
October 1990 (revised February 1991) LIDS - P - 2000

An Auction Algorithm for Shortest Pathsi

by

Dimitri P. Bertsekas2

Abstract

We propose a new and simple algorithm for finding shortest paths in a directed graph. In the single

origin/single destination case, the algorithm maintains a single path starting at the origin, which is extended

or contracted by a single node at each iteration. Simultaneously, at most one dual variable is adjusted at each

iteration so as to either improve or maintain the value of a dual function. For the case of multiple origins,

the algorithm is well suited for parallel computation. It maintains multiple paths that can be extended or

contracted in parallel by several processors that share the results of their computations. Based on experiments

with randomly generated problems on a serial machine, the algorithm outperforms substantially its closest

competitors for problems with few origins and a single destination. It also seems better suited for parallel

computation than other shortest path algorithms.

1 Research supported by NSF under Grant No. DDM-8903385 and by the ARO under Grant DAAL03-86-

K-0171.

2 Laboratory for Information and Decision Systems, M.I.T, Cambridge, Mass. 02139.

1

1. Introduction

1. INTRODUCTION

In this paper we propose a new algorithm for finding shortest paths in a directed graph (KJ, A).

For the single origin and single destination case, our algorithm is very simple. It maintains a single

path starting at the origin. At each iteration, the path is either extended by adding a new node, or

contracted by deleting its terminal node. When the destination becomes the terminal node of the

path, the algorithm terminates.

To get an intuitive sense of the algorithm, think of a mouse moving in a graph-like maze, trying

to reach a destination. The mouse criss-crosses the maze, either advancing or backtracking along its

current path. Each time the mouse backtracks from a node, it records a measure of the desirability

of revisiting and advancing from that node in the future (this will be represented by a price variable

- see Section 2). The mouse revisits and proceeds forward from a node when the node's measure of

desirability is judged superior to those of other nodes. Our algorithm emulates efficiently this mouse

search process using simple data structures.

In a parallel computing environment, the problem of multiple origins with a single destination

can be solved by running in parallel a separate version of the algorithm for each origin. However, the

different parallel versions can help each other by sharing the interim results of their computations,

thereby substantially enhancing the algorithm's performance. The recent MS thesis [Pol91] discusses

a number of parallel asynchronous implementations of our algorithm, and reports on simulations

suggesting a significant speedup potential. Generally, our algorithm seems better suited for parallel

computation than all of its competitors.

The practical performance of the algorithm and its numerous variations remain to be fully in-

vestigated, particularly using parallel machines. Preliminary experimental results with randomly

generated problems on a serial machine, and a comparison with the state-of-the-art shortest path

codes of Gallo and Pallotino [GaP88] have been very encouraging. In particular, a code implement-

ing one version of our algorithm outperforms by a large margin its closest competitors for the case

of few origins and one destination; see Section 7. In a parallel computing environment, the relative

advantage of our algorithm should increase, but this remains to be verified in future work.

The worst case running time of the algorithm is pseudopolynomial; it depends on the shortest

path lengths. This in itself is not necessarily bad. Dial's algorithm (see [Dia69], [DGK79], [AM089],

[GaP88]) is also pseudopolynomial, yet its running time in practice is excellent, particularly for

a small range of arc lengths. Another popular method, the D'Esopo-Pape algorithm [Pap74], has

exponential worst case running time [Ker81], [ShW81], yet it performs very well in practice [DGK79],

2

2. Algorithm Description and Analysis

[GaP88]. Nonetheless, under mild conditions, our algorithm can be turned into a polynomial one

by using the device of arc length scaling. However, in our computational experiments, this scaling

device was entirely unnecessary, and in fact, degraded the algorithm's performance.

To place our algorithm in perspective, we note that shortest path methods are traditionally

divided in two categories, label setting (Dijkstra-like) and label correcting (Bellman-Ford-like); see

the surveys given in [AM089], [GaP86], [GaP88], and the references quoted there. Our algorithm

shares features from both types of algorithms. It resembles label setting algorithms in that the

shortest distance of a node is found at the first time the node is labeled (becomes the terminal node

of the path in our case). It resembles label correcting algorithms in that the label of a node may

continue to be updated after its shortest distance is found.

As we explain in Section 6, our method may be viewed as a dual coordinate ascent or relaxation

method. In reality, the inspiration for the algorithm came from the author's auction and c-relaxation

methods [Ber79], [Ber86] (extensive descriptions of these mehods can be found in [Ber88], [BeE88],

[BeT89], and [Ber90]). If one applies the e-relaxation method for a minimum cost flow formulation

of the shortest path problem (see Section 6), but with the important difference that c = 0, then one

obtains an algorithm which is very similar to the one provided here.

Our algorithm may also be viewed as a special case of the so called naive auction algorithm,

applied to a special type of assignment problem, which is derived from the shortest path problem

(see e.g. [Law76], p. 186). The naive auction algorithm, first proposed by the author in [Ber81]

as part of the relaxation method for the assignment problem, and also discussed more recently in

the tutorial paper [Ber90O], is the same as the auction algorithm, except that the parameter e that

controls the accuracy of the solution is set to zero. The naive auction algorithm is not guaranteed

to solve general assignment problems, and is primarily useful as an initialization method for other

assignment algorithms such as relaxation (as described in [Ber81]) or sequential shortest path (as

described in [JoV87]). Nonetheless, it is guaranteed to solve the special type of assignment problem,

which is relevant to the shortest path context of the present paper.

The paper is organized as follows: In Section 2, we describe the basic algorithm for the single

origin case and we prove its basic properties. In Section 3, we develop the polynomial version

of the algorithm using arc length scaling. In Section 4, we describe various ways to improve the

performance of the algorithm. In Section 5, we consider the multiple origin case and we discuss how

the algorithm can take advantage of a parallel computing environment. In Section 6, we derive the

connection with duality and we show that the algorithm may be viewed both as a naive auction

algorithm and as a coordinate ascent (or Gauss-Seidel relaxation) method for maximizing a certain

dual cost function. Finally, Section 7 contains computational results.

3

2. Algorithm Description and Analysis

2. ALGORITHM DESCRIPTION AND ANALYSIS

WVe describe the algorithm in its simplest form for the single origin and single destination case,

and we defer the discussion of other and more efficient versions for subsequent sections. Our main

assumption is that all cycles have positive length, although we will see shortly that the initialization

of the algorithm is greatly simplified if, in addition, all arc lengths are nonnegative.

To simplify the presentation, we will also assume that each node except for the destination has

at least one outgoing incident arc; any node not satisfying this condition can be connected to the

destination with a very high length arc without changing materially the problem and the subsequent

algorithm. We also assume that there is at most one arc between two nodes in each direction, so

that we can unambiguously refer to an arc (i, j). Again, this assumption is made for notational

convenience; our algorithm can be trivially extended to the case where there are multiple arcs

connecting a pair of nodes.

Let node 1 be the origin node and let t be the destination node. In the following, by a path we

mean a sequence of nodes (il, i2 ,..., ik) such that (im, im+l) is an arc for all m = 1,..., k - 1. If in

addition the nodes il, i 2,..., ik are distinct, the sequence (il, i2,..., i*) is called a simple path. The

length of a path is defined to be the sum of its arc lengths.

The algorithm maintains at all times a simple path P = (1, il, i2,..., ik). The node ik is called

the terminal node of P. The degenerate path P = (1) may also be obtained in the course of the

algorithm. If ik+l is a node that does not belong to a path P = (1, il, i2 , .. ., ik) and (ik, ik+l) is an

arc, extending P by ik+l means replacing P by the path (1, il, i2 , ... , ik, ik+l), called the extension

of P by ik+l. If P does not consist of just the origin node 1, contracting P means replacing P with

the path (1, il, i 2,..., ik-l).

