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ABSTRACT
As the incidence of osteoarthritis and other degenerative joint conditions

continues to grow, rehabilitation via tissue engineering is becomingly increasingly
attractive as an alternative to traditional surgical interventions.

Chapters 2 and 3 of this thesis are specifically concerned with cartilage tissue
engineering, while chapter 4 is relevant to bone and osteochondral tissue engineering.

The cartilage tissue engineering sections focus on the effects of two different
classes of regulators of chondrocyte behavior: chemical growth factors and mechanical
loading. In chapter 2, FGF-2, a chemical regulator, was supplied to chondrocyte-seeded
constructs over a 4 week culture period. Afterward, these constructs were subjected to
sequential ramp and hold compressive strains on a Dynastat mechanical testing apparatus,
and the unconfined elastic moduli were calculated. These data were compared to the
values for scaffolds receiving no FGF. The results indicate that FGF-2 induced a
significant increase in the modulus of chondrocyte-seeded scaffolds.

Numerous reports indicate that certain types of mechanical loading can increase
chondrocytes' ECM biosynthesis in particular cell-scaffold systems in vitro. Few if any
loading experiments have been done, however, with type II collagen-GAG scaffolds
cultured in serum-free medium. Chapter 3 describes a series of experiments in which
chondrocyte-seeded scaffolds were subjected to dynamic compression and the effects of
this treatment on the proliferation of the chondrocytes, their synthesis of ECM, and the
stiffness of the scaffolds were measured. The results of these experiments were
inconclusive. Analysis indicated that very few chondrocytes were retained in the
scaffolds. A post hoc investigation of the scaffolds revealed that they were biologically
inactive due to their oversize pores. The low cell density was reflected in unusually low
biosynthesis values and no significant differences in stiffness post-loading.

The mechanical properties of implantable constructs such as stiffness and
compressive strength are likely to significantly affect the clinical outcome. The fourth
chapter describes measurements of the elastic modulus and ultimate compressive strength
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of a bone scaffold material. Five different scaffold formulations were tested, and the
mechanical properties correlated with the variations in their composition.

Thesis Supervisor: Myron Spector

Title: Senior Lecturer, Department of Mechanical Engineering
Professor of Orthopaedic Surgery (Biomaterials), Harvard Medical School
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1. GENERAL INTRODUCTION

1.1 Articular Cartilage Composition, Function and Degeneration

Articular cartilage is an exquisitely tuned composite of cells (chondrocytes),

extracellular matrix (ECM) molecules, and water which sustains the tremendous forces

experienced by knees, hips and the other diarthroidal joints. (Note that ECM, scaffold,

matrix, and substrate are used interchangeably in this thesis.) The chondrocytes

manufacture and remodel the ECM which simultaneously provides the 3-dimensional

structure housing and protecting the cells as well as the mechanical integrity of cartilage.

Chondrocytes will only carry out their normal metabolic functions if they are able to

attach to a substrate; thus, the production and maintenance of the substrate (i.e., ECM)

depends on the prior existence of a substrate. We will return to this consideration later in

the section on tissue engineering.

The other primary component of cartilage, water, comprises approximately 80%

of the wet weight of cartilage. The water contains electrolytes and cations which balance

the negatively charged proteoglycans within the ECM, and this molecular interaction also

contributes to cartilage's stiffness and resilience (Temenoff and Mikos 2000).

At densities of approximately 10,000 chondroctyes/mm3 in adult humans,

cartilage is relatively acellular. It is, furthermore, completely lacking in vascular

connection; thus, chondrocytes rely on diffusion from the synovial fluid within the joint

capsule through the dense ECM for their nutrient supply and waste removal (Buckwalter

1998). Due to its low metabolic activity and proliferation (for many years it was believed

that chondrocytes, like nerve cells, do not reproduce at all), damage to cartilage -

whether through disease or acute trauma - generally does not heal. Thus for millions of

osteoarthritis patients, the prognosis is usually poor: increasing pain and decreasing joint

function as focal lesions expand into the neighboring healthy cartilage.
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1.2 Cartilage Repair: Traditional Approaches

Numerous techniques for treating damaged joints have been proposed. Although

some studies have shown a reduction in pain after certain superficial treatments, there is

little evidence that such treatments actually improve the condition of the cartilage. One

class of these treatments currently in use involves little more than arthroscopic lavage of

the joint and/or removal of fibrillated tissue (Kim, Moran et al. 1991; Altman, Kates et al.

1992). In osteotomy, a more invasive procedure, the tibia or femur (in the case of

damage to the knee) is surgically reshaped, realigning the axis of the limb away from the

diseased area. In severe cases either part or the entire joint may be surgically replaced by

unicompartmental joint arthroplasty or total joint arthroplasty (TJA), respectively

{AAOS Online, 2001 #196}.

Recognizing the critical role of the extracellular matrix, other interventions

endeavor to create a natural matrix by penetrating the subchondral bone, inducing clot

formation from blood which then flows into the defect from the marrow space.

Numerous techniques exist for creating these penetrations. Another treatment, referred to

as mosaicplasty, is the transplantation of autologous cartilage from non-weight bearing

sections of a damaged joint to the weight bearing sections that are more critical to joint

function and biomechanical load transfer (Buckwalter 1998; Buckwalter 1998). In

contrast to transplanting cartilage plugs as in mosaicplasty, in autologous chondrocyte

transplantation cells are excised and allowed to multiply in vitro and then implanted

(usually under a periosteal flap) in the cartilage defect (Brittberg, Lindahl et al. 1994;

Brittberg, Nilsson et al. 1996; Breinan, Minas et al. 1997; Brittberg 1999).

There are a host of problems with these surgical interventions. For example,

mosaicplasty produces significant morbidity at the donor site, and techniques employing

subchondral penetration have been shown to produce functionally inferior repair tissue

(fibrocartilage) instead of true hyaline cartilage, especially at longer post-operative times

(Breinan, Minas et al. 2001).
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1.3 Cartilage Repair: Tissue Engineering Approaches

Cartilage treatments exist along a continuum with classical and usually highly

invasive surgical interventions such as TJA on one end and less invasive tissue

engineering interventions on the other, but many of the treatments currently in use or

under investigation possess attributes from both ends of the spectrum. Tissue engineering

typically involves three primary components: cells, three-dimensional scaffolds which

mimic the cells' extracellular matrix and regulators that affect cellular processes. Many

diverse examples from each of these categories are currently under investigation.

Tissue engineering approaches circumvent the previously mentioned problem by

introducing a temporary matrix that will provide the cells in the cartilage (or those added

during the treatment) with the substrate that they require to begin their metabolic

activities. In this respect, the surgical techniques employing subchondral penetration and

fibrin clotting may be considered to possess some of the attributes of a tissue engineering

approach. Usually TE substrates are designed to biodegrade as a part of the remodeling

process, to be replaced eventually by newly synthesized ECM. The kinetics of this

process are important yet little understood (Gordon TD 2004).

1.3.1 Cells

While chondrocytes are an obvious choice of cells to be used in a cartilage TE

system, many studies have been performed with cells from synovium, perichondrium

(Dounchis, Goomer et al. 1997), periosteum (O'Driscoll 1999), and bone marrow derived

stem cells.

1.3.2 Scaffold Materials

There are a wide range of materials currently employed as matrices - collagen

(Grande, Halberstadt et al. 1997; Nehrer, Breinan et al. 1997), fibrin (Ameer, Mahmood

et al. 2002; Hunter, Mouw et al. 2004), polylactic (Chu, Coutts et al. 1995; Dounchis,

Goomer et al. 1997; Saldanha and Grande 2000; Chen, Sato et al. 2003) and polyglycolic

acid (Freed, Vunjak-Novakovic et al. 1994; Vunjak-Novakovic, Obradovic et al. 1998;

11



Chen, Sato et al. 2003), agarose, self assembling peptide hydrogels (Kisiday, Jin et al.

2002) and alginate - to name a few. And much attention has been given to the proper

modification (Lee, Grodzinsky et al. 2001) of these materials to ensure their

biocompatibility and ability to induce and/or maintain chondrocytic phenotype when

seeded with cells.

1.3.3 Regulators

The literature on the effects of chemical regulators is vast and includes discussion

of growth factors such as insulin-like growth factor (IGF), fibroblast growth factor

(FGF), etc.; factors promoting differentiation of chondroprogenitor cells such as

dexamethasone and transforming growth factor (TGF); and serum (Hascall, Handley et

al. 1983; McQuillan, Handley et al. 1986; McQuillan, Handley et al. 1986). While the

biochemical pathways of mechanotransduction are still incompletely understood, there is

a similarly large literature concerning the effects of mechanical regulators on cells (Gray,

Pizzanelli et al. 1989; Sah, Kim et al. 1989; Larsson, Aspden et al. 1991; Sah, Doong et

al. 1991; Greco, Specchia et al. 1992; Guilak, Meyer et al. 1994; Kim, Sah et al. 1994;

Lee and Bader 1997; Lee, Noguchi et al. 1998; Grodzinsky, Levenston et al. 2000; Lee,

Noguchi et al. 2000; Mauck, Soltz et al. 2000; Bonassar, Grodzinsky et al. 2001; Kisiday,

Jin et al. 2002; Lee, Grodzinsky et al. 2003).

1.4 Tissue Engineering Subchondral Bone

Cartilage defects often may be connected - causally and/or temporally - with

defects in bone (Gao, Dennis et al. 2002; Schaefer, Martin et al. 2002; Sherwood, Riley et

al. 2002; Cao, Ho et al. 2003). Consequently, there is increasing interest in osteochondral

tissue engineering in which specific factors from the three TE components (cell, scaffold,

and regulator) conducive to the development of bone are employed to produce constructs

that can repair simultaneous defects in cartilage and the underlying bone. The molecular

level explanation for the stiffness of bone differs from that of cartilage, but in the final

analysis any successful scaffold must possess sufficient mechanical integrity to sustain

the loads it will experience in vivo. Critical properties of such scaffolds include stiffness
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or modulus and ultimate strength. In addition to the investigation of the biochemical and

mechanical factors affecting chondrocytes, a study was performed to determine critical

mechanical properties of a novel bone scaffold material and to compare them to native

bone. In the case of bone, it is particularly important to employ a scaffold that is

comparable in stiffness to bone. If the construct's stiffness is significantly greater than

the surrounding bone, stress shielding and concomitant bone density loss may occur;

thus, it is important to design an implant that will either degrade relatively rapidly or that

will be of comparable stiffness to native bone.
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1.5 Specific Aims

This thesis investigates the effects of two different classes of regulators of

chondrocyte behavior: chemical growth factors and mechanical loading. The overall aim

of the work is to determine to what extent these regulators influence the maturation of

chondrocyte-seeded constructs. In addition to the cartilage related work, a study of the

compressive mechanical properties of several different bone scaffold materials was

performed in anticipation of the clinical demand for composite bone-cartilage scaffolds.

