
BATON: A Balanced Tree Structure for
Peer-to-Peer Networks

H. V. JAGADISH1, Beng Chin OOI2,4, Martin RINARD3,4, and Quang Hieu VU4

1 Dept. of Electrical Engineering and Computer Science, University of Michigan
2 Dept. of Computer Science, National University of Singapore

3 CSAIL, Massachusetts Institute of Technology
4 Singapore-MIT Alliance, National University of Singapore

Abstract— We propose a balanced tree structure overlay on a
peer-to-peer network capable of supporting both exact queries
and range queries efficiently. In spite of the tree structure causing
distinctions to be made between nodes at different levels in
the tree, we show that the load at each node is approximately
equal. In spite of the tree structure providing precisely one path
between any pair of nodes, we show that sideways routing tables
maintained at each node provide sufficient fault tolerance to
permit efficient repair. Specifically, in a network with N nodes,
we guarantee that both exact queries and range queries can be
answered in O(logN) steps and also that update operations (to
both data and network) have an amortized cost of O(logN).
An experimental assessment validates the practicality of our
proposal.

Index Terms— Balanced Tree Structure, Load Balancing, Peer-
to-Peer System, Range Query.

I. INTRODUCTION

Peer-to-Peer (P2P) systems have become popular recently.
The central strength of P2P systems is the capability of
sharing resources so that larger costly servers can be replaced
by systems of smaller computers. The biggest challenge in
building an effective P2P system is in tying together these
multiple autonomous computers into a cohesive system. This
is usually done by means of a logical “overlay network”
used to organize the data managed by these computers, which
represent nodes in this overlay network. Various topologies
have been suggested for this network, including a ring [7], and
a multi-dimensional grid [12]. With several of these overlays,
it is well-known how to build “distributed hash tables” across
nodes in a P2P system.

In the database world, B-trees occupy a central place, and
the value of tree structures in general is very well appreciated.
Yet, no overlay network proposed so far has a tree topology
– and with good reason: in a typical (centralized) tree, nodes
near the root are much more frequently accessed than nodes
near the leave: this sort of skew in access load is typically not
acceptable in a peer-to-peer system. In this paper, we propose
a tree-structured overlay network for a peer-to-peer system that
does not have a substantial skew in access load.

The overlay network we propose is based on a binary
balanced tree structure in which each node of the tree is
maintained by a peer. Each peer in the network stores a link to
its parent, a link to its left child, a link to its right child, a link
to its left adjacent node, a link to its right adjacent node, a left

routing table to selected nodes on its left hand side at the same
level, and a right routing table to selected nodes on its right
hand side at the same level. We call our proposed structure
BATON, for BAlanced Tree Overlay Network. While the tree
structure is binary, it has scalability and robustness similar to
that of the B-tree. An immediate benefit of a tree structured
overlay network is convenient support for range queries, which
cannot be supported by conventional distributed hash tables.

Our paper makes following contributions.
• To our knowledge, we are the first to build a P2P

overlay network based on a balanced tree structure. In
consequence, both exact match and range queries are
efficiently supported.

• Similar to other P2P systems, our system takes log N
steps for finding a place for the joining node or finding
a node to replace the departure node. However, it takes
only O(logN) cost for updating the routing tables, which
is more efficient than other P2P systems, which usually
require O(log2N) for updating routing tables.

• Load balancing: We provide two flexible load balancing
schemes in which a node can do load balancing with
either its adjacent node or a node far away from it.

• Fault Tolerance: A tree, by definition, has exactly one
path between any pair of nodes. The small number of
additional links stored in our network suffice to provide
efficient recovery in the event of a node or a link
malfunctioning. Specifically, we show that the network
remains connected even with a large number of failures.

The rest of the paper is organized as follows: In Section II
we present related work. In Section III and IV, we introduce
our system architecture and system operators in detail. In
Section V we present the performance study. Finally, we
conclude in Section VI.

II. RELATED WORK

Data partitioning and searching over multiple sites are
well researched in the context of distributed databases [11],
[9]. However, partitioning and searching strategies cannot be
applied to fully distributed P2P networks where there is no
global index and no guarantee on the uptime of individual
system. In what follows, we will review recent related work
in P2P systems.

CHORD [7], CAN [12], Pastry [13], and Tapestry [14] are
four of the best-known P2P systems. Each of these implements



a distributed hash table, which is efficient for exact queries but
is not well suited for range queries since hashing destroys the
ordering of data. To rectify this, Gupta et al [5] proposes a P2P
system based on Locality Sensitive Hashing in which similar
ranges are hashed to the same peer with high probability.
However, these methods can only help to get approximate
answers. SkipList based systems such as SkipNet [6] and
SkipGraph [2] can support range queries but they do not
guarantee data locality and load balancing in the whole system.

