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I. INTRODUCTION

This paper attempts to bring into sharp focus a circle of ideas in

controlled diffusion processes that has evolved over the last dozen years

or so and give a unified exposition thereof. The central characteristic of

this circle of ideas is that they view the control problem as an

optimization problem on an appropriate set of probability measures and the

principal tools are weak convergence and selection theorems. The choice of

the title is intended to emphasize the contrast between this and the more

common, largely analytic approach as typified by [6], [38] which uses the

dynamic programming principle and Hamilton-Jacobi-Bellman equation as the

starting point. (This classification is admittedly crude, as there is a lot

of grey area in between. Also, the two viewpoints are complementary and not

alternative. Neither of them replaces the other.)

The modern probabilistic approach dates back to early seventies when

works like [4], [27] introduced the concept of a weak solution of a

stochastic differential equation via Girsanov theorem to the control

community and formulated the control problem as an optimization problem on a

set of probability measures. The initial thrust [4], [13], [271 was to

consider control problems where elements of this set were absolutely

continuous with respect to a base measure and prove existence of optimal

controls by proving the a(L1,L,) compactness of the corresponding Radon-

Nikodym derivatives. Soon after, two probabilistic abstractions of the

dynamic programming principle emerged - the martingale approach [25], [57],

[59] and the nonlinear semigroup approach [54], [55], [56]. In parallel

with this, much work was done on the stochastic maximum principle [7], [12],
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[31], [40], and related existence results [23].

Weak convergence techniques were first used in [481 to prove an

existence result akin to that of [4], [27]. Note that a(L1,L,) compactness

of Radon-Nikodym derivatives implies the weak compactness of the

corresponding probability measures by the Dunford-Pettis compactness

criterion ([53], pp. 17). Since this implication goes one way, weak

convergence was potentially a more flexible tool, a fact that was borne out

by later developments in the degenerate case and control under partial

observations. This paper traces these developments up to recent times.

The plan of the paper is as follows.

Section II describes the basic paradigm under scrutiny viz. a

controlled stochastic differential equation, and discusses typical classes

of controls and costs that will be of interest to us. Here and throughout

the rest of the paper, we trade generality for simplicity in the sense that

we work with stronger assumptions than what are strictly necessary, in order

to simplify the exposition (e.g., the boundedness assumption on the

coefficients of (2.1) can be relaxed, the diffusion coefficient a can be

allowed to depend explicitly on the control for many of the results and so

on).

Section III establishes the basic compactness results for probability

laws under various classes of controls. These are gleaned from [48], [65],

though our proofs differ.

Section IV proves that the Markov controls i.e. controls that depend

only on the current value of the state is a sufficiently rich class for

certain costs under nondegeneracy hypothesis. This section is in the spirit
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of [18], [20].

Section V uses the foregoing to derive the dynamic programming

principle and in the nondegenerate case, the Hamilton-Jacobi-Bellman

equation. The approach is essentially probabilistic. Although it is not as

economical as the direct analytical approach of [6] for the H.J.B. equation,

it offers a different vantage point and establishes a link between the

probabilistic and the analytic methods.

Section VI establishes the existence of an optimal Markov control in

the degenerate case using the idea of Krylov's Markov selections ([61], Ch.

12). This section is based on [29], [43].

Section VII surveys the problem of control under partial observations.

Given the large scope of this section, we are rather brief about each

specific topic and work mostly by analogy with the 'complete observation'

case studied in Sections III-VI.

Section VIII briefly outlines a probabilistic approach to the ergodic

control problem based on a characterization of the a.s. limit points of

normalized occupation measures for the joint state and control process.

This is based on [21].

Section IX concludes with a short list of some open problems.

A few important disclaimers: This paper does not survey all aspects of

controlled diffusions that would legitimately qualify as a part of the

'probabilistic structure'. Some major omissions are: control problems

involving optimization over stopping times (optimal stopping, impulse

control etc.), stochastic maximum principle, singular control, approximation

and robustness issues etc. Also, the bibliography is meant to be only
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representative and not exhaustive. The surveys [7], [9], [24], [28] can be

used to complement the present one in these respects. See also Ch. 16-18 of

[321].

Finally a word on notation: For a Polish space (i.e., separable and

metrizable with a complete metric) X, P(X) denotes the Polish space of

probability measures on X with the topology of weak convergence [11].

C(X;Y) denotes the space of continuous maps X -- Y (Y a complete metric

space) with the topology of uniform convergence on compacts. C(X) stands

for C(X,R) and Cb(X) for the subset of C(X) consisting of bounded functions.

By the natural filtration of a stochastic process Y(t), t>O, we shall always

mean the filtration {Ft) where Ft is the completion w.r.t. the underlying

probability measure of the a-field \a(-Y(y), y<s) for t>O.

Remark. A familiarity with diffusion theory at the level of the well-known

texts by Ikeda-Watanabe or Stroock-Varadhan (references [44] and [61] resp.)

is assumed throughout. It should be remarked that much of what follows can

be recast in the elegant language of 'martingale problems' introduced in

[61], as has been done in [28]-[301. However, we do not do so for sake of

simplicity.
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II. CONTROLLED DIFFUSION PROCESSES

The prototypical controlled diffusion we consider is the Rd-valued

process X(') satisfying

dX(t) = m(X(t), u(t))dt + a(X(t))dW(t), X(O) = X0, (2.1)

where,

(i) m(,') = [ml(','),...,md(',')]T:RdxU -) Rd (U being a

prescribed compact metric space) is bounded continuous and

m(',u) is Lipschitz uniformly in u,

(ii) y('.) = [[aij(')]]:Rd -Rdxd is bounded Lipschitz,

(iii) X0 is a random variable in Rd with a prescribed law no,

(iv) W(') = lW1('), ...,Wd(')] T is a d-dimensional standard Wiener

process independent of X0, and,

(v) u(') is a U-valued process (called an 'admissible' control)

satisfying: u(y) is independent of W(t)-W(s) for t>s2y.

We distinguish between the nondegenerate case where the least

eigenvalue of ,aT(.) is uniformly bounded away from zero and the degenerate

case when it is not. In either case, X(') above can be constructed by

Picard iterations as in [53], Section 4.4, given W('), u(') on some

probability space.

If u(') is adapted to the natural filtration of X('), call it a

feedback control. Further subclasses of this are Markov controls when

u(') = v(X('), ') for some measurable v:RdxR+ - U and stationary Markov

controls when u(') = v(X(')) for some measurable v:Rd - U. By abuse of

notation, one often refers to the map v itself as the Markov (resp.
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stationary Markov) control. For feedback and Markov controls, one cannot

obtain a solution of (2.1) by mere Picard iterations unless further strong

conditions are imposed on the nature of dependence of u(') on X('). These

are usually too stringent for control applications and hence one has to seek

other proofs of existence or uniqueness and at times, other solution

concepts. We shall comment more on this later on in this section.

A control problem is the problem of minimizing the expectation of a

prescribed functional of X('), u('), called the cost functional, over a

prescribed set of admissible controls. Typical cost functionals are:

(C1) E[F(X('))], F 8 Cb(C([O,o); Rd)),

(C2) El k(X(t), u(t))dt + h(X(T))], v = inf{t>OIX(t) a G}

for some bounded connected open GCRd with a C2 boundary SG

and k E Cb(GxU), heCb(&G),

T -at -aT
(C3) E[je-tk(X(t), u(t))dt + e Th(x(T))], a [0,11, T 8 [O,O]

with a>O if T=, k 8 Cb(R dxU), h 8 Cb(Rd).

(A different and rather special cost functional is considered in Section

VIII).