This thesis attempts to answer the following questions:

1. FGF Treatment (chapter 2)

a. Does the addition of 5 ng/ml fibroblast growth factor (FGF-2) to canine articular

chondrocyte-seeded type II collagen-GAG scaffolds cause these scaffolds to

attain higher moduli after 28 days of culture than untreated controls?

2. EDAC Cross-linking Treatment (chapter 2)

a. What is the relationship between the duration of EDAC cross-linking treatment

and the modulus of unseeded type II collagen-GAG scaffolds?

b. What is the optimum cross-linking time?
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3. Dynamic Compression (chapter 3)

a. In serum-free medium, does the application of 3% dynamic compressive strain to

canine articular chondrocyte-seeded type II collagen-GAG scaffolds increase the

rates of protein and proteoglycan biosynthesis?

b. Are the results in serum-free medium comparable to those performed in serum-

supplemented medium (comparison with (Lee, Grodzinsky et al. 2003))?

c. Does such compression increase the absolute amount of GAG and protein

deposited in the scaffolds?

d. Does such compression increase the modulus of the scaffolds?

4. Orthoss Mechanical Properties (chapter 4)

a. Do the ultimate compressive strength and modulus vary with chemical

composition for Orthoss bone scaffold?

b. Which formulation produces the greatest strength and stiffness?
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2. THE EFFECTS OF FGF-2 AND CROSS-LINKING TIME

ON THE COMPRESSIVE MODULUS OF ADULT CANINE

CHONDROCYTE-SEEDED TYPE 11 COLLAGEN-GAG

SCAFFOLDS GROWN IN SERUM-FREE MEDIUM

2.1 Introduction

In one approach to articular cartilage tissue engineering an immature cartilaginous

construct, developed from a chondrocyte-seeded scaffold, is implanted into a defect,

where it will then mature and remodel in vivo. While these maturation processes are

complex, primary features include the synthesis of extracellular matrix (ECM)

components such as proteoglycans (PG) and type II collagen by the chondrocytes and the

proliferation of the cells themselves. The synthesized ECM is deposited into the scaffold,

gradually replacing the biodegrading original scaffold. The result of this process is a

stiffer, more tissue-like material than the original scaffold.

The mechanical properties of a construct at the time of implantation are likely to

significantly affect the clinical outcome: a stiff scaffold well-populated with ECM is

much more likely to sustain the biomechanical forces it will experience in vivo than a

compliant scaffold containing less PG and collagen. Furthermore, an implant's rapid

integration with the healthy surrounding cartilage tissue depends on its ability to actively

synthesize ECM.

One way to assess the rate of ECM deposition is to measure the mechanical

stiffness of the scaffold. Hence, the objective of this study is to evaluate the compressive

modulus of canine articular chondrocyte-seeded type II collagen-GAG scaffolds after 28

days of culture with and without fibroblast growth factor (FGF-2) in order to determine

whether this regulator can facilitate scaffold maturation. Elevated modulus values after

treatment with FGF would be interpreted as a positive finding.

Prior investigations have demonstrated that the addition of FGF-2 during

monolayer in vitro expansion stimulates chondrocytes' proliferation and later, their GAG

production in 3-dimensional culture (scaffolds) (Martin, Vunjak-Novakovic et al. 1999;
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Martin, Suetterlin et al. 2001). Other researchers have also found that FGF-2 in

monolayer culture increases chondrocyte differentiation while increasing proliferation. It

should be noted that some researchers have found that when FGF was used in 3-

dimensional culture a downregulation of GAG, type II collagen, wet weight and stiffness

were observed (Jakob, Demarteau et al. 2001; Pei, Seidel et al. 2002).

Type II collagen scaffolds have yielded promising results for articular cartilage

tissue engineering. In a recent canine study type II collagen-GAG scaffolds facilitated

the increased production of viable repair tissue in cartilage defects, as demonstrated by

comparison of their histomorphometric results with those from autologous chondrocyte

implantation. These constructs (cultured without FGF-2) yielded better

histomorphometric results than autologous chondrocyte implantation (Lee, Grodzinsky et

al. 2003).

In addition to increasing scaffold stiffness via chemical regulator-mediated

increases in ECM deposition, the intrinsic stiffness of a scaffold material is an important

consideration when choosing a biomaterial for tissue engineering. A stiffer (unseeded)

starting material will likely produce a stiffer, more physiologically appropriate implant

than a more compliant scaffold. Prior studies of the effects of various cross-linking

treatments on collagen scaffolds concluded that dehydrothermal treatment (DHT)

followed by immersion in 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide

hydrochloride (EDAC) and N-hydroxysuccinimide (NHS) produced scaffolds with the

greatest degree of cross-linking, and hence the lowest contraction and highest modulus

(Weadock, Olson et al. 1983; Weadock, Miller et al. 1995; Olde Damink, Dijkstra et al.

1996; Weadock, Miller et al. 1996; Lee, Grodzinsky et al. 2001).

In order to optimize the EDAC cross-linking process a study of the kinetics of the

reaction was performed. It was hypothesized that greater cross-linking times would

significantly increase the stiffness of unseeded scaffolds, and that a more mechanically

robust tissue-engineered construct could be produced by treating these maximally cross-

linked cell-seeded scaffolds with FGF-2. The ultimate goal of these studies is to shorten

the pre-implantation culture period and increase the robustness of such constructs in

clinical applications.
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2.2 Methods

2.2.1 Scaffold Fabrication and Cross-Linking

Sheets of the scaffold, 3-mm thick, were produced by freeze-drying a porcine type

II collagen-GAG slurry (Geistlich Biomaterials, Wolhusen, Switzerland) as previously

reported for type I collagen-glycosaminoglycan matrices (Yannas, Lee et al. 1989).

Eight-mm diameter samples punched from sheets of the material were cross-linked by

dehydrothermal treatment followed by immersion in an aqueous solution of 14 mM 1-

ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride and 5.5 mM N-

hydroxysuccinimide (EDAC) (Olde Damink, Dijkstra et al. 1996). After cross-linking

the scaffolds were transferred to 50 ml centrifuge tubes and were rinsed four times with

sterile distilled water. During each rinse stage, the centrifuge tubes were nutated for

approximately 30 minutes before siphoning off the water. After the final rinse, the

scaffolds were stored in fresh, sterile water.

Comparable type II collagen scaffolds were previously (Nehrer, Breinan et al.

1997) found to have an average pore size of 86 ptm and 93% porosity. A prior study

employing SDS-polyacrylamide gel electrophoresis (Nehrer 1998) confirmed that the

scaffolds contained primarily type II collagen. In the prior study there were no

significant differences in these properties anticipated among the specimens.

2.2.2 Cell Isolation and Culture

Articular cartilage was harvested from the knee (stifle) joints of five adult

mongrel dogs. Chondrocytes were isolated from the cartilage by digesting the tissue first

with pronase (20 U/ml, lhr) and subsequently with collagenase (200 U/ml), overnight, as

previously described (Kuettner, Pauli et al. 1982). After isolation, the cells were washed

several times in a serum-free base (SFB) culture medium, adapted from a formulation

from Jakob (Jakob, Demarteau et al. 2001) (see Appendix) supplemented with 10% fetal

bovine serum (FBS, Gibco Life Technologies, Carlsbad, CA). The cells were suspended

in medium and 10% dimethyl sulfoxide (DMSO) at a concentration of 106 cells/ml and

stored at -80*C.

After cells from all five animals had been collected they were thawed by adding

drops of SFB medium supplemented with 10% FBS, and the cells were washed several
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times using fresh medium. The cells were counted using a hemacytometer; typically 50%

of the initial number of cells was viable upon thawing.

Keeping each animal separate, the cells were suspended in a growth factor and

FBS supplemented expansion medium (see Appendix) and then plated in 75-cm 2 flasks

(15 ml of cell suspension/flask) at a concentration of approximately 2 million cells/flask.

The cells were incubated at 37 0 C and 5% CO 2. Once the chondrocytes reached

confluence, which was after 8-9 days for the first subculture, they were trypsinized,

resuspended and replated into 75-cm2 flasks at the same concentration. The cells reached

confluence (passage 1) after 4-5 days.

2.2.3 Cell Seeding and Culture of Collagen Matrices

After the first passage the chondrocytes were transferred to serum-free medium

containing ITS and then dynamically seeded (1.5 hours on a nutator) into scaffolds

(2x 106 cells/scaffold) that had been EDAC cross-linked for 10 min. It has been estimated

based on our prior studies that this dynamic seeding method results in approximately

50% of the chondrocytes being attached to the scaffolds, yielding a cell density

approximately equal to that in articular cartilage (10,000 cells/mm 3) (Venn and Maroudas

1977). After seeding, the matrices were incubated in 1.5 ml of medium per agarose-

coated well in 24-well plates. Medium was exchanged every two to three days.

Half of the scaffolds received FGF-2 (5 ng/ml) with each medium change.

Scaffolds were incubated for 28 days and subsequently terminated by placing them in

PBS.

2.2.4 Mechanical Testing of Scaffolds

Within 48 hours of sacrifice, the thicknesses of the scaffolds were measured with

a custom fabricated micrometer with an LED indicating the jaw-to-jaw distance when an

electrical circuit was first formed by the micrometer's two platens' contact with the

scaffold. Scaffolds were then placed in a PBS-filled polymethylmethacrylate (PMMA)

chamber mounted in the lower jaw of a Dynastat Mechanical Spectrometer (IMASS,

Hingham, MA). A 50-gram load cell (Sensotec, Cleveland, OH) fitted with a 9.5-mm

diameter PMMA cylindrical plunger was fixed in the upper jaw of the Dynastat and the
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distance between the plunger and the lower chamber set to the thickness of the hydrated

scaffold.

