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Abstract

The affine-scaling algorithm, first proposed by Dikin, is presently enjoying great popularity as a poten-

tially effective means of solving linear programs. An outstanding question about this algorithm is its conver-

gence in the presence of degeneracy (which is important since 'practical" problems tend to be degenerate).

In this paper, we give new convergence results for this algorithm that do not require any non-degeneracy

assumption on the problem. In particular, we show that if the stepsize choice of either Dikin or Barnes

or Vanderbei, et. al. is used, then the algorithm generates iterates that converge at least linearly with a

convergence ratio of 1 - ,/V, where n is the number of variables and P E (0, 1] is a certain stepsize ratio.

For one particular stepsize choice which is an extension of that of Barnes, the limit point is shown to have

a cost which is within O(,3) of the optimal cost and, for B sufficiently small, is shown to be exactly optimal.

We prove the latter result by using an unusual proof technique, that of analyzing the ergodic convergence

of the corresponding dual vectors. For the special case of network flow problems, we show that it suffices to

take 1 = I l where m is the number of constraints and C is the sum of the cost coefficients, to achieve

exact optimality.
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1. Introduction

Since the recent work of Karmarkar [Kar84], much interest has focussed on solving linear programming

problems using interior point algorithms. These interior point algorithms can be classified roughly as either

(i) projective-scaling (or potential reduction), or (ii) affine-scaling, or (iii) path-following. Both the projective-

scaling algorithms, originated by Karmarkar, and the path-following algorithms, attributed to Frisch [Fri55],

have very nice polynomial-time complexity (see for example [Gon89], [Kar84], [Ren88], [Vai87], [Ye88]) and

the latter can be extended to solve convex (quadratic) programs and certain classes of linear complementarity

problems (see for example [KMY87], [MoA871, [MeS88], [Tse89], [Ye89]). However it is the affine-scaling

algorithm that has enjoyed most wide use in practice [AKRV89], [CaS85], [MSSP88], [MoM87], although its

time complexity is suspected not to be polynomial. (Recently, it was shown that one primal dual version of

this algorithm has a polynomial-time complexity, provided that it starts near the "centre" of the feasible set

and the stepsizes are sufficiently small [MAR88].) The affine-scaling algorithm was proposed independently

by a number of researchers [Bar86], [CaS85l, [ChK86], [KoS87], [VMF86], and it was only recently discovered

(in the West) that this algorithm was invented 20 years ago by the Russian mathematician I. I. Dikin [Dik67],

[Dik74] (see discussions in [VaL88], [Dik881). A key open question about this algorithm is its convergence

in the absence of any non-degeneracy assumption on the problem. Presently it is only known that this

algorithm is convergent under the assumption of either primal non-degeneracy [Dik74], [VaL88] or, if a

certain stepsize ratio is small, dual non-degeneracy [Tsu89]. (Weaker results that require both primal and

dual non-degeneracy are given in [Bar86], JMeS891, [VMF86].) Otherwise, no useful convergence result of any

kind is known. (The continuous time version of this algorithm was shown by Adler and Monteiro [AdM88]

to converge even when the problem is primal and/or dual degenerate, but the analysis therein do not readily

extend to our discrete time case.) This situation is rather unfortunate since most problems that occur in

practice are degenerate.

In this paper we give the first convergence results for the (discrete time) affine-scaling algorithm that

do not require any non-degeneracy assumption on the problem. In particular, we consider versions of this

algorithm proposed by, respectively, Dikin [Dik67], Barnes [Bar86], and Vanderbei, et. al. [VMF86], and we

show that any sequence of iterates generated by either of these algorithms converge at least linearly with a

convergence ratio of 1- l//, where 8 E (0, 1] is a certain stepsize ratio and n is the problem dimension.

Moreover, for a particular version of the algorithm we show that the limit point has a cost that is within O(,6)

of the optimal cost, where the constant inside the big O notation depends on the problem data only, and,

for / sufficiently small, this limit point is exactly optimal. For single commodity network flow problems we

estimate the size of for which the latter holds to be 6 where m is the number of constraints and C is the

sum of the cost coefficients. Our convergence result for the small stepsize case significantly improves upon

that obtained by Adler and Monteiro [AdM88] for the continuous time version of the affine-scaling algorithm

