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ABSTRACT

This thesis describes the process for retrofitting a building for seismic criteria. It
explains the need for a new, performance-based design code to provide a range
of acceptable building behavior. It then outlines the procedure for retrofitting a
building. This procedure begins with acquiring information about the existing
building and its surroundings. The building owner or client then needs to work
with the design professional to establish an acceptable performance level, or
rehabilitation objective. A rehabilitation method must then be selected that
determines how the building should be analyzed. The analysis of the building,
including suggested rehabilitation strategies, must then be performed. Once the
analysis indicates that the building will perform to its prescribed performance
level, the rehabilitation strategies must then be implemented.

The thesis ends with a description of two buildings that have recently been
retrofitted, or are in the processes of being retrofitted. It gives an overview of the
selected rehabilitation strategies and the reasoning behind their selection.
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1. Introduction

Damage incurred during earthquakes is a concern for society as a whole

in areas of high seismicity, not only in terms of loss of life, but also financially.

The Golcuz-lzmit earthquake in Turkey in 1999 resulted in the loss of over

50,000 lives due to building collapses. These statistics, along with the results of

other earthquakes such as the one that occurred in Taiwan in 1999, have

revealed that buildings 'designed and constructed using codes that are now

known to provide inadequate safety' are potential hazards3. In many urban areas,

the number of buildings constructed prior to 1980 greatly outnumbers those that

are built according to newer, more stringent, codes. The impact of this statistic on

society is great; something must be done to make the older buildings safe or else

human lives are at risk.

The financial impact of bringing older buildings up to current codes can be

devastating as well. If this action, referred to as retrofitting, is not taken, however,

the financial damage resulting from an earthquake can be even more

devastating. For instance, the cost of the damage to buildings caused by the

Northridge earthquake was $15 billion and $7 billion for Loma Prieta9 . Obviously,

there is no easy solution for this problem because there are so many factors that

need to be considered. Additionally, there are many grey areas associated with

retrofitting, such as who is responsible for the costs and what level of

performance is acceptable for buildings. This second question, dealing with

building performance during seismic events, is currently being addressed by

several agencies involved with building code determination and public safety.
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The Federal Emergency Management Agency (FEMA) has developed guidelines

for retrofitting buildings to bring them up to the appropriate level of performance

for seismic events: NEHRP Guidelines for the Seismic Rehabilitation of

Buildings. This paper explores the process outlined in the Guidelines for the

assessment of building deficiencies, the selection of the appropriate rehabilitation

strategies, and the implementation of these strategies through two case studies

of recent retrofitting projects.

Figure 1.1 Damage Due to Northridge Earthquake 14
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2. Argument for a Performance-Based Design Code

In the past, building codes have been based largely on "empirical and

experienced-based conventions"7 . Design analysis was performed for a single

design event level using an equivalent base-shear method. The basis for

analysis was the linear behavior of materials, which is inherently incorrect at

predicting the behavior of the structural elements at their limit states, such as

those experienced by the members during intense seismic events8 . The only

performance level introduced in the code was termed "life-safety", implying that

the only requirement was that the building didn't collapse; the code did not

address the issue of allowable deformations. The result is that although the loss

of life during recent earthquakes, specifically within the US, was minimal, the

financial costs incurred were unacceptable, as can be seen by the cost of the

damage ($15 billion) due to the Northridge earthquake. The result in many cases

is building owners who are disillusioned with their engineers because of

unexpectedly low levels of building performance. When questioned, engineers

find it difficult to justify the design procedure specified in the code. These

financial losses account for a significant portion of the motivation within the

design community to adopt a performance-based building code.

Performance-based engineering is a process in which the owner

establishes a desired level of performance during specified service and seismic

loads. This method is based on the idea that the structural behavior of a building

can be realistically predicted given the spectrum of loading conditions it is likely

to experience. Performance-based design differs from conventional design in
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several ways. At the onset of the project, the owner evaluates the total life-cycle

costs of the facility to justify greater design and construction costs up front. This

approach is well-aligned with the current trend in the construction industry

towards sustainability. Additionally, the process is more scientifically based than

the empirical conventions of the past. It emphasizes the accurate

characterization and prediction of behavior, which requires the use of a higher

level of technology than what was used in the past 2 .

These fundamental changes in the design process are beginning to be

incorporated in the new versions of the traditional building codes. Several

committees have been formed to provide standard procedures for performance-

based design. Vision 2000 (SEAOC 1995) is a project of the Structural Engineers

Association of California with that purpose in mind. The Guidelines and

Commentary for Seismic Rehabilitation of Buildings (ATC 1995) were developed

by the Federal Emergency Management Agency (FEMA) to provide

performance-based recommendations for retrofitting existing buildings. Both of

these projects developed similar standardized performance level definitions,

which are shown in Figure 2.1. It was important that these definitions be

comprehensible to the layperson so that they could understand the level of

performance they were requesting. When making a decision as to the level of

performance of a building, some important parameters to consider include: the

potential loss of life, the cost of repairing the building damage, and the amount of

time the building cannot be occupied due to damage.
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TABLE I
DEFINITONS OF STRUCTURAtL PERFORMANCE

Porforinc Level Deuwnption

NEfHRP Guelines Vision 2000

Operimal Fully Ieaniionral No significat darnlge hoi *ccurrd io strutxnl antd
nom-sruural eomponmntu. Buildinrg is sitable for
nwrmal intendkd occupacy and ue

[mrMdiiatC OperAtional No significtn damage ac imtted to sictute, which
(kCepa1n4cy retains ncady dlI of is pc-eaRthqvaU urcogth and

ndllness. NO,$tlb4eUueal comG11~poncr$ a se md
-=-&-l wauld ftntiom, if ulits- available. Budiig
may be used for inicnd4d purposalbiA in an tnpaired
mode.

Life Safeity Uk Safe inirkxnt dmage to s1rnxural dlerent. with
imbstandal rtcducdn in vifrneu, bowever. marin
remainm against collapse. Mmostructural eemerns at
swared bug. may oot (Pnctin. OcXWp4iCy may bc
plevemed atnc rrpairs eam be inghwed-

Collapse Prevetln Neai Collapse Sabsantial structmal and onstur1 dmag .
SEmctural engih and sdifnes sob-a LiaIly dcrIadod,
Lite mrgin against collapx. Som. falliqn debris
hamzr4 may ave o cv.

