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ABSTRACT

A modelling study of hippocampal pyramidal neurons is described. This
study is based on simulations using HIPPQO, a program which simulates the
somatic electrical activity of these cells. HIPPO is based on a) descriptions of
eleven non-linear conductances that have been either reported for this class of
cell in the literature or postulated in the present study, and b) an approximation
of the electrotonic structure of the cell that is derived in this thesis, based on
data for the linear properties of these cells.

HIPPO is used a) to integrate empirical data from a variety of sources on
the electrical characteristics of this type of cell, b) to investigate the functional
significance of the various elements that underly the electrical behavior, and c)
to provide a tool for the electrophysiologist to supplement direct observation of
. these cells and provide a method of testing speculations regarding parameters
that are not accessible.

The novel results of this thesis include:

o Simulation of a wide range of electrical behavior of hippocampal pyramidal
cells by using descriptions of ionic conductances (channels) whose kinetic
properties are developed from both limited voltage-clamp and current-
clamp data and from the theory of single-barrier gating mechanisms. This
result suggests that the single-barrier gating mechanism of the Hodgkin-
Huxley model for ionic channels is empirically valid for a wide variety of
currents in excitable cells.

e An estimation of the linear parameters of hippocampal pyramidal cells
that suggest that the membrane resistivity, and thus the membrane time
constant, is non-homogeneous.

e An estimation of dendritic membrane resistivity (Rm) and cytoplasmic
resistivity (R;) that is higher than generally considered, and the conclusion
that the cell is more electrically compact than previously thought. This



compactness implies that distal and proximal dendritic input have similar
efficacies in generating a somatic response.

e A method for estimating the dimensions of the equivalent cable approxi-
mation to the dendritic tree based solely on histological data.

o Descriptions of three putative Na* currents (Ing—trig) INa~rep, 80d INa—tait)
that quantitatively reproduce the behavior generally ascribed to Nat cur-
rents in hippocampal pyramidal cells.

o Descriptions of two Ca?* currents (Ic, and Ices) and a system for reg-
ulating Ca?* inside the cell that qualitatively reproduces the data for
Ca?*-only behavior in hippocampal pyramidal cells.

o Descriptions of six K* currents (a delayed rectifier K+ current — Ipg, a
transient K+ current - I4, a Ca?*-mediated Kt current - I¢, a Ca?*-
mediated slow K* current - I 45 p, a muscarinic K+ current — Iy, and an
anomalous rectifier K+ current - Ig) that are consistent with the avail-
able data on these currents and that reproduce either quantitatively or
qualitatively the behavior associated to each current during the electrical
response of hippocampal pyramidal cells.

¢ Simulations demonstrating possible computational and/or pathologic roles
for the model currents.

o The design of an interactive program that simulates hippocampal pyrami-
dal cells with a variety of models of electrotonic structure and the inclusion

of Hodgkin-Huxley-like non-linear conductances at various points in the
cell.

Thesis Supervisor: Prof. Tomaso Poggio, Professor of Brain and Cognitive
Sciences
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Chapter 1

INTRODUCTION

1.1 Modelling Neurons of the Central Nervous
System

Understanding the brain is a multi-level task, incorporating perspectives
from molecular biology to cognitive science and psychology. At some point in
this hierarchy the single cell is encountered, and the view that all information
processing in the brain derives from mechanisms on this level is generally
accepted; i.e. it is correct to speak of a neuron processing signals, rather
than the neuropil being the basic functional unit for computation.

The actual role of individual neurons in information processing is open
to speculation. In some systems good arguments have been advanced in
support of the handling of certain tasks by specific cells. In most structures
in the central nervous system (CNS), however, the role of the single cell
is not well defined. Typically, descriptions of information processing in the
CNS refer to anatomical structures consisting of (at least) thousands of cells,
and fail to assign roles to single cells.

Thus, an investigation into information processing on the level of the
single neuron is important. Over the past decade quantitative data on CNS
neurons has grown considerably, and interpretation of this data is now ap-
propriate in order to establish the role of the neuron as it receives the multi-
tudinous signals from the neural mesh. Utilization of systematic models is a
method of addressing this problem. One of the models that is an appropriate
vehicle for this task is named HIPPO

13



1.2 The HIPPO Model of Hippocampal Pyrami-
dal Cells

This thesis describes the development and application of the computer model,
HIPPO. This model simulates the somatic electrical behavior of a stereo-
typical cortical integrating neuron, the mammalian hippocampal pyramidal
cell (HPC). The development of HIPPO includes an estimation of the elec-
trical structure for this cell, development of the numerical technique used in
the model algorithm, integration of electrophysiological data into the model
(particularly that describing the non-linear conductances reported for the
HPC), and implementation of the model on a Symbolics 3600 LISP machine.
The application of HIPPO includes an integration of sparse and conflicting
data obtained from a variety of electrophysiological protocols. Applying
HIPPO includes also testing of speculations regarding characteristics not
accessible to in vivo or in vitro measurement.

As set forth this report, modelling a non-linear system as complex as
the hippocampal pyramidal cell is problematic at best. The situation is
complicated by both the numerous interdependencies of the mechanisms
underlying electrical behavior in these neurons!, and by the approximations
and assumptions (e.g. the Hodgkin-Huxley model, ref. Chapter 4) that are
required due to the present state of the data.

In light of these difficulties, this model is presented with the understand-
ing that many of the putative mechanisms described could easily be incorrect
in their details, but given the constraints imposed on the development of the
model parameters (as defined throughout this Thesis), these descriptions are
reasonable in that they are based on first principles and that they generate
the desired behavior. At best, the descriptions will in some way reflect what
is actually going on in these cells; at worst, the descriptions and the result-
ing behavior of the model will generate testable predictions and suggestions
for postulating more accurate mechanisms.

'In fact, these interdependencies provide important and implicit constraints on the
derivation of parameters, which in turn causes the selection of parameters to be less
arbitrary than otherwise would be the case. These constraints are manifest in the cross-
checking of overall model behavior, required whenever a subset of the model parameters
is altered. This point will be reiterated several times in later chapters when strategies for
developing various elements are reviewed.

14



1.3 Organization of Thesis

In this chapter Sections 1.4 through 1.7 will introduce the hippocampal
pyramidal neuron and describe the motivations for modelling this cell. Some
comments on the applied aspects of the program are also presented.

Chapter 2 contains a discussion of the strategy used herein in develop-
ing HIPPO and the basic structure of the model, outlining the geometry
of the model and the type of circuit that it simulates. The development of
HIPPO involves careful examination of the literature on hippocampal cells
(and other neurons, as required) in conjunction with consultation with elec-
trophysiologists. The techniques used by the electrophysiologist to measure
the various components of the electrical behavior of a neuron are reviewed
since these techniques guide the construction of the model from available
data and the evaluation of any inconsistencies in that data. This chapter
closes with a brief discussion of the network elements, in particular the elec-
trochemical potentials that drive the electrical excitability of these neurons.

Chapter 3 covers the evaluation of the linear characteristics of the HPC.
This analysis forms a basis for building the model of the pyramidal neuron,
particularly since many of the non-linear parameters must be estimated from
incomplete data. Estimating the characteristics of non-linearities in the cell
is fruitless without a solid linear description to build on. Several approaches
to this problem , as well as a critical review of the published data on the
linear structure of the HPC, are presented. Finally, the linear parameters
used for the present version of HIPPO are discussed.

The non-linear conductances in the model are all based on some varia-
tion of the classic Hodgkin and Huxley model ([21], [20], [22], [23]) of the
Nat and Kt conductances in the squid axon. This approach represents a
major assumption in the HIPPO model, particularly since many of the non-
linear conductances in HPC have not been conclusively demonstrated as
being Hodgkin-Huxley-like conductances. However, in light of the paucity
of data for these cells, this approach is a reasonable one, and in fact has
been successful in reproducing many qualitative and quantitative aspects of
HPC electrical behavior. Since the Hodgkin-Huxley model is of such basic
importance to the HIPPO description, this model and the application of
this model to putative HPC conductances are described in Chapter 4. In
addition, the implications of the single-barrier gating interpretation of the
Hodgkin-Huxley model are discussed in detail.

In the next three chapters the development of descriptions of the various
non-linear currents is described, along with the simulated behavior of these
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currents. In these chapters the behavior of the model is compared typi-
cally with data from cells obtained under conditions similar to those being
simulated.

In Chapter 5, the three proposed Nat currents, I Na-trigs INa—rep, and
INa—tail, are presented and the HIPPO simulation of Na*-only HPC behav-
ior is shown. '

In Chapter 6, the HIPPO description of the two Ca?* currents, I¢, and
Icas, are presented with simulations of Ca?t-only HPC behavior, as well as
the HIPPO description of the dynamics of intracellular Ca?* and the factors
that determine the concentration of Ca?* underneath the cell membrane.
This latter component is important since two K+ currents (Ic and I4gp)
are presumably mediated by the concentration of intracellular Ca?t, and
the magnitude of [Ca?*),henn.1 (ref. Chapter 6) can significantly change the
reversal potential for Ca?t ( Eg,).

In Chapter 7 the six K* currents in the model are presented. These
currents, Ipr, Ia, Ic, Ianp, Im, and Ig, display a wide range of activa-
tion/inactivation characteristics and thus modulate the HPC response in
many different ways. The parameters used in the model for these currents
are presented here, as well as various simulations demonstrating their be-
havior.

In Chapter 8 and Chapter 9 some selected simulations are presented of
voltage clamp protocols and current clamp protocols, respectively. These
simulations augment the ones that are presented in earlier chapters, and
demonstrate the overall behavior of the model and how the model reproduces
various data taken from cells. In contrast to the results presented in earlier
chapters, the simulations discussed here represent speculative behavior of
the HPC, given the HIPPO description of its electrical characteristics.

In Chapter 10 implications of the results obtained by the model are
discussed, and the validity of both these results and the approach used in
constructing HIPPO. Guidelines are also proposed regarding the application
of HIPPO. In the final chapter, Chapter 11, some of the future applications
of HIPPO are presented.

In Appendix A a sample simulation session is described, showing the
interactive nature of the menu-driven HIPPO and the presentation of simu-
lation results. Appendix B contains a description of the predictor-corrector
algorithm used by HIPPO to solve the network equations. In Appendix C
the structure of the HIPPO code will be described. Appendix D contains
the software listing for HIPPO.
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1.4 Hippocampal Pyramidal Neurons As A Stereo-
typical Cortical Integrating Neuron

The hippocampus is a part of the cerebral cortex. This structure carries
and (presumably) processes signals projecting to and leaving from various
regions of the neocortex. The hippocampus forms along the free medial edge
of the temporal lobe of each cerebral hemisphere, extending from the several
layers of neocortex, forming its characteristic spiral, which in turn consists
of a single layer of pyramidal cells. Historically, the striking anatomy and
connectivity of the hippocampus has made it one of the more studied areas of
cortex. Although the classical role of the hippocampus as a major player in
the so-called “limbic system” is now being re-evaluated, there is substantial
evidence of various functional roles of this structure, including a putative
role in mediating long-term memory.

The pyramidal neuron is the basic efferent cell of the cerebral cortex,
integrating afferents from both intracortical and extracortical structures.
The connectivity of a single pyramidal cell is typically very large, with hun-
dreds to thousands of afferent connections. This input tends to be quite
segregated, with distinct tracts originating from various structures making
synapses with specific regions of the pyramidal cell’s extensive dendritic tree.
The pyramidal cell, as one of the major cell types in the cortex, is an impor-
tant determinant of cortical function on the cellular level. The hippocampal
pyramidal cell is representative of this class of neurons, and for these reasons
and those set forth below, it is a cell of choice for investigations of central
neuron characteristics.

The large body of knowledge for the hippocampus has been enhanced in
recent years by the brain slice technique used for obtaining stable in vitro
electrophysiological measurements with various micro-electrode techniques.
In the slice technique, approximately 500 um thick transverse slices of freshly
excised hippocampus (typically rat or guinea pig) are maintained for sev-
eral hours in small chambers filled with an appropriate oxygenated solution.
Once set up in this manner, intracellular recordings from microelectrodes can
be obtained for several hours. A related technique, which also has been de-
veloped recently, is the combination of patch clamp recording methods with
pyramidal cells cultured from embryonic neurons. This technique, while
clearly moving one more step away from the physiological environment, al-
lows for higher quality measurements due to the improved electrical nad
mechanical characteristics of the patch electrode over the micro-electrode.
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The hippocampal pyramidal cell has therefore been chosen as the target
cell for the present study. To build this model, an attempt was made to
evaluate a large sample of the literature, which is quite extensive. As an
initial modelling study, this effort was successful in quantifying much of the
behavior of this representative cell in the CNS, and in establishing the basic
aspects of somatic HPC function. These results may be extended to other
cells in the CNS, especially when more data on these cells becomes available.

1.5 Application of HIPPO

An important aspect for the application of the HIPPO model as a research
tool is its flexibility. The structure of HIPPO allows straightforward testing
of the sensitivity of the model to changes in various parameters. In particu-
lar, estimating a parameter which is based on low-confidence experimental
data can require testing of values over a wide range. One cost of this flexibil-
ity is in the execution time of a given simulation protocol. For this reason,
versions of HIPPO were developed which had a relatively fixed structure
and simulation protocol but executed considerably faster. In some cases
the use of these quick “customized” HIPPOs was effective in developing an
intuitive sense of the behavior of the model, and presumably that of the
cell. For example, voltage-clamp simulations of isopotential structures in-
volve considerably less computation than that of voltage-clamp simulations
of non-isopotential structures or current-clamp simulations in general. Yet,
to a first approximation, much of the data in the literature can be effectively
simulated with the simplified voltage-clamp protocol. Once initial estimates
of simulation parameters have been tested on the simplified HIPPO, then
the more general HIPPO can be used to examine more realistic structures.

1.6 The User Interface

A substantial effort was invested in the user interface of HIPPO. Input to the
model is done via a menu hierarchy (ref. Appendix A) that allows efficient
manipulation of relevant parameters and a subsequently rapid set-up for a
given simulation. A limited degree of automated simulation execution is also
provided. Output of HIPPO is both graphical and numerical. Manipulation
of the output is straightforward and non-displayed parameters are easily
accessible. The user interface design has a net result of being able to use
HIPPO in an interactive, self-documenting fashion.
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1.7 Previous Work

Much of the program design philosophy and the approaches used in esti-
mating model parameters were inspired by an earlier model constructed by
Prof. Christof Koch and Prof. Paul Adams for the bullfrog sympathetic
ganglion cell [2].
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Chapter 2

MODELLING STRATEGY
AND THE ELEMENTS OF
HIPPO

2.1 Introduction

The goal of the HIPPO model is to give a reasonable description of a non-
linear time-varying multi-variable system. To achieve this, development of
the model was accomplished in stages of increasing complexity along sev-
eral degrees of freedom, including the geometry of the model cell and its
non-linear, time-varying properties. Since many of the network components
are non-linear, superposition does not hold in general. The resulting inter-
dependence of the parameters was a considerable problem in constructing
a valid description, especially since any change in a single parameter often
meant that much of the model behavior had to be checked. Careful evalu-
ation of experimental results was essential in order to prevent generation of
false-positive solutions. This chapter will discuss the general development
of the model, the structure of the modelled system and its elements.

2.2 Determining the Validity of the Model Re-
sults
A key consideration in the interpretation of the HIPPO results is in deter-

mining the validity of a given version of the model. There is no clear-cut
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unique solution set for the model parameters. For example, many (non-
physiological) descriptions of the kinetics will yield reasonable behavior.

The basic approach considers an evaluation of as many parameters as
possible under orthogonal or nearly orthogonal simulation protocols, mim-
icking the electrophysiologist’s technique. Particular attention is paid to
when experimental results reflect the overlapping of several kinetic mecha-
nisms, particularly when superposition does not hold (when superposition
does hold, then it may be exploited to extract the relevant parameters from
the total response). Whenever several non-linear elements contribute to the
model response the model is used iteratively to test different hypotheses for
the parameters in question.

Most of the HPC currents are present over a limited range of membrane
voltages. In the simplest case, involving a determination of the kinetics
of a system with two currents X1 and X2, when the activation ranges for
X1 and X2 are non-overlapping, then the voltage clamp protocol will have
no problem quantifying each current. In practice, however, there are few
currents that experience an exclusive range of activation, and therefore the
situation is more complicated 1.

While more than one current may be activated at a given voltage range,
different components may be distinguished if they have significantly different
time courses. For example, I4 and Ipg are activated over the same range.
Since I4 activates and inactivates much faster than Ipgr over part of this
range, however, the two currents can be distinguished by their distinct time
courses in voltage clamp protocols (Segal and Barker, 1980).

Another technique to separate different currents is to exploit the phar-
mocological sensitivity of some currents. For example, Nat currents are
generally believed to be blocked by the puffer fish toxin, tetradotoxin (TTX),
and that channels for other ions are largely unaffected by TTX. Thus, in
voltage clamp preparations TTX is commonly used to unmask currents that
might otherwise be swamped by larger Na¥ currents. with similar kinet-
ics. Other examples of selective blocking of currents include the use of
tetra-ethylammonium (TEA) to block some potassium currents (e.g. Ipr),
4-aminopyridine (4-AP) to block 14, and various Ca?* blockers (e.g. Mn')
or Ca?* -chelators to inhibit Ca?* currents , and calcium-mediated currents
(I¢ and Isgp) (ref. Table 7.1).

!The main exception is Ig, which is the only current activated at fairly hyperpolarized
potentials (Chapter 7). The leak current is superimposed on the Q current, but that may
be readily distinguished from the Iq.
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Figure 2.1: Typical geometry of HIPPO compartmental model simulation,
including soma sphere joined in series to several dendritic cylindrical seg-
ments and current injection into soma. Each compartment is isopotential.
One of the outputs of the simulation is the time course of each compartment
voltage.

2.3 Geometry Of Model

HIPPO simulates hippocampal pyramidal neurons with a compartmental
model that incorporates several isopotential compartments connected to-
gether with resistors. The simplest morphology is a single compartmental,
isopotential spherical model of the entire cell, i.e. no dendritic structure or
axonal process. This structure can be extended with the addition of as many
as five processes, which can be configured as four dendrites and one single
compartment axon. Four of the processes are represented by an arbitrary
number of lumped cylindrical segments, with each segment having its own
set of linear and non-linear electrical parameters. The fifth process, when
included, is represented by a single isopotential cylindrical compartment.
Most simulations were run with a single dendrite and no axon, as illustrated
in Figure 2.1.

The physical and electrical parameters for each of the compartments -
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soma sphere and process cylinders - can be set uniquely for each compart-
ment. For example, the soma can be set up with at most eleven non-linear
currents, a particular membrane resistivity and capacitance, and a particu-
lar radius. A single dendrite might be added with ten segments, with eight
configured as linear cables using the same linear parameters but distinct
dimensions. The remaining two segments could have two non-linear con-
ductances in addition to their linear properties, and one of the all-linear
segments could have a synapse. In the present report only the linear den-
drite case will be examined. In Chapter 3 a detailed analysis and subsequent
method for approximating the hippocampal pyramidal cell geometry will be
presented.

2.4 HIPPO Solves A Non-Linear, Time-Varying
Electrical Network

In this modelling study the HPC is analyzed as an electrical circuit. In-
puts to this circuit include stimuli provided by intracellular electrodes or
by synaptic-like conductance changes, and circuit outputs include voltages
at various parts of the cell, specific membrane currents, the concentration
of Ca?* in different compartments related to the circuit, and various state
variables associated with the non-linear conductances. In a general sense,
HIPPO is a program for simulating a particular class of electrical networks.
HIPPO is configured to handle a limited set of topologies with a specific
class of network elements, as well as linear resistors and capacitors, volt-
age sources, and current sources. The special class of elements are non-
linear voltage-dependent and time-dependent conductances that represent
the behavior of ion-specific channels in the cell membrane. The electrotonic
structure of neurons (as determined by the morphometrics and linear com-
ponents of the cell) is extraordinarily important to their function, and much
of the effort in the development of HIPPO was in the characterization of
this structure as well as that of the non-linear elements.

Figure 2.2 illustrates a typical network configuration for simulation. In
this particular topology the network is stimulated by a current source that
injects a current pulse into the soma. This source is the system input in
this particular simulation. The outputs include the voltages of each of the
compartments, the currents through each of the branches of the network, and
the state variables that describe the behavior of the non-linear conductances.
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Figure 2.2: Network schematic for typical simulation protocol, similar to
that shown in Figure 2.1. Voltage for each compartment is measured relative
to the outside of the cell. Determining the characteristics of the circuit
elements from (a) the voltage response to current source stimulus (current
clamp), (b) the current response to voltage source stimulus (voltage clamp),

and (c) estimation of parameters derived from basic principles is the focus
of this research.
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2.5 Elements of the Model

The basic task of HIPPO is the determination of the circuit elements. Char-
acterization of some of these components is straightforward, e.g. the mem-
brane capacitance, while most of the others are subject to considerable spec-
ulation. Because of a lack of data, some elements cannot be determined with
a high degree of certainty. For these parameters, if the behavior of the cell
is strongly effected, sets of simulations were conducted over the presumed
range of the parameter, resulting in a range of cell responses peculiar to
changes in that parameter.

HIPPO incorporates 11 non-linear, time-varying conductances in the
soma, including those that underly three putative sodium currents, (Ing—trig,
INg-tail, and INg—rep), @ delayed-rectifier potassium current (Ipg), a cal-
cium current (Ic,), a slow calcium current (Ic,s), a calcium-mediated potas-
sium current (Ic), an after-hyperpolarization potassium current (I4gp), a
muscarine-inhibited potassium current (Ips), a transient potassium current
(14), and an anomalous rectifier potassium current (Ig).

All the compartments include the leakage current (I1) and the capaci-
tance current (f¢qp) as explicit components of the network model. In ad-
dition, the soma compartment includes a non-specific shunt conductance as
may be introduced by the microelectrode.

All the parameters for the model, including the kinetics of the non-linear
conductances and the linear characteristics of hippocampal pyramidal cells,
were derived either from the literature or from consultation with Prof. Paul
Adams 2, Dr. Johan Storm 2 and Prof. Christof Koch 4.

2.6 Reversal Potentials and Ionic Current Through
Membrane Conductances

The origin of the membrane potentials will now be reviewed, as these el-
ements are fundamental to the interpretation of the model. The reversal
potentials for each conductance derive from two salient features, (1) a con-
centration gradient across a membrane for ionic species X and, (2) selective
permeability in that conductance for X relative to any other ionic species in

?Department of Neurobiology and Behavior, State University of New York at Stony
Brook.

3 .
Ibid.
*Department of Biology, California Institute of Technology.
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the intra- and extra-cellular medium. The concentration gradient sets up a
thermodynamic potential that drives ions of X down the gradient, and across
the membrane, in order to balance the concentrations. If, however, the mo-
bility across the membrane of any of the other species in the mediums is not
the same as X, movement of X will then set up a charge imbalance across
the membrane. This imbalance will create a potential difference across the
membrane that will oppose movement of X down the concentration gradi-
ent. At equilibrium, there will be no net flow of X across the membrane,
and the electrical potential will be equal and opposite to the thermodynamic
potential caused by the concentration gradient. The relationship between
concentration gradient and electrical potential is described by the Nernst
equation,

RT . [X]out
2x F In [Xin

where Ex is the potential due to ionic species X (referenced to the inside of
the cell), R is the gas constant, T is the temperature in degrees Kelvin, zx
is the valence of X, [X],y: is the concentration of X outside the membrane,
and [X);n is the concentration of X inside the membrane.

Note that if the membrane is permeable to other charge carriers in the
medium, then space-charge neutrality will be maintained as counterions are
dragged across the membrane with X. The concentration gradient of X will
then be eliminated with no concomitment establishment of an ionic potential
due to a charge imbalance from the movement of X.

The flow of ions through membrane channels has been the subject of
much theoretical work, and at present there is no consensus as to the mech-
anisms involved (Hille, 1985). However, measurements of the intrinsic con-
ductance of ion channels over a narrow range of membrane potentials 3 show
that to a first approximation this intrinsic conductance is linear (indepen-
dent of the voltage):

Ex =

Ix = gX(Vmembrane - EX)

where Iy is the ionic current, Vi;embrane is the voltage applied across the
membrane, and gx is the conductance of X through the membrane channels.

STypically in the physiological range of membrane potentials, and several millivolts
away from the reversal potential of a given channel, where non-linearity of the intrinsic
conductance is pronounced most.
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An important assumption in the HIPPO model is that the flow of one
ionic species across the membrane is independent of the flow of any other
species; the different currents are linearly independent. This allows the dif-
ferent current paths to be represented as distinct independent conductances
in parallel with each other, each driven by the appropriate ionic potential,
as was illustrated in Figure 2.

In fact, it has been demonstrated that so-called “selective” channels are
not absolutely selective for a given ion. Most channels are instead prefer-
entially selective for one ion or another, and have a lower (perhaps much
lower but non-zero) permeability for other species. The result is a reversal
potential for a given channel that may be expressed by the Nernst-Goldman
equation, including the appropriate ions and their relative permeabilities.
For example, the reported reversal potentials for the (assumed) K+ chan-
nels typically vary between -90 and -70 millivolts, whereas Ex, assuming
standard values for the concentration of K+ inside and outside the mem-
brane, is about -98 millivolts. Likewise, data on Ic.s, which is advertised
as a Ca®* current, indicates that its reversal potential is around 0 millivolts
(see Chapter 6). Finally, the resting potential in the model is assumed to
be set by a non-voltage-dependent channel with a reversal potential of -70
millivolts, which implies that either there is a mixture of perfectly selective
channels that contribute to give the observed “leak” channel, or there is a
single channel that is permeable, to varying degrees, to more than one ion.

2.6.1 Sodium Potential - En,

In the HIPPO simulations, the sodium potential was not found to be a very
critical parameter, probably since most of the activity of the cell occurs
around potentials that are very hyperpolarized to the sodium potential.
Changing this potential mainly affected the amplitude and rate of rise of
the action potential. [Nat];, is assumed to be 12 mM, and [Nat]oy is
assumed to be 145 mM. At physiological temperature this corresponds to a
potential of +63 mV.

2.6.2 Potassium Potential - Ex

The potassium potential is the most sensitive ionic potential in the model.
Much of the reproduced activity takes place within 10 to 20 millivolts from
rest. In addition, there is evidence that the potassium concentration ad-
jacent to the outside membrane is substantially different than the rest of
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the extracellular medium, which in turn will change Ex transiently dur-
ing electrical activity. Further, the intracellular potassium concentration is
not measured readily. In the model presented here, however, the concen-
tration of K+ inside and outside the cell is assumed constant. [K*];, is
set at 155mM, and [Kt],,; is set at 4mM. At 37°C, this corresponds to a
potassium potential of —85 mV.

As shall be discussed in Chapter 7, raising the reversal potential of Ipg
to -73 mV was necessary, in order to obtain certain features of the voltage
response as mediated by this current. Different so-called K+ conductances
may, in fact, have slightly different reversal potentials, reflecting, as men-
tioned above, a non-ideal selectivity of a given channel. For example, the
higher reversal potential of Ipg implies that this channel allows the passage
of either a small proportion of Ca?t or Nat as well as K+.

2.6.3 Calcium Potential - Eg,

The calcium potential was calculated from the constant extracellular Ca?t
concentration (4.0 mM) and the concentration of Ca?t directly underneath
the membrane regions where the Ca?* channels are assumed to be grouped,
[Ca?**]shent1- At rest, [Ca®t),nen.1 Was equal to 50 nM, resulting in a Eg, of
128 mV. In Chapter 6, the dynamics of the Ca?t system and the behavior
of E¢, are presented in detail.
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Chapter 3

HPC ELECTROTONIC
STRUCTURE AND
DETERMINATION OF
LINEAR PARAMETERS

3.1 Introduction

This chapter describes an estimation of the electrotonic structure of the
hippocampal pyramidal cell model. The parameters for this structure are
derived from the literature and from theoretical considerations that are de-
veloped herein. First, the basis for this development and the role it plays in
the modelling effort will be described. Next, the parameters for the electro-
tonic structure will be defined and described, including the membrane capac-
itance, the cytoplasmic resistivity, and the factors underlying the membrane
resistivity. The next section will begin by describing the problem of mod-
elling the geometry of the cell. Two methods for estimating the dimensions:
will be presented, the first by extrapolating data used in other modelling
studies, and the second based on a histological data-based technique that I
have developed.

The electrical parameters of the cell will be estimated next based on
reported data. When combined with the results of the previous section,
some reports may be used to derive morphometric data, but not electrical

parameters, and other reports may be employed for only some electrical
measurements.
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In order to develop a model structure that is consistent with the available
(valid) data, the next section in this chapter derives the frequency response
for the general structure. Next, DTFT techniques are used with the derived
frequency response to examine various model structures so that the desired
linear temporal response may be obtained. Several suggestions on how some
parameters may be better estimated using the phase and magnitude of the
frequency response are discussed, and the accuracy of the compartmental
model used in the actual simulations is verified by comparison with the
previously derived response of the continuous structure. Finally, the pa-
rameters of the structure used in this study are presented, along with a
discussion of some of the possible functional implications of the values for
these parameters.

3.2 The Importance of the Electrotonic Struc-
ture

In order to develop descriptions of non-linear elements in the pyramidal cell
using the small amount of available data, building on an accurate charac-
terization of the electrotonic structure of the cell is necessary. The term
“electrotonic” refers to the cable-like characteristics of the cell as defined
by the linear properties of the cell membrane , cytoplasm, and the intricate
geometry of the dendritic tree.

Starting with a valid electrotonic structure is important for a few rea-
sons. First, in the absence of complete voltage clamp data, the estimates
for many of the non-linear parameters must be evaluated by current clamp
simulations. In this case, subtleties in the resulting voltage records are ana-
lyzed to determine the accuracy of a given estimation. If the linear response
of the model cell is different than that of the real cell, determining whether
differences between simulated and actual responses are due to errors in the
estimation of the non-linear parameters or to errors in the linear parameters
may be impossible.

For example, one method used to derive the Nat currents in the hip-
pocampal pyramidal cell involves running voltage clamp simulations on the
linear model (no non-linear conductances) using an actual Nat-only spike
record as the clamp voltage. In this protocol, as will be reviewed in Chapter
5, the clamp supplies the current necessary to cancel the linear currents (leak
current, soma-dendrite current, and soma capacitance current) elicited by
the spike waveform. Presumably, then, the clamp current must reflect those
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currents that are mediated by Nat channels during a Nat-only spike. The
time course of the clamp current therefore provides clues as to the non-linear
processes that may underly the Na* currents (ref. Figure 5.2). For example,
does the waveform indicate that more than one HH-like conductance is op-
erating, and what are the magnitudes of the putative components? Models
with different linear response will give different clamp currents under these
conditions, so it is necessary that attention is focused on a model whose
linear response most closely follows a real cell.

Another motivation to carefully develop the linear structure of the model
came about when various references for this structure were consulted, in-
cluding reports of measurements of cells and reports of other hippocampal
pyramidal simulations. As will be reviewed later, many aspects of these
reports were inconsistent, and required reviewing the assumptions inherent
in these analyses and integration of the valid aspects of the reported data
to obtain a more consistent description of the relevant parameters.

3.3 Building the Linear Description

Several papers on the measurement of the linear properties of hippocam-
pal neurons were consulted to obtain the model parameters, including other
modelling studies ([48], [44]), measurements of the linear properties of hip-
pocampal neurons ([7), [52]), and references for analytical approaches to ap-
proximations of the neuron geometry ([26]). Typically these papers derive
parameters via analysis of the assumed linear response to a hyperpolariz-
ing current step. The analysis is based often on the calculated response of
the soma/short-cable structure. Several methods are available to estimate a
given parameter, and more than one is often used to estimate better a given
parameter (e.g. [7]) .

In examining the published data, however, some problems arose when
the derived parameters were checked either using the model or by running
simple calculations. These inconsistencies will be addressed in this chapter.:

3.4 HPC Linear Parameters

The linear parameters of the model include:
o Steady state input resistance as seen from the soma — R;, ()
e Specific resistivity of the soma membrane — Ry, s0ma (K cm?)
o Specific resistivity of the dendrite membrane — Ry,_geng (KQ cm?)
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¢ Cytoplasmic resistivity - R; (KQ cm)

o Specific membrane capacitance (assumed homogeneous)- Cy, (uf/cm?)

e Radius of the soma — @,oma (um)

¢ Radius of the dendritic cable - a (um)

o Length of the dendritic cable — ! (#m)

¢ Length constant of the dendritic cable — A (um)

¢ Electrotonic length of the dendritic cable — L (dimensionless)

o Dendrite/Soma conductance ratio — p (dimensionless)

¢ Terminating admittance of the dendritic cable, normalized to that of
a semi-infinite cable — B (dimensionless)

Some of these parameters are derived from the others, including A and
L:

R —dend
2R;
l

A=

Other parameters that are sometimes used for convenience include
o Cytoplasmic resistivity per unit length - r, (KQ cm™?)
where

- B
Te = a2

o (Typically dendritic) membrane time constant — 19 or 7 (milliseconds)
where

To= Rm-—dendcm

Many investigators refer to a homogeneous membrane resistivity, R,,,
that is constant over both the soma and dendrites. This and each of the
other parameters will be discussed in this chapter. The specific membrane:
capacitance, the cytoplasmic resistivity, the leak conductance, the electrode
shunt conductance, and the leak reversal potential will now be discussed.

3.4.1 Specific Membrane Capacitance

The generally accepted value for Cy, is 1 uf/cm?. This value is comparable
to the specific capacitance of .8 uf/cm? for a pure lipid bilayer ([19]). In
some cells, however, a different value for C,,, has been reported. For example,

32



-

the apparent membrane capacity for crustacean muscle fibers is 15 to 40
uf/em? ([19]). If the true capacity per unit area is 1 uf/em?, this indicates
that the membranes of these cells is quite contorted.

The capacitance of any given compartment was then calculated based on
this value multiplied by the total surface area of the compartment that faced
the extracellular medium. This calculation was based on several assump-
tions about the structure of the cell and the structure of the membrane. For
example, ideal geometries were assumed when calculating the absolute value
for the capacitance for any of the compartments in the HIPPO model - a
sphere for the soma compartment and right cylinders for the dendritic and
axonal compartments. In fact, the cell membrane is much more convoluted
than this description implies, and the net result would be an underestima-
tion of the cell capacitance. On the other hand, the value of 1 uf/cm?
assumes a smooth membrane, without any small-scale variations. A more
realistic calculation of membrane capacitance would take into account the
inhomogeneity of the membrane and the variation of the membrane thick-
ness. These factors would tend to reduce the capacitance per unit area.

In summary, the model cell incorporates a value of 1 uf/cm? for Cy,. In
addition, Cy, is assumed to be constant over the entire cell (i.e. Cy, is the
same for both the soma and the dendrites). Some investigators have pro-
posed larger values for Cp,, for example ranging from about 2 to 4 uf/cm?
([52]). These values were derived from estimating the membrane time con-
stant under assumptions that are probably not valid (e.g. homogeneous time
constant over the entire cell, terminating impedance of dendrites = 0). The
errors incurred under the various assumptions that have been used in other
studies will be examined later, particularly when the estimation of R,, is
discussed. These errors have likely contributed to an overestimation of Cp,
in some of these reports.

3.4.2 Cytoplasmic Resistance

The resistivity of the intracellular medium, the cytoplasm, is calculated
with the assumption that the interior of the cell is homogeneous. This is
clearly an assumption since the cell is packed with a myriad of cytostructural
elements, organelles and inclusions. To a first approximation, however, the
inhomogeneity of the cytoplasm is ignored.

Shelton [44] presents the following argument as to the size of R;. He
proposes that the lower limit of R; is set by the conductivity of pure physio-
logical saline solution, corresponding to a value of 50 to 60 2 cm. Measure-
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ments of the resistivity of extracellular brain tissue are cited in the range
of 50 - 600 Q2 cm, and measurements of the resistivities of axoplasm and
somatic cytoplasm in other cells are quoted as being in the range of 20 -
160 Q cm and 70 - 390 2 cm, respectively. Shelton proposes that the resis-
tivity of the medium in which a microelectrode is immersed contributes to
the effective electrode resistance due to the convergence resistance near the
electrode tip. Since the microelectrode bridge circuit must be compensated
to account for the electrode resistance, the compensation required as the
electrode tip moves from outside to inside the cell will give an indication
of the difference in the extra- and inter-cellular resistivities. Measurements
along these lines indicate that the difference between these resistivities for
the cerebellum and the Purkinje cell are less than 50 2 ¢cm. Assuming that
the cerebellar extracellular resistivity is 200 Q2 ¢m, Shelton then uses this
result to suggests that R; is near 250 2 cm.

This value of R; is significantly higher than what is used usually in the
reports analyzing the linear characteristics of the pyramidal cell. Typical
values in these reports are in the range of 50 - 75 Q e¢m. Most studies do
not indicate the rationale for these values, other than the supposed analogy
to the resistivity of a Ringer’s-type solution. An investigation of the signifi-
cance of R; was therefore of interest, in particular to see if large differences
in this parameter could significantly affect the derivation of the other linear
parameters.

The most obvious parameter that is a strong function of R; is the den-
dritic length constant, A, and thus the electrotonic length of a dendritic
segment, L. A is determined by R;, R;—dend, and a by the following rela-

tion:
A= Ro—denda
2R;

(Note that A expresses the length over which the voltage from a constant
point source attenuates by a factor of 1/e down an infinite dendritic cable.)

For a fixed value of R, —dend and a, a four-fold increase in R; (e.g. from
65 to 260 Q cm) will correspond to a halving of A\. The manner in which R;
affects the input impedance of the cable is discussed later. ‘

One of the assumptions of the compartmental model is that within each
compartment the intracellular resistance can be neglected, so that the com-
partment is isopotential. The cytoplasmic resistivity is only considered in
the electrical communication between dendritic compartments, where the
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connecting resistor is calculated from the dimensions of the compartments
and the cytoplasmic resistivity according to the formula -

Ri X lcompartment
ra?
where lompartment is the length of the dendrite segment.

In summary, the model incorporates an R; of either 200 or 250 Q2 cm
for most of the analyses. In some cases, R; was set to 75 {2 cm in order to
evaluate data from other reports of intracellular measurements or modelling
studies, but results presented in later chapters are obtained using the higher
values of R;.

Rcouph'ng =

3.4.3 Leak Conductance, Electrode Shunt Conductance, And
Leak Reversal Potential

R,,, the specific membrane resistivity, is defined as a linear, time-independent
conductance. The intrinsic leak conductance of the cell, Rj..x, and the elec-
trode shunt conductance, Rypynt, combine to form R,, when the impedance
of the membrane is evaluated. Rj..x includes the conductance of the lipid
bilayer, and an ion-specific channel or channels whose conductance is or are
voltage and time independent. R,pyn: is the non-specific leak arising from
the impalement of the cell with a microelectrode. Since Rj.qx is a selective
conductance, it is modeled in series with a voltage source representing the
leak reversal potential, Eieqk. Rshunt, however, is non-selective, and there-
fore is modeled without a series voltage source.

Accurate determination of R,, is difficult, particularly because of the
cable properties of the pyramidal cell and, as will be demonstrated, the non-
homogeneity of R,,. In this section some estimates of R,p,n: are presented as
well as a background for the measurement of the intrinsic Rj.,x and estimates
of Ejegk. The estimates of R, (actually of Ry—soma and Rpm—dend) Will be
presented later in this chapter.

The conductance of the lipid bilayer sets an upper bound for the Rj.qx
of 108 - 10° @ cm? [19]. Since estimates of Ry, typically are in the range of
500 to 10* Q cm?, ion channels or the electrode leak appears to account for
the majority of the total membrane leak.

Various estimates of the leak introduced by an electrode have been made,
ranging from 50 to 200 MQ [44]. We can roughly estimate the magnitude
of the leak introduced by the single electrode used in the single electrode
clamp (SEC) protocol from the amount of constant "repair” hyperpolarizing
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current that must be supplied to the soma in order to maintain a resting
potential of -60 to -70 mv ! . Typical values for this current range from 0.5
to 1.5 nA (Storm, personal communication). If the normal resting potential
is assumed to be -70 mv, and sufficient repair current is supplied to restore
this membrane voltage, then the previous range of repair current magnitudes
implies electrode leaks in the range of 140 to 47 M2, respectively.

Estimates of pyramidal cell input impedance vary over an order of mag-
nitude. This range is more than can be explained simply by the difference
in the surface area and electrotonic structure of the measured cells. The
integrity of the electrode seal is variable, and could conceivably account for
a large part of the input conductance.

For many cells R,, is estimated by measuring the time constant of the
cell in response to small steps of injected current with the cell at resting
potential. In this case, either the cell membrane is assumed to be equipo-
tential (in which case the response should consist of a single exponential and
the single time constant is measured), or an infinite cable structure is as-
sumed with a homogeneous membrane, and the largest time constant of the
response is interpreted as the true membrane time constant. This formula
shall be referred to later when some of the published estimates of R,, are
examined.

Typical values for the time constants measured under these conditions
for various cells (including non-neuronal cells) range from 10u s to 1 second.
This range corresponds to Ry,’s of 0.30 to 108Q cm?, assuming that Cy, can
range from 1 - 30 uf/cm?. Thus the number of channels that are open and
contribute to the maintenance of the resting potential varys considerably
between different cell types.

The stability of the resting potential may be investigated by perturbing
the membrane voltage in the presence of active conductances. These simu-
lations can test the validity of any calculated E,.y, since it is likely that the
membrane voltage would be stable in the neighborhood of the actual E, .,
and that the spike threshold would be distinct (e.g. greater than 10mv depo-
larized from rest). This stability of E,.,: is observed for non-spontaneously
firing cells, and is advantageous since this behavior is directly related to the
ability of the cell to reject noise (at a low level of perturbation) and the
integrative ability of the cell. In the latter case, a firing threshold near E,.,;

1This repair current is often only transiently required, however, as if over time
the leak introduced by the micro-electrode is sealed automatically (Storm, personal
communication)
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Figure 3.1: Typical hippocampal pyramidal cell. The main regions include
the soma, the basal dendrites, the apical dendrites, the axonal hillock, and
the axon.

would cause the cell to fire for a larger set of inputs than if the threshold
was more depolarized. Modulation of the firing threshold is a possible phys-
iological mechanism for changing the computational function of a single cell.
On the other hand, threshold modulation may be a factor is some patholog-
ical states, such as epilepsy where the threshold is abnormally low leading
to hyperexcitability (e.g. seizures), or in states where the threshold is too
high, causing hypoexcitability (e.g. paralysis at the extreme).

In most reports, E,.,¢ is assumed to be about -70 mv. Since the evidence
for hippocampal pyramidal cells indicate that there is little current due to
non-linear channels at rest (the exception being a small I,,, discussed in
Chapter 6), I have assumed that the reversal potential for the leak conduc-
tance, Ej.qk, is equal to -70 mV.

3.5 Modelling the Cell Geometry

The shape of the hippocampal pyramidal neuron is quite complex, as Figure
3.1 illustrates.

The basic regions of the pyramidal neuron are the cell body, or soma,
the basal dendrites, the apical dendrites, the axonal hillock, and the axon.
Synaptic input to the cell is received at all its regions, but is primarily
received on the dendritic trees. In the standard view of the HPC, the den-
dritic membrane is primarily linear while the somatic, axon hillock and axon
membranes are active, that is contains non-linear voltage and time depen-
dent conductances. Although recent studies show that there are non-linear
conductances located on the dendrites, in the present model purely linear
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dendrites are assumed.

3.5.1 Assumption of Linear Dendrites

Defining the dendrites to be linear is an important assumption for the model.
There is extensive evidence of various Nat, Ca?*, and Cl~ channels in the
dendrites ([53], [34], [31], [50], [5]), but the exclusion of dendritic non-linear
conductances was considered reasonable as a first approximation since the
present work is focused on the action of somatic currents. I assume that the
behavior of the somatic non-linear conductances are relatively insensitive
to regions of non-linear dendritic membrane, at least when considering cell
response to somatic input. In Chapter 9, simulations of somatic response to
dendritic input will be presented, in which the assumption of linear dendrites
is a more restrictive one in terms of interpreting the model results.

The primary function of the dendrites is to collect and integrate synaptic
input from other neurons. That input is conducted to the soma where an
action potential is initiated if the soma membrane is excited above the local
threshold. As far as the model is concerned, though, the contribution of the
dendrites is simply that of a linear load on the soma.

3.5.2 Approaches to the Representation of HPC Structure

The possible options for representing the structure of the pyramidal cell in
simulations are worthy of review. At one extreme, the entire geometry of
the cell and its dendritic tree may be modeled in detail, with the dendritic
tree reduced to a set of branching cylinders, perhaps including the tapering
of each cylinder and the dendritic spines. The appropriate linear cable equa-
tions may then be employed to examine the steady-state input conductance
of the entire tree ([52]), assuming linear dendrites. If the transient response
is of interest, or if non-linear dendritic conductances are to be included,
representing the cable segments with compartmental approximations and
solving the network numerically is necessary ([44]).

Histological technique can supply the data necessary for this sort of rep-
resentation, but the attempts to model dendritic trees at least approximate
the tapering segments as right cylinders. The hippocampal pyramidal cell
has been modeled in this fashion ([52]). In this study, the dendritic tree was
dissected into a branching structure of right cylinders, without spines. Sev-
eral cells were analyzed, with the dendritic trees modeled with 300 - 1,000
cylinders per cell. Using the equation for the input conductance of a short
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cable and moving proximally from each distal termination, the steady-state
input conductance of the entire tree was derived as a function of membrane
resistivity and cytoplasmic resistivity. A study of a Purkinje neuron ([44])
represented the cell with 1089 coupled compartments. In this case the dy-
namic behavior of the linear cell was derived numerically in order to estimate
its linear properties.

The next level of approximation in reducing the dendritic tree consists
of collapsing branched structures into equivalent cylinders, according to the
technique developed by Rall [26] (described shortly). The complexity of the
resulting representation (i.e. how much will the tree be collapsed into larger
cables), depends on the morphological characteristics of the dendrites and
the accuracy desired by the modeller. In this model, several versions of
such a geometry were used, as illustrated in Figure 3.2. For investigating
somatic properties the dendritic tree was sufficiently represented as a single
short cable, as shown in Figure 3.2. On the other hand, as was mentioned
at the beginning of the chapter, the parameters of this approximation, the
dimensions of the soma and the cable and their linear electrical properties,
were critical to the response of the model, and their careful estimation is
important.

At the other end of the spectrum, in representing pyramidal cell geome-
try, is an isopotential sphere representing the entire cell. For most modelling
studies of cells with a significant dendrite tree this approach is too simplified
for two reasons. First, the linear response of the sphere will consist of a sim-
ple exponential, precluding the role of the dendrites as relatively isolated
stores of charge that contribute to restoring the soma voltage after short
perturbations. Second, the majority of voltage-dependent ion channels are
believed to be localized at the soma, and that the dendrites are either linear,
or incorporate localized, lower density, non-linear conductances. Modelling
the cell as an isopotential sphere prevents considering such a distribution of
non-linear and linear membrane.

In summary, modelling with a detailed description of the dendritic tree is
necessary if one is interested in evaluated the complex information processing
that apparently occurs at the level of distinct regions of the tree. If, however,
one is interested only in somatic properties, as a first approximation the
tree may be collapsed so that its approximate load as that of a single short
cable may be evaluated. A next step in the analysis of somatic properties
may use a slightly more complicated approximation to the tree structure,
as shown in Figure 3.2, and has been used by Traub and Llinas([48])(see

39



—

100 microns

Figure 3.2: Different model geometries used to approximate hippocampal
pyramidal cell in present study, drawn approximately to scale. The simple
soma/short-cable structure on the right was used for the majority of the
analyses.
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also Figure 3.2). In these versions, the contribution of non-linear dendritic
membrane may be considered, where the non-linear membrane is localized
in some isolated section of a dendritic branch. The simulations of Traub and
Llinas have provided some interesting results in this area, but their model
parameters may not have been derived carefully enough to warrant any more
than qualitative interpretations of the behavior of their model.

After the Rall method of reducing dendritic trees has been introduced,
several methods for estimating the model geometry will be presented.

3.6 The Rall Reduction Of The Dendritic Tree
To Equivalent Cylinders

Rall has shown that under certain conditions a set of dendritic branches
emerging from the distal end of a dendritic segment may be collapsed into
a single cable whose input impedance (as seen from the parent segment)
is identical to that of the original set. The conditions for the reduction
of each set of branches into a single cable are twofold: 1) the terminating
impedance of each branch must be the same, and 2) the electrotonic length
of each branch must be equal. The electrotonic length of the new equivalent
branch is the same as the original branches, and its diameter, raised to the
3/2 power, is equal to the sum of the original diameters, each as well raised
to the 3/2 power. The terminating impedance of the equivalent branch is
equal to the terminating impedance of each of the original branches.

If the diameter of the equivalent branch or segment is equal to that
of the more proximal parent segment, then the two cables connected in
series are equivalent to a single longer cable. As long as the appropriate
conditions hold, the entire dendritic tree can be represented by a single cable
by applying the reduction algorithm repeatedly, starting from the distal
branches and continuing proximally to the soma.

The constraints for the Rall reduction are rather severe, and several types
of neurons have been analyzed to see if the above conditions are applicable.
Remarkably enough, some neurons seem to follow the so-called “3/2 rule”
(e.g. in lateral geniculate nucleus [44]), and the suggestion has been made
that the Rall reduction is quantitatively valid for them (although it is not
always clear if the authors of these studies of fully aware of the complete set
of constraints in the reduction algorithm [Rall, personal communication]).

For hippocampal pyramidal cells, the reviews have been mixed, with
quantitative studies based on detailed histological data suggesting that the
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Rall constraints are not met at all well ([52]). Despite this, the reduction
as described is still considered a good first approximation to the pyramidal
trees, and some studies have suggested that in terms of the dendritic input
impedance the Rall approximation is in good qualitative agreement with
the actual tree structure (Brown et al). Later in this chapter the responses
of a soma/single-dendritic-cable and a soma/double-dendritic-cable will be
compared to show qualitatively that the Rall reduction is a useful one even
when the electrotonic lengths of the daughter branches are not identical.

3.7 Approximation Of The Soma As An Isopo-
tential Sphere

The so-called “soma” of the hippocampal pyramidal cell is not a sphere;
it is more of tapered cylinder with rounded ends. Further, the transition
between soma and dendrite is not well-defined, especially for the apical pro-
cesses. The soma region is assumed to be well-defined, however, in the
model approximation. This region is also assumed to be isopotential. This
assumption allows the use of a sphere instead of a cylinder to represent the
soma, as long as the surface area of the soma is conserved. The isopoten-
tial approximation assumes that voltage gradients are minimal, despite the
finite cytoplasmic resistivity. It can be shown ([26], Ch. 3) that the spread
of current from a single intra-somatic point source introduces a very small
voltage gradient in the soma.

The dimensions of the soma were evaluated from the model soma used
in Traub and Llinas’s model, and from estimating the dimensions from mi-
crographs. The soma used in the Traub and Llinas model was a cylinder,
so the surface area of this soma was used to set the radius of the spherical
soma in the present model at 17.5 um. This value is consistent with the size
of the soma region seen in micrographs.

3.8 Estimating the Dimensions of the Model Den-
drites

Traub and Llinas’ paper provided the default dimensions of the dendritic

cable of the model as well. In their model the dendritic tree was represented

by a two short cable basal dendrites and a short cable apical dendrite that
terminated into two short cable apical branches (Figure 3.2). The HIPPO
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model topology was initially configured the same way, using Traub and
Llinas’ dimensions. In their paper, however, the effect of dendritic input
and localized regions of non-linear membrane in the dendritic tree were
investigated, necessitating the described geometry. Since at the present time
the description of soma currents is being investigated, this tree structure was
collapsed into a single cable using a variant on the Rall method.

Traub and Llinas used a homogeneous R, = 3.0 KQ cm?, and set R; =
75Q cm.

3.8.1 Deriving the Dimensions of a Single Cable That is the
Approximate Equivalent of Two Cables

The first step in this approximation was collapsing the basal branches and
apical branches into a single basal and apical cable. This step was straight-
forward since both the basal branches and the apical branches were the same
electrotonic length as their partners, and further in that the diameter of the
apical shaft satisfied the 3/2 rule with its daughter branches.

The second step was to combine the equivalent apical cable (ac) with
the equivalent basal cable (bc). This was not straightforward since the
equivalent apical and basal cables were not the same electrotonic length
(Lac = 0.8,Lp. = 0.6). The approach used was to calculate ¢ according to
the 3/2 rule, and then calculate ! so that that the single cable would have
the same steady-state input impedance as the original two cables in parallel.

First, the diameter of the single ”equivalent” cable (sc) was derived from
the 3/2 rule:

aue = (a3f? + ayl")/3 (3.1)
where a, is the radius of the appropriate cable, yielding a (= a,.) =

4.3um. The next step was to derive the length of the single cable, starting
with the formula for the parallel input impedance of the original cables:

Zse(3=0):Zp(s=0)
Zae(8 = 0)+ Zpe(s = 0)

From the equation for the input impedance of a short cable (Equation
3.20, derived later, with s = 0 since we are interested in the steady state

impedance, and Gyoms = 0 and C = 0, since we are interested in the
impedance of the isolated cable), Equation 3.2 becomes

Zy(s=0)= (3.2)
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1 tanh L, = - tanh Lo +

tanh Ly, (3.3)

ra,ac)‘ac Ta,acAac Ta.bcAbc
Now since
R;
Ta,sc ;_;2’
R;
Ta,ac 2
ﬂ'aac
R;
Tajbe = 2
ﬂ'abc
\ = aR,,
e 2R;
A = QgcRm
ac 2 Ri
M = apcRm
C 2R"
l
Lsc =3
Asc

and if a is derived from Equation 3.1, then from Equation 3.3 we obtain

3/2 3/2
tanh( Kl )= Qat ta,nh(L;c) + ap. ” tanh(Lyc) (3.4)
va af? + affz

where

2R;
K—‘/E

By expanding the tanh term on the left side of Equation 3.4, and by
making the substitution (from Equation 3.1) of

3/2
Va = (@32 + ")
the length, /, of the single cable is found to be
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I = (a%2 + ai,{’)l/a In (1 + a; tanh(L,.) + a3 tanh(Lbc))

2K 1 — a3 tanh(L,.) — ag tanh(Ly.)
where
I S
S S
T T (el

Bbc

This procedure gave ! = 850um, and from this L was calculated as
L = 0.69. To check this reduction, the transient response to a current step
of this configuration was then compared with the response of the original
geometry of Traub and Llinas (Figure 3.4). The responses were nearly iden-
tical, validating the approximation between these two geometries.

Important inconsistencies arise, however, when the linear response of
the Traub and Llinas model is compared with that of actual cells. These
will be examined once the data derived from intracellular measurements has
been presented. At this point, this model will be used only to establish a
reasonable set of dimensions for the HIPPO model.

3.8.2 A New Method of Estimating ! and ¢ For the Equiv-
alent Cylinder Approximation From Histological Data

In order to check the validity of the dimensions used in Traub and Llinas’
model, a method was derived for estimating ! and a from purely histological
data, that is, without relying on estimates of electrical properties. The
parameters used for this estimation include:

o Average length of the dendritic tree — l;, (um)

o Average radius of the dendrite branches — a4, (um)

¢ Radii of the ¢ proximal dendrites where they attach to the soma — a;
(pm)

The radius of the equivalent short cable of the entire tree, a, is then set
by the a;’s under the assumption that the radius of each proximal segment
is the same as the radius of the equivalent cylinder approximation for the
portion of the tree distal to that segment. Thus —
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Figure 3.3: Comparison of cell geometry approximation used by Traub and

Llinas and single cable approximation used in the model. Structures are not
drawn to scale.
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Figure 3.4: Comparison of response to current step of geometry used by
Traub and Llinas and single cable approximation used in the model.

a= (E a?ﬁ) "

The length of the equivalent cable for the entire tree, I, is a function
of the average length of the dendritic tree, /,,, the average diameter of the
dendrite branches at about the midpoint of the tree, a,,, and the estimated
a. Here an assumption is made that the tree can be represented by a number
of identical cables with radius a,, and length /,,. As previously mentioned,
the Rall method requires that electrotonic length be conserved in the equiv-
alent cylinder. The L for the cable representing the entire tree is therefore
estimated as

L _ a.'Rzm-»“n‘

law
Note that the numerator of the right hand side of Equation 3.5 is the
space constant for the ”average” cable.
Since [ is equal to

(3.5)

l= 25 (3.6)



Equations 3.5 and 3.6 can be combined to get

I = lyyy [ —
ay

This estimate for / is function only of the dimensions of the tree. The
significance of this estimate this is that [ may be derived purely from histo-
logical measurements and does not depend on an assumed value for R,,_4end
or R;. The estimate of L, on the other hand, does depend on the estimated
values of R,,—_g4end and R;. Further, a,, is not the same thing as the average
diameter of the proximal branches. a,, must be used as defined since the
main part of the electrotonic length of the dendritic tree is determined by
the finer and more numerous distal processes. Thus the diameter of these
branches must be considered in estimating L (or {).

Typical values for a,, for the hippocampal pyramidal cell are in neigh-
borhood of 0.5 - 1.0 um. At the soma there is typically either one or two
apical branches, with a diameter ranging from 3 - 10 um (e.g. Johnston and
Brown, 1983). There are usually several proximal basal branches, with a
typical diameter of about 1 um. A reasonable value for /,, could range from
300 - 500 pm. For example, if there are two apical dendrites originating
at the soma with diameters of 3.0 ym and 4.0 um, and there are six basal
branches at the soma, each with a diameter of 1.0 um, with the above ranges
for a4, and l;,, the estimated value for a is 3.6 ym and the estimated range
for 1 is 570 - 1300 pm.

As a second example, let us assume that there are two apical dendrites
have diameters of 3.0 um and 10.0 ym, and the six basal branches stay the
same as before with diameters of 1.0 pm. Using the same ranges for a4, and
lav, the estimated value for a now is 6.8 um, and the estimated range for !
is 780 - 1800 pm.

These values can be compared with the dimensions of the equivalent
cylinder derived from the Traub and Llinas model. The value for a in this
report was 4.3 um, the length of the equivalent cylinders for the basal branch
and the apical branch were 555 ym and 820 um, respectively, and the length
of the single equivalent cable that was derived in this paper was 850 um.
These numbers compare well with the figures above. In fact the authors
comment that their estimate for ! of their model’s apical cylinder was “pos-
sibly somewhat small”. How the dimensions of this model were derived is
not known, but presumably an analysis similar to the one just presented
was employed.
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To summarize, the dimensions of the Traub and Llinas model are in good
agreement with the previous estimate. These results will be used both in
the next section to test the validity of another report which implies a set of
dimensions, and later in this chapter when the final dimensions of the model
will be determined. Another estimation of the model cell dimensions, this
time based on reported parameters of CA1 cells derived from intracellular
electrical measurements, will now be presented.

3.9 Evaluating Reported Linear Parameters De-
rived from Intracellular Measurements

The report used as a basis for this analysis is that by Brown et. al. ([7]).
In this paper essentially three parameters were derived from the linear re-
sponses of hippocampal pyramidal cells. These parameters included R,,,
which was assumed to be homogeneous over the entire cell, L and p. C,,
was taken to be 1.0uf/cm?, and R; was assumed to be 75 cm. Analysis of
the response of the cell to a current step applied to the soma was based on
the assumption that the cell could be approximated by the soma/short-cable
model with a homogeneous membrane time constant. According to Rall (),
this step response can be represented by a linear combination of exponential
terms:

Vi-V =) Ciexp(-t/r;)

1=0,00

where V is the response at the soma relative to rest, V; is the steady-
state soma voltage, 7o is the membrane time constant (1o = R,,Cy,), and
the remaining 7;'s are shorter time constants due to charge redistribution
down the dendrite cable. Standard exponential peeling techniques were used
to evaluate the longer 79, whose coefficient, Co was assumed to be much
larger than the remaining C;’s. R,, was then derived from the measured 7.
Three methods were used to derive L and p, all of which were dependent
on the soma/short-cable approximation and, as before, the assumption of
homogeneous R,,. This study estimated R,, as 19KQcm?, p as 1.2, and L
as 0.95. R;, averaged about 39MQ 2.

To evaluate these results, I constructed a model geometry that was con-
sistent with the above values for R;,, p, 70, Rm, Cm, Ri, and L. The

2Means of measurements from CA1 cells.
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parameters that we need to derive for the geometry are the radius of the
SOMa, Gyoma, the radius of the dendrite, a, and the length of the dendrite, I.

The first step is to derive @,oms. The conductance of the soma is calcu-
lated from p and R;,. Since

p= Gdendrite
Gsoma

and

1
Gdendrite + Gaoma = E‘;

th
en 1 1

Gsoma = _R—.,,_(l—-i-_p)

This gives Gyome = 11.81nS. The radius of the soma is then calculated
from Gyoma and Ry,:

3Rm Gaoma
47

Qsoma =

This results in @4oms = 73 um. Now the formula for R;, is a function of
!l and a, given by:

Rip = (r—lx tanh(L) + G,.,m) - 3.7)

_ aR,
L..lx‘/———ﬂz’_ (3.8)

_ Ro—denda
A= \/———-—2 = (3.9)

LB
*7 7a?