The algorithm also maintains a variable pi for each node i (called price of i) such that

pi < aij +Pj, V (i, j) E A, (la)

pi = aij + pj, for all pairs of successive nodes i and j of P. (lb)

We denote by p the vector of prices pi. A pair (P, p) consisting of a simple path P and a price vector

p, that satisfies the above conditions is said to satisfy complementary slackness (or CS for short).

[When we say that a pair (P, p) satisfies the CS conditions, we implicitly assume that P is simple.]

The CS terminology is motivated by a formulation of the shortest path problem as a linear mini-

mum cost flow problem; see Section 6. In this formulation, the prices pi can be viewed as the variables

of a problem which is dual in the usual linear programming duality sense. The complementary slack-

ness conditions for optimality of the primal and dual variables can be shown to be equivalent to the

4

2. Algorithm Description and Analysis

conditions (1). For the moment, however, we ignore the linear programming context, and we simply

note that if a pair (P, p) satisfies the CS conditions, then the portion of P between node 1 and any

node i E P is a shortest path from 1 to i, while pl - pi is the corresponding shortest distance. To

see this, observe that by Eq. (lb), pl - pi is the length of the portion of P between 1 and i, and by

Eq. (la) every path connecting 1 and i must have length at least equal to P, - Pi.

We will assume that an initial pair (P,p) satisfying CS is available. This is not a restrictive

assumption when all arc lengths are nonnegative, since then one can use the default pair

P=(1), pi =O, Vi.

When some arcs have negative lengths, an initial choice of a pair (P,p) satisfying CS may not be

obvious or available, but Section 4 provides a general method for finding such a pair.

We now describe the algorithm. Initially, (P, p) is any pair satisfying CS. The algorithm proceeds

in iterations, transforming a pair (P, p) satisfying CS into another pair satisfying CS. At each itera-

tion, the path P is either extended by a new node or else is contracted by deleting its terminal node.

In the latter case the price of the terminal node is increased strictly. A degenerate case occurs when

the path consists by just the origin node 1; in this case the path is either extended, or else is left

unchanged with the price P1 being strictly increased. The iteration is as follows:

Typical Iteration

Let i be the terminal node of P. If

pi < min faij +pj}, (2)
(i~/)E.A

go to Step 1; else go to Step 2.

Step 1: (Contract path) Set

Pi := min aj +pi), (3)
(ij)EA

and if i i 1, contract P. Go to the next iteration.

Step 2: (Extend path) Extend P by node ji where

ji = arg min {ai + pj }. (4)
(i0)EA

If ji is the destination t, stop; P is the desired shortest path. Otherwise, go to the next iteration.

It can be seen that following the extension Step 2, P is a simple path from 1 to ji. Indeed if this

were not so, then adding ji to P would create a cycle, and for every arc (i, j) of this cycle we would

have Pi = aij +pi. Thus, the cycle would have zero length, which is not possible by our assumptions.

5

2. Algorithm Description and Analysis

p2 =2

P2 = =

Origin Destination

P3=2

Shortest path problem with arc Trajectory of terminal node
lengths as shown and final prices generated by

the algorithm

Iteration # Path P Price vector p Type of action

prior to the iteration prior to the iteration during the iteration

1 (1) (0, 0, 0, 0) contraction at 1

2 (1) (1,0, 0, 0) extension to 2

3 (1,2) (1, 0, 0) contraction at 2

4 (1) (1,2,0,0) contraction at 1

5 (1) (2,2,0,0) extension to 3

6 (1, 3) (2, 2, 0, 0) contraction at 3

7 (1) (2,2, 2, 0) contraction at 1

8 (1) (3, 2, 2, 0) extension to 2

9 (1,2) (3,2,2, 0) extension to 4

10 (1,2,4) (3,2,2,0) stop

Figure 1: An example illustrating the algorithm starting with P = (1) and p = 0.

Figure 1 provides an example of the operation of the algorithm. In this example, the terminal

node traces the tree of shortest paths from the origin to the nodes that are closer to the origin than

the given destination. We will see that this behavior is typical when the initial prices are all zero.

Proposition 1: The pairs (P,p) generated by the algorithm satisfy CS. Furthermore, for every

pair of nodes i and j, and at all iterations, pi -pi is an underestimate of the shortest distance from

i to j.

6

2. Algorithm Description and Analysis

Proof: We first show by induction that (P,p) satisfies CS. Indeed, the initial pair satisfies CS by

assumption. Consider an iteration that starts with a pair (P,p) satisfying CS and produces a pair

(P,1). Let i be the terminal node of P. If

Pi = rmin {aij + pj}, (5)
(ij)EA

then P is the extension of P by a node ji and p = p, implying that the CS condition (lb) holds for

all arcs of P as well as arc (i, ji) (since j, attains the minimum in Eq. (5); cf. condition (4)).

Suppose next that

pi < minai + pj}.
(ij)e.A

Then if P is the degenerate path (1), the CS condition holds vacuously. Otherwise, P is obtained

by contracting P, and for all nodes j E P, we have pj = pj, implying conditions (la) and (lb) for

arcs outgoing from nodes of P. Also, for the terminal node i, we have

Pi = min {aij + pj},
(i,j)E.A

implying condition (la) for arcs outgoing from that node as well. Finally, since Pi > pi and Pk = Pk

for all k y i, we have Pk < akj + pj for all arcs (k, j) outgoing from nodes k B P. This completes

the induction proof.

Finally consider any path from a node i to a node j. By adding the the CS condition (la) along

the path, we see that the length of the path starting is at least Pi - pj, proving the last assertion of

the proposition. Q.E.D.

Proposition 2: If P is a path generated by the algorithm, then P is a shortest path from the

origin to the terminal node of P.

Proof: This follows from the CS property of the pair (P,p) shown in Prop. 1; see the remarks

following the CS conditions (1). Furthermore, by the CS condition (la), every path connecting 1

and i must have length at least equal to pl - Pi. Q.E.D.

Interpretation of the Algorithm

The preceding propositions can be used to provide an intuitive interpretation of the algorithm.

Denote for each node i,

Di = shortest distance from the origin 1 to node i, (6)

7

2. Algorithm Description and Analysis

with D1 = 0 by convention. By Prop. 1, we have throughout the course of the algorithm,

pi -pj < Dj, ji E A,

while by Prop. 2, we have

Pl -Pi = Di, for all i in P.

It follows that

Di + pi-pi < Dj + pj- p, ViEP, and j E Af.

Since by Prop. 1, pi -pi is an estimate of the shortest distance from i to t, we may view the quantity

Dj + pj - pi

as an estimate of the shortest distance from 1 to t using only paths passing through j. Thus,

intuitively, it makes sense to consider a node j as "eligible" for inclusion in the algorithm's path

only if Dj + pj - pi is minimal.

Based on the preceding interpretation, it can be seen that:

(a) The algorithm maintains a path consisting of "eligible" candidates for participation in a

shortest path from 1 to t.

(b) The algorithm extends P by a node j if and only if j is an "eligible" candidate.

(c) The algorithm contracts P if the terminal node i has no neighbor which is "eligible". Then,

the estimate of i's shortest distance to t is improved (i.e., is increased), and i becomes

"ineligible" (since Di + pi - pi is not minimal anymore), thus justifying its deletion from P.

Node i will be revisited only after Di +pi -pi becomes again minimal, following sufficiently

large increases of the prices of the currently "eligible" nodes.

The preceding interpretation suggests also that the nodes become terminal for the first time in

the order of the initial values Dj + pj - p, where

pO = initial price of node i. (7)

To formulate this property, denote for every node i,

d, = D. + p0. (8)

Let us index the iterations by 1,2,..., and let

ki = the first iteration index at which node i becomes a terminal node, (9)

8

2. Algorithm Description and Analysis

where by convention, kl = 0 and ki = oo if i never becomes a terminal node.

Proposition 3:

(a) At the end of iteration ki we have pl = di.

(b) If ki < kj, then di < dj.