The closest works to ours are P-Tree [3], P-Grid [1], and
[10]. The P-Tree structure is based on B+-tree structure and
uses CHORD as its overlay routing architecture. Each node
in the system stores the left-most root-to-leaf path of its
corresponding B+-tree. Data is only stored in leaf nodes,
and these leaf nodes form a CHORD ring. P-tree guarantees
logN search for both exact query and range query. When
a node joins the network, in addition to the logN cost of
searching its predecessors in CHORD ring and the log2N
cost of updating the routing tables, there is a large cost of
getting tree structures from its predecessors to build the tree
branch for it. Moreover, to check data consistency of new join
nodes, it requires a special process run periodically in other
nodes in the system. Like other systems based on CHORD,
its performance degrades when the data is skewed. P-Grid [1]
is a binary prefix tree structure in which each node in the
tree maintains references to other nodes, that have the same
prefix of length l, but a different value at position l+1, for the
key they are responsible for. The multiway tree [10] is also
a tree structured overlay in which each node in the tree is
maintained by a peer and has a link to its parent, its children,
its siblings, and its neighbors. [10]’s tree structure is neither
B+-tree nor binary tree; it is a multiway tree structure with
no constraints on the fan-out and hence a node can have as
many children as possible. Searching entails hopping from the
query node to the node containing the answer by following
the links, one by one. As each node in the multiway tree
is connected only to the parent, and left and right sibling
or neighbor subtrees, it is prone to network failure. In both
P-Grid [1] and [10], the tree is not balanced if the data is
skewed and in the worst case, the tree structure can become a
linear linked list in which there is only one node at each level.
Hence, the search process cannot be guaranteed within logN
steps. Compared to existing tree-based network structures, our
proposed structure, BATON, is self adjusting to data skew
and is ‘height-balanced’, and maintains vertical and horizontal
routing information for efficient search and fault tolerance.

III. BATON STRUCTURE

The overlay network in BATON is a binary balanced tree
structure as shown in Figure 1.

Definition 1: A tree is balanced if and only if at any node
in the tree, the height of its two subtrees differ by at most one.
It has been shown that a binary balanced tree with N nodes
has height no greater than 1.44logN [8].

We associate with each node in the tree a level and a
number. The level of the root is 0. The level of any node
is one greater than the level of its parent. At each level L,

Fig. 1. Binary balanced tree index architecture

nodes are numbered from 1 to 2L, whether or not there is a
node currently instantiated at that position. Thus, the level and
number together precisely determine the location of a node in
the binary tree. We will find it useful to have a linear ordering
of the nodes in the tree, and for this purpose we use an in-order
traversal. Given a node x, we say that the node immediately
prior to it in the traversal is left adjacent to it, and the node
immediately after x is right adjacent to it. Each node in the
tree typically maps to exactly one peer compute node in the
peer-to-peer system. Each physical compute node has an IP
address or other network ID associated, which can be used
to locate the node and communicate with it. Thus we will
think of each node having a logical id in terms of its level
and number, and a physical id in terms of its IP address.

Each node in the tree maintains “links” to its parent,
children, adjacent nodes, and selected neighbor nodes which
are nodes at the same level. Links to selected neighbors are
maintained by means of two special sideways routing tables:
a left routing table and a right routing table. Each of these
routing tables contains links to nodes at the same level with
numbers that are less (respectively greater) than the number of
the source node by a power of 2. If there is no such node, an
entry is still made in the routing table, but marked as null. A
routing table is considered full if all valid links are not null.
For example, consider node h in Figure 1. Its left routing
table has no valid links, and its right routing table contains
neighbor links to node i, j, and l which are 2i nodes away
from h (i = 0, 1, 2). This structure has some similarity with
Chord, except that it is on a straight line rather than on a circle,
and routing table entry carries additional information beyond
just the target IP address, and some links could be null.

Theorem 1: The tree is a balanced tree if every node in the
tree that has a child also has both its left and right routing
tables full.

Proof: Consider the addition of a node to a tree that is
balanced. Let this new node be added as a child of node x.
Let node x be at level L, and the new node at level L + 1.
The resulting tree could become imbalanced if at any ancestor



of node x, the depth of the left and right subtrees differs by
more than 1 as a result of this new node addition. Consider the
ancestor y of x at level i. Without loss of generality suppose
that x is in the left subtree of y. The depth of this left subtree
may have changed from L to L + 1 as a result of the node
addition. (If the depth of the left subtree was already L+1 or
greater, then it does not change as a result of the node addition,
and no imbalance can result). But since the right routing table
of x is full, there must be an ith entry in this table to a node
in the right subtree of y, and furthermore this node is at level
L. Therefore the right subtree of y has depth at least L, and a
change of depth of the left subtree to L + 1 does not violate
balance. Applying the same argument to every ancestor of X
in the tree, we can establish that the tree remains balanced
after any node addition.

Now consider deletion from the tree of a node u that is
a child of node x at level L. This deletion may cause an
imbalance in the tree rooted at any ancestor y of x if the
depth of the x subtree changes from L+1 to L while the other
subtree has depth L + 2. Without loss of generality, suppose
that x is in the left subtree of y. There must exist a node z
in the right routing table of x that is in the right subtree of
y. Node z is also at level L. Suppose the depth of the right
subtree of y is L + 1 or less, we are done – no imbalance is
created. Suppose the depth is L + 2 or greater. Consider two
cases.