Equation 3.7 is derived later (Equation 3.20, with s = 0). Estimates for

! and a were obtained by calculating R;,, L, and p, using initial estimates
for | and a with Equations 3.7- 3.10, and then adjusting ! and @ until the

desired values for R;,, L, and p were obtained. This procedure resulted in
estimates for { = 1800um and a = 3um.

where

(3.10)
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Figure 3.5: Typical response to current step ([7]) (top) and response to
current step of model based on Brown et. al. parameters (bottom), where
p =12, L =095 Ri{ = IIMQ, a,oms = 73um, a = 3.0um, and [ =
1800um.

The step response of the geometry just derived and a typical step re-
sponse from the Brown et. al. paper is seen in Figure 3.5. These responses
are in good agreement. On the other hand, note Figure 3.6, where the result-
ing geometry and the geometry derived in the previous section are compared.
The most striking feature of the geometry derived from the Brown et. al.
data is the estimated soma radius of 73 pm. This result is inconsistent with
the dimensions derived earlier, where the a,oms Was estimated to be on the
order of 10 to 20pum. The dendrite radius of 3.0 um and a dendrite length
of 1800 pm of the Brown et. al. geometry is consistent with the previously
derived dimensions, but these values are in the extreme of the previously
proposed ranges for a and .
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HIPPOCAMPAL PYRAMIDAL CELL

BROWN ET AL GEOMETRY

HIPPO GEOMETRY

—

100 microns

Figure 3.6: Comparison of soma/short-cable geometries derived from data
of Brown et. al. and that estimated in this chapter with camera lucida
reconstruction of guinea pig hippocampal pyramidal cell ([52]).
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Figure 3.7: Normalized response to current step of Brown et. al. geometry
and Traub and Llinas model.

3.10 Comparison of Linear Response of Traub
and Llinas-Derived Model and Brown et.
al.—Derived Model

While the geometry implied by the Brown et. al. report is incorrect based
on my earlier analysis, the step response is assumed to be valid since this
was measured directly from cells. On the other hand, while the geometry
of the Traub and Llinas-derived model is a good approximation, as I have
shown with my estimate based on purely histological data, the step response
of this structure does not match that reported by Brown et. al. , as shown in

Figure 3.7. All these reports refer to pyramidal cells, though not necessarily
to the same subfield (i.e. CA1, CA3).

The first difference is the 7o for the two models; 7o for the Traub and
Llinas model is about 5 milliseconds (consistent with their value of R,
5 KQcm?), and 1o reported by Brown et. al. is about 19 milliseconds.
The second difference is between the value of p for the Traub and Llinas
model ( approximately 20) compared to values of p that have been reported
from intracellular measurements by Brown et. al. and others (p = .5 to
2). Comparing the directly measured value of p from the Traub and Llinas
model with the estimated p of Brown et. al. is valid since in the latter

case p was estimated assuming models a soma/short-cable structures with
homogeneous R,,.
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As has been mentioned earlier, these disparities were reconciled by intro-
ducing a distinct Rm—soma and Ry,—_gdend. Investigating the effect of varying
R; was also useful. Before deriving a structure which was consistent with
the reported data, though, deriving the analytical response of the general
soma/short-cable structure (with non-homogeneous R,,) is necessary so that
the full implications of varying each free parameter may be analyzed.

3.11 Derivation of the Frequency Response of Soma/Short-
Cable Structure with Non-homogeneous Mem-
brane Resistivity

So far I have presented evidence that supports using a spherical isopotential
soma attached to a short dendritic cable, with each section having a distinct
membrane resistivity, in order to represent the hippocampal pyramidal cell.
This representation, as diagrammed in Figure 3.8, is completely specified by
the parameters Rm—somas Rm—dends Biy Cms Gsoma, @, B, and 1.

Different investigators have considered the effect of the extreme values
of B: B = 1 (infinite cable termination) and B = 0 (open circuit/sealed
end termination). Assuming that the distal dendrite processes end rather
abruptly is common, though, and therefore the sealed end assumption is
used, as is done in the present analysis.

To investigate the effect of these parameters on the linear transient and
steady-state response of the cell, as measured from the soma, I derived the
frequency response of this circuit as follows.

We start with the equation for the linear RC cable.

v ov
axz = tor
where V = the membrane voltage at some point, X; X = the distance along
the cable from the soma, z, normalized by A; T = the normalized time, t/7;
and 7 = Rm—_dendCm.
The Laplace transform of the second-order partial differential equation
is taken then to yield the second-order ordinary differential equation

d*v

m=(8+1)‘7

where V = the Laplace transform of V.

54



STIMULUS

v><

\r

C-SOMA

G-SOMA

Figure 3.8: Circuit topology of a soma/short-cable structure.

is not drawn to scale.
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The solution to this equation is
V = AeV*H1X | Be~Ve+1X (3.11)

where A and B are constants that depend on the boundary conditions.
Now the Laplace transform of the axial current, I,, is equal to the change
in V with X times r,, where

Thus

. —1dV
I, = ‘-I‘:)—\EY (312)
Note the inclusion of A since X is the normalized distance. Solving for
% in Equation 3.12 (using Equation 3.11), we obtain

ja = :—;‘%’—l(ﬁe' s+1X _ Be' v ’+1X)

The boundary conditions are set at X = 0 (at the soma), and X = L

(at the end of the cable). At the soma, the axial current I, is equal to the
sum of the soma currents ~

ia(X = 0) = istimulua - “aomaGaoma - S‘Zomac’
= ¥l B
TaA

where C’ is the capacitance of the soma normalized by the dendrite time
constant —

Cm

4
Tdendrite3 Wafoma

C' = (3.13)

At the end of the cable since the terminating admittance = 0 then I, = 0,
thus

0

B /\+ 1 AeV/FFIL _ pe-voFiLy

(X =1L)
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o]

AeV*+iL = PBemvetil (3.14)
B Ae?vetil (3.15)
Now since
1A/.soma. = V(X = 0)
= A + B
then
vsoma = ’&(1 + e? a+1L) (3.16)

Solving for Iytimutus —

fst:’mulus = A(l + 62 S-HL)(Gsoma + SC,) + A—:—}l(ez sl _ 1) (3°17)

a

Now we can find A and B from Equations 3.15 and 3.17 —

~

i Istimutus (3.18)
’é‘:le (e2VoHIL — 1) 4 (1 + eVoHILY(G g + sC)

‘ 7o 2vV/s+1L

B Lstimulus€ (3,19)

L VOFIL 1) 4 (14 e2VFILY(G yoma + 5C')
And finally from Equations 3.16, 3.18, and 3.19 we obtain

istimulus(l + 62 S-HL)
L1 (e2/3F1L — 1) 4 (1 + €2V7FILY(G yomq + 5C")

Vsoma =

which gives the expression for the input impedance as seen from the soma,
Zsoma(s) -
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Py

V,
Zooma(s) = 2208

I, stimulus

LA (2VAFIL — 1) 4 (14 e2VPFILY (G oma + 5C")

In more compact form this is

Zuoma(s) = (4= tanh(VEF 1L) + (Guoma + 5C°)) T e

This expression for Z,oma(8) was not amenable to attempts to perform
an inverse transformation. However, when

Rm—aoma = Rm—dend

that is for the case of a homogeneous membrane time constant, the expres-
sion for Z,oma(s) simplifies somewhat and the inverse transform for this case
has been derived. This is a rather complicated expression involving an infi-
nite series, each term of which involves a product of exponential terms and
a finite summation of the product of other exponential terms with parabolic
cylinder functions ([27]).

Since an analytical expression for the inverse transform of the soma
response could not be obtained, the response was analyzed in two ways
— examining the frequency response directly and using DTFT techniques
to estimate the temporal response (impulse response and step response).
In order to evaluate the frequency response, the magnitude and phase of
Z4oma(8 = jTw) were derived (note that the factor of  is required because
the Laplace transform was taken with respect to normalized time). So, from
Equation 3.20 -

, ViTo 1 (1 — e2ViTwtiL
Zsoma(jw) = [ ] ( =

-1
rad \1 +62\/wa+11,) + (Goma +J'wC)] (3.21)

The first step in this derivation was expressing the square root of (jrw +
1) in rectangular form -
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ST 1+\/1_2T(?W+j\/-1+\/;_w

Letting

n_\/1+m
= )

V=

f-l + 1+ (rw)?
2
the exponential terms may then be expanded —

e—2\/rrw+1L - e—2L(n+ju)

= e M(cos(2Lv) — jsin(2Lv))

Equation 3.21 can be rearranged to give the real and imaginary parts
of the frequency response —

. a+j
Z(jw) = ij
ab+ By  .(—ay+ B6)

and thus
o [e24p?
lZ(]U)I - 62 +72
Phase(Z(jw)) = a,tan(:a%‘y—_'_tﬂ%é)
where

a = 1 A\[1 4 727 cos(2Lv))
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B = —rehe 2" sin(2Lv)
6 = N4+1AG somate" L% [—y cos(2Lv)~v sin(2Lv)+7,AGsoma €08(2Lv)+raATwC sin(2Lv)]

v = v+r ArwC+e~ 20 g sin(2Lv)—v cos(2Ly) +7,ATwC cos(2Ly) T3 AG soma sin(2Lv))]

These formulas were used to see how varying some specific parameters
while keeping the remainder constant changed the frequency response. In
particular, these results were used in investigating how parameters that are
derived from the transient response are affected when the directly measured
parameters are kept fixed and some other derived parameter is varied .

To summarize the results so far, I have proposed that the following
parameters are either known with a fair degree of assurance, or may be
estimated: Cy,, Ri, @soma; Rin, To, B, and a limited range for a and ! of
the equivalent dendritic cable. On the other hand, I have shown that the
reported values for R,, are inconsistent with the other data available for
these cells, and in fact the soma and the dendrites may be approximated as
having distinct membrane resistivities.

The problem of estimating the geometry of the model is therefore deter-
mined by the following constraints — estimate for the soma radius, estimate
for the range of cable diameters, estimate for the cable length, input re-
sistance, observed time constant, estimate of membrane capacitance, and
the estimate of cytoplasmic resistivity. The free parameters then include
Ry —somay Rm—dend,and a. The results of this estimation will be presented
in the next section.

3.12 Simulating the Step Response of the Brown
et. al. Geometry with Alternative Models

Once the frequency response of the general soma/short-cable model was
derived, I attempted to find different values for the membrane resistivities
and the cytoplasmic resistivity that would yield step responses similar to
that of the model derived from the Brown et. al. parameters.

The constraints included asoma = 17um, R;, which was set at 200 2 cm,
10 = 19ms. R;, = 39MQ, and C,, = 1.0uf/cm?. Ry, _gena Was then set at
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either 30, 40, or 50 k2 cm, and a, was set at either 5, 6, or 7 um. For a given
combination of R, _dend and a both R,,_s;oma and [ were then varied until
all the above constraints were met. For this analysis the electrode shunt
resistance was not specified, thus R,omq reflected both the leak conductance
of the soma and the electrode shunt resistance.

The step response and the frequency response of the resulting struc-
ture were then compared with that derived from the Brown and Perkel
model. The parameters were adjusted under these constraints to derive sev-
eral structures whose time response was consistent with the data. The com-
plete parameters for these structure are listed in Table 3.1. The responses of
these structures were clustered into three groups, each group characterized
by a common value for a. The responses for structures B, C, and D were
almost identical to each other, as were the responses of structures E and
F. Therefore, the analysis suggests that the diameter of the dendrite cable
was the most sensitive parameter in determining the linear response of the
soma-cable structure.

For the majority of the simulations, including all those presented in this
thesis, version “C” of the model structures was chosen as representative of
the family of model structures. In this case the value for R,,_geng of 40
KQcm? is a similar to the value for Ry—dend (approximately 40 KQ cm?)
estimated by Shelton for Purkinje cells, and is much higher than the values
of R,, that are quoted consistently in reports on hippocampal pyramidal
cells. Also, this model has an R; of 200 Q cm, which is also in line with
the value of R; estimated by Shelton, as described earlier. The value of a
(6.0um) and ! (1200xm) is consistent with the values estimated earlier in
the chapter (Section 3.8.2).

The step responses for structures A, C, and F and that derived from the
Brown et. al. data are shown in Figure 3.9. An expanded view of these
response is shown in Figure 3.10. In this figure the effect of the smaller
soma time constant in the model structures is seen as the response of these
structures initially decay much faster than the reference structure. However,
as shown in Figure 3.11, all four responses eventually settle into a single
exponential decay with the same time constant of 19 ms. The magnitude of
the frequency responses for the same structures are shown in Figure 3.13,

and the phase of the frequency responses for these structures are shown in
Figure 3.12.

There are several interesting features of these simulations. The first is
that the values of p and L vary greatly for the different structures — between
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| Model H a(um) | Rm—dend (KQcm?) | Ryoma (Rcm?) | {(um) [ A(um) [ L p_|
A 5.0 50 720 1350 2500 | 0.54 | 0.43
B 6.0 30 1100 1200 2121 0571 1.2
C 6.0 40 850 1200 2450 | 0.49 | 0.69
D 6.0 50 750 1200 2738 10.44 | 0.50
E || 7.0 10 870 1050 | 2646 | 0.40 | 0.74
F || 70 50 760 1050 | 2958 | 0.35] 0.53

Table 3.1: Parameters of model structures derived to match the 75 (19 ms)
and R;, (39 MQ2) of the Brown et. al. data, with R; =200Qcm , @4omq =

17 pm, and Cp, = 1.0uf/cm? The values listed for structure “C” were
chosen for the model.

Voitage (Normalized)
1.0

rD..S

Time (Seconds] (<« 1.& ;553’

50.0 2000

Figure 3.9: Normalized response to injection of somatic current step for
Brown et. al. structure , and representative alternative structures (A, C,
and F, ref. Table 3.1) consistent with histological measurements.
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Figure 3.12: Phase of frequency response for Brown et. al. structure , and

representative alternative structures (A, C, and F, ref. Table 3.1) consistent
with histological measurements.
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Figure 3.13: Normalized magnitude of frequency response for for Brown et.
al. structure , and representative alternative structures (A, C, and F, ref.

Table 3.1) consistent with histological measurements.
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1.2 and .43 for p and between .35 and .57 for L. This shows that the methods
typically used for estimating p and L are not reliable unless the cell has a
homogeneous membrane time constant.

The most distinctive difference in the characteristics of the structures
with a non-homogeneous membrane time constant and the structure based
on the Brown et. al. data is in the phase of the frequency response. For all
the structures with non-homogeneous R,, the phase deviates from that of
the structure with homogeneous R,, at a frequency of about 100Hz. This
difference does not manifest itself strongly on the temporal responses, how-
ever, because of the attenuated response above 100Hz.

The characteristics of the phase response for the simulated cell structures
suggest that evaluation of the linear parameters discussed in this chapter
may be better served by analyzing the frequency response of the cells un-
der protocols that ensure a linear response. Since the interesting part of
the phase response occurs at frequencies where the cell impedance is rela-
tively small, spectral estimation using averaging techniques or white-noise
approaches may be applicable.

The values for R,oma and Rgendrite differ by about two orders of magni-
tude in all the derived structures. If the contribution of an electrode shunt
is considered, this difference is reduced, but by only a factor of about two
since the typical soma resistance (including the electrode shunt resistance)
is around 70 MQ and the electrode shunt resistance is about 100 M2 as
estimated earlier.

In summary, there are many versions of the soma/short-cable model
that can give the same 79 and R;, with differences in the distribution of R,,
between soma and dendrite, and realistic variations in . Examination of
the frequency response indicates that this measurement may provide a way
to better estimate the electrotonic parameters of these cells, particularly
under the assumption of non-homogeneous membrane resistivity. While the
magnitude of the frequency responses for the various structures are rather
similar, the phase of the frequency responses differ markedly, and this metric
may be usefully exploited in order to better estimate the linear parameters
of the soma/short-cable model.
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Figure 3.14: Step response of Soma-Cable Structure a) Inverse FFT of Ana-
lytic Solution b) Model with 1 segment c) Model with 2 segments d) Model
with 3 segments e) Model with 4 segments f) Model with 5 segments

3.13 Discrete (Lumped) Approximation To Den-
dritic Cables and Comparison Of HIPPO
Results To Analytical Solution Of Linear
Cable - Dependence Of Segment Dimensions

Once the response to a current step of the soma/short-cable structure was
derived from the inverse DFT of the analytical frequency response, the com-
partmental approximation of the cable was evaluated by comparing the
model’s response in current clamp simulations to the estimated response
of the continuous cable. In Figure 3.14 the response of the model with dif-
ferent numbers of compartments is compared to the estimated response. As
can be seen in the figure, the response of the model with 5 segments is in
very good agreement with the estimated response.
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3.14 Summary of Results from the Determina-
tion of Electronic Structure

To recapitulate, the HIPPO model electrotonic parameters are as follows:
® Qyomg = 17pum
ea=6.0um
e[ =1200pm
¢ Rypunt = 100 MQ
® Ry soma = 8509 cm?
¢ R,_dend = 40 KQ cm?

e R; =200cm

¢ Cpp = 1.0puf/cm?

e B=0

o A= 2450 um

oL =.49

e p=.69

e 79 = 19 milliseconds
e R;, =39MQ

o Ejqr = —T70 millivolts

3.15 Is It Important to Capture Dendritic Mor-
phometric Characteristics?

The results described here tend to confirm that the actual geometry of the
dendritic tree may not in itself be critical to somatic response. For example,
the Rall reduction is reasonably accurate even if the constraints specified
in this algorithm are not met exactly. What is very important, however,
is the various parameters that characterize the tree (or its equivalent single
cable) as a whole, that is as a lumped element (cable). This result has been
reported elsewhere ([51]). Specifically, the equivalent cylinder approxima-
tion works well even when the constraints on subsequent cable diameters
and conservation of electrotonic length are not met exactly. The parameters
characterizing that cylinder are important to the electrical load as seen by
the soma, however, and can have a large effect on the processing of infor-
mation that occurs there.

As shown, the assumption of a homogeneous membrane time constant
allows the construction of a soma/short-cable approximation of the pyrami-
dal cell whose linear response closely matches that of the real cell. On the
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other hand, this construction is inconsistent with histological measurements,
and a structure with a non-homogeneous membrane time constant can be
proposed which successfully addresses these problems.

Although the two constructions yield models with distinct frequency re-
sponses, the significant differences occur at frequencies that are substantially
attenuated in both structures, so that the step responses are rather similar.
Why, then, is it important to revise the earlier model with the homogeneous
membrane time constant? As shown, although the somatic responses of
the two models are similar, the values of p and L are very different. This
is important when considering the role of the dendritic tree in integrating
synaptic input. In particular, the smaller L that has been suggested in the
present study indicates that the dendritic tree is more electrically compact
that previously thought. In functional terms, this means that there is less
distinction, from the point of view of the soma, between distal and proxi-
mal dendritic input. This could enhance the computational flexibility of the
dendritic tree since a fundamental limit such as linear attenuation of EPSPs
and (possibly) IPSPs will be reduced by the smaller L, and selective en-
abling/disabling of various sections of the tree could be accomplished more
effectively by non-linear mechanisms (e.g. other synapses).

The effect of the lower p that is indicated in the present study is to
reduce the burden on the somatic conductances imposed by the dendritic
load, for example during the spike depolarization and repolarization.
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Chapter 4

APPLYING THE
HODGKIN-HUXLEY (HH)
MODEL OF IONIC
CHANNELS TO
PUTATIVE
HIPPOCAMPAL
CURRENTS

4.1 Introduction

An extension of the Hodgkin-Huxley (HH) model of ionic channels in the
squid axon ([21].[20],[22).[23)) is the foundation for the description of the
hippocampal pyramidal cell ion channels that are used in the model. This
comes about in two ways. First. many of the currents that have been de-
scribed in the literature have been fitted to HH-like models to start with.
Second, when this model has been used either to augment sparse voltage
clamp data on a particular current or to propose currents whose existence
is defended purely on phenomenological grounds. these currents have been
constructed using HH-like mechanisms. Examining the HH model in detail
is therefore important in order to establish some of the key assumptions in
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the HIPPO model.

4.2 Background of the HH Model

In the early 1950°s Hodgkin and Huxley postulated that the electrical ac-
tivity of the squid axon was due to two time-dependent non-linear conduc-
tances, one of which was specific to Na¥ ions and another which was specific
to Kt ions. This result was based of data obtained with the newly-developed
voltage clamp method for measuring electrical properties of non-linear mem-
branes. Using the voltage clamp protocol and various manipulations, includ-
ing replacement of the NaCl in the external medium with choline chloride
to eliminate the Na* current, Hodgkin and Huxley measured the time-
constants and the steady state values for the two conductances as a function
of the membrane voltage. :

Noting the sigmoidal characteristic of the activation of the .VNa* channel
as the membrane was depolarized. and the fact that the channel inactivated
a short time after it was activated. a model for the Na* channel was derived
that included four “gating” particles (three so-called m activation particles
and one k inactivation particle). These particles can be thought of as distinct
regions of the channel protein, each of which can be in one of two stable
conformations or states, conducting (open) or non-conducting (closed). For
a given channel to conduct, all of its gating particles must be in the open
state. The macroscopic conductance of the Na* channel. gy ,. was expressed
as

gNa = rnahg.\’a

where 0 < m.h < 1 and gn, is the maximum conductance for the ensemble
of Na* channels in the membrane. Hodgkin and Huxley determined that
the transition between states is governed by first order kinetics. and the rate
constants for this transition are functions of voltage, as will be described
later. The likelihood of whether a given particle will be open or closed is
therefore also a function of voltage.

The sigmoidal activation characteristic under voltage clamp arises from
the third power of the m gating particle. This number was determined
by Hodgkin and Huxley by fitting powers of exponential relaxations to the
observed kinetics. In a similar manner, the macroscopic conductance of the
K+ channel in the squid axon was described as being determined by four



gating particles, n. The macroscopic conductance of the A+ channel was
expressed as -

9K = n'gx
where gx is the absolute conductance for the ensemble of At channels in
the membrane.

The transient behavior of the Na*t channel during excitation of the neu-
ron, through its activation and subsequent inactivation, was explained by
the voltage dependencies of m and h, and the different voltage-dependent
functions for the time constants of m and h. The steady state value of m
is a monotonically increasing function of the membrane voltage. while the
steady state value of h is a monotonically decreasing function of the mem-
brane voltage. In addition. the time constant for m is smaller than the time
constant for h at a given voltage. The result is that on depolarization m
will adapt to its (more open) steady state value quickly while h will lag be-
hind in its (more open) hyperpolarized steady state. The channel will begin
to conduct with the increase of m. In a short time, however. h will relax
to its (more closed) steady-state value at the new (depolarized) membrane
voltage. Even though the three m “particles” are in the open state. the
subsequent closing of the single h “particle” will shut the channel down and
turn off the .NVa* current .

Once Hodgkin and Huxlev had a description of these two non-linear
conductances and the linear parameters of the cell. they were able to nu-
merically reconstruct the action potential in the squid axon. In the model
of the hippocampal pyramidal neuron, several distinct curreuts. mediated
by different ions, are described using variants on the HH model theme.

4.3 Extension of the HH Description to Pyrami-
dal Hippocampal Cells

The Hodgkin and Huxley model approach can be extended' to describe
some of the currents found in other electrically non-linear cells. Analysis
of other currents is undertaken here under the assumption that they are
based on mechanisms which undergo first-order kinetic transformations be-
tween conducting states and non-conducting states. By both qualitative and
quantitative analysis. plausible mechanisms underlyving non-linear currents

!The notion that this report “extends” on the HH model is discussed in Section 4.8.
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may be deduced. These descriptions are typically based initially on voltage
clamp data. As will be explained shortly. this protocol can measure the
time constants and steady state values for the kinetic events controlling the
conductances behind these currents, assuming that. indeed. such a kinetic
description is valid.

4.3.1 The Voltage-Dependent First-Order Kinetics of HH-
like Conductances

To recapitulate. in the HH model each current in the electrically-active cell
is assumed to correspond to a specific type of ionic channel, which in turn
is comprised of a protein conglomeration that traverses the membrane. In
each channel ions travel through a luminal trans-membrane aqueous phase,
driven by the driving potential for the channel. As reviewed in Chapter
2. this driving potential is a function of the membrane voltage and the
trans-membrane concentration gradient of the carrier for that conductance.
according to the Nernst equation or the Nernst-(GGoldman equation.

The transitions of the particles between states are governed by first-
order kinetics. Each state or conformation corresponds to a free-energy
well. with a single high-energy rate-determining barrier between the two
states. Movement of the gating particles between states is assumed to be
accompanied by a movement of charge. causing the state-transition kinetics
to be dependent on the membrane voltage. These gating particles are regions
of the protein that (a) can reversibly mediate the conductivity of the channel.
possibly via steric factors. and (b) have a sufficient dipole moment and
freedomn of movement so that they may act as voltage-sensors. changing the
conformation of the protein or protein group as a function of the electric field
across the channel. The magnitude of the voltage dependence is derived from
the Boltzmann equation which specifies the probabilities of state occupancies
according to the free energies of the states.

In practice. voltage clamp protocols, in which the membrane relaxation
currents are measured as the cell membrane is “clamped™ at different poten-
tials with a microelectrode. are used to measure the kinetics of the various
currents. This technique assumes that the kinetics of different currents can
be measured independently. either because different currents are activated
over non-overlapping membrane voltages. because the time courses are dis-
tinct. or because the currents have distinct pharmocological sensitivities.
Implicit in this approach is the assumption that different currents interact
only through the membrane voltage. In fact. in the case of currents which
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are dependent on the movement of Ca** into the cell simple voltage-clamp
measurements may give misleading results. Whatever independence exists
between the different currents is exploited by the electrophysiologist as he
devises protocols for intracellular measurements.

The macroscopic conductance of given type of channel is determined by
the proportion of channels in the open state. the conductance of a single
channel. and the total number of channels of that type in the membrane.
For example, if the conductance of some channel Y is controlled by a single
gating particle. and the proportion of open gating particles is z, then the
macroscopic conductance of that channel type is expressed by

gy =T gy

where gy is the actual conductance for the channel current Iy, and gy is
the maximum conductance for that current. The factor r is equivalent to
the probability that the gating particle for a single channel will be in the
open state. As will be shown. 2 is both a function of the membrane voltage
and of time.

The macroscopic voltage- and time-dependence of the channel conduc-
tance arises from the first-order kinetics that the gating particles obey in
their transition between their open and closed states.

closed (1 - r) = open{xr)
Here x represents the fraction of channels in the open state, and 1 - z
represents the fraction of channels in the closed state. a and 3 are the
forward and backward rate constants for the reaction. respectively. This
relationship vields the simple differential equation relating the derivative of

x(t). (t). with the steady state value of r. r... and the time constant for
the reaction, 7; -

1(” = Ly — l'“)

Tr

where r and 7, can be expressed in terms of the rate constants n and 3 -

=053
.= 1
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Figure 4.1: Energy diagram for gating particle states with no applied mem-
brane voltage. The stable open and closed states correspond to the low-
energy wells. The high-energy transition state is the rate-limiting step. 4.

which is the relative position of the transition state within the membrane.
can be between 0 and 1.

As will be discussed later in the sections on the various non-linear cur-
rents in the model, in the literature current kinetics are occasionally de-
termined empirically in terms of an “a - 3" tvpe formulation. For most
currents. however. the voltage dependence of z., and 7, is the figure that is
reported.

The energy profile for a gating particle in the single barrier model is
shown in Figure 4.1.

As mentioned earlier. the rate constants for the transitions from one side
of the reaction coordinate to the other is given by the Boltzmann equation.
which is a function of the difference between the energy of the rate-limiting

step and the initial state. The expression for the forward rate constant in
the absence of an applied voltage. aq. is -

ag = Ce 3F (4.1)

where AG is the free-energy difference between the closed state and the
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Figure 4.2: Energy diagram with applied voltage A1” across the membrane.

transition state. R is the gas constant, T is the absolute temperature, and
(' is a constant.

The voltage-dependence of the kinetics arises from the distortion of the
above energv diagram when a voltage is applied across the membrane. as
shown in Figure 4.2. The applied voltage changes the difference in free
energy between the stable states and the transition state. The effect of the
voltage is reflected in the expression for the rate constants as follows -

=5 A€

a = ag€ (4.2)
3 = 3pe—31-7A¢ (4.3)
where
AVF
= — 1.4
¢ RT (1.4)

2 is the effective valence of the gating particle. and 4 is the position of the

transition state within the membrane. normalized to the membrane thick-
ness. Al” is equal to V' — 1. where 1" is the membrane voltage and V% is
2
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Figure 4.3: The steady-state (z ) curve for the hypothetical gating particle
r.z=8. V% = -20mV.

the membrane voltage at which a equals ag and .3 equals 3¢ ([26]). F is
Faraday's constant. Normally. ag and Jy are taken as equal. This can be
reconciled with the different energies of the stable states as shown in Figure
4.2 by adjusting l'%.

Since the backward and forward rate constants are functions of the mem-
brane voltage. the values for the time constant and the mean steady-state
(from now on referred to as the steady-state curve) are also functions of volt-
age. The resulting expression for steady-state curve is a sigmoidal function

_ 1
Tl 4 ez
This type of characteristic is shown in Figure 1.3.

The expression for the time constant is a skewed bell-shaped function of
the voltage -

(4.3)
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Figure 4.4: The time constant (7;) curve for the gating particle r. with
7o = 0 and 0.3milliseconds. z = K. "% = -20mV’. vy = 0.3.

An example of such a function for the time constant is shown in Figure
4.4. As referred to earlier. including an additional assumption of a linear
rate-limiting mechanism on the gating particle transition was useful. For
example. drag on the gating portion of the protein as it changes conformation
will place an upper limit on the rate constants of the gating transitions. As
the rate constants defined by the Boltzmann equation increase exponentially
with voltage. an assumption was made that at some point other intrinsic
aspects of the channel protein would prevent an arbitrarily fast transition.
For the simulations this factor was, as a first approximation. taken as a
specific constant minimum value for the time constant, ry. for each of the
current’s gating particles. This is illustrated in Figure 4.4.

4.3.2 Activation and Inactivation Gating Particles

There are two types of gating particles: activation gating particles (activa-
tion variable) and inactivation gating particles (inactivation variable). The
steady state curve for an activation particle increases with depolarization:
the steady state curve for an inactivation particle decreases with depolar-
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ization. This characteristic is determined by the sign of z — positive for
an activation particle and negative for an inactivation particle. The activa-
tion and inactivation particles therefore have opposite effects on the channel
conductance with depolarization - the activation particle opens on depolar-
ization and the inactivation particle closes on depolarization.

4.3.3 Transient and Persistent Channels

The type of gating particles in a channel determine whether it is a transient
channel or a persistent channel. A persistent channel has only activation
particles; this type of channel will stay open upon prolonged depolarization.
A transient channel, on the other hand, is only open for a limited time upon
depolarization; a typical scenario is that upon depolarization the (typically
faster) activation particles relax to their open state and thus, along with the
already open (because of the lower holding potential) inactivation particles.
the channel conducts. After some delay the slower inactivation particles
relax to their closed position at the depolarized level, and thus close the
channel.

4.3.4 Activation/De-inactivation and Inactivation/Deactivation

Recall that for a given channel to conduct. all of its gating particles must be
in the open position. regardless of whether they are classified as activation
or inactivation particles. When describing the change of the-conductance
state of a channel. then. some clarification of nomenclature is useful. When
a channel goes into the conducting state because of the movement of an
activation particle into its open position (state), then the process is called
activation. When a channel goes into the conducting state because of the
movement of an inactivation particle into its open position, then the process
is called de-inactivation. When a channel goes into the non-conducting state
because of the movement of an inactivation particle into its closed position,
then the process is called inactivation. And finally. when a channel goes into
the non-conducting state because of the movement of an activation particle
into its closed position. then the process is called deactivation.



4.4 Fitting the HH Parameters to Putative Cur-
rent Kinetics

Fitting the HH model to the behavior of a given current began under the
assumption that the channel responsible for the current had only one or two
types of gating particles - either there was a single activation particle or there
was an activation particle with an inactivation particle. The number of any
given particle in a single channel was constrained to be at the most four,
but in practice the inclusion of more than four duplicate gating particles
had little effect on the overall kinetics of a channel.

The first step in formulating the expression for a given current was
to determine its activation/deactivation and/or inactivation/de-inactivation
properties. By examining voltage clamp and/or current clamp records, the
relevant questions were as follows:

1. Does the conductance in question increase on depolarization. indepen-
dent of factors such as Ca®t entry? If so. then the conductance is
likely controlled by at least one activation particle.

2. Is the conductance transient. i.e. is the conductance removed after
activation without repolarization? If so. then the conductance is likely
mediated by at least one inactivation particle.

3. Is there any relationship between the activation of ('«?>* and the pres-
ence of the current in question? If so. the possibility that such a
relationship may mimic or mask voltage-dependent activation or inac-
tivation must be considered.

Once the basic tvpe of particles that govern the channel were determined.
it remained to estimate the parameters for each particle. For each gating
particle (for each current) the free parameters included:

. V% - the voltage at which a and .7 are equal

e 5 - a measure of the symmetry of the svstem (0 <~ < 1)

e z - the effective valence of the gating particle (tvpically = ranged from
3 t030)

® qg - the forward rate constant when 1" = 17
2
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e (g - the backward rate constant when V = V%

e Tp - the minimum time constant of the gating particle (typically 7o
ranged from 0.5 milliseconds to 4.0 milliseconds)

The first step in fitting the parameters was to adjust the steady-state
activation and inactivation curves according to the available data. For some
currents there was more or less complete voltage clamp measurements of
these curves, while for others only the steady-state conductance as a function
of voltage was available (ref. Nat currents, Chapter x). Note that in
the latter case, if the current in question is transient then the steady-state
conductance will be a measure of the product of the some power of an
activation variable and some power of an inactivation variable (the window
current). As referred to earlier, ag was taken as equal to gy in the estimations
of current kinetics. with no loss of generality.

Adjusting the steady-state curve for a gating particle is straightforward.
V) is simply the voltage where the steady-state curve is equal to 0.5. as
in21plied in Equation 4.5 and shown in Figure 1.3. Once V1 is estimated. z
is then adjusted to set the steepness of the steady-state cu;ve as required.

Unless good measurements on the time constant for a current were avail-
able, manipulating the remaining parameters to vield different functions of
the time constant was often a tricky procedure. The data for each current
gave different clues as to the form of this function. and for some currents
it was not possible to derive a unique function until the current was re-
evaluated in light of modified description of another current. In a few cases.
however. a particular function for a particular variable turned out to be not
critical (e.g. the y gating particle for Ipg. whose time constant only had to
be greater than some value. irregarless of voltage).

4.4.1 Effect of Gating Particle Valence

Observing how the variation in the free parameters affects the steady-state
and time constant curves is instructive since this process was integral to the
development of the conductance mechanisms. Figures 4.5 and 4.6 illustrate
how the different values of = change the steepness of the steady-state curve
and the sharpness of the time constant curve,
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STEADY-STATE VALUE OF GATING PARTICLE

Figure 4.5: Effect of the valence. :. of the gating particle. r. on the r,
curve. Note that this is an activation gating particle. V3 = =20ml".
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Figure 1.6: Effect of the valence. z. of the gating particle. r. on the 7, curve.
~20mV". The time scale is arbitrary since it is linearly scaled by ay.
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7o is set t0 0. and = is set to 0.3.
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Figure 4.7: Effect of the relative position. 5. of the transition state within
the membrane for the gating particle. r. on the 7, curve. z = 16 and

VL = —=20m\". The time scale is arbitrary. as in Figure x. 79 is set to 0.
2

4.4.2 Effect of Gating Particle Symmetry

Figure 4.7 illustrates how the symmetry of the svstem. as specified by ~.
affects the curve for the time constant for = = 16. Extreme values of 4 (i.e.
close to 1 or 0) cause the time constant to change abruptly at some voltage
so. to a first approximation. as a function of voltage the time constant
is either large or relatively small. This sort of characteristic was used to
advantage in constructing some of the current kinetics. For example. as will
be outlined in Chapter 5. the inactivation time constant for one of the Na*

currents. JIx,_.,. needed such a precipitous characteristic in order that it
reproduce repetitive Na*-only spikes.

4.4.3 Effect of the Number of Gating Particles in a Given
Channel

More than one gating particle in a single channel causes a delay in the net
effect of that particle type when the membrane voltage changes. This delay
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increases with the number of particles in the channel. Increasing the order
(the number per channel) of the particle also makes the (effective) steady-
state curve steeper and more depolarized (hyperpolarized) for activation
(inactivation) particles.

Another important effect of the number of gating particles is how the
resulting steady-state characteristic changes. Specifically. the activation or
inactivation curves measured with the voltage-clamp protocol do not indicate
the voltage-dependent steady-state characteristics of each particle. Rather.
the resulting curves reflect the behavior of the ensemble of particles, a point
that is not often made clear in the literature. If a channel is assumed to
be governed by N activation particles. for example. then the steady-state
curve for a single activation particle is found by taking the Nth root of the
(overall) steady-state activation characteristic.

In the following chapters the voltage-dependent steady-state curves for
both the individual gating particles for each current will he illustrated. In
addition. the apparent steady-state curve of the appropriate ensemble of gat-
ing particles will be illustrated (depending on the number of gating particles
assigned to a given conductance), as might be measured by the voltage-
clamp protocols.

4.5 Procedure for Fitting HH Parameters

The parameters governing the kinetics of each current in the model were
determined according to the data for a given current. At one extreme.
non-ambiguous voltage clamp data that was almost complete specified most
the relevant parameters — for example the steady-state activation curves
for I and Iys. At the other extreme. for example for the putative Na*t
currents. only meager voltage clamp data was available, augmented by ex-
tensive, though much more ambiguous, current clamp data. In these cases
the steady-state activation curve or activation and inactivation curves as
appropriate, had to be estimated and then checked with steady-state volt-
age clamp simulations. The functions for the time constants would then be
estimated. consistent with the z and V) parameters that had been set by
the steady-state characteristics. Simulations would then be used to check
the resulting kinetics and. if necessary. the functions would be modified (e.g.
changing 7 or ag) to vield better behavior. For all the currents specific time
constant data was either incomplete or non-existent. These functions were
iteratively derived by running current clamp simulations of certain proto-
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cols for which I had data to compare the model behavior with. Note that
these parameters amount to verifiable predictions of the model, assuming
that experimental protocols may be devised that record the time and voltage
dependence of different currents in isolation.

In Chapters 5, 6 and 7 the parameters for the model currents will be
presented. along with the resulting curves for the steady-state and time
constant functions.

4.6 Temperature Dependence of the Gating Ki-
netics

Temperature dependen ce of the kinetics described here has several elements,
all of which ultimately derive from the temperature term in the Boltzmann
distribution (eqns. 4.1 and 4.4). However, some of these relationships are
handled explicitly while others are estimated.

Consider the expression for the forward and backward rate constants. a
and J (ref. eqns. 4.2 and 4.3). Each expression evaluates to the maximum of
two expressions. a product of two terms and (in the current approximation)
a voltage-independent rate-limiting term. The product is formed by a base
reaction rate term that ultimately derives from a Boltzmann distribution,
although the factors in this expression are not specified. The second. voltage-
dependent term in the product is also a Boltzmann distribution. however.
as has been shown. each term in this distribution is specified. Therefore.
the temperature dependence of the base rate is undefined while this depen-
dence for the voltage-dependent term is explicit. Likewise, the temperature
dependence (if any) of the rate-limiting term is undefined.

The base rate term and the rate-limiting term the temperature depen-
dence was therefore assumed to be similar to that generally observed for
biologic reactions. where a Q¢ of 3 is tvpical 2. This factor is used to derive
a coefficient for the rate constants as follows:

Tq—T
QlO-factor = 10“)

where T is the temperature and Ty is the temperature at which agpase
is determined. @Q10-fqctor is then multiplied with the both the base rate

2This factor is dependent on different currents. as appropriate. The Qo for I is set
to 5. based on Halliwell and Adams. 1982 [16]. and the Q1o for the Na* currents was also
set to 5 in order to improve the performance of the model.
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term and the rate-limiting term as a first approximation to the effect of
temperature of these terms.

Note that the temperature dependence that derives from the voltage-
dependent term is (by definition) voltage-dependent. The effect of the tem-
perature on this term disappears when the membrane voltage is equal to
V1 for a given gating particle. and the effect on the voltage-dependent term
increases as the membrane voltage moves away from V% . However for most
gating particles of the model this effect is smaller than the Q10— factor, due
to the small value of 2.

Another temperature dependence arises from the coefficient of the expo-
nential term of the Boltzmann expression. To a first approximation this is
typically taken to be a constant (as is done in this model). However, review-
ing the significance of this term is instructive. This term is the “pacemaker”
for the reaction. as it denotes the effective state transition frequency, whereas
the exponential term (as explained before) relates the probability of reach-
ing a given state after a transition. According to Eyring Rate Theory ([19])
this pacemaker term is proportional to the temperature (derived from the
frequency of molecular vibrations = kT'/h. where k and h are Boltzmann'’s
constant and Plank’s constant. respectively).

This term contributes a linear temperature dependence of the rate con-
stants. whereas the previous temperature-related terms were exponential
functions of temperature. Considering that temperature is in degrees Kelvin.
the linear contribution will be negligible on the rate constants when tem-
perature ranges over ten degrees, e.g. between 298° K (25° (") and 308° K
(35° C). The present assumption of a constant coefficient for the exponential
terms in eq. 4.5 and eq. 4.6 is therefore justified.

4.7 Adequacy of the HH Model for Describing

the Kinetics of Putative Hippocampal Chan-
nels?

The HH model of ion channels is clearly a simple one. First. assuming that
channels can be described in terms of having discrete regions that can modu-
late channel conductance through the steric interaction of discrete, voltage-
dependent conformational states. there are likely to be more than two stable
states for any such “particle” (as opposed to just the open and closed HH
states). Such multi-state models and other interpretations of gating have
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been considered by other investigators ([9],[4],[3], [8]). For each additional
stable state there will also be an additional transition state. A different
transition state could become the rate-determining step over some range of
membrane voltage. resulting in a non-sigmoidal voltage dependence of the
rate constants over the entire voltage range. In addition, a gating particle
could possibly influence channel conductance in a more graded fashion. In
this case, different conformational states would not necessarily act as binary
enabling/disabling mechanisms.

In fact, experimental data for many currents indicate that the sim-
ple thermodynamic description of the HH model is not sufficient for the
gating mechanisms that govern those currents. For example, some cur-
rents have shown minimal or no voltage-dependence for either their acti-
vation/inactivation time constants nor their steady state values. In many
of these cases whether this reflects the true kinetic nature of the currents,
whether this is artifactual from the inherent limitations of the equipment,
or whether there is contamination from other currents that has not been
accounted for is not clear. In some cases. different measurement protocols
can shed light on these questions. In other cases. simulations can help test
speculations as to the true nature of the currents. Another explanation is
that there is a distinct linear rate-limiting mechanism that alters the func-
tion for the time constant as would be expected from the HH model. Such
a mechanism is considered in the present simulations. as will be described
later. .

Another complicating factor is one that reflects actual physiological mech-
anisms. vet is not explicitly described in the HH model. This factor is the
effect of the concentration of various ions in the vicinity of the membrane.
There will be an observable effect of different concentrations of the predom-
inant ions (Va*, K+, Ca?*. and C'I") on the reversal potential for these
species, as expressed in the Nernst equation. given that a given ion undergoes
large changes in its local concentration because of sequestering, saturation
of buffering mechanisms, or active transport. The model described here as-
sumes only passive transport of the charge carriers across the membrane: for
example, maintenance of the Nat and At concentration gradients in light
of the flux of these ions during electrical activity is assumed to occur over a
long time scale. In addition. there are many cases where the local concen-
tration of some ion is a regulator of some active process - e.g. C'a?t in the
activation of the actin-myosin system and as a mediator in the conductance
of certain channels. As will be described later, such coupling is indicated
in some of the hippocampal pyramidal cell non-linear currents. the notable
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example being the Ca?t -activated At current, I-. In this case there is
evidence that the conductance underlying this current is dependent on the
concentration of Ca?* underneath the membrane, as may be supplied by
the Ca®* currents (e.g. Ic, and Icqs).

On the other hand, in support of the HH approach, there is evidence that
the HH description is valid for at least some ion channels. For example. the
movement of charge that occurs when the postulated gating particles change
state (the so-called "gating current”) has been detected for some channels
([19]). The primary structure of certain channels, e.g. some Na* channels
and acetylcholine receptors, have been sequenced, and speculations on the
tertiary structure have been made on the basis of this data. There are
indications in these sequences of segments with polar residues that traverse
the membrane in such a way so that they maybe able to sense the membrane
voltage, i.e. properties expected of putative “gating particles”.

On a more empirical level, simulations of non-linear membrane using HH-
like descriptions for the ion channels have been successful in reproducing the
electrical activity of several electrically-active cells. In the present work, it
was remarkable how well HH models were able to reproduce the behavior of
several channels.

4.8 The Concept of an “Extension” of the HH
Model

The descriptions for the HIPPO non-linear conductances are based on erten-
sions of the HH model. This is because the HIPPO descriptions explicitly
consider the implications of the single-barrier gating model proposed by
Hodgkin and Huxley, especially with regard to the relationship between the
parameters that define this model and the resulting voltage-dependent time
constants for the gating particles. In other studies that draw on the HH
model the relation between the steady-state characteristics of the gating
particles and their temporal characteristics is purely empirical. and is not
derived from the single-barrier model.



Chapter 5

ESTIMATING Nat
CURRENTS

5.1 Introduction

This chapter describes the derivation of the kinetics for three proposed Na*
currents in the hippocampal pyramidal cell. I shall begin with the back-
ground for this problem, and then I shall present the data that was used
to derive the model parameters. After the motivation for using three Na*
currents is discussed. the strategy I used to estimate the relevant parameters
will be presented.

The parameters for the Va* currents will then be presented. Some of
these parameters will be compared with the analogous parameters of the
squid axon .Nat channel and the In-, of the rabbit node of Ranvier, since
these latter two currents are among the few Na* channels for which the
kinetics have been measured under voltage clamp.

5.2 Background for Evaluating Iy,

One of the first applications of the model has been the estimation of the Na*
currents in hippocampal pyvramidal cells. including those which underlie the
depolarizing phase of the action potential. The fast Va* conductance nec-
essary for the spike corresponds to the classical Va*t current described by
Hodgkin and Huxley. To initiate the action potential, this current rapidly
turns on when the membrane voltage passes the firing threshold for the
cell. Almost as rapidly. the fast Va* turns itself off as the cell depolarizes.
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contributing substantially to the repolarization of the action potential.

A quantitative description of the Na™ currents is vital because these cur-
rents are the progenitors of the action potential and therefore are some of the
basic determinants of neuronal function. Also the activation/inactivation
properties of the .Na™ currents set the stage for the entrance of the numer-
ous outward currents.

There is little voltage clamp data for Vet currents since these currents
are typically large and fast, exceeding the current sourcing ability and the
temporal response of the single-electrode clamp circuit used to make the
measurements. Since the data is not complete. it was necessary to look
to sources of data other than that from hippocampal preparations. These
included estimations of the kinetics of a fast Na* current in rabbit node of
Ranvier ({10]) and in the bullfrog (Koch and Adams. bulifrog sympathetic
ganglion simulations. personal communication. In addition parameters used
in other neuron simulations were consulted ([4R], hippocampal simulations).

In the HIPPO model. this problem has been approached several ways. in-
cluding using the descriptions just mentioned. I also tried using Iy, kinetics
based on measurements from rabbit node of Ranvier. with some modifica-
tions. In particular. the time constants for the m and the h variables were
scaled by two. in addition to the appropriate temperature compensation
(g10 = 3, Adams, personal communication)!.

Attempts to derive the original source for the kinetics used by Traub.
et al, were unsuccessful. My impression is that the kinetics used in this
model are simply the ones derived by Hodgkin and Huxleyv for squid axon.
modified slightly to vield acceptable empirical results for the simulation of
some protocols. Initially I tried such an approach.

Specifically. I have attempted to derive channel kinetics that are consis-
tent with current clamp records of Nat-only spikes (Storm, personal com-
munication). the steady-state .V«* dependent current-voltage characteristic
({12]. Storm ibid), and current clamp records of normal action potentials
obtained under various conditions. under the assumption that any channels
that conduct Na* may be described by the HH-like kinetics described ear-
lier. and further that each channel may have one or two tvpes of gating
particles. The task was therefore to try to fit the behavior of this class of
voltage-dependent channels to the data. I began by considering the Na*-

only spike.

!From scaling of time constants for /x, in bullfrog myelinated nerve and bulifrog
sympathetic ganglion soma.
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In particular, it was desired to describe the fast Na* so that the cell had
the capacity for a stable resting potential that in turn could be perturbed
enough to result in an action potential. This implied that at the resting
potential the inactivation variable (k) was turned on and that the activation
variable (m) was well turned off. In addition, the time constant for the m
variable had to be substantially less than the time constant for the h variable
throughout most of the depolarized range of the membrane potential above
rest. This insured that once threshold was reached, the m variable would
have a chance to fully activate and allow Na to enter the cell before the
h variable caught up with the depolarization and subsequently go into the
closed state, thus shutting off the conductance.

Although a useful description was found empirically. it will be important
to compare this description to actual measurements of the fast Na current
kinetics whenever they become available.

5.3 Deriving Na* Conductance Kinetics

5.3.1 Implications of Na*-only Spike

Current clamp records taken using hippocampal slices which had been treated
with agents that blocked all potassium and calcium currents enables one to
look at the behavior of the Va*t currents and. presumably. the leak con-
ductance in isolation. Such protocols assume that 1) all non-linear currents
other than Vet currents are blocked. and 2) such treatment leaves the leak
conductance unchanged. Figure 5.1 shows a record of a .Na*-only spike
under such conditions.

This spike gives several clues about the Na* currents in this cell. First,
the spike threshold is quite sharp. Also the subthreshold response shows
very little activation of inward current. This behavior of the spike thresh-
old implies that the activation curve for the Na* current underlying the
initiation is steep, with the curve centered around -55 millivolts.

The second feature is the biphasic repolarization of the spike. The tra-
jectory of the spike repolarization under the specified conditions is due to
two factors - the inactivation of the Na® current(s) and the linear leak of
the membrane. Initially. the spike repolarizes rapidly. Assuming that the
major portion of the spike is due to a Na* current similar to the classical
fast Na* current described in squid axon. this initial repolarization is con-
sistent with the rapid inactivation of the channel with depolarization. At
depolarized membrane potentials. the time constant for inactivation is on
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Figure 5.1: Va‘*-only Spike and Subthreshold Response - Current clamp
protocol with cesium chloride electrode. TEA. 4AP. and Mn** added to
block the calcium and potassium currents. Resting potential is -65 mv.
Stimulus current is top trace. From Storm (unpublished data).
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the order of a few milliseconds. However. approximately 7 milliseconds after
the spike peak the repolarization slows drasticallv. This slow phase of the
repolarization, which commences when the membrane voltage is about -20
millivolts, lasts approximately 60 milliseconds. Since this decay is too slow
to be accounted for by the time constant of the cell. we propose that the
long tail is due to an non-linear (Na*) inward current.

We can determine whether a Nat tail current is likely to be present
during a spike that is repolarized by outward currents. The action poten-
tial is repolarized by A% currents. in addition to the leak conductance and
the inactivation of the Na* currents. If any Vat tail current has been
activated during the fast spike. then it must be canceled by a slow residual
component of the outward currents, since no long lasting depolarized tail is
observed. During a normal action potential there is therefore either a com-
pletely activated slow component of the fast Na* current that is canceled
by a slow At current(s). or there is a separate slow Nat current that has
not had a chance to be activated during the short spike. or there is some
middle ground where a incompletely-activated inward current is canceled by
a residual outward current.

The time course of the actual spike was used as the clamp voltage in a
voltage clamp simulation using the linear cell in order to estimate the current
during a NeT-only spike. As was described in Chapter 3. the resulting
simulated clamp current revealed the total current that must be supplied
by non-linear conductances during the spike. Incidentally. this protocol was
an example of the power of the simulation technique. since controlling an
actual microelectrode voltage clamp with such a fast time-varving signal is
not always possible.

The result of the voltage clamp simulation is shown in Figure 5.2 The
time course of the clamp current implied that the non-linear mechanisms
underlying the spike had at least two distinct components. an early, large
component which quickly deactivated/inactivated. and a later small compo-
nent which deactivated/inactivated slowly. remaining for approximately 100
milliseconds.

The fast component was assumed analogous to the classical fast Na*
current of the squid axon as described by Hodgkin and Huxley.

For the repolarizing tail I considered two possible mechanisms: an abrupt
slowing of inactivation of the fast Na™* current underlying the spike. or the
action of another kind of Va* channel. For the present this first possibility
has been discounted for two reasons. First. I have not been able to derive a
function for the voltage-dependent time constant for inactivation for the fast
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Na* that was consistent with the single-barrier gating assumptions and that
had the necessary sharp increase at the appropriate voltage. Second. in light
of the present assumptions regarding the behavior of the K'* currents, it was
determined that the mechanism for the slow tail would only be significantly
activated during a long (e.g. non-repolarized) spike. thereby removing the
requirement of an outward current that would cancel out the slow tail current
after the normal spike.

In considering the possibility of a distinct tail current. the important
characteristics of this current was that it had to have a high threshold and a
slow onset, consistent with the lack of a long after-depolarization in normal
spikes. For example, if this current had a threshold of approximately -10
millivolts with a slow activation time constant, i.e. 4 milliseconds. then
during a normal spike this current will not have time to activate fully. On
the other hand. during the slower repolarization that occurs without non-
linear outward currents, this tail current will have time during the peak of
the spike to activate more. and thereby contribute to a long repolarization.
I called this current Ix,_yq;. 1 attempted to adapt the activation data for
Ix,p (discussed next) to account for the action of the so-called Iny_yqi.
but this has been unsuccessful to date. This is primarily because the low
threshold of the activation curve for Iy, p has thwarted attempts at deriving
a function for the time constant of activation that is consistent with the
single-barrier model and which in turn reproduces the Nat-only spike.

5.3.2 Implications of N¢*-only Repetitive Firing

Repetitive firing elicited in cells in which all currents except V¢t have been
blocked offer additional clues as to the nature of the Na*t currents in hip-
pocampal pyramidal cells. Figure 5.3 illustrates such a record. The kev
features of these voltage traces are 1) higher threshold of spikes following
initial spike (i.e. higher threshold of the secondary spikes). 2) reduced am-
plitude of repetitive spikes. 3) reduction of spike amplitude with increasing
stimulus, 1) repetitive firing elicited only in a narrow range of membrane
voltages.

5.3.3 Implications of Tetrodotoxin Sensitive Steady State
Current-Voltage Characteristic

Figure 5.4 shows a steady-state current-voltage characteristic from hip-
pocampal pyramidal cells that demonstrates a tetrodotoxin (TTX) sensitive
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Figure 5.3: Na‘t-only Repetitive Spiking - Current clamp protocol under

same conditions as Figure 5.1. Current stimuli is bottom trace. From Storm
(unpublished data).
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1.0

Figure 5.4: Inward Rectification by Na*. Curve derived from steady-state
activation of a persistent Va* current. Ix,p ([12]).

inward-rectification ({12]). Assuming that a sensitivity to TTX means that
Vat currents underlie this rectification. the characteristic can be accounted
for by either the “window current™ of a transient Na* current. by a per-

sistent (non-inactivating) Na* current (Iy,p). or by some combination of
these types of channels. '

5.3.4 The Role of Window Currents

Window current is due to any overlap in the voltage-dependent steady state
curves of the activation and inactivation variables, thereby making a nor-
mally transient current contribute a persistent component over some range
of membrane voltage. Since any overlap in the activation and inactivation
curves will be limited. rectification due to a window current alone would dis-
appear at depolarized membrane voltages. The steady-state current-voltage
characteristic would then continue the linear characteristic established prior
to the onset of rectification. The data for this cell. however. would not nec-
essarily demonstrate a depolarized removal of rectification since the steady-
state current-voltage curve was only measured to -35 millivolts.

Important aspects of this characteristic include the lack of inward recti-
fication around.the .Va*-only spike threshold. which implies that the m and
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h curves for the current activated at the threshold do not overlap at that

threshold.

5.3.5 Adding Together All of the Evidence

Taked all together. the data presented so far imnplies several characteristics
of any TTX-sensitive (presumably Na*t-carried) currents. These may be
summarized as follows:

1. Na* mediated repetitive firing in cells depolarized from the resting
potential implies that the inactivation curve for the current underlying
the higher threshold spikes is non-zero at the depolarized level.

2. Thelack of inward-rectification at the lower spike threshold contradicts
the earlier conclusion that the activation curve for the fast Na* current
is steep at the lower threshold.

3. A steep activation curve at the lower threshold taken with the non-
zero inactivation at depolarized membrane potentials would result in
an appreciable window current. This window current in turn would
contribute to inward rectification starting at the lower spike threshold
of -55 millivolts. This is inconsistent with the data.

To explain these phenomena. I suggest that there is an additional fast
Na* channel whose threshold for firing is depolarized from that of the orig-
inal fast Na* channel. and whose activation and inactivation kinetics are
such that it might mediate Na™-only repetitive firing. In the absence of
repolarization from any non-linear outward currents. simulations indicated
that there must be a finite overlap of the activation and inactivation curves
of any HH-like Na* channel that can mediate repetitive firing. This over-
lap will result in a finite window current. and thus a steady state inward
rectification. I was able to adjust this rectification to qualitatively repro-
duce the onset of the observed rectification discussed earlier. Because it
mediates repetitive Na*-only spikes. I named the high threshold current
Ing_rep. Since I deduced that the original fast Nat current had a sensi-
tive, low threshold for initiating the action potential. I called this current
].’Va—trig'

The steady-state N a* mediated rectification also constrains the behavior
of the Ix,_qi- In particular. if this current contributed any window current
then such a window current could only activate above -30 millivolts. in order
to be consistent with the steady-state IV characteristic.
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The implications of a sharp threshold for the Na* -only spike. and a
small subthreshold response implies steep and/or activation characteristics
for the current underlying the initiation of the spike. On the other hand,
presumed modulation of the spike threshold by outward (A't) currents (see
(‘hapter 7) which in turn do not greatly effect the slope or amplitude of
the action potential implies that around threshold Na't activation is not
instantaneous. in other words a small outward conductance would be able
to counter the sub-threshold inward rectification of the N«* current suffi-
ciently to raise the firing threshold. Note that the faster the Na* current
activated around threshold, the larger the outward current would have to be
to suppress the initiation of the spike. Since threshold is only about 30 mil-
livolts above Ey, the small driving force for an outward A'* current means
that a large conductance is required. However, a large At conductance that
is enabled immediately prior to the spike would allow a large outward cur-
rent on the upstroke of the spike, due to the increasing driving force that the
K* ions see. An alternative explanation is that the threshold-modulating
K* current shuts off prior to or during the upstroke of the spike. and thus
a At conductance of sufficient size to transiently counteract a quickly ac-
tivating .Va™ current would not then serve to attenuate the spike itself. A
final alternative is that the size of the spike current is large enough that a
sub-threshold activated outward conductance would not attenuate the spike
noticeably.

5.4 Strategy for Determining N«* Current Ki-
netics

Once it was determined that three .Va't currents might model the observed
behavior. the following strategv used to derive their kinetics:

1. Estimate the absolute Nat conductance for the fast Nat currents
(Ina=trig and Ixo—rep) by running voltage clamp simulations using
the Na*-only spike as the command voltage.

2. A reasonable set of equations governing the kinetics (backward and
forward rate constants for the activation gating particle m and inac-
tivation gating particle h) for the three putative N«* currents was
determined. The free parameters for each function include the free
energy changes between the stable states and the transition state. the

100



location of the transition state within the membrane, and the effec-
tive valence of the gating particle. Voltage-dependent functions of the
time-constants and steady-state values of the gating particles are then
derived from the appropriate rate functions.

3. Run (current clamp) simulations of the .V a*-only single and repetitive
spike protocols.

4. Compare the simulations with the data.

(@]

. Adjust the appropriate rate-constant functions and repeat the simu-
lations.

6. Once a good match between the current clamp simulations and the
data was reached. the steady state current-voltage characteristic of
the cell with all three Va* currents activated was derived to measure
the inward-rectification generated by the estimated currents.

=1

. This characteristic was compared with that of one from the model

with the derived Na%t currents replaced by the reported persistent
Na?t current.

8. If needed. return to step 3. in order to obtain a good fit to all the
available data.

This process eventually converged to vield a model description that was
in good qualitative agreement with the data pertaining to N «*-only behav-
ior. The derived Na™ currents were then tested by running simulations in
which various At currents were added, once they were derived. This led to
a modification of some of the parameters of the Na* currents. while preserv-
ing the Va*-only behavior, which provided a rigorous set of constraints on
the parameter adjustment. The entire process was and is one of adding one
piece of information at a time to the model. and then running simulations
to find out how the new data affects the model’s behavior.

5.5 Results

5.5.1 Simulation of \'«*-Mediated Inward-Rectification and
Spikes

Figure 5.5 compares the steady-state current-voltage characteristic of the
model with 1) the reported Ixgp. and 2) the Iny_trig- INa—taits INa—rep Cur-
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Figure 5.3: Current-voltage characteristics of model showing inward-
rectification mediated by Ixqp and by Ixa_trig. INa—taits a0d Ixgorep. cur-
rents.

rents. The model currents cause an onset of inward rectification that is in
qualitative agreement with the published data. However. since this steady-
state inward current is mainly due to the transient Iy,_.., window current.
the rectification only occurs over a limited range of membrane voltages. This
is not necessarilv inconsistent with the characteristic of /x,p because of the
limited range over which this current was measured. as explained earlier.
Possibly the so-called persistent Na*t current is actually a transient current
which would demonstrate removal of inward-rectification at more depolar-
ized membrane potentials. Given more data. the derived characteristics of
the so-called Ixq-,c, might be adjusted to better match the steady-state
current-voltage relationship of the model.

