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ABSTRACT

Vibration and noise are an ever-present problem in the majority of mechanical
systems, from consumer products to precision manufacturing systems. But
most approaches for vibration suppression are expensive and invasive, so only
a small subset of the techniques developed in research labs are widely used.

In this thesis, we present a novel wave-based damping approach for the
suppression of vibration in machines and structures. Our studies show that
significant broad-band damping can be attained with little added mass via
dynamic interaction between a structure and a low-density, low-wave-speed
medium (such as a foam or powder). This damping phenomenon has great
promise for many applications because it is robust (that is, not tuned), does
not introduce significant creep into a structure, can accommodate large strains,
and can be realized using materials that are light weight, low cost, durable,
insensitive to temperature, and easy to package.

We report on several experiments in which flexural and longitudinal vibra-
tion are attenuated using this approach. Experiments on flexural vibration of
structures filled with low-density powder show that high damping is obtained
(with loss factors as high as 12 percent for a powder fill whose mass is 2.3
percent of that of the beam) over a broad frequency range. Somewhat surpris-
ingly, the response is found to be linear over a wide range of amplitudes. We
propose that the powder can be modeled as a fluid in which pressure waves
can propagate and find that such a model matches the experiments well.

These findings suggest that any moderately lossy medium in which the
speed of wave propagation is sufficiently low can be used to obtain similar



responses. We find that low-density foams coupled to structures exhibit com-
parable attenuations over a somewhat broader frequency range, and that the
responses can be accurately predicted if dilatation and shear waves are in-
cluded in the model.

We develop simplified models for these phenomena, and thence obtain
guidelines for design of structures incorporating low-wave-speed media. The
approach is compared to other damping techniques, and applications to belt-
driven positioning systems and precision flexure assemblies are described.
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Cuarter 1

Introduction

The interplay between the kinetic and potential energies in a machine or struc-
ture gives rise to resonances in which the system undergoes large oscillations
and possible instability. Damping is the dissipation of this energy; it limits
the magnitude of vibration and improves the stability, performance, and life
of a machine. Therefore the study of damping is essential for one who designs
and builds machines. Moreover, damping plays a critical role in several areas
such as motion control, vibration and noise suppression and isolation.

The energy dissipated in traditional materials of construction (such as steel,
cast iron, or aluminum) is usually negligible (e.g., Lazan [27]) compared to that
dissipated by micro-slip at material interfaces. This damping is difficult to
predict and often varies with temperature, state of lubrication, surface condi-
tions, assembly tolerances, and so on. But considerable performance gains can
be achieved in many machines by introducing relatively high and predictable
damping to meet dynamic-related specifications (e.g., Book [9]; Varanasi [51]).
Hence in the present study, we develop methods to economically and robustly
augment damping in machines.
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1.1 Available Damping Treatments

Damping of vibration and noise has been an active area of research for many
years. Broadly, damping treatments can be divided into two classes: active
and passive. Active damping treatments usually employ piezoelectric actua-
tors (e.g., Hagood et.al. [19]), electrorheological fluids (e.g., Kim et.al. [25]),
magnetorhelogical fluids (e.g., Spencer et.al. [47]), electromagnetic actuators
or others to provide a controlled force for vibration suppression. However,
active methods are usually expensive and not robust unless they are used in
conjunction with passive damping (e.g., Gueler et.al [18]).

Passive damping treatments usually incorporate one of the following: vis-
coelastic materials (e.g., Nashif et.al. [31]), passive piezoelectricity (e.g., Ha-
good and von Flowtow [20]), magnetic coupling, and tuned-mass dampers.
Among these the most widely used damping method is the inducement of
strain into viscoelastic materials (e.g., Johnson [22]; Nashif et.al. [31]). Sev-
eral researcher in the past have studied this strain-based viscoelastic damping
(e.g., Kerwin [24]; Ross et.al. [42]; Mead and Markus [30}; Torvik [50]). Most of
these studies focus almost exclusively on the damping of bending vibration in
one plane. Nayfeh [32] presents new methods for damping three-dimensional
flexural and torsional vibrations of elastic-viscoelastic beams. Nayfeh and
Varanasi [33] present analytical and experimental studies on damping of tor-
sional vibration of slender thin-walled tubes with constrained-layer dampers.
Nayfeh [32] and Varanasi and Nayfeh [52] partially constrain the usually freely
floating end of a lead screw using a viscoelastic damper and thrust bearing to
induce significant damping into drive resonance of lead-screw drives. Other
references of interest in this area are Ruzicka [44] and Marsh and Slocum [29]
which provide simplified analyses for design along with fabrication methods
for internal shear dampers.

Some of the disadvantages of the viscoelastic damping are temperature
sensitivity, material creep, and the cost of fabrication for constrained-layer
dampers. There is a need for damping mechanisms that have the following
favorable properties:

e lack of creep
e low cost

e durability
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e light weight

e robustness (i.e., not tuned)
e insensitivity to temperature
e packaging ease

e accommodation of large strains

1.2 Wave-Based Damping Approach: An Overview

This novel damping approach is the subject of this thesis. It has the potential
to satisfy most of the requirements described in the previous section: When
a lossy low-wave-speed medium (such as powder or foam) is coupled to a
vibrating structure, significant broadband damping can be achieved at low cost
and without introducing creep. This damping phenomenon primarily occurs
because of energy dissipation via the establishment of wave propogation in the
low-wave-speed medium.

Damping using Low-Density Granular Media

Heavy structures (such as machine-tool bases) are sometimes filled with gran-
ular materials (such as sand, gravel, or lead shot) to increase their damping.
Traditionally, relatively dense granular fills have been selected for such applica-
tions in order to obtain strong coupling between the structure and the granular
material. But these high-density fills add significant mass to a structure and
are not attractive where weight is a concern.

In Chapter 2, we show that, as originally studied by Fricke [17], a low-
density fill can provide high damping of structural vibration if the speed of
sound in the fill is sufficiently low. We describe a set of experiments in which
aluminum beams are filled with a granular material whose total mass is 2.3%
of that of the unfilled beam and damping coefficients as high as 6.0% are
obtained. The experiments indicate that the damping is essentially a linear
phenomenon. Next, we provide a simple model in which the powder is treated
as a compressible fluid in which two-dimensional pressure waves can propagate
and find that the model is in good agreement with experiments. Upon review
of the literature, we find that the models developed in this chapter are the only
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ones that can be used to quantitatively predict the damping that arises from
coupling to low-density granular media. Next, we ask the question: Can this
damping mechanism work with other low-wave-speed media? In Chapter 3,
we document experiments on structures coupled to low-wave-speed foams and
find similar damping behavior. This confirms that wave-based damping phe-
nomenon is quite a universal phenomenon and can work with a variety of
media.

Damping using Low-Wave-Speed Foams

In Chapter 3, we detail several experiments in which flexural vibration of
aluminum beams is damped over a broad frequency range by the introduction
of a layer of lossy low-wave-speed foam. Next, we provide a simple model for
such vibration in which the foam is treated as a two-dimensional continuum in
which waves of dilatation and distortion can propagate. Approximate solutions
for the frequency response of the primary beam are obtained by means of
a modal expansion, and the results are in close agreement with measured
responses.

Next, we extend this approach to damp other forms of vibrations such as
longitudinal waves in a rod and stretching of thin steel belts. We describe
experiments in which longitudinal modes of a bar are damped when coupled
to foam. Likewise, we find that significant damping can be introduced into
the resonant mode arising from the stretching of a belt clamped to two masses
(as shown in Figure 4.4) when foam is attached to the belt. Next models are
presented in each case to explain the phenomena.

Simplified Models and Dimensional Analysis

Our studies in Chapters 2 and 3 show that the damping phenomenon can be
adequately modeled by treating the damping medium as a continuum in which
waves can propagate. However, these “full” (modal-expansion-based) models
are too complicated to yield useful design formulas. Therefore, in Chapter 5,
we develop simplified models and characterize the achievable damping in terms
of key non-dimensional parameters of the system. To this end, we consider
wave propagation in beam-foam or bar-foam systems of infinite extent and use
energy and “complex-wave-number” approaches to obtain estimates for the
loss factor.
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Damping in Belt Drives

Flat steel belt drives are attractive for high-speed, high-acceleration, precision
positioning systems because they can incorporate a drive reduction with low
inertia and very smooth power transmission. But as the speeds of operation
increase, the flexible dynamics of these drives poses important limitations on
performance and stability. In Chapter 6, we use a layer of foam to enhance
the dynamics of such systems.

Enhancing the Dynamics of Flexure Mechanisms

Flexures are typically used in applications such as kinematic mounts, and to
provide smooth and precise motion. But it is very often found that such sys-
tems suffer from very lightly damped modes. In Chapter 7, we use foam to
damp the vibratory modes of flexure assemblies in both the compliant and stiff
directions. We demonstrate this method on single- and double-parallelogram
flexure stages and provide guidelines for the design of these damping treat-
ments.

1.3 Summary of Contributions

1. Novel wave-based damping mechanism: We document several experi-
ments in which coupling a vibrating structure to a low-wave-speed medium
results in significant broadband damping. We develop models that can
accurately capture this phenomenon and provide design rules in terms
of non-dimensional parameters of the system. Based on these studies,
we conclude that the phenomenon can arise in any lossy material with
sufficiently low speed of sound.

2. Low-density granular media: We develop a model and approximate solu-
tion that can be used to quantitatively predict the damping arising from
the coupling of a structure to low-density granular media.

3. Methods to measure material properties: We have developed methods
to measure the speed of sound, loss factor, and elastic moduli for the
damping materials used in this work.
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. Applications to various types of vibration: We show that by “proper
coupling” the method can be used to damp flexural and longitudinal
waves and quasi-static stretching of a thin belt.

. Enhancing belt-drive dynamics: We present a new method to damp
longitudinal vibration of a flat steel belt drive by coupling the belt to
foam. This method also damps the transverse modes of the belt thereby
making it difficult to excite parametric resonances that can occur at high
amplitudes.

. Enhancing dynamics of flexure stages: We show that by coupling low-
wave-speed foams to the flexure blades high damping can be introduced
into several modes that can potentially destabilize controllers. This
method is a very simple and low-cost approach to achieve significant
performance gains in such mechanisms.

. Combined acoustic and thermal shield and vibration damper: We present
a new method in which a low-wave-speed medium covered with a thin
aluminum or steel layer can shield a structure from acoustic and thermal
radiation and at the same time damp structural vibrations.
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CHAPTER 2

Damping Flexural Waves By Coupling to
Low-Density Granular Media

2.1 Introduction

To improve dynamic performance, heavy structures are often filled with gran-
ular materials such as sand, gravel, lead shot, or steel balls. Traditionally,
relatively dense granular fills have been selected for such applications in order
to obtain strong coupling between the structure and the granular material.
These “particle dampers” cost very little, and over years of trial-and-error
use, have been observed to dissipate energy over a broad range of frequencies
and temperatures. Several researchers in the past have studied the use of
granular materials for vibration damping. Panossian [36, 37] carries out sev-
eral experiments in which structures are filled with various types of particles
(metallic, non-metallic, and even liquid particles) of various shapes and sizes
at appropriate locations for attenuation of sound and vibration. Papalou and
Masri [38, 39] and Fowler et al. [16] show that a container filled with granular
material and coupled to a structure can be designed to achieve relatively high
damping for a given added mass.

Based on extensive experimental results, Papalou and Masri develop an
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approximate method to predict the damping attained by dampers filled with
steel balls of various sizes [38, 39]. Fowler et al. employ a particle-dynamics
simulation to model the behavior of a particle damper [16]. In these studies
involving relatively large, high-density particles, the damping mechanism is
strongly nonlinear because it is the result of impacts and sliding among the
particles. As reported by Fowler et al. [16], little damping is obtained at very
low amplitudes of vibration.

Cremer and Heckl [12] suggest that a granular material such as sand can
be modeled as a continuum. According to their model, vibratory energy in the
structure is transmitted into the granular material and dissipated within it.
They also suggest that tuning the natural frequencies of a structure to those of
the contained granular material will give greater damping coefficients. Sun et
al. [48] model sand as a fluid and use statistical energy analysis to predict the
damping in structures coupled to sand.

Richards and Lenzi [41] carry out several experiments on sand-filled tubes
and study the influence of the quantity of sand, grain size, cavity shape and
size, and the direction and amplitude of excitation. They report that damp-
ing attains a maximum at frequencies where resonances can be set up in the
granular medium. Bourinet and Le Houédec [10] expand on the ideas of Cre-
mer and Heckl and develop a quantitative model for the vibration of beams
filled with granular materials. They model compressive waves in the granular
material in the direction transverse to the vibration of the beam to develop an
“apparent mass,” which they couple to a Timoshenko beam. They present a
numerical technique to solve for the dynamics of the coupled system and show
that a great deal of damping can be attained at frequencies large enough to
establish standing-wave resonances in the granular material. However, all of
these prior studies deal with high-density fills that add a great deal of mass
to a structure and hence are rarely used where weight is a concern.

Wave propagation and flow of granular materials has been an active re-
search area for many years [21]. Nearly 175 years ago, Faraday studied the
interaction between a vibrating body and a granular material and found that
heavy particles move to the nodes of vibration, but light particles move to
the antinodes [15]. Such low-density particles were found by Fricke [17] and
Nayfeh et.al. [34] to produce relatively high damping if the speed of sound
in the fill is sufficiently low. Further, Varanasi and Nayfeh [54] capture this
damping phenomenon using a simple linear model.

In this chapter, we study the flexural dynamics of beams coupled to granu-
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Figure 2.1: Cross section of aluminum box beams: (a) overall length of 28.25 inches,
and (b) overall length of 72 inches.

lar material in which the speed of sound propagation is much lower than that
in the beam. In Section 2.2, we report on experiments in which aluminum
beams filled with low-density granular material exhibit significant damping
(as high as 6%). Next, in Section 2.3, we develop a simple, linear model in
which an Euler-Bernoulli beam is coupled to a granular material treated as a
compressible fluid in which two-dimensional waves can propagate. Using the
model developed in Section 2.3 and the properties of the powder (such as its
speed of sound and loss factor) documented in the Appendix A, we obtain
the accelerance (that is, the ratio of acceleration to force) of the beam under
various boundary conditions. The results of the model are in agreement with
the measured responses.

2.2 Experiments

This section describes experiments conducted on aluminum box and U-channel
beams whose cross sections are sketched in Figures 2.1 and 2.2. The beams are
filled with 3M Glass K1 Microbubbles (3M Corporation [2]). A photograph of
the glass particles is shown in Figure 2.3 and that of a U-channel beam filled
with such particles is shown in Figure 2.4. The average diameter of a particle
is 65 microns, and the density of the powder is 140 kg/m3. Because the speed
of sound and loss factor of the powder are not precisely known, we conduct a
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Figure 2.2: Cross section of U-channel aluminum beams: (a) overall length of 23.25
inches, and (b) overall length of 91 inches.

Figure 2.3: Photograph of the powder used in experiments
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Figure 2.4: Photograph of a U-channel beam filled with powder

set of experiments to measure these properties (see Appendix A). From these
measurements, we find that the speed of sound does not vary appreciably with
the frequency and is approximately 58 m/s. Likewise, we find that the loss
factor does not exhibit a strong dependence on frequency and is approximately
0.20.

In all of the experiments, the beams are suspended by soft elastic strings
to simulate free-free boundary conditions. An impulsive excitation is provided
by an impact hammer (PCB 333A30 [40]) at one end of the beam in the
transverse direction, and the response is measured by an accelerometer (PCB
333A30 [40]) located at either the same or other end of the beam.

2.2.1 Box Beams

We present frequency-response measurements obtained from the box beams of
Figure 2.1 filled completely with 3M Microbubbles. Due to the compressibility
of the granular material, the beams are readily filled to an extent that no free
surface remains between the granular fill and the interior of the beam wall.

In Figure 2.5, we plot the force-to-acceleration frequency response for the
box beam of length 718 mm obtained by exciting it at one end in the transverse
direction using an impact hammer and measuring the response at the same
end using an accelerometer. As expected, the unfilled beam exhibits very
little damping, with ¢ < 0.0001 for each of the first two modes. When the
particles are added, we see a significant increase in damping in these modes.
The effect on the first mode of the beam is more pronounced: A new mode has
appeared, leading to behavior much like that of a tuned-mass damper. The
critical damping ratios for the first three modes of the filled beam are found
to be 0.04, 0.05, and 0.01, respectively.

Similarly, Figure 2.6 shows force-to-acceleration frequency response for the
the box beam of length 1829 mm obtained by exciting it (in the transverse
direction) at one end using an impact hammer and measuring the response at
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Figure 2.5: Measured force-to-acceleration frequency responses of the box beam of
length 718 mm under hammer excitation: unfilled (dotted), filled (solid). The ac-
celerometer and excitation locations are at the same end of the beam. The excitation
and measurement are in the transverse direction.

the other end using an accelerometer. In this case the increase in damping is
strongest from the seventh mode onward. The effect on the eighth and ninth
modes of the beam is most pronounced, where a new mode has appeared with
the addition of the powder, exhibiting behavior much like that of a tuned-
mass damper. The attenuation decreases from modes ten to thirteen and then
increase from thirteen to sixteen. This suggests that damping is strongest in
frequency bands where standing waves can be set up through the thickness of
powder.

2.2.2 U-channel Beams

A second set of experiments were conducted on the U-channel beams sketched
in Figure 2.2 to ascertain the effects of a free surface and of variation in the
thickness of the layer of granular material. In Figure 2.7, we plot the force-
to-acceleration frequency response for the U-channel beam of length 591 mm
obtained by exciting it at one end using an impact hammer and measuring the
response at the same end using an accelerometer. The thickness of the granular
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Figure 2.6: Measured force-to-acceleration frequency responses of the box beam of
length 1829 mm under hammer excitation: unfilled (dotted), filled (solid). The ac-
celerometer and excitation locations are at different ends of the beam. The excitation
and measurement are in the transverse direction.

fill is 17 mm. As in the measurements on the short box beam, we find that
the filled U-channel beam exhibits significant damping in each of its first two
modes. In this case, the tuned-mass damper effect appears close to the second
resonance of the beam. The critical damping ratios for the first three modes
of the filled beam are found to be 0.005, 0.05, and 0.06, respectively.

