
DATABASE DESIGN DEVELOPEMNT:
i-LINK - AN INTEGRATED MESSAGING FRAMEWORK

By
Pamela Michel Chahine

B.ENG in Civil and Environmental Engineering
McGill University, 2002

Submitted to the Department of Civil and Environmental Engineering
in Partial Fulfillment of the Requirements for the Degree of

Master of Engineering in Civil and Environmental Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2004

@2004 Pamela Chahine. All rights reserved

The author hereby grants to MIT permission to reproduce and to
distribute publicly paper and electronic e z of this thesis document in whole or in part.

Signature of Author.................... -
Department of Civil and Environmental Engineering

May 7, 2004

Certified by
Dr. George A. Kocur

Senior Lecturer, Department of Civil and Environmental Engineering
Thesis Supervisor

I /7 A

Accepted by TI--...
Heidi Nepf

Chairman, Departmental Committee on Graduate Studies

MASSACHUSETTS INSTrITE.
OF TECHNOLOGY

BARKER
JUN 0 7 2004

LIBRARIES

DATABASE DESIGN DEVELOPEMNT:
i-LINK - AN INTEGRATED MESSAGING FRAMEWORK

By
Pamela Michel Chahine

Submitted to the Department of Civil and Environmental Engineering
on May 7, 2004 in Partial Fulfillment of the

Requirements for the Degree of Master of Engineering in
Civil and Environmental Engineering

Abstract

For many people, online communication has meant a plethora of communication
media - emails, instant messages, blogs, etc. Often this has led to clustered desktop
displays and ineffective integration between communication media. Software
development teams are adversely affected by the lack of integration between applications.
When project managers, software developers and clients come together to work on one or
more projects, certain communication and managerial considerations and requirements
become apparent.

A server-based Integrated Messaging Framework (IMF) provides all
communication media messages with a common messaging format. i-LINK, an
intelligent client application uses IMF to send, receive, log, and store messages from
different communication channels.

There are contrasting database models from which to choose when designing the
IMF data model (i.e.: flat file, relational, object oriented, objected relational). However,
the IMF was designed using a relational data model due to the stability it offered, the
protection provided through referential integrity and constraints, as well as other unique
benefits.

When considering the services that IMF is designed to provide, certain existing
messaging standards are conceptually useful to analyze before designing the IMF data
model. The RFC 2778 provides a universal Instant Messaging (IM) data model which can
be mapped to provide such services as presence and instant messaging. Microsoft
Outlook, a Messaging Application Programming Interface (MAPI), presents a data
storage mechanism.

The IMF database model integrates concepts from existing messaging standards
and refines the integration of different communication media while acting as a central
repository.

Thesis Supervisor: Dr. George A. Kocur
Title: Senior Lecturer, Department of Civil and Environmental Engineering

- ACKNOWLEDGEMENTS -

I would first like to extend my deepest gratitude to Tarek Dajani without whom

this project would not have been possible. Tarek you have an ambition and a dedication

that I will always admire. Working with you was not only a profound learning

experience, but also a delight.

I would like to thank my advisor, Dr. George Kocur, for his advice, valuable time,

encouragement, and inspiring discussions. Thank you for all your assistance and

guidance throughout this software development process.

To Patricia Crumley and Colleen O'Shea, thank you for making my experience at

MIT unforgettable. Without your company, this year would have been twice as much

difficult and not half as much fun. Thanks for being there for me and making me laugh.

To my parents, Michel and May Chahine, who have always been supportive and

made me believe I could do things I never thought I could. I am always amazed at their

confidence in me.

Finally, I would like to thank my brother, Pascal. For the past year his patience

has been truly needed and his support during this project will always be remembered.

3

- TABLE OF CONTENTS -

L IST O F F IG U R E S...6

CHAPTER ONE: INTRODUCTION .. 8

1.1 P R E A M B LE .. 8
1.2 BACKGROUND AND PURPOSE..10

1.3 EX TENDED O UTLINE .. 10

CHAPTER Two: LITERATURE REVIEW: DATABASE MODELS..................................... 13

2.1 DATABASE MODEL SELECTION .. 13

2.1.1 FLAT FILE DATABASE MODEL ... 13
2.1.2 RELATIONAL DATABASE MODEL ... 14
2.1.3 OBJECT ORIENTED DATABASE MODEL .. 16
2.1.4 OBJECT RELATIONAL DATABASE MODEL .. 19

2.2 DATABASE MODEL CHOSEN .. 20

CHAPTER THREE: LITERATURE REVIEW: EXISTING MESSAGING STANDARDS 22

3.1 MAPI MODEL (MICROSOFT OUTLOOK)...22

3.1.1 FEATURES ... 22

3.1.2 DATA MODEL..22
3.2 INSTANT MESSENGER MODEL ... 27

3.2.1 FEA TU RES ... 27
3.2.2 DATA MODEL..28

CHAPTER FOUR: I-LINK - AN INTEGRATED MESSAGING FRAMEWORK 34

4.1 BACKGROUND ON SoFTwARE DEVELOPMENT PROJECT...34

4.2 COMMUNICATION ACROSS GENERIC SOFTWARE DEVELOPMENT PROJECT 35
4.3 SoFrwARE RECOMMENDATION FOR SoFTwARE DEVELOPMENT PROJECT.................38

4 .3 .1 I-L IN K ... 3 8
4 .3 .2 IM F .. 3 8
4.3.3 I-LINK REQUIREMENTS .. 39

4.3.3.1 M E SSAGES ... 40
4.3.3.2 ACCOUNTS..41

4.3.3.3 C ONTACTS ... 4 1
4 .3.3.4 PR O JECTS .. 42

CHAPTER FIVE: IMF DATA MODEL 44

4

5.1 U SERS ENTITY...46
5.2 CONTACTS ENTITY..46
5.3 ADDRESSES ENTITY ... 47
5.4 ADDRESSACCOUNTs ENTITY .. 47
5.5 M ESSAGEHEADERS ENTITY .. 48
5.6 PROJECT ENTITY ... 49
5.7 ENTITIES RELATED TO U SERS .. 50
5.8 ENTITIES RELATED TO CONTACTS .. 53
5.9 ENTITIES RELATED TO ADDRESSES .. 55
5.10 ENTITIES RELATED TO ADDRESSACCOUNTS ... 56
5.11 ENTITIES RELATED TO M ESSAGEHEADERS ... 57
5.12 ENTITIES RELATED TO PROJECT..59

CHAPTER SIX: SUM M ARY AND CONCLUSION ... 61

6.1 REVIEW ... 61
6.2 CO MARISONS...62

6.2.1 IMF DATA MODEL: MAPI CONSIDERATIONS .. 62
6.2.2 IM F DATA M ODEL: IM CONSIDERATIONS...64

6.3 IM F D ATA M ODEL: FUTURE IM LEMENTATIONS.. 67
6.4 CONCLUSION...68

ENDNOTES .. 70

BIBLIOGRAPHY .. 74

5

- LIST OF FIGURES -

Figure 2 - 1 A Relational D atabase M odel ... 15

Figure 2 - 2 An Object Oriented Data M odel ... 18

Figure 2 - 3 An Object Relational D atabase ... 20

Figure 3 - 1 M icrosoft Outlook Object M odel... 23

Figure 3 - 2 IM M odel .. 29

Figure 4 - 1 Communication Paths on Projects of Various Sizes.................................. 36

Figure 5 - 1 IM F D ata M odel.. 45

Figure 5 - 2 U sers Entity... 46

Figure 5 - 3 Contacts Entity .. 47

Figure 5 - 4 Addresses Entity... 47

Figure 5 - 5 AddressAccounts Entity... 48

Figure 5 - 6 M essageHeaders Entity ... 49

Figure 5 - 7 Project Entity... 50

Figure 5 - 8 Entities Related to Users .. 51

Figure 5 - 9 U serPresence Entity ... 51

Figure 5 - 10 U serSessions Entity... 52

Figure 5 - 11 SessionLogs Entity.. 52

Figure 5 - 12 ProjectU sers Entity.. 53

Figure 5 - 13 Entities Related to Contacts ... 54

Figure 5 - 14 ContactAddresses Entity .. 55

Figure 5 - 15 ProjectContacts Entity... 55

Figure 5 - 16 Entities Related to Addresses... 56

Figure 5 - 17 M essageAddresses Entity.. 56

Figure 5 - 18 Entities Related to AddressAccounts Entity .. 57

Figure 5 - 19 ProjectAccounts Entity... 57

Figure 5 - 20 Entities Related to M essageHeaders .. 58

Figure 5 - 21 ProjectM essages Entity .. 59

Figure 5 - 22 M essageParts Entity ... 59

Figure 5 - 23 Entities Related to Projects ... 60

6

Figure 6 - 1 MAPI (Microsoft Outlook) Model... 63

F igure 6 - 2 IM M odel .. 65

Figure 6 - 3 AddressRules Entity and Related Entity ... 67

Figure 6 - 4 MessageRules Entity and Related Entity ... 68

7

- CHAPTER ONE -

INTRODUCTION

The purpose of this document is to describe the database design development of

IMF- an Integrated Messaging Framework- used by i-LINK- a communication

organization and project management windows application designed by Masters of

Engineering IT students at Massachusetts Institute of Technology.

1.1 PREAMBLE

Currently people have adapted to the use of instant messengers as a means of

communication. Instant messengers provide people a method to view the status of

individuals with whom they communicate; informing them if an individual is present or

not at the moment of interest. Instant messengers combine this concept of presence with

communication options including, but not limited to, messaging and file transfer.

However, instant messengers only allow for communication if an individual is present at

the time of request.

Therefore, individuals may resort to other means of communication of the

messaging form. Some examples include emails, which also incorporate file sharing

methods through attachments, and more recently blogs. This has ultimately lead many

people to make use of one or more instant messenger applications, along with numerous

emails, blog aggregators and file sharing applications simultaneously. Consequently,

personal computers have to deal with a cluster of applications that rarely integrate while

performing specific tasks. Organization of desktop display has lead to the creation of

different software, such as Outlook and Eudora, which attempt to integrate

communication in one unified display. However, within these applications the concept of

presence is not adopted.

8

Members of a software development team - project managers, developers, and

clients - are faced with these communication obstacles as they attempt to coordinate their

activities. These three members of software development projects are constantly

communicating with each other. Communication typically occurs through various emails,

instant messages and blog postings, often with little or no tracking and logging of

decisions and discussions performed through these means. Furthermore, a project, in

addition to such communication problems, may run into other difficulties related to

managing and coordinating the progress of a project. The members involved in software

development projects are continuously producing, accessing and updating documents.

These documents are often shared with each other, by either attaching them through

emails and instant messages transfers, or placing them in repositories that can be accessed

by all or accessed through websites.

We, a group of M.Eng IT students from Massachusetts Institute of Technology,

saw a need to provide software that will overcome the communication difficulties many

people face in their workplace, integrating access to all communication media through

one desktop application. Principally, this piece of software provides functionality for

members working on software development projects, offering a way to organize and

share project information between several people but extends further to provide both

presence and messaging services encompassing several communication media.

A sever-based Integrated Messaging Framework (IMF) and an intelligent client

application, named i-LINK, were designed for the members involved in software

development project to aid their project management and communication needs. The IMF

server provides all communication media messages with a common messaging format as

well as a common structure for contacts and addresses management. The i-LINK client

uses this framework to send, receive, log, and store messages from different

communication channels. Furthermore, the IMF database acts as a central repository and

the i-LINK client uses the IMF database to centralize project information.