Figure 5.6 illustrates a simulation of the .NV¢*-only single spike. The
model’s behavior is in good agreement with the data. in particular in regards
to the sharp threshold of the spike. the time course of the depolarizing phase.
the initial fast repolarization. and the slower late repolarization. Also in the
figure are the three model Va* currents that underlie the Na*-only spike.
In this figure the initial activation of Iy,—¢,. the subsequent recruitment

of the higher threshold Ix;- ¢p. and the slow time course of [x,-qu after
the first two currents have inactivated can be seen.
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Figure 5.6: Current clamp simulation of .V« *-only single spike. Spike stim-
ulus - 0.78 nA. Top - Simulation of spike compared with record taken from
data. Bottom - Ixq_trig. INa—taid. Ixa=rep currents during spike.
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Figure 5.7 illustrates a simulation of Nat-only repetitive firing under
different constant current inputs. At the bottom of the figure are the Vat
currents underlying the marked spike train. After the first spike, the initia-
tion of later spikes is mediated completely by Ing—.).

5.6 Parameters of the Three Putative N«t Con-
ductances

The parameters for the three proposed hippocampal Na* currents will now
be presented in detail. Some of these parameters will then be compared
with the analogous parameters of the squid axon Na* channel and the Ia,
of the rabbit node of Ranvier.

All parameters were set assuming a temperature of 24°C. It was neces-
sary to use a high value for the ¢19 (= 5) for these currents since simulations
of action potential repolarization at the higher temperature used for inter-
preting most of the At current data (32°C) indicated that significantly
faster activation/inactivation was required. Figure 3.8 shows the resulting
effect of different temperatures on the Na*-only spike. The striking effect of
temperature in these simulations suggest that measuring the temperature
dependence of Nat-only spikes in HPC may provide a good test for the
model description of the Na* currents.

5.7 Parameters of Iy,

Ix,_trig is based on the classical Iy, of the squid axon. Important differ-
ences were required, however, so that Ixo_¢rig would have a sharp threshold
with very little subthreshold activation. Also. it was necessary to adjust
some parameters to obtain the desired characteristics during normal repet-
itive firing.

5.7.1 Results

First. the valence of both the m and h particles is large (z,, = 20. z,, = 30).
which makes them steep functions of voltage. Likewise. the m,, and h

curves for Iy,_irig do not overlap as they do in the squid axon Iy, (ref.
Figure 5.15).
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Figure 5.7: Current clamp simulation of Va*-only repetitive spike protocol.
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Figure 5.8: Current clamp simulations of Na*-only single spike at different
temperatures. g for the three Na* current kinetics is set to 5. q10 for the
absolute conductances is set to 1.3 . With increasing temperature the spike

threshold drops. the depolarizing slope is steeper. and the repolarization
(due to inactivation/deactivation) is faster.
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The position on the voltage axis, as determined by V; m,Na—trig a0d
v LhNa-trig- Were set to make the firing threshold equal to about -55 milli-
volts. This threshold was made slightly higher than indicated by the data
in order to allow subthreshold activation of 14 (ref. Chapter 7).

Setting the order of the inactivation particle / and the the 7, v,—irig
magnitudes involved compromising between formulations that met a) the
observed width (about 1.7 milliseconds at 0 millivolts) and b) the observed
height (about 15 millivolts) of Na*-only spike. The formula I have used
includes two h particles and setting 7 y,_,;, = 2.0 milliseconds so that the
current would not inactivate too quickly at the top of the spike. When a sin-
gle h particle was used it was necessary to adjust 7§ x,_,;, = 1.5 milliseconds
to maintain the width of the spike; however. this formula made the peak am-
plitude too high.

The curve for 7, va-trig Was symmetrical (9, xq-trig = 0.3). but when
normal repetitive firing was simulated using the A’ currents. it was nec-
essary to make the curve for 74 xq—trig skewed to the right (depolarized)
(7h.Na—trig = 0.2) so that removal of inactivation was fast enough near rest
to allow for rapid firing.

The value for gy, .5 xu—trig (= 40mS/cm?) was set in order to obtain an
initial slope of the action potential of approximately 130 volts per second
(measured from threshold to 0 millivolts). This value was dependent on
Gdens.Na—rep a5 Well . since Ivq_r¢p is activated within a few tenths of a
millisecond after the beginning of the spike and therefore I x,_;, contributes
substantially to the upstroke of the action potential (see Figure 5.6).

The equation for Ix,—¢riy is -

Iy a-trig = g\a—trzg MNq—trig h\,q triy (V- E.\'a+ )

where
y.\"a—trig =0.53 ’ls

- 2
Gdens.Na-trig = 40.0mS/cm

Table 5.1 lists the parameters for the In,_¢.;, gating variables. These
are the rate functions for the activation variable. m. of Ixq_¢rig -

V4+47)0.5-20- F
Qm Na—trig =0.3exp(( +3005 )

RT
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Gating Variable | z | 7 | a0 | Vi(mV)| ro(ms)

T | YN U A Y- U B U
m (activation) 20 10.5( 0.3 -47.0 0.5
h (inactivation) || -30 | 0.2 | 0.003 -54.0 2.0

Table 5.1: Parameters of Ix,_;.y Gating Variables

- M-inf (Ne-trig)
=== H-Iinf (N
""" H-inf-effective (Ne-trig)

Vol
<0.0 300 co&a™”

Figure 5.9: Steady-state curves (my and hy) for mxy,—triy and Axa—trig
and effective curves as would be measured by voltage-clamp experiments.

31!!..\'a—triy =03 ("XP( RT

These are the rate functions for the inactivation variable. h. of Ix,-trig

(=47 - 1")0.5-‘20-1")

¥ +61)0.7--30-
Qh Nag—trig = 0.01 exp(( +61)0.7 30 F)

RT

{(-61-1)0.3--30-F
-3h..\'a-—trig = 0.01 exP( : ;?T )

Figures 5.9 and 3.10 show the voltage dependence on the steady-state
values and the time constants for the ni\, /.y and hx,-sig variables.

5.8 Parameters of I\,

The kinetics of Ix,—rep. like Ix,—¢rig. is similar to the squid axon Ix, kinet-
ics. In order that Ix,-,, be able to generate repetitive .Na — only spikes,
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Figure 5.10: Time constant curves (7, and 4) for mNa-trig and Ang—trig.

however. it was necessary to adjust the parameters for this conductance very
carefully. Experimentation revealed that a key requirement for getting high
threshold Va — only repetitive spikes was that the m,, and h,, curves for
INq—rep overlap. In addition. the curve for h,, had to be very steep and the
curve for 75 had to be sharp on the hyperpolarized side. These characteris-
tics were needed so that during the repolarization after a spike. removal of
inactivation would occur while my,-,, Was large enough to allow enough
current for another spike. On the other hand. h could not be so fast that
there was .\'a — only repetitive firing without tonic stimulation.

5.8.1 Results

Experimentation with the order of m and h resulted in the assignment of
two m and three h particles to the Iv,-,., conductance. The high order of h
accentuated the steepness of the h curve so that when the cell repolarized
slowly (with a tonic current stimulus) the removal of inactivation would
occur abruptly enough to allow repetitive firing. A single m particle did
not provide enough positive feedback on the initiation of secondary spikes
to get the observed magnitudes (e.g. between -20 and 5 millivolts). Three
m particles did not allow the channel to retain sufficient activation after the
initial spike to initiate subsequent spikes.

The value for §y.,s v1-rep had various effects. In particular. the value
fOr Gyens. Na—rep Modulated the role of Ix,-~¢-i; during the initial slope of the
action potential. As introduced previously. both the value of Gy p, vo—rep
and Gyens. va-trig determined this slope.
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A second consequence Of §y.,; vo—re, Was that it had to be large enough
to support regenerative firing when In,—;ri;, Was inactivated because of the
depolarized membrane. On the other hand, .5 xo—r, cOuld not be too
large since this would give a significant depolarizing humnp after the initial
spike when the tonic stimulus is too small for repetitive firing - such a hump
is not observed experimentally (Figure 3.3).

On a more subtle level. the relationship between stimulus magnitude and
the second spike during .V a™-only repetitive firing is such that initially (from
below threshold to just above threshold for the tonic stimulus) the greater
the stimulus the sooner the second spike. However, past a certain point the
greater the stimulus the later the second spike occurs. until the stimulus is
too large to promote Na*t-only repetitive firing. During my simulations I
found that this behavior was dependent on G, Nu—rep = if Gdens. Va—rep WaS
too large. then there was no range of stimulus strengths in which a larger
stimulus caused the second spike to occur earlier.

In practice the most critical test of § .5 vq—re, Was the latter relation
between g, .. v,—re, and the timing of the second spike during Va*-only
repetitive firing. Once the desired relationship was achieved the other char-
acteristics were matched primarily by the adjustment of other relevant pa-
rameters.

The overlap for the m, and h, curves resulted in the steady state Na*
mediated inward rectification discussed earlier.

In summary. the parameters for Iy,_,., were among the most sensitive
of the model. and a substantial amount of effort was needed to derive them.

The equation for Iyg—yep is -

—_7 2 3 .
I_\-a—rep = g.\’a-rfpm"\'a—reph.\'a-—np(l’ - Ei\.n“_)

where
TNawrep = 0.50 1S

ydens..\'a-—rfp = 35.0 nlS/Cn12

Table 5.2 lists the parameters for the I\,_,., gating variables. These
are the rate functions for the activation variable. m. of Ixq_ep -

V' +310.5-6-F
()m._\'a_,-ep = 0.67 exp(( + )J0.) -0 )

RT
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|Gating Variable ” z l ¥ l g IV; (mV) I ro(ms)l

m (activation) 6 | 05 | 0.67 -34.0 5.0

h (inactivation) || -30

0.17

0.0023

-42.5

3.0

Table 3.2: Parameters of Ix,_,., Gating Variables

S5S Vaiue

Figure 5.11: Steady-state curves (my and hy) for maa—rep and Axg—rep
and effective curves as would be measured by voltage-clamp experiments.

Im Na—rep = 0.67 exp(

(-34 -

105-6-F

RT

)

These are the rate functions for the inactivation variable. h. of Ix,—rep -

ap Ng-rep = 0.0023 exp(

3 Na~-rep = 0.0023 exp(

(V' +42.50.83 - -30 - F)

RT

RT

(=42.5-17)0.17-30 - F)

Figures 3.11 and 3.12 show the voltage dependence on the steady-state
values and the time constants for the my;_r.p and hng—rep variables.

5.9 Parameters of I\,

The key features that | defined for the proposed Ing—t.i include signifi-
cant activation only when there are prolonged spikes, e.g. when there is no
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Figure 5.12: Time constant curves (7, and 7x) for mxg—rep and Ava_rep.

repolarization due to non-linear outward currents. Also. this current was de-

rived to be a transient current. with no contribution to steady state inward
rectification.

5.9.1 Results

The steady state curve for m was adjusted so that activation commenced
only for very depolarized levels (Figure 3.13.). On the other hand. the time
constant for m was derived so that once m was open it was slow to relax to
the closed state as the membrane repolarized (Figure. 5.14.)

Determining the parameters for 7, \s—t2it a04 Gyr 1.\ g1 Was done to-
gether. since both of these factors determined the slow repolarization inward
current.

The curves for h were not so critical - the main requirement was that
at rest h was fullv open so that I\, could be turned on with the spike.
However. h .. had to be 0 at levels depolarized from rest so that there would
be no window current component from I\ ,_¢q:;- The curve for 7 xq-1qi1 Was
set so that on one hand h did not change much during spiking. leaving the
m variable in control of this current. and. on the other hand. fast enough so
that Iyg—¢qi1 would not have an apparent persistent characteristic because
of a sluggish inactivation.

There was no need for the delaved state transition characteristics of more
than one m or h particle for I ,_,.;;: therefore the order of each was set to
one.

Given that in general the requirements for Ix,_¢,; were not as rigid
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Gating Variable || 2

5 ag _LV% (mV) | 7o (ms) l
m (activation) || 8 ] 0.95] 0.025 | -5.0 5.0
h (inactivation) || -6 | 0.2 | 0.0017 -47.0 3.0

Table 5.3: Parameters of In,_s: Gating Variables

as other currents. i.e. Ing—rep. the derived parameters were not the only
set that would demonstrate the desired behavior. For example, A could
be faster, as long as either 7, was likewise decreased and/or gpn,_sqi Was

increased to compensate for the resulting increase in inactivation of Inq—tait
during the spike.
The equation for Iy,—tqi is -

INatail = GNa—tailMNa-taith Na=tait(V — Eng+)

where
INa-tait = 0.013 45

= - /e 2
9dens,Na~tail = I.OmS/cm

Table 5.3 lists the parameters for the Iv,_; gating variables. These
are the rate functions for the activation variable, m. of Ix,_tqi1 -

"4+3)0.95.8. F
G Natail = o.ozsexp(” +2)0.95 )

RT

-5-170.05-8 - F
Im.Na—tail = 0.025 exP(( ) 0.05 )

RT
These are the rate functions for the inactivation variable, h. of Ixg—t4il

@pNa-tail = 0.0017 exp(

(V+47)0.8- -6 - F)
RT

4T -V)0.2.-~6- F
Jh._\-q_mn=o.0017exp(( 1721102 -6 )

RT
Figures 5.13 and 5.14 show the voltage dependence on the steady-state
values and the time constants for the mx,_tqi1 and hxq_tq51 variables.
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Figure 5.15: Steady-state curves (m., and hy ) for squid axon Iy, and the
hippocampal Iv,-trig and Ing—rep.

5.10 Comparison of Ivg-trig and Iy, Kinetics
With Those of Squid Axon Iy, and Rabbit
Node of Ranvier [,

Comparing the characteristics of the squid axon Iy, kinetics with that of
Ixa-trig and Ix,—r¢p is interesting. Figures 5.15 and 5.16 illustrate the m
and h steady-state and time constant curves for these three currents. The

~ salient differences include the substantial overlap (giving a large window

current) in the squid m,. and A, curves and the much lower valence of the

respective squid /v, gating particles imnplied by these curves. as compared
to the HIPPO curves.

5.11 Discussion of Functional Roles of the Pro-
posed Nat Currents

Once we have constructed the three model currents that successfully repro-
duce the data. it is important to ask what roles these currents might play
in the pyramidal cell. Consider Ix,_¢,,,. The characteristics of this current
allow for a sharp firing threshold from resting potential. The advantage of
this is that the neuron is more tuned to a specific input firing level: there
is a higher noise margin in regards to the firing efficacy of a given pattern
of synaptic input. In addition. the lack of a window current for Inq—trig
means that at rest or at subthreshold membrane potentials there will be
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Figure 5.16: Time constant curves (7, and 7) for squid axon Iy, and the
hippocampal Ing-trig and Ing—rep.

little "wasted™ Na* current. This is metabolically favorable as the cell does
not have to remove the buildup of Na* resulting from such a background
current. Likewise, any constant inward current at rest would have to be
balanced by an outward (presumably A*) current in order to maintain the
resting potential. Again, this loss adds to the energy requirements of the
cell at “rest™.

Given these characteristics of Jxq_¢rig. a regenerative. higher threshold
Na* current is necessary in order to mediate the higher threshold spikes
that are observed under various conditions. including bursting on top of a
(presumably) C'a®* depolarizing hump. and repetitive Nat-only firing.

What could be the advantage of this second .Va* current? Such a higher
threshold Na* current on top of a sharp, lower threshold .Na* current
could relax the requirements of the repolarization mechanism during a train
of spikes in response to some tonic depolarization. An Iy,—,p-type cur-
rent could mediate later action potentials without the requirement that the
cell repolarize to below the threshold of an Ix,—4i,-tvpe current - all that
is needed is that the cell repolarize to somewhere helow the threshold of
Ixa-rep. Simulation of repetitive firing (Figure 5.17) shows how Iv,—rep
could furnish the major portion of depolarizing current for spikes after the
first spike of a train.

Allowing the cell to fire again from a higher threshold reduces the amount
of outward current needed to sustain multiple spikes. which in turn impose
less of burden on the cell's machinery for maintaining the A'* concentration
gradient . In addition. the overlap of the activation and inactivation curves of
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Figure 5.17: C'urrent clamp simulation of normal repetitive firing in response
to 1.0 nA tonic stimulus. Note the fast after-hyperpolarization (fAHP) after
first spike, mediated by I (Storm. ibid) (Chapter 7). Slowing of firing is due

to activation of I yp (Chapter 7). In lower part of figure are the Ing_trig.
I —tait Ix,_:c, currents during the train.
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INg—rep results in an ill-defined threshold for repetitive firing. allowing for a
greater flexibility in modulating the frequency of firing by other mechanisms,
e.g. distinct actions of the various At currents.

On the other hand. when this current is blocked. there is a degenerate
response to large tonic stimuli. as will be demonstrated in Chapter 9 (ref.
Figure 9.9). As will be discussed later. whether this dependence of repetitive
firing on Ix4_r., is physiological or pathological is not obvious.

What about the proposed In,_:qi7 As constructed. this current con-
tributes to a small after-depolarization during a normal spike that must be
countered by an outward current. In our simulations. this is accomplished by
Ipp. For now the function this slowly-inactivating Va* current might have
is not clear. Perhaps this current may be inhibited in certain circumstances,
allowing it to play a role in mediating repetitive firing. Such speculation
awaits further evidence of such a In,_tqi in actual cells. An important
related question is whether or not the In,_sq; (if it exists) is either physi-
ologically modulated by factors that do not affect the other currents, or is
its role in shaping the response of the cell a constant one?

In Chapter 9 the effect of Ix,—¢qir On repetitive firing will be compared
with that of other currents.
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Chapter 6

ESTIMATING Catt
CURRENTS AND
ACCUMULATION OF cCa2t
IN THE CELL

6.1 Introduction

This chapter describes the two calcium (Ca?*) currents that have been de-
scribed for the HPC, I, and I, 5. and possible mechanisms that establish
the concentration of free ("a** in various regions underneath the cell mem-
brane.

For the current version of the model the goals set for the characteri-
zation of the C'a?* phenomena were quantitatively relatively modest and

based partly on heuristics. In summary, the desired behavior of the system
included :

o Generation of C'a®*-only spikes that were qualitatively similar to ac-
tual C'a®*-only spikes.

o Voltage and time-dependent changes in [Ce®*] underneath the mem-

brane ~[Ca**] pen.1 and [Ca?t]henr2 50 as to mediate two A+ currents
(Ic and ITayp).

e Response to voltage clamp protocols in qualitative agreement with the
available'data.
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The effect of the change in [Ca®t],pen1 on Ec, was also considered,
assuming that E¢, is determined by the concentration gradient across the
membrane in the vicinity of the I¢, channels.

6.2 Calcium Current - I,

Many workers have reported Ca?* currents in HPC ([6], [13], [15]. [18], [28],
[33], [38], [40]. [41]. [33], [55]). The fast Ca?* current in the model, I¢,,
which underlies Ca?*-only spikes has kinetics similar to that of Ing—trig,
except that the curves for the gating variables are less steep and the time
constants are about one order of magnitude slower. These kinetics were
originally based on those used by Traub and Llinas [49], [48] in their hip-
pocampal and motorneuron models.

In deriving the kinetics of I¢, I attempted to reproduce current clamp
records from cells in which both Na*t currents and Ipr were blocked with
TTX and TEA, respectively ([41]). In these cells slow C'a®*-mediated
“spikes”™ were elicited by long depolarizing current steps. Spike threshold
was dependent on the holding potential prior to the current stimulus. Para-
doxically. the higher the holding potential the lower the threshold. At the
extreme , a holding potential of -70 millivolts resulted in elimination of a
regenerative response after the stimulus (though some inward current was
activated during the stimulus). On the other hand. a holding potential of
-40 millivolts resulted in a firing threshold for the C'a®* spike of about -30
millivolts. This behavior is contrary to what might be expected from a cur-
rent with activation/inactivation properties similar to a fast Na* current. in
which case a lower holding potential would cause the inactivation to be more
completely removed, thereby lowering the firing threshold. Segal and Barker
proposed that the observed behavior of the ('a®* spike was due to the action
of the transient A'* current I, (Chapter 7.); when the cell was held at the
lower potential, the inactivation of /4 was removed so that the subsequent
depolarization allowed the activation /4 to counter the activation of Ic,.
Holding the cell at the higher potential inactivated I4. thereby allowing the
later depolarizing current pulse to elicit the ("a®>* spike. The formulation
for the kinetics of I, was therefore tied somewhat to the description of 14
in the model.

Another action of I, that I attempted to reproduce was its apparent
role in the slow depolarizing hump that is observed in some cells which
exhibit burst firing ([48]), as I mentioned in the previous chapter in the dis-
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cussion of Iy,_ep function during repetitive and burst firing. At this point
the model does not exhibit such behavior. In fact, such a hump between -60
and -40 millivolts is inconsistent with the apparent I, (slow) activation at
approximately -40 millivolts. The supposed ('a**-mediated hump is possi-
bly due to I, channels in the dendrites. rather than somatic I¢-,. In the
dendrite current input local or distal to the site of the I, channels could
activate the channels without raising the soma voltage beyond 10 millivolts
or so above rest. Once activated, the dendritic Ca*t conductances could
supply enough long-lasting inward current to cause the somatic hump in
question. In future studies with HIPPO, such conductances will be placed
on the dendrites to test this hypothesis (ref. Chapter 11).

Another requirement for the kinetics of I, was that this current not be
significantly activated during the normal action potential. This is based on
the assumption that the effect of ('a®* blockers on the shape of the action
potential is due mainly to the subsequent inhibition of I¢- and Isgp. This
was accomplished by including two activation particles. s. in order to force
a delay in activation with depolarization. and likewise adjusting the curves
for s and 7, so that during the regular spike s would change little. while
during the sustained depolarization required to elicit the ('a®* spike s would
have enough time to move to the open position.

In addition, it was necessary to set the order of s to three so that sub-
threshold activation of s during regular spikes did not allow significant (in
terms of membrane depolarization) I,.

An important characteristic of C'e®* spikes is the abruptly-biphasic repo-
larization (see [41]). The initial decay after the peak of the spike is relatively
slow. presumably due to residual Ir,. until the membrane potential reaches
about -10 millivolts. The membrane then rapidly repolarizes to the resting
(or holding) potential. as if I, was suddenly turned off.

Since this knee occurs well depolarized from the spike threshold (between
-40 and -30 millivolts), it cannot be due to complete de-activation of the
activation gating particle (s) that underlies the threshold.

Also, I was not able to adjust either the number of nor the kinetics of
the inactivation particle (u') so that a delaved yet abrupt inactivation could
account for the knee. However. by adjusting the steepness of the s, curve so
that the effective steady state activation (in the hyperpolarizing direction)
began to drop off around -5 millivolts. the start of de-activation as the
C'a®*-only spike repolarized to this level contributed a moderate knee in the
simulated spike. \With the present version of I(-,. simulated Ca?* spikes
(Figure 6.1 have an analogous repolarization knee, but this is not as steep
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Gating Variable || z | 7 | a0 |Vi(mV) ro(ms)J

s (activation) 4 105 0.10 -24.0 2.0
w (inactivation) || -12 | 0.2 | 0.001 -35.0 5.0

Table 6.1: Parameters of I, Gating Variables

and does not occur quite as depolarized from the spike threshold as some of
the reported Ca®t-only spikes.

In these simulations inactivation of the w variables contribute to the
repolarization knee. Future versions of the Ic, description may include
either more than one inactivation or activation gating variables. or may use
a gating variable with a more complicated state domain (e.g. more than two
stable states). Also to be considered is the possibility that in these reports
un-blocked outward currents also are involved, particularly because different
data suggest that the repolarizing phase of Ca?*-only spikes is quite long
and without the described knee (Storm, personal communication).

With present description of Icalc and C'a®* accumulation underneath
the membrane the amount of Ca?* that flows across the membrane during
regular action potentials changes E¢, by at most 20 millivolts (see Fig-
ure 6.8. The C'a®* influx during the pure C'a®* spike. however. is enough
to change E¢, so that at the peak of the spike Ec, drops to about 10 mil-
livolts (ref. Figure 6.8). The reduction of Ec, during Ca**-only spikes is
a contributor to the reduction of I . and in fact is the limiting factor as
to the magnitude of the Ca?*-only spike. These results suggest that mea-
surement of Ec, ! during C'a*t-only spikes can help validate the description
of ('a®* -accumulation underneath the membrane described here or suggest
alternative descriptions.

The equation for I, is -

IC'a = gCas%'awé'a(Vv - ECG)

where

yca = .64 [IS

'For example by using hybrid clamp protocol in which the reversal potential for the
spike current is measured at different points of a Ca®*-only spike by switching from current
clamp to voltage clamp.
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Figure 6.1: Current clamp simulation of (‘a®* spike. Non-linear currents
include I, I4yp. and 14.
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Figure 6.2: Steady-state curves (2., and w ) for s¢q and we, and effective
curves as would be measured by voltage-clamp experiments.

Table 6.1 lists the parameters for the I~, gating variables. These are
the rate functions for the activation variable, s. of I¢, -

(V+24)0.5-4-F
asc, = 0.1exp

RT
(=24 =¥)0.5-4- F)
RT

These are the rate functions for the inactivation variable. w. of I, -

Jsca=10.1 exp(

0y Ca = 0.001exp(”' +35)0.2- -12. F)

RT
-35-17)0.8--12. F)
RT

Figure 6.2 and Figure 6.3 show the voltage dependence on the steady-
state values and the time constants for the r¢ 4 and yc4 variables.

Jup.ce = 0.001 exp((

6.3 Slow Calcium Current - I,s

Ic,s is a slow, non-inactivating current (e.g. [28]). While it has been re-
ported that this current is a true ("a®* current. careful examination of the
data for I, s suggests that the reversal potential for this current is around
0 millivolts. implving that /.5 is a mixed carrier current.
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Figure 6.3: Time constant curves (7, and 7,.) for s¢, and wc,.
g

LGating Variable zl - Iao Vi (mV) ro(ms)_J
[z (activation) [25]05]4.0] -30.0 0.1 |

Table 6.2: Parameters of I,5 Gating Variables

The small conductance of this current (0.08 uS). combined with the slow
onset of its activation variable r (7 is reported to range from 30 to 100 mil-
liseconds ) suggest that I,y has only a small functional role during repetitive

firing. At this stage of the model. such a role has not heen demonstrated.
The equation for I¢qs is -

Icas = Geastoas(V = Ecas)
where

Eca.s = Omillivolts

ﬁ('aS = 0.0% ;15

Table 6.2 lists the parameters for the I¢-,s gating variables.
These are the rate functions for the activation variable. r. of I¢,5 -

Ny Cas = 4.0exp( RT

(=30 - \')0.-")-23-F)
RT

(v +30)0.5-25-F)

Ircas = 4.0 exp(
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Figure 6.4: Steady-state curve (z for r¢,s.

Figure 6.4 show the voltage dependence on the steady-state value for
the z¢,s variable.

6.4 Mechanisms Regulating [Ca®*];pen1 and [Ca®]shen o

To recapitulate. there were three reasons to consider the accumulation of
C'a** underneath the membrane as a result of the influx of C'a®* currents:

1. Activation of I4yp is presumed to be dependent on the influx of Ic,.
2. Activation of I¢ is presumed to be dependent on the influx of Ic,.

3. The very low resting value of [Ca®*];, (typically assumed to be about
50nM) and the low resting value of [Ca“‘]au, (on the order of a few
mM ) implies that the influx of Ca?* from I, can significantly change
the ratio of the extra-cellular and intra-cellular [C'a’*] . changing Ec..

resulting in negative feedback via reduction of the driving force for the
Ca?* currents.

For the activation of I yp and Ic , the observed Ca?t dependence is
assumed to involve some mechanism between free intracellular C'a®* and
the individual channels 2 The simple relationship that is used in the present
model assumes that activation of both Iiyp and [ is (partially) depen-
dent on ('a®* -binding gating particles in these two types of channels. The

2\Many versions of this mechanism have been proposed ([19]). In this study a fairly
simple mechanism is employed.
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binding of Ca?* to the gating particles is reversible and the behavior of the
particles obey first order kinetics (Chapter 7).

The time course of Ic and I45p set some constraints on the kinetics of
Ca?* accumulation underneath the soma membrane. As shall be discussed
in detail in Chapter 7, ('a®*-mediated activation and inactivation of /¢ must
be sudden and complete. in accordance with the sudden onset of I¢- and the
apparent removal of I prior to subsequent spikes in a spike train. Given
the sigmoidal relationship between the C'a?* -dependent gating particles
and the log of the concentration of Ca?* (ref. Chapter 7, Figure X). this
means that the [C'a®t] that mediates Ic must rise and then fall quickly
with every spike. On the other hand, Ca?*-mediated activation of Isyp
is gradual. getting stronger with each spike in a train. and then gradually
decaying over one second or longer.

In order to accommodate these two patterns of Ca?*-mediated behavior.
a two-region shell, single core model was developed. In this model both I¢,
and I channels communicate with a distinct part of a shell underneath
the soma surface. shell.l. Iygp channels, on the other hand, communicate
directly with the remainder of the soma shell, shell.2. C'a®** flows hetween
the two shell regions and between each shell region and the soma core by
simple diffusion.

The physical relationship between the different soma shell regions, the
relevant channels, and the soma core is illustrated in Figure 6.5. Figure 6.6
shows a view of the soma membrane surface illustrating the proposed seg-
regation of C'a®* channels and I and I4gp channels. Figure 6.7 shows the
compartmental model based on this arrangement which is used to determine
the concentration of ("a?* in the shell regions.

The model therefore includes a shell of thickness d 441 on the intracellular
face of the membrane. A portion of this shell is assigned to shell.1 and the
remainder is assigned to shell.2. The concentration of free Ca®* in shell.1,
[Ca?*shen1, is a function of the two Ca?* currents, I, and Icqs and
movement of C'a®t between shell.l and shell.2 and between shell.1 and the
core. Likewise, the concentration of free C'a?* in shell.2 is determined by
the flow of C'a®t between shell.1 and shell.2 and between shell.2 and the
core. The concentration of C'a®t in the core is assumed to be a constant
since the volume of the core is much larger than the volume of the two shells.

The movement of C'a?t between the three compartments can be de-
scribed as follows. Let X;. X;.and X3 equal the amount of C'a?* (nanomoles)
in shell.l (compartment 1), shell.2 (compartment 2), and the core {compart-
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Figure 6.5: Diagram of localization of Ir-,. I¢,s. Ic. and I3y p channels in
distinct regions of the soma membrane. as postulated by the model. This
scheme assumes that the I, . Ic-,s. and I channels are all in close proxim-
ity (i.e. shell.1). such that the immediate change in [(‘a®*] in the vicinity
of the C'a®* current channels when these channels conduct is sensed by the
I¢- channels. Likewise. the /yyp channels are assumed to reside in a rela-
tively distant area of the soma membrane. such that the rise in local [Ca?*]
around these channels is delayed from the onset of the C'a?* currents.
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Figure 6.6: Proposed segregation of Ic,. Ic,s. Ic. and I4gp channels as
seen looking onto the surface of the soma. The effective area for diffusion
between the two shell regions. A;;. is determined by the total length of the
dotted line in the figure as well as the depth. d,., of the shell. In the
model A;; was lumped with Dj; to vield an effective diffusion constant for
the entire flow between the regions (see text). The empirical adjustment of
this metric to give the desired kinetics is then equivalent to adjusting this
length (i.e. the amount of communicating surface area). Also. the dotted
line does not represent a distinct physical barrier but rather a boundary for
approximating the continuous diffusion case with compartments.
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Figure 6.7: 3-compartinent model of ('«** influx and accumulation, based

on structure suggested in Figures 6.5 and 6.6. Parameters of this model are
given in the text.
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ment 3). respectively. In the same manner let V7, V3, and V3 be the volumes
(ml) and C, C;. and C3 be the concentrations of Ca?* (mM) in the three
compartments. Let Jiz, Ji3 and Jo3 be the flux of Ca?* (nanomoles per
second per square cm) between shell.l and shell.2. shell.l and the core,
and shell.2 and the core, respectively. and let D;; be the diffusion constant
(cm per second ) for the flux J;;. The area for ('a®* diffusion between any
two compartments ¢ and j is given by A;; (square cm).

The change in the amount of Ca?* in each of the compartments is as
follows:

. Ico + Icas
Xy = -l - Ji3A13 - 5 % 1°F
X2 = Ji2A12 = Jy3Azs

Xz = Jiadia+ Jazdss

where F is Faraday's constant and the currents are in nano-amps. The
two C'a?t currents contribute only to the change in the amount of Ca?t in
shell.1. There is a factor of 2 in the ('a?* current term since each Ca?* ion
carries two charges, and there is a minus sign preceding this term. since the
inward currents are defined as negative.

The flux of Ca** from compartment / to compartment j is given by
Fick’s law, as follows:

Jij = Di(C; = C;j)

Since the concentration in compartment i, (', is given by X;/17, then,
incorporating Fick's law. the time derivative of the concentration of each
compartment is as follows:

. X,
¢, = A
1 , I Ta + I ‘a
= ﬁ(—Alle‘)(C] - C2) - A13D13(C1 - C3) - ;X long)

X,
V2
1

= ‘—-2(14121)12(('1 — (3) = A23Da3((C; - Cs))

& =

. _“-3
C3 = T;
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1
= & (‘413013(01 - (3) + A3D33(Cy — C3 ))

The volume of the shell is determined by d,;.;; and the surface area of
the soma. shell.l is set to cover 0.1% of the soma surface. with shell.2
comprising the remainder of the surface. If A equals the surface area of the

soma (square cm). the areas for Ca®t flow between each shell region and
the core are given by:

A1z = 0.0014
Az = 09994

The volume of each shell region is given by:

Vi = Awsdspen
Vo = Axsdgpen

The volume of the core is set equal to the soma volume. since d,pey is
much smaller than the soma radius.

D,3 and Dj3 are equal. since each shell region is assumed has the same
proximity to the core. Let

D3 = Da3 = Dsp—cr

D5 can be considered as equal to the previous two diffusion constants
without any loss of generality since the value for A;2 may be adjusted to
allow the shells to equilibrate much faster with each other than with the
(low concentration) of the core. This area is the effective diffusion area for
Ca®t between the (intertwined) regions of the shell. For convenience, let us
define

sh—sh = A12D12

The previous expressions can now be used to give the following equations

for Cy. (5. and Ca:

- 1 .Ish-sh v ICG + IC'GS

G = dohell [" 0.0014 €t = C2) = DeonerlCr = Ca) 4 g S S TO°F
: 1 [Diy_gn . ]

C; = don [m(a = () = Dgp—er(Cy = (3)

A ' Ds —Cr

(3 = —{lé—‘[AIS(Cl’C2)+-423(C2-C3)]
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Now we assume that

Va
D, >> 1second
$0

C"3 =0
and C3 is set to a constant 50 nM. At each time step [('a®*]shen1 and
[Ca**)shenn 2 are calculated by integrating the above differential equations.

The relevant parameters were adjusted so that, given the previously
estimated kinetics for I¢,, during single and repetitive firing the concentra-
tions of C'a®* in the two sub-membrane compartments had the time courses
and relative magnitudes discussed earlier in this section. An additional con-
straint was that [Ca?*],sen1.1 could not change so much during either normal
action potentials or, especially, Ca®* -only spikes so that E¢c, would be re-
duced too quickly, wiping out the Ca®** driving force before the spike was
complete.

The following parameters satisfied the reported constraints:

dshent = 0.25pum
D%y_p = 2.0 x 107"} (cm3/millisecond)
Dy_or =4.0x 10‘7(cm/millisecond)

The remaining parameters needed to calculate the concentration of intra-
cellular ('a?* derive directly from the previously presented soma dimensions
and the Ca?* current kinetics.

This description is somewhat similar to that used in other modelling
studies ([48]. [2]). in particular the idea that local accumulation of ('a®*
in a limited space underneath the membrane can mediate other processes.
and that the kinetics of the ('a?* in this region is governed by first-order
mechanisms.

Figures 6.8 shows how the concentration of ('a®* changes in the two
shell regions during a single action potential. Figures 9.19. 9.23. and 9.24
show how the concentration of Ca?* changes in the two shell regions during
a train of action potentials. Again in Chapter 7 the relationship between
these concentrations and the activation of I and Iy4yp will be defined in
more detail.
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Figure 6.8: Top - Simulation of normal action potential. Top Middle - I,
during spike. Bottom Middle - [C'a®*],hey1 during spike. Bottom - Er,

during spike.

6.5 Calculation of E.,

As mentioned earlier Ec, was calculated at each time step from the Nernst
equation. using the current {Ca?*,;.i11 and the fixed [Ca%*),,, as the rel-
evant concentrations for the Ec, equation. The change in [C a2+]shell.l and
Ec, during a single action potential is illustrated in Figure 6.8. [C'a2*]yn. 111
and E¢, during a Ca?*-only spike is shown in Figure 6.9. During the C'a?*-
only spike the subsequent fall of E, contributes to the reduction of Ic.,.
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6.6 Discussion

The Ca?* system parameters described here are highly speculative but are
based on valid physical mechanisms. The net result is that the model suc-
cessfully reproduces a wide variety of C'a®*-related hehavior. Many of the
parameters were developed in parallel with the development other parame-
ters (e.g. At current parameters, in particular those defining I and I4p).
and this interdependence constrains the overall problem.

For example, including the two shell regions may appear somewhat arti-
ficial; yet given the nature of I¢, 3 (as determined by C'a**-only spikes and
other relatively independent evidence) the characteristics of these compart-
ments are constrained by (a) the dimensions of the soma; (b) the amount
of I, entering the cell during Ca?*-only spikes. which in turn effects Ec.,.
providing negative feedback; (c) the amount of /¢, entering the cell during
regular action potentials; and (d) the a prior Ca**-mediated characteristics
of IC and I.4HP-

In sum. modification of any one parameter typically resulted in a widespread
effect due to the numerous feedback loops in the system, and these loops
helped to constrain the overall modelling problem. (‘learly alternative mech-
anisms may be suggested for the model features described here (e.g. more
complicated kinetics for the Ca®*-mediated gating particles of I or Lyigp).
but at the very least such alternatives would have to be as physically plau-
sible as those suggested here and would also be subject to the same con-
straints. since these constraints are inherent in the system being modelled.

*In the results presented here the contribution of I, to model behavior is minimal.
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Chapter 7

ESTIMATING K™
CURRENTS

7.1 Introduction

This chapter presents the six A'* currents in the model - Ipgr, I4. Ic.
Isgp. Ipn. and Ig. We begin by reviewing the strategy for evaluating the
K7t currents data, and the guidelines that constrain the development of
the model descriptions. Next. the classical “Delayed Rectifier” Kt current,
IDR. and the so-called “A™ K’ current. I 4, are described. Following this, a
brief description of the Ca?*-mediated u gating particles incorporated in the
model description of I- and I 44p is presented. followed by the discussion of
these two ('a?*-mediated A't currents. The chapter closes with descriptions
of two more K'* currents, I3s and Ig. In this chapter the action of each of the
R currents on specific features of the single spike and/or repetitive spikes
will be demonstrated, primarily with comparisons between simulations and
data.

7.2 Review of Strategy for Evaluating A+ Cur-
rents

As described in Chapter 2. forming a plan for building the model was not
trivial, given that the quality of data for the currents varied greatly and that
the action of some currents was mainly seen in concert with other currents.
thereby complicating the parameter estimation for a (presumably) unique
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conductance.

The data for K* currents ranges from complete to marginal, in terms of
the voltage-dependence of each current’s kinetics. the absolute magnitude
of each conductance, and the relationship of a given current with other
factors (in particular intracellular Ca?t). In addition, for some currents
(e.g. I4 and I¢). although a plethora of data may be available much of it
is inconsistent with each other. It was very difficult to sort through this
body of information and decide what data could be applied, which should
be discounted, and what assumptions should be used to fill in the gaps.
Often consultation with Drs. Adams and Storm provided some insight for
this problem.

In order to make progress a set of references had to be chosen as a “gold
standard”, particularly when data from different reports were inconsistent.
The primary standard that I used was the data from Storm, 1986. Using
this data as a first reference had the advantage that I could both examine
the original data of Dr. Storm’s and, when necessary. obtain insights from
him as to the implications of the data. In this chapter and others many of
the comparisons between simulation and experimental data are done using
data from this report.

In summary, the data for Ipgr. I4. Iy, and Ig is more complete than
that for I and I4gp. For Ipp and I4. estimations of steady state acti-
vation/inactivation parameters from voltage clamp are available, although
the associated time constant data is not as complete. Also. there is strong
evidence as to these currents’ specific roles from various current clamp pro-
tocols. On the other hand. much of the data used to evaluate these currents
are taken under conditions in which several other currents are simultane-
ously active. making it difficult to separate each contribution. For /37 and
Iq the situation is similar in that there is good data on steady state activa-
tion (the evidence shows that these currents do not inactivate) from voltage
clamp studies. with sparse estimates on the time constant parameters. How-
ever, evaluating the behavior of Iys and Ig is somewhat easier than doing so
for Ipr and I, since these currents are activated in relative isolation with
respect to the other currents.

In the case of Ir and I4yp. little voltage clamp data is available for
either their steady state or temporal properties of any presumed activa-
tion/inactivation parameters. In addition, describing these currents is com-
plicated by the fact that they are presumably mediated by intracellular
C'a*. Little quantitative data is available on this interaction for either cur-
rent, and there is at present no consensus among workers in this field as to
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the mechanisms involved. As introduced in the previous chapter and which
shall be expanded upon later, I have made the simple assumption (like that
used by other workers, e.g. [48]) that I and Isyp are dependent on a
power of the concentration of ('a®* either directly beneath the membrane
or in a secondary “compartment”. This is a highly speculative model. as
discussed in the previous chapter. The parameters of this description are
based primarily on heuristics. specifically the simulation of the fAHP and
the AHP that is observed in HPC. Making the situation more difficult is the
fact that there are no protocols to date in which Ic or I4gp are activated
without the concomitment presence of other currents, thereby inextricably
tying the behavior of any set of estimated parameters for these currents to
those of other currents.

In light of the above situation. I developed the present description of the
Kt currents in the following way !:

1. Begin with the data on Ips and Ig. with estimates on the time con-
stants derived from the data and the HH single barrier model. For Ig
its parameters did not affect the later development since this current

is only activated at potentials lower than that generally considered in
the simulations.

2. Develop an estimation of Ipg based on the available voltage clamp
data and the simulation of data on action potentials in which Ipp is
presumably the only repolarizing current.

3. Develop an estimation of [ 4 based on the available voltage clamp data
and simulation of action potentials in which presumably the only A't
currents are Ipp and 1,4.

4. Re-evaluate the description of Iy; with simulations that reflect the
contribution of Iyy to the action of Ipg and 14.

5. To a first approximation. the actions of I~ and Iy p are independent
of one another. I¢ is transient over a time span of a few milliseconds
during the spike, and the evidence indicates that this a large current.
On the other hand. /44 p activates more slowly. is small. and may last
from 0.5 to several seconds. However. since both these currents are

YFor each At current. as with the Na* and Ca®* currents. building the description of
the current began with estimating the number and type of activation and/or inactivation
and/or Ca’*-mediated activation variables governing the conductance.
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dependent on Ca?* entry, their estimation was tied to the description
of I, and the mechanisms regulating [Ca?*]shci1 and [Ca®*)spens-
Therefore, while the behavior of the I or I 4y p descriptions could be
evaluated independently. whenever the Ca?** mechanisms were modi-
fied to alter one of the current’s action, the effect of the modification
on the other current had to be checked.

6. As the descriptions for I¢ and I4yp evolved. the impact of a given
version on the behavior of the other currents had to be continually
re-evaluated. At times, this feedback resulted in modifications of one
of the other currents. In these cases modifications were made which
stayed within the envelope of parameters that had been already estab-
lished. For example. modification of some aspect of I might indicate
that the parameters of In,—¢rig had to be changed. However. this
change could not alter the aspects of Iv,_¢ri; that had been fixed by
earlier simulations (e.g. the threshold of Ix,_;i,).

As described in Chapter 3. the estimation of the At currents involved
many iterations. many of which caused re-evaluation of either the Na'
currents’ or ('a®* system parameters. The linear parameters of the model.
however. were kept constant. since these parameters were established based
on data from cells in which all non-linear currents had been inhibited.

As mentioned earlier, certain agents are assumed to mediate selective
blocking of specific currents. in accordance with the generally accepted con-
clusions in the literature. These agents and their actions are summarized in
Table 7.1. Any blocking agent used experimentally probably does not act
with perfect selectivity. particularly given the wide variety of mechanisms
that have proposed for their action (e.g. receptors-site mediated. blockage
of the channel lumen, secondary block of C'a**-dependent At channels via
block of C'a?* channels). However. as a first approximation. perfect selec-
tivity is often assumed when evaluating the data (for example application
of 4-AP blocks only I4. leaving the remaining currents untouched).

7.3 Delayed Rectifier Potassium Current - Ipg
The delayed-rectifier potassium current is similar to the classical delayed
rectifier for the squid axon as described by Hodgkin and Huxley. The pa-

rameters for this current were initially taken from [42]. who identified Ipg
in voltage clamp studies as a large. slowly-activating (~ 100 milliseconds).
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Current || NA TEA 4-AP ACH Ba Musc Ca*t-
| blk
[ Ipr ++ +7 (1) [+7 (1)
Iy +(2) |-(3) ++
Ic ++ (4) ++ (4)
Isgp | ++ -(4) ++ (4)
(24)
In ++ (1) [ ++ (1) |- (1)
Io | ++ (1) (D

Table 7.1: Typical chemical agents used to block specific currents, as re-
ported by different investigators. (+) indicates reduction, (++) indicates
blocking, (-) indicates no effect. NA = Norepinephrine. TEA = Tetra-ethyl
ammonium, 4-AP = 4-Aminopyridine, Ach = Acetylcholine, Ba = Barium,
Musc = Muscarine, Ca?*-blk = Ca?t-blockers (e.g. Cadmium, EGTA). (1)
- (16]. (2) - [39]. (4) - [30]. (3) - [43]

very-slowly inactivating (~ 3 seconds), TEA-sensitive At current. How-
ever, the voltage clamp was only taken to -35 millivolts. so it is possible
that only the beginning of the Ipg characteristics were measured. In par-
ticular. I propose that the time constant for activation. 7. drops to about
1-2 milliseconds at membrane potentials greater than -20 millivolts.

My description of this current is based on the data of [42]. specifically
the reported steady-state activation/inactivation curves. In the model Ipg
is constructed so that it may function as a major repolarizing component
during the action potential. Such a role is indicated by current clamp ex-
periments in which the spike is quickly repolarized by a TEA-sensitive com-
ponent in the presence of Ca?t blockers. These blockers. which disable the
Ca* currents. presumably also disable any Cat-mediated At currents. in

particular I¢. In summary, the main actions that I determined Ipg served
included:

¢ Repolarize the action potential fully when all other A+ currents have
been blocked

o Reduce in the presence of other repolarizing currents so that no extra
hyvperpolarization is observed
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o Mediate the medium after-hyperpolarization (mAHP). independent of
any other At currents

¢ Repolarize the cell sufficiently during tonic stimulation so that repet-
itive firing at the threshold of In,-¢iy could occur

e Activate independently of the width of spike since the mAHP is unaf-
fected by the slower repolarization with 4-AP or C'e?* blockers

As will be discussed shortly, there is evidence that I~ plays a major role
in spike repolarization under certain conditions, and in fact it has been sug-
gested that this current is the major repolarizing current in bullfrog sympa-
thetic neurons. Since action potentials are quickly repolarized in hippocam-
pal pyramidal neurons under conditions that would eliminate I-. however,
it was thought that the characteristics of Ipr would allow it to reprise it
classical role when I has been disabled.

7.3.1 Results

This effort was successful in simulating the TEA-sensitive repolarization of
the action potential, as shown in Figure 7.1. In addition, this formulation
of Ipr kinetics was able to simulate the voltage clamp results as reported
by [42].

Three activation particles (r) were used in the formula for the Ipg con-
ductance so that activation of this current would be delayved after the initial
rise of the action potential. A single inactivation particle (y) was used since
it has been reported that this current does indeed inactivate ([42]). However.
the time constant for y is quite slow over most of the physiological range
of membrane voltages (ref. Figure 7.3. so that during the action potential
and afterwards. the demise of Ipg is primarily due to removal of activation
rather than inactivation. Removal of Ipg by inactivation after the spike is
consistent with the mechanism of /pg in the squid axon as described in [21],
[20]. [22]. [23].

The valences and the ‘-%.I.DR and ‘-ﬁ-.y.DR for + and y was determined
by the r and y, curves reported by [12]. In the case of the r particle the
third power of r;,¢, was matched to the [42] data.

The curve for 7, pp was skewed to the left (=, pr = 0.9) so that Ipg
would remain activated after the spike long enough to cause the mAHP. and
so that 7, pr was consistent with the reported values of approximately 180
milliseconds. V" < -30 millivolts. approximately 6 milliseconds otherwise.
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L Gating Variable ] z | 5 ap | Vi (mV) | 79 (ms) |

r (activation) |l 12 1 0.95 | 0.008 -28.0 0.5
¥ (inactivation) || -9 | 0.8 | 0.0004 -45.0 6.0

Table 7.2: Parameters of Ipg Gating Variables

The curve for 7, pr was skewed to the left (4, pr = 0.2) in order to approx-
imate the reported approximate value of 4 seconds for y (between -50 and
-30 millivolts, [42]).

On the other hand, in order that activation be independent of the width
of the spike, as described above, it was necessary to set the base rate for
7r.pR to 0.5 milliseconds. Later in this chapter and Chapter 10 the role of
Ipg in concert with I4 and I will be demonstrated. including examination
of Ipgr’s role in mediating the mAHP.

Another parameter that was important to set in regards to Ipg was its
reversal potential. The standard value of -85 mV for Ex caused Ipg to
be too strong near threshold, specifically. on repolarization of the spike the
Ipr wiped out the ADP seen in the data. To reconcile this problem without
significantly altering the time course and strength of Ipg during the initial
stage of the spike repolarization and the later mAHP, it was necessary to
set a reversal potential for this current distinct from the general Ex. Epr
was set to -73 millivolts, which proved successful in obtaining the desired
behavior. This was felt to be a reasonable adjustment, since (as mentioned
in Chapter 2) a given channel is not necessarily perfectly selective for one
species of ion — an Epg of -3 mV implies that Ipp is slightly contaminated
with an occasional Na* or ('a®* ion hitching along with the predominantly
K flow.

All Ipg parameters were determined at 30°C.
The equation for Ipp is -

Ipr = 9prrpRYDR(V = EDR)

where
gpr =0.7uS

Epr = -73mV
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Figure 7.2: Steady-state curves (z,, and y, ) for zpr and yppr and effective
curves as would be measured by voltage-clamp experiments.

Table 7.2 lists the parameters for the Ipg gating variables. These are
the rate functions for the activation variable. r. of Ippg -

V' 428)0.95-12-
Qr.DR=0-008exp(( + 28)0.95- 12 F)

RT

-28 - 17)0.05- 12
-3:.DR=0.0089xp(( 28 ‘I)?OTO'J 12 F)

These are the rate functions for the inactivation variable. y. of Ipp -

. N0.8.-9.
n,.DR =o.0004exp(” “’)gr F)

(=45-V)0.2- -9 F
3y.pr = 0.0004 exp( RT )
Figure 7.2 and Figure 7.3 show the voltage dependence on the steady-
state values and the time constants for the xrpgr and ypgr variables.

7.4 A-Current Potassium Current - [,

I4 is a transient A'* current whose classical role. first defined for molluscan

neurons. is to modulate excitability. In particular. this current is selectively

blocked by 4-AP. and the convulsant action of this drug is attributed to its
inhibition of I4.



Figure 7.3: Time constant curves (7; and 7,) for zpr and ypg.

Several workers have reported an I 4 in HPC. However. the data obtained
by voltage clamp differs somewhat in different reports. and the functional
effect of I4 (inferred from current clamp stimulation with and without 4-AP
or other I -agonists) varies considerably. In general, I; has been reported
to modulate the width of the action potential and influences the excitability
of the cell. References which report voltage-clamp measurements of this
current include Segal and Barker, 1984 [42]. Halliwell et al. 1986 [17]. Zbicx
and Weight. 1985 [54]. Gustafsson et al. 1982 [14], and Segal et al. 19%4 [43].
In addition. the action of I4 on spike repolarization is reported in Storm.
1986b [47]. Some of these reports will now be summarized.

Segal et al measured I4 in cultured rat hippocampal cells (subfield not
specified). Making their measurements at 21- 24°C, they report that I is
half-inactivated at rest (-70 mV'), has a ¥; /; for activation at about -20 to -30
mV. and (apparently) is described by ba* kinetics, where b is inactivation
and a is activation. The maximum conductance for I4 was estimated to
be greater than .3 uS. The time constant of decay at (24°C) is about 24
ms. independent of voltage. The time constant to peak was within 10 ms.
Application of 4-AP lowered spike threshold from -44 to -50 mV. but this
procedure did not broaden the spike. 2.

Interestingly. the current clamp record shown in this report demon-
strated spikes with a) a high threshold (-50 to -44 millivolts. as compared
to typical thresholds of about -35 millivolts) and b) small amplitudes. peak-
ing at about 43 millivolts. as compared to tvpical action potential peaks of

2This is contrary to the data of [47] although it is possible that in the [43] report they
did not look at the spike carefully enough.
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approximately +20 millivolts. There are several implications of this data.
First. the lowering in threshold with 4-AP implies that for a spike-producing
stimulus that is not too large, over a voltage range of about 5 millivolts and
for almost 10 ms there is little inactivation of the threshold Na* current.
If this ~trigger” current is the spike initiation current here. then this means
that at either threshold the steady state inactivation is practically complete.
For no inactivation to take place during the approach to the higher threshold
spike. this means that the time constant for inactivation of the Na% current
in this range must be greater than 20 ms. Likewise, the fact that 4-AP does
not change the amplitude of the spike, but (probably) changes (slightly)
the width of the spike implies that either a) in the control I transiently
activates and is gone during the upstroke of the spike. only to reactivate
during repolarization in order to contribute to the repolarization. or b) I4
is present during the entire spike, but the slower onset to the threshold as
mediated by I allows stronger activation of the .Va*t current. which in turn
cancels out the effect of 74 during the upstroke and peak of the spike. The
first possibility is not likely because removal of inactivation for I,4 cannot
take place during repolarization since steady state inactivation is comnplete
at -30mv.

Halliwell et al. investigated CAl cells in slices of rat and guinea pig
hippocampus. measuring. at 28°C". the effects of dendrodotoxin (DTX) and
4-AP. They report an 74 which is sensitive to both these agents, has a
very fast onset and an activation curve that starts near -60mV. The DTX-
sensitive component was .3n\ at a -40m\V clamp voltage (v-holding = -
76mV). Inactivation starts at about -60 mV. and was linear to -100 mV.
The time constant for decay of the DTX-sensitive component was 20 ms at
-40 mV. and seemed to slow at lower potentials: a faster decaying outward
component which was resistant to 4AP or DTX (perhaps I¢') decays within
about 10 ms.

Gustafsson et al measured guinea pig CA3 pyramidal cells from slice at
33°C or 26° C. This report shows activation and inactivation characteristics
similar to that reported for the cultured cells in Segal et al. 1984, with a
peak current at -30 mV of 5 nA. A faster decaving outward component of
similar size remained after application of $4AP. and this component may in
fact have two components: two time constants of the faster component were
measured - about 10ms and about 1sec ( 26° C). This might partially reflect
contribution of I .

Zbicx and Weight also measured guinea pig (‘A3 pyramidal cells from
slice. this time at either 32°C' or 33° (. These workers report a decay time

147



constant = 200 - 400 mS. The activation to peak was within 10 mS. indepen-
dent of voltage. Peak current at -35 mV was 4 nA. Threshold for activation
of I4 was -35 to -50 mV. It appeared that above about -40 mV inactivation
had two components, a fast one with a time constant of about 100 mS and
(after about 100 mS) a slow one of about 380 mS. Lack of 4-AP-sensitive
tail current below -34 mV suggests that this current deactivates very rapidly
upon hyperpolarization.

Finally. Storm reports that I4 mediates a rapid onset, pre-spike transient
(several hundred milliseconds) outward rectification that delays onset of
repetitive firing for a narrow range of tonic stimulus strengths. This I4 does
not, however. alter the frequency of firing once the spike train starts. This
data implies that under the reported protocol /4 inactivates during the IR
(initial ramp). These experiments were done with Mn. which presumably
will block the C'a®* currents or the Ca®*-mediated currents. Also. [47],
reports that 4-AP broadens the repolarization of single spikes. but does not
effect the fAHP or the mAHP. Under some protocols addition of 4-AP (or
Cd) caused a second (almost twice as broad) spike to be fired spontaneously
within 10 milliseconds of the first spike. The second spike was also about
5-10 millivolts smaller and lacked a fAHP under either 4-AP or ('d. Pre-
hyperpolarizations (-80mV for 900ms) enhanced the effect of 4- AP on spike
repolarization; pre-depolarizations (-38mV for 900 ms) reduced effect by
about half that of the hyperpolarizing protocol, implying that inactivation
is not complete at -58mv. In the current study the records from this report
[47]. are the primary ones used to compare the simulations with actual data.

A related report describes the putative role of 74 at the post-syvnaptic
terminal. Application of 4-AP has been described as enhancing synaptic
transmission [45]. Irregular firing subsequent to the IR reported by [16]
may therefore be partially due to enhancement of spontaneous EPSPs from
inhibition of svnaptic /4.

To summarize. the so-called /4 has been reported by different investiga-
tors to:

1. Delay onset of spike
2. Raise spike threshold

3. Mediate transient “initial ramp” (strong outward rectification) prior
to initial spike in response to tonic stimulus without strong role during
later spikes (particularly frequency of later spikes)
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4. Selectively modulate repolarization of single spike without effecting
mAHP or sAHP and have a minimal effect on spike amplitude

The data includes fairly complete measurement of the steady state acti-
vation and inactivation curves. but there is not complete data on the voltage
dependence of the appropriate time constants. ('urrent clamp data showing
the previously mentioned effects of /4 are available. however. Therefore in
order to simulate this current I began with the reported steady-state curves
and then derived functions for the time constants that were consistent with
the voltage clamp data and that reproduced the current clamp results.

One of the key features of this current that had to be matched in the
simulations was the fact that during the spike the appearance of the I was
exquisitely timed to influence just the main part of the repolarizing phase.
As previously mentioned. experiments in which spikes were elicited with
and without 4-AP showed that blockage of I4 did not influence the ADP or
mAHP ([47]). thus indicating that the I4 was fully deactivated/inactivated
within a few milliseconds of its onset.

7.4.1 Results

The results for the derived kinetics are shown in Figure 7.9. which includes
the reported steady state curves for the activation variable x and the inac-
tivation variable y.

The channel was configured with three activation gating particles (r) to
obtain a delay in activation with depolarization. The effect of I4 is seen
only 1 to 2 milliseconds after the peak of the spike. Raising the power of »
was necessary to obtain the required delay consistent with the position of
I curve on the voltage axis. as reported by [42].

On the other hand. given the y.. curve in the same report. no delay was
necessary for the inactivation of /4. and only one y variable was used in the
channel formulation.

Figure 7.4 illustrates the contribution of /4 on the repolarization of the
single action potential in the presence of ('a** blockers (which will inhibit
the contribution of - on the repolarization) and without these blockers.
The experimental data was taken by measuring the response with and with-
out 4-AP.

Figures 7.5. 7.6.and 7.7 illustrate the data from [46] and simulations
of this data which demonstrate the role of Iy in mediating the IR prior
to repetitive firing. In the simulations the IR is very sensitive to stimulus
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l Gating Variable u z | v ag I Vi (mV) | 79(ms)
r (activation) || 3.5] 08| 0.2 -52.0 1.0
y (inactivation) (| -7 | 0.4 | 0.0015 -72.0 24.0

Table 7.3: Parameters of 14 Gating Variables

strength, and that beyond a narrow range this response is quite diminished.

This characteristic is consistent with data taken under similar conditions
(Storm, personal communication).

The reported action of 14 related to the increased excitability of the cell
with the addition of 4-AP is shown in Figure 7.8. In this figure recordings
from Segal et al are compared with simulations of similar protocols. The

delay in firing in the cell without 4-AP is similar to that demonstrated earlier
with the simulations of Storm’s data.

All 14 parameters were determined at 30°C.
The equation for I is -

Iy =0.52% ya(V ~ Eg)
where
j,l = 0.5 [lS

Table 7.3 lists the parameters for the I4 gating variables. These are the
rate functions for the activation variable, z, of 14 -

s (V+52)0.8-3.5~F)
Oy 4 = O.Zexp( T
((-32-V)0.2-3.5-F
Br4 = 0.2exp(( 2 I)ZT )

These are the rate functions for the inactivation variable. y. of I4 -

a, 4 = 0.0015 exp(

(V+72)0.6--7- F)
RT

jy.A = 0‘0015€Xp((——‘2— "})2(;:4‘ -7 .F)

Figure 7.9 and Figure 7.10 show the voltage dependence on the steady-
state values and the time constants for the x4 and y4 variables.

