DATABASE DESIGN DEVELOPEMNT:

i-LINK - AN INTEGRATED MESSAGING FRAMEWORK
By
Pamela Michel Chahine

B.ENG in Civil and Environmental Engineering
McGill University, 2002

Submitted to the Department of Civil and Environmental Engineering
in Partial Fulfillment of the Requirements for the Degree of

Master of Engineering in Civil and Environmental Engineering
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
June 2004
©2004 Pamela Chahine. All rights reserved

The author hereby grants to MIT permission to reproduce and to
distribute publicly paper and electronic co/[?i of this thesis document in whole or in part.

}{{ e P
Signature of Author........ccceeeeiiiiininim W".,\,,”“
Department of Civil and Environmental Engineering
.f May 7, 2004
~
Certified by ..ooovvvvviiiiiiiiiiiii L e
~NJ d he

Dr George A. Kocur
Senior Lecturer, Department of Civil and Environmental Engineering
Thesis Supervisor

t / A
Accepted bY ..cooviiiiiiiii e AL T e ~es [
T \ l Heidi Nepf
Chairman, Departmental Committe€ on Graduate Studies
MASSACHUSETTS INSTITUTE
OF TECHNOLOGY
BARKER
JUN 07 2004

LIBRARIES

DATABASE DESIGN DEVELOPEMNT::
i-LINK — AN INTEGRATED MESSAGING FRAMEWORK

By
Pamela Michel Chahine

Submitted to the Department of Civil and Environmental Engineering
on May 7, 2004 in Partial Fulfillment of the
Requirements for the Degree of Master of Engineering in
Civil and Environmental Engineering

Abstract

For many people, online communication has meant a plethora of communication
media — emails, instant messages, blogs, etc. Often this has led to clustered desktop
displays and ineffective integration between communication media. Software
development teams are adversely affected by the lack of integration between applications.
When project managers, software developers and clients come together to work on one or
more projects, certain communication and managerial considerations and requirements
become apparent.

A server-based Integrated Messaging Framework (IMF) provides all
communication media messages with a common messaging format. i-LINK, an
intelligent client application uses IMF to send, receive, log, and store messages from
different communication channels.

There are contrasting database models from which to choose when designing the
IMF data model (i.e.: flat file, relational, object oriented, objected relational). However,
the IMF was designed using a relational data model due to the stability it offered, the
- protection provided through referential integrity and constraints, as well as other unique
benefits.

When considering the services that IMF is designed to provide, certain existing
messaging standards are conceptually useful to analyze before designing the IMF data
model. The RFC 2778 provides a universal Instant Messaging (IM) data model which can
be mapped to provide such services as presence and instant messaging. Microsoft
Outlook, a Messaging Application Programming Interface (MAPI), presents a data
storage mechanism.

The IMF database model integrates concepts from existing messaging standards
and refines the integration of different communication media while acting as a central
repository.

Thesis Supervisor: Dr. George A. Kocur
Title: Senior Lecturer, Department of Civil and Environmental Engineering

- ACKNOWLEDGEMENTS -

I would first like to extend my deepest gratitude to Tarek Dajani without whom
this project would not have been possible. Tarek you have an ambition and a dedication
that I will always admire. Working with you was not only a profound learning

experience, but also a delight.

I would like to thank my advisor, Dr. George Kocur, for his advice, valuable time,
encouragement, and inspiring discussions. Thank you for all your assistance and

guidance throughout this software development process.

To Patricia Crumley and Colleen O’Shea, thank you for making my experience at
MIT unforgettable. Without your company, this year would have been twice as much
difficult and not half as much fun. Thanks for being there for me and making me laugh.

To my parents, Michel and May Chahine, who have always been supportive and
made me believe I could do things I never thought I could. I am always amazed at their

confidence in me.

Finally, I would like to thank my brother, Pascal. For the past year his patience
has been truly needed and his support during this project will always be remembered.

- TABLE OF CONTENTS -

LIST OF FIGURES. .. .oooooeeeeeeeeeeeesseeesaseeeereseseeseeneennesssaessssessssnsassesserrsrnnaaasesassssasssansesesserans 6
CHAPTER ONE: INTRODUCTIONc.oeottttttiieeeeeeeeeeeeeettumtseessestsestsesessseerrensaesesssssssrsrsasssssees 8
1.1 PREAMBLE ..oeeeteteteeeeeeetseeeeeeesseeeemnmeensneeasssssssasnsssssstssnsseesnssssssnnssesssnssessssnsessssnnnesssnnneees 8
1.2 BACKGROUND AND PURPOSEcuutueieeeeeeettteeeereeesseeesestssseesesessssnnnsssseessssssrasaesessasesn 10
1.3 EXTENDED QOUTLINE ...oteuueteietueeeettuaeretesestaessseneesessnsessssessssesnssensssessnsesssssssssssssessssssssnss 10
CHAPTER TWO: LITERATURE REVIEW: DATABASE MODELS......c..ovvvveeiiiiiiiriineeeeeenenns 13
2.1 DATABASE MODEL SELECTIONueieeottttteteueetnneeeesseeeetsnnassesseeesssmsessseesssssmsosessssssssss 13
2.1.1 FLAT FILE DATABASE MODELovvuuiittneetiuertneeerneerrnerrnsesssesseesssneessnsesnenees 13

2.1.2 RELATIONAL DATABASE MODELccouuuiiiiiiieiiiiieeeeiiieesereseeerennsseesseseesssnnnees 14

2.1.3 OBJECT ORIENTED DATABASE IMODELccuvuuitiuneeiminiiereiieeeersseeessesneersenns 16

2.1.4 OBJECT RELATIONAL DATABASE MODELccevuviviiiiiiiriieerineireneerinneesneesnnnns 19

2.2 DATABASE MODEL CHOSEN ...ccvvuutuuieieiiiieseeeeruneeserrssmneesrsnseesssmietessssieeerssosesrsnomesssnoaees 20
CHAPTER THREE: LITERATURE REVIEW: EXISTING MESSAGING STANDARDS 22
3.1 MAPI MODEL (MICROSOFT OUTLOOK)ceteeeiieiiiirrreeeeeeeeeeeesannnnnnnneseeesesesssssssseseeneeees 22
BLL. L FEATURES .. eeteteeeeeeeeeettteseetsisesseeeansassesennassennasssssranssssssnnsesssmnsssrssnnsessnnnnns 22

3. 1.2 DATA MODEL.....ccotttiiiieiiiiieiteeeieereseeeeeeetunssiieesssessrsesesessssesesnnssessssrrrsrrassseees 22

3.2 INSTANT MESSENGER IMODEL......uuuuoeeieetetitieeeeeeesseeeetetnesesessssessesnssssessessssnnnssssseeresans 27
B2 L FEATURES ... ottt e ettt e e e st e tee s e etaaaesettsaesasanaesseennasssssnesessernnassssnnnsss 27

3.2 2 DATA MODEL.... oot e e e et e et s e tassstasesaansstanssanssssnnesesnssennnses 28
CHAPTER FOUR: I-LINK — AN INTEGRATED MESSAGING FRAMEWORK 34
4.1 BACKGROUND ON SOFTWARE DEVELOPMENT PROJECT ...ccttuuieeeeieieireiieeneeeeeeeennnsenneeees 34
4.2 COMMUNICATION ACROSS GENERIC SOFTWARE DEVELOPMENT PROJECT.......cccceuuuu... 35
4.3 SOFTWARE RECOMMENDATION FOR SOFTWARE DEVELOPMENT PROJECT......cccvvvveneeen. 38
B BT TLINK ettt e e e e e e e et e s e s e e esesseesssessaassessssesseseesereessssreneee 38

BB 2 IIME .ot e e e e e e e e e e et r—ee s e e e et an———————tettar———————trenrr—. 38
4.3.3T-LINK REQUIREMENTSottivuiieeieriiiiierreeeeseeseesesssssnssssssssssssssssssssssssssssesess 39

B33 1 IMIESSAGES .covteiieiieeeeeeeeeee e e e e eee e e e s eaasaaeasseeessssssessasssssssssssssssnsesssnsnns 40

4.3.3.2 ACCOUNTS ..cottveeteeeeeeeieeeeeeseeeereeeenmenaaeesssssnennasasssssssasnnsnssesssssnnnsmssssessersns 41

4.3.3.3 CONTACTS eetteeieiieeieereeeeteeesees e e esasasseessasssssssasssssssssesssessensrrsenes 41

4.3.3. 4 PROJTECTS oeeetteetet e e e e e e e e e e e e e e e e e e aaaeasseessaassaessassssssseeseesssessserenens 42

CHAPTER FIVE: IMF DATA MODEL.......coveeoiiieeeeeeeeeeeeeeeeeeeeeeeeeeeseeseteseesssssssssssssesssenes 44

IV ©10) N Y03 13 2501 4 1 1 'R 46
5.3 ADDRESSES ENTITY ...oooviiiiiiiieiie ettt eeteseir e e ssteesnneeessstaateeeessssannsanesssssansseeesssnnesssnne 47
5.4 ADDRESSACCOUNTS ENTITY ...coooeeeeiiiiiieireeeteeeseinteeeteeerseesssssssannnsnsseesasseesseessasesansesens 47
5.5 MESSAGEHEADERS ENTITYuuvuiiiiiitiieiierrreeeeeenireeeeeseeeeeseennnssssssssssassessassssssssssesees 48
5.6 PROJECT ENTITY ...ttiiiiiiieieieeeteeeeiteeeeteeeeesreeeesneeeseseesesssasasseesenssssssesseesnsreesssnsasesannnns 49
5.7 ENTITIES RELATED TO USERScoooitttiiieiieeiieiiseirreeeeeeeesresrssstnnnsnnesseesessaessssssasesesseeenes 50
5.8 ENTITIES RELATED TO CONTACTSceeeteeieeinrreeeereirrereeeeeeeeaaeaeaassssssssssssssssssssesssmsnssssees 53
5.9 ENTITIES RELATED TO ADDRESSES ...uvuvviiiieieiiieiiiiiireereensessssiisisessessseeserssrssssseeesseessenss 55
5.10 ENTITIES RELATED TO ADDRESSACCOUNTScoovvteeeeeeeeeeeeerrnnnsnnnneereerseseeseeessmsnsseees 56
5.11 ENTITIES RELATED TO MESSAGEHEADERSccoovurterreeretiniiireeiineeeeseereeneerseeerereesrenss 57
5.12 ENTITIES RELATED TO PROJECTccceetiiieiiireieeeieiteeieeeeeeeeeeessasnssssssssssseeeesseessssssssens 59
CHAPTER SIX: SUMMARY AND CONCLUSIONoooiiiiieiiititeeeeeeeenreeeeeeeesinreeessnseseesnns 61
B L REVIEW ...ttt ettt ettt e e et e e e e ettt e e eeatabaeaeaesaeseeseassassnssbasbassnassaaeeeennssssenes 61
6.2 COMPARISONS......coiiiiiiieieitietieteeee et s e siititeeeeeseesseesssssssssstssasssaassssssssssssenerannernrranstseeseess 62

6.2.1 IMF DATA MODEL: MAPI CONSIDERATIONScovvuiieiiiiieeeeerisieeseeeeenennns 62

6.2.2 IMF DATA MODEL: IM CONSIDERATIONSccooeiiiiereriereirenieeeeeeeseeeeseseesesnnes 64
6.3 IMF DATA MODEL: FUTURE IMPLEMENTATIONSuuvvtitieereieeeeeereneeseseesseesssssseesessssnnns 67
6.4 CONCLUSIONuotiiiiiiieeitteeeiteeeeetteeestreeeeeeeetreeesseeeabeseeessessessssssessssssssssseenssesesassseeeens 68
EENDNOTES.ooooneiieetee ettt et e e e et et eeae e s et e e e s eaae e s s eaaaeseenaaesesstsessbeeesnneenas 70
BIBLIOGRAPHYc.coiiiiiiiiiettictieeeeeeeteeeteteeeeaeeseaeesaeessatessesaaeessssteesssasesessnssesssnessneessnns 74

