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1. Introduction

The theory of monotone set-valued monotone operators (see, for example, Brézis 1973)
provides a powerful general framework for the study of convex programming and variational
inequalities. A fundamental algorithm for finding a root of a monotone operator is the
proximal point algorithm (Rockafellar 1976a). The well-known method of multipliers
(Hestenes 1969, Powell 1969) for constrained convex programming is known to be a special

case of the proximal point algorithm (Rockafellar 1976b).

The proximal point algorithm requires evaluation of resolvent operators of the form (I +AT)-1,
where T is monotone and set-valued, A is a positive scalar, and I denotes the identity
mapping. The main difficulty with the method is that / + AT may be hard to invert, depending
on the nature of 7. One alternative is to find maximal monotone operators A and B such that
A+B =T, but I +AA and I +AB are easier to invert that / +AT. One can then devise an
algorithm that uses only operators of the form (I +A4)~-1 and (I + AB) -1, rather than

(I +A(A+B))~1 = (I +AT)-1. Such an approach is called a splitting method, and is inspired
by well-established techniques from numerical linear algebra (for example, see Marchuk

1975).

A number of authors, mainly in the French mathematical community, have extensively studied
such methods, which fall into four principle classes: forward-backward (Passty 1979, Gabay
1983, Tseng 1988), double-backward (Lions 1978, Passty 1979), Peaceman-Rachford (Lions
and Mercier 1979), and Douglas-Rachford (Lions and Mercier 1979). For a survey, readers
may wish to refer to Eckstein (1989). We will focus on the "Douglas-Rachford" class, which
appears to have the most general convergence properties. Gabay (1983) has shown that the
alternating direction method of multipliers, a variation on the method of multipliers designed

to be more conducive to decomposition, is a special case of Douglas-Rachford splitting.



A principle contribution of this paper is a demonstration that Douglas-Rachford splitting is an
application of the proximal point éllgorithm. As a consequence, much of the theory of the
proximal point algorithm may be carried over to the context of Douglas-Rachford splitting and
its special cases, including the alternating direction method of multipliers. As one example of
this carryover, we present a generalized form of the proximal point algorithm — created by
synthesizing the work of Rockafellar (1976a) with that of Gol'shtein and Tret'yakov (1979) —
and show how it gives rise to a new method, generalized Douglas-Rachford splitting. We
give some further examples of the application of this theory, namely Spingarn's (1983, 1985b)
method of partial inverses (with a minor extension), and a new augmented Lagrangian

method for convex programming, the generalized alternating direction method of multipliers.

Most of the results presented here are taken from the recent thesis by Eckstein (1989),
which contains more detailed development, and also relates the theory to the work of
Gol'shtein (1985, 1986, 1987). Some preliminary versions of our results have also appeared

somewhat earlier in Eckstein (1988).

This paper is organized a follows: Section 2 introduces the basic theory of monotone
operators in Hilbert space, while Section 3 proves the convergence of a generalized form of
the proximal point algorithm. Section 4 discusses Douglas-Rachford splitting, showing it to
be a special case of the proximal point algorithm by means of a specially-constructed splitting
operator. This notion is combined with the result of Section 3 to yield generalized Douglas-
Rachford splitting. Section 5 demonstrates applications of this theory in the method of partial

inverses and in generalizing the alternating direction method of multipliers.

2. Monotone Operators

An operator T on a Hilbert space # is a (possibly null-valued) point-to-set map T: H — 2%,

We will make no distinction between an operator T and its graph, that is, the set



{(x,y) | ye T(x)}. Thus, we may simply say that an operator is any subset T of # x 7, and
define T(x)=Tx={y | (x,y) e T}.

If T is single-valued, that is, the cardinality of Tx is at most 1 for all xe %/, we will by slight
abuse of notation allow Tx and T(x) to stand for the unique y € Y such that (x, y) € T, rather

than the singleton set {y}. The intended meaning should be clear from the context.

The domain of a mapping T is its "projection” onto the first coordinate,

domT={xeH | dyeH :(x,y)e T} = {xeH | Tx#D}.

We say that T has full domain if dom T = #{. The range or image of T is similarly defined as

its projection onto the second coordinate,

mT={yeH | IxeH:(x,y)e T}.

The inverse T-1 of T is {(v,x) | (x,y) € T}.

For any real number ¢ and operator T, we let ¢T be the operator {(x, cy) | (x,y) € T}, and if

A and B are any operators, we let

A+B = {(x, y+2) | (x,y) e A, (x,2) € B} .

We will use the symbol I to denote the identity operator {(x, x) |xe€ #'}. Let(-,-) denote

the inner product on #. Then an operator T is monotone if

(x'_x’y'—y) 20 v (x,y), (x'ay')e T

A monotone operator is maximal if (considered as a graph) it is not strictly contained in any
other monotone operator on A . Note that an operator is (maximal) monotone if and only if its
inverse is (maximal) monotone. The best-known example of maximal monotone operator is
the subgradient mapping df of a closed proper convex function f: # — R U {+o0} (see
Rockafellar 1970a, 1970b). The following theorem, originally due to Minty (1962), provides a

crucial characterization of maximal monotone operators:
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Theorem 1. If T is a monotone operator on #, T is maximal if and only if im(/+7) = #H.

For alternate proofs of Theorem 1, or stronger related theorems, see Rockafellar (1970b),
Brézis (1973), Dolezal (1979), or Joshi and Bose (1985). All proofs of the theorem require

Zorn's Lemma, or, equivalently, the axiom of choice.

