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Abstract

Consider a separable concave minimization problem with nondecreasing costs over a
general ground set X ⊆ Rn

+. We show how to efficiently approximate this problem to a
factor of 1+ε in optimal cost by a single piecewise linear minimization problem over X.
The number of pieces is linear in 1/ε and polynomial in the logarithm of certain ground
set parameters; in particular, it is independent of the cost functions. Our main result
is that when the minimization is over a polyhedron, the number of pieces, and thus
the size of the resulting problem, is polynomial in the input size of the polyhedron and
linear in 1/ε. We present generalizations to problems with grounds sets not contained
in Rn

+ and concave functions that are not monotone.
Our approach provides a general technique for applying discrete optimization meth-

ods to practical concave cost problems with polyhedral ground sets. We exemplify
the approach on two problems. For the concave cost multicommodity flow problem,
we devise an approximate computational solution procedure using our technique and
a primal-dual solution procedure. We are able to solve randomly generated instances
significantly larger than previously possible, and obtain solutions within 4% of opti-
mality on average. For the lot-sizing problem with concave production costs, we derive
an algorithm with a new polynomial running time that is not dominated by that of
previously known algorithms.

1 Introduction

Minimizing a separable concave function over a polyhedron arises frequently in fields such as
transportation, logistics, supply chain management, and telecommunications. In a typical
setting, the polyhedral ground set arises due to network structure, capacity requirements,
and other constraints, while the concave costs arise due to economies of scale, volume dis-
counts, and other economic factors [see e.g. GP90]. The concave functions can be nonlinear,
consist of many pieces, or be given by an oracle.
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A natural approach for solving these problems is to replace the general cost functions
by piecewise linear approximations, an idea known at least since the 1950s [see e.g. Dan63].
Problems with piecewise linear concave costs can in turn be reduced to problems with fixed
charge cost functions, which consist of a fixed cost plus a per-unit cost [see e.g. NW99].
Researchers have successfully treated the fixed charge problems using combinatorial opti-
mization and integer programming approaches [e.g. BMW89, HH98]. Recently researchers
have achieved significant further advances using new techniques in integer programming
[e.g. Ata01, OW03] and approximation algorithms [e.g. JMM+03].

The methods for problems with fixed charge and piecewise linear costs would auto-
matically become promising methods for problems with general separable concave costs, if
we could approximate the latter by a single piecewise linear problem with few pieces, and
provide an approximation guarantee in terms of optimal cost. However, current piecewise
linear approximation approaches either yield a large number of pieces, or do not provide a
good approximation guarantee. In fact, we are not aware of any non-trivial bounds on the
approximation guarantee in terms of the number of pieces for general separable concave
functions.

In this paper, we provide improved methods for approximating separable concave cost
problems, and thereby reduce the gap between them and solution methods for fixed-charge
and piecewise linear cost problems. We provide theoretical results on approximating separa-
ble concave functions in the context of a general minimization problem, efficient worst-case
bounds for problems with polyhedral ground sets, and computational as well as algorithmic
applications to specific problems.

1.1 Previous Work

Clearly, to improve the quality of the approximation, we would increase the number of
pieces; however not much is known about the number of pieces required for a single ap-
proximation to attain a desired precision in the general case. Rosen and Pardalos [RP86]
consider the minimization of a quadratic concave function over a polyhedron. They reduce
the problem to a separable quadratic concave minimization problem over a polyhedron, and
then study piecewise linear approximations of the resulting univariate concave functions.
They interpolate the functions at equally-spaced intervals and obtain an approximation
guarantee that is function-dependent. For a fixed ε, the size of the resulting problem is not
polynomial in the size of the original problem.

Hajiaghayi et al [HMM03] consider the unit-demand concave cost facility location prob-
lem, and use the fact that all n facilities have unit demand to obtain an exact reduction by
interpolating the concave functions at points 1, 2, . . . , n. The size of the resulting problem is
polynomial in the size of the original problem, but the approach is limited to unit-demand
problems. Meyerson et al [MMP00], in the context of the single-sink concave cost multicom-
modity flow problem, remark that a “tight” approximation could be computed. Munagala
[Mun03] states, in the same context, that an approximation of arbitrary precision could be
obtained with a polynomial number of pieces. They do not mention specific bounds, or any
details on how to do so.

A significant body of work on approximating separable general objectives with linear
pieces has focused on convex functions, for which a scale-and-iterate approach is prevalent:
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using an equally spaced grid, solve the approximate problem, then iteratively approximate
the problem using an increasingly denser grid on a shrinking feasible region. The analysis
relies on properties of both the convex problem, and the algorithm. A classical example is
the capacity scaling algorithm for the convex cost flow problem [see e.g. AMO93].

Hochbaum and Shanthikumar [HS90] have conducted perhaps the most general study
of this approach. They consider separable convex costs over general polyhedra, and use
a scale-and-iterate approach to obtain a (1 + ε)-approximate solution. Their algorithm is
polynomial in the size of the input, and the absolute value |∆| of the largest subdetermi-
nant of the constraint matrix. They measure the approximation in terms of the solution
vectors themselves, not the objective values. They suggest methods for achieving objective
approximation, with a running time dependent on the cost functions, as well as the size of
the input and |∆|.