Figure 2.1 Structural Performance Levels Identified in New Codes8

Even with these standard definitions, the question still remains of how to

translate these qualitative guides into quantitative information that is practical for

design engineers. For example, a building owner may specify that the facility

should be available for continuous occupancy after an earthquake. The resulting

question is how to convert this request into a limit state for building analysis and

design. As a transition between these qualitative definitions and the actual

performance requirements for the facility design, a series of matrices were also

incorporated in both guidelines that more adequately defined the performance

level of specific building elements based on the previously mentioned

parameters.
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TABlE 2
ACCEPTANCE CRITERIA FOR LWE SAFETY AND COLLAPSE PREVENTION

PERFORMANCE LEVELS'

Perdormancc LsveI Pimary C.mpomnz s&tondLry Component

Lifc Safety 75% 9f the dcformuion a which 100% oio ib d aorn ac
signifeom lo" a lawzteal forcc which Significant 611 of laMrM1
rsting sitmgh occurs focet toising soigih occum

Colapse Ptymiom 75% 9f ihc d4formatim al which 100% of Ibc deformation a
loss of veretal ]tad carrying wtich koss of 1crtWat !Qad
cAp*Cily MCcrMs bui nut W rM cart yin cpaity WC
th"n the d&frrnation 'At which
sigPiwant loss af Ialal for"
_ _ __ tSing sre&g4h occrs

L The ae'pcance cnrcria in.icated apply to buildiugs fot wIbich nonfincar malytcal wihods ase
se to pr4ict componmt demasds. An additioAd rucrion facmo. O*0.75, us appled aainst

Lhee cteplaneC critcria when liar mehods of anadykit art msWd to prodict owoonent

Figure 2.3 Acceptance Criteria 8

To further complicate the design process, owners can request different

performance levels for different grades of seismic events. In the past codes, the

buildings were designed only for the life-safety level during a single, "worst-case"

earthquake. Vision 2000 included an additional matrix to aid designers in

determining how to design for the various levels of design earthquakes. An

important criterion in this matrix is the classification of the facility based on its

function. Three categories are defined: standard occupancy, emergency

response, and safety critical facilities. See Figure 2.4 for the building

performance requirements for the each category during the corresponding

seismic events.
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Figure 2.4 Design Performance Levels 10

The new version of the International Building Code, IBC 2000, has begun

to integrate some of the key elements in performance-based design. For

instance, the code now requires that facilities be categorized using levels similar

to those established in the Vision 2000. These categories have a corresponding

additional factor of safety used in the seismic design procedure. Although the

result is not a specific level of performance, it does imply that critical facilities

must perform at a higher level during earthquakes than standard occupancy

facilities.
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This paper will focus on performance-based design as applied to the

retrofitting of existing structures as outlined in the Guidelines and Commentary

for Seismic Rehabilitation of Buildings.
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3. Overview of Procedure

The Guidelines and Commentary for Seismic Rehabilitation of Buildings

suggest a format for the basic approach to use when retrofitting a building for

seismic concerns. This general procedure begins with obtaining information

about the existing facility. The second step is determining a Rehabilitation

Objective for the building and then selecting a Rehabilitation Method, either the

Simplified Method or the Systematic Method. Using the selected method, an

analysis of the building is then performed, including the suggested retrofit

modifications, to make sure the revised building will perform adequately to meet

current code requirements. If the building performance is satisfactory, the design

should then be implemented (2-1)6.
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4. Acquiring As-Built Information

When performing a seismic retrofit on a building, it is crucial to have an

extensive understanding of the structural system of the building in order to

effectively predict its behavior during an earthquake. There are many ways in

which information regarding the existing structure can be obtained. The first,

most obvious way, is to acquire the original construction documents for the

facility as well as any documentation on previous modifications. However, this

can be difficult for older buildings. These documents should include explicit

details of as-built conditions, number and placement of hidden structural items

such as reinforcing bars and bolts, as well as a set of the specifications.

Performing at least one site visit is required as well. During this visit, the

information on the construction documents (CD's) should be verified. Pictures or

sketches of existing conditions, especially those that differ from the design

indicated on the CD's, should be made. It is also important to understand the

design codes and reference standards upon which the design documents were

based in order to understand the theory behind the intended structural behavior.

Examination and testing, both destructive and non-destructive, should be

performed to verify the material properties of the building components to ensure

accurate modeling. Additionally, interviews with the building owner or tenants, the

architects and engineers of record, and the original contractor, could provide

important supplemental information6 .

Once the necessary information is obtained, the building configuration

should be reviewed. This should incorporate the structural components, meaning
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the gravity and lateral-load resisting systems, as well as the nonstructural

elements. It is necessary to understand the nonstructural elements because they

can contribute to the overall stability of the facility, even though they might not

have been incorporated in the initial strength design. Including the nonstructural

elements in the analytical model of the building is one of the ways in which the

Guidelines and Commentary for Seismic Rehabilitation of Buildings differs from

current building codes for new construction. The intended load paths should be

identified and particular notice taken of instances of irregularity in the structural

system because these irregularities are often times the cause of substantial

building damage. These are all necessary considerations for the building

behavior on a global scale, but it is also necessary to consider the individual

element behavior on a local scale6 .

In terms of local structural behavior, it is important to verify the material

properties of the individual structural elements. "Component deformation capacity

must be calculated to allow validation of overall element and building

deformations and their acceptability for the selected Rehabilitation Objectives" (2-

25)6. This becomes especially crucial when non-linear analysis techniques are

implemented. The material properties can be verified using destructive or

nondestructive evaluation techniques.

Despite the acquisition of such substantial information regarding the

condition of the existing facility, it is acknowledged that it is impossible to

completely understand the behavior of the building and its individual

components. In response to this fact, the Guidelines established a coefficient, i,
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called the knowledge factor. There are two possible values for K. The first value

of .75 is intended for facilities where only a minimum level of knowledge about

existing conditions is available. When there is a substantial amount of information

available, the value of K is 1.0 6.

In addition to the condition of the building itself, it is also important to

understand its surrounding environment, including the soil characteristics and its

possible interaction with other existing buildings. The characteristics of the soil on

which the building is located can be a very large factor in seismic rehabilitation.

