternion but generally use Euclidean-based estimation tech-
niques. Batch approaches [72, 41, 81] use the Levenberg-Marquardt method or conjugate
gradient [16], while recursive approaches [14] use the EKF, none of which were designed for
curved spaces.

In [14], based on the EKF, a set of constant velocity parameters are in the state rather
than the quaternion, so the space is Euclidean, but the formulation only applies to constant
velocity.

In [16], based on conjugate gradient, the entire quaternion is in the state vector and
no fixed motion constraint is imposed. However, the 4-D rotation parameter subspace is
assumed to be Euclidean at each step and the quaternion is normalized after each iteration
to pull the state estimate back onto the rotation manifold. The authors propose that such
normalization will have little effect, but produce results which exhibit particularly curious
oscillating behavior in the rotation parameters.

A possibility is that this apparent “limit cycling” may be partially due to the fact that
the estimator is allowed to choose a non-physical set of parameters; the normalization will
produce a physical set of parameters on the rotation manifold, but since the other state
parameters are not corrected, they will remain optimized to the inconsistent non-physical
rotation parameters. An alternative explanation of the phenomenon by the authors, which
is not inconsistent with the above, is that the oscillating behaviour is probably due to
trading off of errors between the rotation parameters and the slowly converging structure
parameters. Either or both explanations could be true.

The batch approaches [72, 81, 41] use the Levenberg-Marquardt method, which is based
on a Euclidean state space and, in the absence of any discussions of manifold modeling,
appear to use the same post-estimation normalization technique. Although no catastrophic
problems were reported, the practice of estimating rotation in a 4-D Euclidean space and
then normalizing the quaternion is at best a needless inefficiency (because the excursions off
the state manifold and back will probably not be the most efficient route to the solution),
and is at worst a destabilizing force that can cause the solution to be extremely fragile.

The manifold-tangent model guarantees that the estimated state will be near the mani-
fold and physically meaningful, as long as the step size remains bounded. The region-of-trust
bound can be determined (it is |w| = 2) and enforced.

Scene-based point structure

Probably the most computationally significant difference from previous formulations is the
image-based representation of points. All the formulations discussed above use what might
be called a scene-based representation.
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Philosophically, the image-based model arises naturally from the scenario that the vision
system will choose a set of points in the first image, and, based on appearance, track the
points through subsequent images and use the feature track information to recover 3-D
parameters. Thus, features are defined by their image locations in the reference frame and
the only unknown spatial parameter in the reference frame is their depths.

The alternative approach is a scene-based representation in which the structure model
parameterizes the 3-D points relative to some arbitrary 3-D reference frame and treats each
image as a set of measurements of the 3-D points.

The 3-D location of a point can be expressed as a 3-vector

2B = (X,,Y,, Z,) (4.37)
in some fixed scene-centered coordinate system, resulting in a simple Euclidean state model
MEPD = m3 (4.38)

for a single point, with the above parameters. A composite model

N
MU = TT MO = MY, (4.39)

i=1

for a set of N points is simply a set of 3N parameters representing the 3-D coordinates of
each of the points.

Although geometrically equivalent, this representation is burdened with many extra
parameters which apparently cause slow convergence and stability problems.

In recursive systems, this parameterization results in a column-deficient Jacobian which
makes the success of the estimator highly dependent upon initial conditions and initial
specification of the state error and measurement statistics P and R.

In batch systems, this parameterization can lead to a bloated parameter space which is
difficult to navigate and expensive to compute in. In [72], it is reported that convergence
fails for an overly large number of frames without a decent initial condition leading to an
ad hoc strategy to combine estimates based on smaller batches of frames.

The bloat problem is well-illustrated by considering a long sequence of 1700 frames
used in one of our applications (see Section 4.6). A total of around 75 features are used
with an average of over 10 feature points per frame, leading to a system with over 34,000
measurements and over 10,000 states. Whereas a batch formulation is intractable—the
matrices cannot even be stored without special sparse matrix representations—the recursive
formulation solves all 1700 frames of the same problem, with an average of 20 measurements
per frame and 17 states per frame, in a matter of seconds.

Relationship between image- and scene-based models

The scene-based model has three parameters per feature point, corresponding to the three
3-D coordinates, whereas the image-based model has only one parameter per feature point,
corresponding to the depth of the point in the reference image frame.

Although both interpretations assume zero-mean measurements, the different interpre-
tations lead to widely disparate number of parameters. The question is: how can the same
physical problem be represented by two sets of parameters with widely different dimension-
ality?

One answer is that the two interpretations are based on different assumptions regarding
feature tracking. The image-based model defines each point relative to the reference image
frame and assumes it is tracked with zero-mean error. The scene-based model defines each
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point relative to a scene-based reference frame and assumes it is tracked with zero-mean
€rTor.

The first is a rational assumption for causal sequences in which feature tracking is based
on appearance of a feature template taken from the reference image. Thus it is natural to
assume that tracking errors of the selected image point will be zero mean.

The second is a rational assumption for an arbitrary batch of images in which feature
tracking errors are based on some external model of what the feature looks like. For example,
in [5] a known 3-D model of a black and white target is used as the template for tracking
rather than a template taken from an image.

The typical complaint about the first model is that not all the images are treated equally.
The final result will have zero residual in the reference image and finite residual in all other
images. Therefore, if a different image were chosen as the reference image, the result would
be slightly different. With the scene-based model, all the images are treated equally and
will have a finite residual.

Indeed, all the images are not treated equally, and for a good reason. The reference image
is the one in which feature points are defined and the template is extracted for tracking. It
is generally the first of a causally related sequence of images. This model most accurately
reflects the actual process of feature selection and tracking in image sequences as there is
rarely a 3-D model of the object available (and if there were, one would not need to estimate
structure anyway).

One particular instance in which one could argue that a 3-D model is implicitly used
for tracking and that the scene-based model of tracking errors is therefore more appropriate
is when the feature measurements are generated by a person looking at the images, as is
usually the case in photogrammetry. In this case, it is arguable that a symbolic entity in
the scene is being matched to the image and one should interpret that the image point
selection in the first image is actually a measurement of what the person believes is the
image location of the symbolic scene entity rather than the true location of the scene entity.
This is in contrast to the typical computerized feature selection process in which the image
signal of the first image is used to find candidate features for tracking, which may or may not
correspond to meaningful scene points, but are represented completely by their appearance.

An example is tracking the corner of a building. If a person is doing the tracking, he
might locate the corner of the building with some error in the first image, but subsequently
his goal will always be to locate the corner of the building, so one can assume that overall,
including the first image, the errors are random and zero-mean. If a computer is doing the
tracking, however, the assumption is that if a point off the actual corner was selected in
the first image that, based on the given template, subsequent feature tracking will precisely
locate the same point off the actual corner and will have no reason to bias itself toward the
actual corner because it does not know what a corner is; the only defining characteristic of
the feature is the original image template.

(Of course, real feature tracking, especially with a lot of 3-D rotation in the scene, is not
necessarily all that true to the original point, but there is generally no better assumption
as to which way it will err, so on average a zero-mean assumption is the best one can do
without a 3-D model of the scene.)

Whatever the assumptions about feature tracking, it may be desirable for some reason
to obtain a solution equivalent to the scene-based model in which a finite residual results for
each image in the collection. In this way, the relationship between the seemingly disparate
representations can be understood and a new representation equivalent to the traditional
scene-based model will result but with a new parameterization that makes it much easier
to use.

To arrive at the new representation we can alter Eqn. 4.4 replacing the feature point
specification ¢(°) with a measurement ¢(®) which has some error b in it. Thus, the 3-D
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coordinates of point p can be expressed in terms of the unknown depth parameter Z/d and
the image-plane measurement errors (b, /s, b,/s) as

X/d (L4 (2/d)(s/ )@ /s + bu/s)
v/d | = | (L+(Z/d)(s/ D)@ /5 + bo/s) (4.40)
z/d (Z/d)
where
¢ =§+b (4.41)
and

b
b= ( b" ) (4.42)
v
is the bias on the original feature.
The unknown parameters form the component state vector

by /s
2@ = | b,/s | e M3, (4.43)
Z/d

which is equivalent to the scene-based representation. The inversion of Eqn. 4.40 is

X/d .
bu/s T+ (Z/d)/hH ~ "

b /s | = Y/d A 4.44
Z//j TETH 4

z/d

which expresses that the biases are the difference between the true point projections and
the measured ones.

The representation is easier to use than a parameterization relative to an arbitrary 3-D
reference frame because the parameterization is based in the virtual plane coordinate system
and represents physically meaningful quantities for which it is straightforward to assign
initial error statistics. For example, the bias error is similar to the image-plane tracking
error and the depth error can be placed at a large value to indicate no knowledge.

The representation also reduces straightfowardly to the unbiased image-based structure
representation of Section 4.1.1 by setting the value of the bias to zero and reducing the
uncertainty in the bias to zero.

4.1.4 Comparison to linear models

Using the modeling framework of Chapter 3 and the error analysis techniques discussed in
Section 3.6, the numerical performance of nonlinear modeling can be compared directly to
the numerical performance of a linear model based on the same geometry.

Fig. 4-3 depicts the 3-D geometry used to compare the two types of models. The geome-
try reflects a typical geometry of a wide baseline stereo camera system, such as that used in
the person tracking applications discussed in Chapter 5. The view is intended to be of the
XZ-plane, where the baseline is along the X-axis and there is zero displacement along the
Y-axis and Z-axis. The cameras are verged to view the same volume, about 1.7m in depth,
by rotating around the Y-axis only. There is no rotation around the X-axis or Z-axis.

The experiment is intended to plainly illustrate the deficiency of the linear constraints
by applying a probabilistic-based model analysis. Since the linear constraints depend upon
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1.4m

Figure 4-3: Geometry used for comparing linear and nonlinear numerical models. This
diagram depicts a view of the XZ-plane, with the 1.4m baseline being in the X-direction
and the 1.7m depth of the scene being in the Z-direction. Camera rotation is around the
Y-axis only. The shaded area represents the view volume that is visible to both cameras.
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Figure 4-4: Precision analysis comparing linear models and nonlinear models. Error as a
function of noise level. The graphed values represent average over all trials of the minimum
RMS error achievable on each 3-D parameter given the trial scene structure and the given
level of noise on the measurements.
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constraining corresponding points only to an epipolar plane, as described in Section 2.2.3,
and they cannot apply further constraint within the epipolar plane, we should expect mea-
surement errors within epipolar planes to go unpenalized in any optimization procedure that
uses the linear constraints only.

For example, in the geometry of Fig. 4-3, all epipolar planes will be close to, but not
exactly, parallel to the XZ-plane. Therefore, we should expect the linear constraints to
impose good translational constraint of the camera geometry in the Y-direction and good
orientational constraint of the cameras about the X-axis and Z-axis, but impose poor trans-
lational constraint in the X- and Z-directions and poor orientational contraint about the
Y-axis.

Indeed, the empirical model analysis clearly shows this behavior in the numerical preci-
sion computation.

The experiment performed here consists of ten increasing levels of noise and one thousand
trials performed at each level of noise. For each trial, twenty random 3-D points were chosen
in the viewing volume, indicated by the shaded region in Fig. 4-3, and the precision value
for each translational and each orientational degree of freedom of relative orientation is
computed. The results are illustrated in the graphs of Fig. 4-4.

Fig. 4-4 contains graphs of the standard deviations of the 3-D geometric parameters as
a function of increasing noise level. The values express the RMS error of the 3-D parameter
constraints relative to the level of feature point measurement error and thus the larger the
value the less precise. The solid line represents the error resulting from linear constraints
and the dashed line represents the error resulting from the full nonlinear constraints.

It can be clearly seen in these numerical results that, indeed, the precision of the linear
constraints is very poor in the X- and Z-translation and in the Y-rotation while the precision
of the nonlinear constraints remains good in all parameters. The parameters for which
poor precision is observed are those that correspond to camera motion within a “principal
epipolar plane”. A “principal epipolar plane” is one which is roughly parallel to all the
epipolar planes; in this case the XZ-plane. Such a principal plane can in general be the
plane that is formed by the two camera COPs and the center of the scene.

The conclusion that can be drawn is that there is a serious limitation to the precision
that can be obtained from linear constraints. This conclusion, along with the other benefits
of a nonlinear framework, as discussed in Chapter 2, support the argument of using the
nonlinear framework as a general approach to a wide range of vision problems.

4.2 Performance analysis: Simulations

The purpose of these simulations is to illustrate the performance of the model and estimator
over a broad range of parameters.

4.2.1 General experimental procedure

The general procedure involves rendering a sequence of point correspondences by projecting
a set of 3-D points onto the virtual image plane of a simulated moving camera and then
estimating the 3-D geometry from the point correspondences. Up to a global scale factor, the
estimator can recover the 3-D points, 3-D motion, and camera focal length used to generate
the simulated images. Since we know the original scale factor in the computer simulations,
the estimation result can be scaled to the same factor as the generative geometry for direct
absolute comparison.

Pseudorandom noise and bias is added to the measurements to simulate tracking errors
and the corrupted data is fed to a GEKF estimator (Section 3.5) based on the point geometry
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Figure 4-5: The Necker cube (left) illustrates how a set of features can be interpreted in
two “depth-reversed” ways under orthographic projection. Perspective helps disambiguate,
but the depth-reversed (wrong) solution still represents a strong minimum which can trap
the estimator even under perspective. A simple solution to this problem is to check the
depth-reversed solution to see if it is a better fit.

model developed above (Section 4.1).

The initial condition on the motion is known to be identity, i.e. zero translation and
identity rotation. Therefore, initial error variances on the motion are exactly zero.

A moderate focal parameter s/f = .5 (28deg field of view) is chosen as the initial
condition on the focal length. The initial error variance is chosen as described in the model
(Section 4.1.2).

The inittal condition on the structure is that all points except for two are in a plane
parallel to the image at a fixed depth, i.e.

(Zi/d):ao,Vi:1...N,i¢i0,i1 (4.45)

and of the remaining two,
(Zzg/d) = &g— ba (446)
(Z,’l/d) = o+ dba (447)

one is pushed deeper and one is pulled closer. The one pulled closer to the camera is a point
that is closest to the center of the 2-D cluster of points. The one pushed further away is a
point that is furthest from the center of the cluster of points. This choice encourages a convex
interpretation of the object and discourages an erroneous “depth-reversed” interpretation,
a phenomenon discussed in further detail below.

