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Abstract

Recently Han and Lou [18] proposed a highly parallelizable decomposition algorithm for convex
programming involving strongly convex costs. We show in this paper that their algorithm, as well

as the method of multipliers [17, 19, 34] and the dual gradient method [8, 40], are special cases of a
certain multiplier method for separable convex programming. This multiplier method is similar to

the alternating direction method of multipliers [10, 15] but uses both Lagrangian and augmented

Lagrangian functions. We also apply this method to symmetric linear complementarity problems to

obtain a new class of matrix splitting algorithms. Finally, we show that this method is itself a dual

application of an algorithm of Gabay [12] for finding a zero of the sum of two maximal monotone

operators. We give an extension of Gabay's algorithm that allows dynamic stepsizes and show

that, under certain conditions, it has a linear rate of convergence. We also apply this algorithm to

variational inequalities.
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1. Introduction

One of the most important applications of convex duality theory is in decomposition

algorithms for solving problems with special structure. A canonical example is the following

separable convex programming problem

Minimize f(x) + g(z) (1.1)

Subject to Ax + Bz = b, (1.2)

where f:9n-*(-oo,oo] and g:9me(-oooo] are given convex functions, A is a given rxn matrix, B is

a given rxm matrix, and b is a given vector in 9tr. In our notation, all vectors are column vectors

and superscript T denotes the transpose. We will denote by (.,-) the usual Euclidean inner product

and 1111 its induced norm, i.e. 11x112 = (x,x).

By attaching a Lagrange multiplier vector pe 9tr to the constraints (1.2), the problem (1.1)

can be decomposed into two independent problems involving, respectively, x and z. One algorithm

based on this dual approach, proposed by Uzawa [40] and others, operates by successively

minimizing the Lagrangian function

L(x,z,p) = f(x) + g(z) + (p,b-Ax-Bz).

with respect to x and z (with p fixed) and then updating the multiplier by the iteration

p := p + c(b - Ax - Bz),

where c is a positive stepsize. [We assume for the sake of discussion that the minimum above is

attained.] It can be shown that this algorithm is convergent if both f and g are strictly convex and c

is chosen to be sufficiently small. [In this case the dual functional defined by q(p) =

minx,z L(x,z,p) is differentiable and this algorithm can be viewed as a gradient method for

maximizing q.]

Unfortunately, for many problems of interest, the function f may be strictly convex but not

g. This is particularly the case when a problem is transformed in a way to bring about a structure

that is favorable for decomposition (see §4 for an example). A solution to this difficulty is

suggested by a recent work of Han and Lou. In [18] they proposed a decomposition algorithm for

minimizing a strongly convex function over the intersection of a finite number of closed convex
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sets. It can be shown, by introducing auxiliary variables, that this convex program is a special case

of (1.1). Moreover, it can be shown (see §4) that their algorithm is similar to the dual gradient

method above, except for the key difference that the Lagrangian function is replaced by an

augmented Lagrangian function when the minimization is taken with respect to z.

In this paper we generalize the Han and Lou algorithm to solve the general problem (1.1).

[The main interest here is in problems where f is strongly convex and separable but g is not strictly

convex.] At each iteration of our algorithm, the Lagrangian L(x,z,p) is first minimized with respect

to x (with z and p held fixed), and then the augmented Lagrangian

Lc(x,z,p) = L(x,z,p) + cllAx+Bz-bll2 /2

is minimized with respect to z (with x and p held fixed). Finally the multiplier is updated according

to the usual augmented Lagrangian iteration

p := p + c(b - Ax - Bz)

and the process is repeated. This algorithm, which we call alternating minimization algorithm, has

the nice feature that, if B has full column rank, then both minimizations involve strongly convex

objective functions. Moreover, if f is separable (in addition to being strongly convex), the first
minimization is also separable - a feature that makes this algorithm particularly suitable for

problems where f is separable and g is such that the minimization of the augmented Lagrangian with

respect to z is easily carried out. The alternating minimization algorithm is a very useful method for

decomposition. Indeed, as we shall see, it contains as special cases (in addition to the algorithm of

Han and Lou) the dual gradient method, the method of multipliers, and a class of matrix splitting

algorithms for symmetric linear complementarity problems.

Our method should be contrasted with the alternating direction method of multipliers,

proposed by Gabay-Mercier [10], Glowinski-Marrocco [15] and extended by Gabay [11] (see also

[2, 7, 9, 14, 39]), which is another multiplier method that alternates between minimization with

respect to x and minimization with respect to z. The only difference between the two methods is

that at each iteration of the alternating direction method of multipliers, x is updated by minimizing

the augmented Lagrangian rather than the Lagrangian function as in our method. The quadratic term

of the augmented Lagrangian affects adversely the decomposition of the minimization with respect

to x based on separability properties of f, and this is an advantage for our method. On the other

hand, in contrast with the alternating direction method of multipliers, the penalty parameter c in our
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method must be chosen from a restricted range (as will be seen later), usually through trial and
error.

