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Abstract

The coor(linate descent method enjoys a long history in convex differentiable minimnization. It is silmplle,

has a good rate of convergence, and, in certain cases, is well suited for pa.ra.llel computation. Thus, it is

somewhat surprising thllat very little is knownl about the convergenlce of the iterates generated by this method.

Convergence tyl)ica.lly require restrictive assumptions such as that the cost. function has boullnded level sets

and is in sonle sense strictly convex. In a. recent work, Luo and Tseng showed lllhat the iterates are convergent

for the symmetric linear con'iplen-len tarity problem, for wllicll the cost function is convex (luad.cratic bu1. not.

necessarily strictly convex a.lnd does not necessarily Ia.ve bounded level sets. In this paper we extenld their

results to problems for which the cost function is the compllosition of an affine mapping with a. strictly convex

finction which is twice differentiable in its effective donla.in. As a. consequence of this result, we olta.in, for

the first. time, that, thle (dual) iterates genlerated by a numlllber of existing methods for mat.lrix I.balallcing and

entropy optimiza.tion are convergent.
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1. Introductionl

A very illportant problelll in optillization is that of minimllizing a. conlvex function of tile Legendre

tylpe (i.e., a. funlction tllhat is strictly convex differentiable on an open convex set and whose gra.dient tends

to infinity ill norm at the boundary points), subject to linear collstraints. As an exanmple, when tile cost

function is quadratic, this probllelm has applica.tions in linea.r prograunling [Ma.n84], [Ma.D88], ila.ge re-

construction [lleL78], and thie solution of bounda.ry value problells [CoC78], [CGS78], [DeT84]. When the

cost. function is the "x log(x)" entropy function, this pro)leln has applications in information theory [Ari72],

[Bla.72], mlatrix balancing [Kru37], [LaS81.], imlage reconstruction [Cen88], [Len77], [Pow88], speech process-

inig [Fri75], [Ja.y82], [JoS84], almd statistica.l inference [Da.Rt72]. As a. final example, when the cost functioll is

the "- log(x)" entropy function, this probleml reduces to the analytic centering prolblel which plays a. key

role in mlany new a.lgorithms for linear progra.mming [Fre88], [Kar84], [tIua6T], [Son88].

A. popular alpproacll to solving the above prol)leml is to dualize the linea.r constraints to obtain a. clual

probleml of the form

Minimize g(ETx) + (b, x)
(1.1.)

subject to x > 0,

where y is a. strictly convex essentia.lly smlootll function, E is a. ma.trix and b is a. vector (see Section 5); and

thell use a coordina.te descelnt mlethod to solve this prol)lemll whereby, at each iterat;ion, one of the coordinla.tes

of x is adjusted in order to mlinimllize the cost funlction (while the other coordinates a.re hell fixed). Such a.

method is simple, uses little storage, and, in certain cases, is highly parallelizable. Methods that follow this

applroaclh include a. method of liildreth [llil57] (also see [CoG78], [C(oP 82], [Cry7l], [1tenl78], [AMa.n84]) for

qlua.dlatic programmilnlg, a method of Kruitlhof [Kru37] (also see [Ba.K79], [BreG7], [LaS81], [ScZ87], [Ze188]

and references cited in [La.S81]) for matrix balancing, as well as a nulnber of related methods for entropy

olptillliza.tion [CeL87], [Fri88; p. 236], [Lenm77].

Al outstanding question concerns the convergence of the itera.tes gellera.te(l by thle above coordlilna.te

descenlt schemle. Typically, convergence requires tile cost funllction to have bounded level sets and to be strict;ly

convex ill some sense (see for exalnple [Aus7G], [BeT89; Chap. 3.3.5], [D'Es59], [Glo184], [Lue73], [Pol71],

[P)ow73], [SaS73], [Zai69]), neither of which, unfortulnately, holds for the cost function of (1.1) (e.g. when E

lhas redundant rows'). For (1.1), it wa.s knlown, under nmild restrictions on the order of coordinate rela.xa.ltion,

thaat tlle gradient of the cost function, evaluated at, the iterates, converge [Tse88], [Tse89], [TlsB87l.] (also

see [.BreG6a], [Bre67b], [C('eL87], [1lil57], [Pa.n84]), but it was not known if the iterates thelmselves converge

or if they are even boucnded. The only nontrivia.l special cases for which the iterates are known to converge,

without assuming uliql.leness of the oltilnal solution, are (i) when g is sepa~ra.ble and E is the node-a.rc

incidence mla.trix for a digraph [BHT87], and (ii) when g is a strictly convex qua.dra.tic function [LuT89].
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IlI this paper, we give the first result on the convergence of tile iterates generated by the above coordina.te

descent schemel (for solving (1)). In particular, we show that tile iterates converge to aln optimlal solution of

(1.1), provided tha.t g has a positive definite IIessian and tends to infinity at the boundary of its effective

domain, and tha.t the coordinates are relaxed in a cyclic ma.nner. This result is rather remarkable since

tlhe optila.l solution set may be unbounded and the function g nla.y have a very complicated forln. As a.

corollary, we esta.llish, for the first tine, the convergence of the dual iterates generated by a. inet.lod of

Klruithllof [Kru.37] and ly nmaly other methllods (see Section 5). Our results are, to a. certain degree, based

on thllose given in [llT89] for the quadratic cost case. In particular, we prove our results by approxilmating

the cost functlion by its quadratic expansion a.t an optilmnlal solution and then applying the proof techllnique in

[Lul89] to the approximate problem. Ilowever, the extension is by no means simple, as it requires making

an accurate estimlate of the approximation error (see the proof of Lemma 9), as well as other new proof

techniques.
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2. Algorithm Descriptiol and a Conlvergenlce Result

Consider the following prolblem [comlpare with (1.1)]

Minimize f(x)
(P)

subject to I < x < c,

where f : " --+ (-oo, co] is a convex function of the form

f(:) = y(ETX) + (b,x), (2.1)

b, l and c are n-vectors with 1 (c) possibly having comllonents of the extended va.lue -oc (,x,), E is an n. x i.

ma.trix having no zero row, and g: 1'" - (-oc, oc] is some given convex fuilction. Ill our notation, all

vectors are column vectors, J" denotes the n-dimensional Euclidean space, (., *) denotes the usual Euclicean

inner lrocluct, a.nrd superscrilt T denotes translpose.

For ally vector x, we will denlote by xi the i-th coordinate of x anld by [x]+ the orthogonal projection

of x onto the feasible set

' = { x I I < :. < c } = [Il,cl] X . - X [l,,,c,.],

i.e., [x]+ is the nl-vector whose i-tb coordinate is [i]t+, where we let [xi]+ = ma.x{li,nint,,{ci,x}}. For any

function h : Rk -- (-oo, oc] we will denote by dom(h) the effective domain of h, i.e. dlom(h) = {.rlh(x) < Oc}

a.nd by C)'; the interior of domlll().

We -lake the following standing assumlltions about g and (P):

Assumption A.

(a) CI' # 0, g is strictly convex twice continuously differentiable on C7, and g(t) oo as t approaches alny

lolounldary point of C-g.

(b) 'JThe set of optimal solutions for (P), denoted by .l* (i.e. .'* = {x* E .lif(x*) < c, f(.x*) < f(x) Vx E

.l'}), is nonempty.

Part (b) of Assumption A is clearly necessary. Part (a) of Assumption A implies tha.t (Ca, g) is, in the

t.erlinllology of J:tockafi-llar [Roc0O], a. convex function of the Legendre type. Such a. function has a. nulbllller

of nice properties (for example, its conjugate function is atlso a convex function of the Legendre type). Notice

tha.t t.he strict convexity of g implies tlla.t the function x.r ETX is invariant over V,*, i.e., there exists a.

t* E '"'7 such that

-- __~~~~~~~~~~~~_z



ETx* = t* Vx:* E ,¥*. (2.2)

rTo see this, note that, for a.lly x* E .¥* a.nd y* E .1'*, we ha.ve by the convexity of X.* that x+Y E . *. Theu,

f(x*) = f(y*) = .f("Y ), so that (using (2.1)) y( ETX*t+ET* ) = g(ETSince *h (TyT) and

g(ETy*) are finite, so tha.t ETx* G Cg and ETy* G Cg, this together with the strict convexity of g on Cy

yiclds ETx* = ETy*.

