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ABSTRACT

A study of interatomic interactions in the halogen crys-
tals is carried out using two models. A lattice dynamical
model based on central force pair interactions between atoms
is proposed. The force constants are derived by fitting the
model to observed Raman and infrared frequencies at the zone
center. 1In the case of iodine, phonon dispersion relations
are calculated along the symmetry directions [010] and [001].
Agreement between the theoretical calculations and phonon fre-
quencies measured by neutron scattering is within 10%. For
the cases of chlorine and bromine where neutron data is not
available, phonon dispersion curves along [00l1] are predicted.
The eigenvectors of all the modes at the zone center are pre-
sented to clarify the existing ambiguity in the symmetry as-
signment in the literature. A simple procedure for evalu-
ating the slopes of the acoustic modes at the zone center is
given based on a second order perturbation theory. The elas-
tic constants along the [001] direction for the three halogens
are given.

An interatomic potential model for halogen crystals based
on central dispersion-repulsion forces and noncentral electro-
static charge interactions is also proposed. The electronic
charge around each atom is represented by a dipole and the
molecule as a whole acts like a quadrupole. The ten potential
parameters are determined by fitting the model to the observed
static and dynamic properties for each of chlorine, bromine and
iodine. The static properties include the equilibrium condi-
tions for a given atom in the crystal and the cohesive energy
of the lattice. The dynamic properties constitute nine exper-
imental zone center frequencies determined by Raman and infra-
red measurements. Phonon dispersion relations are then calcu-
lated along the symmetry directions [100], [010] and [001]. In
the case of iodine, agreement between the calculations and
measured phonon frequencies is good along the [001] direction
and less so along the [010] direction. For the cases of chlo-
rine and bromine, phonon dispersion curves along [100], [010]
and [001] are predicted. Values of the quadrupole moments
for each of the halogens are calculated using the determined
potential parameters. The elastic constants along the [001]
direction for the three halogens are given.
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The determination of minimum free energy structures for
atomic lattices is carried out using computer molecular dynam-
ics with periodic flexible boundary conditions at constant
pressure. The application of this technique to a two dimen-
sional Lennard-Jones crystal structure correctly predicts the
triangular lattice as the most stable one. A transition from
a square lattice to a triangular one is successfully observed
by applying this technique.
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Chapter 1
INTRODUCTION

I. BACKGROUND

An important branch of solid state physics is the repre-
sentation of interatomic and intermolecular interactions by
appropriate potential functions. Given a proper Hamiltonian
one may in principle compute static properties determined
explicitly by the potential such as crystal structure, co-
hesive energy, and P-V data as well as phonon dispersion
curves and all dynamic dependent properties such as specific
heat and thermal expansion. This ambitious route is one
which contemporary theory treads with limited success
even on simple systems as ideal as solid nitrogen. Of
course, for the great majority of observables experimental
precision is far greater than theory can achieve with reason-
able cost and labor. It is not the function of theory in
those cases to improve upon existing numerical data, but
rather to produce a valid coherent physical structure con-
sistent with known data and from this to compute other |
interesting properties that have not been prescribed ade-
quately, if at all, by experiment. Since a quantum mechan-
ical calculation for the interaction energy of many electron
systems is formidable even for simple systems such as the
inert gases, phenomenological potentials are therefore in-
variably used.

Historically the quantitative study of potential func-

tions was initiated by Mie in 1906, by Gruneisen in 1912
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and by Born and coworkers in connection with the study of
solids. In 1924 Lennard-Jones began the serious study of
gas properties, extended later to include both solid and
liquid properties. In the 1940's De Boer and coworkers
and Hirschfelder and coworkers made extensive contributions.
By the beginning of the 1960's the "Lennard-Jones 6:12
potential” and the "exp-6" potential were widely used for
representing data, and generally regarded as satisfactory
quantitative representation of real potentials.

The simplest systems that were initially investigated
were the monoatomic inert gas solids. In general, one
starts by assuming that the potential energy U correspond-

ing to a given configuration of N nuclei specified by their

position vectors El,...,%N is given by
N
> - -> > > > >
U(rl...rN) = z: U2(ri,rj) + E: U3(ri,rj,rk)+... (1.1)
i<j=1 i<j<k=1

in which U U, are pair and triplet potential functions,

2!
and the series is in principle an infinite one. The pair
potential depends only on the internuclear distance and

may be written as U(Ri ). The triplet potential Ujy

]
approaches zero whenever one of the atoms becomes very far
away from the other in the set. 1In the case of inert gases,
the three body potentials contribute appreciably (about 7%

of the cohesive energy of crystalline argon (1)). Higher
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terms appear to be negligible at the present level of ex-
perimental and computational accuracy. In the discussion
of the inert gases, we will specifically concentrate on
argon because most of the techniques for studying potential
functions have been developed using argon, for which more
extensive experimental data are available.

The "traditional" potential for argon was the 6:12
potential with parameters % = 119.89K, o = 3.405 R, deter-
mined by Michels, Wijker and Wijker (2) from second virial
coefficients at temperatures above 273°K. Guggenheim and
McGlashan (3) pointed out the error of a factor of about
2 in the long-range R™6 term, and reanalyzed solid state
data, neglecting many-body interactions, and derived a
piece-wise analytic potential with % N 1380K and approxi-
mately correct long-range behavior. Barker, Fock and Smith
(4) showed that the Guggenheim and McGlashan potential did
not agree well with experimental viscosities due to in-
adequacies in the repulsive region, and used second virial
coefficients and viscosities to derive a Kihara potential
which was surprisingly close to the best modern estimates.
This potential also gave a good value for the long-range
coefficient of R™°. However, it did not reproduce the ex-
perimental solid cohesive energy, suggesting that many-
body interactions were present. Further refinements were
done for the potential of argon, the most noteworthy of

which is the potential derived by Barker, Fisher and Watts
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(5). Work on krypton, xenon, neon and helium proceeded in
parallel to the study of argon.

The second phase of the potential study was to con-
sider the next simplest systems which constituted the di-
atomic molecular solids. Analytical forms were also devel-
oped for the intermolecular potential. This offered the
advantage of making possible the calculation of a wide
range of crystal properties from the same intermolecular
potential such as the crystal structure, the thermodynamic
and several dynamical properties. The intermolecular
forces are normally classified in terms of their interaction
radius as short, medium and long range forces or, on the
basis of their nature, as repulsive,.dispersion, induction,
electrostatic and polarization forces. The term Van der
Waals includes the short range repulsive, dispersion and in-
duction forces. A direct calculation of the Van der Waals
energy from the knowledge of the electronic structure of the
molecules is a formidable task even for small molecules and
nas been actually performed only for very simple systems
such as hydrogen. Phenomenological potentials are therefore
used in the static and dynamic crystal calculations.
Theoretically constructed potential functions for the crys-
tal have invariably been based on the pair approximation,
i.e. it is assumed that the total potential energy may be
written as a sum of terms representing only the interaction

between different pairs of molecules. Within the pair
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potential framework two main approaches have been taken.

On the one hand the molecule is regarded as an entity and
the intermolecular interactions are treated accordingly.

In the second approacn the intermolecular potential is fur-
ther dissected into a sum of atom-atom potentials, each de-
pending on interatomic separation R;+. The first approach
will be discussed in the case of nitrogen. The second
approach is the one which we shall use for ‘the halogens.
The nearest intermolecular interatomic distance is smaller
than the Van der Waals diameter in all three halogens which
makes the treatment of the molecule as a separate entity
not realistic.

We will first dwell on the case of nitrogen. The
intermolecular potential of nitrogen is not satisfactorily
understood despite a large number of forays each of which
can claim some success. Experimental data exist to subject
any trial potentials to critical examination and under this
scrutiny all so far proposed fail in varying degrees. The
essential difference between molecular solids and atomic
solids such as argon is the presence of anisotropic terms
in the intermolecular potential of the former governing
orientational ordering and librational vibrations. Various
analytical forms of the intermolecular potential have been
employed. Following preliminary calculations by Jansen
and De Wette (6), Kohin (7) performed the first elaborate
computation on the low-temperature low-pressure phase of
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nitrogen in 1960. The potential adopted by Kohin to
represent the interaction between nitrogen molecules con-
sists of three parts: (a) a molecular quadrupole-quadrupole
interaction, (b) a dipole-dipole dispersive attraction, (c¢)
a parametric short-range repulsion representing exchange and
overlap. Calculation of the crystal energy at 09K fitted
the experimental value to 2.2%. Nonetheless, many other
quantities computed with this potential are found to be
in very poor agreement with experiment. For example, libra-
tional frequencies calculated in the small-angle harmonic
approximation are too large by almost a factor of two, and
the order parameter describing molecular orientation is
much higher than the experimental value. Kjems and Dolling
(8) performed inelastic neutron scattering measurements to
determine translational and librational lattice modes in a
single crystal of solid nitrogen in the cubic o-phase at
15°K. cCalculations based on a general potential function
which includes Lennard-Jones or exp-6 interactions as well
as electric quadrupole forces, gave good agreement between
both the observed frequencies and intensities and their
calculated counterparts. Further work to account for other
experimental data is expected in this field.

In the case of halogens, the intermolecular potential
is taken as the sum of the interatomic interactions (9,10).
The main assumption is the additivity of atomic contributions

in the molecule-molecule interaction. A number of analytical

16



functions have been proposed in the literature to represent
the atom-atom potential. The most widely used are the
Lennard-Jones and exp-6 potential. The atom-atom potential
is undoubtedly a simple and crude approximation. Despite
this, it has been used often to represent the total inter-
molecular interaction and in many cases, specially for
molecules containing only hydrogen and carbon atoms, it has
been found that it works extremely well in reproducing
crystal structures, energies and vibrational frequencies.
The central nature of the atom-atom potential has as a conse-
quence an isotropy of the interaction around the atom, that
is clearly unrealistic for atoms linked by chemical bonds

or for atoms with lone pairs or involved in delocalized
electron systems. Attempts to obtain anisotropic atom-atom
potentials have been made very recently. The simplest solu-
tion is the use of atom-atom coefficients including an
angular dependence.

Another important contribution to the intermolecular
potential is the electrostatic interaction between the
charge distributions of the molecules. Two main approaches
have been used to represent this type of interaction. The
first is to localize charge, fractions of charge or even
dipoles on the atoms or in the bonds. The second is to
represent the charge distribution by an expansion in terms
of point multipoles at the center of charges. Both approaches

have their advantages and disadvantages. The use of discrete
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charges is for instance simple, but there is no unique way
of partitioning the charge distribution and this intro-
duces a considerable amount of uncertainty in the problem.
Furthermore, serious problems of convergence rise in the
lattice sums. Similar considerations can be made for the
point dipoles localized on the atoms or in the bonds. In
this case the convergence problem is less serious, but the
uncertainty in the values of these formal dipoles remain a
major problem. The multipole expansion has the advantage
that a precise functional form is furnished by the theory
and that the molecular multipoles are often available as
experimental quantities or, if not, can be calculated with
sufficient accuracy. It has however the drawback of being
not valid for close-packed neighboring molecules whose
charge distributions overlap.

