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ABSTRACT 2 MULTISCALE REPRESENTATIONS AND
STOCHASTIC PROCESSES ON TREES

A current topic of great interest is the multi-resolution anal-
ysis of signals and the development of multi-scale algorithms. 2.1 Multiscale Wavelets and Tees
In this paper we describe part of a research effort aimed at As developed in [7], the multi-scale representation of a
developing a corresponding theory for stochastic processes continuous-time signal x(t) consists of a sequence of approx-
described at multiple scales and for their efficient estimation imations specified in terms of a single function +(t), where
or reconstruction given partial and/or noisy measurements the approximation at the mth scale is given by
which may also be at several scales. The theories of multi-
scale signal representations and wavelet transforms lead nat- +oo
urally to models of signals(in one or several dimensions) on zm(t) = E z(m, n)q(2 m t - n) (2.1)
trees and lattices. In this paper we focus on one particu- n=-oo
lar class of processes defined on dyadic trees. The central The function 4 is far from arbitrary. In particular +(t)
results of the paper are three algorithms for optimal esti- must be orthogonal to its integer translates 0(t - n), and, in
mation/reconstruction for such processes: one reminiscent of order for the (m + 1)st approximation to be a refinement of
the Laplacian pyramid and the efficient use of Haar trans- the mth, we require that
forms, a second that is iterative in nature and can be viewed
as a multigrid relaxation algorithm, and a third that repre- +(t) = Z h(n)0(2t - n) (2.2)
sents an extension of the Rauch-Tung-Striebel algorithm to n
processes on dyadic trees and involves a new discrete Riccati
equation, which in this case has three steps: predict, merge, conditions for the desired properties of (t) to hold and for

conditions for the desired properties of +(t) to hold and forand measurement update. Related work and extensions are
also briefly discussed.also briefly discussed. of such a X, h pair is the Haar approximation in which +(t) =

1 INTRODUCTION 1 for t e [0,1) and 0 otherwise, corresponding to h(n) =
6(n) + 6(n - 1), where 6(n) is the usual discrete impulse. As

The investigation of multi-scale representations of signals shown in [7] there is a family of FIR h(n)'s and corresponding
and the development of multi-scale algorithms has been and compactly supported 4(t)'s, where the smoothness of +(t)
remains a topic of much interest in many applications. increases with the length of h(n).

One of the more recent areas of investigation has been the The closely related wavelet transform, is based on a sin-
development of a theory of multi-scale representations of sig- gle function b(t) that has the property that the full set of
nals and the closely related topic of wavelet transforms [7]. its scaled translates {2m/2qb(2mt - n)} forms a complete or-
These methods have drawn considerable attention and ex- thonormal basis for L2 . In [7] it is shown that if 4 and ,b are
amples that have been given of such transforms seem to in- related via
dicate that it should be possible to develop effective optimal +b(t) = Zg(n)4(2t- n) (2.3)
processing algorithms based on these representations. The n
development of optimal processing algorithms-e.g. for the where g(n) and h(n) must form a conjugate mirrorfilter pair,
reconstruction of noise-degraded signals or for the detection then
and localization of transient signals of different durations--
requires, of course, the development of a corresponding the- zm+l(t) = zm(t) + Z d(m, n);b(2mt-n) 
ory of stochastic processes and their e stimation. The research
presented in this and several other papers and reports has the and indeed xm(t) is simply the partial orthonormal expansion
development of this theory as its objective. of x(t), up to scale m, with respect to the basis defined by
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unique root node, 0, we require w(t) to be independent of
z(0), the zero-mean initial condition. The covariance of w(t)

\ is I and that of z(0) is P,(O). If we wish the model eq.
(2.5) to define a process over the entire infinite tree, we sim-

y-2tz ply require that w(t) is independent of the "past" of z, i.e.
{(r)lm(r) < m(t)}. If A(m) is invertible for all m, this is
equivalent to requiring w(t) to be independent of some z(r)

-1t / ^ > with r $ t, m(r) < m(t). Note that this process has a
At 1 L t \ Markovian property: given z at scale m, x at scale m + 1

is independent of x at scales less than or equal to m - 1.
lt r t / \ Indeed for this to hold all we need is for w to be indepen-

m 86 dent from scale to scale. Also, while the analysis we perform
is easily extended to the case in which A and B are arbi-
trary functions of t, we focus here on the case in which these

a t t quantities do depend only on scale. This leads to significant
computational efficiencies and also, when this dependence is

n chosen appropriately, these models possess self-similar prop-
erties from scale to scale.

