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ABSTRACT

The performance of standard industrial evaporative
cooling tower drift eliminators 1s analyzed using experiments
and numerical simulations. The experiments measure the
droplet size spectra at the inlet and outlet of the elimi-
nator with a laser light scattering technique. From these
measured spectra, the collection efficlency is deduced as
a function of droplet size. The numerical simulations use
the computer code SOLASUR as a subroutine of the computer
code DRIPFT to calculate the two-dimensional laminar flow
velocity fileld and pressure drop in a drift eliminator. The
SOLASUR subroutine sets up either no-slip or free-slip
boundary conditions at the rigid eliminator boundaries. This
flow field 1s used by the main program to calculate the elimi-
nator collection efflciency by performing trajectory calcu-
lations for droplets of a given size with a fourth-order
Runge-Kutta Numerical method.

The experimental results are in good agreement with the
collection efficiencies calculated with no-slip boundary
conditions. The pressure drop data for the eliminators is
measured with an electronic manometer. There 1s good agree-
ment between the measured and calculated pressure losses.

The results show that both particle collection efficiency
and pressure loss increase as the eliminator geometry becomes
more complex, and as the flowrate through the eliminator

increases.
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CHAPTER 1

INTRODUCTION

1.1 Background

Current practice in the design and operation of new electric
power stations selects a single method of waste heat disposal
and then designs the cooling apparatus to meet the worst sta-
tion heat load throughout the year (D1). This is an outgrowth
of past trends, in which once-through cooling was virtually the
universal method of power station waste heat disposal in the
United States. In the late 1960's waste heat disposal suddenly
became.a controversial topic with the introduction of unprece-
dentedly large (>800MWe) and thermally inefficient nuclear
power stations. In 1973 the Environmental Protectién Agency
(EPA) added impetus to the use of cooling towers when it took
under advisement a Burns & Roe study indicating that evaporative
cooling towers may well be the only closed circult cooling option
avallable in the near future. Based on this study, the EPA
recommended the evaporati&e cooling tower as- the best practical
technology under the Water Pollution Control Amendments. Sub-
sequent concern for protection of the aquatic environment, and
a desire to avoid costly licensing delays has motivated many
utilities to design their new, large power stations using cool-

ing towers rather than once-through cooling. As recently as

October, 1973, a complete listing of all operating or committed

nuclear generating units revealed that 48% of the generating

capacity was to be served by cooling towers. The participation

by fossil-fueled plants is not as great as this, and projections



16
indicates that about 50% of the newly added power generating
installations at early 1980's will be using cooling towers.

The major cooling tower vendors in the United States are
Ecodyne, Inc., Santa Rosa, Calif.; The Marley Co., Mission,
Kansas; Reseérch Cottrell, Inc., Bond Broock, N.J.; Ceramic Co.,
Fort Worth, Texas, and Zurn Industries, Erie, Pa. Other large
corporations which are either entering the field or considering
doing so are Westlinghouse Electric Corp., General Electric
Corp., and the Babcock and Wilcox Co.:

To meet the increasing demand for electricityin the United
States, the utilities are planning to build a large quantity of
new, large power stations with more emphasis on nuclear power
plants. With the prospect of rapidly increasing cooling require-
ments due to these plants, special attention has been paid to
the environmental effects of cooling methods. The major areas
of concern related to the environmental effects of cooling
towers are fog, icing, and drift deposition.

Drift consists of the water droplets that are mechanically
entrained in the cooling tower's exﬁaust alr stream from the
station's cooling water. Drift particles contribute very little
to the visibility of cooling tower plumes because the quantity
of drift 1is very small compared to the other forms of water
present. The following order of magnitude numbers for the mass
concentration of typical cooling tower effluents illustrates
this point (S3):

X(vapor)a 20 g/m3
X(fog) = 1g/m3

X(drift)n 0. 01 g/m>
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Drift has several important deleterious effects on the
iocal environment. When the mixture of water vapor and drift
particles in the cooling tower plume, mixed with the ambient
cold air,is carried away, the drift particles may form nuclea-
fion sites for condensation. Also, the mixing of the cooling
tower plume with the stack plume may form acids through chemical
reactions. |

In order to meet future electric power requirements and
becausé of the scarcity of cooling water, it will be necessary
for many of the new power generating plants to utilize cooling
water that contains various concentrations of salt, e.g.,
brackish 1n1and waters, estuarine water, or sea water. There-
fore the drift will contain salt as well as chemicals from the
coolant water chemistry. The main concern about drift is its
potential for damage to nearby facilitles, transmission lines
and biota. In some linstances, drift has caused serious prob-
lems 1n electric dilstribution systems; the drift deposits
being responsible for equipment faillures. Cases involving
corrosion and fouling of nearby structures have been reported
from both fresh and sea water cooling towers (L3). Drift can
also be a considerable nuisance when 1t spots cars, windows,
and buildings.

Estimates of drift from cooling towers range from 0.001%
of the circulating water to more than 3%. The industry practice,

until early 1970, was for cooling tower vendors to guarantee

drift release to be less than 0.2%. At the American Power

Conference in Chicago (April, 1970) a new performance standard
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of 0. 03% was introduced,and in November, 1970, a further
reduction was proposed, leading to the estimate that future
cooling towers may be certified for drift release less than
0.002%.

Drift from cooling towers is traditionally reduced by
passing the exhaust flow through drift eliminators installed
in the cooling towers. These eliminators operate by passing
the two-phase flow stream through a curved duct, with the heavy
water droplets becoming trapped on‘the duct walls dué to
centrifugal acceleration. The accumulated water on the walls
flows back into the cooling tower.

There are many different ways to install the drift elim-
inators in a cooling tower, depending upon the type and geometry
of the cooling tower. All cooling towers are either crossflow
or counterflow types, which is determined by the flow directior
of che cooling air relative to the downward travel of the water
to be cooled. In general, eliminators are installed either
horizontally or vertically. The horizontal scheme is commonly
used in crossflow type cooling towers and the vertical scheme
in counterflow type cooling towers, as shown in Fig. 1.1.1.

The horizontal installation scheme is easier and more sturdy

in construction. It can also be used to adjust the air flow
pattern within the tower. The main problem with the horizontal
installation scheme is the 1nefficient drainage of water from

the eliminator walls: a thick water film forms on the elimi-

nator walls and reduces the drift collection effectiveness.

The vertical installation scheme has little water drainage
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problem due to the enhanced film flow by gravity.

- There are many different types of .drift eliminators sold
by cooling tower vendors. The common ones are shown in Fig.
1.1.2. The single and double-layer louvre eliminators are
generally made with wood.The sinus-shaped eliminator is made
from asbestos cement. The Hi-V eliminator is made of polyvinyl
chloride (PVC) plastic. The zig-zag eliminator is made from
fiber. Some other industrial eliminators are also shown in
Fig. 1.1.3.

The perfdrmance of drift eliminators can be quantified by
two factors: the droplet collection efficiency and the pressure
drop across the eliminator. The collection efficiency is gen-
erally defined as the ratio of drift mass collected by the
eliminator to the total drift mass entering the eliminator.
For environmental protection, this factor should be high. The
pressure drop across the eliminator'represents the resistance
of the eliminator to the exhaust air flow. The presence of an
eliminator will reduce the air flow within the cooling tower,
thus decreasing the tower's cooling capacity. This particular
effect can‘be very detrimental in natural draft cooling towers,
since they pass only the small draft caused by the air density
difference at the entrance and exit. For mechanical draft

cooling towers, a high pressure drop will cause a high horse-
power requirement 1n the fans. Therefore, for inexpensive
cooling tower performance, the pressure drop across the elimi-
nators should be as low as possible.

Eliminators operate on the principle of centrifugal

separation caused by turning of the flow in the duct. 1In
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general, more turning results in a higher collection efficiency,
but a higher pressure drop. In order to achieve a high
collection efficiency and a low pressure drop, the design of
drift eliminators calls for an optimization between these two
factors. In current industrial practice, there is no standard
design procedure for doing this. That is, all existing drift
eliminators are generated through random innovation, experience,
and experiments. This thesis develops a numerical technique
to study the cooling tower drift eliminator performance, which
can eventually be used to evaluate and design drift eliminators.

1.2 Previous Theoretical Studies of Drift Eliminator
Performance

Studies of eliminator performance have been carried out
mainly with experiments. However, the exﬁeriments suffer from
the difficulties encountered in measuring the drift quantity
and distribution. None of the drift measurement techniques
has yet been proven to be generally satisfactory to the point
of their being adapted for general use (Al). Theoretical
studies are rarely performed because it is feared that such
studles would be unreliable due to a number of uncertainties.
These include the possibility of flow turbulence within the
eliminator, the droplets rebounding from or being generated
in the water film on the eliminator walls, and the water film
drainage systém desigh. Despite this, a theorgtical model 1is

still a very useful tool in evaluating the relative performances
of different drift eliminators, and in designing improved drift

eliminators. Recently a few attempts have been made in this
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direction; the approaches are briefly described next.

1.2.1 Roffman's analytical formulation

An analytical formulation for the estimation of drift
eliminator collection efficiency has been developed by Roffman
et al. (R4). 1In this model it is assumed that the drift drop-
lets flow longitudinally at the assumed-constant vertical air
veloclty within the eliminator, and that it experiences trans-
verse viscous drag due to the transverse air velocity component.
This component is obtalned by assuming that the air velocity at
any point in the eliminator is locally parallel to the eliminator
wall. For complex geometries the model uses a Fourier series
expansion of the transverse velocity component in terms of the
duct contour. By using these assumptlons an explicit form of
the equation describing the droplet transverse dlsplacement
can beobtained as a function of longitudinal location of the
droplet. From the displacement information it can be determined
which of the entering droplets will hit the eliminator walls.
The collection efficiency of the eliminator can be determined
as a function of droplet size, The results are claimed to be
satisfactory when overall collection efficiencies are compared

with the experimental data obtained by Chilton (C4).

1.2.2 Foster's Model

Foster, et al. (F3) have developed a potential flow
numerical simulation model for theoretical investigations of
drift eliminators. The model defines the effective eliminator

boundaries with experimental flow visualization photography,



25

‘and it is assumed that all dfoplets entering this region are
eliminated. The main stream flow fields are obtained by solving
the Laplace equation for the vélocity potential within an
'experimentally defined laminar flow region. Using this inform-
ation the collection efficlency for any droplet slze 1is esti—
mated from numerically computed droplet trajectories by solving
the droplet equation of motion using a Runge-Kutta-Gill pro-
cedure. However, the estimated efficiencies are much greater
than those observed experimentally. This is thought to be due
to the improper treatment of the turbulent wake région. It has
been found that results obtained from direct calculation of the
flow field without definition of the turbulent wake region

provide better agreement with experiments (F2).

1.2.3 Yao and Schrock's model

Yao and Schrock (f2) also developed a numerical model
for evaluating the elimlnator collection efficiency. The
flow field 1s calculated by a relaxation method for iterative
_Solution of the Laplace equation for the stream function.
The droplet trajectories are calculated step by step in space,
with the droplet drag-induced acceleration assumed constant
within a given mesh interval. 1In this model the pressure drop
across the eliminator 1s also calculated by using a boundary

layer analysis.

1.3 Survey of Experimental Evaluation of Drift Eliminator
Performance '

Experimental evaluations'bf drift eliminator performance

are performed by measuring the drift at the exhaust side of the
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eliminator in a particular cooling towér or a simulated cooling
tower facility. In most cases only the drift rate (defined as
the drift mass flowrate escaping the tower divided by the re-
circulating water flowrate in the tower) 1is measured. The drop-
let size-dependent collection efficiency of the eliminator is
generally never measured. Many methods exist for measuring
drift in these two ways. Most of them stem from droplet
measurement techniques in cloud physics. Those that are widely

used are summarized below.

1.3.1 Droplet Size Distribution Measurement Techniques

The following methods measure the drift droplet size

distribution. The total drift rate can be determined by inte-

grating the distribution over the droplet size.

1.3.1.1 Sensitive Paper

This method has been used extensively to measure the
liquid water content and size distribution in clouds and fog.
Recently this method was adapted for cooling tower drift measure-
ments (F1,R3,S3,S4,W2). In this method filter paper is sensi-
tized by soaking it with a 1% solution of potassium ferricyanide.
The paper 1s dried thoroughly and dusted with finely ground
ferrous ammonium sulfate. The treated paper is pale yellow

in color. When a water droplet falls on the paper, 1t dissolves

both chemicals and forms an insoluble blue precipitate known as

Turnbull's blue which 1s easily identifiable against the pale

yellow background. The area of the stain is related to the

droplet diameter. Adjustments must be made for the speed of
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impingement and porosity of the paper. The best method of
obtaining calibration féctors for these variables and various
dfoplet sizes is to use a monodisperse droplet generator to
form stains from a knéwn droplet size, speed of impingement,
and porosity of the paper. The calibration is independent of
sensitizing agent (C4).

There are two types of sensitive paper sampling methods.
The most common method exposes the paper briefly in the air
stream with the paper normal to the alr flow. However, in this
method, the impingement speeds are different for different
droplet sizes. A second method (S3) moves-the sensitive paper
through the air by a rotating head machine with the axis of
rotation parallel to the air flow. The head veloclity is perpen-
dicular to the average air flow and droplet trajectory, there-
fore the droplet impingement speed is always equai to the
rotational speed of the héads.

The collection efficiency of sensitive paper depends on
the droplet sizes and velocities. Calibration of this method
should include conslderation of the dynamics of particle motion
and impingement: particles can impinge at an angle, producing
elongated stains, and at higher velocities droplets will produce
larger stains. The collection efficiency decreases for smaller
droplets. For these reasons calibration and data reduction are

time-consuming in the sensitive paper technique.

1.3.1.2 Coated Slide or Film
The measurement technology for this method was also

established by cloud physics investigators. This technique is
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easily adaptable to field measurements of cooling tower drift
droplet size distribution (R3,S4,W2). 1In this method a glass
slide or photographic film 1s coated with a material that
preserves the shape of impinging droplets against coalescence
and evaporation. Of all the slide coatings evaluated, a liquid
plastic coating called FORMVAR gives the clearest and most
distinct representation of the drift droplets. When a water
droplet impacts the coating, it is encapsulated as the plastic
solvent evaporates. The water in the droplet eventually evap-
orates through the thin FORMVAR skin,but the exact shape of the
impacting droplet is preserved by the plastic film for future
slize analysis with a microscope. Calibration involves correct-
jions for the flattening of droplets on the slide, and for
evaporation, which is a function of time and droplet mineral
concentration.

This technique has an upper droplet size limitation in
the range of 200 to 300 microns. When droplets larger than.
this impinge on the slides, the droplets tend to shatter, making
a size determination impossible. As with the sensitive paper

method, data reduction is lengthy and tedious.

1.3.1.3 Laser Light Scattering

In the laser light scattering technique for drift
measurement (S2,S4,S5,37), droplets are illuminated‘by coherent,
monochromatic laser light. Light scattered by a particle within
the sampling volume (defined by the intersection of the laser
beam and the detector acceptance cone) is detected by a photo-

detector, producing a current pulse which is related uniquely
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‘to the droplet size. The current pulses are analyzed and
stored in a pulse height analyzer and the data can be processed
by a minicomputer. The size-of the sampling volume should
be small, so that lengthy sampling times can be avoided, and
so that the pfobability of having more than one particle pres-
" ent in the volume is small. |

The system is callbrated by noting the response of the
instrument to droplets of known size that are generated by
a monodisperse droplet generator. However, this method is
complicated by the vafiation of the laser light iﬁtensity
acrosé the laser beam and by an edge effect.