Proof: (a) At the end of iteration ki, P is a shortest path from 1 to i by Prop. 2, while the length

of P is pi - pp.

(b) By part (a), at the end of iteration ki, we have P1 = di, while at the end of iteration kj, we

have pl = dj. Since pi is monotonically nondecreasing during the algorithm and ki < kj, the result

follows. Q.E.D.

Note that the preceding proposition shows that when all arc lengths are nonnegative, and the

default initialization p = 0 is used, the nodes become terminal for the first time in the order of their

proximity to the origin.

Termination - Running Time of the Algorithm

The following proposition establishes the validity of the algorithm.

Proposition 4: If there exists at least one path from the origin to the destination, the algorithm

terminates with a shortest path from the origin to the destination. Otherwise the algorithm never

terminates and pi -- oo.

Proof: Assume first that there is a path from node 1 to the destination t. Since by Prop. 1, pi -pi

is an underestimate of the (finite) shortest distance from 1 to t, pl is monotonically nondecreasing,

and pi is fixed throughout the algorithm, pl must stay bounded. We next claim that pi must stay

bounded for all i. Indeed, in order to have pi -- 0oo, node i must become the terminal node of P

infinitely often, implying (by Prop. 1) that pi -pi must be equal to the shortest distance from 1 to

i infinitely often, which is a contradiction since pl is bounded.

We next show that the algorithm terminates finitely. Indeed, it can be seen with a straightforward

induction argument that for every node i, pi is either equal to its initial value, or else it is the length

of some path starting at i plus the initial price of the final node of the path; we call this the modified

length of the path. Every path from 1 to i can be decomposed into a simple path together with a finite

number of cycles, each having positive length by assumption, so the number of distinct modified

path lengths within any bounded interval is bounded. Now pi was shown earlier to be bounded,

9

2. Algorithm Description and Analysis

and each time i becomes the terminal node by extension of the path P, pi is strictly larger over the

preceding time i became the terminal node of P, corresponding to a strictly larger modified path

length. It follows that the number of times i can become a terminal node by extension of the path

P is bounded. Since the number of path contractions between two consecutive path extensions is

bounded by the number of nodes in the graph, the number of iterations of the algorithm is bounded,

implying that the algorithm terminates finitely.

Assume now that there is no path from node 1 to the destination. Then, the algorithm will never

terminate, so by the preceding argument, some node i will become the terminal node by extension

of the path P infinitely often and pi -+ oo. At the end of iterations where this happens, Pl - pi must

be equal to the shortest distance from 1 to i, implying that pi -+ oo. Q.E.D.

We will now estimate the running time of the algorithm, assuming that all the arc lengths and

initial prices are integer. Our estimate involves the set of nodes

= {i I di < d}; (10)

by Prop. 3, these are the only nodes that ever become terminal nodes of the paths generated by the

algorithm. Let us denote

I = number of nodes in I, (11)

G = maximum out-degree (number of outgoing arcs) over the nodes in I, (12)

and let us also denote by E the product

E=I-G. (12)

Proposition 5: Assume that there exists at least one path from the origin 1 to the destination

t, and that the arc lengths and initial prices are all integer. The worst case running time of the

algorithm is 0 (E (Di + pO)).

Proof: Each time a node i becomes the terminal node of the path, we have pi = pl - Di (cf. Prop.

2). Since at all times we have pi < Dt + pj0 (cf. Prop. 1), it follows that

Pi = P - D < Di + pO Di,

and using the definitions d4 = Di + p0 and di = D. + p0, and the fact di > d1 (cf. Prop. 3), we see

that throughout the algorithm, we have

pi - p[< di -di < di -di = D, + pO - po, V i E I. (13)

10

3. Are Length Scaling

Therefore, since prices increase by integer amounts, Di + p0 - p0 + 1 bounds the number of times

that pi increases (with an attendant path contraction if i 0 1). Since the computation per iteration

is bounded by a constant multiple of the out-degree of the terminal node of the path, we see that

the computation corresponding to contractions and price increases is O (E(Di + pO - pO)).

The number of path extensions with i E I becoming the terminal node of the path is bounded by

the number of increases of pi, which in turn is bounded by Di + p0 - p0 + 1. Thus the computation

corresponding to extensions is also O (E(Di + po - pO)). Q.E.D.

Note that we have Di < hL, where

L = max aai, (14)
(ij)EA

h = minimum number of arcs in a shortest path from 1 to t. (15)

Then in the special case where all arc lengths are nonnegative, and for the default price vector p = 0,

Prop. 5 yields the running time estimate

O(EhL). (16)

As the preceding estimate suggests, the running time can depend on L, as illustrated in Fig. 2

for a graph involving a cycle with relatively small length. This is the same type of graph for which

the Bellman-Ford method starting with the zero initial conditions performs poorly (see [BeT89], p.

298).

In the next section we will modify the algorithm to improve its complexity. However, we believe

that the estimate of Prop. 5 is far from representative of the algorithm's "average" performance.

For randomly generated problems, it appears that the number of iterations can be estimated quite

reliably (within a small constant factor) by

n - 1 + E (2ni-1),
iEI,jti

where ni is the number of nodes in a shortest path from 1 to i; for example, for the problem of Fig.

1, the above estimate is exact.

The Case of Multiple Destinations

We finally note that when there is a single origin and multiple destinations, the algorithm can be

applied with virtually no change. We simply stop the algorithm when all destinations have become

the terminal node of the path P at least once. If initially we choose Pi = 0 for all i, the destinations

will be reached in the order of their proximity to the origin, as shown by Prop. 3. We also note that

the algorithm can be similarly applied to a problem with multiple origins and a single destination,

by first reversing the roles of origins and destinations, and the direction of each arc.

3. Arc Length Scaling

Origin Destination

Figure 2: Example graph for which the number of iterations of the algorithm is not polynomially

bounded. The lengths are shown next to the arcs and L > 1. By tracing the steps of the algorithm starting

with P = (1) and p = 0, we see that the price of node 3 will be first increased by 1 and then it will be

increased by increments of 3 (the length of the cycle) as many times as necessary for p3 to reach or exceed

L.

3. ARC LENGTH SCALING

Throughout this section (and only this section) we will assume that all arc lengths are nonnegative.

We introduce a version of the algorithm where the shortest path problem is solved several times,

each time with different arc lengths and starting prices. Let

K = LlogLJ + 1 (17)

and for k= 1,..., K, define

aj.(k)= 2a'JI V (i,j) EA. (18)

Note that aji(k) is the integer consisting of the k most significant bits in the K-bit binary represen-

tation of aij. Define

k = min{k > 1 I each cycle has positive length}. (19)

The following algorithm is predicated on the assumption that k is a small integer that does not grow

beyond a certain bound as K increases. This is true for many problem types; for example when the

graph is acyclic, in which case k = 1. For the case where this is not so, a slightly different arc length

scaling procedure can be used; see the next section.

The scaled version of the algorithm solves K - k+ 1 shortest path problems, called subproblems.

The arc lengths for subproblem k, k = k,..., K, are a,j(k) and the starting prices are obtained by

doubling the final prices p?(k) of the previous subproblem

pO(k + 1) = 2p(k), V i E XA, (20)

12

3. Arc Length Scaling

except for the first subproblem (k = k), where we take

p(k) = 0, V i E .

Note that we have aqj(K) = aij for all (i, j), and the last subproblem is equivalent to the original.

Since the length of a cycle with respect to arc lengths aij(k) is positive (by the definition of k) and

from the definition (18), we have

0 < aij(k + 1)- 2aij(k) < 1, V (i,j) E A, (21)

it follows that cycles have positive length for each subproblem. Furthermore, in view of Eq. (21),

and the doubling of the prices at the end of each subproblem (cf. Eq. (20)), the CS condition

p°(k + 1) < p(k + 1) + aj(k + 1), V (i,j) E A (22)

is satisfied at the start of subproblem k + 1, since it is satisfied by p,(k) at the end of subproblem

k. Therefore, the algorithm of the preceding section can be used to solve all the subproblems.