It turns out however that the alternating minimization algorithm is itself a special case of an
algorithm analyzed by Gabay [12] for finding a zero of the sum of two maximal monotone
operators. [Such operators have been studied extensively because of their role in convex analysis
and certain partial differential equations. Finding a zero of the sum of these operators is a
fundamental problem (see also [3, 6, 38, 23]).] Let I:9tr---)9r and P:9tr---9r denote two arbitrary
maximal monotone operators and suppose that 11-l is also strongly monotone. The algorithm of
Gabay computes a zero of nI + t by successively applying the iteration

p := [I+cY]-l[I-cl]p,

where c is some fixed, sufficiently small stepsize. We will give a proof of convergence for the
above algorithm - different from the one given by Gabay - that also provides an estimate of the rate
of convergence and does not require the stepsizes to be fixed. Gabay also considered applications
of his algorithm to decomposition, but limited his applications to the case where either I or Y-1 is

the subdifferential of the indicator function for a convex set (an example is the gradient projection
method of Goldstein [16]).

X This paper is organized as follows: in §2 we describe the general algorithm for finding a
zero of the sum of two maximal monotone operators and analyze its convergence properties. In §3
we apply this algorithm to the separable convex program (1.1) to derive the alternating minimization
algorithm. In §4 and §5 we show that the algorithm of Han and Lou, the method of multipliers,
and the dual gradient method can be obtained as special cases of the alternating minimization
algorithm. In §6 we apply the alternating minimization algorithm to the symmetric linear
complementarity problem to obtain a new class of matrix splitting algorithms. In §7 we apply the
general algorithm of §2 to variational inequalities.

Before preceding to the next section, let us familiarize ourselves with the notation that is
used throughout this paper. For any real symmetric matrix E, we denote by p(E) the spectral radius
of E, i.e. p(E) is the square root of the largest eigenvalue of ETE. For any set fQ, we denote by
6(-12) the indicator function for QŽ, i.e. B(xIl2) is zero if xe Q and is oo otherwise. For any convex
function h:91h-(-oo,oo] and any xe 9Rh, we denote by ah(x) the subdifferential of h at x. A

multifunction T:91h--9th is said to be a monotone operator if



(y-y',x-x') > 0 whenever ye T(x), y'e T(x').

It is said to be maximal monotone if, in addition, the graph

(x,y)e 9IhX9}h I yE T(x) )

is not properly contained in the graph of any other monotone operator T':9h-*91h. We denote by

T-1 the inverse of T, i.e.

(T-l)(y) = I xe 59h I ye T(x) }, V ye9th.

It is easily seen from symmetry that the inverse of a maximal monotone operator is also a maximal

monotone operator. For any monotone operator T, we will mean by the modulus of T the largest
(nonnegative) scalar a such that

(y-y',x-x') 2 aolx-x'l12 whenever ye T(x), y'E T(x').

We say that T is strongly monotone if its modulus is positive.

2. A Splitting Algorithm for the Sum of Two Maximal Monotone Operators

In this section we consider the general problem of finding a zero of the sum of two maximal

monotone operators, with the inverse of one of them being strongly monotone. We describe an

extension of the algorithm by Gabay [12] for solving this problem and analyze its convergence. A

number of applications of this algorithm will be given in subsequent sections.

Let (I):9In--9 n and r:9m--)STm be two arbitrary maximal monotone operators. Let A be a
rxn matrix, B be a rxm matrix, and b be a vector in 9ir. Consider the problem of finding a p*e 9tr

satisfying

be AQ((ATp*) + Br(BTp*). (2.1)

This problem can be shown to contain as a special case the convex program (1.1) (see discussion in

§3). We make the following standing assumption:



6

Assumption A:
(a) Eq. (2.1) has a solution.
(b) (D-1 is strongly monotone with modulus a.

Notice that Assumption A (b) implies that 4 1 --aI is a maximal monotone operator. Hence a result
of Minty [27] says that C1 is single valued and defined on all of 9tr. Furthermore, the value of
·((ATp*) is the same for all solutions p* of (2.1). To see the latter, note that if both p and p* are
solutions of (2.1), then there exists ye F(BTp) such that b = A4((ATp) + By and there exists
<Ye F(BTp *) such that b = A()(ATp*) + By*. Hence

0 = (<((AI )-4(ATp*),ATp-ATp*) + _-y*,BTp-BTp*)
o ;ll(ATp)--D(ATp*)ll2,

where the inequality follows from the monotonicity of r and the fact that 'l1 has modulus a. Since
a > 0, we have cI(ATp) = ~(ATp*). We will denote by x* the vector 4D(ATp*).

We describe below our algorithm for solving (2.1). This algorithm, for any starting
multiplier p(O)e 91r, generates a sequence of three-tuples { (x(t),z(t),p(t))) using the following

iteration:

x(t) = D(ATp(t)), (2.2a)
z(t)e r(BT[p(t) - c(t)(Ax(t)+Bz(t)-b)]), (2.2b)
p(t+1) = p(t) + c(t)(b-Ax(t)-Bz(t)). (2.2c)

The stepsizes (c(t)}t=0,1 ... is any sequence of scalars satisfying

e < c(t) < 2a/p(ATA)-e, t = 0,1,..., (2.2d)

where e is any fixed positive scalar not exceeding o/p(ATA). We will show that z(t) is well defined
below.