The main advantage of the laser light scattering system

is that it can operate on-line, providing fast results.

1.3.1.4 Laser.Light Imaging

This method has not been used in cooling tower drift
measurement but appears in principle to have some advantages
over the laser light scattering system (Kl1). In this method
a linear array of photodetectors spaced equélly measures the
droplet shadow diameter. The dropiet passes between a He-Ne
laser and the detector array of fiberoptics. An optical
system focusses the laser beam to cast the droplet's shadow
at the desired magnification on the detector array. A volt-
age drop across a glven detector in the array due to shadowing
1s compared to the quiescent voltage of the unshadowed detectors.
Since the amblient light level 1salwéysused as a reference,
this method has an increased sensitivity to soiling of its

optics. The size of particle 1s determined by the number of
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occulted fibers. Only shadows lying fully within the array
are used, which eliminates the unavoidable edge effects of
scattering or extinction methods.

The device operates on-line and samples particles in situ.
However, it 1s expected that considerable experimentation and
possibly modification would be required before an imaging
instrument was developed to the polnt of practical applications

for drift measurement.

1.3.1.5 Holography

The principle of this method is that light from coherent
laser light source scattered by the droplet interferes at
the film plane with light which proceeds unscattered and forms
the hologram interference pattern. The photographic film is
then processed and replaced in theelectromagnetic wave. The
diffraction by the interference pattern density variations in
the film is such as to produce a focusing of light to produce
a real image of the hologram of the droplet. This can be
viewed with a closed circuit television system. If the record-
ing and reconstruction light waves have the same properties
the reconstructed image will be at the same distance as the
recording distance and the cross-section of the droplet under
reconstruction will be the same as the cross-section of the
original scattering droplet. In this way, one may therefore
map out a dynamic droplet field with respect to both position
and size distribution.

The method has been used in measuring fog droplets in

the size range of 5 to 35 microns (T3). The system has the
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disadvantage that the reconstruction necessitates a two-step
process and is therefore lengthy. This method is expensive

and is shown to be inferior to the light scattering method (Si4).

1.3.1.6 Photography

Dropleté can be filmed using a high-speed cine camera,
with the droplets being diffusely illuminated from the opposite
direction. Droplets down to a diameter of 50 microns have
been measured. The fllms are studied frame by frame using an
analyzing projector, and the diameter, velocity, and trajectory
of the.dfoplets that are clearly in focus can be analyzed. This
method has been used in studying drift eliminator collection

efficiency (F3). However, the data reduction is lengthy.

1.3.2 Total Drift Mass Measurement Techniques

In most experimental work drift eliminators are evaluated

by measuring the total drift mass flux escaping cooling towers.

Some of these methods are described below.

1.3.2.1 Isokinetic Systems

In isokinetic systems air is drawn into the collector
with a kinetic energy identical to that of a fluid element at
that position, had the collector not been there. If the
density and temperature of the air do not change as the air
is drawn into the collector, isokinetic sampling requires
only that the velocity of the air flow into the collector
being equal to that in the abéence of the collector at the

point of measurement. In an 1sokinetic system, the mean

air flow within the collector is adjusted by a blower to be
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equal to the mean air flow outside the collector. There are
many different isokinetic systems which use various collectors.
One of them 1is cyclone collector (R1,W2), where droplets
entering the cyclone collector are separated from the air
stream by centrifugal force and are collected in a contailner.
The collection efficiency of the collector 1s determined in a
fog chamber. Drift droplets collected are analyzed by atomic
absorption spectroscopy for dissolved mineral concentration.
Since the collected water contains not only drift water, but
also condensed water, the drift mass flux cannot be determined
simply from the quantity of the collected water. Rather, the
drift mass flux 1s determined from the dissolved mineral con-
centration by assuming that the mineral concentration in the
drift is the same as in the makeup water source. This consti-
tutes.:the greatest uncertainty in this method.

Another kind of collector is the 1lsokinetic sampler
tube (H4,M1,S3,S4) in which a heated glass tube filled with
glass beads is used to collect drift mineral residue. The
heating element evaporates all of the liquid water sampled.
Only the mineral residues are retained for subsequent chemical
analysis. This method also suffers from the uncertainty in
assuming an equality of mineral concentration in the drift and
the makeup water source.

The mineral background in a real cooling tower is generally
high, and this introduces even more error into eilther of these

methods.
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1.3.2.2 High Volume Sampler

The high volume sampler method measures the drift mineral
concentration per unit volume of air (L1,R2). Air is pumped
through a filter and particles in the air are trapped. The air
flow rate through the filter is recorded continuously to give
the total volume of air sampled. The filter is heated to keep
it dry, Data reduction of the drift mineral concentration is
performed with atomic absorption spéctroscopy and by comparing
the results to a clean filter background count, This method is
affected by ambient humidity, wind, and background airborne

particulate concentration.

1.3.2.3 Airborne Particulate Sampler

The airborne particulate sampler (APS) was originally
.developed for monitoring atmospheric salt loading at coastél
locations. It operates on the principle of collection by
impaction. Two woven polyester meshes mounted on rotating arms
sweep out a known volume of alr per revolution. By counting
the number of revolutions, the total volume of air sampled
can be determined. A fan maintains the air flow past the
meshes and keeps 1t parallel to their plane. A wind vane
rotates the entire system about the vertical axis so that it
always faces into the wind. Calibration can be done with a
monodisperse droplet generator. Data reduction 1is performed

by a spectroscopic analysis of the meshes for salt content.

The main advantage of the APS over the high volume sampler is

that the APS system does not require as much power, and can be
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run on a car battery at remote locations,

1.3.2.4 Deposition Pans

In this method petri dishes or polyethylene jars are
put at various locations in the horizontal plane surrounding
the cooling tower to measure the quantity of drift residue that
settles on the ground. Residue is collected for a known length

of time and is analyzed by atomic absorption spectrophotometry.

1.3.2.5 Chemical Balance

This method measures the rate of decrease in concentration
of a chemical such as sulfate or other tracer chemicals added to
the circulating water (C2). The drift rate is calculated from
the amount of change in the concentration of the tracer with
time. The disadvantages of this method are that a long test
beriod is required and that circulating water systems invariably

have other leaks that deplete the chemical tracer.

1.3.2.6 The Calorimetric Technique

The calorimetric technique incorporates special thermo-
dynamic and hydrodynamic principles by utilizing a calorimeter
with a throttling nozzle (R3). The droplets passing through
the throttle point evaporate because of a pressure drop, and
in doing so, they remove heat from the surrounding air. This
in turn causes a detectable air temperature drop which is used

to determine the drift rate.

1.4 Industrial Efforts in Drift Eliminator Evaluation

The first extensive investigation of drift eliminator
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performance was done by Chilton (Cl4) in the late 1940's and
early 1950's. The test apparatus included a closed loop
experimental tower which simulated a natural draught cooling
tower. The drift droplets were collected by a Calder Fox
Scrubber at the tower exit. By measuring the water collected
for a certain period of operating time at different velocities,
the collection efficiencies of various eliminators for several
ranges of droplet size were determined. The pressure drop was
measured by pitot static tubes leading to a Chattock Fry tilting
micro-manometer. Many different eliminator geometries were
tested, and a double-layer louvre eliminator was recommended,
which was subsequently adopted on many cooling towers in England.
Measurements of precipitation from the cooling towers after
installation of the recommended eliminator were then performed
using the sensitive paper technique. The sensitive paper used
was Whatman No. 1 filter paper.

The experiment was considered to be a great success.
Since then, not much work on eliminator performance evaluation
has been reported until recently. In 1969, drizzle from two
modern 2000 MW stations was detected by the Central Electricity
‘Generating Board Regional Scientific Service Staff. Research
work on drift eliminators was subsequently rekindled by the
Central Electricity Research Board. Tests simlilar to those by
Chilton were performed on some eliminator geometries (Gl),with

a recommendation for a closer pitched (1.75 in.) asbestos-

cement eliminator. Droplet size measurements were made on water

sensitive papers exposed inside cooling towers at various levels
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including both under and over the eliminators (M3). Droplet
removal efficiencies were found for conventional louvre elim-
inators. The sensitive paper technique described 1in this work
is the same as the one reported in Chilton's paper except that
the calibration was extended to smaller droplet sizes (25-400um).
Theoretical evaluation was also carried cut to calculate the
collection efficiency as a function of droplet size (F3). The
theoretical efficiencies were found to be much greater than

the observed efficiencies from their experiments which was done
with a photographic method.

In 1971, Fish and Duncan at Oak Ridge National Laboratory
developed an isokinetic sampling sensitive paper technique
using Whatman No. 41 filter paper (Fl1). The technique was
used to measure the drift size distribution above drift elimi-
nators of a counterflow hyperbolic cooling tower. The drift
rate was found to be 0.002-0.006%.

The Marley Company has established a strong program in
drift measurement and drift eliminator development since late
1960's. In 1968, a chemical balance method was used in the
Marley Laboratory to check drift levels with and without drift
eliminators in the testing tower. The technique was also used
in drift determinations on an operating mechanical draft in-
dustrial crossflow tower at a Municipal Power Plant. 1In 1970,
the Marley Co. was interested in operating a cooling tower on
salt water makeup, which required an accurate knowledge of
drift rate. Since that time they have sponsored and cooperated

with the Environmental Systems Corporation (ESC) to develop



37

reliable drift measurement instruments that include the
Particulate Instrumentation by Laser Light Scattering (PILLS)
system, the Isokinetic Sampling (IK) system, and sensitive
paper techniques. Later the Marley Co. added a special drift
test cell to the Marley Laboratory exclusively for drift elim-
inator development. Drift measurements were mostly done with
the isokinetic sampling system developed by ESC. Many different
elimlnators have been tested. Some of the important conclusions
are listed here (H4):
(1) Numerous observations have shown that tﬁe

circulating water rate has little effect on

the drift level. Specific tests on the Duplex

eliminator revealed, within the limits of test

accuracy, that there was no change in drift

rate with circulating water rates ranging from

12 GPM/££2 to 22 GPM/ft2,

(2) Theoretically, drift eliminator collection

efficiency increases with air velocity. However,

the water load on the eliminator also increases

with the air velocity, but at a greater rate than

the increase in efficiency. Altogether it was
found that drift increases with air velocity.
The rate of this increase can be drastic with
an inefficient eliminator, with the failure to
control the pattern of the water on the fill
side of the eliminator, or with inadequate

provision for draining the eliminator.
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(3) The effect of efficient air handling in the

tower by the eliminators seriously changes the
tower performance and drift release rate.

The Environmental Systems Corporation was first sponsored
by the Marley Co., but later established itself as an inde-
pendent organization providing services to parties of every
interest. 1In 1971 ESC received grants from Environmental
Protection Agency to further develop drift measurement tech-
niques, particularly on the PILLS system. Other techniques
to be evaluated were isokinetic sampling using filter papers,
cyclone collector and glass wool fill material, sensitive
paper using milli-pore membrane filter paper, and on-line
holography. APS was developed later for airborne particulate
measurement. Numerous drift measurements at operating cooling
towers by ESC using these techniques have been performed.

Some of them are listed in Table 1.4.1,

In the early 1970's, Ecodyne developed several drift
measurement techniques for field testing. These include the
isokinetic sampling system using a cyclone separator, assembled
and calibrated by Meteorology Research, Inc., the impaction
method using FORMVAR coated slides, and sensitive paper tech-
niques. As of 1973, more than twenty types of drift tests had
been conducted on industrial towers. The tests included towers
equipped with both the standard two pass drift eliminator config-
urations typical of the industry for the past twenty years, and
a new drift eliminator developed by Ecodyne, the Hi-V eliminator.

Test results showed that drift rates for the standard two pass



39

#100°0

TT00°0

TT00°0

¢T00°0
G00°0

G00°0
10°0

G500°0

9L00°0

(%) paansesi
93'8d 3JT4d

Al

Sdv

STIId

AT

AL

(unlghT<P) STIId

(TW) J8mo3
3uTasal 3JeJp TeJIN3BU MOTJ

§S0J0 B ‘aouBad ‘oJABRH 97

(1IS) "IN
CIoATH poyJdod ‘yeeda) a81s£Q

(9SE€H) €# 3Tun 3utod ATBUD

(£8) asmoj
1Jedp TeBJANIBU MOTJ SSOJD SMK

062 ® ‘edoueday ‘IUTRUJIOH

(ES TW) J9M03 3JBJID TBINGBU MOTJ.
Jo4Uunoo SMN 006G ® “*Bd “L£3TD JSuwoOH

AT (gS) Jemog
oTT0oquadAy 3jedap TeAN3EN
ST1Id (4S) J8moj j3Jedp TEBOTUBYOSU
MOTJ ©TQnop TeTOoJauwod Yy
VI (gS) J8mo03 BUTTO0D TEBTOIBWWOD
TTeWS ® ‘aamojenby

ST1Id
AT (hS€TL) o8pTH dNeO 3e
J9M03 3Jedp TBOTURBYOSN
uoF4ejuUsUWNIGSuUl uotadiaosag dial PISTA

Futansesiy

uofaea0dao) sweasAg TBIUSUUOATAUY dU3 JO NIOM PT3TL

T°%°T 9T4BL



4o

designs varied from 0.02% to 0.12% wiﬁh a typical value of
0.05%. The Hi-V drift eliminator drift rates varied from 0.001%
to 0.008% with a typical value of 0.004%,

Other companies that are involved in cooling tower drift
measurements are Research Cottrell, Inc., who uses the High
. Volume Air Sampling Method (Ll), and the Balcke Co., who uses
the cyclone separator (R3), etc.

Although much progress has been made recently in drift
measurement techniques, disagreements and unreconciled differ-
ences frequently show up, which often involve factors of two or
three in the value of certain results. Reliable methods should
be developed soon in order to accurately access the environmental

effects of cooling towers.

1.5 Present Approach

In the present study, an analysis of the performance of
standard industrial drift eliminator devices using both theo-
retical and experimental techniques 1s carried out. The
theoretical approach makes use of the code SOLASUR (H2) to cal-
culate the air velocity distribution within a drift eliminator
and the pressure loss through the>eliminator, using both free-
slip and no-slip boundary conditions at the eliminator walls.
This information is used to perform trajectory calculations
with a fourth order Runge-Kutta numerical technique for droplets
of a given size injected into the eliminator in a uniform
transverse distribution.

In the experimental approach, the laser light scattering

technique is used to measure the droplet size spectra both at
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theAinlet section and outlet section of the eliminator. This
drift measurement technique 1s selected because of its on-line
data acquisition and reduction capacity, and because of its
successful application in the PILLS system by the Environmental
Systems Corporation. The main differences between the present
technique and the PILLS system are that the laser presently
used is a steady-state laser instead of a pulsed laser as in
the PILLS system (S4), and that there is no fog problem in this
laboratory scale work. The pressure drop across the eliminator
is measured with a differential electronic manometer. \

Comparison of the calculated results and the experimental

data for several drift eliminators is presented.

1.6 Organization of this Report

Chapter 2 describes the numerical model for theoretical
evaluation of drift eliminator performance. The assumptions
made in the theoretical model are also listed in Chapter 2.

The results of this calculation for some common cooling tower
drift eliminators are presented in Chapter 3.

In Chaﬁter 4, the details of the experimental measurement
techniques in this work are described. The experimental data
is displayed in Chapter 5, where it is compared with the calcu-
lated results. The sources of experimental error, and efforts
to quantify this error are included in both Chapters 4 and 5.