This is because the soil has the capability of magnifying ground motion to very

extreme levels. Hence, if adequate geotechnical data is not available, subsurface

investigations on the site should be performed. If the facility is adjacent to other

buildings, then the interactions between the structures should be understood to

increase the accuracy of the analytical model6.
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5. Specifying a Rehabilitation Objective

A Rehabilitation Objective is the combination of a desired building

performance level and a specified seismic demand. It is up to the owner to

determine the Rehabilitation Objective with the cooperation and the advice of the

design professional. This selection process is the defining characteristic of

performance-based design because it allows the owner to determine the desired

level of performance rather than relying on the life-safety performance category

pre-established in most building codes. The Guidelines defines the Building

Performance Level as the extent of damage to both the structural and

nonstructural components of the building. As such, the overall Building

Performance Level is a combination of a Structural Performance Level and a

Nonstructural Performance Level. There are three discrete Structural

Performance Levels: Immediate Occupancy (S-1), Life Safety (S-3), and

Collapse Prevention (S-5). In addition, there are two Structural Performance

Ranges, Damage Control (S-2) and Limited Safety (S-4), whose requirements

can be determined through interpolation between the Structural Performance

Levels. These are included to provide the owner with a wide range of possible

performance levels. The Nonstructural Performance Levels closely resemble the

Structural Performance Levels and are defined as Operational Performance

Level (N-A), Immediate Occupancy Performance Level (N-B), Life Safety

Performance Level (N-C), Hazards Reduced Performance Range (N-D), and a

fifth level (N-E) which exists when the nonstructural elements are not addressed

in the retrofit process6 .
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There are four combinations of Structural and Nonstructural Performance

Levels that are commonly used as Building Performance Levels. These are

Operational Performance Level (1-A), Immediate Occupancy Performance Level

(1-B), Life Safety Performance Level (3-C), and Collapse Prevention

Performance Level (5-E). Qualitative descriptions of various performance levels

are provided in the Guidelines to guide the owner's decision regarding the

desired performance. These include details about what type of damage to

expect, such as the extent of cracking in the facades and the amount of

permanent drift sustained by the structure during the earthquake. See Figure 5.1

for an example of a typical description of a performance level. To create a

Rehabilitation Objective, a Building Performance Level should be combined with

an Earthquake Hazard Level6 .

Table 2-3 Damage Control and Building Performance Levels

Building Performance Levels

Immediate
Collapse Prevention Life Safety Occupancy Operational
Level Level Level Level

Overall Damage Severe Moderate Light Very Light
General Little residual stiffness Some residual No permanent drift. No permanent drift;

and strength, but load- strength and stiffness Structure structure substantially
bearing columns and left in all stories. substantially retains retains original
walls function. Large Gravity-load-bearing original strength and strength and stiffness.
permanent drifts. elements function. No stiffness. Minor Minor cracking of
Some exits blocked. out-of-plane failure of cracking of facades, facades, partitions,
Infills and unbraced walls or tipping of partitions, and and ceilings as well
parapets failed or at parapets. Some ceilings as well as as structural elements.
incipient failure. permanent drift. structural elements. All systems Important
Building is near Damage to partitions. Elevators can be to normal operation
collapse. Building may be restarted. Fire are functional.

beyond economical protection operable.
repair.

Nonstructural Extensive damage. Falling hazards Equipment and Negligible damage
components mitigated but many contents are generally occurs. Power and

architectural, secure, but may not other utilities are
mechanical, and operate due to available, possibly
electrical systems are mechanical failure or from standby sources.
damaged. lack of utilities.

Comparison with Significantly more Somewhat more Much less damage Much less damage
performance intended damage and greater damage and slightly and lower risk. and lower risk.
for buildings risk. higher risk.
designed, under the
NEHRP Provisions, for
the Design
Earthquake

Figure 5.1 Building Performance Levels 6
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Earthquake Hazard Levels can be established in one of two ways, using a

probabilistic method or a deterministic method. In most areas of the country, it is

more practical to use a probabilistic method using data that is obtained from

recent United States Geological Survey (USGS) national earthquake hazard

maps. In 1996 the USGS developed probabilistic maps for ground motions due to

seismic events corresponding to three chances of exceedance within a set

number of years: a 10% chance in 50 years, a 5% chance in 50 years, 2%

chance in 50 years. The Guidelines added an event corresponding to a 20%

chance of exceedance in 50 years. These four scenarios constitute the

established Earthquake Hazard Levels and correspond to mean return periods of

approximately 75, 225, 500, and 2500 years. The earthquake level with the 2500

year return period is sometimes referred to as the Maximum Considered

Earthquake (MCE); two-thirds of the MCE is prescribed in most building codes as

the required value for seismic design of new buildings (1 -5)6.

For facilities located in close proximity to known faults, a deterministic

method for obtaining an Earthquake Hazard Level is more appropriate. The

deterministic method implies using specific response spectra acquired through

recording ground motions of past seismic events. The result is a more realistic

prediction of ground motion for the specified site. This method must be used if

the Nonlinear Dynamic Procedure is implemented as the analysis method. See

Section 6 for more on analysis methods6 .
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There can be more than one Rehabilitation Objective for each project. For

example, a facility could be required to perform at a collapse prevention level for

the 2500 year return period and at an immediate occupancy level for an

earthquake with a return period of 225 years. Since the Rehabilitation Objective

establishes the design requirements, an analytical evaluation of the retrofitted

building should be performed for each objective. See Figure 5.2 for a table of

possible Rehabilitation Objectives6 .

Table 2-2 Rehabilitation Objectives

Building Performance Levels

E

IL

0

8
C
a

0

I
.0

-J~

C
a
E

?&

-J-J

8

C
0

C
0

C).

500//50 year a b c d
is

20%0//50 year e t g h

BSE-1 k
a- (-100//50 year)

BSE-2 m n 0
I (-2/c/50 year)

k-+ p=BSO
k + p + any of a, e, i, m; or b, f, j, or n = Enhanced Objectives
o = Enhanced Objective
k alone or p alone = Limited Objectives
c, g, d, h = Limited Objectives

Figure 5.2 Rehabilitation Objectives 6
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6. Determining a Rehabilitation Method

Once a decision is made regarding the level of performance desired for

the building, a method must be chosen to by which to analyze the structure. The

Guidelines specify two rehabilitation methods: the Simplified Method and the

Systematic Method.