Given any operator A, let J4 denote the operator (/+A)~1. Given any positive scalar ¢ and
operator T, Jor = (I + ¢T)~! is called a resolvent of T. An operator C on ¥ is said to be

nonexpansive if
y =yl < llx"—xl| V&, y)e C

Note that nonexpansive operators are necessarily single-valued and Lipschitz continuous.

An operator J on A is said to be firmly nonexpansive if

”)"—}’"2 < <X'—x,y'—‘)’> V(x,)’), (X',}")GJ .

The following lemma summarizes some well-known properties of firmly nonexpansive

operators.

Lemma 1. (i) All firmly nonexpansive operators are nonexpansive. (ii) An operator J is
firmly nonexpansive if and only if 2J — I is nonexpansive. (iii) An operator is firmly non-
expansive if and only if it is of the form %(C +I), where C is nonexpansive. (iv) An operator J
is firmly nonexpansive if and only if I —J is firmly nonexpansive.

Proof. Statement (i) follows directly from the Cauchy-Schwartz inequality. To prove (ii),

first let J be firmly nonexpansive. Then for any x,y € %

N2 —Dx — T -Iyl2 = 4Ux-JylZ — &Ux—Jy,x—y) + k=Yl .

Since J is firmly nonexpansive, 4(lJx —Jy||2 — (Jx —Jy, x —y)) <0, and one deduces that

N@2J-Dx — @/ -Dyl? < Ik-yl?,



and so 2J —I is nonexpansive. Conversely, now suppose C = 2J —[ is nonexpansive. Then J

=%(C+ I), and for any x, y € #,

Wx—Jyl2 = FICx-C)R2 + 2(Cx-Cy,x-y) + ¢ lix —yII2

IA

Ik 2 + 2(Cx—Cy,x-y)

= (3(C+Dx-3(C+ Dy, x~y)

(Jx“-]y,x—‘)') .

Therefore, J is firmly nonexpansive. This proves (ii); claim (iii) is simply a reformulation of

(ii). Finally, consider (iv). From (ii), we have

I —J is firmly nonexpansive
2(I - J) —1I is nonexpansive
—2J +1 = —(2J —1) is nonexpansive

2J —1I is nonexpansive

g ¢ ¢ ¢

J is firmly nonexpansive . H

Figure 1 illustrates the lemma.

We now give a critical theorem. The "only if" part of the following theorem has been well
known for some time, but the "if" part, just as easily obtained, appears to have been obscure
or unknown. The purpose here is to stress the complete symmetry that exists between
(maximal) monotone operators and (full-domained) firmly nonexpansive operators over any

Hilbert space.




Figure 1. lllustration of the action of firmly nonexpansive operators in Hilbert
space. lf J is nonexpansive, then J(x") — J(x) must lie in the larger sphere, which
has radius ||x'—x]|| and is centered at 0. If Jis firmly nonexpansive, then

J(x) —J(x) must lie in the smaller sphere, which has radius (1/2)[|x"—x]|| and is
centered at (1/2)(x’—x). This characterization follows directly from J being of the
form (1/2)I + (1/2)C, where C is nonexpansive. Note that if J(x") - J(x) lies in the
smaller sphere, so must (I = J)(x) — (I = J)(x), illustrating Lemma 1(iv).

Theorem 2. Let ¢ be any positive scalar. An operator T on #{is monotone if and only if its
resolvent J.7 = (I + c¢T)~! is firmly nonexpansive. Furthermore, T is maximal monotone if and
only if J.r is firmly nonexpansive and dom(J.7) = #.

Proof. By the definition of the scaling, addition, and inversion operations,
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xyeT & x+cp,x)e (+cD)1 .
Therefore,

T monotone & -xy~-y) 20 V&y &« y)eT

L—4
e @W-x,cy'—cy) 20 Vxy,,y)eT
& X-x+cy—cy,x'—-x) 2 |K-xZ V&y, &, y)eT
& (I +cT)~! firmly nonexpansive.

The first claim is established. Clearly, T is maximal if and only if ¢T is maximal. So, by
Theorem 1, T is maximal if and only if im(/ + ¢T) = 2L This is in turn true if and only if

(I + ¢T)~! has domain #, establishing the second statement. M

Corollary 2.1. An operator K is firmly nonexpansive if and only if K-1 —I is monotone. X is

firmly nonexpansive with full domain if and only if k-1 — I is maximal monotone.

Corollary 2.2. For any ¢ > 0, the resolvent J.7 of a monotone operator T is single-valued. If

T is also maximal, then J.7 has full domain.

Corollary 2.3 (The Representation Lemma). Let ¢ > 0 and let T be monotone on 4. Then
every element z of #can be written in at most one way as x + cy, where ye Tx. If T is
maximal, then every element z of %/ can be written in exactly one way as x + ¢y, where

ye Tx.

Corollary 2.4. The functional taking each operator T to (/+7)-! is a bijection between the
collection of maximal monotone operators on A and the collection of firmly nonexpansive

operators on .

Corollary 2.1 simply restates the ¢ = 1 case of the theorem, while Corollary 2.2 follows

because firmly nonexpansive operators are single-valued. Corollary 2.3 is essentially a



restatement of Corollary 2.2. Corollary 2.4 resembles a result of Minty (1962), but is not

identical (Minty did not use the concept of firm nonexpansiveness).

A root or zero of an operator T is a point x such that Tx 2 0. We let zer(T) = T-1(0) denote
the set of all such points. In the case that T is the subdifferential map df of a convex function
/. zex(T) is the set of all global minima of f. The zeroes of a monotone operator precisely

coincide with the fixed points of its resolvents:

Lemma 2. Given any maximal monotone operator T, real number ¢ > 0, and xe %, we have
Oe Tx if and only if J.7 (x) = x.