Notice that since g is differentiable on C'g, then so is f on Cf'. In what follows, we will denote by d(x)

the gradient of f at an x E COf a"nd by di(x) the i-tll coordina.te of d(x). Then, by (2.1) a.lnd the c.la.in rule

for differelltia.t ion, we have

d(x) = Vf(x) = EVg(E Tx) + b. (2.3)

From the Kuhn-Tucker conditions for (P) it. is easily seen tha.t all ;x belongs to .l'* if and only if the orthogonal

projection of x - d(x) onto the feasible set .' is x itself, i.e.

;Z = [x - d(;x)] +. (2.4)

Considelr th-le following coordina.te descent method for solving (P), whereby given an n-vector xr E .l

at the r-th iteration (7r = 0 1, ... and x° is given), a. new n-vector x r+l E .1' is generated according to the

iteration:

Cyclic Coordinate Descent Iteration

For i = 1, 2, ..., n, compute x' + 1 as a. solution of

, = [Ix1 (x, ,1.,x + "", .)]1+. (2.5)

The above itera.tion can be seen to be a. Ca.uss-Seidel iteration whereby the cost function f is successively

mininized with respect to the coordina.te xri over [li, ci] (with the other coordinates held fixed) for i =

1., 2 ... 71, tllat is,

+ 1 = arg mIill f(X +1 , ... 1 ri (2.(6)
li_<x, <C,

(lenera.l cliscussiolls of Gauss-Seidel iterations can be found in, for exa.Iple, [Aus76], [BeT89], [Lue73],

[OrRl7].
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We cla.im thlla.t (2.6) [or, equiva.lently, (2.5)] is well--defined. To see this, suppose the contrary, so that,

for somle 'r anld i, tile minimum in (2.6) is not attained. Let ; = (x;l+l, ..- +l ,,..., ,,. )T and let ei denote

the i-th coordlillnate vector in hi". Then, either (i) ki = -oc and f(;t - Ae) is monotonically decreasing with

increasing A or (ii) ci = oo and f(;r + Ae:) is monotonically decreasing with increasing A. Suppose that case

(i) holcs. [C'ase (ii) may be treated amllalogously.] Then, since tile set. {IETX I < .r < cf(;,) < f(;E)} is

b:ounded by Lemlima, A.1 in Appendix A, there holds ETei = 0, a. contradiction of the assumption thal E

contains no zero row.

In order to prove the convergence of the iterates Z' generated by (2.5), we make tile following standing

assuml.ltion (in addition to Assumlption A):

Assumrption B. V2g(t * ) is positive definite.

Assumption B sta.tes that g has a positive curvature locally around the optimal solution point t*. This

con(lition is guaranteed to hlold if g ha.s a. positive curvature everywhere on Cy. [There are many inlportant

fuilctions thlla.t satisfy this latter condition (in addition to Assumlption A (a)), the most not-able of which a.re

thlle qua.dratic function, the exponential function, and the negative of the logaritlllln function. X e will (liscuss

these example functions in detail in Section 5.] Notice that if g is strongly convex and twice differentiable

everywhere, then g automlatically satisfies both Assumption A (a) and Assumption B.

Thle ma.in result. of this paper is the following:

Tlheoremll 1. If {;r}) is a sequence of iterates generated by (2.5), then {x"'} converges to an element of .V*.

Tile proof of Theoremi I is quite intricate and will be given by a sequence of lenmlas which we preselt, in the

following two sections.

I'le remaindller of this paper proceeds as follows: Ill Section 3 we prove some prelimina.ry convergence

results for thle iteration (2.5). In Section 4, we used these results to prove Theorem 1. In Section 5, we

consider dual applications of Theorem 1. In Section 6 we discuss possible extensions of our work.

Int wha.t follows, 11 ' I1 anld 11 I'I, will denote, resplectively, the L2-norm a.nd tIe L,-norni in sonle

Euclideall space (i.e., Ixjll = v ,x) anld IXItll, = mlla.xi li:il). If A is a. square matrix, IIA11 will denlote thle

matrix norm of A inlduced by the vector norm II 11, i.e., IIAII = mnaxl 1,,ll=l IIAxll. For any k x ,i. ma.trix A,

we will denote by Ai the i-tlh row of A and, for any nonenlpty I C {1, ..., k} anld J C {1, ..., 77}, by Ar the

subllnatrix of A obtained by removing all rows i 4 I of A,, and by AIJ tile subma-trix of Al obtained by

removing a.ll columlls j V J of AI. iVe will also denote by Spa.n(A) the spa.ce spanned by t.lle columllls of A.

Alnalogously, for ally k-vector x and ally nlonemlpty subset J C I1,..., k}, we denote by xj the vector with

conhponllnots zi, i E J (with the xri's arranged in the same order as in x). Fina.lly, for a.lly J C {I,..., }, we

denote by J the compllement of J with respect to {I ... , n}.



3. Techlical Preliminaries

Ill this section we prove a. nulmber of useful facts about the optilmal solution set and thle iterates x'

generated by tile cyclic coordinate descent, iteration (2.5). These properties, some of which are interesting

in themselves, will be used inl Section 4 to prove Thlleorenl 1.

First, since ET;c* = t* for all x* E ,'* [cf. (2.2)], we have that d(x) is itself invariant over .'*. In

particular, we have fronm (2.3) that

d(;v*) = d*, V;r* E 1*, (3.1)

where we let,

d* = EVg(t*) + b. (3.2)

Also let

z* = {ildit = 01.

Since V2 ,g(t*) is positive definite [cf. Assumption B], it follows fronl the continuity property of V2g [cf.

Assumption A (a)] that V2g is positive definite in some open neighborhood of t*. This in turn implies that

g is strongly convex near t*, i.e. there exist a positive scalar ao > 0 and al open set U* containing t* such

that

g(z) - g(y) - (Vg(y),z - y) > crllz - y11 2, Vz E I*, Vy E I1*. (3.3)

13y inlterchanging the role of y with that of z in (3.3) and adding the resultinlg relation to (3.3), we also

o0btain

(Vg(z) - Vy(y), z - y) l 2uIjz -_Y1 2, Vz E U*, Vy E . (3.4)

Next, we have the following lemma. on tlhe Lipsc.hitz continuity of the solution of a. linear systeml a.s a

ftunction of the right. hand side [11of52] (also see [R{ob.3], [MlaSS7]):

Lelllna 1. I,et B be any k x n. matrix. Then, there exists a constantt 0 > 0 depending on B only such that,

for any i E , and ally k-vector d such thatl the linear systenl By = d, y E X. is consistent., there is a. point

,y satisfying By = d, y E .', with

II - ll _< I B1;T - dI1.
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Lemmai I will be used extensively in the proof of Lemmas 2 anld 6 to follow.

Let {x"} be a. sequence of iterates generated by (2.5). Also let

x,,i = (,r+1 ,:+l ̀ .1 .,.
*,7,j , x i+, It, (3.5)

for all r and all i E {O, 1,..., n1. Notice that X"I'" = x'" +1 and x"' 0 = x"*. In the remainder of this section, we

will prove various convergence properties of {xl'} and {x"' i }.

First, by using Lelmma 1, we have the following result on the convergence of {ETx.1i}.

Lelila 2. For every i E {0, 1, ..., 7}, there holds

{ET'x ri) t*.

The proof of Lenlnla. 2, which is quite technical, is given in Appenldix A. The proof is a. shortened version of

one given in [Tse89], specialized to the iteration (2.5) (cf. proof of Proposition I in [Tse8'9]).

As a. corolla.ry of Lemnma 2, we obtain [cf. (2.3), (3.2) and the continuity of Vy a.t t*]

{J(x",')} -+ *, Vi. (3.6)

Notice tha.t Lenmma. 2 shows that if E has full row ran.lk so tha.t tihe optinla.l solution of (P) is tnilque, then

{x1r i } converges to this optiimal solution for all i. lHowever, for most pra.ctical problems, the ma.trix E does

not. have full row rank, in which case, as we shall see, proving convergence is much nlore difficult.