The scaffolds were then immediately subjected to uniaxial compression and their

unconfined stress-strain responses were measured. The Dynastat was then programmed

to compress the specimen at a rate of approximately 2.5 pm/sec while force and

displacement data were recorded at a sampling rate of 0.1 / second. The compression

was terminated at 60% engineering strain (AL/Lo). The recorded force/displacement data

were converted to engineering stress/strain and plotted in EXCEL. The equilibrium

modulus was defined as the slope of the stress-strain data over the 20-50% strain range.

The moduli of unseeded scaffolds after six different durations (n=2-3 for each

time) of EDAC treatment (0, 1, 5, 10, 60, and 120 minutes) were measured.

2.2.5 Statistical Analysis

Data from all assays are reported as the mean ± standard deviation. Analysis of

variance (ANOVA) and Fisher's protected least squares differences (PLSD) post-hoc

testing were performed using StatView (SAS Institute Inc, Cary, NC). The criterion for

statistical significance was set at p = 0.05.

2.3 Results

2.3.1 Effect of EDAC Cross-linking Time On Modulus of Unseeded Scaffolds

The data (Fig. 1) indicate that scaffold modulus is related exponentially to EDAC

treatment time. For the EDAC protocol used in this study, modulus M(t) vs. EDAC time

was described (r2 = 0.74) by a kinetics equation of the form

M(t) = M + a*(I-e -t),

where the time constant, -c = 6.07 min., a = 3.43 kPa, and the non-EDAC cross-linked

stiffness, M, = 0.83 kPa. The average value for the equilibrium modulus of the unseeded

scaffolds EDAC cross-linked for 10 min (n=5) was 3.1 kPa with a 95% confidence

interval of 2.7-3.5 kPa (data not shown).
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Figure 1. Effects of EDAC

collagen-GAG scaffolds.
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cross-linking time on the unconfmed compressive modulus of unseeded type II

2.3.2 Effect of FGF-2 on Modulus of Seeded Scaffolds

The correlation coefficients for the individual linear regressions over the 20-50%

strain range were between 0.98 and 1.0; however, there was considerable variation in the

modulus of constructs prepared with cells from the different animals. The mean value for

the modulus of the cell-seeded constructs cultured in medium without FGF-2

supplementation for 28 days was almost 2-fold higher than the non-seeded controls

(EDAC cross-linked for 10 min). However, the high level of inter-animal variation

prevented this result from achieving statistical significance (unpaired Student's t test;

p=0.09).

Treatment of the constructs with FGF-2 resulted in a statistically significant

(paired Student's t test; p=0.02 ) doubling of the modulus, compared to the non-treated

cell-seeded constructs: 17.4 ± 9.0 versus 8.8 ± 5.5 kPa (Fig. 3). A typical stress-strain

curve for FGF-treated and control scaffolds from animal B is shown in Fig. 2. The
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linear-fit equations are displayed in the figure and the high degree of linearity over this

strain range is evident from the high values for the goodness of fit parameter.

During weeks 2 to 4 of culture the coloration of the medium of the non-FGF-

treated and FGF-treated groups differed dramatically, reflecting the effects of the growth

factor on the metabolism of the cells.
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Figure 2. Stress-strain response of cell-seeded (from animal B) collagen-GAG scaffolds, indicating the

higher modulus of FGF treated scaffold (upper curve) when compared to scaffolds receiving no FGF (lower

2 curves).
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Figure 3. Equilibrium unconfined compressive moduli for constructs prepared using chondrocytes from 5

animals (A-E).

2.4 Discussion

FGF-2 treatment over a 4-week culture period resulted in constructs that were

markedly stiffer than untreated scaffolds. The high degree of inter-animal variation was

not anticipated, but may be a result of differences in age, incipient osteoarthritis or other

degenerative joint conditions, degree of exercise provided to different animals, or other

factors.

Since biochemical assays were not performed with these scaffolds, it was not

possible to determine the origin of the modulus increase. It is believed that the increased

stiffness was due to upregulated ECM production and deposition by the cells. However,

it is also possible that the per cell rate of ECM production was not changed but the

proliferation of cells was increased, leading to a net increase in ECM deposition. Either

of these situations could lead to the observed variation in medium coloration; elevated

levels of metabolic byproducts discharged to the medium could be caused by either more

cells working at average rates or by fewer cells working at greater rates. Future work

will be required to distinguish between these or other possible explanations of the effects

of FGF on the stiffness.
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The kinetics data for the EDAC cross-linking indicate that 20 minutes of

treatment (i.e., approximately 3) increased the intrinsic modulus to approximately 95%

of the maximum obtainable by this method. Thus, we may have realized slightly stiffer

seeded matrices if we had started with matrices that had received 20 minutes of cross-

linking rather than 10 minutes. The difference in stiffness would likely have been small.

During EDAC cross-linking the scaffolds tend to trap air bubbles internally,

preventing the solution from fully penetrating the scaffold. A pilot-study revealed the

following solution to this problem. Place the scaffolds in a solution (either the EDAC

cross-linking solution, sterile water, ethanol, etc.) under light vacuum in a vacuum flask.

Then very rapidly allow the pressure to rise (by quickly removing the vacuum tube from

the flask in a sterile biosafety cabinet). This shock dislodges the bubbles from the

scaffolds very effectively.

Future in vivo work will be required to determine if FGF-2 treatment can reduce

the culture period required before implantation of the constructs and the relationship

between the compressive modulus of the construct and treatment outcome.
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3. DYNAMIC MECHANICAL STIMULATION OF

ARTICULAR CHONDROCYTES IN COLLAGEN-GAG

MATRICES AND SERUM-FREE MEDIUM

3.1 Introduction

In addition to biochemical stimulation, it is well-known that mechanical loading is

an important regulator of the metabolic processes of chondrocytes in situ. During normal

physical activities articulating joints are subjected to a wide range of stresses, and sensing

the induced strains, the chondrocytes modify their biosynthetic behavior. Static strains

reduce the cellular production of proteins and proteoglycans that constitute the ECM.

Dynamic strains, however, increase the production of ECM molecules in an amplitude

and frequency dependent manner. Thus, it appears that the effects of "exercise" can be

traced to cellular and molecular levels. Chondrocytes receiving such mechanical loading

produce augmented levels of ECM molecules relative to static conditions, thus

strengthening their ability to withstand the strains they experience.

Recent investigations have also shown that dynamic loading can increase

chondrocytes' ECM biosynthesis in cell-scaffold systems in vitro (Gray, Pizzanelli et al.

1988; Gray, Pizzanelli et al. 1989; Sah, Kim et al. 1989; Larsson, Aspden et al. 1991;

Greco, Specchia et al. 1992; Guilak, Meyer et al. 1994; Kim, Sah et al. 1994; Lee and

Bader 1997; Bonassar, Grodzinsky et al. 2000; Grodzinsky, Levenston et al. 2000; Lee,

Noguchi et al. 2000; Mauck, Soltz et al. 2000; Wilkins, Browning et al. 2000; Bonassar,

Grodzinsky et al. 2001; Gooch, Blunk et al. 2001; Mauck, Seyhan et al. 2002; Lee,

Grodzinsky et al. 2003; Mauck, Nicoll et al. 2003; Hunter, Mouw et al. 2004). Since the

ECM is responsible for the high compressive modulus of cartilage in vivo, we

hypothesized that increased ECM production within these scaffolds due to dynamic

loading would be reflected in increased scaffold stiffness. In this study, chondrocyte-

seeded scaffolds were subjected to dynamic compression and the effects of this treatment

on the proliferation of the chondrocytes, their synthesis of ECM, and the stiffness of the

scaffolds were measured.
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3.2 Materials and Methods

3.2.1 Scaffold Fabrication and Cross-linking

Sheets of the scaffold, 3-mm thick, were produced by freeze-drying a porcine type

II collagen-GAG slurry (Geistlich Biomaterials, Wolhusen, Switzerland) as previously

reported for type I collagen-glycosaminoglycan matrices (Yannas, Lee et al. 1989).

Eight-mm diameter samples punched from sheets of the scaffold were cross-linked by

dehydrothermal treatment followed by immersion in a solution of 14 mM 1-ethyl-3-(3-

dimethylaminopropyl) carbodiimide hydrochloride and 5.5 mM N-hydroxysuccinimide

(EDAC) (Olde Damink, Dijkstra et al. 1996). Comparable type II collagen scaffolds

were previously (Nehrer, Breinan et al. 1997) found to have an average pore size of 86

pm and 93% porosity. A prior study employing SDS-polyacrylamide gel electrophoresis

(Nehrer 1998) confirmed that the scaffolds contained primarily type II collagen. In the

prior study there were no significant differences in these properties anticipated among the

specimens.

3.2.2 Cell Isolation, Culture and Seeding

Articular cartilage was harvested from the stifle joints of six adult dogs.

Chondrocytes were isolated from the cartilage by digesting the tissue first with pronase

(20 U/ml, lhr) and subsequently with collagenase (200 U/ml), overnight, as previously

described (Kuettner, Pauli et al. 1982). After isolation, the cells were washed several

times in a serum-free base (SFB) culture medium, adapted from a formulation from Jakob

(Jakob, Demarteau et al. 2001) (see Appendix) supplemented with 10% fetal bovine

serum (FBS, Gibco Life Technologies, Carlsbad, CA). The cells were suspended in and

10% dimethyl sulfoxide (DMSO,) at a concentration of 106 cells/ml and stored in liquid

nitrogen.

After cells from all six animals had been collected they were thawed by adding

drops of SFB medium supplemented with 10% FBS, and the cells were washed several

times using fresh medium. The cells were counted using a hemacytometer; typically 50%

of the initial number of cells was viable upon thawing.
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Keeping each animal separate, the cells were suspended in a growth factor and

FBS supplemented expansion medium (see Appendix) and then plated in 75-cm2 flasks

(15 ml of cell suspension/flask) at a concentration of approximately 2 million cells/flask.

The cells were incubated at 37*C and 5% CO 2. Once the chondrocytes reached

confluence, which was after 8-9 days for the first subculture, they were trypsinized,

resuspended and replated into 75-cm 2 flasks at the same concentration. The cells reached

confluence (passage 1) after 4-5 days.

After the first passage the chondrocytes were transferred to serum-free medium

containing ITS and then dynamically seeded into scaffolds (2x 106 cells/scaffold) that had

been EDAC cross-linked for 10 min. Medium (1.5 ml medium/scaffold) was changed

every 2-3 days. Scaffolds were incubated for 19 days and subsequently terminated by

placing them in PBS.