Next, we study the effect of the variation in the thickness of the layer of
the granular fill by exciting the U-channel beam of length 2311 mm at one
end using an impact hammer and measuring the response at the other end
using an accelerometer for granular fills of thicknesses 0.55”, 0.90”, and 1.55”.
Figures 2.8, 2.9, and 2.10 show plots of the corresponding force-to-acceleration
transfer functions. As the thickness of the granular fill increases the damping
at the lower modes improves. These measurements once again indicate that
the damping arises from a strong interaction between the beam and powder
via the establishment of standing waves in powder.
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Figure 2.7: Measured force-to-acceleration frequency responses of the U-channel beam
of length 591 mm under hammer excitation: unfilled (dotted), filled (solid). The ac-
celerometer and excitation locations are at the same end of the beam. The excitation
and measurement are in the transverse direction.

2.3 Model

In this section, we develop a model to predict the dynamics of the powder-
filled beams described in Section 2.2. We consider a beam of length L, flexural
stiffness EI, and mass m per unit length. A layer of granular material of
thickness h and width b is coupled to the U-channel and box beams as shown
in Figures 2.11 and 2.12. The beam is excited by a point-harmonic force in the
y direction at a frequency w and distance z; from one end of the beam. We
employ a simple Euler-Bernoulli model for the beam and consider the granular
fill to be a compressible fluid in which two-dimensional pressure waves can
propagate. While the mechanism of dissipation within the granular material
is not completely understood, we characterize it by a complex speed of sound

¢p defined by
cp = Coy/1+ jnsgnw (2.1)

where 17, is the loss factor of the granular material and it is necessary to
multiply the loss factor 7, by sgnw = w/|w]| to avoid fallacious results in the
inverse Fourier transform (Crandall [11]; Nashif et al. [31}).
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Figure 2.8: Measured force-to-acceleration frequency responses of the U-channel beam
of length 2311 mm under hammer excitation: unfilled (dotted), filled with 0.55 inch
thick powder (solid). The accelerometer and excitation locations are at different ends
of the beam. The excitation and measurement are in the transverse direction.

Magnitude (dB)

Figure 2.9: Measured force-to-acceleration frequency responses of the U-channel beam
of length 2311 mm under hammer excitation: unfilled (dotted), filled with 0.90 inch
thick powder (solid). The accelerometer and excitation locations are at different ends
of the beam. The excitation and measurement are in the transverse direction.

38

80

500

1000

1500
Frequency (Hz)

2000

2500

3000

80

70

1000

1500
Frequency (Hz)

2000

2500

3000



Magnitude (dB)

_20 1 1 1 1 1
0 500 1000 1500 2000 2500 3000

Frequency (Hz)

Figure 2.10: Measured force-to-acceleration frequency responses of the U-channel beam
of length 2311 mm under hammer excitation: unfilled (dotted), filled with 1.55 inch
thick powder (solid). The accelerometer and excitation locations are at different ends
of the beam. The excitation and measurement are in the transverse direction.

Figure 2.11: Diagram showing the parameters used in the model for a U-channel beam:
The beam has length L and is partially filled with granular material over a width b and
to a height h.
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Figure 2.12: Diagram showing the parameters used in the model for a box beam: The
beam has length L and is completely filled with granular material over a width b and
height h.

2.3.1 Equations of Motion and Boundary Conditions

Consider steady vibration of the powder-filled beams of Figures 2.11 and 2.12
under harmonic excitation at a frequency w by a point force Re(Fé(z—x)e’*").
We denote the transverse vibratory displacement of the beam under such an
excitation by Re(V (z,w)e’?) and the pressure in the granular material by
Re(p(z,y,w)e’?). The pressure p(z,y,w) in the granular material is assumed
to be governed by the following familiar two-dimensional wave equation of a
compressible fluid (e.g., Lighthill [28]; Kinsler et.al. [26])
3210 6210 w2

e i W 2.2
6$2+3y2+c%p ¢ (22)

U-Channel Beam

At the free surface of the powder (at y = h), the pressure must vanish. At the
interface with the beam (at y = 0), the pressure gradient dp/0dy is proportional
to the acceleration of the beam. Hence we have the boundary conditions

0
p(z,h,w) =0  and a—g(x, 0,w) = p?V (z,w) (2.3)
where p is the density of the powder. At the interface of the beam and powder

(at y = 0), the pressure p(z, 0,w) acting over the width b gives rise to a normal
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force on the beam. Combining this interaction of the beam and powder, we
write the Euler-Bernoulli equation governing the vibratory motion of the U-
channel beam in the form
d*v 5
El— — mw*V + bp(z,0,w) = Fé(z — ) (2.4)

dzt

Box Beam

For the box beam of Figure 2.12, we assume the powder to be in contact with
the top (at y = h) and bottom (at y = 0) surfaces of the beam so that the
respective pressure gradients are proportional to the acceleration of the beam.
Therefore, we obtain the following boundary conditions on the powder

dp 2 B_p 2
2y (z,0,w) = pwV(z,w) and By (z,h,w) = pw*V(z,w) (2.5)

As in the case of the U-channel beam, we make use of the interaction between
the powder and beam to write the following Euler-Bernoulli equation of motion
for the powder-filled box beam

4
EJ% oV + b p(z, 0,0) — plz, hw)] = Fo(z — ;) (2.6)

2.3.2 Solution Approach

Because closed-form solutions for the wave equation (2.2) subject to (2.3)—(2.4)
or (2.5)—(2.6) are generally difficult to obtain, we seek approximate solutions
to the coupled beam-powder problem. To this end, we expand the deflection
of the beam in terms of the eigenfunctions of an undamped beam as

o«

V(z,w) = Vo (w) + Voo (w) f () + > Va(w)(om(@) + Bulz)) (27

n=1

The first two terms in the above expansion represent pure translational and
rotational modes of the beam and f(z) is a function linear in . The remaining
terms in the expansion represent the flexible modes of the beam where «,(z)
and (3,(z) are, respectively, the propagating and evanescent components of the
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nth flexible mode of the beam. As an example f(z), a,(z), and 8,(z) take
the following form for a free-free beam:

f(x) = z—L/2 (2.8)
an(z) = sin(k,x) + p, cos(k,x) (2.9)
Bn(xz) = sinh(k,z) + p, cosh(k,z) (2.10)

where k,, is the wave number of the nth mode of the beam and p,, is a constant
given by
_ sin(k, L) — sinh(k, L)
P = cosh(k,L) — cos(k,L)
The values of k, L for a frce-free beam are provided in Table 2.1.
In the following sections, we compute the contributions from the flexible
and rigid-body modes to the accelerance of the beam-powder systems. In order
to do so we postulate a compatible pressure distribution in the powder based
on the boundary conditions (2.3) or (2.5) and then solve for the wave propa-
gation in powder and accelerance of the combined beam-powder system. The
computed accelerance shows the validity of the assumed pressure distribution.

(2.11)

Contribution of Beam Flexible Modes

The form of the boundary conditions (2.3) and (2.5) suggest that the depen-
dence of the pressure on x be of the same form as that of the deflection of the
beam V. Hence we seek solutions for the pressure p in the form:

p(-’I;, yaw) = Z ¢n(y, UJ)Otn(LL’) + Z?j}n(y’w)ﬂn(x) (212)

Substituting the above expression for p into the wave equation (2.2), we obtain
the following differential equations for ¢, and ,:

$n = Aupn = 0 (2.13)
Un = Aot = 0 (2.14)
where A2, = —kZ + k2 and X2, = —kJ — k2 are the effective wave numbers

through the thickness of the powder and &, = w/c, is the complex wave number
in the powder. The boundary conditions in (2.3) take the following form:

¢,(0) = pw’Ve 5 du(h,w) =0 (2.15)
Un(0) = p®Vo 5 thp(h,w) =0 (2.16)
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Table 2.1: Numerical values of the wave numbers for a free-free beam for various modes

mode number n

knL

4.73004074486270

7.85320462409584

10.99560783800167

14.13716549125746

17.27875965739948

20.42035224562606

23.56194490204046

26.70353755550819

29.84513020910325

32.98672286269282

36.12831551628263

39.26990816987242

42.41150082346221

45.55309347705200

48.69468613064180

51.83627878423159

04.97787143782139

58.11946409141117

[UIPY U (U U [FUIFY [PUIY U (U U
©| 00| || | | | o] | O] L R~ B3| OY H | WO

61.26105674500097

[\l
[

64.40264939859077
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We then solve (2.13) and (2.14) subject to the boundary conditions (2.15) and
(2.16) to obtain the following expressions for ¢, and %, for the U-channel

beam
2 1Y _ pAn1(2h—y)
pwV, [eY — et
uly,w) = —— ( e ) (2.17)
2 An2Y )\n2(2h—y)
_ opw VY, (e e
Ynlypw) = = ( T R ) (2.18)

Likewise ¢, and 1, take the following form for the box beam:

2 )\n — An (h“y)
pwV, [e’Y — et
bn(y,w) = - ( o ) (2.19)
2 An _ /\nz(h—y)
pwV, (e —e
Un(yw) = = ( o ) (2.20)

Next, we use the above expressions for ¢,, and ¥, to compute the pressure
at the beam-powder interface for the U-channel and box beam, respectively,
as

oo

2 22n1h
B pwV, (1 — et

1— 62)\n2h

00 2Vn
+Z; P‘; (1 . ez,\m) B, (z) (2.21)

n2

o 9 Anih
pwVy, (1 — et
p(z,0,w) = Z . (1 n 6/\n1h> a, () (2.22)

n=1

1 — gin2h

S
+; ”"/’\ ( = Wh) Bo() (2.23)

We then substitute the above expressions into (2.4) and (2.6) to solve for
the respective V,,. In order to do so, we multiply the corresponding beam-
deflection equations (2.4) and (2.6) by a,(x)+ B, () and integrate the resulting
expressions between 0 and L to obtain a system of linear equations in V,,. The
nth equation in this system of equations has the following form:

b /0 p(2,0,0) — p(@, b, )] (an(z) + Ba(x)) da
+HETk: - mwz)Vn/D (an + Bn)?dx = Fan(zs) + Balzy)) (2.24)
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The order of these linear systems is equal to the number of terms in the
expansion (2.7) and their solution yields the respective V;,. In the next section,
we obtain similar expressions for V4, and Vy, corresponding to the rigid-body
modes of the beam-powder system.

Contribution of Rigid-Body Beam Modes

When the beam undergoes pure translational motion, plane waves are excited
in the y direction in the powder and the wave equation (2.2) reduces to the
following simple form

p'+kp=0 (2.25)

Solving the above equation subject to the boundary conditions (2.3) and (2.5),
we obtain the pressure distribution in the powder. Next, we substitute the
pressure at the beam-powder interface into the beam-deflection equations (2.4)
and (2.6) to obtain the following expressions for the response Vp; of the U-

channel beam:
F

Vor = —
o —pepwbL tan(kyh) + mw?

(2.26)

and for the box beam:

F

Vor =  2pweybL tan(kyh/2) + mw?

(2.27)

When the beam undergoes a pure rotational motion as described by the
second term in (2.7), the boundary conditions on the powder require the pres-
sure p at the powder-beam interface to be linear in . Based on the motion of
the beam we can safely approximate the pressure distribution elsewhere to be
linear in z. Therefore, we write the following compatible pressure distribution
in the powder:

On substituting the above expression for p into the wave equation (2.2) and
imposing the boundary conditions, we obtain the pressure distribution in the
powder. Next, we use the beam-deflection equations (2.4) and (2.6) to obtain
the following expressions for the response Vj, of the U-channel beam:

6F
mw?L + pe,wbL? tan(kyh)

Voo = (2.29)
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and for the box beam:

6F

Voo = =Ty 2pwe,bL? tan(kyh/2)

(2.30)

The Total Response

Next, after computing the contributions to the deflection V' of the beam from
the flexible and rigid-body modes, we write the non-dimensional accelerance
R at the location of the sensor x, as

F F

n=1

R = mw?V L = (TTZCUZL> (Vbl + %2f($s) + Z Va [a"(xs) + ﬁn(xs)]>

(2.31)
Finally, we plot in Figures 2.13-2.18 the force-to-acceleration frequency re-
sponses for the U-channel and box beams of various configurations and com-
pare them with the measured results. From these figures we find that the
resonant frequencies of the higher modes occur at lower frequencies than that
predicted by the Euler-Bernoulli beam model. This discrepancy arises from
shear deformation, which becomes important even in low-order modes for such
thin-walled beams but is not taken into account in the beam model. De-
spite the simplicity of the beam model, we find that the predicted damping is
roughly in accordance with the measurement, lending some confidence to our
approach to the modeling of the behavior of the powder.

2.4  Chapter Summary

This chapter describes the damping of flexural vibrations using low-density
granular media in which the speed of sound is low. We conduct several ex-
periments and find that high damping can be obtained over a broad range
of frequencies and that the phenomenon behaves linearly over a wide range
of amplitudes. We propose that the powder can be modeled as a fluid in
which pressure waves can propagate and find that such a model matches the
experiments well.

Next, we ask: Can this damping mechanism work with other low-wave-
speed media? In the next chapter we apply this approach to low-density
foams in which the speeds of wave propagation are small and find a similar
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Figure 2.13: Comparison of measured and predicted force-to-acceleration frequency
responses of the U-channel beam of length 591 mm: measured (dotted), predicted
(solid)
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Figure 2.14: Comparison of measured and predicted force-to-acceleration frequency
responses of the U-channel beam of length 2311 mm with a 0.52 inch thick granular
fill: measured (dotted), predicted (solid)
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Figure 2.15: Comparison of measured and predicted force-to-acceleration frequency
responses of the U-channel beam of length 2311 mm with a 0.90 inch thick granular
fill: measured (dotted), predicted (solid)
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Figure 2.16: Comparison of measured and predicted force-to-acceleration frequency
responses of the U-channel beam of length 2311 mm with a 1.55 inch thick granular
fill: measured (dotted), predicted (solid)
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Figure 2.17: Comparison of measured and predicted force-to-acceleration frequency
responses of the box beam of length 718 mm: measured (dotted), predicted (solid)
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Figure 2.18: Comparison of measured and predicted force-to-acceleration frequency
responses of the box beam of length 1829 mm: measured (dotted), predicted (solid)
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damping behavior. This confirms that these damping treatments can work
with a variety of media.
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CHAPTER 3

Damping Flexural Waves By Coupling to
Lossy Low-Wave-Speed Foams

3.1 Introduction

The studies in the previous chapter on powder-beam systems show that large
damping can be attained whenever there is a strong coupling between the
vibration of the beam and wave propagation in powder. In this chapter, we
extend this approach to other low-wave-speed media such as foams. Foam
materials are commonly employed for sound absorption and noise control (e.g.,
Kinsler et. al. [26]; Beranek and Ver [6]) in aircraft and automobiles. They
are also widely used as absorptive liners in anechoic chambers, air conditioning
systems, intake and exhaust ducts of turbines, and large industrial fans among
other applications. In this chapter, we study on the flexural dynamics of beams
coupled to foams in which the speed of sound propagation is much lower than
that in the beam. Section 3.2 describes experiments where such coupling
provides significant damping (as high as 7%) over a broad band of frequencies
for a relatively low (3.9%) increase in mass. Next, experiments on sandwich
beams formed by coupling the above described beam-foam system to a thin
beam or membrane are presented.
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Figure 3.1: Schematic of the beam-foam system

The focus of Section 3.3 is to develop a simple, linear model of an Euler-
Bernoulli beam that is coupled to a foam material in which dilatation and
shear waves can propagate. Next, modal expansion techniques are used to
obtain the accelerance of such a beam under various boundary conditions.
The results of the model are found to be in close agreement with the responses
measured in the experiments.

3.2 Experiments

We study beam-foam systems of the configuration shown in Figure 3.1. A
photograph of the aluminum beam with and without foam is shown in Fig-
ure 3.2. An aluminum beam of rectangular cross section 38.1x12.7 mm is
coupled to a 12.7 mm thick layer of EAR C-3201 (EAR Corporation [14])
energy-absorbing foam using 3M Contact 80 neoprene adhesive (3M Corpora-
tion [1]). The density of the foam is 104.1 kg/ m®, and the Appendix details
a set of measurements performed to determine the complex extensional and
shear moduli of the foam. In all of the experiments, the beams are suspended
by soft elastic strings to simulate free-free boundary conditions. An impulsive
excitation is provided by an impact hammer (PCB333A30 [40]) at one end
of the beam in the transverse direction, and the response is measured by an
accelerometer (PCB353B11 [40]) located at the other end of the beam.

In Figure 3.3, we plot the force-to-acceleration frequency response obtained
for a beam of length 1448 mm with and without the foam layer. As expected,
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Figure 3.2: Photograph of an aluminum beam coupled to foam
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Figure 3.3: Measured force-to-acceleration frequency responses for a beam of length
1448 mm under impact excitation: without foam (dotted) and with foam (solid). The
excitation and measurement are in the transverse direction.
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Figure 3.4: Measured force-to-acceleration frequency responses for the beam of length
585 mm under impact excitation: without foam (dotted) and with foam (solid). The
excitation and measurement are in the transverse direction.

the beams without foam exhibit very little damping, with ¢ < 0.0001 for each
of the modes. When a layer of foam of thickness 12.7 mm is glued to the beam,
the increase in damping in the first four modes is very small, but there is a
significant increase of damping in the fifth and higher modes. Based on the
speeds of sound in the foam, we find that the sixth mode occurs in a frequency
range where quarter-wavelength dilatation and half-wavelength shear waves
can be set up through the thickness of the foam.