In addition to Lenlma 2, we have the following result that states that {x"r _-x "+ 1- 0 "sulficienltly

fast."

Lemlllla 3. T-_ 0 IIl;x - ;X'+'1 12 < 00.

Proof: First we show thallt

f(x') - f(X'" + l ) > cr lmin{lIEjj 112 1 j"- x"t+1112 , (3.7)

for all r sufficiently large. By Lemmla 2 we have {ETX', i j -- t* for all i, so tha.t for all r sutfficiently large

there holds [cf. (3.3)] E7 ,x"'i E Wl* for all i. Collsider any such r. For every i E {1,..., 7}, silce x "' i is

obtainecl from x;'ui- 1 by minimizing f along the i--th coordina.te [cf. (2.6)], there holcls

.(d(x"'i), ; -,
",il_ ) 

- 1) < 0.
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IIence, bly using (2.1) and (2.3), we have

f( x "' i- 1 ) -. f(xt'i) > Jf(r ',i- 1) - f(xr'i) + (d(x,'i), x ri - x','i-1)

= g(EITx'"i- 1) - g(ET;,i) _- (Vg(ET;xr,i), ET(xr i- 1 _ I-,i))

> a|lIET(,',i- _1 - x,'i)II2

= ,Elsoil'II2 IX - ,,,,+'12

> J ,,inJ{i11Ij 112) Ix; - xt+' 1 2,

where the secondl inequality follows from ETTX ' i E I*, ETx "7'i- 1 E U* and (3.3); the last. elua.lity follows

from lthe obselrvatioIl thiat ri and x ' -l differ only in their i-th coordinate and this difference is exactly

x!+ L - r. Summing the above inequality over all i E {1, ...n} yields (3.7).

By summing (3.7) over all r and using the factl tllhat {f( x)} is bounded from below [cf. Assumption A

(b)], we obtain oo > a minj {[lEjll2 } ,.=0 lix t ' - x"'+1li. Q.E.D.

Lenlllla. 3 combined with Lemlnla. 2 yield the followinlg result:

Leallllll 4. The following hold:

(a.) {x";+ - x"'} I 0.

(b) 'or a.ll r sufficiently large, there holds 4i" = li for all i with di > 0 and 4i = ci for all i with di* < 0.

(b) {. -[..v--d(x,')]+} --+ 0.

Proof: i'art (a.) follows from Lellmma 3. To see part (b), nlote from (3.6) tha.t if d* > 0, then for all r

sufficienltly large t.llere holds di(x ",'i) > 0, which together wit.ll the fa.ct (x+ l = [x '+1 - di(xv'i)]+ [cf. (2.5),

(3.5)] yields xi+l1 = li > -oo. A symmletric argument shows that if d* < 0, then x'+1 = ci < ,x, for all 7'

sufficienfly large. To see pla.rt (c), we note from pa.rt (b) and the fa.ct {d(x"')} - d* tUha.t if d* > 0, t.hen, for

all r' sulficiently large, there holds di(x") > 0 and 4 = i, so that [ - di('x")]t+ =- Ii = . A symmetric

argument proves the same relatioll for the case when dn* < O. If d* = O, then I{di(x;")} -- 0 and we obltain

Ix}' - [r' - di(x")]t+l < di(x" )l -- 0, where the inequality follows from the nonexpansive property of the

projectionl operator [-]+. Q.E.D.

For each x E Jt'", let 4(;x) denote tile distance from x tlo ,V*, i.e.

40(,') = m.li .j; - X*.

Th'e next lemnmla, which shows tha.t {x"' a.lapproa.ches .¥*, follows as a. consequence of Lemmnlas 2 and 4 (1.).

Leniimmia 5. {4( x" )} - 0.

Proof: By Lemmla. 4 (1)), for a.ll 7 sufficiently large, x" satisfies

a



4 i= li if d* > 0, 4 = ci if d* < o0, x"' X'.

Frolll (2.2), (2.4), (3.1) and (3.2) we also hlave tllat ,l'* is tlle solution set of tihe nonlinear systenl ETx- =

t*,x = [l - d*]+ or, equivalenltly, the solution set, of the linlear system

ET t*, xi = li if d >0, xi = ci ifd* < 0, xE '. (3.8)

By applying Lenllna. I to tihe above linear system and x", we obtain that there exists, for each r sufficiently

large, a. y" .l'* satisfying

IIx" - yrll < OelET X' - t*11,

where 0 is some constant that depends on E onlly. Since y' E X'*, this in turn implies 0(x"') < 0l ETxr- - -t*ll.

Our claim then follows from Lemmla 2. Q.E.D.

rnllcmma 5 shows that the iterates xr approacll tChe sollution set .l'*. [This however (-loes not imply that.

{x-") converges or is even bounded since .l* may be unboullded.] The following result, based onl tie local

strong convexity property of g [cf. (3.3)], shows that thle distance from x" to X* is upper bounded by some

coinstant tilmes II1 'a +1 - x"' . 'This is a. crucial sttep which enables us to bound tile error in approximlating y

by its quadratic expa.lsion aroullnd t* in Sectionl 4.

Lellma 6. There exists a constant w > 0 such tCha.t IIETx _ t* -ll •< W . +l -- xl for all r.

The proof of Lemmlla 6, which is quite tecllllical, is given in Appendix B.
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4. Conlvergenlce Analysis

in this section we use the results developed ill Section 3 to prove Theorem 1, i.e., the iterates x" generated

by (2.5) converge to an optimla.l solution of (P). Tile proof is based on taking a. quadratic approximation

of g a. t* and then applyilg the proof technique developed ill [LuT89] for tle (quadratic cost case to thllis

a.plproximla.te plrotlell. We show that the error in taking the quadratic approxima.tion is snlall enough so

that it does not affect tlhe convergence of the iterates.

Let Al dlenote the Hessian of f evaluated at any x* E ,X*. By (2.1) and (2.2), we see that

Al = = V 2f(;*)= EV 2 y(t*)E T , (4.1)

so that Al is inldependent of x.*. We will denote by mij the (i, j)-tlh entry of Al. Notice that since Al is the

Hessian of a. convex function, Al is symlnetric positive semni-definite. Moreover, since E has no zero row and

V 2 g(t*) is positive definite (cf. Assumption B), there holds mnii > 0 for all i.

By exluloitillg the symmetric positive semli-definite property of Al, we have the following lemn-ia. based

onl elnllma. 5 in [Lr'T89]:

Lellllnla 7. For ally J C I*, there holds Spaln(AIJj) C Spa.n(AlIJJ).

Proof: For ea.ch i g J, consider tile convex quadratic progranl

Minimize (x, AIx)

subject to xi = 1, aj = O Vj V J with j f i.

This probllel is clearly feasible and, since Al is piositive semi-definite, its opt.ina.l va.lue is finite. The. n, since

we are dealing with a. convex quadratic program, we have that the Kuhnll-Tucker conditions hold, from which

we find AiJi E Span(Aljj). Since the choice of i V J was arbitrary, this implies Span(MIJj) C Span(MlJJ).

Q.E.D.

Let B deliote tile lower triangular portion of Al (i.e., the (i,j)-tl. entry of B is Itlij if i > j alld is 0

otllerwise) and let C = Al - B (so that C is thle strictly utpper triangular portion of Al). We claim tllat

B - C is positive definite. ['ro see this, note that. since A1 is synmletric, we have B = D + CfT, where D is

the 7i x n, diagonal matrix whose i-th diagonal entry is muii > 0, so t.ha.t (x, (B - C)x) = (x, Dx) > 0 for all

x O0.] Then, since (B, C) is a. splittinmg of Al (see [OrR70O]), i.e.,

Al = B + C',

we conclude from Leunla. 4 in [LuT89] that B a.d C have the following contraction properties:

Lelllia 8. The following hold:
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(a.) For any nonenmpty J C {1, ..., n), there exist pj E (0, 1) and Tj > 0 such that

Il(I - Mjj(Bjj)-l)kzjll < Tj(pj) k'2z[, Vk > 1, Vz E Spain(AMj).

