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I. INTRODUCTION

In the classical treatment of controlled diffusion processes, one

typically considers a cost which is the expected value of a 'nice'

functional of the trajectory of the controlled process. This functional is

often the time integral up to a stopping time of a 'running cost' function

on the state space [1], [4]. This paper considers a situation where,

loosely speaking, the running cost is a Schwartz distribution rather than a

function. The specific case we consider has a natural interpretation as the

cost ('toll') associated with the boundary crossings of a prescribed region.

The precise formulation of the problem is as follows: Let U be compact

metric space and X(') an Rn-valued controlled diffusion on some probability

space described by

X(t) = x + Jm(X(s), u(s))ds + J(X(s))dW(s) (1.1)

for tŽO, where

(i) m.,) = [ml(,'),...,mn(,') ]T:RnxU -* Rn is bounded

continuous and Lipschitz in its first argument uniformly with

respect to the second,

(ii*)(9) = [[oij(')]]:Rn -) Rn x n is bounded Lipschitz and

satisfies the uniform ellipticity condition

I |I(z)Y11 2 > XliY112 for all z,yeRn

for some k>O,

(iii) W(-) = [Wi('), ... Wn()]T is an Rn-valued standard Wiener

process,
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(iv) u(') is a U-valued process with measurable sample paths and

satisfies the nonanticipativity condition: for t>s>y, W(t)-

W(s) is independent of u(y).

Call such a u(') an admissible control. Call it a Markov control if

u(') = v(X(')) for some measurable v:Rn ->U. In this case, it is well-known

that (1.1) has a strong solution which is a Markov process. In particular,

this implies that Markov controls are admissible. We shall also refer to

the map v itself as a Markov control by abuse of terminology.

Let B,D be bounded open sets in Rn with C2 boundaries SB, SD resp.,

such that ECD and xeD\6B. Let r = inf{tŽOIX(t)YD}. Let M(D) denote the

space of finite nonnegative measures on D with the weakest topology needed

to make the maps I ->ffdA continuous for feC(D). For xeD, define VxeM(D) by

Jfdx = E[ f(X(t))dt], feC(D).

Note that yx depends on u('). From Krylov inequality ([4], Section 2.2), it

follows that yx is absolutely continuous with respect to the Lebesgue

measure on D and thus has a density g(x,'), defined a.e. with respect to the

Lebesgue measure. Following standard p.d.e. terminology, we shall call Vxo

g(x,') the Green measure and the Green function resp. Later on, we shall

show that g(x,') is continuous on D\{xl. Let h be a finite signed measure

on SB, the latter being endowed with the Borel a-field corresponding to its

relative topology. Define the cost associated with control u(') as
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Jx(U(')) = J g(x,y)h(dy). (1.2)
RB

The control problem is to minimize this over all admissible u('). For

nonnegative h, (1.2) has the heuristic interpretation of being the total

toll paid whenever X(') hits BB, before it exits from D.

Remark. The restriction xseB simplifies the presentation considerably

and is therefore retained. It could be relaxed by imposing suitable

conditions on h, the nature of which will become apparent as we proceed.

The main results of this paper are as follows:

(i) There exists an optimal Markov control v which is optimal for

all initial xes\SB.

(ii) This v is a.e. characterized by a verification theorem

involving the value function V:D\6B -% R mapping x into

inf Jx(u(')), in analogy with the classical situation.

For technical reasons, we use the relaxed control framework, i.e., we

assume that U is the space of probability measures on a compact metric space

S with the Prohorov topology and m is of the form

m(yu)- J=b(ys)u(ds) (termwise integration)

S

for some b(',') = [bl(',),...,bn(,(',')]T:RnxS - Rn which is bounded

continuous and Lipschitz in its first argument uniformly with respect to the

second. This restriction will be dropped eventually.

In the next section, we establish a compactness result for Green
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measures. Section III derives a corresponding result for Green functions

and deduces the existence of an optimal Markov control v for a given initial

condition x. Section IV studies the basic properties of the value function.

Section V uses these to prove a verification theorem for v which shows among

other things that v is optimal for any x.
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II. THE GREEN MEASURES

The results of this section allow us to restrict our attention to the

class of Markov controls and establish a key compactness result for the set

of attainable yx. We start with some technical preliminaries.

For the purposes of the following two lemmas, we allow the initial

condition of (1.1) to be a random variable Xo (i.e., X(O) = Xo a.s.)

independent of W(').