Chapter 6 discusses the discrepancies between the measured

and calculated results, the validatiohs of the assumptions



42

made 1n the theoretical calculations, and the usefulness
of the theoretical model. The overall performances of many

drift eliminators are compared, and future improvements are

recommended for drift eliminator design.



CHAPTER 2
THEORETICAL EVALUATION OF
DRIFT ELIMINATOR PERFORMANCE

2.1 Introduction

Despite the fact that many of the important parameters
“which affect the performance of drift eliminators cannot be
easily accounted for, a theoretical model remains very useful
in evaluating the relative performances of different drift
eliminators, and in designing improved devices.

In order to do this, a computer program, DRIFT, has
been written to numerically simulate the performance of
drift eliminators. This chapter describes the theory of
the calculations performed by the code and the assumptions .
‘that are made in the analysis. A detailed discussion of

bhe use of the code can be found in Ref. C5.

2.2 Assumptions

There are many parameters that affect eliminator per-
formance that cannot be easily included in a theoretical
model. Therefore, the following assumptions have to be
made in the numerical analysis:

(1) The air flow within the eliminator is laminar.

It was demonstrated (F3) experimentally that the

flow in a typical drift eliminator is laminar

throughout most of the eliminator volume, with
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(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

4y

Reynolds numbers lying in the range 2000 to 4000.

The exhaust flow field is not affected by the
presence of the drift since the drift density is
low.

The flow is two dimensional.

The flow is incompressible since the flow Mach
number is low.

Any water film effects on the air flow are
neglected.

The initial velocity of the droplet at the inlet
of the eliminator is the vector sum of the exhaust
flow velocity at the inlet and the vertical droplet
terminal velocity.

The probability of a droplet of a given size
entering the eliminator inlet at any location is
uniform.

There is no droplet mass loss due to elther
evaporation or friction.

Interactions among the droplets can be neglected

- 8ince the drift density 1is low.

(10)

The drift 1s eliminated if it impinges on the
eliminator walls, 1.e., the "bounce" effect and
any water film effects are neglected. Re-entrain-
ment of water droplets from the water film on wall
into the exhaust flow can be neglected if the
drainage 1s properly designed and if the film
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thickness is sufficiently small so that film

- surface instabilities do not develop over the

anticipated range of exhaust speeds.

Further discussion of the validity of some of these

assumptions 1s presented in Chapter 6.

2.3 Calculation of Air Flow Distributions

_'In order to calculate the droplet trajectory within an
~eliminator, it is neéessary to know the air velocity distri-
butién within the eliminator. 1In all previous studies |
either a uniform flow distribution (R3), or potential flow
(F3,Y2) 1is assumed. In this study, the flow distribution is
calculated by the SOLASUR code (H2) which is included in the
DRIFT code as a subroutine. In the original SOLASUR code a
free-slip boundary conditlon is used at the rigid boundaries
of tﬁe eliminators. In this work the option of a no-slip
boundary condition at the rigid boundaries ﬁas been added to
the code so that the mass-averaged total pressure drop between
the inlet phase and the outlet phase of the eliminator can

be evaluated. It is found that the flow distributions calcu-
léted with no-slip boundary conditions look more realistic
thah those with free-slip boundary conditions. Also, the
collection efficiencies calculated with these more realistic
flow distributions agree better with measured values. All of

these results are shown 1n later chapters.
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The SOLASUR code 1s a modlfied version of the SOLA
code for calculating confined fluid flows having curved
rigid or free surfaces as boundaries. It solves the two- ‘ .t
dimensional, transient Navier-Stokes equations for an incom-
pressible fluid using an implicit finite difference tech-
nique. This technique is based on the Marker-and-Cell (MAC)
method (Hl1l, Wl). The description of a flow transient pro-
ceeds step by step from an assumed initial velocity field to
an asymptotically steady final exhaust flow distribution.
The time step size is determined from numerical stability
considerations (H2). The fluid region is made up of uniform
rectangular cells, and is surrounded by a single layer of
fictitious cells as shown in Fig. 2.3.1. Fluld velocities
and pressures are located at cell positions as shown in Fig.
2;3.2; horizontal velocities at the middle of the vertical
sides of a cell, vertical velocities at the middle of the
horizontal sides, and pressure at the cell center.
The procedures involved in one calculational cycle
(one time step) consist of:
(1) Computing guesses for the new velocities for the
entire mesh from the difference form of the Navier-
Stokes equations, which involve only the previous
values of contributing pressures and velocities
in the various flux contributions. The velocities
at boundary cells are adjustéd so that the boundary

conditions are satisfied.
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(2) Adjusting these velocities iteratively to
satisfy the continuity equation by making
appropriate changes in the cell pressures. In
the 1teration, each cell is considered successively
and is given a pressure change that drives its
‘instantaneous velocity divergence to zero, thus
satisfying the continuity equation.

(3) When convergence has been achieved, the velocity
and pressure fields are at fhe advanced time level
and are used as starting values in the next calcu-

lational cycle.

The above procedures are repeated in each time step
until an asymptotic distribution 1s reached. The results
are then used for droplet trajectory calculations in the
main program. The flow chart of the SOLASUR subroutine is
shown in Fig. 2.3.3.

In the original code, free-slip boﬁndary conditions
are used.at the rigid boundaries (the top and bottom bound-
aries), where .in each top surface cell the u-velocity in the
top fictitious cell (the cell above the surface cell) is set
equal to the u-veloclty in the top surface cell, and for
each bottom surface cell the u-~velocity in the bottom
fictitious cell (the cell below the bottom cell) is set
equal to the u-velocity in the bottom surface cell. In the

DRIFT code, no-slip boundary conditions were added as an
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option, where the u-velocity in the fletltlous cells at the
top and bottom boundaries are set equal to the negative u-

velocity in the top and bottom surface cells.

A detalled discussion of the SOLASUR code 1s given in
Ref. H2. Results of air velocity distribution calculations

are presented in Chapter 3.

2.4 Pressure Loss Calculations

The pressure loss of the air stream flowing through an
-eliminator is an 1mpor£ant factor in designing a drift elim-
inator. A large pressure drop will reduce the tower cooling
capacity and will thus either increase the capital cost or the
operating cost of the tower. An estimate (Gl) reveals that
a flow resistance of three veloclty heads (=AP/% V2 ) will
increase the final temperature of the condensate by approxi;
mately 0.2°C. This seems to be a véry small increase, yet it
is significant in terms of overall station economics, bearing
in mind that 1°C is valued at about $3M over the 1life of a
2000MW station. The flow resistances of current industrial
drift eliminators range from two to ten veloclty heads.

Prediction of the pressure drop across an eliminator 1is
complicated by the fact that flow separation occurs in most
eliminator geometries, and this induces a large pressure drop.
" Yao and Schrock (Yl, Y2) calculated the pressure drop across
drift eliminators using the method of Lieblein and Roudebush

(L2), in which the total pressure 1oss 1s expressed as a
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function of boundary layer thickness, provided that no flow
separation occurs in the eliminator. The hydrodynamic boundary
layer thickness is determined by an approximation method
proposed by Thwaites (T5).

In the SOLASUR code values of pressure are calculated
at all cells. Using no-slip boundary conditions at the
rigid walls, the pressure drop can be calculated. Assuming
equal alir density at the inlet and outlet regions of the

eliminators, the mass averaged pressure loss 1s defined as

JT | JT

I u, ,°P £ u . P .
AP = jng 2,3 "2, - j=JB I?iR’J IBAR,J , (2.4.1.)
z . )
jegB 2, j=gp IBAR,J

where the summation is from the bottom boundary cell (JB) to
the top boundary cell (JT). 1=IBAR is the outlet region,

and 1=2 is the inlet region. ui,j and Pi,j are horizontal
velocity component and pressure at cell (i,j), respectively.
This pressure loss calculation is performed at each time step
until a steady state value is reached. Results of this calcu-

lation are presented in Chapter 3.

2.5 Droplet Trajectory and Collection Efficiency Calculations

The droplet collection efficiency of an eliminator is
generally defined as the ratio of drift mass collected by the
eliminator to the drift mass entering the eliminator. It is
customary to study eliminator efficiency only in terms of its

effect on the total mass of droplets leaving the cooling



53

tower. However, it is currently known that the droplet size
distribution also plays an important part in determining the
nature of drift deposition. Therefore it 1s necessary in
evaluating an eliminator to investigate the variation of
eliminator efficiency as a function of droplet size. The

collection efficiency is defined as

N (d)

_ ¢ |
@ = gy (2.5.1)

where Nc(d) represents the number of droplets of diameter d
being captured by the eliminator, and Ni(d) represents the
number of droplets of diameter d entering the eliminator.

In the numerical simulation process, a certain number
of droplets of a given size are injected into the eliminator
- with a uniform transverse distribution. By calculating their
trajectories within the eliminator, the number of droplets
that encounter the eliminator boundaries and are then assumed
to be captured can be found. The collection efficiency of
the eliminator for this droplet size 1s then determined from
Eq. 2.5.1.

The drift trajectory is calculated by solving the droplet
equation of motion. For a sphere moving in a flow field, the

general solution 1s governed by the moment um equation (M4)

m 6 nuaR(va-Vd) > + mi& (2.5.2)

4 3z

where



CaRe = 1 4+ 0.197Re® %3 + 2.6x107"Re? 3% (2.5.3)
20
and '
2lv -V lRp
Re = a_d a (2.5.4)
Ha
For a spherical water droplet, Eq. 2.5.2 can be simpli-
fied:
dv 9 u C .Re
d = a d -
dt 2 o R2 2h (Va‘vd) te (2.5.5)
W .

The symbols appearing in the above equations are:

my = droplet mass
Va = droplet velocity
t = time
U = gir viscosity
R = droplet radius
V., = alr velocity
C, = drag coefficient
Re = Reynolds number
g = gravitational acceleration
p, = alr density

p.. = water density

Equation 2.5.5 1s a nonlinear differential equation.

A fourth-order Runge-Kutta numerical analysis is applied to
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determine the droplet trajectory. At any time step, the
position of the droplet and its velocity are found. At each
location the air velocity is interpolated from the cell values
calculated by the SOLASUR code. The air velocity at the
beginning of each time step is used throughout that time step,
and the local drag coefficlent and droplet acceleration are
calculated from these velocities and from the local values
of the'remaining parameters.

A variable time step size is used in the caléulation.
The step size 1s determined from a consideration of the
propagation of errors in the following manner: For a differ-

entlial equation of the form

Ve = £(s,vy), | (2.5.6)

dt

the error at time step 1 + 1 in the fourth order Runge-Kutta

method is (Cl)

(1 h—af ) “‘“hz "(
€ =g + - £ (E,V,(E)) , (2.5.7)
1+1 "€y vy " 2 4

where a 1s a velocity value somewhere in the interval between

t, and ti+1’ € is a time value somewhere in the interval be-

tween t1 and ti+1’ and h is the time step size.

The first term on the right hand side of Eq. 2.5.7

represents the propagation error, and the second term is the

local truncation error, which 1s generally small for small
' 3f

values of h. Then, if 37
d ti,a

is negative, a value of h
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of

can be found which will make (1l+h3y— )<1 and the
oV ’
a|t, ,o
i
error will tend to diminish or die away, so the solution will

af
be stable. For the cases considered, YN is always found to
d

be negative, so by specifying a proper value for the step

factor, h%%— , a stable solution can be obtained. A large
d

value for this step factor will yleld a smaller propagation
error but a larger truncation error. A small step factor will
result in too small a step-size, thus prolonging the compu-
tation. A step factor of 0.1 has been found to be satis-
factory for the cases under study. In the present model,
af/BVd is determined at the beginning of each time step
using the local values of droplet velocity and air velocity.
The step size of this time step 1is then the constant step
factor divided by 9f/ CA

If the eliminator is installed in a vertical scheme, the
droplets are assumed to enter the eliminator at a velocity
which is the difference between the air velocity and their
terminal velocities. The terminal velocity of a droplet of
radius R is determined from Eq. 2.5.5 by requiring dva/dt

to be zero. Thus

2
o, R

— A ma 2.5.8
UaCdRe ( '5 )
25

¥ v .7 = _ 2
Ve = V-V 3
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This nonlinear algebraic equation is solved by Newton's
method of tangents with a calculational accuracy of 0.1%.

If a droplet enters the eliminétor other than vertically
(as in a horizontal scheme), then the lnitial velocity of the
droplet will'have a vertical component which equals the
difference between the vertical component of the air velocity
and the droplet terminal velocity, and a horizontal component
which equals the horizontal component of the air velocity.

Droplets of a certain size are introduced uniformly
across the inlet of the eliminator. The trajectory of each
droplet is calculated untll 1t either hits the eliminator walls
or passes through the eliminator. The collection efficiency
for this droplet size is then the ratio of the number of
~captured droplets to the number introduced at the entrance.
The number of droplets introduced at the entrance determines
the accuracy of the collection efficiency calculation. If Nd
droplets are introduced uniformly at the entrance, then the
error 1n the collection efficiency calculation will be
proportional to 1/Nd. In the DRIFT code, a provision is
made for testing a finer distribution of droplets at the
locations where the conditlion of trap and escape changes
between two adjacent droplets. This method greatly improves
the accuracy but does not demand too much computation time.
A flow chart of the DRIFT code is presented in Fig. 2.5.1.

TraJectory plots and calculated collection efficiencles

are presented in Chapter 3.
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CHAPTER 3
RESULTS OF THEORETICAL CALCULATIONS

3.1 Introduction

This chépter presents the results of the calculations
performed with the DRIFT code. The alr velocity distributions
in some common cooling tower drift eliminators are calculated
by the SOLASUR subroutine. The calculations employ both
free-slip and no-slip boundary conditions at the eliminator
Walls, and results are compared and discussed in Section 3.2.
The calculated droplet trajectories within these eliminators
are presented in Section 3.3. The collection efficiencies
calculated from these trajectories are compared with those
obtained from other sources in Section 3.4. The last section
of this chapter presents the calculated pressure loss across
some common industrial drift eliminators.

Table 3.1.1 tabulates the physical dimensions of the
eliminators under study. The case numbers in the table will

be referred to throughqut this thesis.