Initial structure and the “depth reversal” phenomenon

Of the infinitude of choices for initial depths, the obvious choice, assuming nothing at all is
known about the structure, would be equal depths for all points, i.e. all points in a plane
parallel to the virtual image plane. The convergence failure that is bound to happen in this
situation, however, is a phenomenon called “depth reversal”.

Depth reversal is a perceptual phenomenon that can be convincingly illustrated with use
of the Necker cube (Fig. 4-5), an orthographic projection of the edges of a cube. The cube
can be interpreted in two ways equally well: the left square is the front face, facing up and
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left, or the right square is the front face, facing down and right. In real images perspective,
occlusion, shading and other cues settle the issue of which interpretation is correct, but with
just line or point features the geometric ambiguity persists.

When all points are in a plane parallel to the image plane, even with some amount of
perspective effect, the system is on the boundary between the two interpretations and can
easily go either way, leading either to the correct solution, or to a wrong “depth reversed”
solution. One way to avoid this ambiguous initial condition is to bias the solution towards
the correct interpretation. In real vision, other cues from the image provide the correct bias.
In our experiments, all we have is the points, so we have to make an assumption.

In the simulations, we know the correct structure, so we can easily establish a favorable
initial condition. Instead, a slightly more generally applicable assumption of convexity is
assumed. By pulling a central point closer to the camera and pushing a peripheral point
away from the camera, the convex interpretation has an initial advantage over the erroneous
concave interpretation. In situations where the object is not actually convex, this will favor
the erroneous solution and a different initial condition would be preferred.

The initialization procedure with regards to “depth reversal” is not a great concern
because erroneous depth-reversed solutions can easily be detected and corrected automat-
ically. Two estimators could be biased towards opposite interpretations and the one with
lower residual error can be chosen as correct.

It is also not a great practical concern because for any given real situation a good assump-
tion can usually be made, e.g.: for the head tracking application described in Section 4.4
a convexity assumption always works, for the models-from-video application of Section 4.5
a user can choose convexity or concavity, and for the film post-production application of
Section 4.6 the user can specify deep and shallow points.

Moreover it is not a great theoretical concern because the depth reversal phenomenon
occurs naturally in the human visual system as well, as supported by Fig. 4-5. Humans
have no problems with real scenes because other cues exist.

Of much greater concern, then, in our simulations are other possible errors and con-
vergence problems. Therefore, for the purpose of evaluating the interesting aspects of per-
formance, the correct assumption about depth polarity is always enforced in the initial
condition.

Alternatively, the experiments could have been run with a purely planar initial condition
and depth reversals could have been detected and corrected. However, there is little to be
gained except for complexity; the former approach is simpler to implement and explores the
same regime of control variables.

4.2.2 Experiment 1: Noise analysis, perspective camera

The purpose of this experiment is to evaluate the estimation performance of the model and
optimizer with a “normal” set of camera parameters and a wide range of noise, from zero
up to extreme levels. The results should give a reasonable idea of what performace will be
like using a real camera.

Procedure

In the first experiment, the generative 3-D structure is a set of 26 points occupying a
spherical surface. The camera is a perspective projection with s/f = 1 (53deg field of
view). The motion consists of a 180 deg rotation around the 3-D object, i.e. the camera
moves in a circular path around the object while rotating to point directly at the object
(this can also be interpreted as the object spining in view of a static camera) (see Fig. 4-6).
The generative motion parameters are illustrated in Fig. 4-7(c). Each sequence consists of
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Figure 4-6: Experimental procedure for Exp. 1, Exp. 2, and Exp. 3 is to rotate a camera
around the object’s center. Experimental procedure for Exp. 4 is to rotate the camera
around its own CQOP; this is a physically degenerate motion in which scene structure cannot
be recovered.

this motion over 100 discrete frames.

Zero-mean uniformly-distributed noise over the interval [—+, %] is added to each coordi-
nate of each measurement, where for each run of the experiment ~ is chosen to be 0,2, 4, 6,
or 12 pixels, based on an image size of (512,512). Since the object is less than one third the
size of the image, these noise intervals correspond to roughly 2.5%, 5%, 7.5%, and 15% of
the size of the object.

The initial condition on the camera is s/f = .5 with an error variance of (.125)? (see
Section 4.1.2). The initial depth plane is chosen to be og = 2 to match the scale with the
generative structure. A convex initial condition is chosen with §c¢ = 1 (see Section 4.2).

Results

Fig. 4-7 contains two typical parameter estimation results and a table with cumulative
statistics for various noise levels. Fig. 4-7(a) contains the estimation result for the case of
no added noise. Fig. 4-7(b) contains the estimation result for an extreme level of noise,
a distribution of noise up to +6pixels (s = 512pixels). Fig. 4-7(c) contains the actual
generative motion parameters for comparison. The generative values for the static structure
and camera parameters are the ones they appear to converge to. In the translation plot,
the solid line is Tx /d, the dashed line is (7% /d)(s/f). In the rotation plot, the solid line is
qo, the dashed line is qy.

The table in Fig. 4-7(d) demonstrates quantitatively the gradual degradation in per-
formance with increased noise. For the motion estimates, (my,0¢) are the mean and RMS
errors for translation and, likewise, (m,,0,) are mean and RMS error-cone angular errors
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for the rotation (in radians).

For structure and camera estimates, a rate of convergence is computed by fitting a
decaying exponential function to the absolute error. Thus, for each trial the mean structure
error is closely described by A, exp (—7st) and the camera parameter error by A. exp (—7.t),
where t is the frame number. Thus, for example, at the 40th frame in Exp. 1, the mean
structure error is approximately 0.68 (.34% of mean depth) for the zero-noise case and 1.07
(.54% of mean depth) for the 6-pixel noise case.

4.2.3 Experiment 2: Noise analysis, orthographic camera

The purpose of this experiment is to evaulate the estimation performance in the extreme
case of orthographic projection.

Procedure

The experimental parameters here are the same as in Exp. 1 except that a generative focal
parameter of s/f = 0 is used, representing an orthographic projection. The size of the
sphere is also reduced so that it will fit in the reduced field of view.

Although the motion is the same, note that the actual motion parameters in Fig. 4-8(c)
are slightly different in that the (T7/d)(s/f) parameter is identically zero. Since s/f =0,
the value of the motion Tz/d is numerically indeterminate as it is physically indeterminate,
as discussed in Section 3.7.5. The (T%z/d)(s/f) parameter is however fully determinate with
a value of zero.

Results

The results in Fig. 4-8 are exactly analagous to those of Exp. 1. Fig. 4-8(a) contains the
estimation result for the case of no added noise. Fig. 4-8(b) contains the estimation result for
an extreme level of noise, a distribution of noise up to +6pixels (s = 512pixels). Fig. 4-8(c)
contains the actual generative motion parameters for comparison. The generative values for
the static structure and camera parameters are the ones they appear to converge to. In the
translation plot, the solid line is T /d, the dashed line is (7% /d)(s/f). In the rotation plot,
the solid line is go, the dashed line is gqy.

The table in Fig. 4-8(d) contains statistical measures of accuracy and convergence rate
as explained in Exp. 1.

4.2.4 Experiment 3: Biased feature tracking

The purpose of this experiment is to evaluate the performance of the estimator in the
presence of tracking bias under the assumption of zero-mean tracking.

Procedure

The experimental parameters here are the same as in Exp. 1 except that a fixed level of noise
is used for all trials and a random tracking bias is introduced at various levels of magnitude.

For each trial, a noise level of 4pixels (s = 512pixels) is used. Random biases are added
to each coordinate of each feature track where each bias is chosen from a unform distribution
over the interval [—7, 7], where we choose 7y to be 0, 2, 4, 8, or 12 pixels.

Results

The results in Fig. 4-9 are analagous to those of Exp. 1. Fig. 4-9(a) contains the estimation
result for the case of a moderate level of added bias, +2pixels. Fig. 4-9(b) contains the
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Experiment 1: Increasing Noise Level
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(c) Actual motion parameters.

Estimation Error Convergence Rate

Noise Motion Structure Camera

pixels mi ot mg aq rs(fr_l) rc(fr_l)
0. -0.0084 0.0250 0.0199 0.0273 0.1052 0.1262
2. -0.0092 0.0252 0.0206 0.0280 0.0999 0.1042
4. -0.0098 0.0256 0.0208 0.0283 0.1002 0.0946
6. -0.0108 0.0283 0.0219 0.0299 0.0937 0.0850
12. -0.0177 0.0464 0.0310 0.0421 0.0634 0.0571

(d) Statistics for several noise levels.

Figure 4-7: Experiment 1, synthetic data with random noise added. Increasing measurement
noise results in increasing estimation error on dynamic variables (motion) and slower conver-
gence rate of static variables (structure, camera). Focal length is 1.0 (53 deg field of view),
pixels are based on the image being (512,512). Initial mean structure error, 4, = .4577,
initial camera error A, = .5.
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Experiment 2: Orthographic
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(b) Estimated parameters, added noise uniform over £6 pixels (7.5% of object size)
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(c) Actual motion parameters.

Estimation Error Convergence Rate
Noise Motion Structure Camera,
pixels ms oy mq oq Te (fr—l ) Te (fr_1 )
0. -0.0441 0.1144 0.0987 0.1320 0.0213 0.2293
2. -0.0481 0.1168 0.1032 0.1358 0.0197 0.1399
4. -0.0470 0.1115 0.1003 0.1314 0.0204 0.1004
6. -0.0456 0.1066 0.0971 0.1271 0.0214 0.0902
-12. -0.0536 0.1169 0.1093 0.1405 0.0186 0.0621

(d) Statistics for several noise levels.

Figure 4-8: Experiment 2, synthetic data with random noise added. As in the perspective
projection case, increasing measurement noise results in increasing estimation error on dy-
namic variables (motion) and slower convergence rate of static variables (structure, camera).
Focal length is co (0 deg field of view), pixels are based on the image being (512,512). Initial
mean structure error, A, = .1908, initial camera error A, = .5.



94 Chapter 4. Point Geometry

estimation result for an extreme level of bias, a distribution of random bias up to +8pixels.
Fig. 4-9(c) contains the actual generative motion parameters for comparison. The generative
values for the static structure and camera parameters are the same as in Exp. 1 (the true
focal parameter s/f = 1).

The table in Fig. 4-9(d) contains statistical measures of accuracy and convergence rate
as explained in Exp. 1.

4.2.5 Experiment 4: Degenerate case — rotation about COP

In a general perspective projection, all optical rays pass through the center of projection
(COP). Since traditional camera models have their origin at the COP, a rotation about the
COP is often referred to as a “pure rotation”. (Our camera model does not have its origin
at the COP, so the term is somewhat of a misnomer here. Rotation about the COP will
have a translation component relative to the virtual image-plane coordinate system, but
geometrically the same degeneracy exists.)

Theoretically, in a rotational motion around the COP, the structure cannot be recovered
at all, yet the focal length and the motion parameters corresponding to the rotation about
the COP can be recovered. Fig. 4-10 confirms that our estimator in fact recovers what
is estimable and fails to recover the structure and the structure-dependent translational
component.

Procedure

The experimental procedure here is the same as in Exp. 1 except that a wider focal parameter
is used and the sphere is pushed farther away from the camera so that a significant amount
of rotation about the COP can take place with the object remaining in full view. The
generative focal parameter is s/f = 2 and the trajectory consists of rotating about the
vertical axis 22 deg and then —44 deg to return to an absolute rotation of —22deg. The
generative motion parameters are depicted in Fig. 4-10(c) and pictorially in Fig. 4-6.

Results

The results in Fig. 4-10 are analagous to those of Exp. 1. Fig. 4-10(a) contains the estimation
result for the case of zero added measurement noise. Fig. 4-10(b) contains the estimation
result for an extreme level of noise. Fig. 4-10(c) contains the actual generative motion
parameters for comparison.

The table in Fig. 4-10(d) contains statistical measures of accuracy and convergence rate
for several noise levels as explained in Exp. 1.

The principal qualitative result is that the rotation and focal parameters can indeed
be estimated, as predicted, and the structure and components of the translation cannot.
In the no-noise case, the ambiguity of the structure and translation is subdued because of
the stabilizing probabilistic structure of the Kalman filter. When an extreme level of noise
beyond the modeled level is introduced, as in Fig. 4-10(b), the estimate of the ambiguous
variables becomes correspondingly noisy.

4.2.6 Experiment 5: Monte Carlo results

The purpose of this set of experiments is to evaluate the performance of the model and
estimator over a large number of trials consisting of various motions, focal parameters, and
noise levels.
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Experiment 3: Biased Measurements
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(c) Actual motion parameters.

Estimation Error Convergence Rate
Bias Motion Structure | Camera
pixels my o My aq ro(fr 1) re(fr 1)
0. -0.0098 0.0256 0.0208 0.0283 0.1002 0.0946
2. -0.0071 0.0206 0.0117 0.0185 0.1541 0.1433
4. -0.0045 0.0185 0.0024 0.0122 0.1964 0.1977
8. -0.0002 0.0252 -0.0134 0.0249 0.1505 0.2296
12. 0.0044 0.0375 -0.0262 0.0430 0.0842 0.1450

(d) Statistics for several bias levels.

Figure 4-9: Experiment 3, synthetic data with random biases and noise added. Even large
biases have only a moderate effect on accuracy. Focal length is 1.0 (53 deg field of view),
noise level +4 pixels (5% of object size), pixels are based on the image being (512,512).
Initial mean structure error, A, = .4577, initial camera error A, = .5.
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Experiment 4: Degenerate case — Rotation about COP
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(c) Actual motion parameters.

Estimation Error Convergence Rate
Noise Motion Structure Camera
pixels ms ot mgy oq re (fr_l) Te (fr_l )
0. 0.0019 0.0039 0.0026 0.0064 (-0.0004) 0.1098
2. 0.0020 0.0186 0.0020 0.0094 (-0.0028) 0.1136
4. 0.0020 0.0284 0.0005 0.0121 (-0.0048) 0.1155
6. 0.0018 0.0361 -0.0006 0.0136 {(-0.0072) 0.1119
12. 0.0011 0.0654 -0.0038 0.0218 (-0.0104) 0.0863

(d) Statistics for several noise levels.

Figure 4-10: Experiment 4, synthetic data with random noise added. The degenerate case
of rotation around the COP yields no information about structure. These data confirm that
the “pure rotational” motion and the focal length can be recovered, while the structure and
absolute translation cannot be recovered. The estimator remains well-conditioned due to
the formulation. Focal length is .5 (90 deg field of view), pixels are based on the image being
(512,512). Initial mean structure error, A, = .4577, initial camera error A, = 1.0.