Let DI (k) be the shortest distance from 1 to t for subproblem k and let

h(k) = the number of arcs in the final path from 1 to t in subproblem k. (23)

It can be seen using Eq. (21) that

DI(k + 1) < 2DI(k) + h(k),

and in view of Eq. (20), we obtain

Dj(k + 1) < 2(p;(k) - p;(k)) + h(k) = p,(k + 1) - pt°(k + 1) + h(k).

Using Prop. 5 it follows that the running time of the algorithm for subproblem k, k = k + 1,..., K,

is

O(E(k)h(k)), (24)

where E(k) is the number of the form (12) corresponding to subproblem k. The running time of the

algorithm for subproblem k is

O(E(-k)D,(-k)), (25)

where DI(k) is the shortest distance from 1 to t corresponding to the lengths aij(k). Since

aj(k) < 2k,

we have

Di(k) < 2kh(k). (26)

13

4. Efficient Implementation

Adding over all k = k,..., K, we see that the running time of the scaled version of the algorithm is

(2E(k)h(k + E(k)h(k)) (27)

Assuming that k is bounded as L increases, the above expression is bounded by O(NGh logL),

where h = maxk=...,K h(k), N is the number of nodes, and G is the maximum out-degree of a node.

These worst-case estimates of running time are still inferior to the sharpest estimate O (A + N log N)

available for implementations of Dijkstra's method, where A is the number of arcs. The estimate (27)

compares favorably with the estimate O(Ah) for the Bellman-Ford algorithm when 2k maxk E(k) is

much smaller than A; this may occur if the destination is close to the origin relative to other nodes

in which case maxk E(k) may be much smaller than A.

WVe finally note that we can implement arc length scaling without knowing the value of k. We

can simply guess an initial value of k, say k = 1, apply the algorithm for lengths aij(k), and at

each path extension, check whether a cycle is formed; if so, we increment k, we double the current

prices, we reset the path to P = (1), and we restart the algorithm with the new data and initial

conditions. Eventually, after a finite number of restarts, we will obtain a value of k which is large

enough for cycles never to form during the rest of the algorithm. The computation done up to that

point, however, will not be entirely wasted; it will serve to provide a better set of initial prices.

4. EFFICIENT IMPLEMENTATION - TWO-SIDED ALGORITHM - PREPROCESSING

The main computational bottleneck of the algorithm is the calculation of min(ij)EA{aij + pj},

which is done every time node i becomes the terminal node of the path. We can reduce the number

of these calculations using the following observation. Since the CS condition (la) is maintained at

all times, if some arc (i, ji) satisfies

Pi = aiii + Pji,

it follows that

aij, + Pi = min { aij + pj }
(id)EA

so the path can be extended by ji if i is the terminal node of the path. This suggests the following

implementation strategy: each time a path contraction occurs with i being the terminal node, we

calculate

min {aqj +Pi },

14

4. Efficient Implementation

together with an arc (i, ji) such that

ji = arg min { aij +p }
(ij)EA

At the next time node i becomes the terminal node of the path, we check whether the condition

pi = aiji + pji is satisfied, and if so, we extend the path by node ji without going through the

calculation of min(ij)EA ai j + p j. In practice this device is very effective, typically saving from a

third to a half of the calculations of the preceding expression. The reason is that the test pi = aiii +pj,

is rarely failed; the only way it can fail is when the price pA, is increased between the two successive

times i became the terminal node of the path.

The preceding idea can be strengthened further. Suppose that whenever we compute the "best

neighbor"

ji = arg min aij +pj},

we also compute the "second best neighbor" ki given by

ki = arg mm in {ai + p },

and the corresponding "second best level"

Wi = aiki + Pki,

Then, at the next time node i becomes the terminal node of the path, we can check whether the

condition aiij + pA, < wi is satisfied, and if so, we know that ji still attains the minimum in the

expression

min {aij +Pi },
(ij)EA

thereby obviating the calculation of this minimum. If on the other hand we have aiji +pj, > wi (due

to an increase of pj, subsequent to the calculation of wi), we can check to see whether we still have

wi = aiki + Pki; if this is so, then ki becomes the "best arc",

ki = arg min {ai + pi)},
(i,)EA

thus obviating again the calculation of the minimum.

With proper implementation the devices outlined above can typically reduce the number of cal-

culations of the expression min(ij)EA{aI ai + p} by a factor in the order of three to five, thereby

dramatically reducing the total computation time.

15

4. Efficient Implementation

Two-Sided Algorithm

In shortest path problems, one can exchange the role of origins and destinations by reversing the

direction of all arcs. It is therefore possible to use a destination-oriented version of our algorithm

that maintains a path R that ends at the destination and changes at each iteration by means of

a contraction or an extension. This algorithm, presented below and called the reverse algorithm,

is equivalent to the algorithm of Section 2, which will henceforth be referred to as the forward

algorithm. The CS conditions for the problem with arc directions reversed are

pj < aij + Pti, V (i,j) E A,

pj = aij + Pi, for all pairs of successive nodes i and j of R,

where p is the price vector. By replacing y by -p, we obtain the CS conditions in the form of Eq.

(1), thus maintaining a common CS condition for both the forward and the reverse algorithm. The

following description of the reverse algorithm, also replaces j by -p, with the result that the prices

are decreasing instead of increasing. To be consistent with the assumptions made regarding the

forward algorithm, we assume that each node except for the origin, has at least one incoming arc.

In the reverse algorithm, initially, R is any path ending at the destination, and p is any price

vector satisfying the CS conditions (1) together with R; for example,

R = (t), pi = O, Vi,

if all arc lengths are nonnegative.

Typical Iteration of the Reverse Algorithm

Let j be the starting node of R. If

pj > max {(p -- aj },
(ij)E.A

go to Step 1; else go to Step 2.

Step 1: (Contract path) Set

pj := max pi - adi),
(ii)EA

and if i 0 t, contract R, (that is, delete the starting node j of R). Go to the next iteration.

Step 2: (Extend path) Extend R by node j,, (that is, make j, the starting node of R, preceding j),

where

j: = arg max {pi- aij}
(iJ)EA

If j, is the origin 1, stop; R is the desired shortest path. Otherwise, go to the next iteration.

16

4. Efficient Implementation

The reverse algorithm is really the forward algorithm applied to a reverse shortest path problem,

so by the results of Section 2, it is valid and obtains a shortest path in a finite number of iterations,

assuming at least one path exists from 1 to t.

WVe now consider combining the forward and the reverse algorithms into one. In this combined

algorithm, initially we have a price vector p, and two paths P and R, satisfying CS together with

p, where P starts at the origin and R ends at the destination. The paths P and R are extended

and contracted according to the rules of the forward and the reverse algorithms, respectively, and

the combined algorithm terminates when P and R have a common node. Both P ad R satisfy CS

together with p throughout the algorithm, so when P and R meet, say at node i, the composite

path consisting of the portion of P from 1 to i and the portion of R from i to t will be shortest.

Combined Algorithm

Step 1: (Run forward algorithm) Execute several iterations of the forward algorithm (subject to the

termination condition), at least one of which leads to an increase of the origin price pi. Go to Step 2.

Step 2: (Run reverse algorithm) Execute several iterations of the reverse algorithm (subject to the

termination condition), at least one of which leads to a decrease of the destination price pi. Go to Step 1.

To justify the combined algorithm, note that pi can only increase and pi can only decrease during

its course, while the difference Pi - pi can be no more than the shortest distance between 1 and t.