3.2 Alr Velocity Distributions

In this section, air velocity distribution plots for
some drift eliminators are presented and discussed. In the
plots, the length of the line segments are proportional to
the magnitudes of the velocities at the mesh points, and the
directions of the lines represent the directions of the .

flow at the mesh points. 1In all of the cases presented here
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the air flow direction at the inlet of the eliminator is
normal to the flow channel cross section. The gravity
effect on the air flow 1s negligible; therefore the air
veloclty fields will be assumed to be the same whether the
eliminators ére installed horizontally or vertically.
Figures 3.2.1 and 3.2.2 display the air velocity distri-
butions for a singie-layer louver eliminator as calculated
by the SOLASUR subroutine using free-slip and no-slip
boundary conditions at the eliminator walls, respectively.
With the free-slip condition, the calculated velocity is
quite uniform ( see Fig. 3.2.1). With the no-slip boundary
condition, the calculated velocity field,shown in Fig. 3.2.2,
is more realistic. Near the lower boundary a wake region
can clearly be seen. Such a wake region is expected in the
real flow. Note that ﬁhe velocity in both cases is mainly
parallel to the duct boundary, thus, the collection efficlency
can be expected to be low for this type of eliminator.
Figures 3.2.3 and 3.2.4 show similar air velocity fields
for a two-layer louver eliminator. The free-slip prediction,
Fig. 3.2.3, shows a nearly uniform distribution except at
the turn in the eliminator where the velocity decreases as
the radius of curvature increases. With the no-slip conditioﬁ,
the velocity distribution plot, Fig. 3.2.4, shows very small
velocities at the lower boundary in the first half of the
eliminator, and at the uppef boundary in the second half of
the eliminator. In fact, these are fhe regions where a wake

1s expected.
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Figure 3.2.5 compares the air veloclity fields for a sinus-

shaped eliminator calculated with free-slip and no-slip
boundary conditions. In the free-sllp case, A,the velocity
distribution is approximately uniform. At the mid-length of
the eliminator the velocity decreases as the radius of
curvature increases. Also, at the high pressure sides of the
eliminator the velocity is slightly greater than that at the
low pressure sides. It can also be observed at each trans-
verse cross section that the maximum velocity always occurs
at the wall. This is not true in the no-slip case, B, where
the maximum velocities occur at short distances away from the
high pressure walls, and approach a value of zero at the walls.
At the mid-~length of the eliminator the maximum velocity
occurs close to the center of the cross section. Note that
the velocities shown at the upper and lower boundaries of

the eliminator do not represent the velocities exactly at

the walls, but rather at short distances away from the walls.
It can also be seen from these plots that the no-slip results
predict a more realistic flow because they show the wake
regions. This will be illustrated with the help of flow
visualization photographs in Chapter 6.

Similar observations can be made regarding the velocity
fields of the Hi-V and Zig-Zag type eliminators shown in
Figs. 3.2.6 through 3.2,8. For these more complicated
geometries it is anticipated that sigﬁificant recirculating

eddies and turbulent wake regions exist at and near the bends
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1n-the\flows. From the distributions shown it is concluded
that the no-slip results predict more realistic distributions
thaﬁ the free-slip results, which will also be discussed in
Chapter 6. | _

For the Zig~Zag eliminator with no-slip boundary condi-
tions, the calculation fails to achieve a steady-state value.
Or, if a small mesh size is used for a more accurate determi-
nation of the actual flow, the calculation faills, These
effeéts are due to the fact that in the actual flow, turbu-
lence 1s very significant for this eliminator. This will be
shown in Chapter 6. The effects of turbulence are not taken
into account in the current calculation. The recirculating
eddies in interior corners are not fully resolved in the
solution. This could‘be done by using a finer calculational
mesh. However, this was not done since the mesh size already
is in a range for which the calculated droplet capture
efficiencies are relatively insensitive to the choice of mesh
size. In addition, the droplet capture dynamics are relatively
insensitive to whether the calculation of an eddying region‘is

exact or if the region 1s treated as being approximately stagnant-

which is what occurs with an lnadequate spatial resolution of
the calculated flow fileld.

The flow structure of any turbulent wake flow cannot be
resolved by simply using a finer mesh, but it could be treated
explicitly with a “turbulenée modelﬁ calculation (for which

several different computer prdgrams are availlable). However,
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in view of the success of DRIFT in predicting the experiment-
ally observed behavior of the drift eliminators, it was
decided that a turbulence model calculation would not be
required. Effectively, the error introduced into the capture
efficiency prediction by a failure to describe turbulent
eddy regions is relatively small. This is mainly true because
the devices examined have droplet trajectories that result in
captures lying far from these wake regions. This will be
discussed further in the following section and in Chapter 6.
Figures 3.2.9 and 3.2.10 show the results for the E-E
eliminator designed by Yao and Schrock (Yl, Y2). The criterion
for the design is that in order to minimize the air stream
total pressure loss, any flow separation of the hydrodynamic
boundary layer from the walls is to be avoided. Separation
can be avoided if the air velocity increases monotonically
along the flow direction. This is done by making the cross
section of the flow channel decrease monotonically. After
using this criterion and examining several geometries, it
was found the E-E eliminator performs satisfactorily. Looking
at the velocity distribution calculated by the SOLASUR sub-
routine using a free-slip boundary condition (Fig. 3.2.9), it
is found that the velocity increases monotonically along the
flow direction except near the outlet of the eliminator.
However, the result predicted with a no-slip calculation

(Fig. 3.2.10) indicates that separation does occur and that

a wake reglon exists at the upper boundary just after the
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sharp turn. As a result of this, the pressure loss calculated
by the DRIFT code is much higher than that predlicted by Yao
and Schrock (Y1 and Y2). The collection efficiency calcu-
lated by the DRIFT code using the free-slip condition has a‘
veloc¢ity distribution that is very close to that calculated

by Yao and Schrock. Using a no-slip condition, the collection
efficiency calculated by the DRIFT code is not signifiqantly

different. These results will be developed in the following

sections.

3.3 Droplet Trajectories

The collection efficiency of a drift eliminator at a
certain droplet size is determined theoretically by uniformly
injecting droplets of that size into the inlet of the elim-
inators and observing fheir trajectories inside the elimina-
tors. If the trajectory of a droplet ends at an eliminator
wall, then that droplet is assumed to be captured. If the
trajectory exits the eliminator without touching the walls,
then the droplet 1s assumed to have escaped the eliminator.
By comparing the numbers of escaped and captured droplets,-
the collection efficiency can be determined.

Droplet trajectories are calculated by solving numeric-
ally the droplet equation of motion within the eliminator
flow field as described 1n Chapter 2. Figs. 3.3.1 through
3.3.13 1llustrate the droplet trajectory plots for seven

different eliminator geometries, with all eliminators assumed
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to be 1n vertical scheme, and droplets entering the eliminators
at the left of the figures. For each geometry the trajectories
for two droplet sizes are shown. It can be seen in all of the
eliminator geometries that larger droplets are more easily
captured. In fact, it will be shown in a later section that
for any eliminator and any air speed, the calculated droplet
collection efficiency increases monotonically with droplet
size. This occurs because the net accelerationon a drop varies
approximately as 1/R, where R is the droplet radius. To see
this, note that at a given air speed, the aerodynamic drag
force increases approximately as R2 (see Fig. 2.3.1), while

3, and the time

the particle mass varies in proportion to R
during which the particle is affected by drag is approximately
constant. Thus, the net acceleration on a particle, and the
resulting displacement vary approximately as %, resulting in
easler capture for larger droplets.

Figures 3.3.1 and 3.3.2 show the droplet trajectories
within a single-layer louver eliminator determined by using
a free-slip alr velocity distribution. It is observed that
the paths of the droplets are essentially parallel to the duct
boundary except at the entrance where the inertial motion of
the droplets carries them towards the duct boundary. It is
because of this inertial effect that the droplets are trapped,
and it can be expected that they will be trapped.at the
boundary towards which they are initialiy directed, in this

case being the upper boundary. Thus, it is concluded that as
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Filg. 3.3.1 Droplet Trajectory Plot for Single-Layer
Louver Eliminator with Droplets Entering
the Eliminator at Left of Figure. Droplet
Size is 40 um
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Fig. 3.3.2 Droplet Trajectory Plot for Single-Layer
Louver Eliminator with Droplets Entering the
Eliminator at Left of Figure. Droplet Size
is 100 um
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the duct boundary steepness increases the collection efficiency
wlll also increase since the area of the boundary towards
whicﬁ'the droplets are 1lnitially directed is 1lncreased.
Figures_3;3.3 through 3.3.6 display.similar sets of data
for the two-layer louver and sinus-shaped geometries. 1In
these two cases the length, pitch, and entrance conditions
are the same in each of the two geometries in order to compare
their drift collection efficiencies. The trajectories are
calculated usiné free-slip boundary conditions in the air
velocity determination. Their collection efficiencies are
tabulated in Table 3.3.1 as a function of droplet size. The
fact that the sinus-shaped geometry has‘a higher collection
efficiency can be explained with the fluild velocity vector
and droplet trajectory plots. Comparing these figures, it is
seen that the sinus—shéped geometry has a steeper slope at the
entrance than does the two-layer louver eliminator, and this
is where most of the smaller droplets are trapped (see Figs.
3.3.3 and 3.3.5). For larger droplets, the number trapped
near the turn in the duct becomes significant. However, the
number 1is about the same for both geometries, as shown in |
Figs. 3.3.4 and 3.3.6. Therefore, in order to collect small
droplets a geometry that has a steep slope at the entrance

should be used, while for large droplets both slopes are

important. Thus, if the drift size distribution is known, an
optimal drift eliminator for that distribution can be indicated

in this manner.
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Figures 3.3.7 and 3.3.8 show the droplet trajectory plots
for the asbestos-cement eliminator using a free-slip air
velocity distribution. Trajectory plots for those using no-
slip air velocity distributions in a Hi-V eliminator are
shown in Fig. 3.3.9. By observing the results of all of the
essentially two-layer type eliminator geometries (two-layer
louver. sinus-shaped, asbestos-cement, Hi-V), it is concluded
that in the first half of those eliminators, the droplets
are trapped on the upper duct boundaries, while for the
second half of the eliminators, the droplets are trapped on
the lower duct boundaries. It can therefore be expected
that most of the water loading on these eliminators will occur
at these two regions. In designing an effective drainage
technique for this water loading, special attention must
be pald to these two regions. One drainage technique is
to put small grooves on the eliminator surfaces at these two
regions to direct the water away.

Another point can be made by observing the traject-
ories 1n these two-layer eliminators. The droplet trajector-
les shown in Fig. 3.3.9 for the Hi-V eliminator are a good
example. It is seen that few water droplets enter the two
regions where turbulent wakes are expected to occur as
discussed in the previous section. These two regions are

near the lower boundary for the first layer of ﬁhe eliminators
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and near the upper boundary for the second layer of the elim-
inators. This means that the turbulent wakes will not have
a great effect on the droplet trajectories. Therefore, even
if these wake regions are not described exactly, the calcu-
lated collection efficiency results may approximate the results
of an exact flow field, as long as the velocity distribution
is calculated using no-slip boundary conditions which will
show the general pattern of the flow field. Further discussion
will be made in Chapters 5 and 6.

Figures 3.3.10 and 3.3.11 show the droplet trajectories
in the Zig-Zag eliminator, using no-slip boundary conditions
for the alr velocity calculation. It 1is seen that all droplets
that are captured were trapped in the first two layers of the
‘eliminator. Therefore it 1s doubtful that a third layer is
necessary. Figs. 3.3.12.and 3.3.13 display similar data,
but with the third layer of the Zig-Zag eliminator removed.
It 1s observed that the capture efficliencles are about the
same for the two droplet sizes shown. This is in fact true
for all droplet sizes, though the Zig-Zag eliminator has a
slightly higher efficiency at smaller droplet sizes. It is
expected that the drift collection efficiency for the two
cases wlll not differ significantly,and therefore it is
suggested that two layers of the Zig-Zag eliminator will
probably suffice. If this is done, then the pressure loss
will be significantly reduced.

Figures 3.3.14 and 3.3.15 display the trajectory plots
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DROPLET DIA= 30 MICRON

Fig. 3.3.12

Droplet Trajectory Plot for Two-Layer
Zig-Zag Eliminator with Droplets Entering
the Eliminator at Left of Figure. Droplet

Size is 30 um



DROPLET DIA= 60 MICRON

Fig. 3.3.13

Droplet Trajectory Plot for Two-Layer
Zig-Zag Eliminator with Droplets Entering
the Eliminator at Left of Figure. Droplet
Size is 60 um
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DROPLET DIRA= 30 MICRON

Fig. 3.3.14 Droplet Trajectory Plot for E-E Eliminator
with Droplets Entering the Eliminator at Left
of Figure. Droplet Size is 30 um



DROPLET DIA= 50 MICRON

Fig. 3.3.15

Droplet Trajectory Plot for E-E Eliminator
with Droplets Entering the Eliminator at Left
of Figure. Droplet Size is 50 um
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for the E-E eliminator. It is seen that the capture efficiency
of this eliminator is indeed very high, as predicted by Yao

and Schrock (Yl, Y2). However, it will bé sho*n in Sec. 3.5
that the pressure drop across this eliminator calculated by

the DRIFT code is much higher than that predicted by Yao and

Shrock.

3.4 Collection Efficiencies

The droplet collection efficiencies of drifﬁ'eliminators
are calculated from the droplet trajectories through the
eliminators. These trajectories are obtained by using either
no-slip or free-slip predictions of the air velocity field.
Figure 3.4.1 compares the collection efficiency results
- ecalculated by the DRIFT code using a free-slip air velocity
field with those calculated by Roffman et al. Roffman et al-.
used an analytical formulation for the estimation of drift
eliminator efficiency by assuming that the drift flows longi-
tudinally at the assumed-constant vertical air velocity within
the eliminator, and that it experiences transverse viscous
drag due to the transverse air velocity component which is
obtalned by assuming that the air velocity at any point in
the eliminator is locally parallel to the eliminator wall.

For complex geometries the model uses a Fourier series expansion

of the transverse veloclty component in terms of the duct

contour. Results obtained by the DRIFT code using free-slip

boundary conditions for air flow field calculations are shown
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Fig. 3.4.1 Collection Efficiency of Droplets as
a Function of Droplet Size
(a) DRIFT Calculation
(b) Roffman Calculation

96



97

in Fig. 3.4.1 as the curves A, and Roffman's results are the
curves B. The solid curves are the results fér the double-
layer louver eliminator, Case D1 as identified in Table 3.1.1.
The broken curves are for the sinus-shaped eiiminator, Case
N2 as identified in Table 3.1.1 For both geometries there is
a falr agreement between the two calculations over the range
of droplet sizes considered. However, at small droplet sizes,
the results deviate from each other. The reason for this is
that for small droplets, the trajectory depends strongly on
thé air velocity distribution. Therefore, for an air
velocity distribution that is mainly parallel to the duct
walls, even near the entrances and turns as assumed by Roff-
man's model, the smaller droplets will follow the air stream
and escape the eliminator. In this way, a smaller collection
efficiency than the real value 1s predicted.

It is found from these comparisons that the calculated
results are quite sensitive to the assumptions regarding the
ailr-stream velocity distribution; It is noted that the
numerical simulation model in this work is physically more
realistic than others which are available.

Figure 3.4.2 shows the drift collection efficiencies for
the two-layer louver and sinus-~shaped type geometries of the
same length, bitch, and entrance conditions. The comparisons
of thelr air velocity distributions and trajectory plots were

given in previous sections. The fact that the sinus-shaped

geometry has a higher collection efficiency can be explained
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by the fluid velocity vector and droplet trajectory plots as
explained in the previous section.

The comparison of collection efficiency results will be
discussed in Chapter 5. Generally, for simple geometries like
the one or two-layer louver eliminators, and sinus-shaped
eliminator, the difference in the calculated collection
efficiency using a no-slip or free-slip velocity distribution
is not significant. This 1s demons;rated by the results
shown in Table 3.4.1 for the two—layér louver eliminator at
a 1.5 m/s air velocity. For more complicated geometries,
this difference becomes significant, and will be shown in
Chapter 5. |

Also shown in Table 3.4.1 is the capture efficiency
comparison of the DRIFT code calculation with Yao's calcu-
lation for the E-E eliminator. It is seen that with free-

slip conditions in the DRIFT calculation, the results are

very close to Yao's results, This is expected because po-
tential flow is assumed in Yao's cglculatioﬁ. Using a no-
slip condition in the DRIFT calculation, the results are

different, but not significantly. However, the difference
in the pressure drop results 1s very great, and is demon-

strated in the nexkt sectilon.