3.2.3 Dynamic Mechanical Compression

The thicknesses of the scaffolds were measured with a custom fabricated

micrometer with an LED indicating the jaw-to-jaw distance when an electrical circuit was

first formed by the micrometer's two platens' contact with the scaffold. Scaffolds were

placed in polysulfone chambers with 0.6 ml of radiolabeled serum-free medium and

transferred to an incubator-housed mechanical spectrometer. The platens of the loading

chamber were individually adjusted so that they would just touch the surface of each

scaffold. Scaffolds were subjected to 24 or 96 hours of 0.1 Hz, 3% sinusoidal

compressive strain superimposed on a 10% offset strain (10%/60 sec) (Frank, Jin et al.

2000; Lee, Grodzinsky et al. 2003).

Since all the scaffolds were compressed by the spectrometer the same absolute

distance, only scaffolds of exactly the same thickness would experience identical strains.

Although the tested scaffolds were not identical in thickness, individual scaffolds did not

typically differ by more than 10% from the average thickness. Thus, the dynamic and

offset strains were based on the average thickness of all the scaffolds in the polysulfone

loading chambers.

27



3.2.4 DNA Analysis

The DNA content of the matrices was measured using the Hoechst 33258 dye

method (Kim, Sah et al. 1988). A 20 [tl aliquot of the proteinase K digest mixed with

180 d of Hoechst dye solution (10% Hoechst dye in 10 mM Tris, 1mM Na2EDTA and

0.1 M NaCl, pH 7.4) was assayed fluorometrically. The results were extrapolated from a

standard curve established using calf thymus DNA. The DNA contents of unseeded

matrices were measured as controls, and subtracted from values obtained for the cell-

seeded samples.

3.2.5 GAG Analysis

The GAG content of the matrices was determined by the dimethylmethylene blue

(DMMB) dye assay (Famdale, Sayers et al. 1982). A 100 pl aliquot of the proteinase K

digest was mixed with 3 ml of the DMMB dye and the absorbance at 535 nm was

measured with a spectrophotometer (Ultrospec 4050, LKB Biochrom, Cambridge,

England). The GAG content of the matrices was derived from comparisons with a

standard curve produced from measurements of shark chondroitin-6-sulfate standards.

3.2.6 Proline and Sulfate Radiolabel Incorporation to Evaluate Protein and

Glycosaminoglycan Synthesis Rates

After 18-19 days of culture in serum-free medium the cell-seeded matrices were

transferred to the polysulfone loading chamber and incubated in medium containing 10

p.Ci/ml of 3H-proline and 20 ptCi/ml of 3S-sulfate during the loading to determine protein

(assumed to be primarily type II collagen) and GAG synthesis rates, respectively. At the

end of the 24 or 96 hour radiolabeling period, the matrices were washed (5 x 15 min at

4C) in phosphate buffered saline (PBS) supplemented with unlabeled proline (1.0 mM)

and sulfate (0.8 mM).

Scaffolds were lyophilized overnight and then solubilized for at least 24 hours at

60'C with 1 ml of proteinase K solution (100 tg in 1 ml 50 mM Tris-HCl buffer with 1

mM CaCl 2). In order to determine the radioactivity content, 200 p1 aliquots of the digest

were mixed with 2 ml scintillation fluid (CytoScint ES, ICN Biomedicals Inc., Irvine,
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CA) and counted in a liquid scintillation counter (Rack-Beta 1211, LKB, Turku, Finland).

The 3H and 3 5S counts per minute were recorded (channel A recorded activity from 0.5 -

18.6 keV and channel B recorded activity from 18.6 - 156 keV) with corrections for

spillover and then converted to nanomoles of incorporated radiolabel. The counting

period for each sample was 3 minutes. Quenching effects were assumed to be constant

throughout all measurements and were, therefore, not directly treated. Counts were

normalized both to DNA content and radiolabeling period.

3.2.7 Mechanical Testing

A random selection of scaffolds was allotted for mechanical testing after the

dynamic compression. These scaffolds were not lyophilized or treated with Proteinase-

K. Their moduli were determined by 5% sequential ramp (30 seconds) and hold (90

seconds) displacements from 0-55% strain. The sampling time was 0.1 seconds for force

and displacement measurements. The data were processed by averaging the last 10 force

and displacement data points for each of the 11 ramp sequences. After multiplying by the

appropriate factors, the data were transformed into 11 points on a stress vs. strain graph

and a line was fitted to these data. The slope of the initial linear region was taken as the

modulus.

3.2.8 Statistical Analysis

Data from all assays are reported as the mean ± standard error of the mean (

SEM). Analysis of variance (ANOVA) and Fisher's protected least squares differences

(PLSD) post-hoc testing were performed using StatView (SAS Institute Inc, Cary, NC).

The criterion for statistical significance was set at p = 0.05.

3.3 Results

3.3.1 Radiolabel Incorporation

The power of the ANOVAs comparing the effects of 24 hours of loading on synthesis

of proline and sulfate in the scaffolds and the medium were all very low (between 0.05

and 0.297), indicating that these assays were inconclusive. The low power values signify
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that the experiment was unable to detect a difference between the dynamically loaded and

the free-swelling specimens even if one did in fact exist (type II error). This was due to

different factors, but in all cases the differences between the means (experimental vs.

control treatments) were small. In some comparisons the variance was also quite large

and the sample size small. The net effect is that while trends may be noted, statistically

significant conclusions are impossible with the current data set.

The averages of the total newly synthesized proline (± SEM) in the media with

and without 24 hours of dynamic loading were 26.897 (2.188) and 26.301 (4.532) nmol,

respectively (p = 0.7017, power = 0.065). Average proline levels in the scaffolds were

0.01485 (0.00528) and 0.01474 (0.00207) nmol, respectively (p = 0.9592, power = 0.05).

No proline synthesis data were recorded for the specimens dynamically compressed for

96 hours.

The amounts of sulfate in the loaded specimens and media were elevated, but as

with total proline synthesis, these results were not significant. The averages of the total

newly synthesized sulfate (± SEM) in the media with and without 24 hours of dynamic

loading were 227.179 (11.98) and 214.392 (24.194) nmol, respectively (p = 0.139, power

= 0.297). Average sulfate levels in the scaffolds were 0.058 (0.029) and 0.053 (0.013),

respectively (p = 0.6547, power = 0.071). No sulfate synthesis data were recorded for the

specimens dynamically compressed for 96 hours.

The rates of biosynthesis (normalized by the radiolabeling period and the mass of

DNA) were calculated for the scaffolds with and without loading. Proline synthesis rates

were 0.00146 (0.00178) and 0.00109 (0.00144) nmol, respectively (p = 0.6437, power =

0.072). Sulfate synthesis rates were 0.00594 (0.00793) and 0.00360 (0.00452) nmol,

respectively (p = 0.4875, power = 0.100).

3.3.2 GAG Content

The net GAG contained in the matrices was measured, but again, the data were

inconclusive, as indicated by low power values. The averages (Fig. 4) of the total GAG

(± SEM) in the scaffold with and without 24 hours of loading were 0.387 (0.153) and

0.844 (0.530) tg, respectively (p = 0.3032, power = 0.164). The averages (Fig. 5) of the
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total GAG (± SEM) in the scaffold with and without 96 hours of loading were 0.185

(0.340) and 0.347 (0.101) pig, respectively (p = 0.6855, power = 0.066).
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Figure 4. Average (± SEM) net GAG content for seeded matrices dynamically compressed for 24 h is

lower than for uncompressed matrices.
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Figure 5. Average (± SEM) net GAG content for seeded matrices dynamically compressed for 96 h is

lower than for uncompressed matrices.

3.3.3 DNA Content

The net DNA contained in the matrices was measured, but the data were

inconclusive, as indicated by low power values. The averages (Fig. 6) of the total DNA

(± SEM) in the scaffold with and without 24 hours of loading were 1.107 (0.270) and

1.423 (0.372) pg, respectively (p = 0.498, power = 0.099). The averages (Fig. 7) of the

total DNA (± SEM) in the scaffold with and without 96 hours of loading were 0.227

(0.052) and 0.264 (0.028) jLg, respectively (p = 0.573, power = 0.081).
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Figure 6. Average (± SEM) net DNA content for seeded matrices dynamically compressed for 24 h is

lower than for uncompressed matrices.

33

2

1.8 -

1.6 -

1.4

,1.2

1
z .

.6

.4

.2

0



.3 I T I

.25-

.2-

.15
z

.05-

0-
no compression dyn compression

Figure 7. Average ( SEM) net DNA content for seeded matrices dynamically compressed for 96 h is

lower than for uncompressed matrices.

3.3.4 Modulus Measurements

The moduli of dynamically compressed (96 hours) cell seeded matrices were

compared to free-swelling specimens and to unseeded matrices. The average (± SEM)

moduli for unseeded matrices, seeded without dynamic compression, and seeded with

dynamic compression were 2.147 (0.310), 2.245 (0.105), 2.823 (0.130), respectively.

These data (Fig. 8) were inconclusive (p = 0.0522, power = 0.322).

In light of the low statistical power of these comparisons, any conclusions

regarding the modulus data are likely to be spurious. Nonetheless, the post-hoc analysis

was performed for completeness. The results suggest that the dynamically compressed
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scaffolds may have a greater modulus than the unseeded scaffolds (p = 0.0776). The

other comparisons were not meaningful.
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Figure 8. Comparison of moduli from unseeded scaffolds, free-swelling

dynamically compressed (96 h) cell-seeded scaffolds (n=3, n=2, n=3).

cell-seeded scaffolds, and

3.4 Discussion

The matrices used in this study were fabricated in a previously untested set of

polysulfone molds. Preliminary pore-size analysis performed after the experiments

described in this chapter suggests that the diameter of the pores of the matrices used in

these experiments was much larger (300-400 ptm) than the original estimate (90 ptm).

Although it was not anticipated at the outset of the experiment, it is now believed that

differences in the geometry and material of the molds used to make the matrices for these

experiments had a profound effect on the freeze-drying process. Further work will be

required to determine the most important factors, but these may include a retardation of
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the heat transfer rate due to increased mold wall-thickness relative to the molds used for

scaffold production in the experiments in chapter 2 of this thesis.