Lemma 2.1. For any T>O, there exists a 6s(0,1) such that

I{Xo e)I{>s>s] P(>s+T/X(y),u(y), y•s) S 6 a.s.

under any choice of X0, u('), s.

Proof. We need consider only the case P(XoeD, v>s) > O. Let (Q,F,P) be the

underlying probability space. Let q = n {XoesD}) {[>s), F=F relativized to

Q, X, = X(s), X(') = X(s+') and u(') = u(s+'). Instead of the control

system described by (X('), Xo, u(')) on (0,F,P), we could look at (X('),

XOU(*)) on (0,F,P) where P(A) = P(A)/P(D) for AeF. Thus we may take s=O.

By a simple conditioning argument, it also suffices to consider X0 = x0 for

some xoeD. If the claim is false, we can find a sequence of processes

Xn('), n=1,2,..., satisfying (1.1) on some probability space, with x, u(')

replaced by some xn, un(') resp. such that: if .n = inf{t>OIXn(t)8D}, then

P(cn>T)tl. Using the arguments of [5], we may pick a subsequence of [n},

denoted {n} again, so that xn ->xw for some xeD and there exists a process

X"(') satisfying (1.1) on some probability space with x=x, and u(') = some
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admissible control u,('), such that Xn(') -4 X(') in law as C([O,c);Rn)-

valued random variables. By Skorohod's theorem, we may assume that this

convergence is a.s. on some common probability space. Let O =

inf {t>OIX(t)XD) and a" = inf{t>)OIX(t)kD). From simple geometric

considerations, one can see that for each sample point, any limit point of

({n) in o[0,] must lie between a" and an. Under our hypotheses on SD and a,

a = =· a.s. Hence Tn _-> a.s. Thus

1 = lim sup P( n > T) < P(O >) T),

implying P(Ž>T) = 1. Thus Xw(T/2) e D a.s., which we know to be false

under our conditions on m,a. The claim follows by contradiction. Q.E.D.

Lemma 2.2. There exists a constant K 8 (O,c) such that

E[ 2] < K

for any x,u(').

Proof. Let T>O. Then for n=1,2,...,

P(r>nT) = E[E£I{1>nT)/X(y),u(y),y<(n-1)T]I(T>(n-l)T}]

< 6P(r>(n-l)T)

by the above lemma. Iterating the argument,
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P(r>nT) < S n

The rest is easy.

Q.E.D.

We now state and prove the first main result of this section, which is

in the spirit of [2]. Let gx denote the probability measure on 8D defined

by

ffdgx = E[f(X(t))], feC(6D).

Theorem 2.1. For each admissible control u('), there exists a Markov

control which yields the same Vx and Rx.

Proof. By Lemma 2.2, E[t] < a. Define a probability measure n on DxS by

Jf(y,s)n(dy,ds) = E[J J f(X(t),s)u(t)(ds)dt]/E[T], feC(DxS).

Disintegrate n as

n(dy,ds) = n1(dy)i 2(y)(ds)

where 1 is the image of n under the projection DxS -D and n2:D --U is the

regular conditional law, defined n! - a.s. Pick any representative of n2.

Then u'(') = 12(X'(1)) defines a Markov control, X'(') being the solution to
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(1.1) under u'('). We shall show that u('), u'(') lead to the same yxv ax'

For y = [Yl,...,yn]T e D, sU U,fsH2oc(D), define

n n2

(Lf) (yu) = K mi(y,u) -ayf- ) 1 ik(Y)jk(Y) ayi (Y)

i=1 i,j,k=l

Let q:D -4R be smooth and 0:D ->R the map that maps x into

E[$ 0(X'(t))dt]

where a' = inf(t>OIX'(t) $ D}. (Recall that X'(0) = x.) Then 0 is the

unique solution in C(D)nl H21o(D) to

-(LO)(y,1 2 (y)) = P(y) in D, 0=0 on SD. (2.1)

(That (2.1) has a unique solution in the given class of functions follows

from Theorem 8.30, pp. 196, [3]. That this solution coincides with our

definition of 0 is an easy consequence of Krylov's extension of the Ito

formula as in [4], Section 2.10.) Consider the process

Y(t) = 0(X(t)) + J0(X(s))ds, t>0.