3.5 Pressure Drops

The SOLASUR subroutine determines the pressure at each

nodal point. From this information the total mass-averaged
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pressure drop across the eliminator can be determined if a
no-slip boundary condition 1s assumed at the eliminator walls.
The results of such calculations will be compared with experi-
mentalvdata in later chapters. In this section the pressure
drop distribution along some of the eliminators will be
presented to get some insight into the effect of the geometry
upon pressure loss across eliminators. The pressure drop
distributions presented here are normaiized as the ratio of
the pressure drop at any location iﬁ'the eliminator to the
total pressure drop across the eliminator.

Figure 3.5.1 shows the pressure drop distribution for
the sinus-shaped eliminator. It can be seen that most of the
pressure loss occurs near the inlet and outlet regions of the
eliminator. This 1s due to the fact that the slope of the
duct boundaries is steeper at these regions. Similar results
are obtalned for the asbestos-cement eliminator (Fig.3.5.2)
which‘has a shape similar to the sinus-shaped eliminator except
that the slope at the entrance and exit regiéns is not as
steep whi;e it is steeper at other fegions. These regions of steeper
slope extends farther along the eliminator length than in
the sinus-shaped eliminator.. It will be shown later that the
total pressure loss across the asbestos-cement eliminator is
larger than that of the sinus-shaped eliminator.

Figure 3.5.3 shows the results for another smooth geometry,
the E-E eliminator designed by Yao aﬁd Schrock (Yl,Y2). The

flow channel cross-sectional area decreases along the eliminator
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length, which causes the pressure loss to lncrease steadily
along the eliminator length. The pressure loss increases
sharply near the outlet region of the eliminator. This is
probably due to the occurrence of flow separation as discussed
.in Sec. 3.2.

Figures 3.5.4 and 3.5.5 show the results of the two
eliminators with sharp corners, the double-layer eliminator
and the Hi-V eliminator. For both of these eliminators, the
pressure distribution curves exhibit'a complicated behavior.
For the double-layer louver eliminator in Fig. 3.5.4, the first
discontinuity occurs near the inlet region, and is probably
due to the occurrence of flow separation. The maximum
pressure loss occurs at the turn in the eliminator, where it
decreases sharply in a very short length. It then increases
again to the outlet of the eliminator. Similar results are
obtained for the Hi-V ellminator in Fig. 3.5.5. These
distributions are not physically reasonable. Therefore, the
pressure drop results for geometries with sharp corners are
not reasqnable, and should be used.with care.

Table 3.5.1 lists the calculated pressure losses across
some common drift eliminators. They are expressed in terms
of the veloclty head, which is AP/%pVe. It can be seen
from this table that the pressure loss increases as the
eliminator geometry becomes more complex. Since the collection
efficliency also increases in this manner, it is necessary to

compromlise between these two parameters in the design of a
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Table 3.5.1

Calculated Pressure Loss Across Some Common
Drift Eliminators

Eliminator Case No. in APd 5
Geometry Table 3.1.1 5oV
Single-layer S1 2.35

Louver
Double-Layer D2 0.97
Louver .
Sinus N2 2.82
Asbestos~ Al 3.91
Cement
Hi-V H1 3.43
Zig-Zag Z1 2.54
E-E El 14,61
E-E El 1.20

(Yao's result)
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drift eliminator with low pressure loss and high collection
efficiency. .
The pressure loés across the E-E eliminator calculated
by Yao and Schrock (Y1,Y2) is also found in the table. Its
value is much lower than the one calculated by the DRIFT code.
This is because Yao and Schrock assumed that there was no
flow separation. This was, however, shown not to be true 1in
Sec. 3.2. If this is true, . then this eliminator will be unsuit-.
able for use in cooling towers despiﬁe its high capture efficiency.
As mentloned earlier, for eliminators with sharp turns,
the pressure loss calculation will not yield reasonable
results. This is illustrated in Table 3.5.1; for the double-
layer louver, Hi-V, and Zlg-Zag eliminators, the results are
unreasonably low. The experimental values of the pressure

loss are higher, and are reported in Chapter 5.
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CHAPTER 4
EXPERIMENTAL TECHNIQUES

4.1 TIntroduction

Experimental evaluations of drift eliminator performance
are usually performed by measuring the drift distribution at
the exhaust side of an eliminator which i1s installed in a
particular cooling tower or in a simulated cooling tower
facillity. In most cases only the drift rate (defined as the
drift mass current divided by the recirculating water flowrate
in the tower) was measured. Very limited experimental work .
has been done on the droplet size-dependent collection
efficiencies of drift eliminators.

Recently it has been realized that the droplet size
distribution plays an important part in determining the nature
of any drizzle which may arise from the drift (M3). Investi-
gations have therefore been made into the droplet capture
efficlency of drift eliminators as a function of droplet
size. This data can also validate the calculations performed
by the DRIFT code.

This chapter describes the drift elimination facility,
the drift measurement techniques, the methods for analyzing
the measured data, and the technique for pressure loss measuré-
ments. Results obtained from the experiments will be presented

and discussed in Chapter 5.

TR
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4.2 Drift Elimination Facility

In order to perform comparative performance studies of
cooling tower drift eliminators experimentally, a Drift
Elimination Facility has been constructed. The facility
simulates a cooling tower fill-outlet environment in which
drift eliminatérs can be installed for testing. A schematic
diagram of the facility is presented in Fig. 4.2.1.

This facility is a low-speed wind tunnel, OT8 m by 0.8 m
(2.5' x 2.5') with plexiglass walls,éupported by a Dexion
angle skeleton. Chrome felt gaskets are placed between the
plexiglass and Dexion angles to prevent leakage. In order to
have access to various regions, most of the plexiglass plates
can be removed. Air speeds are adjusted by means of a two-
speed exhaust fan at either 1.5 m/s or 2.5 m/s, which simulates
natural-draft or mechanical-draft cooling tower conditions,
respeqtively. The fan is placed at the inlet of the tunnel
and forces air into the tunnel. To dampen the flow turbulence,
some soda straws and honeycomb sheeps have been installed
downstream from the fan. The turning vanes are made of plastic
sheets, and are spaced in such a way that the air flow will
remain uniform after turning out of the horizontal section of
the facility into the vertical section of the facility. The
air is recirculated continuously through a 0.46 m (18") diameter
flexible air duct to insure that water vapor saturation is

maintained. Recirculating droplets are thought to contribute

only an insignificant amount to the drift generated in the
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tunnel and are neglected.

Water droplets are injected into fhe flow by a spray
head which consists of 20 full-cone center-jet nozzles (SPRACO
Model 3B), eéch delivering about 0.3 gallons per minute of
water (S8). The drift quantity and droplet slze spectrum
can be controlled by means of the spray flowrate valvé located
above the pump. The valve is a PVC ball valve and the pump
is rated at two horsepower. The droplets produced by the nozzles
lie mainly in the 5 to 200um diameter range. A Fulflo
water filter with a cellulose acetate honeycomb cartridge
that has a removal rating of 20 uym filters out any solid
particles in the circulating water that might plug the spray
nozzles. The facility 1is slightly tilted so that water will
run down to a drain and be collected in the water tank. This
recirculating water is changed to fresh, clear water before
an experiment 1s performed.

The vertical test séction in which the eliminators.are
installed is shown in Fig. 4.2.1.  Eliminators could also
be installed horizontally in the horlizontal test section of
the facility. However, in the work reported in this thesis
the eliminators have all been installed in the vertical test
section. This 1s done so that no significant water film can
accumulate on the eliminator walls; also the droplet entrance
conditions are simpler and are consistent with the theoretical

calculations.

Three types of industrial drift eliminators have been
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received from cooling tower vendors. They are the following:
(A) Belgian-Wave (sinus-shaped) eliminator
(B) Hi-V eliminator

(C) Zig-Zag eliminator

The eliminators are cut into sultable lengths so that
they can be fitted into the test section of the facility.
These eliminators are secured by special eliminator holders,
which can hold eliminators of different lengths. The holders
can adjust the pitch of the elimlinators and the angle inclined
to Lhe'air flow direction. The holders are made of aluminum to

resist corrosion in the humid environment of the facility.

4,3 Drift Measurement Techniques

There are many methods for measuring the water droplet
size distribution of water entrained in an air flow stream.
In the work reported here, the laser light scattering technique
is used because of 1ts capability to measure'very small water
droplets online. This technique is similar to the PILLS
system deﬁeloped by the Environmental Systems Corporation
(S2,s4).

Soon after the laser was developed, it was recognized
to be extraordinarily useful for light scattering studies
because of 1ts monochromaticity, high power density, spatial
coherence in the TEMOO mode, temporal coherence, and the small
divergence of a laser beam. The laser used in the present

study 1s a steady-state, Helium-Neon gas laser (Spectra-
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Physics Model 125A) which provides 50 milliwatts of single
transverse mode optical power at 632.8 nm. The schematic
diagram of the droplet measuring instrument shown in Fig. 4.3.1
illustrates the general principle of thils light scattering
ftechnique~for gensing flowing droplets. 'The laser light

source illuminates a narrow beam in the medium where the water
droplets are flowing. The illuminated water droplets scatter
light in all directions. The scattered light intensity is
related to the parameters of the scaftering medium and to

the geometry of the apparatus through the familiar Mie theory
(M5, V1). It has been found that the scattered light intensity

Is’ at any angle can be related to the size of the spherical

water droplet by the relation

I, = kd® (4.3.1)

where K 1s the proportionality constant and 4 is the droplet
diameter. Fig. 4.3.2 shows a plot of scattered light
intensity versus droplet size calculﬁted by the DAMIE code.

A description of the code is given in Appendix B. It can be
observed.from this figure that Eq. 4.3.1 holds. A scattering
volume, designated V in Fig. 4.3.1, 1s defined by the inter-
section of the laser beam and a collimated photodetector
acceptance cone, The acceptance cone is defined by the two
1000 uym diameter apertures in front of the detector. The
photodetector is an RCA Model 7265 photomultiplier tube. This
is a 1l4-stage, head-on type detector having an S-20 spectral

response, It 1s placed at an angle of approximately 30° to
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the laser beam, which was found to be optimum. When a droplet
passes through the scattering volume, light is scattered and
detected by the photomultiplier tubes’producing a voltage
pulse. The height of the pulse represents the scattered intens-
ity. The pulse is amplified and recorded in a multichannel
analyzer. The multichannel analyzer determines the pulse
height and records each pulse in an appropriate channel. The
analyzer used in this work is an NS 900 pulse height analyzer
with 1024 channels. It can record pulse heights of zero to
eight vblts. In the current work, only 256 channels are used.
It has been demonstrated,by using a standard pulse generator,
that this analyzer is capable of analyzing the typical pulse
shapes encountered in the experiments. The spectrum being
recorded represents the droplet size spectrum of the droplets
passing through the scattering volume.

This measuring technique was developed from the PILLS
system (S2). Limitations of the PILLS system due to fog-
induced background signals havebeen 'reported in field measurements
of drift in cooling towers, but are nonexistent in this lab-
oratory work since cold water 1s used 1n the experiments.
Multi-particle scattering can be avoided by controlling the
size of the scattering volume and by adjusting the drift density
appropriately. A single droplet is never counted more than
once because a steady-state laser 1is used rather than a pulsed

laser as in the PILLS system, where a slow moving particle may

remain in the scattering volume during more than one laser pulse.
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Other background signals are derived from the high-voltage
power supply, photomultiplier tube, amplifier, and from any
surrounding light sources. These contribute very little to

the measured signal and are neglected.

4.4 Calibration of the Drift Measurement Instrumentation

A calibration is necessary in order to find the voltage
response of the drift measurement instrumentation versus the
droplet size. The instrument is calibrated by introducing
monodisperse water droplets of certain sizes into.the scatter-
ing volume and noting the output signals. Monodisperse means
that the droplets all have the same size. Monodisperse drop-
lets are generated by a Berglund-Liu Monodisperse Aerosol
Generator, on loan from Thermo Systems, Inc. This generator
produces water droplets of a certain uniform size by utilizing
a vibrating orifice. Its operation 1is based on the instability
and uniform breakup of a cylindrical water jet under mechanical
disturbances (Bl). When these mechanical disturbances are
generated at a constant frequency and with sufficient amplitude
in a liquid jet of constant velocify, the jet will break up into
equally sized droplets. To form a source of monodisperse drop—
lets, these uniform droplets must be dispersed and diluted
before they recombine. The generator is unique in that it can
produce droplets of a known size, the droplet size being calcu-
lable from the generator operating conditions to an accuracy
of 2%. The droplets generated are exceedingly uniform in size-

the standard deviation 1s approximately 1% of the mean droplet

diameter (Bl).
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A schematic diagram of this generator is shown iﬁ
Fig. H.H.i. It consists of four major parts ::the liquid‘
feed system, the droplet generator, the droplet dispersion
system, and the wave generator. The liquid feed system is a
syringe pump which forces water through a membrane filter at
a constant rate into the droplet generator. The rate is
determined by noting the time (using a stop watch) in which
a known volume of liquid is forced into the droplet generator.
The droplet generator pictured in Fig; 4.4,.2 consists of a
stainless steel cup with a 1.15 in. diameter flange and a
hole in the bottom. A 0.375 in. 0.D. orifice disc is placed
in a groove inside the bottom of the cup, a Teflon O-ring is
placed on top of the orifice disc, and a stainless steel cap
is tightened onto the O-ring holding the orifice disc in
place. A ring-shaped piezoelectric ceramic with two silvered
faces is epoxied to the flange on the cup with conductive
epoxy. The liquid from the liquid feed system is fed through
the cap into the cup arid is then sprayed through the orifice.
An A.C. voltage from the wave generator is applied to the
piezoelectric ceramic which vibrates the cup and disturbs the
liquid jet at a constant adjustable frequency. Because the .
syringe pump delivers the liquid at a constant rate, the liquid

jet breaks up into uniform droplets at the frequency of the A.C.

voltage. The uniform droplet stream then enters the dilspersion
system. The droplet dispersion system consists of a stainless

steel holder and cover for the droplet generator, a pressure
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regulator, a flow meter, and an absolute fllter. The cover
has a dispersion orifiee through which both the droplet stream
and a turbulent air Jet pass. When the droplet stream mixes
with this air'Jet, it 1s dispersed into a conical shape. The
dispersed droplets are then ready-to enter the wind tunnel flow
stream. The droplet generator is placed under the laser light
beam at an appropriate distance so that the droplefs are well
enough dispersed to avoid multiple scattering, yet it is close
enough to avoid significant evaporation of the droplets. The
droplets are carried up to the scattering volume by the
normal air flow in the Drift Elimination Facility described in
Sec. 4.2. The scattered light from these droplets is detected
and recorded by the drift measuring instrument in the manner
described in Sec. 4.3. |

| The water droplet size produced by the vibrating orifice
monodisperse aerosol generator i1s deduced from a knowledge of
the orifice size, the liquid feed system flowrate, and the wave
generator fréquency by

6Q 1/3
Dd = (—) s (4.4.1)
nf

where Dd is the droplet diameter, Q is the liquid feed flowrate
and f 1s the disturbance frequency. Table 4.4.1 tabulates some
droplet sizes.under typicai operating parameters. The droplet
sizes generated in this work range from 50 um to 100 um
diameter. More detalled information on this generator 1is

contained in Refs. Bl and Tl.
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4,5 Data Acquisition and Analysis Techniques

" .Because the laser 11ghtvintensity is not uniform across
the beam cross section, monodisperse water droplets passing
through the ﬁeam will emit different scattered intensities.