In Figure 3.4, we plot the force-to-acceleration frequency response for a
beam of length 585 mm. In this case, there is moderate damping in the first
mode but a significant increase in damping in the second and third modes. This
suggests that the high damping observed in the frequency band of 400 Hz to
2 kHz is the result of strong coupling between the beam and foam arising from
the establishment of standing waves through the thickness of the foam.

Next, in Figures 3.5, 3.6, and 3.7, we plot the force-to-acceleration frequency-
response curves measured for sandwich beams formed by the addition of thin
“auxiliary” metal layers atop the layer of foam. With the addition of the steel
layers with thicknesses of 0.05 and 0.10 mm, the damping is further increased
in the fifth to eighth and fifth to seventh modes, respectively, when compared
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Figure 3.5: Measured force-to-acceleration frequency responses under impact excitation:
without foam (dotted), with foam (dashed), and with an auxiliary 0.05 mm thick steel
layer (solid). The excitation and measurement are in the transverse direction.
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Figure 3.6: Measured force-to-acceleration frequency responses under impact excitation:
without foam (dotted), with foam (dashed), and with an auxiliary 0.10 mm thick steel
layer (solid). The excitation and measurement are in the transverse direction.
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Figure 3.7: Measured force-to-acceleration frequency responses under impact excitation:
without foam (dotted), with foam (dashed), and sandwich beam with a 0.81 mm thick

aluminum auxiliary layer (solid). The excitation and measurement are in the transverse
direction.

56



to the corresponding beam-foam system without auxiliary layers. The addi-
tion of these steel layers results in a significant increase in damping at lower
frequencies with a relatively small increase in mass (1.2% and 2.4% for the
0.05 mm and 0.10 mm thick steel layers, respectively). In the case of an alu-
minum auxiliary layer with a thickness of 0.81 mm (6.4% of the mass of the
beam), the damping is further increased in the third to seventh modes when
compared to the corresponding beam-foam system without the auxiliary layer.

3.3 Model

In this section, we develop a model by which the responses measured in Sec-
tion 3.2 can be predicted. We consider a beam of length L, flexural stiffness
EI, and mass per unit length m. A layer of foam is coupled to the beam
as shown in Figure 3.1. The beam is excited by a point-harmonic force at a
frequency w and distance ¢ from one end of the beam in the y direction. We
employ a simple Euler-Bernoulli model for the beam and consider the foam to
be a lossy and isotropic continuum in which waves of dilatation and distortion
can propagate.

The foam material used in the experiments described in Section 3.2 is an
elastic-porous medium. It is known that three types of waves can propagate
in such media: two types of dilatation waves and a shear wave (e.g., Biot [7];
Bolton et.al. [8]). The dilatation waves that depend largely on the bulk elastic
properties of the material are referred to as frame-borne waves, whereas those
which depend on the acoustical properties of the fluid in the pores, the porosity,
and the flow resistivity are known as air-borne waves. The stress induced on
the beam by the air-borne waves scales as the product of the bulk modulus
of the air in the pores times the volumetric strain in air. Hence although
these waves can have a significant influence on sound and noise transmission,
we can safely neglect their effect on the vibration of the beam. Therefore,
we treat the foam as an isotropic continuum in which waves of dilatation
and distortion arising from the bulk properties of the foam can propagate.
The foam is characterized by a complex Young’s modulus of elasticity Ef =
Ef(l + jn sgn w), loss factor 7, and Poisson ratio v (e.g., Timoshenko and
Goodier [49]).
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Figure 3.8: Free-body diagram of an infinitesimal beam element of length dz

3.3.1 Equations of Motion

Consider steady vibration of the beam-foam system of Figure 3.1 under har-
monic excitation at a frequency w by a point force Re(Fé(z — z)e’?) in the
y direction. We denote the transverse vibratory displacement of the beam un-
der such an excitation by Re(V(z,w)e’t) and the displacements of the foam
in the z and y directions by Re(u(z, y,w)e’*?) and Re(v(z,y,w)e’?), respec-
tively. The displacements u(z,y,w) and v(z,y,w) in the foam are governed by
the following second-order wave equations of a linear and isotropic continuum

(e.g., Timoshenko and Goodier [49)):

A+ 2G)Uss + Guyy + (A + G)vgy + pw*u = 0 (3.1)
Guae + (A + 2G)vyy + (A + gy + pw?v = 0

where the subscripts denote partial differentiation and p, A = vE;/(1+v)(1—
2v), and G are respectively, the density, complex Lame constant, and complex
shear modulus of the material of the foam. To obtain the equation governing
flexural vibration of the beam, we consider an infinitesimal element of the
beam of length dz as shown in Figure 3.8. At the interface of the beam and
foam (that is, at y = 0), the normal stress o,(x,0,w) contributes to a force in
y direction whereas the shear stress 7,,(z, 0, w) results in a moment about the
neutral axis. Making use of the above interaction between the foam and beam,
we write the Euler-Bernoulli equation governing the transverse deflection V' of
the beam in the form

4
E[d_‘i — mw?V — boy(z,0,w) — %%_(gigﬂ
x

dz?
where b and h are, respectively, the width and height of the beam’s cross
section.
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3.3.2 Boundary Conditions for the Foam

At the interface between the foam and beam (at y = 0), the displacements in
the foam must match those of the surface of the beam. Hence we obtain

v(z,0,w) = Vi(z,w) (3.4)
h oV

At the free surface of the foam (at y = hy), the normal and shear stresses must
vanish. Hence we have

Mug(z, by, w) + (A +2GQ)vy(z, hp,w) = 0 (3.6)
uy(z, hy,w) +vg(z, hp,w) = 0 (3.7)

Likewise, at the free surfaces in the z direction (at « = 0 and x = L) the
normal and shear stresses must vanish. Because the foam layers used in the
experiments are long and slender, and strong damping is observed at frequen-
cies at or above the frequencies at which the lengths of waves in the foam are
on the order of the thickness of the foam, we do not impose boundary condi-
tions on the ends of the foam (at # = 0 and L). This simplification allows us
to reasonably approximate the behavior of the foam over most of the length of
the beam and to obtain relatively simple predictions of the effect of the foam
on the vibration of the beam.

3.3.3 Approximate Solution

Because closed-form solutions for (3.1)—(3.3) along with the boundary condi-
tions (3.4)—(3.7) are generally difficult to obtain, we seek approximate solutions
to the coupled beam-foam problem. To this end, we expand the deflection of
the beam in terms of the eigenfunctions of an undamped beam as

V(z,w) = V() + Vo (w) f(z +ZV(w () + Bu(z))  (3.8)

The first two terms in the above expansion represent pure translation and
rotation of the beam and f(z) is a function linear in z. The remaining terms
in the expansion represent the flexible modes of the beam where «,(z) and
Bn(z) are, respectively, the propagating and evanescent components of the nth
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flexible mode of the beam. As an example, we find that f(z), a,(x), and B,(z)
take the following form for a free-free beam:

flz) = z-1L/2 (3.9)
an(z) = sin(knz) + ppcos(knz) (3.10)
Bn(xz) = sinh(k,z) + p, cosh(k,z) (3.11)

where k, is the wave number of the nth mode of the beam (values provided
in Table 2.1) and p, is a constant given by

_ sin(k,L) — sinh(k, L)

P = cosh(k,L) — cos(k,L)

(3.12)

In the following sections, we compute the contributions from the flexible and
rigid-body modes to the accelerance of the beam-foam systems. As in the case
of powder-beam systems discussed in Chapter 2, we postulate compatible foam
displacements based on the boundary conditions (3.4)—(3.7) and then solve for
the wave propagation in foam and accelerance of the combined beam-foam
system.

Contribution of Beam Flexible Modes

As in the case of the solution procedure for beam-powder systems of Chapter 2
(Section 2.3.2), the form of the boundary conditions (3.4)-(3.7) suggests that
the dependence of the deformations in the foam on z be of the same form
as that of the deflection of beam V. Hence we seek solutions for the foam
displacements u and v in the following form

v(E,yw) = D xaly,wan(@) + Y Ealy,w)Ba(2) (3.13)

w(@,y,w) = Y (Y, 0)an(@)/kn + ) aly,w)Bu(@) [k (3.14)

where the primes denote the first derivative, and x, &, ¢, and v are yet to be
determined functions of y and w. Substituting the above expansions for u and
v into the wave equations (3.1) and (3.2), we obtain the system of first-order
ordinary differential equations

X! = A X, (3.15)
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Table 3.1: Form of the coefficient matrix A, in (3.15)

, 0 1 0 0 0 0 0 0

_pw?—k2 (A +26) 0 0 0 0 -4k, 0 0

0 0 , 0 1 0 ) 0 o
0 o _Pw +knG(z\+2G) 0 o 0 0 _)\EG o

0 0 0 0 0 1 0 b

2 2
0 2 kn 0 0 —%nﬁ 0 o 0
0 0 0 0 0 o 1
2
0 0 0 - i kn o 0 - WXJ-:Z% < 0
where the vector X, is of the form
T
p— !

Xn= (¢ $p ¥n ¥h Xn Xu & &) (3.16)

and the matrix A, is given in Table 3.1. Next, we solve (3.15) subject to the
boundary conditions (3.4)-(3.7) to obtain

X, = B,e*Y¢,V, (3.17)

where the B,, and A,, are, respectively, the matrices of eigenvectors and eigen-
values obtained by diagonalizing the A,,, and the ¢, are constant vectors whose
elements are determined by enforcing the boundary conditions (3.4)—(3.7).
Thus, having obtained the functions x,, &., &,, and ,, we compute the
stresses o,(z,0) and 7,,(z,0) at the interface of the foam and the beam as

oo

oy(,0) = 2_; (~EnAn(0) + (A + 2G)X, (0)) an ()

+ ni: (Akntn (0) + (A + 2G)&;,(0)) Bn(z) (3.18)
Tay(2,0) = 2 g— (6n(0) + Euxn(0)) o ()

+ il kgn P (0) + £28,(0)) B, (2) (3.19)

Next, we substitute the above expressions for the stresses into (3.3) to solve for
the V,,. In order to do so, we multiply (3.3) by a,(z)+ 3,(x) and integrate the
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resulting expression between 0 and L to obtain a system of linear equations in
the V,, whose order is equal to the number of terms in expansion (3.8). The
nth equation in these system of equations has the following form:

_/OL [bgy(x,o’w) + %ham’(%o’(i)] (an(z) + Bn(z)) dx

+(EIk) — mwQ)Vn/O (n + Bo)* dx = Flan(zf) + Bu(zs)) (3.20)

By solving the above set of equations we obtain the response V,, corresponding
to the flexible modes of the beam. In the next section, we obtain similar
expressions for V1 and Vp, corresponding to the rigid-body modes of the beam-
foam system.

Contribution of Rigid-Body Beam Modes

When the beam undergoes pure translational motion, the displacement « in
the z direction is zero everywhere in the foam. As a result, plane waves are
excited in the y direction and the wave equations (3.1)-(3.2) reduce to the
following simple form:

(A +2G)vy, + pw’v =0 (3.21)

This equation is solved subject to the boundary conditions (3.4)—(3.7) to obtain
the displacement v(y,w) in the foam. From the displacement v, we compute
the normal stress exerted by the foam at the interface of the foam and obtain
the corresponding response Vg (w) of the beam (as in the case of the rigid-body
modes of beam-powder systems of Section 2.3.2).

When the beam undergoes a rotational motion as described by the second
term in (3.8), the boundary conditions on the foam require that the displace-
ment u in the z direction in the foam be a constant at the foam-beam interface.
We therefore expect the displacement u in the foam to be a function of only
the y coordinate. Likewise, the displacement v in the y direction is linear in z
at the interface of the foam and the beam. Therefore, we write the following
compatible displacements in the foam:

v(z,y,w) = f(x)xo(y,w) (3.22)
u(z,y,w) = ¢o(y,w) (3.23)
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Substituting these displacements into the wave equations (3.1)—(3.2), we obtain
the following differential equations for x, and ¢y:

(A+2@)xg + pwixo = 0 (3.24)
Goy+ (A +2G)xp + pwidey = 0 (3.25)

Imposing the boundary conditions (3.4)—(3.7), we solve for the displacements
in the foam and stresses exerted by the foam on the beam and then obtain the
coeflicient Vpz(w) in the expansion (3.8).

The Total Response

Next, after computing the contributions to the displacement of the beam from
the flexible and rigid-body modes, we write the non-dimensional accelerance
R at the location of the sensor z; as

R=TwVL_ (m‘”ZL ) (vm +Vorf (@) + 3V lom(s) + mmn)

F F

(3.26)
Finally, we plot in Figures 3.9 and 3.10 the force-to-acceleration frequency
responses for the long and short beams and compare them with the measured
responses. We find that there is good agreement between the measured and
predicted frequency responses. At each of the resonant frequencies of the
beams, we extract the frequency and loss factor from the measurements using
the modal curve-fitting software Star Modal [46]. We then compare these
results with the theoretical predictions in Tables 3.2 and 3.3, respectively for
the long and short beams. These comparisons show that the foam can be
adequately modeled as a continuum in which waves can propagate.

n=1

3.3.4 Model for Sandwich Beam and Approximate Solutions

In this section, we develop a model for the sandwich beam formed by coupling
an auxiliary layer to the foam-beam system discussed in the previous section.
The auxiliary layer at y = hy changes the boundary conditions on the foam
given in (3.6) and (3.7). We now require at y = h; that the deformations
v(z, hf,w) and u(z,hy,w) in the foam match those in the auxiliary layer.
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Figure 3.9: Comparison of measured and predicted force-to-acceleration frequency re-
sponses for long beam with foam layer: measured (dotted) and predicted (solid)

Table 3.2: Comparison of measured and predicted modal frequencies and damping ratios
for the long aluminum beam

Modal Frequencies (Hz) Damping Ratio

Measured | Predicted | Measured | Predicted
32.35 31.90 0.0001 0.00004
87.67 87.14 0.0005 0.0001
168.97 168.0 0.0005 0.0005
277.87 277.13 0.0009 0.0010
413.86 413.19 0.0017 0.0024
575.71 574.65 0.0040 0.005
763.13 763.07 0.0090 0.0104
979.87 980.77 0.0212 0.0200
1240.0 1240.0 0.0261 0.0240
1530.0 1530.0 0.0161 0.0174
1830.0 1840.0 0.0103 0.0118
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Figure 3.10: Comparison of measured and predicted force-to-acceleration frequency
responses for short beam with foam: measured (dotted) and predicted (solid)

Table 3.3: Comparison of measured and predicted modal frequencies and damping ratios
for the short aluminum beam

Modal Frequencies (Hz) Damping Ratio
Measured | Predicted | Measured | Predicted
380.63 379.25 0.002 0.0024
1060.0 1055.0 0.035 0.030
2070.0 2080.0 0.0075 0.008
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Hence, we have

vz, hpw) = W(r,w) (3.27)
u(w, hy,w) = %ﬁalv%“ﬁ (3.28)

where Re(W (z,w)e’!) and h, are respectively, the deflection and height of the
auxiliary beam. By taking into account the normal stress oy(z, hy) and shear
stress T,,(z, hy) in the foam as in (3.3), we write the Euler-Bernoulli equation
governing the deflection W of the auxiliary beam in the form

d*W

Ea]a_dF — mw’W + bo,(z, hy,w) —

bhy OTyy(x, hy,w)

= 2
5 E 0 (3.29)

where E,I, and m, are respectively, the flexural stiffness and the mass per
unit length of the auxiliary beam.

Approximate Solution

To obtain the force-to-acceleration frequency response for the sandwich beam,
we must simultaneously solve the wave equations (3.1)—(3.2) and the beam-
deflection equations (3.3) and (3.29) subject to the boundary conditions (3.6),
(3.7), (3.27), and (3.28). As in Section 3.3.3, we expand the deflection of the
principal beam according to (3.8) and find compatible displacements in foam
as in Sections 3.3.3 and 3.3.3, and expand the deflection W of the auxiliary
beam as

o0

W (z,w) = Wor () + Woa () f (@) + D Walw)(an(z) + Ba(2))  (3.30)

n=1

To obtain the contribution to the accelerance from the flexible modes, we
solve (3.15) subject to the boundary conditions (3.6), (3.7), (3.27), and (3.28)
to obtain

X, = Bpe®¥(c, Vi, + d,Wo) (3.31)

where B, and A, are, respectively, the matrices of eigenvectors and eigenval-
ues obtained by diagonalizing A,, and ¢, and d, are constant vectors whose
elements can be determined by enforcing the boundary conditions (3.6), (3.7),
(3.27), and (3.28). We then use the above solution to compute the stresses
o, and T, and substitute them in (3.3) and (3.29) to obtain a set of linear
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Figure 3.11: Comparison of the measured and predicted force-to-acceleration frequency
responses for a sandwich beam with 0.05 mm steel auxiliary layer: measured (dotted),
predicted (solid)

equations in V,, and W,. The order of this system of equations is equal to
the sum of the number of terms taken in the expansions (3.8) and (3.30). By
solving these equations, we determine the coefficients V,, and W, in the ex-
pansions (3.8) and (3.30). Next, we solve for the coefficients Vy; and Vpy of the
rigid-body terms in the expansion (3.8) in a manner similar to that described
in Section 3.3.3. We then combine the contributions from the rigid-body and
flexible modes of the beam and write the non-dimensional accelerance R at
the sensor location z = z, as

R = mwFVL = (mL;ZL) (Vbl + V()?f(ivs) + Z V" [an(xs) + ‘B"(xs)])

n=1
(3.32)
Finally, we plot the force-to-acceleration frequency responses in Figures 3.11-
3.13 and compare them with the measured responses. We again find good
agreement between the experiments and model.
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3.4 Chapter Summary

This chapter extends the ideas of the previous chapter to include low-wave-
speed foams. We present results from several experiments in which flexural
waves in a beam are damped over a broad range of frequencies. We use sim-
ple and linear wave-based continuum models to explain the phenomenon and
develop approximate solutions using a complete modal expansion procedure.
In the next chapter, we extend this approach to other types of vibration such
as longitudinal waves and quasi-static stretching.
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CuarTER 4

Damping Longitudinal Waves and
Quasi-Static Stretching using
Low-Wave-Speed Media

4.1 Introduction

Chapters 2 and 3 show that flexural vibration can be significantly attenuated
over a wide range of frequencies by coupling a structure to a low-wave-speed
medium. This chapter extends that approach to damp longitudinal vibration
in structures. These include both longitudinal waves and quasi-static stretch-
ing (described in Section 4.5).