The covariance of z(t) evolves according to a Lyapunov
Figure 1: Dyadic Tree Representation equation on the tree:

b. For example for the Haar approximation g(n) = 6(n)- Pr(t) = A(m(t))P(71t)AT (m(t)) + B(m(t))BT(m(t))
b(n- 1) and {2m1/2u(2mt - n)} is the Haar basis. (2.6)6(n* so X en X * t * TV , , Note that if Pt(r) depends only on m(r) for m(r) < m(t)-1,Using eqs. (2.1)-(2.4) we see that we have a dynamical then P,(t) depends only on m(t). We assume that this is the
relationship between the coefficients x(m, n) at one scale and

case and therefore write P(t) = P,(m(t)). Note that this
those at the next, defining a lattice on the points (mn), is always true if we are considering the subtree with single

where (m + 1, k) is connected to (m, n) if x(m, n) influences root node 0. Also if A(m) is invertible for all m, and if
x(m + 1, k). For example the Haar representation defines a P:(t) = P,(m(t)) at some scale, then P,(t) = Pa(m(t)) for
dyadic tree structure on the points (m, n) in which each point all t. Let K,(t, s) = E[x(t)tT (s)] and let a A t denote the
has two descendents corresponding to the two subdivisions of least upper bound of s and t. Thenthe support interval of 4(2 m t - n).

The preceding development motivates the study of stochas- K.,(t, s) = 4c(m(t), m(s A t))P_(m(s A t))DT(m(s), m(s At))
tic processes x(m, n) defined on lattices. In our work to date (2.7)
we have focused attention on the case of the dyadic tree. As where 4(mI, m2) is the state transition matrix associated
illustrated in Figure 1, with this and any of the other lattices, with A(m).
the scale index m is time-like and defines a natural direction Consider the case when A and B are constant, A is stable,
of recursion for our representation. With increasing m de- and let P, be the solution to the algebraic Lyapunov equation
noting the forward direction, we then can define a unique
backward shift 7- 1 and two forward shifts ca and /. Also, for P. = APZAT + BBT (2.8)
notational convenience we denote each node of the tree by a
single index t and let T denote the set of all nodes. Thus In this case if Pt(O) = P, or if we assume that Px(r) = P=
if t = (in, n) then aot = (m + 1, 2n), ,3t = (m + 1, 2n + 1), for m(r) sufficiently negative, then Pt(t) = P,, for all t, and
and y7-t = (m - 1, [-]) where [x] = integer part of x. Also we have the stationary model
we use m(t) to denote the scale (i.e. the m-component) of K = Ad(t8At)p AT)d(,At) (2.9)
t. Finally, while we have described multi-scale representa- KT(ts) = A )(A (2.9)
tions for continuous-time signals on (-oo, oo), they can also Note that d(s, t) = d(s, s A t) + d(t, s A t) and if the condi-
be used for signals in several dimensions on compact inter- tion APx = PXAT (which also arises in the study of reversible
vals, or in discrete-time. For example a signal defined for processes E13 and obviously holds in the scalar case) is satis-
t = 0,1,..., 2 M-1 can be represented by M scales, and in fled, then x(t) is an isotropic process, i.e. Kt,(s,t) depends
this case the tree of Figure 1 has a bottom level, represent- only on d(s, t). We will comment on our analysis [2] of such
ing the samples of the signal itself, and a single root node, processes in Section 4.
denoted by 0, at the top.