9

1.2 BACKGROUND AND PURPOSE

Designing a database is a vital component of application development; careful

planning and design ensures high quality of the application. A database is a tool used to

store and manage data. The aim of database design is fourfold. First, it attempts to ensure

that appropriate data exists in the database. Second, database design endeavors to

simplify the maintenance of the database structure, modification of data, and retrieval of

information. Third, it tries to ensure that the structure of the database allows the data to

be processed into meaningful, useful information. Finally, database design facilitates the

development of software applications that utilize the database.

The purpose of this thesis is to describe the database design of the IMF

framework, which is also used by the i-LINK client. These considerations include a study

of the various database modeling approaches; followed by an analysis of two data model

standards used by published and licensed applications; followed by software definition

and requirements based on a study of the communication practices and needs of generic

members of a software development project. The thesis then describes the data model

selected for this software as well as how it was formed or designed and then explains how

the two standards were used in designing the data model.

1.3 EXTENDED OUTLINE

Chapter 2 outlines and examines four database models: flat-file, relational, object-

oriented, and object relational models. The advantages and disadvantages of each model

will be assessed and compared. An analysis of the four models will provide an

understanding as to which model is appropriate in the development of the IMF data

model.

10

After having determined an appropriate database model for IMF, an examination

of standard data models will be undertaken. Specifically, the analysis will focus on

applications that provide services similar to those that will be provided through i-LINK.

Chapter 3 will discuss two published standard data models currently used in licensed

applications: Instant Messaging (IM) and Messaging Application Programming Interface

(MAPI) data models. Microsoft Outlook, a personal information manager application,

uses a MAPI data model. Although the MAPI data model is not a formally established

standard data model, it has an extensive storage management data model. Similarly, i-

LINK, through the use of the IMF framework, will provide a central storage repository.

MSN Messenger, AOL messenger, YAHOO Messenger - to list a few - are

defined as presence and instant messaging services. The RFC 27781 provides a standard

and universal IM data model that can be used across any messenger defined as a presence

and instant messaging service. A study of IM design is necessary with reference to i-

LINK bearing in mind the presence and instant messaging services that i-LINK will

provide.

The project definition and requirements analysis will be assessed in Chapter 4.

During the requirements analysis phase of any software project, research is conducted to

gather all the information that will be used to design the system. The business rules and

entities defined in the requirements then determine the design of the database. This

chapter outlines communication requirements the project manager, developers, and

clients working on a software development project by listing and defining the types of

communication media they use, how and for what purpose they use them, and why each

member values one medium over another. Furthermore, this chapter describes

requirements needed for the management of project information common to all members.

The project data model is documented in Chapter 5. The data modeling phase is

the process of visually representing the data and creating a data model with entities,

11

attributes, and relationships which leads up to the database design. This chapter provides

a thorough outline of all entities and their corresponding relationships, and highlights the

essential attributes in the relational IMF data model, fully normalized to reduce or

eliminate any redundant data.

The analysis presented in this thesis will be summarized in Chapter 6. The

database model for IMF will be compared to the data models outlined in Chapter 3. Such

a comparison will provide an understanding as to the extent to which each of these

standards has been utilized in the development of IMF, for further use with the i-LINK

client. Furthermore, this chapter will discuss entities which will be implemented at a later

date. These entities will have been designed within the IMF data model and will provide

added functionality to the i-LINK client.

12

- CHAPTER Two -

LITERATURE REVIEW: DATABASE MODELS

Once the requirements for a projected database are established, the core of

database design may commence. This chapter provides a summary of benefits and

drawbacks for the database models available. The i-LINK application and the Integrated

Messaging Framework described in this thesis use database technology heavily.

2.1 DATABASE MODEL SELECTION

In order to make a decision on which database model to implement, it is important

to understand the general concepts behind each database model. The following database

models will be discussed in this section:

* Flat-File Database Model

* Relational Database Model

" Object Oriented Database Model

* Object Relational Database Model

2.1.1 FLAT-FILE DATABASE MODEL

A flat file database model is adequate for extremely simple and small

databases. "It is made up of one more readable files stored in text format." 2 Each

file has a number of fields, of constant or variable lengths, to store data. Once a

flat file has been created and the data has been stored, a method to create, retrieve,

update, or delete records must be incorporated. Hence, a set of many programs

needs to be developed in order to access the data stored in the flat files. Using a

flat-file database model requires both an understanding of "the structure of each

file as well as knowledge of where the data is physically stored." 3 Even the

simplest database will require several flat-files, which may have data related to

13

other data stored in other files. Hence, the process of managing data relationships

in a flat-file database model is very difficult.

Drawbacks of a Flat-File Database Model4:

* Flat files do not promote a structure in which data can easily be related.

* It is difficult to manage data effectively and to ensure accuracy.

" It is usually necessary to store redundant data, which causes more work to

accurately maintain the data.

" The physical location of the data field within the file must be known.

* A program must be developed to manage the data.

Recently, flat-file databases have improved. XML files, for example, are

considered an advance to conventional flat-files. XML files are more manageable

and can easily be read or written to from a database. However, limitations still

exist. Simultaneous read/write capabilities do not exist for XML files and the

relational integrity found in most databases is lacking. XML files are still not

considered to be as efficient and effective as some of the following database

models.

2.1.2 RELATIONAL DATABASE MODEL

The relational database model is the most popular and stable model being

implemented by designers. In a relational database model, a parent table can have

several child tables, and a child table can have several parent tables. In

comparison to flat files, the relational database model provides easier methods to

manage data, retrieve data, and produce changes to data throughout the entire

database. By placing rules on data - integrity constraints - data becomes easier to

manage. Furthermore, in the relational database model, retrieving data stored does

not require having knowledge of the database structure. Due to integrity

14

constraints and normalization, changes to data need only be done once and the

changes will be generated throughout the entire database. The structure of an

example relational database model is illustrated in Figure 2-1.

Publishers -.-..- + Book Stores

Authors + Titles Inventory

Orders

Figure 2 - 1 A Relational Database Model5

The relational database model is made up of tables consisting of columns

and rows. Each row corresponds to a record and each column contains

information for all rows. Different types of relationships can exist between tables

in a relational database model: one-to-one, one-to-many, and many-to-many.

Referential integrity is the process that ensures that data between related tables is

consistent. Referential integrity is controlled by keys - column values that

uniquely identify a row in a table or establish a relationship with another table.

Primary keys are column values that make a row of data unique, while foreign

keys are column values that reference primary keys from a related table.

Benefits of a Relational Database Model6:

" Data is accessed very quickly.

" The database structure is easy to change.

15

" The data is represented logically; therefore users need not understand how the

data is stored.

* It is possible to develop complex queries to retrieve data.

* It is easy to implement data integrity.

" Data is generally more accurate.

* It is easy to develop and modify application programs.

" A standard language (SQL) has been developed.

Drawbacks of a Relational Database Model7 :

" Different groups of information, or tables, must be joined in many cases to

retrieve data.

" Users must be familiar with the relationships between tables.

" Users must learn SQL.

2.1.3 OBJECT-ORIENTED DATABASE MODEL

An object oriented database is a database in which data can be defined,

stored, and accessed using an object oriented language. An object oriented

database model uses programming languages such as C++, C#, and Java.

Programmers use an object oriented programming language to work with objects

to design an application that interacts with a relational database. The elements

within a program or database application are represented as objects. Objects are

assigned properties, which can be modified, and can also be inherited from other

objects. Object oriented applications are easier to develop and maintain with

object oriented programming tools. Programming tasks can be automated by an

object oriented programming, which reduces the amount of time it takes to

develop an application while increasing productivity.

ObjectStore is one of the most successful vendors. ObjectStore has added

16

database features (such as persistence for objects, relationships between objects,

and query expressions) to C++ and Java type systems and language constructs.

Using an object-oriented database, ObjectStore delivers complex data

management, real-time event processing, and middle-tier caching for Java and

C++ applications.9

As object oriented programming technology progresses, developers of

relational databases "must understand both the relational database language

(SQL) as well as the object oriented programming language (Java, for example)

that is to be used in order to design the application."' 0 It is important for

developers to understand relational database concepts in order for the application

to access the data. It can be confusing for the developer to switch modes of

thinking between relational and object oriented.

The two basic structures in an object oriented database are objects and

literals. Objects have two characteristics, operations and properties, through

which an object can be associated with other objects. Literals are values

associated with objects. Operations are used to retrieve values from other classes,

to add values, and to remove values. Properties can either be attributes or

relationships. Objects and literals are organized by types, where all elements of a

given type have the same set of properties, which can be modified for each

individual object. A class is the equivalent of a table in a relational database; an

attribute the equivalent of a table column; and an object instance the equivalent to

a table row or tuple. Figure 2-2 illustrates how data is related in an object oriented

database.

17

Class

EMP

+ LastName VARCHAR
+ FirstName VARCHAR
+Midlnil VARCHAR
+Ssn VARCHAR

Properties +Phone VARCHAR

/4,Vj+GetAddress () .----.. ---. ADDRESS

Operatior +StAddr VARCHAR
+City VARCHAR
+State VARCHAR
+Zip VARCHAR

Figure 2 - 2 An Object Oriented Data Model"

12.

Benefits of the object oriented model are as follows :

* The programmer need only understand object oriented concepts as opposed to

the combination of object oriented concepts and relational database storage.

* Objects can inherit property settings from other objects.

* Much of the application program process is automated.

* It is theoretically easier to manage objects.

* Object oriented data model is more compatible with object oriented

programming tools.

Drawbacks of the object oriented model are as follows' 3:

" Users must learn object oriented concepts because the object oriented database

does not work with the traditional programming methods.

* Standards have not been completely established for the evolving database

model.

* Stability is a concern because object oriented databases are fairly recent.

* Performance is often poor.

" Lack of normalization hinders integrity.

18

0 Not considered as effective as relational databases.

2.1.4 OBJECT RELATIONAL DATABASE MODEL

An object relational database combines concepts of both the relational

database model and the object oriented programming approach. Object relational

database model has only started to really grow recently and vendors are already

incorporating object relational concepts into the new SQL standard, referred to as

SQL3 or SQL99.

Figure 2-3 illustrates an example object relational

implementation in the Oracle9 relational database management

system (RDBMS). Two user defined types have been created:

PERSON and ADDRESS. Each type has columns that define

specific data for a column in the base table, providing a 3D
effect for the data. For example, the EMPINFO column in the

EMP table has a type of PERSON. PERSON is broken down into

the specific categories LASTNAME, FIRSTNAME, MID_INIT,
and SSN.1

19

EMP

EMPINFO PERSON
ADDRINFO ADDRESS
PHONE NUMBER

PERSON

LASTNAME VARCHAR
FIRSTNAME VARCHAR
MIDINIT VARCHAR
SSN VARCHAR

.ADDRESS

STADDR VARCHAR
CITY VARCHAR
STATE VARCHAR
ZIP VARCHAR

Figure 2 - 3 An Object Relational Database's

Benefits of the object relational model 1-

* The relational database has more of a 3D architecture.

* User defined types can be created.

Drawbacks of the object relational model1:

* The user must understand both object oriented and relational concepts.

* Some vendors that have implemented OR concepts do not support object

inheritance.

2.2 DATABASE MODEL CHOSEN

Although the different database models each have their own benefits and

drawbacks, a relational database model was chosen as the ideal model for this project. As

opposed to a flat file database model, in the relational database model information is

stored in tables that use parent/child relationships and provides a way in which the

amount of redundant data can be reduced. Although the object oriented and object-

relational database models do make data storage more compatible, these models need to

20

be further refined and improved.