In our study of halogens, the intermolecular potential
is taken as the sum of central potentials and electrostatic
interactions. The intramolecular interaction being of the
order of magnitude as the intermolecular counterpart makes
such approach more appropriate. The electrostatic charge
is represented by dipoles localized in the vicinity of the
nuclear centers. Other work in the literature adopted the
same approach though different patterns of potentials and
charges have been used (11,12). Attempts so far to produce
all the known properties of the halogens are fair to good.

On the one hand, work has been done to reproduce the known

18



Ccmb structure starting with a given potential by minimizing
the static energy of the lattice (13,14). On the other hand,
the measured dynamic properties of the crystals, infrared and
Raman active zone-center frequencies in addition to phonon
dispersion curves have been studied using different sets of
potentials (10-12). In our work we started with the given
structure of the crystal and derived the cohesive energy and
phonon dispersion curves using an interatomic potential model.
The determination of the structure of the crystal is an
interesting topic to discuss. Thus far the stable structure
of the crystal is the one that minimizes the lattice energy.
This inherently assumes that one is working at 0°K. However,
in most of these studies, the experimental data available is
always at some higher temperatures. In the case of halogens,
the present data is in the temperature range of 70-110°K. 1In
such cases, where one is focusing on studying both static and
dynamic properties, minimization of the free energy rather
than the lattice energy should be undertaken. Computer
molecular dynamics offers such a technique. A molecular simu-
lation may be carried out at the given temperature using
flexible boundary conditions to seek the minimum free energy
structure. The term flexible boundary is used here to indicate
that the boundary can change volume as well as shape, as
opposed to a fixed rigid boundary. This technique offers the
advantage of carrying out the simulation isobarically. Our

work has focused on testing the applicability of this technique
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to determine minimum energy structures. Two dimensional
crystal lattices are investigated.

Our study may be divided into three major parts.
In the first part a general study of the validity of central
force potentials for halogens is undertaken. Force constants
are derived from a given central force potential and fitted
to zone-center frequencies. The agreement between the fitted
and calculated frequencies at the zone-center and finite
|;| looks to be very good indicating that central potentials
may still be applied as a major component in the development
of a potential for the halogens. The actual development of
a potential to fit the static and dynamic properties of the
crystal is done in the second part. Morse, Buckingham and
electrostatic charge interactions are employed to calculate
lattice energies and measured phonon dispersion curves for
the halogens. Agreement between the calculated properties
and the experimental ones is fair to good. 1In the last
part a scheme to study minimum free energy structures using
computer molecular dynamics is constructed. An isobaric,
flexible boundary simulation is carried out to study mini-
mum energy structures for two dimensional systems. The
scheme is successful in predicting such structureé where
a thorough investigation of thermodynamic properties is

possible.
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Chapter 2
LATTICE DYNAMICS OF HALOGEN CRYSTALS

I. INTRCDUCTION

The sclid halogens, chlorine, bromine and iodine form
an interesting group of isomorphic molecular crystals. Their
crystal structure is relatively simple: the lattice is one-
face-centered orthorhombic, space-group Ccmb (D%ﬁ), with two
diatomic molecules per primitive unit cell stacked in a
planar arrangement as shown in Figure 2-1 (a). Collin (1)
has measured the structure of chlorine at 38°K. The struc-
ture of bromine and iodine has been measured by Vonnegut and
Warren (2) and Van Bolhuis et al. (3) at 123°K and 110°K
respectively. The nearest intermolecular atom-atom distance
is smaller than the Van der Waals diameter in all three crys-
tals: by 0.8 A®° in iodine, 0.6 A® in bromine and 0.25 A° in
chlorine. This indicates that solid halogens depart from
the ideal picture of molecular crystals. The internal and
external vibrations of the crystalline halogens have been
extensively studied by Raman scattering and infrared absorp-
tion at the zone-center (4,5). Comparison of the two sets of
measurements shows that they have some disagreement with re-~
gard to the assignment of the observed Raman active frequen-
cies in chlorine and bromine. Anderson et al. (4) assign the

highest frequency mode to a B3g mode while Suzuki et al. (5)
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assign it to an Ag mode. Smith et al. (6,7) have measured
the phonon dispersion curves of iodine at 77°K along [010]
and [001] directions using inelastic neutron scattering. The
latter workers have made a lattice dynamics calculation based
on rigid diatomic molecules interacting through two atom-
atom potential energy functions of the Buckingham-six type.
The results give only a qualitative agreement with the ex-
perimental measurements.

Extensive theoretical studies have shown that the inclu-
sion of Lennard-Jones and Buckingham interactions alone in
the lattice dynamical calculations leads to mode instabili-
ties (8-11l). Pasternak, Anderson and Leech (12, 13) have
suggested a simple bond-charge potential for the three halo-
gens. The potential employed is the sum of the electrostatic
interaction between nuclei and electrons, and the electronic
kinetic energy. Mode instabilities of previous models are
absent in their calculations, however discrepancies with the
experimental lattice vibrational frequencies still exist.

The calculated A, mode in iodine differs from the experimental
one by 23%, the calculated Blu mode in bromine differs from
the observed one by 21%. The lower phonon branches in iodine
show poor agreement with the experimental neutron data in
[001] direction.

Since the lattice dynamical models based on atom~atom
potentials have not been successful in predicting the avail-

able experimental data on the halogens, we used a general
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central force model to test the applicability of the central
potentials in these systems. The measured zone-center fre-
quencies for iodine, bromine and chlorine are reproduced to
an accuracy of 1%. The availability of the force constants
of the model may make the construction of such potentials
easier. At the same time this model could also be used to
predict the dynamic structure factor necessary for the assign-
ment of phonon groups as measured by inelastic neutron
scattering in the three halogens. Applications of this
model to predict phonon dispersion relations along [010] and
[001] directions in iodine gives 10% agreement between the
theoretical calculations and the experimental measurements
performed by Smith et al. (6,7). This indicates that the
central force model is a good description of the type of
interactions that exist in the halogen crystals contrary to
earlier conclusions by Suzuki et al. (8).

In Section II, we develop the central force model used.
The dynamical matrix is written in terms of ten parameters
at the zone-center. 1In Section III, we give analytical ex-
pressions for the eigenvalues and eigenvectors at the zone-
center. The numerical values of the ten paramters are ob-
tained by fitting the eigenvalues to the nonzero experimental
frequencies for each of the three halogens. Our results con-
firm the symmetry assignment of Suzuki et al. (5). 1In
Section IV we develop a general method for evaluating the
elastic constants along any symmetry direction in a given

crystal. The method employs the eigenvectors of the dynamical
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matrix at the zone—centef to evaluate the elastic constants
using second order perturbation theory. The elastic constants
C33s C44 and Cgg for [gg1] direction are evaluated in all
three halogens. 1In Sective V, we compare the phonon disper-
sion curves for iodine with the neutron inelastic scattering
data. We predict the phonon dispersion curveé for chlorine

and bromine in [001] direction. Table 2-5 gives in detail

the character tables for the points ', A and Z of the

Brillouin zone.

II. A LATTICE DYNAMICS MODEL FOR HALOGEN CRYSTALS
The lattice dynamical model assumes a twQ body central

potential between a given pair of atoms <i i: of the form
Vi (r) which depends only on the magnitude of the separation

between the atoms. The force constants for a pair of, atoms

1 1v .
(; b ) is a4,

1y o "o re} "a "B
®ug (k k') = - [F Ve (r) {6a8 Tzt Vel

-

= (1 1"y _ 1 > {1 . s 1 1!
vihere r (k k') =r (k )- r (k') , is the vector joining atoms (k) and (k'}

r=!F(; 1W~ (2.1)

It is observed that the force constants are characterized

by two parameters, namely, the first and second derivatives
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of the pair potential. Also it is noted that if two atoms
are coplanar, i.e. either r, or ry = 0, then

.

i

®a8 (k k') N <I>0LoL CSaB (2.2)

The four atoms forming the basis of a primitive unit
cell are designated by numbers 1 to 4 in Figure 2-1(a)...:The

primitive lattice translation vectors are given by,

ot
"

1 %-(aT + bj)

> >
t, = al- (2.3)
T, = ck
t3— c

where a, b, c are the orthorhombic unit cell dimensions.

The Brillouin zone and associated symmetry directions and

symmetry points on its surface are given in Figure 2-1(b).
The dynamical matrix is written according to the defini-

tion,

g ) .1 RE N Y 1

->

where g is the wave vector, M is the atomic mass. The A-
" direction in this lattice is a special symmetry direction.
Within the central-force model up to the second nearest
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neighbor for a given pair of the atomic basis, the

dynamical matrix in the A-direction can be written in terms
of the same ten parameters used in constructing the dynamical
matrix at the zone-center. The zone boundary Z is an inter-
esting high symmetry point (see Table 2-5(c) in Section V).
where owing to the time reversal symmetry, éll branches are
doubly degenerate. Other symmetry directions are more compli-
cated. For example, in the A-direction the dynamical matrix,
within the same model, has to be written in terms of 22
parameters. The twenty-two parameters include the ten param-
eters determined at the 'zone-center in addition to twelve
others. We give the complete dynamical matrix for the A

direction in (2.5).

ITI. EVALUATION OF THE DYNAMICAL MATRIX
The eigenvalues and eigenvectors of the dynamical
matrix are determined explicity at the zone-center by solving

the secular equation
Det |D(0) - «* I| =0 (2.6)

Table 2-1(a) lists the analytical expressions for the
eigenvalues of the dynamical matrix at the zone-center. The
experimental frequencies of iodine, bromine and chlorine

are listed (13). Table 2-1(b) lists the corresponding
expressions for the eigenvectors. The nine nonzero eigen-
values are matched to the squares of the corresponding ex-
perimental frequencies. The matching is done by identifying
each eigenvector with the corresponding symmetry element of
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Table 2-1(b)

-~ Eigenvectors of the dynamical matrix at the zone-center.

31

1 1 2z 2 1 1 2 2
B3u B2u Blu Au B1u Blg B3g B3u Ag BZg BZg Ag
1/2 0 0 0 172 0 0 0 N, <N, NG LN,
0 12 0 12 0 12 -2 0 0 0 0 0
0 0 12 0 0 0 0 12 XN KNy Xg/Ny XN,
12 0 0 0 172 0 0 0 <IN, N, -INy /N,
0 172 0 172 0 -2 120 0 0 0 0
0 0 172 0 0 0 0 V2 XNy Xp/Ny Xg/Ny =X, /N,
1/2 0 0 0 -1/2 0 0 0 S VLR VI V T V)
0 12 0 -1/2 0 -1/2 -2 0 0 0 0 0
0 0 /2 0 0 0 0 212 XNy XNy X/Ng o XN,
172 0 0 0 1720 0 0 N, N, -1/Ng 1N,
0 12 0 -1/2 0 12 12 0 0 0 0 0
0 0 172 0 0 0 0 12 XNy XNy XNy =X/N,

2 2
NS T el ) Vg + 25 - g - a))? + g
1 26,

2 2
R R T U B e Sl VR
2 %,

2 2
. =(‘1"Cz'“1'°‘3)+v(c1+‘2‘°‘1'°‘3) * 48
3 78

(g, 4z, -0 -u)}V(c +Z,-a, -0, + 48

ML T Tl Tl 1754 % 1
4 281
ST i=1,2,3,4



the group D;i, Table 2-5. A strong intramolecular bond is

assumed to exist between the atoms of a single molecule com-
pared to other intermolecular bonds. Thus, for the atomic

pair (1, 2) one can write,

———avéﬁ(r) =0 (2.7)
. lr = R
12
henceforth,
a
it tan? 6
%1

where 6 is the angle that the molecule subtends with the 2
axis, Figure 2-1(a). Determination of the ten parameters
appearing in the dynamical matrix at the zone-center, is done
by solving explicitly for the squares of the nine nonzero
zone-center frequencies in addition to the ratio (il) . The
discrepancy between the calculated frequencies andcl
the observed ones is less than 1% for all modes in all three
halogens. Table 2-2 lists the ten parameters for each of
the three halogens.

