
AUTOMATIC CLASSIFICATION OF DOCUMENTS WITH AN IN-DEPTH
ANALYSIS OF INFORMATION EXTRACTION AND AUTOMATIC

SUMMARIZATION

by

Joseph Brandon Hohm

Bachelor of Science in Management Science
Massachusetts Institute of Technology

Submitted to the Department of Civil and Environmental Engineering in Partial
Fulfillment of the Requirements for the Degree of

MASTER OF ENGINEERING IN CIVIL AND ENVIRONMENTAL ENGINEERING

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2004

0 2004 Joseph Brandon Hohm. All rights reserved.

MASSACHUSETTS INSTnWTE
OF TECHNOLOGY

JUN07 2004

LIBRARIES

The author hereby grants MIT permission to reproduce and to distribute publicly paper

Signature of

and electronic copies of this thesis document in whole or in part.

Author:

of ivijLand
I1 i~

/ /

Certified by: -

Joseph Brandon Hohm
Environmental Engineering

May 7, 2004

As po te Professor
John R. Williams

of Civil d honmental Engineering
Thesis Supervisor

Accepted by:
I IltV eHeidi Nepf

Chairman, Departmental Comm ttee on Graduate Studies

BARKER

6 et

AUTOMATIC CLASSIFICATION OF DOCUMENTS WITH AN IN-DEPTH
ANALYSIS OF INFORMATION EXTRACTION AND AUTOMATIC

SUMMARIZATION

by

Joseph Brandon Hohm

Submitted to the Department of Civil and Environmental Engineering on May 7, 2004 in
Partial Fulfillment of the Requirements for the Degree of

Master of Engineering in Civil and Environmental Engineering

ABSTRACT

Today, annual information fabrication per capita exceeds two hundred and fifty

megabytes. As the amount of data increases, classification and retrieval methods become

more necessary to find relevant information. This thesis describes a .Net application

(named I-Document) that establishes an automatic classification scheme in a peer-to-peer

environment that allows free sharing of academic, business, and personal documents. A

Web service architecture for metadata extraction, Information Extraction, Information

Retrieval, and text summarization is depicted. Specific details regarding the coding

process, competition, business model, and technology employed in the project are also

discussed.

Thesis Supervisor: Dr. John R. Williams

Title: Associate Professor of Civil and Environmental Engineering

Acknowledgements

I would like to dedicate this thesis to my parents Joseph and Terry Hohm for their

unwavering love and support, and for serving as incredible role models throughout my

life.

I would like to thank my project group, Mohan K. Akula, Vishal S. Saxena, and Sapna D.

Tyagi, for their efforts, cooperation, and hard work during this entire school year.

Special thanks go to Dr. John Williams for giving me advice with regards to work, this

project, my thesis, and general life problems, and being a great friend, teacher, and

mentor.

I would also like to Dr. George A. Kocur for his guidance on my schedule and class work

this year.

Finally, I would like to thank my friends and remaining family for their support and

encouragement. Thank you for being there for me when I needed you the most, and

providing consistent distractions to sustain my positive spirits.

3

Table of Contents

A b stra ct.. 2

A cknow ledgem ents... 3

T able of C ontents.. 4

L ist of F igu res.. 7

L ist of T ab les.. 8

1. In trod u ction .. 9

1.1 Problem Statem ent.. 9

1.2 Research Objective and Project Overview.. 9

1.3 T hesis O rganization.. 12

2. Code and Program Research.. 14

2.1 C ode E stim ation ... 14

2.1.1 Function Points.. 14

2.1.1.1 Web Page Estimation.. 15

2.1.1.2 Application Estimation.. 16

2.1.2 L ines of C ode... 17

2 .1.3 T im elin e... 17

2.1.4 Code Estimation Conclusions and Validity of Results................. 18

2.2 U M L D esign .. 19

3. System R esearch ... 26

3.1 Classification System Design.. 26

3.2 Information Retrieval Overview.. 27

3.3 Information Extraction Overview.. 31

4

3.4 The I-Document System.. 32

4. Text Summarization .. 35

4.1 Text Summarization Overview.. 35

4.2 Summarization Research... 35

4.3 I-Document's Text Summarization.. 37

4.4 Improvement of the System... 39

4.5 Summarization Conclusion... 43

5. Metadata... 44

5.1 Metadata Introduction.. 44

5.2 Metadata Decision and Implementation... 44

5.3 M etadata Extension... 47

6. Technical Overview of I-Document... 48

6.1 I-D ocum ent.. 48

6.2 Underlying Technology.. 48

6.2.1 .NET and ASP.NET... 48

6.2.2 Peer-To-Peer Computing.. 49

6.2.3 W eb Services.. 51

6.2.4 Microsoft Office... 52

6.3 Pieces of I-Document.. 53

6.3.1 I-Document Web Services.. 53

6.3.2 Web Application.. 56

6 .3.3 D atab ase... 59

6.4 Assessment of the System.. 61

5

6.4.1 Information Retrieval Assessment.. 61

6.4.2 Information Extraction Assessment...................................... 63

7. Business Competition... 64

7.1 I-Document Competition... 64

7.2 Internet Search Engines.. 64

7.3 Data Repositories/Digital Libraries.. 66

7.4 Small Commercial Systems... 68

7.5 Other P2P Applications.. 69

8. Business Competition Models.. 71

8.1 Attacking the Market.. 71

8.2 Customer Segmentation.. 71

8.3 Competitive Advantages.. 72

8.4 B usiness F orces.. 74

8.5 Competition Conclusion.. 76

9 . C o n clu sio n .. 77

9.1 Thesis C onclusion... 77

10. R eferen ces.. 78

11. A p p en d ices.. 8 1

11.1 A ppendix I.. 81

11.2 A ppendix 2 .. 90

6

Figure 1.2- 1: Grid/P2P environment of I-Document.......................................

Figure 1.2- 2: Classification of Local Documents..

Figure 2.2- 1: Web Site Activity Diagram...

Figure 2.2- 2: Application Activity Diagram..

Figure 2.2- 3: Client/Server Activity Diagram..

Figure 2.2- 4: P2P Activity Diagram...

Figure 5.2- 1: I-Document Metadata Tab...

Figure 6.2.2- 1: I-Document's P2P Computing Environment.............................

Figure 6.3.1- 1: Central Web Service...

Figure 6.3.1- 2: Local Web Service...

Figure 6.3.2- 1: Main Web Application Picture...

Figure 6.3.2- 2: I-Document Search Page..

Figure 6.3.3- 1: I-Document Database..

Figure 8.3- 1: I-Document Competitive Advantage Chart.................................

Figure 8.4- 1: 5-Forces Model for I-Document..

7

List of Figures

10

11

22

23

24

25

46

50

54

56

57

58

60

73

76

List of Tables

Table 2.1.1.1 - 1: Function point definition for the I-Document Portal................... 15

Table 2.1.1.1- 2: Function point estimation for the I-Document Portal................. 15

Table 2.1.1.2- 1: Function point definition for the I-Document Application............ 16

Table 2.1.1.2- 2: Function point estimation for the I-Document Application............1 6

Table 2.1.2- 1: Corresponding lines of code per function point.......................... 17

8

Introduction

1.1 Problem Statement

Information access is increasingly becoming a problem with the exponential growth of

digital information. A number of solutions have been proposed, yet there is no forefront

leader. While methods are being refined and optimized, knowledge seekers still

encounter problems with current search and document recovery environments.

There are several solutions and theories in the fields of string processing, text mining, and

data storage. There exist Internet search engines that perform full-text searches such as

Google, Yahoo!, and AlltheWeb. The engines, however, take at least a fortnight to

update registries and impose inefficient page ranking algorithms to identify valued

information. Conventional data repositories are popular among large firms, libraries, and

educational institutions, but they come with maintenance and reliability issues. Small

commercial solutions carry great costs and focus on a private rather than a public market.

Finally, peer-to-peer (P2P) environments concentrate on sharing popular media like

music and movies rather than on typed information. While these are solid, justified

solutions, each has significant setbacks. This project recognizes these ongoing problems

and seeks a different type of Information Retrieval System.

1.2 Research Objective and Project Overview

The main objective of this research is to investigate current Information Extraction and

Retrieval techniques, evaluate their benefits and drawbacks, and code an application in

9

Web services to solve some existing retrieval problems. The result is an application

called I-Document which utilizes a .Net platform coupled with a P2P sharing

environment. This program automatically classifies documents on individual machines,

shares them among a grid of users, and searches and retrieves other users' documents.

Central web Server Web Service at
External User Local Machine 1

Web Service at
Local Machine 2

Web ServIce at
Local Machine i

Figure 1.2- 1: Grid/P2P environment of I-Document

Utilizing the I-Document service, users can log on to the sharing network, begin the

automatic classification, and freely download other documents on the grid. Upon signing

in, each user's computer classifies the files in his or her shared folder according to the

imposed summarization scheme. The application then submits the highlights of this

classification to the central server. This server lies in the middle of the I-Document

environment and only stores the summarizations of each document, not the entire file.

These highlights, or rather keywords, are stored for the duration of the user's network

connection, and they are employed so other users can search through them and find a

relevant document according to their search parameters. The automatic classification

10

cycle is defmed by the client. Thus, if a user constantly modifies documents, he or she

can set a short cycle time so that the keywords constantly sent to the database represent

the latest version of each document. This makes I-Document practically real-time.

Set of Documents

Classification Storage

Highlights

Figure 1.2- 2: Classification of Local Documents

Once a classification is ongoing, users can proceed to search for needed documents and

information. Clients simply choose their search criteria (author, document information,

date, or file type) and input some keywords summarizing their search objective. Results

are returned that match specific queries, and users can download these documents by just

clicking on the file. A direct P2P connection is then established between the owner of the

specific document and the seeker.

A final aspect of I-Document is its metadata optimization page. Users can click on one

of their shared documents, view its metadata (data used in the classification that define

it), and modify it to better classify the documents. Artificial intelligence has its

limitations and document representations will not always be perfect. Thus, this metadata

service gives clients an optional opportunity to fix any summarization errors.

11

I-Document is by no means the answer to existing problems with relevant information

retrieval, and it is not the most complete solution considered throughout this semester's

research. It simply provides a unique framework utilizing distributed computing. The

framework can be easily modified and improved as new extraction theories and programs

are developed. The following thesis demonstrates the current version of I-Document and

the research behind its fabrication.

1.3 Thesis Organization

This thesis is divided into nine sections. The first is the topic introduction. The second

section provides an analysis of the code complexity and project effort prior to any

programming. This section presents an estimation of the function points, lines of code,

and timeline for I-Document, as well as a review of its features in UML diagrams.

The third section describes the research behind the project's primary features. Examined

areas include Information Extraction, Information Retrieval, text summarization, and

metadata extraction. The section then provides a look into what was employed in the

actual project.

The fourth section discusses the text summarization part of I-Document. It reviews the

research behind keyword extraction, the system's use of summarization, and possible

future improvements.

12

The fifth section describes metadata and how it works with I-Document. This portion of

the thesis shows some features of the application.

The sixth section gives a technical overview of I-Document. It begins with a technology

review, then moves on to the specific features in the application, and concludes with a

system assessment. Pictures are also included to help readers better understand and

visualize the product.

The seventh and eighth sections cover the details regarding competition and the I-

Document company's business strategy. It also shows an analysis of the potential

customer pool.

The final section of the thesis discusses conclusions regarding I-Document.

13

Code and Program Research

2.1 Code Estimation

Before beginning the code for I-Document, an effort to estimate the size, or the total

scope, of the project was first required. This estimation is crucial for software projects to

ensure that the ideas generated in brainstorming the vision do not require an excessive

amount of programming that would necessitate a longer window of time than already

established. The window to complete I-Document was only four months. Thus, the

timeline estimation could not exceed four months or else the scope would have to be

limited. Lacking size-estimation software, this approximation relied on a human,

algorithmic approach to the quantify I-Document's size. This calculated exertion focuses

on three main areas: function points, lines of code, and timeline.

2.1.1 Function Points

A function point is a synthetic measure that is often used at the beginning of a project

because it is the most accurate way to think of size with limited development. Types of

function points include inputs, outputs, inquiries, logical internal files, and external

interface files. Each of these types is measured in terms of quantity and complexity, and

then each is multiplied by an influence multiplier to properly adjust its count number to

an accurate and applicable number. Below is a function point estimation for (1) the I-

Document Web page and (2) the application. The Web page or portal provides

information on I-Document and allows users to register and download the program. The

application will include the product, Web services, and database coding. The application

is the meat of the project while the Web page is just a release point.

