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Abstract— Shock capturing has been a challenge for compu-
tational fluid dynamicists over the years. This article deals with
discontinuous Galerkin method to solve the hyperbolic equations
in which solutions may develop discontinuities in finite time. The
high order discontinuous Galerkin method combining the basis
of finite volume and finite element methods has shown a lot
of attractive features for a wide range of applications. Various
techniques proposed in the literature to deal with discontinuities
basically reduce the order of interpolation in the region around
these discontinuities. The accuracy of the scheme therefore may
be degraded in the vicinity of the shock. The proposed method
resolves the discontinuities presented in the solution by applying
viscosity into the shock-containing elements. The discontinuity is
spread over a distance and is well approximated in the space of
interpolation functions. The technique of adding viscosity to the
system and the indicator based on the expansion coefficients of
the solution are presented. A number of numerical examples in
one and two dimensions is carried out to show the capability of
the scheme for shock capturing.

Index Terms— Discontinuous Galerkin method, indicator, lim-
iter, shock capturing.

I. I NTRODUCTION

Discontinuous Galerkin method has been widely used in
computational fluid dynamics for the past few decades. Since
then it has been attracting the interest of many researchers in
putting efforts to develop approaches to solve the problems
involving shocks and discontinuities. It is well-known that the
solutions to the non-linear PDEs may develop discontinuities
in finite time and present very complicated structure near such
discontinuities. It has also been shown that the discontinuous
Galerkin method is capable of solving these kinds of problem
by using a suitable limiting techniques to resolve the discon-
tinuities [2], [3], [4], [5].

Essentially, the stability condition is not satisfied by the DG
space discretization method itself and it is therefore necessary
to enforce stability of the scheme via the limiters. In general, as
the solution develops discontinuities it has to be limited to pre-
vent oscillations from overwhelming the solution. A number
of approaches has been developed to limit the solutions with
some acceptable results; however there are some limitations
involved. The most commonly used technique reduces the
order of the approximation in the elements that are identified
to contain the discontinuities by using some indicators [1].
An amount of dissipation is then added to the DG method by
reducing the order of interpolation in the shock region. It has
been shown that this arrangement is able to resolve the shock

with an acceptable result especially when it is combined with
adaptive mesh refinement technique [9]. On the other hand, the
accuracy of the method may be affected by the flattening of the
solution in the vicinity of the discontinuities and the problem
in higher dimensional problem has not been well resolved.
Designing an appropriate indicator is another issue in limiting
the solution but still a lot of techniques have been developed
in the literature [7] for the purpose of identifying the trouble
cells. In [1] a simple indicator, slope limiter, is introduced
and has shown to be a good choice to detect the shocks. A
major disadvantage of this algorithm is that the accuracy of
the solution may be degraded due to the treatment applied
across the shock. In fact the solution in the vicinity of the
shock is only first order accurate. Alternatively, a high order
non-oscillatory reconstruction scheme, WENO has been used
as a limiter in DG and shown to be an alternative choice [6].
However, this high order reconstruction based limiter requires
a very wide stencil and therefore the compactness of DG may
becomes less attractive. One may refer to [7] for a review of
the various indicators used in literature.

A simple technique which uses viscosity to resolve the
discontinuities within a cell is proposed in this work. It
is inspired from previous artificial viscosity methods [10]
proposed in the earlier work by Von Neumann and Richmyer.
The idea of adding viscosity is to spread the discontinuity
over a length scale so that it can be resolved in the space of
interpolating functions. In general the resolution given by a
piecewise polynomials of order p scales likeδ ∼ h/p. Hence
the amount of viscosity required to resolve a shock is of order
O(h/p). Comparing to the previous methods of resolving the
shocks which is of orderO(h), the accuracy of the solution is
O(h/p) in the vicinity of the shock. This means that the higher
order of polynomial is used, the thinner or smaller extent the
shock is resolved. A closer look on proposed shock capturing
scheme implemented in the context of Discontinuous Galerkin
method is performed in this article.

