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ABSTRACT

The motivation for this work is to quantify the complexity of complex systems and to
understand its sources. To study complexity, we develop a theoretical framework where the
complex system of interest is embedded in a broader system: a complex large-scale system.
In order to understand and show how the complexity of the system is impacted by the
complexity of its environment, three layers of complexity are defined: the internal
complexity which is the complexity of the complex system itself, the external complexity
which is the complexity of the environment of the system (i.e., the complexity of the large-
scale system in which the system is embedded) and the interface complexity which is defined
at the interface of the system and its environment.
For each complexity we suggest metrics and apply them to two examples. The examples of
complex systems used are two surveillance radars: the first one is an Air Traffic Control
radar, the second one is a maritime surveillance radar. The two large-scale systems in which
the radars are embedded are therefore the air and the maritime transportation system.
The internal complexity metrics takes into account the number of links, the number of
elements, the function and hierarchy of the elements. The interface complexity metric is
based upon the information content of the probability of failure of the system as it is used in
its environment. The External complexity metric deals with the risk configuration of large-
scale systems emphasizing the reliability and the tendency to catastrophe of the system.
The complexity metrics calculated based on specific analysis of the ATC radar are higher
than those calculated for the maritime radar for all the three levels of complexity indicating
that the external complexity is the source for the internal complexity. Thus, not surprisingly it
appears that the technical complexity of a system mainly stems from the socio-political
complexity of the large-scale system in which it is embedded. More interestingly, the more
rigorous and quantitative complexity metrics (Internal and Interface) are approximately
linearly related for these two systems. This result is potentially important enough to be tested
over a wider variety of complex systems.

Thesis Supervisor: Christopher L. Magee
Title: Professor of the Practice of Mechanical Engineering and Engineering Systems
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INTRODUCTION

This thesis which aims at quantifying complexity and understanding its sources is based
on a framework which brings out three different complexities: internal complexity which
is the complexity of the complex system studied, external complexity which is the
complexity of the environment of the system and interface complexity which is defined at
the interface of the system and its environment. Each of these three complexities are
studied and quantified separately. Metrics are proposed and applied to two test bed
systems: an Air Traffic Control (ATC) radar and a maritime surveillance radar. Finally,
after analyzing the results, challenging the concepts and the methods, conclusions are
drawn on the interplay of these complexities.

A. Framework to study Complexity

The first step to study complexity is the identification of boundaries. It is a major step
because it is a prerequisite for computing complexity. It is also a hard step because
boundaries are blurred, and then hard to define, due to the recursivity of systems. Indeed,
every system can be regarded as a sub-system of a bigger system. The boundaries are also
difficult to draw because engineering systems are permeable: they always have links that
go from the outside to the inside. These trans-boundary links may justify the extension of
the frontier of the system already defined to its connected elements.

To study how the complexity of a device is influenced by the complexity of its
environment we propose a three-layered framework. The three sets applied to our study
and identified in Figure 1 are: the complex system, the transportation system and the
"Political" system. Applied to one of the test bed complex systems, the three sets are: the
Air Traffic Control (ATC) radar, the air transportation system and the political system.
The first set is a product: it is very focused and concrete. The second one is much broader
but it still has material dominance: it may be seen as a socio-technical system.
Conversely, the third set: the "Political" system is immaterial and may be seen in
comparison as a socio-political system.

Conceptually, three kinds of complexity are identified: internal complexity, interface
complexity and external complexity. In the example of the ATC radar, internal
complexity is the complexity of the radar itself; external complexity is the complexity of
the air transportation system and interface complexity is the complexity at the boundaries
of the radar and its environment.

10
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* 'Political' System:
-institutional,
-social,
-economics,
-legal

* Transportation
System:

-planes / boats,
-radars,
-airports / ports,
-passengers,
-controllers...