(for which the stepsizes are infinitesimally small). Our proofs are also fundamentally different from those
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of the others. For example, in order to prove the O(p)-optimality result, instead of following closely the

trajectory of the primal and/or dual iterates as is typicall done, we study the long term averages of the dual

iterates, which exhibit a much more stable behaviour than the individual dual iterates. (Convergence in the

average of iterates is known as ergodic convergence, e.g. [Pas79].) We show, by a very simple argument,

that this long term average is bounded and, in the limit, satisfies O(3)-complementary slackness with the

primal iterates.
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2. Algorithm Description

Consider linear program in the following canonical form:

Minimize CT x

subject to As = b, (P)

> 0,

where A is an m x n matrix, b is an m-vector, and c is an n-vector. In our notation, all vectors are column

vectors and superscript T denotes transpose. We will denote, for any vector x, by xj the j-th coordinate of

x and by 112114 and 11X112, respectively, the Ll-norm and the L2-norm of x. We make the following standing

assumption about (P), which is standard for interior point algorithms.

Assumption A. (P) has a finite optimal value and {xAzx = b, x > 0), the relative interior of its feasible set,

is nonempty.

Consider the following version of the affine-scaling algorithm for solving (P): Given z k > 0 satisfying

Azk = b (x ° is assumed given), let wk be the unique optimal solution of the following subproblem

Minimize CTW

subject to Aw = 0, (2.1)
II(Xk) lwJJ2 < n,

where Xk is the n x n diagonal matrix whose j-th diagonal entry is xz, and set

zk+1 = xk + Akwk, (2.2)

where Ak is a positive stepsize for which xk +A kwk > 0 (Ak will be specified presently). Notice that xk+ l > 0

and (since Awk = 0) Axk+1 = Axk = b. Also, since the zero vector is a feasible solution of (2.1), there holds

CTWk < 0 (i.e., w" is a descent direction at xk) so that CTxk+l < CTAk. Hence, {cTXz} is monotonically

decreasing and xek+ is a feasible solution of (P) for all k. Since the function x -. cTz is bounded from below

on the feasible set for (P) (cf. Assumption A), this implies that {cTzk} converges to a limit. [Also notice

that the value used in the right hand side of the ellipsoid constraint in (2.1) is immaterial since wk is scaled

by Ak in (2.2).]

All of the affine-scaling algorithms proposed for solving (P) differ only in their choices of the stepsize

Ak. We will consider primarily the following choice for Ak:

ANk ) w l (2.3)
l4Xe)- ell'
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where B6 is a fixed scalar in (0, 1) and 1' I is any Lp-norm (p E [1, oo]). (The largest stepsize is obtained

when 11 * 11 is the LO-norm.) When 1' 11 is the L2 -norm, then the above choice of Ak coincides with that

proposed by Barnes [Bar86]. Alternatively, we can choose

|| = )lW 112 (2.4)
II(Xk)_lWk 12,

which is the stepsize proposed in the the original algorithm of Dikin [Dik67], [Dik74]. Vanderbei, et. al.

[VMF86] choose Ak to be a fraction A E (0, 1) of the largest stepsize that maintains feasibility of the new

iterate, i.e. (compare with (2.3))

A max wk/ k}6 ' (2.5)

It can be seen that all of the above stepsizes maintain xk + Akwk > 0. [For Dikin's stepsize (2.4), it can

be shown that the positivity condition is not satisfied only if xk + Akwk is an optimal solution of (P), in

which case the algorithm can be terminated immediately.] In what follows, we will consider primarily the

stepsize (2.3) and will allude to the other stepsizes only on occasions when our results apply to them as

well. We remark that all of our results extend to a modified version of the stepsize of [VMF86], whereby an

upper bound is placed on the positive components of the descent direction as well, i.e. Ak is the minimum

of - - and t7 k k for some fixed positive scalar qr.
maxj{-wwj/Ij } maxwk>O {w/j }'

It is easily seen that the redundant rows of A can be removed without changing the iterates wk and

xk given by (2.1)-(2.2) (since the feasible set for both (P) and (2.1) would remain unchanged). Hence, to

simplify the presentation, we will without loss of generality make the following standing assumption:

Assumption B. The matrix A has full row rank.

Then, by attaching a Lagrange multiplier vector pk to the constraints Aw = 0, we obtain from the

Kuhn-Tucker conditions for (2.1) that wk has the following closed form:

Wk =- (XLk)2k (2.6)IIX=-i-x- 1

where

rk = C - ATpk, (2.7)

and

Pk = (A(Xk) 2 AT)- 1A(Xk)2 C. (2.8)
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(The matrix inverse in (2.8) is well-defined since A has full row rank and Xk is a diagonal matrix with positive

diagonal entries.) The m-vector pk can be thought of as the dual vector corresponding to xk, although it is

not necessarily dual feasible.