Assume that the arc lengths and the initial prices are integer, and that there is at least one path 1

to t. Then, pi and pi can only change by integer amounts and pi - pi is bounded. Hence, pi and

pt can change only a finite number of times, guaranteeing that there will be only a finite number of

executions of Steps 1 and 2 of the combined algorithm. By the results of Section 2, each Step 1 and

Step 2 must contain only a finite number of iterations of the forward and the reverse algorithms,

respectively. It follows that the algorithm must terminate in a finite number of iterations. Note that

this argument relies on the requirement that Pl increases at least once in Step 1 and pt decreases

at least once in Step 2. Without this requirement, one can construct examples showing that the

combined algorithm may never terminate. Note also that our termination proof depends on the

problem data being integer. For real problem data, we have been unable to prove termination or

disprove it with a counterexample.

One motivation for the combined algorithm is that two processors can be used in parallel to

maintain the forward and the reverse paths while sharing the same price vector. However, there

is another motivation. Based on our computational results, the combined algorithm is much faster

than both the forward and the reverse algorithms.

17

4. Efficient Implementation

Initialization- Preprocessing

In order to initialize the algorithm, one should have a price vector p satisfying pi < aij + pj for

all arcs (i, j). When some arc lengths are negative, the default choice p = 0 does not satisfy this

condition, and there may be no obvious initial choice for p. In other situations, even when all arc

lengths are nonnegative, it may be preferable to use a "favorable" initial price vector in place of

the default choice p = O. This possibility arises in a reoptimization context with slightly different

arc length data, or with a different origin and/or destination. However, the "favorable" initial price

vector may not satisfy the preceding condition.

To cope with situations such as the above, we provide a preprocessing algorithm for obtaining an

appropriate initial vector p satisfying the condition pi < aij + pj for all arcs (i, j) (except for the

immaterial outgoing arcs from the destination t).

To be precise, suppose that we have a vector p, which together with a set of arc lengths {aij},

satisfies Pi •< aij +pj for all arcs (i,j), and we are given a new set of arc lengths {aij}. We describe a

preprocessing algorithm for obtaining a vector p satisfying pi < aj + pj for all arcs (i, j). (Thus, to

deal with the case where some arc lengths are negative and no appropriate initial vector is known,

one can take p = 0 and aij = max{O, aij}.) The algorithm maintains a subset of arcs £ and a price

vector p. Initially

£ = {(i,j) E A I aij < aij, i A t}, p = p.

The typical iteration is as follows:

Typical Preprocessing Iteration

Step 1: (Select arc to scan) If £ is empty, stop; otherwise, remove an arc (i, j) from E and go to Step

2.

Step 2: (Add affected arcs to C) If pi > aij + pj, set

pi := aij + pj

and add to £ every arc (k, i) with k 5 t that does not already belong to E.

We have the following proposition:

Proposition 6: Assume that each node i is connected to the destination t with at least one path.

Then the preprocessing algorithm terminates in a finite number of iterations with a price vector p

satisfying

Pi < aij + P, V (i,j) E A with i 0 t. (28)

Proof: We first note that by induction we can prove that throughout the algorithm we have

£ D {(i,j) E A I Pi > aij + pj, i A t}.

18

4. Efficient Implementation

As a result, when £ becomes empty, the condition (28) is satisfied. Next observe that by induction it

can be seen that throughout the algorithm, pi is equal to the modified length of some path starting

at i (the length of the path plus the initial price of the final node of the path; see the proof of Prop.

4). Thus, termination of the algorithm will follow as in the proof of Prop. 4 (using the fact that

cycle lengths are positive and prices are monotonically nonincreasing throughout the algorithm),

provided we can show that the prices are bounded from below. Indeed let

5 p + shortest distance from k to t if k Z t,

Pk if k =t,

and let r be a sufficiently large scalar so that

Pk > P; - r, V k.

We show by induction that throughout the algorithm we have

pk P - r, - V k # t. (29)

Indeed this condition holds initially by the choice of r. Suppose that the condition holds at the start

of an iteration where arc (i, j) with i : t is removed from C. We then have

aij + pj > aij + p' -- r > min jai,, + Pm} -r = p? - r,

where the last equality holds in view of the definition of pk as a constant plus the shortest distance

from k to t. Therefore, the iteration preserves the condition (29) and the prices p; remain bounded

throughout the preprocessing algorithm. This completes the proof. Q.E.D.

If the new arc lengths differ from the old ones by "small" amounts, it can be reasonably expected

that the preprocessing algorithm will terminate quickly. This hypothesis, however, must be tested

empirically on a problem-by-problem basis.

In the preceding preprocessing iteration node prices can only decrease. An alternative iteration

where node prices can only increase starts with

£ = {(i, j) E A I aq < aUj, j 1}, p = p.

and operates as follows:

Alternative Preprocessing Iteration

Step 1: (Select arc to scan) If £ is empty, stop; otherwise, remove an arc (i, j) from £ and go to Step

2.

19

5. Parallelization Issues

Step 2: (Add affected arcs to £) If pi > aij + pj, set

pj := pi - aij

and add to £ every arc (j, k) with k 5 1 that does not already belong to C.

This algorithm is the preceding preprocessing algorithm (where prices decrease monotonically),

but applied to the reverse shortest path problem, where the arc directions have been reversed, and

the roles of origin and destination have been exchanged (cf. the two-sided algorithm given earlier).

The following proposition therefore follows from Prop. 6.

Proposition 7: Assume that the origin node 1 is connected to each node i with at least one

path. Then the alternative preprocessing algorithm terminates in a finite number of iterations with

a price vector p satisfying

Pi < aij + Pi, V (i, j) E A with j A 1.

The preprocessing idea can also be used in conjunction with arc length scaling in the case where

the integer k of Eq. (19) is large or unknown. We can then use in place of the scaled arc lengths

a;j(k) of Eq. (18), the arc lengths

j(k) = [aij V (i,j) E A,

in which case we will have aij(k) > 0 if aij > 0. As a result, every cycle will have positive length

with respect to arc lengths {iii(k)} for all k. The difficulty, however, now is that Eqs. (21) and (22)

may not be satisfied. In particular, we will have instead

-1 < aii(k + 1) - 2,ij(k) < O, V (i,j) E A,

and

PP(k + 1) < pj(k + 1) + tij(k + 1) + 1, V (i,j) E A, (30)

and the vector pO(k + 1) may not satisfy the CS conditions with respect to arc lengths {aij(k +

1)}. The small violation of the CS conditions indicated in Eq. (30) can be rectified by applying

the preprocessing algorithm at the beginning of each subproblem. It is then possible to prove

a polynomial complexity bound for the corresponding arc length scaling algorithm, by proving a

polynomial complexity bound for the preprocessing algorithm and by using very similar arguments

to the ones of the previous section.

20

5. Parallelization Issues

5. PARALLELIZATION ISSUES

When there is a single destination and multiple origins, several interesting parallel computation

possibilities arise. The idea is to maintain a different path pi for each origin i, and possibly, a

reverse path R for the destination. Different paths may be handled by different processors, and price

information can be shared by the processors in some way. There are several possible implementations

of this idea. We will describe two of these implementations, motivated by the architectures of

shared memory and message passing machines, respectively. For simplicity, we will not consider the

possibility of using the reverse path R. The MS thesis [Pol91] discusses parallel two-sided algorithms.

Shared Memory Implementation

Here, there is a common price vector p stored in memory that is accessible by all processors. For

each origin i, there is a path Pi satisfying CS together with p. In a synchronous implementation of the

algorithm, an iteration is executed simultaneously for some origins (possibly all origins, depending on

the availability of processors). At the end of an iteration, the results corresponding to the different

origins are coordinated. To this end, we note that if a node is the terminal node of the path of

several origins, the result of the iteration will be the same for all these origins, i.e., a path extension

or a path contraction and corresponding price change will occur simultaneously for all these origins.