* Complex System:
-STAR / SCOUT

i

Figure 1 - Framework to study complexity (applied to our study)

This framework has been developed because it is quite natural and because it fits the
purpose of this thesis. To validate the hypothesis that the external complexity impacts the
internal complexity, the complexity of the radar must be computed. Thus, it is quite
natural to isolate the radar as a set. It is all the more natural to do so because the
conceptual boundary drawn corresponds to the physical boundary of the radar. The
complexity of the environment of the system also must be computed. The environment is,
by definition, what is outside of the system. The environment has well-defined inner
boundaries, which are the boundaries with the radar, but it does not have well-defined
exterior boundaries. The environment is open to the outside and it is divided into two
sets: one where complexity is actually computed and one where it is not. So, to validate
the hypothesis, the complexity of the air transportation system is computed and a
correlation will be sought with the internal complexity described above. Nonetheless, the
complexity of the "Political" system which cannot be computed is not ignored because
we believe that it shapes the complexity of the air transport system. In this study,
interface complexity is mainly a tool to analyze the relation between external and internal
complexity. It is also natural to study it because it corresponds to the well-defined
boundary between the radar and its environment.

In this thesis, the name of the three complexity metrics will be capitalized while the name
of the concepts will not: Internal Complexity means the metric and internal complexity
means the concept.

Further discussions on the framework are presented in E.I.2 (p. 62).
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B. Internal Complexity

This section on internal complexity defines the terminology used before describing a
methodology to represent the internal complexity of complex systems. 48 possibly useful
Internal Complexity metrics are defined and then applied to a detailed example in order
to determine which one of these is most robust and potentially useful. Finally, the internal
complexity of two test bed systems is computed with the metric identified.

I. Definitions and initial approach to internal complexity
1. Definitions

* System
The working definition of system, which is consistent with the Engineering Systems
Division definition [1], is the one used by C. Magee and 0. de Weck [2]. A system is: "a
set of interacting components having well-defined (although possibly poorly understood)
behaviors or purposes; the concept is recursive as systems are composed of other lower-
level systems. Thus what is a system to one person may not appear to be a system to
another."
In this thesis, a system is seen as a set of layers where each layer is a level of
decomposition representing a further decomposition of the layer just above it. Each
subsystem of a given layer is represented as further decomposed into "smaller"
subsystems (in the layer just below).
In this thesis, the term "high" is used to describe a layer at the top of the decomposition
of the system (i.e., with a small level number) and the terms "low" or "deep" to describe
a layer at the bottom of the decomposition of the system (i.e., with a higher level
number).

Figure 2 - System model
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* Element
An element is a conceptual entity. It can be material or immaterial but it must achieve a
purpose. In this paper, by the term "purpose" we mean: to represent a function. In fact,
elements are operators and we distinguish five basic operations [2]:

- Transform or Process,
- Transport or Distribute,
- Store or House,
- Exchange or Trade and
- Control or Regulate.

These five operations (also called basic functions) are a generator set of every function:
every function performed by a given element is a combination of some of these basic
functions.

Due to the recursive definition of systems, a system can be regarded as a subsystem or
even as an element. However, generally speaking, the term "system" is used for the bulk
device while "subsystem" is used at the first levels of decomposition and "element" at the
deeper levels.

· Link
In contrast with elements which are entities, links are flows. Links can be flows of [2]:

- Matter,
- Energy,
- Information or
- Value.

Thus, links are connectors between elements in the sense that they are the operands on
which the elements (operators) operate. Since links represent flows, they can be either
unidirectional or bidirectional.

* Complex system
A complex system is "a system with numerous components and interconnections,
interactions or interdependencies which are difficult to describe, understand, predict,
manage, design, and/or change." [2]

2. Initial approach
a. Characterization of internal complexity

Complex can be defined as: "composed of interconnected or interwoven parts" [3] and
complexity as "a quality of an object with many interwoven elements, aspects, details, or
attributes that makes the whole object difficult to understand in a collective sense" [4].
Even if complexity is a macroscopic propriety of a system, its origins are microscopic:
complexity arises both from quantity and quality.