150



-e = I.A dissbled [Membrare Voltage (m\V)

@econds (x 1.0e . P
4.5 sg.a (’:5.5 =2 ~ Secords (x 1.0e
: on 25 B 38 a0 _as S5 %5

= Controi (Caliciurm diseble
=== I-A and Calciurn disebiec

~ea
......

tigure 7.4: Current clamp data of action potentials which demonstrate the
role of I 4 during repolarization. A. Action potential with and without 4-AP.
B. Current clamp simulation of (A.). Non-linear currents here include I;.
Ipr. Ic. Ica. INamtrige INazrep. and Ix,_;q. C. Action potential with and
without 4-AP (C'a®* blockers added). D. (‘urrent clamp simulation of (C.).
Non-linear currents here include /4. Ipg. Ixa_trige INg=rep. and Ing_qqi-
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0.ImM 4-AP

(4mM Mn)

control

Figure 7.5: Current clamp records (Storm. 1986a) of repetitive firing in
response to tonic. small amplitude current stimulus. with and without ap-
plication of 4-AP. Mn added. With 4-AP on the left; control on the right.
Each stimulus began with a long hyperpolarizing prepulse. which presum-
ably removed most of the resting inactivation of /4.
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Figure 7.6: Current clamp simulation of repetitive firing in response to tonic.
small amplitude current stimulus. with and without I4. No Ca** currents.

Simulations with 74 are on the left: without 14 on the right. Each stimulus
begins with a 20 ms -0.5 nA pulse ( hyperpolarizing) in order to remove most
of the resting inactivation of /4. These simulations follow from the records

shown in Figure 7.3.
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Figure 7.7: Record of I4 during response to 0.33 nA stimulus. as shown in
previous figure. The pre-threshold activation of I 4 serves to delay the initial

spike.
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Figure 7.8: Current clamp data of action potentials which demonstrate the
role of I4 during strong tonic stimulus. Left - Record of successive spikes
in response to tonic stimulus before and after application of 4-AP ([43]).
Note the advance of spike and slight lowering of threshold with application

of 4-AP. Right - Current clamp simulation of record on left. Stimulus is 2
nAi.
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Figure 7.9: Steady-state curves (ry and y.) for r4 and y4 and effective
curves as would be measured by voltage-clamp experiments.
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Figure 7.10: Time constant curves (7, and 7,) for r4 and y4.

7.5 Ca**-Mediation of 't Currents by Ca?* - bind-
ing Gating Particle w

In order to cause I and I4yp to be mediated by intracellular Ca?*. 1
incorporated a ('a**-binding gating particle in the expressions for both of
these currents. Several workers have postulated mechanisms for such an
interaction between intracellular C'a®* and different ion channels. ranging
from complex multi-state kinetic models based on experimental data to very
simple descriptions for modelling studies ([48]).

In light of the paucity of quantitative data on such mechanisms in HPC.
my goals for the description of a putative, generic ('a®*-binding gating par-
ticle were as follows:

o Relationship between (‘a®* concentration and particle activation al-
lowing for non-degenerate kinetics considering the range of ('a?* con-
centrations during various cell responses.

¢ Binding kinetics based on a simple but reasonable model.

o Kinetic description that could be easily modified to vield significantly
different behavior. that is a description that could be modified to suit
a wide range of desired behaviors.

To this end the following description for a ('a?* -binding gating particle.
w. was used. Each u particle can be in one of two states. open or closed.
just as the case for the Hodgkin-Huxley-like voltage-dependent activation



and inactivation gating particles. Each w particle is assumed to have n
Ca?* binding sites. all of which must be bound in order for the particle to
be in the open state. Binding is cooperative in a sense that reflects the two
states available to a given particle. i.e. either a particle has no Ce?? ions
bound to it, and therefore it is in the closed state, or all n binding sites
are filled. and the particle is in the open state. The state diagram for this
reaction is as follows:
a3

. 122+ = =
Welosed + ncain = Wopen

where the * notation means that the particle is bound to all n (intracel-
lular) Ca?t ions. a and 3 are the forward and backward rate constants,
respectively.

This scheme results in the following differential equation for w, where
now uw is the fraction of particles in the open state. assuming that the
concentration of ('e?* is large enough that the reaction does not significantly
change the store of intracellular Ca®*:

dw 241n .
P = a(l — w)[Ca*™], — Ju

The steady state value for w ( the fraction of particles in the open state)
as a function of the intracellular C'a?* concentration is then:

. a[Ca** 7,
e = a[Ca?+]? + 3

The time constant for the differential equation is:

T = (@[Ca®*]2, + 3)7!

The order of the binding reaction.n. that is the number of C'a?>* binding
sites per w particle. determines the steepness of the previous two expressions,
as a function of [Ca?*];,. Given the constraints on the range for [Ca®*)sne111
and [Ca?*),pen2 during single and repetitive firing. n was set to three for
both the I w particle and the I3y p w particle. On the other hand. as shall
be presented shortly. the range of ('¢?* concentrations for which the I4gp
w particle is activated is set to about one order of magnitude lower than
that for the I w particle. since I was exposed to the larger [C'a?*]speiry -



7.6 C-Current Potassium Current - I~

Ic is a Ca*t-dependent Kt current that plays a large role during an single.
isolated action potential. It has been proposed that this current. which
is apparently inhibited when Ca?* blockers are added. is the underlying
current of the fast-afterhyperpolarization (fAHP) which is observed in single
spikes and (sometimes) to a lesser degree after spikes of repetitive trains.
Studies of bullfrog sympathetic ganglion neurons suggest that I is a major
repolarizing current during the spike in these cells (Adams et al).

Limited voltage clamp data was available for this current (Segal and
Barker, Madison et al), and in many of the reports measurements of a re-
puted I¢ was likely corrupted by T4y p, since both are identified by. among
other methods, sensitivity to C'a?* blockers.

On the other hand, [47] has demonstrated well the role of I during the
fast repolarization of the action potential, distinct from the much slower
role of I4yp as a hvperpolarizing current. In addition, I is selectively
blocked with TEA at concentrations much lower than that required to block
Ipg. Storm has tentively isolated the role of I in current clamp protocols.
and this data was the primary standard I used in the estimation of the I
parameters.

In my simulations of the role of I¢ the challenge can be summarized as
follows:

o Formulate the kinetics of I¢ so that the fAHP is reproduced

e Devise a ('a®* and voltage dependence for I such that I is activated
significantly only during spike repolarization.

e Adjust Ipr parameters so that activation of I~ does not inhibit acti-
vation of Ipg- otherwise the presumably fast inactivation of I~ would
allow the residual inward currents to immediately depolarize the cell
following the fAHP. Also the mAHP. which is mediated by Ipg. is in-
sensitive to Ca®t -blockers. further indicating that activation of Ipg
is not affected by the faster spike repolarization mediated by I.

Although the estimation of every current necessitated the re-evaluation
of every other current to a greater or lesser degree. not only was the esti-
mation of I dependent on the characteristics of Ipr and vica versa. but
also the dependence of I~ on Ca?t meant that estimation of the I, and
[Ca?*|shein.1-system parameters took into account the behavior of /(.
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The first step in analyzing I was estimating with simulations the cur-
rent that is necessary to generate the observed fAHP. The results of these
simulations indicating that I~ had to have two salient characteristics - very
fast activation/inactivation and large maximum conductance (on par with
Ipr). In fact. the time course of the fAHP-producing current was a sharp
and large spike reminiscent of the Nat currents that initiated the action
potential.

The characteristics that I have derived for I are different from those
proposed in the literature, in particular the kinetics described here are some-
what faster than those reported elsewhere. However, as mentioned earlier,
the interpretations of the voltage clamp data for I is possibly complicated
by the activation of I g p. which is also Ca?*-dependent. In fact, the sim-
ulations described here indicate that i{f Ic is the current responsible for
the fAHP, then I must have the fast activation/inactivation/deactivation
kinetics proposed here.

7.6.1 Results

The ("a?*-dependence of I was constructed so that after only a small delay
the influx of ('« into shell.1 would activate Ic-. The conductance of the
Ic channel was therefore mediated in part by a single v particle. implying
that each I¢- channel has three independent Ca?*-binding sites on a single
gating particle. each of which. in turn. must be bound to ('a** in order for
the channel to conduct. “

The very fast turn off of I¢- necessary to obtain a significant ADP after
the fAHP was accomplished by incorporating four r particles. by making
the steady state curve for activation steep and centered only a few millivolts
above the resting potential. and by making the time constant for x very
fast. especially when the z,, curve goes to zero. As the spike is repolarized
past about -60 millivolts the x particles quickly relax to their closed state,
shutting off I leaving a minimal tail that. if larger. could otherwise wipe
out the ADP.

A voltage-dependent inactivation particle. y. was included since the
available voltage clamp data indicate that I is a transient current at depo-
larized potentials. with a time constant on the order of greater than several
milliseconds. Simulations indicate. however. that during normal activity
removal of I is accomplished by de-activation of either the r or the w
particles.

In summary. the turning on of I¢- is mediated by influx of C'a**: removal
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Figure 7.11: Top - Repolarization of the action potential with and without
Ca?* blockers (Storm. 19%6b). Note absence of fAHP when C'a** blockers
are added. Bottom - Simulation of protocol.

of I is mediated by the repolarization of the spike. During the spike. the r
particles turn on first with the depolarization of the beginning of the spike.
As the I, channels open (slower than the Iv,—¢riy and INa-rep chiannels).
the subsequent influx of Ca®* into shell.l raises [('@®*)spen.1 to turn on the
w. turning on Jc. As the cell repolarizes. the four r particles close quickly.
shutting off I abruptly enough to allow the observed ADP. Soon after the
spike (within 30 ms) [Ca?*]sheun.s drops as C'a®*t flows into shell.2 and the
core. thereby shutting off « so that activation of + on the upstroke of a
subsequent spike does not turn on I¢ too soon (see Figure 9.27).

Figure 7.11 illustrates the contribution of the fully activated I¢ to the
repolarization of the action potential and how the fAHP is eliminated when

I is blocked. In the next section an expanded view of this simulation will
be presented.

160



"Mernbrane Voitage (mV)

| 10mv ims

Figure 7.12: Left - Expanded view of the action potential with and without

C'a** blockers (Storm ), showing spike broadening with C'a®* blockers. Right
- Simulation of protocol.
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[ Gating Variable z | 7 ap I Vi(mV) | no(ms) | oz, | Bz,
r (activation) 25 10.2|0.007| -65.0 0.25 - -
y (inactivation) -20 | 0.2 | 0.003 -60.0 15 - -

w (('a**-activation) - - - - - 1000 | 0.125

Table 7.4: Parameters of I Gating Variables. * = (mS~!mM~3), »* =
(mS~1)

The equation for I is -

Ic =g z¢ycwe (V- Ex) .
where
EC =04 pb

Table 7.4 lists the parameters for the I gating variables. These are the
rate functions for the activation variable. x. of I¢-

| 3510.2-25 - F
Gpc = 0.00TGXp(( +65)0.2-25 )

RT

—65-1)0.8-25- F
.31_(-=0.007exp(( 65-1)0K 25 )

RT

These are the rate functions for the activation variable. y. of I¢-

ay ¢ = 0.003 exp(

(V' +60)0.2-20- F)
RT

3y.c = 0.003 exp( RT

Figure 7.13 and Figure 7.14 show the voltage dependence on the steady-
state values and the time constants for the x¢ and y¢ variables.

(—60 - V)O.S-:ZO-F)

As mentioned above. each w particle was assumed to have three non-
competitive ('a®* binding sites. all of which were either empty (correspond-
ing to the closed state) or filled (corresponding to the open state). Fig-
ure 7.15 shows the dependence of the steady-state value of the w¢ variable

on [C'a®*],4.u. Figure 7.16 shows the dependence of the time constant for
the w¢ variable on [C'@®*]speu.
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Figure 7.13: Steady-state curves (zx and y. ) for z¢c and yc and effective
curves as would be measured by voltage-clamp experiments.
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Figure 7.14: Time constant curves (7, and 7,) for ¢ and yc.
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Figure 7.13: Relation between uw, and [Ca?*t],,e for we.
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Figure 7.16: Relation between 7, and [C'a?*]4pe for we.

7.7 AHP Potassium Current - I 4p

Iigp is a slow. Ca®*t-mediated At current that underlies the long after-
hyperpolarization (AHP). Typically the AHP is ahout 1 to 2 millivolts and
lasts from 0.5 - 3 seconds after a single spike. Adding ('a** blockers or
noradrenaline to the extracellular medium eliminates the AHP. and likewise
markedly reduces the cell’s accommodation to tonic stimulus.

Since most of the data on the proposed Iiyp is derived from various
current clamp protocols. the model description of this current is based on
that used in other models (Koch and Adams. 1986) and from heuristics
derived from the properties of other currents. in particular Ic, and Ipp.
The important relationship between the I4yp and Ipr parameters arose
when I attempted to simulate both the mAHP (mediated by Ipgr) and the
AHP according to data from Storm (). In addition. since /4 p is dependent
on ('a®* entry. the derivation of this current and the dynamics of [("a]sheii.1
and [Ca)spenr.2 was done simultaneously. In fact. it was determined that in
order for the activation of I yp to be delayed from the onset of the spike,
it was necessary to introduce the second intracellular space (shell) that was
described in Chapter 6. Such a relationship between ('a®* influx and the
subsequent delayved activation of [y p has been suggested in the literature

([30]).

7.7.1 Results

I propose that the conductance underlying I 44p is dependent both on Ca?*
and voltage. The ("a®* dependence of this current is clearlv demonstrated
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since the AHP is removed when Ca?* blockers are added. and construction
of a reasonable model of Ca?* dynamics such that I4p may be dependent
on this is possible.

The mechanism that I use for Ca?*-mediation of I 44 p is similar to that
for Ic. that is the T4y p channel includes a single ('a®*-binding ' particle,
with the same binding reaction as shown in Equation x.

Voltage-clamp studies ([30]) indicate that there is no voltage-dependent
activation of 4y p, however. This puts a greater constraint on the C'a*-
mediated mechanism for this current since the activation necessary to un-
derly the long, small hyperpolarization after a single spike is significantly less
than that required to squelch rapid spikes after some delay in response to
tonic stimulus. In particular, these requirements provided rather restricted
constraints on the buildup of Ca?* during each spike in region of the I4gp
channels, shell.2, and likewise the dependence of the I yp w particle on
this localized concentration of Ca?t . '

On the other hand I have included two inactivation gating particles. y
and z. The rationale for the y particle is based on two pieces of evidence.
First, it has been reported that Ca®* spikes are insensitive to noradrenaline
in protocols where Ipg and I4 have been blocked by TEA and 1-AP, re-
spectively (Segal and Barker). The fact that these spikes are unchanged
with the addition of noradrenaline implies that under this protocol I45p is
inactivated by some other mechanism, since presumably /45 p has not been
disabled. Since the protocol involves a long (approximately 30 milliseconds)
depolarization of the cell before the C'a®* spike, it was possible to include
an inactivation particle for I4yp that was (a) fast enough to disable Iyyp
under these conditions, but (b) was slow enough so that normal spiking did
not cause the y particle to change states.

A second indication for the voltage-dependent inactivation particle y is
consistent with the previous evidence. that is the amplitude and rate of rise
of action potentials singly or in trains appears independent of the presence
Ispp. In particular, the size of the I4yp conductance necessary to repress
repetitive firing is large enough to significantly effect the spike once threshold
is achieved if this conductance remained during the spike. Such a role for
ILigp has not been demonstrated. y therefore causes Iy p to shut off during
an action potential so that this current does not reduce the amplitude of
the spike.

The second inactivation particle. z, was included to account for the de-
layed peak seen in the large afterhyperpolarization that occurs after a long
(greater than 100 ms) stimulus (Madison and Nicoll, 1982 and others). At

165



rest. z is partially closed. With a large, lengthy hyperpolarization the z par-
ticle becomes more open, thereby slowly increasing 45 p and the magnitude
of the sAHP, until the Ca?* in shell.2 eventually drains down to its resting
level and subsequently shutting off w. The time constant for = was set very
slow above rest so that it did not change appreciably during firing. Below
about -75 mV. however. the time constant approaches 120 milliseconds so
that the desired role of z during the sAHP is obtained.

No voltage-dependence for I45p has been noted in the literature. How-
ever, the dependence of I4gp on Ca?* influx may have precluded voltage-
clamp experiments which might verify the voltage-dependencies indicated
by the simulations.

With the present formulation for I,4zp. this current plays an important
role during repetitive firing by shutting off the spike train after several hun-
dred milliseconds. This occurs primarily through the dependence of I4yp
on [C'a)sheir.2, which slowly increases during repetitive firing. Eventually
the rise of [C'a)shen.2 causes Iyyp to provide sufficient outward rectification
for counter-acting the stimulus current and thus stop the cell from firing
(Figure 7.19). The fact that Iyyp is strongly activated by this protocol is
indicated by the long hyperpolarization at the end of the stimulus (Madison
and Nicoll. 1982, and see simulation of their results in Figure 7.19). Madi-
son and Nicoll, 1982 [32] report that noradrenaline blocks accommodation
by selectively blocking Iigp.

The characteristics demonstrated by the model I 4p are in qualita-
tive agreement with many of the characteristics reported in the literature
(e.g. [30] . [41]).. including the increased activation of [ ygp with increasing
numbers of spikes in a single train. delayed activation from onset of ('a?t
influx. the role of Iygp in modulating repetitive firing. time constant for
inactivation/deactivation of greater than one second. the apparent voltage
insensitivity (the transition of y and = with sub-threshold depolarization is
slow. and once r is activated deactivation takes several seconds.

The action of Iy p resulting in the sAHP is illustrated in Figure 7.17.
Expanded view of this figure (same simulation as Figure 7.11) is shown in
Figure 7.18.

The equation for Iyyp is -

2 ,
Tsgp = Yagp 2aHP Wanp (V — Ex)

where
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Figure 7.17: Top - Repolarization of the action potential with and without

C'a*t blockers (Storm). Note absence of SAHP when ('a®* blockers are
added. Bottom - Simulation of protocol.
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Figure 7.1%: A. Simulation of Figure 7.11 showing entire action potential.
with and without C'a®* blockers. B. I(-. Ipr and I4 when Ca?*t blockers
absent. C. Ipr and Iy when ('a** blockers present. D. Iyyp and Ipp
with and without ('a2* blockers. I and Ipg are the principle repolarizing
currents when there are no C'a** blockers. and Ipg increases when I is

disabled. Also the fast time course of I¢- allows it to produce the sharp
fAHP.
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Figure 7.19: Influence of /.44 p on accommodation. Top - Repetitive firing in
response to tonic depolarizing stimulus with and without noradrenaline (32].
Middle - Simulation of above responses. Bottom - I 14 p during simulations.

When Iy4p is enabled there is a gradual rise in this conductance with each
spike until subsequent spikes are blocked.
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[ Gating Variable | : |5 oo V%(mV) To(ms) | ag, ﬂaj

y (inactivation) -15 1 0.8 { 0.015 -50.0 2.5 - -
> (inactivation) -12 | 0 | 0.0002 -72.0 120.0 - -
w (C'a**-activation) - - - - - 10> | 0.005

Table 7.5: Parameters of I yp Gating Variables. *x = (mS~1mA —3), »x =

(m§~1)

Ganp = 0.354S

Table 7.5 lists the parameters for the I.yyp gating variables. These are
the rate functions for the activation variable, r. of I4yp-

(V +50)0.8- —l:')-F)
RT

(—50 — ‘»")0.2-—15-F)
RT

These are the rate functions for the activation variable. y, of I 44 p-

oy, agp = 0.015 exp(

3,.amp = 0.015 exp(

. agp =0(5 =0)

' T2 =1). =12
.j:..‘,Hp:O.OOO'Zexp(( 2 ) 12 F)

RT
Figure 7.20 and Figure 7.21 show the voltage dependence on the steady-
state values and the time constants for the r 4y p and yygp variables.
Again. each « particle was assumed to have three non-competitive C'a?t+
binding sites. all of which were either empty (corresponding to the closed
state) or filled (corresponding to the open state). Figure 7.22 shows the
dependence of the steady-state value of the wyp variable on [C'a**)gpenr 2.

Figure 7.23 shows the dependence of the time constant for the w4y p variable
on [C02+]sh£”.2-

7.8 M-Current Potassium Current - Iy

Iy is a small persistent Kt current that is activated near rest and that is
selectively inhibited by muscarinic agonists ([16]). This current has been
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Figure 7.20: Steady-state curves (... y ) for z 4y p and yayp and effective -
curves as would be measured by voltage-clamp experiments.
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Figure 7.21: Time constant curve (7,. 7,) for r 3z p and yayp.
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Figure 7.22: Relation between w. and [('a®*],pen.2 for wyyp.
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Figure 7.23: Relation between 7, and [("a?*]snei2 for wagp.

reported to contribute to cell excitability and to the mediation of repetitive
firing in different species [1}.

There is evidence for massive cholinergic projection from the medial
septum to the hippocampus ([16]. Kuhar. in [24]. [25]) so the mediation of
HPC behavior by cholinergic agonists via specific currents is potentially a
very important mechanism for modulation of either single HPC's or local
populations of HPC's.

7.8.1 Results

For the model the steady state parameters of the activation variable of /xs.
r. were inferred from [16]. Data on the temporal properties of this current
is sparse. The time constant for activation for Iy; has heen estimated at
being hetween 50 and 300 milliseconds within 20 millivolts of rest. The Q;o
for Iy has been estimated at 3 ([16]). This means that the Iy is much
faster at physiological temperature than would be indicated by the reported
data. which was measured at 23°C. Since the activation is slow and no clear
recordings of the time course of activation are available. I included a single
activation particle. r. in the formula for the I'y; conductance.

As mentioned in Chapter 3. originally I assumed that at the resting
potential the ouly conductances that were open were linear. and therefore
Ejeqi was set equal to E. .y (= =70mV'). However. the data suggests that
at rest a small amount of Iy is activated. In the model. then. inclusion of
Iy shifted E..q slightly from -70.0 mV to -72.3 m\V.

C'urrent clamp simulations suggest that Iy, has two roles: 1) changing
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Gating Variable || z | 9 ag V% (mV) | 1o (ms)_’
[z (activation) [5[0.5[0.0015] -450 | 10 |

Table 7.6: Parameters of Ipy Gating Variable

the current stimulus threshold for Ix,_¢ri; mediated spikes. and 2) modu-
lating repetitive firing in response to tonic stimulus. The first characteristic
comes about since Ips is partially activated at the resting potential, and
therefore decreases the input impedance of the cell. Figure 7.24 illustrates
that blocking Ins increases the firing frequency of the cell in response to tonic
stimulus. However. this increase is much less than that usually reported for
cholenergic modification of HPC firing. This result implies that the ma-

jor effector of the cholinergic response is Isyp, as has been demonstrated
earlier.

The equation for Iy is -
Ing =G 2m(V — Eg)

Table 7.6 lists the parameters for the Ins gating variable.
These are the rate functions for Iys-

V' +45)0.5-5- F
ﬂr‘;\l=0.0015exp(( +45)0.5-5 )

RT

(-45-1V)0.5-5-F
RT )
Figure 7.25 and Figure 7.26 show the voltage dependence on the steady-
state values and the time constants for the 1y and yys variables.

3:a1 = 0.0015 exp(

7.9 Q-Current Potassium Current - I

Ig is a small current that is activated when the cell is hyperpolarized with
respect to resting potential. The reversal potential for the Ig has been
estimated at approximately -80 millivolts. Since Ep is about -90 millivolts.
this current might be due to a mixed conductance.

At the present time the functional characteristics of I have not been
investigated.
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Figure 7.24: Influence of of removal of I on accommodation. /4y p blocked
to allow immediate repetitive firing. Stimulus 1.0 nA for 300 milliseconds.
Top - Irs enabled. Bottom - [y disabled. Disabling I's increases the firing
rate by about 7 % in this protocol.
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Figure 7.26: Time constant curve (rr) for ryg.



Gating Variable ” | 9 ag Vi(mV) | 7 (ms)
| T B en——
| r (activation) ” 15§ 0.9% | 0.0003 -45.0 6.0

Table 7.7: Parameters of Io Gating Variable

SS Veiue
1.0
V= Xeinf (Q) 10.5
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~40.0 -20.0 nn £20.

Figure 7.27: Steady-state curve (r ) for zq.

7.9.1 Results

The current description for Ig is based solely on the data from [16).
The equation for I is -

Iy = do1Q (V= Epg)
where
9o = 0.002 uS

Table 7.7 lists the parameters for the /o gating variable.
These are the rate functions for the activation variable. r. of Ig-

1"+ 13)0.98- 15 -
0rQ =0.00039xp(( + 15)0.98 - 15 F)

RT

—145-1)0.02-15-F
.3r.Q=0.0003e.\:p(( ) > )

RT

Figure 7.27 and Figure 7.2% show the voltage dependence on the steady-
state values and the time coustants for the g and yo variables.
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Chapter 8

VOLTAGE CLAMP
SIMULATIONS

8.1 Introduction

Simulating voltage clamp data was an important verification of the param-
eters derived for both currents and the linear structure of the model. In
particular. these simulations estimated how much the current flow due to
the unclamped dendrites contributed to errors in parameters derived with
voltage clamp protocols.

8.2 Non-Ideal Space Clamp

The non-zero R; means that a voltage clamp applied at the soma will not
clamp the dendrites ideallv. This distortion of the clamp signal is shown
in Figure 8.1. where the soma has been clamped to -30 mV from a resting
potential of -70 mV for 50 milliseconds. The distortion of the clamp voltage
has two compounents. First. the rise titne of the clamp signal gets progres-
sively longer further down the dendrite. Second. the final voltage reached is
lower the further down the dendrite.

If we assume that the non-linear conductances are perfectly segregated
in the soma. with the dendrite being linear. then this situation is not in-
tractable. In this case the protocol will perform the correct voltage clamp
on the non-linear conductances. and the current that passes through them
will be a function of only the time. the holding potential. and the clamp
potential. There will be a component of the clamp current due to the non-
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Figure R.1: Voltage clamp simulation with clamp applied to the soma. The
voltage step seen by the different parts of the dendrite membrane is distorted.

ideal clamping of the dendrite, but this current may be compensated for by
estimating the linear properties of the dendrite.

On the other hand. no clear cut distribution of non-linear conductances
is more likely: there may be significant non-linear membrane in dendrite
that is at a significant electrotonic distance from the soma. Referring to
Figure 8.1. if there is any non-linear conductance in the proximal dendrite
(in this simulation this refers to the proximal 240 um of dendrite). then
the steady state voltage caused by the clamp is not very different than the
soma voltage (-30.3 mV and -50.0 mV. respectively). However. during the
initial 10 milliseconds of the clamp the voltage in the proximal dendrite is
significantly different. and therefore any non-linear membrane in this region
will be poorly clamped. This will be a problem if the conductances are
fast in this region. e.g. activation or inactivation on tle order of several
milliseconds. Although the results of the analysis presented in Chapter
3 indicates that the dendrite are electrically compact. the high value for
R; that has been proposed causes the dendrite voltage to lag significantly
behind the soma voltage.



8.3 Contamination of N«¢™ Parameters Derived
by Voltage Clamp

The problem of unclamped dendrites is most severe for the faster currents.
This can be demonstrated by examining the putative .Na*t currents with
voltage clamp simulations.

The simulated voltage clamp protocol in which all currents except for
Nat currents have been blocked is shown in Figure 8.2.

Ideally. the soma-dendrite current may be measured in isolation by run-
ning the voltage clamp on a cell where all the non-linear currents have been
blocked. This current may then be subtracted from the clamp current when
the all none-Va® components are blocked or disabled in order to estimate
the Na* currents.

Figure 8.3 illustrates the various components of the response of a -70 to
0 mV voltage clamp of just the Na* currents. The soma-dendrite current
contributes substantially to the clamp current. If this current is not taken
into account then the estimated .Na* component will be significantly smaller
and faster than the actual Va* component.
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Figure R.2:

Voltage clamp simulations in which all currents have been
blocked except for the Na* currents.
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Figure 8.3: Voltage clamp simulation under same conditions of Figure 8.2il-
lustrating different components of the clamp current. A considerable portion
of the clamp current is due to delayed charging of the dendrites distributed
capacitance. Clamp step is from -70 mV to 0 mV for 50 milliseconds.
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Chapter 9

CURRENT CLAMP
SIMULATIONS

9.1 Introduction

This chapter presents some illustrative simulations of current clamyp proto-
cols that demonstrate the overall behavior of the model. The behavior of the
model under various protocols is examined. assuming that the current de-
scriptions based on simulation of actual data. as demonstrated in Chapters
5. 6. and 7. sets a realistic stage for more speculative simulations.

Finally. a typical simulation will be presented along with the tecords of
the major currents and the time course of their gating variables in order to
demonstrate the full output of HIPPO.

9.2 Regulation of Repetitive Firing — Effect of
Blockade of Specific Currents

Consider Figure 9.1. In this simulation the response to long tonic stimuli of
different strengths is demonstrate with all the HIPPO currents present. For
most of the stimuli the cell responds with an initial burst of action potentials
followed by a slow train of spikes.

As we have seen in the previous chapters the major mechanisms me-
diating theses responses is the buildup of intracellular Ca®* . the subse-
quent activation of Iyyp and the high. broad threshold of Ix,_,. The
burst phase is mediated by Ix,_¢r,. but once I45p becomes large enough.
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another In,—:rig-mediated spike is delayed by the outward rectification of
Ianp.

Investigating what happens under the same stimulus protocols when
specific currents are blocked illustrates some of the predictions of the model.
First, note Figures 9.2. 9.3, and 9.4, which show spike trains in which I4.
Ing, and Iv,-1qi1 have been blocked, respectively. The model results suggest
that although 74 can have a significant role in delaying the onset of firing
and in modulating the width of the spike (ref. Chapter 7), this current does
not alter repetitive firing once it has been initiated. Ips and Ing—¢q41, On the
other hand. appear to have little functional role under any of the protocols
presented. If these currents (Ips and Inq—¢qit) are assumed to be in the HPC
for a reason. then this result suggests that either the model description for
them is incomplete or that their site of action is primarily non-somatic (see
Section 10.2.4).

In Figures 9.5, 9.6, and 9.7. the response of the cell to tonic stimulus is
shown where the C'a?t currents, Ic-. and I44p have been blocked, respec-
tively. Here some marked departures from the response of Figure 9.1 can be
seen, in particular the change in accommodation. When all C'a®t activity is
blocked. as in Figure 9.5. the frequency of repetitive firing is constant. that
is the cell reaches a steady-state condition immediately with the first action
potential.

Figures 9.6 and 9.7 show how Ic and I gp both contribute to the ac-
commodation response. When I is blocked the initial accommodation is
quite similar to the normal response. However (especially for the stronger
stimuli). later in the spike train the frequency of firing begins to increase
slightly. as if I 4 p was partially wearing out in its role as headmaster. When
I sy p is selectively blocked. on the other hand. accommodation is immedi-
atelv compromised and the burst phase lasts for many spikes. Eventually
a reduced accommodation starts, though, slowly putting on the brakes to
prevent excessive spiking.

This accommodation is due to Ic. as can be seen in Figure 9.8. In this
figure the response to a 2.2 nA tonic stimulus as was shown in the previous
figure is reproduced along with the time course of the intracellular Ca?t
concentrations and /. Here it can be seen that at the beginning of the
train Ic fulfills its normal role as a transient repolarizing agent, active only
during the spike. When the subsequent spikes come too fast. however, the
concentration of Ca?* in shell.2 has a chance to build up. thereby raising the

basal level of [Ca®t],pei1.1 between spikes. This rise is enough to activate I
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interictally so that this current provides a suppressing influence to the latter
part of the train. The simulations suggest. among other things. that I may
have a dual role - under “normal”™ conditions I~ just modulates the width
of the individual spike , and under conditions when I3y p is blocked (which
easily could be physiological considering /iy p is inhibited by cholenergic
agonists) I¢ steps in to provide a controlling influence suppressiug strong
repetitive firing.

Finally. Figure 9.9 shows the response of the cell with just Iv,—rep
blocked. Here a fairly bizzare response is seen. since it seems that this
current would only contribute to the strength of individual spikes and the
extension of the effective range for firing threshold. However. in these sim-
ulations removal of Iy,-rep, has an additional (possibly pathologic) effect.
At low stimuli. the standard burst/accommodation response is seen. but as
the stimulus intensity is increased the cell response degenerates into a series
of low amplitude C'«®* spikes followed by a cessation of activity - the cell
effectively becomes mute.

In Figures 9.10 through 9.16. this response is examined more closely and
compared with the response of the normal cell to the same stimulus. In
Figure 9.10 the two responses and their current records are compared over
the entire 2 seconds. At this level the most striking difference is the large
Ipr and I¢, (also [C'a®t]skenn and [C'@®¥),002) in the latter portion of the
IN,—r.p—blocked response. Examining the first part of the response in detail
(Figures 9.12 and 9.13). the differences are not as obvious. However. even
though 7\,_;.i, is about the same for the two protocols. the blocking of
Ixo—re, causes a significant reduction in the spike amplitude. The result is
that Ipp is not activated as strongly as in the normal case. thereby reducing
the interictal hyperpolarization and increasing the frequency of firing. This
is shown more clearly in Figures 9.14 and 9.15. where the initial spikes for
both responses are shown. Other than these changes. however. it appears
that nothing degenerate is occurring.

The situation changes. though. as accommodation (mediated by I41gp)
sets in. as shown in Figure 9.16. where the activated I4yp reduces the
amplitude of the later spikes even further. which in turn prevents the full
turning on of Ipg. The net result is that the cell becomes more depolarized
on the average. allowing I, to fullv activate. This inward current. while
now superseding Iv,_¢r;, as the “spike” current. cannot depolarize the cell
enough to activate Ipp fullv. which could repolarize the cell back to E, 5 and
reset the firing.cyvcle. Eventually, then. after a few oscillatory ('a?* -spikes.
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the cell reaches a stable. depolarized level until the stimulus is removed.

9.3 Conduction of Dendritic Input to Soma

Figure 9.17 illustrates a current clamp simulation in which a series of four 1.3
nA. 3 millisecond current pulses was injected into the distal dendrite. These
pulses approximate excitatory synaptic input. assuming that an excitatory
synapse consists of a selective conductance with a reversal potential around
-25 mV, a total conductance on the order of 60 nS. and an activation period
of 3 milliseconds. As seen in the figure, these events propagate down the
dendrite and sum at the soma until spike threshold is reached.

An interesting detail from this simulation is the shape of the repolar-
ization of this spike. Recall that single spikes evoked by somatic stimuli
display a distinct fAHP (ref. Figure 7.18). In Figure 9.17 the bottom of the
fAHP is elevated so that there no longer is a short depolarizing phase prior
to the ADP. This is caused by the increased soma-dendrite gradient. which
in turn results from the fact that the original depolarization is due to the
dendrites rather than from soma input !.

As mentioned in Chapter 5 a characteristic of Iy,—¢rig is its sharp thresh-
old. This characteristic is demonstrated in Figure 9.18. Here simulations
with two inputs are illustrated. Ome input consists of the previous pulse
train. The second input is identical except that the interval between pulses
has been increased by 1 millisecond. This input evokes essentially a linear
response (compare with the step responses in Chapter 3), demonstrating the
fine tuning of Ixq—¢rij.

9.4 Demonstration of the Full Output of the HIPPO
Simulations

I shall now present a typical simulation protocol in order to show the col-
lection of variables that underly the behavior of the model. Figure 9.19
shows the overall response of the model to the soma stimulus shown in the
lower part of the figure. An initial hvperpolarizing current step is applied

In the earlier simulation of the single action potential the repolarization of the spike
also caused the dendrite to momentarily be at a higher potential than the soma due to
the charge stored in the dendritic capacitance. which in turn contributed to the ADP. but
here this potential difference is greater as explained above.
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Figure 9.18 Stimulus 1 (top)).
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to the soma, bringing the soma voltage down from its resting potential of
about -72 mV to about -83 mV. Next, a 220 millisecond 1.8nA depolarizing
current step is applied. resulting in the characteristic burst of action poten-
tials. whose frequency just begins to reduce as the action of Iyyp starts.
After the stimulus. the beginning of the long-lastiug after-hyperpolarization
is seen.

In Figures 9.20. 9.21 9.22 the Va* currents and their associated gating

variables during the response of Figure 9.19 are illustrated (note change of
time scale).

In Figures 9.23, and 9.24 I, its gating variables and the time course
of the intracellular C'a?* concentrations are shown during the response of
Figure 9.19 are illustrated (note change of time scale).

In Figures 9.25, 9.26, 9.27. 9.28. and 9.29 the A'* currents and their
associated gating variables during the response of Figure 9.19 are illustrated
(note change of time scale). The relationship between the activation of
the C'a**-mediated gating variables (w) for I¢- and I4yp and the time
courses for [("a?* | heny and [C'a®*ghen.2 shown in Figure 9.24 is clear. The
conductance underlying Iys remains relatively constant (the time course of
Iyg closely matches the time course of the voltage). and therefore while this
current is almost as large as Iyyp. it has the relatively uncolorful role of
mediating repetitive firing only slightly by changing the effective (linear)
impedance of the cell.

Finally. in Figures 9.30 and 9.31 the linear components of the somatic
response are shown. i.e. the capacitive and leak soma currents and the
dendritic voltages. respectively.
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Figure 9.23: I, and its gating variables during response shown in Fig-
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Figure 9.26: I, and its gating variables during response shown in Fig-
ure 9.19.
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Figure 9.28: I4yp and its gating variables during response shown in Fig-
ure 9.19.
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Chapter 10

DISCUSSION

10.1 Introduction

This chapter will address some of the more general implications and con-
clusions derived from the model. in particular those issues not covered in
earlier chapters. The overall question remains that if neural nets are realiz-
able with elements that just exhibit integrative all-or-nothing responses that
are connected with regenerative conductors. then why are all the channels
needed? The results of the model suggest some rationale as well as some

specific questions addressed at the apparent role of many of the currents
described.

10.2 Physiological Roles of Specific Currents in
Information Processing

How can the different currents described here contribute to the information
processing capability of the pyramidal cell? The first step in answering
this question is primarily mechanical. that is we need to show how a given
current shapes the response to a repertoire of inputs. At this stage. the
repertoire considered has been very basic - short depolarizing current steps
that evoke single spikes. long lasting depolarizing current steps that evoke
spike trains. and (to a lesser degree) simple dendritic input consisting of
depolarizing current steps applied to the distal portion of the dendritic cable.
By examining the response to these inputs the functional roles of the model
currents can be grouped into three (non-exclusive) categories:



LCurrent | Spike Shape | Threshold TFreq-Inten |

INa—trig + +++
I.-’Va—rep + ++ +++
Ing—tail +
Icq (++) (+) + (+++)
Ic.s ? ? ?
Ipr ++ + ++
Iy + ++ ++
Ic + +++
Tanp - ++ +++
In - + +
Ig ? ? ?

Table 10.1: Functional roles of hippocampal somatic currents. Entries in
parentheses indicate secondary role. e.g. Ca?* activation of A't current.
~?" means that the role is unknown.

1. Modulation of shape of single action potential (Spike Shape).

2. Modulation of firing threshold. both for single and repetitive spikes
{(Threshold).

3. Modulation of repetitive firing. specifically the relationship between
strength of tonic input and frequency of initial burst and later “steady
state” spike train (Freq-Inten).

Table 10.1 summarizes the main roles for each of the described currents
as indicated by the simulations.

10.2.1 Possible Roles for the Modulation of the FI Charac-
teristic

Traditionally neural information is assumed to be encoded by frequency
modulation (specifically PCM). that is the number of spikes per second
encompasses the message of a neuron. For example. the strength of con-
traction for a muscle fiber is. over some range. a linear function of the spike
frequency of its efferent neuron. If action potential propagation is assumed
to be a stereotvped phenomena. then clearly the only way to modulate
neuronal output is by changing the spike frequency. If the inhibition of a
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specific current changes the FI characteristic, this allows the modulation of
that neuron’s information processing by various agents.

10.2.2 Possible Roles for the Modulation of the Threshold
of the Somatic Action Potential

The setting of the somatic threshold will determine the minimal input for
eliciting a spike. and in effect change the sensitivity of a cell. For example,
if INo-trig Was blocked by some endogenous agent. then the firing threshold
for that cell will be raised by about 10 millivolts. This would cause the cell
to ignore a wide variety of input patterns that would otherwise generate
soma spikes. Even subtle changes in soma threshold. as might for exam-
ple be mediated by selective inhibition of Iy;. could significantly alter the
overall transfer function of a local population of neurons. assuming that the
cholinergic input is spread out over that population and not just directed at
a single cell ([24], [25],(35]. [36]).

There are actually two aspects of the “threshold™ for a cell - static and
dvnamic. In other words the rate at which the soma membrane approaches
threshold is as important as the absolute level of that threshold. In general
the threshold rises with a slower approach because there is a small range
for which sub-threshold activation of Ix,—¢rig is possible. The most strik-
ing evidence for this was demonstrated in Chapter 7. where the role of I
in delaying spike initiation by (effectively) slow stimulus was shown. I,
therefore may help to distinguish tonic dendritic (particularly distal) input
versus tonic somatic input. For input that eventually will supply the same
depolarizing current at the soma. dendritic input will have a slower onset
due to the cable properties. This slow onset could allow /4 to transiently
delay the onset of the spike or spikes. as was shown. A similar depolarizing
current of somatic origin (e.g. somatic synapses) would have a faster onset
such that Iy would not be activated in time on the depolarizing phase to
delay the spike. Extending this possibility further. blocking /4 could have
the physiological or pathological result of reducing the ability of the soma
to discriminate proximal versus distal inputs.

10.2.3 Possible Roles for the Modulation of the Shape of the
Somatic Action Potential

How important is the shape of an individual spike at the soma? In general
this question has not been addressed in the literature. but we can speculate
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on the possibilities. First, we can assume that spike shape, in particular
spike width, is unimportant to a first degree at the soma - once the soma
fires, it fires. However, the role of the spike beyond the soma may or may
not depend on the spike shape, and this possibility is dependent on to what
extent spike propagation is a linear or non-linear phenomena.

This in turn will determine the degree to which an axonal termination
“see’s” the actual time course of the somatic event. At one extreme, the
proximal axon could transmit the spike a purely non-linear fashion - once
threshold was reached, the classic “all-or-nothing” response would transmit
a stereotyped action potential down the axon whose shaped would be com-
pletely independent of the (immediate) post-threshold behavior at the soma.
At the other extreme, i.e. if the axonal membrane were purely linear, the
propagation of the somatic event at any point down the axon would be a
convolution of the entire somatic signal, rather than just a function of when
the soma potential passed some threshold.

The situation in the brain probably lies somewhere between these limits,
that is electrical activity at the axon terminal is somewhat dependent on
the shape of the somatic spike. The extent to which this is true will in
turn be dependent on the wavelength of the propagated spike. For example,
consider a typical un-myelinated axon of an HPC with a diameter of 1 micron
and a conduction velocity on the order of 10 meters/second. For this axon
a 1 millisecond action potential will have a wavelength on the order of 10
millimeters. Since the distance between the soma and an axon terminal may
fall in this range. the post-threshold waveform at the soma may influence
the pre-synaptic waveform. despite the non-linearity of the axon.

Consider what happens if the axon is myelinated. Myelination means
that its C,, will be much less and its R,, will be much greater. This results
in (a) the conduction velocity increasing (which increases the wavelength
proportionally) and (b) a reduction of the attenuation of the somatic signal
as it travels down the axon. in particular the high-frequency components of
the signal. In sum, if the HPC axon is myelinated. the electrical activity
at its terminals will even more likely depend on the time course of the
somatic waveform. despite the excitable membrane at (in particular) the
axon’s nodes of Ranvier.

So, given the possibility that the shape of the somatic action potential
may modulate the signal at the pre-synaptic terminal. what role could this
serve? There are at least two possibilities. First. it has been demonstrated
that the release of transmitter at the pre-synaptic terminal is not an all-or-
nothing event. that is the amount of transmitter released is a function of the
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time course of the terminal spike (). For example, modulation of the somatic
spike width may in turn determine how much transmitter is released down
the line. thereby allowing a mechanism for changing the effective strength
of the spike as seen by the distal neuron. Second. pyramidal cell axons often
project collaterals back to the originating cell. forming axo-somatic synapses.
resulting in a feedback loop. In this case, modulation of the somatic spike
could affect this feedback in complicated ways. particularly since the length
of the collaterals is not large.

There may also be a role for the somatic spike shape during the transmis-
sion of an action potential at axonal branch points. For example. consider
a axonal branch point with an impedance mismatch and where there is one
thin and one thick proximal branch. In this case an orthodromic spike that
is too narrow may not be able to depolarize the thick branch sufficiently for
transmission of the spike down that branch. and as a result the spike would
propagate only down the thin branch. If this is possible. then modulation
of the somatic spike shape could be used to direct the cell’s output in a
time-varying way. i.e. some times allowing blanket transmission to all the
cell axon’s destinations. and at other times allowing reception of that output
by only a limited set of the proximal neurons.

To summarize. encoding information as spike frequency is clearly part
of the story. but it may not he the whole story. Modulation of somatic
spike width could be equivalent to a modulation of the ~loudness™ of a given
neuron’s message. As mentioned previously. considering that some of the
currents may be modulated by non-cell-specific factors (e.g. local. non-
synaptic release of cholinergic agonists). the “message™ being turned up or
down may be one being broadcast from a local population of cells. not just
a single cell.

In order to further examine the above scenarios. it will be necessary to
investigate the relationship between somatic spike shape and pre-synaptic
potential. in particular the effect of axon length. diameter. etc. We have to
answer the question of whether the pre-synaptic membrane (and. more im-
portantly. the post-synaptic membrane via modulation of transmitter release
or gap-junction interactions) see what is happening at the soma? We also
have to analyze at what point does axonal transmission reduce to a stereo-
tvped all-or-nothing action potential such that the pre-synaptic response is
independent of the soma potential bevond threshold.
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10.2.4 Other Implications of Somatic Currents

In this thesis the somatic response of the HPC has been modelled, under
the assumption that the dendrites present a linear load to the soma. and
that the data on HPC currents reflect the activity of channels localized
at the soma. The assumption of a linear dendritic tree has already been
discussed (Chapter 2). However, the idea that currents measured at the
soma reflect channels whose functional role is defined at the soma may be
questioned as follows. Specifically, all channel proteins, regardless of there
final (functional) destination are manufactured at the soma. Some of the
so-called somatic channels may actually be vestiges of channels intended for
axonal and/or pre-synaptic membrane. Some percentage of the channels
which are manufactured at the soma for eventual export may be expressed
in somatic membrane either on their way to final destination or when they
are transported back to the soma for recycling. For example, it has been
demonstrated that application of 4-AP modulates post-synaptic events (en-
hancement of EPSPs []). Does this mean that I4, which has been tacitly
assigned a primarily somatic role in this report. actually does most of its
work at synaptic membrane sites on the dendrites? This question should be
addressed in order to fullv establish the functional role of the currents in
the HPC.

However. if the spike-shaping channels are intended for pre-synaptic
membrane. then modulation by endogenous factors (e.g. ACH) obviously
takes place at target neuron. Now this is disadvantageous if we want factor
to act selectively on some afferent tract. On the other hand, perhaps in a
given dendritic field only some afferents have certain channels. so there still
could be some selectivity.

10.3 Why Do the HPC Currents Span Such a
Broad Kinetic Spectrum?

A related question is what could be the usefulness of several types of cur-
rents with a range of activation/inactivation characteristics for information
processing function at the single cell level. Again. these currents primarily
define somatic integration: the role of the dendritic tree will further compli-
cate matters.

For example. do current kinetics serve to stabilize the cell. that is is
the cell response relatively sensitive or insensitive to variations in a) chan-
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nel configurations or b) channel kinetics/voltage-dependencies? The model
suggests that many of the parameters have a strong effect on cell behavior.
Now, the question remains as to what is the functionally important aspects
of HPC response. For example, does a delay to onset of repetitive firing
due to tonic dendritic input as opposed to somatic input (ref. I4) have any
functional aspect? ('onsidering that this delay can be on the order of several
hundred milliseconds, then the delay may have a verv important functional
role.

A crude analogy to a computer may be instructive (adapted from [37]).
Cognitive processes execute on the order of hundreds of milliseconds, thus
a delay of this magnitude. as demonstrated by the action of, for example,
I4gp. could correspond to an “instruction cycle” delay mechanism. Like-
wise. some currents seen to function as delay mechanisms on the order of a
“machine cvcle” (about tens of milliseconds). for example I-. Along these
lines. a tentative categorization of the described currents is as follows:

e I4 - can differentiate tonic dendritic input from somatic input
o [4yp - can terminate initial train of repetitive firing

¢ Ic - just modulates spike width

Iy - helps set threshold in general. may effect F-1

IpR - basal repolarizer

In, 141 - modulates repetitive firing

Ixy—;cp - allows repetitive firing with lower metabolic cost

® Ixa_trig - basal spike current
L IQ -7

10.4 Pathological Roles of Specific Currents

Are specific currents mediated in isolation under certain pathologic condi-
tions? The selective action of neurotransmitters on some of the currents,
e.g. muscarine on Iys. noradrenaline on Isyp. supports this possibility.
Other examples include reports of various endogenous substances found in
vitro that selectively affect distinct currents. e.g. the role of ethy] alcohol
on mediation of 14 in Aplysia (Biophysics Abstracts. 1987).
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As shown in Chapter 9, blocking the putative Iv,_,, has the surprising
effect of causing the cell to “latch-up” in response to certain strengths of
tonic stimulus that would otherwise elicit well-bounded stable spike trains.
Although the existence of this current is problematical. the possibility of
selective blocking for it raises the possibility of an intriguing pathology. in
which neurons stimulated over a certain threshold will simply give up and
remain silent until the stimulus stops. On the other hand, it just as likely
that this would be a physiological response. that is under some conditions
putting an upper bound, not just a lower one, on the intensity of a cell’s
input may be advantageous.

The relationship between intracellular Ca?t and I and I4pp can also
indicate possible pathologic mechanisms. One role for these Ca?* -mediated
outward currents that may be important is that they limit C'a** influx by
repolarizing the cell when Ca?*t currents are turned on. Intracellular C'a®*t
is an important messenger for several mechanism. for example muscular
contraction. but excessive [Ca®*];, is a noxious agent. There are thus at
least three negative feedback mechanisms for limiting the flow of Ca?* -
first. voltage-dependent inactivation (e.g. the w particle of I ) of Ca?*
currents: second. reduction of E¢, with C'e?* influx: and finally. the just
mentioned C'a?* -mediation of repolarizing currents. These mechanisms
suggest possible pathologic roles for some of the mechanisms. For example,
as shown in Chapter 9 blocking of I 1y p causes I¢- to step in and eventually
limit further repetitive firing. On the other hand. if both these currents are
blocked repetitive firing may go unchecked, with a subsequent larger buildup
of [("a®*];, to. perhaps. pathological levels.

10.5 Why Model?

Why a model provides more information than that which is put into it,
particularly when the model attempts to describe a fairly complicated sys-
tem. is not always obvious. However. there are some compelling reasons to
employ this approach. including the following;:

o Modelling helps answer the question as to whether or not the collection
of currents described experimentally for this cell is sufficient to account
for the observed behavior.

e Limited data for a non-linear system cannot uniquely specifv the sys-
tem. Modelling is a way to generate plausible mechanisms that can

222



then be tested as more data becomes available,

¢ Modelling provides the experimentalist with a way to examine high-
uncertainty data and can stimulate alternative explanations when ex-
perimental results are inconsistent with the current body of knowledge,
as is embodied in the model.

e More specific to the results discussed here, if inodelling indicates that
some currents only affect spike shape then this is evidence for some
interesting role for spike shape modulation. This in turn can give
suggest new ideas as to how information is encoded in CNS.

10.6 Questions Posed by the Model in Regard to
Current Mechanisms and Kinetics

Does it really matter what the time constant for decay is at potentials greater
than about -40 mV'. as long as it is much greater than the time constant for
activation. considering that the spike will be repolarized before inactivation
can take place? Also. what is the usefulness of inactivation mechanisms for
some currents. in particular for the At currents? As demonstrated by the
model. during normal activity these currents are removed primarily by the
removal of activation. So far, a clear role for inactivation mechanisms has
. not been established. but finding such a role is tempting. if one assumes that
these mechanisms do not exist solely for the complication of voltage-clamp
protocols.

Since we do not see all aspects of current-specific behavior in all HPC
(e.g. do all HPC exhibit ("a**-dependent fAHP?) the question remains as
to why some cells have certain characteristics while others don't.

10.7 Interpreting the Model Behavior

Given the speculative nature of many of the currents that I have presented
in the model. any results that reflect the interaction of many of the model
elements must be regarded as preliminary. None the less. there are a few
" interpretations that we can draw that may reflect mechanisms in actual cells.

A kev question to be answered for any of the currents is whether or
not a given current is modulated in rivo. either physiologically or patho-
physiologically. From an evolutionary standpoint. for a current to have a
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physiological role via selective control of that current, clearly the controlling
factor must be present under physiological conditions. On the other hand.
in certain pathophysiological states a specific current may be modulated in
order to compensate for the problem. One would suspect that if a current
has evolved (that is survived) there must be a motivation for its presence
that is manifested in either physiologic conditions (e.g. as a computational
mechanism) or pathologic conditions (e.g. as a compensatory or protective
mechanism, or as well a computational mechanism).

For several of the currents described here such endogenous factors have
been identified. For example, Ips is inhibited by muscarinic (physiologically.
cholenergic) agonists. 14 has been reported to be inhibited by acetylcholine
(Nakajima et al, 1986), and I4xp is inhibited by muscarinic agonists ( Madi-
son et al.1987) and noradrenaline (Madison and Nicoll,1986). Speculation as
to whether there are as yet undiscovered mechanisms in vivo for modulating
some of the other currents, for example the three proposed Na* currents.
is interesting.

10.8 The Effect of Populations of Neurons as Dis-
tinct from Single Cells, and the Implications
for Graded Inhibition of HPC Currents

We have considered the all-or-nothing contribution of the various currents.
i.e. either a given current is present at its normal strength or it is blocked
completely. This description may be oversimplified in two ways. First. the
mechanism that blocks a given current may have a graded effect with respect
to a single neuron. For example. cholenergic input may be diffuse over the
soma. and at a given time only part of these afferents may be activated and.
subsequently. only a portion of the Ins channel or /4y p channel population
inhibited. Second. inhibition of a given current must be thought of not only
in terms of a single cell but of a local population of cells. the size of the
population depending on the neuro-architecture of a given region and the
efferents of interest. Activation of a cholenergic tract which terminates in a
localized area in CA3 may impinge on thousands of HPCs. Assuming that
(worst case) the Iy of a given HPC' in the area is then either turned on or
off completely. the behavior of the population is such that there will be a
graded response. This graded response will in turn depend on the strength
of the cholenergic tract activity.

The key point here is that thinking about the information processing
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properties of single neurons only in isolation deals with just part of the
problem. Rather. considering how a population of neurons behaves is im-
perative. No single cell is an island, and removal of a single pyramidal cell
from the hippocampus will probably have zero functional effect.

On the other hand. understanding the spectrum of behavior inherent
in the individual functional unit (in this case the single neuron! is vital to
deriving the behavior of the group, particularly when the size of that group
varies depending on the system being considered.

10.9 Other Issues Suggested by the Modelling
Approach

One interesting possibility posed by the model is that C'a?**-mediated cur-
rents might be used as a fast-response transducer for monitoring intracellular
Ca®*t. Previously. this problem has been addressed by different methods.
including via measurement with microelectrodes [29]. with questionable re-
sults.

In order to use ("a®*-mediated currents as a transducer. it will be re-
quired to verifv the relationships hetween activation of these currents and
Ca** concentration appropriate for these currents. for example by using
patch clamp protocols. Modelling can then be used to extract estimates of
the time course of C'a** concentration given limited data. since the simu-
lation of current clamp protocols establish useful constraints between the
relevant parameters. In the results presented here, the time course of in-
tracellular ('a®* was tightly linked to both the membrane voltage and the
different currents.

'Of course the definition of what constitutes the “individual functional unit” is not
fixed - this may range from single channels to specific areas of a dendritic tree to the
single cell to subfields to fields on up through the main systems in the CNS.
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Chapter 11

FUTURE DIRECTIONS

11.1 Introduction

The model presented here is a preliminary one: at this point there are only
a few conclusions that may be drawn from it with confidence regarding the
functional aspects of the entire cell. The data base. at present. is sparse.
and it was necessary to augment the available information with reasonable
speculations on unknown mechanisms. In some respects this effort has been
successful in reproducing the qualitative aspects of HPC response. Other
aspects have not been simulated well. and it remains to obtain additional
data from cells in order to fill in the gaps.

11.2 Some Experiments for the Future

Some experiments that are suggested by the model results include the fol-
lowing;:

¢ Validate assumptions regarding electrotonic structure using frequency
domain techniques.

e Evaluate the method for estimating the electrotonic parameters of
the dendritic tree from histological data that was presented in Sec-
tion 3.8.2.

e Investigate contribution of apparent soma leak by microelectrode. If

contribution is significant during electrophysiological measurements.
then use model to determine behavior of undamaged cell.
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o Validate presence of proposed Na%t channels.
¢ Validate voltage-dependence of I and I4xp.
¢ Determine ('a®t-dependence of I and Iyyp.

e Develop versions of model for different hippocampal sub-fields or dif-
ferent species.

o Further investigation of the relationship between various parameters
and functional sensitivity, e.g. does changing Inq_rep parameters af-
fect firing patterns.

o In general, devise voltage-clamp protocols to validate assumptions for
current parameters.

o Test description of Ca?* system.

e Investigate more quantitively the temperature-dependence on HPC
parameters.

¢ Run experiments to check the model predictions. as possible. for the
various patterns of repetitive firing as shown in Chapter 9.

11.3 Testing the “Super” Cell Assumption

During the analysis of the HPC literature it became apparent that devel-
oping an experimental protocol in which evaluation of several currents and
the linear response for a single preparation would be very valuable. A sig-
nificant handicap in the building of HIPPO was that the available data was
derived from a vast variety of cells. On the other hand. the HIPPO descrip-
tion tacitly assumes that all the currents/characteristics reviewed could be
expressed in a single cell. and in fact this (probably fictional) “super™ HPC
is the system being modelled. Indeed. one of the more remarkable aspects of
the model is that it was possible to derive a single system description that
simulated such a wide range of responses.

On the other hand. a single real cell may not embody every detailed re-
sponse presented here. and a given cell probably expresses only some limited
subset of the reported behavior. Running future experiments with this in
mind. and to design a suitable protocol that would shed light on the com-
plete behavior of a given preparation in order to test the conclusions of the
model will be useful.
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Appendix A

A SAMPLE SIMULATION
SESSION

In this appendix a typical simulation session will he demonstrated. The first
step in running HIPPO is configuring the LISP environment with the proper
window frame. This is done by calling the function STARTUP. Next. the
function CLAMP is called. The first task of CLAMP is to present the user
with a series of menus that set the parameters for the current simulation.
These menus will be illustrated below. .

The first menu to appear is -

h

First time program is being run?: Yes No

Current or voltage clamp: Current clamp Voitage clamp
Modify soma parameters: Yes No

Change the plotted dendrite voltages?: Yes No
Modify dendrite parameters: Yes No

Update all the current kinetics: Yas No

Modify overall simulation parameters: Yes No

In this simulation all the options will be selected. The next menu to
appear asks which soma parameters will be modified -

ri
Modify the soma currents : No

Modify soma geometry and pass,e components: Yes No
Modify the soma stimulus: Yes No

Modify the soma synapse: Yas No

Exitn
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Tlr;e next menu asks which soma currents will be included and/or mod-

ified - _
Pyramidal r Inﬁy_d_g_ﬂg&i_fy_
Nal (trigger mutha) current

Na2 (slow tail) current
Na3 (repetitive) current

Slow Ca current
DR current

C current

Rhp current

RRREHRKOOORR
sulaas-aaann

=]
(]
—
ct
XD
o
o
i ]
cr

In this case Ic, and Ic,s will be killed (as if Ca®* blockers had been
added to the cell medium) and the parameters for Ipg will be modified.
The next menu changes the parameters for Ipg -

Delaved-Rectifier Potassiunm Qu::fnt ~
DR-current absolute conductance [micro-S]: 8.7

Block some fraction of absolute conductance [6-1]; 1.0

xx ¥ Variable Kinetics *x

Vi2 for Dr x: -18

Rlpha-base value for Dr x at U12: 0.008
Valence for Dr x: 12

Gamma for Dr x: B.95

Minimum value for time constant [ms]: 8.5

Here the kinetics of Ipg have been shifted +10mV along the voltage
axis, thereby increasing the threshold for the activation of this current.
The next menu allows for modification of the passive soma parameters -

Passive components

Soma sphere radius [micrometers] : 17.5

Leakage battery [mV] : -70.0

Na reversal potential [mV] : 50.0

K reversal potential [mV] : -85.0

Ca reversal potential [mV] : 110.0

Calculate C-men from geometry (yes) or use input capacitance (no): Yes No
Membrane capacitance [microfaradssq-cn] : 1.0

Input capacity [nF] : 8.15

Calculate *RS-MEM from geometry (yes) or use input impedance (no): Yes No
Membrane resistance [ohm-cm-cm] : 850.0

Input impedance [MOhm] (used to substitute for soma and dendrite Rin only) : 39.0
Temperature of experiment [Celsius]: 38!‘=

G-10 [Rate constant coefficient per 18 fegrees]: 3.0

[3-18 [Ionic conductance coefficient per 18 degrees]: 1.5 ,

Include electrode shunt conductance (if no the g-shunt will be ignored)?: Yaes No
Electrode shunt [Mohms]: 1.0e?