After a comparison of the different data models, it was decided that the data

model to be used for IMF should be a relational data model as it holds to be the most

stable. The relational database standards are well established by organizations such as the

International Standards Organization (ISO) and the American National Standards

Institute (ANSI). There are many relational database vendors to choose from, including

Oracle, Microsoft, IBM, and Sybase. It is easy to convert between different relational

database implementation. It is easy to define, maintain, and manipulate data with SQL,

the Standard Query Language used to define, query, modify, and control data in a

relational database. Finally, the data is well protected through referential integrity and

other constraints.

21

- CHAPTER THREE -

LITERATURE REVIEW: EXISTING MESSAGING STANDARDS

After having analyzed database technologies in the previous section, this chapter

examines the other core technology upon which IMF is based: messaging standards. This

chapter discusses application programming interfaces (APIs) for messaging, including a

description of the MAPI, used by Microsoft Outlook, and an Instant Messenger model.

These APIs assist in defining the key data and methods in IMF.

3.1 MAPI MODEL (MICROSOFT OUTLOOK)

3.1.1 FEATURES

Microsoft Outlook is a personal information manager (PIM). Like other

PIMs, Outlook allows users to maintain information about contacts, keep track of

daily schedules, keep track of tasks to complete, and other personal or work

related information. Microsoft Outlook also provides email and fax support, group

scheduling capabilities, and task management. Microsoft Outlook is a Messaging

Application Programming Interface (MAPI) application, since MAPI message

stores are the only data sources currently supported by it. MAPI is a set of API

commands and functions used to send email. It has become the unofficially

accepted standard messaging interface for Windows applications, providing a

carefully defined set of messaging services. Access to MAPI services is the same

for all versions of the Windows operating system.18

3.1.2 DATA MODEL

Microsoft Outlook uses an object data storage mechanism 9 , implementing

the MAPI standard. The MAPI, Microsoft Outlook, data model, shown in figure

22

3-1, is made up of seven main objects: Application, NameSpace, Folders

collection, Items collections, Properties collections, Explorer, and Inspector

objects.

Application

Explorer Inspector

Calendar Folder
Contacts Folder

Deleted Items Folder
Inbox Folder

Journal Folder
Notes Folder

MAPIFolder ' Outbox F oder
Sent Mail Folder

Tasks Folder

----------- ----- - -----

Items

Actions Property
Attachments Property

Form Description
Property

Pages Property
Recipients Property
Recurrence Pattern

Property Poete
User Properties Properties

Figure 3 - 1 Microsoft Outlook Object Model

Appointment Item
Contact Item
Journal Item

Mail Item
Meeting Request Item

Note Item
Post Item

Remote Item
Report Item
Task Item

Task Request Item

In the Outlook object model, the Application object contains the

NameSpace object, which contains MAPIFolder objects that represent all the

available folders in a given data source (for example a MAPI message store). The

MAPIFolder objects contain objects that represent all the Outlook items in the

data source, and each item contains some useful property objects for controlling

that item. In addition, there is an Explorer object associated with each folder and

an Inspector object associated with each item.

23

NameSpace

Application Object

The Application object is "the root object of the object model; it gives

easy access to all the other objects in the model."2 It gives direct access to the

objects that represent the Outlook interface (the Explorer and the Inspector

objects).

NameSpace Object

"The NameSpace object can represent any recognized data source, such as

a MAPI message store. The object itself provides methods for logging in and out,

returning objects directly by ID, returning default folders directly, and gaining

access to data sources owned by other users."21

Folder Objects

The Folders collection contains all the MAPIFolder objects in the

specified message store (or other recognized data source) or in a folder in that

message store. The first time a user runs Outlook, some default folders are

created. Each folder contains items of the same type. Default folders include the

Calender, Contacts, Deleted Items, Inbox, Journal, Notes, Outbox, Sent Mail, and

Tasks folder. Outlook also allows users to create further folders.2 2

* The Calender folder contains all Appointment Item objects.

" The Contacts folder contains all Contact Item objects.

" The Deleted Items folder is the storage area in which all item objects are

placed when they have been deleted. The application has options that allow

the user to retain these items indefinitely, archive them after a user defined

period of time or purge them when the application is closed.

" The Inbox folder contains all Mail Item objects.

" The Journal folder contains all Journal Item objects.

* The Notes folder contains all Note Item objects.

24

" The Outbox folder is the storage area for items that are completed but not

sent.

* The Sent Mail folder is the storage area in which copies of user generated

Mail Item objects are moved when they are sent.

* The Tasks folder contains all Task Item objects.

Item Objects

The Items collection of a MAPIFolder object contains the objects that

represent all the Outlook items in the specified folder. An Outlook Item can be

one of several Outlook item object types. Outlook item objects include the

Appointment Item, Contact Item, Journal Item, Mail Item, Meeting Request Item,

Note Item, Post Item, Remote Item, Report Item, Task Item, and Task Request

Item objects.

* The Appointment Item objects represent an appointment in a Calender folder.

An Appointment Item object can represent either a one time or recurring

meeting or appointment.

* The Contact Item objects represent a contact in a Contacts folder. A contact

can represent any person with whom the user has any personal or professional

contact.

" The Journal Item objects represent a journal entry in a Journal folder. A

journal entry represents a record of all Outlook moderated transactions for any

given period of time.

" The Mail Item objects represent a mail message in the Inbox folder or another

mail folder. The Mail Item is the default item object and to some extent the

basic element of Outlook.

" The Meeting Request Item objects represent a change to the recipient's

Calender folder, initiated either by another party or as a result of a group

action.

25

* The Note Item objects represent a note (an annotation attached to a document)

in a Notes folder.

* The Post Item objects represent a post in a public folder that other users can

browse. This object has all the characteristics of the mail message. This object

is similar to the Mail Item object, except that it is posted or saved rather then

sent or mailed to a recipient.

* The Remote Item objects represent a remote item in the Inbox folder or

another mail folder. This object is similar to the Mail Item object, but it

contains only the Subject, Received, Date, Time, Sender, and Size properties

and the first 256 characters of the body of the message. It gives the user who

is connecting in remote mode enough information to decide whether or not to

download the corresponding message

* The Report Item objects represent a mail delivery report in the Inbox folder or

another mail folder. This object is similar to the Mail Item object and it

contains a report (such as non-delivery report) or error message from the mail

transport system.

* The Task Item objects represent a task in a Tasks folder.

* The Task Request Item objects represent a change to the recipient's task list

initiated either by another party or as a result of a group assignment.

Property Objects

An Outlook item can access the following property objects: Actions,

Attachments, Form Description, Recipients, Recurrence Pattern, and User

Properties. Outlook items can be analyzed or modified by reading or setting its

properties. In addition, every Outlook item can contain other objects that

represent more complex qualities or behaviors of the item. For example, there are

objects that represent the recipients of the item, the files attached to the item, and

the customized pages and controls of the item.2 4

* The Actions property objects represent specialized actions that you can

26

perform on an item.

* The Attachments property objects represent linked or embedded objects

contained in an item.

" The Form Description property objects represent the general properties of the

form of an item.

" The Pages property objects represent the customized pages of an item. Every

Inspector object has a Pages collection whose count is zero if the item has

never been customized before.

" The Recipients property objects represent users or resources in Outlook;

generally recipients are mail message addresses.

* The Recurrence Pattern property objects represent the pattern of incidence or

recurring appointments and tasks for the associated Appointment Item and

Task Item objects.

" The User Properties objects represent the custom fields added to an item in

design time.

Explorer and Inspector Objects

The Explorer object represents the window in which the contents of a

folder are displayed. The Inspector object represents the window in which an

Outlook item is displayed.

3.2 INSTANT MESSENGER MODEL

3.2.1 FEATURES

Presence is a way for finding, getting back, and subscribing to changes in

the status, such as online or offline, of other users. Instant messaging is a way for

sending small, simple messages that are delivered immediately to online users. A

27

presence and instant messaging system allows users to subscribe to each other and

be notified of changes in state, and for users to send each other short instant

messages.

RFC 277826 provides an abstract model for presence and instant

messaging systems. It defines the various entities involved, defines terminology,

and outlines the services provided by the system.

3.2.2 DATA MODEL

RFC 2778 provides a descriptive and universal data model that is, and can

be, used by any instant messengers that are described as presence and instant

messaging services. Instant messenger applications use a database model and map

the RFC 2778 model onto it.

In this section, an overview of the data model, shown in figure 3-2, is

given. The overview includes a description of the services that outlines the core

model entities; a description of the protocols that outlines how these core entities

interconnect; a description of the Principal element and agents that outlines how

user in the real work interact with the core entities; a description of the formats of

Presence Information and Instant Messages; and finally an example of how this

model is used. This model provides a way for understanding, comparing, and

describing Instant Messenger systems that support the services referred to as

presence and instant messaging. Developed instant messenger applications rarely

have all the entities described in this model. However, each instant messenger

database model will contain entities that encompass two or more elements of this

model grouped in different ways.

28

Principal

User kgeIS

Sendef

Instant Message

Instant Messa:ge Service

Imbox U A
Sender U A
Presence L A
Watcher L A

Fetcer Wt PesenityInstant Inbox
Poler e Fetche i Pr s niyInstant Inbox A dress

Presence Inrfo
Presene Servie" Status

Comn- Address

status Communication Address

Oper Conmmunication Means
Closec Contact Address
Other

Communication Means CnatAde:

Instant Message Service Cotc drs

Instant Inbox

Figure 3 - 2 IM Model

Services

This model identifies two services: a Presence Service and an Instant

Message Service. The Presence Service accepts, stores, and distributes

information. This information stored is called Presence Information. The

Presence Service has two types of clients: the Presentities and the Watchers.

Developed instant messenger applications often combine these two entities into

one.

Presentity (presence entity) provides Presence Information to the

Presence Service to be stored and distributed. Watcher receives Presence

Information about Presentity from the Presence Service. A Watcher can also

29

receive Watcher Information about another Watcher. Watcher Information is

information about Watchers that have received Presence Information about a

particular Presentity.

There are two kinds of Watchers, called Fetchers and Subscribers. A

Fetcher asks the Presence Service to forward the Presence Information of one or

more Presentities. A Fetcher that requests Presence Information on a regular

basis is called a Poller. A Subscriber asks the Presence Service to notify it

immediately of any changes in the Presence Information of one or more

Presentities. Changes to Presence Information are distributed to Subscribers via

Notifications.

The Instant Message Service accepts and delivers Instant Messages to

Instant Inboxes. The Instant Message Service also has two types of clients: the

Senders and the Instant Inboxes. A Sender provides Instant Messages to the

Instant Message Service for delivery. Each Instant Message is addressed to a

particular Instant Inbox Address, and the Instant Message Service delivers the

message to a corresponding Instant Inbox.

Protocols

This model supports two types of protocols: the Presence Protocol and the

Instant Message Protocol. A Presence Protocol is the messages that can be

exchanged between Presentity and the Presence Service or between the Watcher

and the Presence Service. The messages carried by the Presence Protocol are the

Presence Information. An Instant Message Protocol is the messages that can be

exchanged between the Sender and the Instant Message Service or between the

Instant Inbox and the Instant Message Service. The messages carried by the

Instant Message Protocol are the Instant Messages.

30

Formats for Presence Information and Instant Messages

In this model, the Presence Information consists of a random number of

elements, called Presence Tuples. Each Presence Tuple consists of a Status

marker, which gives information such as Online/Offline/Busy/Away/Do Not

Disturb, an optional Communication Address, and an optional Other Presence

Markup.