1.2 Our contribution

In contrast to previous contributions, we consider general nondecreasing separable concave
objectives, and obtain polynomial bounds on the size of the resulting problem when the
original problem has a polyhedral ground set in Rn

+, and ε is fixed. The key idea that
enables us to avoid iterations and scaling, and yet obtain polynomial bounds, is to use
pieces exponentially increasing in size. Since the notion of objective value approximation
is ill-defined when the sign of the costs is unrestricted, we require the objective functions
to be nonnegative.

In Section 2 we introduce our technique for general grounds sets inRn
+ and nondecreasing

cost functions. We need only 1+
⌈
log1+4ε+4ε2

ui
li

⌉
pieces for each concave component of the

objective. In this expression, ui denotes an upper bound on the value of corresponding
variable, and li the smallest nonzero feasible value of that component. As ε → 0, the
number of pieces as a function of ε behaves as 1

4ε . The number of pieces is the same for any
concave function, and depends only on the chosen value of ε and the bounds ui and li. Our
method requires just one function evaluation per piece. In Section 2.1, we show that, for
any fixed ε, the number of pieces required by our approach is within a constant factor of
the best possible. In Section 2.2, we present several extensions, including to cost functions
that are not monotone, and to ground sets not contained in Rn

+.
In Section 3 we show that when the feasible set is a polyhedron, a 1 + ε approximation

can be achieved with a number of pieces polynomial in the input size of the polyhedron
and linear in 1/ε, with no additional conditions or dependencies. Since the input size
of the concave cost problem is always at least the input size of the polyhedron, the size
of the resulting piecewise linear instance is always polynomial in the size of the original
instance. For general polyhedra and nonnegative concave functions, we show that the
number of required pieces is polynomial in the input size and the size of the zeroes of the
cost functions. The latter are seldom ill-behaved quantities, and are often present as part
of the input, thereby making the bound polynomial in the size of the original problem in
this case as well.

These results provide a bridge between concave function minimization and piecewise lin-
ear minimization over polyhedra. Since our technique requires only a single, polynomially-
sized piecewise linear approximation, we can directly apply any algorithm for optimizing
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piecewise linear or fixed-charge objectives. In Section 3.1 we show that the resulting piece-
wise linear optimization problems can be reduced to fixed charge optimization problems
while often preserving the underlying structure (for example, network structure). For prac-
tical problems, these advantages are amplified by the possibility of establishing significantly
lower bounds on the number of pieces.

In Section 4 we illustrate our method on the practical and pervasive uncapacitated
concave cost multicommodity flow problem with complete demand. We derive considerably
smaller bounds on the number of required pieces than in the general case. Since our method
preserves structure, the resulting fixed charge problems are network design problems. Using
a primal-dual method [BMW89], we solve large problems with up to 80 nodes, 1,580 edges,
6,320 commodities and 9.9 million flow variables to within 4% of guaranteed optimality,
on average. These problems are, to the best of our knowledge, significantly larger than
previously solved concave cost multicommodity flow problems with full demand.

In Section 5 we illustrate our method on the lot-sizing problem with general concave
production cost functions. We obtain a polynomial O(n log n log β +n log β log log β)) algo-
rithm; in this setting n denotes the number of periods, and β denotes the sum of demands
divided by the smallest demand. According to Aggarwal and Park [AP93], the fastest al-
gorithm for lot-sizing with general concave functions is still the O(n2) algorithm of Wagner
and Whitin [WW58]. Neither our algorithm, nor that of Wagner and Whitin dominates
the other in general. For example, our algorithm is faster when n is moderate or large, and
the ratio of the largest to the smallest demand is moderate or small.

We chose multicommodity flows and lot-sizing as our examples because of the central
role these problems play in the literature. However, the same approach is applicable to
a wide variety of problems, such as capacitated multicommodity flows and multi-level in-
ventory problems. In fact, our technique is not limited even to the general optimization
framework of Section 2. It is potentially applicable for approximating problems in continu-
ous dynamic programming, continuous optimal control, algorithmic game theory, and other
settings where new solutions methods become available when switching from nonlinear to
piecewise linear functions.

2 General ground sets

We examine the general concave minimization problem

Z∗1 = min {φ(x) : x ∈ X, x ≥ 0} , (1)

defined by a closed ground set X ⊆ Rn and a separable concave cost function φ : Rn
+ → R+

with φ(x1, . . . , xn) =
∑n

i=1 φi(xi). The ground set need not be convex or connected (for
example, it could be the ground set of an integer program). Let [n] = {1, . . . , n}. We
impose the following assumption.

Assumption 1. (a) The function φ is nondecreasing. (b) The problem has an optimal
solution x∗ and bounds 0 < l ≤ u such that x∗i ∈ {0} ∪ [l, u] for i ∈ [n].