(1b) There exists a. A > 1 such that, for any nonempty J C {1, ..., n),

Il(I-(BJJ)-lMJJ)zII < aJl.ll, Vk > 1, Vz.

Let

/1 = niax v/Ca.rd(.J){(rJ[J(Bjj)-'llljIMjjl/(1- pJ) + A + 1)jj(BJJ)-y Bjj[[

+ TJlj(B.J)-'IIjlA[jjI/(1 - pJ)),

where Ca.rd(.J) denotes the cardinality of .J. The following lenilna, based on Leminas 6, 7 and 8, shows that

those coordinates of x" tha.t stay away from tile boundary a-re influenced by the remaining coordinates only

through tile distance, scaled by P3, of these remaiining coordinates from tile boundlary. This result a.llows us

to sepa.rate thle effect of these two sets of coordiuates on ea.ch other.

Lemnia 9. Consider any J C I*. If for sonme two integers s > i > 0 we have li < xi < ci for all

7 = t + 1, t + 2,..., s, thlen, for ally x* E ,'*, there holds

s--i

-'*: j I, ;~, 511+/3 m~x I1 l,, _; 11, + Pl. l" ~"+]11:2,X- 11I < Allr' - x*I + 13mrEt,...,s}+

where It is somle positive constant which is independent of s a-nd t.

Proof: Thlle claim clea.rly holds if s = t (since A > 1). Sulppose that s > t. Fix any ' E {t,....s - 1} a.nl

any i E J. Since li < x1 < < ci, it follows from tile fact [cf. (2.5), (3.5)] xi+1 [x1 ldi(x')] + tdla.t

di(;x i) = 0. Since i C I* so that di(x*) = 0, this implies

0 = i(;d''1) - di(x*)

= Ei (V7g(ET x" i) - Vg(ETT*))

= Ei (V 2g(ETX*)(ETXr i - ERTX*)) + O(IIETXri - ETX* 112).

Using the triangle inequality IET (x",i- x*)ll < IIET(x ' i - xr)II + IlET(x -'' x*)II alid the fact. [cf. Lelnla.

6 anid (2.2)1 tha.t. IIET(" - x*)l[ < wllx;uP - x"+l, we see that the last term in the a.lbove relation is of the

order I[x" -x"+ll 2 . Thus, we obtain, by using the fact tlia.t the j-th component of EV 2 yg(ETr.*) ET is m1ij

[cf. (4.1)], that the a.bove expression can be written as

o0 =,1)7i -j ( (+ - ,') + o( |.,' - x"+ | I12 ).
j<i j>i

12



Since our choice of i was a.rbitrary, tile a.lbove holds for all i E J, so that ill a.trix forml they can be explressed

as

0 = BJ(x+1 - X*) + C1j(x" - x*) + w1jx"' -X"'+:'I 2 ,

where iw] is some vector whose norm is ulpper bounded by a constant which is indepencdent of r.

Since B - C is positive defilite, it follows froml 2B = Al + (B - C) (cf. Al = B + C) a.n d the positive

senli---definite property of Al that B is also positive definite. Hence, Bjj is invertible and, by rearranging

terms in the above exlpression and using C = A - B (also see the proof of Lelnma 8 il [LuT89]), we olbtail

;+1 - = ( -(BJJ1rA j)(x -X) (Bjj)-1 -Aljj(J* - x )-x (Ij , - (-jr %

- (Bj)-l1 Bjj(; 7+l - x}) - (Bjj)-1 w, 2IIx" -_.+1 112

Since the choice of r1 was arbitrary, the a.lbove rclation holds for all r E {t, ..., s-1}, so thaft, by using Lelllmmas

7 a.nd 8 an.ld a-n argumlent analogous to that used in the proof of Lemma. 8 in [LuT89], we obtaill

s-]

IX'~ -;J II < Al,,IIJ - x* 11+/3 l,,ax IjI;x - JIOc. + (I -(BJJ)-(IJJ)- "- 1(BJJ )-'I )'1111.( - x"+'112.
1r=t

Siince 11(I - (BJJ )-lMlJJ)k(BJJ)-'i' II •< A (BJJ)-1 IJ1 < all(BJJ)-' 11l' IJw;II for all k > I [cf. Lemna.C. 8

(b)], t.his, together with the fact tha.t IIwJII is bounded from above by a. consta.nt for all r, proves our cla.im.

Q.E.D.

By using Lemmas 3, 4, 5 and 9, we can now prove Theorem 1, the convergence of {x'). The idea of the

proof is identical to that used in the proof of Leimla. 9 in [LuT89], that is, to show that those coordinates

of a r that a.re bounded sufficiently far away from tIle boundary are essentially unaffected by the rest. This

thlen allows us to treat these coordinates as if they a.re unconstrained and, by using a. certa.in contraction

p.roperty of the algorithmlllic la.pping [cf. Lenmmia. 8 (a.)], to conclude convergence for these coorlilla.tes. Somle

modifica.tions, albeit small, need to be ma.de to the original proof in [LuT89] to account for the extra. error

t`erLm -,-=t [I '" - x+ 1 112 (compa.re Lemma 9 with Lenla. 8 in [LuT89]). We define the following scalars for

the subsequent a.lalysis:

1, O'( ~~~~~~~~~(4.2)
(k. = A+3+/13+(+l )kl,±It, k= ,2 ......

(Notice tha.t .k > 1 for all k and is mnonotolnically increasillg with k.)

Lelmm 10. For any S > 0, there exists an x* E ,'* and an i > 0 such thlat

13



I1" - x*'II < o,,6 + 6, V7, > i.

Proof: 'To simplify the I)roof, we will assume tlhat ci = oc, for all i. Tile ca.se where ci < oo for some i can

be hlandled by la.king a synlnnetric argument. Furthernlore, by using Lemnnmas 3, 4 (a.) a.nld 5, we will, by

taking 7' sufficiently large if necessa.ry, assume that

4(x") < 6, VIr, (4.3a)

Il."+1
- ol~t ll < S6, VWI, (4.3b)

Z IlW; - Xk+112 < 6, V6 . (4.3c)
k=r

We first haIve the following lemmlna which states that Lemma. 10 holds in the special case where the

coordina.tes tha.t sta.rt nea.r the bounllda.ry of .' relain near tlie bounda.ry (also assuming thaat the remaining

coordlilla.tes sta.rt fa.r from the boundary).

Lemmlla 11. Fix amny k E {1, ..., n}. If for some nonellll)ty J C I* and some two integers t' > t we ha.ve

Xi > 1i + a'k6, Vi E J, (4.41)

x'r < 1i + aOk6l, Vi J., Vr = t,t + 1,..., ,t'-1, (4.5)

then the following hold:

(a) x;, > Ii + k_-16 , Vi C J.

(b) 'l'There exists a.n * E* such that

IX" - X*11o, < CO,6 , VI = t,t + 1,.. ,t'- 1.