Case 1: There is a node v, child of z, that is in the right
routing table of u and has a child. By the requirement of
the theorem, the deletion of u is not permitted if z has any
children. So no imbalance can be caused.

Case 2: There is no such node v. This means that the any
node at level L + 2 in the right subtree of y has a parent at
level L + 1 which has an entry in its left neighbor routing
table of a node w in the left subtree of y that is different from
u. Node w is at level L + 1, so the departure of node u does
not change the depth of the left subtree of y. Hence again, no
imbalance is caused.

Making the above argument for each ancestor y of x, we
show that tree balance cannot be destroyed by node deletion
that is subject to the theorem condition. 2

Theorem 2: If a node, say x, contains a link to another
node, say y, in its left or right routing tables, the parent node
of x must also contain a link to the parent node of y unless
the same node is parent of both x and y.

Proof: Let Nx be the number of node x and let the parent
of x be w. Without loss of generality, let x be the right child
of its parent w. Then Nx is even. We must have Nw = Nx/2.
Similarly, let the parent of y be z. We must have Nz = Ny/2
if Ny is even, and Nz = (Ny + 1)/2 if Ny is odd.

Case 1: Suppose y is at least distance 2 from x. Then
Ny = Nx±2k for some integer k > 1. Ny is thus guaranteed
to be even, if Nx is even. It follows that Nz = Nw ± 2k−1,
meaning that z has a link from w.

Case 2: Suppose y is at distance 1 from x, and is its sibling.
Then x and y have the same parent, and we are done.

Case 3: Suppose y is at distance 1 from x, but is not a
sibling. Since x is the right child of its parent, y must be the
right neighbor of x. That is Ny = Nx + 1, and is odd. We

then compute Nz = (Ny +1)/2 = (Nx +2)/2 = Nw +1.
Since z has a number one greater than w, the latter must link
to it.

It is easy to see that there are at most L entries in a left
(right) routing table at level L. Therefore the total number of
entries is O(logN) - the same asymptotic bound as for Chord,
though in the worst case number of entries could be twice as
many as in BATON, and each entry also is larger. 2

A. Node Join

A node wanting to join the network must know at least
one node inside the network and sends a JOIN request to that
node. There are two phases in a new node joining the network.
The first is to determine where the new node should join. The
second is actually including it in the network at a specified
place. We consider each in turn.

When a node receives a JOIN request, if it has both its
left routing table and its right routing table full while it has
less than two children, it can accept the new node as its child.
Otherwise, it needs to forward the JOIN request to other nodes
as in Algorithm 1. For example, assume that node u wants to
join the network and it sends a JOIN request to node b as in
Figure 2. b then forwards the request to p, which is its adjacent
node. As p’s routing tables are not full, it forwards the request
to its parent j. In turn, j checks its routing tables and forwards
the request to the neighbor node n, which doesn’t have enough
children. Finally, n accepts u as its child.

Algorithm 1 Join(node n)
If (Full(LeftRoutingTable(n)) and

Full(RightRoutingTable(n)) and
((LeftChild(n)==null) or (RightChild(n)==null))

Accept new node as child of n
Else

If ((Not Full(LeftRoutingTable(n))) or
(Not Full(RightRoutingTable(n))))

Forward the JOIN request to parent(n)
Else

m=SomeNodesNotHavingEnoughChildrenIn
(LeftRoutingTable(n), RightRoutingTable(n))

If (there exists such an m)
Forward the JOIN request to m

Else
Forward the JOIN request to one of its
adjacent nodes

End If
End If

End If

Analyzing the algorithm, suppose that an adjacent link is
traversed to a leaf node w. Either w is able to accept the new
node as a child, or has an incomplete neighbor table. In the
latter case w forwards the request to its parent, which can
locate in its neighbor table a node v that is the parent of a
missing neighbor of w. Node v can now accept the new node
as a child, unless its own neighbor table is not full, in which



Fig. 2. A new node joins the network

case it forwards the request to its parent. Since the height of
the tree is O(logN), the request cannot be forwarded up in
this manner more than O(logN) times. All other directions of
forwarding only add constant terms. Thus we have a bound
of O(logN) messages to locate a spot for a new node to join.
Furthermore, the algorithm specifically seeks out leaf nodes,
and parents of nodes with incomplete neighbor tables, which
must all be leaf nodes due to Theorem 1. Specifically, ancestor
nodes are never required, and there is no involvement of the
root other than just as an ordinary node. As such, we expect
that the load is not disproportionately applied to the root.