II. SHOCK CAPTURING SCHEME

We are interested in solving the following equation of
conservation law

∂u
∂t

+∇.F(u) = 0 (1)



over the domainΩ with the appropriate boundary condition
and initial condition given as

u(x, t = 0) = u0(x), (2)

whereu is the conserved quantiy andF is the flux vector.
There are many approaches to deal with the problem in-

volving discontinuities, shock waves and we are interested in
using discontinuous Galerkin (DG) method to resolve these
problems. In the context of DG method, it can be found in the
literature that the solutions have to be limited if the shocks
occur and there are a number of ways doing this limitation.
In spite of the successful development over the years on the
limiters used to handle the discontinuities in DGM, there are
still a lot of problems which need to be investigated. While it
is easily applicable and very well understood on how to limit
the solutions in one dimensional cases, the problems in higher
dimension are not yet well resolved.

A. Discontinuous Galerkin Method

Let Vp
h(Ω) be the space of polynomials of degreep on the

subdivisionTh of the domainΩ into elementsΩ =
⋃

κ∈Th
κ,

Vp
h(Ω) =

{
v ∈ L2(Ω) : v|κ ∈ P p(κ), ∀κ ∈ Th

}
. (3)

Discontinuous Galerkin formulation is expressed as follows:
find uh ∈ Vp

h such that
∫

κ

vT
h (uh)tdx−

∫

κ

∇vT
h .F(uh)dx +

∫

∂κ

vT
h F̂(u+

h ,u−h )nds

= 0, ∀vh ∈ Vp
h,
(4)

where F̂(u+
h ,u−h ) is the numerical flux at interior element

boundary or domain boundary. The()+ and ()− notations
indicate the trace of solution taken from the interior and
exterior of the element, respectively, andn is the outward
normal vector to the boundary of the element. The numerical
flux F̂(u+

h ,u−h ) can be taken as any Lipschitz continuous
monotone flux, for example Roe’s flux or Lax-Friedrichs flux.

B. Shock indicator

As the solution develops discontinuities, there must be a
switch that allows one to turn on the limiter to resolve the
discontinuities. In this case an indicator is designed to identify
the trouble cells where the viscosity is added. The solution is
expressed in term ofp order orthogonal basis as

u =
N(p)∑

i=1

uiφi, (5)

whereφi ∈ Vp
h, i = 1, ..., N(p) are the basis polynomials.

The orthogonal Legendre polynomials are used as basis func-
tions in one dimension while an orthogonal Koornwinder basis
[11] is employed for two dimensional triangulation elements.
In general if the solution is smooth the coefficients decay very
quickly while it is very slowly decaying for non smooth solu-
tion. In the case of Fourier expansion the Fourier coefficients

would decay with the rate of1/km+1 given that the function
is m-order differentiable. We adopt the following smoothness
indicator [12] which is defined within each elementκ as

Sκ =
(u− û,u− û)κ

(ū, ū)κ
, (6)

where(., .)κ is the standard inner product inL2(κ), û is the
truncated expansion of the same solution containing the terms
up to orderp− 1,

û =
N(p−1)∑

i=1

uiφi, (7)

with ū is the constant representative value of the solution.
Essentially if the approximated solution is assumed to be
continuous and the polynomial expansion behaves in a similar
manner as the Fourier expansion then the coefficients would
decay in the order of1/k2. Therefore we expect that values
of Sκ will scale like∼ 1/p4.

C. Viscosity limiter

The proposed limiter uses the idea of viscosity for the
numerical solution. Instead of flattening out the discontinuities
or the employment of some high order non-oscillatory recon-
struction, an appropriate amount of viscosity can be added in
to spread the discontinuities over several cells such that it can
be well resolved in the space of the interpolating polynomials.
With the above mentioned indicator in previous section, one
can detect in which elements the shock is located and the
appropriate amount of viscosity is then added to resolve the
discontinuity in the solution with continuous approximation.
In order to do that a viscous term is added to the original
equation as follows

∂u
∂t

+∇ · F(u) = ∇ · Fv(µ, u,∇u) (8)

whereµ is the amount of viscosity andFv(µ, u,∇u) is the
viscous flux function. It can be clearly seen that the viscosity
parameterµ is chosen as a function of the mesh size and
order of approximating polynomials. In the region of shock
as detected by the indicator the viscosity added to the model
is taken to be proportional to(h

p ) where p is the order of
interpolation polynomials andh is the mesh size whereas no
viscosity is used in the region of well resolved solution. A
simple form of flux function which is commonly used is given
in the form ofµ∇u. A number of tests will be carried out to
show that this simple model can give a very good result in
some of the cases; for example, the Burgers’ equation.

