
Declarative Symbolic Pure-Logic Mo4el Checking

by

Ilya A Shlyakhter

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Computer Science and Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 2005

© Massachusetts Institute of Technology 2005. All rights reserved.

Author ...

Iepartment of Electrical Engineering and Computer Science
January 12, 2005

Certified by.....
Daniel N Jackson

Associate Professor
Thesis Supervisor

Accepted by... ....
Arthur C. Smith

Chairman, Department Committee on Graduate Students

MASSACHU-SETTS INS E
OF TECHNOLOGY

BARKER
MAR 1 4 2005

LIBRARIES



2



Declarative Symbolic Pure-Logic Model Checking

by

Ilya A Shlyakhter

Submitted to the Department of Electrical Engineering and Computer Science
on January 12, 2005, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy in Computer Science and Engineering

Abstract

Model checking, a technique for findings errors in systems, involves building a formal
model that describes possible system behaviors and correctness conditions, and using a tool
to search for model behaviors violating correctness properties. Existing model checkers are
well-suited for analyzing control-intensive algorithms (e.g. network protocols with simple
node state). Many important analyses, however, fall outside the capabilities of existing
model checkers. Examples include checking algorithms with complex state, distributed
algorithms over all network topologies, and highly declarative models.

This thesis addresses the problem of building an efficient model checker that overcomes
these limitations. The work builds on Alloy, a relational modeling language. Previous work
has defined the language and shown that it can be analyzed by translation to SAT. The pri-
mary contributions of this thesis include: a modeling paradigm for describing complex
structures in Alloy; significant improvements in scalability of the analyzer; and improve-
ments in usability of the analyzer via addition of a debugger for overconstraints. Together,
these changes make model-checking practical for important new classes of analyses. While
the work was done in the context of Alloy, some techniques generalize to other verification
tools.

Thesis Supervisor: Daniel N Jackson
Title: Associate Professor

3



4



Acknowledgments

Many people helped make this thesis happen. First of all, I thank my advisor Daniel Jack-

son for getting me interested in formal verification, for giving patient guidance and useful

advice, and for showing me that I can be wrong even when I'm sure I'm right. I thank

my thesis readers, Srini Devadas and David Karger, for their good comments. I thank my

colleagues at CSAIL - Manu Sridharan, Sarfraz Khurshid, Rob Seater, Mana Taghdiri,

Mandana Vaziri and others - for the many good discussions. I thank my family for their

constant support. And I thank Bet' - for teaching me many things, and for being.

5



6



Contents

1 Introduction

1.1 Model checking . . . . . . . . . . . . . . . . . .

1.2 Current model checkers . . . . . . . . . . . . . .

1.3 Alloy Alpha . . . . . . . . . . . . . . . . . . . .

1.4 Limitations of Alloy Alpha . . . . . . . . . . . .

1.5 Contributions of this thesis . . . . . . . . . . . .

1.5.1 Objectification of complex data structures

1.5.2 Pure-logic modeling . . . . . . . . . . .

1.5.3 Debugging of overconstraints . . . . . .

1.5.4 Scalability features . . . . . . . . . . . .

1.5.5 Practical uses of our contributions . . . .

1.5.6 Summary . . . . . . . . . . . . . . . . .

15

. . . . . . . . . . . . 15

. . . . . . . . . . . . 16

. . . . . . . . . . . . 17

. . . . . . . . . . . . 21

. . . . . . . . . . . . 23

. . . . . . . . . . . . 23

. . . . . . . . . . . . 27

. . . . . . . . . . . . 31

. . . . . . . . . . . . 35

. . . . . . . . . . . . 37

. . . . . . . . . . . . 39

2 Pure-Logic Modeling with Alloy

2.1 Core elements of Alloy models . . . . . . . . . . . . . . . . .

2.2 Railway example . . . . . . . . . . . . . . . . . . . . . . . .

2.2.1 The railway domain . . . . . . . . . . . . . . . . . .

2.2.2 Alloy representation of the railway domain . . . . . .

2.2.3 Alloy constraints . . . . . . . . . . . . . . . . . . . .

2.3 Modeling complex structures . . . . . . . . . . . . . . . . . .

2.3.1 Representing complex structure instances with atoms

2.3.2 Signatures . . . . . . . . . . . . . . . . . . . . . . . .

2.3.3 Inheritance . . . . . . . . . . . . . . . . . . . . . . .

43

. . . .. ...... 44

. . . .. ...... 44

. . . .. ...... 45

. . . ...... 46

. . . .. ...... 47

. . . .. ...... 48

. . .... ..... 48

. . .. ....... 49

. . . ...... 50

7



2.3.4 Modeling "logical" complex structures . . . . . . . .

2.3.5 Generality of our complex-structure representation . .

2.4 Modeling system state . . . . . . . . . . . . . . . . . . . . .

2.4.1 Modeling a single copy of system state . . . . . . . .

2.4.2 Modeling several copies of system state . . . . . . . .

2.4.3 Objectifying complex structures . . . . . . . . . . . .

2.4.4 Data abstraction through objectification . . . . . . . .

2.4.5 Fine-grained control over search space size . . . . . .

2.5 Specifying the transition relation . . . . . . . . . . . . . . . .

2.5.1 Constraints arising from physics . . . . . . . . . . . .

2.5.2 Constraints arising from signalling rules . . . . . . . .

2.5.3 Specifying a railway control policy to check . . . . . .

2.6 Invariant preservation testing . . . . . . . . . . . . . . . . . .

2.6.1 Unsatisfiable core analysis: debugging overconstraints

2.6.2 Limitations of invariant preservation testing . . . . . .

2.7 Bounded Model Checking . . . . . . . . . . . . . . . . . . .

2.7.1 The elements of Bounded Model Checking . . . . . .

2.8 Encoding BMC problems in Alloy . . . . . . . . . . . . . . .

2.8.1 General form of BMC constraints in Alloy . . . . . .

2.8.2 Extending the railway example . . . . . . . . . . . . .

2.8.3 Encoding BMC analyses in Alloy: the railway example

2.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . .

51

54

54

55

56

57

58

58

59

60

60

61

61

62

66

68

69

71

71

73

77

82

3 Translation to SAT

3.1 Abstract Constraint Schema (ACS) . . . . . . . . . . . . . . . . . . . . .

3.1.1 Translation . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4 Symmetry breaking

4.1 Symmetries of Alloy models . . . . . . . . . . . . . . . . . . . . . . . .

4.2 Symmetry-breaking predicates . . . . . . . . . . . . . . . . . . . . . . .

4.3 Introduction to the symmetry-breaking problem . . . . . . . . . . . . . .

8

87

88

90

95

96

99

101



4.4 Prior work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.5 Generating symmetry-breaking predicates . . . . . . . . . . . . . . . . . . 104

4.5.1 Acyclic digraphs . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.5.2 Permutations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.5.3 Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.5.4 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.5.5 Relations with only one isomorphism class . . . . . . . . . . . . . 111

4.6 Measuring effectiveness of symmetry-breaking predicates . . . . . . . . . . 112

4.6.1 Acyclic digraphs . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

4.6.2 Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

4.7 Breaking symmetries on Alloy models . . . . . . . . . . . . . . . . . . . . 114

4.8 Experimental measurements . . . . . . . . . . . . . . . . . . . . . . . . . 115

4.9 Conclusion and future work . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5 Exploiting Subformula Sharing in Automatic Analysis of Quantified Formulas 119

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.2 Informal illustration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.3 Detecting and Using Sharing . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.3.1 Abstract Constraint Schema . . . . . . . . . . . . . . . . . . . . . 125

5.3.2 Grounding Out . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

5.3.3 Using Templates to Detect Sharing . . . . . . . . . . . . . . . . . . 127

5.3.4 Detecting Templates . . . . . . . . . . . . . . . . . . . . . . . . . 129

5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

6 Debugging overconstrained declarative models using unsatisfiable cores

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6.2 Example of using unsatisfiable core extraction . . . . . . . . . . . . .

6.3 Computing unsatisfiable cores: informal description . . . . . . . . . .

6.4 Computing unsatisfiable cores: formal description . . . . . . . . . . .

6.4.1 Multi-valued circuits . . . . . . . . . . . . . . . . . . . . . .

137

138

139

141

. . . 145

146

9



6.4.2 Boolean DAGs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

6.4.3 CNF translation of Boolean DAGs . . . . . . . . . . . . . . . . . . 147

6.4.4 Unsatisfiables cores of Boolean DAGs . . . . . . . . . . . . . . . . 148

6.4.5 Translating MVCs to BDAGs . . . . . . . . . . . . . . . . . . . . 149

6.4.6 Determining unsatisfiable cores of MVCs . . . . . . . . . . . . . . 150

6.5 Case study in overconstraint debugging: Iolus . . . . . . . . . . . . . . . . 152

6.6 Performance of overconstraint detection . . . . . . . . . . . . . . . . . . . 153

6.7 Limitations of using unsatisfiable cores for debugging overconstraints . . . 154

7 Conclusion and Future Work 155

A Text of the railway model 159

B Text of the CPUFs model 169

10



List of Figures

1-1 Sample SMV model .................................... 18

1-2 Sample Alloy Alpha model: the Macintosh Finder .............. 20

2-1 Sample instance of the railway model. . . . . . . . . . . . . . . . . . . . . 45

2-2 Relational view of the railway instance in Figure 2-1. . . . . . . . . . . . . 46

2-3 Alloy core constructs: syntax, type rules and semantics. . . . . . . . . . . . 48

2-4 An Alloy instance with heap-like data structures. . . . . . . . . . . . . . . 55

2-5 Debugging of overconstraints: identification of irrelevant constraints. The

figure shows a fragment of the Abstract Syntax Tree of the Alloy model,

with markings indicating which branches (subformulas) are relevant to

showing absence of counterexamples and which are irrelevant. Branches

beginning with "[yes:" are relevant while others are irrelevant. In this case,

TrainsObeySignals and SignalPolicy are identified as irrelevant. . . . . . . 64

2-6 Safety violation: trains collide (relational view). The top figure shows the

pre-state and the bottom figure the post-state. Train.0 moves from Unit_0

onto an unoccupied path in Unit-1, causing a conflict with Train-1 which

resides on another path in Unit-1 .. . . . . . . . . . . . . . . . . . . . . . . 66

2-7 Safety violation: trains collide (physical view). The top figure shows the

pre-state and the bottom figure the post-state. Train 0 moves from Unit 0

onto an unoccupied path in Unit 1, causing a conflict with Train 1 which

resides on another path in Unit 1. . . . . . . . . . . . . . . . . . . . . . . . 67

2-8 BMC analysis: safety property violation (relational view). . . . . . . . . . 79

2-9 BMC analysis: safety property violation (physical view). . . . . . . . . . . 80

11



2-10 BMC analysis: liveness property violation (relational view). . . . . . . . . 82

2-11 BMC analysis: liveness property violation (physical view). . . . . . . . . . 83

4-1 Isomorphic instances, related by the following symmetry: Unit (1,0), Train

(1,0), Route (1,2,0). Relational view. . . . . . . . . . . . . . . . . . . . . . 97

4-2 Isomorphic instances, related by the following symmetry: Unit (1,0), Train

(1,0), Route (1,2,0). Physical view. . . . . . . . . . . . . . . . . . . . . . . 98

5-1 Definition of notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

5-2 Using templates to effect sharing during grounding-out. The DAG on the

right is the grounding-out of the AST on the left. Rounded rectangles indi-

cate quantifier nodes. Nodes A and B match the same template T3 . During

grounding-out, node A for qi = u1 has the same ground form (dotted rec-

tangle) as node B for q2 = U2 , if f5 (U2 , u7) = U1 .. . . . . . . . ..... 128

6-1 Unsatisfiable core - user interface. The lower window shows the unsatisfi-

able core highlighted on the Abstract Syntax Tree, while the upper window

shows the corresponding model text. AST nodes in the unsatisfiable core

are shown in bold italic. The annotation "Irrelevant to unsatisfiability" was

manually added to the figure; the two slanted lines to its left bracket a group

of facts found to be irrelevant to the unsatisfiability proof. . . . . . . . . . . 142

6-2 Translation of an MVC to a Boolean DAG. MVC node values (members

of U) are encoded as 3-bit binary strings. MVC node ni translates to a

sequence of three Boolean DAG nodes bnai, bni2 , bni3 . Translation of n3 is

constructed in terms of translations of its children ni and n 2 , with the help

of auxiliary Boolean nodes bn 34, bn35 and bn 3 6 . . . . . . . . . . . . . . .. 150

12



List of Tables

1.1 Feature comparison of Alloy with other model checkers. . . . . . . . . . . 40

4.1 Values used to measure efficiency of partial symmetry-breaking predicates. 112

4.2 Acyclic digraphs: symmetry-breaking efficiency. . . . . . . . . . . . . . . 113

4.3 Relations: symmetry-breaking efficiency. . . . . . . . . . . . . . . . . . . 114

4.4 Effect of symmetry-breaking predicates on search time. . . . . . . . . . . . 116

5.1 Formula sizes for benchmarks with and without sharing detection. . . . . . 133

5.2 Runtimes for benchmarks with and without sharing detection. All times

are in seconds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

13



14



Chapter 1

Introduction

This thesis contributes a set of techniques for finding errors in systems and algorithms. The

techniques apply in the context of model checking: the user builds a formal model of the

algorithm and its correctness conditions; the space of possible algorithm executions is then

automatically searched for executions violating the correctness conditions. The techniques

enable declarative modeling and analysis of algorithms that manipulate complex, graph-

like data structures. The techniques enable the analysis to scale to realistic examples. The

techniques also enable flexible modeling in which new types of analyses can be realized

by adopting new modeling patterns, rather than by changing the modeling language or the

analysis tool. A prototype implementation of the techniques in the Alloy Analyzer, a model

checker for the Alloy modeling language, is described. The result of the implementation is

a model checker with a combination of features unavailable in other tools.

1.1 Model checking

Model checking [12], a framework for finding errors in algorithms, has gained popularity

in recent years. In model checking, the user creates a formal model of an algorithm and of

its correctness properties. An automatic tool (the model checker) then answers the question

"is there an execution of the algorithm violating a given correctness property?" Because

this question is in general undecidable, the model checker analyzes only instantiations of

the algorithms below some bound (e.g. all executions of an n-process distributed algorithm

15



with up to 10 processes). Within the bound, all or most executions of the algorithm can be

checked.

Model checking has advantages relative to other methods of assuring correctness, such

as testing and theorem proving. Unlike testing, model checking does not require manually

constructing many test cases; the user only needs to construct one model. Model checking

can also provide much better coverage of algorithm executions than testing. Relative to

theorem proving, model checking provides less of a guarantee of correctness since it only

checks bounded instantiations of an algorithm. The advantage of model checking over

theorem proving is that model checking requires much less human effort and mathematical

sophistication. Also, when an algorithm does not satisfy a correctness property, model

checking provides a trace of the algorithm illustrating the violation. Model checking can

be used in conjunction with theorem proving, to help formalize the statements to be proved

and to ensure that they are indeed correct at least on examples of bounded size.

1.2 Current model checkers

In existing model checkers [33, 16, 11], the algorithm to be checked is specified as a finite

state machine (FSM). The user describes the FSM by providing the following elements: the

structure of the FSM's state vector, a specification of the initial state, and a specification

of the transition relation. The FSM state vector is defined as a collection of variables of

primitive type (e.g. integer or enumeration). The initial state is given as an assignment to

the state vector variables. The transition relation is given by specifying formulas for com-

puting the next-state value of each variable from the present-state variable values. Several

FSMs specified in this way can be composed in parallel. Communication between FSMs

is modeled using shared variables [11] or message queues [33].

An example of an SMV model is shown in Figure 1-1. The model represents Peterson's

mutual exclusion algorithm for two processes [66]. It's not necessary to understand the

details of the algorithm; we use it only to illustrate the main elements of SMV modeling.

The state of each of two processes consists of a single enumerated-type variable state.

In addition, there is one global binary variable turn. The state of the entire two-process

16



system thus consists of two enumerated state variables and one binary turn variable.

In the definition of MODULE proc, turn denotes the global variable turn; myturn

denotes the constant identifier of the process (0 or 1); and other. state denotes the

s tat e variable of the other process.

The initial value of state is set to be noncritical by the line

init(state) := noncritical

The following line specifies the transition relation for the state variable, giving the

formulas to compute the next-state value of this variable from the present-state values of

the state variables. For instance, if the present-state value of state is noncritical,

then the next-state value of this variable may be either noncritical or request. The

module proc specifies the behavior of a single process as an FSM; the module main

instantiates two such processes. The transition relation of the two-process system is ob-

tained as a parallel composition of the transition relations of the two individual processes.

A correctness property, specified by the line

AG !(pl.state = critical && p2.state = critical)

states that the two processes are never in their critical sections simultaneously. The

SMV tool can automatically search for system traces violating this property.

1.3 Alloy Alpha

Traditional model checkers are well-suited for analyzing hardware protocols with simple

node state. However, they're hard to apply to model checking problems arising from analy-

sis of software. In these problems, complexity can arise not from the large number of

interleavings of parallel processes but from the complex structure of the state space of a

single process. Moreover, the correctness conditions can be complex topological condi-

tions such as "a heap manipulation preserves acyclicity of the heap", rather than simple

state predicates such as "a process reaches an error state" or "two processes reach critical

section simultaneously". Furthermore, in these problems, the ability to specify operations

17



-- SMV model of Peterson's mutual exclusion algorithm

MODULE proc(turn, myturn, other)

VAR

state : {noncritical, request, enter, critical};

ASSIGN

init(state) noncritical;

next(state)

case

state = noncritical : {noncritical, request};

state = request : enter;

state = enter & (other.state = noncritical turn = myturn) critical;

state = critical : {critical, noncritical};

1 : state;

esac;

next(turn)

case
state = request : !myturn;
1 : turn;

esac;

MODULE main

VAR
turn boolean;

p1 process proc(turn, 0, p
2
);

p2 process proc(turn, 1, p1);

SPEC
-- The two processes are never both critical

AG !(pl.state = critical && p2.state = critical)

Figure 1-1: Sample SMV model

18



declaratively rather than imperatively - by describing the conditions that are true when an

operation occurs, rather than giving an executable recipe for the operation - can be impor-

tant.

To meet these needs, the Alloy language and analyzer were developed [37, 38, 39,

36]. The language is based on first-order relational logic with transitive closure. The

state of the system under analysis is represented as a collection of relations. All analysis

questions are reduced to satisfiability of a first-order logical predicate over these relations.

Several types of analysis are possible: simulation (showing examples of system state, or

of operation execution); checking of invariant preservation (checking whether an execution

of an operation always preserves a given invariant); refinement checking (checking that a

concrete implementation correctly simulates a given abstract operation under a specified

abstraction function). The use of relational logic with transitive closure allows expression

of constraints on graph-like data structures that occur in software systems. The use of

logic also allows declarative specification of operations. Analysis is done by reduction to

Boolean satisfiability.

Figure 1-1 shows an Alloy Alpha model of a simple file system. An Alloy model

consists of three primary parts: basic types, relations, and constraints.

Each basic type defines a set of uninterpreted atoms, used to represent system compo-

nents or primitive values. Basic types are defined in the domain paragraph of the model.

The Finder model has only one basic type (Obj); its atoms represent files and directories.

The number of atoms in each basic type (called the scope) is not built into the model, but

is specified during analysis. The scope determines the space of system instances that can

be represented by the model; for I Obj =5, file system instances containing a total of up

to five files and directories can be represented.

Relations - sets of tuples of basic type atoms - represent the state of the system. Re-

lations are defined in the state paragraph. The Finder model has six unary relations

(drive, trash, File, Folder, Alias and Trashed) and two binary relations (dir

and alias). File and Folder partition all file system objects (Obj atoms) into those

representing files and those representing folders. Some files are aliases pointing to other file

system objects; Obj atoms representing aliases are members of Alias. dir relates each

19



model Finder (
domain (Obj}

state {
disjoint drive, trash : fixed Obj
partition File, Folder: static Obj

dir: Folder ? -> Obj

Alias : File

alias : Alias ->! Obj

Trashed : Obj

inv Standard {
Trashed = trash.*dir
drive not in Trashed
drive + trash in Folder
no (drive + trash).~dir

no o: Obj j o in o.^alias
no o: Obj o in o.^dir

cond TwoLevelFS {some Folder.dir}

op Move (x, to : Obj!)
to not in x.*dir
all o o.alias = o.alias'
all o o != x -> o.dir = o.~dir'
x.~dir' = to.*alias - Alias

Obj' = Obj

// Obj models the set of all file system objects

// drive and trash are distinct individual objects

// objects are partitioned into files and folders

// d.dir is the set of objects inside directory d

// aliases are treated as a subset of files
// a.alias is the object the alias a points to
// set of objects in the trash

//-
//-
//I
//I
//-
//-
//-

//'

//I
//
//-
//-
//I
//

some basic invariants
Trashed is the set of objects contained in the trash
can't trash the drive
drive and trash are folders
drive and trash are both top-level
no cyclic aliasing
no cycles in directory structure

make a file system with at least two levels

Move x to the new folder to
to cannot be a descendant of x
aliases are unchanged
objects distinct from x stay in same place
x's new parent found by following aliases
no objects created or destroyed

assert TrashingWorks { all x, to I Move (x, to) and to in Trashed -> x in Trashed' }

}

Figure 1-2: Sample Alloy Alpha model: the Macintosh Finder

directory to its contents, and alias relates each alias to its target. Singleton sets (unary

relations) drive and trash represent two special folders. Trashed represents the con-

tents of trash, including anything reachable through subfolders. Eached relation has a

primed version; this lets model instances represent operation executions, by representing

system state before and after the operation.

Constraints are used to describe well-formedness requirements, specify operations, and

specify correctness conditions to be checked. Constraints are defined in def, inv, cond,

op and assert paragraphs. The analyzer searches the space of models within the speci-

fied basic type scopes for instances satisfying the given constraints. There are two analysis

modes: simulation and checking. In simulation mode, the tool finds sample instances

of system state satisfying the basic well-formedness conditions (inv) and any additional

conditions (cond); this is used to check consistency of constraints. An operation can also

be simulated; in that case, the analyzer finds a pair of states satisfying the basic well-

20



formedness conditions (inv) and the operation constraints (op) relating pre-state to post-

state. In checking mode, the analyzer searches for a state or state pair satisfying the well-

formedness conditions (inv) and operation constraints (op), but violating an assertion

(assert).

The constraint language is essentially first-order logic with transitive closure. The ex-

pression *dir denotes reflexible transitive closure of dir, trash. *dir denotes the

relational image of the singleton set trash under that closure - i.e. the set of objects

reachable from trash by following arcs of dir. drive + trash denotes relational

union (as sets of tuples) of drive and trash; drive + trash in Folder makes

that union a subset of the unary relation (set) Folder. ~dir denotes the transpose of

the binary relation dir; (drive + trash) . ~dir thus denotes the set of parents of

drive and trash under dir; no (drive + trash) . ~dir makes that set empty.

+alias denotes transitive closure of alias, o. +alias denotes the set of objects reach-

able from o in at least one step via arcs of alias; no o o in o. +alias makes

that set empty, stating that alias is acyclic.

This model illustrates two key characteristics of Alloy. The first is the ability to repre-

sent complex system state, and to express predicates on complex state. The state of a file

system includes graphs representing the directory and aliasing structure, and complex pred-

icates involving transitive closures can be expressed. The second is the ability to specify

operations declaratively. The Move operation is specified by listing constraints between the

pre-state and the post-state, rather than by giving explicit formulas for computing post-state

values of relations from the pre-state.

1.4 Limitations of Alloy Alpha

Alloy Alpha had a number of limitations that limited the range of problems to which it

could be applied. In this section, we give a concise summary of these limitations. In the

next section, we will describe techniques contributed by this thesis for overcoming these

limitations.

1. Alloy Alpha's support for handling complex data structures was limited. It could

21



model system state containing several graphs and relations; but there was no systematic

way to model algorithms manipulating multiple, distinct instances of complex data struc-

tures. You couldn't, for instance, model a distributed algorithm in which the state of each

node included complex data structures and in which nodes exchanged messages containing

complex data structures. There was no systematic support for modeling sets of complex

structures, or tables with complex structures as keys and values.

2. In Alloy Alpha, analyses were limited to those that could be expressed in the form

"find a state or a pair of states satisfying a given condition". A number of commonly

needed analyses do not fit this framework. For example, Bounded Model Checking (BMC)

analyses ask whether there exists a sequence of k states, starting with an initial state and

obeying the transition relation between adjacent states, that illustrates an error [9]. Adding

BMC analyses, or other analyses for which the analyzer was not originally designed, would

require changing the Alloy language and analyzer. Even if support for specific analyses

such as BMC was added, supporting variations of these analyses would require further

changes to the language and the analyzer.

It was possible to "abuse" the original Alloy language to conduct analyses not initially

intended by language designers. For instance, all relations were declared inside a state

paragraph, implying that they represent a single state of the system; and explicit language

support was provided for creating a second copy of state using these relations. All Alloy

Alpha documentation and examples assumed that the relations inside the s tate paragraph

represent system state. However, it was syntactically possible to "cheat" and use these

relations to represent other things - for example, entire traces (i.e. sequences of states).

While this was syntactically possible, as a practical matter this ability was not described

anywhere and thus wasn't useful to Alloy Alpha users.

3. Declarative modeling in Alloy Alpha, while possible, was limited in practice by the

lack of a debugger for overconstraints. Overconstraint is a modeling error that can prevent

the analyzer from finding an error in the modeled algorithm. It occurs when some behaviors

possible in the algorithm are inadvertently ruled out by the model. Declarative modeling

carries a special risk of overconstraint, because an operation is typically described as a

conjunction in which each conjunct rules out some impossible executions. Thus the set of

22



possible executions is specified implicitly, and whether all algorithm behaviors are included

isn't obvious from the specification. In an extreme case, a single conjunct may erroneously

rule out all possible executions; then, the analyzer won't find any error traces because the

model has no traces at all. The possibility of overconstraint reduces confidence in the

analyzer's reports of correctness: are there no counterexamples because the algorithm is

correct, or because the model is overconstrained?

Even if the user suspects overconstraint (e.g. analysis finishes suspiciously quickly on

what should be a large search space), identifying the culprit conjunct is difficult. The lack

of support for debugging overconstraints has been the biggest complaint of Alloy Alpha

users. Being able to debug overconstraints is critical to enabling declarative modeling.

For example, the NuSMV model checker allows declarative specification of transition re-

lations; but the NuSMV manual explicitly discourages the practice because of the risk of

overconstraint, and almost none of the sample models that come with NuSMV use declar-

ative specification [11].

4. Alloy Alpha analyzer didn't scale well. Its translation of Alloy formulas to Boolean

formulas was inefficient, producing large formulas that were hard for SAT solvers.

5. Alloy Alpha didn't take advantage of inherent symmetries in Alloy models.

1.5 Contributions of this thesis

In this section, we describe a set of techniques for overcoming the limitations described in

the previous section.

1.5.1 Objectification of complex data structures

While Alloy Alpha could model systems where the overall system state is described by

graphs and relations, it had no systematic way of modeling multiple, distinct instances of

complex data structures. The need for such modeling occurs frequently in practice. For

instance, in a distributed algorithm for updating network routing tables, the state of each

node and the contents of each message might contain a routing table. A counterexample

23



showing a run of this algorithm on 3 nodes for 2 steps might contain 6 or more distinct

routing tables.

We describe a simple technique, objectification, for modeling multiple complex struc-

tures in Alloy. The technique involves using basic types in a new role. In Alloy Alpha,

basic type atoms are used to represent two things: system elements (files, network nodes)

and primitive values (time points, enumerated type members). We add a third use of basic

type atoms: to represent instances of complex structures used in the solution. 1

As Alloy Alpha has shown, a single complex structure can be represented by a group

of relations. Suppose we want to represent a network routing table. We could use the

following definitions:

domain { Node I
state {

nextHop: Node -> Node, // for each msg destination, the next hop
definedFor: set Node // nodes for which we have routing info

}

nextHop represents routing information: it contains the tuple (ni, nj) iff packets des-

tined for node ni should be routed through node nj. def inedFor represents the set of

nodes for which we have routing information; it contains the tuple (ni) iff we have routing

information for node ni.

Alloy Alpha also showed that informal predicates on the complex structure can be for-

malized naturally and concisely using first-order logic with transitive closure. It's possible

to express properties such as the following:

// definedFor contains exactly the nodes in the domain of nextHop

all n: Node n in definedFor iff some n.nextHop

// there are no routing cycles

all n: Node n !in n.^nextHop

To represent multiple instances of a complex structure, we define a new basic type.

Each atom of this basic type represents a distinct instance of the complex structure. For

each relation representing a component of the structure, we define a new relation by adding

the new basic type as first column. The new relation maps each atom of the new basic type

to the component's value in the corresponding complex structure instance. In the routing

table example, the new definitions would look as follows:

'These "roles" given to basic types are purely in the mind of the modeler; neither the language nor the
analyzer distinguish basic type roles.

24



domain { Node, RTab I
state

rtNextHop: RTab -> Node -> Node,
rtDefinedFor: Rtab -> Node

Each atom of RTab represents a distinct instance of a routing table. If t is a singleton

set containing an RTab atom, then t . rtNextHop (a relation of type Node -> Node)

denotes the routing information of the corresponding routing table. t . rtDef inedFor (a

unary relation of type Node) denotes the set of nodes for which the corresponding routing

table has routing information.

Constraints on an Alloy instance representing a single complex structure can be sys-

tematically rewritten into constraints on the structure instance represented by a given atom.

In our example, assuming t is a singleton set containing an RTab atom, the constraints can

be rewritten as follows:

// t.rtDefinedFor contains exactly the nodes in the domain of t.rtNextHop
fun ConsistentRTab(t: RTab) ( all n: Node n in (t.rtDefinedFor) iff some n. (t.rtNextHop)
// there are no routing cycles
fun AcyclicRouting(t: RTab) { all n: Node n !in n.^(t.rtNextHop) }

Thus, a singleton set containing an atom representing a complex structure instance is

a full-featured representative of that instance: we can write constraints on the value of

the complex structure in terms of the singleton set. 2 The relational image operator lets

us denote the value of the components of the complex structure associated with the given

atom. At the same time, the atom remains a primitive entity without internal structure.

The atom can be part of tuples contained in relational values of other complex structures

instances. This lets the value of one complex structure instance contain references to other

complex structure instances. The full generality of a heap can therefore be represented; in

particular, recursive data structures such a lists and trees - with complex structures as nodes

- can be represented. By contrast, the compound structures representable in SPIN [32] and

SMV [11] can't contain references to instances of other compound structures. Analysis is

therefore limited to structures that can be represented on a C stack.

The total number of possible values of a complex structure can be very high: each

relation-valued component of size m x n contributes a factor of 2mn. In any given Alloy
2The function notation used here is simply a way to define parameterized macros in Alloy; after writing

the above definitions, ConsistentRTab(expr) denotes the body of ConsistentR Tab with t replaced by expr.

25



instance, only a small number of these complex structure values will be represented by

atoms. However, which values are represented is a choice made by the analyzer. The chosen

complex structure values act as a palette from which the instance is constructed. Analysis

can be thought of as searching through all possible palettes of the specified size, and for

each palette, searching through all instances that can be constructed from that palette. In

the routing table example, for I RTab I =k, the analyzer considers all palettes of k routing

table values, and for each palette considers all Alloy instances that can be constructed using

the given k routing table values.

A key feature of the objectification scheme is that existential quantifiers over complex

structures can be expressed using first-order constraints. 3 The constraint "there exists a

complex structure value satisfying constraint X" can be expressed as "there exists an atom

such that its associated complex structure satisfies X". Any instance satisfying the latter

also satisfies the former. This, and the ability to reference complex structure instances from

complex structure values, make it possible to ask "is there a group of mutually referencing

complex structures, satisfying the given constraints?" - where the constraints on a structure

can include constraints on the structures it references.

Signatures

To formalize the view of basic type atoms as representatives of complex structure instances,

the notion of signatures was added to the Alloy language [36, 44]. 4 A signature is a basic

type whose atoms represent complex structure instances, together with a group of relations

with that basic type as first column. The relations define, for each basic type atom, the

value of the complex structure represented by that atom. In the routing table example, the

definitions rewritten using signatures would look as follows:

sig Node { I
sig RTab {

rtNextHop: Node -> Node,

rtDefinedFor: set Node

3This doesn't hold for universal quantifiers over complex structures, but such quantifiers are rarely needed
in modeling.

'Signatures as a language feature are not a contribution of this thesis, but are explained here so we can
use the signature notation in subsequent examples.

26



The signature Node has no fields; this reflects the fact that the atoms of Node represent

primitive entities (node identifiers), rather than complex structures. The signature RTab

has two fields. The field rtNextHop is defined to have relation type Node -> Node;

because it is a field of RTab, RTab is added as the first column of the relation. Thus, the

declaration of the field rtNextHop here defines the same relation, of type

RTab -> Node -> Node, as the earlier declaration of relation rtNextHop. The

signature-based declaration used in Alloy can always be desugared to flat relation dec-

larations used in Alloy Alpha. However, signatures play an important role in structuring

the model and organizing the modeler's thinking. They make explicit the objectification of

complex structures, and bear a useful resemblance to struct declarations in languages

such as C. They also support an inheritance mechanism, which is not covered here but is

explained in Section 2.3.3.

1.5.2 Pure-logic modeling

One important consequence of being able to objectify complex structures is that the entire

state of a system (or a system component, e.g. a process) can be objectified. This means

that an Alloy instance can represent a collection of states - for instance, a k-step trace of an

algorithm - rather than just one or two states as in Alloy Alpha. Moreover, standard Alloy

constraints can be used to express relationships between state instances - for example, to

require that adjacent states in a sequence of states satisfy a transition relation, or that the

sequence start with a valid initial state. As a result, explicit support for modeling finite

state machines can be removed from the Alloy language and analyzer. The model then

simply describes a group of relations and constraints on the values of these relations; the

relations are not necessarily interpreted as being elements of system state. No primed (next-

state) versions of relations are created. While the modeler may mentally designate some

relations to represent system state and some constraints to represent transition relations,

such designations are not formally specified in the Alloy language and are not used by the

Alloy analyzer. We call this approach pure-logic modeling.

27



Encoding standard analyses with pure-logic modeling

While pure-logic modeling requires the user to write some constraints previously generated

automatically, in practice this isn't a burden and standard patterns can usually be followed.

On the other hand, pure-logic modeling gives the user great flexibility in defining new

analyses and variations of existing analyses. New analyses can be defined by adopting new

modeling patterns, rather than by changing the Alloy language or its analyzer.

Let'ss consider some modeling patterns that can be used in pure-logic modeling.