Proof. By direct calculation, J.7 = {(x + ¢y, x) | (x, y)e T}. Hence,

0eTx & ,0eT < @, x)eler .

Since J is single-valued, the proof is complete. W

3. A Generalized Proximal Point Algorithm

Lemma 1 suggests that one way of finding a zero of a maximal monotone operator T might be
to perform the iteration zk+1 = J,(zk), starting from some arbitrary point z0. This procedure
is the essence of the proximal point algorithm, as named by Rockafellar (1976a). Specialized
versions of this method were known earlier to Martinet (1970, 1972). Rockafellar's analysis
allows c to vary from one iteration to the next: given a maximal monotone operator T and a
sequence of positive scalars {cg}, called stepsizes, we say that {zk} is generated by the
proximal point algorithm if zk+1 = Jckr(zk) for all £ =2 0. Rockafellar's convergence theorem
also allows the resolvents J¢, T to be evaluated approximately, so long as the sum of all

errors is finite. A related result due to Gol'shtein and Tret'yakov (1979) considers iterations

of the form

2+l = (1 - pRzk + pJe(z6)




where { pk};; 0 < (0, 2) is a sequence of over- or under-relaxation factors. In at least one
important application of the proximal point algorithm, the method of multipliers for convex
programming, using relaxation factors py greater than 1 is known to accelerate convergence
(Bertsekas 1982, p. 129). Gol'shtein and Tret'yakov also allow resolvents to be evaluated
~ approximately, but, unlike Rockafellar, do not allow the stepsize ¢ to vary with %, restrict #
to be finite-dimensional, and do not consider the case in which zét(T) = &. The following

theorem effectively combines the results of Rockafellar and Gol'shtein-Tret'yakov.

Theorem 3. Let T be a maximal monotone operator on a Hilbert space #, and let {z¢} be

such that

k1l = (1—ppzk+ (1 —ppwk Vik=0,

where

Iwk— + cD- 1K) <& V20

and {81‘;}‘;:= o { pk}}:’= 0> {ck} < [0, «) are sequences such that

Eq

It

2 Ek < oo
k=0

Ay = inf >0
1 kZOPk

Ay = suppyp <2
k=0

c= if ¢g >0
k20
Such a sequence {zK} is said to conform to the generalized proximal point algorithm. Then if

T possesses any zero, {zk} converges weakly to a zero of 7. If T has no zeroes, then {2k} is

an unbounded sequence.

Proof. Suppose first that T has some zero. For all k, define
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Or = I-Jgr = I-U + cxT)!
We know that Oy is firmly nonexpansive from Lemma 1(iv). Note also that any zero of T is a
fixed point of (I + ¢;T)~1 by Lemma 2, and hence a zero of Q for any k. For all k, define
1 = (1 - ppzk + prler(zk) = (I — prQi)(zF)
For any zero z* of T,
1ZE+L — 2% (2 = ||2K — prQp(zk) — 2|2
= || 2k — 2% |[2 = 2pp(zk — 2%, Qp(z0)) + PR || Qr(zh) 112 .
Since 0 € Ok(z*) and O is firmly nonexpansive, we have

17641 — 2% |2 < [l2k — 2% |2 — pg(2 — p)ll Qi(zF) |2

< N2k —z*|2 — 412 - NGO IP .

As A1(2 — A2) > 0, we have that [|Z¢+1 — z%|| < ||zt — z*||. Now, ||zk*1 —Zk+1|| < preg, so

[|zk+1 —z%|| < ||Zk+1 — 2% || + || Zk+1 — Zk+1 ||

IN

W25 —z* 1l + prex -
Combining this inequality for all &,
k
bl —z* | < 1025 + X piey
i=0

< | 0—z¢|| + 2E1 ,

and {zk} is bounded. Furthermore,

[[25+1 — z% |2 = ||Zk+] — 2% 4 (2k+1 —Zk+1)||2

(171 — 2% ||2 + 2( Zk+1 — 2%, zk-#l — Zk+1Y 4 [J2k+1 — ZhH1 2

IA

1541 — 2% ||2 + 2| Zk+1 — 2% || [|2k+1 — Zk+1 || 4 ||2k+1 — Zk+1 12

IA

ll 2k — 2%|2 - A12 - AN Qk(z9) |12 + 2pxerll 20 — 2* | + 2E1) + pies? .

—-11-




Since {&} is summable, so is {&?2}, hence Ep = 2 8,% < oo, It follows that for all %,
k=0

k
12641 — 2% |2 < [|20 — 2% |2+ 4E (|| 20 — 2*|| + 2E1) + 4E2 - A12 - &) 2, Q)2

i=0

Letting k£ — oo, we have that

S W02 < » = Iim Quzk) =0 .
i=0 k— oo

For all k, define (xk, yX) to be the unique point in T such that X% + cxyk = zk. Then Q(zk) — 0
implies that zk — x¥ — 0. Furthermore, since {cg} is bounded away from zero, we also have

ek 10Kk = yr = 0.

Now, {zk} is bounded, and so possesses at least one weak cluster point. Let z*° be any
weak cluster point of {z¢}. Let " =" denote weak convergence, and let {z0) }7._. obea

. w . ' w
subsequence such that zk() — z°. Since zk — xk — 0, we also have xk() = z°°.

Let (x, y) be any point in 7. By the monotonicity of T, we have that {x — xk, y —yk ) >0 for all
k. Taking the limit over the subsequence k(j) and using that x¥() 5 2% and yi — 0, one
obtains (x —z*,y —0) 2 0. Since (x, y) was chosen arbitrarily, we conclude from the assumed

maximality of T that (z°, 0) € T, that is z>° € zer(T).