The dynamical matrix for iodine is solved in the A
direction, Figure 2-1(b), and fitted to the experimental

neutron data (6, 7) in order to determine the interplanar

constants. Table 2-3 lists these constants for the case of

iodine.
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IV. CALCULATION OF THE ELASTIC CONSTANTS

The method that we will use in this section is simple
énd guite general. It can be applied to any crystal struc-
ture of any group symmetry. This method is numerically con-
venient when the symmetry of the g-group is low and the
dynamical matrix cannot be factorized analytically. The con-
venience of the method lies in the fact that one has only to
know the eigenvectors at the zone-center in addition to an
explicit form of the dynamical matrix for the symmetry direc-
tion under consideration. It is simple because it avoids the
cémplicated formalism of the long wave method developed by
Born and Huang (15) for evaluating the elastic constants.

The slopes of the acoustic branches are solved for by

expanding ;(qa), where qa refers to any symmetry direction in
the Brillouin zone, in linear and quadratic terms in q,

around the zone-center. Defining the perturbation matrix

B'(qa) as:
D'(q,) = D(g,) - (0) (2.8)
can write
desy 12 |<A|D' (q_)|M |2
‘dw = <A|D'(q >
2 [ g - 2
a M#£A Wy

34



where |A> represents an eigenvector of the acoustic mode
considered, and the summation over |M> covers all other modes
at the zone-center. The summation over |M> is nonzero only
for the modes which are coupled to the particular acoustic
mode considered. This is dictated by the group symmetry of

the crystal. In the case of halogens with D%g symmetry, the

Bau acoustic mode is coupled to the A Blg and BZg optical

g'
modes. The elastic constants are then written as

"~ [dw
Cov = L _A} (2.10)

where Cii refers to the elastic constant for a given acoustic
wave in the lattice and g is the density at the particular
temperature considered. The eigenvectors at the zone-center
being factored out numerically, are used to evaluate the
matrix elements in equation (2.9). One thus determines the
slope of the acoustic mode and evaluates the elastic constant
using eguation (2.10). :
The elastic constants C

C55 and Chyr Figure 2-3,

33
have been calculated using first and second order perturbation
theory. Table 2-4 lists the calculated elastic constants for

chlorine, iodine and bromine. The lowest Cusa value corresponds
to a transverse interplanar wave indicating that the inter-

planar force constants are the weakest. corresponds t»y a

Css
transverse wave propagating in the Z direction with a displace-

ment in the X direction. C33 corresponds to a longitudinal
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wave propagating in the Z direction. The lower value of
C55 as compared to C33 is due to the smaller value of the
force constant ul as compared to the force constant ;l’

the molecule being tilted more towards the Z axis.

V. DISCUSSION

The interatomic central force potential is a good des-
cription of the type of interaction that exists in halogen
crystals. The experimental Raman frequencies measured at
the zone-center, for all three crystals, have been repro-
duced with good accuracy. Figure 2-2 compares the calcu-
lated phonon dispersion curve for iodine with the experi-
mental points as measured by Smith et al. (6,7) for the
A and A directions. The overall fit looks good for both
directions except for the Al(Blu) branch. The experimental
points of this branch depict an irregular pattern and show
a large discrepancy from the calculations. The discrepancy
might be attributed to the presence of impurities in the
crystal rather than representing a true physical behavior.
In Figure 2-3, phonon dispersion curves in the A direction
are plotted for chlorine, bromine and iodine. The symmetry
notation adopted for the ', A and Z points are given in
Table 2-5. The strength of the intramolecular bond de-
creases as one shifts from chlorine to iodine, being
strongest in chlorine. Another noteworthy aspect is the
relative decrease in the intermolecular bond strength from

chlorine to bromine to iodine. The B2g mode has a frequency
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Table 2-5 Character tables for points I', A, and 2

(a) T (0,0,0)

E {xyz|%0%} {xyz|000} {xyz|50%} {xyz|000} {xyz|%0%} {xyz|00C} {xyz|%0%} X
Ag 1 1 1 1 1 1 1 1 2
By 1 1 -1 -1 1 1 -1 -1 1
829 1 -1 1 -1 1 -1 1 -1 2
B39 1 -1 -1 1 1 -1 -1 1 1
Au 1 1 1 1 -1 -1 -1 -1 1
Blu 1 1 -1 -1 -1 -1 1 1 2
Bzu 1 -1 1 -1 -1 1 -1 1 1
B3u 1 -1 -1 1 -1 1 1 -1 2

() A (0,087 ), 5 <<k
3 {xyz |%50%} {xyz|%0%} {xyz|000} X
Al 1 eiTru e'imj 1 4
AZ 1 _eiﬂu e'iTl'U _1 4
A3 1 eiwu _eiﬂu -1 2
A4 1 _eiwu _einu 1 2
m
(e) Z(0,0,7)
E {xyz|%0%)} {xyz|000} {xyz|%0%} {xyz|000} {xyz|%0%} {xyz|000} {xyz|%0%:} X
7.110 10 01 (0-1) 01} 0 -1 10 10 4
01 0 -1 10 10 10 10 01 0-1
2210 -10 0-1 0 -1 01 01 -10 10 2
01 01 -10 10 10 -10 0-1 0 -1
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of 112 cm~ 1 in chlorine, compared to 95 cm™1 in bromine
and 87.4 cm~ ! in iodine.

The eigenvectors at the zone-center are listed in
Table 2-1 (b). Figure 2-4 shows the relative phase of
motion of each atom with respect to the other atoms
forming the basis of the unit cell. The modes are listed
in ascending order of energy. The lowest acoustic B, ,

3u
B2u and Blu modes correspond to pure translational motion
of the whole crystal in the X, Y and Z directions respec-
tively. This is to be compared with the optical Au' By

and B modes in which the atoms of each molecule move

3u
in phase relative to each other but with 180° phase dif-
ference relative to the atoms of the other molecule. Four
librational modes are present. The Blg mode corresponds
to symmetrical rotation about the Z axis. Each molecule
rotates alternately anticlockwise and then clockwise

about a Z axis passing through its center of mass. The
B3g mode corresponds to an alternate anticlockwise then
clockwise rotation about an X axis passing through the
center of mass of each molecule. The lower Ag mode
corresponds to antisymmetrical rotations about the Y

axis, while the lower B29 mode corresponds to symmetrical
rotations about the Y axis.

There are two intramolecular stretching modes, the

B mode corresponding to antisymmetrical stretch versus

29
the Ag mode corresponding to a symmetrical stretching
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mode. One notes that the two stretching modes are
associated with a small rotation of 3° suggesting that
the motion of the two molecules is coupled to each other
and hence cannot be treated as rigid rotators. The anti-
symmetrical B2g mode has a lower energy as compared to
the symmetrical Ag mode. This is to be expected because
in the latter case, the electronic clouds of the two
molecules tend to overlap and thus be in a higher energy
state as compared to the former case. This confirms the
experimental symmetry assignment of Suzuki et al. (5)
while it is contrary to the assignment of Anderson et al.

(4) who reversed the assignment of the intramolecular

experimental modes.

VI. CONCLUSIONS

The calculation based on a general pair atom central
force model reproduces all the available phonon frequencies
at the zone-center for bromine, chlorine and iodine. It
also gives phonon frequencies along two symmetry directions
in iodine within the experimental error of the measurements.
This implies that it may be possible to find a set of
central atom-atom potential functions which will describe
all the static and dynamic properties of the halogen
crystals satisfactorily. So far attempts along this direc-
tion have not produced satisfactory results. What is
clearly needed is to generate more information in terms

of phonon frequencies and intensities for chlorine and
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bromine. For iodine phonon dispersion measurements along

[100] direction will serve to further refine the lattice

dynamics model. We present a simple method based on pertur-

bation theoretic technique for calculation of the elastic

constants. It will be of great interest to pursue elastic

constant measurements in iodine by Brillouin scattering

experiments.
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Chapter 3

AN INTERATOMIC POTENTIAL MODEL FOR HALOGEN CRYSTALS
I. INTRODUCTION

Several potential models have been introduced for the
study of lattice vibrations of halogen crystals. These
potentials covered a wide range of functions including
Lennard-Jones, Buckingham, charge transfer and quadrupolar
interactions. Nyburg (1) postulated a molecular model in
which the molecule has a charge concentration at its outer
ends in addition to a charge concentration at its center.
This charge distribution applied in conjunction with a
Lennard-Jones 12-6 potential correctly predicts the Ccmb
space group structure and the orientation of the molecules
in the unit cell for chlorine, though the cubic Pa3 is
more stable. In a more recent work, Nyburg et al. (2) re-
placed the spherical atom-atom potential by one which is
flattened at the atomic pole and equator. As a result,
the Ccmb had the lowest lattice energy structure, and the
crystal was free from internal stress. Suzuki et al. (3,
4) assumed a Lennard-Jones 12-6 potential for the chlorine
crystal. They concluded that a central force field is
inadequate for the chlorine crystal and noncentral forces
must be taken into account to reproduce the observed
frequencies. English et al. (5) further studied the
Lennard-Jones 12-6 interaction by applying it to chlorine

and iodine. A Lennard-Jones potential failed to produce
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a real frequency for the Au mode. A combination of
Lennard-Jones and quadrupolar interactions still pro-
duced an imaginary frequency for the A, mode. A charge
transfer interaction produced a real frequency for the
Au mode but it was not possible to achieve good agreement
with the experimental frequencies. Dumas et al. (6) tried
a combination of three different central force potentials;
a Morse potential for the intramolecular bond, a Buckingham-
6 plus a charge transfer term for the nearest intermolecu-
lar interaction and a second Buckingham-6 potential for
further intermolecular interactions, was applied for
chlorine and bromine. Substantial improvement over other
central force potentials was achieved where mode instabil-
ities of previous models were absent. Smith et al. (7,8)
tried a different set of central force potentials. A set
of three Buckingham-6 potential functions with a rigid
molecule was assumed. The nearest intermolecular inter-
action was represented by a set of potential parameters,
the second nearest by a second set and all the more distant
interactions by a third set. Moderate agreement was ob-
tained between the observed and calculated phonon disper-
sion curves for iodine.