Although the origin of the drastic increase in pore diameter is unclear, the effect

on cell culture was abundantly clear. The very low levels of biosynthesis, GAG, and

DNA present at the conclusion of the culture period confirm the results of other

researchers who have found that outside a narrow range of pore diameters the

effectiveness of scaffolds decreases dramatically (Yannas 2001). During cell culture

there was no change observed in the medium coloration - another indicator of low

metabolic activity. Thus, the efforts of these experiments are believed to have been

thwarted by a scaffold microstructure that was incapable of supporting and promoting a

large and active chondrocyte population. While it is difficult to make further conclusions

based on experiments with a biologically inactive matrix, the GAG and DNA levels

within the scaffolds appeared to decrease substantially from 24 to 96 hours of dynamic

compression. This observation is supported by numerous other studies which found that

in compressing the scaffolds, the DNA and GAG were expelled to the medium. For

longer compression periods a corresponding greater amount of DNA and GAG should be

expelled to the medium.

Radiolabel analysis indicated that the vast majority of newly synthesized protein

and GAG was found in the medium and the levels retained in the matrices were

essentially zero.

In addition to the unwitting use of biologically inactive matrices, another reason

for the inconclusive results is that the procedure for dynamic loading was not optimized.

The extreme compliance of the matrices made it difficult to accurately determine their

thickness without compressing them. Variations in the thickness resulted in different

applied strains during the dynamic loading. In some of the early data the individual

polysulfone platens would stick, and it is not clear that they were in contact with the

matrices during the entire loading cycle. This was later corrected, but the experiment

should be repeated in order to produce a consistent data set.

The modulus data were inconclusive for several reasons. First, several of the

samples were infected by the time they were removed. This was due to the fact that the

polysulfone chamber was not designed to maintain sterility. Previous use of this fixture
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never exceeded 24 hour compression periods, so sterility was not an issue. Second, a

significant amount of the medium in the polysulfone chambers evaporated during the 96

hour compression period. Again, this was not anticipated since the fixture had never

been used for such an extended period.

In addition to the EDAC treated scaffolds, earlier experiments were initiated using

DHT treated matrices. It was not possible to collect data from these specimens because

during culture the matrices' mechanical properties degraded drastically. Some matrices

dissolved in the media and others assumed the consistency of a highly viscous liquid

rather than a solid capable of sustaining compression. This result was observed in

independent experiments by other researchers in the same lab, but the reason is unclear.
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4. MECHANICAL PROPERTIES OF ORTHOSS BONE

SCAFFOLD IN UNIAXIAL COMPRESSION

4.1 Introduction

Many different materials and processes for the production of osteo- and

osteochondral implants are found in the literature. These include nanofibers, poly-D,L -

lactide (PDLLA), poly(lactide-co-glycolide) (PLGA), bioglass@, poly(3-

hydroxybutyrate) (PHB), poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx),

poly(x-hydroxyesters), collagen and chitin. Most engineered bone scaffold systems

contain at least some hydroxyapatite (HAP) - the primary constituent of normal bone and

teeth.

Chemical composition, porosity and mechanical properties are interdependent

parameters. Thus, changing the porosity of the scaffold, for example, will affect its

mechanical properties. It has often been suggested in the literature that a suitable

scaffold should be biomimetic; that its properties should closely approximate those found

in vivo. In the case of bone tissue, it has been shown that the introduction to a defect site

of materials which are either much stiffer than native bone or much more compliant will

produce negative results. In the former case, stress shielding and subsequent bone

resorption will occur in the surrounding tissue; while in the latter case, fibrous tissue will

form instead of bone.

In one HAP scaffold study researchers found that the compressive strength and

compressive modulus of their 40% porous scaffolds were 30+/-8 MPa and 1.4+/-0.4 GPa

(Chu, Orton et al. 2002). However, the scaffolds tested in those experiments had a highly

ordered and closed-cell microstructure, making it difficult to directly compare or even to

scale between that material and scaffolds such as Orthoss with a more random and open-

cell architecture.

For scaffolds similar in microstructure to Orthoss, the elastic modulus and

modulus of rupture (related to the ultimate compressive strength) should scale with the
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ratio of their densities. (Relative density is equal to 1 - % porosity.) Elastic moduli and

moduli of rupture are related as

E* =E J

* )3/2

-* =0.2cr-

where the subscript denotes the properties of the solid (non-porous) material and the

superscript asterisk denotes the porous properties.

From these relations it should be possible to compare the mechanical properties of

Orthoss found in the current work with the properties of other scaffolds as reported in the

literature. Lin et al. used a poly (L-lactide-co-DL-lactide) scaffold to obtain structures

with 99% interconnectivity of the scaffold porosity and six different porosity levels

(between 58.3% and 80.3%). The scaffold with maximum porosity had an average

compressive modulus and ultimate strength of 43.5 MPa and 2.7 MPa, respectively (Lin,

Barrows et al. 2003). The literature supplied by the manufacturer of the scaffolds used in

the current study claim that they are 60% porous - similar to that of the scaffolds used in

the study by Lin et al.

4.2 Methods

4.2.1 Scaffold Preparation

Porous hydroxyapatite bone scaffold was obtained (Geistlich, Switzerland) and

tested in uniaxial unconfined compression. Five batches of Orthoss© scaffold, differing

only in chemical composition, were tested. The irregularly shaped samples were

machined to cubes of appropriate size for testing in the Dynastat. The as received

specimens were affixed to a precision-machined aluminum block with a small volume of

epoxy. The block was used both for holding the sample during the milling process and as

a reference surface. The irregularly shaped specimens were then milled to cubes

39



- ---- -,

approximately 6 mm on each edge. Care was taken to remove all the epoxy from the

specimen during the milling process. Any traces of epoxy that remained on the specimen

were restricted to a single face of the specimen and this face was positioned on the

bottom during the testing. Thus, if any epoxy remained in the scaffold after machining,

the reinforced face was not placed parallel to the direction of loading, where the

measurements could have been affected by the mechanical properties of the epoxy rather

than of the scaffold.

Figure 9. SEM of Orthoss scaffold (40x) from http://www.geistlich.com/biomaterials/en/ortho/index.html.

4.2.2 Dynastat Compression Protocol

After measuring the cross-sectional area with a micrometer, the dry scaffold

specimen was placed between two stainless steel platens mounted in the Dynastat

Mechanical Spectrometer (IMASS, Hingham, MA) at a separation of 10 mm. A 10 kg

load cell (Sensotec, Cleveland, OH) was fixed in the stationary upper platen and directly

coupled to the Dynastat.

The thickness of the specimen was measured by raising the Dynastat's bottom

platen (approximately 25 ptm/sec) until the load cell measured a 30 gram compressive

force; the distance between the platens at this nominal load was taken as the thickness of

the specimen.

The Dynastat was then programmed to compress the specimen at a rate of

approximately 2.5 pm/sec while force and displacement data were recorded at a sampling

rate of 0.1 / second. The 600 second compression was terminated at 25% engineering

strain (AL/Lo). The recorded force/displacement data were converted to engineering

stress/strain and plotted in EXCEL.
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4.2.3 Analysis of Dynastat Data

The linear elastic region was estimated visually from the stress-strain curve.

Typically, the linear region began after approximately 0.5-2.0% strain. This initial non-

linear region was assumed to be due to slight irregularities in the specimens' shape. The

linear region usually extended an additional 0.5-2.0%. A trend line was fitted to the

linear region from which the modulus (i.e., slope) and coefficient of determination were

recorded. In addition the ultimate compressive strength was noted. In several instances it

was not possible to measure an exact value for the ultimate compressive strength since it

exceeded the load cell's capacity. For such specimens the highest stress achieved before

exceeding the Dynastat's capacity was recorded.

4.2.4 Statistical Analysis

Data from all assays are reported as the mean (± SEM). Analysis of variance

(ANOVA) and Fisher's protected least squares differences (PLSD) post-hoc testing were

performed using StatView (SAS Institute Inc, Cary, NC). The criterion for statistical

significance was set at p = 0.05.

4.3 Results

The modulus, the coefficient of determination for the modulus, and the ultimate

strength values are listed in table 1 for all of the specimens tested. There was

considerable scatter in the data for both the ultimate strength and the modulus. Strength

measurements were further complicated by the fact that almost a third of the trials were

aborted before the ultimate strength was achieved due to loads exceeding the Dynastat's

limits.

Batch Sample Modulus (kPa) r2  Ultimate Strength (kPa)
1332 1 82.1 0.9803 4450

2 44.7 0.9770 750
3 41.8 0.9709 500
4 17.6 0.9666 450
5 20.7 0.9739 450
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1844 0.9683

6993 1 47.5 0.9637 800
2 90.2 0.9554 >1050
3 31.3 0.9249 500
4 58.7 0.9785 1100
5 121.5 0.9836 i950
6 27.4 0.9519 550

7093 1 102.6 0.9889 1550
2 109.0 0.9850 >1600
3 149.2 0.9310 >1600
4 85.1 0.9867 >1600
5 72.0 0.9602 850
6 113.6 0.9752 1500
7 68.0 0.9050 800
8 59.8 0.9412 800

7193 1 345.7 0.9554 >3400
2 181.9 0.9674 2400
3 75.7 0.9314 900
4 298.4 0.9349 >2300
5 177.1 0.9722 2200
6 221.9 0.9721 >2400
7 198.9 0.9670 >2000

7293 1 59.4 0.9189 900
2 72.8 0.9620 950
3 97.5 0.9757 >2200
4 123.6 0.9587 >2500
5 92.7 0.9724 1300
6 88.8 0.9483 1100
7 130.6 0.9705 1300
8 290-9 0.9655 >2500

Table 1. Modulus, coefficient of determination of modulus and ultimate strength values for non-hydrated

Orthoss samples tested in uniaxial, unconfined compression. Values with the strikethrough symbol were

deemed outliers according to the analysis described in the Results. Values with the "greater than" symbol

are the highest recorded values before the load cell limits were exceeded.
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Two different statistical approaches to data analysis were undertaken. In the first

approach, it was assumed that there were no outliers and all the data were included in the

ANOVA and post hoc tests. In the second approach, outliers (determined as described in

section 4.3.2) were culled from the data prior to performing the analyses.

4.3.1 Analysis of Entire Data Set

It was first assumed that all data were meaningful, and no outliers were removed

from the values. For those specimens whose ultimate strength could not be precisely

determined due to the limitations of the load cell, the highest recorded values for the

stress were taken as the ultimate strength; these values are preceded by the ">" symbol in

Table 1. The results of the strength measurements are indicated in the interaction bar plot

in Fig. 10, and the box plot in Fig. 11 gives some measure of the degree of scatter in the

data. The results of the modulus measurements appear in Fig. 12, and the box plot in Fig.