- LIST OF FIGURES -

Figure 2 - 1 A Relational Database Modelcccccoviiniiiniiniiiniiniiiiees 15
Figure 2 - 2 An Object Oriented Data Model ..o 18
Figure 2 - 3 An Object Relational Databasecccooeeiiniiniiiiiiiiiiiiiceeee, 20
Figure 3 - 1 Microsoft Outlook Object Model...........c.coccooviiiiiiiiiiiiiiniiiiiciciecs 23
Figure 3 - 2 IM MOdELc..cooiiiiiiiiiiiiiciiicienie e 29
Figure 4 - 1 Communication Paths on Projects of Various Sizes..........c..cccccevviiiininnnne. 36
Figure 5 - 1 IMF Data Model.........cccooiiiiniiiiiiiiiiciiniiiincc e 45
Figure 5 - 2 USers BNtc..cccceioiiiiiiiiiiiiiiciiiiiicctcien et 46
Figure 5 - 3 Contacts ENtityccoccoviiiiiiiiniiiiiiiiiicici et 47
Figure 5 - 4 Addresses ENtity......cccoocueeiiiiiniiiiiiiiiiiniccie e 47
Figure 5 - 5 AddressAccounts Entity.........cccceeeviiiiiciniciniiiiiniciiiinieceecnnecinec s 48
Figure 5 - 6 MessageHeaders Entity......c..ccocceviiieciiiiniiiniiiinicccececceis s 49
Figure 5 - 7 Project ENtity.......ccccoviiiiiiiiiiiniiiiicniccicciecicie it 50
Figure 5 - 8 Entities Related t0 USErScoceeiiiiieiiiiiiiiiieeeececcrec e 51
Figure 5 - 9 UserPresence Entifycoocciveiiieiiiciiiiiccciei e 51
Figure 5 - 10 UserSessions ENtity........ccccceiviiiiiiiniciiinieciiccnieniininccieecneesne e 52
Figure 5 - 11 SessionLogs ENtity......cocceceiiieeiieciniiiiiicneeececrescrceeee s 52
Figure 5 - 12 ProjectUSers Entity........cocevvieiiiiiniiieiiieiee ettt e e 53
Figure 5 - 13 Entities Related to CONACESccoueeruierieriieiicenie et 54
Figure 5 - 14 ContactAddresses ENtityc.cceevieeiiiniiniiiiiiiniciiencrieeieceieeee e 55
Figure 5 - 15 ProjectContacts Entity.........cccocveviiiiiiiiiiniiiiiiiiiiiiiiciccccieis 55
Figure 5 - 16 Entities Related to Addresses..........coveeveerieenieeniinnicineeniiesic e 56
Figure 5 - 17 Message Addresses Entity........ccveevveeviineenieenieininiicneennicsnenee e 56
Figure 5 - 18 Entities Related to AddressAccounts Entitycccceeevininiienicnicnennnnne. 57
Figure 5 - 19 ProjectAccounts ENtity.........co.oecverievierienenieneneeeetenteicnie e 57
Figure 5 - 20 Entities Related to MessageHeaderscceceveeeniiiniincniiincncnienenennn. 58
Figure 5 - 21 ProjectMessages ENtityc.eeciecieiierienierieneieeieieie et 59
Figure 5 - 22 MessageParts ENtitycocoveiiiiininiiereeecieeiesteesee e 59
Figure 5 - 23 Entities Related to Projectsccoevveveneenereenreeienenccieiceccsneecnenns 60

Figure 6 - 1 MAPI (Microsoft Outlook) Model.............cccociviiiiiiniiiiiii, 63

Figure 6 - 2 IM MOlcccooiiiiiiiiiiiiiicieecnecccec et 65
Figure 6 - 3 AddressRules Entity and Related Entity......c...cocceveiiiiinniiincnninniinicnnen. 67
Figure 6 - 4 MessageRules Entity and Related Entitycccooeveiiiiiniiincininninicnnenns 68

- CHAPTER ONE -
INTRODUCTION

The purpose of this document is to describe the database design development of
IMF- an Integrated Messaging Framework- used by i-LINK- a communication
organization and project management windows application designed by Masters of

Engineering IT students at Massachusetts Institute of Technology.

1.1 PREAMBLE

Currently people have adapted to the use of instant messengers as a means of
communication. Instant messengers provide people a method to view the status of
individuals with whom they communicate; informing them if an individual is present or
not at the moment of interest. Instant messengers combine this concept of presence with
communication options including, but not limited to, messaging and file transfer.
However, instant messengers only allow for communication if an individual is present at

the time of request.

Therefore, individuals may resort to other means of communication of the
messaging form. Some examples include emails, which also incorporate file sharing
methods through attachments, and more recently blogs. This has ultimately lead many
people to make use of one or more instant messenger applications, along with numerous
emails, blog aggregators and file sharing applications simultaneously. Consequently,
personal computers have to deal with a cluster of applications that rarely integrate while
performing specific tasks. Organization of desktop display has lead to the creation of
different software, such as Outlook and Eudora, which attempt to integrate
communication in one unified display. However, within these applications the concept of

presence is not adopted.

Members of a software development team - project managers, developers, and
clients - are faced with these communication obstacles as they attempt to coordinate their
activities. These three members of software development projects are constantly
communicating with each other. Communication typically occurs through various emails,
instant messages and blog postings, often with little or no tracking and logging of
decisions and discussions performed through these means. Furthermore, a project, in
addition to such communication problems, may run into other difficulties related to
managing and coordinating the progress of a project. The members involved in software
development projects are continuously producing, accessing and updating documents.
These documents are often shared with each other, by either attaching them through
emails and instant messages transfers, or placing them in repositories that can be accessed

by all or accessed through websites.

We, a group of M.Eng IT students from Massachusetts Institute of Technology,
saw a need to provide software that will overcome the communication difficulties many
people face in their workplace, integrating access to all communication media through
one desktop application. Principally, this piece of software provides functionality for
members working on software development projects, offering a way to organize and
share project information between several people but extends further to provide both

presence and messaging services encompassing several communication media.

A sever-based Integrated Messaging Framework (IMF) and an intelligent client
application, named i-LINK, were designed for the members involved in software
development project to aid their project management and communication needs. The IMF
server provides all communication media messages with a common messaging format as
well as a common structure for contacts and addresses management. The i-LINK client
uses this framework to send, receive, log, and store messages from different
communication channels. Furthermore, the IMF database acts as a central repository and

the i-LINK client uses the IMF database to centralize project information.

1.2 BACKGROUND AND PURPOSE

Designing a database is a vital component of application development; careful
planning and design ensures high quality of the application. A database is a tool used to
store and manage data. The aim of database design is fourfold. First, it attempts to ensure
that appropriate data exists in the database. Second, database design endeavors to
simplify the maintenance of the database structure, modification of data, and retrieval of
information. Third, it tries to ensure that the structure of the database allows the data to
be processed into meaningful, useful information. Finally, database design facilitates the

development of software applications that utilize the database.

The purpose of this thesis is to describe the database design of the IMF
framework, which is also used by the i-LINK client. These considerations include a study
of the various database modeling approaches; followed by an analysis of two data model
standards used by published and licensed applications; followed by software definition
and requirements based on a study of the communication practices and needs of generic
members of a software development project. The thesis then describes the data model
selected for this software as well as how it was formed or designed and then explains how

the two standards were used in designing the data model.

1.3 EXTENDED QUTLINE

Chapter 2 outlines and examines four database models: flat-file, relational, object-
oriented, and object relational models. The advantages and disadvantages of each model
will be assessed and compared. An analysis of the four models will provide an
understanding as to which model is appropriate in the development of the IMF data

model.

10

After having determined an appropriate database model for IMF, an examination
of standard data models will be undertaken. Specifically, the analysis will focus on
applications that provide services similar to those that will be provided through i-LINK.
Chapter 3 will discuss two published standard data models currently used in licensed
applications: Instant Messaging (IM) and Messaging Application Programming Interface
(MAPI) data models. Microsoft Outlook, a personal information manager application,
uses a MAPI data model. Although the MAPI data model is not a formally established
standard data model, it has an extensive storage management data model. Similarly, i-

LINK, through the use of the IMF framework, will provide a central storage repository.

MSN Messenger, AOL messenger, YAHOO Messenger — to list a few - are
defined as presence and instant messaging services. The RFC 2778' provides a standard
and universal IM data model that can be used across any messenger defined as a presence
and instant messaging service. A study of IM design is necessary with reference to i-
LINK bearing in mind the presence and instant messaging services that i-LINK will

provide.

The project definition and requirements analysis will be assessed in Chapter 4.
During the requirements analysis phase of any software project, research is conducted to
gather all the information that will be used to design the system. The business rules and
entities defined in the requirements then determine the design of the database. This
chapter outlines communication requirements the project manager, developers, and
clients working on a software development project by listing and defining the types of
communication media they use, how and for what purpose they use them, and why each
member values one medium over another. Furthermore, this chapter describes

requirements needed for the management of project information common to all members.

The project data model is documented in Chapter 5. The data modeling phase is

the process of visually representing the data and creating a data model with entities,

11

attributes, and relationships which leads up to the database design. This chapter provides
a thorough outline of all entities and their corresponding relationships, and highlights the
essential attributes in the relational IMF data model, fully normalized to reduce or

eliminate any redundant data.

The analysis presented in this thesis will be summarized in Chapter 6. The
database model for IMF will be compared to the data models outlined in Chapter 3. Such
a comparison will provide an understanding as to the extent to which each of these
standards has been utilized in the development of IMF, for further use with the i-LINK
client. Furthermore, this chapter will discuss entities which will be implemented at a later
date. These entities will have been designed within the IMF data model and will provide

added functionality to the i-LINK client.

12

- CHAPTER TWO -
LITERATURE REVIEW: DATABASE MODELS

Once the requirements for a projected database are established, the core of

database design may commence. This chapter provides a summary of benefits and

drawbacks for the database models available. The i-LINK application and the Integrated

Messaging Framework described in this thesis use database technology heavily.

2.1 DATABASE MODEL SELECTION

In order to make a decision on which database model to implement, it is important

to understand the general concepts behind each database model. The following database

models will be discussed in this section:

2.1.1

Flat-File Database Model
Relational Database Model
Object Oriented Database Model
Object Relational Database Model

FLAT-FILE DATABASE MODEL

A flat file database model is adequate for extremely simple and small
databases. “It is made up of one more readable files stored in text format.” Each
file has a number of fields, of constant or variable lengths, to store data. Once a
flat file has been created and the data has been stored, a method to create, retrieve,
update, or delete records must be incorporated. Hence, a set of many programs
needs to be developed in order to access the data stored in the flat files. Using a
flat-file database model requires both an understanding of “the structure of each
file as well as knowledge of where the data is physically stored.”® Even the

simplest database will require several flat-files, which may have data related to

13

2.1.2

other data stored in other files. Hence, the process of managing data relationships

in a flat-file database model is very difficult.

Drawbacks of a Flat-File Database Model*:

e Flat files do not promote a structure in which data can easily be related.

e Itis difficult to manage data effectively and to ensure accuracy.

e It is usually necessary to store redundant data, which causes more work to
accurately maintain the data.

e The physical location of the data field within the file must be known.

e A program must be developed to manage the data.

Recently, flat-file databases have improved. XML files, for example, are
considered an advance to conventional flat-files. XML files are more manageable
and can easily be read or written to from a database. However, limitations still
exist. Simultaneous read/write capabilities do not exist for XML files and the
relational integrity found in most databases is lacking. XML files are still not
considered to be as efficient and effective as some of the following database

models.

RELATIONAL DATABASE MODEL

The relational database model is the most popular and stable model being
implemented by designers. In a relational database model, a parent table can have
several child tables, and a child table can have several parent tables. In
comparison to flat files, the relational database model provides easier methods to
manage data, retrieve data, and produce changes to data throughout the entire
database. By placing rules on data — integrity constraints — data becomes easier to
manage. Furthermore, in the relational database model, retrieving data stored does

not require having knowledge of the database structure. Due to integrity

14

constraints and normalization, changes to data need only be done once and the
changes will be generated throughout the entire database. The structure of an

example relational database model is illustrated in Figure 2-1.

Publishers . Book Stores
L J ¥
Authors — » Titles » Inventory

Orders

Figure 2 - 1 A Relational Database Model®

The relational database model is made up of tables consisting of columns
and rows. Each row corresponds to a record and each column contains
information for all rows. Different types of relationships can exist between tables
in a relational database model: one-to-one, one-to-many, and many-to-many.
Referential integrity is the process that ensures that data between related tables is
consistent. Referential integrity is controlled by keys — column values that
uniquely identify a row in a table or establish a relationship with another table.
Primary keys are column values that make a row of data unique, while foreign

keys are column values that reference primary keys from a related table.

Benefits of a Relational Database Model®:
e Data is accessed very quickly.

e The database structure is easy to change.

15

2.13

e The data is represented logically; therefore users need not understand how the
data is stored.

e Itis possible to develop complex queries to retrieve data.

e Itis easy to implement data integrity.

e Data is generally more accurate.

e Itis easy to develop and modify application programs.

e A standard language (SQL) has been developed.

Drawbacks of a Relational Database Model’:

e Different groups of information, or tables, must be joined in many cases to
retrieve data.

e Users must be familiar with the relationships between tables.

e Users must learn SQL.
OBJECT-ORIENTED DATABASE MODEL

An object oriented database is a database in which data can be defined,
stored, and accessed using an object oriented language. An object oriented
database model uses programming languages such as C++, C#, and Java.
Programmers use an object oriented programming language to work with objects
to design an application that interacts with a relational database. The elements
within a program or database application are represented as objects. Objects are
assigned properties, which can be modified, and can also be inherited from other
objects. Object oriented applications are easier to develop and maintain with
object oriented programming tools. Programming tasks can be automated by an
object oriented programming, which reduces the amount of time it takes to

develop an application while increasing productivity.8

ObjectStore is one of the most successful vendors. ObjectStore has added

16

database features (such as persistence for objects, relationships between objects,
and query expressions) to C++ and Java type systems and language constructs.
Using an object-oriented database, ObjectStore delivers complex data
management, real-time event processing, and middle-tier caching for Java and

C++ applications.9

As object oriented programming technology progresses, developers of
relational databases “must understand both the relational database language
(SQL) as well as the object oriented programming language (Java, for example)

L (T important for

that is to be used in order to design the application.
developers to understand relational database concepts in order for the application
to access the data. It can be confusing for the developer to switch modes of

thinking between relational and object oriented.