Another straightforward application of Krylov's extension of the Ito formula

yields (see, e.g., [4], pp. 122)
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E[Y(r)] - E[Y(O)] = E[f (L0(X(t),u(t)) + (X(t)))dt]. (2.2)

Note that the first equality in (2.1) holds a.e. with respect to the

Lebesque measure. Since ¥x is absolutely continuous with respect to the

Lebesque measure, it holds Ux-a.s. Hence the right hand side of (2.2)

equals

E[ V0(X(t)) (m(X(t)u(m(t)-m(X(,u(t))-m(X(t),u(t)))dt],

which is zero by our definition of u'(1). Thus E[Y(t)] = E[Y(O)], i.e.,

E[f (X(t))dt] = Elf (X'(t))dt].

Since the choice of q was arbitrary, it follows that u('), u'(') yield the

same yx' The corresponding claim for tx is proved in [2], Theorem 1.2.

Q.E.D.

The second main result of this section combines the foregoing ideas

with those of [5].

Theorem 2.2. The set of the pairs (yx, Px) as x varies over D and u(')

varies over all Markov controls (equivalently, all admissible controls) is

sequentially compact.

Proof. In view of the preceding theorem, it suffices to consider the case

of arbitrary admissible controls. Let Xn(') be a sequence of processes
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satisfying (1.1) on some probability space with Xn(O) = xn, u(') = un(') for

some xn e D and admissible controls un(I), n=1,2,... As in the proof of

Lemma 2.1, we can arrange to have these defined on a common probability

space such that xn -3x, eD and Xn(') X-)X(') a.s. in C([O,=); Rn) where

X (') satisfies (1.1) with x replaced by x, and u(') by some admissible

control u0 ('). Defining xn, n=1,2,...,*, as in Lemma 2.1, we have Tn _-2

a.s. Thus for f E C(D),

f(Xn(t))dt -)f(X(t))dt a.s

f(Xn(Ln )) - f(Xc (t )) a.s.

By Lemma 2.2, we can take expectations in the above to conclude. Q.E.D.
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III. EXISTENCE OF OPTIMAL MARKOV CONTROLS

This section establishes a compactness result for the Green functions

which immediately leads to the existence of an optimal Markov control. We

start with several preliminary lemmas.

Let xeD and v a Markov control. As in [4], Section 2.6, we construct a

family of Rn-valued diffusions X8, O<s<1, with X8(O) = x for all E, having

drift coefficients mg:Rn _-Rn and diffusion coefficients 0 8:Rn ->R
nx n resp.

such that

(i) mi, ao are smooth and bounded with the same bounds as m,a

resp.,

(ii) IJIF(z)y11
2 > .lyf112 for all y,z I Rn with the same X as in

Section I,

(iii) X8 (') -3X(') in law as E8O, X(') being the solution to (1.1)

under the Markov control v.

Let y, g8(x,') denote the Green measure and the Green function resp.

corresponding to Xe(') and Vx, g(x,') those for X('). Then the arguments of

the preceding section can be used to show that

-)Yx in M(D) as ->0 (3.1)x x

Lemma 3.1. Given any open set A such that AC D\{x}, there exists an a>O and

a Kc(O,') such that
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ig(x,y) - g(x,z) I < KIly-zlla, y,zeA,

under any choice of v.

Proof. Consider a fixed v to start with. Let L. denote the extended

generator of X8e() and L* its formal adjoint. Then

L:g s (x, )= x (' )

in the sense of distributions, where 6x(') is the Dirac measure at x.

Hypoellipticity of L* implies that g8 (x,') is smooth on D\[x}. By Theorem

8.24, pp. 192, [3], it follows that there exist a)O, O<K<-, such that

g e(x,z) - g8(x,y)I < KJlz-ylla, y,zeA (3.2)

and these a, K depend only on A, the bounds on m,: and the constant X. Fix

z a A. If (ga(x,z), O<E<1} is unbounded, there exists a sequence (s(n)} in

(0,1] such that

g n)(x,z) t .

By (3.2), it follows that

g (n)(x,') t ,

uniformly on A. Letting i(E) = inf[(t_>OX(t)D}), we have
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E[b(e(n))] = (n)(x,y)dy t X.

Recalling the definition of X8 (') from [4], Section 2.6, and using an

argument similar to that of Lemma 2.2, one can show that E[b(£)] is bounded

uniformly in 8, giving a contradiction. Hence [g8 (x,z), 0<(1]l is bounded.