13 indicates the scatter in the modulus data.

ANOVA indicated both ultimate strength and modulus were significantly affected

by Orthoss batch (Fig. 10, p < 0.0019, power = 0.959 and Fig. 12, p < 0.0006, power =

0.986). Batch 7193 was significantly stiffer and stronger than all other batches. There

were no other statistically significant differences in the modulus measurements, although

the trend of the data suggests 1332 possessed the lowest modulus. A similar trend was

observed for the ultimate strengths. Batch 1332 had a lower ultimate strength (p =

0.0345) than 7293, but 1332 did not differ significantly in strength from 6993 or 7093.
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Figure 10. Average ( SEM) values for ultimate compressive strength of non-hydrated Orthoss specimens.

Outliers are not removed.
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Figure 11. Box plot for ultimate compressive strength of non-hydrated Orthoss specimens. Outliers are not

removed. The middle horizontal line is the median; the upper and lower ends of the notches are the 95%

confidence limit about the median; the upper and lower horizontal ends of the boxes are the 75t and 25t

percentile of observations about the median; and all dots beyond the extended lines represent observations

that are either in the top or bottom 10 percent.
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Figure 12. Average (± SEM) values for compressive moduli of non-hydrated Orthoss specimens. Outliers

are not removed.
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Figure 13. Box plot for compressive moduli of non-hydrated Orthoss specimens. Outliers are not

removed.
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4.3.2 Elimination of Outliers from Data

A simple statistical test was used to minimize the impact of outliers on the results.

To determine whether a particular value should be considered an outlier, the average and

standard deviation were calculated for all the measurements of the same type (i.e.,

modulus or compressive strength) and from the same batch (i.e., 1332, 6993, 7093, 7193,

and 7293) excluding the measurement in question. Then the value in question was

compared to the average value for that batch, and if it differed from the average by more

than three times the standard deviation, it was considered an outlier. The outliers are

indicated in the table by the strikethrough symbol superimposed on the value. For

example, in batch 1332 the modulus of sample 6 is an outlier since the average (±

standard deviation) modulus value for samples 1-5 was 41.4 (± 25.8) kPa, and as shown

below this average was greater than three sigma:

value - average value >? 3-

184.3 - 41.4 = 142.9 > 3 x 25.8

Therefore, only modulus values from samples 1-5 for batch 1332 were used in the

ANOVA and post hoc testing.

It is important to note regarding the analysis of the ultimate strengths that those

values that are preceded by the ">" symbol were ignored in the calculation of the average

and standard deviation. Thus, for example in batch 7193, the determination of outliers

was severely limited by the fact that four out of the seven data points were ignored since

no final values were recorded. After ignoring those four data points, the statistical test

indicated that the low data point was an outlier. Therefore, only two data points for 7193

were actually used in the inter-batch statistical comparison. The fact that the ultimate

strength values that were ignored for 7193 were all much higher than the 900 kPa value

substantiates the conclusion that this value is in fact abnormally low.

After the removal of outliers ANOVA indicated both ultimate strength and

modulus were significantly affected by Orthoss batch (Figs. 14 and 16, p < 0.0001, power

= 1.000). Batch 7193 was significantly stiffer and stronger than all other batches (p <
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0.0001). Although 1332 appeared to possess the lowest modulus (p = 0.0626 for 1332,

7093 andp = 0.0687 for 1332, 7293), these results did not achieve statistical significance.

However, 1332 did have the lowest ultimate strength (p = 0.0065 for 1332, 7093 andp

0.0058 for 1332, 7293).
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Figure 14. Average (± SEM) values for ultimate compressive strength of non-hydrated Orthoss specimens.

Outliers (greater than 3a, see description above) are not included.
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Figure 15. Box plot for ultimate compressive strength of non-hydrated Orthoss specimens. Outliers

(greater than 3a, see description above) are not included.
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Figure 16. Average (± SEM) values for compressive moduli of non-hydrated Orthoss specimens. Outliers

(greater than 3a, see description above) are not included.
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Figure 17. Box plot for compressive moduli of non-hydrated Orthoss specimens. Outliers (greater than 3a,

see description above) are not included.

4.4 Discussion

The high values for the coefficient of determination (0.91 - 0.99) confirmed that

the chosen strain region was highly linear.

The same trends were observed for both strength and modulus; in terms of

increasing values 1332 < 6993 < 7093 = 7293 < 7193.

By assigning the ultimate strengths for a number of the specimens to be equal to

the highest recorded value prior to overload, we have introduced artifacts to the statistical

analysis. First, we have in certain cases artificially lowered the apparent SEM. For

example, with batch 7093, we have assumed that three of the specimens had precisely the

same value for UTS, namely, 1600 kPa, whereas, it is highly unlikely that the true values

are so closely grouped. The effect of this artifact cannot be judged either uniformly

conservative or non-conservative. Such a determination will depend on what the other

values in the data set happen to be. Considering batch 7093 once again, we find that the

SEM of all eight UTS values is 138 kPa, while when the three approximated values are

removed from the data set, the SEM is 174 kPa. Thus, in the case of batch 7093 if we

remove the three values we are actually increasing the variability within that batch, so
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that it is less likely to appear to be significantly different from the other batches. This is

because the ANOVA and post hoc tests are sensitive to the variability within and between

batches. At the same time as we are increasing the variability (by removing the three

approximated values) we are reducing the mean UTS value from 1288 kPa to 1100 kPa.

Thus there is no simple method for determining which of the two methods is more

conservative.

Fortunately, both methods of analysis yield quite similar results. In fact the only

significant difference between the two methods is that when the outliers are removed the

UTS for 1332 is not different than that of 7093. Otherwise, the trends are the same, and

7193 is clearly stronger and stiffer according to either method of analysis.

In natural bone, there is a distinct orientation of the porous structure which has a

profound effect on the mechanical properties. It is as yet unclear whether the specimens

tested in the current study possess similar anisotropy. In these mechanical tests, no

attempt was made to orient the specimens with respect to the average axis of the pores.
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5. CONCLUSIONS

1. FGF Treatment (chapter 2)

a. Treating canine articular chondrocyte-seeded type II collagen-GAG scaffolds with

5 ng/ml fibroblast growth factor (FGF-2) does result in higher moduli after 28

days of culture when compared with untreated controls.

2. EDAC Cross-linking Treatment (chapter 2)

a. EDAC cross-linking increases the modulus of unseeded type II collagen-GAG

scaffolds exponentially with time as described (r2 = 0.74) by the kinetics equation

M(t) = 0.83 + 3.43*(1-e -/6. 07)

The non-EDAC treated scaffold stiffness of 0.83 kPa increased to 3.1 kPa (95%

c.i. of 2.7-3.5 kPa) after 10 minutes of EDAC cross-linking.

b. The kinetics data for the EDAC cross-linking indicate that 18 minutes of

treatment (i.e., approximately 3t) increased the intrinsic modulus to

approximately 95% of the maximum obtainable by this method, thus rationalizing

this as the optimum cross-linking treatment time.

3. Dynamic Compression (chapter 3)

These experiments were fraught with problems stemming from the unwitting use

of scaffolds with oversized pores. The large pore size (along with possible

decreased pore interconnectivity) rendered the scaffolds ineffectual in promoting

cell proliferation and ECM production.
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Definitive conclusions based on the current data are not warranted, but the

following observations are noted. GAG and DNA levels within the scaffolds

decreased substantially from 24 to 96 hours of dynamic compression, as expected

from reports in another similar study (Lee, Grodzinsky et al. 2003) which found

that in compressing the scaffolds, the DNA and GAG were expelled to the

medium. Radiolabel analysis indicated that essentially all of the newly

synthesized protein and GAG was found in the medium. There may have been

some increase in the modulus of the dynamically compressed (96 h) matrices, but

the low sample size (due to infections with many of the scaffolds, which in turn

was due to a loading chamber inadequate for long term compression studies)

makes it impossible to be certain.

4. Orthoss Mechanical Properties (chapter 4)

a. Chemical composition does affect the mechanical stiffness of bone scaffold

material. Differences in the scaffold composition (the details of which were

unavailable at the time of writing) and source (bovine vs. porcine) can be related

to both the modulus and the ultimate compressive strength.

b. Both modulus and ultimate strength were significantly affected by Orthoss batch.

Batch 7193 (labeled "spongiosa, porcine, loaded with collagen S" by the scaffold

manufacturer) was significantly stiffer and stronger than all other batches

regardless of which method of statistical analysis was employed. Batch 1332 (no

description available from the scaffold manufacturer) had the lowest ultimate

strength.

c. Given the impact of both density and trabecular orientation upon the mechanical

behavior, it would be useful in the future to correlate mechanical behavior with

these parameters.

52



6. LIMITATIONS AND FUTURE WORK

The work presented in this thesis reveals the need for further efforts in each of the three

primary areas of investigation.

1. FGF treatment (chapter 2)

a. Repeat the experiment with a sufficient number of samples to perform

histology and biochemical assays (radiolabel, GAG and DNA). This will help

to determine the origin of the observed increase in scaffold modulus. Is it due

to increased ECM synthesis per cell, cellular proliferation (with unchanged

per cell synthesis rates) or something else?

b. Perform an in vivo study of FGF treated scaffolds in order to determine if they

reduce the pre-implantation time. Or, equivalently, how do treated and

untreated scaffolds (cultured for the same time prior to implantation) compare

(histologically, etc.) after a clinically relevant post-implantation period?

2. Dynamic compression (chapter 3)

a. Repeat experiments using scaffolds with a biologically active (- 90 pm) pore

size. Compare results with others who have used collagen-GAG scaffolds

(Lee, Grodzinsky et al. 2003) and hydrogel scaffolds (Mauck, Seyhan et al.

2002).

b. Retain media used during dynamic loading and measure DNA and GAG lost

from the scaffolds during loading.

c. Perform experiments that combine growth factors and dynamic loading to

determine whether a synergistic effect can be observed under the culture
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conditions employed in this experiment. Compare to work with other scaffold

materials (Mauck, Nicoll et al. 2003).

3. Orthoss mechanical properties (chapter 4)

a. Obtain SEMs of Orthoss specimens before and after machining to determine

whether microstructural cracks were formed as a result of machining.