Basic observations of complex systems tend to lead us to the immediate conclusion that:
the more, the more complex. This idea is withstood by the definition of complexity which
states that complexity is the "quality of an object with many interwoven elements..."
Some people tend to reject this feature: they claim that quantity is inaccurate and even
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wrong because it is too simplistic. We agree that quantity cannot alone represent
complexity. Nevertheless, quantity plays a major role in complexity even if it needs to be
qualified with other features.
Besides, many authors emphasize the role of quantity in complexity. For instance,
Sussman [5] regards complex systems as" Complex, Large-scale, Integrated, Open
Systems (CLIOS)" and engineering systems as technical CLIOS. "Large-scale" is highly
correlated with our idea of quantity. "Integration" is also correlated with quantity because
such feature denotes high density: density coupled with large-scale refers to quantity.
Many attempts to quantify complexity are based on an analogy with entropy. The best
example is the Shannon entropy [6]. Now, entropy is a holistic measure of the
microscopic state of a huge number of elements. Once more, this emphasizes the major
role played by quantity in complexity.
If we acknowledge that complexity can be regarded as uncertainty [7], it appears once
again that: increase in quantity leads to more complexity. Indeed, the more parameters
that exist lead to more possibilities and thus more uncertainty.
Complexity can also be seen as the probability of success of achieving the functional
requirements [8]. The more interconnected elements you need to assembly in order to
achieve the requirement, the higher the probability of failure and therefore the higher the
complexity.
Referring to the definition of complexity as "a quality of an object with many interwoven
elements", it clearly appears that complexity has at least two attributes which are the
elements and the links. Understanding the quantity of interactions that occur within a
system is also a key to quantify complexity.
As a conclusion, both the quantity of elements and the quantity of their interactions
matters in complexity.

Quality is another aspect of complexity. Here, by "quality" we mean both: specificity and
intensity. These two notions also apply to elements and links.
The particularity of the elements is accurately described by the set of five basic functions
(vocabulary) used to characterize every function performed by an element. The intensity
of the elements is accurately described by the layers (hierarchy) where the relevant
elements are in the system decomposition. Hierarchy and vocabulary are the two
dimensions which we propose to use to give a good insight into the quality of the
elements. They assess complexity describing both the function of the elements
(vocabulary) and their strength (hierarchy).
Up to a certain extent, hierarchy also determines the quality (intensity and specificity) of
the links because it gives both an idea of their strength and their spatial distribution.
As noted relative to quantity, the quality of elements and the quality of their interactions
matters in complexity. We deeply believe that hierarchy is the best way to describe the
qualitative aspect of complexity. This statement will be detailed in B.III. 1 (p. 18).

Quantity and quality need to be combined appropriately to accurately describe
complexity.

14



b. Characterization of Internal Complexity metrics

Following Joshua D. Summers and Jami J. Shah [9] we divide complexity into two
components: Scale Complexity () and Link Complexity (). These two dimensions of
complexity are studied separately because they allow different insights into the overall
internal complexity.
* Scale Complexity
Summers and Shah [9] identify "size" as the first of the "three fundamental aspects of
complexity". Our formulation of Scale Complexity takes into account the number of
elements to describe the "horizontal" size, the number of levels to describe the "vertical"
size and the number of basic functions to account for the "functional" complexity.
* Link Complexity
Summers and Shah [9] identify "degree of coupling" as the second of the "three
fundamental aspects of complexity". In our formulation, Link Complexity takes into
account the number of links and the number of elements because it is believed that the
density of links or the connectivity of elements directly infers the degree of coupling.

Neither Scale Complexity nor Link Complexity alone can give a balanced assessment of
complexity because they describe different features of complexity. The two components
of complexity need to be combined. Besides, the definition of complexity used in this
paper also apposes these two components when it states that complexity is the "quality of
an object with many interwoven elements": "many" referring to scale and interwoven to
links.
Braha and Maimon [8] adapt two concepts from software complexity: structural
complexity and functional complexity. Both complexities are functions of the information
content of the design. Structural complexity is the complexity that is based on the
representation of the information. The appeal of this complexity is that its valuation is
facilitated using decomposition diagrams that describe the elements and interfaces of the
system. Here, Scale Complexity which takes into account elements, hierarchy and
functions refers both to structural and functional complexity. But a major aspect of
structure i.e., the links between the elements is missing in this approach to structural
complexity. The coupling is brought by Link Complexity which refers to structure.
Our approach combines both components of complexity: Scale Complexity () and Link
Complexity (0) in an attempt to obtain an overall assessment of complexity.

II. Representation of complex systems

1. Definition of the Reference Decomposition
The Reference Decomposition is a representation of systems which shows interconnected
mono-functional elements belonging to different levels of decomposition. This
representation will be used in this thesis to assess and to compute the Internal Complexity
of a complex system.
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2. Methodology to obtain the Reference Decomposition

The decomposition process to obtain the Reference Decomposition is a top-down
recursive process illustrated in Figure 3.