This paper proceeds as follows: In Sections 3 and 4, we show that the iterates generated by (2.1)-(2.2),

with the stepsizes given by either (2.3) or (2.4) or (2.5), converge at least linearly with a convergence ratio

between 1- P/n and 1- /lV, depending on the choice of stepsizes used. In Section 5, we show that, for the

stepsize choice (2.3), the limit point has a cost that is within O(P) of the optimal cost and, for /3 sufficiently

small, is exactly optimal. In Section 6, we show that, for the single commodity network flow problem, it

suffices to take P = I 1 in order for exact optimality to be attained. In Section 7, we discuss various

extensions.



3. Linear Convergence of the Costs

In this section, we analyze the rate of convergence of the costs CTxk generated by the algorithm (2.1)-

(2.2) [with stepsizes given by either (2.3) or (2.4) or (2.5)1. In particular, we show that, for all k sufficiently

large, the costs cTxk converge at least linearly with a convergence ratio between 1 - P/n and 1- - /V~ ,

depending on the choice of the stepsize Ak used. A similar result has been obtained earlier by Barnes

[Bar86], but only for the stepsize (2.3) and under the additional assumption that (P) is both primal and

dual non-degenerate.

First, we need the following result which says that the solution of a linear system is in some sense

Lipschitz continuous in the right hand side (see for example [Hof52], [Rob73], [MaS87]):

Lemma 1. For any k x n matrix B, any I x n matrix C, any k-vector d and any i-vector e, if the linear

system Bx = d, Cx 2 e has a solution, then it has a solution whose [[ [ norm is at most ((lldll + Hell), where

p is a constant that depends on B and C only.

Lemma 1 will be used in later analysis as well. Below we give the main result of this section.

Theorem 1. If {xs ) is a sequence of iterates generated by (2.1)-(2.2), then

CT-k+l - v°
°

< (1-_ Ak)(cTxk _ v
°
)

for all k sufficiently large, where v°° = limA o,{cTxk}.

Proof: Let a denote the set of feasible solutions for (P), i.e. = = {xlAx = b, x > 0). First we claim that

there exists a positive integer k such that

min II(Xk)-l(y- xk)llI < n,Vk > k (3.1)
yEE,cTy=V--t )_

To see this, suppose the contrary, so that there exists a subsequence K of {O, 1, ... ) such that

min II(Xk)- (y- )112 > n,Vk e K. (3.2)
yEB,cTy=v

O
)

By further passing into a subsequence if necessary, we will assume that, for each j E {1,...,n}, either

{Xz}K converges to some limit, say XZ?, or {X}K - oo00. For each k E K, consider the linear system

Ax = b, x > O, cTx = CTXk, x3 = Xjkj E J, where J is the set of indices j such that {x }K converges to

some limit. This system is feasible since zk is a solution, so that, by Lemma 1, there exists a solution Ck

such that llckil = O(llbil + IcTXkl + EjEJ xjkl). Then, the sequence {(k}K is bounded and satisfies

k EB cTk = CTxk , j =xVj eJ,
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for all k E K. Since {(k}K is bounded, by further passing into a subsequence if necessary, we will assume

that it converges to some limit, say Am. Then, e' E -, cTeOO = vo and e. = x? for all j E J. For each

k E K, let A k = k - k (so that CTAk = 0, AA k = 0, Aj = 0 for all j E J, and Ak > O if k is sufficiently

large). Then, yk = ~e + Ak has a cost of v ° , satisfies

II(Xk)-l(yk _ Xk)[II = II(Xk)-l(, _ ek)II2

;E (. A)2+ E (( 2)2 (3.3)
jEJ,4"=o 3 jEJVe>o or jiJ 3

and, for all k E K sufficiently large, is in -. Since jk = for all k E K and all j E J, each term in the

second to the last sum of expression (3.3) is equal to 1. Also, since {(k}K -- , {x.}iK - oo for all j J,

and {xj})K -( .j for all j E J, then each term in the last sum of expression (3.3) is less than or equal

to 1 for all k E K sufficiently large. Hence, for all k E K sufficiently large, y" belongs to 2 and satisfies

cTyk = v° ° and II(Xk)-l(yk - zXk)2 <_ n, a contradiction of (3.2). Hence (3.1) holds.