Simulating a system state or an operation; checking invariant preservation. Sup-

pose we have a system the state of which is described by a group of relations. We can

objectify the state by declaring a signature SystemState, and making these relations

fields of SystemState:

sig SystemState {
// relations describing system state: f, g

}

The Alloy instance can now represent a collection of states, the exact number being

controlled by the scope of SystemState. We can now express a variety of analyses.

First, we can express the analyses possible in Alloy Alpha - finding a state or state pair

satisfying the given constraints:

fun ValidState(s: SystemState) { ... s.f ... s.g ...
// find instance representing one state, satisfying ''some s: SystemState | ValidState(s)''

// set scopes of all basic types except SystemState to 3; set scope of SystemState to 1.

run ValidState for 3 but 1 SystemState

fun Op(s, s': SystemState) { ... s.f ... s'.f ... s.g ... s'.g ... }
// find instance representing a (pre,post)-state pair, satisfying ''some s, s': Op(s, s')''

run Op for 3 but 2 SystemState

fun FindInvarViolation(s, s': SystemState) { ValidState(s) && Op(s,s') && !ValidState(s') }

// find instance representing a (pre,post)-state pair, showing invariant violation

run FindInvarViolation for 3 but 2 SystemState

In the definitions of functions ValidState, Op and FindInvarViolat ion, s. f

and s . g denote the present-state value of state components f and g, while s ' . f and

s ' . g denote the next-state value of the respective state components. However, the prime

in s ' is simply part of the variable name; it has no special meaning in the language or for

the analyzer. As far as the language and analyzer are concerned, we're simply specifying

and solving a constraint problem. Note also that, unlike in Alloy Alpha, the relation dec-

larations aren't wrapped inside a state { . . . } schema. In pure-logic modeling, the

28



Alloy instance is not restricted to representing a state; it can represent a state, a state pair,

or any other complex relational object intended by the modeler.

Bounded Model Checking in Alloy. One useful idiom that can be expressed with

pure-logic modeling is bounded model checking (BMC) [9]. In BMC, the Alloy instance

represents a bounded trace of an algorithm: a sequence of states where the first state is a

valid initial state and each adjacent pair of states satisfies the transition relation. Additional

constraints on the trace require the trace to illustrate an error - for example, requiring one

of the reached states to exhibit an error condition. A search for such an instance answers

the question "does there exist a k-step trace of the algorithm illustrating an error", for some

bound k. The general pattern for expressing BMC problems in Alloy is as follows: 5

open std/ord // use total ordering module
fun InitialState(s: SystemState) { ... s.f .. . s.g ...
fun Transition(s, s': SystemState) { ... s.f ... s.g ... s'.f ... s'.g ...
fun ValidTrace() {

ValidInitialState (OrdFirst (SystemState))
all s: SystemState - OrdFirst(SystemState) I Transition(OrdPrev(s), s)

}
fun GoodState(s: SystemState) { ... s.f ... s.g ... }
fun FindError() { ValidTrace() && some s: SystemState I !GoodState(s)
run FindError for 3 but 5 SystemState

The function InitialState constrains the state s (i.e. the state value associated

with the SystemState atom in the singleton set s) to be a valid initial state of the al-

gorithm. The function Trans i tion constrains s , s ' to represent a valid (pre-state,post-

state) pair according to the transition relation. The function ValidTrace constrains the

Alloy instance to represent a valid bounded trace, beginning in an initial state and obey-

ing the transition relation. Finally, the function FindError requires the trace to reach

an error state. An instance satisfying these constraints illustrates an error in the modeled

algorithm. The absence of such an instance means that an error may still be present, but

finding it requires larger basic type scopes.

Checking a system under all possible environments. Now consider a variation of

BMC analysis: suppose that each run of the modeled algorithm occurs within some en-
5The example uses the total ordering module std/ord, which defines some predefined relations ex-

pressing a total order on a given basic type. For the purposes of this example, it's enough to know that

OrdFirst (SystemState) denotes the singleton set containing the first atom of SystemState in the

total order on Sys temS tat e atoms, and OrdPrev ( s) denotes the singleton set containing predecessor of

the atom denoted by the singleton set s (or the empty set if s is the first atom in the order).

29



vironment. For example, a run of a network algorithm occurs on a particular network

topology; a run of a railway system occurs on a particular rail net. We'd like to check, for

all possible environments, all possible runs of the algorithm on each environment. We can

make the environment a variable of the model; an instance would then represent the value

of the environment, together with a bounded trace of the algorithm on that environment.

The modified definitions would look as follows:

static sig Env ( // static means IEnvI=l
// relations describing the environment: el, e2,

fun InitialState(s: SystemState) { ... s.f ... s.g ... Env.el ... Env.e2 ...
fun Transition(s, s': SystemState)

... s.f ... s.g ... s'.f ... s'.g ... Env.el ... Env.e2 ...

run FindError for 3 but 5 SystemState, 1 Env

An instance represents several SystemState values (a bounded trace), but only one

Env value. The environment is not part of the changing state, but it's still a variable

of the model: when the analyzer searches for an Alloy instance illustrating an error, it

searches through all possible environment values and through all possible traces on each

environment (within the specified scopes). In the definitions of InitialState and

Transition, Env . el and Env . e2 denote the value of the relations representing the

environment.

Pure-logic modeling lets us encode this variation of BMC, in which there is a state that

changes with time and an environment that doesn't. We can check, in one run, all runs

on all environments within the specified scopes. Doing this with a traditional BMC model

checker would require one of the following: modifying the checker to support this variation

of BMC analysis; manually hard-coding each possible environment value into the model

and running a separate analysis for each value; or making the environment part of the state,

unnecessarily increasing analysis complexity. With pure-logic modeling, we can express

exactly what we want without changing the language or the analyzer.

Language design considerations. While pure-logic modeling lets us encode common

modeling patterns such as BMC relatively easily, one may still ask: wouldn't it be better to

have special language support for at least some of the common modeling patterns? After

all, objectification is also a modeling pattern, and having special language support for it

(signatures) has proven very useful. One answer is that it's possible to use Alloy as an

30



intermediate language for more specialized languages or "veneers", which are analyzed

by translation to Alloy but make certain tasks more convenient. Such veneers have been

created for modeling virtual functions [59], annotating Java code [59, 80], and specify-

ing the structure of test cases [50]. While Alloy can act as an intermediate language to

which veneers are translated, it remains very usable as a modeling language in which users

write models directly. Objectification is a basic building block on top of which a variety of

modeling patterns (such as bounded model checking) can be implemented. It is therefore

sufficient, in the base Alloy language, to provide direct support for objectification [36, 44]

but not for higher-level modeling patterns. Whenever the need to write some common pat-

tern by hand becomes a problem, an appropriate veneer can be created. Also, it's possible

to define standard Alloy libraries for common tasks, that can then be reused for a variety

of models. Such generic libraries have been created, for example, for modeling groups of

processes communicating via messages.

1.5.3 Debugging of overconstraints

One of the difficulties inherent in declarative modeling is the risk of unintended overcon-

straint. An overconstrained model does not allow all algorithm executions that can occur

in practice, and may therefore be unable to illustrate some errors. In an extreme case, a

model may have no error traces because it has no traces at all. Such a scenario is unlikely

when the transition relation is given imperatively: there is an explicit formula for comput-

ing the post-state from the pre-state, and by iterating the formula from initial states at least

some traces can be generated. A declaratively specified transition relation, on the other

hand, typically consists of a conjunction of conditions specifying what must be true of a

valid (pre,post)-state pair: T(S, S') = A=% T(S, S'). If any one of the T disallows all

transitions, so does the entire transition relation. The danger of overconstraint undermines

confidence in analysis results: if the analyzer finds no counterexamples, is this because the

algorithm is correct or because the model is overconstrained? Even if the user suspects

overconstraint (e.g. because of unusually fast analysis times), localizing the problem to a

particular T is non-trivial.

31



One way to guard against overconstraint is to use simulation: to use the analyzer to

find sample executions, to make sure they're allowed by the model. Symmetry-breaking,

described in Chapter 4, can aid this process by removing isomorphic executions; this lets

the user quickly verify that all the "essentially different" (non-isomorphic) scenarios are

allowed by the model. This process, however, is not a satisfactory solution to the overcon-

straint problem. It requires the user to come up manually with specific execution scenarios,

as when constructing a test suite; this defeates the purpose of doing model checking, which

was to avoid such tedious and error-prone manual work. The number of scenarios to check

for can be very large, and it's hard to know when enough scenarios have been checked.

This thesis contributes an overconstraint debugger for Alloy Analyzer. When the an-

alyzer fails to find a counterexample, the debugger identifies parts of the model that are

irrelevant to showing absence of counterexamples; if these parts are changed, there would

still be no counterexamples to the checked property. Irrelevance of large parts of the model

can indicate an overconstraint. More generally, the modeler writes certain parts of the

model to guarantee certain properties. If the modeler's intuition about which parts are re-

quired to guarantee which properties turns out to be wrong, this can point to an error in the

model. Conversely, if the correspondence of model parts to guaranteed properties matches

the modeler's intuition, this increases confidence in correctness reports from the analyzer.

For example, consider a model of a system in which there are processes and locks, and

at each step a process either grabs or releases a lock. If the locks are numbered and the

processes only allowed to grab locks numbered higher than the locks already held by the

process, deadlock will be avoided. This can be checked by an assertion such as:

assert DijkstraPreventsDeadlocks {
some Process && GrabOrReleaseAtEachStep() && LocksGrabbedInOrder() => ! Deadlock()

When an Alloy model of this system was analyzed, no counterexamples were found.

However, the overconstraint debugger showed something surprising: that the condition

LocksGrabbedInOrder () was irrelevant to proving the absence of counterexamples.

That is, with that condition omitted, there would still be no deadlock. This contradicted the

modeler's intuition, and in fact indicated an error in the model.

32



As noted earlier, all analysis questions in Alloy are reduced to the satisfiability of a

single Alloy formula. That formula is typically a large conjunction, e.g.

F && G && H && P && Q

If the formula is unsatisfiable, the debugger can identify an unsatisfiable core - a subset

of the conjuncts that by themselves rule out all solutions. For instance, it could determine

that G && P is unsatisfiable, making the contents of the remaining conjuncts irrelevant.

The debugger works by taking advantage of the ability of SAT solvers to determine the

unsatisfiable core of a CNF formula. A SAT solver takes a Boolean formula in conjunctive

normal form (conjunction of clauses which are disjunctions of literals). If the formula is

unsatisfiable, it can identify an unsatisfiable core of the CNF: a subset of CNF clauses

that by itself is unsatisfiable. SAT solvers' ability to extract smaller unsatisfiable cores

from CNF formulas is being constantly improved [86, 56, 85]; as that ability improves, the

precision of Alloy's overconstraint debugger improves correspondingly.

We test satisfiability of an Alloy formula by translating it to an equisatisfiable CNF

formula. However, the unsatisfiable core results must be given in terms of the original

Alloy model in order to be meaningful to the user. To map the unsatisfiable core of that

CNF formula back to the original Alloy formula, we keep track of which CNF clauses

were generated from which parts of the Alloy formula. More precisely, the original Alloy

formula is represented as an Abstract Syntax Tree (AST). During translation to CNF, some

CNF clauses are generated from each AST node. To map CNF unsatisfiable core to Alloy

unsatisfiable core, we include an AST node in the Alloy unsatisfiable core if at least one

CNF clause generated from that AST node was part of the CNF unsatisfiable core.

A naive mapping of CNF clauses to the original Alloy formula might produce a mal-

formed formula that is not a valid Alloy formula. For instance, suppose the original Alloy

formula included a negation - a subformula of the form ! F. If the CNF clauses generated

from AST nodes of the subformula F were in the unsatisfiable CNF core, but CNF clauses

generated from the AST node expressing the negation operator weren't, then the unsatisfi-

able core of the Alloy formula includes a negation node with no child. That's not a valid

Alloy formula, and we cannot call it "unsatisfiable" because it cannot be evaluated (to true

33



or false) on various Alloy instances.

Even if the Alloy formula obtained by naively mapping back the CNF unsatisfiable

core is well-formed, it's hard to prove that it is unsatisfiable. The CNF translation of an

Alloy formula is compositional and depends on the entire structure of the Alloy formula.

Altering the formula's structure by removing formula parts which didn't yield CNF clauses

in the unsatisfiable core breaks the relationship between the original Alloy formula and the

CNF translation containing the unsatisfiable CNF core - making it hard to prove that the

resulting Alloy formula is unsatisfiable.

To solve these problems, we use the following scheme to map CNF unsatisfiable cores

to Alloy unsatisfiable cores. An Alloy formula can be viewed as a tree, with nodes repre-

senting subformulas. Each node computes a particular function of its children. We define a

notion of relaxing a node: allowing it compute an arbitrary function of its children. So, if a

node of the form F && G is relaxed, it may compute either Boolean value regardless of the

values of F and G. If a node of the form P. Q is relaxed, it may compute any relational value

of the correct relation type, regardless of the values of P and Q. Thus, an Alloy formula with

some nodes relaxed (a relaxedformula) is always well-formed and meaningful to the user.

A relaxed Alloy formula represents a class of normal Alloy formulas, which agree with

the relaxed formula on non-relaxed nodes. The notion of unsatisfiability extends naturally

to relaxed formulas: a relaxed formula is unsatisfiable iff none of the concrete formulas it

represents is satisfiable.

We express unsatisfiable cores of Alloy formulas by marking a subset of Alloy formula

nodes as relaxed. To map a CNF unsatisfiable core to the Alloy formula, we relax a formula

node if none of the clauses generated from that node are in the CNF core. A correct CNF

translation of a relaxed Alloy formula can be obtained by taking the CNF translation of

the normal Alloy formula and removing clauses generated from the relaxed nodes. Our

mapping scheme ensures that the CNF translation of the relaxed Alloy formula includes all

clauses of the unsatisfiable CNF core; since the CNF translation of the relaxed formula is

unsatisfiable, the relaxed formula itself is unsatisfiable.

34



1.5.4 Scalability features

The modeler reduces the question "does the system have an error?" to the question "does

the given Alloy formula have a solution?" The Alloy Analyzer reduces the question "does

the given Alloy formula have a solution?" to the question "does the given Boolean formula

in conjunctive normal form (CNF) have a satisfying assignment?", which is answered by

external satisfiability solvers. How the Alloy formula is encoded in CNF can significantly

affect solver performance. Two methods are used by Alloy Analyzer for improving solver

performance: symmetry-breaking and subformula sharing.

Symmetry-breaking

Many systems exhibit symmetry, for example in the form of interchangeable system com-

ponents or indistinguishable primitive values. Symmetry partitions the space of executions

into equivalence classes. For any given property, the executions in a single equivalence

class either all satisfy or all violate the property. It is therefore sufficient to consider only

one execution per isomorphism class. This can lead to an exponential reduction in the size

of the search space.

To take advantage of model symmetries, Alloy Analyzer conjoins symmetry-breaking

predicates [15] to the Boolean formula given to the SAT solver. A symmetry-breaking

predicate is constructed to be true of at least one solution in each isomorphism class; thus,

adding a symmetry-breaking predicate preserves satisfiability of the formula. An effective

symmetry-breaking predicate is true of the smallest possible number of solutions in each

isomorphism class. The predicate speeds up backtracking search by causing a backtrack

whenever all extensions of the backtracking algorithm's current partial variable assignment

violate the predicate.

For unsatisfiable formulas - which typically take longest to analyze, since the entire

search space must be considered - the addition of symmetry-breaking predicates clearly

provides a benefit. For satisfiable formulas, addtion of symmetry-breaking predicates -

which results in the removal of perfectly good solutions - may seem like a bad idea, since

it reduces the chance of stumbling upon a solution early in the search. While this may be

35



true, even for satisfiable formulas symmetry-breaking predicates can help by summarily

excluding solutionless regions of searchspace during backtrack search. If a region contains

no solutions AND no isomorphism class representatives, it will be quickly excluded where

without symmetry-breaking predicates it would have had to be searched.

Moreover, there are situations where we're interested not just in finding a satisfying

assignment but in enumerating non-isomorphic satisfying assignments. For instance, one

way to check sanity of an Alloy model is to simulate some instances - both to check that

the allowed instances are well-formed and to make sure that the instances corresponding

to specific scenarios are allowed. Simulation can be much more useful if each simulated

instance is "essentially distinct" from the others - that is, not isomorphic to them. Another

situation where isomorph elimination during solution enumeration helps is when Alloy is

used for test case generation [50, 53]. Eliminating isomorphic test cases results in smaller

test suites and reduces the testing time.

The major problem in constructing symmetry-breaking predicate is finding a predicate

that is both effective (true of few solutions per isomorphism class) and compact (expressible

as a small Boolean formula). In this thesis, we describe methods for generating compact

and effective symmetry-breaking predicates, and for measuring predicate effectiveness.

Exploiting subformula sharing

Quantified formulas - statements such as VxP(x) - are frequently used in formal specifi-

cations. They allow concise and natural formalization of system properties. The user can

use quantified formulas to specify a parameterized family of systems, such as a distributed

algorithm that works on n-node networks.

For these and other reasons quantified formulas are present in many constraint lan-

guages. Languages that permit some form of quantifiers include first-order logic, Alloy

[44] and Murphi [16]. The recently developed Bounded Model Checking techniques ex-

press Linear Temporal Logic formulas as quantified boolean formulas [9].

While quantified formulas are convenient for writing specifications, they have proved

significantly less tractable for automatic analysis than quantifier-free (propositional) for-

mulas. This is not surprising given that the quantified formulas are known to be PSPACE-

36



complete, unlike propositional formulas which are known to be in NP. Some algorithms

(QBF solvers) have been developed for directly determining the consistency of quantified

formulas [70, 25]. However, despite several years of advances, these methods are still not

competitive with the best propositional solvers such as Chaff [63]. That is, converting a

quantified formula to propositional form (by grounding out the quantifiers) and applying a

satisfiability solver is typically more efficient than applying a Quantified Boolean Formula

solver directly to the quantified formula - as long as the conversion can be done in reason-

able time [26]. If the conversion (grounding-out) can't be done in reasonable time, then

using a QBF solvers is the only option.

Before a quantified formula can be solved with a propositional solver, the quantifiers

must be expanded (grounded out). The ground formula can in general be much larger than

the quantified (lifted) formula. The grounding-out of a quantified formula into ground form

can become a bottleneck of analysis. For quantified formulas for which grounding-out is

infeasible, the only option is to use procedures that work directly with quantified formulas.

One way to mitigate the costs of grounding-out is to represent the ground formula as a

directed acyclic graph in which identical subformulas are shared. This can result in signifi-

cant memory savings. However, grounding out first and determining identical subformulas

afterwards often isn't a feasible approach, due to the size of the ground formula.

In this thesis, we develop techniques for converting a quantified (lifted) formula directly

into a quantifier-free (ground) formula in the form of a directed acyclic graph, in which

identical subtrees are shared. The conversion is performed directly, without first creating

a ground form in which identical subtrees are not shared. The technique does not depend

on details of the constraint language, and should be applicable whenever there is a need to

convert quantified formulas into ground form.

1.5.5 Practical uses of our contributions

This section describes some examples of practical uses of our techniques.

Zave [83] used Alloy to model addressing in interoperating heterogeneous networks.

37



The model makes extensive use of objectification of complex logical structures. For exam-

ple, the model includes the following definitions:

sig Domain { space: set Address, map: space -> Agent
sig Agent { attachments: set Domain }

Both Domain and Agent are complex structures: each Domain contains a set and

a relation, while each Agent contains a set. Objectification allows them to be treated as

atomic entities; this in term permits them to act as elements of sets and relations. Thus,

a Domain can contain a relation mapping Addresses to Agents, while an Agent can

contain a set of Domains.

Khurshid and Jackson [51] have used Alloy to check a published protocol for name

resolution in networks, finding several serious bugs. Symmetry-breaking and subformula

sharing improve Alloy performance on that model, as experiments in Sections 4.8 and 5.4

illustrate.

Gassend and van Dijk [24] have used Alloy to model security protocols for Controlled

Physical Random Functions [23]. In the course of modeling, several overconstraints were

identified which were debugged using Alloy's unsatisfiable core extraction. A description

of how one such overconstraint was debugged appears in Section 6.2.

Taghdiri and Jackson have used Alloy to model protocols for secure multicast, find-

ing several bugs in a published protocol [77, 78]. The model uses Alloy's support for

declarative specification, and expresses analysis problems in the style of Bounded Model

Checking. Even though Alloy has no direct support for modeling messaging, the model

easily describes protocols involving message exchanges by objectifying messages. The

model uses pure-logic modeling to achieve a modular description of the protocols; for ex-

ample, the portion of the trace relating to each protocol participant is described as part of

the specification of the participant, rather than as part of a large global state structure.

Hashii has used Alloy to model a Trusted Security Architecture for Polymorphous

Computing [31, 30], and has found security violations in the design. The model was quite

large (with 63 signatures, 64 relations and 114 constraint paragraphs), so the analyzer scala-

bility features described here became important. The model included exchange of messages

with encryption and authentication; the lack of explicit support for messaging in Alloy was

38



not a hindrance, as all messaging was modeled using objectification. The model included

both "dynamic relations" (changing with time) and "static" relations (not changing with

time); pure-logic modeling easily accomodated the need to model these different kinds of

relations.

Alloy has also been used as a back-end for other tools. TestEra [50, 58], a novel frame-

work for testing Java programs, uses Alloy Analyzer as a back-end. The ability to represent

complex structures is used to allow specification of structurally complex tests and accurate

modeling of the Java heap. Also, Alloy's symmetry-breaking ability is used to reduce

the size of generated test suites by eliminating isomorphic test cases. Vaziri and Jack-

son [45, 80] used Alloy as a back-end of their JAlloy tool which checks Java programs.

The tool uses the flexibility of Alloy's pure-logic design in producing Alloy models that

represent not a single system state but a bounded trace. The tool also relies on Alloy's

symmetry-breaking ability for efficient analysis.

1.5.6 Summary

This thesis describes a number of model checking techniques that were implemented in

the Alloy Analyzer. The result is a model checker with a combination of characteristics

unavailable in existing tools. It has extensive support for declarative modeling, including

debugging of overconstraints. Its modeling language supports flexible pure-logic model-

ing, allowing for expression of a variety of analyses including bounded model checking.

Algorithms that manipulate complex recursive data structures can be checked. Scalability

features, including symmetry-breaking and exploitation of subformula sharing, allow the

analyzer to scale to practical models. Table 1.1 compares the key features of existing model

checkers with the Alloy Analyzer.

39



Table 1.1: Feature comparison of Alloy with other model checkers.

40

feature SPIN[32] I SMV[11] I AlloyAlpha [42] 1 Alloy[44]
scalable y y n y
declarative n n y y
complex structures6  n n n y
trace-based models y y n y
pluggable backend n n y y
pure-logic modeling n n n y
direct support for finite state y y n n
machines and temporal logic



6Multiple instances of heterogeneous graph-like data structures, treated as first-class objects; each instance

of a complex structure can contain sets and relations on instances of other complex structures.

41



42



Chapter 2

Pure-Logic Modeling with Alloy

In this chapter we'll describe the Alloy language, illustrate some common usage patterns

with examples, and point out how Alloy's key features facilitate modeling. In particular, the

following features of Alloy will be highlighted: pure-logic design; declarative modeling;

and support for analyzing systems that manipulate complex structures.

This chapter is organized as follows. First, we describe the core constructs of the Alloy

language. Then, we introduce the model of a railway system, which will be our running

example. We begin by modeling only the topology of the railway tracks, without the trains.

On the example of track topology, we show how to represent instances of a real-world

system with a collection of relations, and how to translate informal predicates about the

real-world system into formal Alloy constraints on the relations. Then we show how to

use relations to model complex data structures, on the example of modeling routes through

the tracks. We point out the generality of structures that can be represented; in particular,

we can represent self-referential and mutually-referential structures such as lists, trees and

other graphs.

Next, we show how dynamic aspects of the system can be modeled by using our tech-

nique for representing complex structures to represent instances of the system state. We

show how Alloy's pure-logic design allows a variety of analyses to be expressed in a uni-

form manner. Specifically, we will look at the following analyses: checking that an opera-

tion preserves an invariant; checking that two specifications of an operation are equivalent;

and Bounded Model Checking (BMC) [9].

43



2.1 Core elements of Alloy models

The core of an Alloy model consists of the following elements:

* basic types - disjoint finite sets of uninterpreted, indistinguishable atoms.

" relations - relation-valued variables. Each relation has a relation type which is a tuple

of basic types. The value of a relation is a subset of the direct product of the basic

types in its relation type; in other words, a set of tuples of atoms, with each atom in

each tuple drawn from the corresponding basic type of the relation. An assignment

of relational values to all relations is called an instance.

" predicate - a predicate on instances, expressed as a formula in first-order logic.

The actual sizes of the basic types (called scopes') are not part of the model, but are

specified for analysis. The Alloy Analyzer answers the question "for the given scope, does

there exist an instance satisfying the predicate?" The universe of instances for a particular

analysis is determined by the basic type scopes.

2.2 Railway example

Let us illustrate Alloy's core concepts on a model of a railway system, which we'll use as a

running example throughout this thesis. The model used here takes a number of modeling

ideas from prior railway modeling efforts [10, 82, 46]. The full model appears in Appendix

A; in this chapter we will develop the most important parts.

The model will be developed incrementally; one of the strengths of Alloy is good sup-

port for incremental development. We'll first model the railway track topology, without the

trains. This will be used to illustrate the main techniques of relational modeling. We'll then

extend the model to include trains and to describe safe rules for train movement.

'Not to be confused with lexical scopes of variables. When there is an ambiguity, we will refer to basic

type scopes as "analysis scopes".

44



2.2.1 The railway domain

First, let us describe the railway domain in informal language. A railway track consists of

a collection of connected rectangular units. A unit has two opposite sides, left and right.

On two opposite sides of each unit there are connectors, at least one on each side. Units are

attached to each other at connectors; at most two units share any given connector. Besides

being the basic building blocks of the railway track, the units are also used to define safe

separation of trains. For safe train operation, at most one train can be in a unit at a given

time. Train cars in different units cannot collide.

With each unit is associated a set of possible paths through the unit. (Here, a path

spans exactly one unit; concatenations of paths will be modeled later and will be called

routes.) Each path represents a possible movement of a train through the unit, and joins

two connectors on opposite sides of the unit. At any given time, some subset of paths

through the unit may be open (available to trains). Paths are undirected.

' c4

p3

u2

, c2

1'"

n3cc,

U0 ul
-------- p-2 - - - - -- - - - -

T2.,
u3

Figure 2-1: Sample instance of the railway model.

A sample railway track is shown in Figure 2-1. It consists of four units uo, u1 and u2

and u3 . All units are simple linear units consisting of one path, except for u1 which is a

junction with two possible paths (pi and P2).

45



Unit_3 Unit Unit_2

nitPaths nitPaths nitPaths nitPaths nitPaths

Path_4 Path_2 Path_1 Path.O Path_3

pathB pathA pathB pathA pathA pathB pathB pathA pathA pathB

lonnector_ onnector_ onnector onnector onnector_ onnector

Figure 2-2: Relational view of the railway instance in Figure 2-1.

2.2.2 Alloy representation of the railway domain

We can formalize our informal description of railway topology by constructing an Alloy

model, as follows. We can declare basic types Unit, Connector and Path to represent

the basic physical elements of the railway track. We can then declare several relations

among these basic types, as follows:

Relation(s) Relation type Meaning/interpretation

unitConnsA, Unit -> Connector (ui, cj) E unitConnsA (unitConnsB) iff

unitConnsB connector c3 is on the left (right) side of unit ui

unitPaths Unit -> Path (Ui,pj) E unitPaths iff path pj connects

two connectors on opposite sides of unit ui

pathA, Path -> Connector (pi, cj) E pathA and (pi, c) E pathB iff

pathB: path pi runs between connectors c3 and Ck

(which are on opposite sides of some unit)

Under this formalization, the railway track in Figure 2-1 corresponds to the following

instance (illustrated in Figure 2-2 using Alloy Analyzer's visualization facility):

unitConnsA={(uo, co), (ui, ci), (U2, c2), (u3, c3)}

uni tConnsB={ (UO, ci), (Ui, c2 ), (ui, c3 ), (U2 , c4 ), (U3 , c5)1

uni t Pa ths={(uo, po), (Ui, pi), (U1, p 2), (U2, p 3), (u3, p4)

pathA={(po, cO), (p1, cI), (p2, ci), (p3, c2), (p4, c3)}

pathB={(po, ci), (p1, c2), (p2, c3), (p3, c4), (p4, C5 }

46



2.2.3 Alloy constraints

While every real railway track configuration maps to an instance of our Alloy model, not

every instance represents a reasonable track configuration. For example, in a plausible

configuration, at most two units can share a connector. We can restrict our instances to

those representing valid track configurations, by writing Alloy constraints. Some basic

constraints that ensure well-formedness of modeled tracks appear below.

fact BasicUnitConstraints {

all u: Unit I{
// each side of the unit has at least one connector

some u.unitConnsA && some u.unitConnsB

// the two sets of connectors (left and right) are disjoint

no u.unitConnsA & u.unitConnsB

// each path in a unit connects a left connector

// to a right connector

all p: u.unitPaths I
p.pathA in u.unitConnsA && p.pathB in u.unitConnsB

// units are rectangular, with connectors on opposite

// sides of the rectangle, so when this unit

// connects to another unit, only one side of

// this unit is used.

// in other words, no other unit can touch both

// sides of this unit.

all otherUnit: Unit - u {

let sharedConns =

u.(unitConnsA + unitConnsB) &

otherUnit. (unitConnsA + unitConnsB)
sharedConns in u.unitConnsA

sharedConns in u.unitConnsB

}

fact BasicPathConstraints{

all p: Path I {
// each path belongs to exactly one unit

one unitPaths.p

// each path has exactly one connector at each end

one p.pathA && one p.pathB

// path atoms are canonicalized: only one path

// atom per connector pair

all otherPath: Path - p
(otherPath.pathA = p.pathA &&

otherPath.pathB = p.pathB) => otherPath = p
}

fact BasicConnectorConstraints

// At most two units share a connector

all c: Connector I (# (unitConnsA + unitConnsB) .c) < 3

Note that we describe the possible railway topologies declaratively - by writing pred-

icates that are true of correct topologies. This allows the description to be simple and

intuitive. In an imperative model checker [32, 11, 16], we would have to specify, in the

model checker's language, an effective procedure for generating all possible topologies (as

47



opposed to simply testing the validity of a particular topology). Ensuring that the code

correctly generates all possible valid topologies could be non-trivial, especially if we seek

to eliminate isomorphic topologies. Alloy's built-in symmetry-breaking mechanism de-

scribed in Chapter 4 will automatically eliminate most isomorphs during search.

The syntax and semantics of Alloy constraints are given in Figure 2.2.3. In our example

we have used Alloy constraints to impose basic validity constraints; further on we will

describe other uses of constraints.

problem ::= decl* formula
decl ::= var : rtype
rtype ::= btype+

formula ::=
| expr in expr

I !formula
I formula && formula
formula 1| formula
all v: rtypeIformula
some v : rtypel f ormula

expr ::=
lexpr + expr
expr & expr

expr - expr
I expr . expr

~expr
I ̂expr

M : formula -+ env -* boolean

X : expr -+ env -* value

env = var -+ value

value = set of tuples of atoms

M[a in b] e = X[a] e C X[b] e
M[!F] e = -M[F] e
M[F&&G]e = M[F] e A M[G] e
M[FIIG] e = M[F] e V M[G] e
M[all v : t|F] e =A{M[F](e @ (v F-* {x}|)) x E t}
M[some v: tIF] e = V{M[F](e @ (v i-4 {x}))lx E t}

X[a+ b] e = X[a] e U X[b] e
X[a&b] e = X[a] e n X[b] e
X[a - b] e = X[a] e \ X[b] e
X[a.b] e = {(xi,... , xk_1, xk+1, ... xm)I

E]xk.(X1, ... ,xk) E X[a] eA (Xk,. ... ,Xm) E X[b] e}
X[~a] e = {(x, y)I(y, x) E X[a] e}
X[^a] e = the smallest r such that r.r C r A X[a] e C r
X[{v : tIF}] e = {x e e(t)IM[F](e E v '-4 {x})}
X[v] e = e(v)

Figure 2-3: Alloy core constructs: syntax, type rules and semantics.

2.3 Modeling complex structures

2.3.1 Representing complex structure instances with atoms

In our railway example, paths and units are not atomic entities; they have internal structure.

A path has two endpoints; a unit has two disjoint sets of connectors and a set of paths join-

48



ing connectors from opposite sides. Yet in the underlying Alloy model, paths and units are

treated as atoms - just like connectors, which lack internal structure. The internal struc-

ture of units is represented by the relations unitConnsA: Unit -> Connector,

unitConnsB: Unit -> ConnectorandunitPaths: Unit -> Connector.

For a given unit represented by a particular atom of Unit, the pieces of that unit's

structure can be referenced by taking the relational image, under one of these relations, of

a singleton set containing the atom. This lets us write constraints on the complex structure

represented by each atom. For example, we can require that the left and right connector

sets of each unit be disjoint by writing no u. uni tConnsA & u .uni tConnsB, where

u is a singleton set containing the Unit atom representing the unit in question. But since

each unit is still represented by an atom, we can write existential and universal quantifiers

over units, and the formula will remain first-order. 2 Also, since each unit is represented

by an atom, relations involving units remain first-order structures - sets of tuples of atoms,

rather than sets of tuples of complex structures. This in turn allows the components of

units to reference other complex structures (such as paths). Thus, we can define mutually

referencing or self-referencing complex structures, and yet manipulate them as if they were

simple atoms.

2.3.2 Signatures

To emphasize this view of Alloy models, a new language construct called a signature was

introduced [36, 44]. In its simplest form, a signature is a basic type together with a group

of relations which have that basic type as their first column. With signatures, the railway

declarations above look as follows:

sig Unit {
unitConnsA, unitConnsB: set Connector,
unitPaths: set Path

sig Connector {

2The quantification is over the atoms in the instance, rather than over all possible values of the complex

structure. That is, each unit includes a pair of sets of connectors; but any given instance will have Unit atoms

corresponding only to some of the possible pairs of sets of connectors. The quantification is over the unit

atoms, rather than over all possible pairs of sets of connectors.

49



sig Path {
pathA, pathB: Connector

These declarations define the same basic types and relations as before, but now the

view of paths and units as complex structures - and the role of relations as "fields" of these

structures - becomes clearer. Note that the declaration of a binary relation appears in a

signature as a declaration of a unary relation (a set): for every atom of Unit the relation

unitPaths gives a set of Path atoms.