The laser light has the Gaussian intensity distribution along
its diameter shown in Fig. 4.5.1, where the laser light
intensity was measured across the beam cross section using a
Spectra-Physics Model U404 laser power meter. Because of this,
the pulse heights recorded in the multichannel analyzer will
not yield a single sharp peak as would be expected from a beam
of uniform intensity if the edge effect is negligible (which is
true when the beam size is much greater than the droplet size).

Figure 4.5.2 shows a typical measured monodisperse
droplet pulse height distribution using 80 um diémeter drop-
lets. The location of the peak in the distribution is unique
to this droplet size. Thls measurement is repeated for several
monodisperse droplet sizes. Fig. 4.5.3 plots the heights of
the peaks versus the droplet sizes. The slope of the curve
in this logarithm plot 1is very close to two, which verifies
the correlation of Eq. 4.3.1.

Since the measured relationship between an output voltage
pulse and an input droplet size is not unique, a complicated
matrix operation must be used to analyze the measured voltage
distribution. To transform the measured voltage distribution
data into a droplet size distribution the following transform-

ation procedure is used.
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If the matrix R (v3;d) represents the voltage response
function for droplets of diameter d, and if vector &(d) is
the actual size spectrum of the drift, then the measured
voltage distribution vector, M(v), is given as

M(v) = R (v;d) A(d) (4.5.1)

So the actual size spectrum can be determined as

A(@) = RH(v;d) M(v), (4.5.2)

wheré R and g are.found.by calibration and field measurements,
respectively,

For 256 channels, the R matrix is a 256 by 256 square
| matrix. This matrix is dete;ﬁined from calibration measurement
with the relationship in Eq. 4.3.1. The matrix inversion for Eq.
.4,5,2 1s done by the LEQT1F subroutine of the IMSL Library'
(I2). A description of the subroutine is given in Appendix A.

To determiﬁe the collection efficiency of the eliminators
as a functilon of droplet size, the droplet size spectra should
be measured at the inlet and outlet of the eliminators. 1In
the present experiment, the scattering volume 1s fixed in
space while the eliminators are either placed below the volume
or above it. By placing the eliminators above the scattering
volume the spectrum measured represents the inlet droplet
spectrum, Pin(d)’ and similarly the spectrum measured when the
eliminators are below the scattering volume is the outlet
spectrum, Pout(d)' From these two spectra, the collection

efficiency as a function of droplet size, n(d), can be
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calculated by

P (d)
nd) = 1 - °ut" : (4.5.3)

Pin(d)

The measured spectra are recorded an paper tape and analyzed

by a computer program called DATANA which performs the response
matrix multiplication and calculates the collection efficienby
if a pair of measured spectra are provided. A description of
this code can be found in Appendix A;

A sensitivity analysis of the effect of the response
function g(v;d) on the collection efficiency calculation was
rerformed. This was done by using a typical set of measured
voltage dilstributions at the inlet and outlet of the eliminator,
and the calibration curve. By changing the parameters in the
calibration curve, the sensitivity of the collection efficiency
results are recorded. The parameters include the size of the
monodisperse droplets used for calibration, DC, and NCl, NC2,
and CCl, which are three parameters that specify the cali-
bration curve (as explained in Appendix A). Table 4.5.1 lists
the maximum changes in the calculated collection efficiency
from its mean value as the parameters are individually changed
by 10% from their mean values. It is observed that the only
parameter that yields a significant change in the collection
efficiency is DC, and this change is only significant at small
droplet sizes. It is concluded that the collection efficiency

results are not very sensitive to the response function, and



Table 4.5.1
_Sensitivity Analysis of the Collection
Efficiency Results

Parameter whose

131

value is changed Maximum Change
by 10% in Collection Efficiency
DC 17% at 40 um
8% at 50 um
Ug at 60 uUm
NC2 8% at 40 um

3% at 50 um

NC1 No significant change

CCl No significant change
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the error introduced by the calibration will not amplify the

error 1n the collection efficiency results.

4,6 Pressure Loss and Air Speed Measurement Techniques

The pressure loss across the eliminators is measured with
a differential electronic manometer (D4). Two static pressure
pitot tubes monitor the static pressure at the inlet and
outlet of the eliminators. The tubes are made of 1/16" ID,
18" long, stainless steel. One pitot tube is located 6"
downstream of the eliminators and the other is located 10"
upstream. They are 21" apart overall. The pressures are
measured at these two points, and averaged over a certain time
period. The differential pressure is first set to zero with
the air flowing, but without the eliminators. In this way
the pressure loss due to other structures will not be included
in the pressure loss measurement of the eliminators.

The sensor is a Barocell differential pressure trans-
ducer (Datametrics Model 570D). The pressure range that can
be measured by this sensor is from zero to 10 torr(i.e., zero
to 0.1934 psi). The pressure-sensing element in this unit is
a high-precision stable capacltive potentiometer; its
variable element 1s a thin, highly prestressed metal diaphragm
positioned between two gas~tight enclosures which are connected
to the external pressure ports. A difference in pressure
between the two enclosures produces a deflection of the dia-

phragm which varies the capacitance of the diaphragm and the
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fixed capacitor plates. The Barocell is wired into a 10 KHz
carrier-excited bridge so that the variable capacitance un-
balances the bridge and produces a 10 KHz signal whose ampli-
tude is propoftiohal to the applied pressure. This A.C. volt-
age ie measured by a high-precision electronic manometer
(Datametrics Model 1173), which gives a zero to 1.0 volt D.C.
output. This D.C. voltage is read by a digital voltmeter.

The accuracy of the system 1s about 0.5% of the reading.

The sensitivity of the system is 3 x 10'6 torn

The pressure difference can be accurately measured, but
there are other errors in the interpretation due to pressure
fluctuations in the flow turbulence and pressure loss contri-
butions by the eliminator holder structufe, which have been
found to be significant. The measured results will be
presented in Chapter 5.

The air velocity is measured with a hot wire anemometer
(Datametrics Series 800-VTP Flowmeter (D5)). It measures the
average and instantaneous velocities 1in the flow of air by
considering the cooling effect of the stream on a very thin
electrically-heated wire filament. The probe that holds the
flow-sensing wire filaments is a 3/8" diameter stainless
steel wand. It 1s inserted into the drift measurement facility
at any point to measure the local, time-averaged eir velocity.
The veloclty range metered by this syetem is from zero to
6000 ft/min (0-30 mAs ). It has a two volt D.C. output connection
for a digital voltmeter. The voltage reading can be converted



134

to a veloclty with a calibration curve. The accuracy of this
unit is about 2% of the reading. However, due to flow turbulence
and a non-uniform flow distribution, an error of about 10% is
introduced. ‘

The results of these measurements will be presented and

compared with calculations in Chapter 5.

4,7 Sources of Experimental Error

It is difficult to analyze the contributions of the
experimental uncertainties in the final drift measurement
results. In thls work, the approach is to repeat the measure-
ments several times, so that the experimental accuracy is
Indicated by the variations in the final results. These
measurements include the calibration measurement and the
measurements of voltage distributions at the inlet and outlet
of the eliminators. The results of thils test are presented
in Chapter 5. In this section, all possible sources of
experimental error are ldentified.

(1) The position of the laser beam moves in the first

few hours after it is turned on. Therefore,

a warm up period of at least one hour should be
allowed before any measurement. Movement of

other drift measuring components is not significant
throughout the experiment, which takes about

ten to fifteen hours.
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Calibration is the most difficult measurement
in the experiment. The droplet generator
orifice 1is fréquently plugged, and sometimes
may be partially plugged, which decreases the
pumping flow rate and thus changes the droplet
size and the uniformiﬁy of generated droplets.
Therefore, the flow rate should be constantly
checked throughout a measurement.

One important uncertaiﬁty in the calibration
is that the chance of more than one droplet
appearing in the scattering volume is signifi-
cant, although efforts have been made to reduce
this. However, the final results are found not
to be very sensitive to the calibration curve
except at small droplet sizes, as discussed before.

Since the monodisperse droplets are carried by
the flow up to the scattering volume a few inches
away from the droplet generator, fhe droplet
size will decrease due té evaporation. It was
estimated that this decrease can be as large as
5% for 100 um dropléts. This error could intro-
duce an error of 10% in the final results for

small droplet sizes, as was shown previously.

Statistical counting errors are difficult to

estimate because they are not uniform for all
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(5)

droplet sizes, but become larger for bigger
droplets. In the data analysis, the distribu-
tion 1s smoothed, and this will eliminate some
of this error. Dead time in the pulse height
analyzer contributes another uncertainty to the
results. Since the drift rate is much higher
at the eliminator inlet than at the outlet, the
dead time 1is very different for the two distri-
butions, and it is found that the analyzer used

in this work cannot account for this very well.

There is a possibility that more than one drop-
let may appear in the scattering volume and cause
the analyzer to record a wrong signal. This
possibility cannot be avoided but can be reduced
by decreasing the size of scattering volume and
by reducing the quantity of drift. This error is

thought to be small.

The quantity of drift fluctuates with time due

to the pumplng power fluctuations and changing
conditions within the Drift Elimination Facility.
However, if the data acquisition time is long
(three to five hours in the present experiment),
this fluctuation will average out in the measured

results.
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The pressure drop across the filter in the
circulating water system increases with time
beqause of the gradual plugging of the filter
by foreign particles in the circulating water.
This affects the quantity of the drift generated
by the facility. But the effect 1s small during

one test.

Signai noises that may contribute to the measure-
ment uncertainty consists of electronic noise
in the amplifier and high voltage supply, the
dark current of the photomultiplier tube, and
scattered light from other sources. It is found
that these nolses contribute about 10% to the
lowest recordable signal and become insignificant

for larger signals.

The laser light intensity at the measuring
point depends on the drift concentration which
shadows some of the laser light. However, Dby
measuring the intensity at the scattering volume
with a power meter for different drift concen-
trations, this effect was found to be almost

undetectable.
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The above discussion gives possible sources of
experimental uncertainties. In Chapter 6, a quantitative

analysis of experimental errors is developed.
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CHAPTER 5

COMPARISON OF EXPERIMENTAL RESULTS
WITH THEORETICAL CALCULATIONS

5.1 Introduction

In this chapter the experimental results for the drift
collection efficiency and pressure loss across some industrial
cooling tower drift eliminators are presented. These results
are compared with the calculations from the DRIFT code. The
experimental measurement techniques are discussed in Chapter 4,
and the numerical simulation techniques in the DRIFT code are
described in Chapter 2.

Three industrial drift eliminators were donated for this
study by cooling tower vendors. These are the Belgian-wave elim-
inator, the Hi-V eliminator, and the Zlg-Zag eliminator. Their
geometries and dimensions are shown in Fig. 5.1.1. The Belgian-
wave eliminator is made of Sinusoidally shaped asbestos cement
board, and it has a uniform flow channel cross section. The Hi-
V eliminator is made of polyvinyl chloride. Its flow channel
cross section is not uniform, as shown in Fig. 5.1.1. The
ZigeZag eliminator is made of fiberglass. Its flow channel
cross section is uniform, except at the corners.

The measured pressure losses across these eliminators are
compared with calculated pressure losses in Section 5.2, and the
collection efficiency comparisons are presentediin Section
5.3. The data i1s developed at two aif speeds, 1.5 m/s and

2.5 m/s.
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5.2 Pressure Drop Across Eliminators

Table 5.2.1 1s a comparlison of the theoretically
calculated pressure losses across the three types of drift
eliminators with the experimentally measured values at an air
speed of 1.5 m/s. Table 5.2.2 presents the same comparison
| at an alr speed of 2.5 m/s. The true alr speeds are slightly
different for each eliminator, since their flow resistances
are different.

The calculated and measured results are in good agreement,
and are within the bounds of experimental error. It is clear
from the data that as the geometry of the drift eliminator
becomes more complex, the pressure loss increases. Since the
drift collection efficiency also increases with increasing
.geometrical complexity (shown in Section 5.3), it is neceséary
to strike a compromise 1in desligning an eliminator that will
achieve an acceptable pressure loss and an acceptable collec-
tion efficlency. The values in brackets are the resistances
of the eliminators to the air flow expressed in terms of

velocity heads corresponding to the nominal air speed. This
is an advantageous way to report the data since its numerical
value for a particular eliminator is independent of the air
speed and the working fluid if the flow is fully turbulent.

The theoretical pressure loss calculations for the Zig-
Zag eliminator have been unsuccessful because of the comﬁlex
eliminator geometry and because of the limitations of the

calculational method in describing turbulence (see Chapter 3).
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However, the agreement of the calculated and measured results
for the other two,.more simple geometries, demonstrates that
the calculations are valuable 1n reasonably smooth geometries
for predicting pressure loss.

Comparing Table 5.2.1 and Table 5.2.2, it is found that
the pressure loss increases approximately as the square of the
air speed for all three eliminators. The observations made
about Table 5.2.1 also apply to Table 5.2.2.

The pressure losses for these eliminators quoﬁed by theilr
vendors are higher than the values presented here (H6, S9).
The reason is that in their measurements, the pressuré differ-
ences with no eliminators installed were not set to zero.

This means that their measured data include the pressure loss
due to other structures, which are considerable in comparison

with just the pressure loss across the eliminators.

5.3 Collection Efficiency Results

In this section, the calculated and measured collection
efficlency results are presented. Fig. 5.3.1 shows the drop-
let collection efficiency as a function of droplet size for
the Belgian wave eliminator at an air speed of 1.5 m/s. The
measured data are presented as a broken line in the figure.
The experimental technique is described in Chapter 4. The
calculated results using both no-slip and free-slip boundary
conditions are compared with the experimental results. It

is found that the calculated and measured droplet capture
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efficiences agree well for this smooth eliminator geometry,
with the no-slip boundary results providing more accurate
predictions. It 1s also found that droplets smaller than 60
um in diameter can easily escape from the eliminator.

The calculated and measured collection efficiency data
for the Hi-V eliminator are shown in Fig. 5.3.2. It is found
that this eliminator is more efficient in capturing droplets
of any size than the Belgian wave eliminator. Also, the agree-
ment between the no—slip.prediction and'the measurement is
reasonably better than the agreement between the free-slip pre-
diction and the measurement. The no-slip result predicts a high-
er collection efficlency than the measured data, while the free-
slip prediction 1s generally lower than the measured data.

Figure 5.3.3 displays the data for the Zig-Zag eliminator.
The calculation of the air velocity distribution for this elim-
inator failed to achieve asymtoptic values using no-slip
boundary conditions, as discussed in Chapter 3. By using the
calculated distribution of the nonasymtoptic solution, approx-
imate results of droplet collection efficiency for this elim-
inator were obtained. This i1s compared with the free-slip
prediction and the measured data in Fig. 5.3.3. This approx-
imate result predicts a higher collection efficiency than the .
free«slip prediction, and agrees with the measured data better
than the free-slip prediction in general.

Figure 5.3.4 shows the data at high fan speed,
where the calculated results are no-slip prediction. Similar

conclusions can be made from this figure.
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5.4 Estimation of Experimental Error

A qualitative discussion of the sources of experimental
errors 1s given in Chapter U4, It was mentioned that the quanti-
tative contributions of those uncertaintles in the data are |
not easily accounted for. In this work only the repeatability
of the measured data is established. This is done for each
eliminator by repeating the measurements several times under
similar conditions.

