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1. Introduction

A very important problem in optimization is that of minimizing a convex function of the Legendre
type (i.e., a function that is strictly convex differentiable on an open convex set and whose gradient tends
to infinity in norm at the boundary points), subject to linear constraints. As an example, when the cost
function is quadratic, this problem has applications in linear programming [Man84], [MaD88], image re-
construction [[1eL78], and the solution of boundary value problems [CoG78], [CGST8], [DeT84]. When the
cost function is the “xlog(x)” entropy function, this problem has applications in information theory [Ari72],
[Bla72], matrix balancing [Kru37], [LaS81], image reconstruction [Cen88], [Len77], [Pow88], speech process-
ing [Fri75], [Jay82], [JoS84], and statistical inference [DaR72]. As a final example, when the cost function is
the “—log(x)” entropy function, this problem reduces to the analytic centering problem which plays a key

role in many new algorithms for linear programming [Fre88], [Kar84], [Hua67], [Son88].

A popular approach to solving the above problem is to dualize the linear constraints to obtain a dual

problem of the form

Minimize g(ET2)+ (b, )
(1.1
subject to x > 0,

where ¢ is a strictly convex essentially siooth function, F is a matrix and b is a vector (see Section 5); and
then use a coordinate descent method to solve this problem whereby, at each iteration, one of the coordinates
of & is adjusted in order to minimize the cost function (while the other coordinates are held fixed). Such a
method is simple, uses little storage, and, in certain cases, is highly parallelizable. Methods that follow this
approach include a method of Hildreth [Iil57] (also see [C'oG78], [CoP82], [CryT1], [HeL78], [Man84]) for
guadratic programming, a method of Kruithof [Kru37] (also see [BaKT79], [Bre(7], [LaS81], [ScZ87], [Zel88]
and references cited in [LaS81]) for matrix balancing, as well as a number of related methods for entropy

optimization [CeL87], [Fri88; p. 236], [LenT77].

An outstanding question concerns the convergence of the iterates generated by the above coordinate
descent scheme. Typically, convergence requires the cost function to have bounded level sets and to be strictly
convex in some sense (see for examnple [Aus76], [BeT89; Chap. 3.3.5], [D’Esb9], [Glo84], [LueT3], [Pol71],
[PowT3], [SaST73], [Zan69]), neither of which, unfortunately, holds for the cost function of (1.1) (e.g. when E
has redundant rows). For (1.1), it was known, under mild restrictions on the order of coordinate relaxation,
that the gradient of the cost function, evaluated at the iterates, converge [Tse88], [Tse®9], [TsB8&7h] (also
see [Bre67a], [Bre67h], [CeL87], [Hil57], [Pan84]), but it was not known if the itcrates themselves converge
or if they are even bounded. The only nontrivial special cases for which the iterates are known to converge,

without assuming uniqueness of the optimal solution, are (i) when g is separable and E is the node-arc

incidence matrix for a digraph [BHT87], and (ii) when g is a strictly convex quadratic function [LuT89].
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In this paper, we give the first result on the convergence of the iterates generated by the above coordinate
descent scheme (for solving (1)). In particular, we show that the iterates converge to an optimal solution of
(1.1), provided that g has a positive definite Hessian and tends to infinity at the boundary of its effective
domain, and that the coordinates are relaxed in a cyclic manner. This result is rather remarkable since
the optimal solution set may be unbounded and the function g may have a very complicated form. As a
corollary, we establish, for the first time, the convergence of the dual iterates generated by a method of
Kruithof [Kru37] and by many other methods (see Section 5). Our results are, Lo a certain degree, based
on those given in [LuT8Y] for the quadratic cost case. In particular, we prove our results by approximating
the cost functlion by its quadratic expansion at an optimal solution and then applying the proof technique in
[LuT89] to the approximate problem. However, the extension is by no means simple, as it requires making
an accurate estimate of the approximation error (see the proof of Lemma 9), as well as other new proof

techniques.




2. Algorithm Description and a Convergence Result

Consider the following problem [compare with (1.1)]

Minimize f(z)

()
subject to [ <z <,
where f : " — (—o00, 0] is a convex function of the form
J@) = g(ET2) + (b, 2), (2.1)

b,1 and ¢ are n—vectors with [ (¢) possibly having components of the extended value —oc (), E is an n x m
matrix having no zero row, and g : " — (—o0, ] is some given convex function. In our notation, all
vectors are columm vectors, R” denotes the n-dimensional Euclidean space, (-,-) denotes the usual Euclidean

inner product, and superscript T" denotes transpose.

For any vector &, we will denote by #; the i-th coordinate of z and by [¢]* the orthogonal projection

of x onto the feasible set

VY={e|l<e<c}=[l,a]x - x[acn)

ie., [#]* is the n—vector whose i-th coordinate is [#;]}, where we let [2;]} = max{l;, min{e;,2;}}. For any
function h : R¥ — (=00, oc] we will denote by dom(h) the effective domain of h, i.e. dom(h) = {x|h(x) < oo}

and by Cj, the interior of dom(7r).

We make the following standing assumptions about g and (P):

Assumption A.

(a) Cy #0, g is strictly convex twice continuously differentiable on Cy, and g(t) — oo as t approaches any
boundary point of (.

(b) The set of optimal solutions for (P), denoted by .U* (ie. * = {a* € V|f(2*) < o, f(2*) < f(z) Ve €

L'}, is nonempty.

Part (b) of Assumption A is clearly necessary. Part (a) of Assumption A implies that (C'y.g) is, in the

rendre type. Such a function has a number

terminology of Rockafellar [Roc70], a convex function of the 1
of nice properties (for example, its conjugate function is also a convex function of the Legendre type). Notice
that the strict convexity of g implics that the function @ — ETx is invariant over .U*, i.e., there exists a

t* € ®™ such that
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ETe* = t*, Ya* € ™. (2.2)

To see this, note that, for any * € 1™ and y* € U, we have by the convexity of .1"* that -f-‘—g-l: € '*. Then,

o * R ; o T % - 1 T‘t T,» T .,
f(x*) = fly*) = f(‘—"—.J;L), so that (using (2.1)) y(LT" ;’ETy )= UE « )‘;g(E ¥ Since both g(ET2*) and

g(ETy*) are finite, so that ET2* € C,; and ETy* € (Y, this together with the strict convexity of g on C A

yields ETa* = ETy*.