The two basic structures in an object oriented database are objects and
literals. Objects have two characteristics, operations and properties, through
which an object can be associated with other objects. Literals are values
associated with objects. Operations are used to retrieve values from other classes,
to add values, and to remove values. Properties can either be attributes or
relationships. Objects and literals are organized by types, where all elements of a
given type have the same set of properties, which can be modified for each
individual object. A class is the equivalent of a table in a relational database; an
attribute the equivalent of a table column; and an object instance the equivalent to
a table row or tuple. Figure 2-2 illustrates how data is related in an object oriented

database.

17

Class

‘EMP
+LastName VARCHAR
+FirstName VARCHAR
+MidIni VARCHAR
[+Ssn VARCHAR
Properties | | +Phone VARCHAR
{ i+GetAddress O @ o A e | ADDRESS
Slgergiior +StAddr VARCHAR
+City VARCHAR
+State VARCHAR
+Zip VARCHAR

Figure 2 - 2 An Object Oriented Data Model !

Benefits of the object oriented model are as follows':

e The programmer need only understand object oriented concepts as opposed to
the combination of object oriented concepts and relational database storage.

e Objects can inherit property settings from other objects.

e Much of the application program process is automated.

e It is theoretically easier to manage objects.

e Object oriented data model is more compatible with object oriented

programming tools.

Drawbacks of the object oriented model are as follows'*:

e Users must learn object oriented concepts because the object oriented database
does not work with the traditional programming methods.

e Standards have not been completely established for the evolving database
model.

e Stability is a concern because object oriented databases are fairly recent.

e Performance is often poor.

e Lack of normalization hinders integrity.

18

e Not considered as effective as relational databases.

2.14 OBJECT RELATIONAL DATABASE MODEL

An object relational database combines concepts of both the relational
database model and the object oriented programming approach. Object relational
database model has only started to really grow recently and vendors are already
incorporating object relational concepts into the new SQL standard, referred to as

SQL3 or SQL99.

Figure 2-3 illustrates an example object relational
implementation in the Oracle9 relational database management
system (RDBMS). Two user defined types have been created:
PERSON and ADDRESS. Each type has columns that define
specific data for a column in the base table, providing a 3D
effect for the data. For example, the EMP_INFO column in the
EMP table has a type of PERSON. PERSON is broken down into
the specific categories LAST_NAME, FIRST_NAME, MID_INIT,
and SSN.™

19

*PERSON
LAST_NAME VARCHAR
FIRST_NAME VARCHAR
MID_INIT VARCHAR
SSN VARCHAR
J
EMP
EMP_INFO PERSON
ADDR_INFO ADDRESS
PHONE NUMBER
»ADDRESS
ST_ADDR VARCHAR
CITY VARCHAR
STATE VARCHAR
ZIP VARCHAR

Figure 2 - 3 An Object Relational Database®®

Benefits of the object relational model'®:

o The relational database has more of a 3D architecture.
e User defined types can be created.
Drawbacks of the object relational model'”:

e The user must understand both object oriented and relational concepts.

e Some vendors that have implemented OR concepts do not support object

inheritance.

2.2 DATABASE MODEL CHOSEN

Although the different database models each have their own benefits and
drawbacks, a relational database model was chosen as the ideal model for this project. As
opposed to a flat file database model, in the relational database model information is
stored in tables that use parent/child relationships and provides a way in which the
amount of redundant data can be reduced. Although the object oriented and object-

relational database models do make data storage more compatible, these models need to

20

be further refined and improved.

After a comparison of the different data models, it was decided that the data
model to be used for IMF should be a relational data model as it holds to be the most
stable. The relational database standards are well established by organizations such as the
International Standards Organization (ISO) and the American National Standards
Institute (ANSI). There are many relational database vendors to choose from, including
Oracle, Microsoft, IBM, and Sybase. It is easy to convert between different relational
database implementation. It is easy to define, maintain, and manipulate data with SQL,
the Standard Query Language used to define, query, modify, and control data in a
relational database. Finally, the data is well protected through referential integrity and

other constraints.

21

- CHAPTER THREE —

LITERATURE REVIEW: EXISTING MESSAGING STANDARDS

After having analyzed database technologies in the previous section, this chapter

examines the other core technology upon which IMF is based: messaging standards. This

chapter discusses application programming interfaces (APIs) for messaging, including a

description of the MAPI, used by Microsoft Outlook, and an Instant Messenger model.

These APIs assist in defining the key data and methods in IMF.

3.1 MAPI MODEL (MICROSOFT OUTLOOK)

3.1.1 FEATURES

3.1.2

Microsoft Outlook is a personal information manager (PIM). Like other
PIMs, Outlook allows users to maintain information about contacts, keep track of
daily schedules, keep track of tasks to complete, and other personal or work
related information. Microsoft Outlook also provides email and fax support, group
scheduling capabilities, and task management. Microsoft Outlook is a Messaging
Application Programming Interface (MAPI) application, since MAPI message
stores are the only data sources currently supported by it. MAPI is a set of API
commands and functions used to send email. It has become the unofficially
accepted standard messaging interface for Windows applications, providing a
carefully defined set of messaging services. Access to MAPI services is the same

for all versions of the Windows operating system.'®

DATA MODEL

Microsoft Outlook uses an object data storage mechanism'?, implementing

the MAPI standard. The MAPI, Microsoft Outlook, data model, shown in figure

22

3-1, is made up of seven main objects: Application, NameSpace, Folders

collection, Items collections, Properties collections, Explorer, and Inspector

objects.
Application
"""" |
¥ ¥ v
NameSpace Explorer Inspector

| Calendar Folder
| Contacts Folder
Deleted Hems Folder
Inbox Folder
Journal Folder

Notes Folder {
MAPIFolder Outbox Folder oy
Sent Mail Folder Appointment ltem
| Contact Item

Tasks Folider
sy Joumal Item

Mail tem
Meeling Request Item
Note Item
Post Item
. Remote ltem

P Report Item
Task Item
Task Requesl Iltem

Items

Actions Property
Attachments Property
Form Description
Property
Pages Property

Recipients Property ™ ¥
Recurrence Pattern
Fpey Properties

User Properties

Figure 3 - 1 Microsoft Outlook Object Model

In the Outlook object model, the Application object contains the
NameSpace object, which contains MAPIFolder objects that represent all the
available folders in a given data source (for example a MAPI message store). The
MAPIFolder objects contain objects that represent all the Outlook items in the
data source, and each item contains some useful property objects for controlling
that item. In addition, there is an Explorer object associated with each folder and

an Inspector object associated with each item.

23

Application Object

The Application object is “the root object of the object model; it gives
easy access to all the other objects in the model.”?® It gives direct access to the
objects that represent the Outlook interface (the Explorer and the Inspector

objects).

NameSpace Object

“The NameSpace object can represent any recognized data source, such as
a MAPI message store. The object itself provides methods for logging in and out,
returning objects directly by ID, returning default folders directly, and gaining

access to data sources owned by other users.””!

Folder Objects

The Folders collection contains all the MAPIFolder objects in the
specified message store (or other recognized data source) or in a folder in that
message store. The first time a user runs Outlook, some default folders are
created. Each folder contains items of the same type. Default folders include the
Calender, Contacts, Deleted Items, Inbox, Journal, Notes, Outbox, Sent Mail, and

Tasks folder. Outlook also allows users to create further folders.??

e The Calender folder contains all Appointment Item objects.

e The Contacts folder contains all Contact Item objects.

e The Deleted Items folder is the storage area in which all item objects are
placed when they have been deleted. The application has options that allow
the user to retain these items indefinitely, archive them after a user defined
period of time or purge them when the application is closed.

e The Inbox folder contains all Mail Item objects.

e The Journal folder contains all Journal Item objects.

e The Notes folder contains all Note Item objects.

24

e The Outbox folder is the storage area for items that are completed but not
sent.

e The Sent Mail folder is the storage area in which copies of user generated
Mail Item objects are moved when they are sent.

e The Tasks folder contains all Task Item objects.

Item Objects

The Items collection of a MAPIFolder object contains the objects that
represent all the Outlook items in the specified folder. An Outlook Item can be
one of several Outlook item object types. Outlook item objects include the
Appointment Item, Contact Item, Journal Item, Mail Item, Meeting Request Item,
Note Item, Post Item, Remote Item, Report Item, Task Item, and Task Request

Item objects. 5

e The Appointment Item objects represent an appointment in a Calender folder.
An Appointment Item object can represent either a one time or recurring
meeting or appointment.

e The Contact Item objects represent a contact in a Contacts folder. A contact
can represent any person with whom the user has any personal or professional
contact.

e The Journal Item objects represent a journal entry in a Journal folder. A
journal entry represents a record of all Outlook moderated transactions for any
given period of time.

e The Mail Item objects represent a mail message in the Inbox folder or another
mail folder. The Mail Item is the default item object and to some extent the
basic element of Outlook.

e The Meeting Request Item objects represent a change to the recipient’s
Calender folder, initiated either by another party or as a result of a group

action.

25

The Note Item objects represent a note (an annotation attached to a document)
in a Notes folder.

The Post Item objects represent a post in a public folder that other users can
browse. This object has all the characteristics of the mail message. This object
is similar to the Mail Item object, except that it is posted or saved rather then
sent or mailed to a recipient.

The Remote Item objects represent a remote item in the Inbox folder or
another mail folder. This object is similar to the Mail Item object, but it
contains only the Subject, Received, Date, Time, Sender, and Size properties
and the first 256 characters of the body of the message. It gives the user who
is connecting in remote mode enough information to decide whether or not to
download the corresponding message

The Report Item objects represent a mail delivery report in the Inbox folder or
another mail folder. This object is similar to the Mail Item object and it
contains a report (such as non-delivery report) or error message from the mail
transport system.

The Task Item objects represent a task in a Tasks folder.

The Task Request Item objects represent a change to the recipient’s task list

initiated either by another party or as a result of a group assignment.

Property Objects

An Outlook item can access the following property objects: Actions,

Attachments, Form Description, Recipients, Recurrence Pattern, and User

Properties. Outlook items can be analyzed or modified by reading or setting its

properties. In addition, every Outlook item can contain other objects that

represent more complex qualities or behaviors of the item. For example, there are

objects that represent the recipients of the item, the files attached to the item, and

the customized pages and controls of the item.?*

The Actions property objects represent specialized actions that you can

26

perform on an item.

e The Attachments property objects represent linked or embedded objects
contained in an item.

e The Form Description property objects represent the general properties of the
form of an item.

e The Pages property objects represent the customized pages of an item. Every
Inspector object has a Pages collection whose count is zero if the item has
never been customized before.

e The Recipients property objects represent users or resources in Outlook;
generally recipients are mail message addresses.

¢ The Recurrence Pattern property objects represent the pattern of incidence or
recurring appointments and tasks for the associated Appointment Item and
Task Item objects.

e The User Properties objects represent the custom fields added to an item in

design time.

Explorer and Inspector Objects
The Explorer object represents the window in which the contents of a
folder are displayed. The Inspector object represents the window in which an

Outlook item is displayed.”

3.2 INSTANT MESSENGER MODEL

3.2.1

FEATURES
Presence is a way for finding, getting back, and subscribing to changes in

the status, such as online or offline, of other users. Instant messaging is a way for

sending small, simple messages that are delivered immediately to online users. A

27

322

presence and instant messaging system allows users to subscribe to each other and
be notified of changes in state, and for users to send each other short instant

messages.

RFC 2778% provides an abstract model for presence and instant
messaging systems. It defines the various entities involved, defines terminology,

and outlines the services provided by the system.

DATA MODEL

RFC 2778 provides a descriptive and universal data model that is, and can
be, used by any instant messengers that are described as presence and instant
messaging services. Instant messenger applications use a database model and map
the RFC 2778 model onto it.

In this section, an overview of the data model, shown in figure 3-2, is
given. The overview includes a description of the services that outlines the core
model entities; a description of the protocols that outlines how these core entities
interconnect; a description of the Principal element and agents that outlines how
user in the real work interact with the core entities; a description of the formats of
Presence Information and Instant Messages; and finally an example of how this
model is used. This model provides a way for understanding, comparing, and
describing Instant Messenger systems that support the services referred to as
presence and instant messaging. Developed instant messenger applications rarely
have all the entities described in this model. However, each instant messenger
database model will contain entities that encompass two or more elements of this

model grouped in different ways.