80
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Figure 4-11: The parallel and axial motions used in Exp. 5.

Procedure

In addition to the wide rotation used in the previous experiments, a parallel motion and
an axial motion are introduced, as depicted in Fig. 4-11. For each of the three motions, a
number of trials are performed with varying focal parameters and varying amount of added
noise. For each trial, a new random structure is chosen. The random structure consists of
20 points where the three coordinates are chosen randomly from a uniform distribution in
a cubical volume.

For each of the three motions, the range of focal parameter was varied from s/f = 0
(orthographic) to s/f = 2 (90 deg field of view) holding the noise level constant at 1pixel
(in a 512pixel image). A number of trials with random structures was performed at each
set of control variables.

Also for each of the three motions, the noise level was increased from zero to 10pixels
holding the focal parameter at s/f = 1 (53deg field of view). A number of trials with
random structures was performed at each set of control variables.

Results

Fig. 4-12, Fig. 4-13 and Fig. 4-14 show the experimental Monte Carlo error results of motion,
structure, and focal length estimation for each of the three types of motion. For each type
of motion, error statistics are presented for various focal parameters and various levels of
added noise. Each bar on a graph represents mean error over 15 trials at that focal length
and noise level, with a different, randomly-chosen structure used in each trial.

Structure errors are reported as percent of mean depth, where the errors are averaged
over all points over all trials at each focal length and noise level. Camera errors are plot-
ted as errors in terms of the camera parameter, s/f, but are quantified in terms of field
of view error; the isolines on the graph represent constant field of view, which goes as



98 Chapter 4. Point Geometry

2arctan((s/f)/2). Translation errors are reported in terms of percent of the mean depth of
the points. Rotation errors are reported as radians error from the true rotation.

Fig. 4-12(a) shows results for fields of view ranging from 10 deg to 60 deg and Fig. 4-12(b)
shows results for noise levels up to 5 pixels, for the Rotational motion. Structure error is
less than 1% of mean depth, translational motion errors are less than 1%, rotation errors
within a .5 deg error cone, and field of view errors also within a .5 deg error cone.

For the Parallel motion, Figures 4-13(a) and 4-13(b) show that structure errors are
somewhat larger (as expected), in the 2% — 7% range, translation errors are in in the 2% -
6% range, rotations remain in a .5 deg error cone, and the camera error bound increases to
about 2.5 deg.

Finally, for the Azial motion, Figures 4-14(a) and 4-14(b) show that structure errors are
1% — 4%, translation is around 2%, rotation errors are around .2 deg, and camera error is
in the 2 deg — 5 deg range.

Qualitatively we can observe from the controlled experiments that rotation estimation is
relatively unaffected by the type of motion whereas structure, camera, and translation are
much poorer for the parallel and axial motions. This is expected, since these motions do
not provide as much difference in viewing angle to each of the points.

In response to increasing field of view, we find that rotation estimation is only slightly
worse for wide angles as it is for orthographic projection. This is because in orthographic
projection, rotation cannot be confused with translations; only rotations alter the relative
positions of the points in the image. With wider fields of view, the potential for confusion
under conditions of noise increases. Structure estimation improves with wider angles because
the total change in viewpoint is greater for all motions. The camera estimate errors become
numerically larger in s/f, but as seen by comparing to the field of view isolines, the field
of view error does not change dramatically. Since translation errors are tied to the s/f
parameter, they tend to go as the numerical error in s/f. The translational errors reflect
primarily Tz-error (along the optical axis).

In response to increasing noise, rotational estimation degrades smoothly in an expected
way. Camera, structure, and translation appear to degrade more slightly with noise. Struc-
ture and translation are much more affected by the camera error, which in turn is much
more affected by type of motion than by noise.

4.3 Performance analysis: Calibrated video sequence

To provide a means for comparing our estimator performance to others, we have performed
a final experiment on a publicly available sequence. This is the BOX sequence from the
UMass database [23].

The basic conclusion of the experiment, however, is that using real imagery and a mea-
sured motion is actually a very poor way of comparing results of different methods. This
is due to the fact that experimental procedure is not standardized and the fact that there
are unknown errors in “ground truth” which make it impossible to separate various kinds
of errors from the estimation residuals.

4.3.1 Experiment 6: Calibrated imagery
Procedure

The experimental data set consists of a set of “ground truth” parameters for 3-D points, 3-D
motion, and the focal length of the camera in addition to the 2-D feature points through
9 images. The quotes on “ground truth” are to emphasize that these are not actually true
physical values, as one would have in computer simulations, but are some set of measure-
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Experiment 5: Monte Carlo Results — Rotational Motion
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(b) The “rotate” motion, accuracy vs. noise level. The abscissa is the range in pixels of the added
uniform noise, ranging from zero to 5 pixels.

Figure 4-12: Experiment 5, Rotation motion. Accuracy versus field of view and noise level.

Experiment 5: Monte Carlo Results — Parallel Motion
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(b) The “paralle]” motion, accuracy vs. noise level. The abscissa is the range in pixels of the added
uniform noise, ranging from zero to 5 pixels.

Figure 4-13: Experiment 5, Parallel motion. Accuracy versus field of view and noise level.
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Experiment 5: Monte Carlo Results — Axial Motion
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(b) The “axial” motion, accuracy vs. noise level. The abscissa is the range in pixels of the added
uniform noise, ranging from zero to 5 pixels.

Figure 4-14: Experiment 5, Axial motion. Accuracy versus field of view and noise level.

ments of the physical values which will themselves have error in them.

Our experiment proceeds as usual, estimating 3-D points, 3-D motion, and focal param-
eters from the feature tracks. Analysis then takes place based on absolute error (relative to
“ground truth” parameters) and on residual error.

Fig. 4-15(a) shows the first and last frames of the 9-frame sequence with features overlaid
as white boxes. Fig. 4-15(b) shows the “ground truth” motion parameters and Fig. 4-15(c)
shows the parameters recovered by our estimator.

Results

The absolute error using the published “ground truth” as the reference consists of a rigid
motion RMS error of 2.5 % and a structure RMS error of 0.7%. The estimated focal length
was 4% different from the manufacturer’s specification reported in the data set.

The residual error produced by our estimate has a 0.50 pixel mean RMS value. The resid-
ual error is based on the difference between the given measurements and the re-synthesized
features.

Several other researchers have used this sequence as a test for geometry estimation
[61, 80, 40], and have reported rigid motion RMS errors of 0.1% and structure RMS errors
of 0.2 to 0.3%. They did not estimate focal length.

To compare our results to the results of these published experiments is difficult because
the authors have either performed post-estimation transforms (rigid and scale, or affine) to
fit the actual data before computing error statistics [51, 80], or used radically different a
priori information [40].

The evaluation with respect to “ground truth” is also not particularly useful because,
in addition to the usual modeling errors and measurement errors, there are also unknown
“ground truth” errors. It is impossible to separate the three sources of error so any residual of
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Experiment 6: Calibrated BOX Sequence
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(c) Estimated translation, rotation, structure and focal parameters.

Figure 4-15: Experiment 6: The original images, the actual motion parameters, and esti-
mated parameters. The estimated translation and structure have been scaled to match the
numerical values of the “actual” parameters. For comparison to other papers using this
sequence, the “alpha” depths are from the image plane; distance to COP is an additional
447.3 units.

the estimation could as likely be due to “ground truth” error as to modeling or measurement
error.

Assuming the modeling and measurement errors are small we can show that there is
indeed a substantial amount of “ground truth” error by computing the residual error of the
“ground truth” parameters. The re-synthesis of image locations based on “ground truth”
produces a mean RMS image-plane error, over all frames and all features, of 1.45 pixels.
This figure is substantially larger than results from our estimate and is substantially larger
than what one would expect with a nearly ideal model and subpixel-error feature tracking.

With subpixel tracking, one should expect a distribution of measurement errors with an
RMS value of .17 (Gaussian distributed) to .25 (uniformly distributed). This is based on
assuming that tracking errors on each image coordinate are in the range [—.5, .5] pixels of
the true location (with 98% probability in the Gaussian case). That level of error might be
doubled by a small degree of modeling error leading to an expected value for the residual
error on the same order as our result (.50 pixels).
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Figure 4-16: A real-time 3-D head tracking system.

4.4 Performance analysis: Head tracking application

The original motivation for pursuing visual 3-D estimation was to build a visual human-
computer interface that would understand the 3-D motions of a user. This experimental
head-tracking system, built in 1992, was one of the first attempts to demonstrate real-time
control of a display based on the user’s 3-D motions.

A diagram of the human-computer interface system is shown in Fig. 4-16. The idea is
that a 3-D interpretation of the user could be used to control his own display or to control
a display of a remote user.

In the local control mode, an example application would be “virtual holography”, in
which the 3-D viewing angle of the monitor could be estimated from tracking the head and
the rendering view of a computer graphics scene could change accordingly to give the same
effect as a holographic display.

In the remote control mode, an example application is teleconferencing where the 3-D
position and orientation of the user’s head can control a computer generated image of the
user on the remote display. In this way, a remote shape model only has to be transmitted
once and subsequent estimated motion parameters can be transmitted compactly at low
bandwidth.

4.4.1 Prototype system description

The system consists of a Sun 4/330 and a Cognex 4400 image processing subsystem, which
allows video images from a CCD camera to be digitized to RAM and processed at 30 frames
per second. The total system frame rate has reached 10 frames per second (fps) with our
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implementation.
Selection of distinct features for tracking is based on image characteristics only; we use
points where the image intensity surface I(u,v) has a large Hessian, i.e.

d*I(u,v)\ [ d*I(u,v) d?I(u,v)\>
( du? )( dv? )_( dudv) > €
for some threshold ¢. Such points are peaks, saddle points, and pits in the image intensity
surface, and correspond to features which can be localized in 2-D without “aperture” prob-
lems [44]. On heads, these features often (but not always) correspond to the corners of eyes,
pupils, nostrils, etc.

For each frame, a set of features satisfying the Hessian criterion are selected for tracking.
Since there are 6 motion parameters at each frame and since each tracked feature provides
two measurements at each frame (its 2-D coordinates) only 3 points are theoretically required
to recover motion. However, many more (at least 10-20) are typically used in practice to
overdetermine the solution and reject noise. In our system, we typically track 5-10 features.

Tracking of features is performed using normalized correlation. Correlation templates
are extracted for each feature from the original image and from subsequent images in which
a substantially novel viewpoint occurs. Viewpoint changes are detected explicitly by using
the 3-D motion estimates from the Kalman filter and implicitly by monitoring degradation
of the correlation indices of the features.

The head tracking system uses the ThingWorld modeling system [54] to control a Tek-
tronics stereoscopic display. As with most graphics systems, there can be a significant delay
between the time ThingWorld receives object information and the time that it can render
the new view. Such lags in updating the user’s view can cause anything from a feeling of
system sluggishness to actual motion sickness.

This problem can be alleviated by inserting a process between the head tracker and
ThingWorld which predicts the position of the head one frame in advance, giving the Thing-
World renderer enough time to maintain synchronization with head position [27]. The op-
timal linear technique for such prediction is the Kalman filter. Since the head tracker is
based on the Kalman filter, we can simply use its predictions of head position and velocity
to maintain display synchronization.

The original implementation [4] of the estimation engine was based on an earlier mathe-
matical model of the geometry which assumed both a calibrated camera and known structure
of the 3-D points. The 2-D points in the first frame were back-projected onto a 3-D ellipsoid
that was approximately the size of an average human head. This back-projection resulted
in the set of “known” 3-D points, although this knowledge was obviously very approximate.

This implementation was also concerned with prediction of motion parameters and thus
had a Newtonian dynamics model for the internal constraint rather than a simple identity
model as described in Section 4.1. See [4] for details.

A later re-implementation [3] used the current formulation of Section 4.1 and estimated
both the motion and the 3-D locations of the point features.

4.4.2 Example: Motion estimation, ellipsoidal shape model

To evaluate system performace, a person’s head was tracked using the Polhemus sensor and
the vision system simultaneously. The state rotational estimates were aligned to each other
using absolute orientation techniques [35]. Scale and bias were removed by performing a
linear regression of the Polhemus data to the vision estimate.

Fig. 4-17 displays some frames from the captured sequence along with plots containing
the vision and Polhemus estimates. The captured sequence consists of 150 images with a
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Figure 4-17: Performance analysis for the head tracking application. Structure is initialized
by back projecting onto a 3-D ellipsoid. The solid line is the vision estimate, the dashed
line is the Polhemus “ground truth”. The coordinate frames of the vision and Polhemus

estimates are rectified to each other by a rigid transform plus scaling.

large degree of 3-D head motion.

The RMS difference between vision and Polhemus estimates is 1.67 cm and 2.4 degrees.
These statistics are comparable to the observed Polhemus accuracy, indicating that the
vision estimate is as least as accurate as the Polhemus.

4.4.3 Example: Motion and structure estimation

Fig. 4-18 shows results from the same data set using a full structure and motion recovery.
Note that the coordinate system and units for the translational parameters are different
because the choice of virtual image plane was different. (In Fig. 4-17 the translation is that
of the COP and the units are meters; in Fig. 4-18 the translation is of a scene-centered
reference plane origin.) The rotational parameters, of course, have the same meaning and
have very similar values.

The RMS difference in translation is 0.11 units and the RMS difference in rotation is
2.35 deg. The scale of translation is, of course, unknown, but is approximately 10-12cm per
unit, yielding a RMS tracking error of approximately 1 cm.

4.5 Performance analysis: Models-from-video applica-
tion
Whereas the head-tracking system utilizes only the motion parameters from the 3-D geome-

try estimator, the 3-D structure parameters can also lead to an interesting set of applications.
In this case, the application is motivated by the difficulty associated with developing



4.5. Performance analysis: Models-from-video application 105
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Figure 4-18: Performance analysis for the head tracking application. Structure is estimated
along with motion. The solid line is the vision motion estimate, the dashed line is the
Polhemus “ground truth”. The coordinate frames of the vision and Polhemus estimates
are rectified to each other by a rigid transform plus scaling. (The ground truth motion
is physically identical to that shown in Fig. 4-17 but since the coordinate system origin is
different, the translational parameters are different. The ground truth rotational parameters
are identical because rotation is not affected by coordinate origin.)

content for 3-D computer graphics environments (“virtual environments”). The process of
“modeling” in the context of computer graphics means building up polygonal models of
objects for various uses. The art of building objects which appear at all realistic or complex
requires a great deal of skill and patience, and as a practical concern is consequently very
expensive.