6.1 The Simplified Method

The Simplified Method is intended for buildings which only need to meet

minimum performance requirements, such as the Limited Rehabilitation

Objectives outlined in the Guidelines. Limited Rehabilitation consists of either a

Partial Rehabilitation in which only a portion of the lateral-force-resisting system

is addressed, rather than the entire structure; or a Reduced Rehabilitation effort

where the entire structure is examined, but not to the extent that the facility

reaches the requirements of the Basic Safety Objective (BSO)(2-6) 6.

The Simplified Method can also be used to obtain the Life Safety

Performance Level for a BSE-1 earthquake provided that the facility meets

certain requirements. The first requirement is that the building conforms to one of

the Model Building Types as well as the specifications concerning number of

stories, regularity, and seismic zone. Additionally, the building must be inspected

according to FEMA 178 (BSSC, 1992) and the Simplified Method addresses all

the deficiencies identified in the evaluation. If all these requirements are not met,

the Systematic Method is necessary (2-28)6.
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6.2 The Systematic Method

The Systematic Method is an iterative process that involves creating a

model of the structure, applying the design solutions to the model, and then

analyzing the structure with the alterations to ensure that the building meets all

the Rehabilitation Objectives. The specific steps are as follows: the first step is to

analyze the existing structure to determine whether it meets the objectives as-is.

If the structure is found to be deficient, one or more rehabilitation strategies are

selected to overcome the deficiencies. A preliminary design is developed that

implements the selected rehabilitation strategies. The structure, together with the

retrofit design, is then reanalyzed. If the analysis indicates that the rehabilitation

strategies are sufficient and the design allows the building to perform in a way

that achieves the Rehabilitation Objectives, the cycle is complete, otherwise

additional rehabilitation strategies are introduced and the rest of the iteration is

completed. This process is repeated until the Rehabilitation Objectives are

achieved (2-28)6.
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7. Performing the Analysis

An analysis of the building must be performed to determine how the

building will react to the prescribed ground motion indicated in the Rehabilitation

Objectives. All elements of the building that are designed to carry either lateral or

gravity loads should be incorporated in the analysis. There are four analysis

methods outlined in the Guidelines: Linear Static Procedure (LSP), Linear

Dynamic Procedure (LDP), Nonlinear Static Procedure (NSP), and Nonlinear

Dynamic Procedure (NDP), which is also known as nonlinear time history

analysis6.

7.1 Linear Procedures

Although linear procedures may be used for most rehabilitation strategy,

the process is limited to very regular buildings. The Guidelines require that there

not be any discontinuities in the lateral-force-resisting system and no interstory

torsional strength irregularities. However, if it can be proven that the demand

placed on the structural elements during the specified earthquake hazard does

not exceed the ductile limit of the member, i.e. the building will behave elastically,

then a linear procedure can still be used. This can be a tedious process and it is

advised that if the building is irregular, a nonlinear procedure is used from the

beginning6.
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7.2 Nonlinear Procedures

Nonlinear procedures are applicable for rehabilitation strategies and for

almost all building types. NSP can be used for all buildings unless they

experience "significant higher-mode response" (2-31 )6. In this case, a LDP

analysis should be included in the procedure. The NDP is a very rigorous

analytical process and therefore must be reviewed by a third-party professional

with extensive knowledge of seismic design and nonlinear procedures. This

process should not be used on wood frame structures or unless a

comprehensive knowledge of the existing structure was acquired (2-31 )6.
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8. Determining Rehabilitation Strategies

Buildings can require rehabilitation on a local or global scale, or both. After

the analysis determines in which ways the facility is deficient, an appropriate

rehabilitation strategy should be selected.

8.1 Local Strategies

Some buildings have sufficient overall lateral-load capacity, but certain

individual members do not have adequate strength, toughness, or deformation

capacity. In such instances, local rehabilitation is all that is required. Local

rehabilitation measures include improvement of connections, member strength,

and/or component deformation capacity. This is often times the most economical

rehabilitation strategy when only a few of the building's components are deficient.

Local strengthening is intended to improve the performance of

understrength elements or connections to enable them to resist the strength

demands determined in the analysis, without changing the structure's response

as a whole. Solutions to these local deficiencies include adding cover plates to

steel beams or columns, providing additional clip angles to strengthen

connections, and adding plywood sheathing to an existing timber diaphragm.

Some corrective measures are intended to increase the allowable deformation of

a component without greatly affecting its strength or stiffness. This can be useful

when it is not desired to change the existing load paths or behavior of the

building system. There have been some relatively recent and innovative

6procedures developed for this purpose
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Concrete structures designed to past codes have shown some

deficiencies during recent seismic events. Occasionally they experience local

failure due to a lack of confinement, insufficient lateral reinforcement, and

inadequate reinforcing splices. To prevent these types of failures, steel or

concrete jackets have been placed around the deficient columns. However, this

method of rehabilitation increases the stiffness of the member, thereby causing it

to attract more seismic loads during an earthquake. A different method of

retrofitting that does not add stiffness to the element is wrapping the column with

individual cable strands which are then prestressed to exert a uniform pressure

on the column section to increase the confinement. This has been shown to

increase the columns strength and ductility mainly due to the additional concrete

confinement and the supplementary shear reinforcing (6)3.

Figure 8.1.1 Structural Collapse Due to Lack of Confinement 4
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Figure 8.1.1 illustrates the failure of a column due to lack of confinement,

which resulted in the collapse of this interstate during the Northridge earthquake

in 1994.

Carbon fiber reinforced plastic (CFRP) is an advanced composite material

with greater strength than steel, but much lighter. It can be applied to the exterior

of concrete members such as columns or beams to increase their strength and

ductility without adding stiffness to the element. The application process is very

simple; it is applied in strips, similar to wallpaper, with the use of an epoxy. An

additional advantage of this product is that it is very corrosion resistant and is

therefore ideal in corrosive environments (5)3.