* We start at the first level of decomposition of the system (level 1).
* At any given level of decomposition (i.e., a layer) of the system we identify each

subsystem with the function it performs. For each element, either of the two cases can
occur.
o The element performs only one of the five basic functions and the decomposition

process does not go further for this element. This element is then represented in the
Reference Decomposition with the basic function it achieves.

o The element performs a more complex function (i.e., a function described with
more than one of the five basic functions). Then the decomposition process for this
element goes one step further to the next level of decomposition.

* We apply the process to each subsystem until every element achieves only one basic
function.

* We connect all the elements that appear in the Reference Decomposition with the
appropriate links attributing to them their direction (directional or bidirectional) and
the substance flowing (matter, energy, information or value).

Figure 3 - Illustration of the methodology to obtain the Reference Decomposition

The outcome of this process is the Reference Decomposition (Figure 4). It is a map of
interconnected mono-functional elements.
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Figure 4 - Illustration of the Reference Decomposition

3. Assessment of complexity through the Reference
Decomposition

In the representation of the Reference Decomposition, elements are represented with
boxes. The size of the box represents the hierarchy of the element (i.e., the layer to which
it belongs). The higher the layer, the bigger the box; it is as if you were looking at the
system from above. The color of the box represents the operation performed by the
element. A different color is associated with each basic operation; so a multicolor box
represents a multifunctional element.

Excharge cr
Trade I

Level 1

2

Level 2 Level 3
r-

Level 4 Level 5

In the representation, links are represented with arrows of two different
upon their directionality.

- C'lt einorfl

colors depending

D Bidirectional
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The substance flowing stands by the arrow in a red capital letter to further qualify a link:
M for matter, E for energy, I for information and V for value.

As a summary, we believe that the Reference Decomposition gives a good insight into
the complexity of the system since it brings out the main features of complexity: quantity
and quality thanks to the number of elements, their hierarchy (box size), the number of
functions performed (color) and the coupling (links).
Moreover, this representation of a system as if it were seen from the top elucidates the
sources of emergent behavior. The more small connected boxes of different colors, the
more complex: the behavior of the system tends to be more complex if it requires the
conjunction of many intertwined and deeply integrated basic functions.
The Reference Decomposition is thus a useful representation of complexity.

III. Internal Complexity metrics
1. Drivers

In this part, we present the four main drivers of complexity that need to be taken into
consideration in Internal Complexity metrics.

Quite obviously, a main driver of complexity is the number of elements. Y. Bar-Yam
[10] grounding his thoughts on complexity science identifies "elements (and their
number)" as the first "central property of complex systems".

Y. Bar-Yam [10] also identifies "interactions (and their strength)" as the second "central
propriety of complex systems". Links are also a critical driver of complexity.

The quantification of the number of elements needs to be further qualified to assess
complexity. We believe that the function performed by an element must be taken into
consideration to compute complexity. Functionality is an interesting feature of
complexity and it can be compared to another "central property of complex systems"
"activities (and their objectives)" [10]. Vocabulary (i.e., the number of basic functions in
a system) is another driver of complexity.

As for vocabulary, hierarchy relates the "central property of complex systems" which Y.
Bar-Yam [10] calls "diversity and variability". Behind the idea of hierarchy, there are
two different important notions. The first one is the number of layers and the second one
the depth of the layers. These two dimensions are proposed in this work to be factors
increasing complexity. Since, there are several ways to understand the importance of
hierarchy in complexity, some of the most relevant views on the role of hierarchy in
complexity are presented here.
First, it is noted that hierarchy is the way human systems tend to organize to better
manage themselves. When systems become too complex, they adopt a hierarchical
structure in order to be more manageable. This organization reduces complexity and
allows people to understand the system. Nonetheless, it is to be noted that this
organization may increase apparent understanding but it may not decrease the underlying