14

2.1.1.1 Web Page Estimation

WEB PAGE TYPE COMPLEXITY
Login Input Low
Register new user Input Medium
Exception cases Output Medium
Download Output Medium
Static Pages (roughly 3-4) Output Low

Table 2.1.1.1- 1: Function point definition for the I-Document Portal

In this estimation, static pages like the homepage and the developer information page

count as a single low complex output because they are simple in structure and

programming. For database tables, one table is estimated in association with the Web

site. This table concerns itself with user information. Having just a simple layout

without messages and interfaces, they have a medium complexity level. Thus, the

function points for the Web page are:

Program Unit Low Medium High
Webinputs 1x3=3 1x4=4 0x6=0
Web outputs 1 x 4 = 4 2 x 5 = 10 0 x 7 = 0
Web queries 0 0 0
Database tables 0 1 x 10= 10 0
Total 31
Influence Mult. 1.05
Adjusted Total 32.55

Table 2.1.1.1- 2: Function point estimation for the I-Document Portal

The influence multiplier is an estimation based on a published list of several factors

which includes heavy use, performance, online data entry, reusability, online update, and

change. It is a value that ranges from 0.65 to 1.35. The value 1.05 is an assumed weight

based on existing evidence.

15

2.1.1.2 Application Estimation

APPLICATION TYPE COMPLEXITY
Login Input Low
Select automation time interval Input Medium
Select shared directory Input Low
IP address Output Low
Start/Stop/Go offline commands Input Low
Status and server response Output Low
Search Query High
Search Criteria Input Medium
Download (P2P) Input High
P2P response Output Medium
Metadata Inspection Input High
Metadata Modification Input Medium
Metadata response Output Medium

Table 2.1.1.2- 1: Function point definition for the I-Document Application

For database tables (logical internal files), four tables are estimated to be utilized by the

application. Two tables will be used for authorizing users, one for document information

storage, and the final table for keywords. Again, having just a simple layout without

messages and interfaces, they have a medium complexity level. For external interface

files, Web services on the server side of operations are considered. Only one Web

service is called, but the extent of the tasks influences a rating greater than one function

point. Thus, Web services encourage an estimation of five functions on the server side at

a medium complexity level. Table 2.1.1.2- 2 shows the function points for I-Document.

Program Unit Low Medium High
Program inputs 3 x 3 = 9 3 x 4 = 12 2 x 6 = 12
Program outputs 2 x 4 = 12 2 x 5 = 10 0
Program queries 0 0 1 x 6 = 6
Database tables 0 4 x 10 =40 0
External files 0 5 x 7 = 35 0
Total 136
Influence Mult. 1.25
Adjusted Total 170

Table 2.1.1.2- 2: Function point estimation for the I-Document Application

16

2.1.2 Lines of Code

This estimation tool takes the number of function points and multiplies them by the

average number of code lines needed to implement those points in a specific computing

language. With a preliminary value for lines of code, project managers can better assign

their people and quantify the time of the coding process.

Program Unit Tool Lines/function point
Web inputs and outputs Visual Studio 50 (code generation)
Application inputs, outputs, queries Visual Studio 50
Database Access (SQL) 10 (code generation)

Table 2.1.2- 1. Corresponding lines of code per function point

Utilizing the unadjusted values for function points:

Web: 21 x 50 = 1050
Application: 96 x 50 = 4800
Database: 4 x 10 = 40

This amounts to 5,890 lines of code. Some of this code, however, may be automated by

Visual Studio .Net.

2.1.3 Timeline

Given the lines of code, a fairly accurate timeline can be composed from existing

industry averages. For an estimation of the timeline, 6,000 lines of code will be assumed

to make the process easier. A slight overestimation, in addition, is a smart idea since

most projects exceed their calculated timeline. On average, developers underestimate the

time needed to complete a project by 20 - 30% [Dr. Kocur's 1.264 Lecture notes].

17

The nominal schedule for business products is used to estimate the timeline since all

programmers involved have classes to complete along with this thesis project. Thus, the

time to work on the project is limited. The other choices of shortest possible schedules

and efficient schedules are not realistic assumptions. Given all computed values applied

to the nominal schedule, it will take 3.6 schedule months and 5.4 man-months to

complete the entire project. This falls within the time range.

2.1.4 Code Estimation Conclusions and Validity of Results

Looking at the timeline and lines of code, the project is within the set schedule and

capacity, but the scope may have to be limited to complete the program in time. Thus,

extensive functionality may have to wait until the next version.

In this exercise, the size and effort was estimated. Now while accepted industry

procedures were employed, software estimation is difficult and not precise. Thus, there is

almost a zero percent probability of hitting 5,890 lines of code or 3.6 schedule months

from start to finish. Only twenty-five percent of large projects deliver on time

[McConnell]. Given this fact, the programmers did not desire taking chances.

To ensure the project presentation date was hit (April 2, 2004) with a fully operational

product, rapid development principles were used in fabrication process. The spiral model

was used for development and consistent testing was maintained throughout the project.

In addition, the scope was never allowed to creep beyond reach. Smart software practices

18

like these and the initial estimation helped lead to completing I-Document with a few

days to spare.

2.2 UML Design

Using UML, or Unified Modeling Language, was the second main part of the project

preparation. UML is just a modeling language that demonstrates how the processes of a

system will flow and interact with a user. These state diagrams show details of user

scenarios and behaviors in valid states. Utilizing UML helps developers and visionaries

to clearly see the requirements, design, and direction of software products. It also speeds

up the requirements process since project communication is improved through the

introduction of visual diagrams.

Once the requirements were set and the product visions were mostly agreed upon, some

state and activity diagrams were sketched and refined to assist project development. The

resulting UMLs represent four main operations: the Web site's activity, the main

application's functionality, the interaction with the server, and the P2P connection.

In the Web site activity diagram (Figure 2.2- 1), the framework is laid out for all

functions available to an Internet user. A new visitor can first view information on I-

Document and its production team. If the user then decides to download the product, he

can register a new account. Successful registration gives access to the download page.

Existing users simply log in with their existing name and password to access this

19

download page. Once the download page is reached, a user has reached the limits of the

portal. The Web site's purpose is only to release information and the product.

In the application activity diagram (Figure 2.2- 2), the framework for the I-Document

program is drawn. Upon starting the program, a user enters information regarding his

name, password, classification cycle time, and directory of shared documents. If login is

successful, the client has accessibility to the grid and is able to search through it. He

chooses his criteria for searching (document type, metadata, and user), types some

keywords, and then he has the option to download the retrieved documents from the

query or construct another search. Instead of searching, the user can also choose to view

the metadata from his documents and modify them. If a problem is encountered, he can

view the help document to solve a problem with the application. Once a user is done

with I-Document, he can cancel his connection, quit the entire application, or just keep it

open.

The client/server interaction diagram (Figure 2.2- 3) shows how the application

communicates with the server. This diagram first demonstrates the log in procedure.

Pressing the login button, the local application checks the client's shared folder. If there

is a security or existence problem, the login will fail. If the folder checks out, the name

and password will be sent to the server for a second test. With a name and password

verification, the classification scheme will begin on the client side and keywords will be

sent to the server according to the individually chosen cycle time. This classification

20

process is repeated automatically. The P2P listener also is initiated so other users can

download documents from this client.

The other noticeable part of the client/server diagram (Figure 2.2- 3) is the search layout.

Users are able to search through the I-Document grid even if they are not logged in to the

system. This document service is free and open. When a user submits search

information, the server takes this data and queries the database. Any relevant documents

are returned to the client where the user can then decide if he wants to download any or

all of those documents. If the files do not correspond to his search, the user can refine the

search with different keywords and try again.

The final UML diagram (Figure 2.2- 4) demonstrates the P2P connectivity between two

users. A user who is already logged in (left client) has his P2P listener activated.

Another user (right client) hits this listener requesting a download, a download socket is

chosen, and the document is sent. This relationship will only work if the owner of the

document is successfully logged in to the system.

Together, the four diagrams outline the major features and direction of I-Document.

Naturally, these were modified over time, but the overall scope did not change. Only a

few of the specific details changed during I-Document's construction to get to the overall

goal. Overall, the initial vision was maintained to meet the short time frame.

21

Customer aoces~s
Web Site

Figuret e 2.2o1 W Sitec AcivtfDaga

x stig CusomerEstabi sh A=,ourt

Logs Ir

Server updated

Downlod Page
(full or u pdatws)

Download

Web Site Activity Diagram: Simple download framework

Figure 2.2- 1: Web Site Activity Diagram

22

Ap

23

START
plication Activity

Diagram
Sets Cycle Thne atx

Shared Directory

Sarch Seen Seh Hlp

Figure 2.2- 2: Application Activity Diagram

/
/

/

I

Client Side

Y erch inerlace

sFarch wn Chec Director

drec ctec P1h

i~l kr *(d eps aui!*rw

Reserv ce (Acnatk Classifkwim
Applcatko Aty vd
Daan o .w

sftafion Thfwasearch tsos c

C lslcas ThradnCm t
S480ps

Peer L terhvg San
(P2-eP) aet Cml

Peser refe to
!he PZP Actiyty

Rz tReurx

RetireSearch Choose DOC
and doIWrda

s iflas (P2P)

!be P2P AcdO

Server Side

lords "Mr to database

Stop List Comnpadson
adkeyarrd nfrabor)

k yr keywords op

Psnds a matching

list of documens

No ritatch
Returns Mul

Figure 2.2- 3: Client/Server Activity Diagram

24

Crwcks rarm atud passwOr

Wo E'aiw

1,

Figure 2.2- 4: P2P Activity Diagram

25

Listening Client

SLOQI
Su v*sdt4

Asynchonous uLine start

Asudaa nlaner soorm

5' o meDaw cm

)-

C(cio Dowrtra0 Coniptet

Stop! Utsear

Downloading Client

Sear comon a ed
an reufts citsmted

Rerts Page

OVno oc & Utvr

Us Found U Found

DowrloadoNg

System Research

3.1 Classification System Design

Several months of research went into I-Document on how to handle searching and data

mining. For the computer to automatically classify each document, it has to extract

relevant data. Thus, from the raw documents on each client's computer, the classification

system needs to extort valuable and structured information. For this structured data, three

sources of information are gathered: file properties, metadata, and keywords. The first

part of this search was the easiest. Extracting and storing file information as strings took

only a few lines of code (this code is present under the GetExtension function in

Appendix 1). This function stores certain pertinent aspects of every file like the creation

date, length, and file type. The two other aspects of automatic classification,

unfortunately, took much more time and research.

Before even attempting to extract metadata and keywords, the system layout of I-

Document needed to be conceived. Obviously, searching is the heart of the application.

There are two basic searching systems: Information Retrieval (IR) and Information

Extraction (IE). Dating back to roughly forty years ago, Information Retrieval came

around first in programming research. Today, it is one of the most important subjects in

Computer Science. IR concerns itself with organizing documents, storing them, and then

finding relevant documents according to a user's specific desire. Information Extraction

just began to surface in the late 1980s, and it is defined as the process of analyzing and

presenting information extracted from a file that is relevant to the user. Thus, IE

operations tend to be more knowledge intensive and precise than IR operations. From the

26

definitions, the two systems seem similar. They both aim to return information that

matches a user's search. However, these systems differ in how they should be utilized.

3.2 Information Retrieval Overview

An Information Retrieval System processes a set of electronic documents to find the one

that best matches a user's need. More specifically, it looks for the documents that are

meaningful according to a given query. The main components of IR are the user's

information need, the request, a keyword-based query, objects stored on the main

computer, and appropriate computer programs to execute the retrieval. In a typical case

scenario, a user will formulate his request in natural language, but he will try to focus on

key phrases. This request is then translated into a query using the main words. The

query is sent to the correct machine and the matching results are returned to the user.

Hopefully, these results are useful to the user. If they are not, the search is refined and

executed again.

In terms of mathematics, the concept of IR is simply formulated. The classic model used

in virtually all commercial IR systems is:

IR = (, Q) (Equation 1)

In this formula, 0 represents the object base (set of documents on a computer which is

searched through) and Q is the query. These are represented in this formula as vectors of

numbers (mathematical objects). Ris defined as the relationship between these two

objects. Using the concept of vectors to represent the documents and queries, one can

use Vector Space Modeling as the fundamental IR system model.

27

Vector Space Modeling (VSM) is one of three classical IR models. The other two are

Probabilistic IR (PIR) and Boolean IR (BIR). With VSM, objects (01, 02, 03, 04...) are

certain distances in vector space from the query Q. Thus, any object and query is

assigned a vector v of finite real numbers. These numbers, or weights, typically range

from 0 to 1. As the distance d decreases between 0 and Q, the object becomes more

relevant to the user's information necessity. As d increases, the object is less applicable.

