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Introduction:

A large number of properties which are peculiar to symmetric

Markov semigroups stem from the fact that such semigroups can be

analyzed simultaneously by Hilbert space techniques as well as

techniques coming from maximum principle considerations. The

feature of symmetric Markov semigroups in which this fact is most

dramatically manifested is the central role played by the

Dirichlet form. In particular, the Dirichlet form is a remarkably

powerful tool with which to compare symmetric Markov semigroups.

The present paper consists of a number of examples which

illustrate this point. What we will be showing is that there

exist tight relationships between uniform decay estimates on the

semigroup and certain Sobolev-like inequalities involving the

Dirichlet form.

Because of their interest to both analysts and probabilists,

such relationships have been the subject of a good deal of

reserch. So far as we can tell, much of what has been done

here-to-fore, and much of what we will be doing here, has its

origins in the famous paper by J. Nash [N]. More recently, Nash's

theme has been taken up by, among others, E. B. Davies [D] and N.

Th. Varopoulos [V-1] and [V-2]; and, in a sense, much of what we

do here is simply unify and extend some of the results of these

authors. In particular, we have shown that many of their ideas

apply to the general setting of symmetric Markov semigroups.

Before describing the content of the paper, we briefly set

forth some terminology and notation. Careful definitions can be

found in the main body of the paper.
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Let E be a complete separable metric space, E its Borel

field, and m a (a-finite, positive) Borel measure on E . Let

{Pt: t > O} be a strongly continuous symmetric Markov semigroup

on L2 (m) . The semigroup {Pt: t > O} determines a quadratic

form & on L2(m) through the definition

(0.1) g(f'f) tliOm ((f~f) 1 (fPtf)) 

(Here (-,-) denotes the inner produuct in L (m) , and we are

postponing all domain questions to the main body of the paper.)

E(f,g) is then defined by polarization. S is called the

Dirichlet form associated with the semigroup (Pt: t > O} . It is

closed and non-negative, and therefore it determines a

non-negative self adjoint operator A so that 9(f,f) =

(f,Af) .

--tA
One easily sees that Pt = e and so the semigroup is in

principle determined by its Dirichlet form. Our aim here is to

show that at least as far as upper bounds are concerned, this is

also true in practice; the Dirichlet form g provides a

particularlly useful infintessimal description of the semigroup

{Pt: t > O} 

Finally, to facilitate the description of our results, we

assume in this introduction that the semigroup {Pt: t > O}

posseses a nice kernel p(t,x,y).

In section 1) we carefully define the objects introduced

above and spell out their relations to one another.

In section 2) we begin by characterizing the semigroups for
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which one has uniform estimates such as

(0.2) p(t,x,y) C C/t / 2

in terms of Dirichlet form inequalities of a type first considered

by J. Nash EN]:

(0.3) llfil2 +4/v B9(f,f)Illfll4

and indeed, our method of passing from (0.3) to (0.2) is taken

directly from the work of Nash. (Our own contribution is that

(0.2) and (0.3) are actually equivalent. Several applications

here and elsewhere [K-S] turn on this equivalence.)

Once these basic facts have been established, the rest of

section 2) is devoted to Dirichlet form characterizations -- again

involving Nash type inequalities -- of cases when p(t,x,y)

decays differently for small times and large times. The

characterizations again have a pleasantly simple form. (Theorem

(2.9) and Corollary (2.12) are the main new results here.) Some

applications of these results are given in section 2), others are

described in section 5).

At the end of section 2), we discuss Varopoulos' result [V-2]

characterizing (0.2) when v > 2 in terms of a Sobolev inequality

(0.4) lf,2 B-9(f,f)
2v/(u-2)

Together the two characterizations yield the suprising result that

(0.3) and (0.4) are equvalent for v > 2 . However, because (0.2)

and (0.3) are equivalent for all v > 0 , and because (0.4) either

does not make sense or is not correct for v < 2 , we find it more

natural to characterize decay of p(t,x,y) , as we have

throughout this paper, in terms of Nash type inequalities.
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The uniform estimate (0.2) and all the estimates in section

2) are really only on-diagonal estimates for the kernel

p(t,x,y) . Indeed, a simple application of the semigroup law and

1/2
Schwarz's inequality yields p(t,x,y) < (p(t,x,x)p(t,y,y))1

In section 3) we take up an idea of Davies [D] to obtain

off-diagonal decay estimates.

Davies' idea is to consider the semigroup {P*: t > 0}

defined by

(0.5) P f(x) = eo[Pt(e- f)](x)

for some nice function P . Clearly this semigroup has a kernel

p4 (t,x,y) which is just eP(X)p(t x y)e - +(Y) In general, P

2
will not be symmetric, or even contractive, on L2(m)

Nonetheless, when p(t,x,y) satisfies (0.2), one might still hope

that for some number N(,) and some number C independent of

JI ,

(0.6) p (tx,y) < Ct -/2etN(,)

It would follow immediately that

(0.7) p(t,x,y) g Ct-V/2e (P(y) - ,(x) + tN(,}))

and one would then vary 4 to make the exponent as negative as

possible.

Davies worked this strategy out for symmetric Markov

semigroups coming from second order elliptic operators. In this

case, the associated Dirichlet form i(f,f) is an integral whose

integrand is a quadratic form in the grandient of f . Davies

used the the classical Leibniz rule to, in effect, split the
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multiplication operators e and en off from Pi so that

symmetric semigroup methods could be applied to {P#: t > O}

Here we develop Davies' strategy in a general setting,

treating also the non-local case. (That is, the case when

{P t: t > O} is not generated by a differential operator.) We are

able to do this because, under very mild domain assumptions, a

generic Dirichlet form £ behaves as if 9(f,f) were given by

the integral of a quadratec from in vf. In particular, &

satisffies a kind of Leibniz rule.: (Of course, there is no "chain

rule" in the non-local setting, and so it is somewhat suprising

that there is a Leibniz rule, even in the absence of any

differentiable structure.) We develop this Leibniz rule at the

beginning of section 3); where we use ideas coming from Fukushima

[F] and Bakry and Emery [B-E]. Even though a good deal of further

input must be supplied to prove our generalization of Davies'

result, it is this Leibniz rule which allows us to take apart the

product structure of Pi . Thus the principle underlying our

generalization is really the same as the one which he used.

At the end of section 3) we give a brief example of the

application of our result to a non-local case.

In section 4) we develop analogs of the results of section 2)

in the discrete time case. In places this involves considerable

modification of our earlier arguments. In fact, we do not know

how to extend the results of section 3) to the discrete time case.

Our direct treatment of the discrete time case appears to be both



new and useful. In a recent paper [V-I], Varopoulos gave a very

interesting application of continuous time decay estimates to

determine the transcience or recurrance of a Markov chain. He was

able to apply continuous time methods to this particular discrete

time problem essentialy because it is a question about Green's

functions. Other problems, however, seem to require a more direct

approach.

In section 5) we give an assortment of applications and

further illustrations of the results described above. For

example, Theorem (5.20) discusses a discrete-time situation for

which the results of section 4) appear to be essential.
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1. Background Material:

Let E be a locally compact separable metric space, denote by

= E the Borel field over E, and let m be a locally finite

measure on E. Given a transition probability function P(t,x,-) on

(E,A), we say that P(t,x,-) is m-symmetric if, for each t > 0, the

measure mt(dxxdy) _ P(t,x,dy)m(dx) is symmetric on (ExE,8x),. We

will always be assuming that our transition probability functions

are continuous at 0 in the sense that P(t,x,-) tends weakly to Ax

as t decreases to 0. Note that if {Pt: t > O) denotes the

semigroup on B(E) (the space of bounded s-measurable functions on

E into IR) associated with P(t,x,-) (i.e. Ptf(x) = ff(y)P(t,.x,dy)

for t > 0 and f E B(E)), then for all f E Bo(E) (the elements of

B(E) with compact support):

(1.1) P ifilP(m , t > 0 and p E [1,w].
LP(m) LP(m)

Thus, for each p e [l.,), {Pt: t > O) determines a unique strongly

continuous contraction semigroup ({P: t > O} on LP(m).

In particular, when p = 2 we write Pt in place of Pt and

observe that {Pt: t > O}) is a strongly continuous semigroup of

self-adjoint contractions. Then the spectral theorem provides a

resolution of the identitiy {Ex: X 2 O) by orthognal projections

such that

(1.2) pt = e tdE? , t > O.

Clearly, the generator of {Pt: t > 0) is -A where A dE -Nt a ic or o 

Next define a quadratic form on L2(m) by



(1.3) E(f,f) - Xd(Exf,f ) , f C L2(m),

[o, )
(We use (f,g) to denote the inner product of f and g in

L2(m) .) The domain X(e) of & is defined to be the subspace

of L2 (m) where the integral in (1.3) is finite. Since 1(1 -

-Xt
e ) increases to X as t decreases to -O, another

application of the spectral theorem shows that 8t(f,f)t&(f,f) as

tIO , where

(1.4) ct(f,f) = -J(f(y) - f(x))2mt(dxxdy)
1 _

= T(f - Ptf,f)

and that

(1.5) D(e) = (A/2) = { ffL 2 () Isup t (ff) < }

(Here S(A1/2) is the domain of the square root of A .) The

bilinear form & is called the Dirichlet form associated with the

symmetric transition function P(t.x.-) on (E,!,m).