Notice that since g is differentiable on Cy, then so is f on (. In what follows, we will denote by d(x)
the gradient of f at an @ € Cy and by d;(x) the i-th coordinate of d(x). Then, by (2.1) and the chain rule
for differentiation, we have

d(x) = Vf(x) = EVg(ETx) +b. (2.3)

From the KKuhn—Tucker conditions for ( P) it is easily seen that an @ belongs to .U'* il and only if the ort.ho‘gona‘l

projection of @ — d(x) onto the feasible set X' is x itsel, i.e.
=[xz —dx)*. (2.4)
Consider the following coordinate descent method for solving (), whereby given an n-vector 2™ € .U

at the r—th iteration (r = 0,1, ... and 2" is given), a new n-vector 2™+! € .V’ is generated according to the

iteration:

Cyclic Coordinate Descent Iteration

Fori = 1,2,...,n, compute ;L';-"H as a solution of

pr+l o+l A ptHl prtlor 2T ¢
T = el T = (2T e T )] (2.5)
The above iteration can be seen to be a Gauss-Seidel iteration whereby the cost function f is successively
minimized with respect to the coordinate x; over [I;, ¢;] (with the other coordinates held fixed) for i =

1,2,...,n, that is,

r41

. R !
Z;

. 11 . .
=arg min fleit el el 2. (2.6)

iswt_'—‘t

General discussions of Gauss-Seidel iterations can be found in, for example, [Aus76], [BeT89], [Lue73],

[OrR70].
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We claim that (2.6) [or, equivalently, (2.5)] is well-defined. To see this, suppose the contrary, so that,

for some » and ¢, the minimum in (2.6) is not attained. Let & = (;v'l'H, vy .L:fll B R v)’v

and let e? denote
the i-th coordinate vector in R". Then, either (i) {; = —oco and f(& — Xe') is monotonically decreasing with
increasing A or (ii) ¢; = oo and f(# + Ae') is monotonically decreasing with increasing A. Suppose that case
(i) holds. [Case (ii) may be treated analogously.] Then, since the set {ET2 | I < 2 < ¢, f(x) < f(8)} is
bounded by Lemma A.1 in Appendix A, there holds ETe! = 0, a contradiction of the assumption that £

contains no zero row.

In order to prove the convergence of the iterates «™ generated by (2.5), we make the following standing

assumption (in addition to Assumption A):

Assumption B. V2g(t*) is positive definite.

Assumption B states that g has a positive eurvature locally around the optimal solution point t*. This
condition is guaranteed to hold if g has a positive curvature everywhere on Cy. [There are many important
functions that satisfy this latter condition (in addition to Assumption A (a)), the most notable of which are
the quadratic function, the exponential function, and the negative of the logarithun function. We will discuss
these example [unctions in detail in Section 5.] Notice that if ¢ is strongly convex and twice diflerentiable

everywhere, then g automatically satisfies both Assumption A (a) and Assumption B.
The main result of this paper is the following:

Theorem 1. Il {2"} is a sequence of iterates generated by (2.5), then {¢"} converges to an element of .U'*.

The proof of Theorem 1 is quite intricate and will be given by a sequence of leminas which we present in the

following two sections.

The remainder of this paper proceeds as follows: In Section 3 we prove some preliminary convergence
results for the iteration (2.5). In Section 4, we used these results to prove Theorem 1. In Section 5, we

consider dual applications of Theorem 1. In Section 6 we discuss possible extensions of our work.

In what follows, || - || and || - ||cc will denote, respectively, the Ly-norm and the L.,—norm in some
Buclidean space (ie., ||2]] = /(z,2) and [J¢]lo = max; Jx;]). If A is a square matrix, l|A|| will denote the
matrix norm of A induced by the vector norm || - ||, i.e., ||| = max)=1 [[A2|]. For any k& x m matrix 4,
we will denote by A; the i~th row of A and, for any nonempty I C {1,....,k} aud J C {L,...,m}, by Ay the
submatrix of A obtained by removing all rows i € I of A, and by Ary the submatrix of A; obtained by
removing all columms j & J of A;. We will also denote by Span(A) the space spanned by the columuns of .1.
Analogously, for any k—vector @ and any nonempty subset J C {1,....k}, we denote by 2; the vector with
components 2;, ¢ € J (with the x;’s arranged in the same order as in ). Finally, for any J C {I,...,n}, we

denote by J the complement of J with respect to {L,...,n}.




3. Technical Preliminaries

In this section we prove a number of useful facts about the optimal solution set and the iterates z"
generated by the cyclic coordinate descent iteration (2.5). These properties, some of which are interesting

in themselves, will be used in Section 4 to prove Theorem 1.

First, since ETa* = (* for all 2* € X [cf. (2.2)], we have that d(x) is itsell invariant over %, In
particular, we have [rom (2.3) that
d(z*) =d*, Va* € 1™, (3.1)

where we let

d* = EVy(t*) +b. (3.2)

Also let

" = {ild; = 0}.

Since V2g(t*) is positive definite [cf. Assumption B], it follows from the continuity property of Vg [l
Assumption A (a)] that V2g is positive definite in some open neighborhood of ¢*. This in turn implies that
g is strongly convex near t*, i.e. there exist a positive scalar o > 0 and an open set ¢* containing t* such

that

9(2) = 9(v) — (Vo). 2 — y) 2 ollz — yll%, V= €U*, Yy U™, (3.3)

By interchanging the role of y with that of z in (3.3) and adding the resulting relation to (3.3), we also

obtain

(Vg(z) = Vg(y), z — y) > 20|z — yl|®, Yz €U*, Yy e l”. (3.4)

Next, we have the following lemuma on the Lipschitz continuity of the solution of a linear system as a

function of the right hand side [Hof52] (also see [Rob73], [MaS87]):

Lemma 1. Let B be any k x n matrix. Then, theve exists a constant 6 > 0 depending on B only such that,
for any & € .l and any k-vector d such that the linear system By = d, y € .U is consistent, there is a point

g satisfying By =d, j € U, with

Iz~ gll < o|Bz - dl.
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Lemma 1 will be used extensively in the proof of Lemmas 2 and 6 to follow.

Let {¢"} be a sequence of iterates generated by (2.5). Also let

s l . 1 . 9
2t = (‘;v'l"" ,...,.1:;.'{" ,;v;-H,...,;v;)T, (3.5)

for all » and all i € {0,1,...,n}. Notice that @™" = &"+! and 2"° = 2. In the remainder of this section, we

will prove various convergence properties of {&"} and {2"*}.
First, by using Lemma 1, we have the following result on the convergence of {E7 2"},

Lemma 2. For every i € {0,1,...,n}, there holds
{ET 2"} — %

The proof of Lenima 2, which is quite technical, is given in Appendix A. The proof is a shortened version of

one given in [T'se89], specialized to the iteration (2.5) (cf. proof of Proposition 1 in [Tse89]).

As a corollary of Lemma 2, we obtain [cf. (2.3), (3.2) and the continuity of Vg at *]

{d(x")} — d*, Vi. (3.6)

Notice that Lemma 2 shows that if £ has full row rank so that the optimal solution of (P) is unique, then
{2™1} converges to this optimal solution for all i. However, for most practical problems, the matrix F does

not have full row rank, in which case, as we shall see, proving convergence is much more difficult.

In addition to Lemma 2, we have the following result that states that {2" — 2™+!} — 0 “sufficiently

fast.”
Lemma 3. Y72 |le” — 2™ ||? < co.
Proof: First we show that
@) = £ > o min (Pl — 2P, (3.7)
J

for all » sufficiently large. By Lemma 2 we have {ET2™#} — ¢* for all i, so that for all » sufficiently large
there holds [cf. (3.3)] ETa™ € U* for all i. Consider any such r. For every i € {L,....,n}, since a™ is

obtained from 2™~ by minimizing f along the i~th coordinate [cf. (2.6)], there holds

((1(;171"i),4171“i _ mr,i-—l) S 0.