VSM is the most basic of the classical IR models, and it was soon built upon using

probability.

The Probabilistic Information Retrieval model works in conjunction with VSM. PIR was

"first pioneered in the UK at Cambridge University and London's City University during

the 1970's and 1980's"1. The idea behind PIR is to use feedback from the user to further

estimate the degree of document relevance. This is another angle at measuring the

distance d. For a real world example, consider the PageRank system employed by many

Internet search engines. These systems increase the relevance of a certain page as more

users link their pages to that Web page. This PageRank system is explained in more

detail in Section 7.2. For documents, the criteria for weighting cannot rely on links.

Thus, it instead uses measures like term frequency, document length, and user feedback.

To work properly, PIR applies Bayes' Theorem to rank the relevance of documents

according to a query.

hftp://www.conceptsearching. com/conceptFAQ.htm#a2

28

Bayes' Theorem is the most significant theory regarding conditional probability to date.

It was published posthumously in Thomas Bayes' masterwork, "An Essay toward

Solving a Problem in the Doctrine of Chances" (1764). The theory "relates the 'direct'

probability of a hypothesis conditional on a given body of data, PE(H), to the 'inverse'

probability of the data conditional on the hypothesis, PH(E)" 2. Bayes' Theorem is stated

as:

PE(H)= [P(H)/P(E)] Pu(E) (Equation 2)

Or written in a different form:

P(BIA)P(A)
P(AIB)=

P(B)

Using natural language, the second form says: P(A I B), the probability that event A will

occur given that B has already occurred, is equal to the probability of A occurring given B

has occurred, multiplied by A's occurrence probability, all divided by the probability of

event B. Programmers use this theorem in PIR to ascertain the weight of query terms and

the relevance of those terms in a given set of documents.

The third classical IR model is Boolean Information Retrieval. This was the first adopted

model and is the most widely implemented. It is based on Boolean Logic which was

originally developed by George Boole in the 1800s. It uses primarily the AND, NOT,

and OR operators to conduct retrievals, and the model returns all results without

weighting relevance. Unlike PIR, it does not employ a filtering or probability mechanism

to limit the results. Thus, in a large database, the results can be overwhelming.

2 http://Dlato.stanford.edu/entries/baves-theorem/

29

Beyond Vector Space Modeling, Probability Information Retrieval and Boolean

Information Retrieval, there lay many other unconventional models. First are non-

classical models which include Information Logic IR, Situation Theory IR, and

Interaction IR. Information Logic relies on a logical inference process in retrieval.

Situation Theory proposes an Information Calculus for IR. Finally, the interaction model

focuses on the interaction between the query and interconnected documents. The second

group involves alternative models. This group includes the Fuzzy Model, the Cluster

Model, and the Latent Semantic Index Model. The Fuzzy Model is like BIR except it

represents a document with a fuzzy set of terms (a set of terms and their function). The

Cluster Model is just like VIR, but it groups documents together to speed up the retrieval

process. The Latent Semantic Index Model (LSI) is also like VIR, but it weighs the

vectors differently. LSI uses artificial concepts to better capture the general meaning of

documents. The third and final group is Artificial Intelligence. This method is code

intensive and is very difficult to implement. Essentially, it uses Knowledge Bases (KB)

and Natural Language Processing (NLP) to enhance an IR system. Al is not a system

that is easy to create from scratch in three months, especially with programmers lacking

experience with Artificial Intelligence. Thus, this model was immediately out of the

project scope.

With these models defined and investigated, a general idea of the type of Information

Retrieval System that could be implemented in three months was assembled. But IR is

only useful in the database searching portion of the I-Document project. An Information

30

Extraction System is better suited to search through and classify documents. Thus, IE is

a more pertinent and important subject of investigation given that I-Document revolves

around the automatic classification of documents.

3.3 Information Extraction Overview

With conventional IR systems concerned with a basic keyword search and ranked

retrieval, more sophisticated tools are needed to automatically analyze unstructured

documents. The effort to find these precise tools is found in Information Extraction. IE

Systems analyze documents and present the appropriate information to a user's request.

During the eighties, the first attempts at these systems began in the financial field.

Companies created systems like ATRANS, JASPER, and SCISOR to extract facts from

databases that related to a certain company's earnings and financial history. These

systems were a huge step, but their major shortcoming was not being able to adapt to new

scenarios. Today, Information Extraction Systems are developed for a broad spectrum of

e-document intensive companies, governments, and academic communities. These

systems range in their framework, but most follow two rudimentary approaches:

knowledge or learning.

When designing an IE System, the two approaches to choose from are the Knowledge

Engineering Approach and the Learning Approach. The Knowledge Approach has a

solid, unbreakable set of rules for marking and extracting information. The creator of the

system establishes these rules. Thus, the system's success relies entirely on the expert

31

knowledge of the programmers. They set the system's rules for extraction, and

continuously refine it based on test cases and their own intuition.

The Learning Approach is the other path programmers can follow when designing an IE

System. This approach has a framework with master rules, but the system adapts its

extraction rules from interaction with users. Thus, this approach begins like the

Knowledge Engineering Approach, but it learns and improves itself without expert

interaction. Currently, a hybrid system is in development, but progress is slow.

Once an approach is decided upon, the designers then need to clarify methods of

extraction. These methods pertain to data mining and text processing, and they will be

discussed in the fourth section of this thesis.

3.4 The I-Document System

For the I-Document system, one type of model does not satisfy the design specifications

since there are multiple searching aspects in the program and service. I-Document needs

an Information Retrieval System to find relevant documents according to a query and

return them to the searcher. On the other hand, it also needs an Information Extraction

System to analyze documents and extract relevant information so that those queries are

successful. Thus, an IR System is utilized for the database search and a simplified IE

System for the automatic classification. This type of split in the design is reasonable

because the classification extracts data from documents while the database search

retrieves documents. This split also gives the students within the project the

32

opportunities to learn about each implementation and try to apply their fundamental

concepts.

For the Information Retrieval System, I-Document uses a Boolean model. This is the

most widely adopted model, and is easier to code in conjunction with Microsoft Access.

Unfortunately, the downside to using BIR is that it retrieves all documents that fit a

query. Currently, there is no filtering of results or ranking system employing Bayes'

Theorem to stress more relevant documents. This is an area that should be changed for

future versions of the program, especially as the base of documents grows.

For the Information Extraction System, I-Document uses the Knowledge Engineering

Approach. This approach is simplified because it only focuses on extraction procedures.

The presentation of relevant information pertaining to a user's request is left for the IR

System. The Learning Approach is not employed because it involves too large of an

effort for a three month project. Designing a learning system coupled with artificial

intelligence is not in the scope of the original design, and programming it would have led

to an extended time frame.

With the Knowledge Engineering Approach, I-Document's extraction techniques rely

entirely on the programmers' expertise. For data extraction, storing keywords and

primary phrases is sufficient in describing a document. Thus, in the analysis process, a

system with text summarization along with an investigation of file properties is used.

33

With this approach, a system was successfully designed, guided by the original concepts

and theories, to automatically classify documents.

34

Text Summarization

4.1 Text Summarization Overview

A significant part of classifying documents for the project was a text summarization. I-

Document utilizes a simple algorithm to search the full text of a document, extract

keywords, and only keep those keywords that are not common in the English language.

Thus, this is an effort to get a short list of words that describe the theme of each paper.

Fundamentally, the algorithm tries to get at a reduced representation of the content.

There are several ways to handle this part of the project. Focusing on framework, the

application takes an uncomplicated approach to the algorithm just to ensure it works

before the deadline.

4.2 Summarization Research

To begin the summarization code, an investigation of the layout of documents and their

context is needed. The performance of the text summarization depends on term selection.

Thus, a short, precise list of terms is required to represent the overall text. The fewer the

terms extracted, the less intensive the application is on time and memory. With this

selection goal in mind, selection research then orientates itself around two types of words

in a document: tokens and types.

Tokens are running words of a document. They occur more than once and typically

represent the topic of a paper. These words are not common in the English language.

Thus, their frequent use in a document indicates their importance in divulging its

purpose. These are the most desired keywords in the extraction. Types, on the other

35

hand, are individually recurring words that are common in the English language (i.e.

"the"). They have no value in signifying a document's primary message. I-Document's

algorithm will be looking for frequent words, so these will be picked up over and over

again. Therefore, a stop list was needed to halt these types from being stored as

keywords.

A stop list is used by virtually every text retrieval system and contains common words in

a language. These words are expected to be used multiple times in speech. When a

search is conducted, the computer system refers to this list to see if a frequent word

should be used in classifying a text. Term frequency is computed through the following

formula:

Fki = nki / Ni (Equation 3)

In this frequency formula, F is the relative term frequency, n is the number of

occurrences of term t, and N is the total number of terms in a document. The higher the

frequency, the more common the term is in that particular text. Very common words

provide little meaning. While "the" may occur in a text the most, it will not tell you

anything about the point of a document. Thus, the most common words in the English

language are included in the stop list. A less common token, however, has deeper

meaning.

A systemic way to retrieve tokens is outlined in the following steps:

1. Exclude all stop words (types)
2. Stem the rest of the words to get at their linguistic roots (See Section 4.4)
3. Compute these words' frequencies
4. Rank the words according to term frequency

36

5. Exclude very high and very low frequency terms
- Have thresholds in place to determine high and low limits
- Remaining terms are document identifiers

6. Document identifiers are the desired tokens

Once a stop list and term frequency method is in place, a processing environment is then

required.

There are two basic types of processing environments for IE Systems: Deep Text

Processing (DTP) and Shallow Text Processing (STP). DTP processes all interpretations

and grammatical relations in a document. It is highly complex and returns a large

number of keywords and phrases. Being so complicated, it is code intensive. It is also, at

times, not necessary for many summarization systems due to the time and cost it takes to

implement. STP is less complete than DTP, but it is simpler and less time-consuming. It

does not look into the relationships of words, but an STP system does retrieve an efficient

number of keywords. Often, these engines prove to be just as accurate as DTP systems.

Thus, from the start of programming, efforts were focused on an STP engine to drive the

classification.

4.3 I-Document's Text Summarization

Following the fundamentals employed by Shallow Text Processing Environments, a

basic system for extracting keywords was designed to represent shared documents. The

code for this summarization algorithm currently only works for a txt document, but it can

be easily extended into Office documents and text files from different operating

environments. Once the code regarding opening and reading a file is discovered, the

37

algorithm can be applied. The algorithm is not advanced, but it accomplishes the project

goal for extracting keywords.

The algorithm opens up a document and looks at the frequency of each word in that text.

Left with a ranked frequency list, the system first automatically eliminates words that are

three letters or less. This is a crude method for extracting keywords, but it is higher

recommended by summarization texts. Very rarely are keywords two or three letters

long, and using longer keywords is acceptable for the purpose of this application. Once

the short words are eliminated, the others are compared to two stop lists. These lists will

eliminate any common words.

For I-Document, two stop lists were created to distribute the searching process. One is

located on the local client side. It is a very small list that contains about thirty-five

extremely common words like "the", "that", "she", "with", "yes", and "and". The second

list is located on the server. This server list currently contains seven hundred and ninety

words, and it can be easily modified while the local stop list cannot. Splitting the stop list

is not necessary, but it demonstrates the power of Web services and distributive

computing.

Splitting the stop list also carries a huge advantage. The database operator can modify

the primary stop list on the server without having to change the I-Document application

code. The operator has access to this second list, and he can add or subtract words as

time progresses. The stop list words were collected from a page containing the thousand

38

most common words in the English language. Appendix 2 contains the complete stop list

used in I-Document. Further research and changing speech patterns may prove that this

list needs to be modified. This is why the main list is left accessible to authorized

administrators.

Once the most common words are eliminated using the local stop list and then the server

list, the system looks at the frequency of the remaining words. These words are the

keywords, and the system stores the four most frequent tokens of this group. This

number can be extended to as many as are useful.

4.4 Improvement of the System

I-Document's method of text summarization is not perfect. It can be enlarged and made

more complex to optimize classification techniques. Looking into several possible ways

of extending the application, some improvements were seriously considered.

Unfortunately, the time and computing resources to implement these improvements was

not extensive enough. These possible improvements range from searched documents,

languages, stemming, query expansion, and storage.

The first area of improvement is the searched document base. Currently, I-Document

only summarizes the text of txt documents. This is not enough. Including all Office

documents would take some time, but the benefits would be great. Analysis of Word and

PowerPoint documents could be performed exactly like txt documents. With Excel

spreadsheets, the focus would be on word extraction and not number frequency. Some

39

problems may arise, though, if the spreadsheet contained no words. Thus, some type of

word check would first need to be in place. Unfortunately, too many unexplainable

errors were encountered while opening multiple Office applications. I-Document was not

solid enough with these ideas. It was suggested to examine this problem with Office

2003, but the cost of the software was not in the scope of the project.

