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Introducti on

Flood frequency analysis is a tool used in forecasting the fre-

quencies of future floods. In general, a past record is fit with a

statistical distribution function which is then used to make inferences

about future flows. Many distributions and various ways of fitting

them are already in use or have been proposed. Slack et al. (1975),

Benson (1968), and others have attempted to choose an appropriate model

for flood records from among the alternate traditional distributions

and fitting procedures. In Slack et al. (1975), Monte Carlo techniques

were used to generate synthetic flows from various background distri-

butions. These samples were in turn fit with various assumed distri-

butions. In their notation, the parent distributions were labeled

"F-distributions" and the assumed distributions labeled "G-distributions".

The search for a parent distribution constitutes a different problem

from estimating the design event. This paper deals with the world of

F-distributions; a following paper by this author (Houghton 1977b) is

concerned with the G-world.

This paper introduces a new five-parameter distribution, which we.

have named the Wakeby, as a substitute for traditional F-distributions.

We define the Wakeby distribution and show how it overcomes certain

deficiencies associated with traditional distributions. In Hioughton

(1977b), a variant of the Wakeby distribution is tested using a new

fitting procedure. In both papers we follow convention in assuming

independent and identically-distributed observations from each sample;

serial correlation and non-stationarity are assumed to be insignificant.
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Rationale For A New Distribution

The Wakeby distribution has five parameters, a significant increase

from the two or three in standard distributions. There must be good

·reason for introducing a new distribution, particularly if it absorbs

more degrees of freedom than those distributions currently in use.

The instability of higher moments and their functions, such as the co-

efficient of skew, is well known. They often add more noise than signal

to estimation procedures for conventional distributions. Although the

Wakeby distribution has five parameters, neither the higher sampling

moments nor even the sample variance are used to estimate those para-

meters. Hydrologists and engineers in past years have occasionally felt

the need to go beyond three parameters, but it was recognized that the

use of higher moments than the third would introduce too much error

into the estimation process. The estimation procedure developed for

the Wakeby distribution circumvents this problem.

In traditional estimation procedures, the smallest observations can

have a substantial effect on the right-hand side of the distribution.

But the left-hand side does not necessarily add information to an esti-

mate of a quantile on the right-hand side. Indeed, since floods are

not known to follow any particular distribution, it seems intuitively

better to divorce the left-hand side from the right. It will be shown

that the Wakeby does exactly that. There is also some reason to believe

that none of the standard distributions have the properties on their

left-hand sides that may, in fact, reflect nature. If, in reality, the

lowest observations follow the left-hand tail of a low-skew lognormal

distribution, and the highest observations follow the right-hand tail of
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a high-skew lognormal distribution, no conventional three-parameter

distributions would model it accurately. They lack enouglh kurtosis

for any given skew. Fitting a three-parameter curve to a five-paralimLer

nature would distort the whole fit, including the higher quantiles.

The so-called "separation effect" presented by MHatalas et al. (1975)

can be explained by this argument.

There is also the practical test of what the Wakeby distribution

is able to do when used in other contexts. If a search for generic

categories of floods in different regions of the nation is successful

for Wakeby parents but not for others, then there is more reason for

its adoption. Similarly, it has been difficult to find a regional skew.

If, for example, there is more success in finding a regional d (d is

the shape parameter of the right-hand tail), then the Wakeby has sighi-

ficant advantage over conventional three-parameter distributions. These

two concepts are evaluated in Houghton (1977a).

Finally, given the correct choice of parameters, the Wakeby distri-

bution can generate synthetic flows in the pattern of a lognormal dis-

tribution or any of the other conventional distributions. But the

reverse is not true. There are shapes of the distribution function of

a Wakeby that cannot be mimicked by any of the three-parameter distri-

butions. Thus, not only can the Wakeby provide patterns of flow not

possible with these other distributions, but it can also serve as an

organizational construct. Each of the traditional distributions is a

subset of the parameter space of the Wakeby. It is possible to fit a

single distribution, the Wakeby, with many combinations of parameter

values that are easily compared, rather than several distribution functions,

each with a different analytical form. The Wakeby distribution is a grand

parent.