It remains to show that {zf} has only one weak cluster point. Consider any zero z* of T.
Then || zk*1 — z*|| < ||k —z*|| + 2&, and thus || 2% — z*|| < ||20 - z*|| + 2E; forall k.

Therefore,

o* = liminf [|zk — z¥||
k— oo

~-12-




is finite and nonnegative, and one may show that || zk — z%|| - o*. Now take any two weak

cluster points z1* and z2*° of {zk}. By the reasoning above, both are zeroes of T, and hence

oy = lim ||lzk -2z
1 k—oo 1

Il

Em ||zk -z
27] k_)oo” 2l

both exist and are finite. Writing

ooy 2 oon2 00 oo oo oo ooy 2
llzk - z7°l1* = llzk — 271" + 22k — 277, 27— 23) + llz7° - 231"

one concludes that

Jim (k-2 27 -2 = LHod - -y - z51F)

Since z1* is a weak cluster point of {2k}, this limit must be zero. Hence,

oo 0o 2

0&% = a% + ||z1 — 2z, i .

Reversing the roles of z1*° and z2*° , we also obtain that
oo oo 2

Oc% = 0!%+|lz1 -z, I* .

We then are forced to conclude that || z1%° — || = 0, that is, z1® = z0°°. Thus, {z*} has

exactly one weak cluster point. This concludes the proof in the case that T possesses at

least one zero.

Now consider the case in which T has no zero. We show by contradiction that {z¥} is
unbounded. Suppose that {z*} is bounded, that is, there is some finite S such that || k|| < §
forall k. Let

€ = sup {&]} .
k=20

Then let

13-




r=—25 __4Ea+1.
min{1, A}
We claim that for all k, one has || 2K||, [|wk]|, | Jc,r(z9) | < r — 1. Clearly, l|ZF[l<S<r -1,
so the claim holds for zk. Now, wk = pg-1(zk+1 = (1 — pp)zk), so~ — S
1 1 -
lwkl < 2=k - (1 = ppzk) < Zl-(m) =25 < ro1 .

4,

Finally,
lwk—Jo 70N < & = W @RIl < Iwkl +g < %‘ILLE < r-1

Now, let h: R?* — [0, <] be the convex function

0, Ixllsr
hx) =
@ = e, >y,
and let T =T’ + dh, so that
T(x), xll <r
T'x) = {({y+ax | ye T(x),a20}, |xll=r
D, Il >r .

Since dom T N int(dom dk) = dom T N {x | ||x]l<r} # &, T'is maximal monotone
(Rockafellar 1970c). Further, dom T’ is bounded, so zer(T ") # @ (Rockafellar 1969). Since
Il %11, 1wk I, and [[J¢,7(z%) || are all less than 7 for all k, the sequence {zK} obeys the

generalized proximal point iteration for T, as well as for T. That is,

K+l = (1 -ppzk + ppwk  V k20,

where

lIwk - + cT" )1 < & .

By the logic of the first part of the theorem, {z¥} converges weakly to some zero z*° of T".

Furthermore, as ||zk||<r—1forallk,||z°||< r—1< r, and so T '(z°) = T(z*°), and z* is

_14—




also a zero of T. This is a contradiction; hence, we conclude that {zk} cannot be bounded.
|

4. Decomposition: Douglas-Rachford Splitting Methods

The main difficulty in applying the proximal point algorithm and related methods is the eval-
uation of inverses of operators of the form I + AT, where A > 0. For many maximal monotone
operators 7, such inversion operations may be prohibitively difficult. Now suppose that we
can choose two maximal monotone operators A and B such that A+B =T, but Jj4 and /35
are easier to evaluate that Jyr. A splitting algorithm is a method that employs the resolvents
Ja4 and Jyp of A and B, but does not use the resolvént Jj of >the original operator 7. Here,
we will consider only one kind of splitting algorithm, the Douglas-Rachford scheme of Lions
and Mercier (1979). It is patterned after an alternating direction method for the discretized

heat equation that dates back to the mid-1950's (Douglas and Rachford 1956).

Let us fix some A > 0 and two maximal monotone operators A and B. The sequence {z* };:._, 0

is said to obey the Douglas-Rachford recursion for A, A, and B if
2K+l = J34((228 ~ D(R) + I - T28)(2F)
Given any sequence obeying this recurrence, let (x, b%) be, for all £ > 0, the unique element

of B such that xk + Abk = zk (see the Representation Lemma, Corollary 2.3). Then, for all £,

one has
(I —-JaB)(zK) = xk + Abk —xk = Abk

B —D(ZK) = 2xk — (kb + AbK) = xk — Abk .

Similarly, if (¥, ak) € A, then J34(y* + Aak) = yk. In view of these identities, one may give

the following alternative prescription for finding zk+1 from zk:

(a)  Find the unique (yk+1, gk+1) € A such that yk+1 4+ Agk+1 = xk — Apk

~15—



(b)  Find the unique (x*¥*1, b¥+1) € B such that xk*1 + Apk+1 = yk+1 4 2pk,

Lions' and Mercier's original analysis of Douglas-Rachford splitting (1979) centered on the

operator

Gaap = Jaa° @I~ + U -J2B) ,

where o denotes functional composition; the Douglas-Rachford récursion can be written zk+1
= G 48(zF). Lions and Mercier showed that G 4 p is firmly nonexpansive, from which they
obtained convergence of {zk}. Our aim is to broaden their analysis by exploiting the connec-

tion between firm nonexpansiveness and maximal monotonicity.