Once Office is integrated, other files like Adobe and those from other text processing

applications could be adopted. With some file types, ignoring a text summarization

unfortunately would be forced because of the complicated context. For example,

searching through the code of computer programs would be very difficult. A different

stop list would have to be created to include system words and the specific code

summarization algorithm would be limited to investigating and ranking words regarded

as programmer comments. Unfortunately, programmers rarely write comments to outline

their entire code. This effort would ultimately prove to be a waste of effort and time.

The second area of improvement involves languages. Currently, I-Document is only

geared toward English. While English speakers are the largest group of Internet users,

the number of non-English speaking Internet users is growing rapidly. It is estimated that

by 2005, non-native English speakers will represent seventy percent of the online

community. The problem with using a Shallow Text Processing System is that it is

specifically tailored for one single language. It is very difficult to move this environment

to multilingualism. The main effort to search through documents in another language is

called Cross-Language Information Retrieval (CLIR).

40

CUR efforts are growing, but it is very difficult to switch meanings from one language to

another. Often, a language expert needs to step in to verify translations for current

systems. In CLIR, two architectures have been explored and coded. The first is a query

translation system. This entails translating a query into the language of the documents.

Thus, to implement this feature, it is necessary to modify the query code of I-Document

and the words in the stop list while keeping the search algorithm unchanged. The second

architecture is a document translation system. This method takes original documents and

translates them into the system's primary language. This method is over the top for I-

Document's purpose. It does not need to translate a document, extract its English

keywords (which may or may not have been translated correctly), and store those tokens.

Query translation would be easier and more efficient because it only translates a few

words. Given that CUR would require significant code modifications and the storage

space for a multilingual dictionary, it is not foreseen as a feature of I-Document in the

near future, but it is an ambitious thought.

The third area of improvement is stemming. Stemming is the process of reducing words

to their roots. This feature into would work very well with text summarization and

searching for documents. For text summarization, the system would take all words, stem

them, and compare them to a stop list. For searching, I-Document would take a user's

specific query and stem them as well to match the stemmed words in the database.

Stemming will create a more powerful search term and better query results. The best

known stemming algorithm is Porter's Algorithm. It was first described in 1980 and has

41

been widely used and adapted ever since its inception. There are even versions of it on

the Internet available in multiple computing languages, including C# (a version is

available at the Web site: http://www.tartarus.org/~martin/PorterStemmer/csharp2.txt).

Putting this into the application would involve a simple code modification as long as the

available code is correct.

The fourth area of improvement is query expansion. This extension typically uses a

thesaurus to discover the relationship between words. Thus, if a user types in a query that

does not match keywords in the database, but it is related to certain keywords, the query

expansion system could pull up those related documents instead of retrieving a null set.

The problem with this feature is that it requires the storage of a thesaurus and the

construction of a relational system. One common way around this problem is using

WordNet. WordNet is a Princeton University project that organizes "English nouns,

verbs, adjectives and adverbs.. .into synonym sets, each representing one underlying

lexical concept"3 . Using these sets, called synsets, the query and possibly the text

summarization portion of I-Document could be extended.

The fifth area of improvement is broadening storage. I-Document only works with

Microsoft Access and SQL Server on individual laptops. Thus, space and computing

power is limited. Pushing this onto a server (or servers) would allow an increase in the

table size and the utilization of greater processing power. The system would then have

the ability to store more keywords and whole key phrases. It could also work with

multiple stop lists according to the document type. With enough storage space,

3 http://www.cogsci.princeton.edu/-wnl

42

dictionaries or thesauri could be included on the server to expand queries and

summarizations. Currently, the I-Document code is only 10Mb, so there is much more

room for improvement.

4.5 Summarization Conclusion

There are many ways text mining and summarization can be improved. This is why

Natural Language Processing is such a hot field in computer science. It is a relatively

new field that has enormous potential. This section's review just focuses on five areas

that are potential additions to I-Document. The problem of parsing a document is not an

easy one to answer. To generate a highly accurate full text understanding system is seen

as impossible with existing technology. I-Document is a start. It utilizes light-weight

linguistic analysis tools that are sufficient for extraction. This project was unfortunately

limited by money, hardware, and time that hindered the realization of a complex

summarization system.

43

Metadata

5.1 Metadata Introduction

Extracting metadata from files is the final part of the application's classification scheme.

Metadata is defined as information about information or data about data. For I-

Document's purposes, it is user defined information describing each document in a few

keywords. Since I-Document only uses keywords and phrases to represent entire

documents, using metadata is a vital piece to the software. So far, the system has

automatically classified each document. Now, it will utilize each client to define their

own documents to better classify them.

Metadata is quite young when compared to the age of Information Retrieval and

Information Extraction. Metadata begin in 1995 with PICS, the Platform for Internet

Content Selection. Then, the Dublin Core Metadata Initiative (DCMI) was created in

March 1995 in Dublin, Ohio at a joint workshop between people from the NCSA and the

OCLC. At this original workshop, more than fifty people described the beginnings of a

core set of semantics to categorize the Web. Adopting these metadata standards would

make searching and retrieval operations much easier and efficient. Since 1995, DCMI

has held several workshops across the world to optimize those standards and promote the

widespread adoption of metadata-based documents and retrieval systems.

5.2 Metadata Decision and Implementation

A metadata search function was designed and coded into the Web service because its

benefits significantly added to the overall classification. This code was installed on the

44

client-side Web service with the rest of the classification functions. Given the right file,

the service will extract certain metadata items and store them in the database. The search

is currently set for Microsoft Office documents. Office has a metadata feature that allows

users to write in some keywords into their document properties. To access this facet by

hand, users can click "File" and then the "Properties" when an Office document is open.

By clicking the "Summary" tab, a user can see the metadata types offered. They range

from author and title to company and comments. Users can input what they need to

describe particular document and save the information. There is also a custom feature

that allows users to save more specific and random metadata information like department,

language, and publisher.

To first get metadata extraction working, the programming was researched and a

preliminary piece of code was found at Microsoft's support site

(http://support.microsoft.com). This code was heavily modified to work with I-

Document. A large portion of this resulting code is included in Appendix 1. The

function currently grabs the title, author, subject, company, keywords, and comments

from Word documents. I did not feel the other metadata items (regular and custom) had

any value with classifying documents. They were just overkill.

Unfortunately, this metadata option does not work too well with Office XP as it stands.

To solve this problem, Primary Interop Assemblies (PIAs) must be downloaded and

installed to give necessary controls to ASP.NET. PIAs allow ASP.NET to access the

metadata in Office XP. I-Document then must have launch permissions for Office

45

applications to enable it to open and inspect Office documents. With these steps in place,

the Web service could now open and inspect metadata properties. Office 2003 is

supposed to have these features already set, but as stated before, the project was not

granted the necessary funds for this software.

To enable the user to view and modify his metadata, a tab (Figure 5.2- 1) was added on

the client-side application to change the metadata the Web service is extracting. The

setup is self-explanatory. Users can open a file through I-Document and its metadata will

appear in a listbox. The user then chooses to revise these items and save the changes.

Through utilizing the user's information, this tab becomes an effort to get them involved

with the classification to better understand metadata and ultimately improve the

documents' representations in the database.

ManScisenI Searct~taern Metadala He*

Automatic Classification of Documents using Web Services in a
distributed fashion

OPEN DOCUMENT

Please choose aWord Me
<<<<<<<File laioceion >>
Near 15 SOOBRogectidoc Size: 33792
Creaed orc 11/14/ A11:5el6Al Last Modfied 3/18/2004 337:58 PM
TheT Meir -1 :568
The Subjgect is:
The Ati s: Brandon, Hohrs
The Cowmerr, is: Intert
The Key.words mle. Inser New turicmetion
The Commeerts ate: Inseet New Inorrealon
New metadeat: K .erwords : 15 568 Project

CHOOSE A PROPERTY TO MODIFY METADATA

Keywords -II UPDATE META
INSERT NEW INFORMATION BELOW

115.568 Project

NOTE: Seip cM*e. or Word Docuwents on4.

Figure 5.2- 1: I-Document Metadata Tab

46

5.3 Metadata Extension

Extending metadata will be a challenge, but hopefully as DCMI promotes its standards,

more and more applications will utilize metadata to describe documents. Attempts were

made to code something for Adobe and txt files, but too many errors and time constraints

were encountered. An easy fix to this problem is allowing the user to describe every

document himself and store this information. This method is commonly used for online

libraries that accept documents from external clients. Users submit their paper with basic

descriptions. These descriptions are often translated into XML which imposes needed

structural constraints. While this would be an interesting solution, it would not hold up in

I-Document's environment. Classification is continuously performed, and records are

erased when users log off. Thus, clients would have to input and save this metadata

information every classification cycle. This would be an unnecessary hassle. The current

method works behind the scenes with optional user involvement.

47

Technical Overview of I-Document

6.1 I-Document

Employing Information Extraction and Information Retrieval techniques, along with

mining file properties, text keywords, and metadata, I-Document is able to automatically

classify documents and retrieve other users' files based on specific queries in a P2P

environment. In this section, a review is given of the main technology behind the

application and specific descriptions of each piece of the software.

6.2 Underlying Technology

I-Document was primarily created in Microsoft Visual Studio .Net 2003. With all

members of the project group just completing a class in .Net and C#, this platform was

the obvious choice. There were also secondary reasons for choosing this computing

language and the .Net framework. .Net comes with many benefits and functionalities that

compliment I-Document's visions and goals.

6.2.1 .NET and ASP.NET

Microsoft's .Net framework "provides a highly productive, standards-based, enterprise-

ready, multilanguage environment that simplifies application development, enables

developers to make use of their existing skill set, facilitates integration with existing

software, and eases the challenges of deploying and operating Internet-scale

48

applications" 4. This initiative is very broad and revolutionary. Its improved features

include:

- High scalability
- Support for all CLR (common language runtime) types
- Embrace of XML and SOAP
- Rich object model enabling several functionalities
- Easy language integration
- Simple deployment
- Easy interface with existing software
- Greater developer control

Along with these features, the greatest advantage to using the framework was its

ASP.NET environment. This environment is a tremendous advancement in Web-based

development. It allows programs to communicate over the Internet using SOAP. SOAP,

or "Simple Object Access Protocol, [is] a lightweight XML-based messaging protocol

used to encode the information in Web service request and response messages before

sending them over a network" 5. By simply referencing a Web service in their program,

developers can link a local application to any insecure service (or secure if the application

is granted permission). .Net does all the rest. This is the feature that was needed to make

I-Document work efficiently. The ease of programming a Web service was the biggest

draw to using the .Net framework. The next major technical feature was the

establishment of a peer-to-peer environment.

6.2.2 Peer-To-Peer Computing

P2P computing is a type of distributed computing. Computers, often low-power clients,

are linked to aggregate processing power. Essentially, a peer-to-peer network is a loose,

dynamic network of clients. This type of computing is still in its infancy. Yet, with its

4 http://msdn.microsoft.com/vstudio/productinfo/whitepapers/default.aspx
5 http://sbc.webopedia.com/TERM/S/SOAP.html

49

revolutionary methods of communication, collaboration, and power distribution, it was an

obvious choice for I-Document's sharing environment.

There are two models of peer-to-peer computing. The first model is the pure model.

This environment enables all users to have the same capability and share responsibility.

This model is represented by the red arrows in the Figure 6.2.2- 1. The second model, or

the hybrid model, establishes a middleman to facilitate interaction between peers. This

model is represented with black arrows. I-Document utilizes the second model.

A server lies in the middle of the grid environment to regulate usage. This server

authorizes users, stores indexes, and contains the searching framework. Downloads, on

the other hand, follow more of the pure path. Using IP addresses, port, and file path,

clients connect directly to each other to send and receive documents.

Receive IP address and Download

~~R~ster

Download

Re~ r

Central web Server

Reg ster Download

client 3

Figure 6.2.2- 1: I-Document's P2P Computing Environment

50

Utilizing this type of environment creates many advantages over other types of sharing,

storage, and searching applications. The competitor comparison will be covered in the

seventh section.

6.2.3 Web Services

A decision was made early in development to use two Web services in the I-Document

application to demonstrate its power. Web services are said to be main element in the

next major IT strategy. Fundamentally, Web services are constructed on the Internet and

use standard communication protocols to enable communication between multiple

applications and devices. These standards dramatically simplify passing information and

distributing computations between multiple machines. While not a new technology, Web

services are gaining momentum in industry as they are being increasingly used enhance

existing IT platforms.