Figure 8.1.2 Installation of Prefabricated Composite Jacket 4

Figure 8.1.2 is an example of the installation process of a prefabricated

composite jacket. This is a very typical retrofitting technique for highway bridges

in areas of high seismicity. In 1998, more than 3,800 columns on the Yolo

Causeway in Sacramento, CA were retrofitted in this fashion. The result was an
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increase in the bending strength of the column and it raised the ductility by 15%.

The process can also be utilized for columns in buildings4.

Figure 8.1.3 Column Confinement 4

Fiber reinforced cement (FRC) is made of a high strength fiberglass mesh

and a thin layer of fiber reinforced concrete. It is similar to CFRP and can be

applied in the same way. This retrofitting strategy is extremely effective in

improving the seismic performance of unreinforced masonry walls (URMs).

Unreinforced masonry walls are notorious for their poor performance in

earthquakes. There is currently a lot of concern about these because a vast

amount of the structures in the Midwest and also on the West Coast are
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constructed out of URM. These structures are extremely susceptible to brittle

failure and collapse because masonry has very little tensile strength of its own

and is therefore unable to resist the deformations caused by earthquakes.

Applying a layer of FRC to a URM can transform it into a reinforced masonry wall

with substantially higher tensile strength and increased structural performance

during an earthquake (5)3.

Figure 8.1.4 URM Rehabilitated with Reinforcing Fabric 7

Figure 8.1.4 is an example of a research test being conducted on an

URM. The failure load prior to adding the reinforcing fabric was on average 1600

lbs. After the application of the fabric, the failure load increased to 9 kips and the
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mode of failure changed. The bolted connections at the base of the wall failed

rather than the masonry itself. This demonstrates the great effectiveness of fiber

reinforcement7.

8.2 Global Strategies

There are several ways to improve the global performance of a building

during a seismic event, some of them conventional and others more innovative.

Three conventional methods are global structural stiffening, global structural

strengthening, and mass reduction. Passive energy dissipation and base

isolation are two innovative ways of improving the overall seismic performance of

a building.

Global structural stiffening reduces the lateral deformation of a building

during an earthquake. Flexible structures sometimes perform poorly in

earthquakes because they lack the ductility or toughness required to resist the

large lateral deformations that ground shaking can induce in the structural

system. Hence, global structural stiffening is a good rehabilitation strategy for

such buildings. There are several ways to accomplish this; adding shear walls or

constructing new braced frames within the existing structural system are a couple

of examples of how to implement this strategy.

Buildings which exhibit inelastic deformation at very low levels of ground

motion are said to have inadequate strength to resist lateral forces. This can

result in excessive damage to the structural system due to a mild earthquake.

Global structural strengthening is required to mitigate this problem. The addition

of shear walls and braced frames can compensate for the existing structures lack
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of strength. However, these new structural elements can be significantly stiffer

than the existing structure, causing them to attract nearly all of the lateral forces

for the building. They must therefore be designed to resist such loads. Another

alternative is to use moment-resisting frames which are more flexible and more

compatible with the existing structural system. Due to their flexibility, they may

not become effective in the building's response until the existing, more brittle

members have already yielded6 .

Figure 8.2.1 Chevron Bracing 15

Figure 8.2.1 is an example of concentric chevron bracing that was

installed in the Starbucks Headquarters in the SoDo district of Seattle. Seattle is

located near the Nisqually fault. In 1995 the nine-story reinforced concrete slab-

column structure with masonry infill walls was retrofitted to improve its
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performance during earthquakes. On February 28, 2001 the area experienced an

earthquake of magnitude 6.8. These retrofitting strategies probably prevented the

building from experiencing extensive structural damage.

Reducing the mass of a structure can significantly reduce the inertial

forces experienced by the structural system, thereby improving the overall

building performance during an earthquake. This process can be used in lieu of

structural strengthening and stiffening. Methods for reducing a building's mass

include the removal of heavy storage and equipment loads, replacement of

heavy exterior cladding and interior partitions with lighter substitutes, and the

demolition of upper stories.

An important thing to consider when utilizing global strengthening or

stiffening techniques, or mass reduction, is the effect of such measures on the

building's natural frequency. Changing the natural frequency of a building can

significantly alter its behavior during an earthquake. Before implementing these

techniques, past earthquake histories located near the building site should be

analyzed to determine the dominant frequency of the ground motion. If

implementing these rehabilitation strategies results in a natural frequency of the

building that is closer to the dominant frequency of the ground motion, more

innovative design solutions should be reviewed.

Passive energy dissipation, or passive damping, can be a very effective

means of rehabilitating a building on a global scale. Damping can be defined as

"the process by which physical systems such as structures dissipate and absorb

the energy input from external excitations,"(136)5 which are in this case
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earthquake loads. Adding additional elements that are specifically designed to

absorb the earthquake energy reduces the amount of energy that must be

absorbed by the existing structure, thereby increasing the overall performance of

the structure during a seismic event. This can be accomplished through a variety

of damping methods, including viscous damping, frictional damping, and

hysteretic damping.

Viscous damping is the energy dissipation due to the viscosity of the

material and is a function of the time rate of change, or the velocity, of the

corresponding displacement (139)5. Examples of viscous dampers, or dashpots,

are prevalent in everyday life, such as shock absorbers on cars and the cylinders

on screen doors that keep them from slamming shut. Viscous dampers used for

seismic control are basically larger versions of these. A viscous damper is

composed of a piston head and rod surrounded by a viscous fluid. The piston

head is permeated and, as a force is applied to the rod, it pushes the piston head

through the fluid. The fluid reacts by creating a resistive force that is dependent

on the velocity of the motion. This is the mechanism that dissipates the

earthquake energy5.
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Typical viscous damper
Seal Seal Compressible Accumulator

retainersilicone fluid housing

Piston Piston head Control Rod makeup
rod with orifices valve accumulator

Figure 8.2.2 Schematic of a Viscous Damper 5

Friction dampers dissipate energy in a different way than viscous

damping, but similar to the way brake pads work in cars. This type of damping is

a function of displacement rather than velocity, and is of a constant magnitude

that depends on the coefficient of friction inherent in the material. To maximize

the amount of energy dissipation that occurs, special friction pads are used with

very high coefficients of friction. These pads are inserted in bolt-plate

connections at the center of diagonal cross bracing within a structure, as shown

in Figure 8.2.4. Differential drift between stories in a building well cause rotation

in the connection, thus creating the displacement upon which the energy

dissipation is contingent5.
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Typical friction damper

Bolts

Figure 8.2.4 Friction Damper for Cross Bracing 5

Hysteretic damping occurs when there is inelastic deformation of an

element. During seismic events, inelastic deformation of the structural system is

typically considered a very bad thing. However, adding additional structural

members with yield strengths below the yield strength of the existing structural

system can attract the seismic loads and dissipate the earthquake energy

through inelastic deformation, thereby preventing permanent deflection in the

existing structure. Hysteretic dampers are typically located as bracing elements

between existing columns. One design consists of cross-shaped yielding metal

core surrounded by a strong jacket but separated by a spacer material. This

design allows the inner core to yield under separate deformation from the outer

jacket, which must remain intact to prevent buckling5 .