Consider the operator

SraB = Gaap)y -1 .
We first seek a set-theoretical expression for S3 4 p. Following the algorithmic description
(a)-(b) above, we arrive at the following expression for G 4 B:

Giag = {((u+Ab,v+Ab) | (u,b)e B, (v,a)e A, v+Ala=u—-Ab} .

A simple manipulation provides an expression for Sy 48 =(Ga48)"' -1I:

S2,48 = (GaaB)y V-1 = {(v+2Ab,u-v) | u,b)e B, (v,a) e A,v+la=u—Ab} .

Given any Hilbert space #, A > 0, and operators A and B on #; we define S3 4 B to be the
splitting operator of A and B with respect to A . We now directly establish the maximal

monotonicity of S3 4,B.

Theorem 4. If A and B are monotone then S3 4 g is monotone. If A and B are maximal
monotone, then S} 4 g is maximal monotone.
Proof. First we show that S 4 g is monotone. Letu, b, v, a, u', b’, v', a’ € # be such that

(u, b), W',bYe B,(v,a), v,a)e A,v+Ala=u—-Ab,and v'+Aa’=u'— Ab". Then

~-16—




a=qu-v)-b  a=3u-v)-b,
and
(V'+Ab") = (v+Ab), (W' —v) — (u—v))

MO'+Ab") = (v+2b), -1’ = v") = b’ = -1 (u - v) + b)
+ M +Ab") — (v+Ab), b’ — b)

AV =y, 71w = v) = b — A Yu - v) + b)
+ 22(b"~ b, A1’ —v") - b’ — A-1(u—v) + b)
+ M=, b’ = by + A2(b"- b, b’ — b)

Mv'=v,a-a)y + }b-b,u’ —u) - Ab"~ b, v’ —v) - A%b"- b, b’ - b)
+ Mv'= v, b = bY + A2(b" b, b’ — b) |

Mv=v,a-a) + b~ b, u’ - u) .

1l

By the monotonicity of A and B, the two terms in the final line are nonnegative, so we obtain
that ((v'+Ab") — (v+Ab), (W' —v") — (u —v)) 2 0, and S),4,p is monotone. It remains to show
that S3 4,8 is maximal in the case that A and B are. By Theorem 1, we only need to show |
that ( + S3.4 3)-1 = GAB = Jaa°(2Jg —1) + (I —JB) has fuli domain. This is indeed
the case, as Ji4 and Jjp are defined everywhere. M

Combining Theorems 4 and 2, we have the key Lions-Mercier result:

Corollary 4.1. If A and B are maximal monotone, then G348 = (I + S3 4 .8)"! is firmly

nonexpansive and has full domain.
There is also an important relationship between the zeroes of S 4 p and those of A+B:

Theorem 5. Given 4 > 0 and operators A and B on %,

zer(SaaB) = Za* = {u+Ab| be Bu, —be Au}

17—




c {u+Ab|ue zer(A+B), b € Bu} .

Proof. LetS =S34,8 We wish to show that zer(S) is equal to Z3*. Let z € zer(S). Then

there exist some u, b, v, a € Hsuchthatv+Ab =z, u—v=0, (u,b)e B,and (v,a) e A. So,

u-v=0 = u=v = la=-Ab = a=-b,

and we have u+Ab =2z, (u,b) € B, and (u,—b) € A, hence z € Z;j"I. Conversely, if ze Z3*,
then z =u+Ab, b € Bu,and —b € Au. Settingu=vanda=->b, v've see that (z, 0) € S.
Finally, the inclusion Z3* < { u+Ab | ue zer(A+B), b € Bu} follows because b € Bu and

~b € Au imply that u € zer(A+B). W

Thus, given any zero z of S) 4 B, Jap(2) is a zero of A+B. Thus one may imagine finding a
zero of A+B by using the proximal point algorithm on S3 4 B, and then applying the operator

J2B to the result. In fact, this is precisely what the Douglas-Rachford splitting method does:

Theorem 6. The Douglas-Rachford iteration zk+1 = [Ja40 (2728 —I) + I —J3B)]2F is
equivalent to applying the proximal point algorithm to the maximal monotone operator Sj 4 B,
with the proximal point stepsizes ci fixed at 1, and exact evaluation of resolvents.

Proof. The Douglas-Rachford iteration is zk*1 = G 4 p(zk), which is just zk+1 =

I+ S48 1. W

Theorem 6 appears to be a new characterization of Douglas-Rachford splitting. In view of
Theorem 3, Theorem 5, and the Lipschitz continuity of J3g, we immediately obtain the

following Lions-Mercier convergence result:

Corollary 6.1 (Lions and Mercier 1979) If A+B has a zero, then the Douglas-Rachford
splitting method produces a sequence {z¢} weakly convergent to a limit z of the form u + Ab,
where u € zer(A+B), b € Bu, and —-b € Au. If procedure (a)-(b) is used to implement the

Douglas-Rachford iteration, then {x¥} = {J28(z¥)} converges to some zero of A+B.
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Theorem 3 also states that, in general Hilbert space, the proximal point algorithm produces
an unbounded sequence when applied to a maximal monotone operator that has no zeroes.

Thus, one obtains a further result apparently unknown to Lions and Mercier: o

Corollary 6.2. Suppose A and B are maximal monotone and zer(A+B) = &. Then the
sequence {zk} produced by the Douglas-Rachford splitting is unb6éunded. If procedure (a)-(b)

is used, then at least one of the sequences {xk} or {b¥} is unbounded.
Note that it is not necessary to assume that A+B is maximal; only A and B need be maximal.