In Section 4.2, we report on experiments in which longitudinal waves in
a bar and quasi-static stretching of a membrane are damped when they are
coupled to foam. Next, in Section 4.3, we develop simple linear models that
explain this phenomenon.
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Figure 4.1: Schematic of the bar-foam system

Figure 4.2: Photograph of the bar-foam system used in experiments
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Figure 4.3: Measured force-to-acceleration frequency responses for a bar of length
635 mm under impact excitation: without foam (dotted) and with foam (solid)

4.2 Experiments

In this section, we describe two sets of experiments in which longitudinal
modes of structures are damped by coupling them to a layer of low-density
low-wave-speed medium. The first set of experiments consist of an aluminum
bar (635x12.7x12.7 mm) coupled to 12.7 mm layers of EAR C-3201 (EAR
Corporation [14]) energy-absorbing foam as sketched in Figure 4.1. A photo-
graph of the bar with and without foam is shown in Figure 4.2. The properties
of the material of the foam are provided in Chapter 3. The bar is suspended
by soft elastic strings to simulate free-free boundary conditions. An impulsive
excitation is provided by an impact hammer (PCB333A30 [40]) at one end of
the bar in the longitudinal direction, and the axial response is measured by
an accelerometer (PCB353B11 [40]) located at the other end of the bar.

In Figure 4.3, we plot the force-to-acceleration frequency response obtained
for a bar of length 635 mm with and without the foam layer. As expected,
the bar without foam exhibits very little damping, with ¢ < 10™* for each of
the modes. When layers of foam of thickness 12.7 mm are glued onto the four
faces of the bar there is a significant increase in in damping in all the modes.

In the second set of experiments, we study belt-foam systems of the con-
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Figure 4.4: Schematic of the belt-foam system
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figuration shown in Figure 4.4. The experiments consist of flat steel belts of
lengths 1270 mm, 1041 mm, and 762 mm with a cross section 50.8x0.10 mm
and clamped to aluminum blocks (76.2x76.2x25.4 mm) at each end. This
system is suspended using light elastic strings to simulate free-free conditions.
The top aluminum block is excited in the u; direction using an impact ham-
mer (PCB333A30 [40]), and the response is measured by an accelerometer
(PCB353B11 [40]) located at the top and bottom aluminum blocks.

In Figures 4.5, 4.7, and 4.9, we plot the collocated (i.e., excitation and
measurement on the same block) force-to-acceleration frequency response of
these systems with and without a foam layer attached to the belt segments.
In the absence of the foam layer the resonant mode (complex poles) arising
from the compliance of the belt and the inertias of the blocks exhibits very
little damping. Likewise, we find that the complex zeros arising from the
compliance of the belt and the inertia m, are also lightly damped. Several
modes corresponding to transverse vibration of the blocks and belt are also
apparent in these responses. When a layer of foam is attached to the belt
segment as shown in Figure 4.4, significant damping is introduced into both
the resonances (poles) and anti-resonances (zeros) of the system.

Next, in Figures 4.6, 4.8, 4.10, we plot the non-collocated (i.e., excitation
and measurement on different blocks) force-to-acceleration frequency responses
of the above system with and without a foam layer attached to the belt seg-
ment. As in the case of the collocated response, the addition of the foam
layer results in significant attenuation of the resonant modes of the system.
The damping ratios are found to be 3.5%, 3.8%, and 4.5% for the 1270 mm,
1041 mm, and 762 mm long belt segments, respectively.

4.3 Model

In this section, we develop models by which the responses measured in Sec-
tion 4.2 can be predicted. As described in Section 3.3, we treat the foam as
a lossy and isotropic continuum and write the wave equations governing the
z-direction displacement u and y-direction displacement v in the frequency
domain as:

(A + 2G)ugg + Guyy + (A + Glugy + pw’u = 0 (4.1)
GUzz + (A + 2G)vyy + (A + G)ugy + pw’v = 0 (4.2)
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Figure 4.5: Measured collocated force-to-acceleration frequency responses for the belt-
foam system of Figure 4.4 with 1270 mm long belt segment: without foam (dotted)
and with foam (solid)
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Figure 4.6: Measured non-collocated force-to-acceleration frequency responses for the
belt-foam system of Figure 4.4 with 1270 mm long belt segment: without foam (dotted)
and with foam (solid)
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Figure 4.7: Measured collocated force-to-acceleration frequency responses for the belt-
foam system of Figure 4.4 with 1041 mm long belt segment: without foam (dotted)
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Figure 4.8: Measured non-collocated force-to-acceleration frequency responses for the
belt-foam system of Figure 4.4 with 1041 mm long belt segment: without foam (dotted)

and with foam (solid)
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Figure 4.9: Measured collocated force-to-acceleration frequency responses for the belt-
foam system of Figure 4.4 with 762 mm long belt segment: without foam (dotted) and

with foam (solid)
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Figure 4.10: Measured non-collocated force-to-acceleration frequency responses for the
belt-foam system of Figure 4.4 with 762 mm long belt segment: without foam (dotted)

and with foam (solid)
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where the subscripts denote partial differentiation and p, A = vE;/(1+v)(1 -
2v), and G are respectively, the density, complex Lame constant, and complex
shear modulus of the material of the foam.

4.4 Model for the Bar-Foam System

Consider steady vibration of the bar-foam system of Figure 4.1 under harmonic
excitation at a frequency w by a point force Re(Fé(z)e?*?) in the x direction.
We denote the vibratory displacement of the bar under such an excitation by
Re(U(z,w)e’™). At the interface between the bar and the foam (that is, at
y = 0), the shear stress 7,,(z, 0,w) contributes to a force in the x direction.
Making use of this interaction between the bar and the foam, we write the
equation governing the longitudinal displacement U of the bar as:

EAU" + mw?*U + Pryy(z,0,w) =0 (4.3)

where E is the Young’s modulus of the material of the bar, A, m, and P are
respectively, the area of cross section, mass per unit length, and perimeter of
the cross section of the bar along which the foam is attached.

4.4.1 Boundary Conditions for the Foam

At the interface between the foam and bar (at y = 0), the displacements in
the foam must match those of the surface of the bar. Hence we write

u(z,0,w) = U(z,w) (4.4)
v(z,0,w) = 0 (4.5)

At the free surface of the foam (at y = hy), the normal and shear stresses must
vanish. Hence we have

Aug (2, hy,w) + (A +2G)vy(z, hy,w) = 0 (4.6)
G(uy(z, hy,w) +vy(x, hp,w)) = 0 (4.7)

4.4.2 Approximate Solution

As in the case of beam-powder and beam-foam systems of Chapters 2 and 3,
closed-form solutions for (4.1)-(4.3) along with the boundary conditions (4.4)~
(4.7) are generally difficult to obtain. Hence, we seek approximate solutions to
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the coupled bar-foam system and expand the displacement of the bar in terms
of the eigenfunctions of an undamped bar as

o0

Uz, w) = Up(w) + > Un(w)an () (48)

n=1

The first term in the above expansion represents the pure translational mode
of the bar. The remaining terms in the expansion represent the flexible modes
of the bar where o, () is the nth eigen mode of the bar. For a,(x) = cos(k,x)
for the free-free bar, and k, = nw/L is the wave number of the nth mode of the
bar. In the following sections, we compute the contributions from the flexible
and rigid-body modes to the accelerance of the bar-foam system in a manner
similar to that of the beam-powder and beam-foam systems of Chapters 2 and
3.

Contribution of the Flexible Modes

As in the case of beam-powder and beam-foam systems, we use the form of the
boundary conditions (4.4)-(4.7) to obtain the following compatible displace-
ments in the foam:

u(z,y,w) = Zqﬁn(y,w)an(:c) (4.9)
v(z,y,w) = Z¢n(y,w)a;(a:)/kn (4.10)

where the prime denotes the first derivative, and ¢ and v are yet to be de-
termined functions of ¥ and w. Substituting the above expansions for » and
v into the wave equations (4.1) and (4.2), we obtain the following system of
second-order ordinary differential equations:

& = ky (A—T—Q) o+ (’“Z(A“G) - ”“’2) bo (411)

G G
A+ G k2G — pw?
noo_ / n
Yo = ~hn </\+2G>¢”+< A+ 2G )w" (4.12)

By solving the above equations subject to the boundary conditions (4.4)—(4.7),
we obtain solutions for the functions ¢, and ,,. We then use these functions
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to compute the shear stress 7., at the interface of the bar and the foam and
substitute it into (4.3) to solve for the U,. In order to do so, we multiply (4.3)
by a,(x) and integrate the resulting expression between 0 and L to obtain the
following expression for the contribution from the nth mode of the bar to the
non-dimensional accelerance R of the system:

mw?U,L 2mw?a, (0)
F EAR —mw’ — PG(4(0,0) — kot (0,0))

(4.13)

Contribution of the Rigid-Body Mode

When the bar undergoes pure translational motion, planes waves of distortion
are excited in the foam and the displacement v is zero everywhere in the foam.
As a result the wave equations (4.1)-(4.2) reduce to the following simple form:

Uyy + E2u =0 (4.14)

where ks = wy/p/G is the complex wave number associated with the propa-
gation of shear waves in the foam. We then solve the above equation subject
to the boundary conditions (4.4)-(4.7) to obtain the displacement u(y,w) in
the foam. From this displacement, we compute the shear stress exerted by the
foam at the bar-foam interface and obtain the following expression for the con-
tribution from the rigid-body translation to the non-dimensional accelerance
R of the system:

mw?Uy L mw?

F mw?+ PGk, tan(k,h;)

(4.15)

The Total Response

Next, after computing the contributions to the displacement of the bar from
the flexible and rigid-body modes, we write the non-dimensional accelerance
R at the location of the sensor L as

R

2077, 2 o 2
:me _mw U0L+me U"Lan(L) (4.16)

F F F

n=1

Finally, we plot in Figure 4.11 the force-to-acceleration frequency response and
compare it with the measured response. We find that there is good agreement
between the measured and predicted frequency responses.
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Figure 4.11: Comparison of the measured and predicted force-to-acceleration frequency
responses: measured without foam (dotted), measured with foam (dashed), predicted
without foam (dash-dot), and predicted with foam (solid)

45 Model for Belt-Foam System

Consider steady harmonic vibration of the belt-foam system sketched in Fig-
ure 4.4 at a frequency w, where the vibratory displacements of the inertias m;
and my in the z direction are given by Re(uy(w)e’?) and Re(ua(w)e’®*), respec-
tively. The complex variables u;(w) and us(w) each represent the magnitude
and the phase of motion as a function of the frequency w. The longitudinal
displacement of the belt varies along the length of the belt and hence is written
as Re(uy(z,w)e’?). At the interface between the foam and belt (at y = 0)
the shear stress 7,,(z,0,w) contributes to a force in the z direction. Taking
account of this interaction between the belt and foam, we write the equation
governing the longitudinal displacement u; of the belt as:

EAuy + mw?up + by (2,0,w) = 0 (4.17)

where E is the Young’s modulus of the material of the belt, A, m, and b are

respectively, the area of cross section, mass per unit length, and width of the
belt.
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4.5.1 Boundary Conditions for the Foam

At the interface between the foam and belt (at y = 0), the displacements in
the foam must match those of the surface of the belt. Hence we obtain

u(z,0,w) = up(z,w) (4.18)
v(z,0,w) = 0 (4.19)

At the free surface of the foam (at y = hy), the normal and shear stresses must
vanish. Hence we have

Mig(z, hy,w) + (A +2G)vy(z, hp,w) = 0 (4.20)
G(uy(x, hp,w) +vz(2, hy,w)) = 0 (4.21)

4.5.2 Equations of Motion for m; and my

The mass m; is subject to a force exerted by the belt (at x = —L/2) in addition
to an external force Re(F(w)e’™?). The equation of motion for the mass m;
therefore takes the form

F + EAuy(—L/2,w) = —miw?u, (4.22)

Likewise, the mass m, is subject to a force exerted by the belt at z = L/2.
We therefore write
EAuy(L/2,w) = maw?usy (4.23)

4.5.3 Solution Approach

To obtain the collocated and the non-collocated frequency responses for the
belt-foam system, we must simultaneously solve the equations of motion for
the belt and two masses ((4.17), (4.22), and (4.23)) and the wave equations
(4.1)-(4.2) subject to the boundary conditions (4.18)—(4.18)). As in the case
of the previous examples of the bar and beam it is generally difficult to obtain
closed-form solutions to the above problem and therefore we seek approximate
solutions. To this end, we use the displacement associated with the undamped
belt to compute the shear stress 7,,(z, 0, w) imposed by the foam on the belt.

Because the frequency of the first longitudinal resonance of the system is
much lower than that of the longitudinal wave propagation in the belt, we can
approximate the associated mode shape by that obtained from a quasi-static
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deformation of the system. Under such conditions, the displacement 4,(x,w)
of the undamped belt varies approximately linearly with z over the frequency
range of interest and is given by

muﬁg:(Eﬁﬂ%ﬁﬂﬂ>x+(W@0;umﬂ) (4.24)

Next, we calculate the shear stress 7, (z, 0,w) when the above displacement is
imposed on the foam at the belt-foam interface.

Contribution of the Rigid-Body Term

When the displacement of the belt is given by the constant term of (4.24),
plane waves of shear are excited in the foam and the displacement v is zero
everywhere in the foam. As a result the wave equations (4.1)—(4.2) reduce to
the following simple form:

Uyy +Ek2u =10 (4.25)

Next, we solve the above equation subject to the boundary conditions (4.18)—
(4.21) to obtain the displacement u(y,w) in the foam . We then calculate the
shear stress Tgy(l',o,w) at the belt-foam interface arising from the constant
term in the displacement of the belt as

7oy (%, 0,w) = Guy = Gk, tan(khy) (uz(w) ;— i (w)) (4.26)

Contribution from the Stretching Term

When the displacement of the belt is given by the linear term in (4.24), we
expect the displacement u in the foam to be linear in the x direction and the
displacement v to be a function of only the y coordinate. Therefore, we write
the following compatible displacements in the foam:

wz,y,w) = zé(y) (4.27)
v(z,y,w) = P(y) (4.28)

where ¢ and 1) are yet to be determined functions of y. Substituting the above
expressions for v and v in the wave equations (4.1) and (4.2), we obtain the
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following second-order ordinary differential equations ¢ and :

¢ = - (%ﬂ) ¢ (4.29)

A+ G puw?
" !
= — — 4.
v ()\+2G>¢ (/\+2G)7’/) (4:30)
Next, we solve the above equations subject to the boundary conditions (4.18)—
(4.21) to obtain the functions ¢(y) and ¢¥(y). We then calculate the shear

stress 7,,(,0,w) at the belt-foam interface arising from the linear term in the
displacement of the belt as

L (2,0,w) = Gluy +ve) = G¢'(0)z (“2(“) — “1(“’)> (4.31)

sz I

We now obtain the total shear stress 7,,(x,0,w) at the interface of the belt
and the foam as:

Ty (@, 0,w) = 'rgy(x, 0,w) + ’r;y(x, 0, w) (4.32)

Dynamic Equations

Based on the discussion provided in Section 4.5.3, we neglect the inertia of the
belt in (4.17) by noting that the frequency range of interest is much smaller
than that at which longitudinal waves propagate in the belt. Next, we sub-
stitute the shear stress at the belt-foam interface given in (4.32) into the
belt-displacement equation (4.17) to obtain

EAu +b [ng'(O)a: (M) N

st ()] g a0

We then integrate the above expression twice with respect to x and use the
boundary conditions uy(z = —L/2) = u; and us(z = L/2) = uy to obtain the
following expressions for the slope of the displacement u, at the two ends of
the belt:

BAuy(—L/2) = k(uy — 1) + k(ug + uy) (4.34)
EAuL(+L/2) = k(up —u1) — k(ug + 1) (4.35)

84



where the expressions for k£ and k are given by

EA  bG¢'(0)L
. B 4.
: a (4.36)
; GksbL tzn(kshf) (4.37)

Next, we substitute these slopes into (4.22) and (4.23) to obtain the following
equations governing the dynamics of the masses m; and mao:

—wrmquy + k(ug — up) — E(uy +up) = F (4.38)
——w2m2u2 + k('U,Q - U,l) — ]AC(’U,Q + ul) =0 (439)

The parameter k represents the complex stiffness of the belt with foam, and
the parameter k accounts for the “apparent mass” of the foam. The latter is
expected to be small except at frequencies where standing shear waves can be
set up through the thickness of the foam.

Finally, we plot in Figures 4.12, 4.14, and 4.16 the collocated frequency re-
sponses and in Figures 4.13, 4.15, 4.17 the non-collocated frequency responses
and compare them with the corresponding experimental results. We find gen-
erally good agreement between the measured and predicted responses. But as
the length of the belt segment gets shorter the predicted damping is found to
be smaller than that of the measured. This increase in damping in the mea-
surements could possibly arise from a length-wise coupling between the foam
in addition to the thickness-wise coupling that is outlined in the model.