Constant current injected [nA]: -8.25




In this case the temperature of the simulation has been set to 30°C.
Now the menu for the soma current stimulus comes up. This is set to
inject 1nA into the soma for 5 milliseconds at the beginning of the simulation

run -
Setting Up Current Clamp
Do you want current injected into the soma?: Yes No

Current clamp by : Command array Entered steps

Enter name of current command array -: NIL

Step 1 amplitude [nal: 1
For how long [ms]:

Step 2 amplitude [nal: @ ,
For how long [ms]: @

Step 3 amplitude [nal: 0.8 i
For houw long [ms]: 0.8

Step 4 amplitude [nal: 9.0

For how long [ms]: 0.0

Step 5 amplitude [na] : @.8

For he; long (this will change the duration of the simulation)[ms]: 60

Exit : )

Now the dendrite will be set up -

*xs GETTING UP THE DENDRLIES %3¢
-- DENDRITE STRUCTURE --

|Hou many apical dendrite shaft segments? : S
Include apical dendrite shaft: Yes No

Modify it?: Yes No

EHou many apical dendrite left branch segments? : @
Include apical dendrite left branch: Yes No

Modify it?: Yes Ne :
How many apical dendrite right branch segments? : 8
Include apical dendrite right branch: Yes No
Modify it?7: Yes Ne

How many basal dendrite segments? : @

Include basal dendrite: Yaes No

Modify it?: Yes No

~~- DENDRITE CHARACTERISTICS --

Modify dendrite passive components: Yes No

Modify the dendrite current stimulus: No

Modify the dendrite synapse: Yes No

Modify the currents of the modified dendrites: Yes No

Exit U

[Choose Variable Values ~
Do all the 5 apical shaft segments have the same geometry?: E?No

Exit [

ch e Variabl lues
Lenath of segment [micrometers]: 240
Diameter of segment [micrometers]:
Exit




The passive characteristics of the dendrite segments will now be set -

Fr"' P rti ndr i n
axon membrane capacitance [microfaradssq-cm] : 8.1
axon membrane resistance [ohm-cm-cm] : 56008.0

axon axoplasm resistance [ohm-cm] : 25.0

dendrite membrane capacitance [microfaradssq-cm] : 1.9
dendrite membrane resistance [ohm-cm-cm] : 40000.0
dendrite axoplasm resistance [ohm-cn] :

dendritic leak potential [mv] : -70.08

Plot all the voltages in solid Tines: Yas No

Exit Ei

And current - 2na from 25 milliseconds to 30 milliseconds into the sim-
ulation - will be injected into the distal dendritic segment -

h iabl

Do you want current injected into the apical dendrite shaft?: Yes No
Segment to inject current into - : S -
Step 1 amplitude [nal: 8.0
For how long [ms]: 25
Step 2 amplitude [nal: 2
For how long [ms]:
Step 3 amplitude [nal: 0.9
For how long [ms]: 0.0
Step 4 amplitude [(nal: 0.0
For how long [ms]: 8.0
Step S amplitude [nal: 8.0
For how long [ms]: 0.0

HIPPO now begins calculating the network response. While the simula-
tion is running, the elapsed time is displayed -

Length of simulation + time for steady state - 76.07ms Current time - 12.2ms}

HIPPOCAMPAL PYRAMIDAL CELL SIMULATION
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When the simulation is complete, the relevant voltages and currents
are plotted, along with a printout of the parameters. The output of the

simulation run is shown.

Various characteristics of the simulation can be examined more closely
as desired. For example, suppose the response to the dendritic stimulus is of
interest. The relevant portions of the plots can be readily zoomed as shown.

Temp. 30C, Time step [mses] 0.028,
€-Leak (Dendrita) -70.0, E-K -85.9,
§6.26

Sema memb. res. (ohms-3q om] $50.0, Soma cap. [nF] 0.01208, Semas rad. [mic's] 17.§
Sema Speo cap. [micrefFsq-em] 1.0, Dendrite Spac cap. [micrefsq-om] 1.0

Dendrite memb. res. [ohms~-3q cm] 40000.0, Axeplasmic res. [ohms=- em] 200.0

L _electrede shunt

gNat [micreS] 0.6546, gMa2 [micreS] 0.01636, gNad [micreS) 0.6728, i-ca poise
1-NgP peisoned, i-cas peitened

I,c [micreS] 0.4,gANP [micreS] 0.35,9M (microS] 0.008, gOR (micreS) 0.7,
9A [microS] 0.5

Sema E-Rest -70.28, E-Leak (Sema) -70.0
E-ca 110.0, E-dr -73.6, E-na §0.0, R-Sema [

[Apical thaty dendrite with & segments. Length = 1200.0 miorens.
Segment length = 246 misrens. Diameter = 2.8 miorens. Lamda = 2
‘Slamda(per segment) » 9.798% |

. L = 0.4899

j'l'imo required 1o reach steady-state 4.2 mses
LY

HIPPOCAMPAL PYRAMIDAL CELL SIMULRTL

|Sona_And Dendritic Potentials [nV]
50

a0

20

[ idad

Outward Soma Curregks [na]

JInuard Sona Currents [nal
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Soma And Dendritic Potentials [mV]
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Appendix B

HIPPO ALGORITHM

In this model a spherical-soma/dendritic-cable approximation of the pyrami-
dal cell is reduced to an electrical network. HIPPO calculates the response
of the network using a modified predictor-corrector scheme. based on that
used by Cooley and Dodge. [11]. At any given time step this algorithm finds
the set of solutions by a iteration from the previous set. The inputs to the
network include:

¢ intrinsic non-linear conductances and their equilibrium potentials
¢ current injected into one or more compartments

o controlled voltage source placéd in parallel in the soma

¢ syvnaptic conductances

The outputs of the network include:

e voltage and the derivative of the voltage
o state variable values and their derivatives

e individual branch currents

These values are found for every compartment in the network.

The program first calculates the steady state of the network (if one exists)
for the current set of simulation conditions. If a steady state does not exist
(e.g the cell fires spontaneously) a quasi-steady-state solution is used as the

initial values for the simulation. The algorithm then proceeds as follows for
each time increment:
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1. Estimate the voltage of each compartment by open integration using
the value at the last time step, the value of the derivative at the last
time step. and the time step. If this is the first time step, then the
previous voltage is the steady-state voltage.

V'(nAt) = V([n - 1]A1) + (At x V([n = 1]AL))

where 17/(nAt) is the estimate of the voltage of a given compartment.
V([n — 1]At) is the voltage at the previous time step, At is the size
of the time increment, and V([n — 1JAt) is the time derivative of the
voltage at the last time step.

2. Estimate the steady state values of the state variables and their time
constants at the current time using the voltage estimates. For example
the steady state value of the Ix,—_¢riy m variable is estimated as:

M\ 4 trigno( L) = f(V(nAL))

Likewise the time constant for the Ix,—_¢i; m is estimated :

Tl'n..\'a—-trig( HAT) = g(‘ ”( nAt ))

where f() gives the steady state value (my,—trig.x) Of My -trig at a
given voltage. and g¢() gives the time constant (7, xq—trig) at a given
voltage. Similar equations are used for the activation and inactivation
variables for all the currents that are included in any given compart-
ment. Note that functions like ( f() and g()) are among the key results

either measurements of cell parameters or the estimates derived with
the model.

. Estimate the present value for the state variables by trapezoidal ap-
proximation. using the old values for the state variables and their
derivatives. the estimates for their current steady state value. and the
estimates for their time constants. For example.

At - M trea o (1AT)
m.‘\fa—trig([" - I]A” + %‘t(nl_\'q—trig( [n - 1]At) + 7.'\ _' - (nal) )
’ m.Na=trig'
M, —grg(NAL) =

S | S——
27! {nAt)

m.Na—trig
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4. The conductances are estimated from the state variable estimates. For
example. for the Inq—¢rig conductance the estimates for mp,—¢rig and
hxqa—trig are used as follows -

y.’\'fx—trig( nAt) = "'(’\'a-irig( "Ai)hf\'u—trigtl( "A{)g,\fa—(rig

where g\, _;,;,(nA?) is the current estimate for the Iv,_¢rig conduc-
tance, and JNa-trig 15 the total conductance for the Ing—¢rig current.
The Ca**-dependent A+ conductances are estimated using the values
of [Ca?*)shenr.;1 and [Ca?F]spen2 calculated at the previous time step.

5. Conservation of currents at circuit nodes (KCL) and the appropriate
branch equations are used to calculate the estimated capacitive cur-
rent for each compartment at the current time. This current is then
used with the value of the capacitance of the compartment to calcu-
late the derivative of the compartment voltage. given the estimates for
the conductances. the estimates for the voltages in adjacent compart-
ments. and the value of any injected current into the compartment.
For the circuit topology most often used in the simulations (see Figure
1.1) the expression of K('L for the estimated soma currents is :

1 ! ’ ’ ’
stimulus + Icnpacity + ].\'a—trig + ]\'u—rep + I.\'a—lail

+I4 + Ipr + Ic + Iy + ypp + 1
+I(l'.'n + Ié'a‘? + I;, + Iz’hridriie—somu =0
The relevant branch equations are

! [ -7
]v:ﬂpm'ity =(C sama 1 samu( "At)

:{\'a-trig = g_'\-,,_,,,-g(n.lt) X (Exy — ";O,n,,(nAf))

/

A\'a-—rfp = y.’\-'l~l'f.p( "A’) x (L-.\v'l - ‘:L-,,"_,,(n-&t))
14

Na—tail = 9N acpai(RA) X (Ex, =V, (nAt))
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= gh(nAt) x (Ex = V) ..(nAt))
Iipp = ¢agp(n Aty x (Ex =V, (nAl))
Ipp = gpr(nAt) x (Ex =V, .(nAt))

I = g¢-(nAt) x (Ex — (nAt))

Iy = gar(nAt) X (E = Vi,pa(nAL))
IQ -—gQ(nAt x (Ep - sm,(n.li))
I, = 90 (n A1) x (Ecq = V), ma(nAt))
Ieas = gea5(nA) x (E¢y = Vi, (nAY)

Ii = g1 X (ELeak — ‘sm ,(n_\t)) ‘

! -
IShunt = gShunt X ‘somr:( nAt)

' -t
Idendrite—soma = Gdendrite—soma X(‘dendri{ﬁ—sfgmenil( nAt)-¥ soma( nAt))

Rearranging to get an expression for V7, (nAt).

1
1;0m1(nAf)= X

¢ membrane

((g.l\'a—irig( 71At)+g,’\c'n—rep( nAt )+g_’\'u-rui[( nAN)X(Exg— suma( nAt))
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10.

+(ga(nA) + gy p(nAt) + gpp(ndt)
+9¢(nAt) + ghy(nAl) + go(nAh) X (Ex = Vi, (nAL))
F by (nA) + ghns (A1) X (Eca = VL, (0 A1)
+9L %X (ELeak = Veorna(NAD)) + gshunt X =V, pa(nAL)

+gdfndrit6—soma X ( "d’endritc-—segm(n[]( "At , 3oma( nAt ) ))

Similar equations are derived for all the othel compartment voltage
derivatives.

. A second estimate of the compartment voltages is made with trape-

zoidal approximation using the previous values for the voltages and
their derivatives and the estimate for the present derivative. For ex-
ample. the second estimate of the soma voltage is derived as follows-

V7(nAt) = V([n - 1)A1) + (V([n = 1]At) + V'(nAt))

where 17/(nAt) is the second estimate for the compartment voltage.
Recall that both the voltage. V'([n — 1]At). and its derivative. V'([n -
1]A7). were stored as results from the previous time step.

. The new voltage estimates are compared with the previous voltage

estimates. If any of these estimates is not within some convergence
criteria €. then the algorithm goes back to step 2 using the mean of
the previous and present voltage estimates.

. If all the voltage estimates are within the convergence criteria then

these estimates are taken as the present values for the voltages. A final
estimate of the state variables and the derivatives of the voltages are
then calculated, once again using steps 2 through 6. The derivatives of
the state variables are also calculated using the appropriate differential
equations (ref eq. 1.). These values are also stored as the state of the
network at the present time.

. [Ca?*)shenrs and [C'a** )2 for the current time step is calculated

using the current value of I, and I¢-,s and the appropriate differential
equations (see Chapter 6).

Increment the time and continue simulation.
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Note that [C'a?*]spenny and [Ca®*gnenr2 - and thus the interaction be-
tween these concentrations and I~ and I4yp. are calculated out of the
predictor-corrector loop in order to speed up execution time. This is rea-
sonable since the time constants for the influx of ("a?®* and the change in
the compartment concentrations are much slower than the typical time step
used in the simulations (0.03 milliseconds).

The stability of the algorithm was primarily a function of the time step
and the state variable with the fastest kinetics. Runs for a given simulation
were done with the largest time step that resulted in a convergent solution.
Typically simulations were run with a time step of 0.05 milliseconds. and an €
of 0.1 millivolts. The accuracy of key simulations was checked by re-running
the simulation with a small time step and a small epsilon (typically 0.01
milliseconds and 0.01 millivolts. respectively). Running time for simulations
with a 0.05 millisecond time step and € = 0.1 millivolts was between 0.5 and
1 second (real time) per millisecond of simulation.
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Appendix C

OVERVIEW OF THE
HIPPO CODE

The HIPPO program is written in ZetaLisp. a dialect of Lisp that is imple-
mented on the Symbolics 3600-type computer. Although this code will not
run under Common Lisp, converting it should not be very difficult.

The output of HIPPO assumes that a plotting package written by Patrick
O’Donnell has been loaded into the machine. Again. this part of the program
could be readily modified to run on another system.

Some of the features of this code include the evaluation of the voltage-
dependent gating variable functions and storage of the results in arrayvs
before simulation runs so as to speed run times. In addition. it is relatively
straightforward to add new conductances to the model due to the modularity
of the program.

Copies of this code are available on cartridge tape from the author.
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Appendix D
HIPPO LISTING
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;: -%- Mode: LISP; Syntax: Zetalisp; Package: (HIPPO); Base: 10; Fonts: CPTFONT,CPTFONTI; Hardcopy-Fonts: FIX10,TIM
SROMANT0BIL -%-;;

2: ssssssssssss HIPPO - SIMULATION OF HIPPOCAMPAL PYRAMIDAL NEURONS ssssssssssssss
ssas UNITS sess
AR dimensions are as follows -

3 Time (millissconds) except for ®time® output array where the units are sesconds.
= gn;g(uk?mm:) ) for e

2 Vol illivol!
ro

oo

(114
oo

o0s

22 Rasistance (mege-okms)

3t Comductance (microsiemans)
222 Conductance density (millisismans per square-cm}

3 s=ss Define oll the giobdl variables and arrqys %%

coe
sor

22 The naming comvention for the variables is as follows -

52 variable-nome = local variable

i ®variable-name = globdl variable

222 VARIABLE-NAME = giobel arrey
522 variable-name$ = siot on in arrey
22 ®variable-name® = giobdl (output) list

222 Thase arrays hold dll 1he state variables for each compartment. DENDRITE i3 a two dimensiond arrey to
22 includs all the dendritic segments.
(defvar BASAL-DENDRITE (make-array '(50 200) :initial-value 1.0))
(defvar APICAL-1-DENDRITE (meaks-array °(50 200) :initial-value 1.0))
{defvar APICAL-2-DENDRITE (maks-array °*(50 200) :initial-valus 1.0))
(defvar APICAL-SHAFT-DENORITE (make-array °(50 200) :initial-value 1.0))
(defvar xtotal-segments 10)
(defvar SOMA (make-array 200 :initial-value 0.0))
(defvars-w-value (:dendrite-synapse-step 0)(zsoma-synapse-step 0)
(xstart-dendrite-synapse 10.0)(zxstart-soma-synapse 10.0))

(defvar m-nal-inf-array (make-array 1700 :initial-value 1.0))
(defvar h-nal-inf-array (make-array 1700 :initial-valus 1.0))
(defvar t-m-nat-arrsy (make-array 1700 :initial-value 1.0))
(defvar t-h-nal-array (make-array 1700 :initial-value 1.0))
(defvar m-na2-inf-array (make-array 1700 :initial-value 1.0)
(defvar h-na2-inf-array (make-array 1700 :initial-value 1.0)
(defvar t-m-ne2-arrsy (make-array 1700 :initial-value 1.0))
(defvar t-h-na2-array (make-array 1700 :initial-value 1.0))
(defvar m-na3-inf-array (make-array 1708 :{nitial-value 1.0))
(defvar h-na3-inf-array (sake-array 1700 :initial-value 1.0))
(defvar t-m-na3-array (meke-array 1708 :initial-value 1.0))

(defvar t-h-na3-array (make-array 1708 :initial-value 1.0))

)
)

(defvar x-nap-inf-array (meke-array 1700 :initial-value 1.0))
{defvar t-x-nap-arrey (maks-array 1700 :inftial-value 1.0))

(defvar s-ca-inf-array (make-array 1700 :init{al-value 1.0))
(defvar w-ca-inf-array (make-array 1700 :initial-valus 1.0))
(defvar t-s-ca-array (maks-array 1700 :initial-value 1.0))
(defvar t-w-ca-array (msks-array 1700 :initial-value 1.0))
(defvar x-cas-inf-array (maks-array 1700 :initial-value 1.0))
(defvar t-x-cas-array (maks-array 1700 :initial-value 1.0))

(defvar x-a-inf-arrsy (make-array 1700 :initial-value 1.0))
(defvar y~a-inf-array (sske-arrey 1700 :inftial-value 1.0))
(defvar t-x-a-array (make-array 1700 :initial-value 1.0))
(defvar t-y-a-array (maks-arrsy 1700 :initial-value 1.0))

{defvar x-c-inf-array (mske-arrgy 1700 :initia)-value 1.0))
(defvar y-c-inf-array (meks-array 1700 :initial-value 1.0))
(defvar t-x-c-array (make-array 1700 :initial-value 1.0))
(defvar t-y-c-array (make-arrey 1700 :initial-value 1.0))
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(defvar x-dr-inf-array (make-array 1700 :initial-value 1.0

(defvar y-dr-inf-array (make-array 1700 :initial-value I.l))
0

)

)

.0))
))
(defvar t-x-dr-array (make-array 1700 :inftial-value 1.0)
(defvar t-y-dr-arrsy (make-array 1700 :initial-value 1.0)
(defvar x-m~inf-array (make-array 1700 :initial-value 1.0))
(defvar t-x-m-array (make-array 1700 :initial-value 1.0))
(defvar x-q-inf-array (make-array 1700 :initial-value 1.0))
(defvar t-x-q-array (make-array 1700 :initial-value 1.0))

(defvar z-ahp-inf-array (make-array 1700 :initial-value 1.0))
(defvar t-z-ahp-array (wmake-array 1700 :initial-value 1.0))
(defvar y-ahp-inf-array (make-array 1700 :initial-value 1.0))
(defvar t-y-shp-array (make-array 1700 :initial-value 1.0))

(defvar voltage-array (make-array 1700 :initial-value 1.0)) ;Use this array for plotting variable curves

252 Set up labels for the various dendrite-segment and soma array slots.
(d:;v:r#;w‘-'\;ﬂu
abe

+:The last permanent valuss for the voltage and the derivative of the voltage.
(voltages 1) (voltage-dot$ 2)

1:"-a311", the present estimate of the voltage and "-estl-dot”, the present sstimate of the derivative of the
svoltage,which are 0 be used in calculating the next estimate of the voltage.
(voltage-esti$ 3)(voltage-esti-dot$ &)

3:"-2312", the next estimate of the voltage. When this is calculated it will then be compared with the
Mx ma:z? ;; 208 if the two values are within the comvergence criterium.
vo 8=-8S

ssPassive parameters.

capacitance$ 10)(length$ 11)(diameters 12)(e-rest$ 13)(total-segments$ 14)(include-me$ 15)(plot-me$ 16)
{ca-conc-shell$ 17) (ca-conc-shell-dot$ 18)

(ca-conc-shel12$ 117) (ca-conc-shell2-dot$ 118)

2:The last permanent values for the state variables and their derivatives, calculated with the last permanent
svalue for the voltage,

(m-nal$ 20)(m-nal-dot$ 21) (h-nal$ 22)(h-nal-dot$ 23)

(m-na2$ 120)(m-na2-dot$ 121) (h-na2$ 122)(h-na2-dot$ 123)

(m-na3$ 128)(m-na3-dot$ 125) (h-na3$ 126)(h-na3d-dot$ 127)

(s~ca$ 28)(s-ca-dot$ 25) (w-ca$ 26)(w-ca-dot$ 27)

(x-a$ 28)(x-a-dot$ 29) (y-a$ 30)(y-a-dot$ 31)

(x-drs$ 32)(x-dr-dot$ 33) (y-dr$ 38)(y-dr-dot$ 35)

(x-m$ 36)(x-m-dot$ 37)

(x-q$ 38)(x-q-dot$ 39)

(x-nap$ 40)(x-nap-dot$ 41)

(x-c$ 42)(x-c-dot$ 43) (y-c$ #8)(y-c-dot$ 45) (w-c$ 54)(w-c-dot$ 55)

{x-cas$ 48)(x-cas-dot$ 47)

(z-ahp$ 48)(z-ahp-dot$ 49)(y-ahp$ 50)(y-ahp-dot$ 51)(w-ahp$ 52)(w-ahp-dot$ 53)

++Absolute conductances,

(g-axial$ 60)(g-synapses$ 61)

(g-leaks 62)(gbar-nal$ 63)

(gbar-na2$ 163)

(gbar-na3s 164)

(gbar-cas 64)

(gbar-k$ 65)

(gbar-u$ 66)(gbar-dr$ 67)(gbar-c$ 68)(gbar-q$ 69)(gbar-nap$ 70)(gbar-a$ 71)
(gbar-cas$ 72)

{gbar-ahp$ 73)

s:Flags for the dendrite currents.
(include-nas 80)
(include-ca$ B1))

22> These are used 10 store the steady state values and the time constants for the voltage clamp protocol.
(defvars =xqinf stq sxcinf stxc sycinf styc swcinf ttwe

wminf stm

smnalinf stanal xhnalinf sthnal

sana2inf xtana2 *hna2inf xthna2

sanadinf xtmna3d shna3inf sthna3

mcainf xtmca shcainf sthca

sxdrinf xtxdr txcasinf stxcas szahpinf stzahp syahpinf xtyahp swahpinf xtwahp
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sydrinf stydr sxainf xtxa syainf stya sxnapinf xtxnap )

232 Thase are the arrays which hold the soma and dendrite synaptic conductances [ micro-Sj
(defvar SOMA-SYNAPSE (make-array 10000))
(defvar DENDRITE-SYNAPSE (make-array 10000))

202 Various globdl variables

(defvars zgs-nal-est x9s-na2-est x*gs-nad-est
£gs-nap-est 3¥gs-ca-est ¥gs-a-est ¥gs-c-est £gs-m-est xgs-dr-est xgs-cas-est xgs-ahp-est
2gs-q-est xgs-leak xgs-synapse xgs-coupling xtime sclamp-voltage svstep stime-for-steady-state
DENDRITE-ARRAY xg-electrode)

(defvars ra-m-nal zb-m-nal ta-h-nal tb-h-nal)

(defvars sa-m-na2 sb-m-na2 xa-h-na2 xb-h-na2)

(defvars za-m-na3d sb-s-na3 *a-h-na3 xb-h-na3)

(defvar *vclamp-command-flag 1)

(defvar *voltage-command* nil)

(defvar xiclamp-command-flag 1)

(defvar xcurrent-command® nil)

(defvar ncil-s.g 4)

(defvar =s eg

(defvars lp'lot ist1 zlabel-1ist1 zplot-1ist2 xlabel-1ist2 splot-1ist3 xlabel-1ist3 =zplot-l1ists xlabel-lists
xplot-11st5 xlabel-lists)

(defvars-w-value (sxi-stim-1 0.0)(xi-stim-2 0.0)(*i-stim-3 0.0)(x{-stim-4 0.0)(xi-stin-5 0.0)
(st-stim-1 0.0)(xt-stim-2 0.0)(*t-stim-3 0.0)(xt-stim-4 0.0)(xt-stim-5 0.0)
{*i-den-stim-1 0.0)(*xi-den-stim-2 0.0)(xi-den-stim-3 0.0)(%1-den-stim-4 0.0)
(zi-den-stim-5 0.0)
(zi-den-stim-6 0.0)(z1-den-stin-7 0.0)(xi-den-stin-8 0.0)(s{-den-stin-9 0.0)(xi-den-stin-10 0.0)
(st-den-stim-1 0.0)(st-den-stim-2 0.0)(xt-den-stin-3 0.0)(st-den-stim-4 0.0)
(xt-den-stin-5 0.0)
{st-den-stim-6 0.0)(xt-den-stin-7 0.0)(st-den-stim-8 0.0)(st-den-stin-9 0.0)(st-den-stim-10 0.0)
(xcurrent-stimulus-segment 5) (xi-stim 0.0)(xi-den-stim 0.0)
(xtime-step 0)(*xduration 50)(xinclude-soma-current t)(zinclude-dendrite-current nil)
(splot-dendrite t)(tcllculn.e-smdy-suu t)(xfirst-run t)(ssteady-state-run nil))

(defvar xqten 3.0) re dependance o, 6 constants.
.mmumplkl 'Q?I'Nr}fdxd o (T-Thas, lo wlm-c Tis rln
Jtemperature of the simulation, and is the temperature of
sthe of the experiment that measured the rate constants.

(defvars-w-value (xqten-factor-at-25 1.0) (xqten-factor-at-32 1.0)(xqten-factor-at-24 1.0)
(xqten-factor-at-22 1.0) (xqten-factor-at-37 1.0)
(xqten-factor-at-14 1.0) (*qten-factor-at-25-m 1.0))

{defvars-w-value (sxsoma-synapse-tau 1.0)(xsoma-synapse-amplitude 1.0)(xe-synapse -25.0)
(=dendrite-synapse~-tau 1.0) (*dendrite-synapse-amplitude 1.0) (ssynapse-segment 5)
(xtotal-apical-1-segments 0) (xtotal-apical-2-segments 0) (stotal-apical-shaft-segments 5)
(xtotal-basal-segments 0)

(x1-constant-injection 0.0))

(defvars-w-value (zaxonal-cap-mem .1)(zaxonal-r-mem 50000.0)(*axonal-r-int 25.0))

o2 Miscellansous

(defvars-w-value (smodify-soma-passive-components t)(=modify-soma-stimulus t)(wmodify-soma-synapse nil)
(xmodify-soma-currents t)(smodify-soma t)(smodify-dendrite t)
(xsegments-all-the-same t)(ssimulation-flag t)(sinclude-soma-synapse nil)
(xinclude-dendrite-synapse nil)
(=modify-dendrite-synapse nil)(smodify-dendrite-stimulus NIL)(xinclude-dendrite t)
(xmodi fy-dendrite-geometry NIL)(®modify-dendrite-passive-components NIL)
(=modify-dendrite-currents NIL)(splot-voltages-solid t)(zoverlay-simulations nil)
(schange-plot-dendrits NIL)
(supdate-apical-1 nil)
{ supdate-apical-2 nil)
(tupdats-apical-shaft NIL)
(*update-basal nil)
(zinclude-apical-1 nil)
(sinclude-apical-2 nil)
(xinclude-spical-shaft t)
(sinclude-basal nil)
(*modi fy-dendrite-currents nil)
(splot-results t)
(supdate-all-kinetics nil))

(defvars-w-value (splot-asl nil) (splot-as3 nil) (zplot-ass nil) (*plot-as10 nil)
(*plot-all nil) (splot-als nil) (splot-art nil) (splot-ars nil)
(*plot-b1 nil) (splot-bA nil))
222 Flags for the currents
(defvars-w-value (xinclude-nat T)
(xintlude-na2 T)
(sxinclude-na3 T)
(xinclude-nap nil)(xinclude-a T)(xinclude-ahp nil)(*include-cas nil)
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(xinclude-dr T)(xinclude-k nil)(*include-c nit)(xinclude-m nil)(zinclude-kinetics nil)
(xinclude-ca nil)(xinclude-q nil)(xinclude-shunt t))

(defvars-w-value (nal-mod nil) (*na2-mod nil) (*na3-mod nil) (xnap-mod nil) (xca-mod nil) (xc-mod nil)
(xdr-mod ni1) (*a-mod nil) (sm-mod nil) (*q-mod nil) (*cas-mod nil)(sahp-mod nil))

222 The simulation time step
{defvar xdt .01) smsecs

222 Sepsilon is the convergence criteria for the compartment voltages; ®dot on is the convergence criteria
222 Jor the derivative of the compariment voltages when trying to calculate the steady state.

(defvar zepsilon .01)

(defvar xdot-epsilon .01)

(defvars-w-value (xv1 -60.0)(*v2 20.0)(*v3 -60.0)(*v4 -60.0)(*v5 -60.0))

(defvar =plot-step 1)

(defvar =point-index 1)

(Defvar splot-points 300)

(defvar xvclamp-run)

(defvar xiclamp-run)

(defvar xclamp-type 1)

2> Output arrays

(defvars x)-currentx xcaps-currentX xcurrentx stimes svoltagex snal-currents zna2-currents xna3-currentz
*nap-currentx xcas-currents
xdr-current® xa-currentx :k-current: mm-currentx xc-currents xahp-currentx xe-effs
m-nalx sh-nalx »m-na2z th-na2sz sm-na3s xth-nalsz
¥x-drs Ty-drz sx-a% ty-a¥ 3g-a% 2g-dre 3n-ks IX-M% ¥X-CX ¥y-CX fW-CX WM-na-dot: xg-nax xi-stimx xg-cx
xg-c-cOnc: isoma-synapse-currentx snadl-currentx xcadl-currentx xcoupling-current: xstim-currentz
xdendrite-stim-currentx rasivoltagex xasdvoltages xas5Svoltages xasiOvoltagex
salivoltagex xal4voltages zarivoltagex xardvoltagex
bivoltagex xbivoltagex sshunt-currentx
xdendrite-synapse-currents xca-currentx xsoma-synapse-conductancex sdendrite-synapse-conductances
xg-currents Ix-napx sz-ahpz sy-ahpt sw-ahpz xg-ahpx xs-ca® *w-ca® 3g-caz xg-nalx xg-na2x xg-nads
xca-conc-shellzx sca-conc-shell2s
ze-ca%
x-napx)

(defun set-up-output-arrays (plotted-points)
(cond-eve
(t (setq xi-stims (make-array plotted-points :initial-value 0.0)
sca-conc-shellx (make-array plotted-points :initial-value 0.0)
*ca-conc-shel12x (make-array plotted-points :initial-value 0.0)
ze-cax (make-array plotted-points :initial-value 0.0)
x1-currentx (make-array plotted-points :initial-value 0.0)
scaps-currents (make-array plotted-points :initial-value 0.0)
Iue 0.0) xcurrents (make-array plotted-points :initial-value 0.0) stimes (make-array plotted-points :initial-va
ue 0.0
Jue 0.0) svoltages (make-array plotted-points :initial-value 0.0) ze-effx (make-array plotted-points :initial-v
alue 0. “
sshunt-currentx (make-array plotted-points :initial-value 0.0)
scoupling-currentx (make-array plotted-points :initial-value 0.0)
xstim-currentx (make-array plotted-paints :initial-value 0.0)
xdendrite-stim-currentx (make-array plotted-points :initial-value 0.0)
xasivoltages (make-array plotted-points :initial-value 0.0)
sasdvoltages (make-array plotted-points :initfial-value 0.0)
xasSvoltagex (make-array plotted-points :initial-value 0.0)
*asiOvoltagex (make-array plotted-points :initial-value 0.0)))
(zinclude-nal (setq snal-current: (make-array plotted-points :initial-value 0.0))
(xinclude-na2 (setq *na2-currents (make-array plotted-points :initial-value 0.0))
(xinclude-na3 (setq sna3-currents (make-array plotted-points :initial-value 0.0))
(zinclude-ca (setq »ca-currentz (make-array plotted-points :initial-value 0.0)))
(xinclude-cas (setq xcas-currents (make-array plotted-points :initial-value 0.0))
(*include-dr (setq xdr-currents (make-arrsy plotted-points :initial-value 0.0)))
(*include-a (setq sa-currents (make-array plotted-points :initial-value 0.0)))
(zinclude-m (setq sm-currents (make-array plotted-points :initial-value 0.0)))
0
))
M)

)

(xinclude-ahp (setg xshp-currents (make-array plotted-points :initial-value 0.0)))
(*include-q (setq xq-currents (make-array plotted-points :inftial-value 9.0)))
(xinclude-c (setq xc-currentx (make-array plotted-points :initial-value 0.0
(xinclude-kinetics
{cond-every
(xinclude-nal (setq *m-natz (make-array plotted-points :initial-value 0.0)
sh-nals (make-array plotted-points :initial-value 0.0)
%g-nals (make-array plotted-points :initial-value 0.0)))
(zinclude-na2 (setq mm-na2x (make-array plotted-points :initial-value 0.0)
th-na2s (make-array plotted-points :initial-value 0.0)
xg-na2s (make-array plotted-points :initial-value 0.0)))
(*include-na3 (setq *m-na3x (make-array plotted-points :inftial-value 0.0)
. th-na3x (make-array plotted-points :initial-value 0.0)
2g-nads (make-array plotted-points :initial-value 0.0)))
(xinclude-ca (setq *s-cas (maks-array plotted-points :initial-value 0.0)
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sw-ca* (make-grray plotted-points :initial-value 0.0)
xg-cat (make-array plotted-points :initial-value 0.0)))
{zinclude-dr (setq *x-drx (make-array plotted-points '“‘liﬂll'VI“I. 0.0)
ty-drs (make-array plotted-points :initial-value 0.0)
2g-drs (make-array plotted-points :initial-value 0.0)))
(xinclude-a (setq sx-ax (make-array plotted-points :initial-value 0.0)
sy-ax (make-array plotted-points :initial-value 0.0)
sg-ax (make-array plotted-points :initial-value 0.0)))
(xinclude-m (setq *x-mx (make-array plotted-points :initial-value 0.0)))
(*include-ahp (setq *z-ahpx (make-array plotted-points :initial-value 0.
sy-ahpt (make-array plotted-points :initial-value 0.
sw-ghpx (make-array plotted-points :initial-value 0
zg-ahpz (make-array plotted-points :initial-value 0.
(*include-c (setq *x-c* (make-array plotted-points :initial-value 0.0)
ty-cx (maks-array plotted-points :initial-value 0.0)
tw-cx (make-array plotted-points :initial-value 0.0)
2g-cx* (make-array plotted-points :;initial-value 0.0)
xg-c-concx (make-array plotted-points :initial-value 0.90)))))))

1}

{defvars splot-pane-1 splot-pane-2 *plot-pane-3 splot-pane-4 xplot-pane-5 splot-pane-6)

-"mﬂm&nqdhhmnmfwthwmun.
(defun setup-menud ()
(tv:choose-variable-values
*((xfirst-run “First time program is being rua?" :boolean)
(sclamp-type “Current or voltage clamp” :chocss (“Current clamp” "Voltage clamp®))
(smodify-soma “Modify soma parsmeters® :boolean)
(xchangs-plot-dendrits “Change the plotted dendrits voltages?® :boolean)
(mmodify-dendrite “Modify dendrite parameters® :boolean)
(supdate-all-kinstics "Update all the current kinetics” :boclean)
(ssimulation-flag “Modify overall simulation paramstsrs® :boolean)))
(4f sfirst-run (initialize-dendrites))
(if (equal sclamp-type "Current clemp®)
(setq xiclamp-run t svclamp-run nil)
{setq siclamp-run nil svclamp-run t))
(cond-every (ssimulation-flag (menu-for-simulation))
(wmodify-soma (wenu-for-soma))
(smodify-dendrite (menu-for-dendrite))
(xchange-plot-dendrite (menu-for-dendrite-plotting))
{(or schange-plot-dendrits schange-plot-points xchange-include-kinetics smodify-soms-currents)
(set-up-output-arrays splot-points)
(format t "Made new output arrays®))
(supdats-all-kinetics (variable-array-setup))))

(defun menu-for-dendrite-plotting ()
(tv:choose-variable-valuss
*((*plot-as) "Plot shaft segment 1”7 :boolean)
{splot-as3 "Plot shaft segment 3° :boolean)
(*plot-asS “Plot shaft segment 5* :boolesn)
(splot-asi0 “Plot shaft segment 10° :boalean)
{splot-altl “Plot left segment 1° :boolean)
(xplot-ald "Plot left segment A° :boolean)
(wlot-arl “Plot right segment 1* :boolean)
(xplot-ard “Plot right segment 4 :boolean)
(splot-b1 *Plot basal segment 1 :boolean)
(lplot-M *pPlot basal segment 4° :boolean))
*:LABEL “CHOOSE PLOTTED SEGMENTS®)
(aset (if splot-ast t nil) APICAL-SHAFT-DENDRITE 0 plot-me$)
(aset (if =plot-as3 t nil) APICAL-SHAFT-DENDRITE 2 plot-me$)
(ms (1 splot-asS t nil) APICAL-SHAFT-DENDRITE & plot-me$)
aset (1f splot-as10 ¢ nil) APICAL-SHAFT-DENDRITE O pm--s)
(aset (1f splot-altl t nil) APICAL-1-DENORITE 0 plot-mes)
(aset (17 xplot-ald t nil) APICAL-1-DENDRITE 3 plot-ms$)
(aset (if splot-art ¢t nil) APICAL-2-DENORITE 0 plot-me$)
(aset (if splot-ard t ail) APICAL-2-DENDRITE 3 plot-me$)
(aset (1f splot-b1 t nil) BASAL-DENDRITE 0 plot-mes$)
(aset (1f =plot-bA t nil) BASAL-DENDRITE 3 plot-me$))

A

232 MENU-FOR-SOMA Sets up oll the paremeters for the current run,
(defun menu-for-soma ()
(tv:choose-variable-values
*{ (xmodify-some-currents “Nodify the soma currents “ :boolean)
(xmodi fy-soma-passive-components “Modify soms geometry and passive components®  :boolean)
(*modify-soma-stimulus "Modify the some stimulus®" :boolean)
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(=mod1ify-soma-synapse "Modify the soma synapse” :boolean)))
(cond-every (smodify-soma-currents (menu-for-soma-currents))
( smod1 fy-some-passive-components (menu-for-somsa-geometry-and-passive-components ))
((and siclamp-run sModify-soma-stimulus) (menu-for-soms-current-stimulus))
((and svclamp-run sModify-soma-stimulus) (menu-for-some-volitage-stimulus))
(smodify-soma-synapse (menu-for-soma-synapse))))

2:2 MENU-FOR-DENDRITE Sets up dll the parameters for the current run.
(defun menu-for-dendrite ()
(tv:choose-variable-values

® <= DENORITE STRUCTURE -~-*

(=total-apical-shaft-segaents "How many apical dendrite shaft segments? ° :number)
(sinclude-apical-shaft “Include apical dendrite shaft” :boolean)
(supdate-apical-shaft “Modify 1t?* :boolean)

(stotal-apical-1-segments “How many apical dendrite left branch segments? * :number)
(=include-apical-1 "Include apical dendrite left branch® :boolean)

(=update-apical-1 “Modify it?* :boolean)

(xtotal-apical-2-s ts “How many apical dendrits right branch segments? * :number)
(xinclude-apical-2 “Include apical dendrite right branch” :boolean)
(rvotal-Dasal-seomemes how nany basel dendrite ts? * :nusber)
stotal-basal-segmen many bass segmen :n

(xinclude-basal “Include basal dendrits” :boolean)

(*update-basal "Modify it?" :boolean)

s

® << DENORITE CHARACTERISTICS --*

as

(*mod1fy-dendrite-passive-components “Modify dendrite passive components® :boolean)
(*modify-dendrits-stimulus "Nodify the dendrite curreat stimulus® :boolean)
(sMod1ify-dendrite-synapse "Nodify the dendrite synapse” :boolean)
{mmodify-dendrits-currents "Modify the currents of the modified dendrites” :boolean)
e

*:Tabel ® =xx SETVING UP THE DENDRITES 3z *)
(set-dendrite-segments-and-flags)
(cond-every
{zupdate-apical-1 (aset stotal-apical-1-segments APICAL-1-DENORITE 0 total-segmentss$)
(wenu-for-dendrite-geometry APICAL-1-DENDRITE)
(1f smodify-dendrits-currents
(menu-for-dendrite-currents APICAL-1-DENORITE)))
(supdate-apical-2 (aset xtotal-apical-2-segments APICAL-2-DENORITE 0 total-segmentss$)
(menu-for-dendrite-geometry APICAL-2-DENORITE)
(1f smodify-dendrite-currents
(menu-for-dendrits-currents APICAL-2-DENDRITE)))
(supdate-spical-shaft (aset xtotal-apical-shaft-segments APICAL-SHAFT-DENDRITE 0 total-segments$)
(wenu-for-dendrita-geometry APICAL-SHAFT-OENDRITE)
(if =modify-dendrite-currents
— 14 %m-:or-m'lu-wfmu mm;som;mm);;
wypdate-basal (aset stotal-basal-segments BASAL-DENDRITE 0 total-segments
(menu-for-dendrite-geometry BASAL-OENDRITE)
(1f smodify-dendrits-currents .
(wenu-for-dendrite-currents BASAL-DENORITE)))
(*mod1fy-dendrite-passive-components (menu-for-dendrits-passive-components))
(zModify-dendrite-stimulus (menu-for-dendrits-stimulus))
(*Mod{ fy-dendrite-synapse (menu-for-dendrits-synapse))))

22 SET-DENDRITE-SEGMENTS-AND-FLAGS
(defun nt-dtndriu-smu-ud-ﬂ:r () .
(aset xtotal-apical-1-segments TICAL-1-DENDRITE 0 total-segmentss$)
(asat stotal-apical-2-segments APICAL-2-DENORITE 0 total-segments$)
(aset sztotal-apical-shaft-segments APICAL-SHAFT-DENDRITE 0 total-segments$)
(aset =total-basal-segments BASAL-DENDRITE 0 total-segments$)
(1f xinclude-apical-shaft (aset t APICAL-SHAFT-DENDRITE 0 include-mes$)
(aset nil APICAL-SHAFT-DENDRITE 0 include-mes$))
(1f xinclude-apical-1 (aset t APICAL-1-DENDRITE 0 include-me$)
(aset nil APICAL-1-DENDRITE 0 include-me$))
(if xinclude-apical-2 (aset t APICAL-2-DENORITE 0 include-me$)
(aset nil APICAL-2-DENDRITE 0 include-me$))
{if zinclude-basal (aset t BASAL-DENORITE 0 include-me$)
(aset ntl BASAL-DENORITE 0 include-mes$)))

e IIIHZ‘WM’!’IMIM length and diameter of the dendrite sagments, and set3 the Na and Ca
552 current to
{defun initialize-dendrites ()
(aset "left apical branch® APICAL-1-DENDRITE 0 label$)
(aset “right apical branch® APICAL-2-DENORITE 0 label$)
(aset “"apical shaft® APICAL-SHAFT-DENORITE @ lsbel$)
(aset “basal branch” BASAL-DENORITE 0 1abel$)
(aset 10 APICAL-1-DENDRITE 0 total-segments$)
(aset 0 APICAL-2-DENORITE 0 total-s tss)
(aset 5 APICAL-SHAFT-DENDRITE @ total-segmentss) . Defaud? - just 5 apicel segments.
(aset 10 BASAL-DENDRITE 0 total-segments$)

o 246



(aset t APICAL-SHAFT-DENODRITE 0 include-me$)
(aset nil1 APICAL-1-DENORITE 0 include-me$)
(aset nil APICAL-2-DENDRITE 0 include-me$)
(aset nil BASAL-DENDRITE 0 include-me$)
(dolist (DENORITE-ARRAY (1ist BASAL-DENDRITE APICAL-SHAFT-DENDRITE APICAL-1-DENDRITE APICAL-2-0ENORITE))
(1f (aref DENORITE-ARRAY 0 include-me$)
(do ((segment 0 (incf segment)))
((» segment 50)) > Just st up for 50 sagments in each cable by default,
(aset 280.0 DENDRITE-ARRAY segment length$)
(aset 12.0 DENDRITE-ARRAY segment diameterS) .
(aset ni] DENDRITE-ARRAY segment include-na$)
(aset ni1 DENDRITE-ARRAY segment include-ca$)))))

{defvar snew-plot-points)
(defvar ®now-include-kinetics nil)
(defvar xchange-plot-points ail)
{defvar schange-currents nil)
(defvar xchange-include-kinetics ni})
(defvar st.ea?)
222 MENU-FOR-SIMULATION Set up the overall simulation parameters,
(defun menu-for-simulation ()
(setq steady (1f xcalculate-steady-state "Re-calculate” "0ld value®)
xnew-plot-points *plot-points
*now-include-kinetics xinclude-kinetics)
(tv:choose-variable-values
*((steady "Calculate steady state?” :choose (“Re-calculate” *0ld value”))
(xnow-1include-kinetics “Interested in kinetics?” :boolean)
(*new-plot-points “Number of points to plot (if ft-clamp will be run, then enter 2048) - * :integer)
(*dt “Set stime step [ms]* :number)
(xduration “Length of simulation [ms]* :number)
(*plot-results “Plot results?” :boolean)
(xoverlay-simulations "Plot over previous data?” :boolean)
(xepsilon “Convergence criteria in pred/corr” :number)
(xe-holding "Holding voltage for initialization [mV]® :number))
*:1abel "Setting up stimulus conditions for clamp®) -
(setq xcalculate-steady-state (if (equal "Re-calculate” steady) T nil)
splot-step (// (fixr (// =duration xdt)) =new-plot-points)
xchange-plot-points (neq snew-plot-points =plot-points)
splot-points xnew-plot-points
*change-include-kinetics (and snow-include-kinetics (not sinclude-kinetics)) ;oaly set ®change-include-kineti

sif last time Sinclude-kinetics was nil and now it is set
sinclude-kinetics snow-include-kinetics ))

(defvar xlength)
(“W I}O?EEI,VDW-GMMY&: he ponents of the
oo -FOR- [ com, s of the segments
{defun menu-for-dendrite-geometry (M#E-AW ” o»
(Tet ((total-segments (aref DENORITE-ARRAY O total-segments$))(1ist1)(1ist2))
{setq 1ist1 (format nil "Do all the ~2d ~A segments have the same try?*
total-segments (aref DENDRITE-ARRAY 0 label$))
{tv:choose-variable-values
‘((ssegments-all-the-sams ,1ist! :boolean)))
(cond (3segments-all-the-same
(setq xlength (aref DENORITE-ARRAY 0 length$)
sdiameter (aref DENDRITE-ARRAY 0 diameters))
(tv:choose-variable-values
‘({x1ength “"Length of s t [micrometers]” : )
(xdiameter “Ofsmeter of segment [micrometers]” :number)))
(do ((segment 0 (incf segment)))
((s segment total-segments))
(aset xlength DENDRITE-ARRAY segment length$)
t (aset sdiameter DENDRITE-ARRAY segment diameters)))

(do ((segment O (incf segment)))
((= segment total-segments))
(setq xlength (aref DENORITE-ARRAY segment length$) zdiameter (aref DENDRITE-ARRAY segment dismeters$)
1istl (format nil "Length of ~A segment~2d [micrometers] *
(aref DENORITE-ARRAY 0 label$) (¢ 1 segment))
1ist2 (format nil “Diameter of ~A segment~2d (micrometers] ®
(aref DENORITE-ARRAY 0 label$) (+ 1 segment)))
(tv:choose-variable-values
*‘((slength ,1ist1 :number)
(xdiameter ,11st2 :number)))
{aset zlength DENDRITE-ARRAY segment length$)
{aset zdiameter DENDRITE-ARRAY segment diameters)))))
{update-dendrite DENDRITE-ARRAY))

522 MENU-FOR-DENDRITE-PASSIVE-COMPONENTS
(defun menu-for-dendrite-passive-components ()
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(tv:choose-varisble-values
*((saxonal-cap-mes “axon membrane capacitance [microfarads/sq-cm] * :number)
(xaxonal-r-sem “axon membrane resistance [ohm-cm-cm] * :number)
(xaxonal-r-int "axon axoplasm resistance [ohm-cm] * :number)
(scapd-mem “dendrite membrane capacitance [microfarads/sq-cm]l * :number)
(srd-mem “dendrite membrane resistance [ohm-cm-cm] * :number)
(*rd-int "dendrite axoplasm resistance [ohm-ca] * :number)
(xed-1 "dendritic leak potential [mv] * :number)
(tplot-volngu-solid *Plot all the voltages in solid lines® :boolean))
:1abel “passive Properties of dendrite Segments”)
(dolist (DENDRITE-ARRAY (1ist BASAL-DENDRITE APICAL-SHAFT-DEMDRITE APICAL-1-DENDRITE APICAL-2-DENORITE))
(if (aref DENDRITE-ARRAY 0 include-me$)
(do ((segment O (incf segment)))
((s segment (aref DENORITE-ARRAY 0 total-segments$)))
(update-dendrite DENORITE-ARRAY)))))

222 UPDATE-DENDRITE Updates dendrite structure before run with new parameters,
(defun update-dendrits (DENORITE-ARRAY)
(let ((total-segments (aref DENORITE-ARRAY 0 total-segments$))
(rdmem (1f (eq DENDRITE-ARRAY "BASAL-OENORITE") srd-mem srd-mem))
(rdint (if (eq DENDRITE-ARRAY “BASAL-DENDRITE") srd-int zrd-int))
({f (eq DENDRITE-ARRAY “"S8ASAL-DENORITE”) xaxonal-cap-mes scapd-mem)))
(do ((segnnt 0 (incf segment)))
((= segment total-segments))
(aset (// (= (aref DENDRITE-ARRAY segment length$) 3.14158
(aref DENDRITE-ARRAY segment diameter$)

1.0e-2)
rdmen)
DENDRITE-ARRAY segment .
g-leaks)
(aset (x (aref DENDRITE-ARRAY segment lengths) 3.14159
(aref DENDRITE-ARRAY segment diameter$)
capdmen 1.0e-5)
DENDRITE-ARRAY segment capacitances)
(aset (// (x 3.18158
(x 0.5 (aref DENORITE-ARRAY segment diameter$))
(x 0.5 (aref DENDRITE-ARRAY segment diameter$))
100.0)
(* rdint
(aref DENDRITE-ARRAY segment length$)))
DENORITE-ARRAY segment
g-axial$))))

222 MENU-FOR-DENDRITE-CURRENTS Sets up all the dendrite curreats for the currens run.
(defun menu-for-dendrite-currents lDEIlDRl‘I‘E-Amv
(let ((total-segments (aref DENDRITE-ARRAY 0 total-segments$)))
(do ((nolant 0 (incf segment)))
((= t total-segments))
(let (( st1 (1ist (1ist Na  "Na current in this segment®
(1ist (list :include (aref MITE-MV segment include-nas)) :modify))
(1ist *Ca "Ca current in this s
(1ist (1ist :include (aref DEWRITE-ARRAV segment include-ca$)) :modify)))))
(et ({result (tv:n!tiph—dlmc
(format nil "Currents in ~A dendrite segment~2d® (aref DENDRITE-ARRAY 0 label$)
Jstt (¢ 1 segment))
s

*((:include “Include® nil nil nil (:modify))
{:modify “Modify” (:include) nil)))))
(loop for item in result
do (progn (1if (not (memq :include item))
(selectq (car item)
(Na (aset nil DENORITE-ARRAY segment include-na$))
(Ca (aset nil DENDRITE-ARRAY segment include-Ca$))))
(1f (memq :modify item)
(selectq (car item)
(Na (wenu-for-Nad-current DENORITE-ARRAY segment))
(Ca (menu-for-Cad-current DENDRITE-ARRAY segment))))
(1f (wemq :include {tem)
(selectq (car item)
(Na (aset t DENDRITE-ARRAY segment include-nas))
(Ca (aset t DENDRITE-ARRAY segment include-Cas$)))))))))))

232 MENU-FOR-SOMA-CURRENTS Sets up all the soma currents for the current run.
(defun menu-for-soma-currents ()
(let ((flag nil)
(1ist1 {list (1ist "Nal “"Nal (trigger mutha) current” (1list (1ist :include tim:ludo-nll) lodlfy))
(1ist *Na2 “Na2 (slow tail) current® (list (list : : tnclude zinclude-na2) :modify))
(11st *Na3 “"Na3 (repetitive) current” (list (1ist :include =include-na3) :modify))
(1ist *nap “"Nap current® (1list (11st :include =include-nap) :modify))
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(list *ca “Ca current® (1ist (1ist :include =zinciude-ca) :modify))
(1ist *cas "Slow Ca current” (list (1ist :include =include-cas) :modify))
(1ist *dr  "OR current® (list (1ist :include =xinclude-dr) :modify))
(1ist 'c  “C current® (list (1ist :include =xinclude-c) :modify))
(1ist *ahp “Ahp current® (1ist (list :include =xinclude-ahp) :modify))
(list 'm  “M current” (1list (list :include xinclude-m) :modify))
(1ist °q "Q current® (1ist (1ist :include =xinclude-q) :modify))
(1ist *a  “A current™ {list (1ist :include =xinclude-a) :modify)))))
(let ((result (tv:multiple-choose 'Pyr'uld.l Currenu'
ist
*((:include “Include” nil nil nil (:modify))
(:modify "Modify® (:include) nil)))))
(loop for item in result

do (progn (if (not (memq :include item))
{selectq (car item)
(Nat (setq xinclude-nal nil))
(Na2 (setq xinclude-na2 nil))
{Na3 (setq xinclude-na3 nil))
(Nap (setq xinclude-nap nil))
(Ca (setq *include-Ca nil))
(Cas (setq xinclude-Cas nil))
(K (setq xinclude-k nil))
(DR (setq *include-OR nil))
(C (setq xinclude-C nil))
(AHP (setq xinclude-AHP nil))
(M (setq sinclude-M nil))
(Q (setq xinclude-Q nil))
(A (setq zinclude-A nil))))
(1f (memq :modify item)
(selectq (car item)
(Na1 (and (setq flag t *nal-mod t)(menu-for-Na-current)))
(Na2 (and (setq flag t *na2-mod t)(menu-for-Na-current)))
(Nad (and (setq flag t zna3-mod t)(msenu-for-Na-current)))
(Nap (and (setq flag t mnap-mod t)(menu-for-Nap-current)))
(Ca (and (setq flag t xca-mod t)(menu-for-Ca-current)))
(DR (and (setq flag t xdr-mod t)(menu-for-DR-current)))
(C (and (setq flag t sc-mod t)(menu-for-C-current)))
(AHP (and (setq flag t sahp-mod t)(wenu-for-AHP-current)))
(Q (and (setq flag t xq-mod t)(menu-for-Q-current)))
(A (and (setq flag t xa-mod t)(menu-for-A-current)))))
(1f (wemq :include item)
(selectq (car item)
(Nat (setq xinclude-nal T))
(Na2 (setq =include-na2 7))
(Na3 (setq xinclude-na3d 1))
(Nap (setq xinclude-nap T)) (Ca (setq sinclude-Ca T))
(Cas (setq xinclude-Cas T))
(K (setq xinclude-k T)) (DR (setg =include-DR T)) (C (setq xinclude-C T))
(AHP (setq xinclude-AHP T))
(M (setq xinclude-M T))
(Q (setq xinclude-Q 7))
(A (setg xinclude-A T)))))))
(cond (flag (variable-array-setup)(print "Updated current kinetics®)))
(update-gbars)))

(defun update-gbars ()
(aset (gbar-na ! (surf-area ssome-radius)) SOMA gbar-nal$)
(aset (gbar-na 2 (surf-area ssoma-radius)) SOMA gbar-na2$)
(aset (gbar-na 3 (surf-area ssoma-radius)) SOMA gbar-na3$)
(aset (x xqten-g-32 (gbar-ca (surf-area ssoma-radius))) SOMA olnr-ca:)
(aset xgbar-cas SOMA gbar-cas$)
(aset (® xqten-g-30 sgbar-a) SOMA gbar-a$)
(aset sgbar-shp SOMA glnr-nhpt)
(aset sgbar-m SOMA gbar-m$
(aset xgbar-c SOMA w-cﬂ
(aset (= tqun-g-an xgbar-dr) SOMA gbar-dr$)
(aset zgbar-q SOMA gbar-g$))

(defvar xv)

233 VARIABLE-ARRAY-SETUP Bafore the clamp run this fills (or updates) the state variable arrays for the currents that are
o3 currently enabled.