35



Figure 8.2.5 Hysteretic Damper 5

There are several items to take into account when designing a passive

energy dissipation system for building rehabilitation. The plan and vertical

distribution of the selected damping devices must be included in the

mathematical model of the building. The dependence of the devices on excitation

frequency, ambient and operating temperature, velocity, and sustained loads

must be accounted for in the analysis of the model. The effect of changes in the

operating temperature of the device should be taken into special consideration.

The properties of many dampers are generally dependent on ambient

temperature as well as the rise in temperature due to cyclic response or

earthquake excitation. For example, a rise in the temperature of a viscous

damper changes the viscosity of the fluid within the damper, thereby changing its

mechanical properties. Because of this, the analysis should be conducted
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multiple times to observe the effects of the varying mechanical characteristics of

the dampers6 .

Another aspect of the damper design that should be considered when

designing the dampers are the effects of environmental conditions such as the

effects of aging on the mechanical characteristics, creep, exposure to moisture

and damaging substances, and fatigue. Fatigue is an especially important factor

in the design of passive energy dissipation systems. This is true because a

system could use a substantial portion of its energy dissipation capacity due to

low-cycle fatigue caused by frequent subjection to wind forces. Subsequently,

systems designed to dissipate energy in this way must be shown to behave in

the linear elastic range for such wind forces6 .

Unless designed correctly, a passive energy dissipation system can

actually be detrimental to a building system. If the damping system is not capable

of deforming adequately during a large seismic event, it could induce greater

localized stresses in the adjacent structural members, possibly causing building

failure. The Guidelines introduces specifications to prevent this from occurring by

requiring the dissipation devices to be able to sustain larger displacements than

the maxima calculated for the Basic Safety Earthquake 2 (BSE-2), which has a

2% probability of occurring within a 50 year period. The percentage of increased

capacity that is required is dependent on the redundancy of the supplemental

damping system. If there are two or more damping devices per story in each

direction, then the system must be designed for 130% of the calculated BSE-2

displacement or velocity, depending upon which criterion controls the damping
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action. If there are less than two damping devices per story in each direction,

then the capacity must be 200% of the BSE-2 (9-14)6.

The Guidelines require a substantial amount of testing before a passive

dissipation system can be implemented in a rehabilitation design. The testing

must confirm the force-displacement relations and the damping values that were

used in the design of the system. They are also intended to verify the robustness

of the devices during extreme seismic events. Additionally, it is the responsibility

of the engineer of record on the project to establish restrictive acceptance criteria

for the damping devices, outside of which the devices will be rejected. This is

necessary to ensure that the devices will behave as designed during an

earthquake and therefore should be strictly enforced.

An increasingly popular global retrofitting strategy is base isolation. As the

name suggests, base isolation is intended to isolate the structure from the

earthquake-induced ground motion and acceleration, thereby reducing the total

seismic forces experienced by the building system. Unlike a damping system,

base isolation is intended to deflect the earthquake energy, rather than absorbing

it mechanically. Base isolation can be particularly effective when retrofitting

historical buildings because it is not as intrusive into the interior space of a

building; large amounts of additional bracing inside the building or local

strengthening and stiffening of individual members is not required. The

application of base isolation in retrofitting can also be very beneficial if the

contents of a facility are highly sensitive, such as highly sensitive equipment in

hospitals and computer facilities. These "tend to sustain more damage when
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conventional methods of seismic-resistant design are used and which, in many

buildings, are much more costly than the structure itself" 1. The two main

categories of base isolation systems that are used in these and other situations

are elastomeric isolators and sliding isolators.

The first type of base isolation system is a system of elastomeric bearings.

There are several types of elastomeric isolators, including high-damping rubber

bearings (HDR), low-damping rubber bearings (RB), low-damping rubber

bearings with a lead core (LRB), and 'smart' isolators which include some kind of

active or semi-active damping device. With the use one of these base isolation

systems, "the building or structure is decoupled from the horizontal components

of the earthquake ground motion by interposing a layer with low horizontal

stiffness between the structure and the foundation. This layer gives the structure

a fundamental frequency that is much lower than its fixed-base frequency and

also much lower than the predominant frequencies of the ground motion"

Sliding isolators work in a different way. Their purpose is to limit the

transfer of shear between the foundation and superstructure, thereby limiting the

amount of force that is transmitted by the earthquake into the structure. There

are several different types of sliding isolation systems available today. One

system, which has been implemented already in at least three buildings in China,

uses a specially selected sand at the interface to limit the shear transfer. "The

friction pendulum system is a sliding system using a special interfacial material

sliding on stainless steel"1 . Rolling systems are subset of base isolation that fits

within the category of sliding systems. The Guidelines specify that these may be
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flat assemblies or have a conical or curved surface. An example would be a ball

and cone system6 .