By Arzela-Ascoli theorem, g 8 (x,'), 0<e<l, is relatively compact in C(D\[x})

with the topology of uniform convergence on compacts. Pick a sequence

{e(n)] in (0,1] such that e(n) 4 0 and let g(x,') be a limit point in

C(D\{x)) of [g8(n)(x,')}. Then for any fsC(D) with support in D\(x),

Jf(y)g8(n) (x,y)dy - Jf(y)g(x,y)dy.

From (3.1), it follows that g(x,') = g(x,'). Letting e -*O in (3.2), the

claim follows for given v. That it holds uniformly for all v is clear from

the fact that a, K depend only on X,A and the bounds on m,a. Q.E.D.

Corollary_ 3.1. The set of g(x,') as u(') varies over all Markov

(equivalently, all admissible) controls is compact in C(D\{x)).

Proof. Relative compactness of this set follows as above. That any limit

point of it is also a Green function for some Markov control can be proved

by using the argument of the last part of the proof of Lemma 3.1 in

conjunction with Theorems 2.1 and 2.2. Q.E.D.

Theorem 3.1. An optimal Markov control exists.

Proof. Let {un(')} be Markov controls such that
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J(Un( )) u inf J (U('))

where the infimum is over all Markov (equivalently, all admissible)

controls. Let (gn(x,.)) be the corresponding Green functions. Let u(') be

a Markov control with g(x,') the corresponding Green function, such that

gn(x,.) -4g(x,') in C(D\{x}) along a subsequence. Thus gn(x,') -_g(x,')

uniformly on 8B along this subsequence. The optimality of u(') follows

easily from this.

Q.E.D.

Let u(') above be of the form v(X('). The above theorem does not tell

us whether the same v would be optimal for any choice of x. This issue is

settled in Section V using the verification theorem, which also allows us to

drop the relaxed control framework. As a preparation for that, we derive

some regularity properties of the value function V in the next section.
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IV. REGULARITY OF THE VALUE FUNCTION

Recall the definition of the value function V from Section I.

Lemma 4.1. V is continuous on D\6B.

Proof. Let x(n) -4x(O) in D\6B. For n=1,2,..., let un(') be the optimal

Markov control when the initial condition is x(n) and gn(x(n), ') the

corresponding Green function. By arguments similar to those of the

preceding section, we can arrange that (by dropping to a subsequence if

necessary) gn(x(n),') -4g.(x(-), ') uniformly on compact subsets of D that

are disjoint from {x(n), n=1,2,..., a) (in fact, disjoint from x(X) will

do), where g0(x(o),') is the Green function for some Markov control u"(')

when the initial condition is x(X). It follows that

Jx(n)(Un(')) -)Jx( 0 )(U (')). (4.1)

Let v be any Markov control. Then

JX(n) ( I -" JX() ( V )

by Feller property. Since

Jx(n)( V Jx(n) (Un(')),

we have

Jx() ( v ) Jx()(U ())
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Hence u.(') is optimal for the initial condition x(X). Then (4.1) becomes

V(x(n)) -*V(x(x)). Q.E.D.

Let a., 0<e<1, be a family of compactly supported mollifiers and define

h :Rn -- R by he(y) = fa (y-z)h(dz). Then {hs } are smooth with compact

supports decreasing to BB as 8e0 (and hence can be assumed to be contained

in D for all 8). Also, he -)h as a -30 in the sense of distributions. Thus

h,(y)dy -*h(dy) as e -30

as measures in M(D). Pick e(n) % 0 in (0,1) and denote he(n) by hn by abuse

of notation. Define

Vn(x) = inf E[I hn(X(t))dt], n=1,2,...,

the infimum being over all admissible controls. By the results of [1], Ch.

IV, Section 3, this infimum is attained by some Markov control un(') =

Vn(X(')). Letting (gn(x,)} be the corresponding Green functions, we have

V n(x) = Jgn(x,y)hn(y)dy, n=1,2,....

Lemma 4.2. Vn -*V uniformly on compact subsets of D\6B.