When a node x accepts the new node y as its child, it
splits half of its content to its child. In other words, the range
associated with x is partitioned between itself and its new
child. In addition, if y is accepted as x’s left child, x also
sends its left adjacent link, which points to z, to y, and updates
its left adjacent link with y. y then creates its left adjacent
link pointing to z and its right adjacent link pointing to x,
and also notifies z that z should update its right adjacent
node with y instead of x as before. Similarly, if y is accepted
as x’s right child, x’s right adjacent link is transferred to y.
Finally, node x contacts all neighbor nodes in its left and right
(sideways) routing tables, asking them to inform their relevant
children about y, and in turn responding with information
regarding their relevant children that y will require. This whole
process requires O(logN) messages and O(logN) responses.
Specifically, x needs to send maximum 2L1 messages to its
neighbor nodes, where L1 is level of x. These neighbors nodes
need to send maximum of 2L2 messages to their children
which in turn need to send 2L2 messages to respond to the
new node, where L2 is level of the new node. The new node y
needs to send only one message to one of its adjacent nodes.
Therefore, the maximum number of messages required for
updating routing tables is 2L1 + 2L2 + 2L2 + 1 < 6logN .

B. Node Departure

Only leaf nodes may voluntarily leave the network, and
only if their departure will not upset the tree balance. In other
cases, a node that wishes to leave the network must find a
replacement for itself, which will be a leaf node whose absence
does not affect the tree balance. We consider these cases in
turn.

If a leaf node x wishes to leave the network, and there is
no neighbor node in its routing tables with children, it can
leave the network without affecting the tree balance because

the requirement in Theorem 1 is still satisfied at its neighbor
nodes. In this case, x has to transfer all its content, and its
range of index values it is in charge of to its parent, its left
adjacent link if it is a left child or its right adjacent link if
it is a right child, and send LEAVE messages to its neighbor
nodes to update their routing tables. The parent node of x after
receiving the content from x also needs to send messages to
neighbor nodes to notify them of its new content and children.
It also notifies affected adjacent link node to update the
corresponding adjacent link with itself. Thus, the total number
of messages required in this case is 2L1 + 2L2 + 2 < 4logN ,
where L1 and L2 are levels of x’s parent node and x node.
If a leaf node wishes to leave the network, and there are
neighbor nodes in its routing tables with children, it needs to
find a node to replace it by sending a FINDREPLACEMENT
request to a child node of one of its neighbor nodes. If a
non-leaf node wishes to leave the network, it finds a node
to replace it by sending a FINDREPLACEMENT request to
one of its adjacent nodes, which is a leaf node, or as deep
as possible. The find replacement algorithm is described as
in Algorithm 2. As the process of finding a replacement node
always goes down, it takes at most as many steps as the height
of the tree which is O(logN). For example, consider node b
in Figure 3. If it wants to leave the network, it has to find a
leaf node as replacement. b creates a FINDREPLACEMENT
request and sends to its adjacent node j. j checks its routing
tables and realizes that there are some neighbor nodes with
children, j therefore forwards the request to r, which is a child
of a neighbor node of j. At r, as it does not have any child,
and there is no neighbor node with children, r can replace b
safely. As illustrated, BATON adapts itself to node departure
and continues to maintain its height-balanced property.

Algorithm 2 FindReplacementNode(node n)
If (LeftChild(n)!=null)

Forward the request to LeftChild(n)
Else If (RightChild(n)!=null)

Forward the request to RightChild(n)
Else

m=SomeNodesHavingChildrenIn
(LeftRoutingTable(n), RightRoutingTable(n))

If (there exists such an m)
Forward the request to a child of m

Else
Come to replace the leave node

End If
End If

Before a node y replaces node x which is leaving the
network, it needs to notify its neighbor nodes and its parent of
its leaving as in the previous case, which takes 4logN steps. In
addition, all nodes with links to x must be informed to change
the physical (IP) address of the link to point to y instead of x.
This can easily be done by using information received from
x. Specifically, the original parent of node x (now y) needs
to send 2L1 messages to its neighbor nodes to notify its new
replacement child at level L1. y needs to send 2L2 messages



Fig. 3. An existing node leaving the network

to its new neighbor nodes, where L2 is its new level, and 2
messages to its children and 2 messages to its adjacent nodes.
Thus, the maximum number of messages required to update
routing tables to reflect changes is 8logN .

C. Node Failure

Sometimes, a node may fail, or depart suddenly. In such a
case, some nodes wishing to access the departed node x, will
discover the address unreachable. These nodes must report
this failure to node y, the parent of x, which now has the
responsibility of managing the departure of x. Node y makes
use of links maintained in its own routing tables and quickly
regenerate the left and right routing tables of x by contacting
children of nodes in its own routing tables. These children can
also help to locate the children of x if any. Node y, the parent
of node x can now initiate a “graceful departure” for its child
node y that has left abruptly, following the protocol described
in the preceding section. Since all of x’s routing information
has been regenerated at y, the algorithm described above works
with minor modification.

D. Fault Tolerance

We have described above how the failure or abrupt departure
of a node can be handled gracefully. The repair operation is the
same as in node departure, requiring only O(logN) messages,
but it takes non-zero time. In this section we show how the
network can continue to operate, routing around the missing
node, in the mean time.