Status is defined by the model to have at least two state values Open and

Closed, which determines the acceptance of Instant Messages. Open means

Instant Messages will be accepted, and Closed means Instant Messages will not

be accepted. Open and Closed may also be applicable to other Communication

Means. Open can signify a state meaning available or open for business, while

Closed means unavailable or closed to business. The model allows Status to have

other state values that do not imply anything about Instant Message acceptance.

These other values can be combined with Open (i.e.: Online,Away, Be Right

Back) and Closed (i.e.: Offline,Busy) or can stand independently.

A Communication Address is made up of a Communication Means and a

Contact Address attribute. Communication Means indicates a method whereby

communication can take place. The only type of Communication Means defined

by this model is the Instant Message Service. Contact Address is a specific point

of contact via some Communication Means. The only type of Contact Address

defined by this model is the Instant Inbox Address. However, other possibilities

exist: a Communication Means might indicate some form of telephony, for

example, with the corresponding Contact Address containing a telephone number.

Other Presence Markup is any additional information included in the

Presence Information of a Presentity. This model does not define this any further.

31

An Instant Inbox is a container for Instant Messages. Its Instant Inbox

Address is the information that can is included in Presence Information to define

how an Instant Message should be delivered to that Instant Inbox. Finally, certain

values of the status marker indicate whether Instant Messages will be accepted at

the Instant Inbox.

Principals and Their Agents

This model includes other elements that are useful in illustrating how the

protocols and formats work. The Principal element represents people, groups,

and/or software in the real world outside the instant messenger system that use the

system as a means of organization and communication.

A Principal interacts with the system via one of several user agents: Inbox

User Agent; Sender User Agent; Presence User Agent; Watcher User Agent. A

user agent is simply relating a Principal with a core entity in the system: Instant

Inbox, Sender, Presentity, and Watcher. The Inbox User Agent is a way for a

Principal to manipulate zero or more Instant Inboxes controlled by that Principal.

The Sender User Agent is a way for a Principal to manipulate zero or more

Senders. The Presence User Agent is a way for a Principal to manipulate zero or

more Presentities. The Watcher User Agent is a way for a Principal to manipulate

zero or more Watchers controlled by that Principal. In this model the different

user agents are described separately, however developed instant messenger

applications will combine at least some of them.

Example

Buddy List applications are simple examples of applying this model.

These applications display a user's presence to others, and make it possible to see

the presence of others. Therefore, a buddy list can be described as the

combination of a Presence User Agent and Watcher User Agent for a single

32

Principal, using a single Presentity and a single Subscriber.

Instant messenger applications extend buddy lists to instant messaging. An

instant messenger is a buddy list with additional capabilities for sending and

receiving instant messages. Therefore an instant messenger can be described as

the combination of a Presence User Agent, Watcher User Agent, Inbox User

Agent, and Sender User Agent for a single Principal, using a single Presentity,

single Subscriber, and single Instant Inbox, with the Presentity's Presence

Information including an Instant Inbox Address that leads to the Instant Inbox.

33

- CHAPTER FOUR -

I-LINK - AN INTEGRATED MESSAGING FRAMEWORK

4.1 BACKGROUND ON SOFTWARE DEVELOPMENT PROJECT

Software development is the design and implementation of a new piece of

software application to meet the needs of a certain client or a group of clients. Software

development encompasses the collaboration of a group of developers with different roles

and skills who form a software development team. The software development team is

managed by a project manager to whom developers report; both the project manager and

the development team take on a project appointed through a client.

Project Manager

The project manager is responsible for both the technical and non-technical

direction of a development team. However, a single project manager may work on

multiple projects and, hence oversee different development teams. Therefore, a project

manager may know little about how the development team functions day to day but is

nevertheless responsible for the team's overall performance, progress and product

outcome. The manager's role is to control and supervise each team so that it conforms to

the goals and expectations of the client for the project at hand.

Software Developer

A software development team is made up of developers with diverse roles

including but not limited to: requirement analysts, designers, database administrators,

programmers, architects, support engineers, quality assurance engineers, and testers.

Developers are responsible for technical work. A developer is able to work on more than

one project simultaneously; currently, developers are often expected to finish up technical

work on one project while beginning work on another.

34

Client

A project manager and software development team would not have much purpose

if there was no client for whom software needed to be developed. A client who sets the

goals, expectations, and requirements of the software needed does not necessarily have to

be the final user of the software application.

Thus, the key actors involved in the success of a software development project are

the project manager, software developers, and the client or clients.

4.2 Communication Across a Generic Software Development Project

Naturally, problems of communication and coordination arise with a large group

of people. If there is only one person on a project, work can be performed in any manner

desired because there is no need to communicate or coordinate with anyone else. As the

number of people on a project increases, however, the number of communication paths

and the amount of coordination needed increases. There is a nonlinear relationship

between the number of people and the number of communication pathways, as seen in

figure 4-1.

35

Communication
paths with three

programmers
3

Communication
paths with five
programmers

10

Communication
paths with ten
programmers

45

Figure 4 - 1 Communication Paths on Projects of Various Sizes27

A two person project has only one path of communication. A five

person project has 10 paths. A ten person project has 45 paths,

assuming that every person talks to every other person. The two

percent of projects that have 50 or more programmers have at least

1200 potential paths. The more communication paths that exist, the

more time is spent communicating and the more opportunities there

are for communication mistakes... Large projects call for organizational

practices that formalize and streamline communication. 8

Communication between the three entities of a software development project -

project manager, developers and clients - requires a variety of communication means.

They need to relay project information, questions, and messages; inform of discussions

and decisions; and schedule and plan meetings. These are done either through emails,

instant messages, and blogs; or by sharing documents and files through out the project

pertaining to all phases of design and development of project. All documents are

36

Communication
paths with two
programmers

1

Communication
paths with four
programmers

6

primarily shared via attachments either through email or instant messages or Web sites,

which are very common. Furthermore each entity needs to access, view and often update

common project documents which often lead to documents being placed in a repository

where they can be viewed and updated when required.

Project manager's main form of communication with developers, as well as

clients, is often through the use of email. Email is considered a structured communication

that can easily be referenced. Email is therefore often preferred by a project manager over

non structured communication means such as instant messaging. Since project managers

may work and manage several projects simultaneously, it is rarely effective to use a

separate application for each project.

Developers communicate with the project manager and clients through email;

however, they prefer to communicate with each other through blog postings or through

instant messaging taking advantage of presence and real time communication.

Clients communicate primarily with project managers and occasionally with

developers. Clients are often involved in several projects and their preferred means of

communication is often email. Some clients want weekly/periodic reports or

weekly/periodic meetings, which are also very common.

Ideally communication between the three entities would address the following

concerns:

* Multiple projects require access and maintenance of several repositories.

* Communication between developers over instant messaging and blogs needs to be

logged to keep track of decisions and discussions, as well as email

communications between project managers, developers, and clients.

" Shared documents must be accessible from within different communication

applications.

37

" Desktop displays may become clustered with multiple communication

applications.

* One application should permit managing multiple projects simultaneously.

* Communication means may need to be used for purposes beyond the scope of the

project (i.e. personal communication with friends and family)

4.3 SOFTWARE RECOMMENDATION FOR A SOFTWARE DEVELOPMENT PROJECT

We, a team of M.Eng IT students at MIT, recommend the development of a piece

of software to meet the needs of a software development team encompassed by project

management and communication organization. This can be achieved by bringing together

the components of the various communication media used and by facilitating and

centralizing retrieval of project information for all members involved. The recommended

software that we have designed provides both an intelligent client application - named i-

LINK - and an Integrated Messaging Framework (IMF).

4.3.1 I-LINK

i-LINK, a windows application, allows emails, instant messages, blogs,

and files/documents to be sent, received, and shared between users. i-LINK uses

the Integrated Messaging Framework web services to organize and share

messages, contacts, and media accounts through projects, and uses the IMF

database standard to centralize project information. i-LINK will facilitate

communication and help coordination and organization between the members of

any software development project.

4.3.2 INTEGRATED MESSAGING FRAMEWORK (IMF)

38

The Integrated Messaging Framework is a common messaging format and

a common structure for contacts and addresses that can be accessed through a

variety of client applications. The IMF can be accessed not only through a web-

based or windows-based application (using web services), but also through blog

aggregators (using RSS feeds), or through an email client (using notifications).

Clients use this framework to send, receive, log, and store messages from the

different communication media such as email, blog and instant messaging in one

standard message format. Hence, the use of an IMF database standard acts as a

central information repository. i-LINK works in conjunction with an IMF

implemented in IIS and SQL server.

i-LINK which we have chosen to design using the .NET framework

employs an IMF implemented in IIS and SQL server.

4.3.3 i-LINK REQUIREMENTS

Defining the features and functionalities of the intelligent client, i-LINK,

was based on the previously assessed concerns and needs of project managers,

developers and clients. An analysis of these needs helped shape the i-LINK

requirements, determine the type of data needed, the relationships between the

data and the business rules generated. Ultimately, these help outline the IMF data

model to be designed (Chapter 5). The remainder of this chapter describes the

main requirements i-LINK fulfills.

i-LINK provides a single user interface that acts as unified messaging

system as well as a project organization tool. The i-LINK client functions as an

email system, instant messaging system, and/or blog reader, at the user's choice.

The i-LINK client also provides a simplified view and quick access to all

39

information about messages, files, accounts, and contacts organized and grouped

under projects all from one main page.

4.3.3.1 Messages

i-LINK, using the IMEF, allows for instant chats to be logged and

saved as instant messages. Email messages are sent, received, and saved

as email messages. Blog entry notifications are received and logged as

blog messages. File transfers are logged and saved as file transfer

messages.

i-LINK provides a unified message view by displaying message

headers for all four types of messages on the main page. The i-LINK client

interface displays and organizes message headers in a combination of

ways (All/Inbox/or Outbox combined with All/Email/IM/Blog/or File) as

well as through selection of a specific contact or project from the main

page.

i-LINK further provides a standard message composition and

sending layout for the four types of messages. i-LINK allows the user to

select the medium of communication for each recipient or use the set

preferred medium of the recipient, while still having all communication

accessible from single application and data store. i-LINK also offers an

intelligent message handling feature which applies a user's and recipient's

pre-set communication order preference to transmit message in most

efficient manner. The i-LINK intelligent message handling feature allows

for intelligent sending and receiving of messages, message handling. The

user may set communication accounts in order of preference to be used for

sending messages and to be used by other users of i-LINK in order that

user can also receive message via preferred communication method.

40

i-LINK provides a message search function. Messages can be

searched by specifying one or all of the following four criteria: Project,

Contact, Inbox/Outbox, Message type (email, IM, blog, file).

4.3.3.2 Accounts

A user may configure i-LINK to handle email, instant messaging

and blog entries, including file attachments/transfers. Multiple email, IM

and blog accounts can be handled. A user may configure i-LINK to handle

only a subset of media type accounts, and may continue to use other client

software for the rest.

4.3.3.3 Contacts

i-LINK allows a user to create a contact list that can be easily and

quickly accessed from the main page, allowing for instant view of contact

information as well as instant message composition. There are two types

of contacts in i-LINK: User Contacts and Guest Contacts.

User Contacts are users that have registered and created i-LINK

accounts and have been added as a contact by another i-LINK user in

order to be able to view and share files, messages and other project

information with. A User Contact can be identified through any of their

communication accounts set up with the IMF database. User Contacts that

are added to an i-LINK client are added along with respective

communication addresses and their order preference pre-selected, for use

with the intelligent message handling feature. I-LINK users can further

modify User Contact communication addresses' order preferences. An i-

LINK client can view User Contact information; view the presence status

of a User Contact; commence instant chat and file transfer with User

41

Contacts; and create instant message composition.