The field declarations, in addition to declaring new relations, can specify some com-

mon well-formedness constraints on these relations. The default declaration of a binary

relation constrains that relation to be a total function from the signature's basic type. For

example, the declarations of binary relations pathA and pathB implicitly specify that

each path is mapped to exactly one connector by each of these relations. The declaration

of unitPaths includes the keyword set to disable this constraint.

2.3.3 Inheritance

In addition to emphasizing the view of basic type atoms as instances of complex struc-

tures, signatures provide an inheritance mechanism. Suppose we wanted to say that some

Units are linear units, with one connector on each side. We could do this by writing

sig LinearUnit extends Unit { }
fact LinearUnitStructure {

all lu: LinearUnit I one lu.unitConnsA && one lu.unitConnsB

The signature LinearUni t is a subsignature of Unit, and does not define a new ba-

sic type. Instead, it defines a subset of Unit (i.e. a unary relation with relation type Unit),

called LinearUnit. In a given instance, LinearUnit will hold a set of atoms of basic

typeUnit thatis a subsetof the set of atoms in the setUnit. The fact LinearUnitStructure

says that each linear unit has one left connector and one right connector 3. Note that each

3Facts are given names for clarity purposes, and also to make it easier to convert a fact into a function.

50



atom of LinearUni t is also an atom of Unit, so we can use the fields of Uni t to ref-

erence components of structure represented by LinearUnit atoms. 4 Subsignatures can

also define their own fields. For example, we could define another kind of unit representing

junctions:

sig JunctionUnit extends Unit

mainLine, sideLine: Connector

fact JunctionStructure {
all ju: JunctionUnit

one ju.unitConnsA

ju.unitConnsB = ju.mainLine + ju.sideLine
ju.mainLine != ju.sideLine

}

The relations mainLine and sideLine, of relation type Unit -> Connector,

map Uni t atoms that are in the set Junc tionUni t to the two right-side connectors of a

junction, and map other Uni t atoms to empty set. The one left-side connector of a junction

can still be referenced using the relation uni tConnsA.

2.3.4 Modeling "logical" complex structures

So far we have used basic types for representing physical elements such as units or connec-

tors. We can also use basic types to represent "logical" structures. Continuing the railway

example, let's introduce a basic type Route to represent a sequence of adjacent Paths:

open std/ord
open std/seq

sig Route {
routePaths: SeqIdx -> Path,

firstConn, lastConn: Connector

Here we make use of two standard Alloy modules: one for describing total orders

(s td/ord), and one for describing sequences (std/seq). We give a brief description of

these modules sufficient to understand their use in the railway example.

4We can also use fields of a subsignature (LinearUnit) without casts on members of its supersignature

(Unit), e.g. u.mainLine; for atoms of Unit that are not atoms of LinearUnit, this will denote the empty

relation.

51



The total ordering module std/ord defines, for each basic type on which one of the

module's functions (described below) is invoked, a total ordering on the atoms of that basic

type. For a basic type T, OrdFirst (T) denotes the first atom in the order; OrdLast (T)

denotes the last atom; OrdNext (i) denotes the successor atom of the single T atom

contained in the set i, or the empty set if i contains OrdLast (T); OrdFirst (i)

denotes the predecessor atom of the single T atom contained in the set i, or the empty set

if i contains OrdFirst (T). While use of the std/ord module adds several relations

for each totally ordered basic type to represent the total order on that type, special-case

symmetry-breaking described in Section 4.5.5 ensures that the addition of these relations

does not adversely affect analysis efficiency.

SeqIdx is a basic type defined in the module std/ seq. On the atoms of this basic

type, a total order relation is defined using the module s td/ord. A sequence of paths is

represented as a functional binary relation of type SeqIdx -> Path. For instance, the

sequence [ Path_0, Path_2, Path_5 ] would be represented as

{<SeqIdx_.O, PathO>, <SeqIdx_1, Path_2>, <SeqIdx_2, Path_5>}.

The relevant functions from the ord/ seq module are given below.

// does s represent a valid sequence?
fun SeqFunValid(s: SeqIdx ->? Path)

// the set of indices of items in the sequence
fun SeqFunInds(s: SeqIdx ->? Path): set SeqIdx
// the item at the given index; {} if none
fun SeqFunAt(s: SeqIdx ->? Path, i: SeqIdx): option Path
// index of the last item in a sequence; {} if s is empty
fun SeqFunLastIdx(s: SeqIdx ->? Path): option SeqIdx
// last element of a sequence; {} if s is empty
fun SeqFunLast(s: SeqIdx ->? Path) : option Path
// set of elements in the sequence
fun SeqFunElems(s: SeqIdx ->? Path): set Path
// sequence without its first element

fun SeqFunRest(s: SeqIdx ->? Path) : SeqIdx ->? Path
// a given sequence with a new element at the end
fun SeqFunAdd(s: SeqIdx ->? Path, e: Path): SeqIdx ->? Path
// concatenation of two sequences, truncated to ISeqIdxl
fun SeqFunConcat (sl, s2: SeqIdx ->? Path): SeqIdx ->? Path

In the above declarations, { } denotes the empty relation. Functions in Alloy are sim-

ply parameterized macros; function invocations are replaced by the function body with

formal arguments replaced by actual ones. Functions can denote either Boolean predi-

cates (in which case no return type is given) or relations (in which case the return type

is given at the end of the function declaration.) Since Alloy is a declarative language in

52



which functions are inlined rather than invoked, it is more accurate to say that a function

"denotes" a Boolean or relational value rather than "returns" it; but we'll say "returns" by

analogy with ordinary programming-language functions. The declarations of function ar-

guments and function return types include relation type and multiplicity. The declaration

i: SeqIdx means that i is a unary relation containing exactly one tuple; the declara-

tion s: Seqldx ->? Path means that s is a binary relation mapping each atom of

SeqIdx to at most one atom of Path; In the function declarations, SeqIdx ->? Path

denotes a binary relation which maps each atom of S eqIdx to at most one atom of Path.

A function return type of option Path means the function returns a unary relation con-

taining at most one tuple.

The relation routePaths represents the sequence of paths comprising the route.

f irs tConn and lastConn give the first and last connectors of the route. Constraints

requiring the route to be well-formed can be written as follows:

fact RoutesWellFormed

all r: Route I {
// routePaths represents a valid sequence of Paths
SeqFunValid (r. routePaths)

// adjacent Path's in the sequence must share
// an endpoint, and be from different units
all i: SeqFunInds (routePaths) - OrdFirst(SeqIdx) I

let p = SeqFunAt(routePaths, i),
p_prev = SeqFunAt (routePaths, OrdPrev(i)) j {
some p.pathConns & pprev.pathConns
unitPaths.p != unitPaths.pprev

// the first connector is the connector of the
// first path that is not a connector of the second path
firstConn in
SeqFunAt (routePaths, OrdFirst (SeqIdx)) .pathConns -
SeqFunAt (routePaths, OrdNext (OrdFirst (SeqIdx))) .pathConns

// the last connector is the connector of the
// last path that is not a connector of the
// next-to-last path
lastConn in
SeqFunAt(routePaths,

SeqFunLastIdx(routePaths)) .pathConns -
SeqFunAt(routePaths,

OrdPrev (SeqFunLastIdx (routePaths)) .pathConns

// first and last connector are distinct;
// must specify this explicitly because for routes consisting
// of one path, the above two constraints don't imply this
firstConn != lastConn

53



2.3.5 Generality of our complex-structure representation

We could define a hierarchy of routes, in which a route can consist of shorter sub-routes,

which in turn might consist of yet shorter sub-routes. Such a representation might be useful

in planning the movement of trains through the station. We could represent this situation

by adding new fields to Route:

sig RouteWithSubroutes extends Route
leftHalf, rightHalf: Route

}

fact SubroutesCompriseRoute

all r: RouteWithSubroutes I
// the full route is a concatenation of its halves
r.routePaths =

SeqFunConcat(r.leftHalf.routePaths,

r.rightHalf.routePaths)

}

Note that the complex logical structure Route now contains references to other in-

stances of the structure (Figure 2-4). In other words, the generality of structures that

can be represented includes what can be represented on a heap in an object-oriented lan-

guage such as Java. This, together with the fact that Alloy does not limit its models to

representing finite state machines, has enabled the use of Alloy for checking the code

of heap-manipulation procedures [80], generating tests for heap-manipulating programs

from specifications [58] and checking runtime conformance of object-oriented programs

to specifications [13], in addition to checking Alloy models involving heap-like structures.

By contrast, the complex structures that can be represented in most other model checkers

[33, 11] are limited to structures typically represented on the stack: complex structures

can contain smaller structures in their entirety, but cannot contain references to instances

of other (possibly larger) complex structures. While some explicit-state model checkers

can handle heap-allocated structures [34, 64], no declarative, symbolic or pure-logic model

checker with that capability exists.

2.4 Modeling system state

So far, we have only modeled the train topology and the route structure, without modeling

the trains or the change of system state over time. (We have modeled the possible states of

54



Route_1

ightHalf leftHalf -

.routePaths Route_2 routePaths Route_0 -routePaths

- .routePathsroutePaths routePaths.

Figure 2-4: An Alloy instance with heap-like data structures.

each unit by modeling the paths that make up the unit, but we have not modeled the actual

state of the units at various points in time. Recall that the state of a unit consists of the open

paths in that unit.) Alloy's support for incremental modeling, and for describing instances

that are not just finite state machines, enabled us to construct a non-trivial description of this

part of the problem without worrying about the other parts. We will now turn to modeling

some dynamic aspects of the railway.

2.4.1 Modeling a single copy of system state

Let us expand our railway model by adding trains, and modeling the locations of the trains

and the status of the units. We will first model the state of the system at a single point in

time; later we will see how pairs and sequences of states can be modeled. The additional

definitions are as follows:

sig Train { trainLoc: Route
sig OpenPaths extends Path { }

The relation trainLoc gives the position of each train; following [10], we model the

location of a train as a Route covering the tracks occupied by the train. The set (i.e. unary

relation) OpenPaths gives the paths that are open for trains. A path is open iff a train can

occupy the entire path from one connector to the other, while standing correctly aligned

with the physical tracks. For example, the sole path of a linear unit might be always open,

while in a junction one of two paths might be open at a given time. The operation of linear

and junction units can be specified with constraints such as the following:

55



// The path joining the two given connectors,

// or the empty set if no such path exists.

fun PathBetween(a, b: Connector): option Path {

result = { p: Path j p.pathA = a && p.pathB = b

fact HowUnitsOperate

// the one path of a simple linear unit is always open

all lu: LinearUnit I lu.unitPaths in OpenPaths
// in a junction, exactly one of two paths is open

// at any time:

all ju: JunctionUnit

// either the path joining the one left connector to the

// ''main line'' connector on the right...

(ju.unitPaths & OpenPaths) =
PathBetween(ju.unitConnsA, ju.mainLine) ||
// ... or the path joining the one left connector to the
// ''side line'' connector on the right.

(ju.unitPaths & OpenPaths) =
PathBetween(ju.unitConnsA, ju.sideLine)

Upon defining relations describing the system state, we can write predicates describing

particular kinds of states. For example, we could define a safe state: one where no two

trains occupy the same unit, and all trains reside only on open paths.

fun RouteUnits(r: Route): set Unit {
result = SeqFunElems(r.routePaths) .unitPaths

fun SafeState() {
// no two trains are in the same unit
all tl: Train, t2: Train - tl I

no RouteUnits(tl.trainLoc) & RouteUnits(t2.trainLoc)

// trains reside only on open paths

let trainLocs = Train.trainLoc,
occupiedPaths = SeqIdx. (trainLocs.routePaths) I {
occupiedPaths in OpenPaths

}

2.4.2 Modeling several copies of system state

So far we have modeled the state of the train station at a single point in time, describing

the state by a group of relations. For model-checking purposes, we often want to model

several instances of state. For example, to check whether a particular set of rules for train

movement guarantees that the system will not pass from a safe state to an unsafe state, we

would need to represent two states: the pre-state and the post-state. We would then write

constraints saying that the pre-state is safe, the post-state unsafe, and the (pre,post)-state

pair is a transition conforming to the rules being checked. Another scenario which requires

56



representing multiple copies of state is Bounded Model Checking (BMC) [9], which will

be discussed in greater detail later in this chapter.

To represent multiple copies of state in the model, we could "objectify" the state by

declaring a new basic type whose atoms represent instances of state:

sig State {
trainLoc: Train ->! Route,

openPaths: set Path

}

Note that the relations trainLoc: Train -> Route and OpenPaths: Path

have been replaced respectively by trainLoc: State -> Train -> Route and

openPaths: State -> Path. (The ->! notation adds the constraint that in each

State, each Train is at exactly one Route.) Like atoms of Route, atoms of State

represent instances of a complex logical structure. This structure represents the state of the

train system - the location of each train, and the state of each unit - at one time point. (It's

important to note that no notion of state is built into Alloy, and the State signature we

have defined is just a regular Alloy signature without any special semantics.) By varying

the scope of State we can ensure that the model can represent a sufficient number of

distinct system states.

The constraints we have written for a single state can be rewritten for the new repre-

sentation, by using relational image to access the state components which previously were

accessed as global relations:

fun OccupiedPaths (s: State): set Path
result = SeqIdx. ( (Train. (s . trainLoc)) .routePaths)

fun SafeState(s: State) {

// no two trains are in the same unit
all tl: Train, t2: Train - ti I

no RouteUnits(tl. (s.trainLoc)) & t2. (s.trainLoc)
// trains reside only on open paths
let trainLocs = Train.(s.trainLoc),

occupiedPaths = SeqIdx. (trainLocs.routePaths) I
occupiedPaths in s.openPaths

2.4.3 Objectifying complex structures

In general, it is possible to take any collection of relations representing a complex structure

(such as system state here), and create a new signature representing instances of that com-

57



plex structure. Besides making the number of instances of the structure an easily controlled

parameter of the model, all the previously listed benefits of representing complex structures

with atoms will be available: the ability to declare relations involving the complex struc-

ture, and to reference instances of this complex structure from other complex structures.

Any predicates on the complex structure modeled with a collection of global relations can

be rewritten for the "objectified" version of that complex structure, as was done for system

states above.

2.4.4 Data abstraction through objectification

Note that objectification of a complex structure, together with the use of Alloy functions,

can facilitate data abstraction. In the above example, OccupiedPaths (s) denotes the

set of paths occupied by trains in a given state. We could change the representation of state,

e.g. by adding an explicit field to represent the occupied paths:

sig State

occPaths: set Path

fact DefineOccPaths

all s: State I
s .occPaths = SeqIdx. ((Train. (s.trainLoc)) .routePaths)

We could then redefine the function OccupiedPaths as

fun OccupiedPaths(s: State): set Path { result = s.occPaths }

All the uses of OccupiedPaths throughout the model would then still retain their

meaning and would not be changed, even though the definition of State has changed. In

this way, objectification of complex structures lets us encapsulate the representation of the

complex structure.

2.4.5 Fine-grained control over search space size

Representing logical structure instances by basic type atoms enables fine-grained control

over the space of instances representable by the model. Basic control is achieved by chang-

ing the length of the traces (by changing IState I ) or changing the number of physical

58



elements (e.g. by changing | Train |). More fine-grained control can be achieved by

changing the number of distinct instances of a complex logical structure that can appear in

a solution. For example, for I Route 1=2 the railway model can represent traces with up

to two distinct instances of the route structure. This includes the trace in which two trains

start out on adjacent paths and then one train moves into the other's path while the other

remains in place:

trainLoc={<sO,tO,rO>,<sO,ti,ri>,
<s1, tO, rO>, <s1, t1, rO>}

routePaths={<rO,pO>, <rl,p1>}

However, this does not include the trace with the same initial state, but in which one

train extends to occupy both tracks.

trainLoc={<s,t,r>,<s,tl,rl>,
<s1, tO, rO>,<s1, t1,r2>}

routePaths={<rO,pO>,<r1,pl>,<r2,pO>,<r2,pl>}

Increasing the scope of a complex logical structure like Route may increase the space

of representable instances in a more gradual way than increasing the scope of a physical

element like Train. Fine-grained control over the space of representable instances is

important, because the size of this space can make a large difference in analyzability during

model-checking. The size of the space also matters when Alloy is used as a backend to a

test-case generation tool [58], since the number of solutions directly affects the testing time.

While the space of representable instances is not the same as the effective search space

(since many instances may be quickly ruled out by constraints), the number of representable

instances is strongly correlated with the actual search space size.

2.5 Specifying the transition relation

Now that we can model several instances of state, we can use this ability to specify the

rules of train movement by writing predicates on pairs of states to test whether the pair

represents a valid train movement. Train movement constraints fall into two broad groups:

laws of physics (e.g. trains move only along existing tracks and only to adjacent tracks),

and rules of the road (e.g. trains don't run red lights). The declarative nature of Alloy

59



lets us address these groups in a modular and incremental way; physics constraints can be

specified separately from "rules of the road" constraints.

2.5.1 Constraints arising from physics

Let us first specify a physics constraint. First, let's specify a constraint on tracks. Of

all paths in a given unit emanating from a given connector, only one can be open at a

time. This reflects a physical property of rails: a train entering a unit at a connector will

deterministically end up on one particular path in that unit emanating from that connector.
fact TrackPhysics {
all s: State, u: Unit, c: Connector

sole pathConns.c & u.unitPaths & openPaths

Next, let's specify the possible movement of trains. A train moves by adding a new

Path at its front and dropping the Path at its tail.

// The set of paths occupied by the given train
// in the given state.
fun TrainPaths(s: State, t: Train): set Path

result = SeqFunElems( (t. (s.trainLoc)) .routePaths)

fun TrainPhysics(s, s': State) {
let r = t.(s.trainLoc), r' = t.(s'.trainLoc) {

r'.lastConn != r.lastConn
let openPathsAtTrainFront =

(pathConns. (r.lastConn) & s.openPaths),

newPath = openPathsAtTrainFront - TrainPaths(s, t) {
some newPath

r' . routePaths =

SeqFunAdd (SeqFunRest (r. routePaths) , newPath)

2.5.2 Constraints arising from signalling rules

To specify rules-of-the-road constraints, let's first expand the state to include train signals:
sig State

// ..

// may a new train enter this unit through this connector?
mayEnter: Unit -> Connector

The relation MayEnter represents whether in a given state, a new train may enter a

given unit through a given connector. We can constrain train movement to be consistent

with the value of mayEnter, as follows:

60



fun TrainsObeySignals(s, s': State)

all t: Train I
let r t.(s.trainLoc), r' = t.(s'.trainLoc) I

// if the last path of the new

// train location is different from what it was...

SeqFunLast(r'.routePaths) !in

SeqFunElems(r.routePaths) =>
// then the train had a right to enter

// the specified unit.

r.lastConn in

(unitPaths. SeqFunLast (r' .routePaths)). (.mayEnter)

2.5.3 Specifying a railway control policy to check

Finally, we need to specify how signals and units are controlled in response to train move-

ment. This is the part of the railway system that we actually want to check for correctness.

The logic that controls signal colors and unit states (e.g. junction positions) should ensure

that trains do not collide and do not derail.

For the signal policy, let's use the following rule: if a path is occupied by a train, that

path may not be entered via either of its connectors. The intent is to avoid train collisions.

fun SignalPolicy (s: State) f

// if a path is occupied by a train, it may not be entered

// via any connector
all c: Connector, u: Unit

c in u.(s.mayEnter) =>
no pathConns.c & u.unitPaths & OccupiedPaths(s)

For the unit policy, let us use the trivial policy that the set of open paths never changes.

That is, no junctions are ever switched. This (together with f ac t TrackPhysics de-

fined above) will ensure that no derailments happen because of changing unit state. Only

train collisions caused by inadequate signalling will remain as possible problems with the

railway.

fun UnitPolicy(s, s' : State) { s' .openPaths = s.openPaths }

2.6 Invariant preservation testing

Having defined the transition relation, we can now specify and check some dynamic prop-

erties of our railway system. One common type of analysis involves testing whether an

61



operation preserves an invariant. In our case, we can test whether our signalling policy and

unit policy successfully prevent the railway system from passing from a safe state into an

unsafe state:

fun SafetyInvariantViolation(s, s': State)

TrainPhysics(s, s')
TrainsObeySignals(s, s')

SignalPolicy(s)

UnitPolicy(s, s')

SafeState (s)

!SafeState(s')

To search for counterexamples illustrating a safety invariant violation, we need to spec-

ify the basic type scopes within which to search. This is done with the run command,

which specifies the function to be analyzed and the scope for each basic type:

run SafetyInvariantViolation for 2 Unit, 5 Connector, 3 Path,
3 Route, 1 SeqIdx, 2 Train, 2 State

The tool will add two new unary relations s, s': State for the arguments of

Saf etyInvariantViolation, and will search for an instance satisfying

SafetyInvariantViolation (s, s' ) (as well as all the facts and all constraints

implicit in signature declarations). In this analysis, the tool finds no counterexamples.

2.6.1 Unsatisfiable core analysis: debugging overconstraints

Our last analysis found no counterexamples. This could mean one of several things. It could

be that our rules for preventing train collisions are indeed correct. Another possibility is

that a counterexample exists, but only in a larger scope. In this case, increasing the scope

to 3 Unit, 5 Path still finds no counterexample.

Yet another possibility is that the model contains an unintended overconstraint that

masks a counterexample. When we created the model, we established a correspondence

between real-world scenarios and model instances (assignments to all relations). We then

wrote constraints restricting model instances to those that represent well-formed real-world

scenarios in which something bad happens (e.g. trains collide). It's possible that in writing

these constraints, we have unintentionally excluded some well-formed real-world scenarios

62



that would illustrate errors. An error in our model would thus prevent us from discovering

an error in the actual system.

To deal with this problem, Alloy provides an overconstraint debugger. When an Alloy

analysis finds no instances, the debugger can identify a subset of the model (an unsatisfiable

core) sufficient to rule out all satisfying instances. Constraints not in the core are not needed

to establish the absence of counterexamples to the property; removing them won't make the

model satisfiable. Since most constraints were written by the user for a particular purpose,

the fact that some constraints are irrelevant may alert the user to errors in the model.

In our example, invoking the overconstraint debugger produces a surprising result:

the constraints TrainsobeySignals (s, s ' ) and SignalPolicy (s) are irrelevant

(see Figure 2-5). We can verify this by commenting them out and re-running the analy-

sis; indeed, no counterexamples are produced. This suggests an error in the model: the

signalling constraints were written to exclude some specific scenarios (train collisions),

yet these scenarios are ruled out even without the help of these constraints. That means

that the remaining constraints erroneously exclude more scanarios than intended. At the

very least, they erroneously exclude the collision scenario we had thought of (and wrote

TrainsObeySignals and SignalPolicy to prevent); it's possible that they also in-

advertently exclude other bad scenarios that we hadn't thought of, and that our signalling

rules would not prevent. Unless we identify and fix the overconstraint, we cannot be sure

that our SignalPolicy is safe.

In addition to alerting the user to the presence of overconstraint, the debugger can help

identify the erroneous constraints. In case of severe overconstraint where a few constraints

contradict each other and rule out all instances, the debugger will usually identify the prob-

lem constraints and report that the bulk of the model is irrelevant. In our example however,

the debugger says that most of the model is relevant to showing absence of counterexam-

ples - only the function invocations TrainsObeySignals and SignalPolicy are

irrelevant. Still, this information can help us find the overconstraint. We have written these

functions for the purpose of excluding some specific error scenarios. These scenarios are

being erroneously excluded by other constraints; the tool can tell us by which ones. The

tool lets us manually enter a specific instance, and see which constraints (if any) the in-

63



Li LogicOp: &&
F c rmul Ia s: a IJ RJ7 ra! nPhrys i,;csq-ft : R r a in|{ RRPJTra in Fhy4,s i cs - R RiTra-i in}

0- 1 I [yes- 280 01 inmning of function invocation TrainPhysics( RRlShowlnvarianN

0- L- Ol: inlinring of function invocation TrainsObeyignaIs( RRIShowinvadantVlolatk

l 011: inlining of function invocation SignalPolicy( RRShownvarlanViolation&@)

C 11: es: 551 0] inlning of function invocation UnitPolicy( RR Showlnva anfAo

-111: yes: 629 01 inlining of function Invocation SafeState( RRSho nvarianVio

- NegFormula: not { all RRSafeState t0 RRYTraint{ RRSafeState~t1 : RRfT

Figure 2-5: Debugging of overconstraints: identification of irrelevant constraints. The

figure shows a fragment of the Abstract Syntax Tree of the Alloy model, with markings

indicating which branches (subformulas) are relevant to showing absence of counterexam-

ples and which are irrelevant. Branches beginning with "[yes:" are relevant while others

are irrelevant. In this case, TrainsObeySignals and SignalPolicy are identified as irrelevant.

stance violates. When we enter an instance (using a GUI instance editor built into Alloy

Analyzer) corresponding to a train collision, we see that it satisfies all constraints except for

TrainPhysics. We then realize that we have required each train to move at each time

step, but did not allow a train to remain in place. We have thus overconstrained the possible

movement of trains, ruling out the collision scenario we had thought of and perhaps others

we hadn't thought of.

We can fix the problem by modifying the TrainPhysics constraint to allow trains

to remain in place:

fun TrainPhysics(s, s': State)
all t: Train I

TrainStays(s, s', t)

TrainMovesToNeighboringPath(s, s', t)

}

fun TrainStays(s, s': State, t: Train)

{ TrainLoc(s,t) = TrainLoc(s' ,t) )

fun TrainMovesToNeighboringPath(s, s': State, t: Train) {

let r = t.(s.trainLoc), r' = t.(s'.trainLoc) I {
let openPathsAtTrainEnd =

(pathConns. (r. lastConn) & s .openPaths),

newPath = openPathsAtTrainEnd - TrainPaths(s, t) | {

some newPath &&

r' .routePaths =

SeqFunAdd(SeqFunRest(r.routePaths), newPath)

r'.lastConn != r.lastConn

// The train location in the given state,

// or the empty set if this train is not on the track

// in the given state.

64



fun TrainLoc(s: State, t: Train): option Route
{ result = t.(s.trainLoc) }

Now when we run the analysis, the tool does find a counterexample, While our Signal Po1i cy

prevents new trains from entering an occupied path, it does not prevent new trains from en-

tering an occupied unit. This can cause a collision when two paths in a unit intersect -

for example, if the unit is a crossover unit. The scenario is illustrated in Figures 2-6 and

2-7. Note that this error would have been missed because of overconstraint; Alloy's over-

constraint debugger has enabled us to detect and find the overconstraint, and eventually to

find the error scenario formerly masked by overconstraint. Another example of using the

overconstraint debugger is given in Section 6.2.

A corrected signalling policy can be expressed as follows:

fun SignalPolicy (s: State) {
// if a unit is occupied by a train, it may not
// be entered via any connector
// (the actual property below specifies the contrapositive)
all c: Connector, u: Unit I

c in u. (s.mayEnter) => no u.unitPaths & OccupiedPaths(s)

}

With the corrected SignalPolicy, no examples of invariant violation are found in

the scopes in which we have searched. However, analysis in higher scopes (with 3 units)

reveals another problem: two trains may enter an empty unit on different paths, and end up

in the same unit. This problem can be fixed by requiring that a unit may be entered through

at most one connector. (Since only one train needs to enter an empty unit at any given time,

this requirement should not impede normal train operations.) The revised Alloy definition

of signal policy can be expressed as follows:

fun OccupiedUnits(s: State): set Unit
{ result = unitPaths.OccupiedPaths(s) }

fun SignalPolicy (s: State) {
// if a unit is occupied by a train, the unit may not

// be entered through any connector.

// otherwise, there is only one connector through

// which the unit may be entered.

all u: Unit I let openConns = u.(s.mayEnter) I
u in OccupiedUnits (s) => no openConns else sole openConns

}

With the revised definition, no counterexamples showing safety invariant violation are

found even in higher scopes. Moreover, running the overconstraint debugger shows that all

65



Unit_ -0 Unit_1n-

rainLoc unitRoutes nitRoutes nitRoutes rainLoc

Route_2 Route_1 Route_0

irstConn lastConn firstCon astConn irstConn astConn

Connector_1 Connector_4 Connector_2 Connector 0 Connector_3

Unit_0 U I_1

nitRoutes rainLoc unitRoutes nitRoutes rainLoc

Route_2 Route_1 Route_0

firstCo nn astConn irstConn astConn irstConn astConn

Connector_1 Connector_4 Connector_2 Connector_0 Connector_3

Figure 2-6: Safety violation: trains collide (relational view). The top figure shows the pre-
state and the bottom figure the post-state. Train_0 moves from Unit_0 onto an unoccupied
path in Unit.1, causing a conflict with Train_1 which resides on another path in UnitA.

constraints are relevant to ruling out error traces. This gives us confidence that the model

is correct, and that the absence of counterexamples reflects correctness of the modeled

algorithm rather than the presence of an overconstraint.

2.6.2 Limitations of invariant preservation testing

While checking invariant preservation as shown above can uncover many errors, the tech-

nique has some serious limitations. To begin with, the technique does not compute the

reachable states of the system, and is therefore prone to producing bogus counterexamples.

For instance, supposed we want to ensure that our railway cannot get into a "stuck" state

from which there are no valid transitions. We could test whether the system can pass from

66



Unit_1
U nit_0.._.-. _.. _..

T1
c3 co

TO m

C1 c4 c2

State_0: Trains stand on adjacent units.

Unit 0Unit 1

T1
c3 co

TO

)

c1 c4 c2

State_1: Train 0 moves into Unit 1, causing a conflict with Train 1

on another track segment in that unit.

Figure 2-7: Safety violation: trains collide (physical view). The top figure shows the pre-
state and the bottom figure the post-state. Train 0 moves from Unit 0 onto an unoccupied
path in Unit 1, causing a conflict with Train 1 which resides on another path in Unit 1.

an unstuck state into a stuck state, using the invariant preservation test. But there would

be no guarantee that the unstuck state (from which the system gets into the stuck state) is

67

I



itself reachable from an initial state of the system.

In some cases, the reachable states of a system can be easily described by a predicate.

This was the case, for instance, in Alloy analysis of the Intentional Naming System (INS)

[51]. In that work, the authors were interested in the effect of an update operation on a

database. The original INS specification [1] included operations for building the database

from scratch. However, it was determined (by manual analysis) that the databases that can

be built using these operations can be described by simple constraints. It was therefore

unnecessary to model the database construction operations; the database update operation

could be checked on the valid databases by specifying Alloy constraints describing the

valid databases.

However, in many transition systems, the reachable state space is not so easily de-

scribed. The simplest example might be the chessboard. While it's easy to write predicates

describing the initial chess position and the transition relation (whether two chess positions

are related by a valid chess move), describing the reachable chess configurations with a

predicate appears very hard.

Another drawback of invariant preservation analysis is that it cannot be used to check

liveness properties. Unlike a safety property (which typically states that the system never

reaches a bad state), a liveness property states that a system eventually does reach a "good"

state.

The limitations of invariant-preservation testing can be overcome by encoding Bounded

Model Checking (BMC) [9] problems in Alloy. That is the subject of the following section.

2.7 Bounded Model Checking

In this section, we show how Bounded Model Checking (BMC) [9]problems can be ex-

pressed and analyzed in Alloy. In Bounded Model Checking, the model represents a k-step

bounded trace of an algorithm, and we can search for traces satisfying specified conditions

- typically, for traces illustrating some error. Our contribution here lies in showing that

BMC problems can be expressed in Alloy within the pure-logic model checking paradigm,

without adding special language support for BMC. Note that expressing BMC problems

68



in Alloy lets us use all other Alloy features - such as the ability to model complex data

structures and the flexibility of pure-logic model checking - on BMC problems.

2.7.1 The elements of Bounded Model Checking

Bounded Model Checking (BMC) [9] is a technique for model-checking finite state ma-

chines using SAT solvers. Consider an FSM with a k-bit state vector. With k x m bits, we

can represent a bounded trace of the FSM: a sequence of m states such that the first state is

a valid initial state, and any two adjacent states are related by the FSM's transition relation.

Formally, let Si denote the i'th k-bit vector (representing the state of the FSM after i steps).

Let the state machine be specified by two predicates: I(S), specifying the initial state(s),

and T(S, S'), specifying the transition relation. (I(S) is a predicate on k Boolean vari-

ables, and T(S, S') is a predicate on 2k Boolean variables). Then the following formula

constrains the Boolean variable vectors So,..., Sm-1 to represent a valid m-step initial

trace of the FSM:

I(SO) A T(So, Si) A T(S1 , S2) A ... A T(Sm- 2, Sm-1)(*)

Note that in any Boolean assignment satisfying the formula (*), the Boolean vectors

Si represent only reachable states of the FSM; specifically, the states reachable from an

initial state in up to m transitions. The formula can be generated automatically from the

definitions of I(S) and T(S, S'), by unrolling the transition relation m times.

Once the Boolean formula describing the valid initial bounded traces has been con-

structed, we can conjoin to it additional conditions requiring the trace to illustrate undesir-

able FSM behaviors. The resulting Boolean formula will be satisfiable iff the FSM fails

to satisfy correctness properties, and a satisfying assignment will correspond to a bounded

trace illustrating the problem.

The original BMC paper [9] gives an algorithm for converting correctness properties

expressed in a temporal logic, Linear Time Logic (LTL), into Boolean predicates on the

Boolean variables representing the bounded trace. For example, violations of the typical

safety property "in all states, the invariant P(S) holds" can be detected with the following

69



predicate on the bounded trace representation:

!P(So)v!P(S1 ) V .. . V!P(Sm-1)

Violation of the typical liveness property "eventually, the condition Q(S) becomes true"

can be detected by constraining the bounded trace never to satisfy the condition Q(S) and

to end in a loop:

!Q(S 0)A!Q(S 1 ) A ... A!Q(Sm-1) A ((So = Sm-1) V (S = Sm-1) v ... V (Sm- 2 = Sm-1))

Clearly, if such a trace is found, then an infinite trace exists in which Q(S) never be-

comes true; but the converse also holds. Since the number of states of the FSM is finite,

any infinite trace must end with a repeating loop; therefore, to find violations of liveness

properties it is sufficient to test for the existence of a finite looping trace in which Q(S)

never becomes true.

LTL supports description of more complex safety and liveness properties (e.g. "Q(S)

becomes true some time after P(S) becomes true). Conversion from full LTL to Boolean

predicates on bounded traces was described by Biere et al [9].