A control u(') for which the minimum of the cost functional is attained

will be said to be an optimal control and the corresponding X(') referred to

as the optimal process or the optimal solution to (2.1).

Throughout this paper, we assume the relaxed control framework [34],

i.e., we assume that U = P(S) for a compact metric space S and there exists
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m(',') = [fl(','),...,id(','h)] T:RdxS _-Rd which is bounded continuous with

·F(',s) Lipschitz uniformly in s, such that

mi(x,u) = J Si(x,s)u(ds), l<i<d.

In addition, if the cost functional is (C2) or (C3), we assume that k(x,u) =

f k(x,s)u(ds) for some k 8 Cb(GxS) or Cb(RdxS) as the case may be. If u(')

is always concentrated on the subset UD of U consisting of Dirac measures

(itself a compact set), we call it a precise control. (A 'control' will

always mean a relaxed control.) If u(') is a precise control, a

straightforward application of the selection theorem in the Appendix

(henceforth called 'the selection theorem') shows that

m(X('), u(')) = m(X('), s(')) (2.2)

for an S-valued process s(') adapted to the natural filtration of (X('),

u(1)). The selection theorem can again be employed to show that s(') will

inherit the feedback, Markov or stationary Markov nature of u('). If if(x,S)

is convex for all x, (2.2) above is always possible. In any case, the

following holds:

Theorem 2.1. Let X('), u('), W(') satisfy (2.1) on a probability space

(i,F,P). Then there exists a sequence {un(')} of precise controls on

(Q,F,P) such that if {Xn(')) denote the corresponding solutions of (2.1),

then for each T>O and f e Cb([O,T]xS),
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Jf(ts)u nl(t)(ds)dt .- JJf(t,s)u(t)(ds)dt on a (2.3)

EE sup IjXn(t) - X(t) 112] -o0. (2.4)
ts[O,T]

Proof. (Sketch) W.l.o.g., let T=1. Construct fun(')} from u(') as in [21,

pp. 32-33 with the extra proviso that ti be the left end point of Ti (in the

notation of [2]) for each i. A standard argument using the Gronwall

inequality shows that

EE sup lxn(t)-x(t)I2] < K E[ljo(m(X(t),u(t))-m(X(t),un(t)))dtIl 2

t[[O,11
(2.5)

for some K>O. By the results of [2], pp.33, (2.3) holds and the r.h.s. of

(2.5) tends to zero as n -)-. Q.E.D.

Corollary 2.1. For each of the cost functionals considered above, the

infima over precise and relaxed controls coincide.

The proof is omitted and will be self-evident by the end of the next

section.

There are two ways of posing a control problem. In the strong

formulation, (D,F,P), XO, W(') are prescribed and one optimizes over a

specified class of u(') on (Q,F,P). In the weak formulation, one optimizes

over all collections (Q,F,P,W('), X('), u('), XO) as above with u(')

satisfying some prescribed conditions. If u(') is a feedback control, (2.1)
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has only a weak solution in general even in the nondegenerate case [4] thus

forcing a weak formulation. (It should be mentioned that for the special

case of Markov controls, it does have a unique strong solution in the

nondegenerate case [63]. In the degenerate case, the existence or

uniqueness of even a weak solution is not guaranteed.) We use the weak

formulation throughout. The following result shows that not much is lost.

Theorem 2.2. Let (Q,F,P), XO, W(') be given.

(a) Let u(') be an admissible control on (0,F,P) and X(') the

corresponding solution of (2.1). Then X(') also satisfies (2.1) with u('),

W(') replaced by X('), W(') where t(') is a feedback control and W(') is a

d-dimensional standard Wiener process independent of X0, on a possibly

augmented probability space.

(b) Let X(), W('), u('), XO satisfy (2.1) on a probability space

(Q,F,P) with U(') a feedback control, such that the laws of (W('), XO) and

(W('), XO) coincide. Then by augmenting (0,F,P) if necessary, one can

construct on it a process X(') satisfying (2.1) with the prescribed W('), X0

and a feedback control u(') which has the same dependence on X(') as what

u(') had on X(').

Proof. (a) Define 9(') by

Jfdr(t) = E[Jfdu(t)/X(s), s<t] a.s., t>O, feC(S) (2.6)

picking a measurable version thereof. Write
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t
X(t) = X + m(X(s), fW(s))ds + M(t)

for the appropriately defined M('). The results of [641 show that M(') must

be of the form

M(t) = Io(X(s))dW(s)

for some d-dimensional Wiener process W('), on a possibly augmented

probability space.

(b) Let Q e P(Rd x C([O,w); Rd) x C([O,-); Rd)) denote the law of (XO,

W( , X( ')). Disintegrate it as

Q(dw1, dw2 , dw3) = Q 1(dwl, dw2 )Q2(w1 ,w2)(dw 3)

where Q1 is the law of (XO, W(')) and Q2 is the regular conditional law of

X(') given (Xo, W(')). Augment Q to 0' = QxC([O,-); Rd), F to F = the

product a-field on I' and replace P by P defined as follows: For AaF, B

Borel in C([O,0); Rd),

P'(AxB) = E Q2 (XO,W(' ))(B)IA]

Define X(') by
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X(t)((wl,w2 )) = w2(t) for (wl,w2) 8 '.

The rest is routine. Q.E.D.

Relevant references: [4], [6], [9], [241, [28], [32], [34], [38], [47],

[64].
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III. COMPACTNESS OF LAWS

Let AiCP(C([O,c); Rd)), i=1,2,3, denote resp. the set of laws of X(')

under all admissible/Markov/stationary Markov controls. We prove below that

A1 and in the nondegenerate case, A2, A3 are compact. Clearly, it suffices

to replace [O,o) above by [O,T] for arbitrary T>O.

Let (Xn('), Wn(.), un(.), Xn), n=1,2,..., satisfy (2.1) on probability

spaces (on, Fn, pn) resp. Let {fj} be countable dense in the unit ball of

C(S) and define a0(t) = ffjdun(t), teO[0,T]. Let B denote the closed unit

ball of L2[0,T] with the topology = the weak topology of L2[0O,T] relativized

to B. Let D be a countable product of replicas of B with product topology.

B,D are compact metrizable. Let an(-) = [aln(), a('),...], n=1,2,...,

viewed as D-valued random variables.

Using the estimate of Lemma 4.12, pp. 125, [53], one can show that

E[IX (t2) - X (t1) 4] - < Kt 2-tli, n1; t1, t2 8 tO,T],

for some T-dependent K>0. The criterion of [11], pp. 95, implies that the

laws of {xn(')) are tight in P(C([O,T]; Rd)). Since D is compact, the laws

of (Xn(.), an(.)), n>1, are then tight in P(C([O,T]; Rd)xD) and hence

(Xn('), an(,)) converge in law along a subsequence of {n} (denoted {n}

again) to a limit (X('), a(')). By Skorohod's theorem ([44], pp.9), we may

assume that these are defined on a common probability space (Q,F,P) and the

above convergence holds for all sample points outside a set N with P(N)=O.

Write a(') = [a1('), a2('),...].
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Lemma 3.1. There exists a U-valued process u(') such that

ai (t) = ffidu(t), i>l.