Proof. Let K C D\6B be compact and QC D an open neighbourhood of BB such

that Q O K = 0. By familiar arguments, we conclude that gn(X,'),

n=1,2,...,xeK, is equicontinuous and pointwise bounded on Q. Fix xeK.
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Again familiar arguments show that any subsequence of {n} has a further

subsequence, say (n(k)}, along which

gn(X,') -)g.(x,')

uniformly on Q, where gc(x,') is the Green function corresponding to some

Markov control u.('). Without any loss of generality, we may assume that

the supports of (hn) are contained in Q. Then for m = n(k), k=1,2,...,

IVm(x) - Jg (x,y)h(dy)l I IJg (x,y)hm(y)dy - Jg=(x,y)h(dy)l + supgm (x,y)
yeQ

- g I(x,y) hl(6B)

Hence Vn(k)(x) -)fg,(x,y)h(dy). Let u(') be an arbitrary Markov control and

g(x,') the corresponding Green function. Then

Jg(x,y)hn (y)dy - Jg(x,y)h(dy).

Since

Jg(x,y)hn(y)dy > Vn(x),

we have
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Jg(x,y)h(dy) > Jg0(x,y)h(dy).

Hence f/g(x,y)h(dy) = V(x) and Vn(x) -) V(x). Note that for each n, Vn

satisfies LnVn = 0 on D\supp(hn) where Ln is the extended generator of the

Markov process corresponding to un(') [1]. Arguments similar to those of

Lemma 3.1 can now be employed to show that Vn(') are equicontinuous in a

neighbourhood of K. It follows that the convergence of Vn to V is uniform

on K. Q.E.D.

Let A CD\SB be open with a C2 boundary &A that does not intersect &B

and define t = inf({t>OX(t) a A} for X(') as in (1.1) with xsA. Define a

meaure Ix on A by

Jfdqx = E[ f(X(t))dt], fsC(A).

We shall briefly digress to insert a technical lemma whose full import

is needed only in the next section.

Lemma 4.3. nx is mutually absolutely continuous with respect to the

Lebesgue measure on A.

Proof. Absolute continuity of qx with respect to the Lebesgue measure

follows from the Krylov inequality (14], Section 4.6). To show the

converse, first note that by Theorem 3.1 with A replacing D, it suffices to

consider u(') Markov. Let q(x,') denote the density of nx with respect to

the Lebesgue measure. Then q(x,') 2 0 on A\{x}. Our claim follows if we

show that the strict inequality holds. Suppose that for some yeA\{x},
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q(x,y) = 0. Let Q be an open ball in A containing x and disjoint from some

open neighbourhood of y. In Q, q(',y) satisfies L'q(',y) = 0 where L' is

the extended generator of the Markov process under consideration. By the

maximum principle for elliptic operators, q(',y) = 0 on A. It is easy to

see that this leads to q(',y) = 0 on A\ty}. By Fubini's theorem,

AAq(xy)dydx = q(x,y)dx]dy = 0,

implying

Jq(x,y)dy = E[QiX(O) = x] = 0 a.e.,

a contradiction. The claim follows. Q.E.D.

Let A,x be as above and un('), gn(x,'), n=1,2,...,u('), g(x,') as in

Lemma 4.2. Define qn(x,'), n=1,2,..., and q(x,') correspondingly.

Lemma 4.4.

V(x) = inflj q(x,y)h(dy) + E[V(X(t))]] (4.2)

where the infimum is over all admissible controls. In particular, if

&BCD\A, this reduces to

V(x) = inf E[V(X(t))]. (4.3)

Proof. Without any loss of generality, we may assume that the supports of
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{hn) are contained in the same connected component of D\6A as &B. Let

Xn('), n=1,2,..., be the solutions to (1.1) under un('), n=1,2,..., resp.

and 4n = inf{t>OjXn(t)A)}. By the results of [1], Ch. IV, Section 4.3,

Vn (x) = qn(,y)hn(Y)dy + E[V (Xn(tn))].

As in Theorem 2.2, we can have a process X (') starting at x and

controlled by some Markov control u.(') such that for =

inf{tŽOjX (t ) and fl e C(A), f2 8 C(SA),

EJ f1 (Xn(t))dt] -E[J fl(X (t))dt], Etf2(Xn(tn))] -E[f2(X (t ))]

Define q.(x,') correspondingly.

Arguments similar to Lemma 3.1 show that qn(x,') -) q,(x,') uniformly on

compact subsets of A\(x}. Thus

Aqn(xY )hny(Y)dY -- Jq.(x,y)h(dy).

By the conclusion concerning {)x} in Theorem 2.2 (with A replacing D) and

Lemma 4.2 above,

E[Vn(Xn(tn))] -)E[V(Xn(t))].