Proof: let xa* be alny element of .I* satisfying 4(;xt) = I.t - x* 11. Thenl, we ha.ve from (4.3a.) t.ha.t

IIt _- *II < 6. (4.6)

Also, we hla.ve from (4.5) that, for all i ~ J, Xir x;i + IIX' - X*l -< li + (7k-1 6 + II' - X*II, ,whiC t ogethler

with (4.6) a.nd thlle fact ;x* > I illllies tllat. Ii < ; < li + 'k-1 6_ +6. Sillnce ii < .X' < Ii + O'k_16 for a.ll

t1 = ,, + 1...I' - I [cf. (4.5)], this in turni implies tha.t

I; -; i | -olS6 + 6, Vi V J, Vr = ,+t 1,.. .,t' -1. (4.7)

14



Next we prove bly illduction that, for 7' = t, t + 1,..., t' - 1, there holdls

x > li + ak-16 + 6, Vi E J. (41.8)

Eq. (4.8) clearly holds for 7r = t [cf. (4.4) al(l ark > (rk_ + 1]. Suppose that (4.8) olds for r = , ...,s,

lfor some s E {t, I + 1, ..., t' - 2). We will prove that it. also holds for 7' = s + 1. Since li < 4i < ci for all

i E J and all r = t + 1, ..., s [cf. (4.8) a.nd ci = cx, for all i], we have from Lemnla. 9 that

s-1

'""x 11";3' -.1t + , Y]. I.,'" - x".+112,1 1 11 - < zll ,J, - VJII + /3 . a . - x + j I..j - |1,

which together with (4.3c), (4.6) and (4.7) implies

tIIxJ - x 11 < A6 + 13(Ok-1 6 + 6) + t16. (4.9)

Then, we have tha.t, for any i E J,

x I _ - II.J 11- '+l

> t - II + I IxI J- ; 11)

> 1i + al.6 - (6 + IIXJ -;1J 11 + 6)

> ii + rk6 - (6 + (A6 + /3Tkk-1 6 + /6 + p6) + 6)

= ii + drk-16 + 6,

where the strict ilequality follows from (4.3b), (4.4), (4.6), a.lld the equality follows fronl (4.2). T'his completes

the induction anid p)roves that (4.8) holds for 7' = t, t + 1,..., t'- 1. Since (4.8) holds for 7' = t, t + , ..., - 1,

it. can be seen from the argutments above tha.t (4.9.) holds for s = t,t + 1, ... , t' - 1, which when colilled

with (4.7) (and using the facts P > 1 and I:1llz1 < I11Il for all z) yields

1ix" - x*11o < (A + /3 0k- 1 + 13 + 1)6, Vi' = t, t + 1, ..., t- 1.

Since A + + +13k-1 + /3 < o'k [cf. (4.2)], this proves part (b). From (4.8) with r' = t' - I we have tha.t, for

all i E J,

xi > Xt' -_ - t'

> ii + O¢k-1 6 + 6 -I;td-1 _ ,t"11.

Since It'-'4 -x1 11 < 6 [Cf. (4.3b)], this proves part (a). Q.E.D.
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The rema.inder of the proof follows the proof of Lemma. 9 in [LuT89] (cf. Lemma 11. in [LuT89] and the

arguilenl tlha.t follows it) and for brevity is onilt.tled here. [The proof in [LuT8J9] consilers the specia.l case

where /i = 0 for a.ll i, )but the argument used thereil readily extends to arbitrary li's.] Q.E.D.

Now we are coming to the end of our proof of Theorem 1. By Lemnia, 10, for any e > 0, there exist aln

E * .* and an i > 0 such tha.t

IVxr -; *ll1 < e/2, V. > ,i.

Ilence, for all r1 , r'2 > :, there holds

IHZ - X'11 _ < HIt' - *11| + I|X* - x"211..

< e/2 + c/2 = E.

This implies that {rx") is a Ca.uchy sequence so t.ha.t it converges. By Lemmlna 5, it converges to a.n element,

of X*. This completes the proof of Theorem 1.
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5. Dual ApIplicatiols to Quadratic Programminig and EntropIy Optimization

As we noted in Section 1, aln importatit a.pplication of the coordinate descent method is to tlhe solution

of problemsl with strictly convex costs andl linear conlstra.ints (see for example [Ba.K79], [131T87], [Bref67)],

[(:Cen88], [C( oI'82], [I)aR.'72], [Fri75], [LaS81], [LiP87], [ScZ87], [Tse88], [TsB87Ta). In this section, we consider

a. nllllber of such probllemls, including tlhose tllhat arise ill nlatrix ba.lalcing and, more generally, in entropy

optiiniza.tion. By ulsing Theorem 1, we establish, for the first time, the convergence of the (dua.l) itera.tes

generat.ed l y a nunltber of known methods for solving thllese problelms.

C:onsider the following convex programl

Minimize lh(y)
(5.1)

subject to Ey > b,

where h.:W, '" ' -- (-xc, o,] is a convex fulnction, E is an In x m mat.rix having no zero row, ald b is an 7n-vector.

(XVe remark tlhat. our results easily extenld to problemls with both linear equa.lity and inequality constra.ints.)

We imake tll.e following standing assumptions albout Ih a.nd (5.1):

Assumpll tion C.

(a.) Tihe conjugate functlion of h [Rioc70] given by

,.*(t) = sip{ (t,y) - h(y)}

satisfies (i) C('h- 0, (ii) h* is strictly convex twice continuously differentiable on C-'h, (iii) h*(t) - x

a.s a.pproaches a. bounldary poillt of C'Q,., anld (iv) V72 h*(t) is positive definite for a.ll t in C'h,*.

(1) (5.1.) has an optimal. solution.

(c) C,'h intersects {ylEy > b}.

Not-ice tlhat part (a.) of Assumption C implies that (C'., h*) is a convex function of the Legendre type, so

tha.t, by Theoremn 26.5 in [RIoc70], (Ch., h) lmutst also be a convex function of the Legendre type. Part (c)

of Assumpltion C( is a. constraint qualificat.ion conlldition that ensures the existence of an opt.imal Lagra.nge

multiplier vector associated with tile constraints Ey > b.

By a.ttaching a. nlon-negative Lagrange multiplier vector p to tthe constraints Ey > b in (5.1), we obt.ain

the following dua.l functiona.l

q(p) = mii{/lh(y) + (p, b - Ey)}

= -,*(ETl,) + (b, p).

Tlle dual problem is then to maximlize q(p) subject to p > 0 (see [IRoc0O, Chap. 28]) or, equivalently,
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Minimize h*(ET))- (b,p)
(5.2)

subject to p > 0.

Tile problem (5.2) is clearly of the forml (P). iMloreover, since (5.1) has an optimal solution a.ld( C(h

intersects {ylEy > b} [cf. parts (b) and (c) of Assumlnption C], it follows from Theorem 28.2 in [Roc7O] that

there exists a. Kuhll-Tucker vector associated with the constraints Ey > b. By Corollary 28.4.1 ill [Roc70],

this vector is also an optimal solution of thle dual probllelllm (5.2) and therefore (5.2) has an optinla.l solutionl.

'llhis together with part (a) of Assumption C implies that h* and (5.2) satisfy Assumptions A and B, so that,

by '.heorem 1, the iteration (2.5) appl)iedl to (5.2) generates iterates that converge to an optina.l solution of

(5.2). The optimla.l solution of (5.1), which is ulique since h is strictly convex, can be recovered by using the

fact Vlh*(t) = arg Iaxy {(t, y) - h(y)} for all t (see [R,oc7O, Theoremn 23.5]) so tha.t, for any optilnal solthtion

p* of (5.2), Vh*(ETp*) is the optimal solution of (5.1).

13elow we apply the above convergence result to a numbll.er of known ilethods based oil solving the dual

programn (5.2) using cyclic coordinate descent.

First., consider the special case of (5.1) where Ih is a strictly convex quadratic functionl, i.e.,

h(y) = (y, Qy)/2 + (q, y),

where Q is an m x m7 symmlletric positive definite ma.trix alnd q is an in-vector. For the a.lbove h, its conjugate

fmllction can be verified to be h*(t) = (t - q,Q-t(t - q))/2, which clearly satisfies condlitions (i)-(iv) of

Assumption C (a.). If in addition tile set {ylEy > b) is nonemlpty, then l parts (1)) a.lnd (c) of Assumlption C

also hold [(5.1 ) has an optimal solution since it is feasible anld h, being in fact stronlgly convex, has bounded

level sets] and we can conclude that the iterates generated by applying (2.5) to solve this specia.l ca.se of (5.2)

converge to an optimlal solution of the probllem. (This special case has been trea.ted earlier in [LuT89] in the

more gemnera.l setting of a nmatrix splitting algoritlhm.)

Next, conisider thle special case of (5.1) where h is the "- log(y)" entropy fuinction, i.e.,

- .=.j -1 log(yj) if y > O;
ch(y) = Z j g otherwise.