Proof. Fix a sample point wsN. Let n(1) = 1 and define fn(k)} inductively

to satisfy

-. T n(k) n(k) 1
2 max (a. (t) - aj(t))(a (t) - aj(t))dt < k

j=k

which is possible because a!(') --)aj(') in B. Argue as in the proof of

Theorem 1.8.4, pp. 29-30, [2] (Banach-Saks theorem) to conclude that for

each j,

m
1 i an(k)

3 3
k=1

strongly in L2 [0,T] and hence a.e. along a subsequence. By a diagonal

argument, we may extract a subsequence fmk) of {m} such that for t outside a

set MC [O,T] of zero Lebesgue measure,
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Define vk(t) 8 U by

mk
fidv(t) an (t), i=1,2,...,

for k=1,2,... Fix teM. By (3.1), any limit point v(t) of {vk(t)) must

satisfy

ffidv(t) = ai(t). (3.2)

Now the map

0:veU - [fl dv, f 2dv,...] [-1,11]

is a diffeomorphism between U and 0(U) (See, e.g., Lemma 2.6, pp. 111,

[15]). By (3.2), a(') 8 0(U) a.s. where the 'a.s.' may be dropped by an

appropriate choice of the version. Define u(') = 0-1(a(-)). Q.E.D.

Lemma 3.2. For any measurable f:gx[O,T]xS -4 R such that f(w,',') is

continuous for each w,
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( f(w,s,v)u n(s)(dv)ds -Jff(w,s,v)u(s)(dv)ds a.s., te[O,T].

Proof. It clearly suffices to prove this for f of the type f(w,s,v) =

n
g(s)f (v), s e [O,T], veS, neN, g e C[O,T], l_< _<n. But then it is

immediate from the convergence of an(') to a(') in D. Q.E.D.

Lemma 3.3. X(') satisfies (2.1) for some W('), X0 and ~(').

Proof. Let f 8 C2 (Rd) with compact support and write

(Lf)(x,u) = mi(x,u) a- + ai (X)jk (x)m. 2 (x ai(x)(L)(iu=1e 1 23 C~)j r ax.X.
i I i,j,kI

Let O<tl<t2<...<tm<s<t<T and g e Cb((Rd)m). Then for n>1,

t

E[(f(Xn(t)) - f(Xn(s)) - (Lf)(Xn(y), un(y))dy)g(Xn(tl ) , . . . , X n ( t m ) ) ] = O

Letting n -*aX and using the preceding lemma,

E[(f(X(t)) - f(X(s)) - Jt(Lf)(X(y), u(y))dy)g(X(t1),...,X(tm))] = 0

We can replace u(') here by V(') defined as in (2.6). Since g is arbitrary,

it follows that f(X(t)) - fot(Lf)(X(y),ff(y))dy is a martingale w.r.t. the

natural filtration of X('). The rest follows from martingale representation
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theorems of [64] by standard arguments. Q.E.D.

Theorem 3.1. A1 is compact and in the nondegenerate case, convex.

Proof. Compactness is proved above. Assume nondegeneracy. If u1('), u2 (')

are feedback controls, the laws of the corresponding solution to (2.1) on

[0O,T] are absolutely continuous w.r.t. the law of Y(') satisfying

t
Y(t) = X0 + f (Y(s))dW(s)

with the Radon-Nikodyn derivatives being Ai(T), i=1,2, where A1(t) is the

unique solution to

A(t) = 1 + f i(s) <m(Y(s), ui(s)), dY(s)>, i=1,2. (3.3)

Convexity follows if we show that for a s [0,1], A(t) = aAn(t) + (1-a)A2(t)

also satisfies (3.3) with some u('). This is indeed so for u(t) =

P(t)ul(t) + (1-P(t))u2(t) with (t) = a(t)A(t). Q.E.D.

Theorem 3.2. In the nondegenerate case, A2, A3 are compact.

Proof. Let {un( ' )} above be Markov and let Tn s,denote thecorresponding transi,tion semigroup. In the set-up of Lemma 3.3,

corresponding transition semigroup. In the set-up of Lemma 3.3,
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E[(f(Xn(t)) - Tn tf(Xn(s)))g(Xn(t ),...,Xn(tm))] = O, n=1,2,... (3.4)

For each n, Tn tf(I) satisfies the backward Kolmogorov equation. From

standard p.d.e. theory (see [50] or [66], pp. 133-134) it follows that

Tn tf(), n=1,2,..., are equicontinuous. Let T tf(') be a limit point of
Ts,t S'

the same in C(Rd). Passing to the limit in (3.4) along an appropriate

subsequence, we get

E[(f(X(t)) - T stf(X(')))g(X(t1),...,X(tm))] = 0,

implying that X(') is Markov. That this implies that u(') is a Markov

control follows by a straightforward application of the selection theorem as

in [43], pp. 184-5. Thus A2 is compact. Compactness of A3 follows on

noting that if Ttf depends on s,t only through t-s, so will Tstf. Q.E.D.

Relevant References: [3], (4], [13], [23], [27], [29], [48], [65].
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IV. EXISTENCE OF OPTIMAL CONTROLS

From Theorems 3.1, 3.2 and Lemma 3.2, it follows that for cost

functionals C1, C3, the minimum is attained on A1 and in the nondegenerate

case, on A2, A3 as well.

Theorem 4.1. In the nondegenerate case, the minimum for C2 on Ai, i=1,2,3

is attained.

Proof. In the set-up of the preceding section, let zn, T be the first exit

times from G for Xn(.), X(') resp. and a = inf{ttO0X(t)esG}. Simple

geometric considerations show that for each M4N, any limit point of {n}) in

[O,l] must lie in [a,,]. Since 8G is C2 and X(') nondegenerate, a=r a.s.

Thus =n -_ a.s. and the claim will follow from Lemma 3.2 if we prove [{n}

to be uniformly integrable. The latter can be proved by establishing a

bound of the type

P('>t) < Ke- t , t>O, (4.1)

for some K, X>O uniformly in u('). (See [19] for details.) Q.E.D.

Remarks: The nondegeneracy can be dropped by insisting that the set (6G)' =

[xeSGIP(z>O/X(O)=x) > 01 (= SG in the nondegenerate case) be independent of

u(') and closed in SG, and v remain uniformly integrable over all u(').

Theorem 4.2. In all the situations considered above, the subset of the

appropriate Ai where the minimum in question is attained is compact and
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nonempty.

This is obvious in view of the foregoing.

Theorem 4.3. In the nondegenerate case, the minima of C2 over A1 , A2 , A3

coincide and the minima of C3 over A1, A2 coincide.

We shall prove the case of C2 only. W.Z.o.g., let X--x e G. Define a

measure Tx on GxS by

ffdx = ECJ f(X(t), y)u(t)(dy)dt], f e C(GxS),

which clearly depends on u(1). Disintegrate ax as

mx(dy,ds) = Vx(dy)v(y)(ds)

where /x is the image of nx under the projection GxS -3G (called the Green

measure) and v:G -*U is the regular conditional law. Let u'(') denote the

stationary Markov control v(X'(')) where X'(') denotes the corresponding

solution of (2.1) with XO-x.

Remarks: Note that v above is defined only yx-a.s. We pick any one

representative of this a.s.-equivalence class, it does not matter which. A

similar remark applies to other situations in this section and Section VIII

where we employ a similar disintegration of measures.

Lemma 4.1. For f e C(GxS), heC(&G), the quantities
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E[l ff(X(t),y)u(t)(dy)dt], E[h(XM())]

remain unchanged if X('), u(') are replaced by X'('), u'(') resp.

Proof. Let

q(x) = E[J If(X'(t),y)u'(t)(dy)dt]

Y(t) = f(X(s),y)u()(y)u(s)(dy)ds + (X(t)).

Then (') is the unique solution in W2'P(G)nC(G), p>2,

-(LT)(x,v(x)) = I f(x,y)v(x)(dy) on G, v = 0 on &G. (4.2)

(see [6]). By the extended Ito formula of [471, Ch. 2,
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E[Y(M)] - E[Y(O)] = Jfdix - (x)

= E[f (tf(X(t),y)u(t)(dy) + (L)(X(t), v(X(t)))dt]

= 0

by (4.2) and the definition of v. The claim for f follows. That for h can

be reduced to the above by Ito formula if h is the restriction of a C2

function. The general case then follows by an obvious approximation

argument. Q.E.D.