If a BMC analysis fails to find a counterexample for a particular trace length (the value

of m), it is still possible that a counterexample exists for a larger value of m. However,

since the FSM has a finite number of states, there exists a sufficiently large number M such

that the absence of counterexamples for a m = M guarantees the absence of counterexam-

ples for all n. If we can determine M, and if we can do the BMC analysis with the required

trace length, then we can verify the absence of counterexamples for all possible traces. Un-

fortunately, in many cases M is too large, and verifying correctness for arbitrary-length

traces is not practical. Despite this limitation, BMC can still be very useful. First, may er-

rors can be illustrated with short counterexamples [4]. Second, trace length is typically only

one of several limits on a model-checking analysis. Others bounds may include the number

of processes in a distributed algorithm, the maximum length of communication queues, and

so on. So even if no counterexamples exist for any trace length, counterexamples may yet

be found for larger scopes of other parameters of a parameterized algorithm. Nevertheless,

70



the focus of model checking is on finding bugs rather than proving correctness, and for that

purposes a bounded search often suffices.

2.8 Encoding BMC problems in Alloy

The Alloy language and analyzer have no explicit support for either Finite State Machines

or Bounded Model Checking. However, as we have seen earlier, it is possible to model the

state of a transition system, and to construct Alloy models whose instances include several

copies of system state. These techniques can be used to model BMC problems in Alloy.

We can construct Alloy models whose instances represent the valid bounded traces of a

transition system, and use Alloy constraints to require the traces to show counterexamples

to correctness properties.

It's important to note that not only is BMC support not built into Alloy, but the ability

to encode BMC problems in Alloy was discovered after the Alloy Alpha language [42]

had been finalized. Moreover, no BMC-specific changes or language features were needed

when the current Alloy language was defined. The ability to integrate a new modeling

paradigm without changing the language is due to Alloy's pure-logic nature. If other useful

modeling patterns are developed in the future, it's likely that they can be integrated into

Alloy with similar ease.

2.8.1 General form of BMC constraints in Alloy

The general form of Alloy constraints for representing a BMC instance can be described as

follows. First, we constrain the Alloy instance to represent a valid bounded trace:

fun Initial(s: State) { ... }
fun ValidTransition(s, s': State) { ... }

fact WellFormedTrace {
Initial(OrdFirst(State))
all s: State - OrdLast(State) I

let s' = OrdNext(s) I ValidTransition(s, s')

The function Initial tests whether s (i.e. the one State atom contained in the

singleton set s) represents a valid initial system state. The function ValidTrans i t ion

71



tests whether the given pair of states represents a possible system transition. In the railway

model, Initial might test that the station is empty (no trains have entered the modeled

tracks). ValidTransition might test that trains obey laws of physics and red lights.

Note how the objectification of state and the use of the total ordering module help express

BMC constraints in Alloy. Another factor that facilitates expression of BMC constraints,

inherited from Alloy Alpha, is the presence of quantifiers in the language.

In addition to trace well-formedness constraints, we write constraints requiring the

bounded trace to show violations of correctness properties. The general form of these

constraints is:

fun SafetyPropertyViolation() { some s: State I !Safe(s) }
fun LivenessPropertyViolation() {

(some s: State - OrdLast(State) I
StatesAreEquivalent (s, OrdLast (State))) &&

all s: State I !LivenessProperty(s)

}

The function Saf etyPropetyViolation requires the instance to show the viola-

tion of a simple safety property: that some invariant (Saf e) holds in all reachable states.

The function requires that some atom of State represent an unsafe state. All State

atoms were restricted to representing reachable states by the fact WellFormedTrace

defined earlier.

The function Livenes s PropertyVio lat ion requires the instance to show the vi-

olation of a simple liveness property: that the predicate Livenes s Property eventually

becomes true. The function requires that the trace consist of states in which Livenes sProperty

is false, and end in a loop. The latter requirement ensures that Livenes sProperty will

not become true later in the trace; the bounded trace exhibited as counterexample corre-

sponds to an infinite looping trace in which LivenessProperty never becomes true.

The predicate StatesAreEquivalent, omitted here, tests whether two State atoms

represent equivalent states, and is used to constrain the trace represented by the Alloy in-

stance to end with a loop 5.

5We cannot simply test for equality of State atoms, because we are using State atoms to represent positions

in the trace as well as instances of state.

72



2.8.2 Extending the railway example

To illustrate Bounded Model Checking on the railway example, we will first make the

example somewhat more sophisticated. Since we'd like to specify and check a liveness

property, we need to be able to specify some positive goal for the system to reach (as

opposed to modeling aimless motion of trains). Therefore, to the model we will add a

routing plan, which specifies a planned route for each train. The liveness property can then

state that each train completes its plan. Note that, like track topology, the routing plan will

be a global variable of the model, to be solved for by the analyzer; it will not be hard-coded

by the user.

The transition relation will be expanded to take account of the routing plan. Besides

following the laws of physics and the road signals, trains will now have to move according

to the plan. At each time point, each train will attempt to advance along its plan. If several

trains want to enter the same unit in order to advance along their respective plans, one

train is chosen to move into the unit, and the others must wait. The one train that is given

permission to enter the unit will do so if the unit is unoccupied, or if we know that the train

currently occupying the unit will move away under our instructions. In other words, the

planned movement of a given train depends not just on current locations of the trains, but

on our movement instructions to other trains.

We will model the reachable states of the train system by starting with a simple, clearly

reachable state: empty tracks. Each train's plan will call for the train to enter the tracks

from a "hanging connector" (one attached to only a single unit, as opposed to one joining

two units), and eventually leave the tracks through another hanging connector. We will also

simplify matters by requiring each train to occupy only one unit at a time. Thus, it should

always be possible to execute each train's plan in turn, taking one train at a time through

the tracks. When more than one train enters the station at the same time, however, error

scenarios become possible.

In sum, we will expand our railway model in the following ways: 1) the transition

relation will now allow trains to enter and leave the tracks via hanging connectors; 2) there

will be a routing plan which specifies a route for each train to follow; 3) the transition

73



relation will require each train to follow its plan, and will constrain unit states and train

signals to be consistent with the planned train movements. Afterwards, we will use the

BMC modeling pattern described earlier to model bounded traces of the railway system,

and to constrain these traces to illustrate violations of safety and liveness properties.

First, let's write some auxiliary Alloy definitions, which will make subsequent Alloy

text more readable and concise:

// The set of paths occupied by the given train
// in the given state.

fun TrainPaths(s: State, t: Train): set Path

result = SeqFunElems ( (t. (s. trainLoc) ) . routePaths) }

// The connector at the back of the train,

// in the given state.

fun TrainBack(s: State, t: Train): option Connector

{ result = (t.(s.trainLoc)).firstConn }

// The connector at the front of the train,

// in the given state.

fun TrainFront(s: State, t: Train): option Connector

f result = (t.(s.trainLoc)).lastConn I

// The units (at most two) that come together

// at the given connector

fun ConnUnits(c: Connector): set Unit

{ result = (unitConnsA+unitConnsB) .c }

/ Does the connector belong to only one unit (as opposed to
// joining together two units)?

fun IsHangingConnector(c: Connector) { sole ConnUnits(c) }

Next, let's expand our transition relation to allow for entrance and exit of trains:

fun TrainAppears(s, s': State, t: Train)

no TrainLoc(s,t)

one TrainPaths(s', t)
IsHangingConnector(TrainBack(s', t))

I

fun TrainDisappears(s, s': State, t: Train)

one TrainPaths(s, t)

IsHangingConnector(TrainFront(s, t))

no TrainLoc(s,t)

I

fun TrainPhysics(s, s': State) {
all t: Train I

TrainAppears(s, s', t) I|
TrainDisappears(s, s', t) |
TrainStays(s, s', t) 11
TrairiMovesToNeighboringPath(s, s', t)

}

Next, let's model the routing plan. To model the planned route of each train, we will

reuse the same Route signature used earlier to model train locations.

74



static sig RoutingPlan [
// for each train, the route to follow through the tracks

trainPlan: Train ->! Route

// The sequence of paths in the given train's plan.

fun TrainPlan(t: Train): SeqIdx ->? Path

{ result = t.(RoutingPlan.trainPlan).routePaths I

fact WellFormedTrainPlans {
all t: Train I let r = t.(RoutingPlan.trainPlan) {

// every train's plan starts and ends at track edges

IsHangingConnector(r.firstConn)

IsHangingConnector(r.lastConn)

}

Note that, like track topology and unlike train locations, the routing plan is not part of

the changing system state; there is only one copy of the routing plan for the entire instance,

while there are I State I copies of system state. The declaration static sig RoutingPlan

forces the scope of RoutingPlan to be 1. Thus, trainPlan is a degenerate ternary re-

lation: the scope of its leftmost column is equal to 1, so it is isomorphic to a binary relation

of type Train -> Route. (That binary relation can be referenced as Rout ingPlan. trainPlan.

Thus, we can objectify the routing plans and yet treat it as an unobjectified, global relation

(and pay no analysis cost) as long as we keep the scope of Rout ingPlan at 1. The current

definition of Alloy does not permit declaring a free-standing global binary relation - every

relation must be part of some signature; but as the trainPaln example shows, we can

easily achieve the effect of declaring a global relation by wrapping a relation in a static

signature. Moreover, if in the future we need the model to include several routing plans,

it would be easy to adapt the model: we would simply need to remove static modifier

from the declaration of RoutingPlan.

Next, we need to extend the system state to include the position of each train along its

plan, and some auxiliary information used in planning the next move

sig PlanState extends State f

trainPlanPos: Train ->? SeqIdx,

trainWish: Train -> Unit,

trainMayMove: set Train,

unitEmptiedTo: Unit -> Unit

}

6We could also directly modify the State signature, but using the extension mechanism makes the model

clearer and more modular by separating the train-plan aspect of the model into a separate paragraph

75



The relation trainPlanPos represents the position of each train along its plan; if a

train t has not yet entered the tracks in state s, then t. (s . trainPlanPos) is empty.

The other relations are used in planning train movement. The relation trainWish rep-

resents, for each train, the unit that train needs to enter to progress along its plan. The

relation trainMainMove specifies the trains we allow to move; of all trains wishing to

enter a given unit, we'll allow one train to move. uni tEmpti edTo is used to keep track

of occupied units that may be entered immediately because their occupants will move;

uni tEmpt iedTo contains (si, uj, Uk)+ iff in state si, the train in unit u_ j will move to

unit (Uk).

We will omit the detailed Alloy constraints on the above relations; the full commented

model appears in Appendix A. The constraints ensure that at each state, each train moves

along its plan if possible or remains in place if not. The constraints also ensure that unit

states (openPaths) and signals (mayEnter) allow the planned train movements.

Here we will only look at one aspect of these constraints: specifying which trains get

to move.

fun TrainsFollowPlans(s, s': PlanState)

of all the trains wishing to enter a unit, one may move

all u: Unit I {
// if at least one train wants to enter unit u...
some (s.trainWish).u =>

// ... then exactly one train gets permission.

one (s.trainWish) .u & s.trainMayMove

}

Note that we do not give a specific strategy for deciding which trains may move; we

simply give the weakest possible restriction on the value of the trainMayMove relation.

This illustrates several advantages of declarative modeling. The user is freed from writ-

ing a more detailed specification; the model is less burdened with unimportant details and

therefore more readable; the smaller model may be more tractable for the analyzer. More-

over, since we do not specify a specific strategy for moving trains, the analyzer checks all

possible train movement strategies in one run. The Alloy model describes an abstraction

of several concrete strategies; a property that holds for the abstraction will hold for any

concretization of the abstraction. This situation is quite common in modeling; for example,

76



in modeling a cache, we may omit the cache replacement strategy and simply say that some

unspecified subset of cache lines gets dropped.

2.8.3 Encoding BMC analyses in Alloy: the railway example

We're now done with expanding the railway model, and can proceed to illustrating the

use of Bounded Model Checking in the context of Alloy. First, we need to constrain the

instance to model valid bounded traces of the railway system, starting from a valid initial

state and following the transition relation:

fun Initial(s: State) {
// there are no trains on the tracks
no s.trainLoc
// no train has yet started going through its plan
no s.trainPlanPos
// no train has yet completed its plan
no s.trainDone

}

fun ValidTrace() {
Initial(OrdFirst(State))
all s: State - OrdLast(State) I let s' = OrdNext(s') {

TrainPhysics (s, s')
TrainsObeySignals(s, s')
TrainsFollowPlans(s, s')

}

Note how declarative modeling leads to a clean separation between various aspects

of the train motion; the constraints arising from physics, signals and planning are simply

conjoined together to form the transition relation.

Now we can write the constraints forcing the bounded trace to illustrate violations of

correctness properties. Let's start with a safety property. One type of train collision not

captured by predicates on a single state, is when two trains from neighboring units exchange

locations: train from unit ul move to neighboring unit u2, while the train from u2 moves

to ul. (Such a scenario is impossible when trains can't enter occupied units, but we have

relaxed that restriction by allowing a train to enter a unit if that unit is being vacated.) As

the trains exchange places, they may collide. To search for such a scenario, we can write

the following Alloy constraints:

// The set of units occupied by the train
// in the given state.
fun TrainUnits(s: State, t: Train): set Unit
{ result = unitPaths.TrainPaths(s, t) }

77



fun TrainsPassEachOther(s, s': State, t1, t2: Train)

// both trains were on the track in state s

some TrainUnits(s, ti)

some TrainUnits(s, t2)

// in state s', the trains exchanged places

TrainUnits(s', t1) = TrainUnits(s, t2)

TrainUnits(s', t2) = TrainUnits(s, ti)

fun SafeTrace() {
all s: State

// reuse the SafeState predicate from invariant

// preservation testing: at most one train per unit,

// all trains stand on open paths

SafeState (s)

// between this state and the next,

// no pair of trains pass each other.

let s' = OrdNext(s) some s' => {
all t1, t2: Train tl != t2 =>

!TrainsPassEachOther(s, s', tl, t2)

}

fun SafetyViolation ()
ValidTrace ()
!SafeTrace()

run SafetyViolation for 2 Unit, 3 Connector, 2 Path,

6 Route, 2 SeqIdx, 2 Train, 3 State

Analysis of Saf etyViolation reveals a simple counterexample, illustrated in Fig-

ures 2-8 and 2-9.

The track consists of two simple linear units. In the initial state, the track is empty.

In the next state, trains Train_0 and Train_1 enter simultaneously from two sides.

The routing plan calls for Train_0 to move to unit Unit_1, and for Train_1 to

move to Unit_0. The train control logic decides that although Unit_1 is occupied,

it may be entered because its train will move to Unit_0; at the same time, Unit_0

may be entered because its train will move to Unit_1. In other words, the value of

OrdNext (OrdFirst (State) ) .unitEmptiedTo is {<Unit_0, Unit_1>,

<Unit_1, Uni t_0>}. The train control logic therefore allows the trains to exchange

places, causing a safety violation.

One solution is to require that s .unitEmptiedTo not have cycles, for all s. This

can be expressed with the following Alloy constraint:

fact NoTrainLoops {
all s: State I no ^(s.unitEmptiedTo) & iden[Unit]

78



Unit_0 TUnit_0 Trai

nitConnsA nitConns nitConns itConnsB

Connector_ onnector_ ConnectorC

State 0: Track is empty

Unit_0 Train_0 Train_1 Unit_1

nitConnsA nitConns trainBack t ainFront rainFront rainBac unitConn itConnsB

onnector_ onnector_ netr

State 1: Trains enter from opposite directions

Unt0Train_1 Train_0 Unit__1

nitConnsA nitConns rainFront ainBack rainBack ainFron unitConn itConnsB

onnector_ onnector_ onnector_

State 2: Trains pass each other

Unit~l- .. . .. . ... .. .

nitEmptiedT unitEmptiedTo nitConnslnayEnter

mayEnter Unit_0 iayEnte itConnsA onnector_

.unitConnsA nitConnsB'mayEnter

nector_ onnector_

State 1: Cycle in unitEmptiedTo leads to lax signalling.

Figure 2-8: BMC analysis: safety property violation (relational view).

(s .unitEmptiedTo) denotes the transitive closure of s. unitEmptiedTo, and

iden [Unit] is a built-in relational constant that denotes the identity relation of type

Unit -> Unit. The constraint says that the transitive closure of the graph has no self-

loops - that is, that the graph is acyclic. With this additional constraint, the safety coun-

79



Unit_0
Unit 1

TO

jL --------------- ------......

State_0: empty track, dashed lines show train plans.

Unit_0
Unit 1

cO
O- - T1

T0 ------L

1~
N

~T1

/

/

State_1: Trains enter tracks, dashed lines show train plans.

Unit_0
Unit 1

T11
TT1O

TO
/

State_2: Trains pass each other (unsafe).

Figure 2-9: BMC analysis: safety property violation (physical view).

80

i



terexample is eliminated. Note how the use of the transitive closure operator, inherited

from Alloy Alpha, enables us to express the needed constraint concisely and naturally.

Other model checkers [11, 33] do not support high-level graph operators such as transitive

closure.

Now let us consider a liveness property: all trains eventually fulfill their plans. A

counterexample would be a trace which ends in a loop before all plans are fulfilled. The

following Alloy constraints will let us search for such a trace:

fun StatesAreEquiv(sl, s2: State)
sl.trainLoc = s2.trainLoc

}

fun TraceEndsWithLoop()

some s: State - OrdLast(State)

StatesAreEquiv(s, OrdLast (State))

}

fun PlanNotFulfilled()
// at the last state, not all trains are done

Train !in OrdLast(State).trainDone

fun TrainRoutesDisjoint()

// to rule out some trivial counterexamples,

// require that the routes of all trains

// be disjoint

all tl, t2: Train I tl != t2 =>
no SeqFunElems(TrainPlan(tl)) &

SeqFunElems (TrainPlan(t2))

fun FindLivenessViolation ( ) {
TrainRoutesDisjoint()

ValidTrace ()
TraceEndsWithLoop()

PlanNotFulfilled()

run FindLivenessViolation for 2 Unit, 4 Connector,

4 Path, 4 Route, 2 SeqIdx, 2 Train, 3 State

Analyzing these constraints yields a counterexample, illustrated in Figures 2-10 and

2-11. There are two trains. Their plans do not share any paths. However, their plans share

units, and this causes a liveness violation. In State_1, neither train can advance, and

State_2 is therefore equivalent to State_1. Since the system enters a loop before all

trains fulfill their plans, the train plans will never be fulfilled. Fixing the problem will

require non-trivial modifications to the model which we won't attempt here; but we have

illustrated the ability of our setup to detect liveness violations through BMC analysis.

81



Unit_0 Train1 rainUni 1

u itPaths itPa inWishPath t ainWishPat nitPat itPaths

Path_2 Path_0 Path_3 Path_1

athB athA pathB athA pathA athB pat athB

onnector_ onnector_ onnector_ onnector_

State_0: Track is empty

Train-0 ~ Unit_1 Unit_0 ri1

itpaths ainWishPath nitPath itPaths itPath rainWishPa

t ainFront rainBac Path_3 Path_2 Path_1 Path_0 trainB inFront

athA pathA athB pathB athB at athB athA

onnector_ onnector_C onnector_ onnector_

State_1: Trains enter track. Train plans are disjoint.

Train- Unit_1 Unit_0 ri.

itPaths ainWishPath nitPath itPaths itPath rainWishPa

t ainFront rainBac Path_3 Path_2 Path_1 Path_0 trainB inFront

athA pathA athB pathB athB at athB ath

onnector_2 onnector_ onnetr onnector_

State_2: Trains cannot advance.

Figure 2-10: BMC analysis: liveness property violation (relational view).

2.9 Summary

In this chapter, we have illustrated pure-logic declarative modeling in Alloy on the exam-

ple of a simple railway system. We have shown Alloy's ability to model algorithms that

manipulate complex data structures, while keeping the model first-order. The pure-logic

82



-UniL.10

c2 N
3 Np2

TO

Tp 1
C C C

State_0: empty track, dashed lines show train plans

i' c2

p2 3

T1 PO
c3

State_1: each train entered the first step of its plan,but cannot proceed to the second.

Figure 2-11: BMC analysis: liveness property violation (physical view).

83



modeling paradigm supported a variety of modeling idioms in a uniform way. Declarative

modeling allowed us to specify abstract models covering a variety of scenarios, such as the

execution of an arbitrary train movement strategy on an arbitrary track topology under an

arbitrary train plan. We have also shown how unsatisfiable core analysis can be used as part

of the modeling process to find algorithmic errors masked by overconstraint.

Some of the modeling choices in our running example may seem arbitrary, and the

question may arise - among the different ways of modeling a given system, how does the

user choose the best one? For example, how does one make modeling choices that lead to

the most tractable model? Unfortunately, given the unpredictability of the SAT solvers used

for analysis, there is no simple answer. Part of the future work will be to provide the user

with information that can be used to make models more tractable; for instance, a profiler

may tell the user which parts of the model contribute the most to the size of the Boolean

formula generated for analysis. Some relatively systematic control of search space size is

enabled by objectification, as suggested in Section 2.4.5. And the scalability improvements

described in subsequent chapters may reduce the need for the user to consider scalability

when designing models. However, at this point there is no general method for rewriting

models in a more scalable way without reducing the number of scenarios considered in the

analysis.

This chapter showed that with pure-logic modeling, many analyses can be expressed

with reasonable ease even without special language support for these specific analyses.

Still, it may be asked: wouldn't it be better to have special language support for at least

some of the common modeling patterns, such as bounded model checking. After all, objec-

tification is also a modeling pattern, and having special language support for it (signatures)

has proven very useful. One answer is that it's possible to use Alloy as an intermediate

language for more specialized languages or "veneers", which are analyzed by translation

to Alloy but make certain tasks more convenient. Such veneers have been created for

modeling virtual functions [59], annotating Java code [59, 80], and specifying the struc-

ture of test cases [50]. While Alloy can act as an intermediate language to which veneers

are translated, it remains very usable as a modeling language in which users write models

directly. Objectification is a basic building block on top of which a variety of modeling

84



patterns (such as bounded model checking) can be implemented. It is therefore sufficient,

in the base Alloy language, to provide direct support for objectification [36, 44] but not

for higher-level modeling patterns. Whenever the need to write some common pattern by

hand becomes a problem, an appropriate veneer can be created. Also, it's possible to define

standard Alloy libraries for common tasks, that can then be reused for a variety of models.

Such generic libraries have been created, for example, for modeling groups of processes

communicating via messages.

This chapter presented the Alloy language and analyzer from a user's perspective. Sub-

sequent chapters will explain the algorithms used by the analyzer.

85



86



Chapter 3

Translation to SAT

This chapter describes how the question of satisfiability of an Alloy predicate can be re-

duced to the question of satisfiability of a Boolean formula in Conjunctive Normal Form

(CNF). The main pupose of this translation is to quickly take advantage of new advances in

satisfiability testing. The use of SAT solvers for analysis is inherited by Alloy from Alloy

Alpha [37, 38].

Note that translating to CNF is only one possible way of testing satisfiability of Alloy

predicates. Alternative approaches include writing a dedicated constraint solver for Alloy

predicates, or translating to a constraint language other than CNF. (Plans for future work

include the use of Quantified Boolean Formula (QBF) solvers [84] and Pseudo-Boolean

Solvers [2] as alternatives to CNF-based SAT solvers). The users of Alloy Analyzer don't

need to know anything about SAT solvers; the semantics of the tool from a user's point of

view makes no reference to Boolean formulas.

Rather than describing the translation to CNF from Alloy, we will describe a more gen-

eral translation from languages matching an abstract constraint schema (ACS). ACS is a

schema for a family of constraint languages; Alloy is one instantiation of that schema. We

use an abstracted setting for two reasons. First, the abstraction factors out the essential

elements of the translation framework, simplifying the explanation. Second, some results

in this thesis (Chapters 5 and 6, and elements of Chapter 4) apply to the abstract schema

rather than only to Alloy. The abstraction makes it easier to see how other languages that

instantiate the abstract schema might benefit from these results. The handling of quantified

87



formulas in Chapter 5, and the computation of unsatisfiable cores in Chapter 6, are de-

scribed in terms of the abstract schema. We will, however, explain how Alloy instantiates

the abstract schema, and use Alloy examples for illustration.

3.1 Abstract Constraint Schema (ACS)

In this section we describe the Abstract Constraint Schema, which is an abstraction for

a family of constraint languages. A language instantiating this schema allows writing of

predicates on a finite collection of variables vi. The variables take values from a finite

universe U. The values of U are grouped into a finite number of types ti, not necessarily

disjoint; each variable vi has a specific type type(vi), and takes values from that type. A

type-respecting assignment of particular values to all variables vi is called an instance.

In Alloy, the variables are the relations, and U contains all relational values that can

appear in the model. The types ti include the relation types used in the Alloy predi-

cate. This includes relation types of the relations, as well as the types of all quantified

variables and of all relation-valued intermediate expressions. Note that U is not deter-

mined by the Alloy predicate alone; it depends on the settings of basic type scopes. For

given scope values, each relation type has a finite set of values. For instance, if the

scope of the basic type A is 2, the relation type A->A has 22x2 = 16 values, from { } to

{<aO, aO>, <aO, al>, <al, aO>, <al, 1>}. U contains the union of relation type val-

ues over all relation types used in the Alloy predicate. In addition, U contains the Boolean

values true and false, and a type tb = {true, false}. In Alloy, tb cannot be the type of

the variables (relations), but can be the type of intermediate subformulas of the predicate,

and is the type of the root node of the AST.

A predicate is expressed as an Abstract Syntax Tree (AST). 1 The leaves of the tree in-

clude the variables vi, quantified variables (declared in quantifier nodes which are explained

below), and constants. An assignment of values to all variables vi induces a particular value

from U in each AST node. The assignment satisfies the predicate iff the value induced in

'In practice, the predicate is expressed as text that is parsed into an AST; here we'll assume the predicate

is already in AST form.

88



the root node is true.

The inner nodes of the tree are of two kinds: function nodes and quantifier nodes.

Function nodes compute a deterministic function of their children. Each function node

computes one of a set of predefined functions fi, mapping a finite list of values from U to

a result in U. The constants at the leaves can be viewed as nullary functions. Each AST

node has a particular type ti which describes the values from U that the node can take.

In Alloy, the functions fi include relational operators (., +, ^) and Boolean operators

(&&, I I, !). Each node (inner or leaf) has either a relation type or the Boolean type. The

leaves always have relation types, and the root always has the Boolean type.

A quantifier node has a single child. The quantifier node declares a quantified variable,

and specifies the domain of the variable (a list of values from U) and a combiner function

(one of the fi). The quantifier node computes its value by computing the value of the child

for each value of the quantified variable, then applying the combiner function to the list of

resulting values. An example of a formula that uses quantifiers is

f2[w{ui,U2 (f 4 (wi, u, f3 (wi, vI), v2))

It computes the value of f4 (wi, u3 , f 3 (w1 , vi), v 2 ) for w, = u1 and for w, = U2 , then

applies the function f2 to the two resulting values.

In Alloy, quantifier nodes include quantified formulas (all x: A F (x) and

some x: A I F(x))andcomprehensions({ x: A I F(x) }).For quantified for-

mulas, the child parameterized by the quantified variable computes a Boolean value, and

the combiner function (conjunction for all, disjunction for some) combines the Booleans

from instantiations of the child to produce a Boolean result. If Alloy allowed arbitrary rela-

tional constants, quantified formulas could be rewritten using Alloy's conjunction and dis-

junction operators: e.g. al l x: A I F (x) would be equivalent to F ( {<a_0>} ) && F ( {<al>})

for I A 1=2. For comprehensions, the child computes a Boolean value for each possible tu-

ple of the result, and the combiner constructs a relational value containing those tuples for

which the child evaluated to true. For instance, for IA 1=2, { x: A I F (x) } con-

structs a unary relation (a set) from the two Boolean values F ( {<aO>} ) and F ( {<a_>});

89



the result contains the tuple <a_0> iff F ( {<aO>} ) is true, and the tuple <a_1> iff

F ( {<al>} is true.

The first step of the translation is to compute a ground version of the formula by ground-

ing out the quantifiers. Grounding out involves obtaining ground versions of the quantifier's

body. For example, the ground version of the formula all t: Tick I t .up in adj

for ITickI={tO, t, t2} is

({<tO>}.up in adj) && ({<t1>}.up in adj) && ({<t2>}.up in adj).

Constants such as { <t0> } refer to specific relational values (in this case a singleton set

containing the tuple <v0>. Such constants cannot be written by the user directly in Alloy

specifications, but are useful for representing ground forms of Alloy formulas. Note that

while the lifted form of the Alloy formula (before grounding-out) is independent of the

basic type scopes, the ground form is specific to a particular scope.

The ground formula is then translated to a Boolean formula in Conjunctive Normal

Form. I will give a formal description of the translation framework. The framework as-

sumes an abstract synax tree in ground form, and does not rely on the specific semantics of

tree nodes defined by Alloy. This formal description will be useful in Chapter 6 when we

describe debugging of overconstrained models

3.1.1 Translation

Satisfiability of the formula can be tested by converting it to a Boolean formula in con-

junctive normal form (CNF). To convert an AST to CNF, we allocate to each AST node

n E Tree a sequence of Boolean variables bv(n) E BV* representing the node's value.

The sequences of Boolean variables allocated to two nodes are identical if these are leaf

nodes with the same AST variable, otherwise the sequences are disjoint. We define func-

tions enc : U -+ Bool* and dec : Bool* -- U for encoding and decoding values in U

as binary strings. An assignment of Boolean values to all the Boolean variables allocated

for AST nodes thus corresponds to assigning a value from U to each AST node. An as-

signment of U values to AST nodes is consistent if the value at each non-leaf node equals

the result of applying the node's node function to the sequence of U values assigned to the

90



node's children 2 . We translate an AST to CNF by generating CNF clauses on the Boolean

variables allocated to AST nodes, so that the conjunction of these clauses is true of a given

assignment to Boolean variables iff the Boolean assignment corresponds to a consistent

assignment of U values to AST nodes.

The translation is done separately for each AST node. For each node, we produce a

set of CNF clauses relating the Boolean variables allocated to that node, to the Boolean

variables allocated to the node's children. Intuitively, the clauses are true iff the U value

represented by the nodes's Boolean variables equals the result of applying the node's node

function to the sequence of U values represented by the Boolean variables allocated to the

node's children. The clauses output from translating an AST node depend only on the node

function which the node computes of its children, and on the Boolean variables allocated

to the node and the children.

For each node function fi, we define a corresponding "CNF translation" function

fi : BV*, BV** -+ P Clause

fi takes a sequence of boolean variables from the domain BV, corresponding to the result

of the function, and a sequence of sequences of boolean variables corresponding to the

arguments, and returns a set of clauses that encode the function in CNF. The correctness of

this function is justified with respect to the encoding function and the semantics of fi itself;

its result evaluates to true iff the Boolean variables allocated to the result of fi encode the

value computed by applying fi to the argument values encoded by the Boolean variables

allocated to the arguments.

2This translation loses high-level information. However, the resulting CNF format permits extremely

efficient backtrack search; in particular, good algorithms for constraint propagation, learning, and determining

decision order during backtrack search depend on the CNF format of the formula. SAT solving on the CNF

format has been the subject of intense research [63, 28]. These considerations more than make up for the

loss of high-level information during translation to CNE. However, conveying high-level information to a

SAT solver can result in improved search times. The use of symmetry (Chapter 4) and subformula sharing

(Chapter 5) are examples of this; future work will focus on other ways to use high-level information to

improve SAT solving.

91



For example, consider the Alloy node in, which takes two children of the same re-

lation type and tests whether the left child is a subset of the right child (with relations

viewed as sets of tuples). The corresponding translation function would take as arguments

Boolean variables representing the presence of each possible tuple in the left child and in

the right child, as well as a Boolean variable representing the result of the in test. It would

output CNF clauses in terms of these variables, true if the result of the in test correctly

reflects whether the right child contains all the tuples in the left child. More concretely,

suppose we need to translate the Alloy formula p in q, where p and q are unary rela-

tions of type A; suppose the scope of A is 2, i.e. A= {A_0 , A,_1}. Suppose also that the

Boolean variables p0 and pl represent whether p contains the tuples <A_0> and <A_1>

respectively; that the Boolean variables qO and q1 represent whether q contains the tu-

ples <A_0> and <A_1> respectively; and that the Boolean variable r represents the truth

of the formula p in q. Then, the node translation function for the in node would gen-

erate CNF clauses true iff r <=> ( (p0 -> qO && (p1 -> q1))) (<=> denoting

Boolean equivalence and -> Boolean implication).

Using these individual translation functions, we can now translate the tree. The function

transl : T --+ P Clause translates one AST node to CNF, and is defined as

transl(t) = let t = Tree(f, ch) I f(bv(t), map(bv, ch))

The CNF translation of an entire AST is then just the union of translations of its nodes:

translTree(t) = Unenodes(t)transl(n)

Correct translation to CNF requires that for each node t, for any Boolean assignment

ba : BV -+ Bool satisfying transl(t), we have

f (map(dec, map(A cv . map(ba, cv), map(bv, ch))))

= dec(map(ba, bv(t)))

where the node t computes the node function f of its children ch. map here denotes a

92



meta-function that maps a given function (first argument) over a given list (second argu-

ment); that is, it denotes a new list each element of which is obtained by applying the given

function to the corresponding element of the given list. To test satisfiability, we constrain

the Boolean variable(s) allocated to the root to represent the value true from U, by adding

the appropriate unit clauses.

93



94



Chapter 4

Symmetry breaking

In this chapter we describe techniques for using symmetry considerations to improve model

checking performance. Many systems have indistinguishable components, which lead

to isomorphic execution scenarios. For instance, if a system has two indistinguishable

processes, each scenario starting with "process 1 grabs a lock" is equivalent to another

scenario starting with "process 2 grabs a lock". "Equivalent" means that for any property,

either both scenarios satisfy it or both violate it. When searching for a scenario violating

a property, it suffices to check one representative of each class of isomorphic scenarios.

Since the number of isomorphism classes can be much smaller than the number of distinct

scenarios, symmetry-based reductions can greatly increase efficiency of search.

In Alloy, analyses are reduced to satisfiability problems which are then solved by a

pluggable SAT solver. That means that modifying the solver to take advantage of available

symmetries isn't possible. Instead, we modify the SAT problem in a way that drives the

solver to explore only a small subset of solutions in each isomorphism class. We generate

additional constraints (symmetry-breaking predicates) that are true of only some represen-

tative instances in each isomorphism class; these lead a backtracking solver not to explore

portions of the search space that contain no isomorphism class representatives. Construct-

ing the additional constraints involves a fundamental tradeoff between pruning power and

constraint size: we would like a constraint that selects few representatives but can be ex-

pressed compactly so that it doesn't overwhelm the solver. In this chapter, we discuss ways

of constructing effective yet compact symmetry-breaking predicates. We propose mea-

95



sures of predicate quality, and give experimental results confirming effectiveness of our

predicates.

4.1 Symmetries of Alloy models

Many systems exhibit symmetry, for example in the form of interchangeable processes.