It is clear from the (1.4) that tt(Jfl, fJ) < gt(ff) 

Taking the limit as t tends to zero, it is also clear that e

posseses this same property. What is not so clear, and is in fact

the key to the beautiful Beurling-Deny theory of symmetric Markov

semigroups, is the remarkable fact that this last property of e

essentially characterizes bilinear forms which arise in the way

just described. For a complete exposition of the theory of

Dirichlet forms, the reader is advised to consult M. Fukushima's

monograph [F]. A more cursory treatment of the same subject is

given in [L.D.] starting on page 146.
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2. Nash-TvPe Inequalities:

Throughout this section, P(t,x,-) will be a symmetric

transition probability function on (E.9,m), and {Pt: t > 0},

{Pt: t > O}, {E: X 2 0)O} , and A will denote the associated

objects introduced in section 1). Furthermore, we will use lfilp

to denote the LP(m)-norm of a function f and IIKII to denote
p-*q

sup{llKfllq: f e B (E) with Ilfllp = 1 for an operator K defined on

Bo(E)

As the first step in his famous article on the fundamental

solution to heat flow equations, J. Nash proved that if a:

IRN --- INN is a bounded smooth symmetric matrix valued function

which is bounded uniformly above and below by positive multiples

of the identitity, and if p(tx,y) denotes the non-negative

fundamental solution to the heat equation tu = v-(av)u, then

p(t,x,y) • K/t / , (t,x,y) E (O,o)xNR xR , where K can be chosen to

depend only on N and the lower bound on a(-).

The proof given below that (2.2) implies (2.3) is taken

essentially directly from Nash's argument.

(2.1) Theorem: Let v E (0,) and 6 C [O,0) be given. If

2+4/v r 21 4/v 2
(2.2) I +/fl A [(f,f) + 61lfi]llfIll 4 /i f E L 2 (m),

for some A E (0,o), then there is a B E (0,o) which depends only

on v and A such that

(2.3) IIPtlll_ < Be t/t,/2 t > 0

Conversely, if (2.3) holds for some B, then (2.2) holds for an A

depending only on B and v.
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Proof: We first note that it suffices to consider f E

O(A)nLL(m)nLL(m)+ when proving the equivalence of (2.2) and

(2.3). It suffices to consider non-negative functions because

{P : t > O} preserves non-negativity and 9(jfijfI) < 9(ff)

Furthermore, if f E L (m)i and f P 1/(fAn), then f E

T(A)nLf (m)nL1 () in f in L (m), and 9(fn f ) < g(f f) .

Assume that (2.2) holds, and let f E T(A)nLl(m)+ with lifll1 =

-26t 2
1 be given. Set ft = f and u(t) = e lift 2. Then, by (1.2)

d -26t t2 2 1+2/
and (2.2): - a-u(t) = 2e2t(ftft) + ft2] A--u(t)+2/v

where we have used the fact that llftl11 = llfIll = 1. Hence,
d[- ]-2/u -t1-2/v d
du(t) 2/v = -(2/v)u(t) U 12/vd (t) 2 4/vA ; and so, u(t) <

at u t)

(4t/vA) v /2 From this and the preceding paragraph, it is clear

that lIPtil12 i Ce t/t / 4 , where C depends only on v and A. Next,

since Pt is symmetric, IIPt2o = llPt12 by duality. Hence
t 2~ _0 1 -2 byduality. Hence,

- 2 St v/2
by the semigroup property, iPtll_ < I /2 2 < Be /t ,

where again B depends only on v and A.

To prove the other assertion, assume (2.3). Choose f E

Dom( 1 + -6)+ . and set f 'St- v/2
Dom(A)nL(m) + and set ft = e tP f. Then llft llm • Bllflll1/t and

ct _

= f - o (I + A)f ds. Hence:

2 -/2 2 A)fds
Blf 1/t 2> (fft) = lfl2 (f.(6I + A)f)ds

> Ilfll2 - t &(f,f) + 611flI ]

where we have used (1.2) to conclude that (f.(6I + A)fs) < g(f,f)

+ 611fl 2 for all s > 0. After segregating all the t-dependent

terms on the right hand side and then minimizing with respect to t

> 0, we conclude that (2.2) holds with an A depending only on v



and B. Because of the remarks in the first paragraph, the proof

is now complete. Q.E.D.

The estimate (2.3), as it is written, ignores the fact that

since iPtlll 1 < 1 for all t > O, IIP 11 is a decreasing

function of t. However, it is clear that when 6 > 0 , (2.3) is

equivalent to

v/2
(2.3') lPtllea < B'/(tAl) / 2 t > .

where B' = Be

(2.4) Remark: The basic example from which the preceding theorem

derives is the one treated by Nash. Namely, let E = EN and set

0 (t,x,dy) = (4t)- N/ 2 exp[-|y - x1 2 /4t]dy. Then it is easy to

identify 2( o) for the associated Dirichlet form eo as the

Sobolev space W2(RN) of L 2 (RN)-functions with first derivatives in

L 2 (N) and to show that o (f,f) = fivfI2(x)dx. In particular,

since it is clear from the explicit form of P°(tx,dy) that

liPtlll_ < (47it) N/2 we can apply the preceding theorem to

conclude that

(2.5) lfll 22+4/N i A N[ vf (x)dx Ilfll(4/N)(2.5) L N1 N

On the other hand, and this is the direction in which Nash

argued, an easy application of Fourier analysis establishes (2.5)

for this example:

(2 r)NlIflN22RN If(ff) 2d + R2f l(vf)(f)I 2 dE

NL f 2( I -N| -2 fl 2R
< P NR ilfll 1 N + (27) R |vf| (x)dx

for all R > 0, and therefore (2.5) follows upon minimization with

respect to R.
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Next, suppose that a:R --N R IRN is a smooth, symmetric

matrix valued function which satisfies a(-) > aI for some a > 0.

Then the fundamental solution p(t,x,y) to atu = v-(avu) determines

a symmetric transition probability function P(t,x,dy) = p(t,x,y)dy

on (IRN dx), and the associated Dirichlet form & is given by 9(f,f)

= fvf(x)-a(x)vf(x)dx. While one now has no closed form expression

for P(t,x,dy), it is clear that {(ff) 2 a°0 (f.f) , and so from

(2.5), we see that & satisfies (2.2) with A = AN/a. Hence,

N/2
IIPtll1< K/t / where K E (Oc) depends on N and a alone.

Obviously, this is the same as saying that p(t,x,y) K/t N

The utility of Theorem 2.1 often lies in the fact that it

translates a fairly transparent comparison of symmetric Markov

semigroups at the infinitessimal level into information relating

their kernels; clearly this is the case in Nash's original work.

Our next result is motivated by the following sort of

example. Define p(t,x,y) = rt(Y - x) on (O,})xRNxl N, where 7t(x)

21/N 2 + t 2(N+1)2 is the Cauchy (or Poisson) kernel for RN.
Ix 12){(N+1)/2

Then it is easy to check (cf. the discussion in section 1)) that

the associated Dirichlet form 9 is given by E(f,f) =

1/WNJdxJdyy -N+l(f(x+y) - f(x))2
. In addition, by either Theorem

(2.1) or a Fourier argument like the one given in (2.4), one sees

that (2.2) holds with 6 = 0 and v = N. Next, consider the

Dirichlet form g(f,f) = cJdxJdyiy -N+l(f(x+y) - f(x)) 2(y) , where

c > 0 and EC B (R N)+ is identically equal to 1 in a neighborhood
0

of the origin and is even. (Note that. by the Levy-Khinchine
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formula, there is, for each t > 0, a unique probability Wt on RN

such that t(f) = exp[c't ylyl-N+ (cos(f-y) - 1)n(y)], where c' "

N
2c/(2r)N. Moreover, it is an easy exercise to check that the

convolution semigroup Ptf = Pt f is symmetric on L2(EN dy) and

has e as its Dirichlet form.) One can exploit translation

invarience by using the Fourier transform to rewrite &(f,f) as

g(ff) = cfd4[lf(f)12fdyjyj-N+l(j1 ] c( y)]

Note that fdylyJ-N+1(1 - cos(ff-y))r(y) is asymptoticly

proportional to IfI2 for f small and to jf£ for f large. Then

proceeding as in the Fourier analytic derivation of (2.5), one

sees that there exists a C E (0,0) (depending only on N. c, I111119

and the supports of 1n and (1 - 17)) such that:

(2.6) I1fll < C[(R2VR1 )(ff) + RNifIIf12] R > 0.