The proof of the first half of Theorem 4.3 is immediate. The second

half can be proved by analogous methods. We briefly indicate the line of

argument for T<-, a=O. Define a measure yx on Rdx[O,T]xS by

ffdyx = E[l If(X(t),t,y)u(t)(dy)dt] for f e Cb(Rdx[O,T]xS)

and disintegrate it as

yx(ds,dt,dy) = Px(dx,dt)v(x,t)(dy)

where fx is the image of yx under the projection Rdx[O,T]xS -)Rdx[O,T] and

v:Rdx[O,T] -*U is the regular conditional law. Let u'(') = v(X'('),') with

X'(') the corresponding solution of (2.1). Define
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1p(x,t) = EIf k(X'(t),u'(s))ds + h(X'(T))/X'(t) = x]
t

Y(t) = k(X(s),u(s))ds + (X(t),t)

By arguments analogous to those of Lemma 4.1, one can show that E[Y(T)] =

E[Y(O)], implying that u('), u'(') yield the same cost. The same proof also

shows [181 that the laws of X(t), X'(t) agree for each t. This allows us to

prove the existence of optimal Markov controls for a larger class of cost

functionals. An example is

j11(t)tIe wdt, T>O,

where p(t) = the law of X(t), p 8 P(R d ) is prescribed and ||'-| is the total

variation norm. Only thing one needs to observe here is that the map

f 8 P(Rd) -11k-pR| a R

is lower semicontinuous.

Such claims are in general false for Cl as the following example shows:

Let d=l, S=(-1,11, a(') a 1, F(x,y) = y for all x, and the cost functional

is E[f(X(T))f(X(O))] where feCb(R) is given to be monotone increasing and

odd. Using the comparison theorem for one dimensional Ito processes [44],

one can see that the precise control s(') = I{X(O)<O} - I{X(O)>O}, which is
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clearly not Markov, is optimal and does better than any Markov control.

Continuing with the nondegenerate case, one can say more. The set Mx

of attainable x', xeG, is the same whether we consider all admissible

controls or just the stationary Markov controls, by virtue of Lemma 4.1.

Letting M(G) = the space of finite measures on G with weak* topology, it

follows by arguments analogous to those of Theorem 4.1 that Mx is compact

in M(G). By the Krylov inequality ([47], Section 2.2), each Yx has a

density g(x,') w.r.t. the Lebesgue measure on G, defined a.e. From (4.2),

it follows that g(x,') satisfies Ag(x,') = 0 on G\{x} in the sense of

distributions, where A is the formal adjoint of the extended generator of

the Markov process under consideration. Standard p.d.e. estimates can then

be used [20] to prove that g(x,') remains equicontinuous bounded on compact

subsets of G\{x}. It is not hard to deduce from this that the attainable

g(x,') form a compact set Cx in C(G\{x}) and the bijection yx -- g(x,') is a

homeomorphism between Mx and Cx. Scheffe's theorem [11] then implies that

Mx is also compact in the total variation norm topology.

These considerations allow one to prove existence of optimal Markov

controls for more general cost functionals. An example is the functional

fg(x,y)h(dy) where h is a finite measure supported on the boundary of a

subdomain of G which is bounded away from x, having the interpretation as a

'boundary-crossing cost' [20].

Analogous results seem possible when v is replaced by a fixed T>O.

Relevant references: [18], [20].

_ , .......................................................... .......~~~~__ ~_ 
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V. THE DYNAMIC PROGRAMMING PRINCIPLE

As before, we confine our attention to C2 and assume that either

nondegeneracy or the condition in the remarks following Theorem 4.1 holds.

Let {FtJ denote the natural filtration of X(').

Lemma 5.1. Let r be an {Ft}-stopping time. Then on ({<o}, the regular

conditional law of X(r+') given F. is a.s. the law of some controlled

diffusion of the type (2.1).

Proof. W. .o.g., we may assume u(') to be feedback. Thus there exists a

map f:[O,O)xC([O,o); Rd) -)U which is progressively measurable w.r.t. {Ftl

such that u(t) = f(t,X(')) a.s. By Lemma 1.3.3, pp. 33, [61], it follows

that a version of the regular conditional law of X(+9') given F. is given by

the law of a controlled diffusion as in (2.1) with initial condition X(r)

and control u'(') = f(T+t,X(')) with v and the restriction of X(') to [O,T]

being held fixed as parameters. The claim follows. Q.E.D.

For xsG, te[O,T], let Jx(u(')) denote the cost under u(') when X0 = x.

Define Jx(v) analogously for a Markov or stationary Markov control v. For a

fixed process u('), an argument analogous to Theorem 4.1 can be employed to

show that x ->Jx(u(')) is continuous. In the nondegenerate case, x -3Jx(v)

is continuous as a consequence of the Feller property and considerations

similar to those of Theorem 4.1. Define the 'value function' V:G -3R by
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V(x) = min Jx(u(')). Then V will be upper semicontinuous and V = h on

(6G)'.

Lemma 5.2. V is continuous.

Proof. Let xn ->xw in G and let un('), Xn('), n=1,2,..., denote resp. an

optimal control and the corresponding process when XO = xn. By mimicing the

arguments of Theorem 4.1, one has (by dropping to a subsequence if

necessary) Xn(') -X,(') in law for some X,(') satisfying (2.1) with some

control u,(') and with X,(O) = x.; and moreover,

V(x I =- J (u (')) (u ()
n co

For any u('),

J (u(')) -~J (u(-)).
n CD

Since

V(Xn) J (u(')),n x
n

we have
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(x (u')) < Jx (u(')), implying V(x ) = J (u(')). Q.E.D.

Theorem 5.1. (The dynamic programming principle) Let X0 = x. Then for any

{Ft}-stopping time a,

V(x) = min E[J k(X(t), u(t))dt + V(X(aA'))] (5.1)
u(-) O

where the minimum is attained if and only if u(') on [O,a~A] is the

restriction of an optimal control to 0,a/Ar].

Proof. Under any u('),

V(x) < E k(X(t), u(t))dt] + El[ k(X(t), u(t))dt + h(X(M))].
O [aAx

Picking u(') on [aAv,v] to be an optimal control for the initial condition

X(aAv) and taking the infimum over all such u('),

V(x) < inf E[ k(X(t), u(t))dt + V(X(A&r))].
u(') 

If u(') is optimal,
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V(x) = EJE[E k(X(t), u(t))dt +

h(X(c))/F ] ]

-> EfE k(X(t), u(t))dt + V(X(MA-))]

by Lemma 5.1.(5.1) and the 'if' part of the last claim follow. The 'only

if' part follows on noting that if u(') attains the minimum in (5.1), then a

control which on [O,aAl] coincides with u(') and thereafter coincides with a

control which is optimal for the initial condition X(aAM) will have cost

V(x) and thus be optimal. Q.E.D.

Remark (5.1) holds with 'min' replaced by 'inf' even if we drop the

assumptions of the first paragraph of this section and can be proved by

analogous arguments by using near-optimal controls in place of optimal ones.

However, V need no longer be continuous.

Corollary 5,1. In the nondegenerate case, if a stationary Markov control v

is optimal for some initial x, it is optimal for any initial condition.