There are two axes along which messages are routed in
BATON: the sideways axis, through the left and right routing
tables, and the up-down axis, through parent, child and adja-
cent links. The former is naturally fault tolerant, since there is
a Chord-like logarithmic expansion of links, and therefore a
large number of alternative paths between any pair of nodes.
The latter is rendered fault tolerant because a node can go
to a neighbor of the parent, find a child of that node, and
then connect back to the child node, thereby reconstituting a
missing parent child link. Thus far we have considered failure
of only a single node. If two (or more) nodes fail, we have two
possibilities to consider. If the failed nodes have a parent-child
relationship, we can still apply the same technique as described
above – traveling via neighbor nodes. If the failed nodes
do not have a parent-child relationship, then their failures
can be corrected independently, and there is no additional

Fig. 4. Network Restructuring after a node joining

complication because of the temporal simultaneity of their
failure. In a special case, even if all nodes at the same level
fail, the tree is not partitioned since adjacency links can be
used to route across the gap. Contrast this with the brittleness
of multiway tree[10].

E. Network Restructuring

In the description above, joining nodes are forced away
to other parts of the tree while leaving nodes have to find
replacement nodes if they cause the tree to become imbal-
anced. Sometimes, when the node joins(leaves) is part of a
load balancing effort (see IV-D), this redirection may not be
permitted. An alternative is to restructure the system to achieve
balance. The restructuring is akin to a rotation in an AVL tree
and is described here.

When a node x accepts a joining node y as its child and
detects that Theorem 1 is violated, it initiates the restruc-
turing process. Without loss of generality, suppose that this
restructuring is towards the right. Assume that y joins as x’s
left child. To rebalance the system, x notifies y to replace
its position, and notifies its right adjacent node z that x will
replace z’s position. (If y joins as x’s right child, then x itself
remains untouched, y directly replaces z). z then checks its
right adjacent node t to see if its left child is empty. If it is,
and adding a child to t does not affect the tree balance, z
takes the position of t’s left child as its new position and the
restructuring process stops. If t’s left child is full or t cannot
accept x as its left child without violating the balance property,
z occupies t’s position while t needs to find a new position
for itself by continuing to its right adjacent node. Consider
the example in Figure 4. Suppose l joins the network as left
child of h and the joining violates the tree balance property.
The restructuring process is initiated at h in which l replaces
h; h replaces d; d replaces i; i replaces b; b replaces j; j
replaces e; e replaces k; k replaces a, and finally a becomes
f ’s left child because f can accept a child without causing the
tree to become imbalanced. The tree now is balanced again,
as illustrated in Figure 4b.

When a leaf node x leaves the network and causes the tree
to be imbalanced, its parent y starts the restructuring process
(non-leaf node still needs to find a replacement node). Without
loss of generality, consider a left restructuring. Assume that x
is y’s right child. To rebalance the tree, y has to replace x, and
its left adjacent node z has to replace y. (If x is the left child



Fig. 5. Network Restructuring after a node departure

of y, then z can directly replace x, and y remain untouched.)
If z’s move does not upset the tree balance, the restructuring
process stops. If z’s move does violate the balance property,
we use its left adjacent node t to replace its position, and
recursively find the replacement node for t. For example,
assume that g leaves and makes the system imbalanced as
shown in Figure 5a. The restructuring process is started at c
in which c replaces g, f replaces c, a replaces f , and finally
k replaces a. The process stops at a because a’s move does
not cause any loss of balance. Figure 5b shows the balanced
structure after restructuring.

No data movement is required due to network restructuring.
However, several nodes change their position in the tree,
affecting their level and number, and affecting their routing
tables. For each such node, adjusting the routing table requires
O(logN) effort. Thus, the more nodes that participate in the
restructuring process, the more effort is required for updating
routing tables.

IV. INDEX CONSTRUCTION

In the previous section, we have described an overlay
network structured as a binary balanced tree. In this section,
we show how to use such an overlay network to build an
effective distributed index structure, very similar in spirit to
an AVL tree.

We assign to each node, both leaf and internal, a range of
values. We record for each link the range of values managed
by the node at the target of the link. Whenever this range
changes, the link has to be modified to record the change.
The range of values directly managed by a node is required
to be to the right of the range managed by its left subtree
and less than the range managed by its right subtree. In other
words, unlike B+-trees, internal nodes in the tree themselves
also manage a range of data values directly. With this, it is
easy to see how the BATON overlay structure immediately
behaves like an index tree.

A. Exact Match Query

For an exact match query issued or received at node x, the
node will first check its own range. If it is within the current
range, the local index is searched for the value, and the search
stops. Otherwise, x routes the query to the destination node
as described below in the search exact algorithm.