28

Principal

User Agents
Imbox U A
Sender U A
Presence L A
Watcher L A
3 Instant Inbox
Fetchei Watcher Presentity Sender
Poller Fetcher Instant Inbox Address
Subscriber
Presence Info
Presence Service Status
Comm Address
Instant M g

Status Communication Address

Conmmunication Means

Oper
Closec Contact Address
Other
Communication Means R
O s =
Instant Message Service Instant Message Service
Instant Inbox

Figure 3 - 2 IM Model

Services

This model identifies two services: a Presence Service and an Instant
Message Service. The Presence Service accepts, stores, and distributes
information. This information stored is called Presence Information. The
Presence Service has two types of clients: the Presentities and the Watchers.

Developed instant messenger applications often combine these two entities into

one.
Presentity (presence entity) provides Presence Information to the

Presence Service to be stored and distributed. Watcher receives Presence

Information about Presentity from the Presence Service. A Watcher can also

29

receive Watcher Information about another Watcher. Watcher Information is
information about Watchers that have received Presence Information about a

particular Presentity.

There are two kinds of Watchers, called Fetchers and Subscribers. A
Fetcher asks the Presence Service to forward the Presence Information of one or
more Presentities. A Fetcher that requests Presence Information on a regular
basis is called a Poller. A Subscriber asks the Presence Service to notify it
immediately of any changes in the Presence Information of one or more
Presentities. Changes to Presence Information are distributed to Subscribers via

Notifications.

The Instant Message Service accepts and delivers Instant Messages to
Instant Inboxes. The Instant Message Service also has two types of clients: the
Senders and the Instant Inboxes. A Sender provides Instant Messages to the
Instant Message Service for delivery. Each Instant Message is addressed to a
particular Instant Inbox Address, and the Instant Message Service delivers the

message to a corresponding Instant Inbox.

Protocols

This model supports two types of protocols: the Presence Protocol and the
Instant Message Protocol. A Presence Protocol is the messages that can be
exchanged between Presentity and the Presence Service or between the Waicher
and the Presence Service. The messages carried by the Presence Protocol are the
Presence Information. An Instant Message Protocol is the messages that can be
exchanged between the Sender and the Instant Message Service or between the
Instant Inbox and the Instant Message Service. The messages carried by the

Instant Message Protocol are the Instant Messages.

30

Formats for Presence Information and Instant Messages

In this model, the Presence Information consists of a random number of
elements, called Presence Tuples. Each Presence Tuple consists of a Status
marker, which gives information such as Online/Offline/Busy/Away/Do Not
Disturb, an optional Communication Address, and an optional Other Presence

Markup.

Status is defined by the model to have at least two state values Open and
Closed, which determines the acceptance of Instant Messages. Open means
Instant Messages will be accepted, and Closed means Instant Messages will not
be accepted. Open and Closed may also be applicable to other Communication
Means. Open can signify a state meaning available or open for business, while
Closed means unavailable or closed to business. The model allows Starus to have
other state values that do not imply anything about Instant Message acceptance.
These other values can be combined with Open (i.e.: Online,Away, Be Right

Back) and Closed (i.e.: Offline,Busy) or can stand independently.

A Communication Address is made up of a Communication Means and a
Contact Address attribute. Communication Means indicates a method whereby
communication can take place. The only type of Communication Means defined
by this model is the Instant Message Service. Contact Address is a specific point
of contact via some Communication Means. The only type of Contact Address
defined by this model is the Instant Inbox Address. However, other possibilities
exist: a Communication Means might indicate some form of telephony, for

example, with the corresponding Contact Address containing a telephone number.

Other Presence Markup is any additional information included in the

Presence Information of a Presentity. This model does not define this any further.

31

An Instant Inbox is a container for Instant Messages. Its Instant Inbox
Address is the information that can is included in Presence Information to define
how an Instant Message should be delivered to that Instant Inbox. Finally, certain
values of the status marker indicate whether Instant Messages will be accepted at

the Instant Inbox.

Principals and Their Agents

This model includes other elements that are useful in illustrating how the
protocols and formats work. The Principal element represents people, groups,
and/or software in the real world outside the instant messenger system that use the

system as a means of organization and communication.

A Principal interacts with the system via one of several user agents: Inbox
User Agent; Sender User Agent; Presence User Agent, Watcher User Agent. A
user agent is simply relating a Principal with a core entity in the system: Instant
Inbox, Sender, Presentity, and Watcher. The Inbox User Agent is a way for a
Principal to manipulate zero or more Instant Inboxes controlled by that Principal.
The Sender User Agent is a way for a Principal to manipulate zero or more
Senders. The Presence User Agent is a way for a Principal to manipulate zero or
more Presentities. The Watcher User Agent is a way for a Principal to manipulate
zero or more Watchers controlled by that Principal. In this model the different
user agents are described separately, however developed instant messenger

applications will combine at least some of them.

Example

Buddy List applications are simple examples of applying this model.
These applications display a user’s presence to others, and make it possible to see
the presence of others. Therefore, a buddy list can be described as the

combination of a Presence User Agent and Watcher User Agent for a single

32

Principal, using a single Presentity and a single Subscriber.

Instant messenger applications extend buddy lists to instant messaging. An
instant messenger is a buddy list with additional capabilities for sending and
receiving instant messages. Therefore an instant messenger can be described as
the combination of a Presence User Agent, Watcher User Agent, Inbox User
Agent, and Sender User Agent for a single Principal, using a single Presentity,
single Subscriber, and single Instant Inbox, with the Presentity’s Presence

Information including an Instant Inbox Address that leads to the Instant Inbox.

33

- CHAPTER FOUR -
I-LINK - AN INTEGRATED MESSAGING FRAMEWORK

4.1 BACKGROUND ON SOFTWARE DEVELOPMENT PROJECT

Software development is the design and implementation of a new piece of
software application to meet the needs of a certain client or a group of clients. Software
development encompasses the collaboration of a group of developers with different roles
and skills who form a software development team. The software development team is
managed by a project manager to whom developers report; both the project manager and

the development team take on a project appointed through a client.

Project Manager

The project manager is responsible for both the technical and non-technical
direction of a development team. However, a single project manager may work on
multiple projects and, hence oversee different development teams. Therefore, a project
manager may know little about how the development team functions day to day but is
nevertheless responsible for the team’s overall performance, progress and product
outcome. The manager’s role is to control and supervise each team so that it conforms to

the goals and expectations of the client for the project at hand.

Software Developer

A software development team is made up of developers with diverse roles
including but not limited to: requirement analysts, designers, database administrators,
programmers, architects, support engineers, quality assurance engineers, and testers.
Developers are responsible for technical work. A developer is able to work on more than
one project simultaneously; currently, developers are often expected to finish up technical

work on one project while beginning work on another.

34

Client

A project manager and software development team would not have much purpose
if there was no client for whom software needed to be developed. A client who sets the
goals, expectations, and requirements of the software needed does not necessarily have to

be the final user of the software application.

Thus, the key actors involved in the success of a software development project are

the project manager, software developers, and the client or clients.

4.2 Communication Across a Generic Software Development Project

Naturally, problems of communication and coordination arise with a large group
of people. If there is only one person on a project, work can be performed in any manner
desired because there is no need to communicate or coordinate with anyone else. As the
number of people on a project increases, however, the number of communication paths
and the amount of coordination needed increases. There is a nonlinear relationship
between the number of people and the number of communication pathways, as seen in

figure 4-1.

35

Communication Communication
O_O; paths with two paths with three
-) programiners programmers
1 3
Communication Communication
paths with four paths with five
programimers programmers
10

. Communication
% * paths with ten
. programmers

45

Figure 4 - 1 Communication Paths on Projects of Various Sizes”

A two person project has only one path of communication. A five
person project has 10 paths. A ten person project has 45 paths,
assuming that every person talks to every other person. The two
percent of projects that have 50 or more programmers have at least
1200 potential paths. The more communication paths that exist, the
more time is spent communicating and the more opportunities there
are for communication mistakes... Large projects call for organizational

practices that formalize and streamline communication.?®

Communication between the three entities of a software development project -
project manager, developers and clients - requires a variety of communication means.
They need to relay project information, questions, and messages; inform of discussions
and decisions; and schedule and plan meetings. These are done either through emails,
instant messages, and blogs; or by sharing documents and files through out the project

pertaining to all phases of design and development of project. All documents are

36

primarily shared via attachments either through email or instant messages or Web sites,
which are very common. Furthermore each entity needs to access, view and often update
common project documents which often lead to documents being placed in a repository

where they can be viewed and updated when required.

Project manager’s main form of communication with developers, as well as
clients, is often through the use of email. Email is considered a structured communication
that can easily be referenced. Email is therefore often preferred by a project manager over
non structured communication means such as instant messaging. Since project managers
may work and manage several projects simultaneously, it is rarely effective to use a

separate application for each project.

Developers communicate with the project manager and clients through email,
however, they prefer to communicate with each other through blog postings or through

instant messaging taking advantage of presence and real time communication.

Clients communicate primarily with project managers and occasionally with
developers. Clients are often involved in several projects and their preferred means of
communication is often email. Some clients want weekly/periodic reports or

weekly/periodic meetings, which are also very common.

Ideally communication between the three entities would address the following
concerns:
e Multiple projects require access and maintenance of several repositories.
¢ Communication between developers over instant messaging and blogs needs to be
logged to keep track of decisions and discussions, as well as email
communications between project managers, developers, and clients.
e Shared documents must be accessible from within different communication

applications.

37

e Desktop displays may become clustered with multiple communication
applications.

¢ One application should permit managing multiple projects simultaneously.

¢ Communication means may need to be used for purposes beyond the scope of the

project (i.e. personal communication with friends and family)

4.3 SOFTWARE RECOMMENDATION FOR A SOFTWARE DEVELOPMENT PROJECT

We, a team of M.Eng IT students at MIT, recommend the development of a piece
of software to meet the needs of a software development team encompassed by project
management and communication organization. This can be achieved by bringing together
the components of the various communication media used and by facilitating and
centralizing retrieval of project information for all members involved. The recommended
software that we have designed provides both an intelligent client application - named i-

LINK - and an Integrated Messaging Framework (IMF).

4.3.1 I-LINK

i-LINK, a windows application, allows emails, instant messages, blogs,
and files/documents to be sent, received, and shared between users. i-LINK uses
the Integrated Messaging Framework web services to organize and share
messages, contacts, and media accounts through projects, and uses the IMF
database standard to centralize project information. i-LINK will facilitate
communication and help coordination and organization between the members of

any software development project.

4.3.2 INTEGRATED MESSAGING FRAMEWORK (IMF)

38

433

The Integrated Messaging Framework is a common messaging format and
a common structure for contacts and addresses that can be accessed through a
variety of client applications. The IMF can be accessed not only through a web-
based or windows-based application (using web services), but also through blog
aggregators (using RSS feeds), or through an email client (using notifications).
Clients use this framework to send, receive, log, and store messages from the
different communication media such as email, blog and instant messaging in one
standard message format. Hence, the use of an IMF database standard acts as a
central information repository. i-LINK works in conjunction with an IMF

implemented in IIS and SQL server.

i-LINK which we have chosen to design using the .NET framework
employs an IMF implemented in IIS and SQL server.

I-LINK REQUIREMENTS

Defining the features and functionalities of the intelligent client, i-LINK,
was based on the previously assessed concerns and needs of project managers,
developers and clients. An analysis of these needs helped shape the i-LINK
requirements, determine the type of data needed, the relationships between the
data and the business rules generated. Ultimately, these help outline the IMF data
model to be designed (Chapter 5). The remainder of this chapter describes the

main requirements i-LINK fulfills.

i-LINK provides a single user interface that acts as unified messaging
system as well as a project organization tool. The i-LINK client functions as an
email system, instant messaging system, and/or blog reader, at the user’s choice.

The i-LINK client also provides a simplified view and quick access to all

39

information about messages, files, accounts, and contacts organized and grouped

under projects all from one main page.

4.3.3.1 Messages
i-LINK, using the IMF, allows for instant chats to be logged and
saved as instant messages. Email messages are sent, received, and saved
as email messages. Blog entry notifications are received and logged as
blog messages. File transfers are logged and saved as file transfer

messages.

i-LINK provides a unified message view by displaying message
headers for all four types of messages on the main page. The i-LINK client
interface displays and organizes message headers in a combination of
ways (All/Inbox/or Outbox combined with All/Email/IM/Blog/or File) as

well as through selection of a specific contact or project from the main

page.

i-LINK further provides a standard message composition and
sending layout for the four types of messages. i-LINK allows the user to
select the medium of communication for each recipient or use the set
preferred medium of the recipient, while still having all communication
accessible from single application and data store. i-LINK also offers an
intelligent message handling feature which applies a user’s and recipient’s
pre-set communication order preference to transmit message in most
efficient manner. The i-LINK intelligent message handling feature allows
for intelligent sending and receiving of messages, message handling. The
user may set communication accounts in order of preference to be used for
sending messages and to be used by other users of i-LINK in order that

user can also receive message via preferred communication method.