Leech et al. (9) outlined a simple method for identi-
fying potential functions designed to reproduce given normal
mode frequencies, equilibrium conditions and other con-

straints. They applied it to solid chlorine and a family
47



of potentials satisfying fourteen constraints was found.
However, their potential functions had some implausible
features as having imaginary phonon frequencies for certain
[aivalues and none of the potential curves appeared to have
a wholly realistic shape. Pasternak et al. (10,11l) assumed
a simple bond charge for the three halogens, chlorine,
bromine and iodine. In this model the charge distribution
in the crystal is accounted for by placing a negative
charge "-q" at the center of the intramolecular bond.
Another negative charge "-q'"is placed at the center of

the shortest intermolecular bond. Nuclear charges of
magnitude Z = gq'+ % ensure overall charge neutrality.
Interatomic interactions are represented by a set of two
Lennard-Jones 12-6 potentials, one for the shortest inter-
molecular bond and the other for further neighbors. No
mode instabilities are present in their calculations, how-
ever some of the calculated modes are interchanged when
compared with the observed experimental values.

In a previous work (12), we proposed a general pair
atom central force model for the three halogens - chlorine,
bromine and iodine. Force constants were determined by
fitting them to the zone-center frequencies for the three
halogens. Agreement between the calculated phonon frequen-
cies at finite IEI and the observed ones was very good. 1In
the present work we go a step further by trying to construct

an actual potential model for the halogen crystals rather
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than working with a force constant model. We propose a
potential model for the halogens incorporating interatomic
and electrostatic charge interactions. To each atom in the
crystal is associated a dipole which represents the charge
distribution of its valence electrons. A Morse potential
is used to represent the intramolecular bond. The inter-
molecular interactions are represented by a Buckingham-6
potential in addition to the electrostatic dipole-dipole
interaction. This potential model still retains part of
the central interatomic interaction in agreement with the
force constant model proposed in our previous work. How-
ever, the resultant interatomic force constants in this
case are the superposition of central dispersion-repulsion
and noncentral electronic electrostatic interactions. The
static and dynamic properties for the three halogens have
been calculated using this potential. The cohesive energies
and equilibrium conditions are reproduced within the exper-
imental error. The calculated zone-center frequencies are
in good agreement with the experimental infrared and Raman
frequencies for the three halogens. The results indicate
that this potential model provides a good description of
the dynamics of the halogen crystals.

The same type of potential model has been applied to
the azabenzéne crystals. Recently Gamba et al. (13) pro-
posed a potential model which they called the distributed

dipole model. The molecular charge distributions are
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represented by dipoles placed near the nitrogen atoms and
on the C-H bonds. Their model reproduces very well the
electrical multipoles obtained from ab intio calculations
for this series of molecules. The calculated zone-center
frequencies are in good agreement with the experimental
values.

In Section II we give a theoretical treatment of the
potential model. The origin of such a model is discussed
as well as some of the theories which have been suggested
to explain the electronic charge configuration of the
halogen molecules. 1In Section III, static and dynamic
properties are calculated and compared with the observed
experimental values for the three halogens. The static
properties include equilibrium conditions in addition to
the cohesive energies. The dynamic properties include the
infrared and Raman-active zone-center frequences which
have been measured for the three halogen crystals. 1In
Section IV, phonon dispersion curves are calculated along
the [001], [010] and [100] directions for the three halogens.
Available experimental results along [010] and [001] for
iodine are compared with the predicted theoretical curves
constructed with the pétential model. Table 3-5 gives
in detail the group character tables for symmetry points
A , 2 and Y of the Brillouin zone. The character tables for
the points I', A and Z are already given in our previous

work (12).
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II. POTENTIAL MODEL

The basic feature of our model is that one associates
a dipole with each atom to represent its electronic charge
configuration. The halogen molecule will act as a quadru-
pole with two dipoles sitting antiparallel to each other
close to the centers of its constituent atoms. The dipoles
are placed antiparallel to each other to comply with the in-
version symmetry around the center of mass of the molecule.
The dipole model could be understood in terms of the charge
migration of the molecular electronic cloud. If one consid-
ers a free halogen molecule, point-charge migration is
thought to take place in the molecule. The molecule as a
whole will have two centers of positive charge closer to its
center and two centers of negative charge closer to its
outer ends. Figure 3-1 shows the axial distribution of
charge in a free halogen molecule. One possible cause of
the charge separation is the repulsion between the nonbond-

ing Px and P, orbitals of the two atoms leading to a drift

y
in the electronic charge towards the outer ends of the free
molecule. Simple models to account for point-charge migra-
tion in the free halogen molecules have been proposed by
Nyburg (1,2). The electrostatic interaction between two
atoms in the halogen crystal would consist of the different
interactions between the localized positive and negative
charges centered around each atom. Expansion of the inter-

action energy in terms of the interatomic distance "r"
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Figure 3-1. Point-charge migration model for a free
halogen molecule.

52



would lead to dipole, quadrupole, octopole and higher order
terms. In our potential model we have taken account only
of the dipole-dipole interaction, (1/r3) terms, and
neglected all higher order terms. Thus the electronic
charge of each atom is represented by a dipole located in
the vicinity of the atomic center. Future work might in-
volve the inclusion of all electrostatic interactions by
solving for the separate localized charges centered around
each atom to improve on the accuracy of the dipole model.
Thus far we have considered charge migration in a free
halogen molecule in which charge separation takes place
along the molecular axis. However, molecular charge separ-
ation is expected to be different in the halogen crystal.
Polarization of the charge of one molecule by the adjacent
charges of neighboring molecules is expected to take place.
The net effect is an off-axial charge drift in the electronic
molecular cloud. The potential model that we will consider
for the halogen crystal is based on an interatomic inter-
action which is the superposition of electrostatic dipole-
dipole interactions and dispersion-repulsion forces. The
distribution of these dipoles in the lattice is clarified
by considering the atomic basis for a halogen crystal.
Figure 3-2 shows the atomic basis with the associated dipole
charge distribution. The first feature of the model is that
the dipoles are coplanar with the XZ plane. This is a conse-

quence of the planar symmetry of the Ccmb structure. The
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Figure 3-2. Electronic charge distribution for the
atomic basis.
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crystal is invariant under a mirror reflection in the X2
plane. The dipole configuration associated with the atomic
basis shown in Figure 3-2 complies with the symmetry ele-
ments of the Ccmb group. The dipoles associated with a
single molecule are placed antiparallel to each other be-
cause the center of mass of each molecule is a center of in-
version for the whole crystal. The orientation of the atomic
dipoles 3 and 4 with respect to the atomic dipoles 1 and 2
is dictated by the Ag symmetry element of the Ccmb group
(12) . The dipole distribution is invariant under any of

the symmetry operations of the Ccmb group. Each dipole in
the lattice is characterized by four parameters; a dipole
moment, dipole orientation, dipole angular and radial
positions relative to a fixed corrdinate system. 1In

Figure 3-2, the origin of the coordinate system is taken

to coincide with the center of mass of one of the molecules
in the basis. If one considers atom 2 of the basis, the
dipole moment is given as u, the dipole orientation is
represented by ¢, the dipole angular position is designated
by Yy and the dipole radial position as d/2. The charge
distribution in the whole lattice is constructed using

the charge symmetry of the atomic basis shown in Figure 3-2.
Thus the electrostatic interactions in the crystal are
accounted for by the interatomic dipole-dipole interaction
in the present potential model. 1In general the dipole-

dipole interaction is given by
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The dispersion-repulsion forces are given by two potential
functions. The intramolecular interactions are represented
by a Morse type potential written in terms of three param-

eters as

. 2
Viy = D[1-exp(-B{Rj4~Rg)) ] (3.3)

where Vij is the interatomic interaction energy for a given

molecule, Rij

constituent atoms, D is the dissociation energy referred

is the separation distance between the two

to the minimum, B is a constant which determines the curva-
ture of the function near the minimum and RE is the equil-+
ibrium length of the free molecule. It should be noted
however, that since the dipole-dipole interaction is taken

in addition to the Morse interaction for a given intramolec-
ular bond, the value of "D" for a given free halogen molecule -
is expected to be different from the tabulated dissociation

energy. The other interatomic intermolecular interactions
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are represented by a Buckingham-6 potential. The inter-

action energy is written in terms of three parameters as

V.. = - + Be ORj 4 (3.4)

where Vij is the interaction energy between two given atoms

i and j, RiJ

B and o are constants of the potential determined by the

is the separation distance between them. A,

particular crystal under study.

The potential model we are postulating involves ten
parameters. Four parameters are determined by the electro-
static interatomic interactions characterizing the dipole
properties for a given halogen. Three parameters are
determined by the intramolecular bond and the last three
are determined by the intermolecular interactions. The ten
parameters of the potential model are calculated by fitting
the potential to the observed static and dynamic properties

of each halogen crystal as discussed in the next section.

IITI. DETERMINATION OF THE POTENTIAL PARAMETERS

The ten parameters appearing in the potential model
discussed in the previous section are determined by fitting
the potential model to the static and dynamic properties
of the halogen crystal under consideration. The static
properties constitute the resultant forces on an atom in
the X and Z directions, Figure 3-2, and the cohesive energy
of the crystal lattice. The resultant forces Fo and Fz
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are determined in undimensional units by scaling them to

the magnitude of the maximum force acting on that atom.

The cohesive energy of the crystal lattice is equated to

the experimental heat of sublimation neglecting the entropic
contribution to the latter. The dynamic properties studied
are the experimental nine zone-center frequencies for each
of the halogen crystals measured by infrared and Raman
scattering techniques. 1In the case of chlorine and bromine,
the lowest A, mode is not measured and a value is estimated
for it from previous theoretical calculations (11,12). The
dynamic and static properties of each of the halogen crystals
were calculated and fitted to the experimental values using
a nonlinear least square fitting algorithm. The lattice
sums were carried over the twenty-nine adjacent neighbors

of each atom, Figure 3-3. The scheme used for the fitting
was to construct the lattice first in accordance with the
Ccmb symmetry using the lattice parameters determined ex-
perimentally (10,11). The ten potential parameters in
addition to the molecular length and angular inclination 6,
Figure 3-3, are taken as twelve free fitting parameters.

The static and dynamic properties of the crystal are cal-
culated using these parameters and fitted to the twelve
known properties of the crystal, nine constituting the
zone-center frequencies in addition to two equilibrium con-
ditions and the cohesive energy. The nonlinear least square

fitting was carried out at an IBM 370 computer using the
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NL,SOL algorithm (14). The average number of iterations
needed was two hundred and the residue converged to an
average value of 15%. It should be noted that the molecular
quadrupole moment would have been an important physical
property used in the fitting process. Due to the wide range
of values reported in the literature, values of the quadrupole
moments have been calculated using the determined potential
parameters. The calculated quadrupole moments for each of
the halogens are reported at the end_of this section. The
present potential model reproduces the dynamic and static
properties of the halogen crystals with good accuracy.

