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Abstract

This thesis is a study of atomistic measures of strength and deformation of ceramic
materials, utilizing molecular dynamics (MD) simulation that incorporates newly
developed theoretical models and computational algorithms to probe the microstruc-
tural effects in crystalline, amorphous, and nanocrystalline media. Specific issues of
a materials property or mechanics of materials nature are addressed in the context
of characterizing the limits to strength and mechanisms of structural failure in two
physically rather different model ceramics, SiO; described by pairwise ionic interac-
tions and ZrC with many-body covalent interactions. These range from stress-strain
responses to various applied loading, determination of fracture toughness, structural
relaxation effects, to scaling with grain size. Additionally, a study of the thermal
conductivity of ZrC is presented. On the computational side, thesis contributions
consist of improved MD algorithms for finding neighbors and integrating the New-
ton’s equations of motion, extension of Ewald summation to a binary ionic lattice for
phonon dispersion, elastic constant, and heat current calculations, and a stand-alone
scheme for coupled MD-continuum simulations based on domain decomposition and
control feedback.

The onset of structural instability in MD simulation of an initially defect-free lat-
tice gives not only the theoretical or ideal strength of the deforming material, but also
the mode of deformation and details of the structural defects nucleated afterwards.
This provides a systematic basis for determining the effects of temperature on me-
chanical response, and stoichiometry effects in the case of carbon vacancies in ZrC,_,.
In tensile deformation of quartz, the structural transition from o to 8 phase is ob-
served and analyzed using a pseudo-critical phase transition model, leading to a new
interpretation of the structure of the 8-quartz. In uniaxial compression of a-quartz a
local process of nucleation and growth of disordering is observed which appears to be
distinct from the essentially homogeneous crystal-to-amorphous transformation that
is well known to occur under hydrostatic compression. This finding also leads to a
new interpretation of plastic deformation experiments.

Fracture toughness is studied by introducing a pre-existing nanocrack in the simu-



lations and following the details of crack tip extension under mode I loading. Simula-
tions are shown to be quite consistent with the Griffith model in elementary {racture
mechanics, confirming on the one hand the brittle nature of these two ceramics while
also revealing the effects of surface relaxation, energy dissipation, and surface en-
ergy at the atomistic level. Similarly, simulations performed with initial structures
with microstructural disorder, in the form of prepared amorphous and nanocrys-
talline specimens, also lead to new results pointing to the particular mechanisms,
void nucleation and growth as well as strain-rate dependence in structural failure of
an amorphous specimen, and grain-boundary sliding in shear deformation in very
fine-grained nanocrystals.

Taken together the thesis results demonstrate the feasibility and utility of the in-
vestigation of thermal and mechanical behavior of binary solids at the atomistic level.
It is hoped that they also provide a quantitative basis for future work generally in
the direction of delineating the effects of more complex and physically relevant mi-
crostructures, and specifically towards the multiscale modeling of interfacial fracture
and high-temperature creep.

Thesis Supervisor: Sidney Yip
Title: Professor, Department of Nulcear Engineering
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Chapter 1

Introduction

1.1 Background and Motivation

Strength and deformation have always been among the key issues in materials ap-
plications. While mechanics of deformation is of course a well developed subject
in continuum elasticity, there exists a class of irreversible processes associated with
stress-induced structural instability which are not understood at the molecular level.
Quite often these processes involve microstructural features such as a crack or the
disorder associated with an amorphous or interfacial region. In order to gain funda-
mental insight to how individual microstructural processes influence the strength of
materials, two conditions need to be satisfied. One is the availability of a sufficiently
robust interatomic potential model describing the chemical bonding in the material
of interest. The other is a suitably developed methodology where the potential model
can be applied to first simnlate the deformation processes under well characterized
conditions, and then to analyze the atomic-level details associated with the observed
stress-strain response. This thesis is primarily concerned with the latter challenge,
specifically in the context of studying the mechanical behavior of ceramics at finite
strain and high temperatures.

Ceramics materials[1] are known for their high strength[2] and outstandingly high
melting points. However, their brittleness renders them unsuitable for many struc-

tural applications. Designing tough ceramics requires intimate understandings of the

20




rupturing process down to atomistic scale. New developments in material processing
such as nanophase materials pose more challenge in understanding strength and defor-
mation processes. Taking two physically rather different ceramics, Si0s and ZrC for
case studies, this thesis tries to address the problems of understanding their mechan-
ical behavior by combining simulation results with basic models in solid mechanics
and materials science

Molecular dynamics (MD) is an atomistic simulation[3, 4] technique which re-
quires, as its most essential input, a prescribed interatomic interaction potential[3, 6].
Once the potential is specified, MD can be used to probe deformation processes that
occur quickly (picoseconds to nanoseconds) and locally (angstroms to tens of nanome-
ters) in response to arbitrary but well-defined loading conditions, and to obtain details
of the corresponding microstructural evolutions that are not accessible to experiments.
MD simulaion is the methodology with which we intend to achieve the goals of this
thesis.