Hence, by using (2.1) and (2.3), we have

F@"h) = J(@) 2 f(a" 1) = f@) 4+ (d(@"), e - 2"t
— g(ET:L,r,i-l) __y(ETwr,i,) _ (vg(ErTmr,i),ET(wr,i—l _ wr,i»
> o|| BT @ ="
= o|| Bl | — 27 *'f?

BIEEEaS

Lj

> o min{|
i

where the second inequality follows from ET2™ € i*, ETa"*=1 € Y* and (3.3); the last equality follows

from the observation that 2™ and 2"™*=1 differ only in their i~th coordinate and this difference is exactly

@l — 7. Summing the above inequality over all i € {1, ...n} yields (3.7).

By summing (3.7) over all » and using the fact that {f(2")} is bounded from below [cf. Assumption A

(b)], we obtain co > o min; {}|£;]|?} S ll2” — 2"1]%. Q.E.D.
Lenuna 3 combined with Lemma 2 yield the following result:

Lemma 4. The following hold:

(a) {«"*! —2"} —0.

(b) Tor all » sufficiently large, there holds af = I; for all i with df > 0 and &} = ¢; for all i with df < 0.
(b) {2 —[o" —d(2")]*} — 0.

Proof: Part (a) follows from Lemmna 3. To see part (b), note from (3.6) that if df > 0, then for all »
sufficiently large there holds d;(x™*) > 0, which together with the fact ait! = [2I*! — di(x")]F [ef. (2.5),
(3.5)] yiclds «l*! = I; > —0o. A symmetric argument shows that if df < 0, then 2/*! = ¢; < oo for all r
sufficiently large. To see part (c), we note from part (b) and the fact {d(2")} — d* that if &f > 0, then, for
all » sufficiently large, there holds d;(«") > 0 and @] = [;, so that [¢] — d;(2")]} = l; = «7. A symmetric
argument proves the same relation for the case when df < 0. If &f = 0, then {d;(2")} — 0 and we obtain
lef — [ef — di(2")]F| < |di(2")] — 0, where the inequality follows from the nonexpansive property of the

projection operator [JF. Q.E.D.

For each @& € R", let ¢(x) denote the distance from @ to U*, i.e.

: *
) = min |jx —2%|].
#e)= min e - 2"l
The next lemma, which shows that {2"} approaches A™*, follows as a consequence of Lemmas 2 and 4 (h).

Lenuna 5. {¢(z")} — 0.

Proof: By Lemma 4 (b), for all » sufficiently large, 2" satisfies
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el =L ifdf >0, o =¢;ildf <0, 2" €.l.

From (2.2), (2.4), (3.1) and (3.2) we also have that .U* is the solution set of the nonlinear system ETa =

t*, 2 = [z — d*]T or, equivalently, the solution set of the linear system

ETe =1*, a;j=04ild >0, a;=c¢if df <0, ze . (3.8)

By applying Lemma 1 to the above linear system and ", we obtain that there exists, for each r sufficiently

large, a y" € ' satisfyin
g g

lle" — vl < OIET 2" — 2],

where 0 is some constant that depends on E only. Since y" € U'*, this in turn implies ¢(2") < 0)|ET 2" —1*||.

Our claim then follows from Lemma 2. Q.E.D.

Lemma 5 shows that the iterates @™ approach the solution set ™. [This however does not imply that
{a"} converges or is even bounded since 1™ may be unbounded.] The following result, based on the local
strong convexity property of g [cf. (3.3)], shows that the distance from 2" to .I'* is upper bounded by some
constant times [J&"+! — a"||. This is a crucial step which enables us to bound the error in approximating g

by its quadratic expansion around t* in Section 4.

Lemma 6. There exists a constant w > 0 such that |ET 2" — ¢*|| < w|la™+! — 27| for all 7.

The proof of Lemuna 6, which is quite technical, is given in Appendix B.
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4. Convergence Analysis

In this section we use the results developed in Section 3 to prove Theorem L, i.e., the iterates 2" generated
by (2.5) converge to an optimal solution of (). The proof is based on taking a guadratic approximation
of g at t* and then applying the proof technique developed in [LuT89] for the quadratic cost case Lo this
approximate problem. We show that the error in taking the quadratic approximation is small enough so

that it does not affect the convergence of the iterates.

Let M denote the Hessian of f evaluated at any &* € 1'*. By (2.1) and (2.2), we see that

M =V f(x*) = EVig(t*)ET, (4.1)

so that M is independent of &*. We will denote by m;; the (i, j)-th entry of M. Notice that since M is the
Hessian of a convex function, M is symmetric positive semi-definite. Moreover, since E has no zero row and

V2g(t*) is positive definite (cf. Assumption B), there holds m;; > 0 for all i.

By exploiting the symmetric positive sewi-definite property of M, we have the following lemma based
on Lemma 5 in [LuT89]:
Lemma 7. For any J C Z*, there holds Span(Ad; ;) C Span(Myy).

Proof: For each i € J, consider the convex quadratic program

Minimize (@, Mz)

subject to z; =1,2; =0 Vj ¢ J with j # 4.
This problem is clearly feasible and, since M is positive semi-definite, its optimal value is fivite. Then, since
we are dealing with a convex gnadratic program, we have that the Kuhn-Tucker conditions hold, from which
we find M;; € Span(Myy). Since the choice of i ¢ J was arbitrary, this implies Span(Af 77) € Span(Myy).

Q.E.D.

Let B denote the lower triangular portion of M (i.e., the (i,j)-th entry of B is mg; ili > jandis 0
otherwise) and let. ¢! = M — B (so that C' is the strictly upper triangular portion of A7). We claim that

B — (' is positive definite. [To see this, note that since M is symmetric, we have B = D + C7T, where D is

the n x n diagonal matrix whose i-th diagonal entry is m;; > 0, so that (¢, (B — C)z) = («, Da) > 0 for all

@ #0.] Then, since (B, (') is a gplitting of M (see [OrR70]), i.e.,
M=B+C,
we conclude from Lemima 4 in [LuT89) that B and ' have the following contraction properties:

Lemma 8. The following hold:
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(a) For any nonempty J C {1, ...,n}, there exist p; € (0,1) and 77 > 0 such that

(I = Mys(Byg)™ )2\l < 7a(ps)*lzll, VR > 1, ¥z € Span(Myy).

(1) There exists a A > 1 such that, for any nonempty J C {1,...,n},

(I = (Bys)™" Mys)*ell < Allzl], Yk > 1, Ve
Let-

B = max \/ Card(J){(7al(Bss) " MIMasll/(1 = ps) + A+ D|(Bss)~" Byl
+ 7all(Bra) T AL 51/ (L = pa)],
where Card(.J) denotes the cardinality of J. The following lenuna, based on Lemmas 6, 7 and 8, shows that
those coordinates of «” that stay away from the boundary are influenced by the remaining coordinates only
through the distance, scaled by 3, of these remaining coordinates from the boundary. This result allows us

to separate the effect of these two sets of coordinates on each other.