Because the Douglas-Rachford splitting method is a special case of the proximal point
algorithm as applied to the splitting operator S3 4 g, a number of generalizations of Douglas-
Rachford splitting now suggest themselves: one can imagine applying the generalized
proximal point algorithm to S 4 g, with stepsizes cg other than 1, with relaxation factors pg
other than 1, or with approximate evaluation of the resolvent Gj 4,8. We will show that

while the first of these options is not practical, the last two are.

Consider, for any ¢ > 0, trying to compute (I + ¢S3.4,8)"1(z). Now,
I +cSaap)t = (((1=c)v+cu+Ab, v+Ab) | (u,b)e B, (v,a) e A,v+Ada=u—-Ab}.
Thus, to calculate (I + ¢Sy 4.8)~1(z), one must find (¥, b) € B and (v, a) € A such that

(A-cw+cu+ b=z a=%(u—v)—b .

Alternatively, we may state the problem as that of finding u, v € #such that

z—(cu+ (1 -c)v) e ABu —z+((1+cu—-cv)e 1Av.

This does not appear to be a particularly easy problem. Specifically, it does not appear to be

any less difficult than the calculation of J(4+8) at an arbitrary point z, which, when using a
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splitting algorithm, we are expressly trying to avoid. By comparison, that calculation involves

finding (u, b) € B such that (u, A-1(z—u) - b) € A.

Consider, however, what happens when one fixes ¢ at 1. Then one has only to find
(u,b)e B such that u+Ab =z

(v,a)e A such that v+iAa =u— AbY.

The conditions (i, b) € B, u+Ab = z uniquely determine u =J3 p(z) and b = %(z —u) indepen-
dently of v. Once u is known, then v is likewise uniquely determined by u =J3 a(u — Ab).
We have thus achieved a decomposition in which the calculation of Js; 4 = (I + S3,48)71 is
replaced by separate, sequential evaluations of Jy4 = (/ + AA)~! and J35 = (I + AB)~1. This
procedure is essentially the procedure (a)-(b) given above. It seems that keeping ¢ =1 at all
times is critical to the decomposition. Spingarn (1985) has already recognizéd this phenom-
enon, but in the more restrictive context of his method of partial inverses. The next section

will show that Spingarn's method is a special case of Douglas-Rachford splitting.

The formulation of the splitting operator $3 4 g is a way of combining A and B having the
special property that evaluating the resolvent G 4,8 = (I + S3.4,8)~! decomposes into
sequential evaluations of J34 and Jjp. Simple addition of operators does not have such a
decomposition property. Furthermore, the close relationship between zer(S3 4 5) and

zer(A+B) makes S 4 p useful in finding zeroes of A+B.

Despite the impracticality of using stepsizes other than 1, it is possible to use varying
relaxation factors, and to evaluate Gy 4 8 = (I + S3.4,8)~! approximately, obtaining a
generalized Douglas-Rachford splitting method. The properties of this (new) method are

summarized by the following theorem:

-20-




Theorem 7. Given a Hilbert space #; some z0 € #f, A > 0, and maximal monotone operators
AandBon 7, let {z%) ;- o S R", (u¥) 5= o CRA, (V)po 1 SR, (o) =0 S [0, %), (B} reo

c [0, e0), and { Pk};:-_-o c (0, 2) conform to the following conditions: = = ___
lluk — J2p(Z9) || < Bk Vk=0 (T1)
Ivk+l — JpaQuk 20| < oy V20 (T2)

b+l = zk 4 pp(vk+1 — yk) Vk20 (T3)
Z O < oo
k=0 .

D B < e
k=0

0 < Pr S suppp < 2

inf
k=0 k>0

Then if zer(A+B) # &, {zk}converges weakly to some element of Z3* = { u+Ab| b e Bu,
—be Au}. If zer(A+B) = D, then {2k} is unbounded. '
Proof. Fix any k. Then [|uf —J 5(z%) || < Bi implies that

| Quk —z%) — (228 - DR < 26
Since J)4 is nonexpansive,
124Quk — zk) - J34(2028 - DGR || < 2B;
and so

IvE+Y —Ja4(2J28 - D@ER) || < 2B + o

| (VE+Y + 2k —uky — [Ja42728 =D + U = T3B)I(EO || < 3B+ o .

Let g = 38, + oy for all k. Then

Z €
k=0

32, B+ D o < oo .
k=0 k=0 .
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We also have

Zk+1l = Jk 4 pr(vk+1 — uky = (1 —Pk)Zk + pk(vk+1 + zk —yky |

Thus, letting yk = vk+1 4 zk — yk we have

0 < inf < su <2
kZOPk kz%pk

Eek < 4o
k=0

vk — GaasEd < & Vk=0

K+l = (1 - ppzk + pryk V20 .

The conclusion then follows from Theorems 3 and 5. W

In at least one real example (Eckstein 1989, Chapter 7), using the generalized Douglas-
Rachford splitting method with relaxation factors p other than 1 has been shown to converge
faster than regular Douglas-Rachford splitting. Thus, the above convergence result is of

some practical significance.

5. Some Interesting Special Cases

We now consider some interesting applications of splitting operator theory, namely the
method of partial inverses (Spingarn 1983, 1985b) and the generalized alternating direction

method of multipliers. We begin with the method of partial inverses.

Let T be an operator on a Hilbert space % and let V be any linear subspace of %, V1 denoting
its orthogonal complement. Then the partial inverse Ty of T with respect to V is the operator

obtained by swapping the VL components of each pair in T, thus (Spingarn 1983, 1985b):

Ty ={Gxy+yvLyv+xyl) | (,y)e T} .
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Here, we use the notation that for any vector z, zy denotes the projection of z on V, and zy.L

its projection onto V-

Spingarn has suggested applying the proximal point algorithm to Ty to solve the problem

Find (x,y) € Tsuchthatxe Vandye Vi, (ZV)

. !
v

where T is maximal monotone. In particular, if T = df, where f is a closed proper convex
function, this problem reduces to that of minimizing f over V. One application of this method

is the "progressive hedging" stochastic programming method of Rockafellar and Wets (1987).