Symmetry partitions the space of executions into equivalence classes. For any given prop-

erty, the executions in a single isomorphism class either all satisfy or all violate the prop-

erty. It is therefore sufficient to consider only one representative execution per isomorphism

class. This can lead to an exponential reduction in the size of the search trees explored dur-

ing backtracking search, as entire subtrees (sections of search space) can be eliminated if

they do not contain any of the chosen isomorphism class representatives.

Let us look at how symmetry reductions apply to Alloy. Since Alloy does not allow

the user to refer to specific atoms, all atoms within each basic type are interchangeable. If

one instance of the model is obtained from another by permuting the atoms within each

basic type, the truth value of any Alloy predicate will be the same on the original and the

permuted instance. More precisely, a symmetry of an Alloy model specifies a permutation

of atoms within each basic type, and acts on basic type atoms according to the permutation.

The action of the symmetry extends naturally to tuples (by acting on each atom within the

tuple), to relational values or sets of tuples (by acting on each tuple in the set), and finally to

instances or groups of relational values (by acting on each relational value in the instance).

The action of a symmetry on an Alloy instance does not change the truth of any Alloy

predicate on that instance.

Consider the railway example from Chapter 2. Figures 4.1 and 4.2 show two isomorphic

instances. The symmetry that relates them exchanges Unit_0 with Unit_1, Train_0

with Train_1, and maps the atoms of Route as follows: Route_0 -> Route_1,

Route_1 -> RouteQ2, Route_2 -> Route_0. This can be written more com-

pactly as: [Unit (1, 0) , Train (1, 0) , Route (1, 2, 0) ]. For any property

expressible in Alloy, the two isomorphic instances either both satisfy the property or both

violate it.

96



-- 7\nUnit_ UnitI

trainLoc nitRoutes nitRoutes unitRoutes rainLoc

otRoute_2 Route_ RouteO

irstConn lastConn firstConn astConn irstConn astConn

_onnector_ onnector_ onnector_ onnector_ onnector_I

Unit_1 Unit_0

trainLoc nitRoutes nitRoutes nitRoutes rainLoc

RouteO /Route_2V Route_1

irstConn lastConn firstConn astConn irstConn astConn

_onnecto n _ onnector_ onnector onnector_

Figure 4-1: Isomorphic instances, related by the following symmetry: Unit (1,0), Train
(1,0), Route (1,2,0). Relational view.

97



Unit_0

c3+

Route_0

I Tnit 1

TI
co

TO
c T c4 c2

Route_2 Route_1

Unit 1

c3

Route_1

Unit _

TO
KCu

(ci c4 c2

Route 0 98 Route_2

Figure 4-2: Isomorphic instances, related by the following symmetry: Unit (1,0), Train
(1,0), Route (1,2,0). Physical view.

(
1

-
'



4.2 Symmetry-breaking predicates

Since we're using external SAT solvers to analyze Alloy models, we cannot modify the

solver algorithms to take advantage of symmetry '.

One way to use symmetry without changing the solver, not explored here, is to refor-

mulate the Boolean problem in terms of a smaller number of variables: if there are 1000

instances but only 10 isomorphism classes, we only need 4 bits to represent all possible so-

lutions [48]. For example, for a unary relation over a basic type of scope k, there are k + 1

isomorphism classes; all can be represented with log k bits denoting the number of unary

tuples in the relation. Two factors make this approach non-trivial. First, while in some

cases the isomorphism classes are easily characterized and a natural encoding of them can

be found, often this is not the case. Second, when the relations are used in higher-level

expressions, compositional translation of the higher-level expressions to Boolean formu-

las will require us to construct Boolean formulas representing the presence or absence of

individual tuples of the relations. During translation to CNF, these Boolean formulas will

require the introduction of additional Boolean variables, negating any earlier savings in the

number of Boolean variables.

Another way to use symmetry without changing the solver is via symmetry-breaking

predicates [15]. To the formula that we would ordinarily give to the solver, we conjoin

an additional constraint that is true of at least one instance (a "representative") in each

isomorphism class. This restricts the search space while preserving satisfiability of the

formula. During backtracking search, if all extensions of the current partial assignment are

not the represenatives of their respective isomorphism classes

For unsatisfiable formulas - which typically take longest to analyze, since the entire

search space must be considered - the addition of symmetry-breaking predicates clearly

provides a benefit. For satisfiable formulas, addition of symmetry-breaking predicates -

which results in the removal of perfectly good solutions - may seem like a bad idea: doesn't

'A precursor to Alloy, called Nitpick, did use elimination of symmetries to speed up search [40]. That

tool did not have a pluggable backend and did not scale very well. When an early version of Alloy (now

called Alloy Alpha) was built with a pluggable backend, problem symmetries were not used to speed up the

search.

99



it reduce the chance of stumbling upon a solution early in the search? While this may be

true, even for satisfiable formulas symmetry-breaking predicates can help by summarily

excluding solutionless regions of searchspace during backtrack search. If a region contains

no solutions and no isomorphism class representatives, it will be quickly excluded where

without symmetry-breaking predicates it would have had to be searched.

Moreover, there are situations where we're interested not just in finding a satisfying

assignment but in enumerating non-isomorphic satisfying assignments. For instance, one

way to check sanity of an Alloy model is to simulate some instances - both to check that

the allowed instances are well-formed and to make sure that the instances corresponding

to specific scenarios are allowed. Simulation can be much more useful if each simulated

instance is "essentially distinct" from the others - that is, not isomorphic to them. Another

situation where isomorph elimination during solution enumeration helps is when Alloy is

used for test case generation [50, 53]. Eliminating isomorphic test cases results in smaller

test suites and reduces the testing time.

The difficulty with the symmetry-breaking predicate approach lies in the generation of

a good symmetry-breaking predicate. To be effective, the predicate needs to allow small

numbers of instances in each isomorphism class. But more precise predicates tend to be

more complex, and a large predicate can slow down the SAT solver. Generating an exact

predicate (one that allows exactly one instance per isomorphism class) is NP-complete [15].

However, in many important cases effective partial symmetry-breaking predicates can be

generated. This thesis will describe how to construct symmetry-breaking predicates that

are useful in practice, and how to measure their effectiveness.

Previous work [15] identified a generic scheme for constructing symmetry-breaking

predicates. Recall that we encode an Alloy satisfiability problem as a Boolean satisfiability

problem; each Alloy instance corresponds to a Boolean instance (i.e. an assignment to all

the Boolean variables). For a fixed ordering of the Boolean variables, all Boolean instances

are lexigographically ordered. A symmetry-breaking predicate can be constructed that is

true of exactly the lex-leader Boolean instance in each isomorphism class. The predicate

explicitly requires, for each symmetry, that applying this symmetry to a solution satisfying

the predicate lead an equal or a lexigoraphically larger instance. The size of the predicate is

100



linear in the number of problem symmetries. In many cases, the number of symmetries can

be very large. For example, the number of symmetries of an Alloy model is the product of

factorial of basic type scopes. While it's possible to construct a partial symmetry-breaking

predicate by breaking only a subset of symmetries, it is unclear which symmetries should

be selected.

4.3 Introduction to the symmetry-breaking problem

Consider a universe U of combinatorial objects representable by m-bit binary numbers. We

will speak interchangeably of an object and its binary representation. Let U be divided into

equivalence classes of isomorphic objects. A permutation 0 of the m bits is a symmetry of

the universe iff applying 6 to any object X E U yields an object isomorphic to X. The set

of all symmetries is the symmetry group of the universe U, denoted by Sym.

For example, n-node digraphs can be represented by n x n adjacency matrices, and

two matrices A, B are isomorphic iff there exists a permutation 0 of the n nodes such that

0(A) = B, where (0(A))i,) = Ao(i),o(). Note that 0 is a permutation of the n nodes of the

digraph, but it also acts on the n2 -bit adjacency matrices, because each permutation of the

nodes induces a corresponding permutation of the adjacency matrix bits. The symmetry

group Sym has order n! and is isomorphic to ou, the symmetric group of order n.

Suppose you need to find an object X from a universe U, satisfying a property P(X) (or

determine that no such object exists). Suppose also that P is preserved under isomorphism,

i.e. is constant on each isomorphism class. Enumerating all elements of U and testing P

on each is clearly wasteful: it's enough to test P on one object per isomorphism class2. For

some classes of objects, procedures exist for isomorph-free exhaustive generation [60, 41,

35]. Faster generation procedures may be developed at the cost of generating more than

one labeled object per isomorphism class and/or repeating objects.

If no object in U satisfies P, the generate-and-test approach must explicitly generate

2Alloy does not use explicit enumeration, but the point applies to symbolic search as well: when exam-

ining regions of the search space, some regions can be removed as long as the remaining regions contain at

leaset one object from each isomorphism class.

101



a complete representation of at least one representative per isomorphism class to verify

unsatisfiability. On the other hand, backtracking methods [17] can rule out entire sets of

objects without explicit generation, by determining that no object extending a partial binary

representation satisfies P. If P can be encoded as a polynomial-size Boolean constraint on

the bits of the fixed-length binary representation (as opposed to black-box computer code),

backtracking methods for satisfiability can be used. Such methods can significantly out-

perform explicit generate-and-test approaches, as demonstrated by satisfiability encoding

of planning problems [49].

Crawford et al [14] have proposed an approach to taking advantage of isomorphism

structure in this framework. We define a symmetry-breaking predicate on U, SB(X),

which is true on at least one representative object per isomorphism class. We then test

for satisfiability of P'(X) = P(X) A SB(X). Since P is constant on each isomorphism

class, P' is satisfiable iff P satisfiable. Moreover, P' is solved much faster than P by back-

tracking, because it is more constrained: the algorithm will backtrack if none of the exten-

sions of its current partial instantiation are isomorphism class representatives selected by

SB, whereas with the original predicate backtracking can only happen if all extensions of

the current partial instantiation immediately violate P. Experiments show that symmetry-

breaking predicates can reduce search time by orders of magnitude with no changes to the

search algorithm [14, 47].

The difficulty of this approach lies in generating the symmetry-breaking predicate. In

general, generating a complete symmetry-breaking predicate (true of exactly one represen-

tative per isomorphism class) is NP-complete [14]; the practical choice is between partial

symmetry-breaking predicates, true of at least one (typically more than one) representa-

tive per isomorphism class. To be effective, the predicate must rule out a large fraction of

objects from each isomorphism class. On the other hand, the predicate must be compact;

otherwise, checking the predicate's constraints at each search node will slow down the

search, erasing the benefit of expanding fewer search nodes. Balancing these contradictory

requirements is the subject of this chapter.

The rest of the chapter is organized as follows. Section 4.4 summarizes prior ap-

proaches and points out their deficiencies. Section 4.5 describes the generation of symmetry-

102



breaking predicates for several classes of combinatorial objects. Section 4.6 gives a uni-

form efficiency measure for symmetry-breaking predicates, and evaluates the predicates

from Section 4.5 according to this measure. Section 4.8 gives some experimental evidence

that the predicates described in this paper can improve search time. Section 4.9 describes

directions for future work.

4.4 Prior work

In his original paper on symmetry-breaking predicates, Crawford proposes the following

general framework for predicate generation. Fix an ordering of the bits in the object's bi-

nary representation. This induces a strict lexicographical ordering on all objects. Construct

a symmetry-breaking predicate which is true on the lexicographically smallest object in

each isomorphism class, as follows.

Let V be a fixed ordering of the bits of the binary representation. Then

A V < (v)
eGESym

is a symmetry-breaking predicate, true of only the lexicographically smallest object in each

symmetry class. This predicate explicitly requires that any symmetry map either fix the

the representative object, or map it to a lexicographically higher object - i.e. that the

representative object be lexicographically smaller than any isomorphic object. (We assume

that the symmetries of the problem are known; a recent symmetry-breaking framework that

incorporates detection of available symmetries is described by Aloul et. al. [3].)

Unfortunately, in many important cases Sym is very large. For example, for n-node

digraphs ISymI = n!, because any permutation of the graph's nodes (and the corresponding

permutation of adjacency matrix entries) leads to an isomorphic graph. Crawford suggests

mitigating the problem by replacing Sym with a polynomial-size subset Sym' - Sym,

thus requiring that the object be lexicographically smallest with respect to only some of the

symmetries.

Crawford gives no formal guidance on choosing the subset of symmetries to break

103



or the fixed variable numbering to use. This paper begins to fill the gap by describing

polynomial-size symmetry-breaking predicates for some common combinatorial objects.

For some objects, we refine Crawford's algorithm by determining Sym' and V. For others,

we present new predicate constructions, giving a concrete alternative to Crawford's lexi-

cographic approach. Problem-specific symmetry-breaking predicates for some classes of

combinatorial objects have previously been studied by Puget [68].

Crawford uses empirical measurements to gauge the effectiveness of his symmetry-

breaking predicates. While such end-to-end tests are certainly useful, they give no hint of

how much a given predicate can be further improved, and reflect peculiarities of a particular

backtracking algorithm (such as the dynamic variable-ordering heuristic [17]) besides the

inherent complexity reduction brought by the predicate. We present an alternative approach

which directly measures predicate pruning power, and gives a quality measure relative to a

complete symmetry-breaking predicate.

4.5 Generating symmetry-breaking predicates

In this section, we present methods for generating symmetry-breaking predicates on sev-

eral classes of combinatorial objects: acyclic digraphs, permutations, direct products, and

functions. These objects commonly occur in formal descriptions of system designs [43],

the analysis of which motivates this work. Each subsection deals with one class of com-

binatorial objects, describing the binary representation, the isomorphism classes, and the

construction of the symmetry-breaking predicate in terms of the binary representation.

4.5.1 Acyclic digraphs

Let U be the set of n x n adjacency matrices representing acyclic digraphs. Two matrices

representing isomorphic digraphs are isomorphic. The symmetry group Sym has order n!.

Any acyclic digraph has an isomorphic counterpart that is topologically sorted with

respect to a given node ordering. In terms of adjacency matrices, this means that every

isomorphism class of adjacency matrices representing acyclic digraphs includes an upper-

triangular matrix (since the lower triangle represents "backwards" edges from higher-numbered

104



to lower-numbered nodes). Our symmetry-breaking predicate simply requires all entries

below the diagonal to be false 3. This does not completely break all symmetries, but as

measurements in section 4.6.1 show, breaks most.

Additionally, this symmetry-breaking predicate, together with the requirement that di-

agonal entries be false (eliminating self-loops), implies the acyclicity constraint, so no

additional constraints on the matrix are needed. By contrast, expressing the acyclicity

constraint on general digraphs takes a constraint of size Q(MatMult(n) log n), where

MatMult(n) is the complexity of matrix multiplication. (The constraint involves com-

puting the transitive closure of the adjacency matrix and asserting that it has no diagonal

entries; the transitive closure is computed by using repeated squaring of the adjacency ma-

trix.) Shorter constraints require less time to check at every search node, leading to faster

search. In general, in cases where not all binary representations represent valid combinator-

ial objects from our universe U, constraints restricting the object to valid values are separate

from the symmetry-breaking predicate. This example illustrates a new use of symmetry-

breaking predicates: to obviate the need for some original problem constraints by removing

the solutions these constraints were meant to remove.

Note that this symmetry-breaking predicate does not use Crawford's methodology. It's

not even clear that a single fixed variable ordering exists which corresponds to this pred-

icate. The next section on permutations gives another example of a symmetry-breaking

predicate not based on lexicographic comparison.

4.5.2 Permutations

Let U be the set of n x n binary matrices representing permutations of n items. Matrix

A represents the permutation mapping i to j iff Ai, is true. A matrix A represents a valid

permutation (is a permutation matrix) iff every column and every row has exactly one true

bit.

3We could achieve the same effect by only allocating Boolean variables to above-the-diagonal tuples of the

DAG relation, but for consistency we implement this the same way as other symmetry-breaking schemes - by

conjoining additional constraints. Since SAT solvers immediately instantiate variables forced to a particular

Boolean value by unit clauses, there is no differences between the two methods in terms of search time.

105



Two permutations are isomorphic if they have the same cycle structure, i.e. the same

multiset of cycle lengths. Thus, an isomorphism class of permutation matrices corresponds

to one permutation on a set of n indistinguishale objects. We define a canonical represen-

tative of each isomorphism class, and give a polynomial-size Boolean predicate on permu-

tation matrices which is true only of the canonical representatives. We thus achieve full

symmetry-breaking with a polynomial-size predicate.

The canonical form is most easily explained using cycle notation for permutations [81].

We require that each cycle consist of a continuous segment of items, that each item map to

the immediately succeeding one or, for highest-numbered item in a cycle, to the smallest

item in the cycle, and that longer cycles use higher-numbered items than shorter ones. For

example, the permutation (12)(345) is in canonical form, but the isomorphic permutations

(123)(45), (12)(354) and (15)(234) are not. Formally, given an n x n permutation matrix

A, we have the following predicate in terms of the Boolean entries Aij:

(Vi, jI(j > i + 1) = -,Ai,) A
((ViI j I((j > i) A Aj,i) ->,

((Ak=i..(j-1)Ak,k+1) A k=(i+1)..(2j--i) -- Ak~J))

In this predicate, the condition (j > i + 1) => ,Aij requires that an item mapped to

a higher-numbered item map to the immediately succeeding item: e.g. 3 must map ei-

ther to 4 (in which case 3 is not the highest-numbered item in its cycle), or to an item

numbered not higher than 3 (in which case 3 is the highest-numbered item in its cycle).

The condition Ak=i..(j-1)Ak,k+1, implied by a backward edge Aj,i(i < j), says that every

backward edge implies the corresponding forward cycle: e.g. if 5 maps to 3 then 5 must

be the highest-numbered item in the cycle and the cycle must be (345). The condition

Ak=(j+1)..(2j-i)-,AkJ, implied by the presence of a cycle (i i + 1 ... j - 1 j) , re-

quires the immediately succeeding cycle to be no shorter, in effect sorting cycles by in-

creasing length: e.g. the cycle (345) excludes the cycles (6) and (67). Together with the

original constraints restricting A to be a permutation matrix, these constraints permit ex-

106



actly one permutation with a given multiset of cycle lengths, i.e. one permutation from

each isomorphism class.

The size of this predicate is 0(n') (since its second and largest conjunct is generated

by three nested loops iterating over n indices). 0(n) matches the order of growth of

the original constraints. It may be possible to reduce this order of growth by introducing

auxiliary Boolean variables, but since n is typically small (under 15) in our analyses, cubic

growth has been acceptable.

4.5.3 Relations

Consider the direct product D = Di x ... x Dk of k disjoint finite nonempty sets (we call

them domains). We define our universe U to be P(D), the power set of D. Each element

of U, called a relation, can be represented by H = Di I bits. Each bit corresponds to an

ordered k-tuple (d, ... , dk), di E Di, and is true in the binary representation of a relation

iff the relation contains the corresponding ordered k-tuple. We will speak interchangeably

of the bits and corresponding ordered k-tuples.

Isomorphism classes are defined by treating elements within each domain as indistin-

guishable. The symmetry group Sym of our universe U is isomorphic to a direct product

of k symmetric groups: Sym O'D11 X ... X 9JDkJ* An element E = (01,... , Ok) Of Sym

maps a relation r to a relation r', such that r' contains an ordered tuple (dl, ... , dk) iff r

contains the ordered tuple (61 1(di), . . , (dk).

With JSym = Ilk I DiJ!, direct application of Crawford's method is impractical: the

number of symmetries (and hence the size of Crawford's lex-leader predicate) grows super-

exponentially with the sizes of the domains Di. Nevertheless, it is possible to break all

symmetries which permute a single domain with a linear-size predicate. Even though such

symmetries represent only a tiny fraction of all symmetries, experiments show that this

predicate rules out most of the isomorphic objects.

We start with an example for the case k = 2, then generalize to arbitrary k.

Consider a binary relation r E A x B, A = {ao, a,, a2 }, B = {bo, bi, b2 }. Let us use

the following orderly numbering V for bits of the binary representation of r:

107



bo b1 b2

ao 1 2 3

a, 4 5 6

a 2  7 8 9

Under this numbering, Crawford's symmetry-breaking condition for the symmetry ex-

changing ao with a, and fixing all other elements (denoted ao +-+ a,) is

123456789 < 456123789

where 123456789 denotes the binary number obtained by concatenating the values of

Boolean variables 1, ... , 9. This condition simplifies to 123 < 456. Together with the

condition for a, +-+ a 2 , we have

123 < 456 K 789

which breaks all symmetries permuting only A. Similarly, the conditions for bo +-+ b1 and

b, +- b2 together simplify to

147 K 258 K 369

breaking all symmetries which permute only B. Together, these conditions allow only

those relations for which permuting either the rows or the columns (but not both simulta-

neously) leads to a lexicographically higher (or the same) relation, according to the given

bit ordering. These conditions still allow values of r mapped to lexicographically lower

values by symmetries which permute both A and B.

In general, consider a relation r C D, x D 2 x ... x Dk. We use Crawford's lexicographic

method with the following numbering. Denoting the elements of Di as ai,o, aj,1, ... , ai,IDil--1,

we number the bit corresponding to tuple (ai,ei, ... , ak,ek), 0 < ej < |Dil, as

k k

E(ej x H Dj j)
i=1 j=i+1

Now consider a transposition 0 = ai,p + ai,p+1. The effect of this transposition on the

108



binary representation of r is to fix all k-tuples except those with p or p + 1 as their i'th

coordinate, and among the tuples with p or p + 1 as their i'th coordinate, to swap k-tuples

differing only in their i'th coordinate. Within each pair of swapped tuples, the tuple with p+

1 in i'th coordinate is numbered higher than the tuple with p in i'th coordinate. Therefore,

Crawford's V < 0(V) condition reduces to P P' where P lists the bits corresponding

to k-tuples with p in i'th coordinate, in increasing order by number in our numbering, and

P' lists the bits corresponding to k-tuples with p + 1 in i'th coordinate, in increasing order

by number in the numbering. Then the right-hand side of Crawford's V < 0(V) condition

for ai, -+ ai,p+ equals the left-hand side of the condition for ai,p+ -+ ai,p+2, so asserting

the condition for adjacent pairs of elements breaks all permutations which permute only

Di.

The size of this predicate, expressed in conjunctive normal form (CNF), is linear in

the size of each domain. The size of a Boolean circuit expressing comparison between

two n-bit binary numbers is 0(n) [14]. For each domain Di, we have IDiI comparators of

length H I 1,. . . +. . k} D for a total comparator size of 0(k x H1 k IDil). Measures

of effectiveness of this predicate are given in section 4.6.2.

The fact that any matrix has a doubly lexical ordering has been shown previously [54].

Relations of arity greater than two were not considered, and the work was not related

to generation of symmetry-breaking predicates. The use of doubly lexical orderings for

symmetry-breaking predicates was reported independently in [21].

4.5.4 Functions

A function is a restricted kind of relation: a two-dimensional relation r E A x B with each

element of A (the domain) related to exactly one element of B (the range). Two functions

are isomorphic iff they have the same multiset of preimage sizes. In analyses of relational

specifications [43], functions occur more frequently than general relations. For functions,

we give a polynomial-size symmetry-breaking predicate which breaks all symmetries.

First, we break all symmetries permuting only A by sorting the rows of r as binary

numbers, as in the preceding section. For notational convenience, here we make the left-

109



most column (the bits corresponding to bo) the least significant bit. Second, we require the

columns to be sorted by the count of true bits in each column. Formally, the constraints on

r read

(Vt- Ef 0, . J AI - 2}

(ri,|B|-1ri,B1-2 .. ri,1 ri,O ! ri+1,|BI-1ri+1,|B|-2 - - - ri+1,1 ri+1,0 )) \
(Vj E {O,.. ., BI - 2} ({ilrj}| < l{ilrij+11}))

We show that together, these constraints define a complete symmetry-breaking predicate.

Since r represents a function, there are |BI possible values for a row of r. Sorting the

rows of r makes identical rows adjacent, so that the preimage of each bj E B occupies

a contiguous segment of A. In addition, for i < j, rows mapped to bi represent smaller

binary numbers than rows mapped to bj. Therefore, elements of A mapped to bj E B have

lower indices in A than elements of A mapped to bj+,1 . Alternatively, listing the elements

of A in increasing order by index, we first list the elements that map to bo (if any), followed

by the elements that map to b1 (if any), and so on, with the elements that map to bIBI 1 (if

any) at the end of the list.

We now show that adding the second requirement, that the columns be sorted by cardi-

nality (the count of true bits in the column), forces a canonical form. Since all matrices in

an isomorphism class have the same multiset of preimage sizes (i.e. column cardinalities),

sorting the columns by cardinality uniquely determines the cardinality of each column.

In other words, all matrices in an isomorphism class satisfying the column-sorting condi-

tion have the same cardinalities in the corresponding columns. But given the constraints

described in the preceding paragraph, this uniquely determines the image in B of each

ai E A. If c3 = I {ilrij}, i.e. cj is the cardinality of th j'th column, then the first co

elements of A must map to bo E B, the next ci elements of A must map to b, E B, and so

on.

For example, here are three isomorphic function matrices satisfying the row-sorting

110



condition:

bo b1 b2 b3 b4  bo b1 b2 b3 b4  bo b1 b2 b3 b4

ao 1 0 0 0 0 ao 0 1 0 0 0 ao 0 0 1 0 0

a, 1 0 0 0 0 a, 0 1 0 0 0 a, 0 0 0 1 0

a 2  1 0 0 0 0 a 2 0 0 1 0 0 a 2 0 0 0 1 0

a3 0 0 1 0 0 a3  0 0 1 0 0 a3  0 0 0 0 1

a 4 0 0 0 0 1 a 4 0 0 1 0 0 a 4 0 0 0 0 1

a5  0 0 0 0 1 a5  0 0 0 1 0 a5  0 0 0 0 1

Only the rightmost one also orders the column cardinalities, and is the only matrix in the

isomorphism class allowed by our symmetry-breaking predicate.

4.5.5 Relations with only one isomorphism class

If the constraint imposed on a relation is such that only one isomorphism class of relations

satisfies the constraint, all symmetries on the relation can be broken by setting the relation

to one arbitrary member of the isomorphism class. One common case of this is where the

relation denotes a total order. A 3 x 3 relation known to represent the "next" relation of a

total order on a set A of 3 elements can be set to the fixed value

ao a, a 2

ao 0 1 0

a1  0 0 1

a 2 0 0 0

The symmetry-breaking predicate in this case consists of unit clauses forcing each

Boolean variable allocated to the relation to a particular Boolean value.

111



Table 4.1: Values used to measure efficiency of partial symmetry-breaking predicates.

value formula meaning

labeled |UI the number of distinct binary representations
unlabeled from [69, 74] the number of isomorphism classes
allowed {X E UISB(X)} # of objects allowed by symmetry-breaking predicate

effic labeled-allod percentage of excludable objects actually excluded
slack nabled maximum possible improvement factor

4.6 Measuring effectiveness of symmetry-breaking predi-

cates

Symmetry-breaking predicates are designed to speed up search, so it would seem natural

to judge their effectiveness by measuring the reduction in search time. This approach has

several problems, however. Search times can be highly dependent on the particular back-

tracking algorithm, and on parameter settings such as the splitting heuristic [17]. The

addition of the symmetry-breaking predicate changes the whole search tree (since splitting

choices are determined by the entire constraint set), so the comparison to the original con-

straint problem is not completely clean. Machine-dependent effects such as cache locality

can also bias the measurements. Most importantly, end-to-end measurements provide no

clue to: how much of the reduction afforded by symmetry are we actually utilizing?

As an alternative measure of efficiency, we can directly measure the pruning power of

a symmetry-breaking predicate by counting the number of objects satisfying the predicate.

For a complete symmetry-breaking predicate, this number is the number of isomorphism

classes. For a partial symmetry-breaking predicate, this number will be higher; the question

is, how much higher? Where the number of isomorphism classes is known, we can obtain

a precise measure of optimality of our partial symmetry-breaking predicate by comparing

its pruning effect with the maximum possible pruning effect.

Table 4.1 describes the numbers computed to measure efficiency of partial symmetry-

breaking predicates.

The numbers of isomorphism classes are taken from various works in combinatorics

112



Table 4.2: Acyclic digraphs: symmetry-breaking efficiency.

n labeled unlabeled allowed effic slack
3 25 6 8 89.47% 1.3
4 543 31 64 93.55% 2.1
5 29,281 302 1024 97.51% 3.4
6 3,781,50 5,984 32,768 99.29% 5.5
7 1,138,779,265 243,668 2,097,152 99.84% 8.6

[69, 74, 29, 61]. The number of objects allowed by the predicate is computed by generat-

ing the corresponding satisfiability instance, and counting its solutions with the RELSAT

solution counter [7]. Correctness of the implementation was verified by doing complete

symmetry-breaking for several classes of objects by Crawford's explicit lexicographical

method method, and checking that the number of allowed instances matches the number of

isomorphism classes.

4.6.1 Acyclic digraphs

Table 4.2 gives efficiency for DAGs. Even though our symmetry-breaking predicate for

DAGs (described in Section 4.5.1) is very compact, it still suffices to remove most of the

symmetries. The relative efficiency of the predicate in removing symmetries increases as

the size of the DAG (and the difficulty of the search problem) increases.

4.6.2 Relations

We compute the results for binary relations. The number of isomorphism classes of non-

homogeneous binary relations is not published, but we can use the number of bipartite

graphs, which are closely related to non-homogeneous binary relations. Every non-homogeneous

binary relation r : A - B is a bipartite graph on JAI + IBI nodes, with every edge con-

necting a node in A with a node in B. All isomorphic relations correspond to the same

graph. On the other hand, every bipartite graph of n nodes corresponds to at least one

non-homogeneous binary relation r : A -+ B, with JAI + JB = n. This means that the

number of non-isomorphic bipartite graphs of n nodes lower-bounds the number of non-

113



Table 4.3: Relations: symmetry-breaking efficiency.

isomorphic binary relations r : A -+ B with IA I +I B = n. Therefore we can lower-bound

the efficiency of our symmetry-breaking predicate by aggregating over relations whose di-

mensions sum to n.

4.7 Breaking symmetries on Alloy models

So far, we have considered the case where elements of the universe U of objects are single

relations. In Alloy models, elements of the universe are Alloy instances, which are tuples

of relations. We'll now extend the methods for breaking symmetries on one relation to the

problem of breaking symmetries on a tuple of relations.

We cannot simply break symmetries on the individual relations, because different rela-

tions might be over the same basic types, and breaking symmetry on a relation destroys the

symmetry of its basic types. If we have relations heap, heap ' : Obj -> Obj which

are DAGs, we can only break DAG symmetries on one of them. After breaking DAG sym-

metries on heap, the basic type Obj is no longer symmetric. However, we can still break

symmetries on basic types other than Obj.

We fix an ordering of relations, and break symmetries on one relation at a time. While

looping through the relations, we keep track of the available basic type symmetries. Ini-

tially, all basic types are symmetric. After breaking symmetries on a relation r: A -> B,

the basic types A and B are removed from the list of symmetric basic types. If, when we

come to a relation, some of the basic types over which it is defined are not symmetric, we

do not generate a symmetry-breaking predicate for symmetries that permute atoms of these

basic types.

114

n labeled unlabeled allowed e f fic slack
8 102,528 303 1,057 99.26% 3.5
9 1,327,360 1,119 3,828 99.80% 3.4
10 52,494,848 5,479 38,160 99.94% 7.0
11 1,359,217,664 32,303 228,852 99.99986% 7.0
12 107,509,450,752 251,135 3,970,438 99.99997% 16



4.8 Experimental measurements

This section gives some empirical evidence that the predicates described in this paper ac-

tually improve search time, and that the predicate quality measure described in Section 4.6

helps select efficient predicates. In Table 4.4, analysis times under various degrees of

symmetry-breaking are listed for several Alloy models. All times are in seconds. The

leftmost column (NoSymm) gives analysis times without symmetry-breaking. The column

"OurSymm" gives analysis times with Alloy's default symmetry-breaking options, which

use the predicates described in this chapter. The columns "-1", "-2" and "-3" give analy-

sis times with varying numbers of our symmetry-breaking predicates disabled, with "-3"

corresponding to the largest number of predicates disabled. The columns "+1", "+2" and

"+3" given analysis times with varying numbers of additional symmetry-breaking predi-

cates added; the additional predicates are Crawford's lex-leader predicates for randomly

chosen symmetries, and "+3" corresponds to the greatest number of additional predicates.

The table shows that our default choice of predicates can significantly reduce analysis

times compared to when no predicates are used, and that partially disabling our predi-

cates generally increases analysis times. On the other hand, the table shows that additional

symmetry-breaking on top of our predicates yields only modest, if any, further reduction

in search time. This is in correspondence with data in Tables 4.2 and 4.3 showing that our

default symmetry-breaking predicates eliminate most, though not all, of the isomorphic

solutions.

Removing larger numbers of isomorphic solutions does not uniformly reduce search

time, because the addition of symmetry-breaking predicates - like any modification to the

Boolean formula - can affect the order in which the SAT solver assigns Boolean variables.

Nevertheless, our choice of symmetry-breaking predicates has a positive effect in most

cases. In Alloy Analyzer, symmetry-breaking is turned on by default, and no users have

reported the need to turn it off.

115



Table 4.4: Effect of symmetry-breaking predicates on search time.

4.9 Conclusion and future work

We have presented a uniform method to gauge the effectiveness and optimality of symmetry-

breaking predicates. The method measures the inherent simplification of the constraint

problem, which, unlike running-time measurements, does not depend on the details of a

particular backtracking algorithm. The method hinges on our ability to lower-bound the

number of isomorphism classes in the universe; these numbers are available for a wide

variety of combinatorial objects.

We have also presented specific polynomial-size symmetry-breaking predicates for the

types of states commonly occurring in analysis of relational specifications. Measurements

show that these predicate exclude over 99% of excludable assignments, and come within an

order of magnitude of the optimum. These illustrate the potential usefulness of predicates

not derived from Crawford's conditions.

Most interestingly, breaking a random set of symmetries by Crawford's method with

short comparators (comparing only a few highest-order bits) often leads to surprisingly

effective predicates. Formalizing this observation into a formal randomized symmetry-

breaking scheme will be a major goal of future work. Various ways to bias the random

selection of symmetries will be investigated. For instance, Crawford's condition for a sin-

gle symmetry E excludes 2-1'91 assignments, where 101 is the number of cycles in . This

suggests biasing selection towards symmetries with fewer cycles. On the other hand, over-

lap between sets of states excluded by the selected symmetries should be minimized. This

work could relate to work on probabilistic isomorphism testing.