In many cases, the modeler is trying to mimic a real object, which he does by looking at
the object, or pictures of the object, and tries to encode all the geometry by hand. The hope
is that, given enough pictures of the object, a computer can do this modeling automatically,
saving a lot of time and energy for the artist.

The 3-D estimation capabilities developed in this chapter have led to the following pro-
totype system for performing this task.

4.5.1 Prototype system description

The prototype system [2] is based on a computer program with an X-windows user interface.
The computer program can select features automatically or the user can select features.
Tracking is performed with an SSD (sum of squared distance) metric on templates, which
are updated as the imagery moves.

The estimator produces the 3-D geometry estimate from the tracked feature measure-
ments, resulting in an internal representation of 3-D camera motion, 3-D points, and the
focal parameter.
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The 3-D points are used to fit 3-D surfaces. This is accomplished by having the user
group together all the points on a single planar surface. Experiments were performed on
automatic segmentation using the 3-D estimate and the images, but for the purposes of this
system, manual segmentation is adequate. Planar surface parameters are estimated for each
group of planar features.

The user then selects the 2-D vertices of each planar polygon in any one of the images.
The recovered 3-D motion and camera parameters are used to back-project the 2-D vertices
onto the 3-D surfaces resulting in 3-D vertices. These vertices then define a set of 3-D
polygons which describe the 3-D geometry of the building.

With this information in place, an automatic process is then invoked to recover texture
maps for the 3-D polygons from the original images. Since the 3-D cameras and 3-D polygons
are now known, the mapping between any location on any polygon and the image location
in any image is defined. A high-resolution texture map can be generated for each polygon
by painting each location on the polygon with a weighted sum of values obtained from a set
of images.

4.5.2 Example: Wiesner building

In this example, a texture-mapped model of a building is extracted from a 20-second video
clip of a walk-around outside a building (the Wiesner Building, housing the Media Labo-
ratory, MIT). Every sixth video image was digitized, resulting in an image sequence of 90
frames. The top row of Fig. 4-19 shows some of the frames of the original digitized video.

The second row of Fig. 4-19 shows some of the twenty-one features on the building
that were selected and tracked. These feature tracks constitute the measurements. The
resulting estimates of 3-D camera geometry, camera motion, and pointwise structure are
shown in Fig. 4-20. The GEKF is iterated once to remove the initial transient on the static
parameters.

Recovered 3-D points are used to estimate the planar surfaces of the walls. The vertices
are selected in an image by hand and back projected onto the planes to form 3-D polygons,
depicted in wireframe in Fig. 4-19. The recovered motion and focal parameters are critical
to being able to do this.

The resulting polygons, along with the recovered motion and focal length are used to
warp and combine video from 25 separate frames to synthesize texture maps for each wall
using a procedure developed by Galyean [6]. In the fourth row of Fig. 4-19, the texture-
mapped model is shown rendered along the original trajectory.

In the last row of Fig. 4-19 a modified version of the original imagery is shown in which
the 3-D geometric parameters are used to alter the original. The motion and focal length
are used to render the artificial objects with the proper camera trajectory and projection
parameters and the 3-D structure of the building is used to generate the proper mattes for
occlusion.

The image-plane accuracy of the reconstructed model was assessed by examining the
differences in the back-projected polygon textures. The result was that the image-plane
errors were less than 1/2 pixel throughout the video sequence. (Since a single focal length
and structure were used, the motion estimates for each frame in the sequence have to be
accurate for the model and the video to line up after projection of the model.)
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Figure 4-19: Recovering models from video. (a) Original frames. (b) The features are
tracked in the video sequence using normalized correlation. (c) 3-D polygons are obtained
by segmenting a 2-D image and back-projecting the vertices onto a 3-D plane. The plane for
each polygon is computed from the recovered 3-D points corresponding to image features
in the 2-D polygon. (d) Texture maps are obtained by projecting the video onto the 3-D
polygons. The estimated motion and camera parameters are used to warp and combine the
video from 25 separate frames to create the texture map for each polygon. (e) Recovered
model and camera parameters are used to integrate 3-D computer graphics with the original
imagery.
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Figure 4-20: The dynamic parameter estimates for the Wiesner building example. The
second estimate uses the final static parameters from the first as a starting point. The
dynamic parameters are not greatly affected by the initial values of static parameters.

4.6 Performance analysis: Film post-production ap-
plication

This application came about as the result of a real post-production problem in a major
Hollywood studio and represents a possible alternative solution to the current established
practice for composing real imagery with computer graphics in the film industry and enter-
tainment industry at large.

Currently, filmed scenes are treated as merely 2-D images whereas computer graphics is
usually done with 3-D models. Various techniques are used to integrate the filmed imagery
with the rendered computer graphics imagery in the 2-D domain. But an alternative is to
model the scene in 3-D so that integration can happen in the 3-D domain. Many integration
problems become easier to solve this way.

Vision-based modeling of 3-D scenes from filmed imagery represents the key technology
for 3-D integration. However, until recently, computer vision techniques have not been
reliable or precise enough to achieve production-quality modeling results. Thus, the film
industry has continued to rely on 2-D compositing techniques and, when the 3-D paradigm
is used, has relied almost exclusively on skilled production artists to manually model imaged
scenes using their own visual skills. The manual approach can produce good results but is
laborious and time-consuming and therefore very expensive.

This section describes a system based on the modeling of Section 4.1 that has been used
on a real Hollywood post-production project and has provided the precision and accuracy
to meet the high demands of professional film production.

80
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Frame 160 200

Figure 4-21: Some frames from one of the helicopter fly-through shots. This film shot, taken
down the Las Vegas strip, is over one minute long and contains 1550 frames (at 24 fps).

4.6.1 Prototype system description

The system consists of a feature tracker and geometry estimator.

The feature tracker was designed by Rhythm & Hues Studios and consists of a manual
keyframe selection interface and an automatic tracker. The user specifies a set of features
in a number of keyframes and the automatic tracker fills in the rest.

The geometry estimator is augmented to deal effectively with the long sequences in which
not all features can be identified in the first frame. In this case, new features are referenced
to the first frame in which they occur and initialization bias is estimated as described in
Section 4.1.3.

4.6.2 Example: Film post-production for a motion-based ride

The system is used in the production of a motion-based theme park ride, which consists
of an audience situated on a large platform (“motion base” or “simulator”) that moves in
synchrony with the film footage projected on a large dome. The coordinated movement
and visual stimulus is intended to present a rich and extremely realistic sensory illusion,
but since the coordinated stimulus is so rich it must be done well or the ride will not be a
pleasant experience.

In one scene of the ride, the desired illusion is of the audience being in a Star Trek(TM)
shuttle craft flying through Las Vegas. For this scene, a helicopter-mounted camera was
flown down the Las Vegas strip at 70 mph at altitudes ranging from 2 to 200 feet.

To produce the ride, the film imagery and motion base have to have a coordinated
motion, which is complicated by the fact that the imagery must be accelerated. Large
sudden motions must be removed for both audience comfort and dynamic limitations of
the motion base, and yaw rotations must be removed because the platform does not yaw.
Furthermore, 3-D computer graphics must be added to the imagery to realize the other
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Figure 4-22: Finding the 3-D motion of a helicopter-based camera shot.

vehicles and explosions which are part of the ride.

These post-production goals present several challenges to the production studio. First,
3-D locations of objects in the scene must be recovered to situate 3-D computer graphics
objects in the scene. Second, the 3-D camera motion must be recovered to program the
motion base. And third, the 3-D motion of both the platform and the imagery must be
altered in a coordinated way to meet the physical motion constraints of the ride. All of these
problems can be solved using the 3-D geometry recovered from our point-based estimator.

Four shots required processing, the longest of which was 1700 frames, which is over 1
minute of film footage (24 fps). In this sequence, 35 keyframes are chosen (every 50th frame)

and 10 features per keyframe are selected by the user.

The recovered 3-D motion, shown in Fig. 4-22 is used to derive the smoothed camera
motion for the motion base and to correspondingly alter the imagery. In the general case,
one needs to know the entire 3-D structure of the scene in order to properly alter the imagery
in conjunction with an alteration of the 3-D camera motion. However, if only the rotational
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Figure 4-23: Depiction of the camera trajectory through the scene. The camera station of
every 100’th frame is marked with a 3-D icon.

motion is being altered, scene structure is not required at all.

In our case, we needed to remove yaw (rotation about a vertical axis) and we needed to
remove extreme accelerations in the imagery, which we assumed are due mostly to rotations
of the mounted camera or rotation of the helicopter rather than translations. We have
used the recovered rotation to obtain an acceptably smoothed trajectory and subsequently
applied a 3-D rotational transform to the imaged scene to stabilize it in a way which will
be coordinated with the motion base of the ride.

The recovered 3-D points are also used as keypoints in the scene to place other 3-D
special effects into the imagery.
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Chapter 5

Blob Geometry

This chapter develops a computational model for a new type of geometric features, called
blobs. The use of blobs for representation of 3-D geometry was motivated by the ability to
extract 2-D blob “features” efficiently and reliably in images. The moment-based represen-
tation of blob geometry leads to a probabilistic interpretation of 3-D geometry rather than
the usual interpretation as surfaces or solids.

Since each 2-D blob feature contains geometric 1nformat10n about the position, orien-
tation, and size of the corresponding 3-D object, it should be straightforward to use cor-
responding 2-D blobs to recover 3-D blob geometry much in the same way as 2-D point
correspondences were used to recover 3-D geometry. Indeed, a physical interpretation and
parameterization of blobs leads to formulation of a complete estimation model. The first
section of this chapter develops a model for the case of an arbitrary number of cameras,
N¢, and an arbitrary number of blob objects, No.

The second an third sections of this chapter focus on the driving application, which is
a 3-D person tracker in which a pair of cameras watches a person and determines the 3-D
motions. The performance analysis is geared towards this type of system in which N¢ =
2. Simulations and typical results from the real-time system are presented for controlled
experimental analysis and to characterize performance in the field.

5.1 Modeling

5.1.1 Blobs in 2-D

Two-dimensional blob observations are represented as 2-D spatial distributions in the image
plane and parameterized using the low order sample moments of the distribution. The first
moment is the mean of the distribution and represents the physical center of the blob in the
image. The second (central) moments make up a 2-D covariance matrix which represents
the dimensions and orientation of the blob feature.

Specifically, if an object occupies all 2-D points ¢ = (u,v) in a 2-D region R, the first

moment is the mean
i= [ [ dao0i (5.1)

where dA is a differential area and ¢ is some mass distribution function. The mass distribu-
tion function can be chosen as uniform, or can be chosen to represent, e.g., the confidence
of a spatial pixel location being part of the object.

113
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Figure 5-1: Two-dimensional moment-based blob modeling.

The mean clearly has two degrees of freedom

= (

corresponding to the image coordinates of the mean.
The second (central) moment matrix

¢ = [ [ aa8aa-0a- o 65.3)

i

)em (2)

I~

is called the covariance matrix. The covariance matrix

Cy = ( i Uuzv ) (5.4)

Ouv O

contains sample variances of u and v on the diagonal and the sample covariance of u with v
on the offdiagonals and is symmetric. It therefore has three degrees of freedom and can be

represented by
o
ol € R? (5.5)
Ouv

as a 3-vector.

Since these are all independent parameters, we can build an observation model in which

y(2blob) c O(Zblob) = IR5 (56)
where
: } = image location of blob
oy
ol = image orientation and size of blob (5.7)
Tuy
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Figure 5-2: Three-dimensional moment-based blob modeling. The goal is to recover a 3-D
blob representation of the object from multiple 2-D blob projections.

are the parameters of y(26190)

5.1.2 Blobs in 3-D

Three-dimensional blob objects are represented as 3-D spatial distributions and parame-
terized using the low order moments of the distribution. The first moment is the mean
of the distribution and represents the physical center of the object. The second (central)
moments make up the covariance matrix which represents the dimensions and orientation
of the object.

Specifically, if an object occupies all 3-D points p in a 3-D region R, the first moment is

the mean
p=[ [ [avewn (5.8)

where dV is an differential volume and ¢ is some mass distribution function.
The second (central) moment matrix is

6= [ [ [ vswo-pe-p" 6.9

and is called the covariance matrix.
By definition, the covariance matrix is symmetric and real, which means it can be diag-
onalized by orthonormal matrices [69], i.e.

C, = ®D®7 (5.10)

where @ is orthonormal and D is diagonal. The columns of ® are eigenvectors of C, and
the associated diagonal elements of D are corresponding eigenvalues.

This decomposition has a physical meaning as the 3-D rotation of an axis-aligned dis-
tribution. The axis-aligned distribution has variances along the three coordinate axes equal
to the diagonal elements of D and the three directional distributions are uncorrelated. The
orthonormal matrix ® can be thought of as a rotation matrix that rotates the axis-aligned
distribution into the present coordinate system.
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This decomposition yields a tripartite representation of 3-D blobs where diagonal matrix
D represents the dimensionality of the object along object-centered principal axes, orthonor-
mal matrix ¢ represents the 3-D orientation of the object, and the mean vector p represents
the location of the center of the object.

We can build a component state model for a single blob by combining a 3-D Euclidean
parameterization for the dimensionality D with a 3-D Euclidean parameterization for the
mean p and the manifold-tangent model of 3-D rotation M("°*) developed in Section 3.7.2
(see Eqn. 3.195). That is,

MBI = MF o x M, x MTD (5.11)

leading to the model specification

A(3blob)
PngIOb) — ]Rlo
S(Sblob) C PngIOb) — IR6 x S(rot)
,P;Bblob)(x)’ e S(3blob) — IR9
T(SbIOb)(a?), = S(Sblob) — ]RG ~ T(rot)(w)
Z(BbIOb)(l‘),x € S(Sblob) = Iy x Z(rot)
A(3blob) = d¢x A(rot)
(5.12)
where the ten parameters
dy
dy = dimensions of blob
d;
Pz
Dy = scene location of blob
D2
o
gﬁ = scene orientation of blob (5.13)
9z

are the elements of z(3%°%) ¢ PngIob).

5.1.3 Complete blob-based 3-D geometry model

This section develops a complete manifold-tangent estimation model for the problem of
observing No blob objects through a set of N¢ static cameras. Thus the formulation
is for multiple-baseline stereo and an arbitrary number of blob correspondences. In the
applications and experiments of this thesis, we use two cameras, but the formulation is
equally valid for more.
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Figure 5-3: A system of N¢ cameras and No blobs.