From (2.6), we see that if &(f,f) > Ilfii2 then fll 2 +2 /N<

C'.(f,f)llfl1 /N, where C' depends only on C and N. At the same

time, if g(f,f) < Ilfll2 then, by taking R = 1 in (2.6), we obtain

2 2 1/N 2 2/NIlfll2 < 2CIlfli1 and therefore that 1ifll
2+2/N 2 1

Combining these, we arrive at

lfll2+2/N < A([(ff) + IIffll21fll 2 / N ,

where A depends only on N and C. Applying Theorem (2.1), we

conclude that

-t N(2.7) IlPtlll. < Be /tN, t > O.

Because the /t from which the preceding {Pt: t > O} comes is
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nothing but a truncated Cauchy kernel, one expects that (2.7) is

precise for t E (0,1]. However, Central Limit Theorem

considerations suggest that it is a very poor estimate for t 2 1.

In fact, because the associated stochastic process at any time-t

and for any n E Z+ is the sum of n independent random variables

having variance approximately proportional to t/n, the Central

Limit Theorem leads one to conjecture that the actual decay for

-N/2
large t is Bt . The point is that too much of the

information in (2.6) was thrown away when we were considering f's

for which &(ff) llfll2. Indeed, from (2.6) we see that

2 +4 /N 4/N 2
(2.8) Ifll2 +4/ Ag(ff)llfill/N when &(ff) < If1l1.

The next theorem addresses the problem of getting decay

information from conditional Nash type inequalities like (2.8).

(2.9) Theoerem: Let v E (0, m) be given. If

2+4/v 4/v 2
(2.10) Ilfll2 4 Ag(f,f)llfill when &(f,f) g llfll1

for some A e (0,0) and if IPllp. 1 B E (0,o), then there is a C e

(0,-) depending only on v, A, and B such that

-/2
(2.11) iPIptll_, C/t" , t 2 1.

Conversely, (2.11) implies that (2.10) holds for some A E (0,o)

depending only on v and C.

Proof: As in the proof of Theorem (2.1), we restrict our

attention to f C (A)nLl(im)+ when deriving these relations.

Assume that (2.10) holds and that IP1Il_? < B , and set T

= B/2. Let (A)nL 1(m)+ with llfll = 1 be given and define ft

P +t+1 f, t > 0. Then, by (1.2):
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(ftt)S = ~ Xke- 2X(T+t+l)d(EXf,f) < (1/2T)IIPlfl 2 < 11 = f 112

Hence, by (2.10), Ilftll2+ 4/ v A(f l f (ft ft). since

Ilftl = 1. Starting from here, the derivation of llftil2 < C'/t / 2

for some C' depending only on N and A is a re-run of the one given

in the passage from (2.2) to (2.3). One now completes the proof

of (2.11) by first noting that, from the preceding, lipT+1+t"lll <

2VC 2/tv/2 and second that IPtll < I IP • lll _ < B for t > 1.

The converse assertion is proved in the same way as we passed

from (2.3) back to (2.2). Q.E.D.

The following statement is an easy corollary of the Theorems

(2.1) and (2.9) and the sort of reasoning used in the discussion

immediately preceding the statement of (2.9).

(2.12) Corollary: Let 0 < t • v < X be given. If

2 frri [ f f{ ?/(F+2) g f. f) v/(v+2 ) lf 2
(2.13) ilfl2 Ll A + 1 2 2 1f

II f 1 Ii f 1i21

for some A E (0,) and all f E L2 (m)\{0}, then there is a B,

depending only on p,v, and A, such that

v/2
B/t if t E (O,1]

(2.14) lIPt llW i B/t 1/ 2 if t E [l,}).

(2.15) Remark: As a consequence of Corollary (2.12), we now have

the following result. Let (Pt: t > O}) have Dirichlet form e and

suppose that 9(f,f) = dx(f(x+y) - f(x))2M(xdy), where M:

INx N\ -,{[0, co] has the properties that M(x,-) is a locally
R \(0o

N N
finite Borel measure on IR \(0} for each x E IR M( ,F) is a
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measurable function for each F E N M(x,-F) = M(x,F), and
IR \{0}

11 IY12/(1 + yJ 2 )M(. ,dy)llm C < a. Next, suppose that M(x,dy) >

(y) dYN+ for some n E B( )+ and a (0,.2). If n > a for some e
I{ IN+o

> O, then by comparison with the Dirichlet form of the symmetric

-t ~ ~N/a
stable semigroup of order a , we have lIPtll < B/ t > 0,

where B depends only on N, a, a, 1lnfll. and C. On the other hand,

again by comparison, if jn Bo(RN) and if q Ž e > 0 on some ball

B(O,r), then IPtlPl_ satisfies (2.14) with ~ = N/2, v = 2N/a,

and some B depending only on N a,, a, r, II1ll, and supp(7).

We conclude this section with an explanation of the

relationship between Nash inequalities like (2.2) and the more

familiar Sobolev inequalies.

(2.16) Theorem: Let u E (2,0) be given and define p E (2,o) by

the equation p = 2v/(v - 2) (i.e. 1/p = 1/2 - 1/u). If (2.2)

holds for some choice of A and 6, then

(2.17) i lfllp g A'(9(ff) + 611fll2)

for some A' E (0,f) which depends only on A and v. Conversely,

(2.17) implies (2.2) for some A E (O,m) depending only on A' and

V.

Proof: At least when 6 = O, Varopoulos proved in [V-2] that

(2.3) with v > 2 is equivalent to (2.17) with p = 2v/(v-2); and

so, since his proof extends easily to the case when 6 > O, Theorem

(2.16) follows directly from Varopoulos' theorem and Theorem

(2.1). Q.E.D.
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The passage from (2.17) to (2.2) provided above is, however,

far from being the most direct. If (2.17) holds, then by Holder's

inequality:

lf1 1f1p'!2 1-p'/2 2p'1/2 -p'/2
hfl2 <( llffhh lfl1 • A'(E(f,f) + Af112) Ilfll1

where p' denotes the Holder conjugate of p. The preceding

inequality clearly shows that (2.17) yields (2.2) with A =

(A') 4 / p ' . In view of the crudeness of this argument for going

from (2.17) to (2.2), it should come as no suprise that

Varopoulos's proof that one can go from (2.3) to (2.17) involves

somewhat subtle considerations. In particular, what comes easily

from (2.3) is a weak-type version of (2.17); and one applies

Marcinkiewicz interpolation to complete the Job.



3. Davies's Method for Obtaining Off Diagnal Estimates:

So far we have discussed the derivation of estimates having

the form IIPt1ll • < B(t) . When such an estimate obtains of

course, for each t and m-a.e. x , the measure P(t,x,-) must

be absolutely continuous with respect to m , and so the semigroup

{Pt: t > O} posseses a kernel p(t,xy) ; that is, for m-a.e.

x, we may write P(t,x,dy) = p(t,x,y)m(dy)

In this section we discuss pointwise estimates on the kernel

p(t,x,y) . To do so conveniently, we will suppose that our

semigroup {Pt: t > O} is a Feller semigroup; that is, that each

Pt preserves the space of bounded continuous functions . Under

this hypothesis, whenever lPt~lll- I B(t) we have that for every

t and x , P(t,x,dy) = p(t,x,y)m(dy) , and p(t,x,-) < B(t)

m-a.e. Then in view of the fact that P(t,x.-) is an m-symmetric

transition probability function, p(t,,w*) = p(t,*,-) (a.e.,mxm)

for all t > O , and p(s+t,x,-)) =s p =

p(s,x,f)p(t,-,f)m(d)j (a.e.,m) for all (t,x) e (O,)xE . (One

may always delete the Feller condition in what follows if one is

willing to insert extra a.e. conditions.)

We now enquire after the decay of p(t,x,y) as the distance

between x and y increases. The results of section 2) do not

address this question. Indeed, under the Feller hypothesis, we

have by the Schwarz inequality and the above that p(t,x,y) <

(p(t,x,x)) /2(p(t,y,y)) 1/ 2 for mxm-a.e. (x,y) E ExE . Hence,

while an estimate on liPt ll-l yields a uniform estimate on
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p(t,-,*) , it is really just an estimate on p(t,.,*) at the

diagonal.

In the introduction we briefly sketched an extremely clever

method E. B. Davies [D] introduced for obtaining off-diagnal

estimates provided the semigroup is generated by a second order

elliptic operator. Our primary goal in this section is to show

how one can generalize Davies' idea and apply it in a more general

non-local setting.

In order to explain what must be done, consider, for a

moment, a typical situation handled by Davies. Namely, let E = IRN

and suppose that &(f,f) = {vf-avfdx , where a:RN--- NON is a

smooth, symmetric matrix-valued function, uniformly bounded above

and below by positive multiples of the identity; and let {Pt : t

> O} denote the associated semigroup. Instead of studying the

original semigoup {Pt: t > O} directly, Davies proceeded by way

of the semigroup {PP: t > O} where

(3.1) P~f(x) = eP(X)[Pt(e f)](x ) ,

0 N
and e C (IR . What he showed then is that if IIPtl 1 <

0 t 1

B/t /2 t > 0, then, for each p > 0. there is a Bp e (0,) such

that

II P'l I (B /tu/2)exp((l + p)r(,)2t), t > 0,

where r(}) 2 = I{Iai'J4iaj{{ll . As a consequence, he concluded

that p(t,x,y) • (B /t/2 )exp(4(y) - +(x) + (1 + p)r(4)2t) for all

C o( ) and then got his estimate by varying 4 .