Lemma 9. Consider any J C I*. If for some two integers s > ¢ > 0 we have l; < a < ¢; for all

r=1+1,t+2,..s, then, for any «* € 1™*, there holds

s—-1
ey =3l < Ay =230l + 8 max e = lloo + 1 3 lle” — 2|,

r=t
where y is some positive constant which is independent of s and ¢.
Proof: The claim clearly holds if s = ¢ (since A > 1). Suppose that s > {. Fix any r € {t,....,s — 1} and
any i € J. Since l; < /™! < ¢;, it lollows from the fact [cf. (2.5), (3.5)] ittt = it — di(2™))F that

di(x™") = 0. Since i € I* so that d;(x*) = 0, this implies

0 = di(a™) - di(2*)
= E; (Vg(ETa"') — Vg(ET2*))
= E; (VPg(ETe*)ETa™ — ETa*)) + O(||ET2™ — ET2*||?).
Using the triangle inequality [|ET (x™* — *)[| < |ET (2™ — 27)|| + || ET (2" — 2*)]| and the fact [c[. Lemma
6 and (2.2)] that ||ET (2" — 2*)|| < w|la” — 2"*||, we see that the last term in the above relation is of the
order |[” — &"*+!||2. Thus, we obtain, by using the fact that the j-th component of E;V2g(ET+*)ET is nu; |

[cf. (4.1)], that the above expression can be written as

0= Z mgi (2t — ) + Z myj (] — 27) + O(|Jle” — 2" H1|%).

i<i i>i
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Since our choice of i was arbitrary, the above holds for all i € J, so that in matrix form they can be expressed

as

0= BJ(;B"+1 — ;L’*) + Yy (.’l}r — ;L'*) “+ w;”;l,‘r —_ ;l:r+l”2,

where w’ is some vector whose norm is upper bounded by a constant which is independent of ».

Since B — (' is positive definite, it follows from 2B = M + (B — C') (¢f. M = B + ') and the positive
semi-definite property of M that B is also positive definite. Hence, By, is invertible and, by rearranging

terms in the above expression and using C' = M — B (also see the proof of Lemma 8 in [LuT89]), we obtain
:lfr“,+1 — :L'; = (f - (BJJ)—II‘JJJ)(V.‘IT; —_ 'L;) —_ (BJJ)—IAIJJ'(.‘L‘} — :I?i;-)
- (BJJ)_lBJj(.'zr}+1 — &%) - (Byy)~tw)lla” — 2" 2.

Since the choice of r was arbitrary, the above relation holds for all » € {t, ..., s— 1}, so that, by using Lemmas

7 and 8 and an argument analogous to that used in the proof of Lemma 8 in [LuT89], we obtain

s—1
flo5 — 5| < Alleh — 23|+ 3 E?:a.x } fl2; — &% lco +z I = (Bys)~ My ) ==Y (Byy)~ Yl — 2"+ %
re{t,...,s p—

(I —(Bys)~ M) ¥ (Bsy)~ wh || < A(Bry)~ b |) < A(Bsg)~ Y| - |lwh|] for all k > 1 [cf. Lemma 8

Since |
()], this, together with the fact that ||w}|| is bounded from above by a constant for all r, proves our claim.

Q.E.D.

By using Lemmas 3, 4, 5 and 9, we can now prove Theorem 1, the convergence of {@"}. The idea of the
proof is identical to that used in the proof of Lemma 9 in [LuT89}, that is, to show that those coordinates
of " that are bounded sufficiently far away from the boundary are essentially unaffected by the rest. This
then allows us to treat these coordinates as if they are unconstrained and, by using a certain contraction
property of the algorithmic mapping [cf. Lenuna 8 (a)], to conclude convergence for these coordinates. Some
modifications, albeit small, need to be made to the original proof in [Lu'l'89] to account for the extra error
term Y o7 fla" — 2" *1||? (compare Lemma 9 with Lemma 8 in [LuT89]). We define the following scalars for

the subsequent analysis:

oy = 1,

o A4348+4B+)os14p k=12 .0 (4.2)

1

(Notice that o > 1 for all k£ and is monotonically increasing with k.)

Lemma 10. For any § > 0, there exists an * € 1™ and an 7 > 0 such that
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fla" —a*|| < oné+ 6, Vr > 7

Proof: To simplify the proof, we will assume that ¢; = oo for all i. The case where ¢; < o for some i can
be handled by making a symmetric argument. Furthermore, by using Lemmas 3, 4 (a) and 5, we will, by

taking » sulficiently large il necessary, assume that

d(x") <68, Vr, (4.3a)

™t —2"|| < 8, Vr, (4.3b)

Z leF — 2% < 6, vr. (4.3¢)
k=r

We first have the following lenuna which states that Lemma 10 holds in the special case where the
coordinates that start near the boundary of .U’ remain near the boundary (also assuning that the remaining

coordinates start far from the boundary).

Lemma 11. Fix any k € {1,...,n}. If for some nonempty J C I* and some two integers t' >t we have

xf>li+opb, Vied, (4.4)
el <li+op_16, YigJ, Vr=t,t+1,... ¢ -1, (4.5)

then the following hold:

Vsl o8, Vie J.

(a) x}

(b) There exists an z* € X' such that

" — 2™ |jeo < ok, Vr=tt+1,... ¢ — 1

Proof: let z* be any element of 1'* satisfying ¢(x?) = [|=* — 2*||. Then, we have from (4.3a) that
g

et — o*|| < 6. (4.6)

Also, we have from (4.5) that, for all i € J, &F < a! + ||Jat —a*|| < i + o186 + |J&' — @*||, which together
with (4.6) and the fact @* > [ hmplies that § < f < l; + 016 4+ 6. Since l; < @} < l; + o016 for all
r=t, 1+ 1., — 1 [cf. (4.5)], this in turn implies that

lef —af} <op_16+6, YigINVNr=tt+1,...,¢' — L (4.7)
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Next we prove by induction that, for » = ¢, +1,...,¢ — 1, there holds

wp >lit+op_16+6,  Vield. (4.8)