State model
The composite state model

Ne¢ No
M(blobs) — H Mgccam) % HMZ('?)bIOb) (514)

k=1 i=1

consists of a state model for each of Nz cameras and No blob objects where M (cam) ig from
Eqn. 3.232 and M©®¥) is from Eqn. 5.12.
Since (¢ ¢ R® and z(3%°®) ¢ IR'°, then

2(blobs) ¢ g(blobs) ~ pgblobS) = [R8Nc+10No (5.15)

and has TN¢ + 9N total degrees of freedom.

Observation model

The observation vector
y(2blob)
1

y(blobs) — . (516)

2blob
yi2bten)

is a composite of M blob observations, where y(2¥/°) is defined in Eqn. 5.7.
Along with the observation vector is a correspondence function

C:%w— %* (5.17)
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which maps the observation index j = 1,..., M to the corresponding blob object #(j) and
camera k(j) such that

x(Bblob) biob
i = g 2hi00) (5.18)

xécam)

where

( i(J) ) — () (5.19)

expresses the index correspondence.

Constraint model

The external constraint function
(2,9) = h(z) — y (5.20)

decomposes into a forward model h(z) subtracting the observation vector y and the forward
model further decomposes into a parallel structure, one equation for each blob observation.
Explicitly,

6(blobs)(x(blobs)’ y(blobs)) — h(blobs)(l,(blobs)) _ y(blobs) (521)

where (3blod) _(cam)

h(bIOb)(xi(l) Ty )
p(blobs) (g (blobs)y . (5.22)

0 blob cam
R b)(xE?M) g xgc(M)))
where

h(blob) :M(Bblob) % M(cam) — O(Zblob) (523)

is the forward function mapping a 3-D blob object and a set of camera parameters to a 2-D
blob observation.
The single-blob forward model is a composite

RO — b o hy o by (5.24)
including the blob transformation
hy : MEBY) L (IR3 x IR3*3) (5.25)

which maps blob parameters to a 3-D mean and covariance in world coordinates, the frame

transformation
he o (IR? x R®*?) x M(eam) s (R? x IR?*) (5.26)

which maps a 3-D mean and covariance in the world frame to a 3-D mean and covariance
in the camera frame, and the projection

hp @ (IR? x R3*?) 1 ((200) (5.27)

which maps 3-D mean and covariance to 2-D observation parameters.
The blob transformation

(w, Cw) = hy(x3H1°D)) (5.28)

is defined by the relationships
(5.29)

3

=
Il

3
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Cw = ®Do” (5.30)

where 5 is the blob mean parameters from z(3%1°0)

(dx)?
D= ( (dy)? (5.31)
(dz)*

is a diagonal matrix of the squared blob dimensions and @ is generated from the blob
rotation quaternion according to Eqn. A.48.
The frame transformation from world to camera coordinates

(pc, Cc) = hy ((ﬁw, Cw), x(cam)) (5.32)

is defined by the relationships
pc =T + Rpw (5.33)
Cc = RCwRT (5.34)

where T is the translational component of (°*™) and R is the rotation matrix generated
according to Eqn. A.48 using the rotation quaternion from 2(°¥™) a5 the argument.
Finally, the projection

(¢, Cq) = hp(pc, Cc) (5.35)

is defined by the relationships
g = her)(pc, 2) (5.36)
Cy=JCcJT (5.37)

where h(PT99) is the projection equation Eqn. 3.219 and

;- O Q)

% (5.38)

§=pc

is the Jacobian.
The internal constraint function is based on an identity state transition function, i.e.

zt+1) = f(z®®) (5.39)

which is exact for the static parameters of z(cam) and (3419 and expresses temporal co-
herence for the dynamic parameters. The extent of the temporal coherence is dictated by
the variances in the Q(¢) matrix discussed below.
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Error model

The state vector
x(cam)
1

(c;lm)
xr

x(blobs) — (1;7;7106) e IR8N0+10NO (541)

Ty

(3blob)
TN,

can be partitioned into N¢ camera state vectors and N blob state vectors.
The error covariance matrix

Pl(cam)

P(blobs) — PJ(\fcgm) (3blob) c I[{(7Nc+9No)><(7Nc+9No)
Pl

PI(ngzob)
(5.42)
can be correspondingly partitioned block-diagonally into camera covariance and blob co-
variance matrices.
Since the overall reference frame is arbitrary, one camera can serve as the reference frame
for the others. Thus,

Pl = g (5.43)
Pl 20 Vit (5.44)
fixes the first camera frame and requires covariances on the positions of the remaining

frames.
For each of the other frames, the camera covariance matrix

P(mt)
Pi(cam) — Pi(tm) c R™*7 (545)
P(rot)

can be further partitioned into interior orientation, relative translation, and relative rotation.
Although particular situations may provide better priors, the quite generic priors

: 1
plrt)  — (g(s/f)o)zeIR (5.46)
2
a
P
plre) o2 € R?*3 (5.47)
(0p(s/f)o)?
wp
plrot) = w? € R>3 (5.48)

=]
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where (s/f)o is initial focal parameter, o, € [2,10], wp, = 2/3 express approximately zero
initial knowledge of the values of the internal or relative orientation parameters.

The value of o, expresses that the scene footprint of every other camera is close to the
first; if this were not the case, the cameras would not be looking at the same object and no
correspondences would exist anyway. The value of rotation represents a standard deviation
of about 40 deg; again, if the rotation were more than this, the camera would not be looking
at the same object.

The blob submatrices

P.(dim)

Pi(3blob) — Pi(tra) € RO%® (5.49)
P.("Ot)

can also be decomposed into three 3 x 3 matrices representing the error covariance on blob
dimensions, location and rotation.

To find the overall covariance, one can use the error analysis method described in Sec-
tion 3.6 to project image error statistics into 3-D. Using the SVD pseudoinverse, values of
infinity can be replaced by 10 for distances and 2/3 for rotations.

The dynamic constraints

( Q(lcam)
Q(cam)
Q(blobs) — Nc Q(3blob) c B(7Nc+9No)X(7Nc+9NO)
1
blob
Q%
(5.50)
can be partitioned in a similar way where
Q™ =0 e R™7 (5.51)
because the cameras are assumed to be static.
Each blob covariance can be partitioned as well
(dim)
QZ(SbIOb) — Qgtrd) ( ) E ]R9X9 (552)
Qirot
where
QW™ = 0eR¥>*? (5.53)
QU = olIeR>® (5.54)
QU = WwIeR™ (5.55)
and !
ol = (g(MAXVEL)At)Z (5.56)
and

w? = (%(MAXROT)At)z (5.57)
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as in Section 4.1.2.
The measurement error covariance

Rnglob)
R(blobs) — (558)
Rgg[blob)
can be partioned into 5 X 5 submatrices
o7
o7
RV = o (5.59)
oy
o

corresponding to each blob, j =1,..., M.
The o, value is related to the pixel accuracy and resolution

1 PIXxacc
" 3 PIXRES

or (5.60)
as in Section 4.1.2. Since the first two parameters of the measurement are distances and
the last three are square distances (spatial covariances), the error variances for the second
three parameters are squared variances.

The model error covariance matrix, S, can be set to zero. Alternatively, S can be used
to add more variance to measurements when they are further toward the periphery because
the linearized model is less accurate in those regions.

5.2 Performance analysis: Simulations

The purpose of the simulation experiments in this section is to empirically evaluate the
performance of the model and estimator in recovering 3-D blob geometry from 2-D blob
correspondences.

5.2.1 General experimental procedure

The experiments in this section all consist of two (virtual) cameras and a single blob. There
is little loss in generality because each blob is independent of other blobs (as long as blobs
do not occlude each other) and the performance for any set of more than two cameras will
be equivalent or better than the performance for the configuration of any pair in the set.

The general procedure is to instantiate a pair of virtual cameras and a 3-D blob and to
project the 3-D blobs into the 2-D images to obtain blob regions. Noise is added to the
measurements and fed to either a GLM algorithm (see Section 3.3.3) for self-calibration or
a GEKF algorithm (see Section 3.5.3) for dynamic blob tracking.

For all of these experiments, the generative system consists of two cameras with normal
video-camera focal parameters placed about one meter apart and covering about a two-
meter cubic volume centered about two meters in front of the cameras (see Fig. 5-4). These
parameters closely resemble the parameters of the real imaging system used in the applica-
tions below for tracking people. Since ultimately the blob estimation is geared towards this
type of practical application, this regime of parameters is the most interesting to examine
at this time. A more favorable estimation results if the cameras have a better triangulation
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1.4m

Figure 5-4: Experimental apparatus for blob geometry simulations. The baseline and depth
of object is typical of a wide baseline camera system used for tracking a person sitting at a
desk. The shaded area represents the viewable volume visible to both cameras.

angle, but this configuration is less practical.

5.2.2 Experiment 1: Self-calibration, relative orientation

The purpose of this experiment is to evaluate the performance of a GLM estimator with
the blob manifold-tangent model M%) for calibrating the relative orientation of the two
cameras. The expected result is that the relative orientation will be estimated well enough
to accurately reconstruct blobs in the training volume.

Procedure

The procedure is to generate several trials and statistically evaluate the accuracy and the
convergence properties. The procedure for each trial is to generate simulated images for a
number of blob positions and orientations randomly chosen in the 3-D volume. The blob
dimensions for each trial are chosen at random.

Two experiments were performed, the first with noise level as the control variable and
the second with number of blob correspondences as the control variable.

For the noise level experiment, eleven noise levels were chosen, from zero to .010. The
noise level represents the interval width of roughly uniformly distributed pseudorandom
noise added to each coordinate of the mean of the blob image. The units are distance ratios
of image coordinates to image size, i.e. (u/s,v/s). For a 640 x 480 video image, the noise
level of .010 corresponds to 6.4 pixels.

For each noise level, 100 trials were performed in which 20 blobs were randomly chosen
in the 3-D viewing volume and the relative orientation was computed for the two cameras.

For the correspondence experiment, eight levels of correspondences were considered, from
five blob correspondences to fifty blob correspondences. The noise level was chosen for all
experiments to be .002. Again, 100 trials were performed at each level of correspondences.

Results
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Figure 5-5: Blob relative orientation statistical error performance versus noise level. Over
100 trials the solid line is RMS error in centimeters, the dashed line is the maximum error.
The noise level is reported in standard deviation relative to image size; a typical video
processing error is .003 (o = 2-pixels in a 640 image). Relative orientation error is reported
in RMS error (a) in cm over all 3-D point locations, (b) in ¢cm over the camera location,

and (c) in deg over the camera rotation.
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Figure 5-6: Blob relative orientation statistical error performance versus number of blob
correspondences. Over 100 trials, the solid line is RMS error in centimeters, the dashed line
is the maximum error. The number of blobs is the number of correspondences collected
before computing the relative orientation. Relative orientation error is reported in RMS
error (a) in cm over all 3-D point locations, (b) in cm over the camera location, and (c) in

deg over the camera rotation.
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The experimental results are summarized in Fig. 5-5 (noise level) and Fig. 5-6 (correspon-
dence level). Each figure contains three plots, one for scene point reconstruction error, one
for camera location error, and one for camera rotation error. For each plot, a solid line
reflects the RMS error over the trials and a dashed line reflects the maximum error observed
over the trials.

For the noise level experiment, the results show an expected gradual degradation of
precision with increasing noise level. The dashed line indicates that even at low noise levels
there is the opportunity for occasional poor results. The severity of the occasional poor
result increases with increasing noise.

A qualitative analysis of the configurations of the failure cases reveals that most of these
are due to particularly poor random configurations of blobs, such as all blobs clustered near
one another or very nearly in a line.

The overall level of precision of scene reconstruction for reasonable noise levels can be
summarized as being on the order of lcm—2cm in successful cases. Success appears to
be achievable by avoiding degenerate correspondence sets, which is a reasonable practical
requirement. Although the camera location and orientation errors are slightly higher, it is
usually the scene reconstruction that one is ultimately concerned with.

For the correspondence level experiment, poor performance is expected when only five
correspondences are available (six are required in theory) and diminishing returns are ex-
pected when many more than twenty or so are available. Again, the occasional poor result,
as indicated by the level of the dashed line, is typically due to a poorly chosen (random)
configuration of blobs.

For a static camera system, a large number of correspondences can be collected over
time. In a person-tracking system with several parts of the body being tracked, hundreds
of correspondences can be obtained in a matter of seconds, so achieving the critical number
is not at all the challenge. Rather, the challenge in collecting correspondences seems to be
in achieving a well-distributed sampling of 3-D points. This lesson is carried over into the
calibration procedure for the person tracking system described in the next section.

5.2.3 Experiment 2: Shape estimation

The purpose of this experiment is to evaluate the static shape parameters of a single blob
from a pre-calibrated camera pair. The expected result is that the 3-D blob means will be
stable and accurate but that there will be significant errors in the 3-D blob covariances in
the direction of the optical axes of the cameras. Since the covariances are a composite of
the blob dimensions and rotation, both sets of parameters will suffer.

However, since the blob dimensions are static and the orientation is dynamic, the errors
should be separable in a dynamic estimation setting. In particular, once the static shape
parameters converge, the physical rotation parameters should improve as well.

Procedure

The procedure here is similar to the previous experiments. The same nominal configuration
as above (1.4m baseline) is used, except the baseline is used as a control variable and is
varied from .2m to 2.0m. One thousand trials are performed at each baseline for each of
two cases.

In the first case, all blob parameters are chosen at random, including the three blob
dimensions independently, and all parameters are estimated with no initial knowledge of
blob parameters. In the second case, the blob proportions are assumed known and only the
motion parameters of the blob are free.

We expect to see a great improvement in the rotation parameters in the second case,
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Figure 5-7: CASE 1: Blob shape and motion statistical error performance versus baseline.
The errors are reported as RMS error in centimeters for mean and dimensions and in angular
degrees for rotation. In this experiment, blob dimensions and blob orientation are unknown.
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Figure 5-8: CASE 2: Blob shape and motion statistical error performance versus baseline.
The errors are reported as RMS error in centimeters for mean and dimensions and in angular
degrees for rotation. In this experiement, blob dimensions are known (thus zero error) and
orientation performance is improved.

but, due to ambiguities in parameters arising from blob symmetry, additional manipulation
must take place in the procedure for the second case to accurately measure the results.

Ambiguous shape parameters result from two aspects of symmetry associated with blob
objects. The first is that when any two dimensions of the blob are close to each other,
any rotation about the orthogonal axis does not change the physical blob shape. Thus the
correct interpretation is ambiguous. The second is that, even with unequal proportions
along the axes, there is a discrete set of coordinate axis renamings which can result in the
same object, due to mirror symmetry of the object about each of its axes.