18
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complexity. A system with many different layers tends to denote higher underlying
complexity. Joel Moses [11] highlights that hierarchy matters when he writes about the
hierarchical decomposition in the Bible, the Greek or Middle Ages philosophies...What
is true for "human" systems also seems to be true for complex systems.
Kauffman [12] contends that self-organization is a great undiscovered principle of nature.
He claims that complexity itself triggers self-organization (and that if enough different
molecules pass a certain threshold of complexity, they begin to self-organize into a new
entity: a living cell). Kauffman extends his biological paradigm to economic and cultural
systems, showing that they may evolve according to similar laws. We believe that
complex engineering systems tend to be (self)-organized: the number and the depth of
their hierarchical levels reflects their complexity.
Herbert Simon [13] proposed that complex systems only arise as hierarchical
combinations of sub-systems.
Joel Moses [11] also details three approaches to design large-scale engineering systems
and underlines the importance of "hierarchical decomposition" and "layered design" to
cope with complexity in many fields such as the "Human Mind and Body",
"Mathematics", "Philosophy", "Manufacturing"... So, it appears that the effort to design
a device that achieves a complex behavior is more challenging if the Reference
Decomposition shows deeper basic functions (and more layers).

Based upon the former statements, the reasons for including hierarchy in Internal
Complexity metrics are now detailed.
An element that combines two or more basic functions is more complex than one with
any single basic function. We assess this by representing the system as a set of mono-
functional elements, in which it is necessary to go deeper in the decomposition to
represent a multifunctional element than to represent a mono-functional one. Since a
system made of multifunctional elements is arguably more complex, a system that has
deeper layers (i.e., whose hierarchy is higher) is also similarly more complex.
The systemic emergent behavior (i.e., the complex function achieved by the system
which may not be fully understood) is the combination of many basic functions. The
deeper the basic functions in the decomposition, the more potentially complex the
behavior. Indeed, these basic functions need to be combined and integrated more
intricately to achieve their part of the resulting behavior than functions which are at a
higher level. Since the set of five basic functions is limited and straightforward, every
complex function needs to be represented by a complex combination of these five basic
functions. The overall emergent behavior of a system is key in complexity. This
combined behavior has often been labeled "emergent" and in the sense of combining
mono-functional elements from various levels, such description is appropriate. Now, this
behavior being the integration on different levels of all the basic functions of the system,
the number of levels needed to achieve single-function representation is an important
indicator of complexity.
Complexity correlates with depth. In the Reference Decomposition, the higher an
element, the more important its basic function in the system. Conversely, when an
element is broken further down to discover its basic functions, there are generally more
elements in the Reference Decomposition. These elements have lesser influence because
they belong to inferior layers and because it is only together that they can achieve a
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function as important as the one achieved by elements of the layer above. Complexity is
higher when hierarchy increases because it is the sum of many smaller influences that
generates the resulting behavior.
The latter idea can be brought into closer alignment with Linda Beckerman's thoughts on
emergent behavior [14]. She identifies system's goals as the emerging sum of functions
and functions as the emerging sum of characteristics and techniques implemented to
achieve them. From small interacting pieces at deep levels one can "build" a complex
system with its emergent behavior.

To conclude on a quantitative basis, the drivers of complexity are: the number of mono-
functional elements, their hierarchy (vertical position), the vocabulary (number of basic
functions in the system) and the links between these elements. We will now pursue
quantitative approaches to describe these effects.

2. Metrics

a. Characteristics

In this thesis, we define three functions and four variables.
Functions

C: Internal Complexity (also noted C mainly in comparison to C and

CINTERFACE)

C,: Scale Complexity

CL: Link Complexity

Variables
E: number of Elements
L: number of Links (directional links count as one link and bidirectional links as
two)
V: Vocabulary (number of basic functions)
H: Hierarchy (level of decomposition)

The Reference Decomposition which succinctly summarizes the drivers of complexity is
the basis to assess the influence of the four variables. Algorithmic complexity [15] argues
that the length of the shortest algorithm which fully describes the artifact is the
complexity of the artifact. Thus, the "length" of the Reference Decomposition infers
complexity.

Complexity is a function of the number of elements, simple links, basic functions and
hierarchy as they appear in the Reference Decomposition. It is noted:

N4 9..
C (E, L, V, H): (E, L, V, H) C (E, L, V, H).

Complexity is a dimensionless number.
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b. Components

i. Scale Complexity

From the preceding arguments, Scale complexity is derived from Shannon entropy except
that the number of elements (E) is modulated both by the number of functions necessary
to describe the system (V) and the number of the highest level in the system
decomposition (HM) in order to give appropriate attention to quality as well as quantity.
Scale Complexity increases faster with the number of elements (E) than with the two
other variables V and HM in order to emphasize the prevailing role of "quantity" in
complexity.