40

i-LINK provides a message search function. Messages can be
searched by specifying one or all of the following four criteria: Project,

Contact, Inbox/Outbox, Message type (email, IM, blog, file).

4.3.3.2 Accounts
A user may configure i-LINK to handle email, instant messaging
and blog entries, including file attachments/transfers. Multiple email, IM
and blog accounts can be handled. A user may configure i-LINK to handle
only a subset of media type accounts, and may continue to use other client

software for the rest.

4.3.3.3 Contacts
i-LINK allows a user to create a contact list that can be easily and
quickly accessed from the main page, allowing for instant view of contact
information as well as instant message composition. There are two types

of contacts in i-LINK: User Contacts and Guest Contacts.

User Contacts are users that have registered and created i-LINK
accounts and have been added as a contact by another i-LINK user in
order to be able to view and share files, messages and other project
information with. A User Contact can be identified through any of their
communication accounts set up with the IMF database. User Contacts that
are added to an i-LINK client are added along with respective
communication addresses and their order preference pre-selected, for use
with the intelligent message handling feature. I-LINK users can further
modify User Contact communication addresses’ order preferences. An i-
LINK client can view User Contact information; view the presence status

of a User Contact; commence instant chat and file transfer with User

41

Contacts; and create instant message composition.

Guest Contacts are not users of i-LINK but have been created and
added to a project by an i-LINK user in order to be able to view and share
files, messages and other project information with. i-LINK users can
specify and order Guest Contact communication addresses for use with the
intelligent message handling feature. An i-LINK client can only view

Guest Contact information and create instant message composition.

Contacts may be assigned to several projects and, hence, may be
appear more than once under different projects. If a contact is not assigned
to a specific project, the contact appears under the Main Space project

(default project).

4.3.3.4 Projects _

i-LINK allows user to create multiple Projects. A Project is a
shared space to allow for file sharing, and logged message sharing with
authorized contacts. Each Project contains an Accounts, Messages, and
Contacts folder. The Accounts folder includes accounts that have been
configured under this specific Project. The Messages folder contains all
messages that have been sent or received through the Accounts configured
for this Project. The Contacts folder includes all user and Guest Contacts

that are members of this Project.

Each Project also has a Shared Files folder which allows for
document sharing among contacts of Project. Shared Folder items are
organized and displayed by date, subject and file name. When i-LINK user
wishes to share a file, user does not have to send file as attachment

separately to several contacts, but simply places file in the shared folder

42

under a certain project and the project contacts are instantly notified of the
shared file added via i-LINK messages for user contacts or other clients

for guest contacts.

Projects have two types of access, administrator rights are only
granted to creator of Project and member rights granted to all contacts
added to Project by administrator. Both administrator and members can
add other contacts as members to a project; however, only the
administrator can remove a contact. Therefore guest and user contacts can
be automatically added and removed to a user’s i-LINK client under a
certain project by another user. The i-LINK user can then decide to view
or hide displaying a certain contact in a Project. An i-LINK use may
decide to unsubscribe from a Project, terminating membership. The
administrator along with the members can further grant or deny other
members access to view and use specific documents and messages.
Projects are further labeled, by the administrator only, as public or private

access to all others to be viewed.

43

- CHAPTER FIVE -
IMF DATA MODEL

The i-LINK client uses the Integrated Messaging Framework (IMF) database
standard. After consideration of the different data model options discussed in Chapter 2
and an examination of the concepts employed in existing messaging standards (i.e.:
MAPI and IM) discussed in Chapter 3, as well as the RFC 2822 email standard and the
RSS 2.0 blog markup standard®, it was decided that the data model to be used for IMF
should be a relational data model as it holds to be the most stable. The relational database
standards are well established by organizations such as the International Standards
Organization (ISO) and the American National Standards Institute (ANSI). There are
many relational database vendors to choose from, including Oracle, Microsoft, IBM, and
Sybase. It is possible to convert between different relational database implementation. It
is easy to define, maintain, and manipulate data with SQL, the Standard Query Language
used to define, query, modify, and control data in a relational database. Finally, the data

is well protected through referential integrity and other constraints.

The i-LINK data model was put in 5™ normal form, providing greater overall
database organization. All redundant data was eliminated. Normalization allowed data
integrity to be easily maintained within the database; made the database and application

design processes much more flexible; and made security easier to manage.

This chapter first describes the role of the six most important data entities: Users,
Contacts, Addresses, AddressAccounts, MessageHeaders, and Project; followed by a
description of the relationships between them and the other entities present in the IMF
data model. Throughout the Figure 5-1 provides an illustration of IMF data entities and

entity relationships.

44

UserSessions

ContactAddresses
PK FK* VARCHAR(25%)
PK FK2 INTEGER
ty ECER
FriendiyName | VARCHAR(258)
T
E S
R 1
cR "
v
'
P
'
1
1
P
'
'
'
"
'
'
pec
Q(<
AddressRuies
PK | BulelD INTEGER
Fre | Address VARGHAR(251)
Fi- | Contacur INTEGER
Frz | Addre

CHAR

AddressRuleTypes

v Contacts
VA (255)] NECA VARCHAR(25%) ContacliD INTEGER
DATETIME Presence | SMALLINT 4 . Password LONGTEXT rName VARCHAR(25%
DATETIME | SinceDate | DATETIME uc — FriendiyName VARCHAR (25¢) ContaciName | VARCHAR (255)
INTEGER Message | VARCHAR(25%) ! SessionTimeout | INTEGER i Company TEXT(60)
VARCHAR (255) H [MailingAddress | LONGTEXT
H F $ ' FriendlyName | VARCHAR (5C)
' i :
T
1 "
€ '
'
c \ ! H
! : : Addresser
SessionLogs ——t l: . e i PK |m |wmcuamzs=)
c
INTEGER po— 4 H Fr | MediaType | VARCHAR(SC)
VARGCHAR(25%) PKFK3 |Address VARCHAR(25¢) «R AddressAccounts 1
DATETIME PK FK2 |MslC INTEGE! H tR
DATETIME Pr FK2 | Address VARCHAR(25¢) | 1 <R}
AddressType | GHAR(10) '
VARFHARCEN) M.,.,,,,D.T.Z DATETIME Fice UserNamd VARCHAR(25E) | | ¥
< DeleteDate DATETIME FriendlyName VARCHAR(255) |1 1
= Status VARCHAR (50) in VARCHAR(25%) | | H
Q‘ R Password VARCHAR(25%) | | '
R InboundAddress | VARCHAR(25%) | | .
MessageHeade: i € C InboundPort INTEGER 1 i
H OutboundAddress | VARCHAR(258) | |
INTEGER OutboundPor INTEGER ' i d
INTEGER MessageAddressTypes Prionty INTEGER] MediaTypes
VARCHAR(258) PK [MediaTvpe |VARCHAR(5C
DATETIME PK | AddreasTyps | CHAR(C) [])
DATETIME 1
CHAR(2() | I
UserName VARCHAR(25¢)
ParentMsglC | INTEGER
Inbounc Chd 5 ProjectUsers
ProjectContacts
-3 ET] R PKFK1 | Projscul | VARCHAR(25E) ” L
cc i] ProjectAccounts PKFK2 | UserName | VARCHAR(25E) R PK FK' |ProlectiC | VARCHAR(258)
1 PKFK1 | Addess | VARCHAR(25%) PK FK2 | Contaclil |INTEGER
* PR Fr2 |Projectil | VARCHAR(25%) < | VARGHAR(1C)
MessageTypes.

PI IB dressR ,1,,x]cnmun

G

ProjectMessages

an

PKFR: | Magl INTEGER
PKFK2 | Prolecur.

FK1

PutiishDate | DATETIME
Note VARCHAR(25¢)

MessageParts
PK | Pamip INTEGER
Fr1 | MsgiC INTEGER
FK2 | PartType CHAR(2()
Tex TEXT(50C)
Charset VARCHAR (258)
StorageAddress | VARCHAR (258)

MessagePar Types

PK | PartType l CHAR(2()

| [

c
< c
c
[®
PartAddresses
Fre
PK FK1 [PamiD | INTEGE
PK FK2 | Address
Fr2

MessugeActivity Types

PR |m-um=mmm] CHAR(2()

Figure 5 - 1 IMF Data Model

45

5.1 USERS ENTITY

All i-LINK registrants are included in the Users entity. User accounts are the i-
LINK access points to the IMF database, which allow registrants to use the IMF web
services to manage messages and project information. However, users can also access the

IMF database through projects using other means, described later in this section.

Users records consist of UserName and Password attributes which allow a user
entry to an i-LINK client. The SessionTimeout attribute in a Users record, dictates the
time span after which a user record is propagated into a UserSessions record, further

discussed in section 5.7.

Users

PK | UserName VARCHAR(255)

Password LONGTEXT
FriendlyName VARCHAR(255)
SessionTimeout | INTEGER

Figure 5 - 2 Users Entity

Among the six most important entities, the Users entity is related to the Contacts,
AddressAccounts, MessageHeaders, and Project entities, discussed section 5.2, 5.4, 5.5,
and 5.6 respectively. Other entities related to the Users entity include the UserPresence,
UserSessions, SessionLogs, ProjectUsers entities, discussed in section 5.7. Once a Users
record is created, a corresponding UserPresence record is created further discussed in

section 5.7.

5.2 CONTACTS ENTITY

This entity includes user owned and project owned contacts. A Contacts record
includes all relevant information, optionally filled out, constituting the contact profile. A

Users record can further be labeled as Contacts record providing additional profile

46

information for the user.

Contacts
PK | ContactiD INTEGER
FK1 | UserName VARCHAR(255)
ContactName | VARCHAR(255)
Company TEXT(60)
MailingAddress | LONGTEXT
FriendlyName | VARCHAR(50)

Figure 5 - 3 Contacts Entity

Among the six most important entities, the Contacts entity is related to the Users
entity described in the previous section. Other entities related to the Contacts entity

include the ContactAddresses and ProjectContacts entities, discussed in section 5.8.

5.3 ADDRESSES ENTITY

This entity defines global address entries. Each Addresses record is described by
an Address attribute, which is the actual address text, and a MediaType attribute, which

can be one of the following types: email, blog, IM, or system.

Addresses

PK |Address |VARCHAR(255)

FK1 | MediaType | VARCHAR(50)

Figure 5 - 4 Addresses Entity

Among the six most important entities, the Addresses entity is related to the
AddressAccounts entity, discussed in next section. Other entities related to the Addresses
entity include the ContactAddresses, MessageAddresses and PartAddresses, discussed in

sections 5.8, 5.9, and 5.9 respectively.

5.4 ADDRESSACCOUNTS ENTITY

47

This AddressAccounts entity simply defines IMF accounts. An AddressAccounts
record further describes a user’s Addresses record by providing additional information
for accessing account servers. An AddressAccounts record contains InboudAddress,
InboundPort, OQutboundAddress, OutboundPort attributes in order to provide the location
for the media account server. The Login and Password attributes in an AddressAccounts
record provide the authentication information to access the server. Finally the Priority
attribute holds the user’s order preference for the AddressAccounts record in order to be

used during the intelligent message handling feature.

AddressAccounts

PK,FK2 |Address VARCHAR(255)

FK1 UserName VARCHAR(255)
FriendlyName VARCHAR(255)
Login VARCHAR(255)
Password VARCHAR(255)
InboundAddress | VARCHAR(255)
InboundPort INTEGER
OutboundAddress | VARCHAR(255)
OutboundPort INTEGER
Priority INTEGER

Figure 5 - 5 AddressAccounts Entity

Among the six most important entities, the AddressAccounts entity is related to
the Addresses and Users entities discussed in the previous sections. Another entity related

to the AddressAccounts entity is the ProjectAccounts entities, discussed in section 5.10.

5.5 MESSAGEHEADERS ENTITY

Although there is no individual message entity, however messages are the
fundamental components of the IMF database. Messages are any form of data exchange,
these include all emails, instant messages, blog postings, files shared and files transferred.

The MessageHeaders entity simply defines the IMF messages and represents what could

48

have been called a message entity. Messages can be exchanged in an IMF project. Each
Message Header record is mainly described by a Subject attribute; a ReceiptDate
attribute; a SendDate attribute; and a MessageType attribute, which can either be a

document or a message.

MessageHeader
PK | MsqglD INTEGER
MsgSize INTEGER
Subject VARCHAR(255)
ReceiptDate DATETIME
SendDate DATETIME

FK1 | MessageType | CHAR(20)

FK2 [UserName VARCHAR(255)
FK3 | ParentMsglD |INTEGER
Inbound BIT

Figure 5 - 6 MessageHeaders Entity

Among the six most important entities, the MessageHeaders entity is related the Users
entity, discussed in section 5.1. Other entities related to the MessageHeaders entity
include MessageAddresses, ProjectMessages and MessageParts, described in section 5.9,

5.11, and 5.11 respectively.