Proof. Let a above be the first exit time from a connected subdomain ACG

with xeA and having a C2 boundary 8A. Let y denote the law of X(o). The

above argument then clearly shows that v must also be optimal for initial

condition X(a) and hence V(y) = Jy(v) for p-a.e. y in 6A. By the Stroock-
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Varadhan support theorem, supp y = 8A. Thus by continuity of V and y -~

Jy(v), V(y) = Jy(V) on 6A. Since 6A can be arranged to contain any yeG, we

are done. Q.E.D.

Corollary 5.2. In the nondegenerate case, V e W82P(G) C(G) for p>2 and

satisfies the 'Hamilton-Jacobi-Bellman' equation

min[(LV)(x,u) + k(x,u)] = 0 a.e. in G, V=h on SG. (5.2)
U

Furthermore, a stationary Markov control v is optimal if and only if for

a.e. x, the minimum above is attained at v(x).

Proof. Let v be an optimal stationary Markov control. By standard p.d.e.

results [6], there is a unique solution in the specified class to the

equation

(LV')(x,v(x)) + k(x,v(x)) = 0 in G, V' = h on SG.

By Corollary 5.1 and the well-known stochastic representation of this

solution [6], V' = V. Let X(') be the process starting at some yeG and

controlled by a constant control u(') - u0. By Theorem 5.2, the process

V(X(cAt)) + ~fAtk(X(s), uO)ds is an {Ft)-submartingale. The Ito formula of

[47], Ch. 2, gives us its Doob-Meyer decomposition to be 0Art((LV)(X(s), u0)

+ k(X(s), uo))ds + a martingale. Thus (LV)(X(=At), uO) + k(X(TAt), u0) > 0

a.s. for all t>O. But for t>0, the support of the law of X(TAt) is all of

G. (This can be proved either from the Stroock-Varadhan support theorem or

by p.d.e. methods. We omit the details.) Hence
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(LV)(x,u0) + k(x,uO) O0 a.e. on G.

(5.2) and the 'only if' part of the last claim follow. The 'if' part

follows from the stochastic representation mentioned above and the

definition of V. Q.E.D.

We shall briefly indicate the corresponding results for C3 with T<- and

a=O. For t[0O,T], xeRd, define

T
V(t,x) = inf E[ tk(X(s),u(s))ds + h(X(T))]

u(') t

Then

(i) V is continuous

(ii) V satisfies

TA(avt)
V(t,x) = min E J k(X(s),u(s))ds + V(X(ThA))] (5.3)

u(') t

for any {Ft}-stopping time a and u(') attains the minimum in (5.3) if and

only if the restriction of u(') to [t, TA(aVt)] coincides with the

restriction to the same interval of a control which is optimal for X(s),

s>t, satisfying (2.1) with X(t) = x and with cost functional El[Tk(X(s),

u(s))ds + h(X(T))].

(iii) In the nondegenerate case, V is the unique solution in

W 2oc([o,T]xRd)C C([O,T]xRd), p>2 satisfying a suitable growth condition at

infinity to the Hamilton-Jacobi-Bellman equation
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min -aV (t,x) + (LV(t,'))(x,u) + k(x,u)] = 0 on [O,T]xRd , V(T,') = h(') (5.4)

Furthermore, a Markov control v is optimal for some initial condition if and

only if it is optimal for any initial condition, which is if and only if it

attains the minimum in (5.4) for a.e. (t,x) in [O,T]xRd.

In (5.2) and (5.4), the minimum will be clearly obtained by a Dirac

measure on S for each fixed x. An appeal to the selection theorem then

assures us of an optimal precise control that is stationary Markov (resp.

Markov). In the degenerate case, however, an optimal precise control need

not exist, as the following example shows: Let d=1, S={-1,1}, i(x,y) = y,

maO, Xo=O and cost = E[fTX2(t)dt] for some T>O. Then the relaxed control

u(*) - (81+6_1)/2 (6x being the Dirac measure at x) gives zero cost whereas

no precise control does.

Thus it is clearly hopeless in the degenerate case to expect that V

would satisfy an H.J.B. equation like (5.2) or (5.4) in the above sense.

This has led to the development of a new solution concept for H.J.B.

equations called the viscosity solutions which coincide with the

conventional ones for the nondegenerate case. V then can be shown to be the

unique viscosity solution of the appropriate H.J.B. equation even in the

degenerate case. Alternatively, in case of C2, it is characterized as the

maximal subsolution of the system
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-[(LV)(x,u) + k(x,u)] < 0 on G, V<h on SG, ueU (5.5)

with the corresponding analog of (5.4) for C3. See [51], [52] for details.

There is an alternative interesting way of arriving at (5.5) in the

nondegenerate case. Theorem 3.1 allows us to consider the control problem

for, say, C2 as an optimization problem over a compact convex set of

measures. The dual of this problem in the conventional convex analytic

sense turns out to be precisely the problem of finding a maximal subsolution

of (5.5). See [39] for details.

There are two important abstractions of the dynamic programming

principle. We illustrate these for C3 with a=O, T<w. The first is the

martingale formulation [25], [57], [59] which states that V(X(t)) +

ftk(X(s),u(s))ds, t>0, (u(') feedback) is a submartingale w.r.t. the natural

filtration of X(') and is a martingale if and only if u(') is optimal. The

second is the nonlinear semigroup formulation [54], [551, [56] which states

that the map AT:Cb(Rd) -* Cb(Rd) mapping h into V is a one parameter

semigroup in T whose infinitesimal general A is given by Af =

inf((Lf)(',u) + k(',u)) for smooth compactly supported feC(Rd). Either
U

formulation is obvious in view of the foregoing. However, their real power

lies in the ease with which they generalize to more general semimartingale

or Markov process models.

Relevant references: [6], [24], [38], [47], [51], [52], [54], [55], [56],

[57], [59].
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VI. THE DEGENERATE CASE

In this section, we drop the nondegeneracy assumption and adapt the

idea of Markov selections due to Krylov ([61], Ch.12) to establish the

existence of an optimal Markov control along the lines of [29], [43]. We

consider the simplest case which is C3 with T=o, a>O. See [29] for other

cases of C3 and [43] for C2. (For the special case of C3 considered here

and C2, one strengthens Markov to stationary Markov.)

Let {fi' i>l}C Cb(Rd) be dense in C(Rd) and {Pj, j>}) be dense in

(0,'). Define Fij:C([O,c); Rd) -)R by

oD -. t
Fij(w(')) = Je fj(w(t))dt, i,j>l. (6.1)

Enumerate the Fij's as F1, F2,... by a suitable relabelling. Let A = {all

admissible u(1)}. (Recall that these need not be defined on the same

probability space.) Define Vi:Rd -) R and Ai(Xo), i>O, inductively as

follows:

V =V, A (X0) = {u(')eAlu(') optimal}

For i>1,
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Vi (X) = min E[Fi(X( )) (6.2)

u(·)eAi-_1 (X0)

Ai(X0 ) = u() Ai-1(X0 ) for which the minimum in (6.2) is attained)

V.(x) = V(X ) for X = x.

The above is self-explanatory once it is observed that by the same

arguments as the ones leading to Theorem 4.2, the set Mi(Xo) of laws of X(')

corresponding to u(') e Ai(Xo) is compact nonempty in P(C([O,c);Rd)) for

each i and thus the minimum in (6.2) is attained. Note that Ai(XO) D

Ai+l(X ), implying Mi(Xo) D Mi+I(Xo), i>0. Thus M.(Xo) = Mi(Xo) is

nonempty and therefore A,(Xo) = ifo Ai(XO) is nonempty.

A simple conditioning argument shows that Vi(XO) = E[Vi(Xo)]. Also, a

straightforward adaptation of the argument leading to Lemma 5.2 shows that

Vi e Cb(Rd) for all i.