To approximate problem (1) within a factor of 1 + ε, we approximate each function φi

with a piecewise linear function ψi : R+ → R+. Each function ψi consists of 1 + P pieces,
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with P :=
⌈
log1+ε

u
l

⌉
, and is defined by the coefficients

cp
i =

d

dx
fi (l(1 + ε)p) , p ∈ {0, . . . , P}, (2a)

fp
i = fi (l(1 + ε)p)− l(1 + ε)pcp

i , p ∈ {0, . . . , P}. (2b)

The symbol dφi(x
′
i)

dxi
denotes the derivative of φi at xi = x′i if φi is differentiable at x′i, and

an arbitrary supergradient of φi at x′i otherwise. Each coefficient pair defines a line with
nonnegative slope cp

i and y-intercept fp
i , which is tangent to the graph of φi at the point

l(1 + ε)p. For xi > 0, the function ψi is defined by the lower envelope of these lines:

ψi(xi) = min{fp
i + cp

i xi : j = 0, . . . , P}. (3)

We let ψi(0) = φi(0) and ψ(x) =
∑n

i=1 ψi(xi). Substituting ψ for φ, we obtain the piecewise
linear concave minimization problem

Z∗4 = min{ψ(x) : x ∈ X,x ≥ 0}. (4)

Lemma 1. Z∗1 ≤ Z∗4 ≤ (1 + ε)Z∗1 .

Proof. Let x∗ be an optimal solution of problem (4). The graph of any line fp
i + cp

i x
∗
i lies

on or above the graph of φi, hence φi(x∗i ) ≤ ψi(x∗i ) for i ∈ [n]. Therefore, Z∗1 ≤ φ(x∗) ≤
ψ(x∗) = Z∗4 .

Conversely, let x∗ be an optimal solution of problem (1) satisfying Assumption 1(b). It
suffices to show that ψi(x∗i ) ≤ (1+ ε)φi(x∗i ) for i ∈ [n]. If x∗i = 0, then the inequality holds.
Otherwise, let j =

⌊
log1+ε

x∗i
l

⌋
≥ 0, so that x∗i

l ∈ [(1+ ε)p, (1+ ε)j+1]. Because φi is concave
and nondecreasing,

ψi(x∗i ) ≤ fp
i + cp

i x
∗
i ≤ fp

i + cp
i l(1 + ε)j+1 (5a)

= fp
i + cp

i l(1 + ε)(1 + ε)p ≤ (1 + ε) (fp
i + cp

i l(1 + ε)p) (5b)
= (1 + ε)φi ((1 + ε)p) ≤ (1 + ε)φi(x∗i ). (5c)

(See Figure 1 for an illustration.) Therefore, Z∗4 ≤ ψ(x∗) ≤ (1 + ε)φ(x∗) = (1 + ε)Z∗1 .

The previous proof has a simple geometric interpretation, but the approximation ratio
of 1 + ε is not tight. A tight analysis follows.

Theorem 1. Z∗1 ≤ Z∗4 ≤ 1+
√

ε+1
2 Z∗1 ≤ (1 + ε

4)Z∗1 .

Proof. Without loss of generality, we assume l = 1 and f(0) = 0, and consider only the
segment [1, 1 + ε], and the two tangents at (1, φi(1)) and (1 + ε, φi(1 + ε)). Suppose these
tangents have slopes a and c respectively. The worst case is achievable when φi consists of
3 linear pieces with slopes a > b > c on [0, 1], [1, 1 + ε], and [1 + ε, +∞] respectively. (See
Figure 2 for an illustration.)

Let x∗i = 1 + ξ ∈ [1, 1 + ε]. The values yielded by each of the two tangents at x∗i are
a(1 + ξ) and a + bε− c(ε− ξ), and

φi(1 + ξ) = a + bξ, ψi(xi) = min {a(1 + ξ), a + bε− c(ε− ξ)} , (6)
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l(1 + ε)p l(1 + ε)p+1x∗i

φi(0)

f
p

i

φi (l(1 + ε)p)

f
p

i + c
p

i l(1 + ε)p+1

φi(x
∗

i )

f
p

i + c
p

i x
∗

i
≤ εφi (l(1 + ε)p) ≤ εφi(x

∗

i )

xi

φi(xi), ψi(xi)

0

Figure 1: Illustration of the proof of Lemma 1. Observe that the height of all points inside
the box with the bold lower left and upper right corners exceeds the height of its lower left
corner by at most a factor of ε.

Since ξ ≤ ε the worst case is achievable if c = 0. Since we seek to find ξ that maximizes

ψi(1 + ξ)
φi(1 + ξ)

= min
{

a + aξ

a + bξ
,
a + bε

a + bξ

}
, (7)

we can assume ξ is such that a+aξ
a+bξ = a+bε

a+bξ , which yields ξ = bε
a . Substituting, we now

seek to maximize 1+εb/a
1+εb2/a2 , and letting d = b

a , we find that the maximum is achieved at

d = −1+
√

ε+1
ε and equals 1+

√
ε+1

2 , which is less than 1 + ε
4 .

Equivalently, instead of an approximation ratio of 1+
√

ε+1
2 using 1 +

⌈
log1+ε

u
l

⌉
pieces,

we can obtain a ratio of 1+ ε using only 1+
⌈
log1+4ε+4ε2

u
l

⌉
pieces. We can derive improved

bounds on the number of pieces when the functions are known to belong to particular
classes (for example, logarithmic functions), and even better bounds when the functions
are known.

As a function of ε, the number of pieces grows as 1
log(1+4ε+4ε2)

. Since 4ε
log(1+4ε+4ε2)

→ 1 as
ε → 0, the number of pieces behaves as 1

4ε as ε → 0. This behavior enables us to apply the
approximation technique to practical concave cost problems. In Section 3 we will exploit
the logarithmic dependence of our results on u

l to derive polynomial bounds on the number
of pieces for a large class of problems.