In [12] Gabay proposed an algorithm for finding a zero of the sum of two maximal
monotone operators 1I and W, with Il-I being strongly monotone. In his algorithm, a sequence
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{p(t)) is generated by applying a forward Euler step for nI followed by a backward Euler step for Pf

at each iteration, i.e.

p(t+l) = [I+c'P]-l[I-crl]p(t). (2.3)

Gabay showed that, for any fixed positive c less than twice the modulus of n-1, the sequence (p(t) }

generated by (2.3) converges to a zero of rI + '. We claim that the algorithm (2.2a)-(2.2d) is in

fact an extension of Gabay's algorithm. To see this, we use (2.2c) to replace (2.2b) by

[p(t)-p(t+l)]/c(t) + b - Ax(t)e BF(BTp(t+l)).

Combining this with (2.2a), we obtain that

p(t+l) = [I+c(t)B7BT]-l(b+ [I-c(t)A)AT]p(t)), (2.4)

which, for c(t) fixed, b = 0, and A and B both being rxr identity matrices, is identical to the iteration

(2.3). Algorithms such as this, where a step for ArIAT alternates with a step for BrBT, are called

(in the terminology of Lions-Mercier [23]) splitting algorithms.

To see that z(t) given by (2.2b) is well defined, note first that BrBT is itself a maximal

monotone operator. Hence, by a result of Minty [27], the proximal mapping [I+c(t)BEBT]--I is

single valued and defined on all of 9Rr, and the iteration (2.4) is well defined. This in turn implies

that F(BTp(t+l)) is nonempty and therefore z(t) is well defined.

The main difference between Gabay's algorithm and the iteration (2.2a)-(2.2d) is that the

latter allows the stepsize c(t) to vary with t. Below we present our convergence results for the

iteration (2.2a)-(2.2d) (whose proof we give in Appendix A). These results sharpen those given by

Gabay (cf. [12], Theorem 6.1).

Proposition 1 The sequences {x(t)), {z(t)}, {p(t)) generated by (2.2a)-(2.2d) satisfy:

(a) x(t) -, x*.

(b) Bz(t) -e b-Ax*.

(c) p(t) -- a solution of (2.1).

(d) Let 8 and rl denote the modulus of AOAT and BITBT respectively. Then, for t = 1, 2, ... ,
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e2 p(ATA)llx(t)-x*112 + e211Bz(t)+Ax*-bll 2 < IIp(t)-p-11 2

< [(1-82e2)/(l+,q2e2)]Up(t-1)-p lp112

where (cf. part (c)) pa denotes the unique limit point of [p(t)).

Notice that Proposition 1 (b) implies that if B has full row rank, then (z(t)) converges. Proposition
1 (d) implies that if either AOAT or BJ7BT is strongly monotone, then the rate of convergence of the

sequence { (x(t),z(t),p(t))) is linear. The proof of Proposition 1 is based on an argument used by
Glowinski and Le Tallec [14] for the alternating direction method of multipliers (also see [2],
§3.4.4). Also, in practice, exact solutions of the Eq. (2.2a) and (2.2b) are difficult to obtain. It can
be seen from (3.3a)-(3.3b) and (3.4) that Proposition 1 holds even if the solutions of (2.2a) and
(2.2b) are computed inexactly. Unfortunately the amount of inexactness allowable cannot be easily
estimated. As a final remark, the results in this section also extend directly to problems defined on a
Hilbert space.

3. Application to Separable Convex Programming: the Alternating Minimization Algorithm

' Consider again the separable convex program (1.1)

Minimize f(x) + g(z) (3.1)
Subject to Ax + Bz = b,

where f:9nn-.(-o,oo], g:91m÷(.-,o] are given convex functions, A is a rxn matrix, B is a rxm
matrix, and b is a vector in 91r. In this section we will derive the alternating minimization algorithm
for solving (3.1) by applying the iteration (2.2a)-(2.2d). We make the following assumptions
regarding (3.1):

Assumption B:
(a) f and g are convex lower semicontinuous functions.
(b) f is strongly convex with modulus a > 0, i.e., for any ke (0,1),

Xf(x) + (1-%)f(y) - f(Xx+(l-?)y) > ae(l-1)llx-yll 2 V xe 9n, V ye 9n. (3.2)
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(c) Problem (3.1) is feasible, i.e. there exists xc 9Rn, ze 91m such that f(x) + g(z) < co and

Ax+Bz = b.

(d) The function g(z)+IlBzII 2 has a minimum.

Assumption B implies that problem (3.1) has an optimal solution. To see this, note that
because f and g are lower semicontinuous and f is strongly convex, if (3.1) does not have an
optimal solution, there must exist a ze 91m and a we 91m such that Bw = 0 and g(z+kw) is strictly
decreasing with X > 0 - contradicting Assumption B (d). Moreover, the strict convexity of f

implies that (3.1) has a unique optimal solution in x, which we denote by x*.

Notice that Assumption B (d) holds if either g has a minimum or B has full column rank. If

Assumption B (d) does not hold, but (3.1) has an optimal solution, we can define the perturbation
function h(w) = inf{ g(z) I w = Bz }, which is convex and proper. Then, if h is lower

semicontinuous, we can instead solve the reduced problem mint f(x) + h(w) I Ax + w = b }, which

can be seen to satisfy Assumption B. Upon obtaining x*, we then solve min{ g(z) I Bz = b-Ax* }.

For various properties of strongly convex functions see pp. 83 of [30].