Now, consider any k > k and let yk be any element of ; satisfying cTyk = vo, II(Xk)-l(yk _ Xk)ll2 < n

[cf. (3.1)]. Then, yk - xk is a feasible solution for the subproblem (2.1) and, since wk is the optimal solution

of (2.1), it must be that cTwk < cTyk - cTxk. Since cTyk = v°° , this together with (2.2) then yields

CTxk+1 = CTXk + AkCTWk

< cTxk + Ak(Voo _ CTxk),

Hence

CTXk+l _* V < (1 - Xk)(CTXk _ VO),

Q.E.D.

An open question is the estimation of k. For example, if k is a polynomial in the size of the problem

encoding, then, for linear network flow problems with polynomial-sized cost coefficients (e.g. maximum

flow), we would obtain a polynomial-time algorithm (see Corollary 1 below and Theorem 4 in Section 6).

Next, we bound the stepsize Ak.

Lemma 2. The following hold:

(a) If Ak is given by (2.3), then mini.l[=1 V. < Ak < P for all k.

(b) If Ak is given by (2.4), then Ak = 1/'Fn for all k.

(c) If Ak is given by (2.5), then A// _< Ak for all k.

Proof: Parts (a) and (b) follow from the observation that the ellipsoid constraint in (2.1) is tight for any

optimal solution of (2.1), so that wk satisfies II(Xk)-1wkl1 2 = /fn for all k. To prove part (c), note from

II(Xk)-wk 112 = /'n that 0 < maxj{-.} _< i for all k. Q.E.D.
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Notice that minllZll= 1 lj is lower bounded by 1/A/r and is equal to 1 if II II is an Lp-norm with p > 2.

From Theorem 1 and Lemma 2, we immediately obtain the following corollary:

Corollary 1. If {xk} is a sequence of iterates generated by (2.1)-(2.2) with the stepsizes given by either

(2.3) or (2.4) or (2.5), then {cTzk} converges at least linearly with a convergence ratio of, respectively,

1- A minll 1ll= 1 ,1 1- 1/V¶, and 1- B/Vi/.



4. Linear Convergence of the Primal Iterates

In this section, we establish that the sequence of iterates {(k} generated by (2.1)- (2.2) [with stepsizes

given by either (2.3) or (2.4) or (2.5)] in fact converges. Our proof is based on showing that the change in the

iterate xk+l - xk is O(cTxk - cTXk+l), so that, by the linear convergence result proven earlier (cf. Corollary

1), {(k} is a Cauchy sequence and therefore converges. Intuitively, xk+ l -xk should be O(Txk -CTxk+l), for

otherwise there would exist an n-vector in the space orthogonal to the cost vector c which can be subtracted

from xk+ l - xk to obtain a 'better" descent direction.

Theorem 2. If {( k ) is a sequence of iterates generated by (2.1)- (2.2) with the stepsizes given by either (2.3)

or (2.4) or (2.5), then {xk}) converges at least linearly with the same convergence ratio as that of {cTxk}.

Proof: Let

zk = xk+1 _ xk, Vk.

From Theorem 1 we have that (cTzk} converges to zero at least linearly with a ratio of convergence given in

Corollary 1. Below we show that [lzk l is O(-cTzk), from which it immediately follows that {xk} converges

at least linearly with the same convergence ratio as that of {cTzk).

First, we claim that each zk can be decomposed as

zk = k + ik, (4.la)

where 2k and Zk are n-vectors satisfying

Ak = 0, A k = 0, cTzk = 0, CT k
= CTZk, (4.lb)

and l['kl[ is O(-cTzk). (To see this, for each k E K, consider the linear system Az = 0,cTz = cTzk. This

system is feasible since zk is a solution. By Lemma 1, there exists a solution Zk such that llz ll = O(-cTzk),

where the constant in the big O notation depends on A and c only. Let 2 k = zk - Zk.)