Consider now the operator

Ny = VxVi= {(x,y) | xe V,ye V1}

It is easily seen that Ny is the subdifferential d(dy) of the closed proper convex function

0, xeV

6V(x) = + oo xeV

and hence that Ny is maximal monotone. Now consider the problem

Find x such that 0 € (T + Ny)x , (ZV?")

which is equivalent to (ZV).

If one forms the splitting operator Sy 4p WithA=1,A=Ny = Vx VLl and B =T, one

obtains

Sivxvir = {v+bu-v) | w,b)eT,ve V,ae VL, v+a=u-b} .

{((u-b)y+b,u—u->by) | (u,b)e T}

= {(uy + byL, by +uyl) | (u,b)e T}
Ty
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Thus, the partial inverse Ty is a special kind of splitting operator, and applying the proximal
point algorithm to Ty is a specialized form of Douglas-Rachford splitting. Naturally, one can
apply the generalized proximal point algorithm to Ty just as easily one can apply the regular
proximal point algorithm, and one can allow values of A (but not cg) other than 1. Following a

derivation similar to Spingarn's (1985b), one obtains the following algorithm for (ZV):

LY}
¥

Start with any X0 € V,y0 e VL,

At iteration k:
Find Yk € # such that ||5% - Jap(xk + yo)|| < & .
Let Xk = (xk + yk) -5k |
Let xk+1 = (1 - pp)xk + ppEkyy .

Let yk+1 = (1 - pp)yk + ppERyL .

Here { pk}}j= o and { ﬁk};; o are sequences meeting the restrictions of Theorem 7. It is
interesting to compare this method to Algorithm 1 of Spingarn (1985b). In cases where
T = 9f, the computation of ¥ ¥ reduces to an approximate, unconstrained minimization of f plus

a quadratic term.

In addition to partial-inverse-based methods, the class of Douglas-Rachford splitting
algorithms also includes the general monotone operator method of Gol'shtein (1987), and
related convex programming methods (Gol'shtein 1985, 1986). Demonstrating this
relationship is rather laborious, however, and interested readers should refer to Eckstein

(1989).

We now turn to our second example application of splitting operator theory, the derivation of
a new augmented Lagrangian method called the generalized alternating direction method of

multipliers.
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Consider a general finite-dimensional optimization problem of the form

minimize y.gn f(X) + g(Mx) , (P)

where f: R? — (—oo, +00] and g: R? — (—oo, +oc0] are closed proper convex, and M is some

m X n matrix. By writing (P) in the form

minimize f(x) + g(w) ' PH
subject to Mx=w ,

and attaching a multiplier vector p € R™ to the constraints Mx = w, one obtains an equivalent

dual problem

maximize pegn —{f*CM'P)+g*(®)) . (D)

where * denotes the convex conjugacy operation. One way of solving the problem (P)-(D) is
to let A = d[f* o (—MT)] and B = dg*, and apply Douglas-Rachford splitting to A and B. This
approach was shown by Gabay (1983) to yield the alternating direction method of muliipliers
(Glowinski and Marroco 1975, Gabay and Mercier 1976, Fortin and Glowinski 1983, Gabay
1983, Glowinski and Le Tallec 1987),

xk+1 = arg min {f(x) + (pk, Mx) + 2| Mx — wh2}
X

whtl = arg min {g(w) — (pk, w) + & || Mxk+1 - wii2}
w P

This method resembles the conventional Hestenes-Powell method of multipliers for (P'),

except that it minimizes the augmented Lagrangian function
La(X, W, P) = f(x) + g(W) + (pk, Mx —w) + 5| Mx — wh|]2

first with respect to x, and then with respect to w, rather than with respect to both x and w

simultaneously. Notice also that the penalty parameter 4 is not permitted to vary with k.
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We now show how Theorem 7 yields a generalized version of this algorithm. Let the

maximal monotone operators A = d[f*(—MT)] and B = dg* be defined as above.

A pair (x, p) € R" x R™ is said to be a Kuhn-Tucker pair for (P) if (x, — MTp) € of and

(Mx, p) € dg. Itis a basic exercise in convex analysis to show that if (x, p) is a Kuhn-Tucker
pair, then x is optimal for (P) and p is optimal for (D), and also tl}gt if p € zer(A+B), then p is
optimal for (D). We can now state a new variation on the alterna'ting direction method of

multipliers for (P):

Theorem 8 (The generalized alternating direction method of multipliers). Consider a convex
program in the form (P), minimize x ¢ rr f(X) + g(Mx), where M has full column rank. Let p0,

z0 € R™, and suppose we are given A > 0 and

k=0

{Vk}I:;O c [0, ), Z Vp < o0
k=0

(Plg=0 € (0,2), 0 < inf pp < suppy < 2
k20 k20

Suppose {xK} %= 1, (wk} ¢ = 0» and {p¥} = o conform, for all £, to
|| x¥+1 - arg min {f(x) + (p*, Mx) + S| Mx - wk|2} || < s
X

| wh+1 — arg min {g(w) - (pk, W) + Zll peMxkHL + (1 - powk - wiP} [| < v

pk+1 = pk + ﬂ-(pkMXk"'l +(1 -pk)Wk — wk+1)

Then if (P) has a Kuhn-Tucker pair, {xk} converges to a solution of (P) and {p*} converges to
a solution of the dual problem (D). Furthermore, {wk} converges to Mx*, where x* is the

limit of {xk}. If (D) has no optimal solution, then at least one of the sequences {pk} or {wk}
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is unbounded.