To model $i05 we have adopted the widely used pairwise ionic interaction poten-
tial developed by van Beest, Kramer and van Santen(BKS)[7]. Based on ab initio
local force field calculations as well as bulk elastic properties, the model is proven
+o be suitable for mechanical properties in several different polymorphic phases|8|.
Through ten years of existance, it has been used in study of pressure induced phase
transformations(9, 10, 11], amorphization[12, 13, 14, 15, 16] and melting[17] of crys-
tals as well as the amorphous phase[18]. In case of 7rC, a new many-body potential
has been developed recently by Ju Li[19]. As demonstrated by an extensive validation
study of thermal and mechanical properties[20, 21], the model accurately characterizes
the nature of Zr-C interactions. It 1s considered to give meaningful results pertaining
to strength and deformation.

For both materials we therefore expect them to be applicable to the structural
stability studies in this work.

Through a series of technique developments and applications to strength determi-
nation we will demonstrate the feasibility and utility of combining MD simulations

with models of deformation mechanisms.
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Strength and Deformation of Crystals

Theoretical strength of a material can be defined in terms of the maximum elastic de-
formation of perfect crystals. It is closely related to the breaking strength of atomic
bonding in the material. Theoretical strength is also the upper limit of strength,
providing a reference value with which to assess the effects of microstructures in
the material which generally cause the strength to be reduced. Because it pertains
only to the defect-free material (a crystal lattice), theoretical strength can be ac-
curately calculated from atomistic simulations. Table.1.1 compares the calculated
tensile strength of three ceramic materials. Indeed the perfect single crystal states of
all three materials can sustain the largest elastic deformation possible and therefore

set the upper limit of strength.

- Si0, 7rC SiC!
crystal hydrostatic 32(0.14) 30(0.10) 38(0.15)
(tension) | uniaxial | 41(0.26)(1100) 28(0.18){100) 72(0.31)(0001)

59(0.35)(0001)  49(0.18)(111)
amorphous | hydrostatic 7(0.12) 22(0.10)
(tension) uniaxial 13(0.23) 26(0.20)
nanocrystal | hydrostatic 20
(tension) uniaxial 7.5

! Data taken from[19)]

Table 1.1: Calculated tensile strength of different ceramic materials from atomistic
models, all at 300°K. Values shown are critical stress [GPa] and in parenthesis critical
strain if applicable. Uniaxial tension results for crystals are marked with the direction
tensile stress is applied.

With direct hydrostatic tension simulation of ZrC, the study of the theoretical
strength reveals a changing of failure mechanism from low temperature to high tem-
perature. The low temperature ZrC crystal fails by cleavage through its {100} planes
while high temperature ZrC cavitates accompanied by plastic deformations.

While simulation observations help to identify failure mechanisms, the external
loading conditions that induce instability can be predicted by theories. In 1940,

Born[22] proposed the necessary condition for lattice stability, stating that the elastic
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constant tensor Cj;; must be positive definite for any stable crystal lattice. Born’s
stability conditions have since been extended and used in several atomistic simulation
studies[23, 24]. These criteria are able to describe structural instabilities arising from
homogeneous deformations at long wavelengths. Instability also can be triggered
by vibrational modes at finite wavelengths, namely, soft phonons. From the lattice
dynamical perspective, Born’s criteria correspond to only the I point phonons.

The phonon dispersion relations can be obtained from both experiments and simu-
lations. Modeled by partially ionic interactions, the optical phonon dispersion curves
of SiO; is discontinuous at T point, known as LO-TQ splitting[25]. This is observed
in a study of failure modes in this thesis, where the full phonon dispersion calculation
are conducted. The phonon curves obtained from simulations are compared with
experimental neutron scattering measurements|26, 27] and used to predict the soft
modes under different external mechanical loadings.

In the hydrostatic tension study of quartz, the a to 5 phase transition is observed
to be induced by tension as well as by heat. After discovered in 1889(28], the quartz
a to (3 phase transition is put under various experimental examination. These are
well summarized in a review by Dolino[29]. First carried out by Tsuneyuki[30], the
atomistic simulation study gives a picture of S-quartz as a disordered coexistance of
two different a-quartz states. This is in contradiction with later hard-mode spec-
troscopy experiment(31]. In this thesis, a “pseudo-critical” transition model, arises
from an Ising spin system coupled to lattice vibrations[32], is applied to both the
simulation and experiments. The controversy is resolved by attributing the overes-
timate of the temperature range where disordered § phase observed in simulation
to the inadequacy of the interaction potential used. Using experimental data, the
“pseudo-critical” model predicts a disordered $-phase to exist only in a range of 6°K,

matching well with the observed incommensurate phase.

Atomistic Simulation of Brittle Fracture

When cracks are present, the strength of a brittle solid can be reduced greatly. The

reduction of strength is due to the stress concentration around the crack tips. By
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creating a crack in a single crystal and applying a load in incremental steps, crack ex-
tension can be studied directly and systematically by molecular dynamics simulation.
Although it seems to be straightforward, the direct simulation of crack extension in
MD is a non-trivial task. The computational power required for this was unthinkable
just several years ago. Thanks to the rapid growth of computer technology, the study
can now be carried out with moderate effort. The recent availability of direct fracture
simulation poses unique challenges and opportunities. With the system size signif-
icantly increased, several simulation techniques developed in 1960s and 1970s need
to be re-examined. Among the methodology developments presented in the thesis,
the Verlet’s neighbor finding algorithm[33] and its later developments|34, 35] have
been greatly improved by more sophisticated book-keeping algorithm. The predictor-
correct integration scheme[36] is taken to higher order accuracy to fully utilize the
modern computer’s numerical power. Parallel computing is an indispensable tool,
without it large scale simulation would be impossible. The considerations in writing
a parallel MD program are briefly described in Appendix B.