If l[zkil is also 0(-cTzk), then clearly IIzkll is 0(-cTZk) [cf. (4.la)' and we are done. Otherwise,

suppose that there exists a subsequence K of {0, 1, ... ) such that {cTzk/II kl II}K -, O. We will then establish

a contradiction. First, by further passing into a subsequence if necessary, we will assume that the set of

coordinates Zjk that are of the same order of magnitude as l[kll[ is fixed, i.e. there exists a nonempty

J _C {1,..,n) such that

{ }fi K - V V J liiMk-.oosk.K ; > °0 J. (4.2)
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Now, for each k E K, consider the linear system Az = O, cTz = O, z = Z'j for all j 0 J. This system is

feasible since ,k is a solution. By Lemma 1, there exists a solution ?k such that [ll]jk = O( iJ I, [), where

the constant in the big O notation depends on A and c only. Then, by (4.2), we have

{{}}K-O. A¢k=O, CT~k=O, Sk =- Vj J (4.3)

Let Ak = _k _ Sk for all k E K. Then, for every k E K, there holds [cf. (4.1a), (4.1b) (4.3)] cT(zk - Ak) =

cTzk, A(Zk - Ak) = 0 and

(Xk)-(Zk _- Ak)11
2= +Zj2 + ZJ - + C )2

3 jEJ 3

x k k k (4.4)

j'(i jEJ i

Now, since [[_k[[ is O(-cTzk), our hypothesis {cTzk/lIIklI}K - 0 implies {_,k/llk1}K 0, which together

with (4.3) yields {(ik + ?k)/ll}k I)K - 0. Then, by (4.1a) and (4.2), we have {(jk + qi})/1z}K -- 0 for all

j E J, so that each j-th term in the last sum of (4.4) is strictly less than (z.) 2 for all k E K sufficiently

large. Since J is nonempty, this together with (4.4) yields that, for all k E K sufficiently large,

l(Xk)- 1(k " - Ak)ll2 < II(Xk)-lZkII2

so that (also using CTzk < 0 and the observation that wk is the unique positive multiple of zk whose L2 -norm

after pre-multiplication by (Xk)- l is x/d) ()< = cwk. Since cT(zk Ak) =

cTzk, this implies that the vector (zk - Ak) Ni(xn)_~_ ,)l has a cost strictly lower than that of wk. Also,

since A(zk - Ak) = O, this same vector can be seen to be a feasible solution of (2.1), contradicting the fact

that wk is the optimal solution of (2.1). Q.E.D.

----- ^-- ---- ~-- ~ ----s ~ - --- ~I - sl-11



5. Convergence to Near Optimality and Ergodic Convergence of the Dual Iterates

From Section 4 we have that {k}) converges at least linearly to some limit point, which is clearly a

feasible solution of (P). Hence, it only remains to show that this limit point is an optimal (or approximately

optimal) solution of (P). This, however, turns out to be a very difficult task because the trajectory of the

dual vectors pk near the relative boundary of the feasible set is quite unpredictable. We will resolve this

difficulty by taking a long term weighted average of the dual vectors. By choosing the weights appropriately,

we show that the sequence of 'average" dual vectors is bounded and, in the limit, satisfies approximate

complementary slackness with the primal limit point. This analysis, however, only works for the stepsize

(2.3) (as well as the modified version of the stepsize (2.5) discussed in Section 2, which will not be treated

here) and it remains open whether it can be extended to other stepsizes.

First, we give a characterization of approximate complementary slackness. For any e > 0, any x that

is feasible for (P) (i.e. z satisfies Ax = b and x 2 0) and any rn-vector p, we will say that x and p satisfy

c-complementary slackness (e-CS for short) [TsB87a] if, for all j E {1,...,n),

Xji= 0 -cj -ATp >-e, CS)
xj>O > e > c -A3Tp >-e, - CS)

where Aj denotes the j-th column of A. From Proposition 8 in [TsB87b] we have the following lemma

regarding primal dual pairs satisfying e-CS:

Lemma 3. Any x that is feasible for (P) and satisfies e-CS with some p is within O(E) in cost of the optimal

cost, where the constant in the big O notation depends on the problem data only.

Moreover, it can be seen that any x satisfying the hypothesis of Lemma 3 is an optimal solution of a

perturbed problem whereby every cost component is perturbed by at most e. Since we are dealing with

linear programs, it is easily seen that if e is sufficiently small, then every optimal solution of the perturbed

problem is also an optimal solution of the original problem (P) (see discussions in [TsB87a, Section 5]).

Although the size of e for which this holds is in general very small, for certain special classes of problems it

can be taken to be quite large. For example, for linear cost network flow problems with integer data, it has

been shown that e < 1/m suffices (see [BeE88], [BeT89; Chap. 51).

The following lemma follows as an immediate consequence of our construction of the descent directions

wk.

Lemma 4. If (k} ) is a sequence of iterates generated by (2.1)-(2.2) with stepsizes given by either (2.3) or

(2.4) or (2.5), then {Xkr,) -, 0.