Determine the effect of such cracks on mechanical properties.

b. Repeat the experiment using Orthoss specimens fabricated to a standard size

and shape appropriate for testing in the Dynastat so that no machining of the

specimens is required.

c. Repeat the experiments with smaller Orthoss samples, so that the capacity of

the load cell is not exceeded.

d. Perform the experiments with Orthoss specimens that have been hydrated in a

physiologically relevant solution.
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8. APPENDIX A
This appendix includes only those protocols that have been substantially changed

or clarified during the work described in this thesis. Standard protocols are collected in a

notebook in the orthopaedic research laboratory.

8.1 Serum-Free Chondrocyte Culture Media

8.1.1 Jakob Base Medium

*Used in both expansion and differentiation media

*Can be made in large batches (500 ml) and stored since it doesn't contain FBS

*All prices as of 10-28-03

1. 500 ml DMEM (high glucose: 4.5%) w/o L-Glutamin w/ Sodium Pyruvate (GIBCO

cat. no. 10313021, $16.40/bottle; this medium is not sold by the case)

2. 5 ml MEM Nonessential Amino Acids (NEAA) (10mM solution, GIBCO cat. no.

11140 050, $12.20)

3. 5 ml sterilized Hepes Buffer (IM solution, by GIBCO cat. no. 15630 056)

OR can make 1M solution w/ Hepes powder (238.3g/mol) in distilled water

(0.2383 g Hepes powder/ml dH2O-need to sterile filter)

4. 5 ml PSG contains 10000U/ml penicillin, 10000pg/ml streptomycin glutamate

(GIBCO, cat. no. 10378 016, $19.65/100 ml bottle)

8.1.2 Expansion Medium

*ADD growth factors at the last minute before use
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*Avoid repeated freeze-thaw cycles for all growth factors

1. 515ml of Jakob base media

2. 50 ml heat inactivated FBS or~ 0.1 ml FBS/ml of Jakob base (by GIBCO, cat. no.

16000 036, $81.44)

3. TGFP1- 1pI TGFP1 stock/ml media (1 ng TGFp1/mi

medium)

* Stock (1 tg TGFp /ml

buffer)

* Buffer

* Combine 2.5mg bovine serum albumin (BSA) + 0.lml 0.1N HCl** +

2.4ml H20 in 5ml centrifuge tube and vortex

Calculation: [(0.1ml of HCI) / (2.5 ml HCI+H 20)] x 0.1 moles HCI/liter = 4mM

* Sterile filter iml of the buffer and add 1Ig of TGFpl

* Aliquot 100pd stock/sterile 0.5ml eppendorf tube and store @ -70'C for three

months. TGFP 1 from R&D Systems, cat. no. 240-B-002 (for 2pg @ $245),

cat. no. 240-B-010 (10 pg @ $805)

**We have "HCl plus" that is 12.IN HCI, so add 0.5ml of 12.1N HCI + 60.5m] H 20 to get Q.N HCl

4. FGF-2 - 0.5p FGF-2 stock/ml media (5 ng FGF/ml medium)

* Stock (10 ptg FGF/ml

buffer)

* Buffer

* Combine 0.0025g BSA + 0.0004g DTT + 2.5 ml PBS in 5ml

centrifuge tube and vortex

* Sterile filter w/ syringe, and add to 25 pg of FGF-2

" Aliquot 100ptl stock/sterile 0.5ml eppendorf tube and store @ -70'C for three

months. FGF-2 from R&D Systems, cat. no. 233-FB-025 ($175/25 jg)
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5. PDGFP-- I pl PDGF stock/ml media (10 ng PDGF/ml media)

* Stock (10 ptg PDGF/ml

buffer)

" Buffer

* Combine 2.5mg BSA+ 0.1ml 0.iN HCl + 2.4ml H20 in 5ml

centrifuge tube and vortex

" Sterile filter iml of the buffer and add to 10ptg of PDGFPP

" Aliquot 100pjl stock/sterile 0.5ml eppendorf tube and store @ -70'C for three

months. PDGFp P from R&D Systems, cat. no. 220-BB-010 ($240/10ptg)

8.1.3 Differentiation Medium

*ADD supplements at the last minute before use:

1. 5Medium for differentiation:

2. 0015 ml Jakob base medium

DMEM

3. 5 ml MEM Nonessential Amino Acids (NEAA)

4. 5 ml Hepes Buffer

5. 5 ml PSG (penicillin, streptomycin and glutamate)

6.

7. --Above is the Jakob base media

8.

9. 5 ml ITS +1 Liquid Media Supplement (10OX), by SIGMA, cat. 12521

10. 5 ml STERILE human Serum Albumin solution (can useor BSA if not using

human cells-Atala protocol says to use 1.25mg BSA/ml of media) MUST

STERILE FILTER

11. FGF-2 - if desired
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12. --Add ITS and BSA in correct amounts based on how much base media used (ie.

5mi per 515ml of Jakob base media

13.

14. TGFP1 - 10p TGFP1 stock/ml media (10 ng TGFI 1/ml

media)

!!Note that this is lOx the amount used in the expansion medium!!

15. Dexamethasone (DM) - 10d working solution/ml media (100 nM)

0 Dexamethasone (100 nM) water soluble (~65mg dexamethasone/gram of

powder-MW of dexamethasone = 392.5g/mol), by Sigma

S --+10 m of a 1/100 dilution of 10-3 M dexamethasone stock solution

* per ml of media

* Make 10-3 M dexamethasone (DM) stock in 100% ethanol (stable for 1

yr, stored @ -20*C) (Calc: iml 10-3 M DM x 0.001mol DM/1000ml x 392.5g

DM/lmol DM x ig powder/ 0.065g DM = 0.00603g powder -- in lml of ethanol)

0 Working solution: Make 10-5 M DM

* 20pil of 10-3 M DM stock + 1.98 ml LG-DMEM (low glucose!!)

* Stock: 10-3 M DM in 100% ethanol

* 6.03mg of DM powder per lml of 100% ethanol

Calculation: Iml 10-3 M DM x 0.001mol DM/1000ml x 392.5g DM/1mol DM x Ig powder/ 0.065g DM =

0.00603g powder -- in Iml of ethanol

* 10-5 M dexamethasone in low glucose DMEM (LG) by adding 20 l of 10-3 M

dexamethasone stock + 1.98 ml LG-DMEM

* Store in 100pl aliquots @ -20'C (stable for 1 yr)

-65mg DM/gram of powder

molec. wt. of DM = 392.5g/mol

Sigma

* Do not freeze/thaw cycle

6. L-Ascorbic acid 2-Phosphate - 10p stock/ml media (0.1 mM)

* -+ Stock: 37.5 mg ascorbate 2-phosphate + 10 ml Tyrodes solution
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* See Tyrodes salt preparation below

* Sterile filter the solution and store frozen (-20'C) in 2ml aliquots

* It is ok to freeze/thaw cycle
molec. wt. of 10D0m of a 1/100 dilution of ascorbate 2-phosphate = 289.54g/mol

Add 37.5 mg ascorbate 2-phosphate + 10 ml Tyrodes solution

+ Tyrodes solution is made from Tyrodes salts and prepared following the instructions

that camame w/ the Tyrodes bottle. For preparation of 1 00ml of Tyrodes solution:

" Add lg of Tyrodes salt + 90ml of dH 20 (15-20*C)-gently stir the water

while adding salt until completely dissolved.

" Add 0. 1g sodium bicarbonate or 1.33 ml of sodium bicarbonate solution

(7.5%w/v) for each liter of final volume of medium being prepared (i.e. 0.Olg

sodium bicarbonate for 100ml of Tyrodes solution). Stir until dissolved.

" While stirring, adjust the pH of the medium to 0.1-0.3 pH units below the

desired pH (8.0) since it may rise during filtration (desired pH is 8.0) using 1N

HCl or 1N NaOH.

* Add additional water to bring the solution to the final volume (i.e., 100ml).

" Sterilize immediately using a 0.22 pm filter.

* Double check pH of the solution each time solution is used.

" Store the dry powdered salts at 2-8*C under dry conditions and liquid medium

at 2-8*C in the dark.

* Discard dry salt if there is a color change, granulation! clumping, or

insolubility. Liquid mediumDiscard solution if there is a pH change, precipitate

or particulate matter throughout the solution, cloudy appearance, or a color

change.

Sterile filter the ascorbate 2-phosphate solution and store frozen (-20*C) in 2ml aliquots

* To passage cells, before trypsinization, incubate cells with STERILE FILTERED

solution of 0.15% collagenase type 2 in PBS for -5 minutes (i.e., 0.0015 g

collagenase/ml PBS). Some cells will detach and float in the PBS. Pipet out the PBS
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into a centrifuge tube and save. Add trypsin to flasks and incubate for 5 min.

Deactivate the trypsin by adding medium WITH FBS and transfer the medium +

trypsin + cells to the centrifuge tube with the PBS/collagenase solution. Spin down

and remove the supernatant. Resuspend in medium with FBS. Spin down and

remove the supernatant. Resuspend in a volume of SERUM-FREE Jakob base

medium convenient for counting.

8.1.4 The Short List Of Media Ingredients

8.1.4.1 Base Medium

500 ml DMEM (high glucose)

5 ml MEM Nonessential Amino Acids

5 ml sterile Hepes Buffer

5 ml PSG

8.1.4.2 Expansion Medium

515ml of Jakob base

50 ml FBS or ~ 0.1 ml FBS/ml of Jakob base

1l TGF pl stock/ml media

0.5pl FGF-2 stock/ml media

1 pl PDGF stock/ml media

8.1.4.3 Differentiation Medium

5Medium for differentiation:

0015 ml Jakob base DMEM

5 ml MEM Nonessential Amino Acids (NEAA)

5 ml Hepes Buffer

5 ml PSG (penicillin, streptomycin and glutamate)

--Above is the Jakob base media
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5 ml ITS or 10pl ITS/ml media

5 ml can useBSA or 10p BSA/ml media

--Add ITS and BSA in correct amounts based on how much base media used (ie. 5ml per

515ml of Jakob base media

1 Op TGFp 1 stock/ml media

1 Opl working dexameth. soln/ml media

1 Opl L-Asc. acid 2-Phosphate stock/ml media

FGF-2 - if desired
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8.2 Scintillation Counting of Radiolabeled Matrices

(from C. Lee's dissertation Appendix E.5, modified by T. Gordon 4-27-04)

8.2.1 Summary

Radioactive counts of matrix digests and calibrated medium are measured with the Rack-

Beta 1211, LKB (Turku, Finland) liquid scintillation counter.