For these experiments, the first source of ambiguity is removed by constraining the shape
to be in a 1:.75:.5 ratio; only the overall size of the blob is chosen at random. The second
source of ambiguity is removed by performing an analysis of all 24 permutations of axes
that result in an equivalent shape, and choosing the one with the smallest angular deviation

from the actual parameters.

Results
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The experimental results are summarized in Fig. 5-7 (unresticted motion and shape estima-
tion) and Fig. 5-8 (motion estimation with known shape proportions). Each figure contains
three plots, one each for blob location, blob orientation, and blob shape. The solid line
represents RMS error over 1000 trials for each baseline. The two sets of plots (Fig. 5-7
and Fig. 5-8) are scaled the same for comparison. (In Fig. 5-8 the dimension errors are
identically zero because shape proportions are known.)

In both cases, the blob location is exceedingly precise (fractions of millimeters) as might
be expected when the cameras are known exactly, but the interest in these experiments is
primarily in investigating the dimension and orientation estimation. As predicted, the orien-
tation and shape parameters are very poor in CASE 1, largely due to symmetry ambiguities
and local minima created due to these ambiguities, as predicted above.

Qualitative analysis of the particularly poor estimation trials reveals several reasons
for failure of precise estimation. First, the z-dimension is often poorly leveraged by the
measurements, resulting in a shape which explains the measurements well but does not
represent well the physical 3-D volume that originally generated those measurements. In
other words, the estimated 3-D covariance is simply wrong, but its projections into the
two images are very close to those of the actual covariance. In this case, the poor shape
estimation is reflected in both the dimension and orientation parameters.

Second, randomly chosen blobs often have uniform dimensionality in two or more axes.
As discussed above, this can result in shape parameters which physically represent the actual
3-D object well, but do not correspond well to the actual parameters because of ambiguity.
In other words, the 3-D covariance is physically correct, but the axes are rotated so different
parameters result.

Third, mirror symmetries occur, and are mostly filtered out by analyzing equivalent
permutations of axes as discussed above, but when other symmetries distort the parameters,
this procedure can result in further errors. In this case, the 3-D covariance is again physically
correct, but the representation is different because of flipped axes.

In CASE 2, many of these sources of errors are eliminated because ambiguities are
removed with the known shape proportions. As a result, the orientation error is greatly
improved.

The implication of CASE 2 is important for estimation in a dynamic setting. Since the
shape parameters are static, a finite number of observations should result in a good shape
estimate for each blob object. If shape estimation is successful, dynamic estimation of blob
motion estimation should therefore be much more like CASE 2 than like CASE 1.

5.3 Application: Real-time self-calibrating person tracker

Finally, some quantitative results from the real-time system are presented to indicate per-
formance in the field.

5.3.1 Prototype system description

The STIVE system is depicted in Fig. 5-9 and consists of a pair of cameras, each sending its
video signal to an SGI Indy (200MHz R4400) computer. Each computer runs a simplified
version of the PFINDER [84] program (FFINDER), which obtains spatial distributions in the
image for the face and hands based only on a color classification. The 2-D blobs produced
by these two programs are the input to a third program called SPFINDER which computes
the 3-D blob geometry based on the 2-D blobs.

Since the camera configuration is essentially static, the real-time system for tracking
people was built under the assumption of a calibrated rig to simplify the processing. The
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Figure 5-9: STIVE: STereo Interactive Video Environment. A wide-baseline stereo system
utilizes two cameras and tracks image blobs representing parts of the person from each
camera. The correspondences yield 3-D blobs in real time. The person’s 3-D motions are
used to allow interaction with characters in a virtual environment, viewed through the video
display.

self-calibration ability of the formulation was designed into a second real-time system which
is Tun one time when the STIVE system is set up to obtain the calibration. Both systems
utilize the FFINDER front end for blob tracking, described below. Use of the blobs for
obtaining 3-D geometry in the calibration and the tracking systems is described in the
respective sections below.

Two-dimensional blob tracking: FFINDER

The simplified FFINDER program (‘f” for ‘fleshtone’) discards the background removal and
heirarchical clustering of PFINDER [84] and uses a single Gaussian color distribution to do
single-class pattern classification [74] of human fleshtone for finding face and hands. The
result is fast (up to 30Hz) feature processing of (320,240) images of moving people.

Such a color classification technique has proven to be quite robust and race-independent
(62, 84, 19]. The color class that results from training on a variety of races of people has
a small variance in chrominance and a large variance only in brightness. For example, in
YUV color space, the luminence Y has a large variance and the chrominance subspace UV
has small variances.

The color class is trained by taking sample pictures of people’s hands and faces and
computing the sample mean and covariance in color space. There are many ways of ap-
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proaching the color modeling and classification, but a simple Gaussian model in YUV space
has proven to work acceptably for a wide range of people.

More sophisticated color class modeling and classification would improve the reliability
and precision of the system further but the lesson, of course, is that unlike point, line, or
contour features, even such a simplistic blob feature tracking system has proven to work
reliably enough so that hundreds of people have been able to use it to interact in real time
[12] and the processing can be done using only standard commercial computers and cameras.

The FFINDER program is self-bootstrapping and contains two processing modes for real-
time efficiency. The main program,

FFINDER program:

mode = INIT_MODE;
for( int frameCount = 0;; frameCount++ )

{
image = grab();
switch( mode )
{
case INIT_MODE:
if( ! init( image ) )
mode = TRACK_MODE;
break;
case TRACK_MODE:
if( track( image ) || collide() )
mode = INIT_MODE;
break;
}
}

contains an initialization mode and a tracking mode. The initialization mode assumes only
that there is a single person in the scene and uses color classification along with some
heuristics about hands and faces to segment out and label the three fleshtone entities.
The tracking mode uses the previous location of each entity to efficiently find its current
member pixels. The spatial moments are computed for each entity resulting in the blob
representation of each hand and face.

The init() function fails when it cannot cluster three fleshtone objects, which is in
practical terms due either to there being no person in the scene (too few blobs), there being
an occlusion (too few separate blobs), or there being more than one person in the scene (too
many blobs). In these cases, the system remains in initialization mode until it successfully
finds three blobs which meet the heuristics for being face and hands. When it does, it
switches to tracking mode. Each FFINDER system using (320,240) images runs at 30Hz
when it is consistently in tracking mode, at 5-10 Hz when it is consistently in initialization
mode.

The system remains in tracking mode until one or more blobs cannot be found or if two
blobs begin to substantially occlude each other. The collide() function determines when
two blobs are no longer distinguishable due to occlusion.

Three-dimensional blob tracking: SPFINDER

The tracker assumes the system has been self-calibrated and thus the camera geometry is
known. The job of the system, then, is to estimate the shape of the 3-D blobs and track
their 3-D motions.

The 3-D blob tracking program,
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SPFINDER program:

for( int frameCount = 0;; frameCount++ )

{
ffinderClient.getLeftPerson();
ffinderClient.getRightPerson();
for( int which = 0; which < 3; which++ )
{
if( ! inited[ which ] )
{
computeInit( which );
regularizeBlob( which );
setCovariances( which );
inited[ which 1 = 1;
}
estimate( which );
}
}

computes the 3-D blob parameters from the 2-D blob moments. There is an initialization
for each blob which consists of a static shape estimate using the GLM algorithm, followed
by a heuristic regularization (each blob is cylinder-like, with one long dimension and two
equal shorter dimensions). After that, a GEKF is used to refine the shape and track the
3-D motion.

5.3.2 Example: Self-calibration and tracking of a moving person

For self-calibration, corresponding 2-D blobs are collected from the two images over time
and used to compute the 3-D camera geometry. To get a good set of correspondences
for calibration, the person should ideally move his hands and head in order to maximally
fill the view intersection of the two cameras. As revealed in the synthetic experiments
of the previous section, degenerate clusters of blobs can result in a poor estimation. To
avold redundant measurements that can lead to a poor distribution of blobs, the system
is programmed to wait for a significant motion (in the images) before collecting the next
sample.

The process of generating correspondences for a self-calibration is illustrated in Fig. 5-10
in which the top two images show a stereo pair from the sequence overlaid with the entire
sequence of correspondences (the center of each blob is indicated with a white square).

The result is an arbitrarily large set of 3-D blob correspondences. The manifold-tangent
model for blobs can be used with the GLM algorithm (see Section 3.3.3) to estimate the
camera parameters as a batch optimization. The bottom illustration of Fig. 5-10 depicts a
top view of the 3-D relative orientation of the cameras and the 3-D locations of the tracked
hands and head that have been recovered from that calibration sequence.

Absolute error analysis is difficult because the real parameters are unknown and not
easily measured, but we can do a residual error analysis, we can evaluate absolute 3-D
precision to some degree, and we can measure consistency.

To measure residual error, the self-calibration procedure was repeated for a number of
trials, and the mean error of the 2-D blob center locations over all frames and all blobs was
computed. The residual error over 20 trials, each of which consisted of 3 blobs (face and
hands) in 30 frames (90 total correspondences per trial) was .0044s, where s is the width of
the image. This translates to 1.4 pixels in a half-resolution (320,240) video image.

To measure absolute 3-D precision, the recovered self-calibration parameters were used
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3-D view of self-calibration sequence

Figure 5-10: The blob representation can be used to facilitate stereo self-calibration. Here
we illustrate the self-calibration of a stereo rig in real time, simply from watching a person
moving. The stereo pair shows the feature tracks on the person. The 3-D view shows a
roughly overhead view of the space including the recovered cameras and the 3-D feature
tracks. RMS residual error is 1.5 pixels; RMS 3-D errors are on the order of 2.25¢m.

to reconstruct the trajectory of the right hand moving a known distance in a straight line.
The data was collected by moving the hand a fixed distance along the straight edge of a
table. The data was analyzed by fitting the 3-D blob centers to a straight line and computing
the length of the line segment and the RMS residual error of the fit. The RMS distance
error is then scaled to the known length to obtain a RMS 3-D precision measure relative
to a real distance. The 3-D precision obtained over 20 trials of self-calibration followed by
data collection and analysis results in a mean RMS 3-D error of 2.4cm. Each trial consisted
of 40 correspondences and blob reconstructions.

To measure consistency, a number of self-calibration trials were conducted with a static
camera configuration. Precision results for each of the Euclidean parameters is obtained
by computing the mean and covariance of the resulting estimates over all trials. Precision
results for the rotation are obtained by iteratively searching for the “mean” rotation and
computing rotation statistics in tangent space; this is done by computing second-order error
statistics in the tangent parameter space of a starting guess (obtained by normalizing the
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Figure 5-11: Translation of the right hand back and forth along a linear trajectory after

self-calibration. Reconstruction of hand position has an RMS error of 2.25¢m, resulting in
a relative error of 1.8% over this trajectory.

mean quaternion) and performing an iterative search for the least square error in tangent
parameters. Over 20 trials, the RMS residuals are 3.2cm in camera location and 1.8deg in
camera orientation.
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Figure 5-12: Real-time estimation of position, orientation, and shape of moving human head
and hands. We find RMS errors of 1.5cm, 2 degrees, and 5% on translation, rotation, and
shape, respectively along a linear 3-D trajectory.



134 Chapter 5. Blob Geometry

Left hand rotating 4 cycles through roughly 90 deg

T

o
S

DEGREES
g 8 3 8 8

&
(=)

1

L L s It ' 1
0 20 40 60 80 100 120 140 160 180 200
FRAME NUMBER

0 L L L

Figure 5-13: Rotation of the left hand back and forth through roughly 90 deg. An analysis
of the jitter in the angular signal results in measures of 2 deg RMS error, or roughly 2.2
percent relative error.
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Conclusion

This thesis has explored some of the issues associated with making practical computer
vision systems based on 3-D geometry estimation. The paradigm chosen for study was
that of feature correspondences in multiple displaced camera images because it involves a
formulation that requires only weak internal models of geometric primitives, which, in this
study, are points and blobs.

The classic problem of point-based 3-D geometry estimation was taken up as a means
of understanding the nonlinear systems associated with vision-based geometry. The basic
insight is that not only is the mapping of 3-D points to 2-D points nonlinear, but the 3-D
domain is also not a Euclidean space.

There are well-founded provably convergent optimization techniques for linear systems on
Euclidean domains that apply to paradigms of both batch estimation (pseudoinverse meth-
ods) and recursive estimation (Kalman filter, recursive least squares). There are natural
extensions of both of these to nonlinear systems on Euclidean domains for both batch esti-
mation (modified Newton’s methods) and recursive estimation (extended Kalman filter). In
order to accommodate the non-Euclidean domains associated with 3-D geometry problems,
this thesis has developed further extensions that generalize these local linearization meth-
ods to systems with non-Euclidean domains, resulting in a generalized Levenberg-Marquardt
algorithm and a generalized extended Kalman filter.

Both of these generalizations are a result of modeling the non-Euclidean domain as a
manifold embedded in a Euclidean space and modeling the system locally as a Euclidean
domain homeomorphic to the local tangent hyperplane. This manifold-tangent model de-
veloped in this work allows simple natural extensions of established iterative search and
recursive probabilistic optimization techniques.

The idea of modeling local perturbations in a tangent hyperplane is not a new one, as it
is the basis for so-called projection methods for solving “nonlinearly constrained nonlinear
optimization” problems. However, the idea of moving the hyperplane calculations from being
the responsibility of the estimator designer to the responsibility of the model designer is an
important practical issue. Many estimation failures occur because of poor conditioning of the
specific model that is handed to the general-purpose estimation technique. Unfortunately,
the estimation problems can only be fixed by modifying the model, not by modifying the
estimator. Thus, the important topological issues of the system that affect conditioning
should properly be handled in the modeling phase, not by the estimator.

This emphasis on modeling is the design philosophy that leads to the key result on
point-based estimation. The problem of estimating 3-D geometry from point correspon-
dences stably and accurately has long been considered a difficult problem, but with the
well-conditioned model developed in Chapter 4, not only can the traditional structure and
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motion parameters be estimated well, but additional parameters such as focal length of the
camera can be estimated as well.

The point-based estimation system that arose from this work is the basis for several
prototype applications which were developed to test the algorithms. The first system,
demonstrated in 1992, is a 3-D head tracking system that used real-time template-based
feature tracking. The second system, demonstrated in 1993, uses points tracked in an un-
calibrated hand-held video-camera walkaround of a building to generate a 3-D polygonal
texture-mapped model of the building, which has been used to generate new views of the
building and to modify the original imagery by adding 3-D objects. The third system,
demonstrated in 1996, uses points tracked from film taken by a helicopter-based camera to
recover the 3-D motion of the helicopter and stabilize the resulting imagery.