Thus, the basic form for Scale Complexity is:
E x Ln (V x HM)

This expression is very close to the "size complexity" based upon information content
defined by Summers and Shah [9]. In a similar expression, their complexity "includes
both the total number of primitive modules (variables) and the total number of possible
relation between these modules". In the formulation here the number of primitive
modules is obviously E and the number of qualitative relations between them is obtained
by multiplying V and HM (because they are independent dimensions).
Since Scale Complexity should not be null when the system is only composed of mono-
functional elements achieving one function (V = 1) in the first level (HM = 1), it is more
appropriately described by:

E x Ln ((V + 1) x (HM + 1))
Finally, Scale Complexity is normalized so that it equals the number of elements when
they all achieve the same function (V = 1) in the first level (HM = 1). After normalization,
the algorithm to compute Scale Complexity is:

C (E, V, H) = E x Ln ((V + l) x (HM + 1))
Ln (4)

This algorithm allows one to compute Scale Complexity from a macroscopic point of
view.

A second way to compute Scale Complexity is to compute the complexity of each level
of decomposition, with the previous metric, and then to sum the different values to obtain
Scale Complexity. This microscopic way of computing Scale Complexity emphasizes the
role of the number of layers in complexity.

CE (E, V, H) = Ej Ln ((Vj + ) x (Hj + 1)) (: the level)

j Ln(4)

Here, for each level j, Ej is the number of elements, Vj the vocabulary and Hj the
hierarchy of the level (i.e., the number of the level: Hj = j).

Moreover, each of the two variants described above can be further divided into three sub-
metrics depending upon the element counting procedure. Up to this point, E or Ej
represent all the elements (in general or in a layer). It seems logical to explore alternative
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ways of taking the elements into account. First, we only count the number of non-
redundant elements (ENR and EjNR) or second only the number of non-identical elements
(EN and EjNI ). The reduction to the non-redundant elements is a logical way of
proceeding because we can argue that doubling an existing element will not add Scale
Complexity. The further reduction to the non-identical elements is also coherent because
we can argue that adding an element which already exists in the system and performs the
same function may not add significant Scale Complexity. However, we should note that
adding these elements will affect Link Complexity (because they need to be connected)
and therefore the overall Internal Complexity of the system.

As a conclusion, six algorithms to compute Scale Complexity (C.) are proposed:
macroscopic versus microscopic and counting all the elements, only the non-redundant
ones or only the non-identical ones. Table 1 recalls and names these six algorithms.

All the elements
Non-redundant elements
Non-identical elements

Macroscopic

MACRO, NR)~~~B~~~~~ g~~~~a~~~~~;Odim~~~~~~~~~~~~l~~~~l~~~~~ne~~~~~.1 _E~~~iEI

Microscopic
(micro, All

(micro, NI)

Table 1 - Six useful Scale Complexity algorithms

To better understand the behavior of the various Scale Complexity (C,) metrics it is worth
determining whether each is intensive (independent of the size of the system) or
extensive (depend on the size of the system).

· Cs (E, V, H) = ELn ((V + 1) x (HM + 1)) is extensive
Ln (4)

Indeed, Cs(system S U system S) = C,(2E, V, H) = 2E x (( ) x (HM ))
Ln (4)

Ln((V + l)x(HM +1)) +ELn ((V + l)x(HM + 1))Ex +Ex
Ln (4) Ln (4)

= Cs(E, V, H) + Cs(E, V, H) = Cs(system S) + C,(system

S)
So, Cs(system S U system S) = Cs(system S) + Cs(system S)

*s C(E,V, H)= ZE Ln((Vj + l)x(Hj + 1))
· c (E, V, H)Ln ((V + ) x (H + 1)) (: the level) is extensive

Indeed, Cs(system S U system S) = C,(2E, V, H) = 2Ej ( xj ( +1))Z 2E~~Ln (4)

=2 E Ln ((Vj + 1) x (Hj + 1))

j Ln (4)

= Cs(system S) + Cs(system S)

So, Cs(system S U system S) = Cs(system S) + Cs(system S)
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* Scale Complexity (Cs) becomes intensive when we consider the two alternatives: NR
and NI because the elements are only counted once when two identical systems are
juxtaposed. So, the following four metrics:
ENR L n ( ( V +I ) 1( H + )) x (H + 1)) NR L n ( ( V + 1) x ( H + 1) ) ENR Ln ((Vj + 1) x (Hj + 1))

Ln (4) Ln (4) j Ln (4)

ER Ln ((Vj + 1) x (Hj + 1)) are intensive.