3 OPTIMAL ESTIMATION ON TREES2.2 Dynamic Stochastic Models on Trees 3 OPTIMAL ESTIMATION ON TREES

The state model we consider evolves from coarse-to-fine In this section we consider the estimation of x(t),l ET
scales on the dyadic tree: given the measurements are of the form

z(t) = A(m(t))x( 7'lt) + B(m())w(') (2.5) y(t) = C(m(t))x(t) + v(t) (3.1)

where {w(t),t E T} is a set of independent, zero-mean Gaus- where {v(t),t E T} is a set of independent zero-mean Gaus-
sian random variables. If we are dealing with a tree with sian random variables independent of x(0) and {w(t),t E T}.
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The covariance of v(t) is R(m(t)). For simplicity we assume This computation from level to level, as we successively deci-
that there is a root node 0 and M scales on which we have mate our estimated signal and in which processing from scale
data and wish to focus. This model allows us to consider mul- to scale involves averaging of values bears some resemblance
tiple resolution measurements of our process and includes the to the Laplacian pyramid, although in this case the weighting
single resolution problem, i.e. when C(m) = 0 unless m = M. function H(k, i) is of full extent and in general varies from
In the following three subsections we describe three different scale to scale.
algorithmic structures for estimation problems of this type. Another efficient algorithm for the recursion eq. (3.7):

.................-- ~- -comes from the fact that the disciete Haar transform block
3.1 Noisy Interpolation and the Laplacian Pyramid diagonalizes both Pk and Tk,k+l. For simplicity let us first

describe this for the case in which z and y are scalar pro-
Consider the model eq. (2.5) with a single scale of mea- cesses.

surements:
Definition 3.1 The discrete Haar basis is an orthonormal

y(n) = Cz(M, n) + v(n) n = 0,1, ... 2M - 1 (3.2) basis for RN where N = 2
k . The matriz V; whose columns

form this basis consists of vectors representing "dilated, trans-
where without loss of generality we assume that the covari- lated, and scaled" versions of the vector [1, -1]T . For example
ance of v(n) is I. We look first at the batch estimation of x for k = 3,
at this finest scale, using the notation

2 0 ° ° 2 ° v 2
yT = [yT(O) ), yT( 2M - 1)] (3.3) -I O O 2 0
XT = [T(M, ),...,XT(M, 2M-1)] 0 1 2 ° I 
V7M = 2 o T oT2V = [vT(O),...,VT(2M- 1)] 3-0 0 0 -2 

V3 0 0 1 0 0 1
C = diag(C,...,C) (3.4) 0 0 0 0 2

o O O O 1 
The optimal estimate is given by 0 0 0o -1 O - 2 7

.XM = PMCT[CPMCT + I]- 1 y (3.6)2)
The following are proven in [6].

Consider next the interpolation up to higher levels in the tree.
Letting Xk denote the vector of values of zt at the kth scale, Lemma 3.1 Consider the case in which (t) is a scalar pro-with p* as its covariance, we find that cess. The discrete Haar matnri Vk provides a complete or-

thonormal set of eigenvectors for the matrix P74; i.e.

Xk - Pkk+l? Xk+l 'Pk(3.7) P: = VkAkVT (3.13)
Pk,,k+l = P'A + (3.8)

= ? kA'+1 (3.8)0 * * * where Ak is a diagonal matrix.
A(k + I1) 0 0 ·. · 0
A(k + 1) 0 0 ... 0 Lemma 3.2 Given k,k+l and Vk+l,
0 A(k +1) 0 ... 0

4k+1 = I O A(k + 1) 0 ' 0 Pk,k+1Vk+1 = [O I Vki0 ] (3.14)

0 0 0 .. A(k + 1) where Ak is a diagonal matrix of dimension 2k .