Proof: By using (2.2), (2.6)-(2.8) and the idempotent property of the orthogonal projection operator I -

XkAT(A(Xk) 2 AT)-IAXk, it can be seen that cTxk - cTxk+l = Ak'ii]Xkrk]I 2 for all k. Since {cTxk}
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converges so that {cTxk - cTz
k
+l

)
-. 0 and (cf. Lemma 2) Ak is bounded from below for all k, this proves

the claim. Q.E.D.

Below is our main result:

Theorem 3. If {x k ) is a sequence of iterates generated by (2.1)-(2.2) with the stepsizes given by (2.3), then

{(k} converges to a limit point which satisfies O(B/(1- ,))-CS with some rn-vector p.

Proof: For each k denote

irk = P/IIxkrkI + ... + p°/Xr (5.1)
/llXkrkll + ...-+ 1/lIx°r°ll

(so that nCr is a linear convex combination of pk ,..., p0). We will show that zk+l and irk satisfy 0(1/(1 - ,))

-CS as k -* oo.

Fix any j E {1,...,n). From (2.2), (2.3) and (2.6) we have xk+1 = xk - p(Xk) 2rk/lIXkrkIl for all k, so

that

xk+' = x - 6(xjk)rjk/11X rk II

= Xk(l _ P- xrik/llXkrk lI) (5.2)

= Tjk(1 + # 6jk),

where we denote

6k = -ri/1IXkrkl-. (5.3)

Thus, xk+1/xk - 1 = lpzi6k so that if we let

s' IC zk-- k-1 0 x 0
k 3 3 3 32 2 + 6j

we obtain that

6(k z_-1 6+ k-1 6J10

+ - +- ... + ]
3 3 3

1 k+l 1 kji

Xk+ X3 3 3 3 3 (5.4)

· x i 3 3i 3
i1 1

3 k+1

We bound Oa as follows: From (5.2) we have that, for every k,
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(1 + ) > Xjk+l > xjk if 6k > 0,
(1-)zxjk Xk+ < Xj if 6 < 0,

so that

L • < < •67 if 6jk >0,

< _1_6 <f < i <o.

Since 1/(1 + 8) 1 -, /(1 + i) and 1/(1 - ) = 1 + B/(1 -1), this implies that

6'+>0 61<0

Hence (also using the fact 1/(1 + 1) < 1/(1 - 1)),

< 67 +... + o < + k (I6kIl ++I l)

Dividing all sides by 1/IIXkrkll + ... + 1/[jX°r°[I and using (5.3) gives

____________<_ _ ri~/llXkrkll + ... + rO/llXO Orll

1/llXkrkI + ... + 1/lX°rOll 1/IIXkrkll + ... + 1/llX°r°ll
___ 13 IrIk./1IXkrkll + .+ lIjol/lX°r°ll

- lll1Xkrl11 + ... + 1/1X°rOll + 1 - 1 1/lXrkl + ... + 1//X°,r°1
(5.5)

Since the sequence {pk} [Cf. (2.8)1 is bounded by the following lemma given in [VaL88I:

Lemma 5. For any n-vector y, the function w7(x) = (A(X) 2 AT)-1A(X) 2
7 , where X denotes the n x n

diagonal matrix whose j-th diagonal entry is xj, is bounded. Moreover, the bound depends on A and -1 only.

then so is the sequence {rk} [cf. (2.7)]. Since the middle quantity in (5.5) is exactly ATjrk - ci [cf. (2.7)

and (5.1)] and the far right quantity in (5.5) is simply B/(1 - B) multiplied by a linear convex combination

of Irk [,..., jr°l, everyone of which according to the Lemma 5 is bounded by some scalar M depending on A

and c only, it follows that

/X o< Aark -n c < llkl+ + +lXM. (5.6)
1/[XIIrkII + ... + 1/Ixoroll - - 1/IIXkrkl + ... + 1/ XOrOll + 1 -

Let zx° be the limit point of {xk} (so that zoo is feasible for (P)), which exists by Theorem 2. Consider

any j E {1,...,n}. Suppose that z? = 0. Then, {xk+1 } - 0 so that, by (5.4), {Ok} -+ -oo. This together

with (5.6) implies

14



limsup{AYr k- ¢c) < f M.
k--,o - 1-/

Now, suppose that z? > 0. Then, since {x(r,'} -. 0 (cf. Lemma 4) and {xk} - x'OO, we have {(r} - 0,

which together with the fact that {1/lIXkrkll} is bounded away from zero (cf. Lemma 4) implies that

rI/lllxkrkII + ... + rO/llxOrOll .