(defun variable-array-setup
(do ((voltage -100.0 (+ vo'lugo 0.1))
(10(e 1 1))
((= 1500 1)) -
{setq =v voltage)
(aset voltage voltage-array 1)
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(cond-every ((or xupdate-all-kinetics xnal-mod)
(setq *a-m-pal (a-m-na 1 voltage) xb-m-nal (b-m-na 1 voltage)
xa-h-nal (a-h-na 1 voltage) sb-h-npal (b-h-na 1 volitage))
(aset (m-na-inf 1) m-nal-inf-array i)
(aset (h-pa-inf 1) h-nat-inf-array 1)
(aset (t-m-na 1) t-m-nal-array i)
(aset (t-h-na 1) t-h-nal-array 1))
((or supdate-all-kinetics xna2-mod)
(setq *a-m-na2 (a-m-na 2 voltage) xb-m-na2 (b-m-na 2 voltage)
*a-h-na2 (a-h-na 2 voltage) xb-h-na2 (b-h-na 2 voltage))
(aset (m-na-inf 2) m-na2-inf-array 1)
(aset (h-na-inf 2) h-na2-inf-array 1)
(aset (t-m-na 2) t-m-naz-array 1)
(aset (t-h-na 2) t-h-na2-array i))
((or supdate-all-kinetics xna3-mod)
(setq xa-m-na3 (a-m-na 3 voltage) xb-m-na3 (b-m-na 3 voltage)
*a-h-na3 (a-h-na 3 voltage) xb-h-na3d (b-h-na 3 voltage))
(aset (m-pa-inf 3) m-na3-inf-array 1)
(aset (h-na-inf 3) h-nad-inf-array i)
(aset (t-m-na 3) t-m-na3-array i)
(aset (t-h-na 3) t-h-na3-array 1))
{{or xupdate-all-kinetics =nap-mod)
(aset (x-nap-inf voltage) x-nap-inf-array {)
(aset (t-x-nap voltage) t-x-nap-array 1))
((or xupdate-all-kinetics x*ca-mod)
(aset (s-ca-inf voltage) s-ca-inf-array i)
(aset (w-ca-inf voltage) w-ca-inf-array 1)
(aset (t-s-ca voltage) t-s-ca-array f{)
(aset (t-w-ca voltage) t-w-ca-array i))
((or xupdate-all-kinetics xcas-mod)
(aset (x-cas-inf voltage) x-cas-inf-array {)
(aset (t-x-cas voltage) t-x-cas-array 1))
((or =update-all-kinetics xa-mod)
(aset (x-a-inf voltage) x-a-inf-array i)
(aset (y-a-inf voltage) y-a-inf-array i)
(aset (t-x-a voltage) t-x-a-array i)
(aset (t-y-a voltage) t-y-a-array 1))
({or xupdate-all-kinetics xahp-mod)
(aset (z-ahp-inf voltage) z-ahp-inf-array 1)
(aset (t-z-ahp voltage) t-z-ahp-array 1)
(aset (y-ahp-inf voltage) y-ahp-inf-array 1)
(aset (t-y-ahp voltage) t-y-ahp-array i))
({or xupdate-all-kinetics xc-mod)
(aset (x-c-inf voltage) x-c-inf-array 1)
(aset (y-c-inf voltage) y-c-inf-array 1)
(aset (t-x-c voltage) t-x-c-array 1)
(aset (t-y-c voltage) t-y-c-array 1))
((or xypdate-all-kinetics xdr-mod)
(aset (x-dr-inf voltage) x-dr-inf-array 1)
(aset (y-dr-inf voltage) y-dr-inf-array 1)
(aset (t-x-dr voltage) t-x-dr-array 1)
(aset (t-y-dr voltage) t-y-dr-array 1))
((or xupdate-all-kinetics mm-mod)
(aset (x-m-inf voltage) x-m-inf-array i)
(aset (t-x-m voltage) t-x-m-array 1))
((or zupdate-all-kinetics xq-mod)
(aset (x-q-inf voltage) x-q-inf-array 1)
(aset (t-x-q voltage) t-x-q-array 1))))
(setq xnal-mod nil x*na2-mod nil xna3-mod nil xnap-mod nil xca-mod nil =cas-mod nil xc-mod nil
zdr-mod nil me-mod nil *q-mod nil za-mod nil zahp-mod nil))
seo(e 1000 (fixr (x 10 voltage)))

(defvar command)
222 MENU-FOR-SOMA-VOLTAGE-STIMULUS
(defun menu-for-soma-voltage-stimulus ()
(setq command (if (= 1 xvclamp-command-flag) "Command arrsy” "Entered steps®))
(tv:choose-variable-values
*((command “Voltage clamp by * :choose ("Command array” “Entered steps”))
(*voltage-commands “"Enter name of voltage command array -" :eval-form)
(svl “Step 1 amplitude [av]”" :number)

(xt-stim-1 * For how long [ms]” :number)
(3v2 "Step 2 amplitude [mv]” :number)
(st-stim-2 * For how long [ms])* :number)
(xv3 "Step 3 amplitude [mv]® :number)
(xt-stin-3 * For how long [(ms])* :number)
(xva "Step 4 amplitude [mv]® :number)
(xt-stim-4 " For how long [ms]” :number)

(*v5 "Step 5 amplitude [mv]® :number)
(xduration “"For. how Tong (this will change the duration of the simlulation) [ms]® :number))
*:1abel “Setting Up Voltage Clamp*)
(setq svclamp-command-flag (if (equal command “Command array”) 1 2)))
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222 MENU-FOR-SOMA-CURRENT-STIMULUS Seats the current stimulus to the soma.
(defun menu-for-soma-current-stimulus ()
(setq comsand (1f (= 1 siclamp-command-flag) “Command array” "Entered steps”))
(tv:choose-variable-values
' ((sinclude-soma-current “Do you want current injected into the soma?® :boolean)
(cosmand "Current clamp by * :choose (“Command array” “Entered steps”))
(xcurrent-commands “Enter name of current command array -* :eval-form)
(xi-stim-1 "Step 1 ampliitude [na]" :number)

(st-stim-1 * For how long {ms]" :number)
(xi-stim-2 "Step 2 amplitude [na)” :number)
(st-stim-2 * For how long (ms]® :number)
(si-stim-3 “Step 3 amplitude [na}® :number)
(st-stim-3 * For how long [ms]” :nuamber)
(xi-stim-4 “Step & amplitude [na}” :number)
(xt-stin-4 * For how long [ms]* :number)

(xi-stim-5 *Step 5 amplitude (na] " :number)
(xduration “For how long (this will change the duration of the simulation){ms]” :number))
*:1abel “Setting Up Current Clamp®)
(setq xiclamp-command-flag (if (equal command “Command array”) 1 2)))

22 MENU-FOR-DENDRITE-STIMULUS Sets the current stimulus 1o the dendrite and the ssgment that is t0 be injected.
(defun menu-for-dendrite-stimulus ()
{tv:choose-variable-values
*((xinclude-dendrite-current “Do you want current injected into the apical dendrite shaft?” :boolean)
(xstim-seg “Segment to inject current into - ® :number)
(si-den-stim-1 "step 1 amplitude [nal]” :number)
(xt-den-stim-1 * For how long [ms]” :number)
(xi-den-stim-2 'sup 2 amplitude [na}* :number)
(xt-den-stim-2 * For how long (ms])* :number)
(xi-den-stim-3 "Stap 3 aq)litudo [na]* :number)
(st-den-stin-3 * For how long [ms]” :number)
(si-den-stim-4 'sup 4 amplitude [na)* :number)
(st-den-stim-4 * For how long [ms]* :number)
(xi-den-stim-5 'sup 5 amplitude (na]® :nuaber)
(st-den-stin-5 * For how long [ms]® :number)
(xt{-den-stim-8 'sm 6 amplitude [na)* :number)
(*t-den-stin-6 * For how long (ms]" :number)
{xi-den-stin-7 'sup 7 amplitude [na)® :number)
{xt-den-stin-7 * For how long [ms)® :number)
(xi-den-stim-8 "Step 8 amplitude {na}® :number)
(st-den-stin-8 * For how long [(ms]* :number)
(*i-den-stim-9 “Step 9 wliwdc [na)* :number)
(st-den-stim-9 * or how long [ms)® :number)
(x{-den-stim-10 “"Step 10 qli:udo [na}® :number)
(xduration “For how long (this will change the duration of the simulation)(ms]® :number)))
{setq xcurrent-stimulus-segment (- sstim-seg 1)))

ss2 MENU-FOR-DENDRITE-SYNAPSE Sats the alpha function for the dendrite synapse.
(defun menu-for-dendrite-synapse ()
(tv:choose-variable-values
*((xinclude-dendrite-synapse "Do you want a synapse on the left apical dendrite branch?” :boolean)
(xdendrite-synapse-tau "Dendrite alpha synapse time constant [ms] * :number)
{ xdendrite-synapse-amplitude "Dendrite synapse amplitude [micro-S] " :number)
(*syn-seg “Segment with synapse - * :number)
(sstart-dendrite-synapse “Start the synapse conductance {ms] " :number)
:label “Setting up synapse input into segment 10%))
(setq *synapse-segment (- ssyn-seg 1))
(set-up-synapse DENDRITE-SYNAPSE xdendrite-synapse-tau xdendrite-synapse-amplitude))

532 MENU-FOR-SOMA-SYNAPSE Sets the dipha function for the soma synapse.
(defun menu-for-soma-synapse ()
(tv:choose-variable-values
*{(xinclude-soma-synapse “0o you want a some synapse?” :boolean)
(*soma-synapse-tau “Soma alpha synapse time constant [ms] " :number)
(*xsoma-synapse-asplitude “Soma synapse amplitude [micro-S] ® :number)
(sstart-soma-synapse “Start the synapse conductance [ms) * :number)
:label “Setting up synapse input into soma.”))
{set-up-synapse SOMA-SYNAPSE ssoma-synapse-tau *soma-synapse-amplitude))

322 SET-SOMA-VOLTAGE-STIMULUS Sat up the voltage clamp.
(defun set-soma-voltage-stimulus (time-step)
(setq sclamp-voltage (if (s 1 zvclamp-command-flag)
(aref svoltage-commands ztime-step)
(cond ((= time-step 0) xv1)
((= time-step (fixr (// xt-stim-1 xdt))) »v2)
((= time-step (fixr (// zt-stim-2 xdt))) =v3)
{(= time-step (fixr (// xt-stim-3 xdt))) xv4)
((= time-step (fixr (// st-stim-4 xdt))) 3v5)
(T sclamp-voltage)))))
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133 SET-SOMA-CURRENT-STIMULUS Set up the injected current to the some, if any.

(daflm set-soma-current-stisulus

3)

2 (et ((time (- stime stime-for-steady-state)))

(let ((time (- stime 0.0)))
(1f zinclude-soms-current

(setq xi-stim (if (= 1 xiclamp-command-f1ag)

(aref
(cond

(setq xi-stim 0.0))))

scurrent-commands xtime-step)
((< time zt-stim-1) zi-stim-1)
((< time xt-stim-2) zi-stim-2)
((< time xt-stim-3) xi-stim-3)
((< time st-stin-4) xi-stim-4)
(t si-stim=5))))

222 SET-DENDRITE-CURRENT-STIMULUS Set up the injected current 1o the dendrite , if any.
(defun set-dendrite-current-stimulus ()
(let ((time (- *time xtime-for-steady-state)))
(1f xinclude-dendrite-current
(setq xi-den-stim (cond ((< time xt-den-stim-1) si-den-stim-1)
((< time =t-den-stim-2) xi-den-stim-2)
((< time st-den-stim-3) xi-den-stim-3)

(setq si-den-stim 0.0))))

223 SET-UP-SYNAPSE Fills the ar.
222 arguments. The array is 10000 dt's
(defun set-up-synapse (array tau
(dotimes (1 10000)
(if (¢ (77 % (- (/7 tau 2dt))
(aset (s { =dt amplitude

(< time st-den-stim-4) xi-den-stim-4)
(< time »xt-den-stim-3) s1-den-stim-3)
< time tt-den-stim-6) =i-den-stim-6)
< time st-den-stin-7) si-den-stim-7)
< time =t-den-stin-8) xi-den-stim-8)
< timg st-den-stim-9) si-den-stim-9)
t xi-den-stin-~10)))

wmwthnm:m«mcumbymrmmunlmﬂm‘b
amplitude)

) -10.0) (aset 0.0 array f)
{exp (77 1 (- (/7 tau xdt))))) array 1))))

s; INITLALIZE-SOMA-VOLTAGE Sets the initial soma voltage to the holding voltage.

(doﬂm initialize-some-voitage ()
(sset xe-holding SOMA voltages)

(aset se-holding SOMA voltage-esti$)
(aset se-holding SOMA voltage-est2$))

= > INITIALIZE-SOMA-STATES sets dll the state ula-t ba state,
= with the membrane voltage at the Aoldi vdtm l:‘o-luldl activation

> inactivation variables are set to their 'ln xln

zoo ?mrh.ﬁacnﬂdlumm. nuz-nndupnmuutb

on,

(dcfun initialize-soma-states ()
(setq xsoma-synapse-step 0)
(Tets ((g-nal)(g-na2)(g-na3)

(g-a)(g--)(o-dr)(o-nlp)(o-u)(l-cu)(g-dm
{g-q)(g-tota) )(o-off)(lefe-vol tage)(right-voltage-1)(right-voltage-2)

(this-voltage)(g-shun

(g-c)(u-l)(g-mlim-hft)( -coupling-right-1){(g-coupling-right-2)

(aref Mwl
,.!lrunr the states t0 their

Nmrhndrhmdhuﬂkundmdmlﬂwwmmmwm

)(volnu-im (e 1000 (fixr (= 10 voltage)))))
o« the ultlurdtmtnsuo.

(aset xca-conc-shell1-rest SOMA ca-conc-shells)

(aset 0.0 SOMA ca-conc-shell-dot$)

(aset zca-conc-shell2-rest SOMA ca-conc-shel128)

(aset 0.0 SOMA ca-conc-shell2-dots)

(aset (aref m-nail-inf-array voltags-index) SOMA m-nal$)
(aset (aref h-nal-inf-array voltage-index) SOMA h-nai$)

{aset 0.0 SOMA m-nal-dot$)
(aset 0.0 SOMA h-nal-dot$)

;Fast Na 1 currem (Trig)

(aset (aref m-na2-inf-array voltage-index) SOMA m-na2$)
(aset (arsf h-na2-inf-array voltage-index) SOMA h-na2$)

(aset 0.0 SOMA m-na2-dot$)
{aset 0.0 SOMA h-na2-dot$)

2Fast Na 2 current (Tall)

(aset (aref m-nad-inf-array voltage-index) SOMA m-na3$)
(aset (aref h-na3-inf-arrsy voltage-index) SOMA h-na3$)

(aset 0.0 SOMA m-na3-dot$)
(aset 0.0 SOMA h-na3-dot$)

Fa”s’mﬂ{hp)

(aset (aref x-a-inf-array voltage-index) SOMA x-a$
(aset (aref y-a-inf-array voltage-index) SOMA y-lﬂ

(aset 0.0 SOMA x-a-dot$)
(aset 0.0 SOMA y-a-dot$)

;4 current
(aset (aref x-dr-inf-array voltage-index) SOMA x-dr$)
(aset (aref y-dr-inf-array voltsge-index) SOMA y-dr$)

(aset 0.0 SOMA x-dr-dot$)
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(aset 0.0 SOMA y-dr-dot$) ;DR current
(aset (aref x-m-inf-array voltage-index) som x-u$)
(aset 0.0 SOMA x-wm-dot$) current
(aset (aref z-shp-inf-array voltage-index) som z2-ahp$)
(aset 0.0 SOMA 2-ahp-dot$)

(aset (aref y-shp-inf-array voltage-index) SOMA y-ahp$)
(aset 0.0 SOMA y-ahp-dot$)

(aset (w-ahp-inf (aref SOMA ca-conc-shell$)) SOMA w-ahp$)
(aset 0.0 SOMA w-ahp-dot$) +AHP current
(aset (w-c-inf (aref SOMA ca-conc-shell$)) SOMA  w-c$)
{aset 0.0 SOMA w-c-dot$)

(aset (aref x-c-inf-array voltage-index) SOMA x-c$)
(aset 0.0 SOMA x-c-dot$)

(aset {aref y-c-inf-array voluu-indox) som -c$)
(aset 0.0 SOMA y-c-dot$) current
(aset (aref x-g-inf-array voltage-index) som x-q$)
(aset 0.0 SOMA x-q-dot$) :Q current
(aset (aref x-nap-inf-array voltage-index) SOMA x-nap$)

(aset 0.0 SOMA x-nap-dot$) ; Nap current
(aset (aref x-cas-inf-array voltage-index) SOMA x-cas$)
(aset 0.0 SOMA x-cas-dot$) ;Cas curremt

(aset (aref s-ca-inf-array voltage-index) SOMA s-ca$)
(aset (aref w-ca-inf-array voltage-index) SOMA w-ca$)
(aset 0.0 SOMA s-ca-dot$)
(aset 0.0 SOMA w-ca-dot$) ;Cacurrent
(aset xcaps SOMA capacitances$)
(aset 0.0 SOMA g-synapse$)
22Now calculate the conductances based on the state variable vaiues. If a given current has been disabled,
s:then the appropriate conductance is st 100,
(setqg-nal (if tinc;uds-nll {g-nal (aref SOMA gbar-nal$)(aref SOMA m-nai$)(aref SOMA h-nai$))
0.0
g-na2 (1f zinclude-na2 (g-na2 {aref SOMA gbar-ne2$)(aref SOMA m-na2$)(aref SOMA h-na2$))

0.0)
g-na3 (if xoit:,c)ludc-ma (g-na3 (aref SOMA gbar-na3$)(aref SOMA m-na3s$)(aref SOMA h-na3$))

g-c (if xinclude-c (g-c (aref SOMA gbar-c$) (aref SOMA x-c$) (aref SOMA y-c$)(aref SOMA w-c$)) 0.0)
g-ahp (if zinclude-ahp (g-ahp sgbar-ahp (aref SOMA 2-ahp$)(aref SOMA y-ahp$)(aref SOMA w-ahp$)) 0.0)

g-m (if xinclude-m (x (aref SOMA gbar-m$) (aref SOMA x-m$)(aref SOMA x-m$)) 0.0)
g-a (if xinclude-a (g-a (aref SOMA gbar-a$) (aref SOMA x-a$)(aref SOMA y-a$)) 0.0)
g-dr ({f xinclude-dr (g-dr (aref SOMA 'blr-drt) (aref SOMA x-drS$)(aref SOMA y-dr$)) 0.0)
g-cas (if xinclude-cas (x (aref SOMA gbar-cas$
(aref SOMA x-cas$)) o 0)

g-ca (if xinclude-ca (g-ca (aref SOMA gbar-ca$) (aref SOMA s-ca$)(aref SOMA w-cas)) 0.0)

g-nap (if sinclude-nap (x (aref SOMA gbar-nap$) (aref SOMA x-nap$)) 0.0)
g-q (if xinclude-q (* (aref SOMA gbar-q$) (aref SOMA x-q$){aref SOMA x-qS)) 0.0)
g-1 (aref SOMA g-leak$)
g-shunt (if xinclude-shunt zg-electrode 0.0)
g-total (¢ g-nal g-na2 g-na3 g-a g-nap g-cas g-m g-dr g-c g-shp g-1 g-shunt)
e-eff (/7 (+ (x (+ g-nap g-nal g-na2 g-na3) se-na)

(s g-cas ss-cas) (x g-ca (e-ca ))

(2 (+ g-a "l g-c g-shp) ze-k)

(= g-1 2a-1)

(= g-dr sg-dr))

#dﬂblk“ﬂ.{hﬂtqh‘ﬂ&dwﬁmvﬁuﬁrtbuﬂm&c

left—voluu (if (aref BASAL-DENDRITE 0 include-me$)
(aref BASAL-DENORITE 1 voltage$)
(aref SOMA voltage$))
g-coupling-left (If (aref BASAL-DENDRITE 0 include-me$)
893&.\\01 (aref BASAL-DENDRITE 1 g-axial$) (aref SOMA g-axial$))

this-voltage (aref SOMA voltage$)
right-volitage-1 (if (aref APICAL-SHAFT-DENDRITE 0 include-me$)
(aref APICAL-SHAFT-DENORITE 1 voltages)
(aref SOMA voltages))
g-coupling-right-1 (i1f (aref APICAL-SHAFT-DENORITE 0 include-me$)
(g-paraliel (aref APICAL-SHAFT-DENDRITE 1 g-axial$)
0.0) (eref SOMA g-axial$))

right-voltage-2 (aref SOMA voltage$)
-coupli Lrioht-z 9.0)
V- gets the darivative of tlunltqt Then store it as the last permanent vaine.
(aset (v-dot g-coupling-left g-coupling-right-1 g-coupling-right-2 g-total
e-eff left-voltage this-voltage right-voltage-1 right-voltage-2
scaps (¢ s{-constant-injection si-stim))
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SOMA voltage-dots)))

ss; INITIALIZE-DENDRITE-VOLTAGES Sm the initial dendrite segmant voltages to the dandrite leak potentidl,
(defun initialize-dendrite-voltages (
(dolist (DENORITE-ARRAY (1ist MSAI.-DEMITE APICAL-SHAFT-DENORITE APICAL-1-DENDRITE APICAL-2-DENDRITE))
(do ((segment O (incf segment)))
((= segment (aref DENORITE-ARRAY 0 total-segments$)))

(aset zed-1 DENDRITE-ARRAY segment voltages$

(aset xed-1 DENDRITE-ARRAY segment voltage-esti$)

(aset xed-1 DENDRITE-ARRAY segment voltage-est2$))))

22 INITIALIZE-DENDRITE-STATES sets all the state variables under the asssumption tha the system is at steady
53 state, with the membrane voltages at the holding voltage (m this is %ed-i). For cmﬂc. activation

223 and inactivation variables are set 10 their “inf” values for the holding potential, and the derivatives are

223 sat 10 O, Once the state variables are set, tlnbrbwlmoﬂhnnbmvd:qummuu

35 the circuit Tmm.
(defun initialize-dendrits-statss ()
(dolist (DENDRITE-ARRAY (11st BASAL-DEMORITE APICAL-SHAFT-DENDRITE APICAL-1-DENORITE APICAL-2-DENORITE))
" (let ((=dendrite-synapse-step 0)(e-eff)(g-total)(g-na)(g-ca)(g-1)
(1-stim)(total-segments (aref DENDRITE-ARRAY 0 total-segments$)))
(if (aref DENDRITE-ARRAY O include-me$) . make sure this part even axists
(do ((segment 0 (incf segment)))
((= segment total-segments))
(letx ((voltage (aref DENDRITE-ARRAY segment voltage$))
(voltage-index (+ 1000 (fixr (x 10 voltage))))
(include-na (aref DENDRITE-ARRAY segment include-na$))
(include-ca (aref nemurs-wt include-cas)))
.E:Ifawmﬁrthmmlmban hen initialize its state variables.

(include-na

(aset (aref m-nal-inf-array voltage-index) DENODRITE-ARRAY segment m-nals)
(aset (aref h-nal-inf-array voltage-index) DENORITE-ARRAY segment h-nal$)
(aset 0.0 DENDRITE-ARRAY segment m-nal-dot$)
(aset 0.0 DENDRITE-ARRAY segment h-nat-dot$))
( include-ca
(aset (aref s-ca-inf-array voltage-index) DENDRITE-ARRAY segment s-cas)
(aset (aref w-ca-inf-array voltage-index) DENDRIVE-ARRAY segment w-ca$)
(aset 0.0 DENDRITE-ARRAY segment s-ca-dot$)
Now callaleis the conductances s d:;w“-“q‘rmu”) variables. If « given has
seNow aNCeS ACCOr 1o Sate < current has not
2oboen included in the , then its conductancs is set 10 0,
(setq g-na (if inclu -na
(% (aref DENORITE-ARRAY segment gbar-nal$) (aref DENORITE-ARRAY segment m-nal$)
o 4 s:;:f DENDRITE-ARRAY segment m-nai$)(aref DENDRITE-ARRAY segment h-nal$)) 0.0)
g-ca nclude-ca

(g-ca (aref DENDRITE-ARRAY segment gbar-cas) (aref DENDRITE-ARRAY segment s-ca$)
{aref DENORITE-ARRAY segment w-ca$)) 0.0)
g-l (aref DENDRITE-ARRAY segment g-leak$)
f-stim (1f (and (EQ DENDRITE-ARRAY APICAL-SHAFT-DENORITE)

(= segment scurrent-stimulus-segment)) >include current injection
x{-den-stin 0.0)

g-total (¢ g-na g-ca g-1)
e-eff (// (0 (t -na %e-na) (% g-ca xe-ca ) (= g-1 xed-1))

)
++Now calculate the dertvative of the voltage based on the 51 state valxes for the state variables at
.:;zwummuzrhczm:n “V-DOT" tohldha’dhthllld“

(aset (denw'lu-d.ﬂvu!vc DENDRITE-ARRAY total-segments segment {-stim g-total e-eff)
DENDRITE-ARRAY segment voltage-dot$)))))))

i ‘nmmm DERIVATIVE This function finds the derivative of the dendrite ssgment voltage given the current estimated
(dcfun dendrits-derivative (DENDRITE-ARRAY total-segments uplnt {-stim g-total e-eff)
(let ({this-voltage (aref DENDRITE-ARRAY segment volugc-utl
(left-voltage)(right-voltage-1)(right-voltage-2)
(g-coupling-left) -mling-right-\)(g—mpling-rigl\t.-z))
(cond ((= total-segments 1) 2 Just one se in this part of the tree
(1f (or (EQ DENMDRITE-ARRAY APICAL-1- oemm (EQ DENDRITE-ARRAY APICAL-2-DENDRITE)) :{or r branch
2 s dumu the distdl part of the shaft
(setq left-voltage (AREF APICAL-SHAFT- (- stotal-apical-shaft-segments 1) voltage-estis$)
g-coupling-left (g-parallel
{aref APICAL-SHAFT-DENDRITE (- stotal-aspical-shaft-segments 1) g-axials)
(aref DENDRITE-ARRAY 0 g-axial$)))

< otherwise this is the apical or basl shafd, which abuts the soma
(setq left-volitage (aref SOMA voltage-esti$)

g-coupliing-left (g-parailel (aref SOMA g-axial$) (aref DENDRITE-ARRAY 0 g-axial$))))
(1f (and (EQ OENORITE-ARRAY APICAL-SHAFT-DENORITE lincludl-apica!-n
2 shaf with { branch gets r-v1 a2l
(setq right-voltage-1 (aref AFIGM.-! DENORITE 0 voltage-est1$)
g-coupling-right-1 (g-parallel (aref APICAL-1-DENDRITE 0 g-uills)
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(aref DENORITE-ARRAY 0 g-axial$)))
2> else no segments distal
(setq right-voltage-1 (aref DENORITE-ARRAY segment volitage-esti$)
g-coupling-right-1 0.0))
(1f (and (EQ DENDRITE-ARRAY APICAL-SHAFT-DEMITE) zinclude-apical-2)
with r branch gets r-v-2 as r
(setq right-voltage-2 (aref APICAL-Z-DEIORITE 0 voltage-estis)
g-coupling-right-2 (g-parallel (aref APICAL-2-DENDRITE 0 g-axial$)
{aref DENDRITE-ARRAY 0 g-axials)))
2 else no segments distel
(setq right-voltage-2 (aref DENDRITE-ARRAY segment voltage-estis)
g-coupling-right-2 0.0)))
((= total-segments (+ 1 segment)) -At the distal ssgment of this part of the dendrite, and thare is more

: than one segment, s0 | will be ent proximal in same of tres
(setq left-voltage (aref DEMI‘I‘E-ARIMV (- segment 1) volugc-u’?ivs.) part of

g-coupling-left (g-parallel (aref DENORITE-ARRAY segment g-axial$)
(aref DENDRITE-ARRAY (- segment 1) g-axial$)))
(if (and (EQ DENDRITE-ARRAY APICAL-SNM-'T DENDRI ; )} sinclude-apical-1)
branch then r-v-1 will be proximal seg of {
(setq right-voltage-1 (aref APICM.-I-DEMI‘I‘E 0 voltage-estis)
g-coupling-right-1 (g-parallel (aref APICAL-1-DENDRITE 0 g-axial$)
(aref DENORITE-ARRAY segment g-axial$)))
2 olse no r~v-1, no master which part of tree
(setq right-voltage-1 (aref DEMITE-MV segment voltage-estis)
g-coupling-right-1 0.0))
(1f (and (EQ DENORITE-ARRAY APICAL-WT-DE%) ﬂm:ludl-lpical-z
if sha branch then r-v-1 will be proximal seg of |
(setq right-voltage-2 (aref APICAL-2-DENORITE 0 voltage-esti$)
g~coupling-right-2 (g-parallel (aref APICAL-2-DENDRITE 0 g-axial$)
(aref DENORITE-ARRAY segment g-axials$)))
2 else 80 r~r-2, no matier which part of tree
(setq right-voltage-2 (aref OEMITE-MY segment voltage-estis)
g-coupllng-rigﬁt-z 0.0)))
((= segment 0) 2 At the proximal ssgment of part of the tree with at least 2 segments
(1€ (or (EQ DENODRITE-ARRAY APICAL-1- m‘ﬂi) (EQ DEIORI‘IE-MV APICAL-2-DENORITE))
pmnnfmhrlorrbrmlwla distal shaft as l-v
(setq left-voltage (AREF APICAL-SHAFT-DENORITE (- stotal-apical-shaft-segments 1) voltage-esti$)
g-coupling-left (g-parallel
(aref APICAL-SHAFT-DEMORITE (- stotal-apical-shaft-segments 1) g-axial$)
(aref DEIDIITE-ARMY segment g-lxhlS)))
mngofobd basal shaft will gt soma as l-v
(setq left-voltage (aref SOMA volmo-estl
g-coupling-left (g-parallel (aref SOMA &uh‘:) (lrof DENDRITE-ARRAY 1 g-axial$))))
mxsgof nmcﬂm at least 2 segs will get seg 2 from same
part a2 rv-1, 80 r-v-2
(setq right-voltage-1 (aref DENDRITE-ARRAY 1 vo) -e3t1$)
g-coupling-right-1 (g-parallel (aref DENDRITE-ARRAY 1 g-axial$)
(aref DEMITE-AIMY 1 g-axials))
right-voltage-2 (aref DENORITE-ARRAY 0 voltage-estis$)
g-coupling-right-2 0.0))

.o,

» At some middle seg {mmoﬂhmtlmhal‘mauy
(setq Teft-voltage (aref DENORITE-ARRAY (- segment 1) volitage-esti$) ;-v is seg prox from same part of tree
g-coupling-left (g-parallel (aref DENDRITE-ARRAY (- segment 1) g-axial$)

(aref DENORITE-ARRAY segment g-axial$))
» right-voitage-1 (aref DENORITE-ARRAY (+ 1 segment) voltage-esti$) sr-v-1 is sag dissal from same pa

g-coupling-right-1 (g-paraliel ((mf DENDRITE-ARRAY (+ 1 segment) g-axial$)

of DENDRITE-ARRAY segment p-axial$))
right-voltage-2 (aref DENDRITE-ARRAY segment voltage-esti$) N0 pv-2

g-coupling-right-2 0.0)))
.‘:"VM'pumz:Mﬂn of the sspment voltage. Then store it as the last permanent vaixe.
(v-dot g-coupling-left g-coupling-right-1 g-cwpling-rigm.-z g-total
e-eff loft-vo'luoc this-voltage right-vol -1 right-voltage-2
(aref DENDRITE-ARRAY segment capacitances) i-stim)))

222 LOAD-FIRST- mwm um: the nmuﬂu loop with an (nitid "latess” estimate (e212) of the voltages,
calcxlated from the previous voltage, the previous dertvative of the voltage, and the time step.
22 The initial “es12” is calculated using an open integration formule.
(defun load-first-estimates ()
»First get all the dendrite s, 8,
(dolist (DENDRITE-ARRAY (1ist BASAL-DENORITE APICAL-SHAFT-DENDRITE APICAL-1-DENORITE APICAL-2-DENDRITE))
(1f g;:e:(nemnanﬁnvfo |nclud:;r3)
segment ncf segment
((= segment (aref DENDRITE-ARRAY 0 total-s ts$)))
(aset (+ (aref DENORITE-ARRAY segment vol ; Kstimated voltage = Previous volt. +
2 (ds 'Prmaw-vd
(% xdt (aref DENORITE-ARRAY segnnt volmc-dott)))
DENORITE-ARRAY segment voltage-est2$))))
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s:Now for the soma,
(cond ((or xsteady-state-run xiclamp-run)
(ult (+ (aref SOMA voltage$) (= xdt (aref SOMA voltage-dot$))) SOMA voltage-est2s$))
Pa{-rh voltage clamp the soma voltage is always the current dlamp voltage.
svclamp-run
((nu:-iif (= 1 svclamp-command-flag) (aref xvoltage-commandx xtime-step) xclamp-voltage)
SOMA voltage-esti1$)
(aset (if (= 1 *xvclamp-command-flag) (aref svoltage-commands stime-step) sclamp-voltage)
SOMA voltage-est2$))))

(defvar flag t)

;» TRST-ESTIMATES IfMofth estimated voltages are not within the comvergence criterium, then immediately
..'. axit with “nil”, otharwise returs "t
(defun test-estimates ()
(setq flag t)
(and (test (aref SOMA voltage-esti$)
(aref SOMA voltage-est2$))
{and (dolist (DENDRITE-ARRAY
(1ist BASAL-DENORITE APICAL-SHAFT-DENDRITE APICAL-1-DENDRITE APICAL-2-DENDRITE “end®))
(1f (equal DENDRITE-ARRAY "end”) (return T))
(if (not (if (aref DENDRITE-ARRAY 0 INCLUDE-MES)
(do ((segment 0 (incf segment)))
((= segment (aref DENDRITE-ARRAY 0 total-segmentss$)) T)
(1f (not (test (aref DENORITE-ARRAY segment voltage-esti$)

(aref DENDRITE-ARRAY segment voltage-est2$)))
(return nil)))

)
{return nil))))))

i mrmn-xmmsunm 10 soe if the com, "smu have settled down 10 & quasi-resting state by
222 testing all the stored derivatives of the compartment If the mqmuh of ALL the derivatives are
02 less :h‘a %dot-episilon, then retura “1*, The system atllumcdnhamw

(defun test-for-resting-state ()

(setq flag t)
(and (< (abs (aref SOMA voltage-dot$)) xzdot-epsilon)

(or
(dolist (DENDRITE-ARRAY
(11st BASAL-DEMDRITE APICAL-SHAFT-DENODRITE APICAL-1-DENDRITE APICAL-2-DENDRITE))
(1f (aref DENORITE-ARRAY 0 INCLUDE-MES)
(do ((segment 0 (incf segment)))
“;(: segment (aref DENORITE-ARRAY 0 total-segments$)))
not
(< (abs (aref DENDRITE-ARRAY segment voltage-dot$)) zdot-epsilon))

flea))) (setq flag nil)))))

ag

o3 G-PARALLEL
(defun g-paralie) (g1 g2)
(77 (x g1 g2 4.0) (+ (x 2.0 g1)(x 2.0 g2))))

222 STORE-NEW-SOMA-ESTIMATE Make the old soma voltage estimate (estl ) egual 10 the new voltage estimate (e12).
(defun store-new-soma-estimate {)

(aset (x 0.5 (+ (aref SOMA voltage-esti$)(aref SOMA voltage-est2$))) SOMA voltage-esti$))

A {m,x-mmpm -ESTIMATES Make the old dendrite voltage estimate (es11) equal 10 the new voltage estimate
22 (es2d).
(defun store-new-dendrite-estimatss ()

{dolist (DENDRITE-ARRAY (1ist SASAL-DENDRITE APICAL-SHAFT-DENORITE APICAL-1-DENORITE APICAL-2-DENDRITE))

(1f (aref DENDRITE-ARRAY O INCLUDE-MES)
(do ((segment 0 (incf upum))
((= (aref DENDRITE-ARRAY 0 total-segments$)))
(aset (= 0.5 (o (aref DENDRITE-ARRAY segment voltage-esti$)
(aref DENDRITE-ARRAY segment voltage-est2$)))
DENDRITE-ARRAY segment voltage-esti$)))))

33: STORE-NEW-SOMA-VOLTAGE Make the old soma voltage equal 10 the new voltags estimate (est2).
(defun store-new-soma-voltage ()

(aset (aref SOMA voltage-est2$) SOMA voltage$))

232 STORE-NEW-DENDRITE-VOLTAGES Maks the old dendrite voltage equal 10 the new voltage estimate (es12).
(defun store-new-dendrite-voltages ()

(dolist (DENORITE-ARRAY (1ist BASAL-DENORITE APICAL-SHAFT-DENDRITE APICAL-1-DENDRITE APICAL-2-DENDRITE))
(if (aref DENDRITE-ARRAY 0 INCLUDE-MES)

(do ((segment 0 (incf segment)))
((= segment (aref DENORITE-ARRAY 0 total-segmentss$)))
(aset (aref DENDRITE-ARRAY segment voltage-est2$) DENORITE-ARRAY segment volitages)))))
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<2 loop-done

2 stored as U

333 SET-DENDRITE-STATES-AND-V-DOTS Calculates the conductances based on the current vdtap estimate (es1l).
on these values the derivative of the voltage (estl-dos) is calculated according to KCL, If the

{8 sot, thnth derivative of the nltm. the ssate variables and their derivatives are
'i (voltage-dot$, m-nas, 5, etc.).

(defun ut-dlndr'lu-lutu-md-v-dou {loop -donc)

(dolist (DENORITE-ARRAY (1ist BASAL-DENORITE APICAL-SHAFT-DENORITE APICAL-1-DENDRITE APICAL-2-DENORITE))
(if (aref DENORITE-ARRAY 0 INCLUDE-MES)

1-dot$)
x))
1-dots)
x))

dots)

dots)

dex))

dex))

x))

x))

(let ((total-segments (aref DENDRITE-ARRAY 0 total-segments$)))
(do ((segment 0 ({incf segment)))

((s segment total-segments))

(letx ( (v-ut (aref DENDRITE-ARRAY segment voltage-esti$)) ;“V-EST” iz the current voltage estimate

(voltage-index (¢ 1000 (fixr (x 10 v-est))))
(include-na (aref DENORITE-ARRAY segment include-na$))
(include-ca (aref DENDRITE-ARRAY segment include-ca$))
(m-na-est)(h-na-est)

(s-ca-est)(w-ca-est)

(e-eff)(g-na-est)(g-ca-est)(g-synapse)(i-stim)(g-1eak)(g-total-est))
(if include-na

(setq m-na-est (trap-approx (aref DENDRITE-ARRAY segment m-nai$)(aref DENDRITE-ARRAY segment m-na
(aref m-nal-inf-array voltage-index) (aref t-m-nal-arrsy voltage-inde

h-na-est (trap-approx (aref DEMDRITE-ARRAY segment h-nal$)(aref DENORITE-ARRAY segment h-na
(aref h-nal-inf-array voltage-index) (aref t-h-nai-array voltage-inde

g-na-est (= {aref DENDRITE-ARRAY segment gbar-nai$) m-na-est m-na-est h-na-est))
(setq g-na-est 0.0))
(if include-ca

(setq s-ca-est (trap-approx (aref DENDRITE-ARRAY segment s-ca$)(aref DENDRITE-ARRAY segment s-ca-
(aref s-ca-inf-array voltage-index) (aref t-s-ca-array voltage-index)
w-ca-est (trap-approx (aref DENORITE-ARRAY segment w-cas)(aref DENDRITE-ARRAY segment w-ca-
(aref w-ca-inf-array voltage-index) (aref t-w-ca-array voltage-index)
g-ca-est (g-ca (aref DENDRITE-ARRAY segment gbar-ca$) s-ca-est w-ca-est))
(setq g-ca-est 0.0))

(1f (and zinclude-dendrits-synapss (= segment ssynapse-segment) ;Include

ynapse
(and (> *tima xstart-dendrits-synapse) ./ Imc.vmultmnrl
(< =dendrite-synapse-step 10000))) . ﬂw& ofma 10000 dr’s ohe.
(setq g-synapse (aref DENDRITE-SYNAPSE sdendrite-synapse-step)
xdmdriu-synmo-sm (+ tdendrits-synapse-step 1))
(setq g-synapse 0.0))
(setq t-stim (if (lnd (EQ DEMDRITE-ARRAY APICAL-SHAFT

-DENDRITE)
(= segment scurrent-stimulus-segment)) sInclude curremt injoction
x{-den-stim 0.0)

g-leak (aref DENDRITE-ARRAY segment g-leaks)
g-total-est (¢ g-na-est g-ca-est g-leak g-synapse)
e-eff (// (+ (t g-nl-nt sg-na)(* g-ca-est %e-ca )
r sed-1)(% g-synapse 2a-synapse))
-t.ota utn
Ifulllnhloq.tha voltage dertvative is Just an estimete, otherwise it is stored.
(cond ((not. 1oop-done)

(aset (dendrite-derivative DENDRITE-ARRAY total-segments segment i-stim g-total-est e-eff)
t DENORITE-ARRAY segment voltage-esti-dot$))

(aset (dlndriu-d.ﬂvuiv. DENDRITE-ARRAY toul-smts segment {-stim g-total-est e-eff)
DENDRITE-ARRAY segment voltage-dots$
Mmmﬁuwm:hummu:wmmmw
(cond-wu'y
(include-na
(aset m-na-est DEMORITE-ARRAY segment m-nal$)
(aset (dxdt-eq m-na-est (aref m-nal-inf-array voltage-index)(aref t-m-nat-array voltage-in

DENDRITE-ARRAY segment m-nat-dots$)
(aset h-na-est DENORITE-ARRAY segment h-nat$)
(aset (dxdt-eq h-na-est (aref h-nal-inf-array voltage-index)(aref t-h-nal-array voltage-in

-ARRAY segment h-nal-dot$))
(include-ca

(aset s-ca-est DENDRITE-ARRAY segment s-ca$)

(aset (dxdt-eq s-ca-est (aref s-ca-inf-array voltage-index)(aref t-s-ca-arrsy voitage-inde
OENDRITE-ARRAY segment s-ca-dot$)

(aset w-ca-est DENDRITE-ARRAY segment w-ca$)

(aset (dxdt-eq w-ca-est (aref w-ca-inf-array voltage-index)(aref t-w-ca-arrsy voltage-inde

DENDRITE-ARRAY segment
w-ca-dot$)))))))))))
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232 SET-SOMA-STATES-AND-V-DOT-FOR-CURRENT-CLAMP Calculates the conductances based on the current voltage estimate,

e M on these values the derivative of the voltage ...ml ~dot) is calculated according 10 KCL. If the

333 loop-dons flag is set, then the derivative of the , the state variables and their derivatives are

222 stored as the final estimates (voltage-dot$, m-na$, n-u-dm. ete.).

(defun set-soma-states-and-v-dot-for-current-cl (100p-done)

(letz ((v (arsf SOMA voltage-esti$)) ‘gl" current voltage estimate
(m-nal-est)(h-nat-est)(g-nal-est)
(m-na2-est)(h-na2-est)(g-na2-est)
(m-na3-est)(h-na3-est)(g-na3-est)
(x-nap-est)(g-nap-est)
(s-ca-est)(w-ca-est)(g-ca-est)(x-cas-est)(g-cas-est)(new-ca-conc-shell)(new-ca-conc-sheli2)
(x-a-est)(y-a-est)(g-a-est)
(x-c-ut)(y-c-est)(v-c-ut)(?-c-ut)
(z-ahp-est) {y-ahp-est) {w-ahp-est)
{g-ahp-est)
(x-m-est)(g-m-est)
(x-dr-est)(y-dr-est)(g-dr-est)
(x-q-est)(g-g-est)
(g-1eak)(g-shunt)(g-coupling-left)(g-coupling-right-1)(g-coupling-right-2)
(e-eff)(left-voltage)(this-voltage)(right-voitage-1)(right-voltage-2)
( d(g-synwse)(g-wul-est)(voluoc-mdu (s 1000 (fixr (x 10 v)))))
cond-every
(xinclude-nat (setq m-nal-est (trap-approx (aref SOMA m-nai$) (aref SOMA m-nal-dot$)
(aref m-nal-inf-array voltage-index) (aref t-m-nal-array voltage-i

h-nal-est (trap-approx (aref SOMA h-nal$) (aref SOMA h-nal-dot$)
(aref h-nal-inf-array voltage-index) (aref t-h-nal-array voltage-1i

ndex))

ndex))

g-nat-est (g-nal (aref SOMA gbar-nal$) m-nal-est h-nal-est)))
((not zinclude-nal) (setq g-nal-est 0.0))

(zinclude-na2 (setq m-na2-est (trap-approx (aref SOMA m-na2$) (aref SOMA m-na2-dot$)
(aref m-naz-inf-array voltage-index) (aref t-m-na2-array voltage-i

h-na2-est (trap-approx (aref SOMA h-na2$) (aref SOMA h-na2-dot$)
(aref h-na2-inf-arrsy voltage-index) (araf t-h-na2-array voltage-i

g-na2-est (g-na2 (aref SOMA gbar-na2$) m-na2-est h-na2-est)))
((not sinclude-na2) (setq g-na2-est 0.0))
(xinclude-na3 (setq m-nad-est (trap-approx (aref SOMA m-na3$) (aref SOMA m-na3-dot$)

(aref m-na3-inf-array voltage-index) (aref t-s-na3-array voltage-{i

h-na3-est (trap-approx (aref SOMA h-na3$) (aref SOMA h-na3d-dot$)
(aref h-na3-inf-array voltage-index) (aref t-h-na3-array voltage-i
g-nad-est (g-nad (aref SOMA gbar-na3s$) m-na3-est h-na3-est )))
((not xinclude-na3) (setq g-na3-est 0.0))
(xinclude~-nap (setq x-nap-est (trap-approx (aref SOMA x-nap$) (aref SOMA x-nap-dots)
dex)) (aref x-nap-inf-array voltage-index) (aref t-x-nap-array voltage-i
n
g-nap-est (x (aref SOMA gbar-nap$) x-nap-est )))
((not xinclude-nap) (setq g-nap-est 0.0))
(xinclude-cas (setq x-cas-est (trap-approx (aref SOMA x-cas$) (aref SOMA x-cas-dot$)
(aref x-cas-inf-array voltage-index) (aref t-x-cas-array voltage-ti

g-cas-est (= (aref SOMA gbar-cas$) x-cas-est)))
((not zinclude-cas) (setq g-cas-est 0.0))

ndex))

ndex))

ndex))

ndex))

ndex))

(xinclude-ca (setq s-ca-est (trap-approx (aref SOMA s-ca$) (aref SOMA s-ca-dot$)
" (aref s-ca-inf-array voltage-index) (aref t-s-ca-array voltage-inde
X
w-ca-est {trap-approx (aref SOMA w-ca$) (aref SOMA w-ca-dot$)
) (aref w-ca-inf-array voltage-index) (aref t-w-ca-array voltage-inde
X

g-ca-est (g-ca (aref SOMA gbar-ca$) s-ca-est w-ca-est)))
((not xinclude-ca) (setq g-ca-est 0.0))

(zinclude-a (setq x-a-est (trap-apprax (aref SOMA x-a$) (aref SOMA x-a-dot$) (aref x-a-inf-array voltage-inde

x) .
(aref t-x-a-array voltage-index))
) y-a-est (trap-approx (aref SOMA y-a$) (aref SOMA y-a-dot$) (aref y-a-inf-array voltage-inde
x
(aref t-y-a-array voltage-index))
g-a-est (g-a (aref SOMA gbar-a$) x-a-est y-a-est)))
((not zinclude-a) (setq g-a-est 0.0))
, (xinclude-c (setq x-c-est (trap-approx (aref SOMA x-c$) (aref SOMA x-c-dot$) (aref x-c-inf-array voltage-inde
X
(aref t-x-c-arrsy voltage-index))
y-c-est (trap-spprox (aref SOMA y-c$) (aref SOMA y-c-dot$) (aref y-c-inf-array voltage-inde
x)

(aref t-y-c-array voltage-index))
w-c-est (trap-approx (aref SOMA w-c$) (aref SOMA w-c-dot$)

(w-c-inf (aref SOMA ca-conc-shell$))

(t-w-c (aref SOMA ca-conc-shell$)))
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g-c-est (g-c (aref SOMA gbar-c$) x-c-est y-c-est w-c-est)))
({not xinclude-c) (setq g-c-est 0.0))
gzm;udt-chp (setq z-shp-est (trap-approx (aref SOMA z-shp$) (aref SOMA z-ahp-dot$) (aref z-ahp-inf-array vo
1tage-in
o (aref t-z-ahp-array voltage-index))
) y-ahp-est (trap-approx (aref SOMA y-ahp$) (aref SOMA y-ahp-dot$) (aref y-ahp-inf-array vo
1tage-index
(aref t-y-ahp-array voltage-index))
w-ghp-est (trap-approx (aref SOMA w-ahp$) (aref SOMA w-ahp-dot$)
(w-ahp-inf (aref SOMA ca-conc-shell2$))
. (t-w-ghp (aref SOMA ca-conc-shell2$)))
chp-ut (g-ahp zgbar-ahp 2-ahp-est y-ahp-est w-ahp-est)))
((not xinclude-ahp) (utq g-ahp-est 0.0))

(sinclude-a (setq x-m-est (trap-approx (aref SOMA x-m$) (aref SOMA x-m-dot$) (aref x-m-inf-array valtage-inde

x)
(aref t-x-m-array voltage-index))
g-m-est (¥ (aref SOMA gbar-m$) x-m-est)))
((not xinclude-m) (setq g-m-est 0.0))
{xinclude-dr (setq x-dr-est (trap-approx (aref SOMA x-dr$) (aref SOMA x-dr-dot$)
(aref x-dr-inf-array voltage-indéx) (aref t-x-dr-array voltage-index
»
y-dr-gest (trap-approx (aref SOMA y-dr$) (aref SOMA y-dr-dot$)
" (aref y-dr-inf-array voltage-index) (aref t-y-dr-array voltage-index
g-dr-est (g-dr (aref SOMA gbar-dr$) x-dr-est y-dr-est)))
((not zinclude-dr) (setq g-dr-est 0.0))
) (xinclude-q (setq x-g-est (trap-approx (aref SOMA x-q8) (aref SOMA x-q-dot$) (aref x-g-inf-array voltage-inde
x

(aref t-x-q-arrsy voltage-index))
g-g-est (x (aref SOMA gbar-q$) x-q-est)))
((not *include-q) (setq g-q-est 0.0))
((and zinclude-soma-synapse -Iududomcmlfndhd,
(and (> atime sstart-soms-synapse) 1 right,
(< %soma-synapse-step 10000))) . kmﬁcfvlﬂulmd":
(setq g-synapse (aref SOMA-SYNAPSE tsul-synmo-sm
(aset g-synapse SOMA g- )
(setq xsoma-synapse-step (+ ssoma-synapse-step 1)))
{t (setq g-synapse 0.0)
(aset g-synapse SOMA g-synapse$)))
(setq g-leak (aref SOMA g-leaks)
g-shunt (1f tinclude-shunt *g-electrode 0.0)
g-total-est (¢ g-nat-est g-na2-est g-nald-est
g-ca-est g-nap-est g-a-est g-c-est g-ahp-est g-dr-est g-m-est
g-q-est g-leak g-synapse g-shunt)
e-eff (/7 (+ (x {+ g-nal-est g-na2-est g-na3-est g-nap-est) se-na)
(% (+ g-a-est g-c-est g-m-est g-g-est g-ahp-ast) 2e-k)
(s g-ca-est (e-ca))
(% g-leak ze-1)
(x g-dr-est ze-dr)
(* g-synapse ts-synapss))
g-totai-est)
Teft-voltage (if (aref BASAL-DENDRITE 0 include-mes$)
(aref BASAL-DENDRITE 0 voltage-estis)
(aref SOMA voltage-estis))
g-coupling-left Hf (aref BASAL-DENDRITE 0 include-me$)
(g-parallel (aref BASAL-DENDRITE 0 g-axial$)
0.0) (aref SOMA g-axial$))

this-volitage (aref SOMA vo) -est1$)
right-voltage-1 (1f (aref APICAL-SHAFT-DENDRITE 0 include-me$)
(aref APICAL-SHAFT-DENDRITE 0 voltage-est)$)
(aref SOMA voltage-esti$))
g-coupling-right-1 (if (aref APICAL-SHAFT-DENORITE 0 include-me$)
(g-parallel (aref APICAL-SHAFT-DENDRITE 0 g-axial$)
(aref SOMA g-axial$))

9)
right-voltage-2 (aref som voltage-estis$) 2 Soma never has a second righthand connection.
g-eouplino-right.-z 0.0)

i-.z;nm'mmm.fmmq. Then store it as the last permanent value.

i still (n the then voltage derivative is Just an estimate
{(not loop-done
(aset (v-dot g-coupling-left g-coupling-right-1 g-coupling-right-2 g-total-est
e-off left-voltage this-voltage right-voltage-1 right-voltage-2
zcaps (+ xi-constant-injection 3i-stim))
SOMA vclugc-estt dol'-t))
220therwise, calculated dervative bocomes the stored derivative.
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(t
(aset (v-dot g-coupling-left g-coupling-right-1 g-coupling-right-2 g-total-est

e-eff left-voltage this-voltage right-voltage-1 right-voltage-2
scaps (+ si-constant-injection si-stim))
SOMA voltage-dot$)
s:Likewise, all tluu:gm variables and their derivatives are calculated according 10 the currens
svoltage estimate, and stored,
(cl(:md-cvcry
T
(setq new-ca-conc-shell (¢ (x xdt (aref SOMA ca-conc-shell-dot$))(aref SOMA ca-conc-shells)))
(if (< new-ca-conc-shell xcore-conc) (setq new-ca-conc-shell xcore-conc))
(setq new-ca-conc-shell2 (+ (= xdt (aref SOMA ca-conc-shell2-dot$))(aref SOMA ca-conc-shell12$)))
(1f (< new-ca-conc-shell2 score-conc) (setq new-ca-conc-shell2 xcore-conc))
(aset new-ca-conc-shell SOMA ca-conc-shell$)
(aset new-ca-conc-shell2 SOMA ca-conc-shsll12$)
(aset {ca-conc-shell-dot
(¢ (x g-ca-est (- v (e-ca)))
(x g-cas-est (- v xe-cas)))
new-ca-conc-shell new-ca-conc-shell2)
SOMA ca-conc-shell-dot$)
(aset (ca-conc-shell2-dot new-ca-conc-shell new-ca-conc-shell2)
ca-conc-shel12-dots$))
(sinclude-nal
(aset m-nal-est SOMA m-nat$)
(aset (dxdt-eq m-nal-est {aref m-nal-inf-array voltage-index) (aref t-m-nal-array voltage-index))
SOMA m-nal-dot$)
(aset h-nal-est SOMA h-nai$)
(aset (dxdt-eq h-nal-est (aref h-nal-inf-array voltage-index) (aref t-h-nat-array voltage-index))
SOMA h-nal-dot$))
(sinclude-na2
(aset m-na2-est SOMA m-na2s)
(aset (dxdt-eq m-na2-est (aref m-na2-inf-array voltage-index) (aref t-m-na2-array voltage-index))
SOMA m-na2-dot$)
{aset h-na2-est SOMA h-na2s)
(aset (dxdt-eq h-na2-est (aref h-na2-inf-array voltage-index) (aref t-h-na2-array voltage-index))
SOMA h-na2-dot$))
(xinclude-na3d
(aset m-na3-est SOMA m-na3s)
(aset (dxdt-eq m-na3-est (aref m-nad-inf-array voltage-index) (aref t-m-na3-array voltage-index))
SOMA m-na3-dot$)
(aset h-pa3-est SOMA h-na3$)
(aset (dxdt-eq h-na3-est (aref h-na3-inf-array voltage-index) (aref t-h-na3-array voltage-index))
SOMA h-na3-dot$))
(xinclude-a
(aset x-a-est SOMA x-a$)
(aset (dxdt-eq x-a-est (aref x-a-inf-array voltage-index) (aref t-x-a-array voltage-index))
SOMA x-a-dot$)
(aset y-a-est SOMA y-a$)
(aset (dxdt-eq y-a-est (aref y-a-inf-array voltage-index) (aref t-y-a-array voltage-index))
SOMA y-a-dot$))

_ (xinclude-c

{aset x-c-est SOMA x-c$)

(aset (dxdt-eq x-c-est (aref x-c-inf-array voltage-index) (aref t-x-c-arrsy voltage-index))
SOMA x-c-dot$)

(aset y-c-est SOMA y-c$)

(aset (dxdt-eq y-c-est (aref y-c-inf-array voltage-index) (aref t-y-c-array voltage-index))
SOMA y-c-dot$)

(aset w-c-est SOMA w-c$)

(aset (dxdt-eq w-c-est (w-c-inf (aref SOMA ca-conc-shell$))(t-w-c (aref SOMA ca-conc-shells)))
SOMA w-c-dot$))

(xinclude-ahp
(aset 2-ahp-est SOMA z-ahp$)
(aset (M—t:h:-mp-est (aref z-ahp-inf-array voltage-index) (aref t-z-ahp-array volngc-indox))
z- -
(aset y-ahp-est SOMA y-ahp$)
(aset (dxdt-eq y-ahp-est (aref y-ahp-inf-array voltage-index) (aref t-y-ahp-array voltage-index))
SOMA y-ahp-dots)
(aset w-ahp-est SOMA w-

ahp$)
(aset (dxdt-eq w-ahp-est (w-ahp-inf (aref SOMA ca-conc-shel128))(t-w-ahp (aref SOMA ca-conc-shell2$)))

SOMA w-ahp-dot$))

(*include-a .
(aset x-m-est SOMA x-m$)
(aset (dxdt-eq x-m-est (aref x-m-inf-array voltage-index) (aref t-x-m-array voltage-index))
SOMA x-m~dot$))
(sinclude-q
(aset x-g-est SOMA x-g$)
(aset (dxdt-eq x-q-est (aref x-q-inf-array voltage-index) (aref t-x-q-array voltage-index))
SOMA* X-q-dot$))
(sinclude-dr
(aset x-dr-est SOMA x-dr$)
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(aset (dxdt-eq x-dr-est (aref x-dr-inf-array voltage-index) (aref t-x-dr-array voltage-index))
SOMA x-dr-dot$)
(aset y-dr-est SOMA y-dr$)
(aset (dxdt-ozr -dr-est {(aref y-dr-inf-array voltage-index) (aref t-y-dr-arrsy voltage-index))
SOMA y-dr-dot$))
{xinclude-ca
(aset s-ca-est SOMA s-ca$)
(aset (dxdt-eq s-ca-est (aref s-ca-inf-array voltage-index) (aref t-s-ca-array voltage-index))
SOMA s-ca-dot$)
(aset w-ca-est SOMA w-ca$)
(aset (dxdt-eq w-ca-est (aref w-ca-inf-array voltage-index) (aref t-w-ca-array voltage-index))
SOMA w-ca-dots$))
{stnclude-cas
(aset x-cas-est SOMA x-cas$)
(aset (dxdt-eq x-cas-est (aref x-cas-inf-arrsy voltage-index) (aref t-x-cas-array voltage-index))
SOMA x-cas-dot$))
(xinclude-nap
(aset x-nap-est SOMA x-nap$)
(aset (dxdt-eq x-nap-est (aref x-nap-inf-array voltage-index) (aref t-x-nap-array voltage-index))
SOMA x-nap-dot$))))))) .