Table 3-1 compares the calculated properties with the ex-
perimental ones for each of the halogens. The internal
modes Aé, B%g are all calculated to within 1% of the experi-
mental values. All other optical modes fit the correspond-
ing experimental ones to 10% accuracy, except for the B3g
mode. The largest discrepancy of the B3g mode occurs in
bromine with an 18% deviation from the experimental value.
The cohesive energies calculated, fit the input values to

1% accuracy with proper adjustments made to take account of
the temperature difference. The residual forces in the Z
direction converge to an accuracy of less than 7% in all
three crystals. As for the X direction, the convergence

is within 14%. Overall the present potential model appears

to account well for the type of interactions that exist in

the halogen crystals. Table 3-2 lists the calculated
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Table 3-1

Calculated Zone-Centre phonon frequencies, residual force
components and cohesive energies for I3, Br, and Clj.
Experimental frequencies are given for comparison

I, Br, cL,
Zone~-centre phonon Exp. Calc. Exp. Calc. Exp. Calc.
frequencies (cm *)
5t 0.0 0.0 0.0
3u
0.0 0.0 0.0
B2u
Bl 0.0 0.0 0.0
1u
Ay 30.67 31.82 _— 33.67 _— 49.61
B%u 40.00  39.67 49.00 47.84 62.00 62.25
Blg 41.67 43.48 51.50 54.06 80.00 80.38
Byg 57.67 48.37 70.50 57.33 96.00 84.91
3% 65.33 68.37 74.00 78.52 90.00 93.2¢
u
Aé 75.33 76.52 81.50 83.71 96.00 98.31
B%g 87.33 79.52 95.00 86.45 112.00 102.19
ng 180.67 180.21 296.00  296.64 538.00  536.92
Ag 189.33 188.87 301.00 299,81 539.00 539.69
Cohesive Energy
(x107J3/Kg mole) 6.50  6.52 4,70 4.73 2.64 2.65

Residual force components (Fx,Fz)

Fx

F
z

0.099 0.074 0.142

0.037 0.069 0.015
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Table 3-2

Potential parameters, molecular length and

orientation for 12, Br2 and Clz.
I, Br, cL,
-12
D (x10 "“erg/mol) 0.28 4,94 2.73
-1
8 & 2.08 1.30 2.24
RE(X) 3.03 2.62 2.34
-9 26
A (x10 “erg/mol A7) 11.48 4.95 2.58
B (x10 erg/mol) 3.64 2.53 1.47
0-1
a (A7) 1.78 1.93 1.96
M (eX) 1.35 0.91 0.73
¢ -0.27 0.55 0.53
¢¢ -2.54 -2.73 3.30
a & 2.93 3.02 2.86
1 & 2.74 (2.11%) 2.59 (2.32%) 2.33 (1.99%)
8¢ 0.61 (0.56%) 0.68 (0.56%) 0.64 (0.56%)

*e=4.80 x 10710

esu

a Experimental values as given in references [10,11].
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potential parameters, molecular length and orientation
for the three halogens. One notes that the dipole heads
are oriented towards the centre of mass of the molecule
as shown in Figure 3-2. This indicates that the center of
negative charge is closer to the outer ends of the molecule
in agreement with the free molecule charge distribution
predicted by our model in Section II. The calculated
molecular lengths all agree with the experimental lengths
to within 0.344.

Figure 3-4 shows the total intermolecular potential
for two interacting atoms; the potential is plotted for
the [100] direction. The main feature is that the repulsive
dipole-dipole interaction increases the value of the inter-
action energy compared to the Buckingham-6 case. In the
case of chlorine, the overall effect is that the negative
potential minimum in the curve disappears and the potential
energy approaches zero as Rij increases. This feature of
the potential has a profound effect on the shape of the
acoustic dispersion curves and will be dealt with extensively
in the next section.

The quadrupole moments of the halogen molecules have
been evaluated using the calculated dipole moments. The
tensorial components of the quadrupole moment are written

as,

1
O4p = ijb(3rar3 - rzéae)dT (3.5)
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Figure 3-4. Potential profile for an atomic pair along
the [100] direction.
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where p is the charge density and the integral over T is

a surface integral. The moments are given relative to an
origin at the center of mass of the molecule. The a
direction is taken to coincide with the line joining the
centers of the two dipoles and is designated as r. The B
direction is taken to be perpendicular to the o direction
and is designated as 0. Table 3-3 lists the components

of the quadrupole tensor in addition to the product uxd.
Values of the guadrupole moments reported in the literature

are given for comparison (15,16,17).

IV. DISCUSSION

The potential model seems to be a good description of
the type of interactions that exist in the halogen crystals.
The experimental Raman and infrared frequencies measured at
the zone-center, for all three halogens, have been repro-
duced with good accuracy. Figure 3-5 compares the calculated
phonon dispersion curves for iodine with the experimental
points as measured by Smith et al. (7,8) for the A and A
directions. The internal vibrational modes fit the measured
experimental points to a good accuracy in both directions.
For the A direction, the theoretical acoustic branches
reproduce the experimental points within the experimental
accuracy. Only two experimental acoustic branches are re-
ported for the A direction and the theoretical calculations

reproduce them with good accuracy. A discrepancy is noted
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between the experimental and theoretical points for the
Al(Blu) branch. This is attributed to the presence of
spurious effects in the measurements of that branch. The
overall agreement between the experimental and theoretical
points is good for the other optical branches. For the A
direction there are two optical branches which have not
been reported. The agreement between theory and experiment
looks good for the lowest three optical branches Az(Au),
A3(Blu) and A4(Blg). However, for the higher optical
branches Az(Bzg) and A4 (B3,), comparison between theoretical
calculations and experimental‘points indicate quite a dis-
crepancy. Judgment on the behavior of the two remaining
optical branches is not possible due to the lack of experi-
mental data. 1In general agreement between the experimental
and theoretical calculations is good for the A direction.
There is partial agreement between theory and experiment

for the A direction, however final judgment on the behavior
of the theoretical calculations for that direction is pos-
sible only when the experimental data set is complete.
Figures 3-6, 3-7, and 3-8 show the phonon dispersion curves
for chlorine, bromine and iodine along the I, A and A
directions respectively. The group symmetry tables for the
points ¥, A and Y are given in Table 3-5. The character
tables for points I', A and Z are already given in our previ-
ous work. The main features in the phonon dispersion curves

are the same for all three halogens. However, the curves
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tend to compress as one shifts from chlorine to bromine to
iodine due to the larger value of bond strengths in chlorine
as compared to that of bromine and iodine.

One noteworthy feature is the occurrence of a valley in
the Zl acoustic branch, in chlorine and bromine and less
apparently in iodine, with a minimum in the middle of the
Brillouin zone. The wavelength of the longitudinal wave
propagating through the crystal is equal to 2a. Thus atoms
located near opposite corners of the orthorhombic lattice,
being separated by a distance a, will be propagating with
180° phase difference relative to each other. Since the
dipole-dipole interaction in this case is repulsive, the
overall effect would be to decrease the attractive dispersion-
repulsion forces, Figure 3-4, and thus soften the phonons at
this particular wavelength. A deviation in either direction
from that wavelength would indicate a shift from the 180°
phase difference in which atoms near the corners of the
orthorhombic lattice will move with a certain phase factor
relative to each other. This will tend to decrease the
effect of the repulsive dipole-dipole interaction, and thus
increase the magnitude of the attractive dispersion-repulsion
forces. The corresponding phonon frequencies will increase
due to the larger value of the force constants. Hence one
can conclude that a minimum in the phonon dispersion curves
would occur at the middle point of the Brillouin zone cor-

responding to a wavelength of 2a, and with the phonon
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frequency increasing as one shifts in either direction

from the minimum. This feature is more obvious in chlorine
and bromine as compared to iodine. This is explained by
noting that the restoring forces are smaller in chlorine and
bromine than in iodine. By referring to Figure 3-4, one
notes that in the cases of chlorine and bromine the poten-
tial becomes rather flattened beyond a = 4.48 R; and thus
the restoring forces tend to be small. This effect is more
pronounced in chlorine and hence it tends to show the steep-
est valley for the acoustic Z1 phonon dispersion curve.
However, in the case of iodine, at a distance of a = 4.686 g
the attractive dispersion-repulsion forces tend to be more
dominant as compared to the dipole-dipole repulsive inter-
action. The elastic constants for the A direction have been
calculated from the slopes of the acoustic branches, Figure
3-8. Table 3-4 compares those values with the ones calculated
using the force constant model (12) for each of the three
halogens. Agreement between the new elastic constants cal-
culated using the potential model and neutron experimental
data is better than that using the force constant model.
This is due to the limited number of force constants used to
construct the phonon dispersion curves in the A direction.
The number of force constants used is ten which is the same
as that used to reproduce the zone-center frequencies, hence -
larger discrepancy is expected to arise in the latter case.
Comparison of the two sets of phonon dispersion curves for
iodine; the first using the present potential model and the
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Table 3-5

Character tables for points £, I and Y.

(a) 800, 2w, 0), <1 <u <1

1

{xyz|000} {Tyz|%0%} {xyZ|%0%} ¥

Al 1 1 1 1 3

A2 1 1 -1 -1 3

A3 1 -1 1 -1 3

A4 1 -1 -1 1 3
2T

(b) Z’(*; g, 0, 0), =1 <py <1

E {x37|%0%} {x32]000} {xyZ|%0%}
El 1 exp(imu) 1 exp(imy)
22 1 exp(imu) -1 . —exp (dimy)
Z3 1 —exp (imn) 1 —exp (imu)
ZA 1 —exp(imu) -1 exp (imu)
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second adopting the force constant model (12), with the ex-
perimental measurement indicates better agreement in the
latter case. However, one should remember the fact that in
the latter case, phonon dispersion curves are fitted to the
experimental points by assigning determined values to the
different force constants. A true test of the physical
meaning of such a force constant model is to construct a
potential function which will generate these force constants.
In the force constant model, one is bound by the availability
of experimental data along different symmetry directions in
order to evaluate the force constants in that model. However,
in the present potential model, having determined the
potential parameters at the zone-center, the phonon dispersion
curves along different symmetry directions are calculated
using the same parameters. This enables one to test the
validity of the experimental data measured, and also to pre-
dict phonon dispersion curves along other directions which
have not been determined experimentally. The accuracy of

the potential model may be improved by fitting it to addi-
tional physical properties such as the elastic constants or

molecular quadrupole moments.

V. CONCLUSION

The present potential model reproduces the dynamic and
static properties of each of the three halogens with reason-
able accuracy. This indicates that the electrostatic charge
interactions should be taken into account in addition to the
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central dispersion-repulsion forces. In the present poten-
tial model the charge distribution around each atom is repre-
sented by a dipole located in the vicinity of the nuclear
center. 1In reality the charge distribution is more compli-
cated and the present model can be improved by inclusion of
separate localized charge centers. This inclusion would take
into account higher order interactions such as quadrupole-
quadrupole interactions and will further improve the accuracy
of the model. However, improvement of the present model is
conditional to the generation of more experimental data. The
molecular quadrupole moments and the nine characteristic
elastic constants of the orthorhombic lattice should be

taken as physical properties that have to be fitted by the
potential parameters. These will generate better informa-
tion on the nature of the interplanar forces. Another improve-
ment on the model can be achieved by placing two smaller
negative charges around the molecular center to represent

the ¢ electronic convalent bond. The generation of experi-
mental phonon dispersion curves along the £, A and A direc-
tions for chlorine and bromine as well as the I direction

for iodine will further refine the model. It will be of
great interest to pursue the measurement of the soft phonons
in the I acoustic branch for chlorine and bromine, by either
measuring the whole branch or by measuring coherent inelastic
scattering at the vicinity of the lal point. If measurements

confirm the same behavior as the one predicted by theory,

78



then the present phenomenon is very significant because it

is an example of a soft phonon occurring in the middle of

the Brillouin zone.

VI.

10.

11.

12.