5.6 PROJECTS ENTITY

This entity allows a user to group contacts, accounts, and messages into a shared
space. Project is the element used to share information with contacts, using the i-LINK

client, a blog aggregator, the World Wide Web, or an email account.

A Project record is owned by one registered user, AdminUserName, who is the
creator of the project. Project content is accessible via the web using the OnlineURL
attribute, or via a blog aggregator using the RSSURL attribute. In order to provide privacy
to project content on the web, a project a described as public or private using the

isPrivate attribute. Public means that the project can be accessible without authentication,

49

where as private requires authentication.

Project
PK | ProjectiD VARCHAR(255)
FK1 | AdminUserName | VARCHAR(255)
OnlineURL CHAR(10)
RSSURL VARCHAR(255)
FriendlyName CHAR(10)
IsPrivate BIT

Figure 5 - 7 Project Entity

Among the six most important entities, the Project entity is related the Users
entity, discussed in section 5.1. As stated earlier, a project allows a user to organize
accounts and messages and share information with contacts; therefore other entities
related to the Project entity, are the ProjectUsers, ProjectContacts, ProjectAccounts, and

ProjectMessages entities, discussed in sections 5.7, 5.8, 5.10, and 5.11.

5.7 OTHER ENTITIES RELATED TO USERS

The Users entity has a direct one-to-many relationship with the following
previously described entities: Contacts, AddressAccounts, Project, and MessageHeaders.
That is each user can have one or more contacts associated with him/her; each user can
have one or more accounts registered with the system; each user can create and own one
or more projects; and each user can have one or more messages associated with him/her.
The Users entity also has some relationships with the following entities: UserPresence,
UserSessions, SessionLogs, and ProjectUsers. All related entities are shaded in the figure

below.

50

UserSessions UserPresence Users Confagtiy
PK FK1 | UserName | VARCHAR (25¢) PK FK1 PK |UserName VARCHAR (26¢) v [P [cemaac Q {recer
StartDate | DATETIME Presence |SMALLINT The Password wneTEXT | FK1 | UserName VARCHAR (256)
LastDate |DATETIME SinceDate | DATETIME < FriendiyName | VARCHAR (25€) |-H===- ContactName | VARCHAF (25€)
Port INTEGEFR Message | VARCHAF (25¢) SessionTimeout | INTEGEF Company TEXTE) o
P VARCHAF (25¢) 3 MalingAddress | LONGTEX1
I - 2 + 5 FriendlyName | VARCHAF (5C)
LR
C R
«C
Addresses
N A H- PK VARCHAR (25§)
SessionLogs bO ---onnnnoo i T Address
PK | SessioniC |INTEGER cc g K b4 FK1 | MediaType | VARCHAR (80)
e VARCHAF (25¢) PKFK: | Address VARCHAR (256) <R AddressAcoounts = ¥
SarDate | DATETIME PK FK: |Msall INTEGER = - ex
PK FK2 | Address VARCHAF (25¢)
e [JoATETME e [carc)
= oo ModifyDate | DATETIME FKI [UserName VARCHAF (255)
DeleteDate | DATETIME FriendlyName VARCHAF (25¢)
¢ Status VARCHAR (5C) Logir VARCHAR (258)
9. Q- R Password 'VARCHAR (266)
<y InboundAddress | VARCHAR (25¢)
MessageHeader cc c InboundPort INTEGEF
OutboundAddress | VARCHAF (25¢) +
PK_|Maalk BESSR = OutboundPort | INTEGER
MsgSize INTEGEF MessageAddressTyper Priority INTEGEF MediaTypes
Sub)j VARCHAF (25¢) PK | MediaTyps |VARCHAR(§0)
Rm';m- DATETIME PK | AddressType | CHAR(1()
SendDate DATETIME
FK1 | MessageType | CHAR(20)
FK2 [UserName |VARCHAR(25¢) by oo oooCoooos
FK3 | ParentMsgiC INTEGEF LR -
Inbounc BIT <R k ProjectUsers
c$ R PK FK1 |Prolectil | VARCHAR(25¢)
LEN ProjectAccounts —P9q P Fi: | UserName |VARCHAR(28¢)
1
1 PK FK1 [Address |VARCHAR(28¢)
+ PK FK: |ProjectiC |VARCHAR(25¢) i oy
MessageTypes 3 .E 5 ; E
PK | MessageTvpe |CHAR(20) o
Project
PK VARCHAR (26¢|
P ProiecliC 284)
i C
PK FK1 | MsqlC INTEGER FK1 | AdminUserName
L € odPFK: |prisctic 256) bO " OniineURL CHAR(10)
Tc i RSSURL VARCHAF (25¢)
PublishDate | DATETIME ec FriendlyName CHAR(10)
Note VARCHAF (25¢) IsPrivate BIT
. igs
Figure 5 - 8 Entities Related to Users
UserPresence

This entity describes a user’s status, Presence attribute, and the date and time

since this status has been in effect, SinceDate attribute. The Users entity has a direct one-

to-one relationship with the UserPresence entity. Once a user record is created a user

presence record is created in correspondence. A user can only have one user presence at

any time; however the Presence and SinceDate attributes are altered as the user changes

his/her status while using the client.

UserPresence

PK,FK1 | UserName

VARCHAR(255)

Presence
SinceDate
Message

SMALLINT
DATETIME
VARCHAR(255)

Figure 5 - 9 UserPresence Entity

51

UserSessions

This entity describes a session for a user using the system by keeping track of the
Port and IP address attributes for each user. The LastDate attribute represents the last
time the user accessed or did something using the client. The Users entity has a direct
one-to-one relationship with the UserSessions entity. A UserSessions record is created
when a user is actively using the client. A user can only have a one UserSessions record
at any time; however, the LastDate attribute is altered as the user accesses and makes use

of the client.

UserSessions

PK,FK1 | UserName | VARCHAR(255)

StartDate | DATETIME
LastDate DATETIME

Port INTEGER

IP VARCHAR(255)

Figure 5 - 10 UserSessions Entity

SessionLogs

This entity keeps track of what users accessed the system and when. It is a list of
all sessions that have ended or have been timed out. A session is said to be timed out, if it
has been inactive for thirty minutes. The Users entity has a direct one-to-many
relationship with the SessionLogs entity. A SessionLogs record is created once a
UserSessions record is closed or has been timed out. A user can have used and created
one or more sessions, therefore a user will have one ore more SessionLogs records

associated with him/her.

SessionLogs
PK |SessionlD |INTEGER
P VARCHAR(255)

StartDate DATETIME
EndDate DATETIME
FK1 | UserName | VARCHAR(255)

Figure 5 - 11 SessionLogs Entity

52

ProjectUsers

This entity is a join entity to implement a many-to-many relationship between the
Users and Project entities. A project can have one or more system users subscribed to it,
and similarly a user can belong to one to more projects. To avoid data redundancy, the

ProjectUsers entity and two one-to-many relationships were created eliminating a direct

relationship between the Users and Project entities.

ProjectUsers

PK,FK1
PK,FK2

ProjectlD
UserName

VARCHAR(255)
VARCHAR(255)

Show

BIT

Figure 5 - 12 ProjectUsers Entity

5.8 OTHER ENTITIES RELATED TO CONTACTS

As mentioned previously, the Contacts entity has a direct many-to-one
relationship with the Users entity. Additionally, the Contacts entity has some direct

relationships with the following entities: ContactAddresses and ProjectContacts. All

related entities are shaded in the figure below.

53

Users

PK |UserName

VARCHAR(255)

Password
FriendlyName

SessionTimeout

LONGTEXT
VARCHAR(255)
INTEGER

.
RGEEEEEEEEEE o

Figure 5 - 13 Entities Related to Contacts

uC T
? dc dR
AddressAccounts
PK,FK2 | Address VARCHAR(255)
FK1 UserName VARCHAR(255)
FriendlyName VARCHAR(255)
Login VARCHAR(255)
Password VARCHAR(255)
InboundAddress | VARCHAR(255)
InboundPort INTEGER
QutboundAddress | VARCHAR(255)
QutboundPort INTEGER
Priority INTEGER
L ProjectUsers
u
dR PKFK1 |ProjectiD |VARCHAR(255)
0% PK,FK2 |UserName |VARCHAR(255)
Show BIT
uR
dC
ContactAddresses

This entity groups the Contacts and Addresses entities into one entity, in order to
allow easier processing. The Contacts entity has a direct one-to-many relationship with
the ContactAddresses entity. A contact can be related to one or more records in the
ContactAddresses entity depending on the number of addresses associated with him/her.

Similarly, an address can be related to one or more Contacts records as well depending on

uC
dC

uR

Contacts 4R ContactAddresses
PK | ContactiD INTEGER PK,FK1 | Address VARCHAR(255)
PK,FK2 | ContactiD INTEGER
FK1 | UserName VARCHAR(255) |4
ContactName | VARCHAR(255) Priority INTEGER
Company TEXT(80) FriendlyName | VARCHAR(255)
MailingAddress | LONGTEXT 7
FriendlyName | VARCHAR(S0) R F
ul
dR
Addresses
PK | Address VARCHAR(255) .|1_
FK1 | MediaType | VARCHAR(50)
.
dR |
1 uC
*d:c
AddressRules
{ PK |RulelD INTEGER
1
: FK1 | Address VARCHAR(255)
x FK1 |ContactiD INTEGER
z FK2 |AddressRuleType | CHAR(10)
Madialypes Destination VARCHAR(255)
PK | MediaType | VARCHAR(50) Comnmand CHAR(10)
ExecDate DATETIME
Message VARCHAR(255)
::E DeletaSourceMessage | SMALLINT
uC
R_ dc :
ProjectContacts =
PK,FK1 | ProjectiD | VARCHAR(255) AddressRuleTypes
PKFK2 | ContactiD | INTEGER PK | AddressRuleType | CHAR(10)
Password | VARCHAR(10)

the number of contacts the address belongs to. The Priority attribute holds the contacts

order preference for the ContactAddresses record in order to be used during the

intelligent message handling feature.

54

ContactAddresses

PK,FK1 | Address VARCHAR(255)

PK,FK2 | ContactiD INTEGER
Priority INTEGER
FriendlyName | VARCHAR(255)

Figure 5 - 14 ContactAddresses Entity

ProjectContacts

This entity is a join entity to implement a many-to-many relationship between the

Contacts and Project entities. A project can have one or more contacts subscribed to it,

and similarly a contact can belong to one to more projects. To avoid data redundancy, the

ProjectContacts entity and two one-to-many relationships were created eliminating a

direct relationship between the Contacts and Project entities. Each ProjectContacts record

has a Password attribute; this allows a contact access to the project if that project is

labeled as a private project.

ProjectContacts

PK,FK1 | ProjectiD
PK,FK2 | ContactID

VARCHAR(255)
INTEGER

Password

VARCHAR(10)

Figure 5 - 15 ProjectContacts Entity

5.9 OTHER ENTITIES RELATED TO ADDRESSES

As mentioned previously, the Addresses entity has a direct one-to-many

relationship with the AddressAccounts entity; that is an address can belong to one or

more accounts. The contacts entity also has a direct

relationship with

MessageAddresses entity. Related entities are shaded in the figure below.

35

the

]
)
1
1

Addresses

Addresses and MessageHeaders entities. An address can be assigned to one or more
messages and similarly a message can have one ore more addresses tagged to it. To avoid
data redundancy, the MessageAddresses entity and two one-to-many relationships were
created eliminating a direct relationship between the Addresses and MessageHeaders

entities. Each MessageAddresses record is defined using an AddressType attribute, which

This entity is a join entity to implement a many-to-many relationship between the

can be one of the following types: BCC, CC, To, or From.

MessageAddresses

PK,FK3 | Address VARCHAR(255)

PK,FK2 | MsgIlD INTEGER

FK1 AddressType | CHAR(10)
ModifyDate DATETIME
DeleteDate DATETIME
Status VARCHAR(50)

Figure 5 - 17 MessageAddresses Entity

5.10 OTHER ENTITIES RELATED TO ADDRESSA CCOUNTS

e T —r {-PK [Address | VARCHAR(25¢)
dR
MessageAddresses PO P © . T FK* | MediaType |VARCHAR(5()
u
PK FK3 |Address VARCHAR(25¢) R AddressAccounts
PK FKZ |MsqlD INTEGER
PK FKZ | Address VARCHAR(255)
FK’ AddressType | CHAR(10)
ModifyDate. | DATETIME FK* | UserName VARCHAR(255)
DelstaDate | DATETIME FriendiyName | VARCHAR(255)
Status VARCHAR(S() Login VARCHAR{Z0E)
Passworc VARCHAR(25¢)
InboundAddress | VARCHAR(255)
i InboundPort INTEGER
dc OutboundAddress | VARCHAR(255)
OutboundPorl | INTEGER
Priority INTEGER
Figure 5 - 16 Entities Related to Addresses
MessageAddresses

relationship with the Users and Addresses entities. Additionally, the AddressAccounts

entity has one further direct relationship with the ProjectAccounts entity. All related

entities are shaded in the figure below.