Guest Contacts are not users of i-LINK but have been created and

added to a project by an i-LINK user in order to be able to view and share

files, messages and other project information with. i-LINK users can

specify and order Guest Contact communication addresses for use with the

intelligent message handling feature. An i-LINK client can only view

Guest Contact information and create instant message composition.

Contacts may be assigned to several projects and, hence, may be

appear more than once under different projects. If a contact is not assigned

to a specific project, the contact appears under the Main Space project

(default project).

4.3.3.4 Projects

i-LINK allows user to create multiple Projects. A Project is a

shared space to allow for file sharing, and logged message sharing with

authorized contacts. Each Project contains an Accounts, Messages, and

Contacts folder. The Accounts folder includes accounts that have been

configured under this specific Project. The Messages folder contains all

messages that have been sent or received through the Accounts configured

for this Project. The Contacts folder includes all user and Guest Contacts

that are members of this Project.

Each Project also has a Shared Files folder which allows for

document sharing among contacts of Project. Shared Folder items are

organized and displayed by date, subject and file name. When i-LINK user

wishes to share a file, user does not have to send file as attachment

separately to several contacts, but simply places file in the shared folder

42

under a certain project and the project contacts are instantly notified of the

shared file added via i-LINK messages for user contacts or other clients

for guest contacts.

Projects have two types of access, administrator rights are only

granted to creator of Project and member rights granted to all contacts

added to Project by administrator. Both administrator and members can

add other contacts as members to a project; however, only the

administrator can remove a contact. Therefore guest and user contacts can

be automatically added and removed to a user's i-LINK client under a

certain project by another user. The i-LINK user can then decide to view

or hide displaying a certain contact in a Project. An i-LINK use may

decide to unsubscribe from a Project, terminating membership. The

administrator along with the members can further grant or deny other

members access to view and use specific documents and messages.

Projects are further labeled, by the administrator only, as public or private

access to all others to be viewed.

43

- CHAPTER FIVE -

IMF DATA MODEL

The i-LINK client uses the Integrated Messaging Framework (IMF) database

standard. After consideration of the different data model options discussed in Chapter 2

and an examination of the concepts employed in existing messaging standards (i.e.:

MAPI and IM) discussed in Chapter 3, as well as the RFC 2822 email standard and the

29RSS 2.0 blog markup standard , it was decided that the data model to be used for IMF

should be a relational data model as it holds to be the most stable. The relational database

standards are well established by organizations such as the International Standards

Organization (ISO) and the American National Standards Institute (ANSI). There are

many relational database vendors to choose from, including Oracle, Microsoft, IBM, and

Sybase. It is possible to convert between different relational database implementation. It

is easy to define, maintain, and manipulate data with SQL, the Standard Query Language

used to define, query, modify, and control data in a relational database. Finally, the data

is well protected through referential integrity and other constraints.

The i-LINK data model was put in 5 th normal form, providing greater overall

database organization. All redundant data was eliminated. Normalization allowed data

integrity to be easily maintained within the database; made the database and application

design processes much more flexible; and made security easier to manage.

This chapter first describes the role of the six most important data entities: Users,

Contacts, Addresses, AddressAccounts, MessageHeaders, and Project; followed by a

description of the relationships between them and the other entities present in the IMF

data model. Throughout the Figure 5-1 provides an illustration of IMF data entities and

entity relationships.

44

RIK FS IauNm V RCKIARO3SK) PK jrhga VARCHAR(2! N ---- . l

P-.. LMUINT c P--dKK LONGTEX H '
St~~~,KflS Oat DATETIME c M FH2 Ma~ NEE KF ~N~ VAR A(5

VARCHAR(25S) yR Ad,..Te CHARCIC))
Port INTGERDr~sag DATETIME FK) UssNon- ,I ARutAINTEGE

IFVAARCARR(25t)
A~K~~KKIACAI2

PIK SGKJnj INTEGER IMK...Q.AIII.R.K..IPKKK TEE

RK.IPIOIIK DATETIME PM hddam2x CHAR(ICV)CAR(5

FM 1M R J UCAACHI K,%HR25 I Ads~p HR1
PKKI.GACKIIK DATPM FE F S Us a~m(VARCI4AR(25e)

PMat jianarngafrm LognAR(2C)(5

R PK I)*EE ~ lasdAKIKM1.. VARHA(25)
me a *H.. 1KMun~d ese VAARR2S ~ ~ RK~IKL CHAR(25!)

PMnd rt'l INTEGER

cR I~I INTEGER~or KNEE

F~S P..Ktyp V CHAR(S))7

enatt ATET E O)
F141 K MV- . .C ARCHA(21

FK2 AdG Vsrae ACAR2A5 5) MEIK('~K

FFt' PareIr INTEGINEGE

T",~~p'~",IL dAEI .lF PM FMSA JVARCHARH(2S
C KR 142 U&SCHMIIVA$RIkIHARP2V-EKIA-t(2C)

I p ~ ddessjVACHCHAR(S)) BI

Liesesione

Figure 5 - 1 IMF Data Model

45

Conact ITEGR K Add AdrCNyp V HAR(25.

PPK FM* INTEGER

F PiedCyame VCAR(

5.1 USERS ENTITY

All i-LINK registrants are included in the Users entity. User accounts are the i-

LINK access points to the IMF database, which allow registrants to use the IMF web

services to manage messages and project information. However, users can also access the

IMF database through projects using other means, described later in this section.

Users records consist of UserName and Password attributes which allow a user

entry to an i-LINK client. The SessionTimeout attribute in a Users record, dictates the

time span after which a user record is propagated into a UserSessions record, further

discussed in section 5.7.

Users

PK UserName VARCHAR(255)

Password LONGTEXT
FriendlyName VARCHAR(255)
SessionTimeout INTEGER

Figure 5 - 2 Users Entity

Among the six most important entities, the Users entity is related to the Contacts,

AddressAccounts, MessageHeaders, and Project entities, discussed section 5.2, 5.4, 5.5,

and 5.6 respectively. Other entities related to the Users entity include the UserPresence,

UserSessions, SessionLogs, ProjectUsers entities, discussed in section 5.7. Once a Users

record is created, a corresponding UserPresence record is created further discussed in

section 5.7.

5.2 CONTACTS ENTITY

This entity includes user owned and project owned contacts. A Contacts record

includes all relevant information, optionally filled out, constituting the contact profile. A

Users record can further be labeled as Contacts record providing additional profile

46

information for the user.

Figure 5 - 3 Contacts Entity

Among the six most important entities, the Contacts entity is related to the Users

entity described in the previous section. Other entities related to the Contacts entity

include the ContactAddresses and ProjectContacts entities, discussed in section 5.8.

5.3 ADDRESSES ENTITY

This entity defines global address entries. Each Addresses record is described by

an Address attribute, which is the actual address text, and a MediaType attribute, which

can be one of the following types: email, blog, IM, or system.

Addresses

PK Address VARCHAR(255)

FK MediaType VARCHAR(50)

Figure 5 - 4 Addresses Entity

Among the six most important entities, the Addresses entity is related to the

AddressAccounts entity, discussed in next section. Other entities related to the Addresses

entity include the ContactAddresses, MessageAddresses and PartAddresses, discussed in

sections 5.8, 5.9, and 5.9 respectively.

5.4 ADDRESSACCOUNTS ENTITY

47

Contacts

PK ContactiD INTEGER

FK1 UserName VARCHAR(255)
ContactName VARCHAR(255)
Company TEXT(60)
MailingAddress LONGTEXT
FriendlyName VARCHAR(50)

IR M . -: - - - . - - I - -.-- I-.- - --- - -- - - I

This AddressAccounts entity simply defines IMF accounts. An AddressAccounts

record further describes a user's Addresses record by providing additional information

for accessing account servers. An AddressAccounts record contains InboudAddress,

InboundPort, OutboundAddress, OutboundPort attributes in order to provide the location

for the media account server. The Login and Password attributes in an AddressAccounts

record provide the authentication information to access the server. Finally the Priority

attribute holds the user's order preference for the AddressAccounts record in order to be

used during the intelligent message handling feature.

AddressAccounts

PK,FK2 Address VARCHAR(255)

FK1 UserName VARCHAR(255)
FriendlyName VARCHAR(255)
Login VARCHAR(255)
Password VARCHAR(255)
InboundAddress VARCHAR(255)
InboundPort INTEGER
OutboundAddress VARCHAR(255)
OutboundPort INTEGER
Priority INTEGER

Figure 5 - 5 AddressAccounts Entity

Among the six most important entities, the AddressAccounts entity is related to

the Addresses and Users entities discussed in the previous sections. Another entity related

to the AddressAccounts entity is the ProjectAccounts entities, discussed in section 5.10.

5.5 MESSAGEHEADERS ENTITY

Although there is no individual message entity, however messages are the

fundamental components of the IMF database. Messages are any form of data exchange,

these include all emails, instant messages, blog postings, files shared and files transferred.

The MessageHeaders entity simply defines the IMF messages and represents what could

48

......

have been called a message entity. Messages can be exchanged in an IMF project. Each

Message Header record is mainly described by a Subject attribute; a ReceiptDate

attribute; a SendDate attribute; and a MessageType attribute, which can either be a

document or a message.

Messagel-eader

PK MsaID INTEGER

MsgSize INTEGER
Subject VARCHAR(255)
ReceiptDate DATETIME
SendDate DATETIME

FK1 MessageType CHAR(20)
FK2 UserName VARCHAR(255)
FK3 ParentMsglD INTEGER

Inbound BIT

Figure 5 - 6 MessageHeaders Entity

Among the six most important entities, the MessageHeaders entity is related the Users

entity, discussed in section 5.1. Other entities related to the MessageHeaders entity

include MessageAddresses, ProjectMessages and MessageParts, described in section 5.9,

5.11, and 5.11 respectively.

5.6 PROJECTS ENTITY

This entity allows a user to group contacts, accounts, and messages into a shared

space. Project is the element used to share information with contacts, using the i-LINK

client, a blog aggregator, the World Wide Web, or an email account.

A Project record is owned by one registered user, AdminUserName, who is the

creator of the project. Project content is accessible via the web using the OnlineURL

attribute, or via a blog aggregator using the RSSURL attribute. In order to provide privacy

to project content on the web, a project a described as public or private using the

isPrivate attribute. Public means that the project can be accessible without authentication,

49

where as private requires authentication.

Figure 5 - 7 Project Entity

Among the six most important entities, the Project entity is related the Users

entity, discussed in section 5.1. As stated earlier, a project allows a user to organize

accounts and messages and share information with contacts; therefore other entities

related to the Project entity, are the ProjectUsers, ProjectContacts, ProjectAccounts, and

ProjectMessages entities, discussed in sections 5.7, 5.8, 5.10, and 5.11.

5.7 OTHER ENTITIES RELATED TO USERS

The Users entity has a direct one-to-many relationship with the following

previously described entities: Contacts, AddressAccounts, Project, and MessageHeaders.

That is each user can have one or more contacts associated with him/her; each user can

have one or more accounts registered with the system; each user can create and own one

or more projects; and each user can have one or more messages associated with him/her.

The Users entity also has some relationships with the following entities: UserPresence,

UserSessions, SessionLogs, and ProjectUsers. All related entities are shaded in the figure

below.