13‘

14.
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Chapter 4
MOLECULAR DYNAMICS SIMULATION STUDY OF
STABILITY IN ATOMIC LATTICES

I. INTRODUCTION

Physical systems in equilibrium generally exist in the
structure that minimizes their free energy. A thermodynamic
system nhot in equilibrium will evolve naturally in the direc-
tion that minimizes i}s free energy. If an absolute free
energy minimum exists, the system will move towards that
state and equilibrate there once having located that minimum.
If the system can exist in more than one equilibrium state,
then the system will tend to drift towards the state with
the lowest value of the free energy. A clear view of this
concept is given by the following example. Suppose a given
system can exist in two unique states, that may correspond to
two diffe:ent structures, say A and B. A plot of the free
energy of the two structures versus a given property of the
system X, say pressure is illustrated in the following

schematic;
F




For X below Xor the system having the structure A is at
best in a metastable state because there is another struc-
ture of lower energy. This means that there is a potential
difference that tries to drive the system from A to B.
Whether such a transition can occur depends on the local
potential barrier that the system A has to overcome. With
a suitable perturbation of the system in state A, it may be
moved to the lower free energy structure B. Thus, the
system starts with a given structure at a certain energy and
gradually changes its structure to the one corresponding to
the lower free energy. If on the other hand the system is
in state B for some X below Xc’ then one is able to induce
a structural phase transition from B to A by gradually in-
creasing the value of X beyond the critical value Xoo The
system in this case will trace the lower free energy curve
and reside in the structure that corresponds to the lower
free energy. Thus for such a system, one is able to in-
vestigate structural stability and phase transition.

Such phenomena may be studied using computer molecular
dynamics or Monte Carlo simulation. With computer molecular
dynamics, the time evolution of the system is traced from
its initial to its final state. Probing thermodynamic
variables such as temperature, pressure, enthalpy and in-
ternal energy to detect any structural transformation is
possible through this technique. A general survey of the
method is found in the articles by Beeler (1), Kushick and
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Berne (2) and Erpenbeck énd Wood (3). In Monte Carlo
simulation, a study of the stochastic properties of the
system is possible to detect any transition. Wood (4) and
Binder (5) give a thorough review of the method in their
articles. However, we will be looking at computer molecular
dynamics only'in this chapter. |

The basic idea underlying such a technique is the simu-
lation of the system using periodic fiexible boundary condi-
tions. The use of periodic boundary conditions allows one to
study bulk propefties with a small nuﬁber of particles. The
main assumption is that the bulk of the system is just a
replica of the simulation cell. The term flexible boundary
is applied here to indicate that the boundaries of the sys-
tem can change shape as well as volume. This is opposed>to
pgriodic fixed boundary in which the system preserves its
volume and shape'through out the simulation. Conventional
molecular dynamics has been usually carried out with fixed
boundaries. Andersen (6) modified tﬁe method to study sys-
tems under constant pressuré by introducing the volume of
thé system as an additional dynamical variable. A generaliza-
tion of Andersen's idea has been car;ied out by Parrinello
and Rahman (7) in which the shape as well as the volume of
the simulation cell may vary with time. In this method the
boundaries of the system are able to adjust themselves in
such a manner that will balance the internal and external
stresses applied on them. Thus the simulation cell is able

83



to expand, contract or change shape according to the net
stress applied on it. 1In conjunction with that, the internal
structure of the system will be rearranging itself in such -
a manner that will minimize its free energy and balance
the net stress on the boundary. Parrinello and Rahman (8)
have shown an FCC-HCP transition in Ni under compression by
applying this technique.

In this chapter we will be considering specifically
atomic systems in two dimensions. It is well known that
the triangular HCP structure is the most stable one in two
dimensions for a Lennard-Jones system. Hence any crystal
structure different from the triangular one will evolve into
the latter if no constraints are present. We will be looking
first at Lennard-Jones atomic systems to investigate such
structural transformations. Later a study of Hooke's
Law crystals (9) to investigate possible structural phase
transitions is carried out. For such systems two structures,
triangular and square, coexist at particular densities. A
transition from one structure to the other is sought using
computer molecular dynamics with flexible boundary conditions.
The merit of this technique as compared to the fixed boundary
system in molecular dynamics is the flexibility in the shape
of the simulation cell which allows the system to move more
easily into a new state. Such a transformation might not be -
possible at all with a fixed boundary having a rigid constraint.
Also such transformations can be studied using smaller systems
in the former case. To explain such a technique we will first
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give a brief idea of molecular dynamics and then develop
the formalism underlying the flexible boundary systems.
Molecular dynamics is a method for studying classical
statistical mechanics bf well defined systems through a
numerical solution of Newton's equations of motion. A set
of N classical particles have coordinates ;i' velocities
ii and masses mj, i=1,...,N. The particles interact
through a potential VN(;l"";N) which, in most cases is

taken to be a pair potential of the form:

VN=% Z Z¢(rij) (4.1)
i j#Ai .
- > >
where r;y = ]rijl = ]ri-rjl.

For such potentials, Newton's equations of motion reduce

to

2k

mir; = - Z L do ¥ ., i=1,...,N (4.2)

1
§7i Tij driy

and are solved numerically. As the system evol&es in time
it eventually reaches equilibrium conditions in its dynami-
cal and structural properties; the statistical averages of
interest are calculated from ;i(t) and ;i(t), i=l,...,N as
temporal averages over the trajectory of the system in its
phase space. For practical reasons N is restricted to at
most a few thousand. However to simulate a bulk system the

common practice is to use periodic boundary conditions. These
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are obtained by periodicaily repeating a unit cell of

volume Q containing the N particles by suitable translations.
As a consequence of VN being a function of r% only (Eq. (4.1)),
the solution of Egq. (4.2) conserves the total energy E of

the system; thus the statistical ensemble generated in a
conventional MD calculation is a (2,E,N) ensémble or a micro-
canonical ensemble. A thorough description of this method is
discussed in a book by Hansen and McDonald (10).

The restriction that the MD cell be kept constant in
volume and shape éeverely restricts the applicability of the
method to problems involving volume changes or crystal
structure transformations; in such transformations changes in
the volume and shape of the cell play an essential role.
Andersen (6) developed a scheme for MD simulation in which
the cell volume can change but not its shape. Thus crystal
structure transformations are inhibitgd because of the sup-
pression of the essential fluctuations namely thgse in the
shape of the MD cell. However in the method proposed by
Parrinello and Rahman (7), an extra degree of flexibility
is introduced which allows for a change in the shape of the
MD cell. As before the system consists of N particles in
a cell that is periodically repeated to f£ill all space.
However, the cell can have an arbitrary shape and volume
being completely described by three vectors 3, B, ¢ that

>
c

span the edges of the MD cell. The vectors 3, B,
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can have different lengths and arbitrary mutual orientations.
An alternative description is obtained by arranging the
vectors as {g, E, ¢} to form a 3x3 matrix E whose columns
are, in order, the components of 3, B, and ¢. The volume

is given by

Q (4.3)

"
=3
0
o4
o+
%
o+

>
The position r, of a particle i can be written in terms of

->
h and a column vector s;, with components €i, nj, Pj as

-
Y. =
1

t3=2

-> > -> >
si = pia+nib+pic (4.4)

Obviously 0 < Eir Myr Py

i i = 1 is the range of variation

of the numbers €4r Ny

Py i=l,...,N. The images of 31
are at §i+(k,u,v) where A, 4, vV are integers from -« to +x.
Considering two atoms i and j in the lattice, the square

of the distance between i and j is given by

2 - (3.-85.)" G (S:-3.) (4.5)

rlj 1 J ~ 1 J

where (gi—gj)' is the transpose of the given vector and the

tensor G is

RQ
13=2
13=2

(4.6)

The reciprocal lattice space is spanned by the vectors

2—>+ > > > > 2
?g{bxc, cxa, axb} = &L ¢ (4.7)

o =
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The matrix g = Qng represents the surface area of the
given MD cell. o

In such a system the number of dynamical variables
studied is 3N + 9; the usual set of 3N dynamicalAvariables
thaﬁ describe the positions of the N particles, in addition

to the 9 components of h. The time evolution of the 3N + 9

variables is obtained from the Lagrangian

N . . N N
- 1 . ata
i=1 i=1 9>i
+ %WTrg'h -pQ (4.8)

The first term represents the total kinetic energy of the
N particles in the MD cell. The second term represents the
total potential energy of the N particle system. The third
term représents the kinetic energy stored in the boundary
of the MD cell and the last term is the hydrostatic energy
of the system. From Eqg.(4.8) the equations of motion are

easily derived to give

. 13
2 - - }: 1 o' (3.-3) - ¢ tesy,i=1,....,8 (4.9
i L m. r. . 1 j o~ ~
j#Ai 1 1]
Wh = (1 -pIl)g, (4.10)
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where using the usual dyadic notation, and writing

>

—)
= 1-351’

EDERATDIDNE-

i i 351 Fid

Vi

> >
rijrij (4.11)

.|e

One should note that the actual velocity of the ith particle
is 3- = @sl+§sl However, assuming that the frequency of
the boundary fluctuation is much smaller than that of the
particle oscillations, the second term may be dropped out
when compared to the first term. The internal pressure of
the system is a function of its internal fabric; its value
can be obtained as 1/3 of the trace of the average of T-
Equation (4.11) gives the internal microscopic stress tensor
g which is made up of the contributions to the internal stress
from the particle momenta and forces. The first term is the
kinetic contribution and its average value is directly
proportional to the temperature of the system. The second
term is the virial and is determined by the internal struc-
ture and potential of the system. Later we can see how one
can drive the system through its internal pressure by excit-
ing any of its constituent components. The first component
can be excited by direct heating and the second by intro-
ducing internal shear in the structure. Equation (4.10)
indicates that the temporal changes in 2 i.e. in the shape
and size of the MD cell are driven by the difference between
m and the external pressure p, and that this imbalance

~

acts across the outer faces g of the MD cell. From
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Eg. (4.10) it is seen that the mass W determines the re-
laxation time for recovery from an imbalance between the
external pressure and the internal stress. Hence W can be
thought of as the boundary mass determining the inertia of
the system under applied stress. 1In our calculations W is
chosen on the basis of computational convenience. However,
the equilibrium properties of the system are not changed,
being independent of the masses of its constituent parts.
The corresponding Hamiltonian for the system is

derived from the Lagrangian Eq. (4.3) as

H = Z %mi|_\;i|2 + Z Z o(rys) + -]—‘WTrl:11:1+p$'2 (4.12)

1 19> S

Since the system is not subject to time dependent external
forces this is a constant of the motion. Hence the
Lagrangian Eq. (4.8) generates a (p,H,N) ensemble. 1In
equilibrium, at temperature T, 9/2 kBT is contributed by
the term with W and 3N/2 kBT by the other kinetic terms.

If the number of particles is large, say several hundred,
then one finds that the constant of motion H is nothing but
the enthalpy

H=E+ pQ (4.13)
where

E = }: %mi|;i|2 +) ) ety (4.14)
1

i j»>i
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Hence the Lagrangian Eq. (4.8) generates a (p,H,N) en-
semble.