Proof. Let
zk = pk+ Awk Vk=0
gk = pk+ A(Mxk+1 _ wk) Vk20
ar = AlMIl g Vkz20
Bo = lIp®—JaB(p0 + Aw0) || )
Br = Aw Vik=1,

where |[M]|| denotes the /o-norm of the matrix M,

[IMx|

IM|| = sup
[ixIl

x#0

We wish to establish that the following hold for all £ = 0:

Ipk = JaB(z9)|l < B (Y1)
llak - JaaQ2pk —29) || < oy . (Y2)
Z+1 = 2k + pi(qk —pk) . . | (Y3)

For k =0, (Y1) is valid by the choice of By. Now suppose (Y1) holds for some k; we show
that (Y2) also holds for k. Let

%* = arg min {f(x) +(p*, Mx) + 2[|Mx - wh|2}
X

~

pk = (p* - Awk) + AMXF

The existence of a unique Xk is assured because f is proper and M has full column rank. Then

0 € Alfx) +(pk Mx) + S IMx — wH[2] , _zt
= 0 e XK +MTpk+ AMT(MxF — wk)
0 € 9f(xk)+ MTpk
= -M'pk e If(xk)

U
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= Xk e of*(—-MTpk)
= -Mxt e Jf -(-MN](pk) = Ap* .

Also
Pk + A(—MxK) = pk—Awk ,
SO K
Pk = (I +A4)"L(pk - Awk) = Jaa(2pk-2F) .

Thus, from

|| xk+1 - arg min {7x) +(pk, Mx) + ZIMx — whI2} || < s

gt = pk+ A(Mxk+l — wk)
we obtain

llxk -] < g
gk = B*Il < AlMIl e

establishing (Y2) for k.

Suppose that (Y1) and (Y2) hold for some k. We now show that (Y3) holds for £ and (Y1)
holds for k+1. Let

sk = zk+ pr(qk - ph)
= pk+ wk + dpp(Mxk+l — wk)

Pk + UppMxk+1 + (1 — powh) .

and also
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W = arg min {g(w) — (pk, W) + 31l (MxE1 + (1 - ppwh) - wiP)

§k = pk+ UpMxk+1 + (1 — pwk — Wwk)

The existence of Wk is guaranteed because g is proper. We then have

0 & dulg(w) - (kW) + 511 (eMxH + (1 - ppwh) — WI2] gy
= 0 c %W - pk+A(We— (pMxk + (1 - pwh)
=  pk+ A(pMxkl + (1 — ppywk —Wk) = §% e Jg(Wk)

= Wk e dg*@$k) = Bsk .

Sk + AWk = pk— A(oxMxk+1 + (1 — pp)wk — Wk) = sk

9

we have §% = Jp(sk).

The condition on wk*1 is just || wk*1 —Wk|| < v, so || pk+1 — §%|| < Avx. We also have

zk‘l"l = pk+l + Awk'f'l
= pk+ UpMxk+L + (1 — pr)wk — wk+1) + Lwk+1
= pk + A(poxMxkt1 + (1 — prywk)

= sk .

Thus, (Y3) holds for &, and (Y1) holds for k+1 by || p¥*1 — §%|| < Av;. By induction, then,
(Y1)-(Y3) hold for all k. The summability of {u} and { v} implies the summability of { S}
and {o}. Suppose (P) has a Kuhn-Tucker pair. Then by Theorem 7, {zX} converges to some
element z* of { p+Aw| we Bp, —w e Ap}. Applying the continuous operator J)p to {zk}
and using (Y1), we obtain pk¥ — p* and wk — w*, where (p*, w*) € B and p* + Aw* = z*.

By rearranging the multiplier update formula, we have

(pk+l — pkb) + (whtl —wk) = lpk(MXk*'l - wk)
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for all k 2 0. Taking limits and using that pg is bounded away from zero, we obtain that
(Mxk+1 — wk)y — 0, hence Mxk — w*. As M has full column rank, xk — x*, where x* is
such that Mx* = w*. We thus have (p*, w*) = (p*, Mx*) € B = dg*, and so (Mx*, p*) € dg.
Now, we also have that -MTpk e 9f(X¥), or, equivalently, (—MTp¥, X¥) € of, for all k. Using

0 < llg* =kl = IIpk + AMxk+1 —zb) —pk|| < A Ml — 0,

we have by taking limits that pk — p*, and since || xk — Xk|| < 1 — 0, we also have Xk — x*.
Therefore, (—-MTp*, x*) € Jf by the limit property for maximal monotone operators (e.g.
Brézis 1973). We conclude that (x*, p*) is a Kuhn-Tucker pair for (P), and we obtain the

indicated convergence of {xk}, {pk}, and {wk}.

Now suppose that (D) has no optimal solution. Then zer(A+B) must be empty, and by
Theorem 7, {zk} must be an unbounded sequence. By the definition of {zk}, either {p*} or

{wk} must then be unbounded. M

Ina practical iterative optimization subroutine, it may be difficult tc; tell if the condition
[ x#1 — arg min {£(x) + (p%, Mx) + ZIMx - wkIP} | < pe

or

|| wh+1 — arg min {g(w) — (pk, w) + Sl peMxk*L + (1 - ppwk - wiP} || < we

has been satisfied. For more implementable stopping criteria, which, under appropriate

assumptions, imply these kinds of conditions, we refer to Rockafellar (1976b).
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