50

UserSessions

PK FK1 UWserhMu VARCHAR(255)

Starflate DATETIME
LastDate DATETIME
Port INTEGEF
1P VARCHAF(25E)

Sessiontop 00----
PK SessionIC INTEGER c

IP VARCHAF(25)I
Start Das DATETIM

FK1 UserName VARCHAR(251}

L R

MessageHeader

UssrPresenus

PH FK1 LISKNarna VARCHAF(261)

Presence SMALUNI k C
SinceDats DATEMWE cC
Message VARCHAF(25E)_

-- --- ------ -- --- -----
MessageAddressas 00

PK FKH Address VARCHAR(266) IR
PH FK1 Ufso1C INTEGER

PKi AddrsssTyps CIAF(1()
ModifyDate DATETIME
DeleteDate DATETIME
Status VARCHAF(50)

LCC C F

Users

PK UserName VARCHAR(261) C PK CnAdCV R' NTEGEF-- . -- --- -- -- -
Password LONGTEXT FK1 UserNan VARCHAC(251)
FriendlyNasme VARCHAF(25t) ---- ContactNams VARCHA (25t)
SessionTmeou INTEGEF Company TEXT(6C)

MaflngAddrms LONGTEXT
FriendyName VARCHAF (SC)

CR

Addressee

PH PK Ad VARCHAR(254)

PH1 Med aTypt VARCHAR(IM)

PK FH2 1 fAckr VARCHA (25E)
FKI UserName VARCHAF (25f)

FnendlyNamie VARCHAF(25e)
Logir VARCHAR(2U)
Password VARCHAS(2N4)
InboundAddress VARCHAF (25,)
InboundPort INTEGEF
OutoundAddress VARCHAF (25t)PH INdTEGER IOutboUndPorl INTEGEF

MagSize INTEGEF Messae esTyps iNTEGE
Subject VARCHAF (25f)
ReceiptDate DATETIME PH Addre5I5554 CHAF(1)
SendDate DATETIME

FKI MessageType CHAR(20)
FK2 UserName VARCHAF (25f)
FK3 ParentMagIC INTEGEF R

Inbouns BI R ProjectUsers

C PK FK1 ProiectIC VARCHAR(256)
c ProtAocounts """ PKFK Usamrfim VARCHAR(2s5)

P KFKI Addres VARCHAF(259) So I
PK FK. ProHectIC VARCHAF(256)

Message Types
PK CHAF (20)

- ~Projedt
PKgdesae ..,. ctI .ARCHAAR R

I C PK FK1 Msgo1, INTEGER FK1 AdmninUserNamne VARCHAR(255)
I C PK FK' ProiectIC VARCHAR(251) 100| Onhin*URL CHAR(10)

--..... , .I. C RSSURL VAR CHAF (25!)
PublishDatt DATETIME I C FriendlyName CHAR(10)
Note VARCHAF(25-) IsPrrvate BIT

EIZZdiaIZ1
PM M VARCHAR(60)

'S

C'

Figure 5 - 8 Entities Related to Users

UserPresence

This entity describes a user's status, Presence attribute, and the date and time

since this status has been in effect, SinceDate attribute. The Users entity has a direct one-

to-one relationship with the UserPresence entity. Once a user record is created a user

presence record is created in correspondence. A user can only have one user presence at

any time; however the Presence and SinceDate attributes are altered as the user changes

his/her status while using the client.

Figure 5 - 9 UserPresence Entity

51

UserSessions

This entity describes a session for a user using the system by keeping track of the

Port and IP address attributes for each user. The LastDate attribute represents the last

time the user accessed or did something using the client. The Users entity has a direct

one-to-one relationship with the UserSessions entity. A UserSessions record is created

when a user is actively using the client. A user can only have a one UserSessions record

at any time; however, the LastDate attribute is altered as the user accesses and makes use

of the client.

UserSessions

PK,FK1 UserName VARCHAR(255)

StartDate DATETIME
LastDate DATETIME
Port INTEGER
IP VARCHAR(255)

Figure 5 - 10 UserSessions Entity

SessionLogs

This entity keeps track of what users accessed the system and when. It is a list of

all sessions that have ended or have been timed out. A session is said to be timed out, if it

has been inactive for thirty minutes. The Users entity has a direct one-to-many

relationship with the SessionLogs entity. A SessionLogs record is created once a

UserSessions record is closed or has been timed out. A user can have used and created

one or more sessions, therefore a user will have one ore more SessionLogs records

associated with him/her.

SessionLogs

PK SessioniD INTEGER

IP VARCHAR(255)
StartDate DATETIME
EndDate DATETIME

FKI UserName VARCHAR(255)

Figure 5 - 11 SessionLogs Entity

52

ProjectUsers

This entity is a join entity to implement a many-to-many relationship between the

Users and Project entities. A project can have one or more system users subscribed to it,

and similarly a user can belong to one to more projects. To avoid data redundancy, the

ProjectUsers entity and two one-to-many relationships were created eliminating a direct

relationship between the Users and Project entities.

ProjectUsers

PK,FK1 PojegtID VARCHAR(258)
PKFK2 UserName VARCHAR(255)

Show BIT

Figure 5 - 12 ProjectUsers Entity

5.8 OTHER ENTITIES RELATED TO CONTACTS

As mentioned previously, the Contacts entity has a direct many-to-one

relationship with the Users entity. Additionally, the Contacts entity has some direct

relationships with the following entities: ContactAddresses and ProjectContacts. All

related entities are shaded in the figure below.

53

Users Contacts ContactAddresses

PK UserName VARCHAR(255) PK ContactlD INTEGER PK,FK1 Address VARCHAR(255)

Password LONGTEXT FK1 UserName VARCHAR(255) I
FriendlyName VARCHAR(255) ContactName VARCHAR(255) Prioity INTEGER
SessionTimeout INTEGER Company TEXT(60) IendlyName VARCHAR(2)

MallingAddress LONGTEXT
XFriendlyName VARCHAR(50)uR

d:R

u:c |uk| PK Address VARCHAR(255)

d:C d:FK1 MediaType VARCHAR(50)

AddressAccounts u:R

PKFK2 Address VARCHAR(255) usR

FK1 UserName VARCHAR(255) d:C
FnendlyName VARCHAR(255)
Login VARCHAR(255) AddressRules
Password VARCHAR(255) PK RulelD INTEGERInboundAddress VARCHAR(255)
InboundPort INTEGER FK1 Address VARCIR(255)
OutboundAddress VARCHAR(255) =FM1 ContactIO INTEGER
OutboundPart INTEGER
Priority INTEGER MediaTypes FK2 AddressRuleType CHAR(55)

_____ __________ __________Destination VARCHAR(255)
PK MediaTne VARCHAR(50) Command CHAR(10)

ExecDate DATETIME
Message VARCHAR(255)

uR DeleteSourcoMessage SMALLINT
d:R

U:C

ProjecUsers d:C I

PK,FK1 ProoectlD VARCHAR(255) ProectContects
PK,FK2 Userflame VARCHAR(255) PKFK1 Proectll VARCHAR(256) AddressRleTypes

Show BIT PKFK2 ContactID INTEGER PK AddressRuleTve CHAR(10)
ac U:C Password VARCHAR(10)

u:R u:C
d:C d:C

Figure 5 - 13 Entities Related to Contacts

ContactAddresses

This entity groups the Contacts and Addresses entities into one entity, in order to

allow easier processing. The Contacts entity has a direct one-to-many relationship with

the ContactAddresses entity. A contact can be related to one or more records in the

ContactAddresses entity depending on the number of addresses associated with him/her.

Similarly, an address can be related to one or more Contacts records as well depending on

the number of contacts the address belongs to. The Priority attribute holds the contacts

order preference for the ContactAddresses record in order to be used during the

intelligent message handling feature.

54

Figure 5 - 14 ContactAddresses Entity

ProjectContacts

This entity is a join entity to implement a many-to-many relationship between the

Contacts and Project entities. A project can have one or more contacts subscribed to it,

and similarly a contact can belong to one to more projects. To avoid data redundancy, the

ProjectContacts entity and two one-to-many relationships were created eliminating a

direct relationship between the Contacts and Project entities. Each ProjectContacts record

has a Password attribute; this allows a contact access to the project if that project is

labeled as a private project.

Figure 5 - 15 ProjectContacts Entity

5.9 OTHER ENTITIES RELATED To ADDRESSES

As mentioned previously, the Addresses entity has a direct one-to-many

relationship with the AddressAccounts entity; that is an address can belong to one or

more accounts. The contacts entity also has a direct relationship with the

MessageAddresses entity. Related entities are shaded in the figure below.

55

ContactAddresses

PK,FK1 Address VARCHAR(255)
PK,FK2 ContactiD INTEGER

Priority INTEGER
FriendlyName VARCHAR(255)

MessageAddresses

PK FK3Adss VARCHAR(25!]
PK FK2 MjgJQ INTEGER

FK AddressType CHAT10)
ModifyDate DATETIME
DeleteDate DATETIME
Status VARCHAR(5C)

u C
d C

Figure 5 - 16 Entities Related to Addresses

MessageAddresses

This entity is a join entity to implement a many-to-many relationship between the

Addresses and MessageHeaders entities. An address can be assigned to one or more

messages and similarly a message can have one ore more addresses tagged to it. To avoid

data redundancy, the MessageAddresses entity and two one-to-many relationships were

created eliminating a direct relationship between the Addresses and MessageHeaders

entities. Each MessageAddresses record is defined using an AddressType attribute, which

can be one of the following types: BCC, CC, To, or From.

MessageAddresses

PK,FK3 Address VARCHAR(255)
PK,FK2 MsaID INTEGER

FK1 AddressType CHAR(10)
ModifyDate DATETIME
DeleteDate DATETIME
Status VARCHAR(50)

Figure 5 - 17 MessageAddresses Entity

5.10 OTHER ENTITIES RELATED To ADDRESSACCOUNTS

As mentioned previously, the AddressAccounts entity has a direct many-to-one

relationship with the Users and Addresses entities. Additionally, the AddressAccounts

entity has one further direct relationship with the ProjectAccounts entity. All related

entities are shaded in the figure below.

56

Addresses

PK Address VARCH R(2&A

00u R d PFK MediaType VARCHAR(5C)

d R AddressACCounts

PK FK, - drg VARCHAR(255)

FK' UserNamne VARCHAR(255,
FriendlyNamne VARCHAR(2551,

Passwort VARCHAR(25.4)
InboundAddress VARCRAR(255)
InboundPori INTEGER
OutboundAddress VARCHAR(255)
OutboundPor INTEGER
Pniowit INTEGER

MessageAddresses

PK FK1 Address VARCHAR(25!)
PK FK2 MsgoI INTEGER

FK' AddressType CHAR(10)
ModifyDate DATETIME
DeleteDate DATETIME
Status VARCHAR(5C)

u C
dOC uc

dC

MessageAddressTypes

PK AddressTv e CHAR(10)

u R
d R

ProjectAccounts

PIK FK Address VARCHAR(25f)
PK FK2 ProisjaD VARCHAR(25!)

Users

PIK UserNam VARCHAR(25,) PK

Password LONGTEXT FK'
FriendlyName VARCHAR(255)
SessionTimeout INTEGER

AddressAccounts

PK FK2 Address VA

FK' UserName VA
FriendlyName VA
Login VA
Password VA
InboundAddress VA
InboundPorl INI
OutboundAddress VA
OutboundPorl INT
Priority INT

Addresses

K Pd Address VARCHAR25f]
fdR

d RK* MediaType VARCHAR(6C)

RCHAR(25&) d R

RCHAR(25, }
RCHAR(25M)
RCHAN25!)
RCHAR(2&x)
RCHAR(25!)
EGER

RCHAR(25!)
EGER
EGER Mediaiype

PK MediaTvoe VARCHAR(5C)

ProjectUsers

PK FK' ProiectlD VARCHAR425!)
PK FK2 UserName VARCHAR(25!)