The architecture of Web services has three basic layers. The overlying layer consists of

software standards (WSDL, UDDI, and XML) and communication protocols (SOAP,

HTTP, TCP/IP). By using these commonalities, different applications can interact and

work together. The middle layer is called the service grid. This consists of all the

utilities that provide the functioning of Web services. Thus, tools include security

utilities, performance assessments, monitoring services, messaging utilities, registries,

knowledge management utilities, and reliability provisions. The final layer (the local

layer) is the application service. These services support the processes of programmed

51

Web applications. In I-Document, the application service is what the client sees and uses

on a daily basis.

The promise of Web services is intriguing. They allow organizations to move from

proprietary information systems to a more open network. They also allow once

incompatible systems to now work together in unison. The advantages of shared services

are reducing operation costs and enhancing business strategies.

6.2.4 Microsoft Office

Several applications in Microsoft Office are used with I-Document. First, Microsoft

Access stores user and document information. SQL Server is also used in conjunction

with the portal to register new users. For other programs, I-Document uses several Office

documents in the metadata extraction operation. With the right code, users can extract

certain origination information from all types of files, but with Office XP and Office

2003, there are ways to extract and modify Office document properties using Web

applications. Unfortunately, Office XP does not come with the correct assemblies to

allow ASP.NET to access these properties, as discussed before in Section 5.2. A simple

download and installation of these Primary Interop Assemblies (PIAs), nonetheless,

solves this problem (download free from

http://support.microsoft.com/default.aspx?scid=kb;EN-US;328912). Microsoft Office

2003 already includes these assemblies.

52

6.3 Pieces of I-Document

I-Document is split into three basic parts: Web services, a Web application, and a

database.

6.3.1 I-Document Web Services

Web services are the heart of I-Document. There are two services: a central service on

the server and a local service on the client computer. First, regarding the central service

(Figure 6.3.1- 1), this Web service is called whenever a client desires communication

with the server. Thus, it works hand-in-hand with the database of clients and document

keywords. With this role, the central service verifies users, stores keywords, filters

common words from keywords, deletes/adds users, modifies users' indexes, provides

download (P2P connectivity) information, and searches through the document keyword

table. These Web methods are available for any application to freely use. All they need

to do is reference the Web service. For example, to check if a machine is in the database,

an application would need to set this central service as a Web reference, and pass in a

machine name and password under the isNewMachine Web method. Since I-Document

is academically oriented, free access to information is encouraged. Thus, the service is

accessible, but not the sensitive information like passwords and a list of registered

usernames.

53

Figure 6.3.1- 1: Central Web Service

The second Web service is the local service (Figure 6.3.1- 2). Unlike the central service

which is stored on the server and freely accessible via the Web, the local service is

downloaded and utilized by individual client side machines. The most important aspect

of this local service is the classifying Web method. Utilizing this method, clients classify

their shared documents using their own computing power. The service inspects each file

in the specified folder and stores its file type, creation date, full name, and author. Then,

for certain text documents, the service examines the metadata and performs a full-text

search, extracting keywords. All of these pieces of information are sent to the central

service, where it is further analyzed and stored. The other Web methods of the local

service operate as a bridge between the I-Document application and the central service.

54

L " A I

"WO,

The other Web methods on the local service simply pass on information to the server.

This information includes machine name, password, and search criteria. I-Document

takes typed information from the user, passes it through the local service and onto the

central service where the required actions are performed, and the response is sent back to

the local service and the application. For example, in searching for all documents under a

certain username, the user inputs the name into I-Document and submits it. This text is

sent to the local service and then onto the central service. The central service inspects the

database, retrieves all documents under the specified username, and returns this dataset to

the local service. The local service takes this dataset and returns it, as is, to the client

application. The local service seems unnecessary when describing these other methods,

but it was created for the classification algorithm and its functions. There was no desire

to bog down the server with this time-intensive operation. Distributive computing carries

many more advantages in the I-Document environment than basing the classifications on

the server.

55

Figure 6.3.1- 2: Local Web Service

6.3.2 Web Application

The Web application (Figure 6.3.2- 1) works on each client computer and connects the

user to the Web services listed in the above section. To activate the application, the user

first sets the cycle time and directory. The cycle time is the time interval between each

automatic classification. Obviously, with a smaller time interval, keywords sent to the

database are more up-to-date or real-time. The shared directory is a folder of documents

that the client wants to share with the I-Document community. With this information, the

user then inputs her username and password, and connects to the service. If any of the

above information is incorrect (wrong folder, incorrect password, etc.), the application

will not connect. Upon connection, the classification cycle time begins, and the

asynchronous P2P listener is initiated. This means that documents are continuously

56

classified and stored, and other users can download these documents via a P2P

connection. The other aspects of the application are available even if the user

unsuccessfully logs on to the I-Document network.

MainScreen SeachSceen I Help Metadate

Automatic Classification of Documents using Web Services in a
distributed fashion

Please specify a shaable diectora hete: ISelect a sharable diectory

Cycle Tine (Seconds)

Machine Name IPlease ente machine name hete 1

Password --

1P Addess 1PAddiess Comes Heie

Appkafion Histomy

Appication Status Appation has not started yet.

Seve's Response lConnection Not Established

Figure 6.3.2- 1: Main Web Application Picture

The other aspects of the application are the search capability, help tab, and metadata

optimization. On the search tab (Figure 6.3.2- 2), users can search for documents

according to their chosen criteria. Users are able to find documents via their type,

keywords, date, or owner. Results are returned from the database. Documents in these

results can be downloaded directly from the owner via a direct connection, or the client

can perform another search with refined keywords.

57

MainScreen SeachSceen Metadata Help

Automatic Classification of Documents using Web Services in a
distributed fashion

KeywdsI SRCH

Search

r By Document Type (Enter: doc, pdf, java)

C By Document Titles, Keywords, Metadata,

r Documents from Username

C By Date Created (MM/DD M [0Y) 3 121 /r2_004 __________

Download IC:\inetpubrwwwroc

Figure 6.3.2- 2: I-Document Search Page

The help tab simply lists any problems or errors that a user may encounter while using

the application. It also includes directions for necessary downloads and security

modifications to make I-Document work proficiently. If a user cannot find an answer to

a problem, he can contact one of the developers (information on the developers is

available on the product Web site). Otherwise, restarting the application typically solves

errors from a fully-functional application.

The metadata optimization tab (Figure 5.2- 1) is an interesting feature that works with

Microsoft Office documents. With this functionality, users can view documents'

metadata and modify that information as they see fit. This tab encourages clients to

58

update their metadata so other users are provided up-to-date information in a search.

Currently, this metadata search is only set for Word documents. Another application (or

tester program) was created that works with PowerPoint and Excel, but unknown

problems were encountered with the code transfer. Thus, this functionality is kept simple

for the first version of I-Document.

6.3.3 Database

The database (Figure 6.3.3- 1) stores user and document information. Currently, I-

Document uses Microsoft Access and SQL Server because the programmers are familiar

with these programs. Two tables on the database are used for client information. One

table lists the clients and their IP addresses (used for P2P connections). The other user

table stores usemames and password. A third table stores all document information.

This data includes keywords, file paths, user names, authors, and metadata. Each user

index is automatically reclassified and updated according to the chosen cycle time, and

this index is eliminated from the server upon the client logging off from the network.

This elimination saves space and keeps information on the server up-to-date. It also

prevents users from trying to download files from clients not connected.

59

EBID fldt VOW YnV4rt looks EWdow ti*l

Index DocT a K. Wordi Re Word2 Re Word3 Ke Word4 GlobalPath
0 ppt onceptsClass\Accenure. ppt
0 html oot\ClassifyExample\a.html
0 html pn igesign DeNw X Il fot\ClassifyExample\a.html
0 html ot\ClassifyExample\a.html
0 html Objects J reate table inDeSO view ot\ClassifyExample\a.html
0 html Tables 1 Create tableby using wizard oot\ClassifyExample\a.html
0 html * Q 41 Create table by eterig data ot\ClassifyExample\a.html
1 doc a onceptsClass\AccentureReporl. do
1 ppt * s LocaMe rio ot\ClassifyExample\b.ppt
2 doc Reports S o onceptsClass\Addendum3a.doc
2 ppt P serfo oot\ClassifyExample\b. ppt
2 pp oot\ClassifyExample\b.ppt
2 ppt 2 Macros ot\CIassifyExample. ppt
2 xml Mot\ClassifyExample\build. xml
2 ppt oot\ClassifyExample\b. ppt
2 ppl Groups oot\ClassifyExamplebppt
3 xIs Favorites onceptsClass\Ass3a-working. xis
3 xml oot\ClassifyExample\build. xml
3 xml oot\ClassifyExampl~build. xml
3 xml Wil AlU AFM Ail %,. oot\ClassifyExample\build.xml
3 xml xml xml xml xml C:\lnetpub\wwwroot\ClassifyExample\build. xml
3 xml xml xml xml xml C:\Inetpub\wwwroot\ClassifyExamplebuild.xm
4 xIs xIs xis xis xis C:\VSHAL\MT\ConceptsClass\Ass3a. xs
4 doc doc doc doc doc C:\Inetpub\wwwrool\ClassifyExample\ethics.doc

5 ppt ppt ppl ppt ppt C:\VSHAL\MT\ConceptsClass\Assignment7.ppt
5 doc doc doc doc doc C:\lnetpub\wwwroot\ClassifyExample\ethics.doc
5 doc doc doc doc doc C:\lnetpub\wwwroot\ClassifyExample\ethics. doc
5 doc doc doc doc doc C:\inetpub\wwwroot\ClassifyExample\ethics doc V

Figure 6.3.3- 1: I-Document Database

The final table is the stop list. A stop list is used to eliminate common words from being

stored as keywords in text summarization operations. Thus, common words such as

"won't", "very", "to", "an", and "think" will not be stored in the document table unless

they are stored as the metadata or the title. This database table is the main stop list that

contains about eight hundred of the thousand most popular words in the English

language. There is also a smaller list of about thirty words on the local service for the

first stage of automatic classification. Thus, keywords are collected once and analyzed

twice against increasingly specific stop lists. The location of the stop lists are separated

so the larger list can be modified by a central authority. If a certain word becomes

popular, it can be easily added to the stop list.

60

6.4 Assessment of the System

Significant testing of I-Document revealed solid results in regards to Information

Retrieval and Information Extraction. Using a small test base of eight users and seventy

documents, the system was analyzed in regard to how it would respond to searches

through the grid. Tests were also conducted to evaluate the classification algorithm's

extraction of relevant keywords.

6.4.1 Information Retrieval Assessment

Searches through the database extracted all relevant documents according to a user's

query. If a search was by username, the system would return all documents stored by that

specific user. Otherwise, if the search was by keywords, metadata, or date, and the

searched term or date was in the document table, those corresponding documents would

be returned. No variations were encountered. Small problems did arise as tests were

conducted with plural versions of keywords or misspellings. The system would return

nothing if, for instance, a client typed in "automobiles" and the only stored keyword was

"automobile". Without a stemming or auto-correction algorithm, I-Document cannot

generalize words or fix users' spelling mistakes. Thus, users must refine their searches

and check the spelling of the words.

Returning all documents that had a keyword match somewhat questions the issue of

relevance, but this is the operation inherent in a Boolean Information Retrieval System.

Implementing a weighting algorithm was not possible because time was not available.

There was also no desire from the designers to influence the returned list of documents.

61

But while the keywords may match in a search, the retrieved documents may not be what

the user is seeking. This issue of relevance pertains to the precision ratio:

P = (Relevant items retrieved) / (All items retrieved) (Equation 4)

Essentially, this formula determines the utility of the search results. This ratio is very

difficult to determine with I-Document because the test case involved a small document

base. It is also challenging to assume what a user thinks or desires. Finally, I-Document

was not coded for absolute precision. It was coded for recall.

The recall ratio measures the proportion of returned documents retrieved out of the

document base. The formula is written as:

R = (Relevant items retrieved) / (All items) (Equation 5)

By this formula, I-Document is highly successful. Any match of keywords initiates

retrieval, and the system did not pull any documents that lacked the query terms. By the

Boolean model, any match leads to retrieval because the document is considered relevant

if a query term pairs up with a word stored in the database. Unfortunately, this method

does create a high degree of fallout. Fallout is defined as the proportion of documents

that lack importance to the user conducting the search. By returning all matching

documents, most will not pertain exactly to a user's objective.

Presenting the user with all corresponding documents, despite a low or high significance

ratio, is not the optimal way of retrieval. This is especially true as the number of users

62

and documents grow. Therefore, future versions of I-Document will need some sort of

ranking system to encourage a more precise list of retrieved documents, or at least a

weighted list (more relevant documents returned at the top of the list).