By assigning a Lagrange multiplier vector pe 9ir to the constraints Ax + Bz = b, we obtain the

dual program (see [35], §28) of (3.1) to be

Minimize O(ATp) + y(BTp) - (b,p) (3.3)

subject to pe 91r,

where 9:tr--(-oo,oo] and y. r--(-+o,oo] are respectively the conjugate function of f and g, i.e.,

¢(y) = supt (y,x) - f(x) },
y(w) = sup[ (w,z)- g(z) }.

Both ( and y are lower semicontinuous convex (see [35], §12) and, because f is strongly convex, (

is in addition real valued and differentiable (see [35], Corollary 13.3.1 and Theorem 26.3). We

make the following assumption regarding (3.3):

Assumption C: The program (3.3) has an optimal solution, i.e., (3.1) has an optimal
Lagrange multiplier vector corresponding to the constraints Ax + Bz = b.
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Since the optimal objective value of (3.3) is not +oo by Assumption C, the function ycannot
be +0 everywhere. This, together with the fact that y is lower semicontinuous convex, implies that
oy is a maximal monotone operator (see Minty [28] or Moreau [29]). Because f is convex and real
valued, V4 is also a maximal monotone operator. This, together with the observation that p* is a

solution of (3.3) if and only if p* satisfies

0e AVO(ATp*) + Bay(BTp*) - b,

then implies that the dual program (3.3) is a special case of the general problem (2.1) with ( = VO
and r = ay. Furthermore, the strong convexity condition (3.2) implies that af = (V4)-1 is strongly
monotone with modulus 2a. Hence Assumption A holds for the above choice of ( and r (with o

= 2a) and we can apply the splitting algorithm (2.2a)-(2.2d) to solve this special case of (2.1).
This produces the following algorithm, which we have named the alternating minimization
algorithm earlier, for solving (3.1) and its dual (3.3):

x(t) = argminx{ f(x) - (p(t),Ax) }, (3.4a)

z(t) = argminz[ g(z) - (p(t),Bz) + c(t)llAx(t)+Bz-bll2 /2 }, (3.4b)
p(t+l) = p(t) + c(t)(b-Ax(t)-Bz(t)), (3.4c)

where p(O) is any element of iRr, and { c(t) is any sequence of scalars satisfying

. < c(t) < 4a/p(ATA) - e, t = 0,1,..., (3.4d)

and e is any fixed positive scalar not exceeding 2Wap(ATA). In practice, the threshold 4a/p(ATA)
will typically be unknown, and some trial and error may be required to select the sequence c(t). This
is a drawback of the method.

Convergence of the alternating minimization algorithm follows from Proposition 1:

Proposition 2 The sequences (x(t)), [z(t)), (p(t)) generated by (3.4a)-(3.4d) satisfy the
following:

(a) x(t) --+ x*.

(b) Bz(t) -- b-Ax*.

(c) p(t) -+ an optimal solution of the dual program (3.3).



(d) If either AVOAT or BayBT is strongly monotone, then the rate of convergence of

{ (x(t),Bz(t),p(t)) ) is linear.
(e) If the convex function g(z)+llBzll2 has bounded level sets, then {z(t)} is bounded and, for any

of its limit points z-, (x*,zo) is an optimal solution of (3.1).

Proof: Parts (a)-(d) follow directly from Proposition 1. To prove part (e), let z* denote an m-
vector that, together with x*, forms an optimal solution of (3.1). Then from (3.4b)-(3.4c) we have

that

g(z(t)) -(p(t+l),B(z(t)-z*)) < g(z*), t = 0, ....

Since (cf. parts (b) and (c)) Bz(t) --e b-Ax* = Bz* and {p(t)) is bounded, this implies that

lim supt_,~{g(z(t))) < g(z*). (3.5)

Hence g(z(t))+!lBz(t)11 2 is bounded and, by hypothesis, {z(t)} is bounded. Since g is lower

semicontinuous, each limit point of { z(t) }, say z °, satisfies g(zoo) < g(z*) (cf. (3.5)). Since (cf. part
(b)) Bz° = b-Ax*, (x*,z-) is feasible for (3.1) and its cost f(x*)+g(z' ) does not exceed

f(x*)+g(z*). Hence (x*,z-) is an optimal solution of (3.1). Q.E.D.

We remark that the hypothesis in Proposition 2 (e) holds if B has full column rank or if g
has bounded level sets. In practice, the latter can always be enforced by constraining z to be inside
the ball { ze 9tm 1 lizll < g }) with g a sufficiently large scalar. An example for which Proposition 2

(e) applies is when f(x) = IIx-d112/2 for some de 9in and A has full row rank. Straightforward

calculation finds that AVO(ATp) = (AAT)p-Ad and hence AVQAT is strongly monotone with

modulus being the smallest eigenvalue of AAT.

4. The Algorithm of Han and Lou is a Special Case

In this section we show that the Han and Lou algorithm [18] is a special case of the

alternating minimization algorithm (3.4a)-(3.4d). We also improve upon the results in [18] by

applying Proposition 2. Consider the following problem studied by Han and Lou
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Minimize f(x) (4.1)
Subject to xe Xln...nXk,

where f:9n--+9t is a strongly convex differentiable function (with modulus a) and each X i is a
convex closed set in 91n. Let X0 denote the effective domain of f, i.e., X0 = { xe 9Rn I f(x) < o }.
We make the following assumption regarding (4.1):

Assumption D: Either (a) ri(Xo)nri(X1)n.. .nri(Xk) * 0 or (b) XorXXln...rXk • 0 and

all Xi's are polyhedral sets.