{1/[Xkrkll + ... + 1/IIXOrO l

Since the quantity on the left hand side of the above expression is exactly cj - AT7rk [cf. (2.7) and (5.1)], it

follows that {c; - A'jTr} -O 0. Now, since our choice of j was arbitrary, the above holds for all j E {1, ..., n},

so that any limit point of {Ir k } (which exists by Lemma 5) satisfies 1-,M-CS with x °°. Q.E.D.

We remark that, by a more careful analysis, we can improve the bound for the j-th coordinate from

1 M to l- -Mwj where w1 , ... , ware positive scalars such that w1 +... +o, < maxlls 11= 1 W. Also, from

the proof of Theorem 1 we see that every limit point of the sequence of dual vectors (Irk} is an O(/(1- /i))-

optimal dual solution of (P). Unfortunately, there does not seem to be any practical way to evaluate the

T7r
k
'S.

By Theorem 3 and the properties of the e-CS mechanism (cf. Lemma 3), for 8 sufficiently small, the

iterates xk converge to an optimal solution of (P).
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6. Estimating the Stepsize for Achieving Optimality

We had shown in Section 5 that, provided that the stepsize 8 is sufficiently small, the iterates zk

generated by (2.1)-(2.3) are guaranteed to converge to an optimal solution of (P). Hence, it is of interest

to estimate the size of / for which this holds. Below we consider a special case of (P), namely, the single

commodity network flow problem (i.e. A is the node-arc incidence matrix for a directed graph) [FoF62],

[BeT89], [PaS82], [Roc84], and show that, for this problem, PB need not be smaller than 1
6mlcULo,'

Theorem 4. Suppose that (P) is a single commodity network flow problem and the components of c and b

are all integers. Then, for any Bf < ; and any sequence of iterates {( k ) generated by (2.1)-(2.3), there

holds {xk} converges at least linearly to an optimal solution of (P).

Proof: First we bound {pk}. Fix any n-vector z > 0. Following [VaL88], we use Cramer's rule and the

Cauchy-Binet theorem to write the i-th component of the corresponding dual vector

p = (A((X) 2AT)-A 2(X)c as

Si_<<... <j,,,n(<, l "xjm) 2 detil, ..... (a, ..., a)detil...,j (al,...,ai-1, c,ai+,..., am)

"i_ Yl<ji<...<<j<n(Zi *'** xim) 2[dety ..i...., (al, ... , am)] 2
X

where dety,. .m (c,(a ....,am) denotes the determinant of the m x m matrix obtained by selecting columns

jl,..., j, from the mxn matrix whose rows are the n-vectors al,..., am and where ai denotes the i-th row of A.

By the total unimodularity property of node-arc incidence matrices, we have that each detj, jm (a, ... , am)

is either 0 or 1 or -1 (see for example [PaS821). Hence,

Ip Il < Ei<ji<...<jm<n(xij" .. xj)2ldet6 i,. .m(a,...ais1cai+,...am)l
I1 <_ l... <<_m<n_, ( ''' i jm)2

where the summation in both the numerator and the denominator are taken over only those indices j for

which detj,,...mi, (al,..., am) is nonzero. Then, the right hand side of the above expression is simply a linear

convex combination of the Ideti, ..... i(a, ..., ai-l, c, a+l,..., am)l's, which in turn is upper bounded by the

maximum of the Ideti.ym,,(al,...,a.i-, c,a+l,...a,m)['s. Now, by Cramer's rule,

det,. (a....(a,, ai...1, c, ai+-l, ..., ,am) = ( 1)-+1cjdet .jL, i,-I,,J+ I...m (al, .. , ai-1, ai+l, ..., a),
1=1

and, by the total unimodularity property of A, each determinant inside the above sum is either 0 or 1 or

-1. Thus,

Idetj ..... i.(al,..., i-,c,ai+,..., am)I < E cijI,
/=1
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so that each component of p is at most tIIcll in magnitude. Then, by using the fact that each column of a

node-arc incidence matrix contains at most two nonzero entries and each nonzero entry is either a 1 or a -1,

we obtain that each component of ATp is at most 211c111 in magnitude. This together with (2.8) and (2.7)

implies [rfl < Icjl + 211cl1i for all k and all j E {1,..,n}, so that the quantity M in the proof of Theorem 3

can be bounded by 311c1[ and any limit point of {lr} given by (5.1), say roo, satisfies 31_-Ic-- CS with the

limit point of {xk}, say x°
° (which exists by Theorem 2). Since all problem data are integer, the results

given in [BeE88], [BeT89, Chap. 5] can be applied to conclude that, for 3,___l < 1/m, x ° ° is an optimal

solution of (P). By Theorem 2, {xk} converges at least linearly to zoo. Q.E.D.