Let i20, u(') 8 Ai(Xo) and X(') the corresponding solution of (2.1).

Let v be an a.s. finite stopping time w.r.t. the natural filtration {Ft) of

X('). Let L. denote the regular conditional law of X(+9') given F.

Lemma 6.1. Lr e Mi(X(-)) a.s. where Mi(Xo) = Mi(y) y=X0 .

Proof. (Sketch) Let i=O. By Lemma 5.1, L4 is a.s. the law of a controlled

diffusion of the type (2.1) with initial condition X('). If the claim were

false on some AeF. with P(A)>0O, we could modify u(') on A from T onwards to

obtain a lower cost, a contradiction. Hence the claim holds for i=0.
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Suppose it holds for some i>O0 and take u(1) 8 Ai+i(Xo). Then u(') e Ai(Xo)

and by the induction hypothesis, L, s Mi(X(r)) a.s. Repeat the above

argument to obtain a contradiction unless L. s Ai+l(X( )) a.s. The claim

follows by induction. Q.E.D.

Corollary6.1. If u(') above is in Ac(XO), L e M,(X(z)) a.s.

Lemma 6.2. For f s L8(R+),

e Jtf(t)dt = 0 for all j => f(t) = 0 a.e.

Proof. By continuity

Je-Ptf(t)dt = 0 for P a (0,1).

By successive differentiation w.r.t. 3 at P=1,

tne tf(t)dt = 0 for n>O

The set of measurable g:R+ -R for which

e-tg(t)f(t)dt = 0
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is a vector space which is closed under uniform convergence and bounded

monotone convergence and contains the algebra of polynomials. By the

monotone class theorem of [26], pp. 14, it includes L,(R + ) and in

particular, f itself. The claim follows. Q.E.D.

Theorem 6.1. For u(') e Aw(Xo), X(') is a homogeneous Markov, strong Markov

process.

Proof. Fix i>l. Then for w(') e C([O,c); Rd),

X - it
Fi(w()) = l e 3 f'(w(t))dt

0

for suitable j,S. By Lemma 6.1,

E[Fi(X(z+'))/F ] = Vi(X(M)) a.s.

= E[Fi(X(=+'))/X(z)] a.s. (6.3)

By Lemma 6.2,

E[f (X(,+t))/F ] = E[f'(X(r+t))/X(Q)] a.e. t, a.s.

Using Fubini's theorem to interchange 'a.e.t.' and 'a.s.' and then taking an

appropriate version, we conclude that for each t>O,
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E[f (X(a+t))/F ] = E[f (X(r+t))/X(T)] a.s.

The claim follows, the homogeneity being a consequence of the fact that the

middle term in (6.3) does not have an explicit u-dependence. Q.E.D.

Corollary 6.2. If processes X('), X'(') have their laws in M.(x) for some

xsRd, the laws of X(t), X'(t) agree for each t.

Proof. From (6.3) with '=O,

E[F.i(X())] = Vi(x) = E[FI(X'())], i>1.

Use Lemma 6.2 and the density of {fi} in C(Rd) to conclude. Q.E.D.

This allows us to define a collection of transition probabilities r -

(p(x,t,'), xaRd, t>O} P(Rd) by

p(x,t,A) = P(X(t)sA), A Borel in Rd,

for any X(') whose law is in M.(x). The Chapman-Kolmogorov equation for r
follows from Lemma 6.1. The same fact also shows that r is the family of

transition probabilities for the Markov process featuring in Theorem 6.1.

Since transition probabilities and initial law completely specify the law of

a Markov process, this implies that each M,(Xo), in particular M.(x), xeRd,

is a singleton, strengthening the conclusion of Corollary 6.2.
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Using the selection theorem, it is proved in [43], pp. 184-5, that

there exists a stationary Markov control v such that for any XO, the unique

element of M,(XO) is the law of a process satisfying (2.1) with the control

v. This assures that there is one optimal solution of (2.1) under the

stationary Markov control v. This does not preclude the possibility that

there may be others which are not optimal. Nor is it assured that there

will be even one solution for any other stationary Markov control.

Relevant references: [29], [43], [61].
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VII. CONTROL UNDER PARTIAL OBSERVATIONS

In the problem of control under partial observations, one has in

addition to (2.1) an Rm-valued 'observation process' Y(') satisfying

Y(t) = Jq(X(s))ds + W'(t) (7.1)

where q:Rd -)Rm is bounded continuous and W'(') is an Rm-valued standard

Wiener process independent of X0, W('). The objective then is to minimize a

cost functional over all u(') adopted to the natural filtration of Y(').

These are called strict sense admissible controls.

The existence of an optimal control in this case is a long standing

open problem (except in some simple cases like the well-known 'Linear-

Quadratic-Gaussian' case [38]). Therefore one enlarges the class of

controls in the following manner: Let (0,F,P) denote the underlying

probability space and {Ft) the natural filtration of (X('), Y('), u(')).

Define a new probability measure PO on (0,F) by:

dP = A(t) = exp( <q(X(s)),dY(s)> ) Jjq(X(s)J12ds)

This A(') is seen to be the unique solution to the s.d.e.

A(t) = 1 + A(s) < q(X(s)), dY(s)> (7.3)

Under PO', Y() is an m-dimensional Wiener process. Call u(') a wide sense
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admissible control if for each t, u(t) is independent of W(') and of Y(t2) -

Y(t1) for t2 > t1 > t under PO. This clearly contains the class of strict

sense admissible controls. We seek an optimal control in this larger class.

For simplicity, consider the cost C2 with either nondegeneracy or the

condition in the remarks following Theorem 4.1. Letting EO0 ] denote the

expectation under PO, one can check that the cost can be rewritten as

E0O[Jk(X(t),u(t))A(t)dt + h(X(v))A(i)], (7.4)

which has the same form as before but with the new (d+l+d+m)-dimensional

controlled process (X('), A('), W('), Y(')) whose dynamics is given by

(2.1), (7.1) and the trivial s.d.e.s W(') = W('), Y(') = Y('). One can now

repeat the arguments leading to Theorem 4.1 to conclude that an optimal wide

sense admissible control exits, the only extra bit needed being the

observation that the independence of u(s), s<t, (identified with the D-

valued a(s), s<t, as in Section III) and W(') or Y(t+')-Y(t) for each t is

preserved under weak convergence [30].

A similar argument works for C3. For Cl, one needs some additional

restriction such as that the map F there should depend only on the

restriction to [0,T] of its argument for some T a (0,-). This is so because

although P, PO are mutually absolutely continuous on (Ft] for each t, they

need not be so on V Ft.
t

One would like to go a step further and have an optimal control that

depends in a feedback, or even better, Markovian fashion on an appropriate

'state' process. (Clearly, X(') no longer qualifies as the latter.) We
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shall indicate how to achieve this for C3 and a special case of C2, both

under the nondegeneracy condition.

Consider C3 with T<(, a=O (the general case can be handled similarly).

The natural candidate for the state process here is the conditional law n(t)

of X(t) given Y(s), u(s), s<t, for t>O. Introduce the notation y(f) = ffd¥

for f e C"(Rd) = smooth real-valued functions on Rd with compact supports

and V e P(Rd). Then the evolution of n(') is described by the well-known

Fujisaki-Kallianpur-Kunita equation [531

stt
n(t)(f) = n0(f) + I n(s)((Lf)(', u(s)))ds + J <n(s)(fq)-n(s)(f)

n(s)(q),dY(s)> (7.5)

for f e C (Rd), where fq is the componentwise product of q by f, n(s)(fq)

and n(s)(q) are defined componentwise in an obvious manner, and Y(t) = Y(t)

- fon(s)(q)ds is the so-called innovations process which is a Wiener process

under P having the same natural filtration as Y(') [1]. Under PO, (7.5)

becomes

n(t)(f) = no(f) + J[n(s)((Lf)(',u(s))) + <n(s)(fq) - n(s)(f)n(s)(q),

n(s)(q)>]ds + <n(s)(fq) - n(s)(f)p(s)(q), dY(s)> (7.6)

for f a C (Rd) with Y(') a Wiener process.