As we will see shortly, the key to carrying out Davies'
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program is to obtain the inequality

'1P~~ - pr 2 p

for smooth non-negative f's and any p eC l,0). Although, in the

case under consideration, (3.2) is an easy exercise involving

nothing more than Leibniz's rule and Schwarz's inequality, it is

not immediately clear what replaces (3.2) in the case of more

general Dirichlet forms. In particular, we must find a

satisfactory version of the Leibnitz rule (cf. (3.8) below) and a

suitable quantity to play the role of F(4), and we must then show

that a close approximation of (3.2) continues to hold.

(3.3) Warning: Throughout this section we will be assuming that

for any Dirichlet form t under consideration, C~E)nD(&) is

dense in C o(E) .

In this section we make frequent use of the fact that (cf.

section 1)) for f,g E (g) 

(f'g) l= tlim

(3.4) t
lim 1 
tO 2t J(f(y) - f(x))(g(y) - g(x))mt(dxxdy)

Set (8()nL ((m) . We then have the following lemma, which

is taken, in part, from [F].

(3.5) Lemma: If p is a locally Lipshitz coninuous function on R1

with V(0) = 0, then, for all f E Cb' Vf e b. In particular, b

is an algebra. Finally, for all f,g EC b:

(3.6) lm g(x)(f(y) - f(x)) 2m (dxxdy) = g(gf,f) - 1/2&(g,f2).

Proof: The proof that pof eC b comes down to checking that

SPt>0 (pof(y) - iof(x))2m (dxxdy) < X ;
t>O t . . . . t
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and since Jpof(y) - pof(x)] < Mjf(y) - f(x),l where M is the

Lipshitz norm of ptrange(f), this is clear. The fact that b is

an algebra follows by specialization to +(n) = J2 and

polarization. Finally, to prove (3.6), note that

(g(x)f(x) - g(y)f(y))(f(x) - f(y))

- 1/2(g(x) - g(y))(f2 (x) - f 2 (y))

= 1/2g(x)(f(x) - f(y))2 + 1/2g(y)(f(y) - f(x)) 2;

and therefore, by the symmetry of mt,. one sees that

fg(x)(f(y) - f(x)) 2m (dxxdy) = f(g(x)f(x) - g(y)f(y))mt(dxxdy)

- 1/2I(g(x) - g(y))(f2(x) - f2(y))mt(dxxdy).

After dividing by 2t and letting tiO, one gets (3.6). Q.E.D

1/2

Given two measures j and v on (E,8), recall that (jv) is

the measure which is absolutely continuous with respect to j + v

1/2
and has Radon-Nikodym derivative (fg) , where f and g denote the

Radon-Nikodym derivatives of i and v, respectively, with respect

to II + v.

(3.7) Theorem: Given f,g E b and t > 0 , define the measure

r(f,g) by

drt(f.g) = [-f(f(x) - f(y))(g(x) - g(y))P(t.x.dy)]m(dx).

Then, there is a measure r(f,f) to which Ft(f,f ) tends weakly as

trO (i.e. {g(x)drt(f.f)- g(x)dr(ff) for each g e Cb(E))

and g(f,f) is the total mass of r(f,f) . Furthermore, if

r(f,g) is defined by polarization, then rt(f,g) tends weakly to

r(f,g) and fr(f,g)i • (r(f,f)r(g.g))1 / 2 , where jai denotes

the variation measure associated with a signed measure o .
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Finally, if f,g,h E O , then one has the Leibnitz rule:

(3.8) &(fg,h) = ffdF(gh) + gdr(f.h)

Proof: Clearly Ft(f.f)(E)---(f,f) as t1O . Thus we will

know that rt(f,f) converges weakly as soon as we show that

limOJg(x)t (ff)(dx) exists for each g E C (E) . In turn, sincetJ1O jt o

we have assumed that w(g)nCo(E) is dense in Co(E) , we need

only check this for g E o(g)nC (E) : and for such a g we can

apply (3.6).

Clearly both rt(f.g)----r(f,g) and the inequality jr(f.g) <

(F(f,f)r(g,g))1 /2 follow from the definition of r(f,g) via

polarization. Finally, to prove (3.8), observe that

(f(x)g(x) - f(y)g(y))(h(x) h(y)) =

1/2(g(x) + g(y))(f(x) - f(y))(h(x) - h(y))

+ 1/2(f(x) + f(y))(g(x) - g(y))(h(x) - h(y)).

Hence, by the symmetry of m t, (3.8) holds with tt and rt replacing

9 and r. respectively; and (3.8) follows upon letting tO. Q.E.D.

Clearly we can unambiguously extend the definition of g and F

to f,g E 9 - {h + c: h e 5bnCb(E) and c E R1 }, and (3.8) will

continue to hold even though elements of 5 need not lie in

2 ^
L (m) . We now define _ to be the set of ' E 5 such that

e F2'(e ,e') << m, e2 r(e- ,e'P) << m, and

r(') - Ide - 2'(e',ep)11 Vll d e r (e -',e )11] </2
dm co dm 0 '
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(3.9) Theorem: Choose and fix ' E ~ . Then, for all f E +:
(3.10) 9(e 1f,e- 'f) 2 g(ff) r(I) 2f11 2

Moreover, all p E [2,o):

(3.11) 9(e'f 2p- e 4 f) > p- l(fP fP) - 9pr(4,) llf1 2 p2 p'
Proof: By polarizing (3.6),. we see that:

9(ef 2P , e f) = g(f 2p ,f) + (e f 2P,e*) -2fe efdF(f2P 1e*)

Hence, after applying (3.8) to the second term on the right of the

preceding, we obtain:

e-p 2p-1 2p-1 -'Pfe(ef2P-le } f) = (f2p-l + f -ldFr(e - fe)
(3.12) - 2p-1

- e-fdr(f2P- ,e).
Note that

ff2pldr(e* fde_) - fe fdr(f 2 P l.e )

(3.13) im{ e-e(x)ff )f 2p - 1(y) - e (Y)f(Y)f2 (x)]

x[e{(x) - eP(Y)]mt(dxxdy)/2t.

In particular, when p = 1:

{fdF(e-Pf,e) _ fe- fdr(f,e )

= timjf(x)f(y)[e-(x) -e (y)) [e(x) _ e(Y)]m (dxxdy)/2t

= -{im e f(x)f(y)[e]m(Y) - e (X)][eP(x) - e'(Y)]mt(dxxdy)/2t

_lim[ 2 -(Y) - eP(X) ][e(x) - e{(Y)]m(dxxdy)/2t ] 2

[(y(Y)- e'P(x)[e(x) - eP(Y)]mt(dxxdy)/2t] 1/2

= {f2dF(e- ,e}.)
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At the same time,

(3.14) jF(e- ,e )j < r(*) m,
and so (3.10) now follows from (3.12) with p = I and the

preceding.

To prove (3.11) when p 2 2, we re-write the right hand side

of (3.13) as:

[f 2p(y) _ f2p (x)]e-()e(x) - eP(Y)]m(dxxdy)/2t

+llmJ f2p( )[-P(x) - e-P(Y)][e+(x) - e+ ])mt(dxxdy)/2t

+ limf2 (y)[f(x) - f(y):]e(Y)XEe(x) - ep(Y)]m (dxxdy)/t

2 :limJfP(y)[fP(y) - fP(x)]eJ(Y) [e+(Y) - e P(x)]mt(dxxdy)/2t

+ if'P(x)fp,(y) - fP(x)Je ((X) e(x) - e'(Y)]mt(dxxdy)/2t

+ {f2Pdr(e4.elp) - 2[ff2p-2dr(ff)][f2Pe2p 2eydr(ePe )]/2

> _g(fp~fp)1/2[ Uf Pe +dr(e+,PeP +)] _ f2P e- 2, dr(eP.eP ]