56

As mentioned previously, the AddressAccounts entity has a direct many-to-one

Users Contacts
PK | UserName VARCHAR(25¢) - g PK |Contactis INTEGER
-H
Password LONGTEXT FK' |UserName VARCHAR|25¢)
FriendlyName VARCHAR (255) ContactName | VARCHAR(255)
SessionTimeoul | INTEGER Company TEXT(6C)
:E MailingAddress | LONGTEXT
¥ 6 FriendlyName | VARCHAR(5(}
|
1
1
i
i Addresses
. = H{PK |Address |VARCHAR(25%)
! dR
MessageAddresses pO— el é HFK' |MediaType |VARCHAR(SC)
PK FK3 | Address VARCHAR(25¢) dR AddressAccounts x
PK FK2 | MsglD INTEGER uR &
PK FKZ | Address VARCHAR(25¢) R
FK* AddressType | CHAR(10) :
ModifyDate | DATETIME FK- UserName VARCHAR(25¢) :
DeleteDate | DATETIME FriendlyName VARCHAR(25¢) !
Status VARCHAR(5() Login VARCHAR(25¢) |
Password VARCHAR(25¢) {
uC 8 InboundAddress VARCHAR(25¢) i
4c | B InboundPori INTEGER i
! 4c OutboundAddress | VARCHAR(25¢) +
= OutboundPori INTEGER m
r D
MessageAddressTypes Procty INTEGER eciaTypes
* PK i VARCH
PK | AddressType | CHAR(10) 3 MediaTvpe CHAR(5()
ok ProjectUsers
dR PK FK’ |ProjectlD |VARCHAR(25¢)
ProjectAccounts —1O€ PK FK2 | UserName | VARCHAR(25%)
PKFK' |Address |VARCHAR(25¢%) Show =
PK FKZ | ProjectlD | VARCHAR(25%)
S e — uRr uc
dC dc

Figure 5 - 18 Entities Related to AddressAccounts Entity

ProjectAccounts

This entity is a join entity to implement a many-to-many relationship between the
AddressAccounts and Project entities. An account can be added to one or more projects,
and similarly a project can have one or more accounts assigned to it. To avoid data
redundancy, the ProjectAccounts entity and two one-to-many relationships were created

eliminating a direct relationship between the AddressAccounts and Project entities.

ProjectAccounts

PK,FK1 | Address |VARCHAR(255)
PK,FK2 | ProjectlD | VARCHAR(255)

Figure 5 - 19 ProjectAccounts Entity

5.11 OTHER ENTITIES RELATED TO MESSAGEHEADERS

37

As mentioned previously, the MessageHeaders entity has a direct many-to-one
relationship with the Users entity. Additionally, the MessageHeaders entity has other

direct relationships with the ProjectMessages and MessageParts entities. All related

entities are shaded in the figure below.

Figure 5 - 20 Entities Related to MessageHeaders

58

UserSessions UserPresence Users
PK,FK1 | UserName |VARCHAR(255) PK,FK1 | UserName | VARCHAR(255) PK | UserName VARCHAR(255)
u u L Hemmm
StartDate | DATETIME Presence | SMALLINT Tuc v Password LONGTEXT :
LastDate | DATETIME SinceDate | DATETIME dc FriendyName | VARCHAR(255) !
Port INTEGER Message VARCHAR(255) SessionTimeout |INTEGER]
P VARCHAR(255) : a :
1
1 T Y !
1 1
u:C : :
4c i i
1 1
| i
1 1
i i
T - o e T uR
SessionLogs PO~ = i i we :
PK |SessionID |INTEGER d:C MessageAddresses i gd'c !
% 1
P VARCHAR(255) EQ.EE: Address mﬁ:ﬁmzss) dR AddressAccounts !
1 1
Endbme | DATETIME — PIFK? | Address VARGHARESS) | |
FK1 AddressType | CHAR(10) 1
FK1 | UserName | VARCHAR(255) ModiyDate. . | DATETIME FK1 Userame VARCHAR(255) | |
DeleteDate | DATETIME FriendlyName VARCHAR(255) | 1
uR Status VARCHAR(50) Login VARCHAR(255) |
o Q4R Password VARCHAR(255) | |
u:C 5 InboundAddress | VARCHAR(255) | 1
MessageHeader . &C | uc InboundPort INTEGER |
H b OutboundAddress | VARCHAR(255) | |
PR || MaalD INTEGER = OutboundPort | INTEGER |
MsgSize INTEGER MessageAddressTypes Prianty INIEGER !
Subject VARCHAR(255) | joomomme I !
ReceipiDate | DATETIME | |PK [AddressType | CHAR(10) i
SendDate DATETIME ! !
FK1 | MessageType | CHAR(20) ! '
FK2 | UserName VARCHAR(255) by -~ - H o i
FK3 | ParentMsglD | INTEGER uR : - i
Inbound BIT dR uR: e ProjectUsers. !
u:C¥ :IE:;: - dR | :"): PK,FK1 | ProjectlD |VARCHAR(255) | |
&C | | ProjectAccounts ‘§ PK,FK2 |UserName |VARCHAR(255) | |
i
] : PK.FK1 | Address | VARCHAR(255) = s i
= i PK,FK2 | ProjectlD | VARCHAR(255) .
1]]
MessageTypes : Q— R Q |
1l Tt 1
PK |MessageType |CHAR(20) | | i 3
1 . -
! +
i Project
1 .
! SIS PK |ProjectiD VARCHAR(255)
1 o
: :g PK,FK1 | MsgID INTEGER FK1 | AdminUserName | VARCHAR(255)
1 —‘O€ PK,FK2 | ProjectiD VARCHAR(255) pO——————H— OnlineURL CHAR(10)
| uc RSSURL VARCHAR(255)
! PublishDate | DATETIME dc FriendlyName CHAR(10)
E— Note VARCHAR(255) IsPrivate BIT
) dC
MessageParts
PK |PartiD INTEGER
FK1 | MsgID INTEGER
FK2 | PartType CHAR(20)
Text TEXT(500) uc
Charset VARCHAR(255) dc
StorageAddress | VARCHAR(255)

ProjectMessages

This entity is a join entity to implement a many-to-many relationship between the
MessageHeaders and Project entities. A message can be added to one or more projects
and similarly a project can contain one or more messages. To avoid data redundancy, the
ProjectMessages entity and two one-to-many relationships were created eliminating a

direct relationship between the MessageHeaders and Project entities.

ProjectMessages

PK,FK1 | MsgID INTEGER
PK,FK2 | ProjectiD | VARCHAR(255)

PublishDate | DATETIME
Note VARCHAR(255)

Figure 5 - 21 ProjectMessages Entity

MessageParts

This entity describes the content of a message, such as a document file, an image,
or simple text. The MessageHeaders entity has a direct one-to-many relationship with the
MessageParts entity. A MessageHeaders record can have one or more MessageParts

records, defined by the MessagePartType attribute, which can either be a file, image, or

text.
MessageParts

PK | PartiD INTEGER

FK1 | MsgID INTEGER

FK2 | PartType CHAR(20)
Text TEXT(500)
Charset VARCHAR(255)
StorageAddress | VARCHAR(255)

Figure 5 - 22 MessageParts Entity

5.12 OTHER ENTITIES RELATED TO PROJECTS

As mentioned previously, the Project entity has a direct many-to-one relationship

59

with the Users entity; and a direct relationship with the ProjectContacts, ProjectUsers,

ProjectAccounts, and ProjectMessages entities. All related entities are shaded in the

figure below.
UserPresence Users Contacts
PK,FK1 | UserName | VARCHAR(255) PK |UserName VARCHAR(255) :g PK | ContactiD INTEGER
" n lMocasess iy
Presence |SMALLINT uc v Password LONGTEXT FK1 |UserName | VARCHAR(255) |4
SinceDate | DATETIME dc FriendlyName VARCHAR(255) e ContactName | VARCHAR(255)
Message |VARCHAR(255) SessionTimeout |INTEGER I Company TEXT(60)
]) MailingAddress | LONGTEXT
7 6 ! FriendlyName | VARCHAR(50)
l :
! 1
! I
!]
i i
! H Addresses
]
i..c TR . H- PK |Address |VARCHAR(255)
4R i
MessageAddresses pO— ﬁ”c 4 + H- FK1 | MediaType | VARCHAR(50)
PK,FK3 | Address VARCHAR(255) dR AddressAccounts 1 b.S
PK,FK2 | MsglD INTEGER ! ur &
PKFK2 | Address VARCHAR(255) | 1 R |
FK1 |AddressType | CHAR(10) : i
ModifyDate DATETIME FK1 U§urName VARCHAR(255) | ! !
DeleteDate | DATETIME FriendlyName VARCHAR(255) ' !
Status VARCHAR(50) Login VARCHAR(255) | i
Password VARCHAR(255) | ! !
uc 5 InboundAddress | VARCHAR(255) | i
ac e InboundPort INTEGER ! '
: a&c OutboundAddress | VARCHAR(255) : ;{:
= OutboundPort INTEGER i L
iorif [
MessagerddmaiTyres Priority INTEGER : MediaTypes
-+ 1
PK | AddressType | CHAR(10) T : PK | MediaType | VARCHAR(50)
H
: u
1
| ProjectUsers 1
1
- d PK,FK1 | ProjectiD | VARCHAR(255) | ! ProjectContacts
ProjectAccounts —PS PKFK2 | UserName |VARCHAR(255) | ! PK,FK1 | ProjectiD | VARCHAR(255)
PK,FK1 | Address | VARCHAR(255) AT BT ! wr |PKFK2 | ContactiD | INTEGER
PK,FK2 | ProjectiD | VARCHAR(255) i dR Password | VARCHAR(10)
URS 1 uC
Qu.n =i | ac
R '
dR 1
Project
ProjectMessages PR | ErolecliD VARCHAR(255)
:g PK,FK1 | MsglD INTEGER FK1 | AdminUserName | VARCHAR(255)
PK,FK2 |ProjectiD |VARCHAR(255) pO————H] OnlineURL CHAR(10)
uC RSSURL VARCHAR(255)
PublishDate | DATETIME ac FriendlyName CHAR(10)
Note VARCHAR(255) IsPrivate BIT

Figure 5 - 23 Entities Related to Projects

60

- CHAPTER SIX -
SUMMARY AND CONCLUSION

6.1 REVIEW

In recognition of the communication and management difficulties particular to a
generic development team a new application — the i-LINK client — was recommended and
was to be supported by an Integrated Messaging Framework (IMF). The database
development of IMF began by identifying the different types of database models upon
which IMF may have been built. These four models were: flat-file, relational, object-
oriented, and object-relational. A comparison between these four types led to the
conclusion that the relational database model provided the greatest stability. Furthermore,
the abundance of vendors and the fact that the relational database standard is well
established increased its appropriateness. Finally, the protection and manageability of
data through the relational model secured the decision to utilize it in the development of

the IMF database model.

Another look at data models, this time at published models employed in licensed
applications, aided to conceptualize the formation of the IMF data model. The MAPI
model, currently implemented in Microsoft Outlook, was discussed. An understanding of
the objects it employs and their relationships ensued. The MAPI model provided a
conceptual framework upon which the repository storage ability of IMF was to be
developed. Similarly, the IM model — employed by a variety of today’s instant
messengers — outlined a series of entities. These entities, and their relationships, were
analyzed for later use in providing presence and instant messaging services in the i-LINK

client.

At such a point, design of the IMF data model was virtually able to be begun.

However, an analysis of a generic software development team was needed to finalize the

61

specific requirements of the recommended software — the i-LINK client. The
requirements discovered from this analysis were loosely subdivided into four categories:

messages, accounts, contacts and projects.

The IMF data model implemented by i-LINK was, hence, provided. Within the
discussion of the data model was a detailed analysis of all the entities created. These
entities were conceptually distinguished as main entities and entities that relate to these

main entities.

6.2 COMPARISONS

As previously stated, the IMF data model (Chapter 5) took form based on the
analysis and study of two data models: IM and MAPI (Chapter 3). However, both models
were inadequate in providing a data model framework sufficient to meet the requirements
established for i-LINK (Chapter 4). Therefore, several entities in the IMF data model
were created that go beyond both the IM and MAPI data model frameworks. The
following sections explain how the concepts of the MAPI data model framework and the
elements of the IM data model framework were used within the IMF data model.
Furthermore, additional entities that will be implemented at a later date, and, hence, have

been removed from the analysis of the IMF data model, are outlined and defined.