116

Model NoSymm -3 -2 -1 OurSymm +1 +2 +3
INS [51] > 10000s 683s 262s 107s 102s 83s 135s 136s

Chord [75] > 10000s 1038s 636s 524s 212s 224s 422s 559s
Firewire [71] > 10000s 101s 106s 179s 174s 203s 246s 224s

MutexRing [18] 3311s 828s 394s 206s 191s 104s 96s 157s
Synchronizer [65] 5709s 3821s 2783s 1458s 788s 1016s 2267s 4568s



Currently, symmetry-breaking predicates are built based on the inherent symmetries of

the problem but without regard to the actual property being tested. This forces the predicate

to be true for at least one member of each isomorphism class - even for isomorphism

classes ruled out by the property being tested. Future work will explore property-specific

symmetry-breaking predicates that use the property being tested to yield a more compact

predicate.

117



118



Chapter 5

Exploiting Subformula Sharing in

Automatic Analysis of Quantified

Formulas

Alloy formulas often include quantifiers, which must be grounded out before the formula

is translated to CNF and given to a SAT solver. For example, a quantified formula such as

all x: A F (x) must be converted to the ground form

F ( f<aO>} ) && F ( {<al>} ) && F ( {<a3>} ) (for I A 1=3) before it can be analyzed.

The ground formula can get very large, especially for large scopes, deeply nested quanti-

fiers, or complex quantifier bodies. Grounding out can be the bottleneck step of the analy-

sis.

Often, the ground form contains many identical subformulas. The ground form would

be much more compact if represented as a DAG in which identical subformulas are shared.

However, getting the compact form requires producing the much larger unshared form

first, which can be infeasible. This chapter shows how to go directly from the quantified

formula to the compact ground form in which identical subformulas are shared, bypassing

the unshared ground form.

The solution presented in this chapter is not specific to Alloy semantics. It applies

whenever finite-domain quantifiers have to be grounded out. The chapter is therefore pre-

sented in terms of an abstract constraint schema of which the Alloy language is one instan-

119



tiation. This is done to abstract away irrelevant details and to show that the technique can

be of interest in non-Alloy contexts.

5.1 Introduction

Quantified formulas - statements such as VxP(x) - are frequently used in formal speci-

fications. They allow concise and natural formalization of system properties and, for this

reason, are present in many constraint languages. Languages that permit some form of

quantifiers include first-order logic, Alloy [44], and Murphi [16]. The recently developed

Bounded Model Checking techniques express Linear Temporal Logic formulas as quanti-

fied formulas [9].

Constraints with quantifiers can be analyzed in one of two ways: They can be converted

to a Quantified Boolean Formula and solved using a QBF solver [25], or the quantifiers can

be ground out and the resulting ground form converted to CNF and solved with a SAT

solver [28, 63]. Since the ground form can be much larger than the original quantified

constraints, grounding out may not be practical in some cases. For the cases for which it is

practical, grounding out and applying a SAT solver usually takes less time than converting

to QBF and using a QBF solver [26].

In this chapter we present a technique that extends the range of problems for which the

"ground out and convert to CNF" approach is practical. The technique speeds up grounding

out, and results in smaller CNFs that are solved faster. The resulting CNFs encode sub-

formula sharing information not otherwise available to the SAT solver. The intermediate

information we compute about the quantified constraints may be of use to QBF solvers, and

the speedup seen in CNF solvers suggests there might be similar benefits to QBF solvers.

The technique takes advantage of the large numbers of identical subformulas often

present in ground constraints. Representing the ground form as a DAG allows identical

subformulas to be shared. However, since the ground constraints are not explicitly rep-

resented in the original (quantified) constraints, identifying opportunities for sharing is

nontrivial. Once a ground form is obtained, we could identify identical subtrees, but doing

so would require first obtaining the (unshared) ground form, which can be infeasible. On

120



the other hand, identifying isomorphisms in the quantified form (and then grounding out)

will miss many opportunities for sharing in the ground form. In this chapter, we describe

a technique for directly producing a DAG in which sharing is already present. We identify

the structural isomorphisms of the ground form, but perform our analysis on the quantified

form.

The remainder of the chapter is organized as follows. Section 5.2 gives an informal

Alloy example illustrating the basic approach. Section 5.3 presents an abstract constraint

syntax (Subsection 5.3.1), describes how grounding out is performed and how sharing in-

formation can be used (Subsection 5.3.2), introduces the notion of a template and describes

how templates can be used to detect sharing (Subsection 5.3.3), and elaborates on how

templates are detected (Subsection 5.3.4). Section 5.4 gives empirical measurements of im-

provements obtained by detecting sharing, including an example of a previously intractable

problem which our technique makes analyzable. Section 5.5 concludes the chapter and in-

dicates directions of future work.

5.2 Informal illustration

Consider a quantified Alloy formula of the form all s: State I T (F (s) , F (OrdNext (s))).

Such formulas arise in Bounded Model Checking analyses, explained in Section 2.7. The

ground form of this formula is T (F ( {<sO>} ) , F ( {<sl>} ) ) && T (F ( {<sl>} , F ( {<s2>}))

(assuming State={s 0, si, s2}). The subformula F ( {<s1>} is repeated twice. We'd

like the grounding-out procedure to detect when it is about to create a duplicate formula,

and to return a reference to a previously generated formula instead.

To achieve this, we first analyze the quantified formula and note that two of its sub-

formulas, F (s) and F (OrdNext (s) ) , match a common template F (?) with ?=s and

?=OrdNext (s) respectively '; let's denote the template as T. During grounding-out,

for each template we keep a cache of ground instantiations of the template already gen-

erated. Thus, when grounding out the quantifier body for s = { <s0> }, we compute the

'We don't create the actual parameterized template representations such as F (?) , only a unique ID for

each template; but in the discussion we'll show the parameterized templates for clarity.

121



instantiations F ( { <s0> } and F ( { <s1>} ) of the template T. Then, when grounding

out the quantifier body for s= {<s1>}, we note that F (s) is an instantiation of the tem-

plate F ( ? ) for ?= {<s1>}, which we already have in the cache. Instead of computing

a new ground form of F (s), we return a reference to the previously computed ground

form F ( { <s1> } ) , creating a DAG. Note that this both saves the grounding-out time and

reduces the size of the final ground formula.

The template mechanism ensures the sharing of identical ground subformulas in a va-

riety of situations. In the above example, the quantified formula contained two subfor-

mulas matching a common template; but sharing in the ground form can also result from

a single subformula of the quantified form. Consider a quantified formula of the form

all p: A, q: B F(G(p) ,H(p,q) ). Thegroundform, for JAI =| BI =2, looks

like

F(G({<AO>},H({<AQ>,<B_0>}))) && F(G({<AO>},H({<AO>,<B_1>)))) &&
F(G({<A_1>},H({<A_1>,<BO>}))) && F(G({<A_1>},H({<A_1>,<B_1>})))

We'd like the two copies of G ( {<AO>} in the ground form to be shared, as well as the

two copies of G ( {<A_1>}. The template mechanism ensures this sharing: it determines

that the quantified subformula G (p) matches the parameterized template G ( ? ) with ? =p;

during grounding-out, it caches the ground instantiations of this template as they are pro-

duced; when the body of the quantifier is grounded out for [p= {<A_0>} , q= {<B_0>} ],

it caches the ground form G ( { <A_0> }) with the key of { <AO>}; then when the body

of the quantifier is grounded out for [p= { <AO>} , q= { <B_> 1] it reuses the ground

form G ( {<AO>}) from the cache.

Another situation in which sharing occurs is when ground-out branches of two different

quantified formulas can be shared, even though the quantified formulas themselves cannot

be shared because they combine their branches differently. For instance, the quantified for-

mula may have quantified subformulas all x: A I F (x) and some y: A I F (y) .

In the ground form, the ground nodes corresponding to F ( { <A0> } ) , F ( { <A- l>} ) and

so on can be shared, even though the ground nodes corresponding to the quantified for-

mulas themselves express different functions (conjunction and disjunction) and cannot be

shared.

122



One other common case handled by the template mechanism is when the quantified

formula simply contains two identical subformulas, not parameterized by free quantified

variables. For example, the quantified formula may contain the subformula "A in B" in two

places. The template mechanism will determine that the two subformulas match the same

template "A in B" with the empty argument list [ ], and will ensure that they're shared in

the ground form. A variant of this case is where a quantified formula contains a subformula

without quantified variables; for example, all x: A I F (x, R1. R2), where R1 and

R2 are relations rather than quantified variables. Each ground branch of the quantifier will

contain a copy of R1 . R2; the template mechanism will ensure that these copies are shared,

without actually generating more than one copy at any point.

We'll now informally describe how template detection is done on the quantified for-

mula, prior to grounding out. For each AST node n, we determine a template and a list of

arguments with which the node matches the template. The arguments are free quantified

variables of n, or more generally Alloy expressions built out of these free quantified vari-

ables and constants. For any assignment to the free quantified variables of n, n represents

a particular ground subtree and the template arguments with which n matches its template

represent relational constants. For example, the node F (x, R1 . R2 ) has one free quantified

variable, x. The node matches the template F (?,R1 . R2) with argument list [x]. For an

assignment x= { <A_0> }, the node represents the ground subtree F ( {<A_0>} , R1 . R2)

and the template argument list has the value [ { <A_0>} ] .

The templates and template arguments that we detect for all AST nodes satisfy the

following template invariant. Suppose two AST nodes ni and n2 match the same tem-

plate, with argument lists L1 and L 2 respectively. Let a1 and a2 be assignments of values

to the free quantified variables of ni and n2 respectively. If L1 under a1 evaluates to the

same sequence of values as L 2 under a2, then ni under a, represents the same ground

subtree as n 2 under a2 . For instance, suppose the quantified formula contains subformulas

all x: A I F (x) and some y: A I F (y) . Then the AST nodes F (x) and F (y)

match the same template, with argument lists [ x] and [y ] respectively. Under the quanti-

fied variable assignments x= {<A_0>} and y= {<A_0>}, the two template argument lists

have the same value [ {<AO>} ] ; correspondingly, the two AST nodes both represent the

123



ground form F ( {<A0> }). When grounding-out an AST node, the value of its template

argument list under the current assignment to the quantified variables is used as a hash key

into the cache associated with the node's template, and tells us whether we already have

the ground form we're about to generate.

Template detection is done by walking the quantified formula's Abstract Syntax Tree in

depth-first order; for each node, we first determine the templates matched by the children,

then the template matched by the node. We either determine that the currently visited node

matches a previously seen template, or create a new template for the node.

There are two base cases. First, all AST leaves denoting a given relation match the

same template with an empty argument list; we create one such template per relation. Any

two leaves matching such a template have the same ground form, so the template invari-

ant is satisfied. Second, all constant-valued AST nodes - for which the subtree rooted at

the node does not include any relations - match the same template, with the node itself

as the sole template argument. For example, if s and t are quantified variables, the the

AST nodes s and OrdNext (t) match the same template with argument lists [ s ] and

[ OrdNext (t) ] respectively. The template invariant is trivially satisfied, since any quan-

tified variable assignments that make the argument lists evaluate to the same value also

make the two AST nodes evaluate to the same value.

Now, suppose we're visiting a non-leaf, non-constant-valued AST node. First, we de-

termine the templates matched by the node's children. Next, we determine whether the

node matches the same template as a previously visited node. Two nodes match the same

template if their respective children match corresponding templates, and if the two nodes

compute the same function of their children. If the current node doesn't match a previ-

ously seen template, we create a new template. In either case, the template argument list

is obtained by concatenating the template argument lists of the children. For example,

suppose the quantified formula includes subformula (x . P) + (y. Q), where x and y are

quantified variables and P and Q are relations. We first visit the children and determine

that they match templates [ ? . p ] and [ ? . Q ] with argument lists [x] and [y ] respec-

tively. We then set the template argument list for the root of the subformula (the + opera-

tor) to [x, y]. Suppose later we visit a subformula ( z . P) + (w. Q), where z and w are

124



quantified variables. We'll determine that it matches the same template as the previously

visited (x. P) + (y. Q) , because both have two children matching the templates [ ? . p ]

and [ ? . q] and combine them with +. The template argument list for ( z . P) + (w. Q) be-

comes [ z, w]. The template invariant is satisfied: e.g. quantified variable assignments

[x= {<A_0>} , y= {<A_1>} ] and [ z= {<AO>} , w= {<A-1>} ] make both template

argument lists equal to [ {<A_0>} , {<A_1>} ], and also make both quantified subfor-

mulas have the ground form [{ {<A_0>} . P) + {<A_1>} . Q].

5.3 Detecting and Using Sharing

In the following desctions, we give a formal description of how templates are detected on

the quantified formula and then used during grounding-out to reduce the size and speed up

the generation of the ground formula.

5.3.1 Abstract Constraint Schema

Rather than using a specific constraint language, we define an abstract schema that serves

as a schema for constraint languages with quantifiers. The only restriction we place on the

constraint languages is that quantifiers range over finite domains (so that grounding-out is

possible). This abstract schema separates our techniques from the semantics and properties

of any particular language.

In Chapter 3, we defined an abstract constraint schema for expressing predicates on a

collection of variables. A predicate is expressed as an abstract syntax tree (AST), where

each inner node computes a predefined function of its children (the root computing a

Boolean which becomes the value of the predicate). Leaf nodes of the tree include the

variables the predicate is constraining, quantified variables, and constants. Inner nodes in-

clude quantifier nodes. A quantifier node has one child, and defines a finite set of values

for a free quantified variable in its subtree. The quantifier node's value is computed by

applying its node function to the result of evaluating the quantifier body, as the quantified

variable runs over the range. This abstraction can express the standard quantifiers, V and

3, but is general enough to express quantified constructs such as set comprehension and

125



Bool

node_var (n: N) : V
nodefunc(n: N):F

node-chldrn(n:N): N*
nodetempl(n:N): M
nodeargs(n:N): N*

isquant(n:N): Bool

quant-var(n:N): Q

quant-body(n:N): N

quant_range(n:N) : U*

V: variables
F: node functions

Q: quantified variables
M: templates

// is n a leaf AST node

//-
/ /

representing a variable?

if isvar(n), return the variable at n

// what function of its children

// does n compute?

// return the children of n

// the template matched by node n

// the argument list with which n matches

/ nodetempl(n)

// is n a quantifier node?

// the quantified variable declared at n

// the sole child node of a quantifier node
// the range of the quantified variable of n

Figure 5-1: Definition of notation.

integer summation.

Figure 5.3.1 gives the formal notation used in this chapter. In the context of Al-

loy, U contains relational and Boolean values; V contains the relations; Q contains the

quantified variables declared in quantified formulas such as all x: A I F (x) and

some x: A I F (x) and in comprehension expressions such as { x: A I F (x) };

F contains Boolean and relational operators.

5.3.2 Grounding Out

An AST can be converted into a quantifier-free (ground) form by grounding out the quan-

tifier nodes.

groundout(n: N, qvarvals: Q->U) : N {

return newnode(nodefunc(n),

map(lambda c

map(lambda u

! is-quant (n)

. groundout (c, qvarvals), node-chldrn (n))

. groundout (quant-body (n),

qvarvals [quant-var (n) ->u]), quantrange (n))) }

126

U: all values
N: nodes

isvar(n: N):



qvarvals gives the values of free quantified variables used in n's subtree.

qvarvals [quant-var (n) ->u] is qvarvals with the quantified variable defined at

node n set to value u. newnode constructs a new ground node with the specified node

function and children.

We would like an "oracle" that keeps track of the ground forms already produced, and

tells whether a particular invocation of groundout will generate an already-produced

ground form. The difficulty lies in determining whether the ground form about to be gen-

erated matches an existing ground form. Actually generating the ground form and then

checking it against already-generated ground forms is not a good solution: since the ground

form can be very large, generating it and testing it for isomorphism with existing form only

to possibly discard it could seriously impair the efficiency of grounding-out.

In the following sections, we describe how to construct an "oracle" that tells whether

an about-to-be-generated ground form of a node has been generated previously, by adding

template annotations to the quantified tree. The oracle is constructed by analyzing the

(small) quantified tree prior to grounding-out; this information is then used during the

constructiong of the much larger ground form.

5.3.3 Using Templates to Detect Sharing

Here we describe how template information is used during grounding out. Later, in Sec-

tion 5.3.4, we describe how templates are detected.

Before grounding out, we compute a template annotation for each node of the AST. In

effect, we represent every node as an instantiation of a parameterized template. That is, for

each node, we discover the template it instantiates and the parameters with which the node

instantiates the template. During grounding out, for each template we keep track of ground

forms of all nodes that match the template. When we visit a node, we look in its template's

cache of ground forms to see whether the ground form we're about to generate is already

available.

More specifically, the template annotation of a node n comprises a template name

node-templ (n) and a list of template arguments nodeargs (n). Each template

127



argument is a constant-valued node in the subtree rooted at n. (A node is constant-valued

if its subtree contains no non-quantified variables. The ground form of a constant-valued

node simplifies to a single value.)

The template information lets us quickly determine whether two given invocations of

groundout will produce the same ground form. Formally, template information satisfies

the following template invariant:

nodetempl(nl) = node.templ(n2)

&& argsMatch(node-args(ni),node-args(n2),Al,A2)

=> groundout(nl,Al)=groundout(n2,A2)

argsMatch(argsl, args2: N*, Al, A2: Q->U): Bool

forall(lambda al a2 . eval(a1,A1)=eval(a2,A2),

eval (n:

then

else

argsl, args2)

N, a: Q -> U): U { let f=nodefunc(n) in if(!is_quant(n))

{ f(map(lambda c . eval(c,a), nodechldrn(n))) }

{ f(map(lambda u . eval(c,a[quantvar(n)->u]),

quant-range(n))) }

node A node B
T3[q,] f4 T,[f(q2,u)]

TeomJqj]® T,,[]&? T.jf,(q2, U7)j " To v 1 'j

T.Jqj ST.Iu]

Figure 5-2: Using templates to effect sharing during grounding-out. The DAG on the right
is the grounding-out of the AST on the left. Rounded rectangles indicate quantifier nodes.
Nodes A and B match the same template T3. During grounding-out, node A for qi = ui
has the same ground form (dotted rectangle) as node B for q2 = U2 , if fA(U 2 , u7 ) = U1 .

During grounding out, for each template we keep a cache of ground forms keyed on the

value of the template argument list. When groundout is called to produce the ground

128

f2 f3

.. ---. .. - ..- ..- ..-



form of node n under the quantified variable settings qvarval s, we evaluate the template

arguments of n under qvarvals, and use the resulting list of values as a key into the

cache of ground forms kept for n's template.

The use of templates to produce sharing of common subformulas is illustrated in Fig-

ure 2. Nodes A and B match the same template T3. During grounding-out we maintain a

cache for T3, mapping argument list values to ground forms. Initially the map is empty.

When groundout visits node A with ql=ul, it computes the key into T3's cache to

be [u1] (evaluating node A's template argument list [q1]). This gives a cache miss;

groundout computes a ground form (dotted rectangle in Figure 2) and stores it in T3's

cache with the key of [ul ]. When groundout subsequently visits node B with q2=u2,

it computes the key into T3 's cache as [ f 5 (u2, u7) ]. Suppose f 5 (u2 , u7) =ul. Then

groundout will get a cache hit, retrieve the previously computed ground form from T3's

cache and return it immediately. The cached ground form will therefore be shared among

two nodes, as shown in the rightmost DAG in Figure 2.

5.3.4 Detecting Templates

We describe the template detection algorithm and illustrate it on the running example in

Figure 2.

Template detection is done by a single depth-first traversal of the quantified AST. For

each node, we determine the template name and template arguments satisfying the template

invariant defined in section 5.3.3. When we visit a node, we first recursively determine the

template information for the node's children, then use that information to determine the

correct template annotation for the node itself. We either decide that the node instantiates a

new template, not matched by any previously visited node; or, that it instantiates the same

template as a previously visited node. In either case, we determine the actual arguments

with which the node we're visiting instantiates the old or new parameterized template.

First, consider two base cases. All leaf nodes referencing a given non-quantified vari-

able match the same template, with no arguments. Any two such nodes have the same

ground form, so the template invariant is trivially satisfied. In the running example, the two

129



v1 nodes both match the template T,1, with empty argument list [ ].

Another base case involves constant-valued nodes. A node is constant-valued if its

subtree references no non-quantified variables; all leaves are either constants or quantified

variables. All such nodes match a single template, Tconst, with the node itself as the sole

argument. Since the ground form of a constant-valued node simplifies to a single value from

U, the template invariant is trivially satisfied. 2 In the running example, the constant-valued

nodes qi and f5 (q2 , U7 ) match Tonst with argument lists [qi] and [f5 (q2 , U7 )] respectively.

For any quantified variable setting A1 that sets qi and A2 that sets q2 , the template invariant

asserts that whenever q, under A1 evaluates to the same ground form (i.e. to the same

element of U) as f 5 (q2, u7 ) under A 2 , the two constant-valued nodes have the same ground

form.

Now we consider template detection for a non-leaf, non-constant node that does not

define a quantified variable. There are three such nodes in the running example: node A,

node B and the root; here we will focus on the first two. We need to determine if the node

we're visiting matches a previously seen template, or a new template. (Recall that we're

traversing the AST in depth-first order and for each AST node determining the template

it matches; for the running example, assume that we always visit the left subtree before

visiting the right.)

The node n we're visiting matches a previously seen template T if, for any previously

visited node n' that matches T, the following holds: 1) n and n' have the same numbers

of children, and the corresponding children match the same template; 2) n and n' compute

the same function (e.g. Boolean conjunction) of their children. Regardless or whether

n matches a previously seen template or a new template, the template argument list with

which the currently visited node n matches its template is obtained by concatenating the

template argument lists of n's children.

For example, when we visit node A, it matches a previously unseen template; we com-

pute the template argument list by concatenating [qi] with [ ] to obtain [qi]. When we

21n our actual implementation the AST nodes have types, and there is one template for constant-valued

nodes of each type. This prevents AST nodes that will never ground out to the same ground form from

matching a common template.

130



subsequently visit node B, we need to test whether it matches the previously seen template

T3. We take a previously seen node that matches T3, node A. We observe that nodes A

and B compute the same node function (f4), have the same number of children (2), the left

children of both match T1, and the right children match T 1 . We therefore determine that

node B matches template T3, with argument list [f 5 (q2 , u7 )].

We will now show that the template annotations computed as described above satisfy

the template invariant. Suppose nodes ni and n2 both match template t and satisfy the

three tests; and quantified variable assignments Al, A2 : Q->U meet the condition

argsMatch(node-args(nl),nodeargs(n2),Al,A2)

Since the template arguments of n1 and n2 were obtained by concatenating the template

arguments of their children, we have

forall (lambda ci c2 . argsMatch(node-args (ci) ,node-args (c2) ,Al,A2),

node ch(nl), node ch(n2))

Assuming child template information is correct, the corresponding children of ni and n2

ground out to the same ground forms (under Al and A2 respectively). Since ni and n2

combine their children using the same functions, the ground forms of n1 and n2 are the

same.

Quantifier Nodes

Computing template arguments for a quantifier node has an added complication; tem-

plate arguments for the child may include the quantified variable introduced at the node,

however, the template arguments for this node itself cannot include that variable. This im-

pacts how we compute the template arguments for the node; we cannot simply take the

template arguments of the child (as we would do for a one-child non-quantifier node).

Suppose ni and n2 are two quantifier nodes whose bodies bi and b2 match the same

template with argument lists argi and arg2 respectively. Suppose also that nf n (ni) =n_f n (n2)

and qrange (ni) =qrange (n2). Let ql=qvar (ni) and q2=qvar (n2). We'd like

to construct argsl' andargs2' such that for any u in U, argsMatch (argsl' , args2' ,Al,A2)

implies argsMatch(argsl,args2,A1[q1->u] ,A2 [q2->u] ) . Wefirstshow that

131



such argsl' and args2' are valid template argument lists for n1 and n2; we will

later explain how to construct them. Let Al, A2 be quantified variable settings such

that argsMatch (argsl' , args2' , Al, A2). Then for any u in qrange (n1), we

have argsMatch (argsl, args2, Al [ql->u] , A2 [q2->u] ) which in turn implies

grndout (bl, A1 [ ql->u] ) =grndout (b2, A2 [q2->u] ). Since n_fn (nl) =n-fn (n2)

and qrange (ni) =qrange (n2) , it follows that

grndout(n1,A1)=grndout(n2,A2).

We now explain how to construct argsl' and args2'. We derive argsl' and

args2' from argsl and args2 (lines 23-29). We start with empty argsl' and

args2'. For each pair of corresponding arguments al, a2 from argsl, args2 we

create a fresh non-quantified variable fv and a fresh template detector td. We create mod-

ified versions al' , a2' of al, a2, where q1, q2 are replaced by fv, and have td do

template detection on al' and a2 '. If the templates detected for the nodes al' and a2'

are different, then the quantifier nodes n1 and n2 do not match a common template. Oth-

erwise, we append the template arguments of al' to args1' and the template arguments

of a2 ' to args2 '. Note that the template arguments of al' and a2 ' do not reference

q1 and q2. If for each pair the templates detected for al' and a2' match, then n1 and

n2 do match the same template with arguments argsl' and args2'.

5.4 Results

We present preliminary performance results for a benchmark suite of six Alloy [44] models.

dijkstra: a model of Dijkstra's algorithm for mutex ordering to prevent deadlocks. We

check that the algorithm works correctly for 10 processes and 10 mutexes, for traces

up to length 10.

stable-mutex-ring: a model of Dijkstra's self-stabilizing K-state mutual exclusion algo-

rithm for rings [19]. We run a function which finds a non-repeating trace of the

system with 3 nodes and 17 steps.

ins: a model of an intentional naming system [51]. We check a structural correctness

132



num vars num vars num clauses num clauses
model sharing no sharing sharing no sharing

dijkstra 40631 55463 95948 123758
stable -mutex ring 16309 19897 38440 50237

ins 22742 timeout 110564 timeout

chord 22856 43102 58106 104117
shakehands 7706 16575 20539 54673

life 37322 92464 161289 383541

Table 5.1: Formula sizes for benchmarks with and without sharing detection.

ground-out ground-out mchaff mchaff bermkin berkmin
model sharing no sharing sharing no sharing sharing no sharing

dijkstra 6.02 7.82 2.74 9.70 19.87 67.98
stable -mutex-ring 0.91 1.25 18.77 32.65 6.40 24.20

ins 4.01 timeout 2.17 timeout 2.58 timeout
chord 1.01 3.74 55.03 93.04 21.87 48.07

shakehands 0.54 0.89 295.58 timeout 2.14 57.20
life 4.87 13.17 2.04 44.11 3.28 20.67

Table 5.2: Runtimes for benchmarks with and without sharing detection. All times are in
seconds.

condition for 4 nodes and 2 name records.

chord: a partial model of the Chord distributed hashtable lookup algorithm for rings [76].

We check a structural correctness condition for 3 nodes and 5 Chord identifiers.

shakehands: a model of a logic puzzle by Paul Halmos involving handshakes between

pairs of people. We run a function which solves the puzzle for 10 people.

life: a model of Conway's Game of Life. We run a function which finds an execution of 3

time steps on a 12 point grid.

This suite reflects a variety of modelling idioms, including the BMC-style [9] models

which motivated this work. It also balances checking conditions that are satisfiable (sta-

ble.mutexring, shakehands, and life) with those that are not (dijkstra, ins, chord). The

benchmarks were run on a Pentium III 1GHz laptop with 256MB of RAM running Win-

dows 2000.

133



Table 5.1 shows the effects of our sharing detection algorithm on the size of the gener-

ated CNF formula. We measure both the number of variables and the number of clauses.

Sharing detection consistently reduces the size of the generated CNF by a large amount,

more than a factor of 2 in some cases. For the ins model, no CNF was generated with-

out sharing because the grounding out phase ran out of memory, illustrating how sharing

detection has made some previously intractable models analyzable.

Runtime comparisons for our benchmarks are given in Table 5.2 (all times are in sec-

onds). We present times for grounding out and solving with two different modern SAT

solvers, mchaff [63] and BerkMin [28]. The "no sharing" columns give runtimes with

sharing detection disabled. We see consistent and often dramatic improvements with shar-

ing detection enabled for both grounding out and solving. The improvements are seen for

both SAT solvers, indicating that the better performance with sharing is independent of dif-

fering solver techniques. The ins model is particularly interesting, as it is easily analyzable

with sharing detection and intractable without. For the shakehands model with sharing

detection disabled, mchaff was unable to find a solution after 15 minutes of runtime. We

plan to implement more optimizations for the sharing detection in the near future, including

handling of commutative operators, and we expect to have more results like the ins model,

where sharing detection makes the difference in tractability.

Two possible factors contribute to the performance improvements. First, the CNF en-

codings of formulas with shared subtrees is more compact; only one batch of Boolean

variables and clauses is needed to encode the shared subtree. As a result, SAT solver oper-

ations such as unit propagation execute faster. Second, the subformula sharing information

implicitly encoded in the smaller CNF may prevent the solver from performing redundant

computations. Understanding the relative importance of these factors will be one direction

of future work.

We have described a new algorithm for exploiting structural redundancy in quantified

formulas during grounding out. The algorithm reduces running time and memory usage

of the groundout procedure, and produces easier-to-solve CNFs. The technique does not

depend on the details of the constraint language, and applies to languages that include

non-standard quantification constructs.

134



Results on a variety of software models suggest that the approach is practical. It never

worsens performance; often it produces a significant improvement, and in one documented

case it made a previously intractable model tractable.

The template annotations produced for nodes of the source tree have simple semantics;

they implicitly encode information about the ground form. QBF solvers similarly attempt

to derive information about the ground form, without explicitly grounding out. It would

be interesting to see whether QBF solvers can use the sharing information to achieve the

speedups seen with CNF solvers.

5.5 Conclusion

We have described a new algorithm for exploiting structural redundancy in quantified for-

mulas during grounding out. The algorithm reduces running time and memory usage of the

groundout procedure, and produces easier-to-solve CNFs. The technique does not depend

on the details of the constraint language, and applies to languages that include non-standard

quantification constructs.

Results on a variety of software models suggest that the approach is practical. It never

worsens performance; often it produces a significant improvement, and in one documented

case it made a previously intractable model tractable.

The template annotations produced for nodes of the source tree have simple semantics;

they implicitly encode information about the ground form. QBF solvers similarly attempt

to derive information about the ground form, without explicitly grounding out. It would

be interesting to see whether QBF solvers can use the sharing information to achieve the

speedups seen with CNF solvers.

135



136



Chapter 6

Debugging overconstrained declarative

models using unsatisfiable cores

This chapter explains the problem overconstraint in declarative modeling, and proposes a

solution. An overconstrained model has fewer behaviors than the modeled system. This

can prevent us from finding buggy behaviors in a real system, if the model erroneously ex-

cludes these behaviors. The possibility of overconstraint greatly reduces users' confidence

in correctness reports from a model checker: if no counterexamples to a property are found,

is this because the system is correct or because the model is wrong?

What's needed is an automated method for identifying overconstraints in models. In

this chapter we describe a method which is based on the ability of SAT solvers to identify

an unsatisfiable core of an unsatisfiable CNF formula. An unsatisfiable core is a subset

of CNF clauses that by itself makes the formula unsatisfiable. When translating the Alloy

model to a CNF formula, we keep track of which Alloy constraints produced which CNF

clauses; this lets us map back an unsatisfiable core of the CNF to an unsatisfiable core of the

Alloy model. We discuss techniques for obtaininig unsatisfiable cores on the Alloy model

that are meaningful to the user, and describe some case studies illustrating the usefulness

of overconstraint debugging.

137



6.1 Introduction

When a model violates a property, the model checker produces a counterexample illus-

trating the violation. From the counterexample, the user can easily determine whether

the counterexample illustrates an error in the modeled algorithm or only an error in the

model. By contrast, when a model satisfies a property, the model checker simply reports

the absence of counterexamples. Whether the modeled algorithm is actually correct, or

the algorithm is broken but the model inadvertently excludes the buggy traces, the model

checker's report is the same. This creates many possibilities for missing errors, and under-

mines the confidence in the results of a model check. In an extreme case, a model has no

error traces because it has no traces at all.

The problem is especially severe in tools like Alloy where the model is specified declar-

atively rather than operationally. It is easy to inadvertently overconstrain a declarative

model, ruling out traces that are possible in the modeled algorithm. Even when a modeler

suspects an overconstraint, identifying the conflicting constraints is often a great source

of frustration. Currently, the only systematic technique for finding causes of conflict is to

manually disable individual constraints until the culprits are identified. This task can be

lengthy and runs the risk of introducing new errors into the model. The model checker pro-

vides no help to the user in finding the overconstraint, other than to report whether a given

version of the model is still overconstrained. The lack of a debugger for overconstraints

has been one of the biggest complaints of the users of Alloy.

Some work on detecting vacuous satisfaction of properties has been done in the context

of temporal logic model checking [8, 6]. In temporal logic model checking, a finite state

machine is described by specifying the initial states and the transition relation as Boolean

formulas, and a correctness property is specified as a temporal logic formula. The work

on vacuity detection shows how to determine whether any subformulas of the correctness

property are irrelevant; replacing an irrelevant subformula with an arbitrary subformula

would not change the satisfaction of the correctness property by the finite state machine.

These results do not apply to debugging overconstraints in Alloy, because in Alloy the

overconstraint often occurs in the specification of the algorithm rather than of the property,

138



and because both the algorithm and the property are specified in first-order logic. Published

vacuity detection methods can identify the presence of overconstraint in the algorithm (if

the entire correctness property is irrelevant), but cannot pinpoint the parts of the algorithm

description responsible for overconstraint.

This chapter will address the problem of debugging overconstrained declarative mod-

els, where the analysis is done by translation to SAT. Recall that an Alloy model is analyzed

by translation to a Boolean formula in conjunctive normal form. When a SAT solver re-

ports that a CNF formula is unsatisfiable, it can report a subset of clauses used in deriving

unsatisfiability [86]. This subset is referred to as an "unsatisfiable core" of the CNF for-

mula. Since the CNF was obtained by translating an Alloy model, it is possible to map

the unsatisfiable core back onto the Alloy model. In other words, we can identify model

constraints which by themselves would produce all clauses in the unsatisfiable core. These

model constraints can be shown to the user. If some of the constraints written by the user

(whether in the model or in the property) turn out to be irrelevant to showing absence of

counterexamples, this could indicate that the model is overconstrained. In case of severe

overconstraint, the small part of the model responsible for excluding all solutions would

immediately be identified.

This chapter is organized as follows. Section 6.2 shows how unsatisfiable core extrac-

tion works from a user's perspective. Section 6.3 gives an informal description of how

unsatisfiable core extraction works. Section 6.4 gives a detailed formal description of un-

satisfiable core extraction.

6.2 Example of using unsatisfiable core extraction

In this section we describe one example of how unsatisfiable core detection was utilized

by Alloy users [24] while modeling a real-world published system. The Alloy model de-

scribed cryptographic protocols for implementing Controlled Physical Random Functions

[23, 22]. Here we'll describe only the model elements relevant to illustrating unsatisfiable

core usage; the detailed commented model appears in Appendix B, while the protocols are

described in the cited references.