The Properties of the Wlk<eLby Distribution

The 1Wakeby distribution is most easily defined as an inverse distri-

bution function:

x -a(1-F)b + c(I-F) + e , (

where F is the uniform (0,1) variate. The equation is written so that

a, b, c, and d are always positive, and e is sometimes positive. The

first moment about zero (mean) is

P(x) = e- b- 1 ' ] C

The second moment about the mean (variance) is

P c 2ac a c a
1-2d 1+b-d 1+2b 1-d l+b

1)

2)

6 (3)

The parameter e is a location parameter, and further moments about zero

for the variate u = x-e are:

3 3c2a 3ca2 a3

P(U = - 3da 3ca a (4)1-3d l+b-2d 1+2b-d 1+3b

and

4 3 22 3 4' c 4c3a 6c2a2 4ca + a
1-4d 1+b-3d 1+2b-2d 1+3b-d (54b

5.
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For d > 1 the mean is infinite; for d > .5 the variance is infinite,

etc. i:

The Wakeby is similar to a five-parameter member of the Tukey family of

lambdas (Joiner and Rosenblatt 1971). Given values of a and b that are typical.

of flood records, the -a(l-F) term generally has no effect on x if

F is above .25 . Thus the Wakeby can be thought of in two parts. The

right-hand tail c(l-F) - +e , and the left-hand tail -a(1-F) , which is

in effect an adjustment to the graph of c(l-F)-d+e

Distributions of the order statistics are easier to calculate with

the Wakeby than with some other distributions. For the portion of the

distribution which is not affected by the term involving a and b ,

the distribution of the kt h observation is

f(x (k)) d [

1 n-k+l+d
d 

* ~~~~~(6)

The distribution of ranks.on the lower tail is not analytical, but per-

centiles are easily calculated by applying the Wakeby distribution as a

transformation on the percentiles of a Beta distribution.

This apparently new Wakeby has roots in older models. One of the

first distributions used to model floods was the Fuller formula:

x a + b(T-1)C , where T - F a formulation which is nearly iden-

tical to the right-hand tail of the Wakeby.

A-1

I
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Fitting Selected Flood Records

The U. S. Geological Survey provided for us a tape of selected

streamgaging records throughout the continental United States. About

1,400 high-quality stations out of a total of more than 10,000 in

operation were selected for the tape; those selected had the longest

records with minimal regulation and diversion. These 1,400 stations

have variable numbers of years of records and are often discontinuous.

In this research, the procedure for choosing n-year records from these

1,400 stations is the same as that used in Matalas et al. (1975).

We selected for the majority of our research forty-six gaging stations

which had been operating continuously for sixty years or more, truncating

to sixty years those with longer records.

Initially, the forty-six records were fit with a three-parameter

lognormal distribution using the method of moments. Most seemed by eye

to fit adequately. However, some appeared to fit very poorly. This is

substantiated analytically using the goodness-of-fit tests outlined

below. One of these poorly-fitting records, #2, is used to illustrate

the flexibility of the Wakeby distribution over the lognormal. The log-

normal fit is displayed in Figure 1, and the Wakeby distribution applied

to the same record is shown in Figure 2. The Wakeby fits much better.

On the other hand, one might expect the reverse to be true also. That

is, one might try to choose some of the forty-six floods that the log-

normal fits well, but the Wakeby fits poorly. Actually, the Wakeby does

a good job at duplicating the lognormal, but not conversely. At one

point, we fit all forty-six floods with a four-parameter version of the

Wakeby distribution. Nearly all forty-six appeared to fit adequately by

eye, and all fit at least as well as the lognormal.



8.

The Separation Effect

Matalas et al. (1975) presented a contradiction similar to that of

the Hurst effect which they called the separation effect. They took

each of the U.S.G.S. watershed regions in the United States and used

all 30-year records from tile master-file of 1,400 stations. For example,

region #1 contained 178 such records. The coefficient of skew was cal-

culated for each record. The standard deviation of the coefficients of

skew was then plotted against the mean of the skews for that region.

For 14 regions, the plot will contain fourteen such points, which are

marked with an "X" in Figure 3.

An equivalent procedure can be applied to synthetic samples from a

lognormal distribution. Sets of samples of 30 synthetic lognormal deviates

are generated from a distribution with a particular skew. The coefficient

of skewness is then calculated for each sample. Repeating this process

several times for several background skeiws gives a frontier with averages

and confidence interval as shown in Figure 3. This graph shows that for

any given skew, the standard deviation is higher in nature than in tradi-

tional distributions. Matalas et al. (1975) included most of the commonly-

used distributions, repeated.the plots for 10-year and 20-year records,