With the tools developed and readily at hand, we have studied the crack extension
problem for both 8i0, and ZrC. The quartz crystal is found to be brittle with respect
to crack extension even close to melting. This is compatible with the experimental
observations of “dry” quartz[37]. Due to the computational power requirements,
little previous study of SiOy fracture can be found except for the preliminary results
reported by Simmons et al.[38, 39].

In 1920, Griffith[40] proposed a necessary condition for crack extension in a brittle
material. It states that without dissipation, the energy released by crack extension
must be equal to the energy used to create the new fracture surface. In a planar strain
mode I (uniaxial tensile) loading situation, the critical tensile stress oc which must
act perpendicular to the crack to cause it to propagate can be expressed in terms of

crack half-length ¢, surface energy «y, Poisson’s ratio v and Young’s modulus E:

2F~

O —
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In fracture mechanics[41], based on linear elasticity, the stress field of near crack

tip can be expressed by stress intensity factors Ky, Kjp and Ky

_ K1 I K 11 K 111
U_\/%f (9)+~—,—2Wf (9)+——wa (@) (1.2)

In turn, the stress intensity factors can be related to an externally applied stress at

“infinity”. In the case of planar strain mode I loading, we have

K]=0'\/7T_C (13)

The critical stress intensity factor that initiates the crack extension is an inherent
material property that does not depend on loading conditions. This can be seen by
equating (1.1) and (1.3):

Kie = V2Ev/(1 - v%) (1.4)

If the critical stress intensity factor K. is obtained through direct tensile loading,
the Griflith criterion can be verified by (1.4). The verification of Griffith is carried
out in this thesis for both SiO; and ZrC. In the case of SiQs, the fracture toughness
predicted by (1.4) agrees closely with experiment[42]; the higher fracture toughness
derived from direct simulation of crack extension is the result of dissipation originated
from surface relaxation. In the case of ZrC, the fracture toughness derived from direct
simulation matches the fracture mechanics prediction. Due to the lack of experimental
measurements of ZrC fracture toughness, the connection to actual material is made

indirectly through a comparison with TiCg.gs indentation measurement[43]

Plastic Deformations

Plastic deformation is an irreversible structural change of the material which can
be induced by external loading. It determines the lower limit of material strength.
Plastic deformation denotes a collection of very different processes usually having
very different underlying mechanisms and observable behavior. Among them, crystal

compressive failure, amorphous tensile fracture and nanocrystal shear strength are
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the three topics that will be studied in detail in the thesis.

As one of most abundant minerals in earth mantle, SiO, and its high pressure
properties are of great interest to geophysicts. Recently, pressure induced structural
transformation and amorphization has been the focus of both experiments[44, 45]
and simulations[17, 46, 14]. Most of the simulation studies deal with the phase trans-
formations of Si0Qy under hydrostatic compressive loading, while there are exten-
sive uniaxial compression experimental results[47, 48, 49, 50]. Using a small system
(N = 576), the uniaxial compression simulation performed by us gives compressive
failure by amorphization, confirming similar processes reported by hydrostatic com-
pression simulations. In a somewhat larger study of N = 1152 particles, the uniaxial
compressive failure occurs at the same external loading but in contrast to the ho-
mogeneous amorphization reported in hydrostatic simulations, a new nucleation and
growth mechanism is observed. The uniaxial compressive failure first nucleates from
the structural disordering in a thin layer perpendicular to the compression direction;
then the disordered layer widens and eventually takes over the whole system. With
an even larger (N = 4320) sample with free surfaces, the layered compressive failure
is confirmed. Relating to existing experiments[48], our finding may have implications
to the problem of crack extension parallel to compressive loading planes[51], which
can not be explained by the Griffith fracture criterion.

In contrast to single crystals, glass has quite different mechanical properties. Lack-
ing an ordered structure, amorphous materials are much less understood from a theo-
retical point of view, requiring more attention from experiments and simulations. The
slow relaxation processes inherent in glassy materials is an issue which has not been
addressed extensively in atomistic modeling. In this thesis, we will initiate a study of
strain-rate effects. With powerful supercomputers, we are able to study much slower
loading than previous simulations of for silica glass[38, 39]. Although still unrealisti-
cally high compared to laboratory experiments, our “slow” tension simulation of silica
glass gives a converged stress-strain response independent of sirain-rate. The maxi-
mum tensile strength observed in simulation is now in line with measurements[52, 53].

Using full atomistic information available from simulations, the characteristic stress-
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strain response is separated into four stages of deformation processes: elastic, plastic
by void nucleation, plastic by void growth/coalescence and fraturing. The under-
standing of deformation mechanism will help further multiscale modeling efforts to-
ward materials design.