Shos BIT

u R
d C

u C

Figure 5 - 18 Entities Related to AddressAccounts Entity

ProjectAccounts

This entity is a join entity to implement a many-to-many relationship between the

AddressAccounts and Project entities. An account can be added to one or more projects,

and similarly a project can have one or more accounts assigned to it. To avoid data

redundancy, the ProjectAccounts entity and two one-to-many relationships were created

eliminating a direct relationship between the AddressAccounts and Project entities.

Figure 5 - 19 ProjectAccounts Entity

5.11 OTHER ENTITIES RELATED TO MESSAGEHEADERS

57

Contac

ContactC INTEGER

UserName VARCHAR(25!)
ContactName VARCHAR(255)
Company TEXT(6C)
MailingAddress LONGTEXT
FriendlyName VARCHAR(5C)

uc
-44A-Q-

As mentioned previously, the MessageHeaders entity has a direct many-to-one

relationship with the Users entity. Additionally, the MessageHeaders entity has other

direct relationships with the ProjectMessages and MessageParts entities. All related

entities are shaded in the figure below.

UserSessions

PK,FK1 UserName VARCHAR(255)

StartDate DATETIME
LastDate DATETIME
Port INTEGER
IP VARCHAR(255)

rA HAresence

PK,FK1 UserNamne VARCHAR(255)

Presence SMALLINT u:C
SinceDate DATETIME d:C
Message VARCHAR(255)

I
f Users

PK IUserName IVARCHAR(255)

Password LONGTEXT
FriendlyName VARCHAR(255)
SessionTimeout INTEGER

I
d:C

SessionLogs-- 1
u:C

PK Sessionl INTEGER d:C MessageAddresses u:R

P VARCHAR(255) PK,FK3 A ess g VARCHAR(255) d:R
StartDate DATETIME PK,FK2 MsajD INTEGER

EndDate DATET ME FK1 AddressType CHAR(EFKI UserName VARCHAR(255)Mofyae DTTEI

DeleteDate DATETIME
u:R Status VARCHAR(50)

____ _ -d:R I

u:C
MessageHeader d:C u:C

PIK agIQ INTEGER

U sSi- INTEGER Messa eAdress es
Subject VARCHA
ReceiptDate DATETIM
SendDate DATETIM

FK1 MessageType CHAR(20
FK2 UserName VARCHA
FK3 ParentMsgtD INTEGE

inbound BIT

u:C
d:C

MeCsageTypes

PIK MessageTvoe CHAR(20)

R(255)
ME
ME
)

R(255)RT

d

-H-

u:R
d:R

d
ProjectAccounts

PK,FK1 Address VARCHAR(255)
PK,FK2 ProiectDl VARCHAR(255)

d:R

u:R I
d:R I :

d:C

AddressAccotunts

PKFK2 Address VARCHAR(255)

FK1 UserName VARCHAR(255)
FriendlyName VARCHAR(255)
Login VARCHAR(255)
Password VARCHAR(255)
InboundAddress VARCHAR(255)
InboundPort INTEGER
OutboundAddress VARCHAR(255)
OutboundPort INTEGER
Priority INTEGER

u:C ProjectUsers
d PKFK1 ProjectID VARCHAR(255)

PKFK2 UserName VARCHAR(255)

Show BIT

u:R

PKF"
ProjectMessages

d:C PK,FK1 MsaID INTEGER FK1
PK,FK2 ectD VARCHAR(255)

u:C
PublishDate DATETIME d:C
Note VARCHAR(255)

Project

ProiectiD VARCHAR(255)

AdminUserName VARCHAR(255)
OnlineURL CHAR(10)
RSSURL VARCHAR(255)
FriendlyName CHAR(10)
IsPrivate BIT

:C

u:C
d:C

Figure 5 - 20 Entities Related to MessageHeaders

58

MessageParts

PK EPaiID INTEGER

FK1 MsgID INTEGER
FK2 PartType CHAR(20)

Text TEXT(500)
Charset VARCHAR(255)
StorageAddress VARCHAR(255)

Oil ------

bg yp

PK AddressType CHAR(10)

ProjectMessages

This entity is a join entity to implement a many-to-many relationship between the

MessageHeaders and Project entities. A message can be added to one or more projects

and similarly a project can contain one or more messages. To avoid data redundancy, the

ProjectMessages entity and two one-to-many relationships were created eliminating a

direct relationship between the MessageHeaders and Project entities.

ProjectMessages

PK,FKI MsgI INTEGER
PK,FK2 ejgletll VARCHAR(255)

PublishDate DATETIME
Note VARCHAR(255)

Figure 5 - 21 ProjectMessages Entity

MessageParts

This entity describes the content of a message, such as a document file, an image,

or simple text. The MessageHeaders entity has a direct one-to-many relationship with the

MessageParts entity. A MessageHeaders record can have one or more MessageParts

records, defined by the MessagePartType attribute, which can either be a file, image, or

text.

Figure 5 - 22 MessageParts Entity

5.12 OTHER ENTITIES RELATED TO PROJECTS

As mentioned previously, the Project entity has a direct many-to-one relationship

59

MessageParts

PK PartID INTEGER

FK1 MsgiD INTEGER
FK2 PartType CHAR(20)

Text TEXT(500)
Charset VARCHAR(255)
StorageAddress VARCHAR(255)

with the Users entity; and a direct relationship with the ProjectContacts, ProjectUsers,

ProjectAccounts, and ProjectMessages entities. All related entities are shaded in the

figure below.

UserPresence

PK,FK1 UserName VARCHAR(255)

Presence SMALLINT u:C
SinceDate DATETIME d:C
Message VARCHAR(255)

MessageAddresses

PK,FK3 Address VARCHAR(255)
PK,FK2 Msg[D INTEGER

FK1 AddressType CHAR(10)
ModifyDate DATETIME
DeleteDate DATETIME
Status VARCHAR(50)

u:C
d:C u:C

d:C

MossageAddressTypes

PIK AddressType CHAR(10)

u:R
d:R

U:
ProjectAccounts &

PK,FK1 Address VARCHAR(255)
PK,FK2 Projec|D VARCHAR(255)

dR

Users Cortacts
uC

PK UserName VARCHAR(255) d PK ContactiD INTEGER
H---------- -

Password LONGTEXT FK1 UserName VARCHAR(255)
FriendlyName VARCHAR(255) H---- ContactName VARCHAR(255)
SessionTimeout INTEGER Company TEXT(60)

MailingAddress LONGTEXT
FriendlyName VARCHAR(50)

u:C |PIK Address VARCHAR(255)
I I d:R

AddressAccounts

PK,FK2 Address VARCHAR(255)

FK1 UserName VARCHAR(255)
FrendtyName VARCHAR(255)
Login VARCHAR(255)
Password VARCHAR(255)
InboundAddress VARCHAR(255)
InboundPort INTEGER
OutboundAddress VARCHAR(255)
OutboundPort INTEGER
Priority INTEGER

ProjectUsers

PK,FK1 ProlectlD VARCHAR(255)
PK,FK2 UserNamR VARCHAR(255)

Sh:w BIT

IU ui __ _

Project

ProjectMessages PK ProiectID VARCHAR(255)

u:C PKFKI gJQ INTEGER FKI AdmInUserName VARCHAR(255)
PK,FK2 Prolect D VARCHAR(255))O OnflineURL CHAR(10)

u:C RSSURL VARCHAR(255)
PublishDate DATETIME d:C FriendlyName CHAR(10)
Note VARCHAR(255) IsPrivate BIT

FKI MedlaType VARCHAR(50)

u:R
d:R

MediaTypes

PK MediaType VARCHAR(50)

- I ProjectCostacts

PK,FK1 ProlecUD VARCHAR(255)

u:R PK,FK2 Contact i INTEGER
d R Password VARCHAR(10)

u:C
d:C

Figure 5 - 23 Entities Related to Projects

60

d

- CHAPTER SIX -

SUMMARY AND CONCLUSION

6.1 REVIEW

In recognition of the communication and management difficulties particular to a

generic development team a new application - the i-LINK client - was recommended and

was to be supported by an Integrated Messaging Framework (IMEF). The database

development of IMF began by identifying the different types of database models upon

which IiMF may have been built. These four models were: flat-file, relational, object-

oriented, and object-relational. A comparison between these four types led to the

conclusion that the relational database model provided the greatest stability. Furthermore,

the abundance of vendors and the fact that the relational database standard is well

established increased its appropriateness. Finally, the protection and manageability of

data through the relational model secured the decision to utilize it in the development of

the IMF database model.

Another look at data models, this time at published models employed in licensed

applications, aided to conceptualize the formation of the IMF data model. The MAPI

model, currently implemented in Microsoft Outlook, was discussed. An understanding of

the objects it employs and their relationships ensued. The MAPI model provided a

conceptual framework upon which the repository storage ability of IMF was to be

developed. Similarly, the IM model - employed by a variety of today's instant

messengers - outlined a series of entities. These entities, and their relationships, were

analyzed for later use in providing presence and instant messaging services in the i-LINK

client.

At such a point, design of the IMF data model was virtually able to be begun.

However, an analysis of a generic software development team was needed to finalize the

61

specific requirements of the recommended software - the i-LINK client. The

requirements discovered from this analysis were loosely subdivided into four categories:

messages, accounts, contacts and projects.

The IMF data model implemented by i-LINK was, hence, provided. Within the

discussion of the data model was a detailed analysis of all the entities created. These

entities were conceptually distinguished as main entities and entities that relate to these

main entities.

6.2 COMPARISONS

As previously stated, the IMF data model (Chapter 5) took form based on the

analysis and study of two data models: IM and MAPI (Chapter 3). However, both models

were inadequate in providing a data model framework sufficient to meet the requirements

established for i-LINK (Chapter 4). Therefore, several entities in the IMF data model

were created that go beyond both the IM and MAPI data model frameworks. The

following sections explain how the concepts of the MAPI data model framework and the

elements of the IM data model framework were used within the IMF data model.

Furthermore, additional entities that will be implemented at a later date, and, hence, have

been removed from the analysis of the IMF data model, are outlined and defined.

6.2.1 IMF DATA MODEL: MAPI CONSIDERATIONS

As previously described, i-LINK provides an email messaging service and

hence uses a MAPI message store similar to Microsoft Outlook. However, the

Microsoft Outlook MAPI data model (Chapter 3), shown in figure 6-1, includes

not only an email messaging service but also a variety of personal information

management services that i-LINK does not implement at this time, including:

calendar, journal and task services. Therefore the framework of the MAPI data

62

model is not fully used within the IMF data model. Therefore, discussed in this

section are the main concepts of the MAPI data model that were used in the IMF

data model. While concepts discussed may reference a specific folder, item or

property object, within the context of the following discussion these concepts are

meant to incorporate all folders, items and properties related to that reference.

Application

Explorer

Calendar Folder
Contacts Folder

Deleted Items Folder
Inbox Folder

Journal Folder
Notes Folder

MAPIFolder Outbox Folder
Sent Mail Folder

Tasks Folder

Items

Actions Property
Attachments Property

Form Description
Property

Pages Property
Recipients Property
Recurrence Pattern

Propery Properties
User Properties

Inspector

Appointment Item
Contact Item
Journal Item

Mail Item
Meeting Request item

Note Item
Post Item

Remote Item
Report Item
Task Item

Task Request Item

Figure 6 - 1 MAPI (Microsoft Outlook) Model

The concept Remote Item30 in the MAPI data model is used in the IMF

data model through the MessageHeaders entity, containing the Subject,

ReceiptDate, Size, UserName (which is the sender), giving the user enough

information to decide whether or not to download the message. The Mail Item 31

concept in the MAPI data model is also used in the IMF data model through the

MessageHeaders entity representing all communication messages sent or received

63

NameSpace

and is similarly considered the basic element of IMiF. The concept of

Attachments32 in the MAPI data model is used in the IMF data model through the

MessageParts entity to further describe the content embedded in the

MessageHeader record.