8.2.2 Protocol

Combine 100 pl of sample digest or calibrated medium with 2 ml of scintillation fluid

(CytoScint ES, ICN Biomedicals Inc., Irvine, CA). If the counts are too low or high, you

may have to add more or less than 100 p1 of digest; make up the balance with dH2 0.

Counts per minute (cpm) were measured with the Rack-Beta 1211, LKB (Turku, Finland)

liquid scintillation counter in the 3 rd floor of the Biomedical Research Department at 500

Tech Square, Cambridge, MA.

Channel 1 (also referred to as channel A) recorded activity from 0.5 - 18.6 keV, channel

2 (or, channel B) recorded activity from 18.6 - 156 keV and the machine counted for 3

minutes/sample (or less if it determines accuracy to 2y before this period). After

determining the spillover correction constants (discussed below), the cpmA and cpmB

can be converted to nanomoles of incorporated radiolabel.

Quenching effects were assumed to be constant throughout all measurements and were,

therefore, not directly treated in the calculations.

After samples are counted, the vials with scintillation fluid and radioactive digest should

be dumped into the barrel for liquid scintillation vials.
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8.2.3 Theory

It is not possible to isolate all the counts for both radionuclides into separate channels

when counting a dual-labeled sample, since the energy vs. cpm curve for the

radionuclides will overlap. However, it is possible to isolate tritium. The maximum

energy of 3H counts is 18.6 keV, so by setting the upper limit of channel I to this value,

all 3H counts will occur in channel 1 and none will spill over into channel 2. The lower

limit of channel 1 is set at 0.5 keV to eliminate any low energy noise. Unfortunately, 35S

counts extend from 0 to 167 keV, so some of the counts in channel 1 will be due to S

and some will be due to 3H.

In general, when there is spillover of counts from both radionuclides into the channels of

each other, four constants are necessary to determine the concentrations 3H and 3 5S.

These constants can be thought of as the instrument's counting efficiencies for the two

isotopes in the two different energy regions. Two of the constants give the percentages of

cpmA and cpmB values due to 3H. The other two constants give the percentages of

cpmA and cpmB values due to 35S. In the calculations, the constants are defined as

follows:

k, = % cpm in channel 1 from 3IH, not 35 S.

k12 = % cpm in channel 2 from 3H, not 35 S.

k21 = % cpm in channel 1 from 35 S, not 3H.

k22 = % cpm in channel 2 from 35S, not 3H.

8.2.4 Calculations

8.2.4.1 Calculating the Counting Efficiency Constants

The concentration of 3H and 35S is directly proportional to the amount of radioactivity (as

indicated by the measureable radioactive decay) in the matrix digests. These

concentrations may be expressed as a function of the cpm from channels A and B (i.e., C1

and C2 ) as follows:
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[IHI ] 'ki k12C

s] (kal k22 C2

From the first vial (containing 3S only, no 3H), the equation becomes:

0 = kjCs + k2C2

[3 5S] =k C 2 1 1 + k 22 C2

where [35 S] indicates the concentration of 3S added to media; superscript "S" indicates

that counts are from first media sample with 35S only, subscripts denote the channel

counted. The fact that there is no tritium in the first vial (or at least there shouldn't be

any if you followed the radiolabeling procedure correctly) is reflected by the zero in the

first of the above pair of equations.

From the second vial (conaining both 35S and 3H), the appropriate equations are:

[3 H] = kICsH+ k1 2 C2,H

[ 35S] = k21CIS" + k2C,H

where [35 S] and [3H] indicate the concentrations of 35sS and 3H, in ptCi/ml, added to the

medium, respectively; superscript "S,H" indicates that counts are from the second vial,

containing both 35S and 3H; subscripts denote the channel counted.

Solving these 4 equations for the 4 unknown k's:
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kIS =k=CIS,H 
H S

C2

k- [3H]
12 CS,H C S 2

CSH _ C1 2C

CIS

k= 35SC 
SH

2 C1SHC% H - CI

I [35Si(cCI S~ -I)S =CIS,H _ CSH

8.2.4.2 Calculating the Radioactive Proline and Sulfate Concentrations

in the Samples

By using these four constants and the counts per minute for channels 1 and 2 for each

sample, you can determine the concentration of radioactive proline and sulfate in the

sample. For example, if one of your samples produces a cpmA value of 1000 and cpmB

value of 3000, then the radioactive proline and sulfate concentrations for that sample are

[3H]=1000 -(k] )+ 3000 -(k12 )

[35S] =1000 (k )+3000. (k22 ).

In order to get the actual values, substitute the values of the four constants found in

section A of these instructions into the expressions above.
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8.2.4.3 Calculating the Fractions of Available Proline and Sulfate

Incorporated into the ECM

The percentage of the total available radiolabeled proline incorporated into the protein

manufactured during the radiolabeling period ccproiine is given by the ratio of the

radioactive proline concentration in the digested sample (found in part B, above) to the

proline concentration of the medium (the known amount of radioactive proline you added

to the medium, usually in piCi/ml). The calculation for asulfate is analogous. The

expressions for these fractions are

Ciki I + C2k12a praline [ ClH]~
1

a Ck +C 2 k2 2asulffate 
I5

Next, we assume that the same percentage of radiolabeled proline/sulfate and unlabeled

proline/sulfate were incorporated into the ECM by the cells. This makes sense since if

there are 1000 molecules of unlabeled proline in the medium and only 10 molecules of

labeled proline and the cells use 101 molecules of proline total, they will use 100

molecules of unlabeled proline and 1 molecule of labeled proline. In other words, the

only reason there is more unlabeled proline incorporation is because the actual number of

available unlabeled molecules of proline is greater than the number of labeled molecules.

But the percentage of radiolabeled and unlabeled molecules is the same because the cells

do not inherently prefer one over the other:

(100 unlabeled molecules used) / (1000 unlabeled molecules available) = (1

labeled molecule used) / (10 labeled molecules available) = 10% of available

molecules used
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Furthermore, assume that the amount of proline/sulfate added in radiolabeled form is

insignificant compared to the concentrations of unlabeled proline/sulfate in the medium.

Strictly speaking, the total number of moles of proline/sulfate incorporated into the ECM

is the sum of the radiolabeled proline/sulfate and the unlabeled proline/sulfate, but if you

assume the labeled molecules are negligible, you can ignore their contribution to the total

number of moles of incorporation. Then the proline/sulfate incorporation is due only to

the unlabeled proline/sulfate taken out of the medium by the cells in order to synthesize

collagen and proteoglycans, respectively. The following calculation demonstrates the

validity of the assumption that the amount of added radiolabeled proline/sulfate is

insignificant compared to the concentrations of unlabeled proline/sulfate present in the

medium: one recent bottle of proline had 31 Ci/mmol and the concentration of

radioactive proline in the culture medium was [3H] = 10 ptCi/ml, so the molarity of

radioactive proline in the medium is

l0xl- 6 Ci /ml
= 3.2x10- mmol / ml = 0.32nmol / ml .

31Ci /mmol

This molarity value is much lower than the 150 nmol/ml proline in DMEM/F12 medium

(this value is from the manufacturer's data sheet on the contents of DMEM/F12). The

situation is similar for sulfate: there is 406 nmol/ml of unlabeled sulfate in DMEM/F12

medium.

IMPORTANT NOTE: if you use any medium other than DMEM/F12 during the

radiolabeling period, you must look up the proline and sulfate molar concentrations for

all of the components of that medium and add them together (multiplying each

component by its volume fraction in the medium) to get the actual values for your

calculations. For example, the non-essential amino acids (NEAA) used in the Jakob

media has proline in it. You cannot use the values of 150 nmol/ml proline and 406

nmol/ml sulfate unless the only proline and sulfate containing ingredient in your media is

DMEM/F12. Other media formulations will require different numbers. However in the

calculations below I have used those values as an example. I have also assumed that 88%

72



of the volume of the medium was due to the DMEM and 12% of the medium was due to

other ingredients which did not contain any proline of sulfate.

The amount of proline/sulfate incorporated into macromolecular form during the

radiolabel period is then determined as follows:

moles ofproline =V-aproine (0.88) - (150 nmol/ml)

moles of sulfate = V asulfate (0.88) -(406 nmol/ml)

where V is the volume of radiolabeled media fed to the cultures, in milliliters.

Incorporation data can be normalized to the time of radiolabel and the amount of DNA in

the matrix to yield the rate of incorporation normalized to cell content (nmol/ptg

DNA/hr).

For the Jakob serum-free media formulation the high-glucose DMEM (GIBCO cat. no.

10313021) contains 97.67 mg/L of magnesium sulfate (molec. wt. = 120.37 g/mol) =

8.11 x10-4 M. Approximately 95% of the differentiation medium is DMEM, so there is

7.71 x10-7 mol/L = 771 nanomoles of sulfate per ml of differentiation medium.

Similarly, the l00x NEAA (10mM solution, GIBCO cat. no. 11140 050) contains 1150

mg/L of proline (molec. wt. = 115.13 g/mol) = 0.01 M. But only 0.95% of the

differentiation medium is DMEM, so there are 0.95 x10-4 mol/liter = 9.5 x10-8 mol/L = 95

nanomoles of proline per liter of differentiation medium. Thus with the Jakob media

the amount of proline/sulfate incorporated into macromolecular form during the

radiolabel period is

moles ofproline = V -aproine - (95 nmol/ml)

moles of sulfate = V -asufae - (771 nmol/ml)
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where V is the volume of radiolabeled media fed to the cultures, in milliliters. There is

no proline or sulfate in any other Jakob media components.
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9. APPENDIX B

This appendix includes data for the modulus vs. cross-linking time and modulus

of FGF- and non-FGF treated scaffolds shown in Fig. 1 and 3 in chapter 2 of this thesis.

9.1 Modulus vs.EDAC Cross-linking Time (chap. 2.3.1)

cross-link time (min)
0
0
10
10
10
5
5
10
10
10
60
60
60
120
120
120

modulus (kPa)
0.8304
1.0071
1.8691
1.7929
2.4242
2.4832
2.4947
4.7958
2.3142
3.4156
4.7202
3.9748
3.7239
3.4916
5.3429
4.5583

9.2 Modulus of FGF- and non-FGF Treated Scaffolds After Four Weeks

of Incubation (chap. 2.3.2)

modulus (kPa)
unseeded control FGF

3.098 4.134 8.440
3.885 4.593 16.497
2.906 6.741 8.842
2.899 11.367 25.465
2.661 17.169 27.794

cells

A
B
C
D
E
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