There has been a substantial amount of research conducted on base

isolation since the original conception of the idea in 1970's. Originally, the theory

of base isolation was focused on two concepts: heavy damping and frequency

separation 0 . However, these two concepts are not totally independent. In order

to provide substantial damping, a strong connection between the superstructure

and the substructure is required, making it difficult to decouple the action of the

ground and the structure. Subsequently, research has focused on discovering

how and when to apply the appropriate amount of damping. One experiment was

performed using five base isolation systems each with a different type of

damping: two lead-rubber isolators, one designed to withstand moderate ground

motions and the other severe ground motions, a passive linear viscous damper

with 27% of critical damping, an active isolation system, and a smart, or semi-

active, isolation system. The lead-rubber isolators designed for severe ground

motion was able to improve base drift, but resulted in amplified accelerations and

interstory drift. Conversely, the other lead-rubber system did not amplify the

accelerations or interstory drift, but was also not as successful at controlling base

drift. The passive linear viscous damper also did not perform well at controlling

base drifts, but did control absolute accelerations and structural drifts. The smart

damping system was able to control both the base drift with the same

effectiveness as the first lead-rubber system, but without adversely affecting the
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accelerations and interstory drift. This implies that smart damper systems can

18provide protection against the whole range of seismic events

Figure 8.2.6 Elastomeric Base Isolator After Displacement

There are several factors to consider when designing a base isolation

system. The design of the mechanical properties of the base isolators is

dependent on parameters such as the axial loads due to gravity, the rate of

loading, bilateral deformation, temperature, and aging. The Guidelines specify

that these parameters should be used to determine the range of possible values

for the stiffness and the damping of the isolation system. In addition to the

mechanical characteristics of the devices, there are other concerns as well. One

special concern is the ability of the system to deform in order to prevent the

transfer of seismic loads and yet be able to resist the lateral loads induced by

wind without displacing. Another consideration is the stability of the system under
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vertical loads. The original isolators were composed of rubber, which made them

'bouncy' and created vibrational problems in the buildings. Consequently, new

isolators are made with alternating layers of rubber and lead to help control the

vertical deflection of the isolators under gravity loads. Base isolation is still a

relatively new technology and therefore modeling and testing is still an essential

part of the design process.

Although the theory of base isolation predicts reductions in seismic forces

of a magnitude of 5 - 10 times that of the structure without isolation, the actual

performance of structures with such systems has not been so promising in some

cases. As reported earlier in the results of the experiment on damping, some

base isolation systems can amplify the acceleration and interstory displacement

within a building. This can be very detrimental to the contents of the building and

cause great frustration with building owners who thought they were purchasing

this new technology to prevent such damage. During the Northridge earthquake

in 1997, some buildings with base isolation systems recorded maximum

accelerations that were greater than the maximum acceleration of the ground.

Some examples are the LA County Fire Command, with a high-damping rubber

system, with recorded values of .35g compared to ground accelerations of .19g.

The acceleration recorded at the Rockwell International Headquarters was .15g

which is almost two times greater than the .08g recorded for the ground. These

results indicate that there is still a need for additional research on this

rehabilitation strategy".
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9. Implementing Rehabilitation Designs

Two case studies were selected which provide examples of the

implementation of several rehabilitation strategies. The first case study is the

Centro Postal Mecanizado building located in Mexico City. The rehabilitation

methods used for this case are relatively traditional and are performed on a local

and global scale. The second case study is the Utah State Capitol. The methods

used for this project are state of the art, and both local and global.

8.1 Case Study 1 - Centro Postal Mecanizado

The Centro Postal Mecanizado (CPM) building is a five story moment

resisting space frame (MRSF) constructed out of rectangular (mostly square)

reinforced concrete columns and 55 cm thick waffle slabs. The building was

erected in 1970 and during the 1985 Mexico Earthquake it sustained some

structural and non-structural damage. Vitelmo V. Bertero, and his associates at

the University of California at Berkeley, performed an analysis of the most

effective and economically viable solutions for upgrading the structure to resist

future earthquake loads, using both traditional and innovative techniques,

intending to restrict the building's behavior to acceptable elastic and inelastic

levels, respectively.

The initial mathematical analysis of the building revealed that its

fundamental period, T1, was 2.14 s. This period was large for a five story building

for several reasons. The inter-story height of the building was 7.2 m to create

enough space for the postal equipment, and there were also large clear spans
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between the columns, making the inherent stiffness of the building very low.

Additionally, the elastic modulus of the concrete, E,, was relatively low as well.

The mass of the building was high due to the heavy postal equipment. In this

case, the high fundamental period posed a problem because it was dangerously

close to the predominant period of the earthquake's ground motion, Tg, resulting

in a significant amount of energy being inputted into the structural system. There

were three possible remedies for this problem: changing the fundamental period

by (1) increasing the stiffness of the structure, (2) decreasing the mass of the

structure, or (3) a combination of (1) and (2).

The initial retrofitting strategy utilized option (3) while maintaining the

structure's behavior within the elastic bounds. The solution entailed the removal

of the heavy postal equipment and conversion of the facility into a typical office

building while installing a system of diagonal cross-bracing. In addition, the

columns in the braced bays were to be encased with steel jackets to increase

their strength. An analysis of the 3D mathematical model incorporating the new

retrofitting measures revealed that the new fundamental period of the structure

was .60 s, compared to the existing period of 2.14 s. Additionally, the new

bracing elements and the jacketing of the columns increased the lateral stiffness

of the building by a factor of 9. The inter-story drift index of the retrofitted

building, as determined through a time history analysis of the 3D model using the

SCT record, was only 0.1%, which was significantly less than the 0.8% allowed

by the 1985 Mexican Federal District Emergency Code.
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In spite of these positive results, there were also some problems

associated with the proposed retrofitting strategy. The implementation of the

solution required approximately 750 tons of new steel, making it a very expensive

endeavor. In addition, there was some concern about whether the existing

foundations possessed adequate capacity to resist the additionally loads

developed in the jacketed columns. If they didn't, the cost of this design would be

even further prohibitive. It was evident that a more efficient solution was

necessary.

To reduce the amount of additional steel required, an energy-dissipating

strategy was explored. Dissipating the energy of the earthquake would reduce

the total amount of internal forces developed in the columns and transferred to

the foundations. This would ensure that no additional piers would be required,

thereby simplifying the retrofitting process. Three types of energy dissipating

configurations were explored: friction-damped diagonal cross-bracing, chevron

bracing with friction-slip devices, and steel plate energy dissipaters. There were

several problems associated with the friction-damped diagonal cross-bracing.