203 SET-SOMA-STATES~-AND-V-DOT-FOR-VOLTAGE-CLAMP
(defun set-soma-states-and-v-dot-for-voltage-clamp ()
(1letx ((new-ca-conc-shell)(new-ca-conc-shell2)
(s-ca){w-ca)(x-cas)
(voltage-index (¢ 1000 (fixr (x 10.0 =clamp-voitage)))))
(cond ((or svstep (» 1 *vclamp-command-flag))
(cond-every

(xinclude-ahp (setq szshpinf (aref z-shp-inf-array voltage-index)

stzahp (aref t-z-ahp-array voltage-index)

syahpinf (aref y-ahp-inf-array voltage-index)

styahp (aref t-y-shp-array voltage-index)

swahpinf (w-ahp-inf (aref SOMA ca-conc-shell2s))

stwahp (t-w-shp (aref SOMA ca-conc-shall12$))))
(*include-c (setq »xcinf (aref x-c-inf-array voltage-index)

xtxc (aref t-x-c-array voltage-index)

sycinf (aref y-c-inf-array voltage-index)

atyc (aref t-y-c-array voltage-index)

avcinf (w-c-inf (aref SOMA ca-conc-shells))

stwe (t-w-c (aref SOMA ca-conc-shell$))))
(xinclude-q (setq »xqinf (aref x-q-inf-array voltage-index) stq (aref t-x-q-array voltage-index)))
(xinclude-a (setq mminf (aref x-m-inf-array voltage-index) »tm (aref t-x-m-array voltage-index)))
(xinclude-nal (setq smnalinf (aref a-nal-inf-array voltage-index) stanal (aref t-m-nal-array voltage-i

ndex) shnalinf (aref h-nal-inf-array voltage-index) sthnal (aref t-h-nal-array voltage-{
ndex))) (xinclude-na2 (setq suna2inf (aref m-na2-inf-array voltage-index) stana2 (aref t-m-na2-array voltage-i
ndex) ’ hna2inf (aref h-na2-inf-array voitage-index) sthna2 (aref t-h-na2-array voltage-i
ndex)) (*include-na3 (setq mana3inf (aref m-na3-inf-array voltage-index) stana3 (aref t-m-nad-array voitage-{
ndex) shnadinf (aref h-na3-inf-arrey voltage-index) sthna3 (aref t-h-nad-array voltage-i
nde)) : (xinclude-ca (setq =mcainf (aref s-ca-inf-array voltage-index) rtmca (aref t-s-ca-arrey voltage-index)
shcainf (aref w-ca-inf-array voltage-index) sthca (aref t-w-ca-array voltage-index)

n (xinclude-nap (setq mxnapinf (aref x-nap-inf-array voltage-index) stxnep (aref t-x-nap-array voltage-i
:::::: (sinclude-cas (setq sxcasinf (aref x-cas-inf-array voltage-index) stxcas (aref t-x-cas-array voltage-i
(sinclude-dr (setq sxdrinf (aref x-dr-inf-array voltage-index) stxdr (aref t-x-dr-array voltage-index)

" sydrinf (aref y-dr-inf-array voltage-index) stydr (aref t-y-dr-array voltage-ipdex)

(sinclude-a (setq *xainf (aref x-a-inf-array voltage-index) stxa (aref t-x-a-array voltage-index)
syainf (aref y-a-inf-array voltage-index) stya (aref t-y-a-array voltage-index))))
{aset (/7 (- 3clamp-voitage (aref SOMA voltage$)) =dt) SOMA voltage-dot$))
(T (aset 0.0 SOMA voltage-dots)))
{cond-every
(xinclude-cas (setq x-cas (vclamp-new-x 3dt (aref SOMA x-cas$) sxcasinf stxcas))
(aset x-cas SOMA x-cas$))
{(not xinclude-cas) (setq x-cas 0))
(zinclude-ca (setq s-ca (vclamp-new-x xdt (aref SOMA s-cas) smcainf stmca)
w-ca (vclamp-new-x sdt (aref SOMA w-ca$) szhcainf 3thca))
(aset s-ca SOMA s-ca$) (aset w-ca SOMA w-ca$))
“not sinclude-ca) (setq s-ca 0 w-ca 0))

(setq new-ca-conc-shel) (o (% xdt (aref SOMA ca-conc-shell-dot$))(aref SOMA ca-conc-shell$)))
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(aset new-ca-conc-shell SOMA ca-conc-shell$)
(setq new-ca-conc-shell2 (+ (* 3dt (aref SOMA ca-conc-sheli2-dots))(aref SOMA ca-conc-shel12$)))
(aset new-ca-conc-shel12 SOMA ca-conc-shel12$)
(aset (ca-conc-shell-dot (+ (x xgbar-ca s-ca s-ca w-ca (- sclamp-voltage (e-ca)))
(x xgbar-cas x-cas (- sclamp-voltage ze-cas))) new-ca-conc-shell new-ca-conc-she
SOMA ca-conc-shell-dot$)

(aset (ca-conc-shell2-dot new-ca-conc-shell new-ca-conc-shell2)
SOMA ca-conc-shell2-dot$))

112)

(zinclude-ahp (aset (vclamp-new-x xdt (aref SOMA z-ahp$) szahpinf xtzahp) SOMA z-ahp$)
(aset (vclamp-new-x sdt (aref SOMA y-ahp$) syahpinf styahp) SOMA y-ahp$)
(aset (vclamp-new-x *dt (aref SOMA w-ahp$) swahpinf xtwahp) SOMA w-ahp$))
(tinclude-c (aset (vclamp-new-x zdt (aref SOMA x-c$) sxcinf stxc) SOMA x-c$)
(aset (vclamp-new-x =dt (aref SOMA y-c$) fycinf xtyc) SOMA y-c$)
(aset (vclamp-new-x =dt (aref SOMA w-c$) swcinf xtwc) SOMA w-c$))
(xinclude-q (aset (vclamp-new-x =dt (aref SOMA x-q$) *xqinf stq) SOMA x-q$))
(xinclude-m (aset (vclamp-new-x xdt (aref SOMA x-m$) *xminf stm) SOMA x-m$))
(xinclude-nap (aset (vclamp-new-x *dt (aref SOMA x-nap$) *xnapinf stxnap) SOMA x-nap$))
(xinclude-dr (aset (vclamp-new-x *dt (aref SOMA x-dr$) sxdrinf xtxdr) SOMA x-dr$)
(aset (vclamp-new-x sdt (aref SOMA y-dr$) sydrinf xtydr) SOMA y-dr$))
{xinclude-a (aset (vclamp-new-x xdt (aref SOMA x-a$) *xainf stxa) SOMA x-a$)
(aset (vclamp-new-x xdt (aref SOMA y-a$) syainf stya) SOMA y-a$))
(xinclude-nal (aset (vclamp-new-x xdt (aref SOMA m-nal$) *mnalinf xtmnal) SOMA m-nal$)
(aset (vclamp-new-x xdt (aref SOMA h-nal$) shnalinf xthnal) SOMA h-nail$))
(sinclude-na2 (aset (vclamp-new-x sdt (aref SOMA m-na2$) swna2inf stana2) SOMA m-na2s)
(aset (vclamp-new-x *dt (aref SOMA h-na2$) *hna2inf *thna2) SOMA h-na2$))
(xinclude-na3 (aset (vclamp-new-x zdt (aref SOMA m-na3s) =anadinf stmna3) SOMA m-na3s$)
(aset (vclamp-new-x *dt (aref SOMA h-na3$) shnadinf sthnad) SOMA h-na3$)))))

(T (setq new-ca-conc-shell (+ (x xdt (aref SOMA ca-conc-shell-dot$))(aref SOMA ca-conc-shell$)))
~ (aset new-ca-conc-shell SOMA ca-conc-shell$)

23 ESTINATE-SOMA-VOLTAGE Gets and s1ores new estimate (...e5128) of soma voltage using the previous voltage
o (nlur: L the Eﬂw dertvative 8), and the current estimate of the derivative
323 (...astl-dot8), The function "APPROX-X" is used for the trapezoidal approximation. Note that this function is
322 only required by the current clamp protocol,
(defun estimate-soma-voltage ()

(aset

(approx-x (aref SOMA voltages)

(aref SOMA voltage-dot$)

(aref SOMA voltage-esti-dot$))
SOMA voltage-est2$))

33 ESTIMATE-DENDRITE-VOLTAGES Gets and stores new estimats {...a112) of dendrite voltages using the previous
522 voltage th’% the previous derivative up-luf‘..nd the current estimata of the derivative
333 (t521-dotS). The function "APPROX-X" is used for the trapezoidel approximation,
(defun estimats-dendrite-voltages ()
{dolist (DENDRITE-ARRAY (11st BASAL-DENDRITE APICAL-SHAFT-DENDRITE APICAL-1-DENDRITE APICAL-2-DENDRITE))
(if (aref DENDRITE-ARRAY 0 INCLUDE-MES)
(do ((segment O {incf segmwent)))
((= segment (aref DENORITE-ARRAY 0 total-segments$)))
(aset (approx-x (aref DENDRITE-ARRAY segment voltages$)
(aref DENDRITE-ARRAY segment voltage-dots)
{aref DENDRITE-ARRAY segment voltage-esti-dots))
DENDRITE-ARRAY segment voltage-est2$)))))

322 UPDATE-OUTPUT-LISTS Stores the latest values in the enabled lists,
(defun update-output-lists ()
(let ((some-voltage (aref SOMA volitage$)))
(updats-some-11sts soma-voltage)
(if sinclude-dendrite (update-dendrite-1ists soms-voltage))
(1f svclamp-run (update-vclamp-list soma-volitage))))

22 UPDATE-DENDRITE-LISTS
(defun update-dendrite-lists (some-voltage)
(update-coupling-current-1ist some-voltage)
(aset xi-den-stim zdendrite-stim-currentx zpoint-index)
(cond-every
(xinclude-dendrite-synapse (update-dendrite-synapse-current-list))
( {m APICAL-SHAFT-DENORITE 0 include-me$)
c

every
((aref APICAL-SHAFT-DENDRITE 0 plot-me$)
(aset (aref APICAL-SHAFT-DENDRITE O voltage$) sasivoltage:x spoint-index))
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((and (aref APICAL-SHAFT-DENDRITE 2 plot-me$) (d>= (aref APICAL-SHAFT-DENORITE 0 total-segmentss$) 3))
(aset (aref APICAL-SHAFT-DENDRITE 2 voltage$) *asivoltagex xpoint-index))
((and (aref APICAL-SHAFT-DENDRITE & plot-me$) (>= (aref APICAL-SHAFT-DENDRITE § total-segments$) 5))
(aset (aref APICAL-SHAFT-DENORITE & voltage$) xasSvoltage: xpoint-index))
((and (aref APICAL-SHAFT-DENORITE 9 plot-me$) (>s= (aref APICAL-SHAFT-DENORITE 8 total-segmentss) 10))
(aset (aref APICAL-SHAFT-DENORITE 9 voltage$) sasiOvoltagex zpoint-index))))
((aref APICAL-1-DENORITE 0 include-me$)
{cond-every
((aref APICAL-1-DENORITE 0 plot-mes)
(aset (aref APICAL-1-DENORITE 0 voltage$) =alivoltagex zpoint-index))
((and (aref APICAL-1-DENDRITE 3 plot-me$) (>s (aref APICAL-1-DENORITE 0 total-segmentss$) §4))
(aset (aref APICAL-1-DENDRITE 3 voltage$) saldvoltagex zpoint-index))))
((aref APICAL-2-DENORITE 0 {nclude-me$)
(cond-every
{(aref APICAL-2-DENDRITE 0 plot-me$)
(aset (aref APICAL-2-DENORITE 0 voltage$) sarivoltagesx spoint-index))
((and (aref APICAL-2-DENORITE 3 plot-me$) (>s= (aref APICAL-2-DENDRITE 0 total-segments$) 8))
(aset (aref APICAL-2-DENDRITE 3 voltage$) sardvoltagex zpoint-index))))
({lre; BASAL-DENDRITE 0 include-me$)
cond-
((aref BASAL-DENORITE 0 plot-me$)
(aset (aref BASAL-DENDRITE 0 voltage$) sbivoltagex spoint-index))
((and (aref BASAL-DENORITE 3 plot-me$) (>= (aref BASAL-DENORITE 0 total-segments$) 4))
(aset (aref BASAL-DENDRITE 3 voltage$) sbAvoltages spoint-index))))
((aref APICAL-SHAFT-DENDRITE 0 include-na$)
(aset (nal-current (gbar-nad (x (aref APICAL-SHAFT-DENDRITE 0 length$)
3.14159e-8 (aref APICAL-SHAFT-DENDRITE O diameters)))
(aref APICAL-SHAFT-DENORITE 0 m-nal$)
(aref APICAL-SHAFT-DENDRITE 0 h-nal$)
(aref APICAL-SHAFT-DENDRITE 0 voltages))
snadi-currents mpoint-index))
((aref APICAL-SHAFT-DEMDRITE 2 include-ca$)
(aset (ca-curreat (gbar-cad (x (aref APICAL-SHAFT-ODENORITE 2 length$)
3.14150e-8 (aref APICAL-SHAFT-DENORITE 2 diameters)))
(aref APICAL-SHAFT-DENDRITE 2 s-ca$)
(aref APICAL-SHAFT-DENORITE 2 w-ca$)
(aref APICAL-SHAFT-DENDRITE 2 voltages$))
xcadi-current® spoint-index})))

»: UPDATE-COUPLING-CURRENT-LIST
(defun update-coupling-current-list (soma-voltage)
(aset (o (= (1f (aref BASAL-DENDRITE 0 include-me$)
(g-parallel (aref BASAL-DENDRITE 0 g-axial$)
0.0) {aref SOMA g-axial$))

(- soma-voltage (aref BASAL-DENDRITE § vol 1)}
(% (if (aref APICAL-SHAFT-DENDRITE 0 incl )
(g-parallel (aref APICAL-SMAFT-DENDRITE 0 g-axtal$)
0.0) (aref SOMA g-axial$))

(- soms-voltage (aref APICAL-SHAFT-DENDRITE O voltages))))
xcoupling-current® Spoint-index))

(dezgnpfpﬁ.u-dmdﬂ u-%—ment- 1 !s; ()
(aset (x {r::r:?ac:‘lﬂi-l-mmwms#; volunc;)
o RS
sdendr 1ts-synapse-conductance® *point-index))

s2; UPDATR-
(defun updats-vclamp-1ist (soma-voltage)

(aset (o (if :;nclndn-w (dr-current (aref SOMA x-dr$)(aref SOMA y-dr$) soma-voltage)

(if xinclude-c (c-current (aref SOMA ::-ct)gl;c; SOMA y-c$)(aref SOMA w-c$)
sose-voltage
(1f sinclude-ahp (ahp-current (aref SOMA z-ahp$)(aref SOMA y-ahp$)(aref SOMA w-ahp$)
soma-voitage) 0 )
(if xinclude-q (= (aref SOMA gbar-q$)(aref SOMA x-q$)
(- soma-voitage ze-k)) 0.0)
(1f xinclude-a (m-current (aref SOMA x-m$) soma-voltage) 0 )
(1f zinclude-a (a-current (aref SOMA x-a$) (aref SOMA y-a$)
soma-volitage) 0 )
(if xinclude-nal (nal-current (aref SOMA gbar-nal$)
(aref SOMA m-nals)(aref SOMA h-nal$) SOMA-voltage) 0)
(if zinclude-na2 (ns2-current (aref SOMA gbar-na2$)
(aref SOMA m-na2$)(aref SOMA h-na2$) SOMA-volitage) 0)
(if xinclude-na3 (nal3-current (aref SOMA gbar-na3s)
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(aref SOMA m-nad$)(aref SOMA h-na3$) SOMA-voltage) 0)
(17 zinclude-nap (nap-current (aref SOMA gbar-nap$) (aref SOMA x-nap$)
soma-voltage) 0 )
(if xinclude-cas (cas-current (aref SOMA x-cas$) soma-voltage) 0 )
(1f xinclude-ca (ca-current (aref SOMA gbar-ca$)
(aref SOMA s-ca$)
(aref SOMA w-ca$) soma-voltage) 0.0 )
(¢ (x (if (aref BASAL-DENDRITE 0 include-meS$)
(x 2.0 (aref BASAL-DENDRITE 0 g-axial$))
0.0)
(- soma-voltage (aref BASAL-DENORITE 0 voltages)))
(x (if (aref APICAL-SHAFT-DENORITE 0 include-me$)
(% 2.0 (aref APICAL-SHAFT-DENORITE 0 g-axial$))
0.0)
(- soma-voitage (aref APICAL-SHAFT-DENDRITE 0 voltage$))))
(1-current soma-voltage)
(if xinclude-shunt (* xg-electrode soma-voltage) 0)
(x zcaps (aref SOMA voltage-dot$)))
xcurrent® $point-index))

222 UPDATE-SOMA-LISTS

(defun update-soma-lists (soma-voltage)
(cond-every
(*include-kinetics
(cond-every
(xinclude-nal

(aset (aref SOMA m-nal$) =m-nalx xpoint-index) (aset (aref SOMA h-na1$) xh-nalx xpoint-index)

(asat (g-nal 1.0 (aref SOMA m-nai$)(aref SOMA h-nal$)) xg-naix xpoint-index))
(xinclude-na2

(aset (aref SOMA m-na2$) =m-na2x xpoint-index) (aset (aref SOMA h-na2$) sh-na2x xpoint-index)

(aset (g-na2 1.0 (aref SOMA m-na2$)(aref SOMA h-na2$)) xg-na2x xpoint-index))
(xinclude-na3d

(aset (aref SOMA m-na3$) =m-na3x xpoint-index) (aset (aref SOMA h-na3$) xh-na3x spoint-index)

( gu?td:g-nns 1.0 (aref SOMA m-na3$)(aref SOMA h-na3$)) xg-na3zx xpoint-index))
xinclude-ca
(aset (aref SOMA s-ca$) xs-cas xpoint-index) (aset (aref SOMA w-ca$) sw-cax xpoint-index)
(aset (g-ca 1.0 (aref SOMA s-ca$)(aref SOMA w-ca$)) xg-cat zpoint-index))
(xinclude-dr
(aset (aref SOMA x-dr$) sx-drs spoint-index) (aset (aref SOMA y-dr$) ry-drz zpoint-index)
( gu:‘tmig-dr 1.0 (aref SOMA x-dr$)(aref SOMA y-dr$)) xg-drx spoint-index))
xinc -a
(aset (aref SOMA x-a$) xx-ax =point-index) (aset (aref SOMA y-a$) xy-ax xpoint-index)
(aset (g-a 1.0 (aref SOMA x-a$)(aref SOMA y-a$)) xg-ax xpoint-index))

(xinclude-ahp
(aset (aref SOMA z-ahp$) 2z-ahps xpoint-index) (aset (aref SOMA y-ahp$) xy-ahpx xpoint-index)
(aset (aref SOMA w-ahp$) *w-ahpz xpoint-index)

( $u7td:9-nhp 1.0 (aref SOMA z-ahp$)(aref SOMA y-ahp$)(aref SOMA w-ahp$)) xg-ahpx xpoint-index))

zinclude-c
(aset (aref SOMA x-c$) *x-cx xpoint-index) (aset (aref SOMA y-c$) xy-cx xpoint-index)
(aset (aref SOMA w-c$) *w-cx xpoint-index)

( (aset (g-c 1.0 (aref SOMA x-c$)(aref SOMA y-c$)(aref SOMA w-c$)) xg-cx xpoint-index))))

t
(aset (x 1.0e-3 xtime) *timex xpoint-index) (aset soma-voltage *voltages xpoint-index)
(aset (1-current soma-voltage) xl-currentz zpoint-index)

(aset (x xcaps (aref SOMA voltage-dot$)) scaps-curreants xpoint-index)
(aset (+ xi-constant-injection xi-stim) xstim-currentx xpoint-index)
(aset (e-ca) xe-cax »point-index)

(aset (aref SOMA ca-conc-shell$) xca-conc-shellx spoint-index)

(aset (aref SOMA ca-conc-shell2$) xca-conc-shell2x xpoint-index))

(xinclude-shunt
(aset (x xg-electrode soma-voltage) sshunt-currentx spoint-index))

(xinclude-nal
(aset (nal-current (aref SOMA gbar-nal$)(aref SOMA m-nal$) (aref SOMA h-nal$) SOMA-voltage)

al-currents xpoint-index))

(xinclude-na2
(aset (na2-current (aref SOMA gbar-na2s$)(aref SOMA m-na2$) (aref SOMA h-na2$) SOMA-voltage)

ma2-currents spoint-index))

(xinclude-na3
(aset (na3-current (aref SOMA gbar-nads)(aref SOMA m-na3$) (aref SOMA h-na3d$) SOMA-voltage)

ma3-currentx xpoint-index))

(zinclude-ca
(aset (ca-current (aref SOMA gbar-ca$)(aref SOMA s-ca$) (aref SOMA w-ca$) soma-voltage)

xca-currentz xpoint-index))

(xinclude-nap
(aset (nap-current (aref SOMA gbar-nap$)(aref SOMA x-nap$) soma-voltage)

xnap-currents xpoint-index))

(xinclude-cas
(aset (cas-current (aref SOMA x-cas$) soma-voltage)

scas-currents zpoint-index))

(xinclude-c
(aset (c-current (aref SOMA x-c$)(aref SOMA y-c$)(aref SOMA w-c$) soma-voltage)
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sc-current® xpoint-index))
(xinclude-ahp
(aset (ahp-current (aref SOMA z-ahp$)(aref SOMA y-ahp$)(aref SOMA w-ahp$) soma-voltage)
xahp-currents xpoint-index))
(xinclude-a
(aset (m-current (aref SOMA x-m$) soma-voltage) sm-currentx spoint-index))
(xinclude-dr
(aset (dr-current (aref SOMA x-dr$)(aref SOMA y-dr$) soma-voltage) *dr-currentx zpoint-index))
{xinclude-a
(aset (a-current (aref SOMA x-a$) (aref SOMA y-a$) soma-voltage)
xa-currents xpoint-index))
(zinclude-q
(aset (= (aref SOMA gbar-q$)(aref SOMA x-gq$)(- soms-voltage se-k))
xq-currents xpoint-index))
(xinclude-soma-synapse
(aset (=x (aref SOMA g-synapse$)(- soma-voltage xe-synapse))
rsoma-synapse-currentx xpoint-index)
(aset (aref SOMA g-synapse$) xsoma-synapse-conductance® ¥point-index))))

22: V-DOT Gives the dertvative of the membranes voltage given the current conductances, the membrane capacitance,

222 the adjacent voltages, the local voltage, and any injected current.

(defun v-dot (g-coupling-left g-coupling-right-1 g-coupling-right-2 g-membrane driving-voltage
voltage-left voltage voltage-right-1 veltage-right-2 capacitance i-injected)

(if (= capacitance 0.0) 0.0
(/7 (¢ (% g-mesbrane (- driving-voltage voltage))
i-injected
(% g-coupling-left (- voltage-left voltage))
(x g-coupling-right-1 (- voltage-right-1 voltage))
(x g-coupling-right-2 (- voltage-right-2 volitage)))
capacitance)))

222 TRAP-APPROX Computes the trapezoidal ation of a state variable thet is described by order
322 kinetics given the old value of the variabls, the old valus of its derivative, the new veiue of i3
222 state, and the new value of its time constant.
(defun trap-approx (x-old x-old-dot x-inf-new tau-x-new)
(77 (» x-01d (x (// %dt 2.0) (+ x-old-dot (// x-inf-new tau-x-new))))
(+ 1.0 (/7 =dt (x 2.0 tau-x-new)))))

22> VCLAMP-NEW-X
(defun vclamp-new-x (dt x-old x-inf tau-x)
(¢ x-inf (3 (- x-01d x-inf) (exp (- (// dt tau-x))))))

222 APPROX-X Calculates x{n4 ) using trapezoidal approximation with the arguments
222 x{n), x(n)-dot, and x(n’)-da.
(defun approx-x (x0 x0-dot x1-dot)

{+ x0 (% (/7 xdt 2.0)(+ x0-dot x1-dot))))

s; DXDT-EY) calculates the darivative of the state variable (x-dot) according to original differential equation
o clfa?mrlslurkm"mﬁo& ( ) ad
(defun dxdt-eq (x x-inf t-x) .

(/7 (- x-inf x) t-x))

sss TEST returns trus if difference betwean arguments is loss than “epsilon”,
s00 ﬂﬂm.
(defun test (x y)
(cond ((> (abs (- x y)) zepsiion) nil)
(rnn

ss; PRINT-PARAMETERS Print ol the paromsters for the currrent rus in the interection pane.
(defun print-paramaters (
(send terminal-io :refresh) (send terminal-io :home-cursor) (send terminal-io :set-font-map °(fonts:h18))
(format t "Temp. ~2dC, * stemperature) (format t "Time step [msec] ~4f, * xdt )
(format ¢ “Soma E-Rest -4f, * (aref SOMA e-rest$)) (format t "E-Leak (Soma) ~Af~%° sxe-1)
(format t “E-Leak (Dendrite) ~4f, * sed-1)
(format t "E-K ~A4f, “ se-k) (format t "E-ca ~4f, © 3ze-ca) (format t “E-dr ~Af, " zg-dr)
(format t “E-na ~4f, " ze-na) (format t "R-Soma [MOh@] ~4f ~x* (// 1.0 3gs-1))
(format t “Soma memb. res. [ohms-3q ca] ~4f, ° srs-mem)
(format t “Soma cap. [nF] ~of, *
(format t “Soma rad. (mic's] ~4f -%" zsoma-radius)
(format t “Soma Spec cap. [microF/sq-cm) ~4f, * xcaps-mem)
(format t "Dendrite Spec cap. [microf/sq-cm) ~4f ~2° xcapd-mes)
(format t "Dendrite memb. res. [ohms-sq ca] ~4f, * zrd-mem)
(format t "Axoplasaic res. [ohms- ca] ~Af ~X* zrd-int)
(1f =zinclude-shunt (format t “Electrode shunt [Mohm) ~2f ~X* zr-electrode)
(format t "No electrode shunt ~%*))
(if =xinclude-nal (format t “gNal [microS] ~4f, ™ (aref SOMA gbar-nai$))
(format t "I-nal poisoned, °))
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(if =xinclude-na2 (format t "om [licroS] ~4f, * (aref SOMA gbar-na2$))
(format t "1-na2 potsoned
(if =include-na3 (format t “gNa3 [-M:ros] ~4f, * (aref SOMA gbar-na3s))
(format t “I-na3 poisoned, “))
(1f =zinclude-ca (format t “gCa [microS] ~4f~%" (aref SOMA gbar-ca$))
(format t "I-ca poisoned~%”))
(1f =include-nsp (format t “gNaP [microS] ~Af, “ (aref SOMA gbar-nap$))
(format t "I-NaP poisoned, “))
(if =zinclude-cas (formst t "gCas [microS] ~4f ~X* (aref SOMA gbar-cas$))
(format t “I-cas poisoned ~X")})
(1f =zinclude-c (format t “gC [nicro&] ~Af," (aref SOMA gbar-c$))
(format t "I-C poisoned, *)
(if =xinclude-ahp (format t "gAHP [microS] ~af.* (aref SOMA gbar-ashp$))
(format t "1-AHP poisoned, *))
(i1f =xinclude-m (format t “gM [uicroSJ ~Af, * (aref SOMA gbar-ms$))
(format t “I-M poisoned,
(if xinclude-dr (format t “gDR [licros1 ~4f, * (aref SOMA gbar-dr$))
(format t “I-ODR poisoned, *))
(if (and sinclude-dr (< =dr-block 1.0)) (format t "DR block = ~4f" xdr-block))
(if xinclude-a (format t *~%gA [microS] ~A4f~X~X" (aref SOMA gbar-a$))
(format t “I-A poisoned~%X~%"))
(cond-
((aref APICAL-SHAFT-DENDRITE 0 include-me$)
(Tetx ((1amda (~ (// (* srd-mem (// (aref APICAL-SHAFT-DENORITE 0 diameters) 2.0) 10000.0)
(x 2.0 srd-int)) 0.5))
(L (77 (= (aref APICAL-SHAFT-DENDRITE 0 total-s ts$)
(aref APICAL-SHAFT-DENDRITE 0 length$)) 1lamda)))
(format t "Apical shaft dendrits with ~2d segments. Length = ~4f microns.~x*
(aref APICAL-SHAFT-DENDRITE 0 total-segments$)
(x (aref APICAL-SHAFT-DENDRITE 0 total-segments$)
(aref APICAL-SHAFT-DENORITE 0 length$)))
(format t * Segment length s ~4d microns. Diameter = ~2f microns. Lamda = ~4f. L = ~4f-%x*
(aref APICAL-SHAFT-DENORITE 0 length$)
%lref APICAL-SHAFT-DENDRITE 0 diameter$)

L)
(format ¢t * %Lamda(per segment) s ~4f%°
(x 100.0 (// (aref APICAL-SHAFT-DENORITE 0 length$) lamda)) )))
((aref APICAL-1-DENORITE 0 include-me$)
(letx ((lamda (~ (/7 (% srd-mem (// (aref APICAL-1-DENORITE 0 diameters) 2.0) 10000.0)
(x 2.0 srd-int)) 0.5))
(L (77 (= (aref APICAL-1-DENDRITE 0 total-segments$)
(aref APICAL-1-DENORITE 0 length$)) lamda)))
(format t "~XLeft apical dendrite branch with ~2d segments. Length = ~4f microns.~%*
(aref APICAL-1-DENORITE 0 total-segments$)
(x (aref APICAL-1-DENDRITE 0 total-segments$)
{aref APICAL-1-DENDRITE 6 length$)))
(format ¢ * Length = ~4d microns. Diameter = ~2f microns.Lamda s ~4f. L = ~4f~%*
(aref APICAL-1-DENDRITE 0 lTength$)
garcf APICAL-1-DENDRITE 0 diameter$)

L)
(format ¢t * anda(per segment) = ~4fx°
(x 100.0 (II (aref APICAL-1-DENDRITE 0 lengthS) lamda)) )))
((aref APICAL-2-DENDRITE 0 include-me$)
(letx ((lamda (~ (/7 (x zrd-mem (// (aref APICAL-2-DENDRITE 0 diameters$) 2.0) 10000.0)
(% 2.0 srd-int)) 0.3))
(L (/7 (x (aref APICAL-2-DENDRITE 0 total-segments$)
{aref APICAL-2-DENORITE 0 length$)) lamda)))
(format t "~XRight apical dendrite branch with ~2d segments. Length = ~4f microns.~%*
(aref APICAL-2-DENDRITE 0 total-segments$)
(= (aref APICAL-2-DEMORITE 0 total-segments$)
{aref APICAL-2-DENORITE 0 length$)))
(format ¢ * Length = ~4d microns. Diameter s ~2f microns.Lamda s ~Af. L = ~4f~%"
(aref APICM.-Z DENORITE 0 length$)
%:::: APICAL-2-DENDRITE 0 diameters$)

L)
(format ¢ * XLamda(per segment) = ~4f%*
(% 100.0 (// (aref APICAL-2-DENORITE 0 length$) lamda)) )))
((aref BASAL-DENORITE 0 include-me$)
(lets ((lamda (~ (// (x srd-mem (// (aref BASAL-DEMORITE 0 dismeters) 2.0) 10000.0)
(% 2.0 srd-int)) 0.5))
(L (/7 (x (aref BASAL-DENDRITE 0 total-segments$)
(aref BASAL-DENORITE 0 length$)) lamda)))
(format t “~XBasal dendrits with ~2d segments. Length » ~4f microns.~%*
(aref BASAL-DENDRITE 0 total-segments$)
(= (aref BASAL-DENORITE O total-segments$)
(aref BASAL-DENDRITE 0 length$)))
(format t *  Length = ~Ad microns. Diameter = ~2f microns.Lamda = ~4f. L = ~Af-%"
(Aref BASAL-OENDRITE 0 length$)
(aref BASAL-DENDRITE 0 diameter$)
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lamda

L)
(format ¢t * LlLamda(per segment) = ~Afx*
(x 100.0 (// (aref BASAL-DENDRITE 0 length$) lamda)) ))))
(format t “~%~XTime required to reach steady-state ~4f msec “ stime-for-steady-state))

202 MAKE-LISTI
(defun make-1ist1 ()
(setq splot-1istt nil
slabel-1ist1 nil)
{setq =plot-1ist1 (nconc splot-1ist1 (1ist *(svoltages . xtimes)))
slabel-11st1 (nconc slabel-1istl (1ist (format nil “Soma®))))
(cond-

((aref APICAL-SHAFT-DENDRITE 0 fnclude-me$)
(cond-every
((aref APICAL-SHAFT-DENORITE 0 plot-me$)
(setq splot-1ist1 (nconc =plot-listl (1ist "(xasivoitagex . xtime:)))
xlabel-11st1 (nconc xlabel-1istl (1ist (format nil “Shaft Seg 1*)))))
((and (aref APICAL-SHAFT-DENDRITE 2 plot-me$) (>s (aref APICAL-SHAFT-OENORITE 0 total-segments$) 3))
{setq splot-1ist1 (nconc splot-listl (1ist °(xas3avoltages . xtimes)))
xlabel-1ist1 (nconc xlabel-1ist) (1ist (format nil “Shaft Seg 3°)))))
((and (aref APICAL-SHAFT-DENORITE & plot-me$) (>s (aref APICAL-SHAFT-DENDRITE 0 total-segmentss$) 5))
(setq splot-1ist1 (nconc =plot-listl (1ist °(zasSvaltagex . stimesx)))
xlabel-1ist1 (nconc xlabel-1ist1 (1ist (format nil “Shaft Seg 57)))))
((and (aref APICAL-SHAFT-DENORITE 9 plot-me$) (>s (aref APICAL-SHAFT-DENDRITE 0 total-segmentss) 10))

(setq xplot-1istl (nconc »plot-listt (1ist *(xasiOvolitage= . stimer)))
xlabel-1ist1 (nconc slabel-listl (1ist (format nil “Shaft Seg 10”)))))))
((aref APICAL-1-DENORITE 0 include-mes$)
(cond-every
((aref APICAL-1-DENORITE 0 plot-me$)
(setq *plot-1ist1 (nconc splot-1istl (1ist *(xalivoitagex . stimex)))
xJabel-1ist1 (nconc xlabel-1istt (1ist (format nil "Left Segment 17)))))
((and (aref APICAL-1-DENDRITE 3 plot-me$) (>= (aref APICAL-1-DENDRITE 0 total-segmentss$) 4))
(setq *plot-1ist1 (nconc »plot-1istl (1ist "(zalavoltages . xtimes)))
xlabel-1ist] (nconc xlabel-1istl (1ist (format ni) "Left Segment 4°)))))))
((aref APICAL-2-DENDRITE 0 include-me$)
(cond-every
({aref APICAL-2-DENDRITE 0 plot-me$)
(setq xplot-1ist1 (nconc splot-list] (1ist *(zarivoitages . stimes)))
tlabel-1ist1 {nconc slabel-1ist) (1ist (format nil "Right Segment 1°)))))
((and (aref APICAL-2-DENORITE 3 plot-mes) (>s (aref APICAL-2-DENDRITE 0 total-segments$) 4))
(setq =plot-1istl (nconc *plot-listt (1ist °*(xartvoitages . xtimes)))
. x1abel-1ist1 (nconc xlabel-1ist1 (1ist (format nil "Right Segment 4°)))))))
((aref BASAL-DENORITE 0 include-me$)
(cond-every
((aref BASAL-DENDRITE 0 plot-me$)
(setq *plot-1ist1 (nconc splot-11st1 (1ist *(shivoltages . stimes)))
zlabel-11st1 (nconc *label-1ist1 (11st (format nil “Basal Segment 17)))))
((and (aref BASAL-DENDRITE 3 plot-me$) (>= (aref BASAL-DENDRITE 0 total-segmentss) 4))
(setq splot-1ist1 (nconc splot-1ist! (1ist *(sbAvoltages . stimes)))
slabel-11st1 (nconc xlabel-listt (1ist (format nil "Basa) Segment 47)))))))))
202 MAKR-LIST?
(defun make-1ist3 ()
(setq xplot-1ist3 nil
xlabel-11st3 nil)
(1f zinclude-dr
(setq zplot-1ist3 (nconc splot-1istd (1ist *(xdr-currents . xtimes)))

*label-1ist3 (nconc xlabel-1ist3 (1ist (format nil "DR Current®)))))
(1f zinclude-a

(setq splot-1ist3 (nconc splot-11st3 (1ist *(xa-currents . stimes)))
tlabel-113t3 (nconc stabel-11st3 (1ist (format nil A Current®)))))
(1f sinclude-m
(setq *plot-11st3 (nconc *plot-11st3 (1ist *(smm-currents . stimex)))
xlabel-11st3 (nconc zlabel-1ist3 (1ist (format nil *N Current®)))))
(if zinclude-c
(setq splot-11st3 (nconc *plot-11st3 (1ist *(sc-currents . stimez)))
slabel-11st3 (nconc xlabel-11st3 (1ist (format nil °C Current®)))))
(if zinclude-ahp
(setqg splot-11st3 (nconc zplot-11st3 (1ist ’(sshp-currents . stimes)))
slabel-11st3 (nconc =label-1ist3 (list (format nil "ANP Current®)))))
(if zinclude-q
(setq splot-1ist3 (nconc splot-1ist3 (1ist *(2q-currentx . stimes)))
x]abel-1ist3 (nconc slabel-1ist3 (1ist (format nil *Q Current®)))))
(17 =include-dendrite
(setq »plot-1ist3 (nconc splot-1ist3 (1ist *(xcoupling-currentx . xtimes)))
sTabal-11st3 (nconc xlabel-1ist3 (1ist (format nil "Some-dendrite Current®)))))
(setq *plot-1ist3 (nconc =plot-11st3 (1ist *(xl-currentx . xtimes)))
slabel-1ist3 (nconc xlabel-1ist3 (1ist (format nil "L Current®})))
{1 zinclude-shunt
(setq splot-1ist3 (nconc splot-1ist3 (1ist °(sshunt-currentz . stimes)))
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xlabel-11st3 (nconc *label-1ist3 (1ist (format nil “Shunt Current”))))))

(defun m-mtz O
{setq *plot-list2 nil
slabel-11st2 nil)
{cond (xinclude-nat
(setq splot-1ist2 (nconc *plot-list2 (1ist °(tnal-current:x ., xtimes)))
x1abel-1ist2 (nconc xlabel-1ist2 (list (format nil "Nal Current®))))))
(cond (xinclude-na2
(setq *plot-1ist2 (nconc *plot-1ist2 (1ist ‘(xna2-currentx . xtimex)))
x]abel-1ist2 (nconc xlabel-11st2 (list (format nil "Na2 Current®))))))
(cond (xinclude-na3d
(setq *plot-1ist2 (nconc *plot-11st2 (1ist ’(=xna3-currents . stimex)))
zlabel-11st2 (nconc xlabel-list2 (list (format nil "Na3 Current®))))))
(cond (xinclude-nap
(setq =plot-1ist2 (nconc splot-11st2 (1ist °(=nap-current: . xtimex)))
s]abel-11st2 (nconc slabel-11st2 (1ist (format atl “"NaP Current”))))))
{cond (xinclude-cas
(setq splot-11st2 (nconc splot-1ist2 (1ist ’(xcas-currents . xtimex)))
""" xlabel-1ist2 (nconc xlabel-11st2 (1ist (format nil “Cas Current®))))))
(cond (xinclude-ca
(setq *plot-1ist2 (nconc xplot-1ist2 (1ist '(=ca-currents . :timex)))
xlabel-1ist2 (nconc xlabel-1ist2 (1ist (format ni) "Ca Current®))))))
(setq =plot-1ist2 (nconc splot-1ist2 (1ist °'(=caps-currentx . xtimes)))
xlabel-1ist2 (nconc xlabel-1ist2 (1ist (format nil “Cap Current®)))))

(defun nn-lisu ()
{setqg zplot-lists nil
tlabel-1ists nil)
(if =include-dendrite-synapse
(setq xplot-1ista (nconc *plot-1ists (1ist *(xdendrite-synapse-currents . stimes)))
x)abel-1istA {nconc xlabel-list4 (1ist (format nil “Dendrite Synepse”)))))
(if zinclude-soma-synapse
(setq splot-1ists (nconc splot-1ists (list ’(ssoma-synapse-curreantx . stimex)))
zlabel-1istA (nconc xlabel-1ists (1ist (format nil "Soma Synapse”)))))
(setqg splot-1ist8 (nconc splot-1istd (1ist °*(=stim-currents . xtimex)))
xlabel-1istA (nconc xlabel-listA (1ist (format nil “Soma Stimulus®))))
(setq xplot-1ist4 (nconc splot-1istA (1ist °(sdendrits-stim-currentsz . xtimes)))
xlabel-1ists (nconc xlabel-11istd (list (format nil *Dendrite Stimulus®)))))

222 MAKEB-LISTS
(defun make-1istSs ()
(setq =plot-1istS ntl
x1abel-1ist5 nil)
(setq splot-11st5 (nconc zplot-1ist5 (11st ’(xca-conc-shellis . stimes)))
xlabel-1istS (nconc xlabel-1istS (1ist (format ni) “Shell Ca Concentration®))))
{setq splot-1istS (nconc splot-11st5 {1ist *(xca-conc-shell2x . xtimex)))
x]abel-1istS (nconc xlabel-1ist5 (1ist (format nil “Shel12 Ca Concentration®)))))

22: PLOT-RESULTS Plot dll the output lists automatically.
(defun plot-results ()
{(cond (siclamp-run (plot-current-clamp))
(svcliamp-run (plot-voltage-clamp))))

ss2 PLOT-CURRENT-CLAMP
(defun plot-current-clasp ()

(make-1ist1) (make-1ist2) (make-1ist3) (make-1istA) (make-1ist5)

(send xplot-pane-1 :plot “Soma And Dendritic Potentials (W] *
plot-1ist?
xl1abel-list1
:811-solid-1ines splot-voltages-solid
:y-min -90
sy-max 40
:y-interval 10
:overlay szoverlay-simulations
:1eave-window xoverlay-simulations)

(send splot-pane-2 :plot “Inward Soma Currents [na]®
=plot-1ist2
slabel-1ist2
:y-min -10
iy-max 8
:y-interval 2
:overlay soverlay-simulations
:leave-window xoverlay-sisulations)

(send =plot-pane-3 :plot “Outward Sosa Currents [na]”
splot-1ist3
=label-1ist3
:y-sin -4
sy-max 10
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:y-interval 2
:overlay soverlay-simulations
:1eave-window xoverlay-simulations)
(send tp}ot-;lnn:;# :plot *Stimulus and Synapse Conductance Currents [na]”
splot-lis
xlabel-1istA
:y~interval .28
:overlay zoverlay-simulations
:1eave-window soverlay-simulations)
(if (or (aref APICAL-SHAFT-DENORITE 3 include-na$) (aref APICAL-SHAFT-DENDRITE 3 include-ca$))
{send *plot-pane-5 :plot "Dendrite Currents [na}”
(send xplot-pane-5 :plot “Ca Concentration in Shell”
wplot-1istS
zlabel-1istS
:y-min -10
sy-max 10
:y-interval 2
:overlay soverlay-simulations
:‘liwc-windou soverlay-simulations)
nil

222 PLOT-VOLTAGE-CLAMP
(defun plot-voltage-clamp ()
{makg-1istl) (make-list2) (make-1ist3)
(send ®plot-pane-1 :plot “Soma And Dendritic Potentials [wV] *
splot-1istl
slabel-1istl
:all-solid-1ines *plot-voltages-solid
:y-min -90
y-max 40
sy-interval 10
soverlay soveriay-simulations
:Teave-window xoverlay-simulations)
(send splot-pane-5 :plot "Voltage Clamp Soma Potential [w] *
*((svoltages . stimes))
(1ist (format nil "Soms clamp voltage”))
:all-gglid-1ines *plot-voltages-solid
:y-nin -90
sy-sax 40
sy-interval 10
:overlay soverlay-simulations
:1eave-window soverlay-simulations)
(send splot-pane-3 :plot "Outward Soma Currents [na)*
splot-1ist3
x1abel-11st3
sy-min -4
y-max 10
:y-interval 2
:overlay soverlay-simulations
:leave-window zoverlay-simulations)
(send *plot-pane-2 :plot “Inward Soma Currents [na]”
splot-11st2
slabel-11st2
:y-min -10
y-max 8
sy=interval 2
:averlay soverlay-simulations
:leave-window xoverlay-simulations)
(send splot-pane-4 :plot “Total Clamp Current [na}”
*((scurrent: . stimes))
(1ist (format ni] “"Soma current "))
soverlay soverlay-simulations
:leave-window soverlay-simulations))

(dafﬂwc(n)' plot-frame

(tv:bordered-constraint-frame)
:settable-instance-variables
{ :default-init-plist
:activate-p t
:expose-p t
:save-bits t))

(tv:add-select-key #\h ’plot-framse “Hippocampus® ’(startup) t)

:::ﬂm&w:hmlmﬁmwm G plot panes for the relevant ouput lists and one lisp listenar
220 pane for input and parameter
(defflavor tv:plotter-pane () (g:plot-hack tv:pane-mixin))
(defun startup () .
(tv:meke-window
‘plot-frame
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' :panes *((*plot-pane-1 tv:plotter-pane
:1abel “Volitages In Soma And dendrites”)
(*plot-pane-2 tv:plotter-pane
:1abel "Outward Currents In Soma®)
(splot-pane-3 tv:plotter-pane
:label “Inward Currents In Soma”)
(xplot-pane-4 tv:plotter-pane
:1abel “Stimulus and Synapse Conductance Currents (na]*)
(=plot-pane-5 tv plotter-pane
:1abel “Calcium Concentrations”)
(inuuction-pm tv:1isp-listener
. :1abel "HIPPOCAMPAL PYRAMIDAL CELL SIMULATION®))
*.configurations °*{(c1

(:layout
(c1 :column rt r2 xplot-pane-1)
(r1 :row interaction-pans c2)
(r2 :row splot-pane-2 splot-pane-3)
(c2 :column splot-pane-5 *plot-pane-4))
(:sizes
(c1 (xplot-pane-1 200)
:then (r2 200)
:then (r1 :even))
(r1 (interaction-pane .500)
:then (c2 :even))
(r2 (xplot-pane-2 .50)
:then (splot-pane-3 :even))
(c2 (xplot-pane-5 .5)
:then (xplot-pane-4 :even)))))
! :expose-p t)
; (name-plot-panes)
(variable-array-setup))

222 NAME-PLOT-PANES Name lhﬂolvlndws. Mmhdnlblnﬂa
” &Iﬂrxptbrhmmdluup-
(defvar intsrsction-pane)
(defun name-plot-panes ()
(loop for pane in (send (send tv:selected-window :superior) :inferiors)
with c‘:ount =1 . N
when (typep pane °tv:plotter-pane
do (set {intern (format nil "sPLOT-PANE-~D" count)) pane)
(incf count)))

222 SETUP-STIMULUS Updates the stimulus current 10 the some and the dnlrimforurnndm or the clamp
222 voltage for voltage clamp.
(dcfun setup-stimulus ()
(cond (siclamp-run (set-soma-current-stimulus) 2Set up the stimulus current to the somea.
(set-dendrite-current-stimulus)) . Sef up stimulus current 10 the dendrite.
(svclamp-run (set-soma-voltage-stimulus stime-step))))

o CLAMP
(defun clamp ()
(setup-menud) ;Set up current clamp run. Sets Svclamp-run and ®iclamp-run.
(without-floating-underflow-traps
(1f =calculate-steady-state
(initialize-w-new-steady-state)
(initialize-w-0ld-steady-state))
(setq stime 0.0)
: (cl:time (run-clamp))
(run-clamp)
(beep) (beep)
(reverse-lists)
(if splot-results (plot-results))
(print-parameters))
(beep)

..

(setq sfirst-run nil))

(defun autoclamp () .
(setup-menud)
(autoclamp2 {list =zvoltage2-norm2x svoltage3-norm2s svoltaged-norm2s))
(setq sinclude-a nil)
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(autoclamp2 (11st =voltage2-wout-a2x tvoltage3-wout-a2x *voltaged-wout-a2x))
(plot-results)
(print-parameters))

(defun autoclamp2 (second-vlist)

(do ((stimulus-1ist °(0.33 0.35 0.37 ) (cdr stimulus-list ))
(voltage-1ist second-vlist (cdr voltage-list))
(voltage-array))

((null voltage-list))
(setq voltage-array (car voltage-list)
zi{-stim-1 -0.5
xt-stim-1 20.0
xt-stim-2 1000.0
s{-stim-2 (car stimulus-list))
(without-floating-underflow-traps
(if xcalculate-steady-state
(initialize-w-new-steady-state)
(initialize-w-01d-steady-state))
(setq stime 0.0)
(run-clamp)
(fillarray voltage-array xvoltages ))))

22 INITIALIZE- W-OLD-STEADY-STATE
(defun {nitialize-w-oid-steady-state ()
(clear-1ists)
(setq xtime 0.0
xpoint-index 0)
(if xfirst-run

(and (initialize-soma-voltage) JIf first run, set voltage for the soma to ®e-holding.
(i1f xinclude-dendrite

(initialize-dendrite-voltages))) .:{fdﬂ-;.“ rus, st voltage$ for oll the dendrite compartments to
7

(and (aset (aref SOMA e-rest$) SOMA volng'eS) 2Otharwise, set voltage$ for dll compariments to their

sappropriate e-rest$,
(aset (aref SOMA e-rest$) SOMA voltage-est1$)

g:soﬁ (aref SOMA e-rest$) SOMA voltage-est2$)
st
(DENDRITE-ARRAY (1ist BASAL-DENORITE APICAL-SHAFT-DENDRITE APICAL-1-DENORITE APICAL-2-DENORITE))
(if (aref DENORITE-ARRAY 0 INCLUDE-MES)
(do ({segment 0 (incf segment)))
((s segment (aref DENORITE-ARRAY 0 total-segments$)))
(aset (aref DENORITE-ARRAY segment e-rest$) DENORITE-ARRAY segment voltages$)
(aset (aref DENORITE-ARRAY segment e-rest$) DENORITE-ARRAY segment voltage-esti$)

(aset (aref DENDRITE-ARRAY segment e-rest$) DENORITE-ARRAY segment voltage-est2s))))))
(initialize-dendrite-states) :Set up dendrite segments with new configuration parameters.
(initialize-soma-states) .

2Set up soma with new parameters.
;s (update-output-lists)
(setq stime-for-steady-state 0.0))

520 INITIALIZE- W-NEW-STEADY-STATE This function runs the currest clamp simulation with O injected current in order
22 to caleulate the steady state voltages of all the compariments. The some ssarts out at ®e-holding and the
2; dendrite compartments start out at *ed~{
(defun initialize-w-new-steady-state ()
(setq xi-stim 0.0 si-den-stim 0.0 xsteady-state-run t)
(initialize-w-0ld-steady-state)
(and (aset xe-holding SOMA voltages$)
(aset se-holding SOMA voltage-estis$)
(aset se-holding SOMA voltage-est2s$))

(do
((time 0 (+ time xdt)) ;STIME track of the elapsed time
(time-step O (¢ time-step 1))) SSTIME keeps track of the mumber of increments
((test-for-resting-state)) +End of clamp.

(setq stime-for-s -state time stime-step time-step zxtime time)
s> Bafore the evaluation loop, evaluate the first appromimations 1o the voltages using previous values and
J» thetr dertvatives. Also load in dwnmy values zr’ next estimates in order to force initial interation.

(load-first-estimates)
+> This evaluation loop per forms successive appromimations to the modsl voltages at the present time step
(.O:ng the all the estimates satisfy the comvergence critertum.

((test-estimates)) True if ALL estimates are within epsilon (v-estl’s & v-es12°s)
; Set v-estl’s = v-e12°s 10 prepare for generating new estimate (es12).
(store-new-soma-estimate)
(1f xinclude-dendrite (store-new-dendrite-estimates))
s Estimate (trap. approm.) state variables (m-na-est, stc.) based on nluf estipates (v-estl) and
J; previous siates (m-na, m-na-dos, eic.), and then estimaie v-dot (v-estl-dot) w<Pstate estimates .
22 (0.8. m-na-est) & current voltage estimates (v-estl’s) using KCL.
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(set-soma-states-and-v-dot-for-current-clamp nil)
(if sinclude-dendrite (set-dendri u-s%u-and-v-dou nil))
s2 Bstimate (trap. approm.) voltage (v-e512) wnew v-estl-dot, previous voltage (voltage) and the
2 previous (volrage-dot).
{estimate-soma-voltage)
(if :in:::;:de-dendrit)c (elstiut;;denwu-volt;ge‘sl))) 11 2 for findd
+2 Set new volt, tage) 10 last estimate (volt. . Also set v-estl 10 v-es12 for
= O B ANy DOTS: A AN DRITE STATES AND V- DOTS".
(store-new-soma-voltage)
(store-new-soma-estimate)
(cond (sinclude-dendrite (store-new-dendrite-voltages) (store-new-dendrite-estimates)))
s Caleulate (1rap. approm.) final estimates of state variables (m-na, etc.) based on stored voltage value
o %ul) and previous states (m-na, m-na-dot, etc.), Caladate state variable derivatives (¢.g. m-na-dot)
22w dUfY, eq., the final state astimates (s.g. m-na) and final voltage estimate (voltage). Update
5 (replace) :ﬁ stored values for the state variables and their dertvatives. ate v-dot golua—da)
K4 - states (s.g. m-na) & current voltages (voltage and voltage’s) using circuit equation (.
2> the values,
(set-soma-states-and-v-dot-for-current-clamp T)
(if xinclude-dendrite (set-dendrite-states-and-v-dots T))
22 Pring simulation time and concanienate the just calculated variables 10 the appropriate output lists.
(cond ((2erop (\ xtime-step splot-step))
(send terminal-io :home-down)(send terminal-io :clear-rest-of-line)
(format t "Finding steady state; Current time - ~4fms” stime-for-steady-state))))
K (update-output-1ists))))
(store-steady-state) :Store the steady staze values for repeat runs.
(setq ssteady-state-run nil
xtime-step 0))

232 STORE-STEADY-STATR
(defun store-steady-state ()
(u:t (aref SOMA voltage$) SOMA e-rests$)
(dolist
(DENDRITE-ARRAY (1ist BASAL-DENORITE APICAL-SHAFT-DENORITE APICAL-1-DENDRITE APICAL-2-DENDRITE))
(1f (aref DENORITE-ARRAY 0 INCLUDE-MES)
(do ((segment 0 (incf segment))) )
((s segment (aref DENDRITE-ARRAY 0 total-segmentss$)))
(aset (aref DENORITE-ARRAY segment voltage$) DENDRITE-ARRAY segment e-rests$)))))

, and store

222 RUN-CLAMP
(defun run-clamp ()
do This is the main loop which generates the state variables and voltages for each time increment.

(
s ((time stime-for-steady-state (¢ time xdt)) JSTIME keaps track of the elapsed time
((time 0.0 (¢ time xdt)) 2In this version ignore time 10 st state
(time-step 0 (+ time-step 1))) J*TIME-STEP track of the number of increments
({> =point-index (- splot-points 1))) :End of clamp.
(setq stime time rtime-step time-step)
(setup-stimulus) sUpdate up the current or voltage stimulus.

.2 Before the evaluation loop, evaluate the first appromimations 1o the voltages using previous values and
.2 their derivatives. Also load in dummy values for nexs sstimates in order to initiad interation, If
22 voltage clamp run thes both estl dm)ofmcmmw the current *clamp-voltage.
{ For the polrage clamp the only « fi 1 the voltage and the
s For 1 tage p the soma states are & function of the current soma vols. [/ oome
 states, Flrst %t Pvstep which seys that the clamp roltage has changed. - past
(cond (*vclamp-run (setq *vstep (or (= time-step 0)
‘ (= time-step (fixr (// st-stim-1 xdt)))
(e time-step (fixr (// zt-stim-2 xdt)))
(s time-step (fixr (// st-stim-3 zdt)))
(= time-step (fixr (// st-stim-4 3dt)))))
This evaluation loop performs icatave appromimations 10 1hé model soliages @ the -
» ation per, uccessive appromimations to the m ages ar the present time step
T 1 Cinar Dy e sty tha comergence crrerim
nc

((and (> 1 1)(test-estimates))) +True if ALL sstimates are within spsilon (r-es11’'s & v-est2’s)
2> Sat v-es2l’s m v-e512’s 10 prepare for generating new estimete (es12).

(if =iclamp-run (store-new-soma-estimate))

(if tinclm{h-dm&‘iu .()ston-'n.’;-den?ﬂu-estinju)) vols 1) and
2> Estimate (trap. approm.) state variables (m-na-est, etc.) based on voltage estirgates (v-est

53 previous states (m-ne, m-na-dot, esc.), and then estimate v-dot (v-mlfzr) state estimates
2 (0.8, m-na-est) & current voltage estimates (v-estl’s) using KCL.

(if ziclamp-run (set-soma-states-and-v-dot-for-current-clamp nil))

.

( 1;‘:’:|cludc-dena'1u f)s:;—dmdriu)—)s%u-md-v;d:: w) vol ;('d ) and the
o ate (1rap. approm tage (v-es1 new v-es1l-dot, previous voltage (voltage, ’
52 previous Lrlmln (voltage-dot).

(if ziclamp-run (estimate-soma-voltage))

.(5'1: xin,cal‘ude-dendrit; (?‘Sut‘:m:ro;’u-vol?nm) y 2 for findl
22 Set new volt {f to last estimare 512). set v-es1l 10 v-est.
0 'SET-SOM ~AND-V-DOTS” and "SET-D. DMTESTAM—AN&V-&B".
(store-new-soma-voltage)
(if xiclamp-run (store-new-soma-estimate))
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(cond (xinclude-dendrite (store-new-dendrite-voitages) (store-new-dendrite-estimates)))
3: Calculate (trap. approm.) final estimates of state variables (m-na, etc.) based on stored voltage value
X %al ') and previous states (m-na, m-na-dot, etc.). Calculate state variable derivatives (e.g. m-na-dot)
2w diff. z.. the final staze estimates (e.8. m-na) and ﬁd voltage estimate (voltage). Update
2 ‘(zvlau) the stored values for the state variables and their derivatives, Calculate v-dot (voltage-dot)
> ~ states (s.g. m-na) & current voltages (voltage and voltages) using circuit equation (. , and store
22 the values.
(if ziclamp-run (set-soma-states-and-v-dot-for-current-clamsp 7))
{1f xinclude-dendrite (set-dendrite-states-and-v-dots T))
22 Print simulation time and concantenate the just calculated variables 10 the appropriate output lists,
(cond ((zerop (\ stime-step x*plot-step))
(send terminal-io :home-down)(send terminal-io :clear-rest-of-line)
(format t “Length of simulation + time for steady state - ~Afms Current time - ~4fms”
(+ stime-for-steady-state sduration) stime)
(update-output-1ists)
(setq =point-index (+ 1 spoint-index))))))

(defvars tv-start sv-final zvoltage-normalx)
ss: NORMALIZE
(defun normalize (v-start v-final)
(setq sv-start v-start
wv-final v-final
tvolitage-normals (mapcar #°normalize-op svoltages ))

t)
s> NORMALIZE-OP
(defun normalize-op (voltage)

(/7 (- voltage xv-final)
{- *v-start xv-final)))

(defvars xiv-voltagex xiv-currents svoltsx)

ne Soma geometry SHSSSSBESLESLES

vee
Ly

232 Assume soma is a sphere

voe
20

(defvar ssoma-radius 17.5) smicrometers

(defun surf-area (radius) Jsphere sur face area is in 3g-cm - argument is in micrometers
(= (/7 4.0 3.0) 3.14159 (x radius radius) 1.0e-8))

22 ssssssssssssss PASSIVE COMPONENTS
(defvar xtemperature 27.0)

(defvar ze-na 50.0) mvolts

(defvar ze-ca 110.0) smvolts

(defvar se-k -85.0) mvolts

(defvar ze-holding -70) smyolts

(defvar ze-1 -70.0) sconstant leakage battery (mV)

(defvar sed-1 -70.0)

(defvar sfaraday 9.648e8) Coulombsdmole :

(defvar xR 8.314) :Gas constent — (Volts*Coulombs)D(DagreesKelvin®mole)
(defvar xca-conc-extra 1.8) sExtra-cellular Cavrconcentration [ mmotDliter ]

+Hille says 1.5 mM Ca out, <10e-7 mM in.
+Segal and Barkar, 1986 use 4.0 mM Ca out
+Madison and Nicoll, 1982 use 2.5 mM Ca out
cBlaxter et al, 1986 use ACSFwith 3.25 mM Ca
:Wong and Prince, 1981 use 2.0 mM Ca

22 Electrods shunt resistance (Mokm)

(defvar sr-electrode 10000000.0)

222 Soma input resistance (Mokm)

(defvar sa-1 39.0)

222 Soma membrane resistance (ohkm-cr-cm)

(defvar xrs-mem 850.0)

22; Dendrite membrane resistance (ohm-cm-cm)
(defvar srd-mem 40000.0)

22: Dendrite axoplasmic resistance (ohm-cm)
(defvar srd-int 200.0)
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s:: Dendrite mbrm unmm (microfaradsdsg-cm)
(defvar scapd-sem 1

il st f e

scaps-in

2 Sa:;a nl.:;bm upuum (microfarads®sg-cm)
(dervnr zcaps-mem 1.0

222 Total capacity afm«(m

(defvar xcaps)

(defvar tsoma-area)
(defvar xgs-1)

222 MENU-FOR-SOMA-GEOMETRY-AND-PASSIVE-COMPONENTS
{defvar xc-calc T)
(defvar sr-calc T)
(defvar xqten-ionic 1.5)
(defun menu-for-soma-geometry-and-passive-components ()
{tv:choose-variable-values
*((ssoma-radius “Soma sphere radius [micrometers) *

;Soma surface area - *3%%% sq, microns sesss

:number)

(ze-1 “Leakage battery [aV] * :n

(xe-na "Na reversal potential [mV] * :number)
(xe-k “K reversal potential (W] * :number)
(te-ca “Ca reversal potential {aV] * :number)

(*c-calc "Calculate C-nem from geometry (yes) or use input capacitance (no)* :boolean)
(*caps-mem “Membrane capacitance [microfarads/sq-ca] :number)
(xcaps-in "Input capacity [aF] * :number)
(sr-calc “Calculate *RS-MEM from geometry (yes) or use input impedence (no)” :boolean)
(srs-mem “Membrane resistance [ohm-cm-cm] * :number)
(za-1 “Input impedance [(MOhm] (used to substituts for soma and dendrite Rin only) *
(xtemperature "Temperaturs of experiment [Celsius]” :number)
(=qten “Q-10 [Rate constant coefficient per 10 degrees]” :number)
(xqten-ionic *“Q-10 [Ionic conductance coefficient per 10 degrees}” :number)
(xinclude-shunt “Include electrode shunt conductance (if no the g-shunt will be ignored)?® :boolean)
(sr-electrode "Electrode shunt [Mohms]* :number)
(xi-constant-injection “Constant current injected [nA)" :number))
:1abel "Passive components®)
(setq xsoma-area (x 1.0e8 (surf-ares ssoma-radius))
xgs-1 (if sr-calc (// (surf-area xsoms-radius) (* srs-mem 1.0e-8))
{77 1.0 xa-1))
xg-electrode (// 1.0 xr-electrode)
scaps (if sc-calc (x (surf-area ssoma-radius) xceps-mem 1.0e3) zcaps-in))

(aset *gs-1 SOMA g-leak$)
(aset 100.0 SOMA g-axial$) 2 Assume that soma has essentially zero axoplasmic resissivity.
(update-qtens)

(update-gbars))

:number)

(defun update-qtens ()
(setq xqten-factor-at-25 (qten-tau-factor 25.0 stesperature xqten)
xqten-factor-at-25-a (qten-tay-factor 25.0 stemperature sqten-s

xqten-factor-at-32 (qten-tau-factor 32.0 stemperature xqten) 'Ccl'lm

zqten-factor-at-30 {qten-tau-factor 30.0 stemperature xqten) DR and A kinetics

xqten-factor-at-27 (qten-tau-factor 27.0 stemperaturs xqten)

sqten-factor-at-22 (qten-tau-factor 22.0 stemperature xqten)

sqten-factor-at-28 (qten-tau-factor 28.0 stemperaturs 5.0) -Na kinetics.

qten-g-24 (qten-rate-factor 24.0 stemperature xqten-ionic) en for londc conductance of Na currents.
xqten-g-30 (qten-rate-factor 30.0 stemperaturs xqten-ionic) uforlmmdmau of DR and

+A currents.
xqten-g-32 (qten-rate-factor 32.0 stemperaturs :qten-ionic)

.'Qtnforlmm&anuof'&wnm

xqten-factor-at-37 {qten-tau-factor 37.0 stemperature xqten)
xqten-factor-at-14 (qten-tau-factor 14.0 stemperature xqten)))

325 QTEN-TAU-FACTOR This calculates the qten faaw for time constants (as temperature goes up, tau goes down),
(defun qten-tau-factor (reference-temp

tesp qtan
(~ qten (// (- reference-temp temp ) 10. 0)))

2:;QTEN-RATE-FACTOR This calculates the gten factor for rate constants (as temperature goes up, 30 does rate).
(defun qten-rate-factor (reference-temp temp qten)
(~ qten (/7 (- temp reference-temp ) 10.0)))

(defvars-w-value (:xgqten-g-28 1.0)(zqten-factor-at-27 1
(defvars-w-value (xqten-g-30 1.0)(xqten-factor-at-30 1
(defvars-w-value (xqten-g-32 1.0)(xqten-factor-at-32 1

0))
-0))
0))
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32: L-CURRENT The leckage current.
(defun 1-current (v)
(= 393-1 (- v se-1)))

232 ALPHA and BETA Thess functions give the voltage dopndmrmumm:formdmurrkrmw where alpha is the
5s forward rate constant and beta is ¢ deccmu “Y-half" is the voltage at which the

22 and backward rate constants are equal. Note that tlun are two anm of the temperature nce of

12: these rate constants. ﬂ' ﬁ-m the voltage-dependant Boltzmann distribution, which (s

222 explicitely calculated in ¢ a@m{m axmarlx:ln alumped 'fcmr that is strictly a

232 coafficiant for the “base-rate”, that is the rate dertved the origi fna-c changes of zlu gating

222 particle. Since this factor dmm on each current, the Qten factor is not inclu. bur n the time constant

22 functions for each gating veriable,

(defun alpha (voltage v-half base-rate valence gamma)
{let {(exponent (// (x (- voitage v-half ) 1.0e-3 valence faraday gamma) (x R (+ xtemperature 273.0)))))
(setq exponent (cond {(> exponent 20.0) 20.0) ((< exponent -10.0) -10.0)
(t exponent)))
(x base-rate (exp exponent))))

(defun beta (voltage v-half base-rate valence gamma)
(let ((exponent (// (x (- v-half voltage) 1.0e-3 valence faraday (- 1.0 gamma)) (x R (+ xtemperature 273.0)))))
(setq exponent {cond ((> exponent 20.0) 20.0)
{(< exponent -10.8) -10.0)
(t exponent)))
(= base-rate (exp exponent))))

I-C-currem
The Ca dependant K-current

.E:i'.rarmmdaaado,unuhdmm Mv&amr.‘armu laster and is dependant on the
s2: concentration of Cavein the shell in the same way as the AHP current A

33 conductance in micro-sismans
(defvar xgbar-c 0.40)