4.6 Chapter Summary

This chapter presents experimental and analytical results that show significant
damping enhancements in the longitudinal modes of structures by coupling
them to low-wave-speed foam. The results of the previous chapters can be
combined with the present one to design damping treatments for “built-up”
structures.
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Figure 4.12: Comparison of the measured and predicted collocated force-to-acceleration
frequency responses for the 1270 mm long belt segment : measured without foam (dot-
ted), measured with foam (dashed), predicted without foam (dash-dot), and predicted
with foam (solid)
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Figure 4.13: Comparison of the measured and predicted non-collocated force-to-
acceleration frequency responses for the 1270 mm long belt segment : measured without
foam (dotted), measured with foam (dashed), predicted without foam (dash-dot), and
predicted with foam (solid)
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Figure 4.14: Comparison of the measured and predicted collocated force-to-acceleration
frequency responses for the 1041 mm long belt segment : measured without foam (dot-
ted), measured with foam (dashed), predicted without foam (dash-dot), and predicted
with foam (solid)
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Figure 4.15: Comparison of the measured and predicted non-collocated force-to-
acceleration frequency responses for the 1041 mm long belt segment : measured without
foam (dotted), measured with foam (dashed), predicted without foam (dash-dot), and
predicted with foam (solid)
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Figure 4.16: Comparison of the measured and predicted collocated force-to-acceleration
frequency responses for the 762 mm long belt segment : measured without foam (dot-
ted), measured with foam (dashed), predicted without foam (dash-dot), and predicted
with foam (solid)
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Figure 4.17: Comparison of the measured and predicted non-collocated force-to-
acceleration frequency responses for the 762 mm long belt segment : measured without
foam (dotted), measured with foam (dashed), predicted without foam (dash-dot), and
predicted with foam (solid)
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CHAPTER D

Simplified Models and Scaling Laws for
Low-Wave-Speed Media

5.1 Introduction

The models presented in Chapters 2, 3, and 4 capture the physics of the damp-
ing phenomenon arising from the coupling of a structure to a low-wave-speed
medium reasonably well. This gives confidence to our approach of modeling
the behavior of powder or foam as continua in which waves can propagate.
However, these models are based on a complete modal expansion and are
difficult to use for design. Therefore, in this chapter we provide some simpli-
fied methods based on energy and complex-wave-number approaches that can
adequately capture the phenomenon and are tractable for design purposes.
Finally, we provide scaling laws for the attainable damping in terms of the key
non-dimensional parameters of the system.

5.1.1 Loss Factor

Loss factor n is one of the most common measures of energy dissipation. It
is defined as the ratio of the average energy dissipated per radian to the peak
potential energy during a cycle of steady harmonic motion. It is computed
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W

B 2wUp

where W is the energy dissipated per cycle and U, is the peak potential energy.

The energy dissipated in traditional materials of construction (such as steel,
aluminum, or cast iron) is usually negligible. Hence for the systems coupled
to foam (such as the ones described in Chapters 3 and 4), we calculate the loss
factor n by considering the energy dissipation to primarily occur in the foam.
Under steady harmonic motion at a frequency w the energy dissipated W in
the foam per cycle is obtained by integrating the summation of the products of
stress Re(o(r,w)e’?) and corresponding rates of strain Re(jwe(r, w)e’t) with
respect to temporal and spatial coordinates as

U (5.1)

2m/w . .
W = /v/o Z [Re(o(r, w)e™")Re(jwe(r, w)e™")] dt dV (5.2)

where V is the volume of foam, r is the position vector of the volume element
dV and the complex quantities o and € represent the magnitude and phase of
stress and strain, respectively, and the summation is over all the components
of stress and strain. On performing the integration with respect to time the
above equation reduces to the following simple form:

W = xlm [ /v S o(r, w)e(r, w) dV (5.3)

where the bar denotes complex conjugation and the summation is over all the
components of stress and strain.

Alternately, one can define the loss factor in terms of the spatial decay of
a wave as it propagates in a lossy medium. For example, when a longitudinal
wave propagates in a bar whose complex modulus is E(1 + jn), the amplitude
of the wave decays by a factor of exp[2n (/1 + 7% — 1)/(\/1 + n? + 1)] over

one wavelength. Hence we write the following expression for the loss factor

_ Im(1/k7)

"~ Re(1/k2) (54

n

where k, is the complex wave number associated with the longitudinal wave
propagation in the bar. Likewise, when a flexural wave with a complex wave
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Figure 5.1: Schematic of infinite bar-foam systems

number k, propagates in a beam, the associated loss factor i can be evaluated

- B Im(1/k})

~ Re(1/k})

Therefore, based on the mode of wave propagation one can use the above
relations (5.4) and (5.5) to obtain the corresponding loss factors.

(5.5)

5.2 Simplified Model for Bar-Foam Systems

In this section, we study the dynamics of bar-foam systems of infinite length
extending from z = —co to £ = +oo (as shown in Figure 5.1) and undergoing
steady harmonic vibration at a frequency w in the longitudinal direction. As
described in Chapter 4, we denote the vibratory displacement of the bar un-
dergoing such a motion by Re(U(z,w)e’*) and the displacements in the foam
in the = and y directions by Re(u(z,w)e’*) and Re(v(z,w)e’™*), respectively.
In order to obtain estimates for damping in such systems, we must solve the
coupled wave equations (4.1) and (4.2) subject to the boundary conditions
(4.4)-(4.7).

As described in Section 4.4.2, closed-form solutions are generally difficult
to obtain for such problems and therefore we seek approximate solutions. To
this end, we use the displacement of the undamped bar to solve for the wave
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propagation in the foam and then compute the loss factor using either the
energy or wave approach. Hence, we write the displacement U of the bar as

Ulz,w) = Up(w)e %™ + U_(w)e?* (5.6)

where the first and second terms represent forward and backward traveling
longitudinal waves in the bar and &, is the associated wave number, given by
the following familiar dispersion relation of the bar:

2
wm
k2 =

" EA

(5.7)

where m, E, and A are respectively the mass per unit length, Young’s modulus,
and area of cross section of the bar. Next we write compatible displacements
in the foam as

u(z, y,w) = Up(w)e ™ +U-(w)e*")¢(y) (5.8)
v(z,y,w) = —j(Us()e™ — U_(w)e*)y(y) (5.9)
where ¢(y) and 1(y) are yet to be determined functions. Substituting the

above expressions for u and v in the wave equations (4.1) and (4.2), we obtain
the following second-order ordinary differential equations for ¢ and :

v A+GY (A + 2G)k2 — pw?

o = (s (B e
"o A+GN Gk? — pw?

Vo= —kr()\+2G>¢+( A+ 2G )w (5.1)

where primes denote the first derivative. Next we solve the above equations
subject to the boundary conditions (4.4)—(4.7) to obtain the functions ¥(y)

and ¢(y).

5.2.1 Energy Approach

In this section, we use the solutions for ¢ and 9 to determine the expressions for
the stresses and strains in the foam. We then evaluate the energy dissipation
W and peak potential energy U, and substitute them into (5.1) to obtain an
expression for the loss factor of the system.
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Energy Dissipation

The normal stress o, can be evaluated for an isotropic continuum in a two-

dimensional case using the following familiar expression (e.g., Timoshenko and
Goodier [49])

ou ov
oi(ny0) = (20 L)+ A mne) (612
The normal strain €, is defined as the partial derivative of the displacement
u with respect to . Making use of these definitions and similar ones for the
other components and the expressions for foam displacements (5.8) and (5.9),
we write the following expressions for stresses and strains in the foam:

s = ke (A +2Q)$ + MU' [k 5 €p = U (5.13)
oy = kAo + A+ 200U [k 5 6, = W'U' [k, (5.14)
Toy = G ¢ — k] U Y =10 - kYU (5.15)

Because the bar-foam system is of infinite extent and the associated motion is
periodic in x, we compute the loss factor 7 by evaluating the energy dissipation
W and peak potential energy U, over a wavelength of the bar. Using (5.3), we
write the energy dissipated W per harmonic cycle for the bar-foam systems as

hf 27 [k
W = nPIm / / (02€z + Oy€y + TuyVay) dr dy (5.16)
o Jo

Substituting the expressions for stresses and strains from (5.13)—(5.15) into
the above equation (5.16), we obtain the following expression for the energy
dissipated W over a wavelength of the beam and per cycle of harmonic motion:

hy _
W = (4r*PULU_/k,) Im [ /O [(A+2G) (K2|¢)* + |['*) + 2)\k,Re(¢')
+G(|6']° + k2 [9l* — 2k-Re(¢'4))] dy] (5.17)

Peak Potential Energy and Loss Factor

The peak potential energy U, of the bar-foam system in a harmonic cycle over a
wavelength of the beam can be computed as a sum of the peak strain energy in
the beam and that in the foam. The former can be obtained from the familiar
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expressions for the strain energy in a bar (e.g., Crandall [11]) and the later
from those of an isotropic continuum (e.g., Timoshenko and Goodier [49]).
Using these expressions, we write the peak potential energy U, of the system
as

EA 2 [kr )
- / [Re(U'(:c,w)efm)]2 dz
0

U, = max

hy p2m/k, ‘ |
g /0 /O > [Re(o(z,y, w)e™")Re(e(z, y, w)e™")] dzdy| (5.18)

where the first and second terms denote the respective strain energies stored
in the bar and foam over a wavelength of the bar and the summation in the
second term is taken over all the components of stress and strain in the foam.
Substituting for U from (5.6) and carrying out the summation in the second
term, we obtain the following simpler form for U,:

U, =2rEAk U, U_
+4 Jo7 77" [Re(oz)Re(ez) + Re(oy)Re(ey) + Re(rzy)Re(7z)] dzdy  (5.19)

Substituting the above expression for the peak potential energy U, and that
of W given in (5.17) into (5.1), we obtain the loss factor 5 for the bar-foam
systems. Finally, we plot this loss factor as a function of frequency in Figure 5.2
and compare it with the ones obtained from measurements and the modal
expansion model presented in Chapter 4. We find from Figure 5.2 that the
loss-factor predictions from the infinite-bar model follow the same trend as
those of the full modal-expansion model and measured results and exhibit a
broad band behavior. But the simplified model significantly underestimates
the damping. In order to get a better agreement with measurements the
material properties need to be measured to 10 kHz.

5.2.2 Complex-Wave-Number Approach

In Section 5.2.1, we found that the dynamic interaction between the bar and
foam results in energy dissipation. Therefore, a longitudinal wave traveling in
the bar decays in the direction of propagation and its wave number becomes
complex. Hence we can use the definition given in (5.4) to compute the loss
factor of the bar-foam system. We start by writing out the displacement U of
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Figure 5.2: Comparison of loss factors for the bar-foam system: measurements (star
signs) and full-modal-expansion model (plus signs) for the bar-foam system of Section 4.2
and infinite-bar model using energy approach (solid)

the damped bar in terms of the summation of forward and backward traveling
waves as

Uz, w) = Up(w)e 7 4+ U_(w)e?*= (5.20)

where k, is the complex wave number associated with the longitudinal wave
propagation in the damped bar. Next, we substitute the above expression for
U and the estimate for the shear stress 7,,(z,0,w) at the interface of the bar
and foam given in (5.15) into the equation of motion for the bar (4.3) to obtain
the following dispersion relation for the bar-foam system:

—EBAE? + mw? + PG(¢'(0,w) ~ k,4p(0,w)) = 0 (5.21)

We then use (5.4) and write the following expression for the loss factor 7, of
the bar-foam system

_ Im(PG4'(0,w))
~ mw? + Re(PG'(0,w))

(5.22)

where we have dropped (0, w) because the displacement v vanishes at the
interface of the bar and foam. Finally, we plot in Figure 5.3 the loss factor n,
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Figure 5.3: Comparison of loss factors for the bar-foam system: measurements (star
signs) and full-modal-expansion model (plus signs) for the bar-foam system of Sec-
tion 4.2 and infinite-bar model using complex-wave-number approach (solid) and energy
approach (dotted)

obtained from the above equation and compare it to the ones obtained from the
energy method, measurements, and full modal expansion model of Chapter 4.
We find that the loss factor predictions from the energy and complex-wave-
number approach are very close and exhibit a broadband behavior. We also
notice that results from the measurements and the full model exhibit only
qualitative agreement simplified approaches. In order to get a better agreement
with measurements the material properties need to be measured to 10 kHz.
The simplicity of the complex-wave-number approach over the energy approach
makes it a better candidate for design.

5.3 Scaling for Bar-Foam Systems

In this section, we characterize the loss factor 7, in terms of certain non-
dimensional parameters of the bar-foam system. Because the wavelength in the
bar is an important characteristic length in the longitudinal direction, we scale
the x coordinate by the wave number &, of the undamped beam. This produces
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the non-dimensional length-wise coordinate £ = xk,. Similarly, we scale the
transverse coordinate y using the wave number k; = w+/p/Re(A + 2G) in the
foam to obtain the non-dimensional coordinate § = yk;. Next, we rewrite the
wave equations (5.10) and (5.11) in terms of the scaled coordinates as:

. k, . 21 -v) [ 1
o= (1—2y)¢+ﬁ(k3_1+jnf)¢ (523)

"o _]Af_r__ ’ ];73(1—21/)_ 1
¥ho= (2(1 ~v)) ¢ + ( 2(1 - v) 1+j77f) Yo (5.24)

where the prime indicates derivative with respect to ¢ and we have assumed the
loss factor in dilatation and shear to be equal to ny. Further, it is interesting
to note that the eigenvalues and eigenvectors of the above set of equations
are independent of the frequency and depend only on the Poisson ratio v, loss
factor 7y of the foam, and the ratio of the speeds of sound k, in the foam to
that in the bar. We then solve the above equations subject to the boundary
conditions (4.4) and (4.7) to obtain solutions for ¢ and .

5.3.1 Energy Approach

As described in Section 5.2.1, we use the solutions for ¢ and ¢ to compute
the stresses and strains in the foam and substitute them into (5.17) to obtain
the energy dissipated W per a period of harmonic cycle. Because the peak
potential energy in the bar is significantly larger than that in the foam, we
neglect the second term in (5.19) to simplify the expression for the loss factor
n, which takes the following form:

r 1 hy . 21/]1}
T Uo e [k2'¢'2+ 9P+ 22 Re(du)
+—21(1__2Z) (lcb’l"’ + k7|~ 21%,.Re(¢’zﬁ))} dg} (5.25)

where m, is the ratio of the mass of the foam to that of the bar and h; = kshy
is the non-dimensional wave number in the foam. In the above expression the
sums of the first and last three terms are respectively, the contributions to the
loss factor from dilatation and shear.
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hfkf
Figure 5.4: 5, /m, versus non-dimensional foam thickness fzf ¢ infinite-bar model using

energy approach (solid), full-modal-expansion model (plus signs), and measurements
(star signs)

5.3.2 Complex-Wave-Number Approach

By scaling the derivative of ¢ appropriately and neglecting the second term in
the denominator of (5.22) in comparison with the first (inertia term of the bar),
we obtain the following simple expression for the loss factor of the bar-foam
systems via the complex-wave-number approach outlined in Section 5.2.2

M (1—-2v)

= ™ (= ) (0,hy)] (5.26)

Next, we plot the ratio 7,/m, given in the above expression against ilf in
Figure 5.5 and compare it with that of energy approach shown in 5.4. We
find that the results from both the approaches are very close and compare
well with the measurements and modal expansion model. Next, we note that
Ny /m, is significant whenever h 7 is roughly more than unity; thus confirming
that the damping arises from a strong coupling between the bar and foam via
the establishment of standing waves in foam. Finally, we observe from (5.25)
and (5.26) that the expression for loss factor obtained via the complex-wave-
number approach is much simpler than the one from the energy approach.
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Figure 5.5: n,/m, versus non-dimensional wave number izf . infinite-bar model us-
ing complex-wave-number approach (dotted) and energy approach (solid), full-modal-
expansion model (plus signs), and measurements (star signs)
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5.3.3 Parametric Studies on the Loss Factor

In this section, we study the effect of the several parameters such as

e m,: ratio of mass of foam to that of bar

ng: loss factor of foam
e v: Poisson ratio of foam

k,: ratio of the wave numbers (or alternately ratio of the speeds of sound)

h: non-dimensional wave number

on the loss factor 7, of the bar-foam system. From (5.25) and (5.26), we find
that the loss factor 7, is directly proportional to the mass ratio m, whereas
the dependence on the other parameters is not as straight forward. Hence, we
produce certain trend plots as shown in Figures 5.6-5.8 using (5.26) (because
of its simplicity over (5.25)) to study the effect of the other parameters over
the ratio n,/m,.

In Figure 5.6, we plot the ratio 7,/m, against h s for several values of 7y
while keeping the other parameters constant. We find that as the loss factor
of the foam increases the ratio 7./m, becomes more broadband whereas its
maximum value decreases. Next we increase the Poisson ratio v while keeping
other parameters constant and find in Figure 5.7 that the maximum of n,/m,
moves to the left. This can be readily explained by the increase in the speed
of shear waves in foam. Finally, from Figure 5.8, we observe that n,/m, is
weakly dependent on the ratio of wave numbers &, (or equivalently, ratio of
speeds of sound). However, it is important that the speed of sound in the foam
be low in order to lower the cut-off frequencies above which the damping is
significant.