Algorithm: search exact(node n, query q, value v)
If ((LowerBound(n)<=v) and (v<=UpperBound(n)))

q is executed at x 1

Else
If (UpperBound(n)<v)

m=TheFarthestNodeSatisfyingCondition
(LowerBound(m)<=v)

If (there exists such an m)
Forward q to m

Else
If (RightChild(n)!=null)

Forward q to RightChild(n)
Else

Forward q to RightAdjacentNode(n)
End If

End If
Else

//A similar process is followed towards the left
End If

End If

We now illustrate the search using Figure 6. Suppose node
h wants to search for data that is stored in node c. Since the
searched for value is greater than h’s upper bound, it checks its
right routing table and forwards the search request to node l,
which is the rightmost node having the lower bound less than
the searched value. l then checks its right routing table and
forwards the request to m. At node m, as it cannot find any
neighbor node to forward the request, it forwards the request
to its right child r. Finally, r forwards the request to c, which
is the destination node.

Fig. 6. Exact match query search

When a node x wants to search for an exact value, if x
is the root, the search request is always forwarded downward
to the destination node whose range of index values contains
the searched value. Thus, the maximum number of steps of
processing is the height of the tree – logN . If x is not the
root, without loss of generality, assume that the request node
is on the left side of the tree. We consider two cases of the

1If there is a large number of duplicates in a partition search key value,
the corresponding index entries may be distributed across multiple tree nodes.
In such a case, x is one of these nodes found by the exact search algorithm.
Adjacent node links must be used to navigate to the other index nodes.



destination node. In the first case, if the destination node is
the root, following the algorithm, the search request is always
forwarded to the right most node r of the left subtree, and from
there it is forwarded to the root, which is the right adjacent
node of r. The cost of forwarding the request to r is logN −
1, which is the height of the left subtree, because for each
forwarding, be it to the neighbor node, right child, or right
adjacent node, the search space is always reduced by half.
Thus, the maximum number of steps is also logN . In the
second case, if the destination node is on the right side of the
tree, during the search process, it takes one step to forward the
search request from a node in the left subtree to a node in the
right subtree via its routing table. Depending on the searched
value, this step can happen early or later in the search process.
However, if it happens later, previous search steps still help to
reduce the search space of the right subtree by half. Thus, the
total steps is also 1 + (logN − 1) = logN , where logN − 1
is the cost of searching in the right subtree. Our algorithm
shows that the search request is always forwarded via neighbor
nodes or child nodes. The request is only needed to forward to
higher level nodes in two cases: the higher level node contains
the searched value, or the processing node does not have two
children (a leaf node or a node near the leave). This property
clearly helps the root to avoid receiving more requests than
other nodes.

B. Range Query
A range query proceeds exactly in the same manner as a

point query, with only one difference: instead of looking for
the data range at a node including the searched value, we
now look for an intersection with the searched range. Once
an intersection is found, we have at least partial answers for
the range query. We then proceed left and/or right to cover
the remainder of the searched range. As in the case of a point
query, it takes O(logN) steps to find the first intersection.
Thereafter it is a cost of O(1) for each additional node to be
visited. Therefore, to answer a range query, with the range
covering X nodes, we require O(logN + X) steps.

C. Data Insertion and Deletion
When data is to be inserted, we first follow the search

process for exact match query to find the node where this data
should be inserted, and then perform the insertion. However,
for the left most and right most nodes, their range may need
to be adjusted if the inserted data value is outside the current
range. If the left most node receives an INSERT request and
the inserted value is still less than its range of values, it
expands its range of values to the left so that it can cover the
newly inserted value. Similarly, if the right most node receives
an INSERT request and the inserted value is greater than its
range of values, it expands its range of values to the right, and
accept the new inserted value. In these special cases, it takes
additional logN step for updating its routing tables. The cost
of locating node to insert new data is O(logN) as in the exact
match query search process.

Similar to data insertion, to delete existing data, we locate
the node that manages this data value, and delete the data. The
cost is also O(logN).

Fig. 7. Load balancing with restructuring

D. Load balancing

Load balancing based on simple data migration between
two adjacent nodes may not be sufficient to deal effectively
with a very skewed dataset. Further, data migration may ripple
through the network [9], and incur high total overhead. Thus,
instead of doing load balancing with just adjacent nodes, we
propose that a node only does load balancing with its adjacent
nodes if it is a non-leaf node. If it is a leaf node, it can either
load balance with its adjacent nodes or find another leaf node,
which is lightly loaded node, to share its load. Specifically,
when a leaf node becomes overloaded, it first tries to do load
balancing with its adjacent nodes. If its adjacent nodes are
also heavily loaded, then it finds 2 a lightly loaded node to
do load balancing. Without loss of generality, let this lightly
loaded node be to the right of the overloaded node. The lightly
loaded node can pass its load to its right adjacent node. It then
leaves the current position in the network and and re-joins as
a child of the overloaded node, with forced restructuring of
the network if necessary. For example, assume that node g in
Figure 7a. is overloaded and it identifies node f being a lightly
loaded node. Node f passes the range to node c, and rejoins as
a child of node g. The movement of node causes the overlay
structure to become imbalanced and hence restructuring is
invoked. In the load balancing process, nodes f replaces g,
g in turn replaces d, d replaces b, b replaces e, e replaces a,
and a takes over the original f position. The movement of
nodes is illustrated with dashed line in Figure 7b.