2.1 A lower bound on the number of pieces

The analysis in the proof of Theorem 1 is tight if we consider a function φi given by the
values a, b, and c at the values obtained in the proof. Therefore, if we introduce the pieces
as specified in (2), then 1+

√
ε+1

2 is the best approximation ratio that can be achieved. Since
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1 1 + εx∗i

a

a+ bε

a+ bε− c(ε− ξ)

a+ bε

a(1 + ξ)

slope c

xi

φi(xi), ψi(xi)

0

Figure 2: Illustration of the proof of Theorem 1.

1+
√

ε+1
2 → 1 + ε

4 and d
dε

1+
√

ε+1
2 → d

dε

(
1 + ε

4

)
as ε → 0, 1 + ε

4 is the best ratio expressible as
a linear function of ε that can be achieved asymptotically as ε → 0 with our approach.

In the remainder of this section, we establish a lower bound on the number of pieces
required by any approach. First, we show that by limiting ourselves to tangents, we increase
the number of required by at most a constant factor. As before, let φi(xi) be a concave
function, and ψi(xi) a piecewise linear function of 1 + P pieces with 1

1+ε ≤ ψi(xi)
φi(xi)

≤ 1 + ε

for xi ∈ [l, u].

Lemma 2. There is a piecewise linear function ϕi(xi) of at most 2(1+P ) pieces such that
1

1+ε ≤ ϕi(xi)
φi(xi)

≤ 1 + ε for xi ∈ [l, u], and each piece of ϕi is tangent to ψi.

Proof. Fix a piece of ψi with intercept fp
i and slope cp

i . Since φi is concave, we can assume
that the piece guarantees an 1 + ε approximation of φi for xi ∈ [ξ′, ξ′′] and intersects the
graph of φi at ξ ∈ [ξ′, ξ′′]. Also assume without loss of generality that the piece lays above
the graph for xi ∈ [ξ′, ξ) and below the graph for xi ∈ (ξ, ξ′′]. We can guarantee an 1 + ε
approximation on [ξ′, ξ] by introducing a tangent at ξ′. The piece with intercept (1 + ε)fp

i

and slope (1 + ε)cp
i will be above the function on [ξ, ξ′′], and will still guarantee a 1 + ε

approximation on this segment. Therefore, by introducing a tangent at ξ′′ we can guarantee
a 1 + ε approximation on [ξ, ξ′′] too.

Let φi(xi) =
√

xi, and let ψi be a piecewise linear function with 1
1+ε ≤ ψi(xi)

φi(xi)
≤ 1 + ε

for xi ∈ [l, u], and each piece of ψi is tangent to the graph of φi. In the following lemma,
we compare the number of tangents required by our approach with the minimum number
of tangents needed to approximate φi.

Lemma 3. For fixed ε, the minimum number of pieces in ψi is within a constant factor of
1+

⌈
log1+4ε+4ε2

u
l

⌉
, the number of pieces required by our approach. As ε → 0, the minimum

number of pieces behaves as
√

2ε log1+4ε+4ε2
u
l .
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Proof. Fix ξ0 ∈ [l, u] and let us determine the segment [ξ0 + δ1, ξ0 + δ2] on which a tangent
to the graph of φi at ξ0 will guarantee a 1 + ε approximation. The values of δ are given by
the solutions to the equation

φi(ξ0) +
dφi(ξ0)

dxi
δ = (1 + ε)φi(ξ0 + δ). (8)

Solving this quadratic equation yields δ = 2ξ0

(
ε(2 + ε)± (1 + ε)

√
ε(2 + ε)

)
. Let δ1 be the

negative solution, and δ2 the positive one; also let ξ1 = ξ0 + δ1. A tangent can provide an
approximation on a segment of the form

[ξ1, γ(ε)ξ1] :=
[
ξ1,

−δ1 + δ2

1 + δ1
ξ1

]
=

[
ξ1,

4(1 + ε)
√

ε(2 + ε)
(1 + 2ε)2 − 2(1 + ε)

√
ε(2 + ε)

ξ1

]
. (9)

Since γ(ε) does not depend on ξ1, it immediately follows that we need
⌈
log1+γ(ε)

u
l

⌉

pieces to approximate φi on [l, u]. This is within a factor of 1 +
⌈

log(1+γ(ε)
log(1+4ε+4ε2)

⌉
of the

number of pieces required by our approach. Since limε→0

√
ε log(1+γ(ε)

log(1+4ε+4ε2)
=
√

2, the minimum

number of pieces behaves as
⌈√

ε/2 log1+4ε+4ε2
u
l

⌉
as ε → 0.

Therefore, if we do not restrict ourselves to tangents, the minimum number of pieces
for approximating φi(xi) =

√
xi behaves as

√
ε/8 log1+4ε+4ε2

u
l as ε → 0, and is within a

constant factor of 1+
⌈
log1+4ε+4ε2

u
l

⌉
for fixed ε. The asymptotic behavior and the constant

factor are independent of [l, u].

2.2 Extensions

Our approach applies to a broader class of problems. Consider the problem

min{φ(x) : x ∈ X}, (10)

with φ : conv(X) → R+ a separable and concave function. We relax Assumption 1 as
follows.