For general constraint matrices A (not necessarily a node-arc incidence matrix), we have by a similar

argument as above that

Piw| < max detjl,...,j (al, ..., ai-l, c, ai+l, ..., am)
l<l< ...<jm<n detjl,....im (al, ..., am)

where the maximum is taken over only those indices j for which the denominator is nonzero. This bound

can be used to estimate the size of 8i for which exact optimality is achieved in a manner analogous to that

described above for the network flow case. However, unless the matrix A has a certain special property such

as total unimodularity, the resulting estimate would likely be very small.
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7. Extensions

Consider the following dual of (P)

Minimize - bTp
(D)

subject to c - ATp > 0.

Instead of Assumption A, we assume that (D) has a finite optimal value and the set {plc > ATp} is nonempty.

The following affine-scaling algorithm, sometimes called the dual affine-scaling algorithm, has been proposed

to solve (D) (see for example [AKRV891, [Tsu89]): Given an rn-vector pk satisfying c > ATpk, compute

k+ = + (A(Sk)- 2AAT)-lb (7.1)
k+ = bT(A(Sk)-2AT)- lb

where Sk denotes the n x n diagonal matrix whose j-th diagonal entry is the j-th coordinate of sk = c-ATpk.

We claim that we can conclude from the results derived in previous sections (cf. Theorems 1 to 4) that

{pk} converges at least linearly. To see this, let x be any feasible solution of (P) (which exists by linear

programming duality), so that AS = b. Then, by plugging this into (D) and substituting in the slack n-vector

z = c - ATp, we can tranform (D) into the form

Minimize xT x

subject to x = c - ATp for some p, (D')

X > 0.

The problem (D') is clearly of the same form as (P) (i.e., minimizing a linear function subject to linear

equality and non-negativity constraints). Suppose that we apply (2.1)-(2.2), with stepsize given by (2.4), to

(D'). Then, we obtain the iteration

k+1 = k t (7.2)
X +: X + II(Xk)_1w112 ' (7.2)

where wk is the optimal solution of the subproblem

Minimize tTw

subject to w = -ATy for some y, (7.3)
II(xJe)-~11W <,

with Xk being the n x n diagonal matrix whose j-th diagonal entry is xi . By writing down the Kuhn-

Tucker optimality conditions for the above subproblem and using the identity As = b, we find that wk =

-AT(A(Xk)- 2 A T)-lb and II(Xk)-lWkhl 2 = /bT(A(Xk)-2AZT)-lb, so that the iteration (7.2)-(7.3) can be

written equivalently as

k = _ _ AT(A(X) 2 AT) -lb
A\bT(A(Xk)-2AT)-lb
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On the other hand, by multiplying both sides of (7.1) by -AT and then adding c to them, we obtain the

following updating equation for sk:

k+= k _ AT(A(Sk)- 2 AT)-lb

VbT(A(Sk)2AT)--b'

which is clearly of the same form as the updating equation for xk given above. Hence, Theorem 2 can be

applied to conclude that the sequence {sk } converges at least linearly. Since A has full row rank so that pk

is uniquely determined by sk , this implies that {pk) converges at least linearly. [We remark that analogous

results hold for the iterations based on the other stepsize choices (2.3) and (2.5).]

Some, but not all, of our results extend to problems with upper bounds. Suppose that upper bound

constraints of the form x < u are added to the constraints of (P), where u is a non-negative n-vector some

of whose components may have the extended value oo. To solve this problem, we modify the subproblem

(2.1) by replacing the n x n diagonal matrix Xk inside the ellipsoid constraint by the n x n diagonal matrix

whose j-th diagonal entry is

IC if _ k< o u i ;

U -j Z otherwise,

where each aj is a fixed scalar in (0, 1). By modifying the stepsize choices (2.3)-(2.5) accordingly so that

the iterates remain inside the relative interior of the feasible set, it can be shown that Theorems 1 and 2 as

well as Corollary 1 hold for the resulting algorithm.

An open question is the convergence of the iterates to exact optimality without assuming that the

stepsize ratio B is sufficiently small. Worst case complexity is another direction for future research.
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