Thus
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V(x) = J q0 (xy)h(dy) + E[V(X (ct))]

The results of [4], Ch. IV, Section 4.3, also imply that if X(') is the

solution to (1.1) under u(1), then

Vn(X) - JAq(x,y)hn(y)dy + E[Vn(X(n))]

Taking limits,

V(x) < q(xy)h(dy) + E[V(X(t))]

The claim follows. Q.E.D.

Theorem 4.1. V e H2oc(D\6B) and satisfies

inf (LV)(x,u) = 0 a.e. on D\6B (4.4)
u

Proof. (4.3) above implies that V restricted to any A in D\6B satisfying

8BCD\A is the value function for the control problem on A with E[V(X(Q))]

as the cost. The claim follows from [4], Ch. IV, Section 2.2. Q.E.D.
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V. A VERIFICATION THEOREM

We shall now derive an analog of the classical vertification theorem

that allows us to improve on Theorem 3.1. Let u(') = v(X(')) be a Markov

control which is optimal for the initial condition x, X(') being the

corresponding solution to (1.1).

Lemma 5.1. (LV)(x,v(x)) = 0 a.e. in D\6B. (5.1)

Proof. Let A be as in the proof of Theorem 4.1. Let xeA and define

yx s M(D) by

Jfdyx = E[ f(X(t))dt]

(5.2)

= fdVX - fdX,

for f8C(D). Then yx has a density p(x,') with respect to the Lebesgue

measure which coincides with g(x,o) on D\A. For any bounded continuous f

supported in D\A,

fg(x,y)f(y)dy = Jp(x,y)f(y)dy = E[Jg(X(Q),y)f(y)dy]

by virtue of (5.2) and the strong Markov property. Letting f=hn, n=1,2,...,

successively in the above and taking limits,

V(x) = E[Jg(X(Q),y)h(dy)].

Thus V(x) > E[V(X(Q))]. By (4.3), V(x) = E[V(X(4))]. By Krylov's extension
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of the Ito formula ([4], Section 2.10), it follows that

A(LV) (y,v(y))l(dY) = O.

By Theorem 4.1 and Lemma 4.3,

(LV)(y,v(y)) > 0 nx - a.e. on A.

Hence

(LV)(y,v(y)) = x - a.e.

on A and hence Lebesgue - a.e. by Lemma 4.3. Q.E.D.

A variation on the above theme yields the following.

Lemma 5.2. If a Markov control v is optimal for some initial condition

xeD\6B, it is also optimal for any other initial condition in D\6B.

Proof. Let A,x be as in Lemma 4.4 with A connected and v an optimal Markov

control for X(O) = x. Define g(x,'), q(x,') correspondingly. Then

Jg(x,y)h(y)dy = El[ hn(X(t))dt]

= EJ~hx(X(t)h)dtl + Et hn(XQ)y)hnyt

= f q(x y)hn(y) dy + ElJg(X (), y)hn(y)dy]



25

by the strong Markov property. Letting n -3o,

v(x) = q (x,y)h(dy) + E[g(X(Q). y)h(dy)

, q(x,y)h(dy) + E[V(X(Q))].

By (4.2), equality must hold. Hence

fg(X(Q), y)h(dy) = V(X(M)) a.s. (5.3)

Note that the maps z -4V(z) and z -*fg(z,y)h(dy) for zeSA are continuous.

Since the support of X(t) is the whole of &A (this would follow, e.g., from

the Stroock-Varadhan support theorem), this along with (5.3) implies that

V(z) = Jg(z,y)h(dy) for zs8A,

i.e., v is also optimal for the initial conditions zseA. Since A can be

chosen so as to contain any prescribed point of D\&B, the claim follows.

Q.E.D.

This allows us to prove the following converse to Lemma 5.1.

Lemma 5.3. A Markov control v is optimal if (5.1) holds.