Eq. (4.8) clearly holds for » =t [cf. (4.4) and 0% > 6—1 + 1]. Suppose that (4.8) holds for r = ¢,t+ 1, ..., s,
for some s € {t,t +1,...,t" — 2}. We will prove that it also holds for » = s + 1. Since I; < &} < ¢; for all

i€ Jandallr=14+1,...5 [cf. (4.8) and ¢; = oo for all i], we have from Lemma 9 that

s—1
a5 — 2% < Aljey — 25| + ﬂrel{lt)axs] I — 2%l + 1t Z fla" — "2,
110t =t

which together with (4.3¢), (4.6) and (4.7) implies

llog — 23| < Aé+ Blor_16+ 8) + pé. (4.9)
Then, we have that, for any i € J,

o 2 el e — 5t
> af = () = 311+ lhe3 — a3l + fles — 25+
>li+opé— (64 |le) — 25|+ 6)
>li+0opd— (04 (Ab+ Bop_186+ 36 + pé) + 6)
=i+ 0p-16+6,
where the strict inequality follows from (4.3b), (4.4), (4.6), and the equality follows from (4.2). This completes
the induction and proves that (4.8) holds for » = ¢,t+ 1,...,t' — 1. Since (4.8) holds for » = ¢, ¢+ 1, ...,¢' — 1,

it can be seen from the arguments above that (4.9) holds for s = ¢,t + 1,....¢' — I, which when combined

with (4.7) (and using the facts > 1 and [|z]|eo < ||z]| for all z) yields

ll2" — &*llco < (A +Box_1+B+p)s, Yr=tt41,..,¢' -1

Since A+ p+ Bo_1 + 3 < oy [cf. (4.2)], this proves part (b). From (4.8) with » = ¢’ — | we have that, for
all i € J,

e |
>l opoyb 6 o7t = 2.

Since |je*'=* — 2!'|| < & [cf. (4.3D)], this proves part (a). Q.E.D.
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The remainder of the proof follows the proof of Lemuna 9 in [LuT89] (cf. Lemma 11 in [LuT89] and the
argument that follows it) and for brevity is omitted here. [The proof in [LuT89] considers the special case

where ; = 0 for all ¢, but the argument used therein readily extends to arbitrary /;’s] Q.E.D.
Now we are coming to the end of our proof of Theorem 1. By Lemma 10, for any ¢ > 0, there exist an
2* € U and an 7 > 0 such that
[le" — a™leo < €/2, ¥r >
Hence, for all 1, ry > #, there holds

fle" — 2|0 < |l2" — 2 ||co + ||2* — 2"|co
<e€/2+c¢/2=¢
This implies that {&"} is a Cauchy sequence so that it converges. By Lemma 5, it converges to an element

of A'*, This completes the proof of Theorem 1.




5. Dual Applications to Quadratic Programming and Entropy Optimization

’

As we noted in Section 1, an important application of the coordinate descent method is to the solution
of problems with strictly convex costs and linear constraints (see for example [BaK79], [BHT87], [BreG7h],
[Clen88], [(oP82], [DaR72], [FriT5], [LaS81], [LiP87], [ScZ87], [Tse88], [TsB87a]). In this section, we consider
a nunmber of such problems, including those that arise in matrix balancing and, more generally, in entropy
optimization. By using Theorem 1, we establish, for the first time, the convergence of the (dual) iterates

generated by a number of known methods for solving these problems.

Consider the following convex program

Minimize l(y)
(5.1)
subject to Ey > b,
where J:R™ — (—o0, ] is a convex function, E is an n x m matrix having no zero row, and b is an n—vector.
(We remark that our results easily extend to problems with both linear equality and inequality constraints.)
We make the following standing assumptions about i and (5.1):

Assumption C.
(a) The conjugate function of i [Roc70] given by

h*(1) = su;p{(t,y) — h(y)}

satisfies (i) Cr« # 0, (ii) A* is strictly convex twice continuously differentiable on Che, (iii) 2*(t) —
as t approaches a boundary point of Cy+, and (iv) VZh*(t) is positive definite for all ¢ in Cj-.
(b) (5.1) has an optimal solution.

(c) (' intersects {y|Ey > b}.

Notice that part (a) of Assumption C implies that (Chr+, h*) is a convex function of the Legendre type, so
that, by Theorem 26.5 in [Roc70], (Cy, h) must also he a convex function of the Legendre type. Part (c)
of Assumiption C is a constraint qualification condition that ensures the existence of an optlimal Lagrange

multiplier vector associated with the constraints Ey > b.

By attaching a non-negative Lagrange multiplier vector p to the constraints Ey > b in (5.1), we obtain

the following dual functional

a(p) = min{h(y) + (p.b ~ £v)}
= —I*(ETp) + (b. p).

The dual problem is then to maximize ¢(p) subject to p > 0 (see [Roc70, Chap. 28]) or, equivalently,
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Minimize k*(ETp) — (b, p)
(5.2)
subject to p > 0.

The problem (5.2) is clearly of the form (P). Moreover, since (5.1) has an optimal solution and
intersects {y|Ey > b} [cf. parts (b) and (c) of Assumption C}, it follows from Theorem 28.2 in [Roc70] that
there exists a lKuhn-Tucker vector associated with the constraints £y > b. By Corollary 28.4.1 in [Roc70],
this vector is also an optimal solution of the dual problem (5.2) and therefore (5.2) has an optimal solution.
This together with part (a) of Assumption C implies that 2* and (5.2) satisly Assumptions A and B, so that,
by Theorvem 1, the iteration (2.5) applied to (5.2) generates iterates that converge to an optimal solution of
(5.2). The optimal solution of (5.1), which is unique since h is strictly convex, can be recovered by using the
fact Vh*(1) = argmaxy, {{{,y) — h(y)} for all ¢ (see [Roc70, Theorem 23.5]) so that, for any optimal solution

p* of (5.2), VR*(ET p*) is the optimal solution of (5.1).

Below we apply the above convergence result to a number of known methods based on solving the dual

program (5.2} using cyclic coordinate descent.

First, consider the special case of (5.1) where h is a strictly convex quadratic function, i.e.,

h(y) = (4, Qu)/2 + (¢, y),

where () is an m x m symmetric positive definite matrix and ¢ is an m—vector. For the above h, its conjugate
function can be verified to be h*(t) = (t — ¢,Q~'(t — q))/2, which clearly satisfies conditions (i)-(iv) of
Assumption C (a). If in addition the set {y|Ey > b} is nonempty, then parts (b) and (c) of Assumption C'
also hold {(5.1) has an optinal solution since it is feasible and h, being in fact strongly convex, has bounded
level sets] and we can conclude that the iterates generated by applying (2.5) to solve this special case of (5.2)
converge to an optimal solution of the problem. (This special case has been treated earlier in [LuT89] in the

more general setting of a matrix splitting algorithm.)

Next, consider the special case of (5.1) where h is the “~log(y)” entropy function, i.e.,

h(y) = { — i1 log(y;) iy >0;
' oG otherwise.

(We can also allow positive weights on the “log(y;)” terms.) In this case, the conjugate function of h can be
verified to be
Ry =1~ Z}":I log(—t;) ift< 0
0 otherwise,
which clearly satisfies conditions (i)—(iv) of Assumption C (a). If in addition, the set {y|Fy > b,y > 0}

is nonempty and bounded!, then it can be shown that parts (b) and (c) of Assumption C' also hold and,

18




once again, we can conclude that the iterates generated by applying (2.5) to solve this special case of (5.2)
converge to an optimal solution of the problem. This result significantly improves upon that obtained in
[CeL87] which only considered the equality constrained case and only showed that the iterates, multiplied

by ET, converge (also see Lemma 2).