139



A Physical Random Function (PUF) is a hash function implemented as a particular

hardware circuit. The function depends on physical properties of the particular physical

circuit (such as timing delays), and is therefore hard to evaluate without physical access

to the circuit. A Controlled Physical Random Function (CPUF) is a PUF that can only

be accessed via an algorithm that is physically bound to the PUF in an inseparable way.

CPUFs can be used to establish a shared secret between a physical device and a remote

user. This enables several applications, such as certifying that a specific computation was

carried out on a specific processor.

Abstractly, a CPUF can be viewed as a collection of challenge-response pairs (CRPs),

or a one-way hash function that computes a response value from a challenge value. Proto-

cols have been developed for managing CRPs of a given CPUF, in the presence of multiple

mutually mistrusting parties [23]. These protocols have been modeled in Alloy [24].

The Alloy model has signatures Principal and Val, representing principals and

values. Principals include legitimate and malicious users, system elements (such as the

CPUF), and some special-purpose principals described below. Values include all numbers

appearing in a protocol: randomly generated values, results of encryption and results of

computing one-way hash functions.

An instance of the model describes a two-phase interaction between principals. In the

first phase, each principal draws some set of values; each value is drawn by exactly one

principal. The drawn values make up the entire set of values used in the interaction; no

new values are produced after the initial drawing. After the values are drawn, the princi-

pals know disjoint sets of values. In the second phase, principals tell values to each other

according to some rules. The telling occurs in a sequence of steps; but because principals

never forget values they've been told, the exact order of telling is not important. At the end,

each principal knows some set of values that is a superset of the set of values drawn in the

first stage. At the end, the question of why a principal p knows a value v can be answered

as either "p drew v at the beginning" or "some other principal p' told v to p". The model

includes constraints describing the conditions under which a particular principal will share

a particular value with another principal; the Alloy Analyzer is used to look for error sce-

narios in which the constraints do not prevent a malicious principal from learning a secret

140



value.

A special principal, Computer, is used to model memoryless computation such as

encryption/decryption, pairing, and hashing. For example, if value A represents the en-

cryption of value B with key K, the rules for value movement ensure that Computer will

only tell B to those principals that already possess A and K. In particular, Computer is

used to model one-way hashing by the PUF: Computer will tell the PUF response to a

given challenge only to those principals possessing the challenge. The model includes a

set (unary relation) PUFResponse, representing those Values output by the PUF, and

a relation isRespTo: PUFResponse -> Val representing the value to which each

PUFResponse is a response. All PUFResponse values are drawn by Computer,

which can then choose to tell these values to some other Principals:

fact { draws.PUFResponse in Computer }

One of the modeled operations, Renewal, involves starting with a known challenge-

response pair and obtaining another one. The definition of the operation began as follows:

fun Renewal(OldChall: Val, OldResp: PUFResponse)

User.draws = OldResp + OldChall

An attempt to simulate the renewal operation failed to find any solutions. The overcon-

straint debugger pinpointed the overconstraint, as illustrated in Figure 6-1. The problem

was that in the definition of Renewal states that both the challenge and the response com-

prising the original challenge-response pair are drawn by the user, while an earlier fact

states that all responses are drawn by Computer - even those responses not computed

during the modeled interaction. This contradiction ruled out all solutions regardless of

what the remaining constraints said. While this particular overconstraint occurred during

simulation, it also could have happened during the checking of an assertion; in that case, a

genuine error in the modeled algorithm could have been masked by this overconstraint.

6.3 Computing unsatisfiable cores: informal description

In this section, we give an informal explanation of how unsatisfiable core extraction works.

Everything explained here is later formalized in Section 6.4.

141



Figure 6-1: Unsatisfiable core - user interface. The lower window shows the unsatisfiable

core highlighted on the Abstract Syntax Tree, while the upper window shows the corre-

sponding model text. AST nodes in the unsatisfiable core are shown in bold italic. The

annotation "Irrelevant to unsatisfiability" was manually added to the figure; the two slanted

lines to its left bracket a group of facts found to be irrelevant to the unsatisfiability proof.

First, we need a definition of unsatisfiable cores for Alloy models. Roughly speaking,

the core must be a subset of the model that is still unsatisfiable. For CNF formulas, the

definition is simple: any subset of CNF clauses is still a valid CNF formula which is either

142



satisfiable or not. However, an Alloy model is free-form text; not every subset of the text is

a valid Alloy model. We define the core not on the model but on the desugared, ground-out

abstract syntax tree (AST). (The user interface does let the user see the regions of model

text corresponding to specific AST nodes, as shown in Figure 6-1.) The ground form of

Alloy formulas was explained in Section 5.2; in short, it is obtained by grounding out all

quantifiers. A quantified Alloy formula such as all x: A sole x. r grounds out

to

sole {<AO>} .r && sole {<A_1>} . r && sole {<A_2>}. r for JAl =3

where { <Ai> } denotes the relational constant containing the single tuple <A_i>.

Even on the ground AST, properly defining unsatisfiable cores is non-trivial. Simply

removing non-core branches can yield a malformed AST which cannot be evaluated on

instances (and hence cannot be satisfiable or unsatisfiable). For example, if the single child

of a Boolean AST node representing the NOT operator is removed, how is the NOT node

(and thus the remaining AST) to be evaluated on Alloy instances?

Another problem with simply removing non-core AST branches is that it's hard to prove

that the resulting AST, even if well-formed, is unsatisfiable. We'd like to say that the CNF

translation of the core AST includes the CNF clauses comprising the unsatisfiable core of

the CNF translation of the original AST. But the CNF translation of an AST depends on

the entire structure of the AST; once the structure changes, the correspondence between

CNF clauses in the translation of the pruned AST and CNF clauses in the translation of the

original AST is lost.

For these reasons, we define unsatisfiable cores of ground ASTs not by pruning non-

core branches but by relaxing non-core AST nodes. Relaxing an AST node means changing

its semantics so it computes an arbitrary function of its children, rather than the function

prescribed by the original semantics. For instance, let N represent a Boolean conjunction

AST node (A && B) , with two subformula A and B. In the original AST, N evaluates to

true on a given instance if and only if both A and B evaluate to true on that instance. If N is

relaxed, it may evaluate to either true or false on any instance, regardless of what A and

B evaluate to on that instance. Similarly, if N is a relational image AST node (A . B),

relaxing N lets it evaluate to any relational value of the proper relation type, regardless of

143



the relational values to which A and B evaluate. An AST in which some nodes have been

relaxed is called a relaxed AST.

In the original AST, there is only one valid evaluation of all AST nodes for a given

instance. In the relaxed AST, a given instance may induce a number of possible valid

evaluations. A relaxed AST is unsatisfiable iff all possible valid evaluations of it yield

false at the root. (A valid evaluation is one in which the non-relaxed nodes obey their

original semantics). Relaxing any subset of nodes of the original AST produces a well-

formed relaxed AST, with a well-defined notion of unsatisfiability. An unsatisfiable core of

the original AST is a subset of AST nodes such that relaxing all non-core nodes yields an

unsatisfiable relaxed AST.

We now explain how an unsatisfiable AST core can be derived from an unsatisfiable

CNF core. As explained in Chapter 3, a ground Alloy AST can be translated to CNF

in a satisfiability-preserving way by allocating Boolean variables to represent the value

of each AST node, and for each AST node N generating clauses expressing the function

that N computes of its children. For instance, if N represents a Boolean conjunction AST

node (A && B), then Boolean variables bN, bA, bB are allocated and CNF clauses are

generated requiring bN to be true iff both bA and bB to be true. An additional unit clause is

added requiring the Boolean variable representing the Boolean root value of the tree to be

true. Thus, each CNF clause is generated from a particular AST node.

When the resulting CNF is found unsatisfiable and a clause subset comprising an unsat-

isfiable core is extracted, we obtain the unsatisfiable core of the AST as those AST nodes

from which at least one of the clauses in the unsatisfiable CNF core was generated. Re-

laxing AST nodes not in the unsatifiable AST core yields an unsatisfiable relaxed AST.

To see why, note that a satisfiability-preserving CNF translation of a relaxed AST can be

obtained by taking the CNF translation of the original AST and removing clauses gener-

ated from the relaxed nodes. For any relaxed AST obtained by relaxing nodes outside the

unsatisfiable core, the satisfiability-preserving CNF translation will include all clauses of

the unsatisfiable CNF core. Thus, the relaxed AST itself is unsatisfiable.

One question that arises is how unsatisfiable core detection will interact with subfor-

mula sharing described in Chapter 5. If some subformulas are shared before conversion

144



to CNF, won't this increase the size of the mapped-back unsatisfiable core of the Alloy

model? In practice, this is not a problem because only lower-level subformulas - discon-

nected from higher-level subformulas - will be added to the unsatisfiable core because of

sharing. For example, suppose the Alloy formula has the form A A (F V G) A (H V G), and

the subformula (F V G) constitutes an unsatisfiable core. If the repeated subformula G was

shared during translation to CNF, then both instances of G will be marked as belonging to

the unsatisfiable core when the core is mapped back to the Alloy formula. However, the

higher-level formula (H V G) won't be marked as part of the core, and so the user will be

able to determine that the entire subtree (H V G) is irrelevant even if some of its children

are marked as belonging to the core. In other words, the higher-level AST node will still

be relaxed, and that will tell the user that the entire AST subtree rooted at that node can be

ignored. A post-processing step can be performed on the mapped-back unsatisfiable core

to remove such "stray" subformulas while preserving unsatisfiability of the relaxed AST.

6.4 Computing unsatisfiable cores: formal description

This section gives a formal description of the process for extracting unsatisfiable cores.

To emphasize the generality, and the method's independence from the details of Alloy, the

description is given not for Alloy formulas but for a more abstract class of formulas (multi-

valued circuits) of which ground Alloy formulas with shared subtrees are an instantiation.

We first formalize multi-valued circuits, including the evaluation of circuits on particular

assignments (instances). We then formalize the notion of relaxing some nodes of multi-

valued circuits, informally explained in Section 6.3. Next, we formalize the translation

of multi-valued circuits of Boolean DAGs, and define the notion of unsatisfiable cores for

Boolean DAGs. Then, we formalize the translation of multi-valued circuits to Boolean

DAGs. Finally, we formalize the mapping of unsatisfiable cores of Boolean DAGs to un-

satisfiable cores of multi-valued circuits.

145



6.4.1 Multi-valued circuits

Definition 1. A multi-valued circuit (MVC) is a tuple (V, U, N, Rt, ch, var, p) describing a

non-deterministic multi-valued function on a set of variables V, represented as a circuit. U

denotes the finite universe of possible circuit node values. N is the set of circuit nodes. The

circuit is a directed acyclic graph with a single root Rt E N. ch, var and p are functions

on nodes, describing various node attributes. For a node n E N, ch. denotes the sequence

of n's children1; varn denotes the variable read by a leaf node, or NIL if n does not take

its value from a variable; pn denotes a predicate specifying the function that n computes

of its children. Pn(U, [u 1, .. . , U']a) holds iff n may compute the value u when n's k children

have values [u 1,... , Uk] respectively.

Definition 2. An assignment to an MVC is a totalfunction a : N -+ U that assigns a value

an E U to each node n E N. (Note that an assignment gives values to all circuit nodes,

not just to the leaves.) We denote the set of all possible assignments by A. An assignment

a E A is a consistent assignment if it satisfies the following conditions:

1. To any two leaves reading the same variable, a assigns the same value:

Vni, n2:N I (va1 = V12 A Vn 1 ! = NIL) => (an, = an2 )

2. The value at each node is consistent with the values at its children:

Vn : N I pn(an, map(a, chn))

An MVC is satisfiable if there exists a consistent assignment a such that ant = true; such

an assignment is called a satisfying assignment.

Definition 3. Relaxing a set of MVC nodes means replacing their node predicates with

tautologies, thus allowing them to compute an arbitrary function of their children. For-

mally, let M = (V, U, N, Rt, ch, var, p) be a multi-valued circuit. Let S C N be a subset

'We'll sometimes write fn instead of f(n) to denote the result of applying a function f to an argument

n.)

146



of circuit nodes. Then Relax(M, S) denotes the circuit M' = (V, U, N, Rt, ch, var, p'),

where p' is a tautology if n E S and is pn otherwise.

Definition 4. An unsatisfiable core of an MVC M = (V, U, N, Rt, ch, var, p) is a subset C

of N, such that Relax(M, N - C) is unsatisfiable.

Theorem 1. If C is an unsatisfiable core of an MVC M = (V, U, N, Rt, ch, var, p), then

any superset of C is also an unsatisfiable core.

Proof Let C' C N be a superset of C. Suppose M' = Relax(M, N-C') = (V, U, N, Rt, ch, var, p')

has a satisfying assignment a. We'll show that a must also be a satisfying assignment of

M" = Relax(M, N - C) = (V, U, N, Rt, ch, var, p"). Note that M' and M" share the

node set N. To any two nodes of N reading the same variable, a assigns the same value

because a is a consistent assignment of M'. Also, for a node n E C, p" is the same as p'

because n E C'; and p' (an, map(a, chn)) must hold because n E C' and a is a consistent

assignment of M'. For a node in N - C, p" is a tautology. Thus, p"(an, map(a, chn)) holds

for every n E N. Finally, aRt = true because a is a satisfying assignment of M'. Then a

is a satisfying assignment of M", which contradicts the fact that C is an unsatisfiable core

of M. L

6.4.2 Boolean DAGs

One frequently occurring instantiation of multi-valued circuits is a Boolean DAG (BDAG).

A BDAG is an MVC of the form M = (V, U, N, Rt, ch, var, p) where U = {f alse, true}.

Satisfiability of a BDAG can be tested either directly using circuit-based SAT solvers [20,

57], or by converting to CNF [67] and using a CNF-based SAT solver [63, 28, 55].

6.4.3 CNF translation of Boolean DAGs

A CNF translation [67] of a BDAG B = (V, Bool, N, Rt, ch, var, p) is a tuple (BV, Cl, n2bv, n2cl).

BV is a set of Boolean variables, Cl is a set of CNF clauses, each clause being a set of

literals (Boolean variables or their negations). n2bv : N - BV is a function allocating

147



Boolean variables to BDAG nodes, and n2cl : N -- Cl is a function translating each

BDAG node to a set of CNF clauses.

n2bv, is the Boolean variable allocated to node n. To any two BDAG nodes, n2bv

allocates the same Boolean variable iff the nodes read the same BDAG variable:

Vnl, n2: N I n2bv,, = n2bvn2 m (Vn,! = NIL A Vn, = Vn2 )

An assignment ba : BV -- Bool to the CNF variables BV corresponds to an assignment

a : N -> Bool to the BDAG, according to the rule an = ban2bv, -

n2cl is a function denoting the set of CNF clauses translated from each BDAG node.

n2cln denotes the CNF clauses translated from n. These clauses constrain the Boolean

variables in n2bn and map(n2b, chn), and are satisfied when an assignment to these

variables satisfies pn. Formally, a CNF assignment ba : BV -+ Bool satisfies the clauses

in n2cln iff

pn(ban2bvn, map(ba, map(n2bv, chn)))

If ba : BV -- Bool is a CNF assignment satisfying n2cln for all n E N, its corresponding

BDAG assignment a : N -> Bool is a consistent assignment of the BDAG. The BDAG is

satisfiable iff the CNF

{(n2bvRt)} U (U r2cln)
nEN

is satisfiable; a satisfying assignment to this CNF corresponds to a satisfying assignment to

the BDAG. Thus, a CNF-based SAT solver can be used to test the satisfiability of a BDAG.

6.4.4 Unsatisfiables cores of Boolean DAGs

For an unsatisfiable CNF, a CNF-based SAT solver can identify an unsatisfiable core of the

CNE: an unsatisfiable subset of the clauses. We'd like to map this subset to an unsatisfiable

core of the BDAG. We'll prove the following:

Theorem 2. Consider a BDAG B = (V, Bool, N, Rt, ch, var, p) with CNF translation

148



T = (BV, Cl, n2bv, n2cl). If CoreCNF C Cl is an unsatisfiable core of the CNF, then

COreBDAG ={n : N | (n2cl n CoreCNF) 4 0

is an unsatisfiable core of the BDAG.

Proof Suppose COreBDAG is not an unsatisfiable core of the BDAG; then B' = Relax(B, N-

CoreBDAG) is satisfiable. From the CNF translation T = (BV, Cl, n2bv, n2cl) of B, we

can obtain a CNF translation of B' as T' = (BV, Cl, n2bv, n2cl') where n2cl' = n2cl" for

n E COreBDAG and n2cl/ = 0 for n V COreBDAG. We have T' D CoreCNF: any clause

in CoreCNF comes from translation n2cla of some node n E N; that node is included in

CoreBDAG and its entire translation is then included in T'. Therefore, T' is not satisfiable.

On the other hand, since B' is satisfiable, T' must be satisfiable, giving a contradiction. l

6.4.5 Translating MVCs to BDAGs

Satisfiability of a general MVC can be reduced to satisfiability of a BDAG. The satisfiability

of the BDAG can then be tested either directly by circuit-based SAT solvers, or by CNF-

based SAT solvers after conversion to CNE. Here we formalize the reduction from MVC

satisfiability to BDAG satisfiability. In the next section we will see how BDAG unsatisfiable

cores can be mapped to MVC unsatisfiable cores.

The translation is illustrated in Figure 6.4.5. Given an MVC M = (V, U, N, Rt, ch, var, p)

a BDAG translation of it is a tuple T = (k, enc, dec, B, v2bv, n2bn, n2bnAux). k is the

number of bits used to encode U values. enc : U -+ Boolk and dec : Boolk - U are func-

tions that encode and decode U values as k-bit binary strings. B = (BV, Bool, BN, BRt, bch, bar, bp)

is the BDAG to which the MVC was translated. v2bv : V - BVk allocates to each MVC

variable v E V a sequence v2bvv of k BDAG variables. n2bn : N -+ BN maps each

MVC node to a sequence of k BDAG nodes. n2bn is constructed so that for a consis-

tent assignment a : N -+ U to M and a consistent assignment ba : BN -> Bool to B,

enc(an) = map(ba, n2bnn). The Boolean function computed by each B node in n2bn is

fully determined by enc and M, though the exact Boolean circuit used to implement this

function is not determined. n2bnAuXn denotes auxiliary BDAG nodes used in construct-

149



n3

n1 n2

n2bn(n3)

Sbn3l bn32 bn33

bn34 bn36

n2bnAux(n3)

bn35

bnl I bn13 bn21

n2bn(nl) n2bn(n2)

Figure 6-2: Translation of an MVC to a Boolean DAG. MVC node values (members of U)
are encoded as 3-bit binary strings. MVC node ni translates to a sequence of three Boolean
DAG nodes bnj1 , bni2, bni3. Translation of n3 is constructed in terms of translations of its
children ni and n 2 , with the help of auxiliary Boolean nodes bn 34 , bn 35 and bn 3 6 -

ing the translation of n from the translation of n's children. The BDAG nodes n2bnAuxn

are constructed in terms of the BDAG nodes in map(n2bn, chn). The BDAG nodes n2bnn

are constructed in terms of BDAG nodes in n2bnAuxn and map(n2bn, chn). For any

two distinct nodes n, n', n2bnr and n2bnAuxn do not share any nodes with n2bnn, and

n2bnAuxn'.

6.4.6 Determining unsatisfiable cores of MVCs

Given an unsatisfiable core CoreBDAG C BN of the translation of M, we'd like to find an

unsatisfiable core CoreMvC of M. We define CoreMvc as

CoreMvC = {n: N I (n2bn n CoreBDAG) 5 0}

Theorem 3. CoreMvc is an unsatisfiable core of M.

Proof Suppose CoreMvc is not an unsatisfiable core of the BDAG; then M' = Relax(M, N-

CoreMvc) is satisfiable. From the BDAG translation T = (k, enc, dec, B, v2bv, n2bn, n2bnAux)

150



of M, we can obtain a BDAG translation of M' as T' = (k, enc, dec, B, v2bv, n2bn', n2bnAux)

where n2bn' = n2bn, for n E CoreMvC and n2bn' = tautology for n 1 CoreBDAG.

We have T' D CoreBDAG: any node in COreBDAG comes from translation n2bnr of some

node n E N; that node is included in CoreMvc and its entire translation is then included

in T'. Therefore, T' is not satisfiable. On the other hand, since B' is satisfiable, T' must be

satisfiable, giving a contradiction. 0

Recall the translation of Alloy predicates to CNF described in Section 3. Suppose

that the CNF C translated from our AST is unsatisfiable, and the SAT solver identifies an

unsatisfiable core C' C C. We define a predicate irrel : T -+ Bool on AST nodes, which

is true for nodes whose translations contributed no clauses to the unsatisfiable core:

irrel(t) ={t | transl(t) n C' = 0}

Claim: For any node n for which irrel(n) holds, we can replace the node function fi with

an arbitrary node function f1 without making the AST satisfiable. To show this, we argue

that the CNF translation of the mutated AST will still include the unsatisfiable core.

Proof: The function bw, which allocates Boolean variables to AST nodes, does not depend

on node functions; the sequence of Boolean variables allocated to a given AST node de-

pends only on the overall structure of the AST and the position of the node within the AST.

Therefore, the same sequences of Boolean variables are allocated to all AST nodes in the

mutated AST as in the original AST.

For any node whose node function has not changed, transl will thus output the same

clause set. Any node n whose clause set contributed to the core will still have the same

node function, and transl will output the same clause set for that node. Each clause of the

unsatisfiable core is thus present in the translation of the mutated AST, meaning that the

mutated AST is still unsatisfiable.

While the notion of mutating the node function may seem strange, it is essential to get-

ting a good semantic guarantee of correctness of the unsatisfiable core. A naive alternative

might be to remove the tree nodes from which no clauses in the core were produced. This

may leave the tree in a malformed state, not expressing any valid predicate. Also, the allo-

151



cation of Boolean variables to tree nodes would change completely, making it difficult to

prove that the mutated tree expresses an unsatisfiable predicate. Mutating the node function

has the desired effect in common cases. For example, when a top-level conjunct is irrele-

vant, changing the node function of that conjunct to "constant true" amounts to removing

that tree branch.

6.5 Case study in overconstraint debugging: lolus

We have applied overconstraint debugging to Alloy analysis of Iolus, a scheme for secure

multicasting [62, 77]2. In Iolus, nodes multicast messages to other nodes within a group

whose membership changes dynamically. Scalability is achieved by partitioning groups

into subgroups, arranged in a tree, each with its own Key Distribution Server (KDS) main-

taining a local encryption key shared with members of the subgroup. When a member joins

or leaves a subgroup, its KDS generates a new local key and distributes it to the updated

list of subgroup members. This was modelled by specifying that after a member joins or

leaves, there is a key shared by the new members, and no others. By mistake, the model

said the key was shared by the members of the entire group - thus including all nodes in

contained subgroups. This severely restricted the trace set, potentially masking errors.

We attempted to detect this overconstraint using our constraint core functionality. We

first checked an assertion stating that no node can read messages sent to the group when that

node was not a group member, one of the correctness properties of the system. There was

no counterexample, and unfortunately, the extracted core included most of the constraints

in the model. This result can be explained as follows. The error in the model is only

a partial overconstraint; while the error excludes some legal traces of the system, it still

allows many traces violating the correctness property. Therefore, it is not surprising that

most of the other constraints in the system are still required to establish correctness. Just

because the core contains most of a model does not, unfortunately, imply that the model is

free of overconstraint.

2The Alloy model of Iolus was written by Mana Taghdiri [77]; the Iolus case study was done by Manu

Sridharan [73], who provided this description.

152



One method of finding overconstraints in this situation is to check correctness properties

on a restricted set of traces, where it is still expected that most constraints of the model must

be in the core. For the Iolus model, we attempted to check the aformentioned correctness

property on traces that had at least three key distribution servers (constraining the size of

relations is a typical way to restrict the search space). With this additional restriction, the

core no longer included the constraints defining the transitions of the system or the formula

stating the property, a clear indication of overconstraint.

Two observations should be noted. First, when an overconstraint is more partial and

subtle (as in this case), some thinking by the user will be necessary to find its source, even

after the constraint core identifies its existence. This issue is fundamental; when several

formulas in a model together overconstrain the system, the core can help to identify them

by eliminating irrelevant formulas from consideration, but the reason why the remaining

formulas contradict each other may still not be obvious. Second, while this process of

checking assertions in restricted spaces to find overconstraints lacks automation, it still has

important advantages over the process of finding these overconstraints manually (without

core extraction). Previously, a user who suspected an overconstraint in a model would

search for it by explicitly checking that classes of legal traces were not ruled out by the

system. Our new method of inspecting cores over restricted sets of traces gives more useful

information; even if a class of traces is not entirely ruled out by a model, the core may show

that important constraints are irrelevant for that class, showing where the overconstraint

lies.

6.6 Performance of overconstraint detection

For core extraction we have used a recent modification of the Zchaff satisfiability solver

that added core extraction functionality [86]. We found that Zchaff's performance supports

interactive identification of overconstraints. The modified solver's performance on unsat-

isfiable instances was comparable to the performance of the original solver. We have also

done some experiments with the BerkMin solver [27, 28]; preliminary experiments indicate

that BerkMin's performance is similar to Zchaff's.

153



An unsatisfiable core can be refined by iterating the solver on the core, pruning away

additional clauses irrelevant to unsatisfiability. Running 10-20 such iterations can often

reduce the core by about 30%. Since subsequent iterations run on smaller CNF files, the

overhead of iteration is often insignificant, especially for severely overconstrained models.

However, in our preliminary experiments we have found no significant benefit in additional

iterations in terms of what portion of the model was identified as relevant.

6.7 Limitations of using unsatisfiable cores for debugging

overconstraints

When we rely on the SAT solver to find an unsatisfiable core, we have no formal guarantees

on the quality of the cores that will be found. The particular core that is found depends,

among other things, on the decision order and learning strategy of the SAT solver. The

solver only tries to minimize the number of CNF clauses in the core; however, when the

CNF unsatisfiable core is mapped back to an Alloy unsatisfiable core, factors other than

the number of clauses affect the usefulness of the resulting Alloy core. For instance, core

extraction is most informative when it shows the irrelevance of a large, contiguous section

of the user's model. However, the SAT solver may choose a core that contains a few clauses

from each section of the model rather than a similarly-sized core that contains most clauses

from some sections and no clauses from others. Since a section of the user's model can

only be marked irrelevant if no clauses produced from it are in the CNF core, the former

core will cause most of the Alloy model to be included in the mapped-back core. Finding

ways to drive the SAT solver to produce more useful CNF cores will be part of future work.

154



Chapter 7

Conclusion and Future Work

In this thesis, we have described a number of techniques for extending the reach of model

checking and illustrated the use of these techniques in the Alloy language and model

checker. The techniques include modeling idioms, scalability techniques, and usability

improvements.

In modeling idioms, we described objectification - a scheme for modeling algorithms

that manipulate multiple instances of heterogeneous, graph-like data structures. The com-

plex structures are first-class objects, in the sense that they can be elements of sets and rela-

tions. At the same time, the model remains first-order and amenable to automatic analysis.

Another modeling idiom we described is pure-logic modeling, where the model is not re-

stricted to describing a state machine but instead describes a generic constraint problem.

This gives the user great flexibility in defining new kinds of analyses and variations of ex-

isting analyses. At the same time, common idioms such as state machines and messaging

can still be expressed relatively easily. Common idioms can also be captured in standard

Alloy libraries, and in veneer languages that desugar to Alloy [79, 50, 59, 52].

In scalability techniques, we described the use of symmetry breaking. We described

symmetry-breaking predicates for commonly occurring constructs such as relations and

DAGs. We also described a way to gauge the quality of symmetry-breaking predicates rel-

ative to an ideal symmetry-breaking predicate, by using solution-counting. Another scal-

ability technique we described is detection and use of subformula sharing during analysis

of quantified formulas.

155



In usability improvements, we described an overconstraint debugger based on unsatis-

fiable core extraction. This addresses one of the most frustrating aspects of using a declar-

ative model checker: not knowing whether no counterexamples were found because the

algorithm is correct or because the model is wrong.

We have also shown how to integrate all these techniques in a single tool, while retain-

ing simplicity and uniformity of the modeling language. The resulting tool has been used

much more widely than its predecessor Alloy Alpha.

A number of areas remain for future work. One important question is how to make the

modeling process more systematic. Right now, there is no guaranteed, systematic way to

make a model more tractable without reducing the set of scenarios covered by analysis. It

would be good to give the user some "profiling" information they could use to adjust their

model. The difficulty is that there is no simple measure of "hardness" of CNF problems.

One proxy for hardness is formula size; we could tell the user which parts of the model

are responsible for the bulk of the generated CNF clauses. A more interesting question

is whether we can use information gathered during a search - such as the length of time

required to derive some short clauses - to give the user suggestions on making their model

more tractable.

Another question is how Alloy can be used for unbounded model checking - that is, for

proving that a property is correct for all scopes. One approach is to use windowed induction

[72]; checking that a bad state cannot be reached from an initial state in k steps, and that a

bad state cannot be reached from an arbitrary state in k - 1 steps, proves that a bad state

cannot be reached by any number of steps. Encoding of such checks in Alloy should be

straightforward. Another approach would be to use unsatisfiability proofs produced by SAT

solvers for particular scopes. Right now we only use the unsatisfiable core of CNF clauses

used in the unsatisfiability proof, and only for debugging overconstraints. It would be good

to use the entire proof of unsatisfiability generated by the SAT solver, perhaps to suggest

invariants that can be used to prove the property for all scopes. Yet another approach is to

add fixpoint operators to the Alloy language, using BDDs for analysis. One more direction

that can allow unbounded verification is to combine model checking with theorem proving

[5].

156



Another direction of future work is to add more support for commonly occurring id-

ioms. While it's important to have the flexibility of pure-logic design in the base language,

some modeling problems occur frequently enough that special language support for them

would be justified. Support can be added as language features, as standard libraries, or as

veneer languages that desugar into Alloy.

157



158



Appendix A

Text of the railway model

//
// A model railroad, illustrating the various
// features of Alloy:

//
// -- declarative modeling

// - handling of graph-like structures

// -- handling of complex data structures

//

module RR

open std/ord
open std/seq

open std/util

//
// Definition of track topology

//

sig Unit

unitConnsA, unitConnsB: set Connector,

unitPaths: set Path

I

sig Connector { }

sig Path {
pathA, pathB: Connector,

pathConns: set Connector // equal to pathA + pathB

fact BasicUnitConstraints {
all u: Unit I {

// each side of the unit has at least one connector
some u.unitConnsA && some u.unitConnsB
// the two sets of connectors (left and right) are disjoint
no u.unitConnsA & u.unitConnsB
// each path in a unit connects a left connector
// to a right connector

all p: u.unitPaths I
p.pathA in u.unitConnsA && p.pathB in u.unitConnsB

// units are rectangular, so when this unit
// connects to another unit, only one side of
// this unit is used.
// in other words, no other unit can touch both

159



// sides of this unit.

all otherUnit: Unit - u
let sharedConns =

u.(unitConnsA + unitConnsB) &
otherUnit.(unitConnsA + unitConnsB)
sharedConns in u.unitConnsA I
sharedConns in u.unitConnsB

fact BasicPathConstraints

pathConns = pathA + pathB

all p: Path I {
// each path belongs to exactly one unit

one unitPaths.p

// each path has exactly one connector at each end

one p.pathA && one p.pathB
// path atoms are canonicalized: only one path

// atom per connector pair

all otherPath: Path - p
(otherPath.pathA = p.pathA &&

otherPath.pathB = p.pathB) => otherPath = p

fact BasicConnectorConstraints {

// At most two units share a connector

all c: Connector (# (unitConnsA + unitConnsB).c) < 3

// also: for each connector in a unit, there is at least one path.

//
// Some particular kinds of units.

//

sig LinearUnit extends Unit {

fact LinearUnitStructure {

all lu: LinearUnit I one lu.unitConnsA && one lu.unitConnsB

sig JunctionUnit extends Unit

mainLine, sideLine: Connector

fact JunctionUnitStructure

all ju: JunctionUnit I
one ju.unitConnsA &&

ju.unitConnsB = ju.mainLine + ju.sideLine &&
ju.mainLine != ju.sideLine

//fact OnlyStandardUnits { Unit = LinearUnit + JunctionUnit }

// A Route is a sequence of Path's.

//
sig Route {

routePaths: SeqIdx -> Path,

firstConn, lastConn: Connector

}

fact RoutesWellFormed{

160



all r: Route I let paths = r.routePaths I{
// routePaths represents a valid sequence of Paths
SeqFunValid(paths)

// adjacent Path's in the sequence must share an endpoint,
// and must come from different units.
all i: SeqFunInds(paths) - OrdFirst(SeqIdx) I

let p = SeqFunAt(paths, i),
pnext = SeqFunAt(paths, OrdPrev(i))

some p.pathConns & pnext.pathConns
unitPaths.p != unitPaths.pnext

// the first connector is the connector of the first path
// that is not a connector of the second path
r.firstConn in

SeqFunAt (paths, OrdFirst (SeqIdx)) .pathConns -
SeqFunAt(paths, OrdNext(OrdFirst(SeqIdx))).pathConns

// the last connector is the connector of the last path that is
// not a connector of the next-to-last path
r.lastConn in

SeqFunAt(paths, SeqFunLastIdx(paths)) .pathConns -
SeqFunAt(paths, OrdPrev(SeqFunLastIdx (paths))) .pathConns

// first and last connector are distinct; must specify this
// explicitly because for routes
// consisting of one path, the above two constraints
// don't imply this
sole SeqFunInds(paths) => r.firstConn != r.lastConn

}

sig Train {

sig State {
// which paths are open, i.e. can physically accomodate a train
// stretching from one end of the path to the other?
openPaths: set Path,
// signal state: may a new train enter this unit
// through this connector?
mayEnter: Unit -> Connector,

// train locations
trainLoc: Train ->? Route,

occPaths: set Path

fact {
all s: State I s.occPaths =

SeqIdx.((Train.(s.trainLoc)).routePaths)

fact TrackPhysics {
all s: State {

// of all paths in a given unit emanating
// from a given connector,
// only one can be open at a time. this reflects the
// physical property of rails: a train entering a unit at a
// connector will deterministically end up on one particular
// path in that unit emanating from that connector.
all u: Unit, c: Connector I

sole pathConns.c & u.unitPaths & s.openPaths

// Denotes the set of paths occupied by the given train

161



// in the given state.

fun TrainPaths(s: State, t: Train): set Path

result = SeqFunElems((t.(s.trainLoc)).routePaths)

// Denotes the connector at the beginning of the train,

// in the given state.

fun TrainFirstConn(s: State, t: Train): option Connector {

result = (t.(s.trainLoc)).firstConn

}

// Denotes the connector at the end of the train,

// in the given state.

fun TrainLastConn(s: State, t: Train): option Connector

result = (t.(s.trainLoc)).lastConn

// Denotes the units (at most two) that come together

// at the given connector

fun ConnUnits(c: Connector): set Unit

result = (unitConnsA+unitConnsB).c }

// Does the connector belong to only one unit (as opposed to

// joining together two units)?

fun IsHangingConnector(c: Connector) { sole ConnUnits(c) }

// Does a path have a "hanging" endpoint (i.e. one that is not
// connected to another unit)? Train can appear from such a path
// and disappear into such a path.

fun IsHangingPath(p: Path) {

IsHangingConnector(p.pathA) ||
IsHangingConnector(p.pathB)

// Denotes the train location in the given state,

// or the empty set if this train is not on the track

// in the given state.

fun TrainLoc(s: State, t: Train): option Route

result = t.(s.trainLoc)

fun TrainAppears(s, s': State, t: Train)

no TrainLoc(s,t)

one TrainPaths(s', t)

IsHangingConnector(TrainFirstConn(s', t))

fun TrainDisappears(s, s': State, t: Train) {

one TrainPaths(s, t)

IsHangingConnector(TrainLastConn(s, t))

no TrainLoc(s,t)

fun TrainStays(s, s': State, t: Train) {
TrainLoc(s,t) = TrainLoc(s',t)

fun TrainMovesToNeighboringPath(s, s': State, t: Train)

let r = t.(s.trainLoc), r' = t.(s'.trainLoc) I {
some r

some r'

// r' differs from r by removing the first path and

// tacking a new path onto the end.