New nanocrystalline materials are popular in many applications for their superior
mechanical properties such as enhanced hardness compared with ordinary polycrys-
tals. It is observed in simulation[54] that the conventional Hall-Petch[55, 56) effect,
which refers to the fact that strength or hardness of a polycrystalline material in-
creases as the grain size decreases, is reversed in nanocrystalline metals. The con-
troversy still exists concering whether the reverse Hall-Petch effect in nanocrystals
and the conventional Hall-Petch behavior in micro-sized polycrystals can be linked
by a continuous change in grain size. If so, the strongest grain size[57] should be in
range of tens of nanometers. The controversy would be resolved if a single model
describing the entire range including the cross-over region could be established. As a
first step, simulation of nanocrystal ZrC under shear in this thesis reveals a reverse
Hall-Petch effect in nanocrystaline ceramics, with similar grain sliding mechnisms as
found in metals[54]. This suggests that the reverse Hall-Petch effect in nanocrystals
may be inherent to any grain-sliding process rather than being specific to particular

materials.

1.2 Thesis Problem and Scope

This thesis is concerned with the determination of strengths of ceramics and the study
of deformation mechanisms, both strongly dependent on the particular microstruc-
tural features present in the material. Theoretical strength, the upper limit in the
resistance to structural instability, is determined by molecular dynamics simulation in
which a defect-free crystal (microstructureless) is subjected to a prescribed external
stress. This approach is also useful for assessing the effects of temperature and sto-
ichiometry. Fracture strength, conventionally expressed through fracture toughness,

is obtained from the critical stress necessary to induce the extension of a pre-existing
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crack. Results of this direct determination match well with an indirect estimate
based on the Griffith criterion for brittle cleavage. The comparison also reveals the
effects of surface relaxation during crack tip extension and a bias toward fracture on
planes with low surface energy. Similar simulations carried out on prepared amor-
phous and nanocrystalline specimens give results showing plastic deformation arising
from structural relaxation in disordered media and small-scale grain boundary sliding
events.

Bésides addressing materials issues, contributions of an algorithmic and compu-
tational nature are presented in this work. Regarding MD simulation, improved
methods for finding neighbors and integrating the governing Newton’s equations of
motion have been developed, along with extension of the Ewald summation to more
complicated properties calculations. Regarding a key aspect of multiscale modeling,
that of coupling atomistic and continuum simulations, a novel domain decomposition
method which incorporates control feedback is proposed.

The thesis is organized as follows. In Chap.2 four new developments in the the-
ory and methodology of atomistic simulation are presented. These form a basis for
the later studies. The fast neighbor list implementation (Sec.2.1) and higher order
numerical integration scheme (Sec.2.2) arise from the vast improvements of computer
technology since the origin of atomistic simulations. These two topics deal how to
fully utilize the modern computer power and technology. The coupling between fluid
simulation and hydrodynamics (Sec.2.3) shows a new way of extracting information
as well as applying controls to the simulations. The Ewald formulations for ionic
systems (Sec.2.4) lays the necessary base for the simulation of Si02, which has a
significant part of ionic interactions in its model. Although the Ewald construction
scheme was proposed as early as 1921, the octupole moment derivation presented in
the thesis has not been reported in the literature; it enables fast calculations of elastic
constants. It is also helpful to give explicitly the Ewald formulation and discussions
relevant to simulations, which are hard to gather from other sources.

Chap.3 presents the strength and deformation study of SiO2. Starting from back-

ground and introduction of the potential model used in this thesis (Sec.3.1), the

28




theoretical strength is studied by direct stress-strain response simulation (Sec.3.2).
Stability study is carried out by phonon dispersion calculations (Sec.3.3). a-quartz
to (-quartz phase transition is studied under changing temperatures and pressure
(Sec.3.4), a model of Ising-spin like system coupled to a compressible lattice is used
to explain the transition. Both the order-parameter curves obtained from atomistic
simulations and experiments can be fitted nicely into the model with the same ex-
ponent. Following the atomic trajectories in simulation, we are able to understand
the structural details of the transition. In Sec.3.5, a detailed look into quartz un-
der uniaxial compression reveals a new amorphization mechanism where a thin layer
of amorphous zone perpendicular to the compressive direction nucleates and then
grows thicker as more and more compressive strains are imposed. The nucleation
and growth mechanism is verified under different loading orientation and boundary
conditions in simulation. Experimental evidence of similar (yet much bigger in length
scale) amorphous layer perpendicular to compressive direction can be found, with the
maximum yielding stress comparable to the simulation results. In Sec.3.6, samples
of quartz with pre-existing elliptic crack are studied under uniaxial tension. From
the critical stress and crack length in the simulation the calculated stress intensity
factor is in line with experimental values. The Griffith criterion{40] of brittle crack
propagation can also be verified with modest rate of dissipation. Simulations ranging
from room temperature up to close melting all shows brittle crack propagation, which
Is consistent with experiments on “dry” quartz. Future investigation of effects of wa-
ter molecules near crack tip could lead to the understanding of hydrolytic weakening
problem[58]. In Sec.3.7 the study of tensile strength of amorphous silica, a qualita-
tively different deformation mechanism from crystalline phases is identified with four
distinctive stages. In the first stage the material responds purely elastically, in the
second stage elastic response are accompanied by void nucleation. In the third stage
void nucleation is taken over by void growth and coalescence. In the last stage the
material fails through separation by percolated voids.