+ f2Pd (e e) 2[ff2P-2d (f f)] [ff2P de dreJ )]/ 2

Using (3.14) together with this last expression, we see that:

f f2P1dr(e-Ie) - 2ef fdr(f2P 2,e-) > - ( ll

2[ (fP,fP)l/2 + [f2p-dr(ff) r()fip.

~~~~~- - - - - - - - - - - - - -· ~~~~~~~ P~ _2 p
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In order to complete the derivation of (3.11), we need two

more facts. The first of these is that

(3.16) g(f2P 1 f) f ff2p- 2 dF(f f) 21g(f 2 p- 1 f)

and the second is that

(3.17) g(fPfP) >2 (f2p-lf) > 2p-lg(fpfP).
p

To prove (3.16), use (3.8) to check that

=(f2p-2 ) = 2 9(f
2p-1,f) - 2ff2p-2dr(ff)

and use f2p-2 = limt f2p-2,f2) 2 0 to conclude that the

first part of (3.16) holds. The second part follows from the fact

that for all x and Y , (f 2P 2 (y) + f 2p 2 (x))(f(x) _ f(y))2

2pl(fi2pl (y) - f2 p 1(x))(f(y) - f(x)) , together with (3.4) and

Lemma (3.5). The proof of (3.17) is equally easy. Namely,

replace 8 and by &Sand note that

(fP(y) - fP(x))2 > (f 2 P (y) - f 2 P (x))(f(y) - f(x))

2 i(fP() - f(x)) 
p

(We do not actually use the second part of (3.16) here, but

because it is interesting that there is a two sided bound, we

include the short proof here. The second part of (3.17) has

appeared already in [L.D.] and [V-2]; only the first part is new.)

Combining (3.12) and (3.15) with (3.16) and (3.17), we now

see that,

1(elf2P leIf) 2 p-1l(fP,fP) - 4S(fPfP) 11 2 r(P) q- )2 2p

p

of which (3.11) is an easy consequence. Q.E.D.Q.E.D.
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Now suppose that t satisfies the Nash inequality

(3.18) 4lflE2 < A(E(f,f) + 61lfil2)Illfll 4 f L m).

Given $ e Dm and f C ,+ set f t = f. Then, by (3.10) and

(3.11), one has that

d lf 2 -24(e fte- ft) - -2U(ft ft} + F(41) I 2
dtIlf t2 , t t2

and

ddlf 1 2P = -2pg(e4, f2p- 1,-eft) < -29(fPt) + 18p 2 211f j2P
dt t 2p t t t t 2p

for p e [2,0). Clearly the first of these implies that

(3.19) f ft112 < exp(Fr(4)2 t)llfll 2.

At the same time, when combined with (3.18), the second one leads

to the differential inequality:

d I 1+4/v -4/u11 tIIf • - -I f II lif II
dt t 2p Ap t 2p t p

(3.20) 2 2
+ p(9r(,) + 6/p2 )Ift112p

for p e [2,}).

The following lemma, which appears in [F-S] and whose proof

is repeated here for the sake of completeness, provides the key to

exploiting differential inequalities of the sort in (3.20).

(3.21) Lemma: Let w: [0,)---+(0,) be a continuous non-decreasing

function and suppose that u C C ([O.,);(O,.)) satisfies

(3.22) u'(t) < a[ t(t) ]u1 +PP(t) + Xpu(t),(3.22) u'(t) u [ ' '")'

for some positive e, /3, and X and some p C [2,.). Then, for each

p C (0,1], u satisfies

(3.23) u(t) i -[ p2 l/ t( )/pw(t)eP /p t E(,)

· ( t ~~^e , t e~-o,--o).
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Proof: Set v(t) = e XPtu(t) and note that

v'(t) - p2 c tv(t)l+
p w(t)

Hence,

d[ -/Sp] (p- 2 ) -PpBXP p 2t
dt v(t) ] 2 pt w(t) e

and so, since w is non-decreasing,

expP2t _ tp _p t 2p-2)eRXp2s
e u(t) 2 epw(t) s e ds.

But, for p E (0,1],

ts(P-2)eXpP2Sds ] [t/Xp 2 P-l xpp s(p-2)stsds

pp2 (1-p/p 2 ]

t2 l - xp[?p2t - pxpt]p[L - (1p/p2)].

Noting that p[1 - (1-p/p 2 ) p/2 for all p E [2,~), we conclude

from the above that u satisfies (3.23). Q.E.D.

We are now ready to complete our program of estimating

IIP'1_ . To this end, pick an f E L2(m) with 11fll 2 = 1 , set

= 2 k for k Z+ and define uk(t) = P'f . Also define

(Pk -2 )/pPk
wk(t) = max{s u(s): s E (O,t]}. By (3.19), w 1 (t) <

exp(F(4i) t). Moreover, by (3.20), Uk+1 satisfies (3.22) with e =

1/A, p = 4/v, X = 9r(,)2 + ,6 and w = wk. Hence, by (3.23), we
k

]1/2p k
see that Wk+l(t)/Wk(t) [22k+l /pep ept/2 for any p e

(0,1]. Putting this together with our estimate on w1 , we arrive

at the conclim -1/ pXt
at the conclusion koimwk(t) K C(pe) 1/ePt where C = C(p) E

(0,-) ; and, after replacing p by p/9 and adjusting C accordingly,
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one easliy passes from here to

IIPtll2-_o ' C(A/pt) /4exp[(l+p)r()2 t + p6t]

for all p E (0,1] . Finally, this estimate is obviously unchanged

when 4 is replaced by -,. Thus, since it is clear that P-' is the
t

adjoint of P ', we also have that 1P4' II
t t 1-+2

C(A/pt) /4exp[(1+p)r() 2t + p~t] for all p E (0,1] . Hence,

since UIIP1 . < II II P2 2 122 we now have

(3.24) IIPtiil. < C(A/pt)'/2exp[(l+p)r()2t + p6t]

for all p E (0,1], where the C in (3.24) is the square of the

earlier C.

(3.25) Theorem: Assume that (3.18) holds for some positive v, A,

and 6. Then P(t,x,dy) = p(t,x,y)m(dy) where, for each p E (0,1]

and all (t,x,y) C (O,)xExE:

(3.26) p(t,x,-) < C(A/pt)v/2e pte-D((l+p)t;x) (m-a.e.)

with C E (0,-) depending only on v and

(3.27) D(T;x,y) _ sup{|i(y) - +(x)l - Tr(,L) 2 : 4 ' E5}

Proof: From (3.24) with 4 = 0 we see that p(t,x, ·) exists.

Moreover, since r(F) = r(-4), (3.24) for general 4 E 5 says that

p(t,x,-) K C(A/pt)v/2exp[6pt - I(') -(x)| + (l+p)Tr(4)2],

and clearly (3.26) follows from this. Q.E.D.

(3.28) Corollary: Assume that (2.14) holds for some B E (0,0) and

0 < i K v < - (or, equivalently, that (2.13) holds for some A E

(0,o) and the same ' and v). Then for all (t,x,y) E (O,o)xExE and
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each p E (0,1]:

K(pt)- /2e6Ptexp[-D((l+p)t;x,y)] for t E (0,1]
(3.29) p(t.xy) < K(pt)-4/2eSPtexp x-D((l+p)txy)] for t E [l1,)

where K E (O,0) depends only on B (or A), i, and v.

Proof: From (2.14) we have (cf. the proof that (2.3) implies

(2.2)) that

12 Bt-f/21l 1f + ti(f,f), t e (O,1]
(3.30) Ilfl2 2 2

Bt 11f111 + t8(ff), t E [1,").

2 -p/2 2
Hence, if 6 e (0,1]. then 11f11 2 • Bt Ilfll 1 + t9(f,f) for all t E

(0,1/6]. In particular, by taking

t = vB6(' ) I-fu112/29(ff) v+)

we conclude that there is a B' E (O,), depending only on B, p,

and vu, such that

(3 31) ilfll2+4/v s B,6 /v-l(f,f)llf1 4/v if 11f2 26 g(ff)(3.3) fif(f'f)'2 1 1 vB

On the other hand, by taking t = 1/6 in (3.30), we see that 11fl1 2 <

~~~1 ~~~~~~~~~1
B 6/211f 12 + 4gf/)uBl 2 26/ and therefore that

lfl/ < (B(1 + u/2)6)L/f112 1f11 if f112 2 _

Combining this with (3.30), we conclude that

(3.32) ilfll / u + 6 1211 6 E (0,1],

where A E (0,o) depends only on B, ji, and v.

Finally, given t E (0."), (3.29) follows from (3.32) with 6 =

1/(lVt) and Theorem (3.25). Q.E.D.
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4. The Discrete Time Case:

All our considerations thus far have applied to symmetric

Markov semigroups in continuous time for the simple reason that

Dirichlet considerations are most natural in that context.

However, it is often important to work with a discrete time

parameter; and so in the present section we develop the

discrete-time analogs of the results in section 2).

Unfortunately, we do not know how to extend the results of section

3) to this setting.

Throughout this section IL(x,dv) will denote an m-symmetric

transition probability on (E,g). Also, we will use 1f(x) to

denote ff(y)T(x,dy) ; and, for n 2 1, the transition function

en(x,dv) and the operator Tn are defined inductively by iteration.

Note that 11T11 = 1 for all p E [l,0). Finally, set M(dxxdv)
pup

2(x,dy)m(dx) and associate with IT the Dirichlet form 9(f,f)

l/2 j(f(y) - f(x)) M(dxxdy).

Obviously there is no "small time" in the discrete context

and therefore we only seek an analog of Theorem (2.9).