and found that none of the distributions could reproduce as high a stan-

dard deviation as that found in nature. This has been termed the

"separation effect". Thus, nature has skews that are even more unstable

than those generated by common distributions. Moreover the authors showed

that this separation effect cannot be explained by small sample properties

or by auto-correlation.

The Wakeby distribution was originally introduced to account for

this effect. The three-parameter loglogistic, presented in Houghton (1977a),
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shows more separation effect than the conmmon distributions, but it couldl

not mimic the separation effect noted in nature. What was needed was a

distribution with a very thick right-hand tail and a left-hand tail

thick enough to decrease average skews. This makes the middle part of

the distribution function steeper than traditional skewed curves. The

Wakeby distribution has this property. Original guesses at typical

parameters of the distribution showed separation effects much larger

than those found in nature. The set of parameters which make up a

"Righteous Wakeby", as defined in Houghton (1977a), are in some sense

typical ones for the data at hand. Figure 3 also shows the separation

effect derived from that set of parameters. Ten sets of fifty replications

each are plotted as a "1". They match extraordinarily well those found

in nature. The separation effect can be duplicated by another means.

Mixing lognormal parents of different skews produces a higher standard

deviation for any average skew.

Goodness-Of-Fit Tests

Researchers in flow frequency analysis (see Matalas et al. 1973)

recognize that it is difficult to apply conventional goodness-of-fit tests

to flood records and discover meaningful results. Such tests do not

seem to be powerful enough to distinguish among similar skewed distri-

butions. If conventional tests could be used more effectively, it is

likely that a common distribution would be agreed upon to model floods.

Instead, there currently is a controversy over which distribution to use.

However, the need for a more versatile distribution may be demonstrated

by applying new goodness-of-fit tests that cast doubt on traditional

distributions. We have chosen the lognormal distribution as the surro-
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gate for traditional distributions. And where a fitting procedure nlt(ds

to be identified, the method of moments is used. Our purpose is not to

show that a majority of flood flow series cannot be modeled adequatelv

with conventional distributions, but rather that a significant inority

of records are fit poorly by the lognormal.

Shapiro and Wilk Test

A very effective goodness-of fit test of normality for composite

hypotheses has been introduced by Shapiro and Wilk (1965). The test is

sensitive to both thick- and thin-tailed distributions as well as to

asymmetrical distributions. The test itself requires no assumption about

the mean or standard deviation, but to transform a three-parameter log-

normal to a two-parameter normal, one must specify the location parameter

before taking logs. We applied the test conservatively by searching over

c-space, the location parameter, to maximize the significance level of

the test. The log-space observations were then tested for normality by

the Shapiro and Wilk method. We did not adjust the significance level for

this degree of freedom, which would suggest that the number of rejections

are in fact much higher than those presented in these results. The co-

efficients for n = 60 were not available, and so all gaging stations

with n = 50 years of record were used. Results are shown in Table 1

using these 188 stations:

Rejections

TABLE 1. SL

5%

2%

1%

observed

14

9

7

expected

9

4

2
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In spite of the conservative application, mire records were rejected

than the epected nber under the null hypothesis. It seems obvious

that there are a portion of records which are not adequately portrayed

by the lognormal distribution.

Kolmogorov-Smirnov Test

Traditional Kolmogorov-Smirnov testing involves simple hypotheses

in which the parameters of the distribution are calculated without the

aid of the sample itself. However, the Kolmogorov-Smirnov test has been

adapted to composite tests for normal distributions by Lilliefors (1967).

By searching over the unknown parameter c to maximize the significance

level, as in the Shapiro and Wilk test, very few of the forty-six records

could reject the null hypothesis of lognormality, even at the 20% level.

However, using a value of c estimated using the method of moments (and

disregarding the estimated a and b), virtually all of the records were

not lognormal at the 1% level. This is another indication that the log-

normal assumption, using the method of moments, is suspect.

Smirnov Distance Test

A third method for testing lognormality is one suggested by synthetic

hydrology and the two-sample Smirnov distance test. All sixty observations

were fit by a lognormal distribution using method of moments, and random