Assumption 2. Problem (10) has an optimal solution x∗ and bounds 0 < l < u so that
|x∗i | ≤ u, and either φi(x∗i ) = 0 or min{|x∗i − xi| : φi(xi) = 0} ≥ l, for i ∈ [n].

The following is a generalization of Theorem 1.

Corollary 1. Problem (10) can be approximated within a factor of 1 + ε by replacing each
function φi with a piecewise linear function ψi of 2 + 2

⌈
log1+4ε+4ε2

u
l

⌉
pieces, and at most

two discontinuity points.

Proof. We will consider each objective component φi separately. Any concave function
φi(xi) that is not constant over the projection of conv(X) to xi will have at most two
zeroes, which we denote by ζL

i < ζR
i . Let ζ ′i = max{−u− l, ζL

i ] and ζ ′′i = min{u+ l, ζR
i ] and

note that we need to approximate φi only on [ζ ′i + l, ζ ′′i − l]. Let ζ∗i be a point where φi is

8



maximized, and note that φi is monotonically nondecreasing on [ζ ′i, ζ
∗
i ], and monotonically

nonincreasing on [ζ∗i , ζ ′′i ]. We will apply Theorem 1 to each of these two segments, by using
translation and reflection.

If one of the two segments is empty, the proof is complete. Otherwise, w.l.o.g. consider
the segment [ζ ′i, ζ

∗
i ]. To avoid having to compute ξ∗i , we simply introduce tangents until

the slope is nonpositive. Let the last tangent be at ζ ′i + l(1 + 4ε + 4ε2)Pi . Since its slope
might be negative, Theorem 1 does not guarantee an approximation ratio on the segment
[ζ ′i + l(1 + 4ε + 4ε2)Pi−1, ζ ′i + l(1 + 4ε + 4ε2)Pi ]. For this reason, we remove the tangent at
ζ ′i + l(1 + 4ε + 4ε2)Pi , and introduce a tangent at ζ ′i + l(1 + 4ε + 4ε2)Pi−1(1 + ε)p for the
largest j that yields a positive slope; since (1+ε)4 ≥ 1+4ε+4ε2, j ≤ 3. The approximation
is guaranteed on [ζ ′i + l(1 + 4ε + 4ε2)Pi−1, ζ ′i + l(1 + 4ε + 4ε2)Pi−1(1 + ε)p] by Theorem 1,
and on [l(1 + 4ε + 4ε2)Pi−1(1 + ε)p], ξ∗i ] by Lemma 1.

The number of pieces employed is at most 2+
⌈
log1+4ε+4ε2

ζ∗i −ζ′i
l

⌉
+

⌈
log1+4ε+4ε2

ζ′′i −ζ∗i
l

⌉
≤

2 + 2
⌈
log1+4ε+4ε2

u
l

⌉
, since ζ ′′i − ζ ′i ≤ 2u. Each segment yields at most one discontinuity

point.

We conclude with a list of further extensions:

1) Since we employ tangents in our method, we require one evaluation of the function and
its derivative (or any supergradient) to compute each piece. Our results also hold if we
use secants instead of tangents, in which case we only require one function evaluation
per piece. The secant approach may be preferable in some computational applications.

2) We can employ separate parameters ui and li for each component. Doing so may lead
to fewer required pieces in certain applications.

3) The results in this section, but not in subsequent ones, also apply to concave maxi-
mization problems, as long as all other assumptions hold.

Our results do not apply to maximization or minimization problems with nonnegative
convex costs.

3 Polyhedral ground sets

Let X = {x : Ax ≤ b, x ≥ 0} be a rational polyhedron defined by A ∈ Qm×n and b ∈ Qm,
and let φ : X → R+ be a separable nondecreasing concave function. We consider the
problem

Z∗11 = min{φ(x) : Ax ≤ b, x ≥ 0}. (11)

We will bound the optimal solution components in terms of input data size. We take
the input data size for problem (11) to be the size of A and b alone; omitting the objec-
tive functions φi from the input size computation only strengthens the resulting bounds.
Following standard practice [see e.g. KV02], we define the size of rational numbers and
matrices as the number of bits needed to represent them:

1) for integers r ∈ Z, size(r) := 1 + dlog2(|r|+ 1)e;
2) for rational numbers r = r1

r2
∈ Q with r1

r2
irreducible, size(r) := size(r1) + size(r2);

3) for vectors or matrices A ∈ Qm×n, size(A) := mn +
∑m

i=1

∑n
j=1 size(aij).
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The following property is well-known [see e.g. KV02, GLS93].

Lemma 4. Any vertex x of X has size(x) ≤ U(A, b) := 4(size(A) + size(b) + n2 + 5n).

To approximate problem (11), we introduce the piecewise linear functions ψi as described
in equations (2) and (3); each function will have 1 +

⌈
2U(A,b)

log2(1+4ε+4ε2)

⌉
pieces. Consider the

problem
Z∗12 = min{ψ(x) : Ax ≤ b, x ≥ 0}. (12)

Theorem 2. Z∗11 ≤ Z∗12 ≤ (1 + ε)Z∗11. Each function ψi has a number of pieces polynomial
in size(A) + size(b), the input size of problem (11).