However in using viscosity to resolve the shock for Euler’s
system, a more complex flux function (in fact the physical
one) is used to resolve the shocks. Hence using a constant,
problem-independent value of viscosity to capture the shock
with different strength will not give the expected answer due
to the nonlinear behavior of the physical viscous flux. The
viscosity added to the system must be set based on the problem
nature. In the attempt to find the viscosity, it is physically
motivated by the fact that for the Euler’s system viscosity is



dependent on the temperature. There are a few expressions
for the temperature dependent viscosity of which a commonly
used is the formula of Sutherland,

µ(T ) = C
T 1/2

1 + T ∗/T
, (9)

where C andT ∗ are the constant. Another often used formula
is given as

µ

µ0
=

(
T

T0

)α

, (10)

whereµ0 is the reference viscosity at the reference temper-
atureT0. The viscosity which is applied to each cell in the
computational domain is determined by Equation (10).

It is noted that the standard DG method can not be applied
to discretize the viscous term in the Equation (8) which in-
volves high order derivative. The local discontinuous Garlerkin
(LDG) method [1] is used to handle the second order derivative
in the viscous flux function.

III. N UMERICAL APPLICATIONS

A. One dimensional applications

We first consider the scalar Burgers equation in one dimen-
sion

ut + (
u2

2
)x = 0 (11)

in the domain [0,2] with smooth initial condition described as

u(x, t = 0) = a sin(πx), (12)

where a is the amplitude of the wave which characterizes
the strength of the shock formed in the solution. Solution at
t=1.0/π is shown in Fig. 1 forp = 10 with the grid of 41
elements. This is a very simple test to check how the shock
capturing scheme works. Starting with a sine wave, shock
will gradually form and become stationary atx = 1.0, and
the shock strength scales with parametera. It can be seen
that the shock is very well captured with a very high order
method but reasonably coarse mesh. In this example we use
the same amount of viscosity for different shock strengths
and there is no oscillation found in the solutions. It can
therefore be concluded that the viscosity added into the system
is independent of the shock strength. This can be explained by
the observation that in the scalar Burgers equation the viscous
flux (µ∆u) is always proportional to the change in the velocity
u. As the velocity is increased, corresponding to the increase
in shock strength, the viscous flux is scaled proportionally to
insure that it can always revolve the shock.

Next we consider the Euler’s equations in one-dimension

ut +∇ · Fe(u) = 0, (13)

where u are the conservative variables andFe(u) is the
inviscid (Euler) flux function; these are

u =




ρ
ρu
ρe


 Fe(u) =




ρu
ρu2 + p

ρhu


 .

The solution is initialized with an nonlinear isentropic acoustic
wave given as

u = u0 +
2

γ − 1
(a−√γ)

ρ = 1 + c sin(2πx)
p = ργ

whereu0 is the velocity of the free stream with a pressure of
p0 = 1 andρ0 = 1, c is the amplitude of the wave. Basically
the wave speeds are different at every point on the wave
therefore the acoustic wave propagates and steepens to form
the shock. Depending on the values of free stream velocity,
the wave propagates at average speed of(u0 +

√
γ). In this

example,u0 = −√γ and a stationary shock is form after a
period of time depending on the solution profile. To resolve
the shock a viscous flux is added to the cell(s) which is found
to contain the shock via Equation (6). The viscous flux could
be artificial (Fv(u) = µ∇u) or a physical one where

Fv(u,∇u) = µ




0
(2 + λ)ux

u(2 + λ)ux + γ/Prex


 .

In Figure 2, the density and mach number at time t=1.0 are
shown for the case ofa = 0.15. The shock is very well
captured within 1-2 cells. Note that the viscosity will affect
the stability of the method and we have to use a smaller
CFL number to capture the shock. Applying the temperature
dependent viscosity to capture the shock with different strength
are shown in Figure 3 forc = 0.6 and 0.8. Note that
for a higher value of amplitudec, the wave is no longer
considered as linear. In these cases, the reference temperature
is taken such thatp/ρ = 1 and the corresponding viscosity is
1.0 × 10−3. It can be seen that the shock in both cases are
well resolved via the temperature-dependent viscosity.