Table 5,4.1 shows the results of four measurements on the
Zig-Zag eliminator at an air speed of 1.5 m/s . The measure-
ments included the calibration run and the droplet size
distribution measurements at the inlet and the outlet of the
eliminator. The data was taken on different days. From
these results it can be seen that the data is repeatable with
a maximum standard deviation of about 10% at the smallest
droplet size.

The results for the Zig-Zag eliminator are the most
consistent among the three eliminators tested in this work.

The reason is that this eliminator is constructed in one block
so that the pitch and the inclination of the louvres always

remains the same even though it was taken out after each
measurement, The other two eliminators are furnished in
pleces which are installed by using the eliminator holders
described in Chapter 4. When taking these eliminators in and
out of the test section, it is difficuit to repeat the exact

pitch and angle of inclination. Therefore, for the Belgian
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wave and the Hi-V eliminators the results are not very

repeatable; the maximum standard deviation is as high as 20%.

The discrepancy between the calculated and measured

results is discussed further in Chapter 6.
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CHAPTER 6
CONCLUSIONS AND RECOMMENDATIONS

6,1 Discussion of Results

It was demonstrated in previous chapters that predictions
of collection efficiency and pressure drop for some drift
eliminators by the DRIFT code agreed fairly well with measured
results. The discrepancies are due to the experimental un-
certainties and the calculational and experimental assumptions.
The results are discussed 1n this sectlon. |

It was indicated earlier that both the calculated and
measured pressure drop results of this work are significantly
lower than the values quoted by cooling tower vendors. This
is due to a difference in the definition of pressure drop.

The vendors include in their definition the pressure loss due
to structures other than the eliminators themselves, and this
contributes a significant amount to the measured pressure loss.

The collection efficiency results reported in this study
are higher than expected because these results generally
<show 100% efficiency for droplets larger than 100 um, yet
droplets much larger than this have been found to escape
actual cooling towers. This is probably due to the assumpt-
lons made in the calculations and the simplified conditions
in the experiments. Droplet growth effects,water film
effects, and flow turbulence are thought to be the main

factors. These effects are discussed here.
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(1) Water film effects

The droplet collection efficiency calculations have
ignored the possible effecté of the water film on the elimi-
natbr walls., Two effects arise from the drag of the exhaust
flow on the water film, and another effect arises from the
impacting of captured water droplets on the film. The
presence of the water film modifies the exhaust flow boundary
conditions from simple no-slip conditions to those of matching
the air-water velocities at the gas-liquid interface. Except
in the case of a thick film, the effect of this complicated
boundary condition on the velocity distribution within the
eliminator should be small. Also, drag on the liquid film
can lead to droplet generation because water can be drawn off
of the trailing edge of the eliminator, or droplets can be
stripped from the film surface through the formation of Helm-
holtz instability waves.

The work of Yao and Schrock (Y1) indicates that at an air
speed of 2.0 m/s in a smooth drift eliminator geometry the
minimum film thickness required for droplet stripping is 0.2
mm, and that substantially higher air speeds are required for
droplet generation via pickup from the peaks of Helmholtz
instability waves for a film of this thickness. In the present
work, the water film thickness on the eliminator walls was
not measured, however, visual observations were'unable to
detect either droplet stripping at the trailing edge of the

eliminator or droplet generation on the interior walls. The
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absence of droplet stripping at the outlet 1s implicit
evidence for the absence of wave generated droplets 1in the
interior (Y1).

With sufficilently thick films and with droplets impacting
at sufficiently acute angles and high velocitles, it has been
observed that a droplet can rebound from the film, or "bounce"
back into the exhaust flow (J2). This droplet bouncing
problem is thought to be significant for drift eliminator
performance 1n actual cooling towers where the water loading
on the eliminator is high and the water film is thick.

Foster et al. (F3) studied this problem and observed that this
effect 1s indeed significant, however, they found that many
droplets meeting the impact conditlions established by Jayar-
-atne and Masdn (J2) did not bounce. It was concluded that.
it is not possible to estimate the true importance of droplet
bouncing in a real tower environment due to the lack of
information about the surface water coverage. Further work

on this effect is being carried on by Foster'in the Central

Electricity Research Laboratories (F5).

(2) Droplet growth effect

It was mentioned that droplets as large as several
hundred microns could escape commercial cooling towers out-
fitted with the drift eliminators being tested in this work.
According to the collectlon efficienc» results for these

eliminators, these droplets should have been trapped. It is
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suggested that the droplets might bypass the eliminators
through the openings around the tower structure. It might
also be due to the stripping and rebounding effects in the
water film as discussed earlier. Another possibility that

has so far been overlooked in the literature is droplet

growth in cooling towers. It has been suggested that droplet
growth is not significant iIn a cooling tower because a small
drift droplet, moving at a veloclty approaching that of the
air stream, might leave the top of the tallest natural draft
tower in less than one minute from the time 1t passes through
the eliminators. If that is true, then even though the air

in the surrounding air stream is generally saturated, the time
span 1s too short for any significant droplet growth. However,
this 1s not true for some droplets in cooling towers. Large
droplets (>100 pum) do not travel at the air stream speed
because their terminal velocities approach that of the air
stream speed as shown in Fig. 6.1.1. Therefore they will

stay in the tower for a long time. .Another factor that causes
some water droplets to reside in a cooling tower for a long
time is the air flow pattern inside the cooling tower. The
turbulent effect, the quiescent region, and the variation of
air velocity at the throat of the shell (in the case of a
hyperbolic cooling tower) can prolong the residence time of
water droplets inside the tower, thus making the growth effect
significant. This effect will not only change the size dis-

tribution of the escaping drift, it will also change the
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drift chemical concentrations.

(3) Turbulence effects

In the theoretical calculation of the performance of a
drift eliminator, it is assumed that the air flow is laminar,
and that the turbulent wake region is neglected. However,
for some eliminator geometries, this wake region extends
over a large portion of the eliminatér cross section. 1In this
work, flow visualization is performed for three eliminators:
the Belgian wave eliminator, the Hi-V eliminator, and the Zig-
Zag eliminator. The flow is established in a long, two foot
wide free surface flume. The working fluid is water, instead
of air. The water depth is about three inches and the water
flow velocity was adjusted to be about 0.1 m/s so that the
Reynolds number matches that of a flow of air whose velocity
is 1.5 m/s. Blue dye was injected at the el;minator entrance
and at the middle of the water depth to get away from the
free-surface and boundary layer regions, each of which is
about half an inch thick. The dye was injected at the elim-

: inator boundaries so that wake regions could be observed.
Photographs were taken of these dye traces for the three

eliminators. To observe the general flow pattern within these
eliminators, tiny paper chips were sprinkled on to the water
surface and time-exposure pictures recorded the trajectories

of these chips. The results of these simple experiments were
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‘qulte satisfactory. »
| i Figure 6.1,2 dispiays the wake régions in the Belgian
wave eliminator by injecting dye into thé flow. The water
‘ enters at the right side of the picture where the dye inject-
ion tubes are shown. It can be seen that a significant
- wake region exlsts at the lower boundary and another wake
region exists in the second half of the upper boundary. Fig.
6.1.3 shows the flow pattern by using paper chips. The water
enters at the right side of the picture where the dye inject-
ion tubes are shown. This picture also shows the wake region
at the central portion of the lower boundary where recircu-
lation occurs. The célculated velocity distribution using
no-slip boundary conditions shown in Fig. 3.2.5b simulates
‘ these regions with almost stagnant regions. These regions
_are poorlyvrepresented if free-slip boundary conditions are
used (see Fig. 3.2.5a). |
Similar observations can be made for the Hi-V elimina-

tor. Figs. 6.1.4 and 6.1.5 show the wake regions and flow
pattern respectively. Again,the wake regions exist at the
lower boundary and the second half of the upper boundary.
These wake regions are larger than those in the Belgian wave
eliminator. In the calculation these regions are represented
by stagnant regions if no-slip boundary conditions are used,
as shown in Fig. 3.2.6b. Again, the free-slip result cannot
account for these regions very well.

Figures 6.1.6 and 6.1.7 show the same set of pictures
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for the Zig-Zag eliminator. It is seen-that the wake regions
are very large for this eliminator. In fact, the third layer
of this eliminator is so turbulent that the dye is well-mixed.
Since the flow is so turbulent in this layer, the pressure
drop in this layer will be greater than the pressure drop in
either of the other two layers. As discuésed in Chapter 3
the third layer has little effect on the capture efficiency
of this eliminator, and by taking off this layer great

savings can be realized in cooling tower operation without
producing additional drift.

The calculated velocity distributions using either no-
slip or free-slip boundary conditiocns, as shown in Figs.
3.2.7 and 3.2.8, cannot account for these turbulent wake
regions. However, the no-slip prediction gives a better
approximation than the free-slip prediction, and the no-slip
results ﬁredict the flow pattern quite well in the first two
layers where most droplets are captured. Therefore, the
collection efficiency calculated using these results should
be close to the actual result.

For this eliminator it can also be seen that at the
entrance of the upper boundary there is flow diversion. This
i1s caused by a pressure difference above and below the elimi-
nator boundary. It is expected that this would not affect
the-collection efficiency of the eliminator but would certainly
increase the pressure drop, and thus it is not desirable. 1In

order to avoid this flow diversion, the eliminator walls at



the entrance should be more parallel to the inlet flow.

From these flow visuallzation photographs it is con-
cluded that turbulent wake and eddy regions occur in all the
eliminators investigated. These effects are especially sig-
nificant in complex geometries. In the calculations, the
turbulence effects are not accounted for and the wakes are
not completely resolved. In order to achlieve an exact
solution, the mesh size should be reduced enough so that re-
circulating eddies can be fully resolved, and a turbulence
model must be included in the equations. However, in view
of the success of the present calculation for predicting
the experimentally observed behavior of the drift eliminators,
it was decided that this more expensive and complicated
approach would not be required. The reason for the success
of present approximation is that by using no-slip boundary
conditions, the calculated velocity distributions represent
the actual flow patterns quite well as observed by comparing
the flow pattern photographs in this section with the velocity
distribution plots in Chapter 3. Although the eddy and turb-
ulent wake regions are not exactly described in the calculated
velocity distribution, these regions are approximated by
stagnant regions. Moreover, the water droplets seldom travel
into these regions as seen in the droplet trajectory plots
displayed in Section 3.3. Therefore, using this approach,
the collection efficiency can be fairly accurately calculated.

However, the pressure drop depends greatly on the existence
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of turbulence, and thus it cannot be accurately predicted

by these calculations 1f significant turbulence occurs in the
eliminator. For smooth geomeftries the predictions agree quite
well with measurements, but for complicated geometries (such
as the Zig-Zag eliminator), the calculation predicts a much
smaller pressure drop than the measurement.

Another factor that the calculation does not take into
abcount is the air turbulence inside cooling towers. In order
to solve this problem, it is necessary to have a turbulence
code to calculate the air velocity distribution inside elimi-
nators, and also to have quantitative information about the
nature of air turbulence inside cooling towers. However, this
quantitative information is not well known. Martin and Barbar
(M3) have indicated the possible variations in the velocity.
of alr approaching an eliminator, but it is also important
to know the frequency with which this variation occurs. Some
idea of the variation in flow direction was obtained using
an ammonium chloride smoke generator (F3). It was suggested
that the variation was sensitive to the ambient wind conditions,
fluctuating approximately 10° about the vertical with a one
second period when the wind was gusting strongly, and remaining
steady when the amblent conditions were calm. However, these
observations were made close to the tower center, and larger
variations would be expected towards its perimeter. The
positioning of towers relative to other constructions might

also be an important factor in this respect.
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The following conclusions are made in this study:

(1) The calculational method can accurately predict the
collection efficiencies of cooling tower_drift
eliminators.

(2) The pressure drop calculations are reasonably good
for smooth eliminator geometries. For eliminator
geometries with sharp corners the calculation pre-
‘dicts much smaller pressure drops than the actual
values.

(3) The design of the Zig-Zag eliminator is economically
unsound, The third layer of this eliminator should
be removed. By dolng this, the drift collection
efficiency will not be significantly affected, yet an
appreciable savings from the reduced pressure drop
will be obtained. _ |

(4) The E-E eliminator designed by Yao and Schrock
collects droplets very efficiently as predicted by
the designers, yet the pressure drop 1is much higher
due to the occurrence of flow separation. Therefore,
this eliminator does not appear as promising as its
collection efficiency shows.

(5) In order to achleve a high drift collection efficiency
the drift eliminator geometry should be as complex
as possible. However, the pressure drop will also
increase as the geometry becomes more complex. It

is found that an eliminator yielding a higher collection
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efficiency will always have a higher pressure

drop. Table 6,1.1 demonstrates this point. The
table shows the calculated collection efficiency
(using no-slip boundary conditions) for some

common drift eliminators at an air speed of 1.5 m/s.
The values of pressure drop presented in the table
are eilther experimental results, where available,
or calculated results. The calculated pressure
drop results for complicated geometries with sharp
corners might not be reliable. This table shows
that more complex geometries have better collection

efficiencies yet higher pressure drops.

Up to now, there is no available technique for designihg
drift eliminators that optimizes between the collection
efficiency and the pressure drop. It 1s therefore suggested
that in designing a drift eliminator for a particular cooling
tower, a pressure drop limit across the eliminator that can
be tolerated should be set first. Then an eliminator geometry
should be chosen that has a pressure drop lower than the set
limit, yet has the best collection efficiency. This can be
done theoretically with the DRIFT code, After selecting the
eliminator geometry in this way, it should be constructed and
tested in an experimental facility to check that the overall
drift emission is lower than the environmental standard set

by the Environmental Protection Agency. This approach will
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certainly save a lot of unnecessary effort and money while a

better eliminator 1is designed.

6.2

Recommendations

The results from the DRIFT code in this paper suggest

that this code is very useful in the evaluation and design of

cooling tower drift eliminators. The following future work

on this numerical technique is recommended:

(1)

(2)

It has been shown that the air velocity distribution
inside an eliminator calculated by the SOLASUR sub-
routine using no-slip boundary conditions approximates
the actual flow pattern quite well. In order to
further validate thils calculation, a spatial
measurement of the alr velocity distribution inside
the eliminator would be appropriate. There are

many such measurement techniques; a suitable one
would be the Laser Doppler Anemometer (LDA) tech-
nique which is commercially available. Fig. 6.2.1
shows a recommended test section for this purpose
and for the droplet dynamics experiments which

are described later. The LDA technique will not
only measure the veloclty values but also the turb-
ulent flow parameters. These will be very useful

for investigating the eliminator performance.

The droplet trajJectory calculation performed by the
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Fig. 6.2.1 Schematic Diagram of the Proposed Experimental

Setup for Studying Droplet Trajectory and Air

Velocity Distribution in Drift Eliminators
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DRIFT code can be checked by a simple experiment.
The suggested experimental setup 1s shown 1in Fig.
6.2,1. A small exhaust fan will induce the required
air flow. Drift eliminators are installed in a
test éection that consists of plexiglass walls

and a flow channel that is several inches thick.
The nominal air speed can be measured by hot wire
anemometer at the inlet region of the eliminator.
Colored water droplets generated by a monodisperse
droplet generator are introduced below the elim-
inator . Their trajectories can be observed with
a high-speed cine camera, These trajectories can
be compared with calculated results. This experi-
ment can also study the droplet rebounding effect
at the walls. Water film effects can also be
studied by introducing a water film at the elimi-
nator walls. Since the test section is small, it
can be placed either horizontally or vertically.
As mentioned in (1), the air velocity distribution
inside the eliminator can also be measured by an
LDA technique with the eliminators installed in
this test section. This basic experiment could
validate the present calculation as well as provide
improvements to the code concerning the droélet

rebounding and water film effects.
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For the design of drift eliminators, the following

recommendations are made:

(1) It is found from the present calculation that the
third layer of the Zig-Zag eliminator serves no
purpose in capturing drift droplets, and thus should
be removed to reduce the pressure drop across the
eliminator. Also, to avold flow diversion at the
eliminator entrance, the boundaries should be reshaped
so that they are parallel to the flow. An exﬁerimental
test of the performance of the Zig-Zag eliminator
with only two layers and a smoothed entrance is
recommended.