(defvars-w-value (*v-half-cx -65.0) (xalpha-base-rate-cx 0.007) (svalence-cx 25.0) (*gamma-cx 0.20)
(*v-half-cy -60.0) (xalpha-base-rate-cy 0.003) (svalence-cy 20.0) (*gasms-cy 0.2)
(zbase-tcx 0.25)(xbase-tcy 15))

(defvars-w-value (salpha-c 1.0) (szbeta-c 1.0))
(defvars-w-value (stau-alpha-c 0.0001) (stau-beta-c 8.0))

353 W-C-INF w-c is calchum-dependent pating variable for C-current
(defun w-c-inf (calc-conc-shell)

(// (= xalpha-c calc-conc-shell calc-conc-shell calc-conc-shell)
(+ sbeta-c (x xalpha-c calc-conc-shell calc-conc-shell calc-conc-shell ))))
2 T-WC
(defun t-w-c (calc-conc-shell)

(let ((tau (/7 1.0 (+ zbeta-c x lph ¢ calc-conc-shell calc-conc-shell calc-conc-shell)))))
(= ;(};;:n -factor-at-27 (if (< 0.2) 0 20
tau

22 A-XC
(defun a-x-c (voltage)

(alpha voltage sv-half-cx salpha-base-rats-cx svalence-cx sgemme-cx))
o B-XC
(defun b-x-c (voltage)

(beta voltage 3v-half-cx xalpha-base-rate-cx tvalence-cx xgamma-cx))
552 A-YC
(defun a-y-c (voltage)

(beta voltage sv-half-cy xalpha-base-rate-cy tvalence-cy tgamma-cy))
50 B-YC
(defun b-y-c (voltage)

(alpha voltage xv-half-cy salpha-base-rate-cy tvalence-cy :gamma-cy))
s X-C-INF
o x-inf is activation variable for C-current
(defvar *x-c-inf-midpoint 0.0)
(defun x-c-inf (voltage)

(// (a-x-c voltage) (+ (a-x-c voltage) (b-x-c voltage))))
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s> Y-C-INF
5 y-inf is inactivation variable for c-current
(defvar ty-c-inf-midpoint 5.0)
(defun y-c-inf (voltage)
(/7 (a-y-c voltage) (+ (a-y-c voltage) (b-y-c voltage))))

s Qet ((steepness 2.0)) :Segal and Barker; Segal, Rogawski, and
H (77 1.0 (¢ 1.0 (exp (// (- voltage xy-c-in --idpolnt) steepness))))))
s T-X-C

5 tau-C-current(activation) - msec (estimate)
(defvar st-x-c .50)
{defun t-x-c (aoptional voltage)
(let ((tx (/7 1.0 (+ (a-x-c voltage) (b-x-c voltage)))))
(x aqten-factor-at-27 (if (< tx sbase-tcx) sbase-tcx tx))))
;(defun t-x-c (voltage) stau tall currem (Brwn MGrlfﬁth) (mssc)
; (cond ((< voltage -30.0) (% 20.0 (exp (// (+ voluge 40.0) 18.0))
; (t (x 20.0 (exp (// (- 40.0 (+ voltage 60.0)) 18.0))))))

»T-¥-C
oo tau-C-current(inactivation) - mssc
(defvar st-y-c 1.0)
(defun t-y-c (&optional voltage)
{let ({(ty (// 1.0 (+ {a-y-c voltage) (b-y-c voltage)))))
(x xqten-factor-at-27 ({if (< ty sbase-tcy) sbase-tcy ty))))

+22 MENU-FOR-C-CURRENT
(defvar xc-shift 0.0)
(defun menu-for-c-current ()
{tv:chooss-variable-values
*((=xgbar-c "C-current conductance [micro-S]* :number)

:.x Variable Kinetics *

(*v-half-cx *"V/12 for x* :number)

(=alpha-base-rate-cx 'Mph--bue value for x at V1/2" :number
tation “Increase makes it faster®)

(svalence-cx '\Menca for x* :nusber)

(zgamma-cx “Gasma for x* :number)

(:blse-u:x *Minimum value for time constant [ms]” :number)

® ¥ Variable Kinetics *
ae

(sv-half-cy *"V/12 for y" :number)
(salpha-base-rate-cy "Alpha-base value for y at V1/2* :number

H tation "Increase makes it faster”)
(svalence-cy "Valence for y* :number)
(*gamma-cy "Gamma for Na 1 y” :number)
s:blse-t.cy "Minimum value for time constant [ms]® :number)

: W Veriable Kinetics *

(xtau-alpha-c “Forward time constant for Cas+-binding to W particle® :number)
Sruu-lnn-c “Backward time constant for Caee-binding to W particle® :number)
(setq salpha-c (// 1.0 stau-alpha-c)

sheta-c (// 1.0 stau-beta-c)))

sss C-CURRENT Punction to calcuate the C current.
(defun c-current (x-c y-c w-C v)
(x (g-c xgbar-c x-¢ y-c w-¢)
(- v ze-k)))

32 GC
{defun g-c (gbar-c x-c y-t w-c)
(if (< x-c 0.01) (setq x-c 0.0))
(x gbar-c x-¢ x-¢ X-C X-C y=C w=C))

2:X-C-EFF, Y-C-EFF
(defun x-c-eff (x-c)
(i1f (< x-¢ 0.01) 0.0
(~ x-c 4.0)))
(defun y-c-ef! {y-c)
(~ y-c 1.0))
22 C-PLOT
(defvars sx-c-infx xy-c-infz sx-c-effx 2y-c.effx

St-x-CX¥ 3t-y-Cx xg-c-infx)
(defun c-plot ()
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(menu-for-c-current)
(setq svoltsx nil sy-c-infz nil *x-c-infx nil sy-c-effx nil =x-c-effx nil
2t-x-c¥ nil st-y-cx nil *g-c-infx nil)
(do ((v -100.0 (+ v 0.5)))
((> v 50))
(setq
ty-c-infx (nconc xy-c-infz (1ist (y-c-inf v)))
rx-c-infx (nconc *x-c-infz (list (x-c-inf v)))
sy-c-effx (nconc sy-c-effx (1ist (y-c-eff (y-c-inf v))))
-c-effx (nconc xx-c-effx (list (x-c-eff (x-c-inf v))))
xt-x-cx (nconc *t-x-cs (1ist (t-x-c v)))
xt-y-cx (nconc st-y-cx (list (t-y-c v}))
wvoltsx (nconc svoltsz (1ist v))
£g-c-infx (nconc xg-c-infx (1list (g-c 1.0 (x-c-inf v)(y-c-inf v) 1.0 })))))

s W-C-PLOT
(defvars sw-c-infz xt-w-cx xcalconcs)
(defun w-c-plot ()
(menu-for-c-current)
(setq sw-c-infx nil xcalconct nil xt-w-cx nil)
(do ((ca 1.0e-8 (x ca 1.2 })){(> ca 10.0))
(setq sw-c-infx (nconc *w-c-infx (1ist (w-c-inf ca)))
st-w-cx (nconc st-w-cx (1ist (t-w-c ca)))
xcalconcx (nconc xcalconcx (1list ca)) ) ))

we I-Mcurrent
222 The muscarinic -sensitive K current of Paul Adams
3 M-
(defun m-current (x-m v)

(x xgbar-m x-m (- v %e-k)))

222 I-M conductance - Only activate between -70mv and -30mv (micro-siemans)
(defvar sgbar-m .005)

(defvars-w-value
(sm-block 1.0) (sbase-tmx 10) (*v-half-mx -45.0) (sbase-rats-mx 0.0015) (*valence-mx 5) (*gamma-mx .5))
(defvar xqten-m 5.0) Jas reported by Paul

522 I-M time constant - from two values given by Paul (msec
kX Wlmﬂum.-w;m( ory cortical
(defun t-x-m (voltage)
(letz ((b (alpha voltage sv-half-mx sbase-rate-mx svalence-mx Xgamma-mx))
(a (beta voltage sv-half-mx sbase-rate-mx svalence-mx Xgasma-mx))
(tx (/7 sqten-factor-at-25 (+ a b))))
(1f (< tx (x xqten-factor-at-25 sbase-tmx)) (¥ zqten-factor-at-25 xbase-tmx) tx)))

22 X-M-INF x~inf is activation variable for M-current
(defun x-m~inf (voltage)
(Tet ((b (beta voltage sv-half-mx zbase-rate-mx *valence-mx sgamma-mx))

(a (alpha voltage sv-half-mx sbase-rate-mx tvalence-mx gamma-mx)))
{77 a (+» a b))))

2»; MENU-FOR-M-CURRENT
(defun menu-for-m-current ()
(tv:choose-variable-values
*((xgbar-m "N-current absolute conductance [micro-S]" :number)
(:-block “Block some fraction of absolute conductance [0-1]* :number)

. * xx X Variable Kinetics »x *
(sv-half-mx "V/12 for N x* :number)
(sbase-rate-mx "Alpha-base value for M x at V1/2* :number)
(svalence-mx "Valence for N x* :number)
(sgamma-mx "Gamma for M x* :number)
(:buo-m "Ninisum value for time constant [ms]” :number)

;}lb.l “M Potassium Current”

s M-PLOT
(defvars =x-m-infs st-x-mx)
(defun m-plot ()

(menu-for-m-current)

(setq sx-m-infz nil zvoltsz nil st-x-mz nil)

(do ((v -100.0 (« y 0.5)))

({(> v 50.0))
(setq sx-m-infx (nconc *x-m-infx (1ist (x-m-inf v)))
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st-x-m% (nconc st-x-msx (1ist (t-x-m v)))
rvoltsx (nconc *voltsx (1ist v)) ) ))

:.'.‘ I1-Q current

3+ This is the outward “anomalous rectifier” current that is activated by hyperpolarizing the cell.
5 Rc_f Segal and Barker, Halltwell and Adams

;2 E-Q  Qcurrent may be a mixed conductance.
(defvar ze-q -65.0)

22 1-Q conductance (micro-siemans)
(defvar xgbar-q .002) sAbout 2nS at full acttvarion (Paul)
s @-CURRENT
(defun g-current (x-q v)
(x xgbar-q x-q (- v xe-q)))

»o» X-Q-INF
(defun x-q-inf (v)
(77 1 (+ 1 (exp (// (+ v B4.0) 4.0)))))

o T-XQ
(defun t-x-q (v)
(x xqten-factor-at-25-m sPaul reports Q-10 for both M and Q currents 1o be ~5.
(x 1200.0 (+ (/7 1 (+ 1 (exp (// (+ v 85. 0) -6.0)))) .1))))
222 MENU-FOR

(deﬂm menu-for-q-current ()
(tv:choose-variable-values
*((*gbar-q “Q-current conductance [micro-S]* :number)
(xe-q “Q current reversal potential [aV]" :number))))

0 @-PLOT
(defvars »x-g-infx xt-x-q%)
(defun g-plot ()
(setq *x-q-infx nil svoltsx ni1l xt-x-q*¥ nil)
(do ((v -100.0 (+ v 0.5)))
((> v 50.0))
(setq »x-q-infz (nconc *x-q-infx (1ist (x-q-inf v)))
xt-x-q% (nconc xt-x-qx (list (t-x-q v)))
xvoltsx (nconc *voltssz (list v)) ) ))

e D. R-current S558832855888888

(defvars-w-value
(xdr-block 1.0)
(xbase-txdr 0.50) (xbase-tydr 6.0)
(xv-half-drx -28.0)
(tbase-rate-drx 0.008) (xvalence-drx 12) (xgamsa-drx .95)
(xv-half-dry -45.0)
(xbase-rate-dry 0.0004) (xvalence-dry 9) (*gamma-dry 0.2))

(defvar xe-dr -73.50) 21-DR reversdl potential
»: DR conductance (microsiemans)
(defvar xgbar-dr 0.7) sSegal reports 0.350

s: Y-DR-INF glnf is ln;::rhz:on variable for DR-current

'('éefun y-dr-inf (voltage)
(let ((b (alpha voltage *v-half-dry xbase-rate-dry svalence-dry xgamma-dry))

(a (beta voltage *v-half-dry sbase-rate-dry tvalence-dry sgamma-dry)))
(/7 a (+ a b))))

s T-Y-DR ta-DR-current(inactivation) -
o Segal and Barker %0 mssc
(defun t-y-dr (voltage)
(letx ((b (alpha voltage xv-half-dry sbase-rate-dry xvalence-dry xgamma-dry))
(a (beta voltage »v-half-dry xbase-rate-dry zvalence-dry :gamma-dry))
(ty (// xqten-factor-at-30 (+ a b))))
(if (< ty (x xqten-factor-at-30 xbase-tydr)) (* xqten-factor-at-30 zbase-tydr) ty)))
:.':X-DR—INF
x-inf is activation variable for DR-current
o Segal and Barker
(defun x-dr-inf (voltage)
(let ((a (alpha voltage xv-half-drx sbase-rate-drx svalence-drx xgamma-drx))

(b (beta voltage xv-half-drx zbase-rate-drx svalence-drx :gamms-drx)))
(77 a (« ab))))
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22 T-X-DR
e taw-DR-current(activation) - msec
o~ Segal and Barker 180 us < -30mv,6 ms else

(defun t-x-dr (voltage)
(letx ((a (alpha voltage xv-half-drx rbase-rate-drx xvalence-drx xgamma-drx))
(b (beta voltage sv-half-drx rbase-rate-drx svalence-drx xgamma-drx))
{tx (/7 xqten-factor-at-30 (+ a b))))
(1f (< tx (x xqten-factor-at-30 sbase-txdr)) (* xqten-factor-at-30 sbase-txdr) tx)))

222 MENU-FOR-DR-CURRENT
(defun menu-for-dr-current ()
(tv:choose-variable-values
’((xgbar-dr "OR-current absolute conductance [micro-S}* :number)
(xdr-block "Block some fraction of absolute conductance [0-1]" :number)

* xx X Variable Kinetics =x *
L1 ]
(*v-half-drx “V/12 for Dr x* :number)
(sbase-rate-drx "Alpha-base value for Dr x at V1/2® :number)
(xvalence-drx “Valence for Dr x* :number)
(*gamma-drx "Gamma for Dr x* :number)
(xbase-txdr “Minimum value for time constant [ms]* :number)

* xx Y Variable Kinetics zs*
e

(sv-half-dry *V/12 for Dr y* :number)

{sbase-rate-dry "Alpha-base value for Dr y at Vi1/2" :number)
(svalence-dry “valence for Dr y* :number)

(*gamma-dry "Gamma for Or y* :number)

(sbase-tydr “Minimum value for time constant [ms]” :number)

; }abel “Delayed-Rectifier Potassium Current”

22; DR-CURRENT
(defun dr-current (x-dr y-dr v)
(x (g-dr (aref SOMA gbar-dr§) x-dr y-dr) (- v ze-dr)))

»s: G-DR
(defun g-dr (gbar-dr x-dr y-dr)
(x gbar-dr xdr-block
X-dr x-dr x-dr y-dr ))

3::X-DR-EFF, Y-DR-EFF

(defun x-dr-eff (x-dr)
(~ x-dr 3.0))

(defun y-dr-eff (y-dr)
(~ y-dr 1.0))

.2 DR-PLOT
(defvars sx-dr-infs sy-dr-infs sx-dr-effx sy-dr-effs
xt-x-drx xt-y-drx xg-dr-infs)
(defun dr-plot ()
(menu-for-dr-current)
(setq svoltsz nil sy-dr-infx nil *x-dr-infx nil sy-dr-effs nil sx-dr-effx nil
st-x-drs nil st-y-drz nil sg-dr-infx nil)
(do ((v -100.0 (+ v 0.5)))
((> v 50))
(setq
ry-dr-infx (nconc sy-dr-infz (1ist (y-dr-inf v)))
x-dr-infx (nconc *x-dr-infs (list (x-dr-inf v)))
sy-dr-effs (nconc sy-dr-effs {1ist (y-dr-eff (y-dr-inf v))))
x-dr-effs (nconc sx-dr-effs (1ist (x-dr-eff (x-dr-inf v))))
st-x-drx (nconc zt-x-drx (1ist (t-x-dr v)))
xt-y-drx (nconc *t-y-drz (list (t-y-dr v)))
*voltss (nconc svolts: (list v))
xg-dr-infz (nconc *g-dr-infs (1ist (g-dr 1.0 (x-dr-inf v)(y-dr-inf v)))))))

P . AHP-current *%ssssssss888s8s

*++ Iahp will have two voltage-dependent inactivation particles, y and 3, and
22: a calcium-depedent mcfn'-g particle, w.

(defun ahp-current (z-ahp y-shp w-ahp V)
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(x (g-ahp xgbar-ahp 2z-ahp y-ahp w-ahp)
(- v ze-k)))

s; AHP conductance (microsiemans)
(defvnr sghar-ahp 0.35)

222 G-AHP - new version
(defun g-ahp {gbar-ahp 2-ahp y-ahp w-ahp)
(x gbar-shp 1.0 y-ahp y-ahp w-shp z-ashp))

{defun y-ahp-eff (y-ahp)
(~ y-ahp 2.0))

(defvars =alpha-ahp zbeta-ahp)
(defvars-w-value {stau-alpha-ahp 1.0e-3) (xtau-beta-shp 200.0))
(defvars-w-value (sv-half-ahpz -72.0) (salpha-base-rate-ahpz 2.0e-8)
(svalence-shpz 12.0) (=gamma-ahpz 0)
{xv-haif-ahpy -50.0) (*alpha-base-rate-ahpy 0.015)
(svalence-ahpy 15.0) (*gamma-ahpy 0.8)
(*base-tahpz 120.0)(sxbase-tahpy 2.5))

222 W-AHP-INF w-ahp is cdchm-dcpmdcm gating variable for AHP-current
(dcfun w-ahp-inf (calc-conc-shell )

(/7 (x =alpha-ahp calc-conc-shell calc-conc-shell calc-conc-shell )
{+ sbeta-ahp (= xalpha-ahp calc-conc-shell calc-conc-shell calc-conc-shell ))))

s T-W-AHP
(defun t-w-ahp (calc-conc-shell)
(et ((tauw (/7 1.0 (+ xbeta-ahp (x xalpha-ahp calc-conc-shell calc-conc-shell calc-conc-shell)))))
(x zqun) e -factor-at-27 (if (< tau 0.002) 0.0020
tau)))

2: Y-AHP-INF  y-infis inactivation variable for AHP-current
(defun y-ahp-inf (voltage)
(let ((b (alpha voltage sv-half-ahpy zalpha-base-rate-ahpy svalence-ahpy xgamma-ahpy))
e (l((b‘b;)\)ﬂ;}tlg. sv-half-ahpy xalpha-base-rate-ahpy *valence-ahpy sgasma-ahpy)))
al+ 8

s T-Y-AHP tau-AHP-current(inactivation} - msec
(defun t-y-ahp (voltage)
(letx ((b (alpha voltage xv-half-ahpy xalpha-base-rete-ahpy svalence-ahpy xgamsa-ahpy))
(a (beta voltage *v-half-ahpy xalpha-base-rate-ahpy *valence-ahpy sgamma-ahpy))
(ty (/7 1.0 (+ a b))))
(if (< ty sbase-tahpy) zbase-tahpy ty)))

322 Z-AHP-INF
o 2-inf is activation variable for AHP-current
(defun z-ahp-inf (voltage)
(let ((b (alpha voltage *v-half-ahpz xalpha-base-rate-ahpz svalence-shpz xgamma-ahpz))

(a (beta voltage *v-half-ahpz salpha-base-rate-ahpz *valence-ahpz *gamma-ahpz)))
(77 & (+ ab))))

0 T-Z-AHP
ooe tau-AHP-current(activation) - msec
(defun t-z-ahp (voltage)
(letz ((b (alpha voltage sv-half-ahpz talpha-base-rate-ahpz svalence-ahpz *gamma-ahpz))

(a (beta voltage »v-half-ahpz xalpha-base-rate-ahpz svalence-ahpz tgammsa-ahpz))
(tz (/7 1.0 (+ a b))))

(1f (< tz sbase-tahpz) sbase-tahpz tz)))
2:: MENU-FOR-AHP-CURRENT
(defun menu-for-ahp-current ()
(tv:choose-variable-values
" s:gbcr-dlp *ANP-current conductance (micro-S]® :number)

* Z Variable Kinetics *

(sv-half-ahpz *V/12 for Na 1 m" :number)

(salpha-base-rate-ahpz "Alpha-base value for Na 1 m at V1/2° :number
:documentation “Increase speeds up gating particle”)

(svalence-ahpz "Valence for Na 1 m" :number)

(sgamma-ahpz “Gamma for Na 1 m" :number)

‘(':bue-uhpz *Minimum value of time constant [msec])" :number)

“ Y Variable Kinetics *

(xv-half-ahpy "V/12 for Na 1 h*" :number)
(xalpha-base-rate-ahpy "Alpha-base value for Na 1 h at V1/2" :number

:documentation "Increase speeds up gating particle®)
(*valence-ahpy "Valence for Na 1 h* :number)
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amma-ahpy "Gamma for Na 1 h* :number)
gg.se-uhg "Minimum value of time constant [msec]” :number)

* N variable Kinetics *
as

(xtau-alpha-shp "Forward time constant for Cas+-binding to W particle” :number)
(stau-beta-shp “Baciward time constant for Cas+-binding to W particle® :number)
)}
(setq xalpha-ahp (// 1.0 stau-alpha-ahp)
sbeta-ahp (// 1.0 stau-beta-ahp)))

22; AHP-PLOT

(defvars =z-ahp-infs st-z-shpx sy-shp-infs st-y-ahpx sy-ahp-effx)

(defun ahp-plot ()
(setq st-z-ahp® nil st-y-ahpx nil svoltss nil *2-ahp-infx nil zy-ahp-infx nil sy-ahp-effs nil )
(menu-for-ahp-current)
(do ((v -100.0 (+ v 0.5))) ((> v 50))

(setq xz-ahp-infx (nconc =z-shp-infs (list (z-ahp-inf v)))
sy-shp-infz (nconc sy-shp-infx (1ist (y-ahp-inf v)))
*y-ahp-effx (nconc *y-ahp-effz (1ist (y-ahp-eff (y-ahp-inf v))))
st-2-ahpx (nconc sxt-z-ahpx (1ist (t-z-ahp v)))
st-y-ahpx (nconc st-y-shps (1ist (t-y-ahp v)))
svoltss (nconc svoltss (list v)) ) ))

32 W-AHP-PLOT
(defvars sw-ahp-infx xt-w-shpx xcalconcs)
(defun w-ahp-plot ()
(menu-for-ahp-current)
(setq sw-ahp-infx ni) xcalconcx nil st-w-ahpx nil)
(do ((ca 1.08-6 (% ca 1.2 ))) ((> ca 10.0))
(setq *w-ahp-infx (nconc sw-ahp-infx (1ist (w-ahp-inf ca)))
st-w-ahpx (nconc st-w-shpz (list (t-w-ahp ca)))
xcalconcs (nconc xcalconcs (1ist ca)) ) ))

o A-current sssssssssssss

..'ala and Wei| thas I-a activates in <10ms and decays over
2o severd umm h:: 73&0:.: @-50 10 -40mv) (32 degreesC). However, 4-AP sensitive tail

332 currents wi

223 time constants of a few kundred ms in reponss 10 hyperpolarizing pulses to -54my suddenly
2 disappear when rfh dﬁ:wp is below ~S4mpv, .uq:‘l that the time constant for inactivation
222 is very rapid for potentials below -S4mvy, i.e. 10 observe any 4-AP-sensitive

22 tail currents negative to -54mv suggests that the 4-AP-sensitive transient currens

22: deactivates very rapidly upon hyperpolerization.”

22s MENU-FOR-a-CURRENT
(defun wenu-for-a-current ()
{tv:choose-variable-values
'((xgbar-a "a-current conductance [micro-S]* :number)
L L]

* X Variable Kinetics *
(sv-half-ax "V/12 for & x (sbe-30,2we-45)" :number)
(sbase-rate-ax “Alpha-base value for a x at V1/2° :number)
(*valence-ax “Valence for a x (sbe3,.67,zws8.5)" :number)
(sgasma-ax “Gemma for a x* :number)
s:buc-m “Ninimus value for time constant [ms]” :number)

* Y Variable Kinetics *
an

(sv-half-ay “V/12 for a y (sbs-70,2ws-55)" :number)
(xbase-rats-ay “Alpha-base value for a y at V1/2° :number)
(svalence-ay “Valence for a y (sbs4,28,zws=8)" :number)
(sgasma-ay "Gasma for a y* :number)

(:buo-tya "Ninisum value for time constant [ms)® :number)

)
(defvars-w-value
(xbase-txa 1.0) (sbase-tya 24.0)
(sv-half-ax -52.0) (sbase-rate-ax 0.2) (svalence-ax 3.5) (zgemma-ax 0.8)
(sv-half-ay -72.0) (sbase-rate-ay 0.0013) {svalence-ay 7) (xgamma-ay 0.4))

222 A-current conductance (microsiemans)

(defvar sgbar-a .50 )

532 X-d-INF

o x-inf is activation variable for A-curresnt (- not confirmed sipmoid)

(defun x-a-inf (volitage)
sSegal and Barker; SOIJ; Rogawski, and Barker - 2%3.67 ,vhelfu-30
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s2Zbicz and Weight - 228.5,vhal fudS
(let ({a (alpha voltage sv-half-ax sbase-rate-ax svalence-ax *gamma-ax)) >
1] (bc:;)\)n;}ugo rv-half-ax rbase-rate-ax ¥valence-ax sgamma-ax)))
(/] a (+a

s Y-A-INF

N y~inf is inactivation variable for A-current

(defun y-a-inf (voltage)

;Scsdald Barker; Segdl, Rogawski, and Barker - 324,28,vhal f=-70

;Z & W=z=dvhalfa-55

{let ((b (alpha voltage =v-half-ay sbase-rate-ay *valence-ay xgamme-gsy))
( (a((bet;)\)n):;ngc sv-half-ay xbase-rate-ay svalence-ay *gamma-ay)))
/7 a (¢ a

e T-X-4
e tau-A-current(activation) - mssc (estimate)
{defvars-w-value (xt-x-a-1 3.0)(st-x-a-2 5.0)(st-y-a-1 5.0))
g:mna:?i:ricmm‘m .)md&rhr Measured from V-holdi 70m: 20
- r; A , re e Ing = -70mpv 1o steps up to -20mv
Z & W Probably more of an estimate, i.e. “< 10ms"®,
{letz ((a (alpha voltage sv-half-ax zbase-rate-ax fvalence-ax Xgamma-ax))
(b (beta voltage sv-half-ax sbase-rate-ax svalence-ax *gamma-ax))
(tx (// xqten-factor-at-30 (+ a b))))
(if (< tx (= xqten-factor-at-30 sbase-txa)) (x xqten-factor-at-30 xbase-txa) tx)))

e T-Y-A
> tau-A-current(inactivation) - mssc
(defun t-y-a (&optional voltage)
:Sosd lcrhr&tdlo’u , and Barker
>Z & W Supposedly very rapid below -54mv(5ms) -~380 ms otherwise.
(letx ((b (alpha voltage xv-half-sy sbase-rate-ay tvalence-ay :gamme-ay))
{a (beta voltage *v-half-ay zbass-rate-ay *valence-ay sgamma-ay))
(ty (/7 zqten-factor-at-30 (+ a b))))
(if (< ty (= xqten-factor-at-30 xbase-tya)) (x xqten-factor-at-30 sbase-tya) ty)))

s A-PLOT
(defvars »x-a-infz sy-a-infz sx-a-effz ty-a-effx
*t-x-a% It-y-a¥ xg-a-infx)
(defun a-plot ()
(menu-for-a-current)
(setq svoltsz nil sy-a-infx nil »x-a-infs nil sy-a-effz nil sx-a-effx nil
xt-x-az nil st-y-ax nil xg-a-infx nil)
(do ((v -100.0 (+ v 0.5)))
((> v 50))
(setq
zy-a-infx (nconc *y-a-infz (list (y-a-inf v)))
*x-a-infs (nconc sx-a-infx (1ist (x-a-inf v)))
sy-a-effx (nconc ty-a-effz (1ist (y-a-eff (y-a-iaf v))))
wx-a-effx (nconc *x-a-effz (1ist (x-a-eff (x-a-inf v))))
*t-x-ax (nconc *t-x-ax (1ist (t-x-a v)))
xt-y-az (nconc xt-y-as (1ist (t-y-a v)))
svoltss (nconc xvoltsz (1ist v))
' 1) xg-a-infs (nconc xg-a-infx (1ist (g-a 1.0 (x-a-inf v)(y-a-inf v))))

22: A-CURRENT
(defun a-current (x-a y-a v)
(% (g-a (aref SOMA gbar-a$) x-a y-a) (- v ze-k)))

50 G-A
(defun g-a ( gbar-a x-a y-a)
(* gbar-a x-a x-a x-a& y-a ))

s2;X-A-EFF, Y-A-EFF

(defun x-a-eff (x-a)
(~ x-a 3.0))

(defun y-a-eff (y-a)
(~ y-a 1.0))

320 Persistant Slow Na current $%%sssssssssssss

332 As reported by French and Gage, 1985

23 For cat mocortical cells, Staftstrom Schwindt Chubb and Crill (1985) report 1
ssr Activates within 2 to 4 msfﬁmr the rangs measured (~-70 to L-JO‘V) nd
22 Activates at about 3-4mV above rest.

(defvar xgbar-nap .01) sMax. conductance [ microS], as measured by French and Gage.

(defvars-w-value (zv-half-napx -49.0) (*alpha-base-rate-napx 0.08)
(xbeta-base-rate-napx 0.04) (svalence-napx 6.0) (sgamma-napx 0.30)(zbase-txnap 1.0))
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222 MENU-FOR-NAP-CURRENT
(defun menu-for-NaP-current ()
(tv:choose-variable-values
*((=gbar-nap "Persistant Na current conductance [microS]” :number)

* X variable Kinetics *
(sv-half-napx “V/12 for Nap x" :number)
(xalpha-base-rate-napx "Alpha/beta-base value for Nap x at Vi/2* :number)
(xvalence-napx “Valence for Nap x* :number)
(*gamma-napx "Gamma for Nap x" :number)
(xbase-txnap "Base value for tau nap x* :number)))
(setq *beta-base-rate-napx s=alpha-base-rate-napx)
(aset xgbar-nap SOMA gbar-nap$))

22 GBAR-NAP
(defun gbar-nap (area) stotal nap-channel conductance (microS)
(x xgbar-nap-dens area 1.0e3)) s(area is in sg-cm)
232 X-NAP-INF
(defun x-nap-inf (voltage)
(let ((a (alpha voltage sv-half-napx *alpha-base-rate-napx svalence-napx *gasma-napx)) s

(b (beta voltage *v-half-napx *alpha-base-rate-napx svalence-napx xgamma-napx)))
(77 a (+ a b))
(et ((midpoint -49.0)(slope 4.5))
s (47 1.0 (+ 1.0 (exp (/7 (- midpoint voltage) siope))))))

22s T-X-NAP
(defun t-x-nap (voltage)
(letz ((a (alpha voltage sv-half-napx xalpha-base-rate-napx svalence-napx Xgamma-napx))
(b (beta voltage *v-half-napx salpha-base-rate-napx svalence-napx *gamma-napx))
(tx (/7 1.0 (+ a b))))
(if (< tx rbase-txnap) sbase-txnap tx)))
(cond ((> voltage 0.0)
(x xgten-factor-at-22 1.0))
((> voltage -24.0)
( (* xqten-factor-at-22 4.0))
t

(z xqten-factor-at-22 40.0)))) ;approx. 18mS - F&G fig.l

N Be g v Wy W,

s2: NAP-CURRENT
(defun nap-current (gbar-nap x-nap v)
(% gbar-nap x-nap (- v xe-na)))

s»; PLOT-NAP
(defvars sx-nap-infx xt-x-naps)
(defun plot-nsp ()
(menu-for-nap-current)
(setq *x-nap-infx nil svoltsz ni} zt-x-napz nil)
(let ((dv .50))
(do ((v -100.0 (+ v dv)))
((> v 50.0))
(setq »x-nap-infx {nconc *x-nap-infx (1ist (x-nap-inf v)))
st-x-naps (nconc xt-x-napx (1ist (t-x-nap v)))
tvoltsx (nconc svoltss (list v)) ) )))

s Fast Na-currens 5ssssssssss

22 Original estimates for the paramaters of the thres conductances are derived from single Na only spike record
(24 degress C) the Na only rz«mn records (27 de, Cand 32 dc!nu . All Qten’s are dertved
252 from a reference of 24 degrees C. Gating particls kinatics have a Qten of 5;

ance Qten'’s are set 10
(defvar xgbar-nal-dens 40.0) sconductance density, mS<P (cm-squared,
(defvar xgbar-na2-dens 1) sconductance density, mSP(cm-square
(defvar sgbar-na3-dens 35.0) sconductance density, m (mm
{defvar sgbar-nad-dens 20.0) sdendrite conductance density, (cm-squared)

(defvars-w-value (sna-choose 3})

(defvars-w-value (sv-half-al -47.0) (sbase-rate-m! 0.3) (svalence-al 20.0) (xgamma-m! 0.50)
(*v-half-h1 -54.0) (sbase-rate-h1 0.003) (svalence-hl 30.0) (*gamma-h1 0.2)

(sv-half-m2 -5.0) (sbase-rate-m2 0.025) (xvalence-m2 8) (zgamma-m2 .95)
(xv-half-h2 -47) (xbase-rate-h2 0.0016667) (svalence-h2 6) (xgamma-hZ 0.2)

(sv-half-m3 -34.0) (xbase-rate-m3 0.6667) (>valence-m3 6.0) (*gamma-m3 0.50)
(sv-half-h3 -42.50) (xbase-rate-h3 0.0023333) (zvalence-h3 30.0) (sgamma-h30.17)

(sbase-tml 0.50)(xbase-th1 2.0) (sbase-tm2 5)(xbase-th2 3.00) (xbase-ta3 0.40)(sbase-th3 3.0))
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332 MENU-FOR-NA-CURRENT
{defun menu-for-Na-current ()
{tvichoose-variable-values
\yxll
(' TXEXTEXTEXRRXSEXTX NA 1 CURRENT EXXXXXEREXXRTXXXEY

(xgbar-nal-dens “Na 1 current conductance density (std =35) [mS/sq-cm])" :number)

* M Variable Kinetics *
an

(sv-half-m1 "V/12 for Na 1 m" :number)

(xbase-rate-m1 "Alpha-base value for Na 1 m at V1/2* :number)
{svalence-m1 *Valence for Na 1 m* :number)

(xgamma-n1 "Gasma for Na 1 m" :number)

(xbase-tml "Minimum value of time constant [msec]” :number)

L 1)

'_H variable Kinetics *
L1

(sv-half-h1 “v/12 for Na 1 h* :number)

(sbase-rate-h1 "Alpha-base value for Na 1 h at V1/2" :number)
(svalence-h1 *Valence for Na 1 h* :number)

(*gamma-h1 “Gamma for Na 1 h® :number)

(*base-th1 "Minimum value of time constant [msec]” :number)

*  xxxeseRxssxxxxsxx NA 2 CURRENT ssxxssexsxsxsssxs®
[T

(:gbur-nnz-dens “Na 2 current conductance density (std =1) [mS/sq-cm]* :number)

* M Variable Kinetics *
L]

(xv-half-m2 *V/12 for Na 2 m" :number)

(sbase-rate-a2 “Alpha-base value for Na 2 m at V1/2* :number)
(svalence-a2 “Valence for Na 2 m" :number)

(*gamma-m2 “Gamma for Na 2 ®" :number)

(sbase-ta2 "Minimum value of time constant [msec]” :number)

L 1]

'.Il Variable Kinetics *
L]

(2v-half-h2 "v/12 for Na 2 h" :number)

{sbase-rate-h2 "Alpha-base value for Na 2 h at V1/2* :number)
(svalence-h2 “valence for Na 2 h* :number)

{sgamma-h2 "Gamma for Na 2 h" :number)

(:bue-thz “Ninimum value of time constant [msec]” :number)

® XXX Rx2X2222X NA 3 CURRENT sxsxsxsxsxxssxsss®
an

'(.:qlm--nns-dans “Na 3 current conductance density (std =35) [mS/sq-cm]® :number)

* ¥ Variable Kinetics *
L L)

(sv-half-m3 "V/12 for Na 3 »* :nusber)

(sbase-rate-a3 "Alpha-base value for Na 3 m at V1/2® :number)
{*valence-m3d "Valence for Na 3 »" :number)

(sgamme-u3 “Samma for Na 3 m" :number)

(:base-m *Minimum value of time constant (msec]” :number)

“ H Variable Kinetics *
ne

(sv-half-h3 “v/12 for Na 3 h" :number)

{sbase-rate-h3 "Alpha-base value for Na 3 h at V1/2* :number)

(svalence-h3 “valence for Na 3 h* :number)

(sgamma-h3 "Gasma for Ma 3 h" :number)

(sbase-th3 *Ninimum value of time constant [msec]” :number))
*:1sbel “"Standard-spike A; Nalstrigger, NaZsslow tail, Nalsrep.”))

2o A-M-NA
(defun s-m-na (flag voltage)
(cond ((and (= flag 1)(= zna-choose 3)) (a-m-nal-hippo voltage ))
((and (= flag 2)(e sna-choose 3)) (a-m-na2-hippo voltage ))
((and (« flag 3)(= xna-choose 3)) (a-m-na3-hippo voltage ))))
s0: B-M-NA
(defun b-m-na (flag voltage)
(cond ({and (= flag 1)(= =na-choose 3)) (b-m-nal-hippo voltage ))
((and (= flag 2)(= =na-choose 3)) (b-m-na2-hippe voltage ))
((and (s flag 3)(= zna-choose 3)) (b-m-na3-hippo voltage ))))
s A-H-NA
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defun a-h-na (flag voltage)

( :c:nd ((and (= fgag 1)(s *na-choose 3)) (a-h-nat-hippo voltage ))
((and (s flag 2)(= sna-choose 3)) (a-h-na2-hippo voltage ))
((and (= flag 3)(s= xna-choose 3)) (a-h-na3-hippo voltage ))))

e B-H-NA
(defun b-h-na (flag voltage)
(cond ({and (s flag 1)(= sna-choose 3)) (b-h-nail-hippo voltage ))
((and (s flag 2)(s sna-choose 3)) (b-h-na2-hippo voltage ))
((and (= flag 3)(s xna-choose 3)) (b-h-na3-hippo voltage ))))
22> M-NA-INF
(defun m-na-inf (flag)
(cond ({= 1 flag) (// xa-m-nal (+ *a-m-nal xb-m-nat)))
((s 2 flag) (/7 xa-m-na2 (+ sa-m-na2 xb-m-na2)))
((= 3 flag) (// sa-m-na3 (+ *a-m-na3 xb-m-na3)))))
s> T-M-NA
(defun t-m-na (flag)
(Tet ((tm
(cond ((s 1 flag) (// 1.0  (+ *a-m-nal xb-m-nal)))
((= 2 flag) (/7 1.0 (+ *a-m-na2 sb-m-na2)))
((= 3 flag) (/7 1.0 (+ sa-m-na3 tb-m-na3))))))
(x xqten-factor-at-28 (cond ((= 1 flag) (if (< tm xbase-tmi) xbase-tml tm))
. ((= 2 flag) (if (< tm sbase-tm2) xbase-tm2 tm))
((= 3 flag) (if (< tm xbase-tm3) xbase-tmd tm))))))

so; H-NA-INF
(defun h-na-inf (flag)
(cond ((= 1 flag) (// *a-h-nal (+ xa-h-nal xb-h-nal)))
((= 2 flag) (// *a-h-na2 (+ xa-h-na2 *b-h-an)}}

((= 3 flag) (// sa-h-na3 (+ *a-h-na3 xb-h-na3)))))
2o T-H-NA
(defun t-h-na (flag)
(let ((th
(cond ((= 1 flag) (/7 1.0 (+ *a-h-nal =b-h-nal)))
((= 2 flag) (/7 1.0 (+ xa-h-na2 *b-h-na2)))
((= 3 flag) (/7 1.0 (+ xa-h-pa3 sb-h-na3))))))
(x xqten-factor-at-2& (cond ((= 1 flag) (if (< th sbase-th1) xbase-th! th))
((= 2 flag) (if (< th sbase-th2) xbase-th2 th))
((= 3 flag) (if (< th zbase-th3) sxbase-th3 th))))))
s2: GBAR-NA
(defun gbar-na (flag area) stotal na~channel conductance (microS)
(x xqten-g-28 (cond ((= 1 flag) (x xgbar-nal-dens area 1.0e3))
((s 2 flag) (= zgbar-na2-dens area 1.0e3))
((= 3 flag) (x xgbar-na3-dens area 1.0e3)))))
22 GBAR-NAD
(defun gbar-nad (area) Jtotad dendrite ne-channel conductance (microS)

(% xgbar-nad-dens area 1.0e3))

»;; WHEN EDITING POWERS OF GATING PARTICLES, ALSO EDIT APPROPRIATE M-EFF AND H-EFF FUNCTIONS
»'s NAI-CURRENT
(defun nal-current (gbar-na m-na h-na v) (x (g-nal gbar-na m-na h-na) (- v xe-na)))

52 G-NAl
(defun g-nal (gbar-na m-na h-na) (= gbar-na wm-na h-na h-na))

:3: M-EFF-NAl, H-EFF-NAl

(defun m-eff-nal (m-na) (~ m-na 1.0))

(defun h-eff-nal (h-na) (~ h-na 2.0))

s NA2

(defun na2-current (gbar-na m-na h-na v) (zx (g-na2 gbar-na m-na h-na) (- v ze-ma)))
w5 G-NAZ

(defun g-na2 (gbar-na m-na h-na ) (x gbar-na wm-na h-na))

s:s M-EFF-NA2, H-EFF-NA2

(defun m-eff-na2 (m-na) (~ m-na 1.0))
(defun h-eff-na2 (h-na) (~ h-na 1.0))

»2: NAI-CURRENT
(defun na3-current (gbar-na m-na h-na v) (x (g-na3 gbar-na m-na h-na) (- v xe-na)))

. G-NA3
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(defun g-na3 (gbar-na m-na h-na) (x gbar-na ®-na m-na h-na h-na h-na ))

223 M-EFF-NA3, H-EFF-NA3
(defun m-eff-na3 (m-na) (~ m-na 2.0))
(defun h-eff-na3 (h-na) (~ h-na 3.0))

22: Genaric Na Kinetics *2%%%3% Bagic functions are from Traub et dl,
(defvar xe-ref-na 70.0)

(defvar faraday 9.65e4) 9Omal
(defvar temperature! 298.0) K Kelvin
(defvar R 8.31) Somol* K

222 A-M-NAI-HIPPO
(defun a-m-nal-hippo (voltage)
(alpha voltage xv-half-m1 xbase-rate-ml tvalence-m! sgamma-m1l))

22 B-M-NAl-HIPPO
(defun b-m-nal-hippo (voltage)
(beta voltage sv-haif-m1 xbase-rate-ml *valence-m! *gamma-ml))

2s; A-H-NAI-HIPPO
(defun a-h-nal-hippo (voltage)
(beta voitage sv-half-h1 tbase-rate-hi1 xvalence-hi xgamme-h1))

222 B-B-NAI-HIPPO
(defun b-h-nai-hippo (voltage)
(alpha voltage xv-half-h1 xbase-rate-h1 xvalence-h1 xgasma-ht))

202 A-M-NA2-HIPPO
(defun a-m-na2-hippo (voltage)
(alpha voltage sv-half-m2 xbase-rats-m2 xvalence-m2 xgamma-m2))

2:; B-M-NA2-HIPPO
(defun b-m-na2-hippo (voltage)
(beta voltage sv-half-m2 xbase-rate-m2 >valence-m2 xgasma-m2))

222 A-H-NA2-HIPPO
(defun a-h-na2-hippo (voltage)
(beta voltage *v-half-h2 xbase-rate-h2 tvalence-h2 xgamma-h2))

222 B-H-NA2-HIPPO
(defun b-h-na2-hippo (voltage)
(alpha voltage sv-half-h2 sbase-rate-h2 svalence-h2 xgamme-h2))

22; A-M-NA3-HIPPO
(defun a-m-na3-hippo (voltage)
(alpha volitage xv-half-m3 sbase-rate-a3 svalence-a3 *gamma-m3))

s0; B-M-NA3-HIPPO
(defun b-m-na3-hippo (voltage)
(beta voltage sv-half-m3 sbase-rate-a3 svalence-a3 rgamms-a3))

222 A-H-NA3-HIPPO
(defun a-h-na3-hippo (voltage)
(beta voltage sv-half-h3 sbase-rate-h3 svalence-h3 zgamma-h3))

22; B-H-NA3-HIPPO
(defun b-h-na3-hippo (voltage)
(alpha voltage sv-half-h3 sbase-rate-h3 svalence-h3 sgamma-h3))

22; NAI-PLOT, NA2-PLOT, NA3-PLOT
(defvars mm-infix st-hix sh-inflx xt-mis
- inf2% xt-h2x sh-inf2x st-m2x
m-inf3z sxt-h3z sh-infiz zt-m3zx
svoltsx xg-nal-infr xg-na2-infx xg-na3-infx
m-effis xh-effix ma-eff2z sh-eff2z m-eff3sx sh-eff3s)

(defun nal-plot ()
(menu-for-na-current)
(setq *m-inf1x nil xt-mi1x ni) sh-infix nil st-hiz nil zg-nal-infx nil xvoltss nil sh-eff1z nil sm-eff1sx nil)
(dox ((v -100.0 (+ v .50))
(m)(h))
((> v 50.0))
(setg *a-m-nal (a-m-na 1 v) sb-m-nal (b-m-na 1 v)
sg-h-nal (a-h-ne 1 v) xb-h-nat (b-h-na 1 v)
u (m-na-inf 1) h (h-na-inf 1)
svoltsx (nconc svoltsx (list v))
m-inf1x (nconc mm-infix (1ist m)) *h-inf1x (nconc sh-infix (1ist h))
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m-eff1x (nconc sm-effix (1ist (m-eff-nal m))) th-effix (nconc sh-effix (1ist (h-eff-nat h)))
sg-natl-infz (nconc zg-nal-infz (1ist (g-nal 1.0 (m-na-inf 1){h-na-inf 1))))
st-alz (nconc st-mix (1ist (t-m-na 1))) =t-h1x (nconc *t-hix (1ist (t-h-na 1))))))

(defun na2-plot ()
(menu-for-na-current)
(setq ma-1nf2s nil tt-ﬂt nil sh-inf2z nil 2t-h2x nil =g-na2-infz nil svoltss nil sh-eff2s nil sm-eff2s nil)
(dos ((v -100.0 (+ v .50))
(m)(h))
{(> v 50.0))
(setq xa-m-na2 {a-m-na 2 v) sb-m-na2 (b-m-na 2 v)
ta-h-na2 (a-h-na 2 v) zh-h-na2 (b-h-na 2 v)
a (m-na-inf 2) h (h-na-inf 2)
*voltsz (nconc *voltsz (1ist v))
sm-1nf22 (nconc sm-inf2x (1ist m)) sh-inf2x (nconc sh-inf2x (1ist h))
m-eff2x (nconc sm-eff2x (1ist (m-aff-na2 m))) xh-eff2x (nconc sh-eff2s (1ist (h-eff-na2 h)))
xg-na2-infs (nconc xg-na2-infs (1ist (g-na2 2.0 (m-na-inf 2)(h-na-inf 2))))
st-m22 (nconc st-m2x (list (t-m-na 2))) *t-h2x {nconc st-h2x (1ist (t-h-na 2))))))

(defun na3-plot ()
(menu-for-na-current)
(setq =m-inf3x nil st-m3s nﬂ sh=1nf3z nil st-h3zx nil 2g-na3-infz nil zvoltss nil sh-eff3s nil wm-eff3x nil)
(dox ((v -100.0 (+ v .50))
(m)(h))
((> v 50.0))
(setq sa-w-na3d (a-m-na 3 v) tb-m-na3 (b-m-na 3 v)
sa-h-na3 (a-h-na 3 v) sb-h-na3 (b-h-na 3 v)
a (m-na-inf 3) h (h-na-inf 3)
svoltsz (nconc *voltsz (list v))
m=-inf3z (nconc sm-infiz (1ist m)) sh-inf3x (nconc =h-inf3zx (1ist h))

m-eff3% {nconc mm-effdx (1ist (m-eff-nad m))) sh-effi3s (nconc sh-eff3x (1ist (h-eff-na3 h)))
xg-na3-infs (nconc sg-na3d-infx (1ist (g-na3 3.0 (m-na-inf 3)(h-na-inf 3))))
t-m3x (nconc *t-m3% (1ist (t-m-na 3))) xt-h3x (nconc st-h3x (list (t-h-na 3))))))

23> SOMATIC AND DENDRITIC Ca-CURRENT sosssssssss

(defvar sgbar-Ca-dens 50.0) sconductence density, mS(cm- -u

(defvar sgbar-Cad-dens 20.0) sdendrite conductance density, mSO(cm-squared)
(defvar sbase-tsca 2.0)

(defvar sbase-twca 5.0)
(defvars-w-value (3v-half-s -24.0) (sbase-rate-s .10) (svalence-s &.0) (=gamma-s 0.5)
(sv-half-w -35.0) (sbase-rate-w 0.001) (zvalence-w 12.0) (xgasma-w 0.2))

(defvar xgbar-ca

252 MENU-FOR-CA-CURRENT
(defun menu-for-Ca-current ()
(tv:choose-variable-values

( s:aw-u-m “Ca current conductance density [mS/3q-cm]® :number)
:_s Varisbls Kinetics *

(sv-half-s *v/12 for Ca s" :number)

(sbase-rats-s “"Alpha-base value for Ca s at V1/2" :number)
(svalence-s “Valence for Ca s° :number)

(*gemma-s “Gemma for Ca s° :number)

S:bm-ucn “Hinisum value of activation time constant [(msec]” :number)

:-N Varisbls Kinetics *

(sv-half-w “V/12 for Ca w" :number)
(sbase-rate-w “Alpha-base valus for Ca w at V1/2° :number

:documentation “Increase makes gating particle faster®)
(svalence-w “Valence for Ca w* :number)

(*gamma-w “Gamma for Ca w" :number)

(sbase-twca *Ninimum value of insctivation time constant [msec]” :number)))
(seta zgbar-ca (gbar-ca (surf-area tsoma-radius))))

335 K1-S-CA
(defun ki-s-ca (voltage)
(alpha voltage sv-half-s zbase-rats-s svalence-s zgemma-s})
333 K2-8-CA
(defun k2-s-ca (voltage)
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(beta voltage sv-half-s thase-rate-s rvalence-s sgamma-s))

i35 A-N-CA
(defun a-w-ca (voltage)
(beta voitage sv-half-w shase-rate-w svalence-w sgamma-w))

i3s3 B-W-CA
(defun b-w-ca (voltage)
(alpha voltage sv-half-w sbase-rate-w svalencs-w xgamme-w))

222 MENU-FOR-CAD-CURRENT
(defun menu-for-Cad-current (DENDRITE-ARRAY segment)
(let ((1abel (format nil "Ca current conductance density in ~A segwent ~2d (wS//sq-cm}”
(aref DENDRITE-ARRAY 0 label$) (+ 1 segment))))
(tv:choose-variable-values
*((sgbar-cad-dens ,1abe) :number)))
(aset (= (aref DENORITE-ARRAY segment length$) 3.14150 (aref DENORITE-ARRAY segment diameters)
1.0e-8 xgbar-cad-dens)
DENORITE-ARRAY segment gbar-ca$)))

o2 GBARCA
(defun gbar-Ca (area) srotal Ca-channel conductance (microS)
(% zgbar-Ca-dens area 1.0e3))

222 GBAR-CAD
(defun gbar-Cad (area) s10tal dendrite Ca-channel conductance (microS)
(x xgbar-Cad-dens area 1.0e3))

500 S-CA-INF
(defun s-ca-inf (v)
(”. (k1-s-ca v) (¢ (ki-s-ca v)(k2-s-ca v))))

200 1T-S-CA
(defun t-s-ca (v)
(et  ((tau (/7 1.0 (¢ (ki-s-ca v)(k2-s-ca v)))))
(x zqten-factor-at-32 (1f (< tau xbase-tsca) shase-tsca tau))))

s0; W-CA-INP
(defun w-ca-inf (v)
(/7 (a-w=ca v) (¢ (a-w-ca v)(b-w-ca v))))

s T-W-CA
(defun t-w-ca (v)
(let ((tau (/7 1.0 (¢ (a-w-ca v)(b-w-ca v)))))
(% xqten-factor-at-32 (if (< tau sbase-twca) sbase-twca tau))))

oo
[

CA-CURRENT
(defun ca-current (gbar-ca s-ca w-ca v)
(x (g-ca gbar-ca s-ca w-ca)
(- v (e-ca))))

(defun g-ca (gbar-ca s-ca w-ca)
(if (< w-ca 0.001) (setq w-ca 0.0))
(= gbar-Ca s-ca S-C& W-~CA w-Ca W-C8 W-ca))

22:8-CA-BFF, W-CA-EFF
(defun s-ca-eff (s-ca)
(4f (< s-ca 0.001) 0.0
(~ s-ca 2.0)))
(defun w-ca-eff (w-ca)
(if (< w-ca 0.001) 0.0
(~ weca 4.0)))

2o CA-PLOT
(defvars ss-ca-infsz sw-ca-infz xg-ca-effs sw-ca-effx
t-3-Cas XL-w-Cas xg-ca-infs)
(defun ca-plot ()
{menu-for-ca-current)
(setq svoltss nil sw-ca-infz nil 3s-ca-infz nil ww-ca-effz nil xs-ca-effs nil
st-g-cat nil st-w-cat nil sg-cs-infs nil)
(do ((v -100.0 (+ v 0.5)))
((> v 50))
(setq
sw-ca-infs (nconc sw-ca-infx (1ist (w-ca-inf v)))
zs-ca-infs (nconc szs-ca-infx (list (s-ca-inf v)))
xw-ca-effs (nconc sw-ca-effs (1ist (w-ca-eff (w-ca-inf v))))
ss-ca-effe (nconc ss-ca-effzx (1ist (s-ca-eff (s-ca-inf v))))
xt-s-cax (nconc st-s-caz (list (t-s-ca v)))
st-w-cas (nconc st-w-cax (list (t-w-ca v)))
svoltsx (nconc svoltsz (1ist v))
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2g-ca-infs (nconc xg-ca-infx (list (g-ca 1.0 (s-ca-inf v)(w-ca-inf v)))))))

223 Persistant Calctum Current
33+ Caslow current as reported by Joknston, Hablits, and Wilson.

h-al dertving the IV curves of JHAW, it is determined that this currens is dus 10 a non-inactivating inward
23> current with & reversl potential around OmV. Thus it is unclear as to what species are actually comprising this

Jos current.

222 B-CAS Bmpirically-derived reversal potential for the so-called slow “Ca” currem.
(defvar se-cas 0)

232 conductance in micro-siemens
{defvar sgbar-cas .080)

222 T-X-CAS Time constant for activation - ranges between 50 and 100 s,
(defun t-x-cas (voltage)
; ;o:c;n voltage)

222 X-CAS-INP Steady state value for the activation variable.
(defun x-cas-inf (vol )
{let ((midpoint -30.0)(steepness 3.60))
(77 1.0 (+ 1.0 (exp (// (- midpoint voltage) steepness))))))

222 CAS-CURRENT
(defun cas-current (x-cas voltage)
(x sgbar-cas x-cas (- voltage ze-cas)))

20 CAS-PLOT
(defvars =x-cas-infx st-x-casx)
(defun cas-plot ()

(setq *x-cas-infx nil x*volts® nil sxt-x-casz nil)

(do ((v -100.0 (+ v 0.5)))

((> v 50.0))
(setq *x-cas-infzx (nconc *x-cas-infs (1ist (x-cas-inf v)))
B xt-x-cas¥ (nconc =t-x-casx (1ist (t-x-cas v)))
*voltsx (nconc svoltsz (list v)) ) ))

250 Ca++SHELL CONCENTRATION AND Ca++REVERSAL POTENTIAL SYSTEM

::g.':lmidbnmﬂucmﬂauﬂmuofc-munlnuunﬂ”lm:hd

222 membrane. nt;?&ld :‘lll include tl;‘cmrt:frzn of the tot c«mt{‘m ndmla:). :ud the first
s3> order removal ++via some combination I fsion or binding expressed

o0 conssant. This treatment is modelled after Traub and Liinas, « single rete
322 New version with two concentric shells -

.'.'.: [ Cavj sh-dot = {K ® (mm of Casveurrents)} - { ([ Cave]sh - [ Cave]h2) D t-ca-come }

::: [Cavjshd-dot= { ([Cas]sh2- [ Cavijsh) D t-caconc }-{ [ Cave]sh2 D 12-caconc }

:ler ::n;agnz)’.ﬂlﬂ) cc:lumdray . .
ar 3 Gas constant — (Volss*Coulombs)D(Degreeskalvin®mola)
(defvar xcors-conc 50.0e-6) omM
(defvar zca-conc-shelli-rest 50.0e-6) i
(defvar xca-conc-shell2-rest 50.0¢-8)
(defvars-w-value (sshell-depth 0.25) smicrons
(score-volume (= 4.0 3.1415 rsoma-radius ssoma-redius ssome-redius 1.0e-12)) ,volume ofcore in mi

(sFicks-shell-shell 2.00e-11) +Modifled Fick’s constans between o
(sFicks-shall-core §.0e-7) :M:wummumh
(*alpha-shell 0.001)) . sFraction of soma assigned 10 shell 1

;(defvars-w-value (xshell1-vol
(s sshell-depth 1.33333 3.1415 1.0e-12
ssoma-radius ssome-radius zshelll-shell2-ratio)) ;shell 1 volume in mi
(sshell12-vol
(= sshell-depth 1.33333 3,1415 1.0e-12
xsome-radius ssoms-radius (- 1.0 sshelli-shell2-ratio)))) . shell 2 vouime in mi

{defun ca-conc-shell-dot (total-ca-current shelll-conc shell2-conc) +New version for two shells,
(% zdt (« (/7 (= -1.0 total-ca-current 1.0e-8)
(x 2.0 =faraday

LIS P N
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sshell-depth 1.0e-4
ssoma-radius *soma-radius 1.3333 3.14159 1.0e-8 zalpha-shell))
(77 (= sFicks-shell-shell (- shell2-conc shelll-conc ))
(s sshall-depth 1.0e-4
ssoma-radius ssoma-radius 1.3333 3.14159 1.0e-8 xalpha-shell))
(/7 (= =Ficks-shell-core (- score-conc shelli-conc))
(x sshell-depth 1.0e-4)))))

(defun ca-conc-shell2-dot (shell1l-conc shell2-conc)
(% sdt (+ (/77 (= sFicks-shell-shell (- shelll-conc shell2-conc ))
(z xshell-depth 1.0e-8
ssoma-radius rsome-radius 1.3333 3.14159 1.0e-8 (- 1.0 =alpha-shell)))
(/7 (= sFicks-shell-core (- xcore-conc shell2-conc))
(= sshell-depth 1.0e-4)))))

(defun e-ca ()
(= .04299 (+ xtemperature 273.0) (log (// sca-conc-extra (aref SOMA ca-conc-shell$)))))

2 PLOT-IV

(defun plot-iv ()
(setq ziv-currents nil xiv-voltagez nil)
(meny-for-some-geometry-and-passive-components)
(menu-for-some-currents)
(do ((voltage -90.0 (+ voltage 0.5)))((> voltage 50.0))
(let ((voltage-index (+ 1000 (fixr (z 10 voltage)))))
(setq ziv-currents
o YaE (o Cif 2include-dr (dr (aret x-dr-tnf-array voltage-index)
st (e xinc ~current (aref x-dr-inf-array voltage-index) 1.0
steref. vo!:am) ll;d’
(if xinclude-c (c-current (aref x-c-inf-array voltage-index)
(aref y-c-inf-array voltage-index) voltags) 0)
(if xinclude-q (= (aref SOMA gbar-q$)(aref x-q-inf-array voltage-index)(- voltage te-k)

(1f sinclude-n (m-current (aref x-m-inf-array voltage-index) voltage) 0 )
(1f xinclude-a (a-current (aref x-a-inf-array voltage-index)
(aref y-a-inf-array vol index) voltage) 0)

{17 szinclude-natl {nal-current (aref SOMA gbar-nais$)(aref m-nal-inf-array voltage-index)
ul"cf h;n:;-inf-mny voltage-index)
voltage

(1f zinclude-na2 (na2-current (arsf SOMA gbar-na2$)(aref m-na2-inf-array voltage-index)
(!ll'::' h;ng-inf—moy voltage-index) .
voltage

{if zinclude-nad (nad-current (aref SOMA gbar-na3$){arsf m-na3-inf-array voltage-index)
(u'-of n;ng-inf-may voltage-index)
voltage

(1f zinclude-nap (nap-current (aref SOMA gbar-nap$) (aref x-nap-inf-array voltage-index

voltage) 0 )
(17 xinclude-ca (ca-current (aref SOMA gbar-ca$)(aref s-ca-inf-arrsy voltage-index)
(aref w-ca-inf-array volugc—lndu) voltage) 0 )
{1f sinclude-cas (cas-current (aref x-cas-inf-array voltage-index) voitage) 0)
(1-current voltage)
(17 xinclude-shunt (= xg-electrods voltage) 0)
{- sf-constant-injection))))
siv-voltagez (nconc siv-voltagesz (1ist voltage)) ) )))

) 0.0)
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