We can transform the problem (4.1) into the following form:

Minimize f(x) + g(zl, ... , Zk) (4.2)

Subject to x=zi, i = 1,. . ,k,

where Zl, z2,.. ., Zk are auxiliary vectors and g:SRnk--(-oo,o] is the indicator function for

XlX...xXk, i.e.

g(zl, ... , Zk) = -i 8(zilXi).

The problem (4.2) is clearly a special case of (3.1), where f and g are as above, b = 0, B is the
negative of the knxkn identity matrix, and A is the knxn matrix composed of k nxn identity

matrices stacked one on top of the next.

Assumption D implies that (4.2) is feasible. Since it is easily seen that g is convex lower
semicontinuous and that the function g(zl,..., Zk) + li IIzi 112 has a minimum, Assumption B holds.

Hence (4.2) has an optimal solution. Moreover, it can be seen from the strict convexity of f that
(4.1) has a unique optimal solution, which we denote by x*, and that (x*,...,x*)e 9Ink+n is the

unique optimal solution of (4.2). Also, by Theorem 28.2 in [35], the problem (4.2) has an optimal
Lagrange multiplier vector associated with the constraints x = zi, i = 1,...,k. Hence Assumption C

holds, and we can apply the alternating minimization algorithm to solve problem (4.1). This

produces the following iteration:

x(t) = argminx { f(x) - Xi (Pi(t),x) }, (4.3a)

zi(t) = argmin{ (pi(t),zi) + c(t)llx(t)-zii 2/2 I zieXi }, i = 1,...,k, (4.3b)
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pi(t+l) = pi(t) + c(t)(zi(t)-x(t)), i = 1,...,k, (4.3c)

where Pi (i = 1,...,k) is a Lagrange multiplier vector associated with the constraints x = zi and
(c(t)) is any sequence of scalars bounded strictly between zero and 40Wk. [The initial multiplier
Pi(O) is any element of 91n.] Notice that the iterations (4.3b)-(4.3c) are highly parallelizable, and

the same is true for iteration (4.3a) if f is separable.

To see the connection between the above algorithm and the Han and Lou algorithm, note
from the strict convexity of f that the conjugate function of f, denote by q, is differentiable; hence

(4.3a) is equivalent to

x(t) = VO(X iPi(t)). (4.4a)

Also (4.3b) can be written as

zi(t) = argmin{ Ilzi+pi(t)/c(t)-x(t)112 I zieX i }, i = 1,.. ,k. (4.4b)

The iteration (4.4a)-(4.4b), (4.3c) is identical to the Han and Lou algorithm, except that the latter
algorithm further restricts Pi(O) to be zero for all i and c(t) to be a fixed scalar inside (0,2cx/k] for all
t.

Convergence of the algorithm (4.3a)-(4.3d) follows from Proposition 2:

Proposition 3 The sequences {x(t)}, {z(t)}, {p(t)) generated by (4.3a)-(4.3c) satisfy the'
following:
(a) x(t) - x*.

(b) zi(t) -- x*, i = 1,...,k.

(c) pi(t) -- an optimal Lagrange multiplier vector for (4.2) corresponding to x = zi, i = l,...,k,.

In the case where the Xi's are not all polyhedral sets, Proposition 3 further improves upon the
results in [18] (since it asserts convergence without requiring that Xln... Xk has a nonempty

interior).



14

5. The Method of Multipliers and the Dual Gradient Method are Special Cases

Consider the following convex program

Minimize q(z) (5.1)

Subject to Ez = d,

where q:%9m--9>u( +-oo is a convex, lower semicontinuous function, E is an nxm real matrix

having no zero row, and d is a vector in 91n. We assume that problem (5.1) has a nonempty,

bounded optimal solution set and an optimal Lagrange multiplier vector associated with the

constraints Ez = d.

We can rewrite (5.1), after introducing an auxiliary variable x, as the following convex

program:

Minimize 8(xl{ }) + q(z) (5.2)
subject to -x + Ez = d.

The preceding problem is clearly a special case of problem (3.1) if we choose f(-) = 6(- [0)), g(-)
= q(.), A = -I, B = E and b = d. With this choice, f satisfies the strong convexity condition (3.2)

for any a > 0 and Assumptions B and C hold. The alternating minimization algorithm (3.4a)-

(3.4d) in this case reduces to the method of multipliers proposed in [17, 19, 34] (see also [1, 2, 24,
33, 37]):

z(t) = argmin z [ q(z) - (p(t),Ez) + c(t)lld-EzII2/2 },

p(t+l) = p(t) + c(t)(d-Ez(t)),

where [c(t)) is any sequence of scalars bounded away from zero.

Now consider the program (5.1) again, but this time we further assume that q satisfies the
strong convexity condition (2.2) for some a > 0 and we choose f(-) = q(-), g(-) = 8(-{1(0), A =
E, B = -I and b = d. With this choice, Assumptions B and C hold. The alternating minimization

algorithm (3.4a)-(3.4d) in this case reduces to the dual gradient method discussed in § 1:

x(t) = argminx q(x) - (p(t),Ex)),

p(t+l) = p(t) + c(t)(d-Ex(t)),
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where (c(t)} is any sequence of scalars bounded strictly between zero and 4xt/p(ETE). This
algorithm was first proposed by Uzawa [40] for the more general case where q is strictly convex,
but no explicit bound on the stepsizes was given. Other discussion of this algorithm can be found in
Ch. 2.6 of [1] and in [8, 21, 24, 33].