L 0 0 0 .. A(k + 1) These results are easily extended to the case of vector pro-
(3.9) cesses x(t). In this case we must consider the block version of

the discrete Haar matrix, defined as in Definition 3.1 except
we now consider "dilated, translated, and scaled" versions

portance if one wishes to consider efficient coding of data of the block matrix [I - IT instead of the vector [1, - ]T
possessing multiple-scale descriptions. Indeed the algorithm, where each block is of size equal to the dimension of z. It
eq. (3.6) and eq. (3.7), possesses structure reminiscent of the is important to note that the discrete Haar transform, i.e.
Laplacian pyramid approach [5] to multiscale coding. In par- the computation of tkz can be performed in an extremely
ticular let us examine eq. (3.7) component by component. efficient manner (in the block case as well), by successive ad-
Then from the structure of the matrices and the tree, we can ditions and subtractions of pairs of elements.
deduce [6] that the contribution of i(t) with m(t) = k + 1 Returning to eq. (3.7) we see that we can obtain an ex-
to i(s) with rn(s) = k depends only on d(s, s At). Thus, eq. tremely efficient transform version of the recursion. Specifi-
(3.7) has the following form for each node s with mrn(s) = k. cally, we have that

x(s) ZEH(kX i) E i(t) (3.1C) 4i: = VkT = [O A01L]3A 1 k+l (3.15)(s) = H(k,i) ]~ i(r) (3.1C)
i=O tEe,(k,i) Thus, we see that the fine scale components of Xk are un-

e,(k,i) = {t'lm(t') = k + 1, d(s,s At') = i} (3.11) needed at the coarser scale; i.e. only the lower half of 4+1,



which depends only on pairwise sums of the elements of Xk, while for m(t) < M
enters in the computation. So, if we let

i(t) = P-1 {Kh'ly(t) + K 2 (7't) + Ks*(at) + K4i(t)}
Ak+1 = diag(M+l, Dk+l) (3.16) (3.25)

where
·i+ = i=i+ (3.17). = +1J (3.17) K 1 = CT (m(t))R' 1(m(t)) (3.26)

where Mk+1 and Dk+l each have 2k x 2k blocks, we see that K2 = FT(m(t))Rjl(m(t)) (3.27)
K3 - AT(m(at))RlI(m(at)) (3.28)

k = AD++ (3.18) K4 = AT(m(t))R (m(t)) (3.29)

P = PA-r(t)R+ K-(rn(t))+ K2F(m(t))
Finally, while we have focused on the structure of eq. (3.7),

analogous algorithmic structures exist for the initial data in- + KsA(m(at)) + K 4A(m(,Pt)) (3.30)
corporation step eq. (3.6). Thus, once we perform a sin- P' = P-' 1 (t)+ CT(m(t))R-l(m(t))C(m(t))
gle Haar transform on the original data Y, we can compute + FT(m(t))R l(m(t))F(m(t)) (3.31)
the transformed optimal estimates iM, ZM-1,... in a block-
diagonalized manner as in eq. (3.18), where the work required Thus, eq. (3.24) and eq. (3.25) are an implicit set of equations
to compute eq. (3.18) is only 0 (2 k x dim. of state). Also, for {i(t)lt E T}, where the equation at each point involves
it is possible to consider multi-scale measurements in this only its three nearest neighbors and the measurement at that
context, resulting in smoothing algorithms in the transform point. This suggests the use of a Gauss-Seidel relaxation
domain [6]. algorithm for solving this set of equations. Note that the

computations of all the points along a particular scale are
3.2 A Multigrid Relaxation Algorithm independent of each other, allowing these computations to

be performed in parallel, and the scale-to-scale sweeps can
In this section we define an iterative algorithm for the esti- then be performed consecutively moving up and down the

mation of z given measurements at all scales. This algorithm tree. The fact that the computations can now be counted
is reminiscent of relaxation methods for multigrid partial dif- in terms of scales rather that in terms of individual points
ferential equations [3,4], and, as in that context may have reduces the size of the problem from 0( 2 M+1), which is the
significant computational advantages even if only the finest number of nodes on the tree, to O(M). The following is one
level estimates are actually desired and if only fine level mea- possible algorithm.
surements are available. Let Y denote the full set of measure-
ments at all scales. Then, thanks to Markovianity we have Algorithm 3.1 Multigrid Relaxation Algorithm:
the following: For m(t) = M, the finest scale 1. Initialize Xo, ..... ,M to 0.