6.4.2 Information Extraction Assessment

The algorithm for the document text extraction is basic, but it works according to the

needs of the I-Document system. The algorithm extracts the four most frequent words

not included in the stop list. These words may not exactly represent the meaning of the

document, but in theory they should provide a significant clue. This operation had a

100% success rate with .txt files. The algorithm did, however, take a longer time to

compile than originally expected. Classifying thirteen documents, of which three were

txt documents, took, on average, one minute and twenty seconds to complete.

The other algorithms for metadata and file properties do exactly what they are supposed

to do. They go into each file, extract significant properties, and store them in the

database. With all of these classification methods working, the meaning of the document

should come across in the database. Obviously, there is much room for improvement.

Ideas for this improvement have already been mentioned in Section 4.4, but currently the

system works according to the original design. It is supposed to begin with a framework.

More efficient algorithms can always be added. Relevance is central to I-Document. It is

central to competent communication. Thus, improvements are eventually necessary to

narrow down searches.

63

Business Competition

7.1 I-Document Competition

Competition is a problem. Information Retrieval is one of the most important research

topics in Computer Science. Thus, many companies, developers, and academics are

searching for a forefront solution. While this software is unique with the adoption of

Web services and P2P computing, it still faces heavy opposition. Four major areas of

competition are considered: standard search engines, data repositories/digital libraries,

small commercial systems, and other P2P applications.

7.2 Internet Search Engines

Many people refer to the World Wide Web as the largest library in the world. The

amount of data on the Internet grows exponentially. With such growth, fast and

intelligent tools are needed to search this vast resource, and search engines serve this

purpose. Conventional Information Retrieval techniques utilized in Web search engines,

however, are far from perfection in terms of optimal recall and precision searching.

There are many problems associated with popular search engines. First, measuring

document change takes too long. The Internet is crawled by search engine tools (called

spiders), and collections of documents and pages are gathered and stored locally. This

crawling rate can take twenty to thirty days to refresh the collection since search engines

like Google, AlltheWeb, and Inktomi have about three billion pages in their databases.

Thus, fresh information on Web sites that are updated daily (hourly for some news sites)

do not appear in search engine databases until almost a month after posting. One

64

suggested method of solving this problem is crawling Web sites that have a greater rate

of change more frequently. The other suggestion is building a system to chum through

about a trillion possible results in milliseconds (this second solution is far off in terms of

technology).

Second, Web search engines' PageRank system has flaws. Google exploits links to

measure the importance of Web sites. Thus, the more pages that are linked to a certain

site, the more important that referenced site becomes. Researchers Sung Jin Kim and

Sang Ho Lee recently discovered that the algorithm used to devise these rankings is not

always optimized. There is a problem with computing several vector-based

multiplications. There is also a problem with the concept. Programmers can take

advantage of the system to make their site more popular, or, on the other hand, they can

make a site popular under an unusual phrase (called a "Google Bomb"). In the first

situation, spammers blog thousands of pages to win the attention of Google. If

successful, the spammer's site will top the results list for a certain keyword or phrase. In

the latter situation (Google Bomb), spammers with a sense of humor popularize a site

under a single phrase. For an example, Internet users have attributed the phrase

"miserable failure" with the URL www.whitehouse.gov/president/gwbbio.html. Finally,

there is a problem associated with paid inclusion on the ranking system. Search engines

like Yahoo!, Ask Jeeves, and Microsoft allow companies to increase their rank in the

search results with their check books. Often, there are no distinguishing marks to alert

search engine users of the company that paid to be included under certain keywords.

Therefore, it is now questionable when using these sites if the results are accurate.

65

Third, classification schemes are imposed on the user. Thus, the user cannot decide if he

or she wants to search through full text, metadata, or other information. For now, many

search engines do not utilize other Web page information except full text and the link

structure. I-Document allows users to choose their method of inquiry.

The difference between I-Document and Web search engines is extensive. First,

searching and classification is pushed out to the client level. Thus, document update

frequency is real-time. Second, I-Document does not implement a PageRank system. All

results are displayed that match a keyword. Eventually, a ranking system will be

imposed that will be based on the relevancy of the document according to the search.

Monetary kickbacks will never be a part of this system. Third, I-Document combines

multiple document representations to accurately classify documents. Users can choose

which of those representations they wish to utilize.

7.3 Data Repositories/Digital Libraries

The use of data repositories and digital libraries is slowly growing. In this architecture,

entire documents are all stored in a central location. This location offers services such as

submission, searching, and retrieval. The collection of documents is organized and the

entire document base is stored digitally. Some real world examples of such systems

include DSpace, Phronesis, and small intra-company server systems. Of course,

problems arise with large, server-based storage systems.

66

The first obvious problem is space. A large physical space is required to store a

collection of documents. Such size brings with it issues regarding an expensive technical

infrastructure. There is also a problem attributed to scalability. By nature, repositories

are designed to grow and remain effective as they increase in volume. However, with

greater usage, query times slow down and available space quickly decreases.

A second problem surrounds maintenance activities. Documents are placed in libraries

and repositories and can remain there well beyond their age of relevance or use. Storage

systems do not eliminate data unless directed to do so. Users can simply forget or not

care to replace their older documents with up-to-date versions. This eliminates useful

space and does not assist efforts toward useful data extraction.

A third issue is the proper management of intellectual property. Public and private

repositories need some system in place to identify confidential, copyrighted, and

published material. Within companies, there are security issues over private data. A

common problem is discovering how to limit access to certain documents in the server.

Restricting access to documents and securing digital rights will continue to be a problem

unless free access to information is imposed.

A final problem concerns server failure. If the central storage system shuts down, or

worse, is exposed to a virus and experiences data corruption, necessary information can

be lost when it is needed the most. Major corporations lose thousands of dollars when

their central server temporarily shuts down. Imagine the cost of losing the stored

67

information. Thus, backup systems, virus protection software, and reliable components

are necessary for the success of the repositories. This simply equals more money to

provide safety of mind.

The I-Document application has several competitive advantages over repositories. It first

does not require a large physical space since all documents are stored and searched

locally. Maintenance is not a problem with automatic updates. Intellectual property is

currently not a concern because all shared information will be freely accessible for the

academic version of this product. Central failure is the only matching problem with

repositories. However, the only information backup required is for registered user

information, and the Web service can be quickly transferred to another server. Finally, I-

Document's technical infrastructure requirements are not extensive or expensive in

comparison to digital libraries and data repositories.

7.4 Small Commercial Systems

Small commercial systems are hard to contrast against since there are many competitors

in the text-mining market, and many of them take different directions in their solutions.

Through extensive researching, four primary examples of information retrieval

companies are gathered for this comparative section: Teragram, Temis, Cymfony, and

conceptSearching.

These companies have similar visions and technologies. They all provide leading

technologies and services for extracting key information from unstructured documents.

68

Thus, there customer base amounts to the same group: businesses, corporations, and

governments. Teragram Corporation specializes in linguistic technologies along with

search and retrieval. Temis' software solutions "enhance unstructured information

analysis" 6. Cymfony has powerful extraction tools and provides natural language

processing, all at real time. They also tend to focus on the media customer segment.

Finally, conceptSearching uses probability theory to extract and rank the relevance of

information. These companies, and several like them, all provide information extraction

solutions for those who can afford it.

I-Document, frankly, cannot compete in terms of technology. Private companies have

greater resources and deeper pockets. I-Document is a framework that provides a free

academic solution to automatic classification and information retrieval. While

commercial systems have the assets to provide multiple and extensive solutions,

academic attempts often only focus on one area of research. Money, expertise, and time

are limited in academic attempts. Thus, corporate competition is a force that must be

ignored for now.

7.5 Other P2P Applications

A great advantage with peer-to-peer computing lies in distributing the load on a given

machine. Thus, files can be stored on different systems and shared, or individual client

machines can be harnessed to run in parallel (SETI@home for example). With its

overwhelming benefits looming to be tapped, many players are getting into this

69

6 http://www.temis-group.com

development game. The players can be split into two major groups: media focus and

industry.

The applications focused around media make up a very long list. Examples include

Napster, Kazaa, Morpheus, BearShare, LimeWire, and Gnutella. These efforts primarily

concentrate on sharing digital music, videos, pictures, and software. They do not center

on documents, and they do not incorporate a classification medium.

Two of the big industry players are Microsoft and Sun. Microsoft is developing Farsite, a

"serverless, distributed file system... [where] computers collaboratively establish a

virtual file server that can be accessed by any of the clients" 7. Sun is working on a

similar system called JXTA (Project Juxtapose). JXTA is a set of protocols centered on

Java that establishes a virtual network between peers. Both Microsoft and Sun's systems

are in the preliminary stage, but once improved and stabilized, they should have a

revolutionary effect on computing. Applications for these systems, along with the

optimization of the frameworks, are in the planning and engineering phase.

With I-Documents text and classification focus, it stands out among the other developed

P2P systems. I-Document is geared toward education and research, not music. I-

Document also stands out with its .Net infrastructure, enabling the incorporation of

multiple languages and platforms.

7 httD://research.microsoft.com/sn/Farsite/overview.htm

70

Business Competition Models

8.1 Attacking the Market

Knowing the competition, it became much easier to analyze the market and write a basic

strategy for attacking it. If this project group has the time and resources to release I-

Document to the public, we would do so in a way to ensure the most success. The release

would take into account the customer segmentation, competitive advantages, and driving

business forces.

8.2 Customer Segmentation

The market base, in terms of I-Document, is split into three main groups: education,

public, and corporate. I-Document's release would first begin with a free distribution to

the academic bucket of users since this application is geared for academic and research

documents. Thus, its use and popularity would be built at institutions like the

Massachusetts Institute of Technology. M.I.T.'s Courseware initiative is an optimal

place to launch since Courseware's use is worldwide. Students could share class

documents with each other and external users in an effort to expand understanding of the

material. This will also work well in fostering an electronic mentor environment.

Once I-Document is established at M.I.T., its functionality would be extended before

pitching it to other universities. To gain revenue, advertisements can be added to the

Web site and the product, but I-Document will always remain free in any academic

setting. If money is needed for development, the order of financing options would move

from self-financing to angel funding and lastly venture capitalism. From universities, I-

71

Document will naturally gain public scrutiny. A public release strategy may not be

necessary if it has enough academic fanfare.

With the success built from the educational and public markets, a focus would then be

placed on the corporate segment and the money that comes with it. There are several e-

document intensive businesses (law firms, consulting companies, manufacturers, etc.),

and many of them have an interest in relevant data extraction. Essentially, I-Document's

business strategy would shift from free public access to private, customizable access.

The company would become a software creator, a consultant, and a service provider.

Reengineered and enhanced versions of I-Document would need to be created to offer a

secure, portable solution that works real time in company networks and beyond firewalls

(for the traveling employee). If this market segment is reached, the road would get

bumpy, but the profits would be tremendous.

8.3 Competitive Advantages

There are three main factors to acquire and maintain a competitive advantage:

technology, differentiation, and cost. Technology must stay ahead of the curve. I-

Document's business would revolve around nonstop research and the integration of

proven theories. Code to interconnect new devices and operating languages would also

need to be infused to extend the application's reach. This is the whole point of

distributed computing. I-Document needs to work successfully across multiple platforms

to be universally accepted and favored.

72

The degree of differentiation must be above the norm to maintain specialty. There is

already an existing need for I-Document, but it needs to stand above the crowd of

competitors. This is achieved through a solid product, popularity, and a service niche.

Automatic classification through Web services and P2P computing is the niche.

Finally, pricing must be competitive. At first, the pricing is on target with a zero dollar

cost. This builds a user base. For the corporate deployment, the price tag will go up

significantly, but it should not go beyond the competitors' prices. Below is a chart

displaying the competitive advantage by looking at differentiation and relative costs. I-

Document is represented by the circle.

Competitive Advantage

Makntan SpecUky

High

Degi.e of

Low

High Relative Costs Low
Figure 8.3- 1: I-Document Competitive Advantage Chart

73

8.4 Business Forces

The driving forces behind I-Document can be summarized by the modified 5-forces

model (Figure 8.4- 1). Surrounded by the strategic business unit, there are five main

considerations for a business venture. First, the possibility of new entrants is high since

the cost to enter the automatic classification/information retrieval market is low. In

addition, there are many existing competitors. Thus, the I-Document management must

focus on the strategies explained in the competitive advantages section.