Finally, consider the special case of (5.1) where & is the “ylog(y)” entropy funclion, i.e.,

h(y) = { iy yilogly;) ify>0;
o0 otherwise.

m tiel
j=1¢"

In this case, the conjugate function of i can be verified to be the exponential function h*(t) = 3
which clearly satisfies conditions (i)-(iv) of Assumption C (a). If in addition the set {y|Ey > b,y > 0} is
nonempty, then since h has bounded level sets, it can be seen that parts (b) and (c) of Assumption C also
hold and, once again, we can conclude that the iterates gencrated by applying (2.5) to solve this special case
of (5.2) converge to an optimal solution of the problem. As a corollary, we obtain the convergence of the
dual iterates generated by the very popular matrix balancing method of Kruithof [Kru37] (also see [BaKT79],
[BeT89, p. 408], [Bre67a), [ScZ87], [ZeI88]), which is effectively (2.5) applied to the special case of (5.2)
where the non-negativity constraints p > 0 are removed (i.e., the primal problem is an equality constrained
problem) and E is the node-arc incidence matrix for a bipartite graph. Our convergence result for this

method significantly improves upon those obtained previously (see [Bre67a], [LaS81]), which only showed

that the iterates, multiplied by ET, couverge.

1 1t is easily seen that the boundedness of the set {y|Ey > b,y > 0} is necessary to ensure thal the primal

problem has a finite optimal value.
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6. Extensions

We remark that Theorem 1 still holds if the condition “g(t) — oo as t approaches any boundary point

of ;" in Assumption A (a) is replaced by the weaker condition that

e — )
as t approaches any boundary point # of Cy from inside Cy. (Tt can be verified that all of our arguments
go through under this weaker assumption except for the proof of Lemma 2. That Lemma 2 also holds is a
consequence of Proposition 1 in [I'se89].) Functions that satisfy this weaker version of Assumption A (a)

include all separable convex functions of the Legendre type, i.e., functions ¢ of the form

m

gty = gi(t;), (6.2)
j=1

where g; : ® — (—00,00] and (Cy;,g;) is a convex function of the Legendre type. Hence, our results apply
to all functions g of the form (6.2) where each ¢; : 3 — (—o00,00] is strictly convex, twice dillerentiable on
Cy; and satisfies V2g;(t;) > 0 for all t; € Cy;, [Vg;j(t;)] — oo as t; approaches a houndary point of (%y,. A

concrete example of such a g is the negative square root function
-y 71t >0
gy =4 JFi= VG 20
/ o0 otherwise,

which arises in the dual of certain routing problems [BeG87, Chap. 5] and of certain resource allocation
problems [MSTW88]. Another example is the “ylog(y)” entropy function discussed in Section 5. (Notice
that both these example functions are finite at the boundary of their respective effective domains, so that

neither satisfies Assumption A (a).)

It can also be verified that Theorem 1 holds if each ; comprises, instead of a single coordinate, a block

of coordinates, provided that the rows of E corresponding to the coordinates in each block are independent.

Finally, we remark that an extension of the iteration (2.5) to allow under/over-relaxation of the coor-

dinates is also possible. In particular, consider the following iteration

=W 4 (1 —wh)i”,

where & is the n-vector obtained by applying (2.5) to 2", i.e.,

= [57 A7 BT T 2T F
= [.Li —d,,(‘z,l,...,‘n,-,.LiH,...,.Ln)]i , r=1,...,n,
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and w” > 0 is some relaxation factor. [If w” = 1, then the above iteration reduces to (2.5).] Under suitable
restrictions on the w”’s so that a “sufficient” decrease in the objective value is achieved at every iteration,
it can be shown that the iterates generated according to the above iteration still converge to an optimal

solution of (P) (¢f. Theorem 1).
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Appendix A. Proof of Lemuma 2

First, from the strict convexity of g, we can prove the following boundedness property of the level sets

of f:
Lemma A.1. {ETe|e € X, f(2) < ¢} is bounded for all ¢ € %.

Proof: We will argue by contradiction. Suppose that the claim does not hold so that the convex set
{(t,e, Ot = ETw,x € X, f(x) < ¢} in R+ has a direction of recession (v, u,0) satislying v # 0 (see
[Roc70, Theorem 8.3]). Then, v = ETu and, for any x € .V, there holds @ + Au € U and f(z + Au) < f(=)
for all A > 0. Choose z to be an element of 1. Then, there furthermore holds f(x + Au) = f(x) for all
A >0, so that g(ETx + Av)+ (b, 4+ Au) = g(ETx) + (b, ) or, equivalently, g(ET 2 + Av) = g(ETx) — A(b, u)
for all A > 0. Also, since @ is by choice an optimal solution of (P), then ETz is in Cy. Since v # 0, we see
that the relation g(ET 2+ Av) = g(ETx) — A(b, u) contradicts the strict convexity of ¢ on CYy [ef. Assumption

A (a)]. Q.E.D.

Let {2”} be a sequence of iterates generated by (2.5). Let 2™ be given by (3.5) and let

tr,i - ET.’L”'":,
for all » and all i € {0,1,...,n}. Our goal then is to show that {t™} — t* for all 7.

Since f(x™') < f(x™i=1) for all » and all i [cf. (2.6)], we have from the observation a"+! = 2™ g7 = »70

[ef. (3.5)] that

S = fE@) S [T < SFEN) = fa), W (A1)

Hence, {f(x™)} is bounded from above for all i, so that, by Lemma A.l, there holds
(¢} is bounded for all . (A.2)

The next lemma strengthens (.4.2) by showing that both {g(t")} and {(b, 2"")} are hounded for all i.

Lemna A.2. Let {w"} be any infinite sequence of n-vectors € .U such that {f(w”)} is bounded. Then,

both {g(E"w")} and {{b,w")} are bounded for all 7.

Proof: Since {ETw"} is bounded by Lemma A.1, then {g(ETw")} is bounded [rom below. Therefore, if
{9(ETw")} is not bounded, then there must exist a subsequence R of {0, 1, ...} such that {HET W)} — .

This in turn implies (since f(w”) = g(ETw") + (b, w") is bounded) that

{{b,w")}r — —oc. (A.3)
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Let us (by further passing into a subsequence if necessary) assume that, for each i € {1,...,n}, either
{w]'}r is bounded or {|w}|} — occ. Let T denote the set of i’s such that {w]}x is bounded and let # be any

point in V. For each » € R, consider the linear system

ETy=FETw", yy=u] VieI, yedl.