E[x(t)IY] = E {E[(t)l+x(y-1 t),Y]IY} 2. Do Until Desired Convergence is Attained:

= E{E[T(t)lx(-l 1t),y(t))IY} (3.19) (a) Compute in parallel eq. (S.24) for each entry of XM

(b) For k = M -1 to 0
For m(t) < M Compute in parallel eq. (3.25) for each entry of

E[x(t)lY] = E {E[x(t)lx(7-yt), x(at), x(t),Y]lY} X)

= E {E[x(t)lz(y-1t),x(at), z(,t),y(t)]lY) (c) For = 1to M-1
(3.20) Compute in parallel eq. (3.25) for each entry of

(3.20)

The key now is to compute the inner expectations in eq. (3.19) Essentially, Algorithm 3.1 starts at the finest scale, moves
and eq. (3.20). This can be done with the aid of eq. (2.5) and sequentially up the tree to the coarsest scale, moves sequen-
the reverse-time version of eq. (2.5), which assuming that tially back down to the finest scale, then cycles through this
A(m) is invertible for all m is given by [8]: procedure until convergence is attained. In multigrid termi-

nology [4] this is a V-cycle. It is also possible to describe
z( 7 -lt) = F(m(t))x(t)- A-'(m(t))B(m(t)),w(t) (3.21) W-cycle [4] iterations.
F(m(t)) = A- (m(t))[I - B(m(t))BT (m(t))P;' (m(t))]

(3.22) 3.3 Two-Sweep, Rauch-Tung-Striebel Algorithm

In this section we describe a recursive rather than iterative
and where ti(t) is a white noise process with covariance algorithm that generalizes the Rauch-Tung-Striebel (RTS)

A T(M(t))p mtsmoothing algorithm for causal state models. Our algorithm
Q(m(t))= I- B (m())P rn(t))B(rn((3.23) once again involves a pyramidal set of steps and a consider-

able level of parallelism.
We can then show [6] that for m(t) = M Let us recall the structure of the RTS algorithm. The first

step co,nsists of a Kalman filter for computing 5i(tit), predict-
&(t) - (p)-' {CCT(m(t))R (m(t))yy(t) ing to obtain i(t + lit) and updating with the new measure-

+ FT(m(t))R' l(m(t))i(-ylt)} (3.24) ment y(t). The second step propagates backward combining

~-~~ --- ·----- -- __4



Suppose that we have computed i(ctlcat) and i(Ptlbft).
x(ftt) is based on measurements in Note that Yat and Ypa are disjoint and these estimates can

be calculated in parallel and have equal error covariances,
. _ - _ _ _ __ - -_ _- -_ - - - - - - - - - - - - - denoted by P(m(t) + llrn(t) + 1). We then compute i(tlat)

; X(tt+)isbased an and i(tljft) from
v #measixeznts in
' Aid i(ticl) = F(m(t) + 1)i(atlat) (3.40)

V ' 4 i(tilft) = F(m(t) + 1)i(fjttit) (3.41)
# I
0 * a * with corresponding identical error covariances P(rn(t)mn(t)+

, /* /\ , , 1) given by(for notational convenience we omit the explicit
/ \ / \ dependence of m on t)

A A A P(mjm+1) = r(m +l1)+Q(m+l1) (3.42)

, , a a / r(m+1) = F(m+ l)P(m+ lm+ 1)FT (m+ 1)
a , a ,(3.43)

- - - - - - - - - - - - - - - - - - - - - - - - - Q(m + 1) = Q(m + 1)Q(m + 1)QT(m + 1) (3.44)

a ………-------- _ _ _ _ _ - - - -_-…… - … - - - - - - f (m + 1) = A-(mn + 1)B(m + 1) (3.45)