(4.1) Theorem: Let v E (O.") be given. If

IIf 2+4/v A 4 / 2
(4.2) 211f1124/v < At(ff)11f114/ when 9(ff) I Ilfl 2

l

for some A E (0,) and if 111_11T < B E (0,0), then there is a C E

(0,) depending only on v, A, and B such that

(4.3) 111n11 C/n, v/2 n > .

Conversely, (4.3) implies that (4.2) holds for some A E (O,.)

depending only on v and C.
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Proof: We begin by observing that

2 2

In particular,

(4.5) g(f,f) - g(7f,rf) = :(f(x) - mf(x))2m(dx) > 0,

1rfIl2 2 Ž7Ir1UfII2 - jjan+l £ = n nf

1 1

and so

(4.6) f()nf, Unf) I Ilfl12/n n 2 1.

Now suppose that (4.2) holds and that ili1i<I i B. Then

1111/211El1 / 2 < B1/2
I111--2 < 1 -!l 11 B;

and so, by (4.6), (I nf,l nf) < 11nf11 2 for ' '' 1 for n N - CB + 1.

Hence, if f E Ll(m)+ with Ilf11l = 1 and un 11jInf11
2 then, by (4.2)

and (4.4)

(4.7) Un+l < (1 - un /A)un, n NO'

Next, choose N 1 2 NO so that (1 B 2/ /A(n+l)) • (n/(n+l))v/ 2 for

v/2 v/2
all n 2 N I, and set C = BN/2 Clearly, un < C/n v/ 2 for 1 < n <

N1. Moreover, if n 2 N 1 and un C/n ,/ 2 then either un 
1 1 n n

C/(n+l)v/2 or C/(n+l) /2 < un g C/nv/2 . In the first case, since

v/2
Un+1 < un, Un+1 g C/(n+l) / 2 'On the other hand, in the second

case, we apply (4.7) to obtain:

un+1 g [1 - (C/(n+l)V /2)2//A]Un

< (n/(n+l))v/2c/n/2 C/(n+l)V/

Hence, by induction on n 2 N1, we see that un • C/nu / 2 for all

n > 1. Obviously, this implies that 111n11_+2 C /nv /4 ; and

therefore, by the usual duality argument, (4.3) follows.
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To prove that (4.3) implies (4.2), we use (4.4) and (4.5) to

conclude that 112 nf122 - fll2 > n(f,f) and therefore, if (4.3)

2 v/2 2
holds, that 1ifl i2 (C/(2n) )/2)1lfli + nS(f,f), n 2 1. The passage

from here to (4.2) is just the same sort of minimization procedure

as was used to get (2.10) from (2.11). Q.E.D.

As a typical application of Theorem (4.1), we present the

following. Take E = IRN and suppose that 1I(x,dy) = r(x,y)dy where

N N
r is a symmetric measurable function on IR x1R into [O,B] for some

B e (0,-). Assume, in addition, that r2(.,*) > p(-,*) almost

everywhere, where p is an even function in L1( N) + satisfying

(4.8) f(1 - cos(f-y))p(y)dy 2 ela, f C RN with |I£ < 1

for some positive a and e.

(4.9) Corollary: Referring to the preceding, there is a C e

(0,), depending only on N, a, e, and B, such that n(x,-) 

C/n N / a.e. for all x eC N and n > 1.

Proof: Note that

(2)Ng(f,f) 2 (27r)Nfdxf(f(x+y) - f(x))2 p(y)dy

= 2S[(1 - cos(f-y))p(y)dy]lf()l 2df.

Hence, by (4.8),

(2r)N IIf112 = IIfIf 2 f(f) 2df

EI + NR
+ f(f)12df K NRNIfl 2 + [(2wN/2eR ]Z(f f,

for all R (0,1]; and from here it is an easy step to (4.2) with

for all R E (0,1]; and from here it is an easy step to (4.2) with
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v = 2N/a and an A E (0,0) depending only v, e, and N. Since

!IIT_1- * < B , we can now apply Theorem (4.1) to get the required

conclusion.

~~- g~~P ~~--··BI(·~~·~~-CII__-~~_1_1_~ ~--~ ~^-~-^QE e D 
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5. Assorted Applications:

We conclude this paper with an assortment of applications of

results from previous sections and with some remarks on natural

extensions of these results.

Most of these applications, like most of those already

discussed, exploit a relatively transparent comparison of

Dirichlet forms to yield an interesting comparison of the

associated semigroups. By way of counterpoint, the following

application of Theorem (2.1) exploits a relatively transparent

"multiplicative" property of Markov semigroups to establish an

interesting "multiplicative" property of the associated Dirichlet

spaces.

Let E(1) and E(2 ) be two locally compact metric spaces

equipped with measures m 1 and m 2 , and with symmetric

transition probability functions P( 1 )(txl-) and P(2)(tx 22)

as in the first section. Let 9(1) and g( 2) be the

correspnding Dirichlet forms.

Clearly

(5.1) P(t,(x1,x2}· ') = p(1)(t-xl ' )P(2)(t x2

is a transition probability function on (E(1)XE(2)',E(lxE (2)

which is symmetric with respect to m - m 1 xm2 . It is further

1 2clear that P(t,(x ,x ),-) tends weakly to 6 1 2 as t tends
(x ,x )

to zero, and so (5.1) defines a transition function of the type we

have been considering. Let g be the corresponding Dirichlet



-35-

form; then it is easy to see that as Hilbert spaces (the inner

product on 0(9) being (',-) + (-,-}) , etc.)

(5.2) = (

Now suppose that g(1) and &(2) each satisfy a-Nash type

inequality (2.2) for some positive v1 and v2 . One may

naturally ask whether & then satisfies (2.2) for some v

depending on v1 and v2

It may seem that this question invites an approach using,

say, Holder's inequality or Minkowskii's inequality to take apart

tensor products directly in (2.2). We know of no such argument.

However, the equivalence of (2.2) and (2.3) provides an easy

positive answer to the question.

(5.4) Theorem; Let e , 1 (l), and g(2 ) be related as above,

and suppose

(5.5) 'lf l2 + Ai) (i)(f.f) + 6 Ilfllfl l4/v f L(
2 m

for i = 1,2

Then with v = v1 + v2 ,6 = 61 + 62 and some A E (O,),

depending only on A(1)VA(2):

2+4/v (ff 2 4/u 2
(5.6) Ilfll2 + 611fl 2j Ilfll , f e L (m1 Om2)

Furthermore, provided v1 and v2 are the smallest values for

which (5.5) holds, v1 + v2 is the smallest value of v for

which (5.6) holds.

Proof: Let {p(1) t > O} and {p(2) t > O} be the
t t

semigroups corresponding to ¶(l) and g(2) By (5.5) and the

i ~I---~-·I-----·-------·--~---By (5 5) and the---
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second half of Theorem (2.1), lIP i)il_ < B(i)e6 t/tv /2

1,2. Then, by Segal's lemma [S],

(5.7) jp(I)p(2)I_ < B(1)B(2)e(6 +6 )t t( +)/2;
t t l-o

and so, by the first half of Theorem (2.1), we have (5.6). The

1 2) tot

the product fl f2 where each fi is chosen with Ilf il1 = 1 and

IIP(i)fil l very close to IIPi)ll 1 . Q.E.D.

A particularly interesting case occurs when v > 2 in (5.6).

Then Theorem (2.17) says that a Sobolev inequality holds for 5.

This provides an easy way to see that Sobolev inequalities hold

for certain Dirichlet forms, and even to find the largest possible

p (smallest possible v) for which the inequality holds.

For the simplest sort of example, take E(1 ) = [0,1] , take

m, to be xdx , and define &(1) by

(5.8) ()(ff) If'(x)12xdx
2

for f C Cb([O.1]) and then closing. Regarding f as a radial

function on the unit disk in IR2, one recognizes &(1) as the

restriction to radial functions of the Dirichlet form associated

with the Neumann heat kernel on the unit disk in IR2 (1)

therefore satisfies (5.5) with v1 = 2 . Next take E(2) to be

N-1
the unit cube in R 1, take m2 to be Lebesgue measure, and take

g(2) to be the Dirichlet form associated with the Neumann heat

kernel on E(2 ) . Then with E = E(1)xE(2 ) C IN and with t

5(1), g(2) related as above, for any f e C'(E).

~------ I""··"pm~ass~--"--'------I~--b
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(5.9) &(f,f) = ' x1dxl x... dx xNIv(x)i2

Then clearly Theorem (5.4) applies with v = 2 and v2 =

N-1 , and so 8 satisfies (5.6) with v = N+1 , and does not

satisfy (5.6) for any smaller value of v . Therefore when N > 2

e satisfies a Sobolev inequality

2 2(5.10) <lflI < A'[&(ff) + 6llfll]

with 1/p = 1/2 - 1/N+I ; (5.10) fails for any larger value of p.