Consider now the flow of compressible, idea gas through a
variable-area channel governed by the quasi-1D Euler equa-
tions. The geometry of the channel is described as follows:

A(x) =

{
A0, x ≤ x1 ∪ x ≥ x2;

A0 + (At −A0)
[
cosπ(x−0.5)

x2−x1

]2

, otherwise.
(14)

HereA(x) is the cross section area along the channel. Depend-
ing on the geometry and the outflow condition (back pressure
or Mach number), the flow in the channel can be isentropic
subsonic or shocked transonic. In this case the area of the
nozzle throat and exit Mach number are set such that there is a
shock in the nozzle, the shock strength is dependent on the exit
Mach number and the throat area. In Figure 4, the solutions
of pressure and Mach number along the nozzle are shown for
case examples of different throat areas and exit Mach numbers
and hence shocks with different strengths will be formed in
the nozzle. It can be seen that the shocks can be captured quite
well for mentioned case examples ofAt = 0.2,Me = 0.5 and
At = 0.025, Me = 0.4.



B. Two dimensional applications

For simplicity, we shall extend the acoustic problem in one
dimension to two dimensions. The scheme is tested in 2D by
considering the Euler equations in two dimensions with the
flow conditions being extended from the simple acoustic wave
problems presented in the previous section. Initial condition
is the same as in the 1D problem with the velocity taken
to be zero for the vertical component and periodic boundary
condition is applied in y direction. The amplitude of the wave
is taken asa = 0.4. The solution of density and Mach number
are shown in the Figure 5 at timet = 0.5. It can be seen
that the shock is resolved within almost one element and the
scheme works for two dimensional problems.

Next we consider a flow over a bump of heighth in the
domain of [0, 10] × [0, 4.146]. The bump on the upper half
of a 4.2% circular arc of width2 with the center located at
(5, 0). The problem is to compute the flow field in the domain
within the range of transonic flow. In this example, the flow at
M = 0.85 over the bump will be computed. Inflow boundary
condition is applied on the left, with outflow conditions on
the right and the top. At the bottom of the domain, solid wall
boundary condition is applied. On the boundary conditions,
the state value at the inflow/outflow boundaries is determined
by using the outgoing Riemann invariants in the normal
direction to the boundary and given boundary data. At the
solid boundaries, a symmetric boundary condition is applied to
specify the state condition which has the same density, internal
energy and tangential velocity as the internal components and
opposite normal velocity.

The solution of the pressure and Mach number are shown
in the Figure 6. In this coarse grid of 192 elements refined in
the region closed to the bump surface the shock is reasonably
resolved within to about one element. The computation should
be performed until the steady state solution is obtained based
on a tolerance of10−3 for the norm of density residual.

IV. CONCLUSION

It has been shown that viscosity term can actually resolve
the shock in the context of discontinuous Galerkin method.
With the appropriate amount of viscosity added into the system
the discontinuities in solution can be spread out in the band
of several cells in the domain and very well approximated
by the interpolating polynomials. While a constant amount of
viscosity can resolve the shocks with expected resolution in
the case of scalar problem with linear viscous term, it has to
be scaled with the solution profiles in order to approximate
the shock better in the non-linear case; for example for the
Euler equations which the viscosity is taken to be propor-
tional to the flow temperature. Both one and two dimensional
problems are tested and show that the proposed approach is
capable of capturing the shocks and discontinuities. For the
two dimensional problems, the shock is well resolved by the
temperature-dependent viscosity term. However there remains
some issues relating to stability in the present employment of
explicit method. Future direction is to incorporate an implicit
time-stepping scheme to permit reasonably large time step.
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Fig. 1. Burgers equation’s solution at t=1/π, p = 10, 41 elements: (a) a = 2; (b) a = 5; (c) a = 10; (d) a = 20. The shocks are very well resolved in one
element. Figures are not on the same ordinate scale.
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Fig. 2. Euler equations, density and Mach number profile att = 1.0 for c = 0.15, temperature dependent viscosity. The shock is formed from the acoustic
wave and resolved in 2 cells.
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Fig. 3. Shock capturing, solution forc = 0.6 (top) andc = 0.8 (bottom) at t=0.4,p = 5. Note how the different strength shocks are resolved by using the
temperature dependent viscosity.
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Fig. 4. Nozzle flow, solutions of pressure and Mach number with different nozzle configurations at t=1.0,µ0 = 1.0× 10−3. Note at the jump in the Mach
number in the shock region.
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Fig. 5. Two dimensional Euler problem, shock formed from sine wave. UsingP = 4, density and Mach number shown at t=0.5. The shock is almost
resolved within 1 element.
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Fig. 6. Two dimensional inviscid compressible flow over a bump. Solutions of pressure and Mach number are shown withp = 4. The shock is almost
resolved within 1 element.