We shall assume that given on some probability space (Q,F,P O) a Wiener
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process Y(') and a U-valued process u(') satisfying: u(t) is independent of

Y(t+')-Y(t) for each t, the solution to (7.6) is pathwise unique. One

situation where such a result is known is the case when q is twice

continuously differentiable with suitable growth conditions on its first and

second partial derivatives as in [151, [42]. Then n(') in (7.6) is

interconvertible to another measure-valued process V(') satisfying a

nonstochastic p.d.e. (but with stochastic processes u('), Y(') featuring as

'parameters') called the pathwise filtering equation the uniqueness problem

for which can be handled by standard methods [15], [42]. We omit the

details.

An important consequence of this uniqueness is the fact that given

(7.6) on some (Q,F,Po), n(') is the process of conditional laws for a

partially observed control system of the type described earlier on a

possibly augmented probability space, after an appropriate absolutely

continuous change of measure. This is achieved as follows: By adjoining a

copy of RdxC([O,c);Rd) to f if necessary (cf. the proof of Theorem 2.2 (b)),

we can construct an Rd-valued random variable Xo with law nO and a d-

dimensional standard Wiener process W(') which are independent of each other

and of Y('). Construct X(') by (2.1). Change measure to P by (7.2). Then

the conditional law r'(t) of X(t) given Y(s), u(s), s<t, t>O, under P

satisfies (7.5) under P and hence (7.6) under PO', thereby coinciding with

n(t), tŽO, by the uniqueness hypothesis.

Note that the cost functional can be rewritten as
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E[JnT(t)(k(',u(t)))dt + n(T)(h)] (7.7)
0

Thus we can consider n(') itself as a controlled process with (7.7) as cost.

This is called the separated control problem. We know that a wide sense

admissible optimal u(') exists for this and by considerations analogous to

Theorem 2.2 (a), one may assume that it is in a feedback form, i.e., is

adapted to the natural filtration of n(') [15], [30]. In analogy with

Section V, we can define a value function V:[O,T]xP(Rd) -*R by

V(t,y) = min E[ T(s)(k(',u(s)))ds + n(T)(h)/n(t) = M]

where the minimum is over all wide sense admissible controls. We can mimic

the argument of Lemma 5.2 to claim that V is continuous and that of Theorem

5.1 to claim that it satisfies the dynamic programming principle.

TA(rvt)
V(t,Y) = min E[J n(s)(k(',u(s)))ds + V(t,n(TA/))] (7.8)

for any a which is a stopping time w.r.t. the natural filtration of n('),

the minimum in (7.8) being once again over all wide sense admissible

controls. Furthermore, it follows as before that this minimum is attained

for a wide sense admissible u(') if and only if its restriction to

[t,TA(aVt)] coincides with that of an optimal wide sense admissible control.

This suggests that one can mimic the arguments of the preceding section
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to obtain an optimal process n(') which is a Markov process satisfying (7.5)

for a u(') of the form u(t) = v(n(t),t), tŽO, where v is some measurable map

P(Rd)x[O,T] --U. This is indeed so. See [30] for details.

We shall now briefly sketch a method of obtaining a separated control

problem for C2 when h is the restriction of an C2 function with bounded

first and second partial derivatives. The latter restriction allows us to

assume w.l.o.g. that h9O since we can always replace k by k+Lh to achieve

this. Define a P(G)-valued process n(') by

Jfdr = E[If{>t}f(X(t))/Y(s),u(s),s•t]/P(r>t/Y(s),u(s),s<t)

for feC(G), t>0, taking a measurable version thereof. The evolution of (')

is described by

n(t)(f) = ()((f) + (n(s)((Lf)(',u(s))) + (s)(fg) - n(s)(f)n(s)(g))ds +

a
O <n(s)(fq)-n(s)(f)R(s)(q), dY(s)> (7.9)

where g:G ->R is defined as follows: Let Z(') be the unique solution to

dZ(t) = a(Z(t))dW(t), Z(O) = xeG,

with W(') a Wiener process. Let t0 = inf[tŽOIZ(t)seG. Define
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g(x) =: P(~>t)lt: .

Then g can be shown to be continuous [19]. We do not drive (7.9) here. The

evolution of a related 'unnormalized' process taking values in the space of

finite nonnegative measures on G is derived in [19]. n(') can be obtained

from this process by normalizing it to a probability measure. (7.9) is then

easily derivable from the evolution equation of the above process by a

simple application of the Ito formula. The cost can be rewritten as

where the integrand can be shown to be dominated in absolute value by an

where the integrand can be shown to be dominated in absolute value by an

exponentially decaying function of time uniformly in u(') [19]. With this

as the cost for the state process q('), we can now mimic the foregoing

developments for C3, n(').

The use of wide sense admissible controls can be partly justified in

case of C2, C3 by the fact that the infima of the costs over strict sense

admissible and wide sense admissible controls coincide. A proof of this

follows along the following lines: Look at the separated control problem,

say for C3. Say that the sequence of controls {un(,)} approximates a

control u(') if the corresponding D-valued processes [ff 1dun(.),

ff2dun(.),...] {fi} as in Lemma 3.1, converge a.s. in D to [ffldu('),

ff2 du(')...]. By familiar arguments, the corresponding costs converge. Now

given wide sense admissible control u('), it is approximated by w.s.
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admissible controls {un(,)} with continuous paths defined by

Jfdun(t) = n i J fdu(s)ds, n=1,2,...,f £ C(S).
(t-1/n)Vo S

In turn, each un(') can be approximated by a piecewise constant w.s.

admissible control in an obvious manner. Thus each wide sense admissible

control u(') is approximated by piecewise constant wise sense admissible

controls. Consider a specific partition of the time axis into finite

intervals and consider optimization of the prescribed cost over only those

w.s. admissible controls which are constant on each of these intervals. In

this subclass, an optimal strict sense admissible control can be shown to

exist by treating the above as a discrete time control problem. The claim

follows. See [30] for details.

As for a dynamic programming principle for the control under partial

observations, a martingale formulation of the same is given in [25]. A more

common approach is the nonlinear semigroup formulation for the separated

control problem [8], [17], [35], [36]. Attempts have been made to extend

the results available for the H.J.B. equation in the completely observed

case to an appropriate generalization of the same to the partially observed

case [5], [45], [46], but with limited success.

Relevant references: [5], [8], [91, [14], [15], [17], [19], [25], [30],

[35], [36], [37], [41]. [42], [45], [46].
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VIII. THE ERGODIC CONTROL PROBLEM

In the ergodic control problem, one seeks to a.s. minimize the cost

lim sup t Jk(X(s),u(s))ds, (8.1)
t -3 

where k is as before. Assume nondegeneracy. (8.1) differs strikingly from

C1-C3 in that the finite time behaviour of X(') is now immaterial and only

'average' asymptotic behaviour matters. Call a stationary Markov control v

a stable stationary Markov control (SSMC for short) if under v, X(') is

positive recurrent and thus has a unique invariant probability measure ~v

[10]. Call it an unstable stationary Markov control (USMC) otherwise.