6. Application to Symmetric Linear Complementarity Problems

Let M be a given rxr symmetric positive-semidefinite matrix and let w be a given vector in
S9r. Consider the symmetric linear complementarity problem of finding a vector pe 91r satisfying

Mp+w > 0, p > 0, (Mp+w,p) > 0, (6.1)

where (6.1) is assumed to have a solution. The above is a fundamental problem in optimization.
One method for solving (6.1) is based on matrix splitting (see [22, 25, 31] ). In this method the
matrix M is decomposed into the sum of two matrices

M = K+L,

and, given the current iterate p(t), the next iterate p(t+l) is computed to be a solution of the

following linear complementarity problem

(co(t)I + L)p - (o(t)I - K)p(t) + w > 0, p > 0, (6.2a)

((co(t)I + L)p - (c(t)I - K)p(t) + w,p) = 0, (6.2b)

where o(t) is a relaxation parameter. [p(O) is assumed given.] It has been shown (see for example

[25]) that if the above iteration is well defined (i.e. the problem (6.2a)-(6.2b) has a solution) and
co(t) = co for all t, where co is a nonnegative scalar for which 20I + L - K is positive-definite, then

the sequence {Mp(t)) converges.

In this section we will use the alternating minimization algorithm to obtain a matrix splitting
algorithm based on a choice of K and L different from the one above. In particular, we have the
following main result of this section:
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Proposition 4 If both K and L are symmetric positive-semidefinite matrices and oc(t)-1 ) is
bounded strictly between zero and 2/p(K), then the sequence {p(t)) generated by (6.2a)-(6.2b)

converges to a solution of (6.1). If K is also positive-definite, then the rate of convergence is
linear.

Proof: Since K is symmetric positive-semidefinite, it can be expressed as

K = AQAT, (6.3a)

where Q is an nxn positive-definite diagonal matrix (n < r) and A is a rxn matrix whose columns

form a set of orthonormal vectors (see [13]). Similarly, we can express L as

L = CRCT, (6.3b)

where R is an mxm positive diagonal matrix (m < r) and C is a rxm matrix whose columns form a

set of orthonormal vectors. Now consider the convex quadratic program

Minimize (x,Q-lx)/2 + g(zl,z2) (6.4)
subject to Ax + Cz 1 + z2 = -w,

where g:91r+m--(-oo,oo] is the convex lower semicontinuous function

I (zl,R-lzl)/2 if z2 < 0,
g(zl,z2) = . L ° otherwise.

It is easily seen (using (6.3a)-(6.3b)) that any optimal Lagrange multiplier vector for (6.4)
corresponding to the constraints Ax + Cz1 + z2 = -w is a solution of the symmetric linear

complementarity problem (6.1) and conversely.

The problem (6.4) is a special case of (3.1) with A as above and with B = [ C I], b = -w,
f(x) = (x,Q-lx)/2, and g as defined above. Furthermore it has an optimal solution (since its dual

has an optimal solution). This, together with the observation that f is strongly convex with
modulus 1/(2p(Q)) = 1/(2p(K)) and g(zl,z2) + IICz1 + z2112 has a minimum, implies that
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Assumptions B and C hold. Hence we can apply the alternating minimization algorithm (3.4a)-
(3.4d) to the quadratic program (6.4). This produces the iteration (also using the observation that
p(ATA) = 1)

x(t) = argminx{ (x,Q-lx)/2 - (p(t),Ax) ), (6.5a)

(u(t),s(t)) = argmins<0o,u (u,R-'u)/2 + (p(t),Bu+s) + c(t)llAx(t)+Bu+s-bll12/2 }, (6.5b)
p(t+l) = p(t) + c(t)(b-Ax(t)-Bu(t)-s(t)). (6.5c)

where {c(t)) is any sequence of scalars bounded strictly between zero and 2/p(K).

From the Karush-Kuhn-Tucker conditions for the minimization problem in (6.5a) and in

(6.5b) (also using (6.5c)) we obtain that

x(t) = QATp(t),

u(t) = RBTp(t+l),

p(t+l) > 0, s(t) < 0, (p(t+l),s(t)) = 0.

Substituting for x(t) and u(t) in (6.5c) gives

(I + c(t)BRBT)p(t+l) - (I - c(t)AQAT)p(t) - c(t)b = -c(t)s(t) > 0,

p(t+l) > 0, (p(t+l),s(t)) = 0.

It then follows from (6.3a)-(6.3b) that the iteration (6.2a)-(6.2b) with o(t) = c(t)-1 is identical to the

iteration (6.5a)-(6.5c). Hence, by Proposition 2 (c), the sequence {p(t)) generated by (6.2a)-
(6.2b), with {co(t)-l ) bounded strictly between zero and 2/p(K), converges to a solution of (6.1).

Moreover, by Proposition 2 (d), if K = AQAT is positive-definite, then the rate of convergence is
linear. Q.E.D.