Proof. Because X ⊆ Rn
+, it has at least one vertex, and because φ is nonnegative, Z11 is

bounded from below. Therefore, because φ is concave, problem (11) has an optimal solution
x∗ at a vertex of X [Bau58]. Lemma 4 ensures that x∗i ∈ {0} ∪

[
2−U(A,b), 2U(A,b)

]
. The

approximation property follows from Theorem 1.

Again, a generalization is possible. Consider the problem

min{φ(x) : Ax ≤ b}, (13)

defined by a polyhedron X = {x : Ax ≤ b} with at least one vertex, and a separable concave
function φ : X → R+. Any concave function φi(xi) that is not constant over the projection
of the feasible polyhedron to xi will have at most two zeroes; denote them by ζ ′i < ζ ′′i , and
assume they are rational.

Corollary 2. Problem (13) can be approximated within a factor of 1 + ε by replacing each
function φi with a piecewise linear function ψi of 2 + 2

⌈
2U(A,b)+size(ζ′i)+size(ζ′′i )

log2(1+4ε+4ε2)

⌉
pieces, and

at most two discontinuity points.

Proof. Let x∗ be a vertex optimal solution of (13). Then |x∗i | ≤ u := 2U(A,b). Moreover,
either x∗i ∈ {ζ ′i, ζ ′′i } or min{|x∗i − ζ ′i|, |x∗i − ζ ′′i |} ≥ l := 2−U(A,b)−size(ζ′i)−size(ζ′′i ). Applying
Corollary 1 completes the proof.

This corollary is motived by the fact that ζ ′i and ζ ′′i are seldom ill-behaved quantities. In
many applications, they are included in the input, as part of the description of the concave
cost functions. If ζ ′i and ζ ′′i are part of the input for i ∈ [n], then the number of pieces in
each function ψi is polynomial in the size of the input.

3.1 Representing the piecewise linear functions

To solve the problems resulting from our approximation technique, we could use several clas-
sical methods for representing piecewise linear functions as mixed integer programs. Such
methods usually introduce one or more binary variables for each piece and add a coupling
constraint that ensures the approximation uses only one piece [see e.g. NW99, CGM03].
However, since the objective function to be minimized is concave, the coupling constraint is

10



unnecessary, and we can employ the following well-known fixed charge formulation, which
is equivalent to formulation (12):

min
n∑

i=1

P∑

p=1

(fp
i zp

i + cp
i y

p
i ) , (14a)

s.t. Ax ≤ b, (14b)

xi =
P∑

p=0

yp
i , i ∈ [n], (14c)

0 ≤ yp
i ≤ uiz

p
i , i ∈ [n], p ∈ {0, . . . , P}, (14d)

zp
i ∈ {0, 1}, i ∈ [n], p ∈ {0, . . . , P}. (14e)

We assume without loss of generality that f(0) = 0; if f(0) > 0 the approximation only
becomes tighter. We choose the coefficients ui so that xi ≤ ui at any vertex, for example
ui = 2U(A,b).

Lemma 5. The input size of problem (14) is polynomial in the input size of problem (12).

A key advantage of fixed-charge formulation (14) is that, in many cases, it preserves the
special structure of the original concave cost problem. Therefore, solution methods for fixed
charge problems with special structure can be used to approximately solve general concave
cost problems with the same structure. A possible drawback of problem (14) is that it has
1 + p times more variables. Although for general polyhedra p could be prohibitively large,
for many practical problems, we are able to derive significantly smaller expressions for p.

We make use of both these observations when applying our technique to practical prob-
lems in the following two sections.

4 Multicommodity Flows

To illustrate our approach on a practical problem, we consider concave cost uncapacitated
multicommodity flows (see [GP90] for a survey and applications). Let G = (V, E) be an
undirected graph with |V | = n, |E| = m, and let φ : RE

+ → R+ be a separable nondecreasing
concave function. Consider the problem

min





∑

ij∈E

φij

(
K∑

k=1

(xk
ij + xk

ji)

) ∣∣∣∣∣
∑

ij∈E

xk
ij −

∑

ji∈E

xk
ji = bk

i , xk
ij ≥ 0



 . (15)

In this model, K is the number of commodities, xk
ij denotes the flow of commodity k from

i to j, and |bk
i | is the supply (bk

i > 0) or demand (bk
i < 0) of commodity k at node i. Let

bmin = min{|bk
i | : i ∈ V, k ∈ [K]}, Bk =

∑
i:bk

i >0 bk
i , and B =

∑K
k=1 Bk. Since rational

numbers can be scaled to obtain integers, for simplicity we assume that the problem data
are integral, and that φij(0) = 0 for ij ∈ E.

11



In this setting, formulation (14) yields the well-known fixed-charge multicommodity
flow problem, but now on a network with (1 + p)m edges:

min
∑

ijp∈E

K∑

k=1

(fijpzijp + cijp(xk
ijp + xk

jip)), (16a)

s.t.
∑

ijp∈E

xk
ijp −

∑

jip∈E

xk
ijp = bk

i , i ∈ V, k ∈ [K], (16b)

0 ≤ xk
ijp, x

k
jip ≤ Bkzijp, ijp ∈ E, k ∈ [K], (16c)

zijp ∈ {0, 1}, ijp ∈ E. (16d)

For each edge ijp ∈ E, the coefficient fijp can be interpreted as its installation cost, and
cijp as the cost of routing flow on the edge once installed.