In Section II, we will discuss a simple illustration
of the technique in a one dimensional system. Uniform
expansion upon heating of a one dimensional atomic chain
will be discussed. In Section III, transformations from
square to triangular structure will be studied for a two
dimensional Lennard-Jones system. It serves as a clear
illustration of how a system evolves in time by seeking the
minimum free energy structure, which is the triangular
HCP structure for a two dimensional system. In Section IV,
a piece-wise linear force potential model is investigated.
For such a potential, both sgquare and triangular structures
coexist in a range of densities. A structural phase transi-
tion under the effect of applied hydrostatic pressure is

sought by applying this technique.
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IT. ONE DIMENSIONAL CHAIN

The simplest system to study using the flexible
boundary method is a one dimensional chain of atoms. We
will examine the behavior of the chain upon heating to
demonstrate the uniform expansion of the system under
constant pressure. It should be mentioned that such a
study is not possible with conventional molecular dynamics
using fixed boundary conditions. The merit with the flex-
ible boundary technique is that upon heating, the internal
pressure of the system rises beyond its equilibrium value
due to the increase in the instantaneous kinetic contribu-
tion of the internal stress tensor. With the boundary being
flexible, the system is able to expand and equilibrate the
net pressure on the surface by decreasing the virial contri-
bution of the internal stress tensor. However, with a fixed
boundary, the net result will be an increase in the internal
pressure of the system with a net stress being exerted on
its boundaries.

In the one dimensional case, the equations of motion

take the following simple form.

N N
- 1 S V2 ﬁf lim 2
L = E EZ mi(hsi) . z:.¢(rij)+§Wh ph (4.15)
i=1 i=1l J>1
§. = - 1 ¢'(s.-s.)-2B 3., i=1,...,N (4.16)
1 — m; r.._- 1 J h 1
j#i Tt 1]
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Il
—
=

|
e}
o

(4.17)

and 2: 2 E:
- 1
hw lei T . rij¢ (4.18)

where h, G and T are scalars in this case. The variable h
in the above equations corresponds to the chain length. We
considered a system of ten equally displaced particles
interacting through a Lennard-Jones potential. Periodic
boundary conditions were applied and the simulation was
started at zero external pressure and a lattice spacing
corresponding to the minimum potential energy. Physical
properties were scaled to nondimensional units using
Lennard-Jones parameters according to the following scheme;

6 = ¢/ 4e

r* r/o (4.19)

1/2
At* = [4e / At
m02

The * indicates the scaled quantities. The parameters ¢ and

o correspond to the potential depth and zero crossing point
of the Lennard-Jones system respectively. The quantity ¢
represents energy and might correspond to either kinetic

or potential energy. The variables r and At correspond to
length and time respectively. With W=4, the temperature was
raised to 0.05 in nondimensional units, corresponding to 24°K
say, in the case of argon. The simulation was started with

a time step size At*=0.05, which is equivalent to 5.4x10” 14
sec for argon and run for 25,000 time steps. Figure 4-1
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Figure 4-1. Instantaneous chain length as a function of
time. TInitial value of simulation is indicated by a black
circle.
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shows a plot of the instantaneous chain length as a function
of time. After a few thousand time steps, the chain length
oscillates around a mean which is larger than its initial
value. This indicates that the chain has undergone expansion
upon heating. The behavior of the temperature is interesting
to study. 1In Figure 4-2, one notes that the temperature
quickly decreases from its initial value trying to reach its
new equilibrium value. In such cases, one expects the system
to equilibrate at a final value equal to half its initial
value based on the statistical equipartition theorem and
assuming a harmonic system. However, in this case one notes
that the final equilibrium value is smaller than half the
initial value by 25%. The difference is attributed to the
vibrational energy in the boundary which is not damped out.
This aspect is actually one of the weaknesses of this method
where one notes that the boundary keeps on oscillating with
no apparent damping to reach its average value. Thus the
fictitious boundary will carry some energy as it vibrates
which is an undesirable feature. This may be attributed to
the approximation noted earlier in the first section.
Neglecting the term hs in the calculation of the velocity v
removes the damping term in the equation for boundary motion.
The net result of which is the continuous oscillation of the
boundary around its equilibrium position.

Since the system is homogeneous, with all particles

having the same mass and being equally displaced from one
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Figure 4-2. Average temperature as a function of time.
Initial value of T*=0.05.
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another in the initial configuration, it is expected to
undergo uniform expansion upon heating. Figure 4-3 shows

a typical plot of s, the relative position for a given
particle in the chain. As noted, the particle oscillates
around its initial position keeping the same value through-
out the simulation. The behavior of all other particles in
the simulation cell is similar. This indicates that the
chain expands with all particles maintaining their same
average relative position throughout the process, indicating
uniform behavior as expected. The constant of motion in this
process is the total energy rather than the enthalpy, the
external pressure being zero. The total energy in this

case is the sum of internal potential eﬁergy, the kinetic
energy of the particles and the boundary kinetic energy.
Figure 4-4 shows a plot of the instantaneous total energy

of the chain. The energy oscillates around a mean value
which is constant throughout the simulation. The percentage
deviation in the instantaneous value does not exceed a value
of 0.75 from the mean. A noteworthy aspect is to mention
that the simulation time step size is determined by the
energy constancy. For a given simulation, one looks for

the optimum value of time step that preserves energy
constancy within the desired limits and minimizes the num-
ber of time steps needed for the whole process.

Thus the flexible boundary method allows one to study

such systems smoothly and with relative ease. One might
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Figure 4-3. Instantaneous relative position s for a

given particle as a function of time.
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Figure 4-4. Instantaneous total energy as a function
of time.
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actually determine the coefficients of expansion as a
function of temperature for real physical systems by this

technique.

ITI. TWO DIMENSIONAL LENNARD-JONES SYSTEMS
The two dimensional Lennard-Jones system is a very

interesting case to study for the wide use of Lennard-Jones
potentials in many atomic and molecular systems. It is well
established that the triangular structure is the most stable
one for such a potential. The reason for that is the high
symmetry that this structure possesses. With the six-fold
axis symmetry that such a structure has, it makes it the
highest order possible symmetry structure. Consequently,
a given atom in the structure will have the largest number
of close nearest neighbors, being six in this case. With
an attractive potential, the triangular structure will have
the lowest potential energy and thus be the most stable one
compared to other lower symmetry structures. Hence, as dis-
cussed in Section I any crystal structure which is different
from the triangular one will seek to go to it in order to
achieve the minimum energy. We will consider in this section
a square lattice as a specific example and study its time
evolution as it undergoes such a transition. But before we
do that, the formalism for the two dimensional flexible
boundary condition will be first established.

The equations governing the individual motion of each

of the particles and the boundary motion still retain the
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form given by Equations (4.8)-(4.11). The matrix h takes

on the following form in this case;

h= (4.20)

The four components of h relative to the fixed coordinate

system are illustrated in the following schematic; .

' o
X

Periodic boundary conditions are applied here by displacing
the simulation cell by multiples of the time dependent
vectors d and B. This is to be contrasted with the rigid
boundary case where images are constructed by adding
constant vectors 3 and B to the atomic coordinates in the
simulation cell.

We considered a system of 36 particles with a square
structure located in a square simulation cell. Since we
are operating at temperatures close to 0°K, potential energies
rather than free energies are compared. Figure 4-5 shows a
plot of the potential energies for both structures as a
function of the closest interatomic spacing, d. The minimum
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Figure 4-5. Potential energy curves for square and
triangular structures as a function of interatomic
spacing for a 36 particle system.
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of the square structure occurs at an interatomic spacing
of 1.0977 while that for the triangular occurs at a value
equal to 1.1412. The larger shift in the square case from
the nominal value of (2)1/6 is due to the fact that second
neighbor interactions are more pronounced in the square
structure. One notes that the triangular structure has
the lowest energy in the vicinity of this point. The cor-
responding plots as a function of pressure are given in
Figure 4-6. The minima in the potential curves occur at
zero pressure as expected. The interesting feature about
such plots is that since the simulation is carried out
isobarically, one expects a transition from one point on
any of the potential curves to its vertical projection on
the other curve corresponding to the other structure.

Thus as explained in Section I, if one starts with a
square structure at any given pressure, it is expected that
a transition would take place to a triangular one at the
same pressure, the potential energy difference being the
driving force in this case. To induce such a transition,
any of the internal stress components may be excited. Heating
of the system or internal shear introduced by breaking the
system symmetry are two means of starting such a transition.

A simulation starting with a square structure at zero
pressure was initiated by heating the system to a scaled
temperature T*=0.05. With W=4 and At*=0.005 the system
was run for 6000 time steps. As the system evolved in time
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Figure 4-6. Potential energy curves for square and
triangular structures as a function of pressure for
a 36 particle system.
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sharp transitions in the system properties were noticed.
Figure 4-7 shows a plot of the potential energy of the
system as a function of time. One notes the sharp drop in
the potential energy after the first few hundred time steps
indicating that the system is seeking a lower minimum energy
structure. After several thousand time steps, the system
appears to have located that minimum and is undergoing some
fluctuations around its new average value. The behavior of
the temperature is interesting to notice. Figure 4-8 shows
the temperature time evolution. In the first few hundred
time steps, the temperature decreases trying to go to half
its initial wvalue as mentioned in Section II. However, with
the sudden surge of energy into the system due to the sharp
drop in its potential energy, the system quickly heats up
and equilibrates at a higher temperature corresponding to the
new equilibrium structure. The force initiating such a
transition is the internal stress in the system. At equili-
brium one expects a balance between the internal and external
pressures of the system. Since the simulation was started by
heating up the system, this creates an imbalance between
the net internal stress and the external applied pressure,
being zero in this case. Figure 4-9 shows a plot of the net
1

stress tensor "ST" taken as 5 Tr m 0 as a function of time.

~

The initial value of "ST" is -1.8, implying an excess external
pressure. As one traces the time evolution of the system,
one notes that "ST" oscillates around a new equilibrium value
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Figure 4-7. Potential energy of the system as a function
of time.
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Figure 4-8. Scaled temperature as a function of time.
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Figure 4-9. Net internal stress as a function of time.
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very close to zero, implying that the balance between the
external and internal pressure has been restored. The
initial internal stress is negative since the simulation
was started with an interatomic spacing slightly larger
than that corresponding to the minimum.

A very interesting aspect to look at is the final
particle configuration of the system. Figure 4-10 shows
the initial square structure at the beginning of the simula-
tion. Figure 4-11 shows the final structure of the system
at the end of the simulation. One can clearly observe the
final equilateral triangles formed by the particles indicating
the final transition to a triangular structure. One
interesting feature to note is the change in the shape of
the simulation cell after such a transition. It is seen
that there is relative compression in the vertical dimension
accompanied by a relative expansion in the horizontal length
ax. Figure 4-12 shows the time evolution of by where one
sees that it has shrunk from an initial value of 6.73 to a
new average value of 6.05. Figure 4-13 shows the time be-
havior of ay where an expansion from an initial value of
6.73 to a new equilibrium value of 7.0 has taken place.
This is a very notable feature to consider. To accommodate
such a transition, the simulation cell changed its shape
from a perfect square to an elongated rectangle. Such a change

can be well understood by considering the following schematic.
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Figure 4-10. 1Initial square lattice at the beginning
of the simulation.
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Figure 4-11. Final triangular lattice at the end of
the simulation.
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Since the height of an equilateral triangle is equal to
0.866 of its length, the cell has undergone such a change
in its shape to satisfy this condition. The final ratio
of the new average length of its boundaries 6.05/7=0.864

clearly indicates such a transition.