(2) The performances of many common drift eliminator geom-
etries have been evaluated in this work either by
numerical simulation or experiments. However, there
are still many other eliminator designs that have been
used commercially, and some potentlal designs that are
worth investigating. These iﬁclude the Chevron-type
eliﬁinator used by French cooling tower vendors, a
helical flow channel design with smooth inlet and outlet
nozzles, a "polisher" eliminator design, and many others.

(3) Total drift emission is the most important parameter
of the environmental acceptance of cooling tower
drift. Therefore, after selecting a particular

eliminator design, it 1s necessary to test the
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deslign for its total drift emission. However,
none of the available drift measurement techniques
has been proven to be generally satisfactory-~to .
the point of being adopted for general use (Al).
A reliable technique for drift emission measurement
is needed.

It is proposed that future work should be
performed to demonstrate the feasibility of using
a radioactive tracer for absolute drift rate measure-

24

ments. The suggested candidate tracer is Na

(Ty = 15 hr.; Ey's = 2.75 Mev and 1.37 Mev) which

2
can be produced from irradiating stable Na23 (in T

NaOH form) in a nuclear reactor. After irradiation,
the activated solution will be neutralized wilth

HC1l, and injected into the recirculating water flow
in the experimental drift facility. Because the

air flow in the wind tunnel is recirculated and
rapidly becomes saturated, it 1s expected that drop-
let evaporation will be negligible. Thus, the salt
concentration in the entrained droplets should be
the same as in the recirculating water, making
possible a direct comparison of drift rates measured
by drop-size spectra methods, and by deducing the
total salt current using the radioactive tracer. .
This point has been a problem in the past in inter-

comparisons between various drift measurement methods -



those methods which observe total salt flow rate
(e.g., isokinetic samplers, cyclone samplers, etc.)
do not provide a measure of the droplet spectra,
and those methods which observe the droplet spectra
(e.g., the PILLS system, sensitive paper sampling)
do'not provide information regarding the total

salt current without some assumption being made
regarding the salt concentration in the droplets
due to evaporation or growth. This is difficult to
provide since evaporation and growth rates vary
with droplet sizes.

In the test.the salt current will be sampled
with an array of Nal detectors that scans a trans-
verse sectiqn of the experimental drift facility
so that the total amount of radiation observed will
. be directly proportional to the amount of salt that
flows past the measurement station.

For a reasonably accurate (2%) experiment
it 1is estimated that the laboratory demonstration
will require approximately 10 mCi of activity
injected into the recirculating water. For a field
test roughly 10 Ci of activity would be reqdired,
depending upon the desired accuracy and the extent
of the Nal detector array. It is envisioned that

this measurement technique would be used sparingly

for absolute drift measurements,and that less accurate

177
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methods would be sufficient for routine drift
monitoring. In field applications the total amounts
of released activity would be no greater than those
currently encountered on a chronic basis with

boiling water reactors.

In conclusion, the DRIFT cocde is quite capable of
predicting the performance of cooling tower drift eliminators,
although some care should be taken in the pressure drop
calculations for complex (sharp-cornered) eliminator geom-
etries. Thils code should be very useful in evaluating drift
eliminator performance to aid in the design of drift elimi-
nators for any cooling tower. Provisions for the effect of
water film on the eliminator walls, of flow turbulence within
the eliminator: and of droplets rebounding from the elimina-
tor walls should be investigated and developed to supplement

the DRIFT code.
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APPENDIX A
DATANA PROGRAM

A.1 Introduction

In the drift measurements by laser light scattering the
voltage distribution, M(v), recorded by the multichannel analy-
zer 1s not the true droplet size distribution, P(d), as
mentioned in Chapter 4. However, these two distributions can

be related by
M(v) = R(vid) B(d) , (4.4.1)

where R(v;d) 1s the voltage response matrix to droplets of

«*

diameter 4.

In order to recover P(d) from the measured distribution
M(v) in Eq. 4.4.1, a system of linear algebraic equations must
be solved. The DATANA program transforms the measured spectra
at the inlet and outlet sections of the eliminator to the true
droplet size spectra so that the collection efficiency as a
function of droplet size can be detéermined.

This.appendix describes this program in detail. The
nécessary input parameters are described in Section B.3. A

listing of the program and a sample problem are also given.

A.2 Description of the Program

The DATANA computer code is written in FORTRAN IV and

analyzes the measured voltage pulse height distribution. This .
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distribution represents the scattered light intensity distri-
bution produced when a spectrum of droplets passes through
the scattering volume.

The proéedures of the code are listed in the flow chart
in Fig. A;2.l. The calibration parameters determined from a
calibration check of the drift meésuring instrument are used
by the program to determine the calibration factors and
response function. To transform a_voltage pulse height dis-
tribution into a droplet size distriﬁution, the measured
distribution is first smoothed by a least-squares fitting in
the LSMARQ subroutine. Thls subroutine can use any approp-
riate fitting function that is supplied by the user through
the external function YFCN. It is found that a polynomial of

the form . “

f(x) =
1

(A.2.1)

U e e o)

1 xi—l

provides the best fit of the typical measured distributions.
Guessed values of the parameters ai are inpﬁt by user, and
best fit.values of a; are calculated by the subroutine. The.
transformation of the measured distribution to the droplet
size distribution is performed either by backward substitu-
tion method, if the response function is an upper triangular

matrix, or otherwise by the LEQT1F subroutine, which obtains

a solution of a system of linear equations. The backward
substitution method is the simpler approach and takes less

computation time. Collection efficiencles as a function of
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DO LOGP
I=1, IEFF
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EFFICIENCY?  /
NO

=1 COLLECTION
EFFICIENCY |

END

Fig. A.2.1 Flow hart of the DATANA Code
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droplet slize can be determined when two measured distributilons,
one at the 1inlet and one at the outlet of the elimlnator, are
provided,

| The DATANA codé uses several subroutines. They are

described below.

(A) LSMARQ
The subprogram LSMARQ computes the solutions of non-

linear least-squares curve and surface-fitting problems. That

is, LSMARQ finds values of bysby,.seei,by, Which minimizes

wi(yi-f(xi,l’x1,2"'"xi,m;bl’bZ""’bp))’ (A.2.2)

n~ms

i=1

where the fitting function f depends on m> 1 independent varia-

.bles (xi,l;xi,Z""fxi,m)’ and on the p unknown parameters, Db..

dJ
th Gependent and independent variables, ¥y and Xy gse.eXy oo
s s

The 1
are known values corresponding to the data point or obser-

vation. The number of data points is n, and the w, are para-

i
meters that weight the errors at each data point.
LSMARQ uses the Levenberg-Marquardt algorithm described
in Refs. B2, L4, and M6. It computes the coefficients of a
partial Taylor series for the fitting function and then uses
the steepest-descent method (or gradient method) to find a

"neighborhood" in parameter-space where the series provides

an adequate approximation to the data.

This subroutine is called by the main program.
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(B) _RSIMQ
This is a subroutine called by LSMARQ. It performs

forward elimination with partial pivoting.

(C) YFCN

This is a user-supplied FUNCTION subprogram, which
computes the function f(x,b) of Eg. A.2.2. This external
function is called from the main program, the LSMARQ, and

RSIMQ subroutines.

(D)  LEQTIF

This subprogram solves a set of linear equations, AX=B,
for X, given the NxN matrix A in full storage mode.

LEQT1F performs Gaussian elimination (Crout algorithm)
with equilibration and partial pivoting (FU).

This subroutine is taken from the IMSL library (I2), and

is called by the main program.

(E) LUDATF
This subroutine decomposes the N by N matrix A into the

matrices L U, where L is lower triangular with one's on the

diagonal, and U 1s upper triangular.

LUDATF 1s called by LEQT1F. 1Its algorithm is described

in Ref. I2.
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(F) LUELMF |

LUELMF performs the elimlnation part of the solution of
a set of simultaneous equations (I2). It is called by LEQTIF.
(G) UERTST

This subprogram prints a message reflecting any error

detected by an IMSL subroutine (I2).

A.3 Description of the Input Parameters

Card No. 1

IEFF, IRT
FORMAT (2I5)

IEFF= 1 for data transformation only, no collection
efficiency calculation will be performed.

IEFF= 2 for a collection efficiency calculation. In
this case two spectra, one at the inlet and
one at the outlet of the‘eliminator, should be
provided.

IRT = 0 if the response functlon 1s an upper triangular
matrix where the simpler transformation method
can be used.

IRT # 0 if the response function 1is not an upper triangu-
lar matrix so that the subroutine LEQT1F must be

used.

Card No.2

A,B
FORMAT (2E20.6)

A and B convert the channel number to a voltage pulse



height with

voltage = A + B x Channel number.

Card No.3
NC1,NC2,NC3,DC,CC1,CC2

FORMAT (3I5,3F10.3)

These are all calibration parameters and are obtained
from a calibration check of the drift measurement instrument-
ation. DC 1s the monodisperse droplet size used in the cali-
bration, which is about 80 um in this work. The meanings of
other parameters are found in Fig.A.3.1, which is a calibra-
tion curve recorded by the multichannel analyzer for mono-

disperse droplets.

Card No.lu
NC
FORMAT (I5)

NC i1s the maximum channel number of the data.

Card No. 5 and Card No. 6

(PARAM(I), I = 1, NPARAM)

FORMAT(4E20.6)

PARAM(I) are the guessed values of the least-square
fitting parameters. They can be set to be 1.0, however,
values closer to the true values will save a lot of computati
time.

NPARAM is the number of parameters. It is 8 in the

present work.

192
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Card No. 7 to Card No. (6+NC/5)

(PV(1I), I=1,NC}
FORMAT (4X,5F7.0)
PV(I) is the voltage pulse height distribution measured
at the outlet of the eliminator if a collection efficiency

calculation is to be performed.

If IEFF equals 2 in Card No. 1, the following insertions
are made in the input deck:

Card No. 4A (If IEFF=2)

NC
FORMAT (I5)

NC = the maximum channel number for the distribution
measured at the inlet of the eliminator

Card No, 5A and Card No. 6A (If IEFF=2)

(PARAM(I), I = 1, NPARAM)
FORMAT(4E20.6)
PARAM(I) are the guessed values of the least-square
fitting parameters for the distribution measured at the

inlet of the eliminator.

Card No, TA to Card No. (6+NC/5)A (If IEFF=2)

(PV(I), I=1,NC)

FORMAT (4X,5F7.0)

PV(I) is the distribution measured at the inlet of the

eliminator.
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A.4 Listing of the DATANA Code
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A.5 Sample Problem

Table A.5.1 lists the input data for a sample problem,
and Table A.5.2 displays the output from the DATANA code.
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APPENDIX B
DAMIE PROGRAM

B.1 Introduction

DAMIE (D2) is a FORTRAN subroutine which computes the
so-called "Efficiency Factors" and Stokes parameters for
electromagnetic radiation scattered by a sphere. The form-
ulas calculated in thils subroutine were first derived by
G. Mie (M5), and thus this scattering process is referred

to as Mie scattering.

Mie's expressions for the radiation scattered by a
sphere are valid when the radius of the sphere is comparable
to or greater than the wavelength of the incident radiation.
The index of refraction of the material of the sphere is
assumed to have the form nl—inz. In the DAMIE subroutine,
all functions are cpmputed with an upward recurrence pro-

‘ ceduré. This procedure 1s stable for non-absorbing (n2=0),
moderate or large-sized spheres. For partiélly—absorbing
(n2>0) spheres, the DBMIE subroutiﬂe (D2), which uses a

downward recurrence procedure, gives more reliable results.

In the present study, the scattered intensity of water

droplets is found as a function of droplet size. Since water

1s essentially a non-absorbing medium, and the droplet sizes
under consideration are large, the DAMIE subroutine is used,

requiring much less computer storage.

239



This appendix describes the part of the DAMIE code that
finds the relationship between the scattered light intensity
and droplet size. Other f'eatures of the subroutine will not

be presented here. They are described in Ref. D2.

of the program and a sample problem are included at the end

of this appendix.

B.2 Description of the Program

The expressions for Mie scattering can be written as

I = (B.2.1)

' L]
=8 E zi

where Ei and Es respectively represent the Stokes parameters

of the incident and scattered radiation, ard F' is a

four-by-four matrix referred to as a "transformation matrix".

It has the following form:

”M2 o 0 0 h
0 M 0o 0
B = 0 0 Sy Py (8-2.2)
0 0 Dy S,

The DAMIE subroutine calculates the elements in this

transformation matrix at any scattering angle.

A listing

The scattered

240

intensity, Is,'at any scattering angle, can simply be expressed

as
1/2(M1(O) + M2(®))

IS(@) = (B.2.3)

I
k2. 12 1

where
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k = (B.2.4)

}‘ ]

where )\ Is the wavelength of the incident radiation, and L is
the distance from the scattering location. In the program out-
put, the value of (1/2)(M1+M2) is also given under the heading
"INTENSITY" for each scattering angle, as shown in Section
B.5. The only purpose of using this subroutine in the present
study is to find this value as a function of droplet size.

A;l of the necessary information for this computation
are input through the main program. These include the
refracﬁive index of water, the wavelength of the incident
radiation, the scattering angle, and the droplet size. The
subroutine 1is called to compute the transformation matrix
elements, which are then used to compute the scattered

intensity factor.

B.3 Description of the Input Parameters
Card No. 1

RFR, RFI, ALAM
FORMAT (4D15.5)

RFR is n the real part of the refractive index of

1’
the material of the sphere. RFR equals 1.341 for water.

RFI 1is Ny the imaginary part of the refractive index of
the material of the sphere. RFI equals 0.0 for water.

ALAM is the wavelength of the incident light source

expressed in microns.

- i v
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Card No.2
THETD(1), AJX, JX
FORMAT(2D15.5, I5)
THETD (1) is 91, the smallest angle between the
direction of the scattered light and the direction of the
incident 1light in the calculations. It 1s expressed in
degrees, s1d its value should not exceed 90°.
AJX is AO, the interval between successive O's for calcu-
lations.
JX is the total number of O's for calculations of a
scattered intensity. Its value should not exceed 100, unless
the dimensions in all related statements are appropriately

changed, It must be greater than or equal to 1.

Card No. 3 and Onward

X
FORMAT (D15.5)
X 1is the water droplet radius expressed in microns, for
the calculations. Execution will be terminated when there

are no more data cards.
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B.4 Listing of the DAMIE Code
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B.5 Sample Problem

A sample problem is given here to demonstrate the
use of the DAMIE code. The material of the scattering
medium is pure water which has a refractive index of 1.34-10.
The wavelength of the incident light source is 0.6328 um. The
scattering angle is set to be 26.5°. The radii of the
water droplets for this computation are listed in the input
section of the sample problem.

The output of the code gives the input information
as well as the elements of the transformation matrix for
the input scattering angle and its complementary angle. In
the present study only the values of the intensity are used.
All of this information is repeated for each input droplet

size.
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