The only potential conflict arises when a node i is the terminal path node for some origin and the

path of a different origin is extended by i as a result of the iteration. Then, if pi is increased due

to a path contraction for the former origin, the path extension of the latter origin is cancelled. An

additional important detail is that an origin i can stop its computation once the terminal node of its

path pi is an origin that has already found its shortest path to the destination. Thus, the processor

handling this origin may be diverted to handle the path of another origin.

It is reasonable to speculate that the parallel time to solve the multiple origins problem is closer

to the smallest time over all origins to find a single-origin shortest path, rather than to the longest

time. However, this conjecture needs to be tested experimentally on a shared memory machine.

The parallel implementation outlined above is synchronous, that is, all origins iterate simultane-

ously, and the results are communicated and coordinated at the end of the iteration to the extent

necessary for the next iteration. An asynchronous implementation is also possible principally because

of the monotonicity of the mapping

pi := min {aij + pj };
(ij)EA

see [Ber82] and [BeT89]. We refer to [Pol91] for a discussion of such an asynchronous implementation.

21

5. Parallelization Issues

Message Passing Implementation

Here, for each origin i, there is a separate processor that executes the forward algorithm and

keeps in local memory a price vector pi and a corresponding path pi satisfying CS together with

pi. The price vectors are communicated at various times to other processors, perhaps irregularly. A

processor operating on (Pi, pi), upon reception of a price vector pi from another processor j, adopts

as price of each node n the mazimum of the prices of n according to the existing and the received

price vectors, that is,

P, := max{p ,prn}, V n E Af . (31)

The processor also uses the updated price vector pi to delete successively, starting with the terminal

node, the arcs (m, n) of pi for which the equality pm = a,, + p,n is violated. The CS property

is maintained in this way because it can be shown that the updated price vector pi satisfies the

condition

pim amn + pi, V (m, n) E A.

This is the subject of the following proposition:

Proposition 8: Let pl and p2 be two price vectors satisfying

pi < amn + 'pi, Pm < amn + Pj, V (m, n) E A. (32)

Then,

max{p/m,p)} < amn + max{pn,p)n}, V (m, n) e A, (33)

and

min{pM,p)m} < amn + min{pi,,Pn}, V (m, n) e A. (34)

Proof: From Eq. (32), we have

pmn am.n + max{p,p:n),}, V (m,n) E A,

and

pim < amn + max{p ,pun}, V (m, n) E A.

Combining these two relations, we obtain Eq. (33). The proof of Eq. (34) is similar. Q.E.D.

Note that even with no communication between the processors, the algorithm would still involve

considerable parallelism, since a multiple origin problem would be solved in the time needed to solve

a single origin problem. Combining the price vectors of several processors, however, tends to speed

up the termination of the algorithm for all origins. In fact, if there are more processors than origins,

22

6. Relation to Naive Auction and Dual Coordinate Ascent

it may still be beneficial to create some additional artificial origins in order to obtain additional price

vectors. The drawback of this implementation is that communication of the price vectors may be

relatively slow, and that combining two price vectors according to Eq. (31) may be time-consuming

if no vector processing hardware are available at the processors.

6. RELATION TO NAIVE AUCTION AND DUAL COORDINATE ASCENT

WVe now explain how our (forward) single origin-single destination algorithm can be viewed as an

instance of application of the naive auction algorithm to a special type of assignment problem.

The naive auction algorithm is applicable to assignment problems where we have to match n

persons and n objects on a one-to-one basis. There is a cost ci, for matching person i with object

j and we want to assign persons to objects so as to minimize the total cost. There is also a

restriction that person i can be assigned to object j only if (i, j) belongs to a set of given pairs

A. Mathematically, we want to find a feasible assignment that minimizes the total cost t=il cibi,

where by a feasible assignment we mean a set of person-object pairs (1, jl), ... , (n, jn), such that the

objects jl,..., . jn are all distinct and (i, ji) E A for all i. (Auction algorithms are usually described

in terms of maximization of the total "benefit" of the assignment; see for example [Ber90O]. It is,

however, convenient here to reformulate the problem and the algorithm in terms of minimization;

this amounts to reversing the signs of the cost coefficients and the prices, and replacing maximization

by minimization.)

The naive auction algorithm proceeds in iterations and generates a sequence of price vectors p

and partial assignments (that is, assignments where only a subset of the persons have been matched

with objects). At the beginning of each iteration, the condition

Ciji + Pii = min m c + pj} (35)
(ij)EA

is satisfied for all pairs (i, ji) of the partial assignment. The initial price vector-partial assignment

pair is required to satisfy this condition, but is otherwise arbitrary. If all persons are assigned, the

algorithm terminates. If not, some person who is unassigned, say i, is selected. This person finds

an object ji, which is best in the sense

ji E arg min {cii +Pi }
(ij)EA

and then:

(a) Gets assigned to the best object ji; the person that was assigned to j; at the beginning of

the iteration (if any) becomes unassigned.

23

6. Relation to Naive Auction and Dual Coordinate Ascent

(b) Sets the price of j, to the level at which he/she is indifferent between ji and the second best

object, that is, he/she sets pi, to

Pji + Wi - vi,

where vi is the cost for acquiring the best object (including payment of the corresponding

price),

vi = min {cii +pj},
(i,)EA

and wi is the cost for acquiring the second best object

wi = min {cij + pj}.
(ij)EAJ:5sji

This process is repeated in a sequence of iterations until each person is assigned to an object.

The naive auction algorithm differs from the auction algorithm in the choice of the price increase

increment. In the auction algorithm the price pi, is increased by wi- vi +e, where e is a small positive

constant. Thus the naive auction algorithm is the same as the auction algorithm, except that E = 0.

This is, however, a significant difference; while the auction algorithm is guaranteed to terminate in a

finite number of iterations if at least one feasible assignment exists, the naive auction algorithm may

cycle indefinitely, with some objects remaining unassigned. If, however, the naive auction algorithm

terminates, the feasible assignment obtained upon termination is optimal. The reason is that Eq.

(35) may be viewed as a complementary slackness condition for the linear programming problem

associated with the assignment problem, and by a classical linear programming result, this condition

together with feasibility guarantees optimality of the final assignment.

Formulation of the Shortest Path Problem as an Assignment Problem

Given now the shortest path problem described in Section 2, with node 1 as origin and node t as

destination, we formulate the following assignment problem.

Let 2, ... , N be the "object" nodes, and for each node i i t, introduce a "person" node i'. For

every arc (i, j) of the shortest path problem with i t t and j 0 1, introduce the arc (i', j) with cost

aij in the assignment problem. Introduce also the zero cost arc (i', i) for each i i 1,t. Figure 3

illustrates the assignment problem.

Consider now applying the naive auction algorithm starting from a price vector (P2, ... ,PN)

satisfying the CS condition (la), ie.,

Pi aij+pj, V (i,j) EA, i 1, (36)

24

6. Relation to Naive Auction and Dual Coordinate Ascent

t=4

2 5

4-41 + 4 r 0 _ /

Figure 3: A shortest path problem and its corresponding assignment problem. The arc lengths

and the assignment costs are shown next to the arcs.

and the partial assignment

(i',i), V i 7 1,t.

This initial pair satisfies the corresponding condition (35), because the cost of the assigned arcs (i', i)

is zero.

We impose an additional rule for breaking ties in the naive auction algorithm: if at some iteration

involving the unassigned person i', the arc (i', i) is the best arc and is equally desirable with some

other arc (i', ji) (i.e., pi = aij, + pj; = min(ij)EA{aij + pj}), then the latter arc is preferred, that is,

(i', ji) is added to the assignment rather than (i', i). Furthermore, we introduce an inconsequential

modification of the naive auction iteration involving a bid of person 1', in order to account for the

special way of handling a contraction at the origin in the shortest path algorithm. In particular, the

bid of 1' will consist of finding an object jl attaining the minimum in

min {alj + pj},
(Ij)EA

assigning jl to 1', and deassigning the person assigned to jl (in the case jl 5 t), but not changing

the price pi, .