The concept of a Post Item 33 in the MAPI data model is used in the IMF

data model through the Project Messages entity. Project Messages records are

similarly saved and posted into a project, similar to a public folder, in order to be

shared and used by other contacts.

The concept of Contact Item 34 in the MAPI data model is used the IMF

data model through the Contacts entity representing any person with whom the

user has any personal or project related contact relations with.

The concept of Recipients3 5 in the MAPI data model is used in the IMF

data model through the Users and Address Accounts entities. Both users and

accounts represent resources that make use or are used by the i-LINK client.

6.2.2 IMF Data Model: IM Model Considerations

The IMF data model fully maps all the IM data model elements, services

and agents. The IMF data model defines entities that encompass two or more

elements of the IM data model. This section describes how the IM data model

elements, shown in figure 6-2, were used in the IMF data model.

64

Principal

User .genti

Imbox U A
Sender L A
Presence L A
Watcher L A

Fetche;Wa Presentity Instant Inbox

Pole Fetchet Instant Inbox Addres

Presence Info
omenem c''"Status

Comrr Address

Status Communication Address

Oper Conmmunication Means
Closec Contact Address
Other

Communication MeansCnacAdr

Instant Message Service Cotc drs

Instant Inbox

Se

Instant Message

Instant Messa:ge Service

Figure 6 - 2 IM Model

The Users entity is classified as a combination of the Presentities36,

Watchers37 and Senders elements from the IM model. Users of IMF are

classified as presentities because a user can change his/her status, providing the

system with Presence Information. Users are classified as watchers, of type

Fetcher39 because users are instantly notified of any changes in status of any other

user who is classified as a presentity. Finally, users are also classified as senders

because a user provides messages (emails, instant messages, blogs and files) to be

used for the services (email service, an instant messaging service, a blog posting

service, and file transferring service). Also the Users entity is classified as a type

of Principa40 element of the IM model, since users use the system as a means of

organization and communication.

65

The User Presence entity in the IMF data model is classified as the

Status4 element within the Presence Information42 element in the IM model.

Similar to the IM model status marker, the IMF User Presence entity allows for an

Open, Closed, or Other value. In terms of i-LINK, an Open value represents a

status of online, away, be right back, or busy; and Open value means that a user

can accept and initiate instant chat messages and file transfers. A Closed value

represents a status of offline and means that it cannot handle any instant

communication, however can still send all other messages through the i-LINK

client to all other accounts. Finally an Other value can be created by a user and is

represented by the Message attribute in the User Presence entity.

There are two other elements embedded within the Presence Information

element in the IM data model, the Communication Means4 3 and the Contact

Addresses4 4 , that the IMF data model also maps. In the IM data model, the

Communication Means elements represents only instant messaging services,

while in the IMF data model all communication services provided (email service,

an instant messaging service, a blog posting service, and file transferring service)

are classified as Communication Means elements. In the IM data model the

Contact Address element represents only the Instant Inbox Addresses, while in the

IMF data model the Addresses entity includes all addresses and is not limited to

only instant messaging addresses.

The Addresses entity in the IMF data model can be mapped as the Instant

Inbox Addresses element from the IM model because it represents how the user,

in this case acting as a principal, can receive messages into an address account.

The AddressAccounts entity, the entity for accounts in the IMF data

model, is classified as an Instant Inboxes4 5 element from the IM model , because

66

it is considered a receptacle for all messages intended to be read by the users, who

are considered as principals.

The MessageHeaders entity, the entity for messages in the IMF data

model, is classified as an Instant Messages element from the IM model, because it

is considered an identifiable unit of data exchange to be sent to and received from

an Address Account.

6.3 IMF DATA MODEL: FUTURE IMPLEMENTATIONS

Address Rule Entity

This entity provides specific features for processing messages to and from a

contact's address. This entity will be used for providing blocking and forwarding

features. Each Contact Address record can have one or more address rules records,

defined by the AddressRuleType attribute, which can either be block or forward. The

blocking feature blocks a contact's address from sending or receiving messages. The

forwarding feature forwards all messages to and from a contact's address to another

specified address.

AddressRules

PK RuleI0 INTEGER

FK1 Address VARCHAR(255)
FK1 ContactiD INTEGER
FK2 AddressRuleType CHAR(10)

Destination VARCHAR(25E)
Command CHAR(1C)
ExecDate DATETIME
Message VARCHAR(25E)
DeleteSourceMessage SMALLINT

ucr
dC I

AddressRuleTypes

PK AddressRuleTvoe CHAR(10)

Figure 6 - 3 AddressRules Entity and Related Entity

67

Message Rule Entity

This entity provides specific features for sending messages. This entity will be

used to provide delayed sending and event sending features. Each Message Headers

record can have one more message rules records, defined by the MessageRuleType

attribute, which can either be 'delay' or 'event'. The delayed sending feature delays the

dispatch of a message by the server until a certain date. The event sending feature allows

for sending messages between two dates several times. Each Message Record is

described by the TriggerDate attribute which defines that date to send delayed message

or by the StartDate, EndDate, Recurrence attributes which define when to send event

messages and how often.

MessageRules

PK ActivitvlD INTEGER

FK1 MsgID INTEGER
StartDate DATETIME
TriggerDate DATETIME
EndDate DATETIME

FK2 MessageRuleType CHAR(20)
Reccurence VARCHAR(50)
DeleteSource SMALLINT
Priority INTEGER
Action VARCHAR(20)

u:C
d:C

MessageActivityTypes

PK MessaaeActivitvTvDe CHAR(20)

Figure 6 - 4 MessageRules Entity and Related Entity

6.4 CONCLUSION

Bearing in mind the requirements - communicative and managerial - of a

software development team, a software recommendation has been made. This piece of

software, the i-LINK client, has an Integrated Messaging Framework (IMF) that was

68

designed using a relational database model and conceptualized in reference to two

existing standard models. Furthermore, i-LINK, which we have chosen to design using

the .NET framework, employs an IMF implemented in IIS and SQL server.

In conclusion, while i-LINK draws upon the software currently available, its

innovative design allows for an integration of several applications utilized simultaneously

by members of a software development team. It therefore simplifies and improves current

software options in an effort to streamline and improve communication while increasing

the efficiency of project management. It further provides functionalities that are currently

not available on the market and is designed to provide a greater amount of functionalities

in the future.

69

- ENDNOTES -

Day, M.; Rosenberg, J.; Sugano, H. (2000). "RFC 2778 - A Model for Presence and Instant Messaging."

Network Working Group. Retrieved March 3, 2004 from World Wide Web:

http://www.fags.org/rfcs/rfc2778.html

2 Stephens, Ryan K.; Plew, Ronald R. Database Design. Indiana: Sams Publishing, 2001. 41.

3 Ibid.

4 Ibid.

5 Ibid, 45.

6Ibid.

7 Ibid.

8 Ibid, 46.

9 ObjectStore Overview. Annual Report. (n.d.). Retrieved April 7, 2004 from

http://www.progress.com/psc/annual report 2003/objectstore overview/index.ssp

10 Stephens, Ryan K.; Plew, Ronald R. Database Design. Indiana: Sams Publishing, 200146.

" Ibid, 47.

12 Ibid.

13 Ibid.

14 Ibid, 49.

' Ibid.

70

16 Ibid.

"~ Ibid.

18

18 Microsoft Outlook Objects. (1997). Retrieved March 3, 2004 from

http://www.microsoft.com/officedev/articles/OpWO05/005.htm

19 Microsoft Outlook does not employ a database; rather, a C++ binary data stream is used in an

independent file space. The use of C++ programming is what characterizes Outlook as a object

oriented model. Its data storage is not a database but a large binary file containing the various

Objects discussed in this section.

20 Microsoft Outlook Objects. (1997). Retrieved March 3, 2004 from

http://www.microsoft.com/officedev/articles/Opg/005/005.htm

21 Ibid.

22Ibid.

23 Ibid.

24 Ibid.

25 Ibid.

26 Day, M.; Rosenberg, J.; Sugano, H. (2000). "RFC 2778 - A Model for Presence and Instant Messaging."

Network Working Group. Retrieved March 3, 2004 from World Wide Web:

http://www.fags.or2/rfcs/rfc2778.html

27 McConnell, Steve. Rapid Development. Washington: Microsoft Press, 1996. 312.

28 Ibid.

71

29 Dajani, Tarek. Integrated Message Framework: Strategy, Design and Implementation. Unpublished

M.Eng Thesis, Massachusetts Institute of Technology, Cambridge. May, 2004.

30 The Remote Item objects represent a remote item in the Inbox folder or another mail folder. This object

is similar to the Mail Item object, but it contains only the Subject, Received, Date, Time, Sender,

and Size properties and the first 256 characters of the body of the message. It gives the user who is

connecting in remote mode enough information to decide whether or not to download the

corresponding message.

31 The Mail Item objects represent a mail message in the Inbox folder or another mail folder. The Mail Item

is the default item object and to some extent the basic element of Outlook.

32 The Attachments property objects represent linked or embedded objects contained in an item.

33 The Post Item objects represent a post in a public folder that other users can browse. This object has all

the characteristics of the mail message. This object is similar to the Mail Item object, except that it

is posted or saved rather then sent or mailed to a recipient.

3 The Contact Item objects represent a contact in a Contacts folder. A contact can represent any person

with whom the user has any personal or professional contact.

35 The Recipients property objects represent users or resources in Outlook; generally recipients are mail

message addresses.

36 Presentity (presence entity) provides Presence Information to the Presence Service to be stored and

distributed.

37 Watcher receives Presence Information about Presentity from the Presence Service. A Watcher can also

receive Watcher Information about another Watcher.

38 A Sender provides Instant Messages to the Instant Message Service for delivery.

72

39 A Fetcher asks the Presence Service to forward the Presence Information of one or more Presentities.

40 A Principal interacts with the system via one of several user agents.

41 Status is defined by the model to have at least two state values Open and Closed, which determines the

acceptance of Instant Messages.

42 Presence Information consists of a random number of elements, called Presence Tuples. Each Presence

Tuple consists of a Status marker, an optional Communication Address, and an optional Other

Presence Markup.

43 Communication Means indicates a method whereby communication can take place.

44 Contact Address is a specific point of contact via some Communication Means.

45 An Instant Inbox is a container for Instant Messages.

73

- BIBLIOGRAPHY -

" Dajani, Tarek. Integrated Message Framework: Strategy, Design and
Implementation. Unpublished M.Eng Thesis, Massachusetts Institute of
Technology, Cambridge. May, 2004.

m Day, M.; Rosenberg, J.; Sugano, H. (2000). "RFC 2778 - A Model for Presence

and Instant Messaging." Network Working Group. Retrieved March 3, 2004 from

World Wide Web: http://www.faqs.org/rfcs/rfc2778.htm

" McConnell, Steve. Rapid Development. Washington: Microsoft Press, 1996.

m Microsoft Outlook Objects. (1997). Retrieved March 3, 2004 from
http://www.microsoft.com/officedev/articles/Opg/005/005.htm

" ObjectStore Overview. Annual Report. (n.d.). Retrieved April 7, 2004 from
http://www.progress.com/psc/annual report 2003/objectstore overview/index.ssp

" Stephens, Ryan K.; Plew, Ronald R. Database Design. Indiana: Sams Publishing,
2001

74