Tests of the selected "Pall devices" revealed that they experienced significant

out-of-plane vibration due to the concentration of mass at the connection of

relatively slender cross-bracing members and the eccentricity of the devices

themselves. Other issues involved the possible degradation of the friction

material over time and the maintenance of the required level of pressure on the

friction interface. Using chevron bracing with friction-slip devices solved the

problem of out of plane vibration, but the maintenance issues still remained.
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Although extensive research had been conducted on these devices, there were

still uncertainties associated with their use. To avoid these uncertainties, another

system with well-established and reliable mechanical characteristics was

evaluated. The recently developed Added Damping and Stiffness (ADAS)

elements were selected. Tests on these devices revealed that they possessed

the ability to dissipate significant amounts of energy while sustaining extremely

large numbers of yielding reversals without strength or stiffness degradation.

Subsequently, they are ideal for implementation in buildings such as the CPM.

In conclusion, the use of innovative techniques, such as passive energy-

dissipation and base isolation, can significantly reduce the cost of retrofitting. In

many cases these methods will also reduce the intrusiveness of the procedure

on the function of the facility that needs to be maintained. Selecting the most

efficient and cost-effective retrofitting strategy is key to the successful

implementation of the seismic rehabilitation of the structure'.

9.2 Case Study 2 - Utah State Capitol

The Utah State Capitol was built in 1916 using reinforced concrete, which

at that time was considered an innovative design and construction technique.

Because the technique was new, the standards for design and construction were

not fully developed and therefore, by today's standards, the design is

substantially deficient. Specifically, the amount of reinforcing used in the building

is roughly half of what would be required today. This is especially detrimental

from a seismic perspective because the steel reinforcing is what provides the

tensile strength required to prevent collapse during an earthquake. As it stands,
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the building is currently very brittle and hence extremely susceptible to collapse

due to seismic excitation. To make matters worse, the Capitol is located just 1

mile from the Wasatch Fault, which, according to the Utah Geological Survey,

experiences an earthquake with a magnitude of 6.5 to 7.5 approximately every

350 years. Because of its location and the deficiencies of its design, the Utah

State Capitol Preservation Board decided to conduct a $200-million renovation of

the building, which includes a complete seismic retrofit of the building and also

the addition of new four-story extensions to the east and west of the capitol.

Figure 9.1.1 Utah State Capitol 16

As previously stated, the structural system of the building is constructed of

reinforced concrete. The architectural design includes a central dome with a

height of 165 ft. The exterior of the building is a granite cladding fagade backed

47



by unreinforced masonry walls with large parapets made of stone and

unreinforced masonry. This building is essentially a seismic nightmare, including

many of the worst structural components in terms of earthquake behavior.

Testing of the concrete has revealed that the quality of the concrete diminishes

as the building increases in height. The strength of the concrete at the top of the

dome was found to be as low as 250 psi, which is less than 1/ 10 th the modern

standard for concrete strength of 4,000 psi. This is especially bad because at that

height, the earthquake accelerations would be amplified. The exterior of the

building is potentially hazardous as well. The majority of deaths in America due

to earthquakes have not been the result of building collapse, but rather that of

bricks and other cladding falling off of building exteriors and onto people below.

The heavy granite fagade backed by unreinforced masonry has great potential to

cause such tragedies. In addition to the challenges of the structural system, the

fact that building was of historical value and therefore it was important to limit the

affects of the rehabilitation on the appearance of the building was another

important constraint. The retrofitting of this building posed a great challenge to

Reaveley Engineers & Associates, the structural engineering firm chosen for the

project.

The selected rehabilitation procedure includes both local and global

strategies, as well as traditional and innovative techniques. The conclusion

reached after an intensive study of various retrofit alternatives was to implement

a base isolation system at the interface between the foundation and the

superstructure of the building. This approach was selected in order to reduce the
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amount of displacement and acceleration experienced by the building, and

especially the dome. To supplement the base isolation system, a series of new

reinforced concrete shear walls was designed to provide additional stiffness in

the building. The shear walls were to be installed in a symmetrical pattern. They

also aided the engineers in being able to 'tune' the structure in order to maximize

the effectiveness of the base isolation system in limiting the amplifications of the

ground accelerations in the dome.

The engineers worked closely with the architects to select locations for the

shear walls that would be inconspicuous and not detracting from the aesthetics of

the historical facility. In some locations, the existing unreinforced masonry walls

that backed the granite exterior were removed and replaced with the concrete

shear walls. This solved two problems by providing hidden locations for the shear

walls and also creating a more substantial backing to keep the exterior intact

during an earthquake. In places where this was not possible, steel bracing will be

installed to secure both the granite fagade as well as the heavy stone and

masonry parapets. To add ductility and strength to the dome, it will be reinforced

with shotcrete.

The existing foundation of the building, consisting of small, lightly

reinforced concrete footings, was found to be inadequate to support the new

base isolation system. It will therefore be replaced with a new heavily reinforced

concrete mat foundation in a somewhat complicated construction process. The

first step in the process is to create a two-way grid of concrete beams just above

the existing footings. Parts of the foundation mat will then be cast between the
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existing footings. Once these sections of the mat have cured sufficiently, jacks

will be inserted between the existing footings and the foundation mat. Crews will

then remove the remainder of the existing footings and complete the construction

of the mat. The base isolation system, which consists of roughly 280 base

isolators, will be installed on the mat. The type of isolation system has not been

selected, but lead and rubber, high-damping rubber, and friction pendulum

systems are being considered.

As with all retrofit ventures, the construction sequence and duration is

imperative because the facilities which are being renovated typically need to

remain open for business during the process. In the case of the Utah State

Capitol, new and east and west additions will be constructed first. Once they are

completed, the workers will be relocated to the new space while the retrofitting of

the existing building is occurring. This entire construction process is scheduled to

be completed in 20082.
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10. Conclusion

The issue of retrofitting buildings is a very complicated one; it affects many

aspects of society. There are controversies concerning when to make retrofitting

a requirement, to what level must existing buildings be expected to perform, who

should pay for the rehabilitation costs, and what are the best techniques for

retrofitting. It will be a long time before these questions will be answered, and in

many cases it will have to be decided on a case-by-case basis. FEMA has

established a very useful set of guidelines for the assessment and design of

seismic rehabilitation for buildings, but it is still up to society to determine when

and how to implement them. The only certainty is that earthquakes will continue

to occur. It is better to be prepared beforehand than to experience massive

losses, both in terms of lives and economics, in the wake of a seismic event.
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