It can now be shown that the naive auction algorithm under the preceding conditions is equivalent

to the (forward) shortest path algorithm of Section 2. In particular, the following can be verified by

induction:

(a) The CS condition (36) is preserved by the naive auction algorithm.

(b) Each assignment generated by the algorithm consists of a sequence of the form

(lil), (il. i2),5** (_l, ik), (37)

25

6. Relation to Naive Auction and Dual Coordinate Ascent

together with the additional arcs

(i',i), for i il,. ..., i,t,

and corresponds to a path P = (1, il,..., ik) generated by the shortest path algorithm. As

long as ik $ t, the (unique) unassigned person in the naive auction algorithm is person i*,

corresponding to the terminal node of the path. When ik = t, a feasible assignment results,

in which case the naive auction algorithm terminates, consistently with the termination

criterion for the shortest path algorithm.

(c) In an iteration corresponding to an unassigned person i' with i 0 1, the arc (i', i) is always a

best arc; this is a consequence of the complementary slackness condition (36). Furthemore,

there are three possibilities: (1) (i', i) is the unique best arc, in which case (i', i) is added to

the assignment, and the price Pi is increased by

min {cij + pj} - pi;
(i/)EA

this corresponds to contracting the current path by the terminal node i. (2) There is an arc

(i', ji) with ji $ t, which is equally preferred to (i', i), that is,

i = aiji + Pj,,

in which case, in view of the tie-breaking rule specified earlier, (i', ji) is added to the as-

signment and the price pi, remains the same. Furthermore, the object ji must have been

assigned to j! at the start of the iteration, so adding (i', ji) to the assignment (and removing

(j, jr)) corresponds to extending the current path by node ji. (The positivity assumption

on the cycle lengths is crucial for this property to hold.) (3) The arc (i', t) is equally pre-

ferred to (i', i), in which case the heretofore unassigned object t is assigned to i', thereby

terminating the naive auction algorithm; this corresponds to the destination t becoming the

terminal node of the current path, thereby terminating the shortest path algorithm.

We have thus seen that the shortest path algorithm may be viewed as an instance of the naive

auction algorithm. However, the properties of the former algorithm do not follow from generic

properties of the latter. As mentioned earlier, the naive auction algorithm need not terminate in

general. In the present context, it does terminate thanks to the special structure of the corresponding

assignment problem, and also thanks to the positivity assumption on all cycle lengths.

26

6. Relation to Naive Auction and Dual Coordinate Ascent

Relation to Dual Coordinate Ascent

We next explain how the single origin-single destination algorithm can be viewed as a dual coor-

dinate ascent method. The shortest path problem can be written in the minimum cost flow format

minimize E aijxii (LNF)
(ij)EA

subject to

E xij- xji = si, V i E f, (38)
{jl(ij)EA} {,l(j,i)eA}

0 < xij, V (i,j)E A, (39)

where

S1 = 1, si =-1

Si=0, Vi l,t,

and t is the given destination.

The standard linear programming dual problem is

maximize pl - pt
(40)

subject to pi -j < aij, V (i, j) E A,

and by a classical duality theorem [Chv83], [Dan83], [PaS82], [Roc84], the optimal primal cost is

equal to the optimal dual cost.

Let us associate with a given path P = (1, i 2 ,..., ik) the flow

1 if i and j are successive nodes in P

xnij = 0 otherwise.

Then, the CS conditions (la) and (lb) are equivalent to the usual linear programming complementary

slackness conditions

Pi < aij + pj V (i, j) E A,

O < x 0 j Pi = ai, +pj V (i,) E A.

For a pair (x,p), the above conditions together with primal feasibility (the conservation of flow

constraint (38) for all i E N/, which in our case translates to the terminal node of the path P being

the destination node) are the necessary and sufficient conditions for x to be primal-optimal and p

to be dual-optimal. Thus, upon termination of our shortest path algorithm, the price vector p is an

optimal dual solution.

27

7. Computational Results

To interpret the algorithm as a dual ascent method, note that a path contraction and an attendant

price increase of the terminal node i of P, corresponds to a step along the price coordinate pi that

leaves the dual cost pl - pi unchanged if i $ 1. Furthermore, an increase of the origin price pi

by an increment 6 improves the dual cost by S. Thus the algorithm may be viewed as a finitely

terminating dual coordinate ascent algorithm, except that true ascent steps occur only when the

origin price increases; all other ascent steps are "degenerate", producing a price increase but no

change in dual cost.

7. COMPUTATIONAL RESULTS

The combined (forward and reverse) version of the algorithm without arc length scaling was

implemented in a code called AUCTIONSP. This code solves the problem with a single origin and

a selected set of destinations. It operates in cycles of iterations, alternating between the origin and

one of the destinations. In particular, the algorithm first performs a group of (forward) iterations

starting with the origin and proceeding up to the point where the origin becomes again the terminal

node of the forward path; then the algorithm performs a group of (reverse) iterations starting at

some destination, call it t, and proceeding up to the point where t becomes again the terminal node

of the reverse path. The process is then repeated, starting again at the origin and then starting

at another destination, and so on. The destinations are taken up cyclically, except that once the

reverse path of some destination meets the forward path (in which case a shortest path for a given

destination has been found), this destination is not iterated upon any further. Naturally, the same

price vector p is used for the forward and all the reverse paths. The algorithm uses the default

initialization [p = 0, P = (1), R = (t), for all destinations t], and terminates when each of the

reverse paths have met the forward path.

We compared our code with the shortest path code SHEAP, due to Gallo and Pallotino [GaP88].

This is an implementation of Dijkstra's method that uses a binary heap to store the nodes which

are not yet permanently labeled. We made a simple modification to this code so that it terminates

when all the destinations (rather than all the nodes) become permanently labeled. Our informal

comparison with other shortest path codes agrees with the conclusion of [GaP88] that SHEAP is a

very efficient state-of-the-art code for a broad variety of types of shortest path problems. While other

shortest path codes may produce faster solution times than SHEAP, we believe that the differences

are not sufficiently large to invalidate the qualitative nature of our comparisons. We did not test

our code against label correcting methods such as the threshold algorithm [GKP85], [GaP88], since

these methods are at a disadvantage in the case of only few origin-destination pairs.

28

7. Computational Results

We restricted our experiments to randomly generated shortest path problems obtained using the

widely available NETGEN program [KNS74]. Problems were generated by specifying the number of

nodes N, the number of arcs A, the length range [1, L], and a single source and sink (automatically

chosen by NETGEN to be nodes 1 and N). The times required by the two codes on a Macintosh

II are shown in Tables 1 and 2, for the cases of one destination and four destinations, respectively.

The tables show that AUCTIONSP is much faster than SHEAP on NETGEN problems; this was

confirmed by extensive additional testing.

For the case of a single destination, we have also experimented with a version of SHEAP, called

TWO_TREESHEAP, that builds a shortest path tree from the origin and another shortest path tree

from the destination. Recent computational research [HKS88], [HKS89] has confirmed that using

two trees in Dijkstra's method, as originally suggested in [Nic66], typically accelerates convergence,

and our experience agrees with this conclusion. Still, however, AUCTIONSP was substantially

faster than TWO_TREESHEAP, as shown in Table 1.

For multiple destination problems, we know of no Dijkstra-like algorithm that uses multiple trees;

one has to run a two-sided algorithm separately for each origin-destination pair. Thus, in contrast

with our algorithm, the advantage of a two-sided Dijkstra algorithm is dissipated quickly as the

number of destinations increases from one. Therefore, based on our computational experience, we

conclude that AUCTIONSP is by far the fastest code for random problems of the type generated

by NETGEN and for few destinations (more than one, but much less than the maximum possible).

WVe note that for "one-to-all" problems, where there is a single origin and all other nodes are

destinations, AUCTION_SP has been running slower than the best label correcting methods as well

as SHEAP. However, the differences in performance were not overwhelming, and it will be interesting

to make the corresponding comparison in a parallel computing environment.