Second, the I-Document team must worry about the customer. It must lock in education

institutions and then work on corporate customers. I-Document only entails a localized

exploitation in business transformation. This means that it will cause a minimal process

change of operations. Customers must see that it is a minor change to their computer

networks, but at the same time, it has enormous potential. It will enhance their operations

and business practices.

The third area of concern is the supplier. There is currently one main supplier -

Microsoft. While this is not usually a good aspect of this force, Microsoft is not expected

to break up any time soon or dramatically increase its prices. Thus, this segment is not a

concern.

The fourth force, which is not represented in Figure 8.4- 1 since the figure is the modified

diagram, represents the degree of rivalry. Firms fight for a competitive advantage over

other companies. This rivalry depends on the concentration and the cutthroat nature of

74

the industry. Regarding concentration, there are a couple large firms and several small

firms in Information Extraction. Despite these few large firms, this industry does not

have a monopolistic environment. The total number of firms is also not overwhelming -

decreasing the concentration level. Thus, the concentration level is at a medium rating.

There is also a low level of intensity in terms of pricing. Overall, the strength of rivalry

is not high in the information retrieval market. It is a mid-level force.

The fifth and final force is new products and services. This links with the customer force

and demonstrates the benefits I-Document will deliver. Using new technologies (Web

services, P2P, and .Net), I-Document enhances the operation of business and relevant

information retrieval. These technological choices, however, are not completely

strategic. They are publicly available, and private companies are gaining rapid interest in

their benefits and use.

75

5-Forces
New

Entrants/
Competitors

*Ward off competition
through price
.Different customer focus

Big Threat

Supplier 1I.

*Microsoft
"MIT
0Limited, but available
OLittle bargaining involved

Strategic
Business

Unit ,

Customer

*Lock in academics
*Focus on students
*Eventually move to
industry

AIM

Products / Web Service Infrastructure

Services "Enhance market operability
increase mobility

"Possible threat
Figure 8.4- 1: 5-Forces Modelfor I-Document

8.5 Competition Conclusion

Through the I-Document team's focus on customer segmentation, competitive

advantages, and driving forces, the company will be initially prepared for transferring I-

Document into a public venture. This release is unlikely, however, since the original

team is likely to split up after graduation. We have all taken jobs in different industries

across the country. Thus, another group would need to take on this endeavor.

76

Conclusion

9.1 Thesis Conclusion

The main objective of this thesis project was to code a fully operational Web application

that automatically classifies documents utilizing scalable, distributive computing, share

this classification across a grid of users, and provide a method for searching through and

downloading these documents via a peer-to-peer connection. I-Document is the result of

this goal. In the process of programming I-Document, which took a full three months,

investigation of current Information Retrieval, Information Extraction, and text

summarization techniques was also required to create a competitive and advanced

application. While a productized version of this vision was not attempted, I-Document,

nonetheless, provides a solid framework for classifying and freely sharing digital

documents.

77

References

Abramowicz, Witol. Knowledge-Based Information Retrieval and Filtering from the
Web. Boston, U.S.A.: Kluwer Academic Publishers, 2003

BCS-IRSG European Colloquium on IR Research (24t : March 25-27, 2002 : Glasgow,
Scotland). Advances in Information Retrieval. Fabio Crestani (ed.), Mark Girolami
(ed.), Cornelis Joost van Rijsbergern (ed.). Berlin, Germany: Springer-Verlag, 2002

Brain, Marshall. "How Boolean Logic Works". HowStuffWorks, Inc.
<http://computer.howstuffworks.com/boolean.htm>. 2004

Bray, Hiawatha. "Paying for Listing with Search Engines". Boston Globe, Page C3.
March 8, 2004

Center for Intelligent Information Retrieval. "NSF Digital Government Project". CIIR.
<http://ciir.cs.umass.edu/proiects/>. 2004

CICLing 2003 (2003 : Mexico City, Mexico). Computational Linguistics and Intelligent
Text Processing : 4 International Conference, CICLing February 16-22, 2003.
Alexander Gelbukh (ed.). Berlin ; New York: Springer, 2003

conceptSearching. "Information Retrieval (IR) system based on the Probabilistic Model".
conceptSearching. <http://www.conceptsearching.com/conceptFAQ.htm#a2>, 2004

Cymfony. Main Web Site. Cymfony, Inc. <http://www.cymfony.com/>. 2004

Dominich, Sandor. Mathematical Foundations of Information Retrieval. Dordrecht;
Boston: Kluwer Academic Publishers, 2001

DSpace. "MIT's digital repository". MIT and Hewlett-Packard.
<https://dspace.mit.edu/index.isp>. 2002

Dublin Core Metadata Initiative. "History of the Dublin Core Metadata Initiative".
DCMI and OCLC Research. <http://dublincore.org/about/history/>. 2004

Engenium. "Engenium Semetric Overview". Engenium. <http://www.engenium.com>,
2004

Farsite. Microsoft Corporation.
<http://research.microsoft.com/sn/Farsite/overview.htm>. 2004

Google. "The Basics of Google Search". Google.
<http://www.google.com/help/basics.html#stopwords>. 2004

78

Grehan, Mike. "Google PageRank Lunacy". Search Engine Watch.
<http://searchenginewatch.com/searchday/article.php/3319461>. March 4, 2004

Hagel III, John and Brown, John. "Your Next IT Strategy". Harvard Business Review,
Pages 105-112. Harvard Business School Publishing Corporation: October 2001

Johnson, Steven. "The (Evil) Genius of Comment Spammers" - Googlemania. Wired
Magazine, Page 119. March 2004

Jones, Jerry. "Vocabulary Workshop: 1000 Most Common Words in English". About,
Inc. <http://esl.about.com/library/vocabulary/bl1000 list 1.htm?PM=ss 14 esl>. 2004

Jones, Susan. Text and Context : Document Storage and Processing. London ; New
York: Springer-Verlag, 1991

Joyce, James. "Bayes' Theorem". The Stanford Encyclopedia of Philosophy (Winter 2003
Edition). Edward N. Zalta (ed.).
<http://plato.stanford.edu/archives/win2003/entries/bayes-theorem>. 2003

JXTA. "JXTA, Sun Microsystems' project". PC Magazine.
<http://pcmag.dit.net/article.php?id=EpEuZEplyVFwMWqUlP>. Tuesday, February 26,
2002

JXTA. "Project JXTA". Sun Microsystems, Inc. <http://www.jxta.org/>. 2003

Malone, Michael S. "Surviving IPO Fever" - Googlemania. Wired Magazine, Page 116.
March 2004

Mangalindan, Mylene. "Yahoo Search Results to Include Paid Links". The Wall Street
Journal, Page D1. Tuesday, March 2, 2004

McConnell, Steve. Rapid Development. Redmond, Washington, USA: Microsoft Press,
1996

McHugh, Josh. "It's an Ad, Ad, Ad, Ad World" - Googlemania. Wired Magazine, Page
123. March 2004

McKay, Bain. "Leveraging corporate knowledge through automatic classification". Zatz
Publishing. <http://www.dominopower.com/issues/issue200002/autoclass001.html>,
2004

Microsoft Corporation. "HOWTO: User Automation to Get and to Set Office Document
Properties with Visual C# .NET". Microsoft Corporation.
<http://support.microsoft.com/?kbid=303296>. December 15, 2003

79

Microsoft Corporation. "INFO: Microsoft Office XP PIAs Are Available For
Download". Microsoft Corporation.
<http://support.microsoft.com/default.aspx?scid=kb;EN-US;328912>. December 15,
2003

Phronesis. "Phronesis Project". Technologico de Monterrey, Campus
<http://copernico.mt .itesm.mx/phronesis/project/Default.html>. 2004

Monterrey.

Porter, Martin. "The Porter Stemming Algorithm".
<http://www.tartarus.org/-martin/PorterStemmer/>. 2004

SOAP. Webopedia's definition of SOAP. Jupitermedia Corporation.
<http://sbc.webopedia.com/TERM/S/SOAP.html>. 2004

South American Symposium on String Processing and Information Retrieval (10% :
October 8-10, 2003 : Manaus, Brazil). String Processing and Information Retrieval.
Mario A. Nascimento (ed.), Edleno S. de Moura (ed.), Arlindo L. Oliveira(ed.). Berlin;
New York: Springer-Verlag, 2003

Sridharan, Prashant. "Microsoft Programming Languages". Microsoft Corporation.
<http://msdn.microsoft.com/vstudio/productinfo/whitepapers/default.aspx>. July 2003

Temis. "Text Mining Solutions. Temis-Group. <http://www.temis-group.com>. 2004

Teragram. "Practical Solutions to Monstrous Amounts of Information". Teragram
Corporation. <http://www.teragram.com>. 2004

WordNet 2.0. "WordNet: a lexical database for the English language". Princeton
University. <http://www.cogsci.princeton.edu/~wn/>. 2004

Wrox Press. "Metadata". Developer Fusion Ltd.
<http://www.develoverfusion.com/show/l678/3/>. 2003

80

Appendices

Appendix 1: Metadata Code

The following code is used in the Web application of I-Document. It governs the

Metadata tab and extracts useful Metadata information. This code (slightly modified) is

also used in the Web service for classification means.

81

ADDED REFERENCES INCLUDE:
adodb
Microsoft.Office.Core
msdatasrc
office
stdole
VBIDE
Word

ADDED SYSTEM FILES FOR METADATA TO WORK:
using Microsoft.Office.Core;
using System.Reflection;
using Word = Microsoft.Office.Interop.Word;
using System.Runtime.InteropServices;

APPLICATION LEVEL VARIABLES:
public class ClientInterface : System.Windows.Forms.Form

//Metadata added March 14

private Word.Document aDoc;

private string extension;

private object fileName;
private object aDocBuiltInProps;
private Type typeDocBuiltInProps;
private Word.ApplicationClass WordApp;

private System.Windows.Forms.Button button4;

private System.Windows.Forms.ListBox listBoxl;

private System.Windows.Forms.Button button5;

private System.Windows.Forms.Label label16;

private System. Windows . Forms . ComboBox comboBoxl;

private System.Windows.Forms.Label label17;

private System.Windows.Forms.TextBox textBox2;

private System.Windows.Forms.Button button6;

private System.Windows.Forms.Label labe110;

private System.Windows.Forms.Button CloseButtoni;

CODE FOR THE METADATA TAB:
//Reference: http://support.microsoft.com/?kbid=303296
//Brandon Hohm, March 14

private void button4_Click(object sender, System.EventArgs e)

listBoxl.Items.Clear();
listBoxl.Items.Add ("Please choose a Word file");

try

if (this.openFileDialogl.ShowDialog() == DialogResult.OK)

//Gets file name, if doc, executes
/if not, sends .it to the right function

fileName = openFileDialogl.FileName;

82

GetExtension(fileName);

if(extension == ".doc")

{
object readonly = false;

object isVisible = false;

object missing = System.Reflection.Missing.Value;
WordApp = new Word.ApplicationClass(;
WordApp.Visible = false;

aDoc = WordApp.Documents.Open (ref fileName, ref
missing,ref readonly, ref missing, ref missing,

ref missing, ref missing, ref missing, ref

missing, ref missing, ref missing, ref

isVisible,ref missing,ref missing,ref missing);

//aDoc.Activateo;
aDocBuiltInProps = aDoc.BuiltInDocumentProperties;
typeDocBuiltInProps = aDocBuiltInProps.GetType();

//Get the Title property and display it.

string strIndex = "Title";
string strValue;
object aDocTitleProp =

typeDocBuiltInProps.InvokeMember("Item",
BindingFlags.Default IBindingFlags.GetProperty,
null,aDocBuiltInProps, new object[] {strIndex});

Type typeDocTitleProp = aDocTitleProp.GetType();
strValue = typeDocTitleProp. InvokeMember ("Value",

BindingFlags.Default jBindingFlags.GetProperty,
null,aDocTitleProp, new object[{}) .ToString();

listBoxl.Items.Add("The Title is: " + strValue);

//Get the Subject property and display it.

string strIndex2 = "Subject";
string strValue2;
object aDocSubjectProp =

typeDocBuiltInProps.InvokeMember("Item",
BindingFlags.Default iBindingFlags.GetProperty,
null,aDocBuiltInProps,new object [1 {strIndex2});

Type typeDocSubjectProp = aDocSubjectProp.GetType();
strValue2 = typeDocSubjectProp. InvokeMember ("Value",

BindingFlags.Default iBindingFlags.GetProperty,

null,aDocSubjectProp,
new object[] {}).ToString();

listBoxl.Items.Add("The Subject is: " + strValue2);

//Get the Author property and display it.

string strIndex3 = "Author";
string strValue3;
object aDocAuthorProp =

typeDocBuiltInProps.InvokeMember("Item",
BindingFlags.Default |BindingFlags.GetProperty,

null,aDocBuiltInProps,
new object[] {strIndex3});