(W1e call also allow positive weights on the "log(yj )" ternLs.) In this case, the conjugate function of h ca.n be

verified to be

(t) = og(-t) if t < 0
DO hg-)otherwise,

whlich clearly satisfies conditions (i)-(iv) of Assumlption C (a.). If in addition, the set. {yjEy > b, y > 01

is nonempt.y ancld b:oundled l , then it can be shown thla.t pa.rts (b) and (c) of Assumption C' also hold and,
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once again, we can conclude tha.t t.lle iterates generated by applying (2.5) to solve this specia.l case of (5.2)

converge to a.n optimal solution of tile problem. This result significantly improves upon that obtained in

[C(el,87] which only considered the equality constrained case and only showed that the iterates, mIultil~ied

by ET, converge (also see Lellnmla 2).

Finally, consider the special case of (5.1) where hi is the "ylog(y)" entropy function, i.e.,

h (y)= { -,j Yj log(yj) if y > 0;
oo)- otherwise.

In t(his case, the conjugate function of h can be verified to be the exponential function h*(t) = -' 1 et'l

which clearly satisfies conditions (i)--(iv) of Assumption C (a). If in addition the set {ylEy > b, y > 0) is

nIonellepty, then since h has bounded level sets, it canl be seen tha.t. parts (b) a.nd (c) of Assl.mpt.ion C also

holdl a.n(l, once aga.in, we ca.n conclude that the iterates generated by apllyilng (2.5) to solve this special ca.se

of (5.2) converge to an optimanl soblltion of the problem. As a corollary, we obtain the convergence of the

clua.l itera.tes genera.ted by the very popular natrix lbalanlcing method of Kruitihof [Kru37] (a.lso see [Ba.K79],

[BeT89, p. 408], [Bre67a], [ScZ87], [ZeI88]), which is effectively (2.5) applied to tile special ca.se of (5.2)

where the non-negaativity constraints p > 0 a.re removed (i.e., the primal problem is an equality constrainedl

problelm) and E is the node-arc incidence matrix for a bipa.rtite graph. Our convergence result for this

method significantlly implroves upon those obta.ined previously (see [Bre67a], [La.S81]), wilic h only showed

tha.t tile iterates, multiplied by ET, converge.

1 It. is easily seen that the boundedness of the set {yjEy > b, y > 0) is necessary to ensure thal the priltla.

problem has a. inite optilal va.lue.
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6. Extensions

We rema.rk tla.t lTheoreml 1 still hol(ls if tile condition "g(t) - oo as t approaches anly botltla.ry point

of C~(g" ill AssutIption A (a.) is replaced by t.he weaker conidition that

({r,,(~) -: 0( ,) (6(.1)

a.s t a.pl)roa.clles a.ny boundary point [ of C'y from insidle C'. (It canl be verified that all of our argulmlents

go through und.ler tilns wea.ker assunlItion except for the plroof of Lemma. 2. Tha.t Lemnia. 2 also hlolds is a

consequence of I'roposition 1 ill r[Ise89,].) Functions tha.t sa.tisfy this wea.ker version of Assunmlption A (a.)

include all sepa.ra.lle convex fuinctions of the Legendre type, i.e., funictions g of the form

t71

g(t) = gji(tj), (6.2)
j=1

where j : - (-oo, o] and (Cgj , gj) is a. convex function of the Legeiidre type. IHence, our results applly

t.o all fuunctl.ions g of the fornl ((6.2) where ea.ch gj : -t (-oo, oo] is strictly convex, twice dillfferenitia.ble onil

C!,' a.nd sa.tisfies V2 yj(tj) > 0 for all tj E C'yj, IVgj(tj)l -- oo as tj approaches a. Iboundary point of (aj . A

conlcrete exa.lnple of such a g is the negative square root funcetion

0 -- O: = v -' if t >_ ;{xo otllerwise,

wihich a.rises in the dua.l of certa.in routing probleoms [BeCG87, C'hap). 5] anml of certain resource allocation

problems [MSTW88]. Another exa-imple is the "ylog(y)" entropy functioll discussed in Section 5. (Notice

tha.t both these example functions are finite a.t the boundary of their respective effective domains, so thla.t

neither satisfies Assumption A (a).)

It can also be verified tha.t Theorem 1 holds if ea.ch xi comprises, instead of a. single coordina.te, a. block

of coordinates, providedl tha.t the rows of E corresponding to the coordinates in each block a.re independent.

Finially, we remark tha.t all extension of tile iteration (2.5) to allow under/over--relaxation of the coor-

dlina.tes is a.lso possible. Il particular, consider the following iteration

x1+ l = W"x"' + ( - w"' )"l',

where ;'" is the n-vector obtained by a.pplying (2.5) to x", i.e.,

x: = [i' - di(4 .,... ( i 1, * ,. ., ,, i = ,...
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a.nd w" > 0 is some relaxation factor. [If w" = 1, then the above iteration reduces to (2.5).] Under sulitabl.le

restrictions on the w"'s so that a. "sufficient" decrease in the objective value is achieved at every iteration,

it can be shown that the iterates generated according to the above iteration still converge to an optinlal

solution of (P) (cf. Theorem 1).
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Appenldix A. Proof of Lemma 2

First, from the strict convexity of g, we can plrove the following boundedness property of the level sets

of f:

Lenmma A.1. {ETxIx E l',f(2) _ < } is bounllded for all (, E .

Proof: We will argue by contradiction. Sulppose that the claim does not hold so tha.t the convex set

{(t,x, ()lt = ETx, X E :,1', f(x) < (} in .I1,,"+'+l1 has a. direction of recession (v,Ut, ) satisfying v : 0 (see

[Roc70, Theorem 8.3]). Then, v = ETu. and, for any x e ,1', there holds x + A u E ,V a.nd f(x + Au) < f (.'x)

for all A > 0. Choose x to be an element of .'*. Then, there furthermore holds f(x + Aur) = f(;x) for all

A > 0, so tha.t g(ETr + Av) + (b, .x + Au) = g( ET ) + (b, x) or, equivalently, g(ETX + Av) = g(ETr ) - A(b, iu)

for a.ll A > 0. Also, since x is by choice an optimal solution of (P), then ETX is in C'q. Since v £ 0, we see

that the rela.tion g(ETzX + Avt) = g(ETx) - A(b, u) contradicts the strict convexity of g on C.' [cf. Assumption

A (a)]. Q.E.D.

Let {x;' be a. sequence of iterates generated by (2.5). Let x;' i be given by (3.5) and let

tr,i = ETTXr,i,

for all 7' and all i E {0, 1, ..., nj. Our goal then is to show that {t"'i} , t* for all i.

Since f(y r' i) < f(; r ' i-
l ) for all 7I allnd all i [cf. (2.6)], we have front the observation xzl+l = xr''", x'" = x',°

[cf. (3.5)] tha~t

f(xr+l) = f(xr'"n) < f(x" ' 'n-l) < ... < f(( ' °) = f(x'"), Vri. (A.1)

HIence, {f(xz'ri)} is boundle(l front above for all i, so that, by Letinlma A.1, there holds

{t1"' i} is bounded for all i. (A.2)

The inext lemnma. strengthens (A.2) by showing that. both {g(t"')} a.nd {(b, x ' i)} a.re bounded for all i.

Lemmallla A.2. Let {w}'' be any infinite sequence of i1-vectors E .1' such that {f(wtv")} is bounded. Then,

both {fy(Eru"W)) } and {(b, w"')} a.re bounded for all i.

Proof: Since {ETwU'" } is bounded by Lelllua. A.1, then {y(ETu')} is bounded froml below. 'llherefore, iL'

{g(E 'rs' )} is not boulnded, then there nmust exist a. sulbsequence R. of {0, 1, ...} such that. {g(EI wt ))}r - ,x.

This in t.mln impllies (since f(wu') = g(ET u,' ) + (b, wl') is bounded) tha.t

-{ (b, w")}. R -'X. (A,.3)
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Let us (by further passing into a subsequence if necessary) assume that, for each i E {1, ..., 7n}, either

{Pt' )j-R is bolllded or {Iw' 1) -- o,. Let I denote the set of i's such that {uw;}'}.r is bolltded anldl let j be a.ly

poillt in Xl'. For ea.ch 7r E r., conlsider the linear system

ETy = ETwi, Yi = wiv Vi E I, y E .lV.