The reader is warned that the computational results of the table are far from conclusive. Clearly

one can find problems where AUCTION-SP is vastly inferior to SHEAP in view of its inferior compu-

tational complexity, cf. Fig. 2, (although such a problem was never encountered in our experiments

with randomly generated problems). An important issue is to delineate, through an average com-

plexity analysis and computational experimentation, the types of practical problems for which our

algorithm is substantially better than the best label setting and label correcting methods. We find

our computational results very encouraging, but further research and testing with both serial and

parallel machines must be done before we can reach solid conclusions on the merits of our algorithm.

We also note that the ideas of this paper are new and their potential is not yet fully developed. It

is likely that as these ideas are better understood, more efficient codes will become available.

29

References

N A AUCTION.SP SHEAP TWOTREESHEAP

1000 4000 0.033 0.250 0.033

1000 10000 0.050 0.200 0.133

2000 8000 0.017 0.017 0.017

2000 20000 0.067 0.867 0.150

3000 12000 0.067 0.983 0.100

3000 30000 0.033 1.117 0.100

4000 16000 0.067 1.233 0.100

4000 40000 0.033 0.383 0.100

5000 20000 0.050 1.383 0.083

5000 50000 0.033 0.550 0.100

Table 1: Solution times in secs of shortest path codes on a Mac II using problems generated by

NETGEN with one destination (node N). The lengths of all arcs were randomly generated from the

range [1,1000].

N A AUCTIONSP SHEAP

1000 4000 0.050 0.250

1000 10000 0.080 0.383

2000 8000 0.100 0.667

2000 20000 0.233 0.883

3000 12000 0.117 1.100

3000 30000 0.167 1.117

4000 16000 0.100 1.233

4000 40000 0.117 1.883

5000 20000 0.150 1.533

5000 50000 0.183 1.833

Table 2: Solution times in secs of shortest path codes on a Mac II using problems generated by

NETGEN with four destinations (nodes N, N - 100, N - 200, N - 300). The lengths of all arcs

were randomly generated from the range [1,1000].

30

References

REFERENCES

[AMO89] Ahuja, R. K., Magnanti, T. L., and Orlin, J. B., "Network Flows", Sloan W. P. No. 2059-88,

M.I.T., Cambridge, MA, March 1989 (also in Handbooks in Operations Research and Management

Science, Vol. 1, Optimization, G. L. Nemhauser, A. H. G. Rinnooy-Kan, and M. J. Todd (eds.),

North-Holland, Amsterdam, 1989).

[Ber79] Bertsekas, D. P., "A Distributed Algorithm for the Assignment Problem", Lab. for Informa-

tion and Decision Systems Working Paper, M.I.T., Cambridge, MA, March 1979.

[Ber81] Bertsekas, D. P., "A New Algorithm for the Assignment Problem", Math. Programming,

Vol. 21, pp. 152-171.

[Ber82] Bertsekas, D. P., "Distributed Dynamic Programming", IEEE Trans. on Aut. Control, Vol.

AC-27, 1982, pp. 610-616.

[Ber86] Bertsekas, D. P., "Distributed Relaxation Methods for Linear Network Flow Problems",

Proceedings of 25th IEEE Conference on Decision and Control, 1986, pp. 2101-2106.

[Ber88] Bertsekas, D. P., "The Auction Algorithm: A Distributed Relaxation Method for the As-

signment Problem", Annals of Operations Research, Vol. 14, 1988, pp. 105-123.

[Ber90O] Bertsekas, D. P., "The Auction Algorithm for Assignment and Other Network Flow Prob-

lems: A Tutorial", Interfaces, Vol. 20, 1990, pp. 133-149.

[BeE88] Bertsekas, D. P., and Eckstein, J., "Dual Coordinate Step Methods for Linear Network Flow

Problems", Math. Progr., Series B, Vol. 42, 1988, pp. 203-243.

[BeT89] Bertsekas, D. P., and Tsitsiklis, J. N., Parallel and Distributed Computation: Numerical

Methods, Prentice-Hall, Englewood Cliffs, N. J., 1989.

[Chv83] Chvatal, V., Linear Programming, W. H. Freeman and Co., N.Y., 1983.

[Dan63] Dantzig, G. B., Linear Programming and Extensions, Princeton Univ. Press, Princeton,

N.J., 1963.

[DGK79] Dial, R., Glover, F., Karney, D., and Klingman, D., "A Computational Analysis of Al-

ternative Algorithms and Labeling Techniques for Finding Shortest Path Trees", Networks, Vol. 9,

1979, pp. 215-248.

[Dia69] Dial, R. B., "Algorithm 360: Shortest Path Forest with Topological Ordering", Commun.

A.C.M., Vol. 12, 1969, pp. 632633.

[GaP86] Gallo, G., and Pallotino, S., "Shortest Path Methods: A Unified Approach", Math. Pro-

31

References

gramming Study, Vol. 26, 1986, p. 38-64.

[GaP88] Gallo, G., and Pallotino, S., "Shortest Path Algorithms", Annals of Operations Research,

Vol. 7, 1988, pp. 3-79.

[GKP85] Glover, F., Klingman, D., Phillips, N., and Schneider, R. F., 1985. "New Polynomial

Shortest Path Algorithms and Their Computational Attributes," Management Science, Vol. 31, pp.

1106-1128.

[HKS88] Helgason, R. V., Kennington, J. L., and Stewart, B. D., "Dijkstra's Two-Tree Shortest

Path Algorithm," Tech. Report 89-CSE-32, Dept. of Computer Science and Engineering, Southern

Methodist Univ., Dallas, TX, 1988.

[HKS89] Helgason, R. V., Kennington, J. L., and Stewart, B. D., "Computational Comparison

of Sequential and Parallel Algorithms for the One-To-One Shortest-Path Problem", Tech. Report

89-CSE-32, Dept. of Computer Science and Engineering, Southern Methodist Univ., Dallas, TX,

1989.

[JoV87] Jonker, R., and Volegnant, A., "A Shortest Augmenting Path Algorithm for Dense and

Sparse Linear Assignment Problems", Computing, Vol. 38, 1987, pp. 325-340.

[KNS74] Klingman, D., Napier, A., and Stutz, J., "NETGEN - A Program for Generating Large

Scale (Un) Capacitated Assignment, Transportation, and Minimum Cost Flow Network Problems",

Management Science, Vol. 20, 1974, pp. 814-822.

[Ker81] Kershenbaum, A., "A Note on Finding Shortest Path Trees", Networks, Vol. 11, 1981, p.

399-400.

[Law76] Lawler, E., "Combinatorial Optimization: Networks and Matroids", Holt, Rinehart, and

Winston, N.Y., 1976.

[Nic66] Nicholson, T., "Finding the Shortest Route Between Two Points in a Network", The Com-

puter Journal, Vol. 9, 1966, pp. 275-280.

[Pap74] Pape, U., "Implementation and Efficiency of Moore - Algorithms for the Shortest Path

Problem", Math. Programming, Vol. 7, 1974, pp. 212-222.

[PaS82] Papadimitriou, C. H., and Steiglitz, K., Combinatorial Optimization: Algorithms and Com-

plexity, Prentice-Hall, Englewood Cliffs, N. J., 1982.

[Pol91] Polymenakos, L., "Analysis of Parallel Asynchronous Schemes for the Auction Shortest Path

Algorithm," MS Thesis, EECS Dept., M.I.T., Cambridge, MA, 1991.

[Roc84] Rockafellar, R. T., Network Flows and Monotropic Programming, Wiley-Interscience, New

32

References

York, 1984.

[ShW81] Shier, D. R., and Witzgall, C., "Properties of Labeling Methods for Determining Shortest

Path Trees", J. Res. Natl. Bureau of Standards, Vol. 86, 1981, p. 317.

33