Observe that the forced restructuring, in the worst case,
involves a complete shift from the overloaded node position
to the lightly loaded node position. More commonly, much
smaller shifts are required, affecting only a few nodes at each
end until suitable spots are found to accommodate the node
departure and arrival respectively. In fact, the probability of
the shift involving k nodes is exponentially decreasing with
the value of k. With a little bit of analysis one can show that
the amortized cost of load balancing per insertion or deletion
is just O(logN).

V. EXPERIMENTAL STUDY

We built a peer-to-peer simulator to evaluate the perfor-
mance of our proposed system over large-scale networks. We
use number of passing messages to measure the performance

2We could use a skip list structure for this as suggested in [4]. Our practical
experience suggests that the neighbor tables suffice to locate a lighter loaded
node, even if not the lightest loaded node.



(a) Finding join node and replacement node (b) Updating routing table (c) Insert and Delete operation

(d) Exact match query (e) Range query (f) Access load for nodes at different levels

(g) Average messages of load balancing operation (h) Size of load balancing process (i) Network Dynamics

Fig. 8. Cost of join and leave operations (a, b), insert and delete operations (c), search operations (e, f); Access load of nodes (g); Effect of load balancing
(h, i); Effect of network dynamics (j)

of the system. We test the network with different number
of nodes N from 1000 to 10000. For a network of size N,
1000 x N data values in the domain of [1, 1000000000) are
inserted in batches. For each test, 1000 exact queries, and 1000
range queries are executed, and the average cost is taken. To
simulate different sequences of events (order in which nodes
join and leave), the experiments are executed 10 times using 10
different sequences and the average is taken. For comparison
purposes, we obtained CHORD [7] from its web site and
implemented the multiway tree structure proposed in [10].

A. Cost of Join and Leave Operations

Figure 8(a) shows average messages to find a destination
node of the join operation and average messages to find
a replacement node of the leave operation. The result is
interesting. Even though the number of nodes in the network
increases, the average number of messages of join and leave
operations do not increase much. This is because no matter
at what level the node is located, it takes only one step to
forward the JOIN or LEAVE request to a leaf node. After
that, the request is either forwarded upward to lower leaf
nodes in case of the join operation or forwarded downward
to higher leaf nodes in case of the leave operation. This is an
important feature of BATON as the cost of these operations

usually is equal to the distance from a lower node to higher
node, which does not change much when the system grows.
Moreover, as this distance is much lower than height of the
tree, the cost of join and leave operations much lower than
O(logN). The figure also shows that the average number of
messages of the leave operation is lower than those of the
join operation because while the process of finding nodes to
replace only needs to go down, the process of finding nodes to
join sometimes needs to go horizontally in addition to going
up. CHORD requires more messages, in comparison, and the
number of messages increases linearly with network size. In
the multiway tree system, if a node can have many children,
the cost of join operation is low but the cost of leave operation
is high because a departing node needs to get information from
all of its children to select a replacement node; if a node has
only a few children, the cost of join operation is increased as
there are higher chances for a join request to be forwarded to
descendant nodes. In either case, the total number of messages
required is large.

Figure 8(b) shows average number of messages required
to update routing tables of join and leave operations. The
experiment confirms our claim that our system significantly
reduces the cost of updating routing tables compared with
other systems such as CHORD, which require log2N for
updating routing tables. Compared with multiway tree system,



our system takes higher cost because in the multiway tree
system, a node only has links to its parent, its siblings, its
neighbors and its children. Thus, the cost of updating routing
tables depends on the number of children a node has. However,
without sufficient routing tables, the multiway tree system
must pay a high price in search operations. Moreover, the
system becomes vulnerable to link failure.

B. Cost of Insert, Delete, and Search Operations

Figure 8(c) shows the average number of messages needed
for insert and delete operations while Figure 8(d) and Figure
8(e) respectively show the average number of messages re-
quired for exact match queries and range queries. The result
shows that our system can support both insert and delete
operations as well as exact match queries and range queries
efficiently. The cost of insert, delete and exact match query
operations in our system as a balanced tree is much lower
than those of [10] as a multiway tree. Compared with CHORD,
cost of our system is only slightly higher. This is because the
height of our tree could be as much as 1.44logN , whereas for
CHORD there is no such 1.44 factor. However, our system
can support range queries efficiently while CHORD cannot.

C. Access Load

Figure 8(f) shows access load of the nodes at different
levels, measured in terms of the number of messages. For
insertions, we find the load to be almost a constant across
levels. For search, the load is slightly higher at the leaves than
at the root, amply establishing that BATON does not overload
nodes near the root of the network.