In Chap 4, strength and deformation of ZrC is presented. After introducing the

new many body interaction model for ZrC (Sec.4.1), the compositional and temper-
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ature effects on theoretical strength is studied (Sec.4.2). In a separate study of ZrC
thermal conductivity (Sec.4.3), drastic microstructure effects on the phonon heat car-
riers of ZrC is observed. We conclude that heat is conducted largely by the electrons
in ZrC crystals. Single crystal ZrC with pre-existing crack on different planes is stud-
ted (Sec.4.4). The Griffith criterion and linear elasticity can accurately predict the
propagation of crack tip with the help of surface energy and elastic constants. A se-
ries of nanocrystal samples with different grain sizes are subjected to shear (Secd.5);
the observed reverse Hall-Petch effect of grain size dependence of critical stress is
similar to results of Schigzt et al[54]. Although the issue is still controversial, our
results suggest that the reverse Hall-Petch effects in nanocrystals are inherent to any

grain-sliding process rather than being specific to any particular material.
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Chapter 2

Methodologies of MD simulation

2.1 Fast Neighbor List Implementation

Conventional methods of enumerating neighbor in molecular dynamics are re-examined
in the context of modern simulation tasks. A new incremental updating scheme of
neighbor list maintenance is proposed and compared to the widely used Verlet-cell-
list method. The way to deal with shape varying simulation cell in Parrinello and

Rahman’s NTP ensemble simulation is discussed.

2.1.1 Introduction

Neighbor list is a book-keeping method to accelerate molecular dynamics or Monte
Carlo simulations. The idea of the neighbor list is to record all the possible neighbors
of each atom, so that one does not need to check the whole system when calculating
force of interaction. Neighbor list saves time from unnecessary distance calculations,
which can be a significant part in many simulations. Clever schemes for keeping
neighbor list can reduce the calculation time significantly. If a cell list is used, one
can reduce the neighbor calculation from O(N?) to @(N). For this reason every MD
simulation code contains some kind of neighbor list algorithm.

The first neighbor list algorithm was developed by Verlet[33] in 1967. Verlet’s

neighbor keeping method lists all the atoms within r;, of each atom, and the list is
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recalculated every n time steps. Let r¢ be the cut-off distance of interaction, roughly
speaking, as long as

noAt < (TL - T'c) (21)

the atoms not on the list will not move into interaction range during the n steps and
few error would be made in the simulation. Following Verlet[33], we call the difference
between listing range and interaction range the “skin depth” of the neighbor list. It
is easily seen that (2.1) does not strictly guarantee correctness, since it only uses
average atom velocity ©. To be strict, one has to make sure no atom can move more

than half of the “skin depth” of the neighbor list[35].

max(Ar) < %(T‘L —7g) (

%)
)
e

In simulations, error can occur only when a pair of atoms come into interaction
without being listed as neighbors. As shown in Fig.2-1, an unlisted pair can come
into interaction if 7'23 > g, and rag < r¢. To prevent this, one needs to make sure
that:

|Arg — Aral < 1L — 1o (2.3)

Because A and B are arbitrary atoms and each may move up to Aryax, (2.3) reduces

to (2.2).

0o
rA B

Figure 2-1: Illustration of strict Verlet neighbor list requiring maximum atom dis-
placement less than half the “skin depth”.

Various improvements to the original Verlet method are proposed to reduce com-
putational effort, such as the automatic update scheme by Chialvo et al.[59]. When
strictness of interaction is desired, which is true for most cases, many of these im-

provements are not applicable. In this section, we will discuss how the strict Verlet
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method can be improved by incremental updating the neighbor list.

If the system has N atoms, and each atom has on average m other aﬁoms within
its interaction range, then at each step, an MD simulation without any neighbor
keeping algorithm needs to compute %N (N —1) distances to enumerate all possible
interactions. Verlet’s neighbor keeping algorithm reduces it to %mN at each time
step, although it still needs %N (N — 1) distances calculated when constructing the
list. According to Verlet[33], the neighbor list “cuts the computing time by a factor
of the order of 10”. Still, Verlet’s algorithm scales as O(N?) when N is large. The
essence of Verlet’s neighbor algorithms is trading space for time. By storing all the
neighbor information that could be needed in the near future, one can reduce the
time used to enumerate the neighbors. Since in almost all simulations the bottle-neck
is indeed the running time rather than space limit, Verlet’s method is a step in the
right direction.

In 1973 Quentrec et al.[34] proposed a method to search the neighbors in O(N)
time. This is achieved by dividing the simulation box into cells, and construct a
cell-list, which lists for each cell all the atoms inside it. When the simulation needs
to find the neighbors of an atom, it searches all the cells that are within interaction
range of the current cell (the cell containing the atom being updated), as shown in
Fig.2-2. Constructing cell-list and search neighbors in cells both cost O(N) time.