// at the last connector of the route occupied by the train,

// there are at most two open paths. (because at any connector

// at most two units meet, and within any unit there is at most

// one open path emanating from each connector.)

162



// one of these two paths is the last path of the route

// occupied by the train. the other (if it exists and is open)
// is the path in a neighboring unit, onto which the
// train may ride.

let openPathsAtTrainEnd =

(r.lastConn.~pathConns & s.openPaths),
newPath = openPathsAtTrainEnd - TrainPaths(s, t) | {
some newPath &&
r'.routePaths = SeqFunAdd(SeqFunRest(r.routePaths), newPath)
r'.lastConn != r.lastConn

fun TrainMovesToNeighboringPath2 (s, s' State, t: Train)
let oldPaths = TrainPaths(s, t), newPaths = TrainPaths(s', t),

addedPaths = newPaths - oldPaths,
removedPaths = oldPaths - newPaths,

r = t.(s.trainLoc), r' = t.(s'.trainLoc) {
newPaths in s.openPaths
r.lastConn in addedPaths.pathConns

r.firstConn in removedPaths.pathConns

some addedPaths

some removedPaths

r'.lastConn 1= r.lastConn

assert EquivDefs

all s, s': State, t: Train

TrainPaths(s, t) in s.openPaths => {
TrainMovesToNeighboringPath(s, s', t) iff

TrainMovesToNeighboringPath2(s, s', t)

//check EquivDefs for 2 Unit, 10 Connector, 8 Path, 2 Route, 2 SeqIdx, 1 Train, 2 State

fun TrainPhysics(s, s': State) {
all t: Train I

TrainStays(s, s', t) ||
TrainAppears(s, s', t) I|
TrainMovesToNeighboringPath(s, s', t)
TrainDisappears(s, s', t)

}

fun TrainsRespectSignals(s, s': State)

all t: Train I let r = t.(s.trainLoc), r' = t.(s'.trainLoc)

// if the last path of the new

// train location is different from what it was...
SeqFunLast(r'.routePaths) !in SeqFunElems (r. routePaths) =>
// then the train had a right to enter the specified unit.
r.lastConn in

(unitPaths.SeqFunLast(r'.routePaths)).(s.mayEnter)

)

fun OccupiedPaths(s: State): set Path

//result = SeqIdx. ((Train. (s.trainLoc)) .routePaths)
result = s.occPaths

fun OccupiedUnits(s: State): set Unit
result = unitPaths.(OccupiedPaths(s))

163



fun SafeState(s: State) f
let occupiedPaths = OccupiedPaths(s) {

// in each unit, at most one path is occupied by a train
all u: Unit I sole u.unitPaths & occupiedPaths
// trains reside only on open paths
occupiedPaths in s.openPaths

fun SignalPolicy (s: State)
// if a unit is occupied by a train, it may not be entered via any connector
// (the actual property below specifies the contrapositive)
all c: Connector, u: Unit I

c in u.(s.mayEnter) => no u.unitPaths & OccupiedPaths(s)

}

fun UnitPolicy(s, s': State)
s'.openPaths = s.openPaths

fun ShowInvariantViolation(s, s': State)
TrainPhysics(s, s')
TrainsRespectSignals(s, s')
SignalPolicy(s)
UnitPolicy(s,s')
SafeState(s)
!SafeState(s')

}

//run ShowInvariantViolation for 2 Unit, 8 Connector, 6 Path,
// 4 Route, 2 SeqIdx, 2 Train, 2 State

static sig GlobalTrainPlan {
// for each train, the route to follow through the tracks
trainPlan: Train ->! Route

fun TrainPlan(t: Train): SeqIdx ->? Path
result = t.(GlobalTrainPlan.trainPlan).routePaths

}

fact WellFormedTrainPlans
all t: Train I let r = t.(GlobalTrainPlan.trainPlan)

// every train's plan starts on a hanging connector,
// from which a train can appear onto the modeled tracks.
IsHangingConnector(r.firstConn)

// every train's plan ends on a hanging connector,
// from which the train can leave the station.
IsHangingConnector(r.lastConn)

// the routes of any two trains are disjoint
all tl, t2: Train I tl != t2 =>

no SeqFunElems(TrainPlan(tl)) & SeqFunElems(TrainPlan(t2))

sig PlanState extends State
// for each train, its position along its plan;
// empty set if the train has not yet started
// or has already finished its plan.
trainPlanPos: Train ->? SeqIdx,

// for each train, the next unit on its

164



// plan. the train may or may not be able to
// enter that unit.
trainWish: Train -> Unit,

// trains that may move. for each unit,
// of the trains that want to enter that
// unit, only one may move. but it will
// only actually move if its target unit
// is free or is being vacated.
trainMayMove: set Train,

// trains that have completed their plan
trainDone: set Train,

// for some occupied units, evidence assuring us that
// they will definitely be freed on the next tick

// (and that it is therefore safe to move a train into them).
// if <ul,u2> is in unitEmptiedTo, then ul is
// occupied and the train from ul will move to u2,
// according to our plan for moving trains
// from the current state.
unitEmptiedTo: Unit -> Unit

}

// Denotes the set of trains occupying the given
// unit in the given state.

fun TrainsAt(s: State, u: Unit): set Train
result = { t: Train some TrainPaths(s,t) & u.unitPaths }

}

fact DefineTrainWishes

// Define the relation trainWish:
// For each train, to what unit does the train
// want to move according to its plan?

all s: State, t: Train - s.trainDone I
let planStep = if some t. (s.trainLoc) then

// If train is already on the tracks and moving

// according to its plan: to next step in the plan

OrdNext(t.(s.trainPlanPos)) else

// If train hasn't yet started its plan: to the
// first step of the plan
OrdFirst(SeqIdx) I

t.(s.trainWish) =
// Denote the unit containing the next

// path in the train's plan.

unitPaths. (SeqFunAt (TrainPlan(t) ,planStep))

// Define the relation unitEmptiedTo:
// For each occupied unit ul that we plan to

// empty, record the unit u2 _to_ which we

// plan to send the train from ul. So, u2

// serves as a "witness" that ul will in fact
// be emptied -- and that therefore we may let
// another train enter ul.

all s: State, ul, u2: Unit

u2 in ul.(s.unitEmptiedTo) iff
ul in OccupiedUnits(s) &&
(let t = TrainsAt(s, ul) {

// the train at ul wants to go to u2

u2 in t.(s.trainWish) &&
// and of the trains wanting to go to u2,

// the train at ul is given the right to so

t in s.trainMayMove &&
// either u2 is unoccupied...

(u2 !in OccupiedUnits(s) 11
// ...or the train at u2 will move
// to some ther unit u3: <u2,u3> is in

// s.unitEmptiedTo for some u3

165



u2 in (s.unitEmptiedTo).Unit)

})

fun TrainsFollowPlans(s, s': PlanState)

// Trains that are done with their plan in state s
// are still done with their plan in state s'

s.trainDone in s'.trainDone

// of all the trains wanting to enter a unit, one may move

all s: PlanState, u: Unit I {
// if at least one train wants to enter unit u...

some (s.trainWish).u =>

// ... then exactly one train gets permission.

one (s.trainWish).u & s.trainMayMove

// For each train, determine its next location.

all t: Train {
let r = TrainLoc(s,t), r' = TrainLoc(s',t),

// planPos and planPos', of type SeqIdx,

// give the current and next position

// of the train in its plan.
planPos = t.(s.trainPlanPos),
planPos' = t.(s'.trainPlanPos) {

// if the train is at the end of its plan,
// it must disappear

planPos = SeqFunLastIdx(TrainPlan(t)) =>
TrainDisappears(s, s', t)
t in s'.trainDone
no planPos'

} else ( // t is not at the end of its plan

t !in s'.trainDone
// the target unit is the next unit
// in the train's plan.

let targetUnit = t.(s.trainWish) {
// should the train move into its

// target unit, or stay in place?

(targetUnit in OccupiedUnits(s) -
(s.unitEmptiedTo) .Unit

t !in s.trainMayMove) =>
// either the target unit is occupied
// and will not be emptied, or

// this train is not chosen to move now.
// either way, the train
// stays where it is and does not

// advance along its plan.
planPos' = planPos

r' = r

TrainPaths(s, t) in s'.openPaths

} else {
// the target unit is free or will be
// freed, and this train is chosen
// to move into it.

// the train advances along (or begins)

// its plan...

planPos' = if some planPos then

OrdNext(planPos) else OrdFirst(SeqIdx)
// ... and moves to the target path.
let targetPath = SeqFunAt(TrainPlan(t), t. (s'.trainPlanPos))

targetPath in TrainPaths(s', t)

// we make the target path open, and

// give the train the green light to

// enter its target unit.

166



targetPath in s'.openPaths
r.lastConn in targetUnit.(s.mayEnter)

}

}

fun Initial(s: State) {
// there are no trains on the tracks
no s.trainLoc
// no train has yet started going through its plan
no s.trainPlanPos
// no train has yet completed its plan
no s.trainDone

}

fun ValidTrace() {
Initial(OrdFirst(State))

all s': State - OrdFirst(State)
TrainPhysics(s, s')
TrainsRespectSignals(s, s')

TrainsFollowPlans(s, s')

fun StatesAreEquiv(sl, s2: State) {
sl.trainLoc = s2.trainLoc

let s = OrdPrev(s') {

fun TraceEndsWithLoop() {
some s: State - OrdLast(State) {

StatesAreEquiv(s, OrdLast(State))

}

fun TrainReachesDest() {
some t: Train, s: State

some TrainPaths(s, t)

# SeqFunInds(TrainPlan(t)) > 1

TrainPaths(s, t) in SeqFunLast(TrainPlan(t))

fun PlanNotFulfilled()

Train !in OrdLast(State).trainDone

fun Simulate (
ValidTrace()

TraceEndsWithLoop()

PlanNotFulfilled()

}

-- run Simulate for 2 Unit, 4 Connector, 4 Path, 4 Route,

-- 2 SeqIdx, 2 Train, 3 State

fun TrainUnits(s: State, t: Train): set Unit

result = unitPaths.TrainPaths(s, t)
}

fun TrainsPassEachOther(s, s': State, tl, t2: Train)

some TrainUnits(s, tl)

some TrainUnits(s', t1)
some TrainUnits(s, t2)

167

}

}
}

}
}



some TrainUnits(s', t2)

TrainUnits(s', ti) = TrainUnits(s, t2)

TrainUnits(s', t2) = TrainUnits(s, ti)

}

fun SafeTrace(){
all s: State

SafeState(s)

let s' = OrdNext(s) I some s' =>
all tl, t2: Train

tl != t2 =>
!TrainsPassEachOther(s, s', tl, t2)

fact

all s: State I IsDAG(s.unitEmptiedTo)

//IsDAG(OrdFirst(State).unitEmptiedTo)

fun SafetyViolation C)
ValidTrace()

!SafeTrace()

run SafetyViolation for 3 Unit, 8 Connector, 6 Path,
8 Route, 2 SeqIdx, 3 Train, 3 State

168



Appendix B

Text of the CPUFs model

module cpufs

//
// Model of Controlled Physical Random Functions (CPUFs)

//
// Reference: Blaise Gassend, ''Physical Random Functions'', MIT M.Eng. thesis, 2002.

// http://www.mit.edu/people/gassend/publications/MastersThesisPhysicalRandomFunctions.pdf

//
//

open std/util

// Principals and Values

//

//
// An instance of this model represents an interaction between a group of principals,

// which happens in two stages:

//
// 1. Initially, each principal draws some set of values; each value is drawn by exactly
// one principal. The drawn values make up the entire set of values used in the
// interaction; no new values are produced after the initial drawing. After the

// values are drawn, the principals know disjoint sets of values.

//
// 2. Principals tell values to each other according to some rules. The telling
// occurs in a sequence of steps; but because principals never forget values

// they've been told, the exact order of telling is not important. At the end,

// each principal knows some set of values that is the superset of the set of values

// drawn in the first stage.

//
// At the end, the question of why a principal p knows a value v can be answered
// as either "p drew v at the beginning" or "some other principal p' told v to p".

sig Val

sig Principal

// draws: the set of values drawn by this principal at the beginning.

// the sets of values drawn by any two distinct principals are disjoint.

draws: set Val,

// wouldTell: for each of the other principals and for each

// value, whether this principal would be willing to tell that value

169



// to that principal.
wouldTell: Principal -> Val,

// knows: the values this principal knows at the end of the interaction.

// the value of this relation is defined by the fact 'ValueMovement' below,

// and used in the definition of wouldTell for specific principals.

knows: set Val

I

fact DrawsDisjoint

// any two distinct principals draw disjoint sets of values.

all disj p, p': Principal I no p.draws & p'.draws

}

fact ValueMovement

// a principal knows the value at the end iff, starting with the principal
// that drew the value, there is a chain of wouldTell's to this principal.
all v: Val I v.~knows in Computer + (v.~draws).*(wouldTell.v)

// Some notable principals:

//

//
// Computer: performs all "memoryless" computation

//
static disj sig Computer extends Principal { }

fact ComputerOperation (
all p: Principal, v: Val v in p.(Computer.wouldTell) => {

PairerWouldTell(p, v) ||
EncrypterWouldTell(p, v)

HasherWouldTell(p, v) ||
//PUFWouldTell(p,v) 11
GetSecretWouldTell(p,v) I
GetResponseWouldTell(p,v)

//
// Pairer: glues values into pairs, takes them apart again.

//

disj sig Pair extends Val {
pairA, pairB: Val

fact PairsCanonical

all pl, p2: Pair (pl.pairA = p2.pairA && pl.pairB = p2.pairB) => pl = p2
}

fact PairingAcyclic

IsDAG(pairA + pairB)

fact { draws.Pair in Computer }

fun PairerWouldTell(p: Principal, v: Val)

// either v is a pair and p knows both components of it

(v in Pair && (v.(pairA + pairB) in p.knows)) 11

// or p knows some pair of which v is a component

(v.~(pairA + pairB) in p.knows)

170



// Encrypter: tells ciphertext from plaintex and key,
// tells plaintext given ciphertext and key.

//

//static disj sig Encrypter extends Principal

disj sig Ciphertext extends Val

isEncrOf: Val,

isEncrWith: Val

}

fact

all cl,c2: Ciphertext I (cl.isEncrOf = c2.isEncrOf && cl.isEncrWith = c2.isEncrWith) => cl = c2

fact { draws.Ciphertext in Computer

fun EncrypterWouldTell(p: Principal, v: Val)
// either v is ciphertext and p knows both the plaintext and the key...

(v in Ciphertext && v.(isEncrOf + isEncrWith) in p.knows) 11
// ...or v is the plaintext of a ciphertext, and p knows both the ciphertext and the key
(v.~(isEncrOf + isEncrWith) in p.knows)

//
// Hasher: computes hash values

//

disj sig Hash extends Val

isHashOf: Val

}

fact
all disj hl, h2: Hash hl.isHashOf h2.isHashOf

}

//fact { draws.Hash in Hasher }

fun HasherWouldTell(p: Principal, v: Val) {
v in Hash

v.~isHashOf in p.knows

// PUF: computes a hash function

//

disj sig PUFResponse extends Val

isRespTo: Val

fact { all disj rl, r2: PUFResponse I rl.isRespTo != r2.isRespTo }

fact { draws.PUFResponse in Computer

// GetSecretComputer and GetResponseComputer:

171



//

disj sig Program extends Principal {
progHash: ProgHash

disj sig ProgHash extends Val { }

fact ( all p1, p2: Program I pl.progHash = p2.progHash => pl = p2

fun GetSecretWouldTell(p: Principal, v: Val)
v.isHashOf.pairA = p.progHash
v.isHashOf.pairB.isRespTo in p.knows

}

fun GetResponseWouldTell(p: Principal, v: Val) {
v.isRespTo.isHashOf.pairA = p.progHash
v.isRespTo.isHashOf.pairB in p.knows

i

static disj sig Oscar extends Principal
static disj sig User extends Principal{}

fun SecurityViolation ( )
some Oscar.knows

}

static disj sig RenewProg extends Program { }

fun Renewal(OldChall: Val, OldResp: PUFResponse, PreChall: Val) {
User.draws = OldResp + OldChall + PreChall
OldResp.isRespTo = OldChall
User.wouldTell = RenewProg -> (OldChall + PreChall)
some pair: Pair, pairHash: Hash I pair.pairA = RenewProg.progHash &&

pair.pairB = PreChall && pairHash.isHashOf = pair &&
let newChall = pairHash, newResp = pairHash.~isRespTo | {
newChall + newResp in User.knows
newChall + newResp in Oscar.knows

}

run Renewal for 4 Val, 4 Principal, 1 Computer, 1 User, 1 Oscar, 1 Program

172



Bibliography

[1] William Adjie-Winoto, Elliot Schwartz, Hari Balakrishnan, and Jeremy Lilley. The

design and implementation of an intentional naming system. In Symposium on Oper-

ating Systems Principles, pages 186-201, 1999.

[2] F. Aloul, A. Ramani, I. Markov, , and K. Sakallah. Pbs: A backtrack search pseudo-

boolean solver. In Symposium on the Theory and Applications of Satisfiability Testing

(SAT), 2002.

[3] Fadi Aloul, Igor Markov, and Karem Sakallah. Efficient symmetry-breaking for

boolean satisfiability. In International Joint Conference on Artificial Intelligence (IJ-

CAI), 2003.

[4] Alexandr Andoni, Dumitru Daniliuc, Sarfraz Khurshid, and Darko Marinov. Evalu-

ating the small scope hypothesis. http://www.lacim.uqam.ca/ plouffe/OEIS/SSH.pdf,

September 2002.

[5] K. Arkoudas, S. Khurshid, D. Marinov, and M. Rinard. Integrating model checking

and theorem proving for relational reasoning. In 7th International Seminar on Rela-

tional Methods in Computer Science (RelMiCS 7), Malente, Germany, May 2003.

[6] Roy Armoni, Limor Fix, Alon Flaisher, Orna Grumberg, Nir Piterman, Andreas

Tiemeyer, and Moshe Vardi. Enhanced vacuity detection in linear temporal logic.

In Proceedings of 15th Computer-Aided Verification conference, July 2003.

[7] R. Bayardo and J. Pehoushek. Counting models using connected components. In

AAAI Proceedings, 2000.

173



[8] Ilan Beer, Shoham Ben-David, Cindy Eisner, and Yoav Rodeh. Efficient detection of

vacuity in temporal model checking. Formal Methods in System Design, 18(2):141-

163, 2001.

[9] A. Biere, A. Cimatti, E. M. Clarke, M. Fujita, and Y Zhu. Symbolic model checking

using sat procedures instead of bdds. In Design Automation Conference, 1999.

[10] Dines Bjrner. Formal software techniques in railway systems. In Eckehard Schnieder,

editor, 9th IFAC Symposium on Control in Transportation Systems, pages 1 - 12, June

2000.

[11] A. Cimatti, E. Clarke, F. Giunchiglia, and M. Roveri. Nusmv: a new symbolic model

verifier. In Proceeding of International Conference on Computer-Aided Verification

(CAV'99), 1999.

[12] E. Clarke, 0. Grumberg, and D. Long. Verification tools for finite-state concurrent

systems. In A Decade of Concurrency - Reflections and Perspectives, number 803 in

Lecture Notes in Computer Science. Springer Verlag, 1994.

[13] Michelle Crane and Juergen Dingel. Runtime conformance checking of objects using

alloy. Electronic Notes in Theoretical Computer Science, 89(2), 2003.

[14] J. Crawford, M. Ginsberg, E. Luks, and A. Roy. Symmetry-breaking predicates for

search problems. In Fifth International Conference on Principles of Knowledge Rep-

resentation and Reasoning, 1996.

[15] J.M. Crawford, M. Ginsberg, E. Luks, and A. Roy. Symmetry breaking predicates

for search problems. In Fifth International Conference on Principles of Knowledge

Representation and Reasoning (KR'96), 1996.

[16] Alan J. Hu David L. Dill, Andreas J. Drexler and C. Han Yang. Protocol verification

as a hardware design aid. In IEEE International Conference on Computer Design:

VLSI in Computers and Processors, pages 522-525, 1992.

174



[17] Rina Dechter and Daniel Frost. Backtracking algorithms for constraint satisfaction

problems. Technical Report 56, UC-Irvine, 1999.

[18] Edsger Dijkstra. Self-stabilizing systems in spite of distributed control. Communica-

tion of the ACM, 17(11):643 - 644, 1974.

[19] E.W. Dijkstra. Self-stabilizing systems in spite of distributed control. Communica-

tions of the ACM, 17(11):643-644, November 1974.

[20] Feng Lu, Li-C. Wang, and Kwang-Ting Cheng. A circuit sat solver with signal corre-

lation guided learning. In Proceedings of Design, Automation and Test in Europe Con-

ference and Exhibition (DATE'03), pages 10892-10897, Munich, Germany, 2003.

[21] P. Flener, A. M. Frisch, B. Hnich, Z. Kiziltan, I. Miguel, J. Pearson, and T. Walsh.

Breaking row and column symmetries in matrix models. In P. Van Hentenryck, ed-

itor, Proceedings of Eighth International Conference on Principles and Practice of

Constraint Programming (CPO2). Springer-Verlag, 2002.

[22] Blaise Gassend. Physical random functions. Master's thesis, Massachusetts Institute

of Technology, 2003.

[23] Blaise Gassend, Dwaine Clarke, Srinivas Devadas, and Marten van Dijk. Controlled

physical random functions. In 18th Annual Computer Security Applications Confer-

ence, Las Vegas, Nevada, December 2002.

[24] Blaise Gassend and Marten van Dijk, January 2004. Personal communication.

[25] E. Giunchiglia, M. Narizzano, and A. Tacchella. Qube: A system for deciding quan-

tified boolean formulas satisfiabilit. In In Proc. International Joint Conference on

Automated Reasoning (IJCAR - 01), 2001.

[26] Enrico Giunchiglia, May 2002. Personal communication.

[27] Eugene Goldberg and Yakov Novikov. Verification of proofs of unsatisfiability for

cnf formulas. In Proceedings of Design, Automation and Test in Europe (DATE2003),

Munich, Germany, March 2003.

175



[28] Evgueni Goldberg and Yakov Novikov. Berkmin: a fast and robust SAT-solver. In

Proceedings of Design, Automation, and Test in Europe (DATE), March 2002.

[29] F. Harary and E.M.Palmer. Graphical Enumeration. Academic Press, 1973.

[30] Brant Hashii. Lessons learned using alloy to formally specify mls-pca trusted security

architecture. In 2nd ACM Workshop on Formal Methods in Security Engineering -

From Specifications to Code, Washington D.C., October 2004.

[31] Brant Hashii. Using alloy to formally specify mls-pca trusted security architecture.

Northrop Grumman Corporation, January 2004.

[32] G. Holzmann. The model checker spin. IEEE Trans. on Software Engineering,

23(5):279-295, 1997.

[33] Gerard Holzmann. The SPIN Model Checker: Primer and Reference Manual.

Addison-Wesley, 2003.

[34] R. Iosif and R. Sisto. dspin: A dynamic extension of spin. In Proc. of the 6th SPIN

Workshop, LNCS 1680, 2001.

[35] C. Norris Ip and David L. Dill. Better verification through symmetry. Formal Methods

in System Design, 9(1):41-75, August 1996.

[36] Daniel Jackson. Personal communication.

[37] Daniel Jackson. An intermediate design language and its analysis. In Proceedings

of the Sixth ACM SIGSOFT Symposium on the Foundations of Software Engineering

(FSE), November 1998.

[38] Daniel Jackson. Automating first-order relational logic. In Proceedings ACM SIG-

SOFT Conference on Foundations of Software Engineering, San Diego, November

2000.

[39] Daniel Jackson. Alloy: A lightweight object modelling notation. ACM Transactions

on Software Engineering and Methodology (TOSEM), 11(2):256 - 290, April 2002.

176



[40] Daniel Jackson, Somesh Jha, , and Craig Damon. Faster checking of software specifi-

cations by eliminating isomorphs. In Proc. ACM Conf on Principles of Programming

Languages (POPL96), January 2003.

[41] Daniel Jackson, Somesh Jha, and Craig A. Damon. Isomorph-free model enumer-

ation: A new method for checking relational specifications. ACM Transactions on

Programming Languages and Systems, 20(2):302-343, March 1998.

[42] Daniel Jackson, Ian Schechter, and Ilya Shlyakhter. Alcoa: the alloy constraint ana-

lyzer. In Proc. International Conference on Software Engineering, June 2000.

[43] Daniel Jackson, Ian Schechter, and Ilya Shlyakhter. Alcoa: the alloy constraint ana-

lyzer. In Proceedings of International Conference on Software Engineering, Limerick,

Ireland, 2000.

[44] Daniel Jackson, Ilya Shlyakhter, and Manu Sridharan. A micromodularity mecha-

nism. In Proceedings of the ACM SIGSOFT Symposium on the Foundations of Soft-

ware Engineering (FSE), September 2001.

[45] Daniel Jackson and Mandana Vaziri. Finding bugs with a constraint solver. In Pro-

ceedings of the International Symposium on Software Testing and Analysis (ISSTA),

August 2000.

[46] Daniel N. Jackson. A micromodularity mechanism: Talk at fse '01.

http://sdg.lcs.mit.edu/ dnj/talks/fse01/alloy-fse-01.pdf.

[47] David Joslin and Amitabha Roy. Exploiting symmetry in lifted csps. In AAAI97,

1997.

[48] David Karger, December 2004. Personal communication.

[49] Henry Kautz and Bart Selman. Planning as satisfiability. In Proceedings of the

10th European Conference on Artificial Intelligence, 1992. http://portal.research.bell-

labs.com/orgs/ssr/people/kautz/papers-ftp/satplan.ps.

177



[50] Sarfraz Khurshid. Generating structurally complex tests from declarative constraints,

December 2003. MIT PhD thesis.

[51] Sarfraz Khurshid and Daniel Jackson. Exploring the design of an intentional naming

scheme with an automatic constraint analyzer. In Proceedings of the 15th IEEE In-

ternational Conference on Automated Software Engineering (ASE), September 2000.

[52] Sarfraz Khurshid, Darko Marinov, and Daniel Jackson. An analyzable annotation

language. In Proceedings of the ACM Conference on Object-Oriented Programming

Systems, Languages, and Applications (OOPSLA), Seattle, WA, November 2002.

[53] Sarfraz Khurshid, Darko Marinov, Ilya Shlyakhter, and Daniel Jackson. A case for ef-

ficient solution enumeration. In Sixth International Conference on Theory and Appli-

cations of Satisfiability Testing (SAT 2003), S. Margherita Ligure - Portofino ( Italy),

May 2003.

[54] Anna Lubiw. Doubly lexical ordering of matrices. SIAM Journal on Computing,

16:854-879, 1987.

[55] I. Lynce and J. P. Marques-Silva. Building state-of-the-art sat solvers. In Proceedings

of the European Conference on Artificial Intelligence (ECAI), July 2002.

[56] Ins Lynce and Joo P. Marques-Silva. On computing minimum unsatisfiable cores. In

Proceedings of The Seventh International Conference on Theory and Applications of

Satisfiability Testing (SAT 2004), May 2004.

[57] M. Ganai, L. Zhang, P. Ashar, A. Gupta, and S. Malik. Combining strengths of circuit-

based and cnf-based algorithms for a high-performance sat solver. In Proceedings of

39th Design Automation Conference(DAC2002), pages 747-749, June 2002.

[58] Darko Marinov and Sarfraz Khurshid. Testera: A novel framework for testing java

programs. In Proceedings of the 16th IEEE Conference on Automated Software En-

gineering (ASE 2001), November 2001.

178



[59] Darko Marinov and Sarfraz Khurshid. Valloy: Virtual functions meet a relational

language. In 11th International Symposium of Formal Methods Europe (FME 2002),

Copenhagen, Denmark, July 2002.

[60] B. D. McKay. Isomorph-free exhaustive generation. Journal ofAlgorithms, 26:306 -

324, 1998.

[61] Brendan McKay. Personal communication. http://cs.anu.edu/au/people/bdm/nauty/.

[62] Suvo Mittra. Iolus: A framework for scalable secure multicasting. In Proceedings

ACM SIGCOMM'97, pages 277 - 288, Cannes, September 1997.

[63] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and Sharad

Malik. Chaff: Engineering an efficient SAT solver. In Proceedings of the 39th Design

Automation Conference (DAC), June 2001.

[64] Madanlal Musuvathi, David Park, Andy Chou, Dawson R. Engler, and David L. Dill.

CMC: A Pragmatic Approach to Model Checking Real Code. In Proceedings of the

Fifth Symposium on Operating Systems Design and Implementation, December 2002.

[65] Tina Nolte. Exploring filesystem synchronization with lightweight modeling and

analysis, August 2002. MIT Masters thesis.

[66] G. L. Peterson. Myths about the mutual exclusion problem. Information Processing

Letters, 12(3):115-116, 1981.

[67] David A. Plaisted and Steven Greenbaum. A structure-preserving clause form trans-

lation. J. Symb. Comput., 2(3):293-304, 1986.

[68] Jean-Francois Puget. On the satisfiability of symmetrical constrained satisfaction

problems. In Henryk Jan Komorowski and Zbigniew W. Ras, editors, Methodologies

for Intelligent Systems, 7th International Symposium, ISMIS '93, pages 350-361, June

1993.

[69] R.C.Read. An Atlas of Graphs. Oxford University Press, 1998.

179



[70] J. Rintanen. Improvements to the evaluation of quantified boolean formulae. In Pro-

ceedings of the 16th International Joint Conference on Artificial Intelligence (IJCAI

- 99), 1999.

[71] J. M. T. Romijn. A timed verification of the (iee) 1394 leader election protocol. In

S. Gnesi and D. Latella, editors, Proceedings of the Fourth International (ERCIM)

Workshop on Formal Methods for Industrial Critical Systems (FMICS '99), pages

pages 3-29, 1999.

[72] Mary Sheeran, Satnam Singh, and Gunnar Stlmarck. Checking safety properties using

induction and a sat-solver. In Proceedings of the Third International Conference on

Formal Methods in Computer-Aided Design, pages 108 - 125, 2000.

[73] Ilya Shlyakhter, Robert Seater, Daniel Jackson, Manu Sridharan, and Mana Taghdiri.

Debugging overconstrained declarative models using unsatisfiable cores. In Proc. of

19th IEEE International Conference on Automated Software Engineering (ASE 2003),

2003.

[74] Neil J. A. Sloane. Sloane's on-line encyclopedia of integer sequences.

http://www.research.att.com/ njas/sequences/.

[75] Ian Stoica, Robert Morris, David Karger, Frans Kaashoek, and Hari Balakrishnan.

Chord: A scalable peer-to-peer lookup service for internet applications. In Proceed-

ings of the 2001 conferene on application, technologies, architectures, and protocols

for computer communications (SIGCOMM 2001). ACM Press, 2001.

[76] Ion Stoica, Robert Morris, M. Frans Kaashoek, and Hari Balakrishnan. Chord: A

scalable peer-to-peer lookup service for internet applications. In ACM SIGCOMM

2001, August 2001.

[77] Mana Taghdiri. Lightweight modelling and automatic analysis of multicast key man-

agement schemes. Master's thesis, Massachusetts Institute of Technology, 2002.

[78] Mana Taghdiri and Daniel Jackson. A lightweight formal analysis of a multicast key

management scheme. In Proc. of the 23rd IFIP International Conference on Formal

180



Techniques for Networked and Distributed Systems (FORTE 2003), pages 240 - 256,

October 2003.

[79] Mandana Vaziri. A tool for checking structural properties of java code based on a

constraint solver, December 2003. MIT PhD thesis.

[80] Mandana Vaziri and Daniel Jackson. Checking properties of heap-manipulating pro-

cedures with a constraint solver. In Proceedings of the Ninth International Confer-

ence on Tools and Algorithms for the Construction and Analysis of Systems, Warsaw,

Poland, April 2003.

[81] Herbert Wilf. East side, west side: an introduction to combinatorial families with

maple programming. http://www.cis.upenn.edu/ wilf/eastwest.pdf, 1999.

[82] Kirsten Winter and Neil J. Robinson. Modelling large railway interlockings and

model checking small ones. In Michael Oudshoorn, editor, Twenty-Fifth Australasian

Computer Science Conference (ACSC2003), 2003.

[83] Pamela Zave. A formal model of addressing for interoperating networks. submitted

to FME 05, January 2005.

[84] L. Zhang and S. Malik. Towards symmetric treatment of conflicts and satisfaction in

quantified boolean satisfiability solver. In Proceedings of 8th International Confer-

ence on Principles and Practice of Constraint Programming (CP2002), September

2002.

[85] Lintao Zhang and Sharad Malik. Extracting small unsatisfiable cores from unsatis-

fiable boolean formulas. In Proceedings of The Sixth International Conference on

Theory and Applications of Satisfiability Testing (SAT 2004), May 2003.

[86] Lintao Zhang and Sharad Malik. Validating sat solvers using an independent

resolution-based checker: Practical implementations and other applications. In Pro-

ceedings of Design, Automation and Test in Europe (DATE2003), Munich, Germany,

March 2003.

181