D. Effect of Load Balancing

To evaluate the capability of system in case of skewed
data distribution, we test the network with a skewed data
set, generated by Zipfian method with parameter 1.0. The
result shows that there is no significant difference between
costs of operations except that the load balancing process is
triggered more frequently than that of uniform distributed data.
Figure 8(g) shows average number of messages required to
balance the system in respective case of uniformly distrib-
uted data and skewed data. For skewed data, we find the
cost of load balancing to grow linearly with the number of
insert/delete’s, with the expected number of load balancing
messages per insertion/deletion to be about 1 message for
every 1500 insertion/deletions; a very low overhead indeed.
To further understand this low cost, we plot in Figure 8(h)
a distribution of the number of nodes involved in the load
balancing operation. That is, how far did one have to shift to
perform the forced insertion/deletion. The result is strongly
exponential, showing that very little shifting is required most
of the time, though long shifts may be required occasionally.

E. Effect of Network Dynamics

In P2P systems, nodes may join and leave at the same
time. The intensity of nodes joining and leaving will have
an effect on the robustness of the network. This experiment

shows average extra messages taken due to concurrent joining
or leaving operations. This is because it takes some times for
the network to update knowledge of joining or leaving nodes,
and during that time messages may be forwarded to wrong
destination. The result in Figure 8(i) shows that the more nodes
join or leave at the same time, more additional messages are
taken.

VI. CONCLUSION

There is a plethora of overlay networks proposed for P2P
systems. None of these are tree-structures in spite of tree
structures being ubiquitous in data management. In this paper,
we introduced BATON, a balanced binary tree overlay network
for P2P systems.

By adding a small number of links in addition to the tree
edges, we are able to obtain excellent fault tolerance, and
also to get good load distribution without having to overload
nodes near the root of the tree. We have shown how this tree
structure can naturally be used to support an index structure for
range queries. We have experimentally verified our complexity
claims.

REFERENCES

[1] K. Aberer. P-Grid: A self-organizing access structure for p2p informa-
tion systems. In Proceedings of the 6th International Conference on
Cooperative Information Systems, 2001.

[2] J. Aspnes and G. Shah. Skip graphs. In Proceeding of the 14th Annual
ACM-SIAM Symposium on Discrete Algorithms, pages 384–393, 2003.

[3] A. Crainiceanu, P. Linga, J. Gehrke, and J. Shanmugasundaram. Query-
ing peer-to-peer networks using P-Trees. In WebDB ’04: Proceedings
of the 7th International Workshop on the Web and Databases, pages
25–30, 2004.

[4] P. Ganesan, M. Bawa, and H. Garcia-Molina. Online balancing of
range-partitioned data with applications to peer-to-peer systems. In
Proceedings of the 30th VLDB Conference, 2004.

[5] A. Gupta, D. Agrawal, and A. El Abbadi. Approximate range selection
queries in peer-to-peer systems. In Proceedings of the First Biennial
Conference on Innovative Data Systems Research, 2003.

[6] N. J. A. Harvey, M. B. Jones, S. Saroiu, M. Theimer, and A. Wolman.
Skipnet: A scalable overlay network with practical locality properties.
In USENIX Symposium on Internet Technologies and Systems, 2003.

[7] D. Karger, F. Kaashoek, I. Stoica, R. Morris, and H. Balakrishnan.
Chord: A scalable peer-to-peer lookup service for internet applications.
In Proceedings of the 2001 ACM SIGCOMM Conference, pages 149–
160, 2001.

[8] D. E. Knuth. The Art of Computer Programming, volume 3. Addison-
Wesley Professional, 1998.

[9] M. L. Lee, M. Kitsuregawa, B. C. Ooi, K.-L. Tan, and A. Mondal.
Towards self-tuning data placement in parallel database systems. In
Proceedings of the 2000 ACM SIGMOD International Conference on
the Management of Data, pages 225–236, 2000.

[10] C. Y. Liau, W. S. Ng, Y. Shu, K.-L. Tan, and S. Bressan. Efficient
range queries and fast lookup services for scalable p2p networks. In
Proceedings of 2nd International Workshop On Databases, Information
Systems and Peer-to-Peer Computing, pages 78–92, 2004.

[11] W. Litwin, M.-A. Neimat, and D. A. Schneider. Rp*: A family of order
preserving scalable distributed data structures. In Proceedings of the
20th VLDB Conference, 1994.

[12] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. A
scalable contentaddressable network. In Proceedings of the 2001 ACM
Annual Conference of the Special Interest Group on Data Communica-
tion, pages 161–172, 2001.

[13] A. Rowstron and P. Druschel. Pastry: Scalable, distributed object
location and routing for large-scale peer-to-peer systems. In Proceedings
of the 18th IFIP/ACM International Conference of Distributed Systems
Platforms, pages 329–350, 2001.

[14] B. Y. Zhao, J. D. Kubiatowicz, and A. D. Joseph. Tapestry: An
infrastructure for fault-tolerant wide-area location and routing. Technical
Report CSD-01-1141, Univ. California, Berkeley, CA, Apr. 2001.