samples of sixty observations were drawn from that parent distribution.

The Smirnov two-sample test was then run to determine whether the original

sixty and the synthetic sixty came-from the same underlying distribution.

The application of the test in this manner is probably also conservative;

it does not reject some samples which should be rejected. However, the
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results should be qualified at the same time; rejected samples miglht

perhaps have been accepted if estimation techniques other than the

method of moments were used. But conversely, applying alternate tech-

niques could result in the rejection of samples which are presently

accepted using the method of moments. All forty-six records of n = 60

were tested with replications of either 20 or 50. If the null hypothesis

is true, the significance level of the results should be uniform (0,1),

except that only discrete values are possible. We'found that five of

the forty-six were grossly non-lognormal. All five floods had 60% or

more of the replications significant at the 5% level. Another six had

significance levels that could probably be shown non-uniform by another

goodness-of-fit test. This indicates that if one were using a fitted

lognormal distribution to generate synthetic traces from any of these

eleven records, the synthetic records would be fundamentally different

from the original. It is pertinent to note that the U.S. flood records

rejected by the Shapiro and Wilk test and this Kolmogorov-Smirnov appli-

cation are nearly disjoint .

Fitting Procedure

Our fitting procedure uses the technique of probability plotting

routines, as outlined in Houghton (1977a). It takes advantage of the

separation properties of the left- and right-hand tails of the distri-

bution. Phase one operates on the right-hand tail, phase two on the

left-hand tail.

To.start, choose some FC which is a cutoff point. The curve
C

corresponding to F > Fc is analyzed in phase one, and that cor-

responding to F < F in phase two. For phase one,C
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b -dxk = -a(1-Fk) + c(l-Fk) + e , (7)

or alternatively,

log(xk - e + a(l-Fk) ) = log(c) - d log(l-F k) , (8)

for all xk , such that Fk > Fc . Set a = 0 and b = 1, and

assume an initial value for e. Then one can use linear regression to

estimate c and d. A search is then made over e to minimize the

sum of squares of the vertical distance from each observation point to

the regression line. Plotting positions are postulated for each obser-

vation; we used the median plotting position rather than the mean in

order to reduce positive bias. Phase one gives estimates of c, d,

and e.

In phase two, one assumes the values calculated in phase one for

c, d, and e, and evaluates a and b by regression analysis applied

to:

log(-xk + e + c(l-Fk) ) = log(a) + b log(l-F) , (9)

for all xk such that Fk < F . Given new values of a and b, phase

one is repeated, then phase two, etc. In practice, repetitions are usually

unnecessary (i.e. the values of c, d, and e do not change with the

updated values of a and b). In those cases where repetitions are

needed, one repetition provides most of the change, and further repeti-

tions tend to oscillate. Note that an F was assumed for the fitting
C

procedure. In fact, the whole procedure is calculated for values of F
C

for 0 < Fc < . With n = 60, the cutoff point has been varied over
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each 5t sample between 5 and 55. The criterion by which we choose F
C

and its associated parameters a, b, c, d, and e, is a weighted sum

of squares. This weighted sum of squares is a weighted sum of the p2

values calculated in phase one and phase two. They are weighted by the

proportion of observations in each phase. The F finally chosen is

2
that one which maximizes the weighted p For a high Fc , phase one

would often result in some calculations involving the logs of negative

numbers. In that case, the particular cutoff point and all others above

it are excluded from further consideration. It seems likely that more

elementary versions of the fitting procedure could be adopted with assump-

tions on F and repetitions of phase one and phase two. Other modifi-

cations are discussed in Houghton (1977a).

Conclusions

The Wakeby distribution has been shown to fit a set of U.S. flood

records of high quality better than the lognormal distribution according

to several goodness-of-fit tests. Furthermore, the Wakeby was able to

"explain" the separation effect not evident in traditional distributions.

A further use of the Wakeby distribution is presented in Houghton (1977a),

in which a "handbook" set of Wakeby distributions are fit to various flood

categories so that parameters are predetermined rather than estimated from

the sample. In Houghton (1977b), the Wakeby is used to generate synthetic

flows for Monte Carlo experiments. In that research study, the Wakeby

distribution was employed both as a parent distribution and as a model

in fitting the synthetic records.
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