5.4 Simplified Model for Beam-Foam Systems

In this section, we derive expressions for the loss factor of the beam-foam
systems using the energy and complex-wave-number approaches. The analysis
presented in this section closely parallels that of the the bar-foam systems.
Consider beam-foam systems of infinite length extending from z = —oo to
z = +oo (as shown in Figure 5.9) and undergoing steady harmonic motion
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Figure 5.6: n/m, versus hAf for k, = 0.0063, v = 0.36, and various values of ng: 0.4
(dotted), 0.8 (solid), and 1.2 (dashed)
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Figure 5.7: n/m, versus l{f for ¢ = 0.0063, ny = 0.8, and various values of v: -0.1

(dotted), 0.036 (solid), 0.36 (dashed), and 0.45 (dash-dot)
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Figure 5.8: n/m, versus h} for ny = 0.8, v = 0.36, and various values of ¢: 0.00063
(dotted), 0.0063 (solid), 0.063 (dashed), and 0.16

Ir= -0

Figure 5.9: Schematic of the infinite beam-foam system
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at a frequency w in the y direction. As described in Chapter 3, we denote
the vibratory deflection of the beam by Re(V (z,w)e’") and the displacements
in the foam in the z and y directions by Re(u(z,w)e’*) and Re(v(z, w)e™?),
respectively. To obtain estimates for damping, we need to solve the coupled
wave equations (3.1) and (3.2) subject to the boundary conditions (3.4)—(3.7).
As in the case of bar-foam systems of Section 5.2, closed-form solutions are
difficult to obtain and therefore we seek approximate solutions. To this end,
we write the deflection V of the beam in terms of the solutions of an undamped
beam of infinite length as

V(z,w) = Vi(w)e ™ 4 V_(w)e?™® (5.27)

where the first and second terms represent forward and backward traveling
flexural waves in the beam and k; is the associated wave number. It is given
by the following familiar dispersion relation of the beam:

wim

ky = A (5.28)

where m is the mass per unit length and ET is the flexural stiffness of the
beam. Next we write compatible displacements in the foam as

vz, yw) = (Vi(w)e™ + Vo (w)e*)i(y) (5.29)
u(@,y,w) = —j(Vi(w)e™ — V_(w)e™)e(y) (5.30)

where ¥(y) and ¢(y) are yet to be determined functions. Substituting the
above expressions for u and v in the wave equations (3.1) and (3.2), we obtain
the following second-order ordinary differential equations for ¢ and ¢:

. A+GN Gkg—puﬂ)

Vo= kb(/\+2G)¢+< rrog ) (5:31)
"o A+G ’ (/\+2G)k§—pw2

R e T e S P

where prime denotes the first derivative. Next we solve the above equa-
tions subject to (3.4)—(3.7) and obtain the functions ¢(y) and ¢(y). We then
use these solutions along with the definitions for stress and strain of a two-
dimensional continuum (e.g., Timoshenko and Goodier [49]; (5.12)) to obtain
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the following expressions for the components of stress and strain in the foam:

oy =[-k(A+2G)p+ W'V ; e = —koV (5.33)
oy = [k + (A+2GWV 5 ¢ =9V (5.34)
Tay = G ¢ + kY] V' /k S Yey =8 + K]V /E (5.35)

5.4.1 Energy Approach

As in the case of the bar-foam system of Section 5.2, the beam-foam system
is of infinite extent and the associated motion is periodic in z. Therefore, we
compute the loss factor 7, by evaluating the energy dissipation W and peak
potential energy U over a wavelength of the beam. Using (5.3), we write the
energy dissipated W per harmonic cycle for the beam-foam systems as

hy p2r/k
W = nblm / / (04€x + Oy€y + TuyVay) dx dy (5.36)
o Jo

Substituting the expressions for stresses and strains from (5.33)—(5.35) into
the above equation (5.36), we obtain the following expression for the energy
dissipated W over a wavelength of the beam and per cycle of harmonic motion:

W= (/) T | [ [0 26) (108 + ) - 2ARRe()
LG + K2 + 2KRe(8'))] dy] (5.37)

Next, we evaluate the peak potential energy U, of the beam-foam system in
a harmonic cycle over a wavelength of the beam as a sum of the peak strain
energy in the beam and that in the foam. The former can be obtained from
the familiar expressions for the strain energy in a beam (e.g., Crandall [11])
and the later from those of an isotropic continuum (e.g., Timoshenko and
Goodier [49]). Using these expressions, we write the peak potential energy U,
of the system as

2r [k ]
%I / [Re(V"(=, w)e]‘*’t)]2 dx
0

U, = maz

hy p2n/k . V
* g/o /0 Z [Re(o(z, y,w)e™")Re(e(z,y, w)e™")] dedy| (5.38)
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Figure 5.10: Comparison of loss factors for the beam-foam system: measurements (star
signs) and full-modal-expansion model (plus signs) for the beam described in Chapter 3
(aluminum beam of length 1448 mm) and infinite-beam model using energy approach
(solid)

where the first and second terms denote the respective strain energies stored
in the beam and foam over a wavelength of the beam and the summation in
the second term is taken over all the components of stress and strain in the
foam. Substituting for V' from (5.27) and carrying out the summation in the
second term, we obtain the following simpler form for U,:

U, = 2nEIK3V, V_

+2 [ [27/¥ Re(a,)Re(e,) + Re(oy)Re(ey) + Re(7ay)Re(75y)] dudy  (5.39)
Substituting the above expression for the peak potential energy U, and that
for W given by (5.37) into (5.1), we obtain the loss factor 7, for beam-foam sys-
tems. Finally, we plot this loss factor as a function of frequency in Figure 5.10
and compare it with those obtained from measurements and the modal ex-
pansion model presented in Chapter 3. We find from Figure 5.10 that the
loss-factor predictions from the infinite-beam model are in good agreement
with the previous results and exhibits a broadband behavior.
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5.4.2 Complex-Wave-Number Approach

As in the case of the bar-foam systems, the dynamic interaction between the
foam and beam results in the decay of flexural waves traveling in the beam
and causes the associated wave numbers to become complex. Hence we can
use the definition given in (5.5) to compute the loss factor of the beam-foam
system. We start by writing out the deflection V of the damped beam in terms
of the summation of forward and backward traveling waves as

Viz,w) = Vi (w)e 77 + V_(w)edh= (5.40)

where k, is the complex wave number associated with the flexural wave prop-
agation in the damped beam. Next, we substitute the above expression for V
and the estimate for the normal stress o, (x, 0,w) and shear stress 7,,(z,0,w)
at the beam-foam interface given in (5.34) and (5.35) into the equation of
motion for the beam (3.3) to obtain the following dispersion relation for the
beam-foam system:

= Ghk
ETk; — mw” —b [—/\kqu(O) +(A+26)¢(0) - — 2(¢/(0) + kbw(O))] =
(5.41)
We then use (5.5) and write the following expression for the loss factor 7, of
the beam-foam system

bIm [(A — G)kZR/2 + (X + 2G)Y'(0) — G4/ (0)kyh/2]
mw? + bRe [(A — G)kEh/2 + (A + 2G)Y' (0) — G (0)kph/2]

M = (5.42)

where we have used the boundary conditions on the foam displacements at
the beam-foam interface to determine ¢(0) and (0). Finally, we plot in
Figure 5.11 the loss factor 7, obtained from the above equation and compare
it to the ones obtained from the energy method, measurements, and full modal
expansion model of Chapter 3. As in the case of the bar-foam systems, we
find that the loss factor predictions from the energy and complex-wave-number
approach are very close and exhibit a broadband behavior. We also notice that
results from the measurements and the full model are in agreement with the
simplified approaches.
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Figure 5.11: Comparison of loss factors for the beam-foam system: measurements (star
signs) and full-modal-expansion model (plus signs) for the beam described in Chapter 3
(aluminum beam of length 1448 mm); infinite-beam model using complex-wave-number

approach (solid) and energy approach (dotted)
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5.5 Scaling Laws for Beam-Foam Systems

In this section, we obtain a non-dimensional form for the loss factor 7, of the
beam-foam system in a manner similar to that of the bar-foam system. We
start by scaling the z coordinate using the wave number k; of the undamped
beam because the wavelength of the beam is an important characteristic di-
mension in the length-wise direction. This produces the non-dimensional coor-
dinate £ = xk;. As in the foam-bar system, we scale the transverse coordinate
y using the wave number kf in the foam to obtain the non-dimensional coordi-
nate § = yky. Next, we rewrite the wave equations (5.32) and (5.31) in terms
of the scaled coordinates as:

7 ’%b ’ ]%5(1_21/) . 1
Vo= (2(1 —u)> o+ ( 2(1 —v) 1+jnf> v (5-43)
"o ]Agb ' 2(1—"/) 7.2 1
¢ = —(1—2u>¢+ 1—2v (k"_1+jnf>¢ (5.44)

where the prime indicates derivative with respect to ¢ and we have assumed
the loss factor in dilatation and shear to be equal to 7y. Note that unlike the
case of the bar-foam systems the eigen properties of the above set of equations
depend on the frequency because of the non-linear dispersion relation of the
beam. We solve the above equations subject to the boundary conditions (3.4)
and (3.7) to obtain solutions for 1 and ¢.

5.5.1 Energy Approach

As described in Section 5.4.1, we use the solutions for ¢ and v to compute
the stresses and strains in the foam and substitute them into (5.37) to obtain
the energy dissipated W per period of harmonic motion. Because the peak
potential energy in the beam is significantly larger than that in the foam, we
neglect the second term in (5.39) to simplify the expression for the loss factor
M, which takes the following form:

r h . - , 2 ]2- .
7:71 - ,%Im [/o f(l + Jy) {kng-i-[z/) |2 — 1111:,Re(¢1/’)
" f
1-2v , . . - A
+m (|¢ 1 + kZ||? + 2ksRe(¢ 1/)))} dy] (5.45)
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Figure 5.12: . /m, versus non-dimensional foam thickness fzf : infinite-beam model us-
ing energy approach (solid), full-modal-expansion model (plus signs), and measurements
(star signs)

where A 5 = kshy is the non-dimensional wave number in foam. We note that
the above expression has a similar form as the bar-foam system given in (5.25).
However, as we shall see later the dependence of damping on the ratio of the
wave numbers is more pronounced in beam-foam systems than in bar-foam
Systems.

5.5.2 Complex-Wave-Number Approach

By scaling the derivatives of ¢ and 1 appropriately and neglecting the second
term in the denominator of (5.42) in comparison with the first (inertia term
of the beam), and using the complex-wave-number approach outlined in Sec-
tion 5.4.2, we obtain the following simple expression for the loss factor of the
beam-foam systems

. . 0'(0) (1-=2v). -, v —1 .,
= Im {(1 — ny) ( iy pTie V)kbhqzﬁ (0) + 0=7) y)kbh)} (5.46)
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where h = h/h 7 1s the non-dimensional thickness of the beam. Because of the
non-linear dispersion relation for the beam the parameter k; is dependent on
frequency unlike its counterpart &, of the bar-foam system (k is essentially
the ratio of the speeds of sound in the foam and bar). In order to understand
the parametric dependence of 7, /m, on the properties of the foam and beam,
we find it convenient to infroduce the following scaling for the wave-number
ratio ky:

~

2~ e (5.47)

hhy

where ¢ is the ratio of the speeds of sound in the foam and beam and is given
by
62 _ pre()\ + 2G)
= —pE
where p; is the density of the material of the beam. Next, we plot the ratio
n./m, given in (5.46) against ilf in Figure 5.13 and compare it with that
obtained in 5.45 using the energy approach. We find that the results from both
the approaches are very close and are in agreement with the measurements
and modal expansion model. We note that 7, /m, is significant whenever h 7 is
about unity or greater; thus confirming that the damping arises from a strong
coupling between the beam and foam via the establishment of standing waves
in foam. Finally, we observe from (5.45) and (5.46) that the expression for
loss factor obtained via the complex-wave-number approach is much simpler
than that obtained from the energy approach.

(5.48)

5.5.3 Parametric Studies on the Loss Factor

In this section, we study the effect of the several parameters such as the mass
ratio m,, loss factor iy and Poisson ratio » of the foam, ratio of speeds of
sound ¢, and the non-dimensional wave number fzf on the loss factor 7, of
the beam-foam system. As in the bar-foam system, we find (from (5.45) and
(5.46)) linear dependence of the loss factor 7, on the mass ratio m,. Next, we
find from Figure 5.14 that the influence of the loss factor 7y of the foam on
ns/m. is similar to that of 7y on n,/m, (e.g., Figure 5.6): an increase in 7y
reduces the peak of 7,/m, while making it more broadband.

In Figure 5.15, we plot n,/m, against h ¢ for several values of the Poisson
ratio v. Unlike the bar-foam system, we find that the loss factor has a very
weak dependence on the Poisson ratio v. Finally, we observe from Figure 5.16
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Figure 5.13: 7,/m, versus non-dimensional wave number ﬁf : infinite-beam model
using complex-wave-number approach (dotted) and energy approach (solid), full modal
expansion model (plus signs), and measurements (star signs)
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Figure 5.14: ny/m, versus l{f for ky = 0.0063, v = 0.36, and various values of ns: 0.4
(dotted), 0.8 (solid), and 1.2 (dashed)

that 1, /m, is weakly dependent on the ratio of the speeds of sound é. However
it is important that the speed of sound in the foam medium be low in order
to lower the cut-off frequencies above which the damping is significant.

5.6 Chapter Summary

This chapter provides simplified analysis of the low-wave-speed damping phe-
nomenon based on energy and complex-wave-number approaches. The analysis
shows the damping is directly proportional to the mass ratio and is significant
whenever the non-dimensional wave number (hk;) is greater than a “cut-off”
value of about unity. Therefore the speed of sound in the medium must be
low to achieve damping at lower frequencies.
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Figure 5.15: 7/m, versus hAf for ¢ = 0.0063, n; = 0.8, and various values of v: -0.1

(dotted), 0.036 (solid), 0.36 (dashed), and 0.45 (dash-dot)
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Figure 5.16: n/m, versus hAf for ny = 0.8, v = 0.36, and various values of & 0.00063
(dotted), 0.0.0063 (solid), 0.063 (dashed), and 0.16
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CHAPTER 6

Enhancing the Dynamics of Belt-Driven

Motion Systems using Low-Wave-Speed
Media

6.1 Introduction

Flat steel belt drives are attractive for high-speed, high-acceleration, precision
positioning systems because they can incorporate a drive reduction with low
inertia and very smooth power transmission (e.g., Anon [5]). But because of
belt “creep” or “microslip,” (e.g., Johnson [23]) it is almost always necessary
to employ a feedback sensor located on the “driven” or “output” component of
the system. This makes the system susceptible to instabilities at high feedback
gains. In particular, the longitudinal (axial) compliance of the belt gives rise
to a resonance in which the driving and driven components of the system
oscillate with different phases (e.g., Abrate [3]). This resonance imposes severe
constraints on the closed-loop bandwidth. In this chapter, we show that by
coupling a low-wave-speed medium (Varanasi and Nayfeh [54, 53]) to the belt,
significant damping can be introduced into the axial and transverse modes,
thereby substantially improving the closed-loop performance of the system.
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Figure 6.1: Photograph of the belt drive showing the machine base, carriage, motor,
belt, and pulleys
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Figure 6.2: Schematic of the belt drive showing some length parameters used in mea-
surements

6.2 Experiments

In this section, we describe measurements in which the damping of a belt
drive is enhanced by coupling a layer of low-density low-wave-speed foam to
the belt. The belt drive shown in Figure 6.1 moves a carriage weighing approx-
imately 22.1 kg through a travel of 1270 mm. The carriage is mounted onto
the stage via New Way porous graphite air bearings ([35]). The drive includes
a spring-steel belt of thickness 0.10 mm and width 50.8 mm, the ends of which
are clamped to the carriage. A brushless servomotor (Aerotech BM500 [4]) is
attached to the shaft of the drive pulley by means of a bellows-type coupling
(R+W BK2 [45]). The drive and idler pulleys are mounted onto the machine
base via angular contact bearings. A Heidenhain LS403 linear encoder mea-
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Table 6.1: Important parameters of the belt drive shown in Figure 6.1

Belt thickness 0.10 mm

Belt width 50.8 mm

Mass of Carriage 22.1 kg

Inertia of Motor 13.9 x 10~° kgm*
Inertia of Pulley 1.2 x 10~*kgm?
Radius r of the Pulleys 28.5 mm
Torsional stiffness of coupling | 6800 Nm

sures the position of the carriage whereas the motor has an inbuilt rotary
encoder to measure its rotation. The important details of the stage are given
in Table 6.1 and Figure 6.2.

In Section 6.2.1, we detail sine-sweep experiments for the measurement of
the transfer functions from the motor torque to motor and carriage positions.
Next, in Section 6.2.2 we describe modal experiments conducted on the stage
to determine the mode shape associated with the drive resonance. In all of
these experiments the carriage is located near the end of its travel at a distance
of 1219 mm from the axis of the drive pulley.

6.2.1 Transfer Functions

The transfer functions from the motor torque to motor and carriage positions
are measured by exciting the motor with a sinusoidal torque and measuring the
response from the motor encoder and linear encoder, respectively. A schematic
of the experimental set-up is shown in Figure 6.3. The stage is set up under
closed-loop control using a PC-based DSP board (dSPACE DS1103 [13]), and
a disturbance signal is input to the system at a summing junction formed at
the input terminal of the power amplifier of the motor. An HP35670A signal
analyzer is used to generate a sinusoidal disturbance, measure the input and
output signals, and determine their relative magnitude and phase.