Notice that Proposition 4 asserts convergence of the sequence (p(t)) eventhough (6.1) may have
many solutions. To the best of our knowledge, this is the first such result for a matrix splitting
algorithm. Also notice that since L is symmetric positive-semidefinite, the iteration (6.2a)-(6.2b)
may be carried out by minimizing a convex quadratic function over the nonnegative orthant. There
exist a number of efficient methods for this minimization (see for example §1.5 in [1]). If L is
diagonal or tridiagonal, a direct method such as that given in [4] may be used.
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Although the restriction of both K and L to symmetric and positive-semidefinite matrices
excludes a number of well-known choices for K and L - such as those associated with the Gauss-
Seidel and the Jacobi methods - it permits other choices that are very suitable when M is specially
structured. One example is when M is of the form

M = DQDT + ERET,

where Q and R are positive-definite diagonal matrices and D and E are matrices of appropriate
dimension (such form arises in, for example, quadratic programs with strictly convex separable
costs and linear inequality constraints). Suppose that we choose K = DQDT and L = ERET. Then if
the matrix [D E] has the staircase structure shown in Figure la, the matrices K and L would have
respectively the upper and lower block diagonal form shown in Figure lb. In this case the problem
(6.2a)-(6.2b) is significantly smaller than the original problem (6.1).

D E

Figure la. The matrix [D E] has a staircase structure.

M K L
Figure lb. The matrix M decomposes into a upper block diagonal

matrix K and a lower block diagonal matrix L.
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7. Application to Variational Inequalities

Consider the following separable variational inequality problem. We are given two closed
convex sets X C 39n and Z C 9tm, two continuous functions R:ln--9tn and S:tm--+9tm, an rxn

matrix A, an rxm matrix B and a vector be 91r. Our objective is to find a vector (x*,z*)e XxZ
satisfying Ax* + Bz* = b and

(x-x*,R(x*)) + (z-z*,S(z*)) > 0, V (x,z)e XxZ satisfying Ax + Bz = b. (7.1)

This problem has numerous applications to numerical computation - including the solution of a
systems of equations, constrained and unconstrained optimization, traffic assignment problems,
game theory, and saddle point problems (see [2], §3.5; [12, 20]). For example, the convex
program (3.1) is a special case of (7.1) if its objective function is the sum of the indicator function
for a closed convex set and a differentiable convex function. We make the following assumptions
regarding (7.1):

Assumption E:
(a) The problem (7.1) has a solution.
(b) R is strongly monotone (with modulus a) and S is monotone.
(c) Either both X and Z are polyhedral sets or there exist xc ri(X) and ze ri(Z) satisfying

Ax+Bz=b.

In this section we will derive a decomposition algorithm for (7.1') by applying the splitting
algorithm (2.2a)-(2.2d). First we claim that (7.1) is a special case of the problem (2.1). To see
this, note that (x*,z*) solves the variational inequality (7.1) if and only if it solves the convex
program

Minimize (R(x*),x) + (S(z*),z) (7.2)
subject to xe X, ze Z, Ax + Bz = b.

Let p* be an optimal Lagrange multiplier for (7.2) corresponding to the equality constraints Ax + Bz

= b (such p* exists by Theorem 28.2 of [35]). Let (x*,z*) be an optimal solution of (7.2). The
Karush-Kuhn-Tucker conditions for (7.2) then imply that

ATp* e N(x*IX) + R(x*), (7.3a)
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BTp* EN(z*IZ) + S(z*), (7.3b)
Ax* + Bz* = b. (7.3c)

where N(-IX) and N(-IZ) denote the subdifferential of 6(.IX) and 8(.IZ) respectively. Consider
the multifunctions F:9In-9In and G:9Im- 49tm defined by

F(x) = R(x) + N(xlX),

G(z) = S(z) + N(zIZ),

Because R and S are monotone and continuous, they are maximal monotone operators (see Minty
[27]). Hence, by a result of Rockafellar [36], both F and G are also maximal monotone operators.
Let us rewrite (7.3a)-(7.3c) equivalently as

AF-l(ATp*) + BG-I (BTp*) = b. (7.4)

Since F is easily seen to be strongly monotone (with modulus a), (7.4) is a special case of (2.1)
and Assumption A holds.

We can then apply the splitting algorithm (2.2a)-(2.2d) to solve (7.4). This produces the
iteration whereby we first compute an x(t)E X satisfying

(x-x(t), R(x(t)) - ATp(t)) > 0, V xe X,

then compute a z(t)e Z satisfying

(z-z(t), S(z(t)) - BT(p(t)-c(t)(Ax(t)+Bz(t)-b))) Ž 0, V ze Z,

and finally update the multipliers by

p(t+l) = p(t) + c(t)(b-Ax(t)-Bz(t)),

where {c(t)} is any sequence of scalars bounded strictly between zero and 2a/p(ATA).

Convergence of the sequences {x(t)}, {Bz(t)), {p(t)) generated by this iteration follows from
Proposition 1. We leave the issue of computing x(t) and z(t) open (see [2, 5, 20, 32] for solution
methods).
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Appendix A:

In this appendix we prove Proposition 1. Let p* denote any solution of (2.1). Then

x*E 4(ATp*), (A.l a)

and there exists z*e 59m satisfying

z*e r(BTp*), (A. lb)
Ax* + Bz* = b. (A.lc)

From (2.2a)-(2.2c) we also have that, for t = 0,1,...,

x(t)E ((ATp(t)), (A.2a)
z(t)e f(BTp(t+l)). (A.2b)

Fix any integer t > 0 and, for convenience, let c = c(t). Now, since (cf. (A.la) and (A.2a))
ATp*E (D-l(x*) and ATp(t) (D-l(x(t)), we have by Assumption A (b)

O = (ATp(t)-ATp*,x(t)-x*)- (ATp(t)-ATp*,x(t)-x*)
> ollx(t)-x*112 - (p(t)-p*,Ax(t)-Ax*)

= c(Ax(t)-Ax*,Ax(t)-Ax*) - (p(t)-p*,Ax(t)-Ax*) - cllAx(t)-Ax*112 + Illx(t)-x*112.