Type typeDocAuthorProp = aDocAuthorProp. GetType();

strValue3 = typeDocAuthorProp. InvokeMember ("Value",
BindingFlags.Default IBindingFlags.GetProperty,

83

null,aDocAuthorProp,new object[]{}).ToString();
listBoxl.Items.Add("The Author is: " + strValue3);

//Get the Company property and display it.

string strIndex4 = "Company";

string strValue4;
object aDocCompanyProp =

typeDocBuiltInProps.InvokeMember("Item",
BindingFlags.Default IBindingFlags.GetProperty,

null,aDocBuiltInProps,

new object[]{strIndex4});

Type typeDocCompanyProp = aDocCompanyProp.GetType();

strValue4 = typeDocCompanyProp. InvokeMember ("Value",
BindingFlags.Default I
BindingFlags.GetProperty,
null,aDocCompanyProp, new

object[]{}).ToString();
listBoxl.Items.Add("The Company is: " + strValue4);

//Get the Keywords property and display it.

string strIndex5 = "Keywords";

string strValue5;
object aDocKeyProp =

typeDocBuiltInProps.InvokeMember("Item",
BindingFlags.Default |BindingFlags.GetProperty,
null,aDocBuiltInProps,
new object[] {strIndex5});

Type typeDocKeyProp = aDocKeyProp.GetType();
strValue5 = typeDocKeyProp. InvokeMember ("Value",

BindingFlags.Default I
BindingFlags.GetProperty, null,aDocKeyProp,

new object[] {}).ToStringo;

listBoxl.Items.Add("The Keywords are: " + strValue5);

//Get the Comments property and display it.

string strIndex6 = "Comments";

string strValue6;
object aDocCommProp =

typeDocBuiltInProps. InvokeMember ("Item",

BindingFlags.Default I
BindingFlags.GetProperty,null,aDocBuiltInProps,
new object[] {strIndex6});

Type typeDocCommProp = aDocCommProp.GetTypeo;
strValue6 = typeDocCommProp. InvokeMember ("Value",

BindingFlags.Default I
BindingFlags.GetProperty,null,aDocCommProp,
new object[] {}).ToStringo;

listBoxl.Items.Add("The Comments are: " + strValue6);

else

{
string message = "ERROR: Please choose an Office

Word file" ;
MessageBox.Show(message);

}
}

84

I
catch

aDoc = null;
fileName = null;
extension = null;
MessageBox.Show("Problem with opening document. Please try

again.");

}

private void openFileDialogi_FileOk(object sender,

System. ComponentModel. CancelEventArgs e)

7/Save and close document - March 14
private void button5_Click(object sender, System.EventArgs e)

try

object ignore = null;
object saveChanges = true;

aDoc.Save();
listBoxl. Items .Add ("saved");

aDoc.Close(ref saveChanges, ref ignore, ref ignore);

aDoc = null;
fileName = null;
extension = null;
//Need to quit WordApp or else the application keeps

running behind the scenes
WordApp.Quit(ref saveChanges, ref ignore, ref ignore);

// Marshal.ReleaseComObject(WordApp);

catch(Exception ex)

Console.WriteLine(ex);
string message = "ERROR: Please stop pushing the save

button when the doc is closed"

MessageBox.Show(message);

}

//Changes to metadata - march 14

private void button6_Click(object sender, System.EventArgs e)

try

if (comboBoxl.SelectedItem != null && textBox2.Text != null)

if (extension == " .doc")

85

{
string strIndexNew = (string) comboBoxl.SelectedItem;

string strValueNew = textBox2.Text;

object aDocInputProp =
typeDocBuiltInProps.InvokeMember("Item",
BindingFlags.Default I
BindingFlags.GetProperty,
null,aDocBuiltInProps,
new object[] {strIndexNew});

Type typeDocInputProp = aDocInputProp.GetTypeo;

typeDocInputProp.InvokeMember("Item",
BindingFlags.Default I
BindingFlags.SetProperty,
null,aDocBuiltInProps,

new object[] {strIndexNew,strValueNew});

listBoxl.Items.Add("New metadata is: " + strIndexNew
+ " : " + strValueNew);

aDoc.Save();

}
else

{
listBoxl.Items.Add("PLEASE PICK A PROPERTY AND FILL IN TEXT");

catch

{
string message = "ERROR: Please stop pushing the metadata

button"

MessageBox.Show(message);

//Gets the extensions and initial file info - March 14

private void GetExtension(object fileName)

{
//Works for all files
string name = (string) fileName;
FileInfo info = new FileInfo(name);
//Get name

string name2 = info.Name;
//Get size
long ByteSize = info.Length;
//build extension
int ExtPosition = info.Name.IndexOf(".");
int LengthOfFileName = info.Name.Length;
extension = Path.GetExtension(name);

//extension = info.Name.Substring(ExtPosition+1, (LengthOfFileName-

ExtPosition) -1);

//This extensi.on method will not work with fileNames with more than one
period

//use FILE to get the date information about the file

DateTime CreatedOn = File.GetCreationTime (name);

86

DateTime LastModified = File.GetLastWriteTime (name);

listBoxl. Items. Add (i"<<<<<<<File Information>>>>>>>");

listBoxl.Items.Add("Name: " + name2 + " Size: " + ByteSize);

listBoxl.Items.Add("Created on: " + CreatedOn + Last

Modified: " + LastModified);

//Here, use extension. to send it to another function for excel

and powerpoint

/ /References

http ://support .microsof t. com/?kbid=3 03296
http://support microsoft.com/default.aspx?scid=kb;EN -US;303718
http: //www. c -sharpcorner. com/Code /20 02/Mar/WordFromDotNet . asp
* /

NOTE: More extensive code was developed to work for Excel, txt, and PowerPoint
documents, but it is not included in this draft because it mimics the code in shown
here. There are only minor changes in the references, added system files, opening,
and saving documents. For example, to handle Excel Workbooks, you would add
the following:

ADDED REFERENCE FILES:
Excel
Graph

ADDED SYSTEM FILES:
Using Excel = Microsoft.Office.Interop.Excel;
Using Graph Microsoft.Office.Interop.Graph;

ADDED APPLICATION LEVEL VARIABLES:
private Excel.Workbook eDoc;

private object eDocBuiltInProps;
private Type typeExcelBuiltInProps;
private Excel.ApplicationClass ExcelApp = new

Excel.ApplicationClass (;

CODE BASE:
//Changes metadata function

private void button5_Click(object sender, System.EventArgs e)

{

87

if (comboBoxl.SelectedItem != null)

{
if (extension == "xls ")
{
string strIndexNew = (string) comboBoxl.SelectedItem;

string strValueNew = textBox1.Text;

object eDocInputProp =

typeExcelBuiltInProps .InvokeMember ("Item",
BindingFlags.Default I BindingFlags.GetProperty,

null,eDocBuiltInProps, new object[] {strIndexNew);

Type typeExcelInputProp = eDocInputProp.GetType (;

typeExcelInputProp. InvokeMember ("Item",

BindingFlags.Default I BindingFlags.SetProperty,
null,eDocBuiltInProps, new object[]

(strIndexNew,strValueNew});

listBoxl. Items. Add ("New metadata is: " + strIndexNew +
" + strValueNew);

eDoc .Save (;

}

>>>>>>CODE FOR CHANGES IS CONTINUED ACCORDING TO THE

DOCUMENT TYPE<<<<<

//Excel stop functi.on.
private void stopnow()

{
try

{
object ignore = null;

object saveChanges = true;

eDoc .Save (;

eDoc.Close(saveChanges, fileName, ignore);

eDoc = null;

fileName = null;
extension = null;

catch(Exception ex)

{
string message = "ERROR: Problem saving Excel Document"

MessageBox.Show(message);

}
}

//Gets Excel metadata information

private void ExcelWork(object fileName)

{
object readOnly = false;
object isVisible = true;
object missing = System.Reflection.Missing.Value;

ExcelApp.Visible = true;

88

//Might: have a problem with file name with 2nd file

eDoc = ExcelApp.Workbooks.Open((string) fileName, missing,
readonly, missing, missing, missing, missing, missing,

missing, missing, missing, isVisible, missing, missing,

missing);

eDoc.Activate();

eDocBuiltInProps = eDoc.BuiltinDocumentProperties;
typeExcelBuiltInProps = eDocBuiltInProps .GetType (;

//Get the Title property and display it.

string strIndexe = "Title";
string strValuee;

object eDocTitleProp = typeExcelBuiltInProps. InvokeMember ("Item",

BindingFlags.Default I BindingFlags.GetProperty,

null,eDocBuiltInProps, new object[] {strIndexe});

Type typeDocTitleProp = eDocTitleProp.GetType(;
strValuee = typeDocTitleProp.InvokeMember ("Value",

BindingFlags.Default I BindingFlags.GetProperty,
null,eDocTitleProp, new object[] {}).ToString(;

listBoxl. Items. Add("The Title is: " + strValuee);

>>>>>>>>THE OTHER PROPERTIES ARE OBTAINED IN THE SAME

FASHION<<<<<<<<

89

Appendix 2: Stop List

The following list is used by the text summarization function to extract and eliminate

common English types from becoming keywords.

the Ido live large might
I F I

main step able

of their where add saw enough early pound

to if after even far plain hold done

and will back land sea girl west drive

a way little here draw usual ground stood

in about only must left young interest contain

is many man big late ready reach front

it then year high run above fast teach

you them came such don't ever verb week

that would show follow while red listen final

he like every act press list six gave

was so good why close though less green

for these me ask real feel morning oh

on her give men life talk ten quick

are long our change few soon simple develop

with make under went north body several warm

as thing name kind open dog toward free

I see very off seem direct war minute

his him through need together pose lay special

they two just try next leave against mind

be has great us white song pattern behind

at look think again begin measure slow clear

one more say point got door center tail

have day help near walk product person produce

this could low self example short serve fact

from go line stand ease class appear inch

or come differ own group question map multiply

had did turn page always happen rain nothing

by no cause should those complete rule course

word most much found both area govern stay

but my before answer mark half pull full

what over move grow often order cold force

some know right study letter south notice blue

we than boy still until problem unit object

can call old learn care piece fine decide

90

other who same cover carry knew fly deep

were may tell sun took pass fall foot

all down does four eat since lead system

betwee
there side set n room top cry bus

when been three state began whole dark test

up now want keep idea heard note common

use find air eye stop best wait possible

our any well never once hour plan stead

how new also last base better figure dry

said part play let hear true. box wonder

an take small thought cut during noun laugh

each get end cross sure hundred field thousand

she place put hard color five rest ago

which made read start face remember correct ran

check ride third poor collect depend throw master

shape cell shall lot save rub shine track

equate believe held bottom control tube property shore

hot fraction describe key decimal famous column division

miss sit cook single gentle fear select sheet

brought race floor stick woman sight wrong substance

tire store either flat practice thin gray favor

bring train result twenty separate hurry repeat connect

yes sleep bum skin difficult colony require post

distant prove hill smile please clock broad spend

fill lone safe crease protect mine prepare chord

east leg cat hole noon tie salt fat

among wall consider trip whose enter nose glad

grand catch type receive locate major plural original

ball mount law row ring fresh anger share

yet wish bit mouth caught search claim station

drop sky copy exact period send skill dad

am board phrase symbol indicate allow women bread

present joy tall die spoke print solution charge

heavy sat roll least history dead silver proper

position written finger trouble effect spot thank bar

arm wild value shout electric suit match offer

instrume especiall
wide nt fight except expect current y segment

sail kept lie wrote crop lift afraid instant

material grass beat seed modem continue huge populate

size job excite tone element block discuss chick

91

I certainfirst told surfacepolant secondtooout

settle sign sense suggest corner hat similar rep

experienc
speak visit ear clean supply sell e drink

general past else break bone subtract score occur

ice soft quite lady rail event bought support

matter fun broke yard imagine particular led speech

pair bright case rise provide deal pitch nature

include gas middle bad agree term mass ran.e

divide month kill blow thus opposite card motion

felt million son touch won't shoulder band path

perhaps finish moment grew chair spread rope log

pick happy scale mix danger arrange slip meant

sudden hope loud cost thick camp win quotient

count gone speed lost guess invent evening

reason jump method brown necessary born condition

length eight pay wear sharp determine feed

represent meet age equal create quart tool

art root section sent wash nine total

subject buy surprise choose bat noise basic

region raise quiet fell rather level smell

energy solve tiny fit crowd chance nor

probable whether climb flow compare gather double

bed push cool fair string shop seat

egg seven design bank bell stretch arrive

92

edge chart forward dearview hitvary join