In Figure 6.4, we plot the frequency response from motor torque to motor
encoder with and without foam layers attached to the belt. In the absence of
the foam layer, we find that the resonant mode arising from the compliance
of the belt combined with the inertias of the carriage, pulleys, and the motor
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Figure 6.3: Schematic of sine-sweep experiments. The signals z(t), y(t), and u,(t) are
the power amplifier input, DAC output, and swept sine disturbance, respectively. The
required transfer function is Y (s)/X (s).
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Figure 6.4: Measured frequency response from motor torque to motor position for the
belt drive of Figure 6.1: without foam (dotted), with quarter-inch thick C3001 foam
(dashed), and with half-inch thick C3201 foam (solid)
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Figure 6.5: Photograph of the belt drive with 12.7 mm C3201 EAR [14] foam attached
to the belt

exhibits little damping (damping ratio ¢ = 0.001). Likewise, we find the
complex zeros arising from the compliance of the belt and the inertias of the
carriage and the idler pulley are also lightly damped. But when layers of
12.7 mm EAR C3201 and 6.35 mm EAR C3001 [14] foams are each individually
attached to the belt as shown in Figures 6.5 and 6.6, respectively, we observe
significant damping in the resonant and zero modes. The damping ratios of
the resonant mode are found to be 6.0% and 3.5% for the 12.7 mm C3201 and
6.35 mm C3001 foams, respectively.

Next, in Figure 6.7, we plot the frequency response from motor torque to
linear encoder with and without foam layers. As in the case of the previous
measurement, we find that addition of foam layers results in significant damp-
ing (¢ = 6.0% and 3.5%) in the drive resonance. We also note that the next
higher mode which corresponds to a yaw mode (Section 6.2.2) of the carriage
is also damped.
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Figure 6.6: Photograph of the belt drive with 6.35 mm C3001 EAR [14] foam attached
to the belt

6.2.2 Modal Tests

In Figure 6.8, we show the location of the excitation and measurement po-
sitions employed in modal tests of the machine. An impulsive excitation is
imparted close to point 1 using an impact hammer (PCB333A30 [40]) and the
response is measured using a three-axis accelerometer (PCB 356B08 [40]) at
each of the other nineteen points shown in Figure 6.8. The points 2 through 13
are located on the carriage, 14 through 21 on the machine base. The impact
hammer and the accelerometer are connected to a signal analyzer (HP35670A)
to obtain the force-to-acceleration transfer functions. Next, we use standard
modal-curve-fitting software such as Star Modal [46] to extract the values of
resonant frequencies, damping ratios, and the associated mode shapes.

In Figure 6.9, we show (in plan view) a series of snapshots of the first flexible
mode of the system starting from the undeformed position. From the figure, we
see that this mode corresponds to the axial motion of the carriage accompanied
by stretch of the belt. We also find that the measured resonant frequency and
damping ratio closely match those obtained from the sine-sweep experiments.
In Figure 6.10, we show snapshots of the yaw mode of the carriage which
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Figure 6.7: Measured frequency response from motor torque to carriage position for the
belt drive of Figure 6.1: without foam (dotted), with quarter-inch thick C3001 foam
(dashed), and with half-inch thick C3201 foam (solid)

Figure 6.8: Drawing of the belt drive showing measurement positions for modal experi-
ment
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Figure 6.9: Measured axial mode shape of the belt drive at 337 Hz with damping ratio
of 0.001. The figure shows snapshots of the mode starting from undeformed position.
The small squares indicate measurement locations.

124



appears on the transfer function between motor torque and carriage position
(Figure 6.7).

6.3 Model

In this section we derive a model for the belt drive from which the measured
responses (Section 6.2) can be predicted. Consider steady harmonic vibration
of the belt drive shown in Figure 6.1 at a frequency w, where the vibratory
displacement of the carriage is given by Re(u.(w)e’*) and the angle of rota-
tion the motor is given by Re(f,,(w)e’?). The complex variables u.(w) and
Om(w) each represent the magnitude and the phase of motion as a function
of the frequency w. The longitudinal displacements on the top and bottom
portions of the belt vary along the length of the belt and hence are written as
Re(us(z,w)e’™?) and Re(dy(z, w)e’™?), respectively.

6.3.1 Distributed-Parameter Model
Belt

As described in Section 4.5, the longitudinal displacements of the belt uy(z, w)
and 4, (z,w) are each governed by a second-order wave equation given by

EAu) +mwu, + br(z,w) = 0 (6.1)
EAW, 4+ mw*iy, + b7 (z,w) = 0 (6.2)
where F, A, m, and b are respectively, the Young’s modulus, area of cross
section, mass per unit length, and width of the belt, and 7(z,w) and 7(z,w)

are respectively the shear stresses at belt-foam interface on the top and bottom
portions of the belt.

Foam

As described in earlier sections such as Section 4.3, we treat the foam as a
lossy and isotropic continuum and write the wave equations governing the
z-direction displacement u and transverse displacement v in the frequency
domain as:
(A + 2G) gy + Guyy + (A + Qg + pw?u = 0 (6.3)
GUgz + (A +2G)vyy + (A + Q)ugy + pw*v = 0 (6.4)
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Figure 6.10: Measured yaw mode shape of the belt drive at 394 Hz. The figure shows
snapshots of the mode starting from undeformed position. The small squares indicate
measurement locations.
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where the subscripts denote partial differentiation, y is the local transverse
coordinate and p, A = vE;/(1+v)(1—2v), and G are respectively, the density,
complex Lame constant, and complex shear modulus of the material of the
foam.

The boundary conditions for foam resemble the ones for the belt-foam
systems of Section 4.5. At the interface between the foam and belt (at y = 0),
the displacements in the foam must match those of the surface of the belt (as
stated in Section 4.5.1). Hence we obtain

u(z,0,w) = wlz,w) (6.5)
v(z,0,w) = 0 (6.6)

At the free surface of the foam (at y = hy), the normal and shear stresses must
vanish. Hence we have

Aug(@, hy,w) + (A +2Q)vy(z, hy,w) = 0 (6.7)
G(uy(z, hf,w) + vg(z, hy,w)) = 0 (6.8)

Carriage, Motor and Pulleys

The carriage is subject to the force exerted by the belt (at z = z, and x = z.+
w) in addition to a disturbance force F,(w) and an effective viscous damping
force jwC,uc.(w). Therefore the equation of motion for the carriage takes the
form

—mew’uc(w) + jwCuc(w) + EA [up(ze, w) — up(ze + w,w)] = Fe(w)  (6.9)

where m, is the mass of the carriage.

The motor armature is subject to the twisting moment imposed by the
drive pulley on the coupling in addition to the actuation torque 7, (w) and an
effective viscous damping torque jwC,,0,,(w). The equation of motion of the
motor armature therefore takes the form

~ w2 T Om + §0CmOm (W) + K¢ [Om (W) — 01 (w)] = Trn(w) (6.10)

where k. is the torsional stiffness of the coupling and 6;(w) is the angle of
rotation of the drive pulley.

The drive pulley is subject to a moment imposed by the motor on the cou-
pling in addition to a moment from the belt and an effective viscous damping
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torque jwC160;(w). Likewise, the idler pulley is subject to a moment from the
belt in addition to an effective viscous damping torque jwC582(w). Denoting
the inertias of the drive and idler pulleys by J; and Js, we write the equations
governing their motion as

'—UJ2J191 ((.U) + jw0101 ((U) + K, [01(W) - Hm(w)]
—rEA[uy(0,w) + 43(0,w)] = 0 (6.11)
—w? Jofa(w) + jwCoba (W) + rEA[up(L,w) + tp(L,w)] = 0 (6.12)

where 0,(w) is the angle of rotation of the idler pulley, r and L are respectively,
the radius and distance between the pulleys.

6.3.2 Simplified Lumped-Parameter Model

In this section, we simplify the model of the previous section to obtain a
lumped-parameter model that can reasonably predict the frequency and damp-
ing of the drive resonance at which the motion of the carriage is out of phase
with that of the motor. Because the frequency of the drive resonance is much
lower than that of the longitudinal wave propagation in the belt, we use the
analysis presented in the Section 4.5.3 to formulate the dynamics of the drive.
Using the derivation presented in Section 4.5.3 (in particular (4.38) and (4.39)),
we obtain the force exerted by the belt on the carriage in terms of the car-
riage displacement u.(w), and the rotation of the pulleys 8, (w) and 6(w) and
rewrite the equation of motion of the carriage (6.9) as

—Mew?ue(w) + jwCeuc(w) + Ky [ue(w) — rql(w)] — ky [ue(w) + 76 (w))]
k3 [ue(w) — 102(w)] — ks [ue(w) + r62(w)] = Fe(w) (6.13)

The sum of the third and fourth terms in the above equation represents the
force exerted on the carriage by the segment of the belt between the drive pul-
ley and the carriage. Likewise, the sum of the fifth and sixth terms represents
the force exerted on the carriage by the segment of the belt between the idler
pulley and the carriage. The value of £’s and k’s in the above equation can be
obtained from (4.36)—(4.37) and are given by

EA bG¢(0)4;
. _ = 14
kz ez 12 3 17 2’ 3 (6 )

Lo Gk,be; tan(kshy)
7 - 4 !

Il

i=1,2,3 (6.15)
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where the function ¢(y, w) is defined in (4.29), &, is the wave number associated
with the propagation of shear waves in the foam, and the subscript 7 refers to
the various segments of the belt: i=1, 2, and 3 are the portions of the belt
between the drive pulley and carriage, drive and idler pulleys, and carriage
and idler pulley, respectively. Next we rewrite the equations of motion for the
pulleys (6.11) and (6.12) in a similar manner as

~w? 118y (w) + jwC18) (w) + K B (w)ﬂ— O (w))

ks [81(w) — B5(w)] — 7h (81 () + Bo(w)] = O (6.16)
—w?Jy0s(w) + jwCyfs(w)

+rka [2(w) — 61 (w)] = rha [f2(w) + 01 (w)] = 0 (6.17)

Unless packaging constraints are severe it is usually possible to choose
the coupling to be much stiffer than the belt and hence we can neglect its
compliance in (6.10) and (6.16). When the carriage is at the end of travel
close to the idler pulley, we can neglect the compliance of the belt between
them in comparison to the other segments. Hence, we can further simplify the
model by lumping the inertia of the idler pulley into the carriage to obtain
a two-degree-of-freedom model with the motor rotation 6,,(w) and carriage
displacement u.(w) as generalized coordinates. These simplified equations of
motion take the following form:

—w? [(Jm + J1)/7%] U (w) + jwCrtm (w)
+ (k1 + k) [um (@) — ue(w)] — (k1 + k2) [tm(w) + ve(w)] = Fin(w) (6.18)
—w? [me + Jo/r?] ue(w) + jwCeuc(w)
(k1 + k) [te(w) — um(W)] — (k1 + E2) [ue(w) + tm(w)] = Fa(w) (6.19)

where we have introduced an equivalent motor displacement u,, = r6,,, an
equivalent motor force F,, = T,,,/r, lumped the viscous damping into C,, and
C., and neglected the compliance and damping arising out of the segment of
the belt between the carriage and the idler pulley.

Next, we plot in Figures 6.11 and 6.12 the predicted frequency responses
from motor torque to motor and carriage positions for the case when there is
no foam attached to the belt. In such a case it is generally difficult to predict
the damping of the drive from first principles. Hence we assume a damping
ratio of 0.0001 for the drive resonance to generate the plots of Figures 6.11
and 6.12. We observe from these figures that the predicted pole and zero
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Figure 6.11: Comparison of the measured and predicted frequency responses from motor
torque to motor position without foam: measured (dotted) and predicted (solid)
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Figure 6.12: Comparison of the measured and predicted frequency responses from motor
torque to carriage position without foam: measured (dotted) and predicted (solid)
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Figure 6.13: Comparison of the measured and predicted frequency responses from motor
torque to motor position with foam: measured (dotted) and predicted (solid)

frequencies are in agreement with the measurements. Finally, we compare the
predicted transfer functions for the drive with foam against the measurements
in Figures 6.13 and 6.14. The results for the resonant frequency and damping
are summarized in Table 6.2.

Discussion

The simplified two-degree-of-freedom model provided in the previous section
reasonably captures the dynamics of the drive resonance as can be seen from
Table 6.2. However, the model does not account for the damping arising
from the segments of the belt between the carriage and idler pulley and those
wrapped around the pulleys, and is moreover not suited for segments of the
foam that are not much longer than their thickness. These approximations
may account for the differences between theory and experiment. Figure 6.13
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Figure 6.14: Comparison of the measured and predicted frequency responses from motor
torque to carriage position with foam: measured (dotted) and predicted (solid)

Table 6.2: Predicted and measured frequencies and damping ratios for the drive reso-
nance

predicted measured
frequency (Hz) | ¢ | frequency (Hz) ¢
without foam 348.0 - 337.0 0.001
0.5” C3201 foam 330.0 0.04 322.0 0.06
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shows that the model has not captured the high damping of the complex
zeros as measured in experiments. We attribute this significant low-frequency
damping to regions of the belt-foam system where the length-wise boundary
conditions in the foam become important. In the present configuration such
regions include the segments of the belt wrapped around the pulleys and the
one between the carriage and idler pulley.

As the carriage moves close to the motor, the frequency of drive resonance
increases while the frequency of the mode in which the motion of the carriage
is out of phase with that of the idler pulley decreases. This is because the
compliance of the belt between the carriage and the motor decreases while the
one between the carriage and idler pulley increases. However, the compliance
of the belt between the two pulleys dominates over the one in segment 3
and therefore, the model described in (6.18) and (6.19) can still give good
predictions for the drive resonance. But one must include the effect of the
belt-foam segment between the carriage and idler pulley to get good estimates
for damping.

Unlike the drive resonance, the mode in which the motion of the carriage is
out of phase with the idler pulley does not drop phase in the transfer function
from the motor torque to carriage position. Hence such a mode is not as
detrimental for the feedback control control of the carriage (e.g., Varanasi [51])
and can be safely neglected in the model for simplicity. However, we can obtain

good predictions for such a mode by augmenting the degrees of freedom in
(6.18) and (6.19) with the rotation #,(w) of the idler pulley.

6.4 Chapter Summary

The results described in this chapter show that coupling a belt to a low-wave-
speed medium is a low-cost method to provide predictable and relatively high
damping in belt-driven positioning systems. Further, the foam medium can
accomodate large strains and is so compliant that it introduces little creep
into the structure. Experiments conducted on a belt-driven positioning stage
incorporating a flat steel belt show significant increase in the damping of the
drive resonance when a layer of foam is attached to the belt. Finally, a simple
model is developed that is adequate for many purposes, especially that of
designing a given amount of damping into the system.
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CHAPTER 7

Design of Flexure Mechanisms for
Dynamic Performance

7.1 Introduction

Flexures are mechanical elements which utilize the inherent elasticity of a
material to provide smooth and precise motion. In contrast to conventional
slideways, flexure mechanisms are free of wear and friction. Hence they are
used in several precision engineering applications such as positioning stages,
precision bearings, couplings, interferometers, optical scanners, and so on.
They are also used to form “exact constraint” mounts for delicate objects
(such as optical elements, instruments, and so on). However, such systems
suffer from very lightly damped modes. In this study, we use a low-wave-
speed medium to damp the vibratory modes of flexure assemblies in both the
compliant and stiff directions.

Consider the flexure mechanisms sketched in Figures 7.1 and 7.2. It is
common to operate such mechanisms under closed-loop control for precision
positioning applications. But the presence of lightly-damped resonances and
zeros affect the performance and stability of the stage (e.g., Varanasi [51]). In
Section 7.2.1, we detail experiments on the single and double-parallelogram

135



motion

actuation
—_—

Figure 7.1: Schematic of the single-parallelogram flexure stage

flexure stages of Figures 7.3 and 7.8 and find that, by coupling the flexure
blades with foam, relatively high and predictable damping can be introduced
into most of the modes of the stage.

7.2 Flexures Coupled to Low-Wave-Speed Foams: Exper-
iments and Design Guidelines

7.2.1 Experiments

In this section, we detail measurements on a pair of flexure mechanisms sketched
in Figures 7.1 and 7.2. For each of the two stages we measure force-to-
acceleration frequency responses by exciting the main mass using an impact
hammer and measuring the response using an accelerometer. For the double-
parallelogram stage we perform a set of modal tests to determine the mode
shapes associated with the resonances of the stage.
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Figure 7.2: Schematic of the double-parallelogram flexure stage
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Figure 7.3: Photograph of the single-parallelogram flexure

Single-Parallelogram Flexure Stage

The single-parallelogram stage sketched in Figure 7.1 consists of aluminum
blades of thickness 1 mm. A photograph of the stage is shown in Figure 7.3.
The base of the stage is clamped to ground and the mass is excited in the
compliant direction using an impact hammer. In Figure 7.4, we plot the
force-to-acceleration frequency response with and without foam layers attached
to the flexure blades. In the absence of foam layers, we find that the first
resonance of the system arising from the compliance of the blades coupled
with the inertia of the stage exhibits little damping (¢ < 0.0005). Likewise,
we find the higher modes (such as the out-of-plane and flexible modes of the
blades) are also lightly damped. But when foam layers are attached to the
blades as sketched in Figure 7.5 there is a significant increase in the damping
of high-frequency modes. For example, the damping coefficient of the primary
mode (first resonance) increases to 10.5% when 1.0 inch thick C3001 is attached
to the blades.

Next, we fill the entire volume between the blades with foam as shown in
Figure 7.6 and find that the damping of the first mode is further increased
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Figure 7.4: Measured force-to-acceleration frequency responses for single-parallelogram
flexure: dotted (without foam), 0.5 inch thick C3201 foam attached to the blades (dash-
dot), 0.5 inch thick C3001 foam attached to the blades (dashed), and 1 inch thick C3001
foam attached to the blades (solid)
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Figure 7.5: Schematic of the single-parallelogram flexure stage with foam layers attached
to the blades
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Figure 7.6: Photograph of the single-parallelogram flexure filled with foam

(as shown in Figure 7.7). This is accompanied by an increase in the static
stiffness as can be noticed from the increase in the natural frequency of the
mode. However, the range of travel is unaffected because the foam is very
compliant and can tolerate large strains.