Many flavors of the cell-list are implemented for MD simulations. Some choose
the cell size to be equal the length of interaction cutoff!, so that there are only 27 cells
(current cell and all the adjacent ones) to consider for any atom[60]. In the original
Quentrec et al.[34] paper, they took cells so small that only zero or one atoms can
be in each cell; this reduces the management of varying length cell-lists to an array
of Boolean variables, but excessively small cell size makes the enumeration of cells
slow. According to Fincham[61], among all the different implementations, the optimal
speed is achieved when the number of particles per cell is about. 4.

In many modern MD simulation programs, the Verlet method is used together

'Here cell size implies diameter of the largest sphere that can be put into the cell. In the case of
rectangular cell, it equals to the shortest edge.
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Figure 2-2: Illustration of cell-list method showing all the cells that involved in the
neighbor enumeration of an atom. The shaded area represents the region that are
within 1, of the cell in consideration. All cells in the outlined region needs to be
considered when enumerating neighbors for the center atom.

with cell-list method. That is, use Verlet neighbor list at each step; when it is
needed to reconstruct the Verlet neighbor list, use a cell-list and collect neighbor
information from the cell-list. Combining both Verlet’s neighbor list and cell list
gives O(N) time scaling and added performance bonus of Verlet’s method. We shall
call this the Verlet-cell-list(VCL). One thing to notice is, after combining the Verlet
list with cell list, because the cells are only accessed when reconstructing Verlet list,
the balance discussed in the last paragraph shifted toward bigger cells. Usually, in
VOL implementations, cell size is chosen to contain an interaction cutoff so that only
27 cells need be considered. Compared to the conventional Verlet algorithm or the
bare cell-list algorithm, VCL performs better in most situations.

In recent years, as the computers become more and more powerful, the system size
of typical MD simulations increases significantly. The ability to calculate neighbors
quickly is especially important for simulations using relative simple interaction model
and millions or more atoms.

Another development is the widely used Parrinello-Rahman’s shape varying box

scheme[62], which poses new problem for fast neighborlist maintenance.
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In this section an efficient scheme of maintaining neighbor list is presented, which
can cut the time spent in neighbor list by half when comparing to the Verlet-cell-list
approach. With the help of test simulation data, the choice of optimal parameters is
considered. Then a way to cope with Parrinello-Rahman’s shape varying simulation

is introduced followed by various other discussions and possible further developments.

2.1.2 Incremental Verlet Neighbor List

In Verlet’s method, the whole neighbor list is reconstructed as soon as any atom
moves more than Aryax from its last updated position. (Aryax = (rL —7¢)/2) One
may ask “Can we update the neighbor list for any individual atom only when it’s
necessary?” The answer is yes, and by doing so much can be gained.

Naively, in the spirit of Verlet’s method, one wants to update neighbor list pertain
to any atom that has moved Aryax from the place it is last updated, and whenever
updating, include all atoms within r,. As in Verlet’s methods, for every atom one
needs to keep the position when it is last updated. We call this position the anchor
of an atom. Anchor positions are denoted by a superscript 4 on the atom positions
Tq- There are two ways to do incremental update. When reconstructing the neighbor
list of an atom, say atom a, one can either (i) choose to include all the atoms that

fall into the range ry, within current atom:
Include atom & if |7, — 74| < 71, (2.4a)

or (ii) choose to include all the atoms whose anchors fall into the range ry, of the
current atom. (Note when atom a is being updated, its anchor and its position are
the same.)

Include atom b if |72 — r| < r, (2.4b)

In case (i), the atoms will not be updated if it moves within the circle of radius of

Arpax; thus when an atom is being updated, its neighbors can move up to 2Aryax
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since last update event. In light of (2.3), we have:
3A'I‘MA}( S L — T¢ (25&)

Compared to Verlet’s condition (2.2), here we have a factor of 3 instead of 2 because
each atom is freely moving and neighbor lists for different atoms are updated at
different times.

In case (ii), the neighbor list is calculated according to anchor positions, and
anchor position will not change unless an update event occurs. This means the
anchor position can serve as a snapshot of the system; at any time, just like in the
conventional Verlet list algorithms, the neighbor list of any atom contains only those
atoms whose anchors are within 71, of the anchor of current atom. So, at any time, we
can think as if all the anchors are the result of one Verlet’s neighbor list reconstruction
at some early time. In the same picture as the strict Verlet list (see Fig.2-1), we have

the condition similar to the original Verlet’s
QATMAX < T, —T¢ (25b)

It is clear that case (ii) is a better way to maintain the neighbor list. It may seem
counter-intuitive at first that updating neighbor list with “old” anchored positions
could be better than using current ones. The reason is, in case (ii) there is more
information on the neighbor list structure than in case (i), because of the snapshot
described earlier. This additional information enables us to have a more stringent
bound on the atom positions. We will see that the concept of snapshot for the
neighbor list is very useful in shape varying boxes and other situations too. From
here on we will take case (ii) to be the chosen method for neighbor list updating.