Figure 2: Representation of Meaurement Update and Merged We now must merge these estimates to form i(tlt+). As
Estimates shown in [6), this merge step, which has no counterpart in

standard Kalman filtering is given by

the smoothed estimate i,(t + 1) with the forward estimate &(tlt+) = P(mmrn+)P-'(mlm + 1)[i(tlcit) + &(tl/t)]
&(tlt) (or equivalently i(t + 1t)) to compute i,(t). In the case (3.46)
of estimation on trees, we have a very similar structure; in- P(mlm+) = [2P'(mlm+ 1)-P-'(t))- (3.47)
deed the backward sweep and measurement update are iden-
tical in form to the RTS algorithm. The prediction step is, The interpretation of these equations is that i(tlat) and
however, somewhat more complex, as it can be thought of as (tlPt) are estimates based almost-completely on indepen-
two parallel prediction steps, each as in RTS, followed by a dent information sources. However they both use the a priori
merge step that has no counterpart for causal models. One statistics of z(t) and thus. this double use of prior information
other difference is that the forward sweep of our algorithm must be accounted for.
must be from fine-to-coarse. Finally, we must describe the downward sweep of the RTS

To begin, let us define some notation(see Figure 2): algorithm, combining the smoothed estimate at a parent node

t = {y(s)s=-t or s is a descendent oft} £,(-ylt) with the estimates produced during the upward
sweep to produce i, (t). Although the derivation is a bit more

= {y(s)ls E (a,/f)'t , m(s) < M} (3.32) subtle in the tree case [6], we obtain an identical recursion to
Yt+ = {y(s)ls E (ca,/)*t , t < m(s) < M} (3.33) that for causal RTS smoothing:

i(-It) = E[z(.)IYt] (3.34)
.(-t+) = E[z(.)IYt] (3.34) ,(t) = 4(tlt) + G(m(t)) [,(y'-t) - (8-htlt)]

(3.48)
G(m) = P(mlm)FT(m)P1-(m -

_ 11m) (3.49)
We now consider the measurement update. Specifically,

suppose that we have computed i(tit+) and the correspond- and the smoothing error variance is given by
ing error covariance, P(mn)n(t).(t)+), which depends only on
scale. Then, standard estimation results yield P,(m) = P(mlm) + G(m) [P,(m - 1)- P(m - )] GT(m)

(3.50)
4(tit) = e(tt+) + K(m(t))[y(t) -C(m(t))&(tlt+)l

4 DISCUSSION
(3.36)

K(m(t)) = P(m(t)jm(t)+)CT (m(t))V- 1(m(t)) (3.37) In this paper we have introduced a class of stochastic pro-
V(m(t)) = C(m(t))P(m(t)lm(t)+)CT (m(t)) + R(rn(t)) cesses defined on dyadic trees and have described several es-

(3.38) timation algorithms for these processes. The consideration
of these processes and problems has been motivated by a de-

and the resulting error covariance is given by sire to develop multi-scale descriptions of stochastic processes
and in particular by the deterministic theory of multi-scale

P(m(t)lm(t)) = [I - K(m(t))C(n(t))]P(m(rn(t)rn(t+ ) signal representations and wavelet transforms.
(3.39) In addition to open questions directly related to these mod-

This computation begins on the Mth level with i(t It+) = 0, els there are a number of related research problems under con-
P(MIM+) = Pr(M). sideration. One of these [2] involves the modeling of scalar
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take values between ±1. For trees the situation is more com- [7] I. Daubechies, "Orthonormal bases of compactly sup-
plex: for n odd Iknl < 1 while for n even -2 < kn < 1, k(n) ported wavelets," Comm. on Pure and Applied Math.,
being the nth reflection coefficient. Furthermore, since dyadic vol. 91, pp. 909- 996, 1988.
trees are fundamentally infinite dimensional, the Levinson al-
gorithm involves "forward" (with respect to the scale index [8] T. Verghese and T. Kailath, "A further note on back-
m) and "backward" prediction filters of dimension that grows ward Markovian models," IEEE Trans. on Information
with order, as one must predict a window of values at the
boundary of the filter domain. Also, the filters are not strictly
causal in m. For example, while the first-order AR model is
simply the scalar, constant-parameter version of the model
eq. (2.5) considered here, the second order model represents
a forward prediction of x(t) based on x(7-1t), x(7-2t) and
x(6t), which is at the same scale as 2(t) (refer to Figure 1).
The third-order forward model represents the forward pre-
diction of x(t) and x(bt) based on x(y-lt), x(-r 2 t), x(7y 2t)
and x(67-1 t). We refer the reader to [2] for details.
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