Double-Parallelogram Flexure Stage

In this section, we describe experiments conducted on the double parallelogram
stage of Figure 7.2. A photograph of the stage is shown in Figure 7.8. The
main mass m, is excited both in the compliant and stiff directions using an
impact hammer and the response is measured using an accelerometer located
at the center of the main mass m,. We then plot the corresponding force-
to-acceleration frequency responses in Figures 7.9 and 7.10. As expected, the
stage exhibits very little damping in all of it modes. Next, we conduct modal
tests on the stage to obtain the mode shapes associated with these resonances.
In Figure 7.11, we show the location of the excitation and measurement posi-
tions employed for these tests. The points 2 through 5 are located at the four
corners of the main mass m,, 6 through 8 on the mass msy, 9 through 11 on
the mass mj3, and 12 through 15 on the base that is rigidly clamped to ground.
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Figure 7.7: Measured force-to-acceleration frequency responses for single-parallelogram
flexure: dotted (without foam), volume between blades filled with C3201 foam (dashed),
volume between blades filled with C3201 foam (solid)

In Figures 7.12-7.14, we show a series of snapshots of several modes of the
stage. The first and second resonances in the compliant direction correspond
to modes in which the main mass m; moves in and out of phase with masses
msy and mg, respectively, as can be seen in Figures 7.12 and 7.13. Figure 7.14
shows one of the modes of the stage in which the mass m; exhibits out-of-plane
motion.

When layers of foam are attached to the flexure blades as sketched in
Figure 7.15, we see a significant increase in damping of the high-frequency
modes of the stage (as shown in the frequency-response plots of Figures 7.16).
The damping ratios of the first two modes in the compliant direction with
and without foam layers are presented in Table 7.1. Next, we explore the
configurations sketched in Figures 7.17-7.22 in which the volumes between
the blades are filled with foam. As in the case of the single-parallelogram
flexure, this leads to an increase in damping and static stiffness of the stage.
However, this increase in static stiffness does not severely effect the range of
travel of the main mass m;.

In Figure 7.19, we plot the force-to-acceleration frequency response when
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Figure 7.8: Photograph of the double-parallelogram flexure

Table 7.1: Comparison of damping ratios for the first two modes in the compliant
direction with and without foam layers

without foam | 0.5” C3201 | 0.5” C3001
¢ of mode 1 0.3% 3% 3%
¢ of mode 2 0.3% 3.5% 4.6%
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Figure 7.9: Measured force-to-acceleration frequency responses of the double-
parallelogram stage when the main mass m; is excited in the compliant direction and
the response is measured in compliant (solid), stiff (dashed), and out-of-plane directions
(dotted).
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Figure 7.10: Measured force-to-acceleration frequency responses of the double-
parallelogram stage when the main mass m; is excited in the stiff direction and the
response is measured in stiff (solid), compliant (dashed), and out-of-plane directions
(dotted).
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Figure 7.11: Photograph of the double-parallelogram flexure showing the excitation and
accelerometer locations

146



Figure 7.12: Measured mode shape of the stage at 27 Hz. The figure shows snapshots
of the in-phase motion of my with my and ms starting from the undeformed position.
The small squares indicate measurement positions.
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Figure 7.13: Measured mode shape of the stage at 75 Hz. The figure shows snapshots of
the out-of-phase motion of m; with mo and mg3 starting from the undeformed position.

The small squares indicate measurement positions.
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Figure 7.14: Measured mode shape of the stage at 780 Hz. The figure shows snapshots
of the out-of-plane motion of the masses mj, mo, and mg starting from the undeformed
position. The small squares indicate measurement positions.

149



Figure 7.15: Schematic of the double-parallelogram flexure stage with foam layers at-
tached to the blades
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Figure 7.16: Measured force-to-acceleration frequency response of the double-
parallelogram stage when the excitation and response are in the compliant direction:
without foam (dotted), with 0.5 inch C3201 foam (dashed), and with 0.5 inch C3001
foam (solid)
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Figure 7.17: Schematic of the double-parallelogram flexure stage when the volume
between the interior blades is filled with foam
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Figure 7.18: Photograph of the double-parallelogram flexure stage when the volume
between the interior blades is filled with foam
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Measured force-to-acceleration frequency response of the double-

parallelogram stage when the excitation and response are in the compliant direction:
without foam (dotted) and when the volume between the interior blades is filled with
C3201 foam (solid)
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Figure 7.20: Schematic of the double-parallelogram flexure stage when the volume
between the interior and exterior blades alone is filled with foam
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Figure 7.21: Measured force-to-acceleration frequency response of the double-
parallelogram stage when the excitation and response are in the compliant direction:
without foam (dotted) and when the volume between the interior and exterior blades
alone is filled with C3201 foam (solid)
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Figure 7.22: Schematic of the double-parallelogram flexure stage when the entire volume
between the blades is filled with foam

the entire volume between the interior blades is filled with foam (as shown
in Figures 7.17 and 7.18). Because there is no significant coupling in the
first mode, we do not obtain high damping. However, we observe significant
damping in the second mode as the motion of the mass m; is out of phase
with that of my and m3. When foam is filled in the volume between the
interior and exterior blades alone (as shown in Figure 7.20) , we find high
damping in both modes as shown in Figure 7.21 because of the aforementioned
reasons. Finally, the entire volume between the blades is filled (as shown in
Figures 7.22 and 7.23), leading to significant damping in all modes of the stage
as seen in the frequency response plot of Figure 7.24. As mentioned earlier,
these configurations do not reduce the range of motion because the foam is
compliant and can accommodate large strains.
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Figure 7.23: Photograph of the double-parallelogram flexure stage when the entire
volume between the blades is filled with foam
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Figure 7.24: Measured force-to-acceleration frequency response of the double-
parallelogram stage when the excitation and response are in the compliant direction:
without foam (dotted) and when the entire volume between the blades is filled with
foam (solid)
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7.2.2 Discussion

Flexure mechanisms are usually operated under closed-loop control for precision-
positioning applications. For the flexure stages described in the previous sec-
tions (Figures 7.1 and 7.2), the actuation and the feedback sensor locations
lie on the same rigid body. Under this so-called collocated feedback the pri-
mary resonances can be easily compensated via closed-loop control. However,
the higher modes (such as the out-of-plane modes, flexible blade modes and
so on) can potentially affect stability and performance of the stage because
it is difficult to robustly compensate for these modes using feedback control.
From the experimental studies in the previous sections and chapters, we find
that the low-wave-speed damping is well suited to solve this problem. Other
important limitations for collocated control arise from lightly damped zeros in
the transfer function (e.g., Varanasi [51]), and foam layers increase damping
in the zeros of the system as well. For non-collocated applications, the drive
resonance limits the achievable bandwidth (e.g., Varanasi [51]). Once again,
low-wave-speed damping can be useful to increase the damping in such modes
and significantly improve performance of the positioning stages.

In some of the experiments, particularly ones in which entire volumes be-
tween the blades are filled with foam, we notice an increase in the static
stiffness. This would ordinarily give rise to creeping deflections. But as these
stages are usually operated under closed-loop control, any creep introduced in
this manner can be eliminated. Likewise, for applications in which flexures are
used as kinematic mounts the creeping deflections that may be introduced in
the compliant direction for a given flexure are counteracted by the constraints
imposed by other flexures in that direction.

7.2.3 Estimates for Damping

In order to obtain estimates for the loss factor of the various modes of the stage,
we can use approaches similar to the ones outlined in the previous chapters.
Depending on the mode shape we can obtain compatible displacements in
foam (for example, by expanding displacements in terms of a Fourier series or
eigenfunctions), solve for the wave propagation in foam and combine it with
the dynamics of the stage to obtain estimates for damping. For example, by
using the dimensional analysis provided in Chapter 5, we find that the product
of the wave number ks and thickness hy of the foam should be around unity
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to maximize the damping. Under such conditions we find the loss factor to be
n/my = 0.3 ; hpky a1 (7.1)

Likewise, we can use the models derived in Chapters 4 and 5 (Section5.2) to
obtain estimates for the loss factors of the longitudinal modes of the system.
In particular, the model for the belt-foam systems (Section 4.5) can be used
to obtain the damping introduced into the stretching modes of the blades.

7.3 Chapter Summary

This chapter shows that damping can be introduced into flexures in a very
effective manner using low-wave-speed media. The method is tested on two
flexure configurations and several experiments have been documented. The
results show that above a “cut-off” frequency relatively high and predictable
damping can be introduced into several modes of the stage. Also depending
on the thickness, density, and speed of sound of the medium, even the lowest
modes can be damped without affecting the range of travel of the stage.
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CHAPTER &

Closure

8.1 Findings

Our studies in this thesis show that significant damping can be attained with
little added mass by coupling a structure to a lossy medium with low den-
sity and low speed of sound. We find that whenever the frequencies lie in
a certain favorable range governed by the wave propagation in the low-wave-
speed medium, strong interaction between the vibrating structure and medium
occurs, resulting in high damping. Such damping treatments (whether the low-
wave-speed medium is powder, foam, or some other material) offer a low-cost
method of attaining broad-band damping in structures and machines. Further,
these materials can accommodate large strains and are so compliant that they
introduce little creep into a structure.

We have developed simple linear models that can predict the damping
phenomenon with reasonable accuracy. Approximate solutions are developed
by expanding the displacement of the structure in terms of its mode shapes,
solving for compatible vibration in the low-wave-speed medium, and thence
computing the response of the combined system. The results are found to be
in close agreement with measured responses. We have also presented simpli-
fied models and characterized the damping in terms of the important non-
dimensional parameters of the system. Finally, we have applied this approach
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to belt drives and flexure mechanisms to improve their performance.

8.2 Future Work

The results described in this thesis suggest that any form of vibration can be
damped if the appropriate coupling between the structure and low-wave-speed
medium can be achieved. Hence a natural extension would be to use this
approach to damp torsional modes of a structure.

It has been shown by Ruiji [43] that an effective method to shield radiative
heat transfer from and to a structure is to cover it with a thin layer of alu-
minum and maintain an air gap in between them. We intend to use a similar
approach, but instead fill the air gap with a low-wave-speed medium. This
approach then yields a good thermal shield as well as a vibration damper.
Further, any acoustic radiation onto the structure is also shielded because
of the lossy low-wave-speed medium. In Figure 8.1, we show a schematic of
this combined acoustic, thermal, and vibration damper applied to precision
assemblies. This approach has been applied to a periscope stage for the LIGO
(Laser Interferometer Gravity Wave Observatory) project. A photograph of
the periscope stage is shown in Figure 8.2. An accelerometer mounted on the
stage is used to record the power spectrum from ambient ground vibrations.
These measurements are shown in Figure 8.3 with and without foam layers.
We see that there is a reduction in the peak by a factor of five when a layer
of foam along with a thin sheet of steel shield is attached to the stage. In
the future we would like to study further this combined acoustic, thermal and
vibration damper.

Next, we would like to explore means to excite other kinds of waves in these
systems. For example, by making a “cut” in the foam as shown in Figure 8.4,
we find an increase in damping of the beam. In Figure 8.5, we compare the
force-to-acceleration frequency response of the usual beam-foam system (of
Figure 3.4) to that of the system sketched in Figure 8.4 and find that there is a
significant increase in damping in the first mode due to the cut. This suggests
that the cut has resulted in the establishment of lower-frequency waves in
foam. Other configurations of interest would be segmentation of the foam in
the length-wise direction. This would possibly help set up standing waves
in the length-wise direction and help increase damping at lower frequencies,
particularly in longitudinal modes. In the future, we wish to study other
configurations to couple waves between the low-wave-speed medium and the
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Figure 8.1: Schematic of the combined acoustic, thermal, and vibration damper. The
gap between the shield and the structure is filled with a low-wave-speed medium

structure.

In the area of low-density granular materials, more detailed studies are
required to understand the linearity of the damping phenomenon and the
effect of “packing” on attainable damping. It may be that, by packing the
powder more densely, shear waves can be coupled into it and the behavior of
powder will approach that of a foam.

Other studies of interest would include: fundamental physics of wave prop-
agation in materials with feature lengths comparable to that of wavelength;
guiding waves by creating gradients in the material properties and its effect
on the attainable damping; use of magnetic or electrical coupling via magnetic
or dielectric particles in powder or foams to enhance the dynamic interaction
between the structure and low-wave-speed medium; effect of anisotropy of
materials on damping; other materials (e.g., for high-temperature applications
one could use steel wool; vacuum compatible materials), and so on. We find
that this area is rich and that there are innumerable possibilities for future
research.
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Figure 8.2: Photograph of the LIGO periscope stage
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Figure 8.3: Measured power spectra for the LIGO stage under ambient vibrations: with-
out foam (blue) and with foam (red). When the structure is wrapped in foam there is
reduction in the peak by about a factor of five

/ cut

Figure 8.4: Schematic of the "cut” made in foam
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Figure 8.5: Comparison of the force-to-acceleration transfer functions for an aluminum
beam of length 584.8 mm: foam (dotted) and foam with a cut as shown in Figure 8.4
(solid)

167



AprpenDix A

Measuring the Speed of Sound in
Powder

In this section, we document a set of experiments in which we determine
the speed of sound and loss factor of the granular medium employed in this
paper. The experimental set up consists of a powder-filled acrylic tube whose
cross section is shown schematically in Figure A.1. At one end of the tube
(at = 0) a plunger is used to impose a displacement on the powder. The
plunger is driven using an electromagnetic shaker via an accelerometer. At
the other end of the tube (at = L), a plunger is held against a rigid support
by means of a force transducer to simulate a fixed end. A photograph of the
experimental set up is shown in Figure A.2. Next, by imposing a sinusoidal
displacement at the free end and varying its frequency, we obtain transfer
functions between the acceleration at the free end and the force at the fixed
end. Because of the free-fixed boundary conditions, we expect resonances to
occur in the acceleration-to-force transfer function at frequencies where the
length of the tube is an integer multiple of half the wave length in the powder.

In Figure A.3, we plot the measured acceleration-to-force transfer function
for a tube whose length and diameter are 254 mm and 22.8 mm, respectively.
We find that the primary resonance occurs at 114 Hz and the resonance fre-
quencies occur in the ratio of 1:2.02:3.02:4.03, which is close to that expected
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Figure A.1: Schematic of the experiment employed to determine the properties of powder
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Figure A.2: Photograph of the experiment employed to determine the properties of
powder. The picture shows the powder-filled tube, electromagnetic shaker, and the
transducers.
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Figure A.3: Measured acceleration-to-force frequency response of the system shown in
Figure A.1 employed to determine the properties of powder. The length of the tube is
254 mm

from theory. Based on the values of these resonance frequencies, we compute
the speed of sound in the powder to be approximately 58 m/s. Next, we obtain
the loss factor for the various modes in this transfer function using standard
modal curve-fitting software such as Star Modal (Spectral Dynamics [46]).
We find that the loss factor is independent of frequency and has a value of
approximately 0.20.
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Aprrenpix B

Material Properties of Foam

In this section, we document a set of experiments conducted to determine the
elastic moduli and loss factor of the foam. The extensional modulus is deter-
mined by exciting a layer of foam sandwiched between two aluminium discs
as shown in Figure B.1. One of these discs is driven using an electromagnetic
shaker to impose a displacement which is measured using an accelerometer on
the foam where as the other disc is held against a rigid support by means of a
force transducer to simulate a fixed end. Next, by imposing a sinusoidal dis-
placement at the free end and varying its frequency, we obtain the frequency
response between the acceleration at the free end and the force at the fixed end
as shown in Figure B.2. Noting that the magnitude of the response M (w) has
no resonance peaks and the phase 6(w) is more or less constant, we conclude
that for the range of frequency used in the experiments, there is no significant
wave propagation in the layer of foam. We therefore conclude that the layer of
foam behaves as a simple hysteretic spring (e.g., Crandall [11]; Nashif et.al.[31])
and obtain its complex extensional modulus Ef(w)(1 4 j7.(w)) from

i+t = TR

where ¢t and A are respectively, the thickness and the cross-sectional area of
the layer of foam. In Figure B.3, we plot the real part of the modulus E; as

(B.1)
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Figure B.1: Schematic of the experiment employed to determine the extensional modulus
of foam

a function of frequency and find that the extensional modulus is proportional
to the square root of the frequency. Next, as the phase of the acceleration-to-
force transfer function is approximately —140° over the given frequeny range,
we compute the loss factor of the material of the foam in extension to be
approximately 0.8.

Next, we conduct a similar experiment to determine the shear modulus of
the foam material. The experiment consists of a rectangular aluminium block
mounted onto a U-shaped block via a pair of layers of foam (15.5%15.5%3.2 mm)
as sketched in Figure B.4. The rectangular aluminium block is driven using
an electromagnetic shaker via an accelelrometer to impose a displacement on
the layers of the foam. The U-shaped block is held against a rigid support
via a force transducer to simulate a fixed end. Because of the symmetry in
this arrangement the foam layers are in pure shear as the rectangular block
undergoes harmonic motion. As in the extensional case, we find from the
frequency response between the acceleration at the free end and the force at
the fixed end (plotted in Figure B.5) that the the layers of foam behave as
hysteretic springs. Next, we compute the complex shear modulus of the foam
in a manner similar to the one described for the extensional case. Finally, we
plot the real part of the shear modulus Gf in Figure B.6. We find that the
shear modulus is proportional to the square root of the frequency whereas the
loss factor is approximately 0.8. Becasue the extensional and shear moduli
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Figure B.2: Measured acceleration-to-force frequency response of the system shown in
Figure B.1 employed to determine the extensional modulus of the foam
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Figure B.3: Measured real part of the extensional modulus and the loss factor

vary in a similar manner with frequency, we conclude that the poisson ratio
of the foam is independent of frequency and is approximately 0.36.
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Figure B.4: Schematic of the experiment employed to determine the shear modulus of
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Figure B.5: Measured acceleration-to-force frequency response of the system shown in
Figure B.4 employed to determine the shear modulus of the foam
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