Proof. Fix xsD\bB. Let A1, A2 be open sets in D\6B with C2 boundaries SA1,

6A2 resp. such that xsA1C A1 CA 2 and 8BCD\A2. Let v1 be an optimal Markov

control. Let v2(') = v(') on A1 and = v1(') elsewhere. Let X(') be the

process starting at x and controlled by v2. Define the stopping times
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0 = 0

IC = inf({t>Ol(t) 8 A2}

I2n = (inf{t->v2n-I [X(t) e A1} )
^

2n+1 (inf{t>.2nIX(t) 2

for n=1,2,... Then ·nt ? a.s. Define measures 02n on A2 and A2n+1 on

D\A1, n=0,1,2,..., by

I2n+l
ffd2n= E[J f(X(t))dtl for f 8 C(A2 )

2n

-2n+2
Jfd2n+l = E[I f(X(t))dt] for f e C(D\A1)

2n+1

Since [{n} are dominated by ¥x, they have densities with respect to the

Lebesgue measure (on A2 or D\A1 as the case may be). Denote these by

pn(x, ), n = 0,1,2,... By familiar arguments, it can be shown that these

are continuous on a neighborhood Q of 8B in D\A2. Letting g(x,') be the

Green function under v2, it is clear that
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Go

Jg( ,Y)h(dy) = JP2n+l(xty)h(dy) (5.4)

n=O

where we have used the fact that the supports of An for even n are disjoint

from &B. Since v, v1 satisfy (5.1), so does v2. Hence an application of

Krylov's extension of the Ito formula ([4], Section 2.10) yields

E[V(X( 2n))] = E[V(X(z 2n+))], n=0,1,2,...

On the other hand, in view of the optimality of v1, arguments similar to

those in Lemma 4.4 show that

E[V(X('C2n+))] = Jp2n+l(xy)h(dy) + E[V(X('2n+2))], n=0,1,2,...

It follows that V(x) = V(X(VO)) equals the right hand side of (5.4). Hence

V2 is optimal. Iterating the argument, we construct a sequence of open sets

B2 CB 3 CB 4 C... in D\6B increasing to D\SB and optimal Markov controls vi,

i=2,3,..., such that vi(') = v(') on Bi and = v1 (') elsewhere. Let

{gi ("' ,) } denote the corresponding Green functions. Fix xeD\bB. By

familiar arguments, we have (on dropping to a subsequence if necessary):

gi(x,') -g(x,') uniformly on compact subsets of D\(x}, where g(x,') is the

Green function for some optimal Markov control. Now vi(x) -* v(x) a.e.,

implying mj(x,vi(x)) -)mj(x,v(x)) a.e. as i -3a, for l<j<n. For smooth f:D

-)R with a compact support in D\{x},
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Jgi(x,y)(Lf)(y,vi(y))dy = f(x).

In view of the foregoing, we can let i ->a to obtain

f (xy)(Lf)(y,v(y))dy = f(x).

It follows that g(x,') is the Green function under v. The claim follows.

Q.E.D.

The following theorem recapitulates the above results.

Theorem 5.1. (i) There exists a Markov control v which is optimal under

any initial condition in D\6B.

(ii) A Markov control v is optimal if and only if (5.1) holds.

(iii) An optimal Markov control v may be chosen so that the range of v

lies in the set of Dirac measures on S.

Remark. A U-valued control taking values in U' = {Dirac measures on SIC U

can be associated with an S-valued (i.e. 'ordinary' or 'pre-relaxation')

control in an obvious manner. Thus (iii) above allows us to drop the

relaxed control framework and replace (4.4) by

n m 2

inf( bi(xs)ax (x) + ik (x)jk() xv x)) = 0 a.e.
seS i= j

i=1 i i,j,k=l

on D\6B

Proof. Only (iii) needs to be proved. Note that the minimum of
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VV(x) ' m(x,'), x E D\6B, over U will always be attained by an element of

U'. Since U' is a compact subset of U, a standard selection theorem (see,

e.g., [2], Lemma 1.1) allows us to pick a measurable v:D\8B -3U' such that

VV(x) · m(x,v(x)) = min VV(x) I m(x,u), x s D\6B.
U

Set v(x) = an arbitrary fixed element of U' for x e 8B. Then v is an

optimal Markov control by (ii). Q.E.D.

The above theorem gives a vertification theorem and a recipe for

constructing an optimal v, in terms of the function V. Thus it is desirable

to have a good characterization of V. Formal dynamic programming

considerations and experience in the classical case leads one to expect that

V should be characterized as the unique solution to the Hamilton-Jacobi-

Bellman equation

inf (LV)(x,u) = -h in D, V=O on 6D (5.5)
U

in some appropriate sense, where by abuse of terminology, we have let h

denote the Schwartz distribution corresponding to the measure h. It is an

interesting open problem to make sense of (5.5), thereby obtaining the said

characterization of V.
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