6.2.1 IMF DATA MODEL: MAPI CONSIDERATIONS

As previously described, i-LINK provides an email messaging service and
hence uses a MAPI message store similar to Microsoft Outlook. However, the
Microsoft Outlook MAPI data model (Chapter 3), shown in figure 6-1, includes
not only an email messaging service but also a variety of personal information
management services that i-LINK does not implement at this time, including:

calendar, journal and task services. Therefore the framework of the MAPI data

62

model is not fully used within the IMF data model. Therefore, discussed in this
section are the main concepts of the MAPI data model that were used in the IMF
data model. While concepts discussed may reference a specific folder, item or
property object, within the context of the following discussion these concepts are

meant to incorporate all folders, items and properties related to that reference.

Application

b4 ¥ L4

NameSpace Explorer Inspector

Calendar Folder
Contacts Folder
Deleted ltems Folder

| Inbox Folder
; /-1 Journal Folder
Notes Folder
MAPIFolder L Outbox Folder -
Sent Mail Folder ‘ Appoiniment ltem
Tasks Folder Contact ltem
I Joumal Item
| Mail Item

Meeting Request Item
Note Item
/ Post Item
g Remote Item
Report ltem

Task item
Task Request Item

Items

Actions Property
Atlachments Property
Form Description
Property
Pages Property

Recipients Property =
Recurrence Pallern ™~
Property
User Properties

¥

Properties

Figure 6 - 1 MAPI (Microsoft Outlook) Model

The concept Remote Item’ in the MAPI data model is used in the IMF
data model through the MessageHeaders entity, containing the Subject,
ReceiptDate, Size, UserName (which is the sender), giving the user enough
information to decide whether or not to download the message. The Mail Item'
concept in the MAPI data model is also used in the IMF data model through the

MessageHeaders entity representing all communication messages sent or received

63

and is similarly considered the basic element of IMF. The concept of
Attachments>? in the MAPI data model is used in the IMF data model through the
MessageParts entity to further describe the content embedded in the

MessageHeader record.

The concept of a Post Ttem®® in the MAPI data model is used in the IMF
data model through the Project Messages entity. Project Messages records are
similarly saved and posted into a project, similar to a public folder, in order to be

shared and used by other contacts.

The concept of Contact Item>* in the MAPI data model is used the IMF
data model through the Contacts entity representing any person with whom the

user has any personal or project related contact relations with.

The concept of Recipients35 in the MAPI data model is used in the IMF
data model through the Users and Address Accounts entities. Both users and

accounts represent resources that make use or are used by the i-LINK client.
6.2.2 IMF Data Model: IM Model Considerations
The IMF data model fully maps all the IM data model elements, services
and agents. The IMF data model defines entities that encompass two or more

elements of the IM data model. This section describes how the IM data model

elements, shown in figure 6-2, were used in the IMF data model.

64

Principal

User Agents
Imbox U A
Sender U A
Presence L A
Watcher L A
Fetcher Watcher Presentity Instant Inbox PRI
Poller Fetche! Instant Inbox Address
Subscriber
Presence Info
Presence Service Status
Comm Address
Instant M ge
Status Communication Address
er Conmmunication Means
Op
Closec Contact Address
Other
Communication Means pS i
ontact ress ;
Instant Message Service Instant Message Service
Instant Inbox

Figure 6 - 2 IM Model

The Users entity is classified as a combination of the Presentities™,

3 and Senders® elements from the IM model. Users of IMF are

Watchers
classified as presentities because a user can change his/her status, providing the
system with Presence Information. Users are classified as watchers, of type
Fetcher” because users are instantly notified of any changes in status of any other
user who is classified as a presentity. Finally, users are also classified as senders
because a user provides messages (emails, instant messages, blogs and files) to be
used for the services (email service, an instant messaging service, a blog posting
service, and file transferring service). Also the Users entity is classified as a type

of Principal® element of the IM model, since users use the system as a means of

organization and communication.

65

The User Presence entity in the IMF data model is classified as the
Status*' element within the Presence Information* element in the IM model.
Similar to the IM model status marker, the IMF User Presence entity allows for an
Open, Closed, or Other value. In terms of i-LINK, an Open value represents a
status of online, away, be right back, or busy; and Open value means that a user
can accept and initiate instant chat messages and file transfers. A Closed value
represents a status of offline and means that it cannot handle any instant
communication, however can still send all other messages through the i-LINK
client to all other accounts. Finally an Other value can be created by a user and is

represented by the Message attribute in the User Presence entity.

There are two other elements embedded within the Presence Information
element in the IM data model, the Communication Means* and the Contact
Addresses44, that the IMF data model also maps. In the IM data model, the
Communication Means elements represents only instant messaging services,
while in the IMF data model all communication services provided (email service,
an instant messaging service, a blog posting service, and file transferring service)
are classified as Communication Means elements. In the IM data model the
Contact Address element represents only the Instant Inbox Addresses, while in the
IMF data model the Addresses entity includes all addresses and is not limited to

only instant messaging addresses.
The Addresses entity in the IMF data model can be mapped as the Instant
Inbox Addresses element from the IM model because it represents how the user,

in this case acting as a principal, can receive messages into an address account.

The AddressAccounts entity, the entity for accounts in the IMF data

model, is classified as an Instant Inboxes® element from the IM model , because

66

it is considered a receptacle for all messages intended to be read by the users, who

are considered as principals.

The MessageHeaders entity, the entity for messages in the IMF data
model, is classified as an Instant Messages element from the IM model, because it
is considered an identifiable unit of data exchange to be sent to and received from

an Address Account.

6.3 IMF DATA MODEL: FUTURE IMPLEMENTATIONS

Address Rule Entity

This entity provides specific features for processing messages to and from a
contact’s address. This entity will be used for providing blocking and forwarding
features. Each Contact Address record can have one or more address rules records,
defined by the AddressRuleType attribute, which can either be block or forward. The
blocking feature blocks a contact’s address from sending or receiving messages. The
forwarding feature forwards all messages to and from a contact’s address to another

specified address.

AddressRules
PK |RulelD INTEGER
FK1 | Address VARCHAR(255)
FK1 | ContactiD INTEGER
FK2 | AddressRuleType CHAR(10)
Destination VARCHAR(25¢£)
Command CHAR(1C)
ExecDate DATETIME
Message VARCHAR(25¢)
DeleteSourceMessage | SMALLINT

u08
dC:
= =

AddressRuleTypes
PK | AddressRuleType | CHAR(10)

Figure 6 - 3 AddressRules Entity and Related Entity

67

Message Rule Entity

This entity provides specific features for sending messages. This entity will be
used to provide delayed sending and event sending features. Each Message Headers
record can have one more message rules records, defined by the MessageRuleType
attribute, which can either be ‘delay’ or ‘event’. The delayed sending feature delays the
dispatch of a message by the server until a certain date. The event sending feature allows
for sending messages between two dates several times. Each Message Record is
described by the TriggerDate attribute which defines that date to send delayed message
or by the StartDate, EndDate, Recurrence attributes which define when to send event

messages and how often.

MessageRules
PK | ActivitylD INTEGER
FK1 | MsgID INTEGER
StartDate DATETIME
TriggerDate DATETIME
EndDate DATETIME
FK2 | MessageRuleType | CHAR(20)
Reccurence VARCHAR(50)
DeleteSource SMALLINT
Priority INTEGER
Action VARCHAR(20)
u:Cg
d:C 1
I
]
T
1
MessageActivityTypes
PK | MessageActivityType | CHAR(20)

Figure 6 - 4 MessageRules Entity and Related Entity

6.4 CONCLUSION

Bearing in mind the requirements — communicative and managerial — of a
software development team, a software recommendation has been made. This piece of

software, the i-LINK client, has an Integrated Messaging Framework (IMF) that was

68

designed using a relational database model and conceptualized in reference to two
existing standard models. Furthermore, i-LINK, which we have chosen to design using

the .NET framework, employs an IMF implemented in IIS and SQL server.

In conclusion, while i-LINK draws upon the software currently available, its
innovative design allows for an integration of several applications utilized simultaneously
by members of a software development team. It therefore simplifies and improves current
software options in an effort to streamline and improve communication while increasing
the efficiency of project management. It further provides functionalities that are currently
not available on the market and is designed to provide a greater amount of functionalities

in the future.

69

- ENDNOTES -

! Day, M.; Rosenberg, J.; Sugano, H. (2000). “RFC 2778 — A Model for Presence and Instant Messaging.”
Network Working Group. Retrieved March 3, 2004 from World Wide Web:
http://www.fags.org/rfcs/rfc2778.html

% Stephens, Ryan K.; Plew, Ronald R. Database Design. Indiana: Sams Publishing, 2001. 41.

3 Ibid.

4 Ibid.

5 Ibid, 45.

® Ibid.

7 Ibid.

8 Ibid, 46.

’ ObjectStore Overview. Annual Report. (n.d.). Retrieved April 7, 2004 from

http://www.progress.com/psc/annual report 2003/objectstore overview/index.ssp

10 Stephens, Ryan K.; Plew, Ronald R. Database Design. Indiana: Sams Publishing, 200146.

" bid, 47.

12 Ibid.

B Ibid.

" Ibid, 49.

15 Ibid.

70

16 Ibid.

17 Ibid.

18 Microsoft Outlook Objects. (1997). Retrieved March 3, 2004 from

http://www.microsoft.com/officedev/articles/Opg/005/005 .htm

' Microsoft Outlook does not employ a database; rather, a C++ binary data stream is used in an
independent file space. The use of C++ programming is what characterizes Outlook as a object
oriented model. Its data storage is not a database but a large binary file containing the various

Objects discussed in this section.

» Microsoft Outlook Objects. (1997). Retrieved March 3, 2004 from

http://www.microsoft.com/officedev/articles/Opg/005/005.htm

! Ibid.
“Ibid.
® Ibid.
* Ibid.
% Ibid.
% Day, M.; Rosenberg, J.; Sugano, H. (2000). “RFC 2778 — A Model for Presence and Instant Messaging.”

Network Working Group. Retrieved March 3, 2004 from World Wide Web:
http://www.fags.org/rfcs/rfc2778.html

*” McConnell, Steve. Rapid Development. Washington: Microsoft Press, 1996. 312.

2 bid.

71

¥ Dajani, Tarek. Integrated Message Framework: Strategy, Design and Implementation. Unpublished

M.Eng Thesis, Massachusetts Institute of Technology, Cambridge. May, 2004.

30 The Remote Item objects represent a remote item in the Inbox folder or another mail folder. This object
is similar to the Mail Item object, but it contains only the Subject, Received, Date, Time, Sender,
and Size properties and the first 256 characters of the body of the message. It gives the user who is
connecting in remote mode enough information to decide whether or not to download the

corresponding message.

3! The Mail Item objects represent a mail message in the Inbox folder or another mail folder. The Mail Item

is the default item object and to some extent the basic element of Outlook.

32 The Attachments property objects represent linked or embedded objects contained in an item.

* The Post Item objects represent a post in a public folder that other users can browse. This object has all
the characteristics of the mail message. This object is similar to the Mail Item object, except that it

is posted or saved rather then sent or mailed to a recipient.

3* The Contact Item objects represent a contact in a Contacts folder. A contact can represent any person

with whom the user has any personal or professional contact.

3% The Recipients property objects represent users or resources in Outlook; generally recipients are mail

message addresses.

3 Presentity (presence entity) provides Presence Information to the Presence Service to be stored and

distributed.

7 .) . .
37 Watcher receives Presence Information about Presentity from the Presence Service. A Watcher can also

receive Watcher Information about another Watcher.

38 A Sender provides Instant Messages to the Instant Message Service for delivery.

72

3 A Fetcher asks the Presence Service to forward the Presence Information of one or more Presentities.

A Principal interacts with the system via one of several user agents.

*1 Status is defined by the model to have at least two state values Open and Closed, which determines the

acceptance of Instant Messages.

42 presence Information consists of a random number of elements, called Presence Tuples. Each Presence
Tuple consists of a Status marker, an optional Communication Address, and an optional Other
Presence Markup.

* Communication Means indicates a method whereby communication can take place.

“ Contact Address is a specific point of contact via some Communication Means.

% An Instant Inbox is a container for Instant Messages.

73

- BIBLIOGRAPHY -

* Dajani, Tarek. Integrated Message Framework: Strategy, Design and
Implementation. Unpublished M.Eng Thesis, Massachusetts Institute of
Technology, Cambridge. May, 2004.

* Day, M.; Rosenberg, J.; Sugano, H. (2000). “RFC 2778 — A Model for Presence
and Instant Messaging.” Network Working Group. Retrieved March 3, 2004 from
World Wide Web: http://www.fags.org/rfcs/rfc2778.html

= McConnell, Steve. Rapid Development. Washington: Microsoft Press, 1996.

» Microsoft Outlook Objects. (1997). Retrieved March 3, 2004 from
http://www.microsoft.com/officedev/articles/Opg/005/005.htm

» ObjectStore Overview. Annual Report. (n.d.). Retrieved April 7, 2004 from
http://www.progress.com/psc/annual_report_2003/objectstore _overview/index.ssp

s Stephens, Ryan K.; Plew, Ronald R. Database Design. Indiana: Sams Publishing,
2001

74