This system is clearly consistent since w” is a solution. By Lemma 1, there exists a solution y” of this system
satislying ||z — y"|| < 0(|JET 2 — ETw"|| + Yicz |8 —wl]), where 6 is a constant depending on E only. Since
the right hand side of the above expression is bounded for all » € R, it follows that {y"}x is also bounded.
Let 2" = w" — y". Then, ET2" =0, 25 =0 for all » € R, and [cf. (4.3)] (b,2") <0 for all » € R sufficiently
large. Moreover, for each i € Z, we have from {|w}|}r — oo that either (i) ¢; = cc and 27 > 0 for all € R
sufficiently large, or (ii) {; = —co and =} < 0 for all » € R sufficiently large. Hence, for any » € R sufficiently
large, 2" is a feasible direction of unbounded cost (i.e., for any @ satisfying [ < & < c and f(x) < oo, we have
[<a+ A" <cforall A>0and f(x+ A:") = g(ETw) + (b2 + A2") = f(ay+ A(d,2") — —oc as A — o).

This contradicts the hypothesis [cf. Assumption A ()] that (P) has an optimal solution. Q.E.D.

Since {f(z™)} is bounded, Lemma A.2 yields that {g(t")} is bounded for all i. Ience, if 1 is
any limit point of {t"}, then we have from the lower semicontinuity property of g [Roc70] that ¢(1>°) <

limsup, {g(t")} < co. Since g is finite only on C, [cf. Assumption A (a)], this implies

every limit point of {t"™} isin Cj, (A4)
for all 7.

By using (4.4), we can prove the following lemma:

Lemma A.3. {"t!' —2"} — 0.

Proof: We will argue by contradiction. If the claim does not hold, then there exist an e > 0, an i € {1,...,n},
and a subsequence R C {0,1,...} such that |ej*" — 27| > ¢ for all » € R. Then, [[t" — 1= = ||| -
lej*t — @f| > ||Eille for all » € R [cf. (3.5)]. Since both {t"} and {t"~1} are bounded by (.4.2), we will
(by further passing into a subsequence if necessary) assume that {t"~!} and {#"'}r converge to, say, ¢/

and (" respectively. Then, t' # t” and, by (A.4), both ¢ and ¢ are in Cj.

Since ¢ and t" are in C; and g is continuous on C, (see [Roc70. Theorem 10.1]), we have that

{g(17)}r — g(t') and {g(t"")}r — g(t") or, equivalently (since f(x) = g(ETz)+ (b, ) for all @),

{{b, 27 "N = [ —g(t'), {(ba")}r — f= —g(t"), (A.5)
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where f° = lim, . f(2") (so that {f(z"%)} — f for all i by (A.1)). Also, for each r € R, since 2™ is
obtained from x™~! by performing a line minimization along the i-th coordinate direction in K" [cf. (2.6)],

the convexity of f then yields

F@) < f(@n 421 /2) = g((0F + 171 /2) + (ba" + 2 /2 < f(eniY), Ve e R,

1

Upon passing into the limit as » — oo, r € R, and using (A4.5) and the continuity of g on 'y, we obtain

Fo S gl +¢)/2) + foo - AERE) ¢ peo,
a contradiction of the strict convexity of g on C'y, ie., g((t' +1")/2) < (g(t') + 9("))/2. Q.E.D.

Fix any i € {0, 1, ...,n}. Since {t™} is bounded by (4.2), it has a limit poiut. Let {™ be any such limit
point and let R be a subsequence of {0, 1,...} such that {t"*}r converges to t*°. By (A.4), t= € C,, so that
g is continuously differentiable in an open set around ¢°°. We show below that ¢t is equal lo the ¢*, which,

since the choice of t*° was arbitrary, would then complete our proof.

First, notice that since {&™7 — 2™} — 0 for all j (c[. Lemma A.3), we have {t"7 —¢"'} — 0 for all j,

so that

{t"}g — 1%, Vj. (A.6)

Let d°° = EVg(t®°)+b. Then, since ¢ is continuously differentiable in an open set around ¢, we obtain from
(A.6) (and using d(x™7) = EVg(t"7) + b) that {d(2"7)}r — d* for all j. Since az;"“ = [;c}'“ —dj(a™ )];+
for all » € R and all j [cl. (2.5), (3.5)], this implies

{:lt;f"'l}yg =i >—00 ifd{° >0,
{:L';+1}R —e¢ <oo i d® <0.

For each r € R, consider the linear system

ETg =¢+ ;= ;v;-'“ Vi with d5° #£0, ze.l.

This system is clearly consistent since 2" +! is a solution. Fix any point Z in V. By Lemma 1, for every r € R
there exists a solution y” of the above system satisfying ||z — y"|| < 0(||ET& — "+ + Zd;ﬂ 20 18 — i),
where 6 is a constant depending on E only. Since the right hand side of the above expression is bounded
for all » € R, il follows that {y"}r is also bounded. Then, every limit point of {y"}r, say y*°, satisfies [cf.

(A.6), (A7)
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,T7oo:<,\3
ETy =t°, y®=1; ifdP>0, y®*=¢ i
P50, =g MdE<0, yUer

Since I y t = -
S Ty =1 g0 that d(y>) ’ + e
= EVg(L* = d*° © © oo+
( ) b d s the above relation then yields Yy [
Yields Yy (l(y )] .

Hence, by (£ i
e, by (2.4), y*™ is in U
(2.4), y*° is in U'* and we obtain from (2.2) tl o
2) that ¢t = ETy™ = ¢*,

[
<t




Appendix B. Proof of Lemma 6

To siinplify the proof, we will assume that ¢; = oo for all i. (The case where some of the ¢;’s are finite
can be treated by making a symmetric argument). Let {«"} be a sequence of iterates generated by (2.5) and

let 2™ be given by (3.5). First, we have from Lenima 2 that

{ETa"'} = t*, Vi, (B.la)

and from (3.6) that

{d(x™)} — d*, Vi. (B.1b)
Since ¢; = oo for all ¢ so that * > 0, we have from Lemma 4 (b) that there exists an 79 > 0 such that
af =, VigI*, Vr>rp. (B.2)

Consider an arbitrary (possibly empty) subset Z of {1,...,n} and let R denote the set of indices r > ry

for which

di(z™) =0 Viel,

di(z") >0 VigI. (B.3)
We will show that there exists a constant wz > 0 such that
|ETa" —1*|) < wrlla” — &™+Y|), VreR. (B.4)

Then, since every r € {ro,r0 + 1, ..., } belongs to an R corresponding to some Z and the number of distinct

I’s is finite, we would immediately have that

|IET2" —t*|| < mlawaH;v" —a"|, Ve >,

and Lenuna 6 would be proven. Hence, it remains ouly to show that (B.4) holds for an arbitrary Z.