The insights and practical successes of the classic point geometry solution were then
used as the basis for designing a practical system for 3-D tracking of people. Unfortunately
a sufficient number of point features is impossible to find and track on moving people, as are
edges and contours. But recent successes on stably tracking parts of moving people based
on color similarity measures led to a new type of 2-D feature called blob features. Corre-
spondences of these blob features in multiple displaced images yields information about the
3-D object that produced them, and this is the basis for the 3-D blob estimation formulation
developed in Chapter 5.

The same modeling and analysis approach developed for points was applied to blobs, and
the resulting experimental systems led to several additional practical applications associated
with tracking people. The first system, demonstrated in 1995, consisted of 3-D tracking of a
person’s head and hands using a calibrated wide-baseline stereo camera system. In 1996, this
system was extended to include the orientation of the person’s hands. The second system,
demonstrated in 1996, made the person-tracking system more practical by allowing it to
self-calibrate from the dynamic correspondences of the head and hands. The third system,
demonstrated in 1996, uses the 3-D person tracking as the basis for a character animation
system, which in turn is used as a simple interactive game with wireless interaction. Several
other applications of the 3-D person-tracker have grown from this as well.

6.1 Future research

This work builds on a long tradition of research in a variety of technical fields, including
photogrammetry, computer vision, and estimation, and provides some of the first results in
new application areas including vision-mediated processing for video and film production
and real-time visual human-computer interfaces. The accomplishments of this research
provide new directions for research in all these fields and application areas.

With respect to photogrammetric tasks, such as building scene models and comput-
ing camera motions, this work’s successful application to dynamic imagery can profoundly
change the way many surveying tasks are performed by greatly increasing the level of au-
tomation in these tasks. Future challenges include how to use the dynamic buildup of 3-D
models to help perform automatic feature tracking in a way which exceeds the reliability of
traditional open-loop 2-D image processing.

With respect to computer vision, the results obtained here advance the level of thinking
about what quality of 3-D information can be obtained from imagery, provide some new
tools with which to obtain 3-D information more accurately and reliably, and give new
insights on how to evaluate different models and approaches to the 3-D geometry problems.
To continue extending computer vision theory along these lines, the most critical challenges
include determining how to extend the probabilistic framework to include a wider variety
of information.
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In the field of estimation, the framework yields some interesting insights on the rela-
tionship of traditional estimators to more complex estimation topologies. An interesting
challenge from an estimation and optimization standpoint is to extend the spirit of abstrac-
tion further to include a unified abstract way of looking at the problems of optimization over
different kinds of domains, such as discrete and continuous, deterministic and probabilistic,
etc. Optimization over combination domains is a commonly occuring problem in vision, Al
and learning, and it would be useful to find a way of solving that kind of problem in an
elegant way.

In the application areas of vision-assisted media production, this research shows the vast
potential that can be achieved with vision techniques and points the way toward many excit-
ing and valuable capabilities. With the integration of several techniques for analyzing scenes,
software can be generated to ease many media production jobs, including, importantly, the
composition of 3-D computer graphics with filmed imagery.

In the application area of human-computer interface, this research has also shown a great
potential for a new paradigm of computer interaction and control. When computers are able
to effortlessly observe and follow the actions of people, new ways of communication between
people and machines can be actively experimented with. The blob-based representation
and probabilistic estimation explored in this thesis points to the viability of future research
focused on understanding various levels of representation and integrating various sources of
information within a probabilistic optimization framework.

Overall, the prevalent themes implied by the successes in this work include probabilistic
representations and the paradigms of processing that are made possible by such representa-
tions. In particular, these include the important topics of multiple-level and coarse-to-fine
representations of scenes and of integration of multiple sources of information for the pur-
poses of creating more effective, more reliable, and possibly more intelligent machines.
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Appendix A

Quaternions

A.1 Quaternion basics

A quaternion is an ordered set of four scalar quantities. Alternatively, it can be thought of
as a set containing one scalar and one 3-vector. The quaternion, ¢ € Q can be written as a
4-vector

g=| ¥ =<32) (A1)

where the first element go is called the scalar part and the last three elements ¢, =
(¢x,9v,qz) comprise the vector part.

Among alternative representations of quaternions is the “complex number with three
imaginary parts”

q=qo+1iqx +jqv + kqz (A.2)
where the relations
2 = —1 (A.3)
i = -1 (A.4)
o= -1 (A.5)
ij = k (A.6)
jk = i (A7)
ki = j (A.8)
ji = —k (A.9)
ki = —i (A.10)
ik = —j (A.11)

apply or, equivalently, as the the sum of a scalar and vector
g=q+ Gy (A12)
where ¢, € IR® and vector multiplication

R®> xR’ — Q (A.13)
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is noncommutative and defined by a relationship
QuTo = qu X Ty — qu " Ty (A'l4)

that maps the product to a quaternion.

For both of these alternative representations, the scalar part gp can be referred to as the
“real” part and the remaining three elements (or the vector) comprise the “imaginary” part.
These “complex number” representations allow quaternion arithmetic to directly follow from
regular arithmetic operations. The multiplication formula discussed below, for example, can
be found directly using Eqn. A.3-Eqn. A.11 or using Eqn. A.14.

The dot product

OxQ—~IR (A.15)

is defined by
P-q¢ = PpogotPuQu (A.16)
= pogo+Pxqx +pyqy +pzqz (A.17)

similar to the usual vector dot product.
The magnitude of a quaternion is the Euclidean norm

lell = va-q (A.18)

and a unit quaternion, which is useful for representation of rotation, as described in Sec-
tion A.3, has ||¢]| = 1.

Quaternions have conjugates,

q0
* qo —4qx
= = A19
1 ( —qv > —qy ( )
—4qz

in which, in analogy to conventional complex numbers, the scalar or “real” part is unchanged
and the vector or “imaginary” part is negated.

A.2 Quaternion algebra and properties

The operations of multiplication and scalar multiplication can be meaningfuly defined for
the set of quaternions @. Quaternion scalar multiplication

RxQw— Q (A.20)
is defined as in a linear vector space
@qo
ag = Zg’; (A.21)
aqz

where « € IR and q € Q.
Quaternion multiplication

OQxQ—Q (A.22)
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maps two quaternions to a new quaternion. Multiplication is not commutative and therefore
the premultiplier and postmultiplier must be distinguished. The quaternion multiplicationis
defined as

Poqo — Px4x —Pyqy — Pz4z

Pxqo+ pog¢x —pzqy +Priz
= A.23
P pyvqo +pzdx + pody — Px4z ( )
Pzqo — Py 4x + Pxqy + Podz
po —pPx —Py Pz q0
Px DPo —Pz Py qx .
= = M, A.24
py Pz  Po  —DPX qy pre(P)e ( )
pz —Py Px Do qz
q —9x —qv —qz Po
gx Qo 9z Qv Px .
= = M, A.25
o -1z @ ax oy post(2)P (A.25)
qz qy —qx qo Pz

where p € @ and q € Q.

As demonstrated by the above expressions, quaternion multiplication can be converted
into a matrix-vector multiplication by forming a matrix from one of the multiplicands and
a vector from the other. If the matrix derives from the premultiplier, as does the matrix
Myre(p) above, it is called the quaternion premultiplier matriz and if from the postmultiplier,
as in Mps¢(q) above, it is called the quaternion postmultiplier matriz.

The premultiplier and postmultiplier matrices for a given quaternion p are not the same,
i.e. Mpre(p) # Mpost(p). (Otherwise, multiplication would be commutative.) Specifically,
Mpost(p) varies from Mp.(p) in that the lower right (3, 3) matrix of each is transposed from
the other.

A useful property is that conjugating quaternions results in transposing the multiplier
matrices, i.e.

Myre(q*) = My,e(a) (A.26)
Mpost(q™) = M;ﬂst(‘l) (A.27)

hold.
The multiplier matrix for a multiplicand is meaningful because it is the partial derivative
matrix of the product with respect to the other multiplicand. That is, if 7 = pq then

or

—-—6q = Mpre(p) (A28)
is a Jacobian matrix and, similarly,

or

5= ost () (A.29)

is another Jacobian matrix.
A compact analytical formula for the multiplication operation is

= Pofo = Pudv A.30
P ( Pogv + qoPv + Pv X Qo ) ( )

which is equivalent to the matrix equation above. This expression can be more useful
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when performing analytical manipulations, whereas the other concept is more useful for
performing numerical calculations.
The quaternion algebra also has a multiplicative identity element, the identity quaternion

1
0
= A31

e=| 0 (A.31)

0
for which it can be easily verified that eq = ¢ and ge = ¢ for any quaternion ¢ € Q.
Quaternions have inverses that satisfy ¢g¢=! = ¢~ !¢ = e. The inverse is simply
gl=2 (A.32)

q7-q

leading to the fact that, for unit quaternions, ¢=! = ¢*.

[If addition of quaternions is defined as termwise addition of the elements, as for regular
4-vectors, then the above properties make the set of all quaternions a noncommutative
algebra with unit element. The set of all {n, n) matrices is also such an algebra. The set
of n-vectors is not an algebra because there is no multiplication operation. Hence, many
powerful properties of algebras apply to the set of quaternions; this and the relation of
quaternions to physical phenomena, such as 3-D rotations, motivated Hamilton’s intense
interest in quaternions.]

A.3 Representation of rotation

Sir Hamilton found many uses for quaternions in the analysis of physical problems. Unit
quaternions, in particular, were found to be useful for representing the rotation of a 3-vector
in 3-D space.

Quaternions can be used to compute the vector &’ which results from rotation of the
vector & about some axis n through an angle # in some 3-D reference frame. Commonly,
this rotation is computed by multiplying the original vector by a 3 x 3 orthonormal direction

cosine matrix
¢’ = Rz (A.33)

Alternately, Rodrigues’s Formula provides a different representation of the relationship
between the new vector #’ and the original vector . Rodrigues’s Formula describes the
vector that results from rotationg the original vector through an angle § about the unit
vector n:

2’ = cosfr +sinfn x z + (1 — cos)(n - z)n (A.34)

To derive this, consider a vector  rotating about the axis n (see Fig. A-1). The vector
consists of components along 7 and perpendicular to it. The components can be separated
as

r= (z-n)n + (x—(z-n)n) (A.35)
S—— N e’
along axis orthogonal to axis

Only the second term is affected by the rotation about the axis 7.
After a rotation through an angle 6, the second term becomes

(x —(x-n)n)cosf+nx (z— (z-n)n)sind (A.36)

The formula of Rodrigues results from re-combining this with the unchanged (z - 2)n to get
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Figure A-1: When a vector  rotates about an axis 72, only the component of z orthogonal
to the axis changes.

the expression in Eqn. A.34.
Consider now the quaternion formula

qiq! (A.37)
where ¢ is a unit quaternion and
. (0
z= ( . ) (A.38)

where z € R is the vector part.
The product of the two quaternion multiplications is a quaternion with zero scalar part
and a vector part equal to

(62 = g - 0)T + 29000 X & +2(qv - T)gu (A.39)
The substitutions
go = cos(6/2) (A.40)
and
¢v = sin(8/2)n (A.41)
yield Rodrigues’s Formula for the vector part.
Hence,
& = qig ! (A.42)

In this way, unit quaternions can be used to implement rotation of a vector. Specifically,

the unit quaternion
_ cos(8/2)
- ( sin(6/2)n ) (4.43)

imparts a rotation to the vector z according to the angle 6 and the axis 7.
The inverse transformation
& =q 'y (A.44)

1

results trivially from the forward tranformation through premultiplication by ¢~" and post-
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multiplication by q.

A.3.1 Rotation matrices

Further perspective on the operation of rotation using unit quaternions results from expand-
ing the expression in terms of pre- and post-multiplier matrices.

g8 = (Mpre(q)®)g" (A.45)
= M) () Mpre(q)F (A.46)
The matrix ]V[g:m(q)Mpre(q) has the form
MpTo.st((I)Mpre(q) =
q-q 0 0 0
0 (@d+d%—dt —4%)  2(axqv — q042) 2(¢xqz + qoqv)
0 2(gxqy + q09z) (6 —dx +4 — %) 2(avaz — q04x)
0 2(gx 9z — qoqy) 2Aqvez +qoax) (66 —dkx — 63 +4%)

(A.47)

where the lower right is the orthonormal rotation matrix.
Thus we obtain the formula

% +ax —ay —dz  2(axay — qoqz) 2(qx9qz + qo0qy)
R(¢)=| 2(axavy +qoaz) g5 —dk+a¥ —dz  2(avaz —qoax) (A.48)
2(qxqz —qoqy)  2(qvqz +qoax) 45 —dk —a¥ + a7

for generating a rotation matrix from a unit quaternion.

It can be seen therefore, that the quaternion operation is entirely equivalent to rotation
using direction cosine matrices. However, quaternions are preferable for some analytic ma-
nipulations and for numerical manipulations. In [35, 60], it is noted that composition of
rotations requires less computation when quaternions are used in place of rotation matrices.
And, perhaps more importantly, re-normalization of unit quaternions due to finite precision
calculations is trivial compared to re-normalization of rotation matrices.

A.3.2 Composition of rotations

Composition of rotations is important in many applications where rotations are used. To
illustrate how rotations are composed using unit quaternions, the property

P a* = (gp) (A.49)

is useful. This relation can be verified from direct evaluation of the two sides.
Now let p describe the rotation & — #’ and let ¢ describe the rotation &’ — &”/. Then

& = pZp* (A.50)

and
7 = qf’q* (A.5l)
= qp¥p*q¢* (A.52)

= rar’ (A.53)
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where r = ¢p. Thus rotations are composed by multiplying the quaternions associated with
each rotation in reverse order of the rotations.

References

See [7, 35, 36, 37, 60].
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Appendix B

Linear estimators as
specializations of
manifold-tangent estimators

This appendix restates the traditional linear estimators in the terminology of the manifold-
tangent estimators developed in Chapter 3 to make explicit the means by which they are
a specialization of the broader framework and thereby to motivate the notion that the
manifold-tangent framework is indeed a natural generalization of estabilished estimation
strategies.

In linear systems, the iteration loops of Alg. 1 can be discarded and we are left with the
general approach to linear least squares outlined in Alg. 7 below in which various interpre-
tations of the weighting matrices results in weighted least squares (WLS) and its probabilis-
tic interpretation, maximum likelihood (ML) estimation; recursive weighted least squares
(RWLS) estimation and its probabilistic interpretation, maximum a posteriori (MAP) esti-
mation; and the traditional linear least squares pseudoinverses, including the Moore-Penrose
pseudoinverse based on direct inversion of the normal equations and the Golub-Reinsch
pseudoinverse based on singular value decomposition (SVD) of the normal equations.