Similar to the combination of Verlet and cell-list method, we can also use cell-list
to achieve O(N) time scaling. That is, updating an atom only involves checking and
maintaining the neighbor lists of atoms that are inside the cells within the cutoff.
Because we are using only anchors to define neighbors, the cell-list should also be

the cell-list of anchors instead of real atom positions. This means we only need
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to maintain the cell-list once we change the anchor of any atom, which saves time

compared to the Verlet-cell-list.

Ar

014 Anchor of A

Figure 2-3: Illustration showing the updating of atom A that removes pair A-B and
inserts pair A-C. The regions need to consider for insertion and removal of neighbors
are shaded.

Contrary to the conventional Verlet method, the new algorithm modifies neighbor
lists only when necessary, and when the neighbor list of an atom needs to be modified,
its old content is still useful. As shown in Fig.2-3, when atom a is updated, the only

atoms that need to be checked are those satisfying the following condition:

Remove pair a-b if T < |y — o] <+ Ar

Insert pair a-b if L — Ar < ry — 7| < 1L (2.6)

Anything else does not need to be changed. Here Ar is the distance between old
anchor and new anchor of atom a. According to the rule, update occurs when Ar >
Aryax. In MD, atoms move continuously, Ar is usually close to Aryax. In the

case when r¢ is small, such as in Lennard-Jones Argon, a portion of the time used
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to update neighbor list can already be saved. In systems with relatively long-range
interactions, such as Coulomb interaction with Ewald summation, the speed gain is
of order 10 to 100.

Below is a formal description of the method we have discussed so far:
e In the beginning of simulation, construct the lists:
1. Choose an optimal parameter Aryax according to the interaction potential
and density and temperature. Take rp = rg + 2ArMax

2. Divide the system into cells that contain one 77p,.

3. Setup cell-cell list: For each cell create a list of cells that has minimum

distance less than rp, (there are 27 of them)
4. Setup cell-atom list: For each cell create a list of all the atoms in the cell.
5. Set all the anchors to be current atom position

6. Setup atom-atom list: For each atom, go through the cell-cell list to find
all the cells within rp,, go through the cell-atom list and list all the atoms

within 7.

e During the simulation, if atom @ has moved more than Arpax from its an-

chor(lr, — 72| = Ar > Aryax), reset its anchor.
1. Check all the atoms that have distance to atom a between 7y, and ri, + Ar.
If they are listed as neighbors, remove the pair from neighbor list.

2. Check all the atoms that have distance to atom a between r1, and r;, — Ar.

If they are not listed as neighbors, insert the pair into neighbor list.
3. Update the cell-lists if atom a moved from one cell to another.
4. Update the anchor position of atom a
To evaluate the difference between the new incremental Verlet-cell-list (IVL) and

the conventional Verlet-cell-list(Verlet), three solid configurations, large (N = 13500)
medium (N = 4000) and small (N = 864), are used to test the performance gain of
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Figure 2-4: Simulation results showing a comparison of different system size between
IVL and conventional Verlet-cell neighbor list method. Three Lennard-Jones Argon
systems are studied with N = 13500, N = 4000 and N = 864 respectively, all of the
system are solid FCC crystals with T = 60°K.
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IVL over conventional Verlet. Fig.2-4 shows the comparison of running time between
IVL and conventional Verlet methods. For an O(N) method, it is not a trivial gain.
In all three systems, the IVL gains 5-10% total running time. In all cases, the time

spend on neighbor list is more than halved.

340 — — ;
A

3201 -
()
© 300F :
T
o
joR
@
E 280} -
o ' e
£ ) B
c ‘ e )
§ 260+ , , ‘ 1

\ ’ - j,// —— VL T=60K
2401 N “ Verlet T=60K
------ #= IVL T=120 K
> Verlet T=120K
220 o : :
0 0.1 0.4

. 0 .
A Max D regduced unit

Figure 2-5: Simulation results showing a comparison of solid and liquid systems
between IVL and conventional Verlet-cell neighbor list method. Both systems contain
864 atoms, with solid FCC at T'= 60°K and liquid at 7" = 120°K.

Fig.2-5 shows the comparison between solid and liquid simulations. A notable
feature is that the optimal Aryax does not depend much on temperature or density,
and it is always the same whether one uses IVL or conventional Verlet.?

Fig.2-6 shows the time spent on neighbor enumeration broken down to two parts:
time used for neighbor list maintenance and time used for calculating the distance

for pair that are out of interaction range.

2As a side note, in Verlet’s original paper[33], he proposed using 71, = 3.3 and r¢ = 2.5, this gives
Arpax = 0.4, the results shown here imply it is not optimal on modern computers.
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Figure 2-6: Simulation results showing the break down of simulation time spent into
neighbor list maintenance time and time spend on neighbors that are out of interaction
range (missed neighbor). Both IVL and Verlet are from the big system N = 135000.
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2.1.3 Neighbor List in Shape Varying Boxes

Since Parrinello and Rahman published the famous NTP ensemble paper[62] in 1981,
the application of shape varying box to perform NTP ensemble simulations has been
widely adopted. Any useful neighbor list algorithm must be able to deal with the
changing simulation box shape. In simulation using a shape varying box, the atom
positions are usually represented by the frame matrix h and internal coordinates s,.