Th.'lis system is clearly consistent since uw" is a. solution. By Lenmlla. 1, there exists a solutioln y" of this system

sa.tisfying ||* - y"' < 0(IIETJ - ETw"fI[ + 'iEZI Ii - w}'I), where 0 is a constan.t depending on E only. Since

the right ha.nd side of the above expression is bounded for all r E R., it follows that {y'`)}r is also bolnlllded.

l,et z": = w" - y. T1hen, ETz' = 0, ZI = 0 for all r E r., and [cf. (A.3)] (b, z"') < 0 for a.ll r E R. sufficiently

la.rge. Moreover, for each i ~ /, we ha.ve from, {Itull}nr - oo thla.t either (i) ci = co and I > 0 -for all a7 E r.

sufficientlly large, or (ii) 1i = -oc and ~i < 0 for all i' E RT sufficiently large. HIence, for anly r C R. sufficiently

large, z" is a feasible direction of unboulnded cost. (i.e., for anly x: sa.tisfying I < x < c and f(x) < oc,, we have

I _< x + A:Z" < c for a.ll A > 0 and f(x + Az") = g(E ;) + (b, x + Az") = f(z)-+ A(b, ") - -oc, as A - oc,).

This contradicts the hypothesis [cf. Assumption A (b)] t.ha.t (P) has an optimal solution. Q.E.D.

Since {.f(;'RXi)} is bounded, Lenlnla A.2 yields tha.t {g(t"'i)J is bounded for all i. IIence, if t-C is

ainy limit point of {t",'i, then we have fronl the lower semicontinuity property of g [RIoc70] tha.t y(t-) <

liml sup,. y(t"',)} < oo. Since y is finite only on C,' [cf. Assumption A (a)], this implies

every lilllit. point of {t''i} is in C'g, (A.4)

for all i.

By using (A.4), we call prove the following lellmma.:

Lelllllla A.3. "'-'+ t -- _"} ., 0.

Proof: We will a.rgue by contradiction. If the claim does not hold, then there exist. an c > 0, a.n i E {l ... , 

and a. sublsequence r. C {0, 1,...} such that ax+" - Xfl > c for all 1 E '2. Then, tIl|t -_it-lll = IE11 1
1;r"+l -xl'l > IIElle for all C' E r. [cf. (3.5)]. Since both {Itfi} and {t', i - l} are bounded by (,4.2), we will

(by futrther passinlg into a subsequence if necessa.ry) assume that {tri-1}.R a.nd {t'',i}R converge to, say, t'

andl 1" respectively. Then, t' -t" a.lnd, by (A.4I), both t' and t" a.re in Cq.

Since /' and t" a.re in C. a.lld g is conltintous on C> (see [Roc7O, Theorem 10.1]), we have tha.t

{l(fi'/)}'R g(t') a.nd {g(t"i))-Rz - g(t") or, equivalently (since f(x) = g(ET;) + (b, x) foir all Jx),

{(b, xri-l)}R -+ f _ g(t'), {(b, ,r''i)}R -+ f - yg(t"), (.A.5)
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where fc° = limn,o f(x') (so that {f(xi)} ---+ f c for all i by (A.1)). Also, for each r E 'R., since X7"i is

obtained from al ' i- 1 by performing a lille minimlization along the i--tth coordinate dlirection in :Ji" [cf. (2.6)],

tlle convexity of f then yields

f(x"' i ) < f((x:"' i + ;1'i-1)/2) = g((tl"i + t'1i-l)/2) + (b, x"'i + X'.i- 1 )/2 < f(x""' 1-), VIr E R..

Upon passing into the linlit as --+ oc, r E R., and using (A.5) and the continuity of g on C'g, we obta.in

fc < g((t" + t')/2) + fo -_g(")+g(t') < fo,

a. contradiction of the strict convexity of g on C'g, i.e., g((t' + t")/2) < (g(t') + g(t"))/2. Q.E.D.

Fix any i E {(, 1, ..., I77. Since {t"' t} is bounded by (A.2), it has a limit point. Let. t' be any such limlit

p)oilnt and let; R. be a. subsequence of {0, 1, ...} such that {t"')}.r converges to t'. By (A.4), t' E C',, so tlihat

g is continullolsly differentiable in all opeln set aroullnd tC. We show below that t/ is e(lual to the t*, which,

since the choice of t' was arbitrary, would then complete our l.roof.

First, notice tha.t since {zx"'j - x";')} - 0 for all j (cf. Lemmallla. A.3), we have It''J - t"'' }J 0 for all j,

so t.ha.t

{It",', -to o, Vj. (A.6)

Let. d: = EVg(t/) +b. 'l'llen, since g is continuously differentia.ble in an open set aroilnd t9, we obtain from

(A.6) (and using d(;r",')j) = EVyg(t'J) + b) that {d(x;"'j)}a --+ d' for all j. Since x' + 1
= [z'. + l - dj(x"'-)] +

for all r E R. and all j [cf. (2.5), (3.5)], this implies

{'j+l n R Ij > -0x if dIj? > 0, ( )

{'+1 R -i cj < Cc) if dIj < 0.

For eachi r7 E r., consider the linear system

ET = t,'+l, j = ;Ux+l Vj With d7j# 0, x E X.

This system is clearly consistent since x"'+ is a solution. Fix any point t in .'. By Lenmlma. 1, for every ' E R.

there exists a solution y" of the above system satisfying jj; - y"''ll < (IIETt - t'+ll + •Ed-, Ix' - 1),

where 0 is a constant dlependillg oil E ollly. Sinlce the right hand side of the above expressioll is bounlled

for all r G 'R., it. follows that {y"'JR is also bounded. Then, every limit point of {y'"), say y', satisfies [cf.

(A.(), (A.7)]
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ETy: = to, n = lj if l>O0, yO=:C j if < 0, y E Xl'.

Since ETCy = t ¢~ so that d(y') = EVq(tI°) + b = do, the above relation thenl yields yU = [y" - d(!y )]+.

Ilence, by (2.4), y° is in AX'* a.nd we obtain from (2.2) that t' = ETy, = t*.
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Appendllix B. Proof of Lenmma 6

To silmplify theti proof, we will assume that. ci = ooc for all i. (The case where solime of the ci's are filite

can.ll e treated by imlaking a. symmllet.ric argumenit). Let. {x"} be a. sequence of iterates generated by (2.5) a.ld

let x"' be given by (3.5). First, we ha.ve from Lelilna. 2 t.ha.t

{E 7 x'r i -) t*, Vi, (B.la)

a.lid froml (3.6) thlat

{d(x?)} j d*, Vi. (B.lIb)

Since ci = xo for all i so tlia.t d* > 0, we la.ve froml Lemlniia. 4 (b) thatl there exists a.n r0o> 0 such thlat

'" = I, Vi 1*, Vr > ro. (B.2)

Conlsider a.n arbitra.ry (possibly empty) subset I of {1, ..., n.) and let r. denote the set of indices 1 > r0

for which

di(; ' i) =0 ViE, 3)
dci(x' i ) > ViI. (.

We will show that there exists a constant wI > 0 such tha.t

II ETx" - t* 11 < wzll'x" - r+lIl, Vr E 1.. (3B.4)

Then, silnce every r E {ro, r' + 1, ..., J belongs to an R. corresponlding to some I and the number of distinct

I's is finite, we would immediately have that

IIETx"1 - t*11 < llaxwillx" - x"+1 1, V,. > 7'o,

a.nid Lelilla. 6 would be proven. IIence, it remains only to show tha.t (B.4) holds for an arbitrary I.