IV. HOOKE'S LAW CRYSTALS

A study of a piece-wise-linear force potential model
is investigated in this section to seek structural phase
transitions. A séructural phase transition based on static
energy calculations under the effect of hydrostatic pressure
is reported by Hoover and Ladd (9). The potential is two
piece-wise linear with three independent parameters:; K, dor
w, of the form;

(1/2)K (r-dg) % - Kw? , r<dgtw,
Ulx) = -(1/2)K(r—do-2m)2, dotw<r<dpot+2w (4;21)

0 ' do+2w<r
Figure 4-14 shows a plot of U(r) and-U'(r) as a function of

r. The force derived from this potential is continuous.
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However its derivative is discontinuous at r=d,+w. This
aspect has a profound effect on the phase diagram of the
model which will be discussed later in more detail. The
forcg saturates at small values of r reaching a value of
K[%? —w2] in the limit r=0. This indicates that this poten-

tial has a soft repulsive core in contrast to a Lennard-Jones

system where the potential takes a hard sphere behavior at

small values of r.

ot
dO -f?b
| -
repulsive attractive

Figure 4-14. Plot of U(r) andU'(r) as a function of r.
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For all values of r less than d,+w (where the width w is
typically 0.15 do), this potential is equivalent to a purely
harmonic Hooke's-law interaction. The reduced density p* =
Vb/V, where the two dimensional stress-free "volume" is
(3/4)%Nd2. This V, is exactly the volume occupied by N
hard disks of diameter dg in a close-packed triangular lattice.
For a potential width w=0.15 d,, second-neighbor interactions
would need to be included for densities greater than 1.78 in
a triangular lattice.

According to Ladd and Hoover (9) a static calculation
of energies for the piecewise-~linear-force model, Eq. (4.21),
with w=0.15 dy indicates a first-order triangular-to-square
lattice transition at a pressure of 0.21 K with coexisting
densities of 1.25 and 1.53. The square lattice, which is
always unstable with just nearest-neighbor forces, is
stabilized by second-neighbor interactions. Although we
found that this is generally true based on static calculations,
a transition from triangular to a square structure is not
easily established. Figure 4-15 shows a plot of the potential
energy for a 36 particle system as a function of nearest
interatomic spacing, d. 1Indeed one can see that the square
structure has the lower energy compared to the triangular one

for 0.5<%—<0.84. Consider, for example, a density of 1.50.

o
The nearest neighbor spacing is then 0.8165 dg in the trij

angular lattice and 0.7598 dy in the square lattice. With

w=0.15 dg the second neighbors (at 1.4142 4, in the triangular
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Figure 4-15. Potential energy of a thirty-six particle system
as a function of nearest interatomic spacing, 4.
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case and 1.0745 dy in the square case) lie within the range
of the potential 1.3 dy only in the square-lattice case. The
energy per particle is -0.0170 Kdg in the triangular case
and -0.0268 Kdg in the square case.

For densities p*>1 and taking interactions up to the
second nearest neighbor the pressure p derived as % Tr(ﬂ),

Eq. (4.11) is, for a triangular lattice,

P =I§1§i(d)+J§ngﬁaﬂ (4.22)

and, for a square lattice,

= l ' ' .
p d[Ul(dHﬁUz(ﬁ\i)] (4.23)

where Ui and Ué indicate potential derivatives evaluated

for first and second nearest neighbors respectively. Similar
formulas apply for higher densities with further neighbor
interactions taken into account. Firugre 4-16 shows a plot
of the total potential energy for a 36 particle system as a
function of pressure in the range 0.5<d/dg<l.0. Sharp

breaks in the behavior of the curve do occur at some specific
points. We will specifically consider the points A and B
labeled in the curves and discuss their significance at this
point. Point A corresponds to an interatomic spacing

d =0.75 d,. At such a spacing the second nearest neighbor
is at a distance of 1.30 d,, which is the interaction range
of the potential. Thus a break in the pressure curve is

expected at this point due to the inclusion of an attractive
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part to the potential opposing the repulsive interaction of
the first nearest neighbor. Point B corresponds to an inter-
atomic spacing d = 0.66 do. At such a spacing the second

nearest neighbor is at a distance of 1.15 d where a break

o’
in the force behavior occurs. At this point, the force
reverses its trend and starts increasing for smaller inter-
atomic spacing indicating a sudden increase in the total
pressure p of the system. Other sharp changes in the behavior
of the curve can be explained by taking note of further inter-
actions like third and fourth nearest neighbors. The
interesting feature about this curve is that at a given
pressure p, the system can exist in more than two unique
states. At a pressure of p = 0.4, the system can exist in
three distinct triangular structures corresponding to three
different densities and another three distinct square
structures as seen in Figure 4-16. Thus, for isobaric
simulations, starting with a given high energy structure,
the system can fall into more than one metastable state.
This makes such structural phase transitions harder to ob-
serve with the system having different channels it can go
through, some of which lead to a structure with the same
symmetry.

We performed several simulations to study such a system.
Table 4-1 gives a list of the major simulation runs which
are also labeled in Figure 4-15. The simulations were all

started at the corresponding equilibrium pressures for the
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Figure 4-16. Potential energy of a thirty-six particle system
as a function of the equilibrium pressure, p.
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Table 4-1. Simulation runs for Hooke's law interaction

Simulation Number Structure d p* p* T*
1 A 0.953 1.10 0.085 5x107°
2 0 0.703 1.75 0.422 5x10°°
3 A 0.791 1.60 0.458 5x10°°
4 A 0.749 1.78 0.576 5x10°°

particular density considered. Simulation (:) established

the stability of the triangular structure at p*=l.l. Since
this is the lower energy structure this is expected. Figure
4-17 shows the average temperature, T*, behavior as a function
of time. As noted the average temperature quickly equilibrates
at half the initial value with the triangular structure being
preserved. Simulation (:) established the stability of the
square structure at p*=1.75. Figure 4-18 shows a similar be-

havior to that discussed previously. The average temperature

quickly reaches a new equilibrium at half its initial value

with the sqﬁare’structure'being preserved. Simulation (:) was

started with the triangular structure at a corresponding
density p*=1.6. Based on the potential energy curves, the
triangular structure is metastable at this density and one
would expect it to roll out if the system is suitably per-
turbed. Figure 4-19 shows the average temperature behavior
as a function of time. The temperature quickly equilibrates

at half its initial value preserving the triangular structure.
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This indicates that the potential barrier that the system
has to cross before it reaches the lower square energy
structure is rather significant. This is to be contrasted
with the Lennard-Jones case, Section III, where a small
perturbation was able to roll the system out of the meta-
stable square structure and bring it to the lower energy
triangular structure. This indicates that transitions with
the piece-wise linear force model potential are not easily
attained. Since such structural transitions depend mainly
on the number of neighbors interacting with a given atom in
the lattice, rather than on the potential form, it is ex-
pected that the system will have more difficulty in locating
the lower energy structures that have the given particular
neighbor configuration.

Simulation (:) was carried out at a density p*=1.78.
This density is of interest because second-neighbor inter-
actions start to be included at such a density for a tri-
angular lattice. Figure 4-20 shows the potential energy
behavior as a function of time. One notes that the potential
energy starts decreasing after 500 time steps and then starts
suddenly increasing indicating melting. Monitoring the temp-
erature behavior, Figure 4-21, indicates that the temperature
maintains its constancy for the first 400 time steps and
increases rapidly in the next 100 time steps. This indicates
that the system is seeking a lower energy structure being
unstable at the present one. So the potential energy de-
creases first trying to reach a more stable structure. Not

125



W

1.5+ / /

3

o 1609 2000 i 3222
At* (0.005)
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able to locate that structure the system, with a sudden
surge of energy, heats up and melts trying to reach a new
equilibrium position.

The study of the piece-wise—lineér force model given
in this section indicates possible transitions from tri-
angular to square structures and vice versa at a certain
density range. Based on potential energy curves, Figure
4-15, one can expect to go from one structure to the other
by perturbing the system properly. However, a more detailed
study shows high nonlinearity in system properties using
such a simple potential. As shown by Figure 4-16, the
system can exist in more than one density at a particular
pressure with the same structure. This feature is rather
nonphysical indicating no unique equation of state. Such
systems can be expected to have mechanical soft-mode in-
stabilities over a wide density range. One is clearly in-
dicated by Ladd and Hoover (9) at a density of 1.78. This
makes the study of phase transitions in such a system rather
difficult due to the presence of the highly unstable modes

present in the system properties.

V. CONCLUSION

The periodic flexible boundary method for carrying out com-
puter simulations appears to be a strong technique for in-
vestigating a broad new type of interesting physical problems.
Structural stability and phase transitions are the most
prominent for such studies. As we have noted the method was
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a success in accounting for the well known stable triangular
structure for a Lennard-Jones atomic system. The time evolu-
tion of the system was monitored thoroughly and a transition
from the square to the triangular structure was detected.
Results for the piece-wise-linear force model indicate
that the study of such a system to observe a transition is
still possible if one neglects interactions beyond the
second-nearest neighbor to smooth out the nonlinear effects
in the phase diagram. The merit of this technique is its
ability to simulate transitions under constant pressure
which allows one to have a considerable control on the system
behavior. Phase transitions in molecular systems can also
be studied using such a technique. With the simulation cell
being flexible in shape as well as volume, rotational and
structural phase transitions are possible to investigate

for such systems.
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Chapter 5
SUMMARY AND CONCLUSIONS

Our study indicates that the halogen crystals span
a spectrum in their type of interactive forces. While
iodine shows an interatomic interaction, chlorine shows
a molecular behavior and bromine has both atomic and molecu-
lar properties. Charge interactions play a major role in
removing the inherent instability in conventional isotropic
central force potentials. This clearly indicates that inter-
actions in the halogen crystals have an anisotropic character.
Since an actual theoretical solution for the charge distri-
bution in the halogen crystals is formidable at this stage,
it can be approximated by a set of monopoles suitably placed
near the nuclear centers. Computer molecular dynamics can
play a very active role in such studies. The determination
of minimum free energy structures for a given potential
model at a finite temperature could be performed using flex-
ible boundary conditions at constant pressure. Any future
work in this field would be more valuable if utilized in
the generation of more experimental data. In particular,
the measurement of quadrupole moments, elastic constants,
and phonon dispersion curves in iodine, bromine and chlorine
would greatly enhance the theoretical work in this field.

The study of structural stability and phase transitions
by computer molecular dynamics with flexible boundary condi-
tions looks to be a very promising field. M. Parrinello
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and A. Rahman have already demonstrated an FCCHCP transition
in nickel and Bj»B, transition in KtCcl™ by applying this
technique. Our work has shown a square to triangular transi-
tion for a two dimensional Lennard-Jones system. Possible
transitions in Hooke's-Law crystals; square to triangular

and vice versa should be sought. However, one should work in
the density range 1<p*<1.75 to avoid the multiplicity of
structure at higher density ranges. Transitions under the
effect of applied shear are a possible route to follow in
future work. This method could also be used in the study of
structural and rotational phase transitions in molecular systems.
Improvement of this technique should be pursued by damping
the boundary motion. Inclusion of the term ég in the

velocity calculation would make the formalism more complete.
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