Fix any subset Z of {1,...,n} and let R denote the corresponding index set. (i.e., (B3.2),(B.3) hold for
all r € R). If R is empty or finite, then (B.4) holds trivially. Hence, in what follows we will assume that R

is infinite. Then, we have from (B.3) and the fact @it = [oI ! — d;i(2")]F [cf. (2.5). (3.5)] that
;U}-*-l = I]:" vr e R (B5)

We next have the following lennna.
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Lenuna B.1 There exist k1 > 0 and y" € ™, [or all » € R, such that

vy =1z, ) (B.6a)
ly" — 2"l < ki(IET2" — ¢ )| + [l — 27))). , (B.6b)

Proof: First, we argue that the linear system

y; =13, yeA™. (B.T)

is consistent. To see this, for every » € R, let £ be the element in U'* attaining [|z" — £"|| = ¢(2"). By
(B.5), we have ;v,’Jl',"'l = I3 so that &} = (£} - .L’I) + (2} — ar}"’l) + ;. Since {£" —a"}r — 0 (c¢f. Lemma 5)
and {2" —2"t1} — 0 [c[. Lenma 4 (a)], this yields {€3}r — I} so that there exist elements of . that come
arbitrarily close to the affine space {y | yz = {3}. Since both U* and {y | y; = {3} are polyhedral sets [[U*
is polyhedral by (3.8)], this shows that they must make a nonempty intersection. In other words, the linear

system (B.7) has a nonempty solution set.

It can be seen from (2.1) and (2.2) that, for each » € R, (B.7) has the same solution set as the following

linear system

yr =1z, ETy=t*, (hy)=v", yel, (B.7)

where v* = ( optimal value of (P)) — g(¢*). Since & € .V, then, by Lemma 1, there exists a solution y" to

BT (ie., ¥t =13, y" € X*) satisfying
. T s

" — "l < 0l = 1+ NET2" — ) + (b, 2") — v*])
= 0(lle — 27+ 1B 2 — 7] + |(b, 2" — y7)]),
where @ is a constant depending on £ and b only and the equality follows from (B.5). Ilence, to conplete
our proof, it suffices to show that (b, 2" — y"})| is upper bounded by some constant times ||EZ 2" —t*||. Now,
we have {rom (B.2) that @] =1; for all i € 7%, so that (also using y/ = {; for all i & T*) af — y! = 0 for all

i ¢ I*. Also, we have from (3.2) that 0 = d%. = Ez.Vg(t*) + bz-. Combining these two facts yields
(b,2" —y") = (bze, 27 — y7.)
= —(Er-Vy(t"), 27« — yz.)
= —(EVg(t*).x" — y")
= —(Vg(t*), ETa" —t*).
Hence, [(b,z" — y")| < IVg(t)INET 2" — ¢*]]. Q.E.D.
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Corollary B.1 Let y" be given by Lemuma B.1. Then,

vz — 2zl < &l Bl (le™ = 2"l + 1(E2) T (27 = y7)ll) . VreR.

Proof: Simply note that |ly} —a%|| < [ly"—2"|| and that [cf. (B.5), (B.6a)] [[(Ez)T (2} —y})|| = NEDT (-

Y < NEN=" - 2™+]|. Q.E.D.
In addition to Corollary B.1, we have the following technical lemma:

Lemma B.2 Let y” be given by Lemuna B.1. Then, there exist constants k5 > 0 and r; such that

ldz (") 2 NEzVg(ET2") = ExVy ((Ex)"y; + (E5)T %) | - wal Bl — ], (B.8)

forall reR, »>ry.
Proof: Since {d(x"%)} — d* [cf. (B.1b)], we have from (B.3) that df = 0 for all i € Z. Then, di(y") =0 for
all i € T [cf. (3.1)], and we have from (2.3) and the triangle inequality that

lldz (2" )| = lldz (") = dz (")l
= |ErVg(ETe") — ExVg(ETy")||
> |ErVg(ET2") - ExVg (Er) y; + (Ep)Ta%) ||

—1EzVg ((Er)"y; + (Ez)Ta}) — ErVg(ETy")|l. (B.9)

Let. i* be the neighborhood around * given in (3.3). Then, g is twice differentiable on #/* [¢f. Assumption

A (a)] so that Vg is Lipschitz continuous on U*, i.e., there exists a constant k3 > 0 such that

IVa(z) = Vo)l < r2llz = oll, Yz € U™, Yy e U™ (B.10)

Now, since ETy" = t* for all » € R, then clearly ETy" € U* for all » € R. Also, since ;n?’l =y [of. (B.5),
(B.6a)] so that ((Er)Ty; + (Ef‘)T;v%) —ETy" = (E'Z)T(;vg - x';l) —0asr— o0, r€R [cf. Lemma 4 (a)],
we have (hat (EI)Tyf + (L3 )T.'L‘g, € U” for all » € R, » > some ry. Hence, for any r € R such that » > rq,
(B.10) holds with z = (EI)Ty’I' + (Ef)T:L‘% and y = ETy". Using this to bound the last term in (B.9) then
vields (B.8). Q.E.D.

By combining Corollary B.1 with Lemma B.2, we can now prove that (B.4) holds.
Lemma B.3 There exists an wz > 0 such that [|[ET2" — ¢*|| < wr|jx™! — || for all » € R.

28




Proof: Let ry be given by Lemma B.2. Since {ET2™} — t* for all i [ef. (B.1a)], there exists an rs > r,
such that ET¢™% € Y* for all i and all » € R with » > ry. Fix any » € R with » > r5. Then, for any i € T,
we have from (B.3), (2.3), (B.10) and ET2"# € 14* that
|di(2")| = |di(2") — di(x""))
= |E;Vyg(ET2") — E;Vg(ET2")|
< mall BIP e — &)
< mall B je” — &),

so that

ldz (")l < wanl B le™ " — 27]].

Let y" be given by Lemma B.1l. Then, the above relation together with Lemma B.2 yields

wan| Bl ||+ = 27| > “EIV‘([(ET&?T) - E’IV(/((EZ)Ty} + (Ej)T;B})” - Iczl]E”z”:v% - yil- (B.11)

Since " € U* and y" € U*, by the strong convexity of g on i* [cf. (3.4)], we have

20((E2)" (2% — yp)I” < ((Bx)" (2% — v3), Va(ET2") - Vo((Er)T v} + (Bp)T2})),
< |ly — y5ll - |EVg(ET2") — ErVg((Er)Tyy + (E5)T e},

where the second inequality follows from the Cauchy-Schwartz inequality. By using (B.11) to bound the

right hand side of the above expression, we then obtain

20|[(Ep)" (2 = ypIP < Mo — gzl (ronll EIPfle™ = 27| + mal| BN (|2} — w311)
< Moz = yzll (Ranll EIP (e — 2" || + w2 ENP [l — 27)))
< waka(n + DIEIE (e = 2"l + W E2)T (2% — yDI) - fle™+ — 27,
where the second inequality follows from y; = arrr“ [ef. (B.5), (B.6a)] and the last inequality follows

from Corollary B.1. Thus, when we view the above expression as a quadratic inequality in the variable
, {

ED)T (2 — yp)ll/]Je™*t — &7||, we see that

WEzD)" (27 — yp)ll < g™t — 2], (B.12)

for some constant k3 > 0 independent of »r.
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Finally, we notice from the fact y; = :v%'” [cf. (B.5), (B.6a)] that

NEDT (@ —wpll = B (2} =25 DI < NENle* =2 |l.

Jombining the above relation with (/3.12) yields

IET" — ) =[BT =yl < (ra+ (B — o7

Since the choice of » € R, r > ry was arbitrary, this completes our proof. Q.E.D.
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