The actual position can be expressed as:
= hs, (2.7)

with the frame matrix changing through time. If the frame matrix changed from h,
to h, any vector r = h s changes to v’ = hs = g7 (k= @al).The distortions = can

be bounded by the following limits:

|hs| maxﬁ— Amax (BT K)
" aye Ve

. |hs| . |sr o (2Ta)
min st __| mm h™ A (28)

hys|

Here Ay and Apin denote the largest and smallest eigenvalue of a matrix. With this
knowledge the analysis of neighbor list maintenance criteria can now be carried out.

In the equation of motions of Parrinello-Rahman MD simulations, the frame ma-
trix h is not treated much differently from the atomic internal coordinates. Similar
to the arguments in last section, it is advantageous to have a common frame matrix
for all the atom anchors, called a frame anchor k. If the algorithm described in last
section is performed under the environment of k , the most error one can make is
bounded by (2.8). If no atom has moved more than rskiy from its anchor under the

measure of 20, then under the measure of f, if atom a and atom b are not neighbors,
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the distance between the two can be bounded:

[ra = el = | [(rd = 7) = (0 — ) + (2 = rp)]|
>y A (828) ([0 — ) = [0 — #2)[ = |(m, — 7))

> (T‘L — QAT'MA)()AS (29)

Here As is a chosen parameter, so that the neighbor list will be reconstructed as soon

as the frame matrix changes so much that

\/ Amin(6TK) < Ag (2.10)

The neighbor listing criterion changes from (2.5b) to:
2A7'MAX S L — Tc/)\s (2.11)

with an additional parameter Ag. Optimal Ag is determined by simulation conditions,
e.g- one would like to choose a looser \g in compression simulations and a tighter Ag
in tension. In static state simulations, the frame matrix usually moves slowly, making
the optimal Ag quite close to unity. A typical choice of \g is 0.99.

The parameter g only constrains the frame matrix from shrinking. Expanding
a frame matrix will never violate the integrity of any constructed neighbor list, but
it will make the neighbor list contain more and more non-interacting pairs, which in
turn cause the simulation to run slower. The optimal performance can be obtained
by introducing a similar upper limit of distortion A;, and reconstruct the neighbor list

a8 soon as

)‘max(i_/j) > /\L (212)

Optimal X, also depends on simulation conditions, In equilibrium simulation, a value

of A, = 1/)g is recommended.
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2.1.4 Discussion

The reason a neighbor list can speed up the interaction evaluation stems from two
facts. First is that interactions are short ranged. If any given atom only interacts
with a small number of other atoms independent of the total number of particles,
there is no reason to check more than a localized area. This is the idea underlying
the cell-list algorithms. With cell-lists, only pairs of atoms that are close enough need
to be checked.

The second fact is the nature of continuous motion of atoms. If two atoms interact
in the previous timestep, they are probably not too far away this timestep. This fact
enables the Verlet neighbor list, which keeps slightly more atoms than actually needed
to be valid for longer time.

In the conventional neighbor finding algorithms such as Verlet-cell-list, the two
facts are used separately. By incremental maintenance of both the Verlet list and cell
list, IVL gains efficiency over conventional Verlet-cell neighbor list by combining and
fully utilizing both facts of MD simulation.

The immense computational power required by many large scale MD simulations
is usually attained through parallelization. A large portion of overhead of paralleliza-
tion comes from the neighbor list maintenance and force calculation. The incremental
updating feature of IVL can reduce the need of unnecessary communication between
processors and help to evenly distribute the load in neighbor list maintenance through-

out the course of simulation.

2.2 Higher Order Numerical Integration

2.2.1 Introduction

In 1971 Gear discussed in his book[36] a flavor of predictor-corrector numerical ap-
proach to solve the initial value problems of ordinary differential equations. It is
widely adopted in the MD simulation to solve the Newton’s equation of motion. The

Gear’s algorithm utilizes higher order derivatives and achieves high accuracy with lit-
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tle additional computational cost. The most widely used Gear’s method is the 6-value
Gear’s predictor-corrector, which can achieve 6th-order accuracy (O(At®)) if inter-
action does not depend on atom momenta. The 6-value Gear’s predictor-corrector
approaches the numerical cutoff error for single precision floating point number, thus
can be considered the “optimal” order for MD simulations done with single precision
arithmetics. The computational power has increased significantly since then; in mod-
ern times, most MD simulations are conducted with double precision, making higher
order Gear’s predictor-corrector necessary.

In this section we briefly discuss the way to do numerical integration with Gear’s
predictor-corrector methods; the first few orders are given explicitly and a comparison
is made with the symplectic integration methods, which is usually used in astrophysics

calculations.

2.2.2 Higher Order Gear’s Predictor Corrector

For an N-th order m-th derivative predictor-corrector method, the procedure to cal-

culate is: Predictor

(r(’,’(t+5t)\ (1 1 1 \ /ro(t)\

rf(t + 6t) o1 2 .. r1(¢t)
r¥t+6t) | =] 0 0 1 o (t) (2.13)
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