The following algorithm specializes Alg. 1 to a general procedure for linear Euclidean
systems and the subsequent sections further specialize to the particular linear techniques.

Algorithm 7 (General Euclidean Linear Least Squares) Given a manifold-tangent sys-
tem model M with Euclidean state model, the least squares objective function is

F(z,y) = eT(z,y)R e(z, y)
where £ — M, y — My, e — Mc and R is a positive definite weighting matriz and
e(e,y)=Je—y

and J € IRP*",
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1 input g

2 compute z; (no iteration required)
3 (constraint is already linear)

4 e(x,y) = Jeo—y+ J(x — x0)
5 be = (y— Jrg) = J(z — xo)
6 compute & {no iteration required)
7 choose P!

8 solve

9 b= (JTR™VJ + P~H)"LJTR 8¢
10 move

11 &=+ b

12 end

13 update z; = 2

14 end

where P~ is a positive semi-definite matriz.

B.1 Weighted linear least squares (WLS) estimate

If the positive definite error weighting matrix is chosen diagonal

1/0

R~ !'=

1/02

(B.1)

then the “weighted square error” objective function we would like to minimize becomes

F(z,y)

p

1 2
Zpej(x:y)

j=1"7J
= ef(z,y)Rte(z,y)
= (Jz—-y9)TR'(Jz —y)
= (Jéz —be)' R™(Jbx — be)

Il

(B.2)

(B.3)
(B.1)
(B.5)

where éx = © — %o and ée = y — Jxg (as in Alg. 7) which expresses the weighted sum of
squared constraint error. The minimum of this quadratic error function can be obtained by

finding where the gradient vector

0F (z,y)
déx

is identically zero, i.e.

resulting in

= 2(JTR™Y(Jbx — be))T

JYR™Y(J 621y — €)= 0

62”11}15 = (JTR_IJ)_leR_léﬁ

and thus

Lwls =

o + 6}'311)13
2o+ (JITRTII) VTR Y (y — Jao)

(B.6)

(B.7)

(B.8)

(B.9)
(B.10)
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= (JTR'J)"MTR Yy (B.11)

which is the well known “weighted least squares” optimal estimate, where the value of z; is
seen to be completely irrelevant to the estimate.
In Alg. 7, choosing P~ to be zero, results in the single-step state estimate

r, = & (B.12)
= 2o+ (JTRT'T+ P )TIITR™ (y - Jzo) (B.13)
(JTR™ 1) YJTR™ Yy (B.14)

which can be recognized as the WLS solution, where the initial state prediction zo can be
seen algebraically to be irrelevant. Thus, Alg. 1 for a Euclidean state space with a linear
constraint function, with R~! chosen as positive definite diagonal, and P~1 chosen as zero,
results in the linear WLS estimate.

B.2 Fisher’s maximum likelihood (ML) estimate

A probabilistic interpretation leads to a principled and more general method for choosing
the weighting matrix R™!. Instead of simply minimizing the error vector (or arbitrarily
weighted error vector), we can acknowledge that our measurements y or our constraint
model e(z,y) or both are inaccurate and we can try to model the errors.

We can model the residual error due to measurement noise and modeling error as a
random variable v such that a new probabilistic constraint process

Je—y+v (B.15)
= 0 (B.16)

e(z,y)+v

is formed which is exactly satisfied.
If the error process v is chosen to be zero-mean and Gaussian-distributed such that

Ev=0 (B.17)
Ew” =R (B.18)

then we obtain
ple(z,y)) = p(v) (B.19)

Wﬁ/—zw (—%eq‘(m, YR (e, y)) (B.20)

as the joint likelihood function.

The “maximum likelihood” estimate chooses the éz with the highest likelihood of pro-
ducing the observed error, which is the same as choosing the éz to maximize the exponent,
or equivalently the minimum of the negative exponent

eT(m,y)R_le(x,y) (B.21)

which can be recognized as the original objective function with R chosen to be the covariance
of the model error. Therefore, minimization proceeds as in the WLS case, resulting in

Emi = (JTRI)TVITR™ Yy (B.22)
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which is the same as &,,;; except with a firm probabilistic interpretation of R and a bit more
generality (because R does not have to be diagonal corresponding to completely independent
error characteristics along the principal axes of the state space). Thus, Alg. 1 for a Euclidean
state space with a linear constraint function, with R the covariance of zero-mean Gaussian
constraint error, and P! chosen as zero, results in the linear Gaussian ML estimate.

B.3 Recursive weighted linear least squares (RWLS)
estimate

An additional term can be added to the objective function to penalize deviation from a
specified point zg in state space. In recursive estimation, this is presumably because prior
measurements have established confidence that the target state should be near z;.

If the P=! matrix in Alg. 7 is chosen diagonal

1/
pt= (B.23)
/o7

and the objective function is augmented with a penalty term based on P! and zg, we
obtain

Flz,y) = > 27-15 e2(z,y) + Z g(z, z0i)” (B.24)
j=1"J

= el (2, y)Re(z,y) + (z — 20)T P~} (& — wp) (B.25)

= (Jz—-y)"'RJr—y)+ (x—20) P (z — o) (B.26)

= (Jéz —6e)TR™(J6z — be) + 6T P16 (B.27)

which can be minimized by allowing the gradient

F
60(#1 =2(JTR™Y(Jéx — be))T + 2(P~162)T (B.28)
to vanish, 1.e. A
JY'R™Y(J 62 pw1s — 6€) + P 02,15 = 0 (B.29)
resulting in X
02rwis = (JTR™VT + P~H)~ 1T R 15¢ (B.30)
and thus
Trwis = xo+ 6A1’rwls (B31)
= 2o+ (JTRTVT+ P Y TR Yy — Juy) (B.32)
(B.33)

gives the recursive weighted least squares solution. Thus, Alg. 1 for a Euclidean state space
with a linear constraint function, with R=! chosen as positive definite diagonal, and P!
chosen as positive definite diagonal, results in the RWLS estimate.
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B.4 Bayesian maximum a posteriori (M AP) estimate

As in the ML case, a probabilistic interpretation of the weighting matrices yields the same
result but with a probabilistic meaning.
If P is chosen as the prior covariance on the state, i.e.

Eéz =0 (B.34)

E§z6zT = P (B.35)

and 6z = z — xg is Gaussian distributed, the prior distribution is

1 1 -
p(éz) = W—/—Zexp (-§6a:TP 161:) (B.36)

which represents prior knowledge of zg.
The likelihood function of Eqn. B.20 can be interpreted as a conditional probability
distribution on ée given éz

1 1 -
p(eléz) = Wexp (—5((56 — J62)T R (6e — Jéx)) (B.37)

where be = y — Jag.
Using Bayes’s rule

p(8eléz)p(éz)
p(be)

and noting that e is deterministic, we arrive at the posterior distribution

p(éz|be) = (B.38)

p(éz)ée) = Cexp <—%(§e — Jéx)T R™1(8e — J6x)> exp (—%6$TP_15.’E>
(B.39)

where C' is a scalar constant which will be irrelevant. The maximum a posteriori (MAP)
estimate is obtained by maximizing the posterior distribution with respect to éz, which is
equivalent to finding the minimum of

(Jox — 6e)T R™'(J 6z — b€) + 62T P~ 16z (B.40)
thus the MAP estimate
Emap = o+ (JTR™IT 4+ P~HHITR™ (y — J2o) (B.41)

is identical to the RWLS estimate, but here, again, the weighting matrices have a proba-
bilistic interpretation and are more general because they do not have to be diagonal. Thus,
Alg. 1 for a Euclidean state space with a linear constraint function, with R equal to the
constraint error covariance and P equal to the prior state covariace, results in the linear
MAP estimate.

B.5 Moore-Penrose pseudoinverse
If P~1 =0 and R~! = al for any scalar a we obtain

bens = (JTT) 17T Se (B.42)
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which is the familiar Moore-Penrose pseudoinverse. The proof of optimality in the least-
squares sense is the same as for WLS with the appropriate substitution for R. Thus, Alg. 1
reduces to traditional linear least squares with the assumptions of WLS plus an isotropic R
matrix.

The solution is a direct inversion of the normal equations

JT6e = JT J6z (B.43)

which can be singular. It is worthy to note that this pseudoinverse as well as WLS and ML
will become unsolvable when J does not have full column rank while RWLS and MAP will
remain well-behaved. This is because the extra information about the prior state numerically
stabilizes the estimate, choosing one preferred solution from the infinite solutions that are
a result of rank deficiency of J. The Golub-Reinsch pseudoinverse below accomplishes the
same stability without overtly assuming any priors on z, but does effectively the same thing,
choosing the éz that is closest to zero.

B.6 Golub-Reinsch pseudoinverse

When the normal equations Eqn. B.43 are singular, the Golub-Reinsch pseudoinverse, based
on the singular value decomposition (SVD) [56, 61], can be used to find the “best” solution
in the column space of J. If the SVD of J is

J=UuxvT (B.44)
then the pseudoinverse is
Jh=vE-HyuvT (B.45)
where
U=| w u, | € RPX" (B.46)
V=1 v - v, | ER™” (B.47)
have orthonormal columns and
01
Y= € R**" (B.48)
On

is diagonal. The inverse ($7!) is modified from %! to replace infinite or large diagonal
elements of ¥=1 with zero. It can be proven that

dz = Jige (B.49)

selects the the smallest vector 6z in the column space of J [56].
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B.7 Relationship between batch and recursive steps

In both the recursive (Kalman-based) algorithms of this section and the batch (Newton-
based) algorithms of Section 3.3, the key step in the algorithm is generating a step ¢z to a
new state based on the “innovation” de

bz = Kée (B.50)

where the “gain matrix”
K —PR,IJ; (B.51)

depends on prior constraints on the state encoded in a weighting matrix P, characteriza-
tion of measurement and modeling error encoded in a weighting matrix R, and first-order
differential properties of the constraint equation J,.

For the recursive algorithms, the gain matrix takes the form

K, =PJI(J,PJT + R)™? (B.52)
whereas for the batch algorithms, the gain matrix takes the form
Ky=(P '+ JTR1J,)"IIR™? (B.53)

primarily because of the different ways in which the methods were motivated and derived.
However, if P and R are both invertible, the two forms can be shown to be the same thing
through use of the matriz inversion lemma

(A+BD™'C) ' = A" —A7'B(D+ CA™'B) 'CcA™! (B.54)

where A and D are square and invertible.
The lemma can be applied to the Kalman gain matrix

K, = PJI(JL,PIT+R)™! (B.55)
= PJT(R Y- R Y,(P 4+ JIR ) VITR™Y) (B.56)

= PUIR Y= JIR Y, (P +JIR™I)TVITRTY) (B.57)

= P((P*+JTRYJ,) = JTR Y)Y P T+ IRV VIFRTY (B.58)

= (P '+ JFR'J,)" Y JTR? (B.59)

Ky (B.60)

to prove the equivalence. The matrix inversion lemma is proven in Section B.8.

In fact, the RWLS and MAP algorithms of Section B.3 and Section B.4 produce exactly
this gain matrix with exactly the same probabilistic interpretation. Coupled with an equa-
tion to update the covariance matrix, the MAP estimator comprises the estimation half of
the KF.

The implication of all these relationships between methods is that they all come down
to the same unifying theme for taking a single step to a better estimate. Understanding this
and how the manifold-tangent model extends this idea to state spaces on curved manifolds
will help one to design the right estimation strategy for a particular problem and illuminates
the capabilities and limitations of the existing methodologies.
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B.8 Proof of Matrix Inversion Lemma

Lemma 1 (Matrix Inversion Lemma) Given four matrices

A anXn
B anXm
C lRan

D E lRmxm

m M M

where A™1 and D1 ezist, the following relationship
(A-=BD'CYy ' = A" '+ AT'BD (I - CA~IBD 1)~ 1CcA™!
holds.

Proof: If matrix @) were formed such that

A B ntm
Q= ( c D ) € Rmxnt (B.61)
then
Q—l — < g [F{ ) c ]Rn+m><n+m (B62)
exists where
E € R (B.63)
F e IRY™ (B.64)
G € R™* (B.65)
H € IRm™*™ (B.66)

are the submatrices and the relationships

QR'=Q7'Q=1 (B.67)
hold.
Thus
_ A B E F
QQI:(CD><GH> (B.68)
[ AE+BG AF+BH
= <CE+DG CF+DH> (B-69)
I0
(1) )
leading to
AE+BG =1 A=(I - BG)E~!
AF+BH =0 B=—AFH!
CE+DG=0 (= C=-DGE-! (B.71)
CFP+DH =1 D=(-CF)H"!

expressions for (A, B, C, D) in terms of (4, B,C, D), (E, F,G, H).
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Similarly,
4, _ (E F A B
QQ—(GH>(CD) (B.72)
_ ([ EA+FC EB+FD
= ( GA+HC GB+HD ) (B.73)
I0
- (19) @
leads to
EA+FC=1 E=(-FC)A™!
EB+FD=0 F=—-EBD™!
GA+HC=0 (= G=-HCA™ (B.75)
GB+HD=1 H=(I-GB)D!
expressions for (E, F,G, H) in terms of (A, B,C, D), (E,F,G,H).
Solving for (E, F,G, H) in terms of (4, B,C, D),
E = (I-EBD'C)A™ (B.76)
A4+ EBD'CAT! (B.77)
leads to
E = A '(I-BD'cA™H)7! (B.78)
= [(I-BD'ca 4] (B.79)
= (A-BD'C)™! (B.80)
F = —A'(I-BD'CA™YH)'BD™! (B.81)
and
H = (I+HCA™'B)D™! (B.82)
= D '4+HCA'BD™? (B.83)
leads to
G = —-D'(I-CA'BD"')"'CA™! (B.84)
H = D YI-CA™'BD™ 1! (B.85)
(B.86)
giving (E, F, G, H) in terms of (4, B,C, D).
Now substituting to find (A, B, C, D) in terms of (4, B,C, D),
A = (I-BG)E™! (B.87)
AE = (I-BG) (B.88)
A(A-BD'C)' = I-B[-D"Y(I-CA'BD™")"'CA™Y] (B.89)

(A-BD'C)™' = AT 4+ AT'BDY(I-CAT'BDTY)T'CATT (B.90)

QEDmN
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