Let 0 = -cIIAx(t)-Ax*11 2 + ollx(t)-x*112. The above then implies that

O > (-p(t)+c(Ax(t)+Bz(t)-b)+p*,Ax(t)-Ax*) - c(Bz(t)-Bz*,Ax(t)-Ax*) + 0
= (-p(t+l),Ax(t)-Ax*) - c(B2(t),Ax(t)) + 0, (A.3)

where we let Q(t) = x(t)-x*, (t) = z(t)-z*, P(t+l) = p(t+l)-p*, and the equality follows from
(2.2c). Similarly, since (cf. (A. lb) and (A.2b)) z* r(BTp*) and z(t)e F(BTp(t+l)), we have from
the monotonicity of r

0 = (BTp(t+l)-BTp*,z(t)-z*) - (BTp(t+l )-BTp*,z(t)-z*)
> - (p(t+l)-p*,Bz(t)-Bz*)

= (-p(t+l),Bz(t)-Bz*). (A.4)

-p~ ~ ~_ _~
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Summing (A.3)-(A.4) and using the fact (cf. (A.lc)) Ax* + Bz* = b, we obtain

0 > (-i(t+l),Ax(t)+Bz(t)-b) - c(B2(t),Ax(t)) + 0
= ((t+l),A(t+l)-A(t))/c - c(B2(t),A~(t)) + 0,

where A(t) = p(t)-p* and the equality follows from (2.2c). This, together with the identities (cf.

(2.2c))

2. ((t+1),A(t+1 )-(t )) = IlP(t+l)-D(t)ll 2 + IIA(t+1)112 - AI(t)ll 2,
l$p(t+l)-D(t)ll2/c2 = IIA~(t)ll2 + IIBZ(t)ll2 + 2-(Bz(t),Ax(t)),

implies that

0 > IlA(t+l)ll 2 - Ii(t)ll2 + c2.11Ax(t)ll 2 + c2 11BA(t)ll2 + 2c0.

Hence, by the definition of c and 0,

:ll(t)ll 2 > I$I(t+l)1 2 - c(t) 2-11Ax(t)11 2 + 2c(t)cFllx(t)112 + c(t) 2 11BA(t)ll 2

> lI(t+1)112 + c(t)(2a-c(t)p(ATA))Il2(t)112 + c(t)2 11B2(t)11 2.

Since the choice of t and p* was arbitrary and (cf. (2.2d)) both 2a/p(ATA)-c(t) and c(t) are
bounded away from e, we obtain that

Ilp(t)-p*l12 > IUp(t+l)-p*ll2 + E2 p(ATA)lx(t)-x*112 + £211Bz(t)+Ax*-bll 2, (A.5)

for all t = 0,1,...., for any solution p* of (2.1). Eq. (A.5) implies that {p(t)) is bounded and

x(t) - x*, Bz(t) - bAx*. (A.6)

Hence parts (a) and (b) are proven. To prove part (c), notice that since (cf. (A.2b))

Bz(t)eBr(BTp(t+1)), t = 0,1,...,

it follows from (A.6) and the lower semicontinuity of BrBT (cf. Proposition 2.5 in [3]) that, for

any limit point p- of {p(t)),
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b-Ax*e Br(BTp-).

Similarly, we have from (A.2a) and the lower semicontinuity of ADAT that

Ax*e AD(ATp-).

Hence be AV(ATp() + Bf(BTp-) and therefore pa solves (2.1). By replacing p* in (A.5) by pa,

we obtain that p(t) -4 p-.

Finally we prove part (d). From (A.la)-(A.lb) and (A.2a)-(A.2b) we have that

Ax* = AO(ATp-), b-Ax*e BF(BTp°),

Ax(t) = A4(ATp(t)), Bz(t)eBF(BTp(t+l)), t = 0, 1,....

Fix any integer t O0. Since 8 and Tl are the modulus of AO(AT and BI"BT respectively, the above

implies that

(Ax(t)-Ax*,p(t)-p o) 2 8-llp(t)-pll 2,
(Bz(t)+Ax*-b,p(t+1)-pI) 2 Tl. p(t+l)-po112,

and hence by the Cauchy-Schwarz inequality

IIAx(t)-Ax*ll > 8-11p(t)-pll,
IIBz(t)+Ax*-bll > Tl-llp(t+l)-p-l.

This, together with (A.5), implies that

Ilp(t)-p-°ll 2 > Ip(t+l)-poll 2 + e262.11p(t)-p112 + e2x12.11p(t+l)-polj12.

Also from (A.5) we have that

Ilp(t)-poll2 > e2p(ATA).llx(t)-x*112 + E2.I1Bz(t)+Ax*-blI2.

Part (d) is then proven. Q.E.D.
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