Proposition 1. Z∗15 ≤ Z∗16 ≤ (1 + ε)Z∗15. This ratio can be achieved by introducing 1 +⌈
log1+4ε+4ε2

B
bmin

⌉
≤ 1 +

⌈
log1+4ε+4ε2 B

⌉
pieces for each edge cost function.

Proof. As is well-known [Bau58, Sch03], in some optimal solution to problem (15), the flow
for each commodity occurs on a tree. Consequently, any nonzero flow on any edge will be
at least bmin ≥ 1. The approximation result now follows from Theorem 2 and Lemma 5.

The special structure of the problem allows us to increase the number of edges by a
factor of only 1 +

⌈
log1+4ε+4ε2 B

⌉
, which is much less than the factor obtained for general

polyhedra.

4.1 Computational results

We present computational results for uncapacitated multicommodity flow problems with
complete uniform demand. We have generated the instances as follows. To ensure feasibility,
for each problem we first generated a random spanning tree. Then we added the desired
number of edges between nodes selected uniformly at random. For each number of nodes,
we considered a dense network with n2

4 edges, and a sparse network with 3n edges. For
each network thus generated, we have considered two cost structures.

The first cost structure models moderate economies of scale. We assigned to each edge
ij ∈ E a cost function of the form a + b(xij)c, with a, b, and c randomly generated from
uniform distributions over [0.1, 10], [0.33, 33.4], and [0.8, 0.99]. For an average cost function
from this family, the marginal cost decreases by approximately 30% as the flow on an edge
increases from 25 to 1,000. The second cost structure models strong economies of scale. The
cost functions are as in the first case, except that c is sampled from a uniform distribution
over [0.0099, 0.99]. In this case, for an average cost function, the marginal cost decreases
by approximately 84% as the flow on an edge increases from 25 to 1,000. (Note that on a
network with n nodes, the flow on an edge can range from 2 to n(n− 1).)

Table 1 specifies the problem sizes. Note that although the individual dimensions of
the problems are moderate, the resulting number of variables is large, since a problem with
n nodes and m edges yields n2m flow variables. The largest problems we solved have 80
nodes, 1,580 edges, and 6,320 commodities. To approach them with an MIP solver, these

12



# n m K
Flow

Variables
Pieces

1 10 30 90 8,100 41
2 20 60 380 22,800 77
3 20 95 380 36,100 77
4 30 90 870 78,300 98
5 30 215 870 187,050 98
6 40 120 1,560 187,200 113
7 40 390 1,560 608,400 113
8 50 150 2,450 367,500 124
9 50 610 2,450 1,494,500 124

10 60 180 3,540 637,200 133
11 60 885 3,540 3,132,900 133
12 70 210 4,830 1,014,300 141
13 70 1,205 4,830 5,820,150 141
14 80 240 6,320 1,516,800 148
15 80 1,580 6,320 9,985,600 148

Table 1: Network sizes. The column “Pieces” indicates the number of pieces in each
piecewise linear function resulting from the approximation.

problem would require 1,580 binary variables, 9,985,600 continuous variables and 10,491,200
constraints, even if we replaced the concave functions by fixed charge costs.

We chose ε = 0.01 = 1% for the piecewise linear approximation. After applying our
piecewise linear approximation technique, we have reduced the the total number of pieces
further by noting that close to 1, our approach introduced tangents on a grid denser than
the uniform grid 1, 2, 3, . . . For each problem, we have reduced the number of pieces per cost
function by approximately 47 by using the uniform grid close to 1, and the grid generated
by our approach elsewhere.

We used an improved version of the dual ascent method described by Balakrishnan
et al. [BMW89] (also known as the primal-dual method [GW97]) to solve the resulting
problems. The method produces a feasible solution, whose objective we denote by ZDA

16 , to
problem (16) and a lower bound ZLB

16 on the optimal value. This allows us to compute, a

posteriori, a problem-dependent error bound εDA := ZDA
16

ZLB
16
− 1 with respect to the piecewise

linear approximation, and an overall error bound εALL := (1 + ε)(1 + εDA) with respect to
the original problem.

Table 2 summarizes the computational results. We performed all the computations on
a Pentium Xeon 2.8 GHz. All the error bounds, times, and edge numbers in the table are
averaged over 3 instances of the respective size and cost structure.

We obtained average error bounds of 3.62% for problems with moderate economies of
scale, and 4.20% for problems with strong economies of scale. This difference in average
error bound is consistent with previous reports in the literature for fixed-charge functions,
in which problems with higher fixed to variable cost ratios, and thus stronger economies
of scale, have been found harder to solve [BMW89, HS89]. Note that the solutions to
problems with moderate economies of scale have more edges than those to problems with
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# Moderate economies of scale Strong economies of scale

Time Sol.
Edges εDA% εALL% Time Sol.