(The LP norms are computed with respect to xldx .) Of course, if

we remove the factor xl from the integrals, (5.10) then is

satisfied with 1/p = 1/2 - 1/N . Including the degenerate weight

xl in our'integrals raises the-effective dimension v by one

from N to N+1

The same result obtains in less special situations. Let M

be a smooth, compact N-i dimensional submanifold of NR . Let p

be a weight function on JN satisfying, for some X > 0 , and all

x

(5.11) X(dist(x,M)A1) • p(x) C X 1(dist(x,M)Al)

By standard results in, for example, Fukushima's book [F]; the

closure of

(5.12) &(f,f) =I f(x)12p(x)dv,

defined first for f e C(IN) , is a Dirichlet form. Employing a

simple partitioning argument, familiar comparison arguments, and

otherwise only increasing the complexity of notation; the argument

above yields the following result: For some A' , 6 E (O,) , 8

satisfies the Sobolev inequality (5.10) with i/p = 1/2 - 1/N+1
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Before leaving this subject, we briefly look at the limiting

case v = 2. Although p(v) = 2v/(v-2) tends to infinity as v

decreases to 2, it is easy to see that when v = 2 , e does not

in general control the sup norm. There is however a natural

definition of the B.M.O. norm in the general Dirichlet form

setting. In terms of this B.M.O. norm, one easily obtains a

strong limiting case of the Sobolev inequality (5.10) holding

whenever v = 2 holds in (5.6).

Let e be a fixed Dirichlet form, with {Pt: t > O} being

the associated semigroup on L2(m). Using the spectral theorem and

-'X -1/2 'dt -X 2/4t -t 1/2
the integral e = 1-te e t , one sees that with

-1/2 ds[-s -1/2
Qt given by Qt = 1P e s : t > O} is a

-(/s /4)2

Markov semigroup on L2 (m) generated by -(A)1/2 , where -A is

the generator of (Pt: t > 0}. The B.M.O. norm naturally

associated to 8 is given by

(5.13) lifil(5.13) B.M.O. = t>O Qt Qt
(This definition was used by Stroock [St] who established a

generalization of the John-Nirenberg inequality; proving that when

m(E) < X and {Qt: t > O} is a Feller semigroup (so that the

corresponding Markov process can be constructed with right

continuous paths [W]), there exists an a > 0 , and a B < X so

that for all f with Ilfl B.M.O. < 

(5.14) Bexp[af/ll B.M.O. ] dm B

(Note that {Q-: t > 0)} is a Feller semigroup whenever

·---- (Note that {Qt
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{Pt: t > O} is a Feller semigroup.) This exponential

integrability is what supports the assertion that the B.M.O. norm

is a strong substitute for the sup norm. For further discussion of

such results, see [D-M].

Now suppose & satisfies (5.6) with v = 2 . Then lIPtl II

< C/t . The integral representation for Qt shows that then

IIQtlll_ • C/t2 , and so by interpolation between this and IQ tll_

= 1 , IIQt12_ C/t . (C is of course changing from line to

line.) Now suppose that f E D(&). Then t--Qtf is strongly

differentiable and

(5.15) Q f - f = dsQs

This gives the estimate IIQ tf -fll2 • tllA1/ 2fli2 = t&(f,f)1/ 2 and

consequently IIQt(Qtf - f)2ll CS(ff), so that lfllB.M.O. 

Cg(f,f). This discussion is summarized in the following result:

(5.16) Theorem: Let & be a Dirichlet form such that IIPt lll <

C/t for all t e (0,1). Then there is a C' < - , depending only

on C , so that IBMO 2 C'&(f,f) ; and consequently, when

m(E) < w and {Pt: t > O} is a Feller semigroup, there is an a

> 0 , and a B < = so that

(5.17) a [exp[af/f(f,f) /2]dm B

for all f E !() .

(5.18) Remark: It is not clear to us whether the preceding result

has a converse.

We next turn to an application of the results in section 4).
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Take E C zN equipped with the usual metric and a measure m

bounded above and below by positve multiples of counting measure.

Suppose that E is everywhere connected to infinity, by which we

mean that for each x E E , there is an infinite, one sided, loop

free chain Ex in E of nearest neighbors starting at x . (One

may always erase loops if need be.) Now let I(x,-) be an

m-symmetric transition function on E, define r(x,y) =

1(x,{y})/m({y}), and assume that

(5.19) 1/S Ž r(x,y) > J

for some i E (0,1] and all x and y in E which are nearest

neighbors. One naturally feels that the associated random walk

must spread out at least as fast as a simple random walk on the

half line with transition probabilities t , since starting at x,

it can always spread out along Ex . That is, one expects the

return probabilities In(x,{x}) to decay like C/n/2 The

results of section 4) permit an easy proof of this.

(5.20) Theorem: Let E C Z , II and m be given as in the

preceeding discussion. Then there is a C < X depending only on

m and I so that

(5.21) I" (x,{x}) < C/n 1/ 2 for all x E and n Z.

Proof: Let 9 denote the Dirichlet form associated with 2

as in section 4). Given x E E , let Ex be an infinite, loop

free, one sided chain of nearest neighbors in E starting at x

Let g be the Dirichlet form on L (m) given by
x
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(5.22) &(x)(f,f) = (f(y) - f(z))212(y.{z})m(z)
y.zEEx

Clearly 8 (x)(f,f) < 9(f,f) for all f , so that if A(x)

denotes the self adjoint operator associated with i(x) , as A

is with & , then, for any X > 0:

(5.23) (A + X) - 1 < (x (X ) + X)- 1

Letting G and G(x) denote the kernels of the above operators

(with respect to m), (5.23) says in particular that

(5.24) GX(x,x) < G(X)(xx)

Now identify Ex with the natural numbers X in the obvious way

so that x is identified with 0. By restriction and this

identification, we may regard mx mIE .as a measure on N and

g(x) as a Dirichlet form on the L2-space over X relative to this

measure. Next, define mw on X to be the measure which assigns

mass 1 to each element of Z' and mass 2 to 0, and define &w by

(5.25) w (ff) = ; (f(j) f(k))2U2(j.{k})m (k)

where w (0,(1}) = 1 and w(n(nn+l)) = (w(n+l,(n)) = 1/2 for all

n Z+ . This is the Dirichlet form of the simple random walk on

N reflected at 0 . Since the simple random walk transition

function satisfies fln(k,{k)) •C/n1 / 2, n > 1, for some C > O

and all k E X (this well known fact is also a consequence of

Lemma (4.9)), application of Theorem (4.1) yields

(5.26) Ilfll 6 Ag (ff)IIfII4
L (mw) w L (mw)

But since both m and m as well as w and g(x) and are
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bounded above and below by positive multiples of each other,

(5.26) also holds when mw and w are replaced by mx and

(X) rsetvl -tA(x)
(x), respectively. Hence, by Theorem (2.1), lie 1)

C/t1 /2 ; and so 1l(A(x) + X) 1 < Cf dt(e t1/2

X 1/2C. In particular, G(X)(x x) X 1/2C , which means, in

turn, that Gx(x,x) l 1/2C. We are now finished with &(x)

and almost with the proof. By the Schwarz inequality, G,(x,y) <

1/2 -1 -1/2
(G,(x x)G(yy)) 1/2 and so Ii(A + X) -111 X 1/2C . Finally

11fl 2 (f,(A + X)(A + X) f) = X(f,(A + )-lf) + (f,A(A + )-lf)

X-1/2C1lf 12 + X-l(f,f) 

1 + X (f)
and minimizinng in X leads to llfl[ 6 m A(f.f)HflI4 for

L (m) L (m)

some A E (O,w). Thus Theorem (4.1) gives us (5.21). Q.E.D.

Next we turn to off diagonal bounds and applications of

section 3. The trick to applying the results of section 3 is to

find, for given x, y, and t , a ' which maximizes, or nearly

2
maximizes, P(x) - '(y) - tF(P) . Hence, in situations where one

can guess the correct behavior of the transition function -- and

can therefore make a good choice for P -- Theorem (3.25) is a

good source of pointwise bounds.

In our next example, E is the integers, and m is counting

measure. Consider a random walk on the integers given as follows:

Let p:ZxZ-{R be a non-negative, symmetric function. Suppose that

p is dominated by a non-negative even function p:Z-+R which
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posseses a moment generating function M(X) . That is, suppose

that for some a > 0 and some B < ,

(5.27) M(X) = eX p(n) B < for all X e [O,e) 
nEZ

Then in particular, if we.write a2 = (d)2M(X)=0,

(5.28) p(m,msn)n2 < a2 for all m E Z
n(Z

It is easy to see that

(5.29) (f,f) = (f(m+n) - f(m))p(m,m+n)
m.nEZ

is the Dirichlet form corresponding to a uniquely determined

family P(t,m,-) of probability transition functions with

(5.30) P(t,m,{m+n}) = p(m,m+n)t + o(t)

For this reason, p(-.-) is called a Jump rate function.

In general it is very difficult to pass from the

infinitessimal description (5.30) of the transition function to a

useful closed form formula for it. However, just as in section 2

with the truncated Cauchy processs, Central Limit Theorem

considerations suggest that, at least when (5.28) is fairly sharp,

and in the Gaussian space-time region where t is much larger

2 2
than n, P(t,m,{m+n)) is very nearly (2a 2 t) -1/2e -n/2t We

will now prove that there is in fact a pointwise upper bound of

this form in the appropriate space time region.