Fix a.ny subset I of {1, ..., n} a.nd let r. denote the correslonlding index set. (i.e., (B.2), (B.3) hold for

a.ll r E R). If R. is empty or finite, then (B.4) holds trivially. Hence, in what follows we will assumle tha.t 1R.

is illfinite. Then, we have from (B.3) and the fact ;+1 = [i +1 - di(x",')]t [cf. (2.5), (3.5)] tla.t

x1+l = l.t, Vr E R.. (B.5)

\Ve nlext have the following lelllma.
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Lemlllma D.1 There exist. 1 > 0 and y" E .X*, for all r E R., such that

I II, (B.6a)

IY r' - x"11 < ,K(llETx"'- t*l] + IlV + ' - xrI). (B.6b)

Proof: First, we argue that the linear system

YI = Il, y E -*. (B.7)

is consistenlt. To see this, for every 7r E R., let be the element in ,¥'* attaining II|a" - "ll = 4(x"'). By

(B.5), we 1have ;r+ 1 = Iso that = = ( x) + (x - x*+1 ) + II. Since {( - ) O0 (cf. Lellma. +5)

andl { x"' a - " + } -+ 0 [cf. Lenmia. 4 (a.)], this yields {(x --+ iI so that there exist elemllents of Xl'* that collme

arbitrarily close to the affine space {y I yI = lj). Since both .X* and {y I Y = II} are polyhedral sets [.l'*

is polyhedra.l by (3.8)], this shows that. they must make a nonemlpty intersection. In other words, the linea.r

system (B.7) has a. nlonelnllty solution set.

It can be seen from (2.1) and (2.2) that, for each 1' E R., (B.7) has the same solution set as the following

linlea.r system

Y =l , ETy = t*, (b,y) = t*, y E ., (B.7')

where t* = ( oltimal value of (P)) - g(t*). Since x" E ,Y, then, by Lemma. 1, there exists a. solution y" to

(B.7/) (i.e., y} = 12, y" E ,'*) satisfying

II'" - YII < 0(lIx - 1ilI + E IET;r - t*11 + I(b,x r) -,* lI)

= 0(11I - x II + IIETxT - *l + I(b,' - Y')),

where 0 is a. colstant. depenlding on E and b only and the equality follows froin (B.5). HIence, to conll)lete

oulr proof, it. suffices to show that I(b, xr - y")l is upper bounded by some constant. timles IE rTX' - t*II. Now,

we have firom (B.2) tha.t 4 = li for all i ¢ Z*, so that (also using y[ = li for all i ~ I*) y' = O for a.ll

i J I*. Also, we have from (3.2) that 0 = O = d = E. Vg(t*) + b .. Combining these two facts yields

(b,' --yr') = (bi , t -YI*. )

= -(Er. Vg(t*), ,}*. - y. )

= -(EVg(t*),x' - y")

= -(Vg(t*), ET , -_ t*).

Ilence, I(b,x"'- y') < IlVg(t*)•111ETT r - t*11. Q.E.D.
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Corollary B.1 Let. y" be given by Lemlnma B.1. Then,

|I- I - x 1iIEII (lx"+1 - xll + I(Ez) T(I -- y .'.. 

Proof: Simiply note that IlyI -x11 Iy< '-xL'I11 anld that [cf. (B.5), (B.6a)] II(Ei )T( (,_yI)II = II(E )T(xu-

x?1+)11 _< 1IElI, - .1'+l ll Q.E.D.

Ill addition to Corollary B.1, we have tihe following technical lelnma:

Lellmlll B.2 Let yr be given by Lenula. B.l..l'hen, there exist constants IC2 > 0 and l s1 ch tha.t

IIdz(X,,')Il > IIEIVg(ETXr) - EIVY ((EI)T y + (E:)TX~) l - ,2 llEII2II,, - YIi, (3.8)

for all r E 'R., r > l.

Proof: Since {d(x"'i)} --+ d* [cf. (B.lb)], we have froml (B.3) that di* = 0 for all i E I. Then, di(y') = 0 for

all i E Z [cf. (3.1)], and we lhave from (2.3) anld the triangle inequality that

IId.(xr)II = IldI(x ") - I(y )11I

= IIEzVg(ETzr) - EIVg(E T y )1

> IIfEVg(ET x') - EzVg ((Ez)T yi + (E )TXI) II

- IEI Vg ((EI)Ty I + (EI)T .I) - Ezt g(ET y'")I. (B.))

Let. U* be the neighborhood around t* givenl in (3.3). Then, g is twice differentiable on tl* [cf. Assulmption

A (a.)] so that Vg is Lipschitz continuous on U*, i.e., there exists a constant K2 > 0 such tha.t

IIVY(z)- V(y)II _< K211z - yll, Vz E W*, Vy E 11*. (B.10)

Now, silice ETry" = 1* for all r E 7r., then clearly ETy' E !* for all r E R.. Also, since xI +
= VI [cf. (B.)),

(B.6a)] so that ((EI)Ty + (ET )1)- ETy' = (E )T(X - X 1 ) _ O as r7 _ x, r C r. [cf. Lemma 4 (a.)],

we hlave that (Ex)Ty; + (E)I)TxI E L* for all r E 'R., r > some 7'1. Hence, for anly r E '1. such tha.t r > r 1,

(B.10) holds with z = (EI )rTY + (El)Tx;I ald y = ETyr'. Using this to bound the last. term ill (B.9) thell

yields (B.8). Q.E.D.

By combliniig Corollary B.1 with Lenimma. B.2, we can now prove tia.t (B.4) holds.

Lelilla B.3 Thlere exists an wI > 0 such tha.t IIETr'' - *11 w_<,ll;x"'+ - x"1fl for a.ll ' E v..
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Proof. Let 7>1 be given by Lemma. B.2. Silce {ET;r1'i} j t* for all i [cf. (B.la)], there exists an 7-2 > 1,1

such that EITxr' i E U1* for all i and all 7' E 'R. with 7' > 7'2. Fix ally 7' E R wit'h 7' > 7'2. Then, for any i E I,

we have from (.B.3), (2.3), (B.10) and ET;,' " ,i E Il* tha.t

Ici(ax')l = Id.(xr") - di("'"i)

= IEiVy(ETx) - EiVyg(E'TX''i)l

< lc211Ell"ll'12 - xi., ill

< , 211E11XE2 11X- _"1 11

so tha.t

IIlrt'r(X")1| < ,2n-IIEII|11|, "' - ||.

Let y" ble given by Lelila. B.1. Then, thie above rela.tion together with Lemlma. B.2 yields

K,,,llIIIllx " + - :1',"11 > IIVg(E- ((E)T + (Ei)Tx2)II -K21IEy (B.11)

Since x" E 1U* and y'" E U*, l)y the strong convexity of g onl U* [cf. (3.4)], we ha.ve

2oal(E) ' 1(x - y)I-2 < ((E X,)T( - yI ), Vy(ETXr) - Vg((EI)T YI + (E)xt)),

< II;x - yiII ' IIEzVg(E T X"r)- E1 Vg((Ez) TrY + (EI)TxI )11,

where the second inequa.lity follows firom the Ca.uchy-Schwa.rtz inequality. By using (B.11.) to bound the

right hand side of the a.lbove expression, we then obta.in

2 Tl(E)T(.,- _ y)112 < 1,j - YrIII (' 2 nhIEII2|1IXr+l - xrII + ~211EII 11I, - Y11)

< IIx - Y~I11 ('Z2nEI 2II1x"+ - X"1 + tC211EII2IIx"+1 -x"II)

• <1i2(n + 1)11E11 3 (Ix "+1 - x"il + II(EI)T(x -- )II) 11. IW+ - x" I,

where lhe second illeq,,ality follows fronl YI = Xa:+ [cf. (B.5), (B.6a)] a.nd the last inequality follows

from Corollary B.1. Thus, when we view the above expression as a quadratic inequality in thie variable

)I(E)T(Ix1 - yI)II/I ' "+l -x_'1, we see that

II(E1I)T( 4 - -Y)II < '311X "+ ' -xV"II, (B.12)

for solime conlstant c3 > 0 independent of r'.
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Finally, we notice from the fact ' = ;t 1 [cf. (B.5), (B.6a)] that

I(E) T(x. y-)ll = l(E) T(x - x+')I < I.EIIII x + - X 1.

Comlbining the ablove relation with (B.12) yields

IIETXr"- _t*ll = IIET(x" - y_ )Il < (K3 + 1EII)IIx+1-' x"I11.

Sinlce the choice of 7' E 1., ' > r2 was a.rbitrary, this completes our proof. Q.E.D.
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