Under an SSMC v, (8.1) a.s. equals fk(x,v(x))Iv(dx). One typically tries to

find an optimal SSMC. Thus we assume that at least one SSMC exists.

However, an optimal SSMC need not always exist as the following example

shows: If k(x,u) = exp(-1IxII 2) and a USMC exists, the USMC will clearly

give a strictly lower (i.e., zero) cost than any SSMC. We consider two

cases where an optimal SSMC can be shown to exist.

Call k near-monotone if

lim min k(x,u) >) = inf J k(x,v(x)) v(dx) (8.2)

liXIl -> u all SSMC v

This nomenclature is motivated by the fact that any k which is of the form

k(x) = f(IIxJI), f monotone increasing on R+, will satisfy (8.2). This is

an important class of costs in practice. Clearly, one expects such k to

penalize unstable behaviour and thus an optimal SSMC to exist. This
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intuition is confirmed by the results to follow.

The second case that we shall consider is a stability condition that

ensures that all stationary Markov controls are stable (and more).

The key result in both cases is Theorem 8.1 below. Let Rd = RdU{x} be

the one point compactification of Rd. Define a P(RdxS)-valued process g(')

by

ft Rd
y(t)(AxB) = I{X(s)sA}u(s)(B)ds, BCS measurable

For any ysP(RdxS), we can write the decomposition y(A) =

&VV1(AO(RdxS)) + (1-6 )V2 (Af({[}xS)), ACRdxS measurable, where 6&r[O,1],

V18P(RdxS), y28P(({]xS). The decomposition is unique for 6y8(0,1) and is

rendered unique for 68=O(resp.1) by fixing an arbitrary choice of ¥1(42

resp.). Disintegrate ML as

Yl(dx,ds) = (dx)v (x)(ds)

where *'sP(Rd) is the image of M1 under the projection RdxS ->Rd and v.:Rd -f

U the regular conditional law.

Theorem 8.1. For all sample points outside a set N with P(N) = O, each

limit point y of M(t), tO, in P(RdxS) for which 6 >0 satisfies
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4V = v (8.3)

(In particular, vv is an SSSM.)

Proof. Let fi:Rd -) R, il1, be such that (i) fieCc(Rd), (ii) their

continuous extensions to Rd (denoted {fi} again by abuse of notation) are

dense in (gsC(Rd)]g(-) = 0}. Divide the equations

fi(X(t))-fi(X(O)) = (Lfi)(X(s)'u(s))ds + J <Vfi(X(s)),,(X(s))dW(s)>, il

(8.4)

by t throughout and let t -* A. The last term in (8.4) is a time-changed

Brownian motion whose process of time change has a uniformly bounded

derivative and hence it is o(t) a.s. [21]. It follows that outside a set N

with P(N) = 0, any limit point v of {((t)} for which & >0 must satisfy

J(Lfi)(x,vy(x))v (dx) = 0, il1.

The claim follows by Theorem 9.19, pp. 252-3, [33]. Q.E.D.

Theorem 8.2. If k is near-monotone, an optimal SSSM exists.

Proof (Sketch) Let Ivn) be a sequence of stationary Markov controls such

that
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Jk(X,Vn(x)) l v (dx) 4i 1. (8.5)

Define ¥n E P(RdxS) by

Jd fdn = R Is f(x,s)v (x)(ds)nv (dx), f e Cb(RdxS),

Rdx Rd S n

for nl1. (8.2), (8.5) force [n)] to be tight [21]. Any limit point I of

(Vn) can be decomposed as

p(dx,ds) = g(dx)v(x)(ds)

with geP(Rd), v:Rd -*U. Since for each nŽ1,

J(Lfi)(x,vn(x))qv (dx) = O., i>1,
n

letting n -yX, we get

J(Lfi)(x,v(x))W(dx) = 0, i>1,

implying as above that g=nv. Clearly fk(x,v(x))nv(dx) = f. For arbitrary

u('), (8.2) and (8.3) ensure that
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lim inf t k(X(s),u(s))ds _> a.s.
t -3 0

Thus v above is an optimal SSSM. Q.E.D.

The second case we consider is the following : Let B1, B2 with B1CB 2

be concentric spheres with boundaries 6B1, 6B2 resp. Define the stopping

times

C1 = inf{t>OIX(t) 8 8B1 }

12 =inff{t>1lX(t) 8 &B2 }

I3 = inf{t>.31X(t) BB1 }

Assume that

sup E[( 3-21) ] < o (8.6)

where the supremum is over all initial data and all admissible controls.

(This condition is not in an easily verifiable form. A simpler Liapunov-

type sufficient condition for the above to hold is given in [21]. This

condition requires that there exist a twice continuously differentiable

function w:Rd ->R satisfying
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(i) lim w(x) = +U,

llxll --

(ii) there exists e)O such that for all x with lilxI sufficiently
large

sup (Lw)(x,u) < -8

plus some additional technical hypotheses.)

Define for each SSSM v, a measure ¥v e P(RdxS) by

ffdYv = fJf(x,s)v(x)(ds)Av(dx), f 8 Cb(RdxS)

Under (8.6), it is proved in [21] that

(i) all stationary Markov controls are stable and the set

[{vlv SSSMJ is compact in P(RdxS)

(ii) for a suitable choice of N in Theorem 8.1, 6& is always one

for V as in the statement of Theorem 8.1.

Using arguments analogous to those used for the first case, one can

show from (i), (ii) above that an optimal SSSM exists.

When d=1, both (i) and (ii) can be derived from the comparison theorem

for one dimensional diffusions [44] under the weaker assumption that all

stationary Markov controls are stable [21]. The proof is almost obvious.

Relevant references: [10], [16], [21], [22], [49], [58], [62].
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IX. SOME OPEN PROBLEMS

We conclude in this section by listing a few open problems related to

the foregoing.

(1) Let M(') be an integrable real-valued process adapted to the

natural filtration of X(') such that the value of M(t+s), t,sŽO,

is completely specified by the value of M(t) and the restriction

of X(') to [t,t+s]. Show that for the cost functional Elf(M(T))]

for some T>O, feC(R), an optimal control u(') of the form u(t) =

v(X(t), M(t), t), t2O, exists, where v:Rd+lxR+ -*U is a measurable

map. Examples are:

(i) M(t) = max IIX(s)II, f(x) = x,

ost

(ii) M(t) = Jg(X(s))ds for some geCb(R), feCb(R).

(2) We proved that for a bounded domain G with a C2 boundary and under

nondegeneracy assumptions, the Green measure and the hitting

distribution on the boundary for an admissible control coincide

with those under some stationary Markov control (Lemma 4.1).

Prove an analog of this for the degenerate case.

(3) Show the existence of an optimal wide sense admissible control for

the control problems under partial observations considered in

Section VII when q explicitly depends on the control.

(4) Formulate a separated control problem for C2 when h is only

continuous.
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(5) For the ergodic control problem with d>2 show that an optimal

stable stationary Markov control exists whenever all stationary

Markov controls are stable, thus dispensing with the additional

assumption (8.6).

(6) Show the existence of an optimal wide sense admissible control for

the ergodic control problem with partial observations.

(7) The ergodic control problem without the nondegeneracy hypothesis

needs to be studied.

APPENDIX

The following selection theorem is used frequently in the main text of

this paper. See [3], pp. 182-4, for a proof.

Theorem. Let (M,H) be a measure space, A separable metric and U the union

of countably many compact metrizable subsets of itself. Let k:MxU ->A be

continuous in its second argument for each value of the first and M-

measurable in the first for each value of the second. Let y:M -*A be M-

measurable with

y(x) e k(x,U), xeM.

Then there exists an M-measurable u:M -*U such that y(x) = k(x,u(x)).
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