First pick some large N and some a s 0 , and define the

even function ANa by N, a(n) = aN for n g N. AN a(n) = 2aN -

an for n E [N,2N], and AN,a(n) = 0 for n 2 2N. Clearly,

PN a E Sg Next observe that, writing ' for PN a
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nEZ
.2P()[1 C(1 - e*(m+n)- (m))2p(m,m+n)]

< e2 (m)t 1(l - e' )2 (n)]
nCZ

Then, by Taylor's theorem, if K = a3M(X)IX/2

(5.31) r(Na2 < a 2 a2 + 2M' '(6/2)1a13

whenever

(5.32) lal • e/4

To use this estimate in Theorem (3.25) we need to know that

9 satisfies a Nash type inequality. This will follow easily from

a comparison argument if we impose

(5.33) p(nn+l)Ap(n,n-1) 2 W > 0 for all n

(5.34) Theorem: Referring to the preceding, there is a C e (0,O),

depending only on W, such that for all p and 6 from (0,1)

(5.35) P(t,m,{n}) < C(pt)- 1/2exp[-(1-6)ln-m 12/2(1+p )a2t]

for all (t,m,n) CE(O,0o)xZxZ satisfying

(5.36) t 2 [(K/1a 4)V(4/ea2)]ln - ml

Proof: By the preceding,

D(t;m.n) >a(m - n) - t(1a2a +

so long as al e/4. In particular, if t 2 2 42 n - ml, then we

in-nm~ 2
can take a = - n and thereby obtain

a t

; 1- [ 2 KIn - ml
D(t;mn) 2 _n - m -

2a t a t

Hence, if in addition, t K In - ml, then we get
aD(t;mn) (1 -

D(t;m,n) > Cl - 6)ln- mI2/2(l + p)a 2 t .
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At the same time, after comparing E to the Dirichlet form

corresponding to the standard random walk on Z, one sees that

llfll6 < 7g(f f)lfll 4

2 - '

Hence, by Theorem (3.25), we arrive at (5.35). Q.E.D.

Note that since p and 6 are arbitrary elements of (0,1), we

get close to what the Central Limit Theorem suggests is the best

possible rate of Gaussian decay -- though of course the factors

out front diverge as p tends to zero.

We give one final example of an interesting situation where

we can give a good estimate for the quantity D(T;x,y) defined in

(3.26). Namely, consider the case when E = RN equipped with

Lebesgue measure. Let {V1 , ... Vd} C C N; be a collection

N 2 N
of vector fields on RN and let g be the quadratic form on L2(JNR

obtained by closing

d

(5.40) =(,P) 2 J N dx , e Co N
k=l R

in L2(IN). Again applying standard results from EF], one sees

that this closure exists and that the resulting 8 is the

Dirichlet form associated with the unique transition probability

function P(t,x.-) for which the corresponding Markov semigroup

{Pt: t > O} satisfies Ptp = + JPSLds, t > 0, for all p E

d

co(RN), where L = - VkV k and we think of Vk as the directional

k=l
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N
i

derivative operator Vka x. (By Vk we mean the formal adjoint

i=l 1

d

of the Vk as a differential operator.) Set a(x) = ~ Vk(x)@Vk(x)

k=l

and note that an equivalent expression for L = v-(av). In

particular, when a(-) 2 eI for some e > O, it is well known that

P(t,xdy) = p(t,x,y)dy where (t,x,y) E (O,o)xlRNxRN- -p(t,xy) is a

smooth function which is bounded above and below in terms of

appropriate heat kernels (cf. [F-S] for a recent treatment of this

sort of estimate). Moreover, it is known that, in this

non-degenerate situation, liO tlog(p(t,x,y)) = -d(x,y) 2 /4, where

d(x,y) denotes the Riemannian distance between x and y computed

with respect to the metric determined by a on EN (cf. [V]). These

considerations make it clear that we should examine the relation

between d(x,y) and the quantity D(T;x,y) introduced in section 3).

In order to make it possible to have our discussion cover

cases in which a is allowed to degenerate, we begin by giving an

alternate description of d(xy). Namely, define H =Hd to be the

Hilbert space of h E C([O.,);IRd) satisfying h(O) = 0 and [lht1H =

lhll2 d < (h a th). Given h e H, let Y (-.x) E
L ([o.-));d )

d

C([O.w);R N) be defined by yh(tx) = x + y thk(s)Vk(Yh(s,x))ds, t

k=l

O0. Finally. define d(x,v) = inf{llhilH: h E H and Y (l,x) = y}.

It is then quite easy to show that, in the non-degenerate case,

d(x,y) is the Riemannian distance between x and y determined by
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the metric a. More generally, one can show that d(x,y) depends on

the Vk s only through a.

We next observe that, from (3.6):

d

r(4,P,4)(dy) = [ Y ({Vk)2(y)]dy. e C( IRN
k=1

In particular, r(,)2 11 k(V, 2( E C (IRN) and so
k=l 

D(T;xy) 2 sup{I+(y) - +(x) I - TrF(,)2: 2 e Co(RN)}. Hence,

(5.41) D(T;x,y) 2 D(x,y).2/4T,

where D(xv) 2 - 4sup({ (y) - 4(x)l - r(4)2: 4 e C (RN)} =

supS{+(y) - +(x)12: 4 E Co(RN) and r(}) K 1}. On the other hand,

since, by Schwarz's inequality, Ij(yh(1,x) - +(x)| F r()llhllH, we

see that:

(5.42) D(x,y) • d(x,y).

In order to complete our program, we will show that the opposite

inequality holds when d(x,-) is continuous at y.

To begin with, suppose that a(-) Ž eI for some e > O. It is

then easy to see that d(x,y) K (1/e)jy - xi. Next, for given

x ,y E IRN and a > 0, define a(Y) = o [pa(f)d(xo.y-f)d ] where

(N+ with-N E'f1 
P E C(IR N)+ with jp(f)df = 1. pa(f) = o p(f/a). and n CO(R )

has the properties that 11'11i. • 1 and n(u) = u for u E

[O,d(x°,y° ) + 1]. Since, for any 0 S d- 1 id(x° e y) -

tV8 d
d(x°,y)| < d(e ty,y) t, where V = 2 kVk, it is easy to see

k=l

that rF(,) p 1 + Ca, a E (O,]. for some C E (0,o). Hence,

D(x o ,y) > a lim a(y ) - Ua(x )l = d(x,y). In other words, when

a(-) 2 aI, equality holds in (5.42).

-~~-------- ~ ------------------------- x o -
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(5.43) Lemma: If d(x,-) is continuous at y, then d(x,y) = D(x,y).

Proof: Given e > O, define d and D relative to the vector
6 e

fields {V...V dI e1/2a , 1 /2 a }. Then the corresponding a
· ' ' e

= a + eI; and so, by the preceding, de = D. In addition, it is

clear that De < D. Finally, for each e > O, choose h e = (ke) e

h
Hd+N = HdXHN so that Y e(1,x) = y and lh e H = d (x,y), and let

Hd+N 
k k (keO)

ye = (Y (lx) where Y e(-,x) = Y (-,x). Then, d(x,y) <

Ilke 1H Ilh llH = D (x,y) I D(x,y). At the same time, since
d d+N

I IIHN < d(x,y), y --*y as e10; and so, by continuity,

d(x,yE)--d(x,y). Q.E.D.

(5.44) Remark: The identification of d with D in the

non-degenerate case was known to Davies [D]. In addition, Davies

suggested that the two are the same in greater generatlity, but

did not provide a proof.

(5.45) Theorem: Suppose that either 9 satisfies (1.2) or

{Pt: t > 0} satifies (1.3) for some v C ({0,), 6 C [0,1], and A or

B from (0,o). Then, P(t,x,dy) = p(t,x,y)dy where (t,x,y) C

(O,)xRNxIN -- p(t,x,y) C [0,0) is measurable and satisfies

(5.46) p(t,xy) • (Ce 6t/tvl/ 2 )exp[-D(x,y)2 /4(1+p)t]

for all (t,x) C (O.{)xI N and almost every y C EN where C c (0C,)
p '

depends only on v, p, and A or B. In particular, if d(x,-) is

continuous, then D(x,y) in (5.46) can be replaced by d(x,y).

(5.47) Remark: Using results of various authors about subelliptic
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operators, one can show that the preceding theorem applies to a

large class of degenerate examples. For instance, if the vector

fields {V1,... Vd) satisfy Hormander's condition in a sufficiently

uniform way, then one can check not only that & satisfies (1.2)

but also that the associated p(t,x,y) is smooth and the

corresponding d(x,-) is Holder continuous. A closer examination

of this situation will be the topic of a forthcoming article

[K-S], in which complementary lower bounds on p(t,x,y) will be

obtained when t e [1,-).
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