Edges εDA% εALL%

1 0.26s 14 0.41 1.41 0.4s 9 0.35 1.35
2 7.57s 31 1.45 2.46 10.6s 19 1.06 2.07
3 8.77s 25.3 1.20 2.21 18.3s 19 3.38 4.42
4 48s 44 1.95 2.96 43.1s 29 1.18 2.20
5 1m33s 43.6 2.16 3.19 1m40s 29 3.50 4.54
6 3m29s 61.6 2.47 3.49 1m46s 39 2.20 3.22
7 6m49s 59 3.24 4.28 4m23s 39 3.17 4.21
8 9m16s 79 2.22 3.24 4m20s 49 3.42 4.46
9 20m51s 74.6 3.10 4.13 8m35s 49 4.22 5.26

10 21m10s 95 2.58 3.61 6m42s 59 3.27 4.30
11 56m58s 95.6 3.64 4.68 16m31s 59 4.25 5.29
12 40m42s 101.6 2.85 3.87 8m32s 69 3.77 4.81
13 1h47m 115.6 4.19 5.24 25m34s 69 4.98 6.03
14 1h18m 127.6 2.82 3.84 13m43s 79 4.10 5.14
15 3h3m 129.3 4.59 5.64 36m2s 79 4.68 5.73
Average 2.59 3.62 3.17 4.20

Table 2: Computational results. The values in column “Sol. Edges” represent the number
of edges in the obtained solutions.

strong economies of scale; in fact, in the latter case, the edges always form a tree.
To the best of our knowledge, the literature does not contains exact or approximate

computational results for concave cost multicommodity network flow problems of this size.
Bell and Lamar [BL97] propose an exact branch-and-bound approach for single-commodity
flows, and present computational results on networks with at most 20 nodes and 96 arcs.
Fontes et al [FHC03] propose a heuristic approach for single-commodity flows, and present
computational results on networks with up to 50 nodes and 200 edges. They obtain average
error bounds of less than 13.8%, and conjecture that the actual gap between the obtained
solutions and the optimal ones is much smaller.

5 Economic Lot-Sizing

The economic lot-sizing model [WW58] is one of the most celebrated inventory planning
models. Although it is a discrete deterministic model, researchers use it in conjunction
with safety stock provisions in settings with uncertain demand, and as an approximation
for continuous-time models; algorithms for this model are used as a subroutine for material
requirement planning systems, and as a solution method for subproblems resulting from
Lagrangean relaxation of more complex models. See [FT91] for a brief survey.

Consider a facility facing deterministic demand of a single commodity over n periods.
Let bi denote the demand in period i ∈ [n], and hi be a linear per-unit holding for the
inventory xi carried from period i to i + 1. Assume the cost of ordering yi units of the
commodity in period i is specified by a nonnegative concave function φi(yi). Demand
must be satisfied at the time it occurs (i.e. backlogging is prohibited). The objective is
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to determine a production and holding plan that will minimize total cost and satisfy all
demands. The problem can be formulated as follows:

min

{
n∑

i=1

(φi(yi) + hixi)

∣∣∣∣∣ xi + yi − yi+1 = bi, xi ≥ 0, yi ≥ 0

}
. (17)

We assume, without loss of generality, that x0 = 0 is a constant, which signifies that the
initial inventory is 0.

Let B =
∑n

i=1 bi be the total demand, bmin = mini bi, and β = B
bmin

. We approximate
the concave functions φi with piecewise linear functions ψi of 1 + P := 1 +

⌈
log1+4ε+4ε2 β

⌉
pieces, as described in equation (2). The resulting problem becomes a lot-sizing problem
with fixed charge functions, and n(1 + P ) periods:

min





n(1+P )∑

i=1

(
fizi + ciyi + h′ixi

)
∣∣∣∣∣ xi + yi − yi+1 = b′i, xi ≥ 0, 0 ≤ yi ≤ Bzi, zi ∈ {0, 1}



 .

(18)
In this model, fi represents the fixed cost of ordering in period i, and ci represents the
incremental cost. The new demands b′i (holding costs h′i) equal bi/(1+P ) (hi/(1+P )) for i
divisible by 1 + P and 0 otherwise.

As is well-known, if the objective is concave, then xi, yi ∈ {0} ∪ {bmin, B}. Therefore,
the following proposition follows immediately from Theorem 1.

Proposition 2. Problem (17) can be approximated within a factor of 1+ ε by problem (18)
with 1 +

⌈
log1+4ε+4ε2 β

⌉
as many periods.

Since bi are part of the input, the resulting instances are polynomially sized with respect
to the original problem. By employing one of the O(n log n) algorithm for lot-sizing with
fixed charge production costs [FT91, WvHK92, AP93] on the resulting instances, we obtain
a O(n log β log(n log β)) = O(n log n log β + n log β log log β) polynomial algorithm for lot-
sizing with general concave production cost functions.

According to Aggarwal and Park [AP93], the fastest algorithm for lot-sizing with general
concave functions is the O(n2) algorithm of Wagner and Whitin [WW58]. Neither our
algorithm, nor that of Wagner and Whitin in general. For example, our algorithm is faster
when n is moderate or large, and the ratio maxi bi

mini bi
of the largest to the smallest demand is

moderate or small.
The same approach of combining algorithms for problems with fixed-charge costs with

our reduction is applicable to various extensions of the lot-sizing problem. For example, we
obtain the same running time of O(n log n log β+n log β log log β) for the lot-sizing problem
with backlogging. The fastest algorithm for this problem with general concave production
costs is due to Zangwill [Zan69], and runs in O(n3) [AP93].
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