Ln (4)

ii. Link Complexity

Firstly, Link Complexity can be conceptualized as the density of interactions.

The number of interactions between E elements all connected to one another is:
Ex(E -1)

2
Since these connections can be double links, the number of simple links between E
elements all connected to one another is:

E x(E -1)

Thus the number of simple links varies from 0 to E(E-1):
L [O, E(E-1)]

So, the density of links is:
L

D (E, L) = L
E x(E -1)

Then, regarding Link Complexity (CL) as a density, we compute it as follow:

L
CL (E, L) = L

Ex(E -1)

A variant can be the normalized density where Link Complexity equals 1 for a system
having each of its elements linked once and only once.

Since D (Eo, Lo) = (because Lo = Eo),
E 0 x (Eo -1) E -l

it finally comes that the Link Complexity (CL,) is:
L

CL (E, L) =
E

Secondly, Link Complexity can be regarded as Connectivity (as defined and explained by
Summers [16]).

As for density, the ultimate variant is normalized Connectivity where Link Complexity
equals 1 for a system having each of its elements linked once and only once. This
algorithm for Link Complexity is obtained for the former by dividing it by the number of
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elements (E) when it is even or by the number of elements plus one (E+1) if it is not.
Figure 5 illustrates the derivation of this result.
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Figure 5 - Normalization of Connectivity
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As a conclusion, four algorithms to compute Link Complexity (CL) are proposed: Density
normalized or not and Connectivity normalized or not. Table 2 summarizes and names
these four algorithms.

Density Connectivity
Non normalized (Cty)
Normalized (2)

Table 2 - Four useful Link Complexity algorithms

As for Scale Complexity, it is important to determine whether Link Complexity (CL) is
intensive or extensive.

* CL(E, L) = L is extensive (but not proportional to the size of the system)
Ex(E-1)

* CL(E, L) = L is intensive
E

2L L
Indeed, C,(system S U system S) = CL(2L, 2E) 2 = CL(L,E) = C(system S)

2E E
So, CL(system S U system S)= C(system S)

* CL(E, L) defined as Connectivity is extensive because the algorithm to compute
connectivity is applied independently to the two juxtaposed systems.

* C,(E, L) defined as normalized Connectivity is intensive only when the number of
elements is even. The non-normalized Connectivity of two juxtaposed systems which is
twice the Connectivity of the one system divided by 2E equals the Connectivity of the
system S divided by E (but not by E+1).

c. Configuration of the metrics

Since the two components of complexity previously defined emphasize different aspects
of complexity that we want to appropriately combine, we propose two metrics to compute
Internal Complexity (C) combining these components differently. The metrics proposed
are fully ordered.

i. Norm

Scale (Cs) and Link (CL) Complexities can be regarded as the two components of a vector
in an orthonormal base. Complexity (C) is thus the norm of this vector:

C = (Cs2 + CL2)1/ 2
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Now, we apply the 48 metrics identified in Table 3 to STAR 2000 in order to select the
most appropriate one. Then, we also apply this metrics to SCOUT in order to compare
both complex systems.

1. Application to the ATC radar

The ATC radar STAR 2000 is a high performance, fail safe, affordable S-band primary
radar designed to deal with dense air traffic situations, within approach or extended
approach control area. STAR 2000 is a pulsed radar that supports reduced separation
between aircraft and features high processing capacity.

The level 1 of decomposition of STAR 2000 is represented in Figure
convention we use for the decomposition (B.II.3 p. 17).

6 with the

Figure 6 - Level 1 of decomposition of STAR 2000

STAR 2000 is composed of 9 subsystems:
- Aerial System
- RCMS (Remote Control and Monitoring System)
- MWA (Microwave Assembly)
- AE 2000 (Main Distribution)
- GRA A (Generation Reception Assembly)
- GRA B (Generation Reception Assembly)
- SST(8) (Solid-State Transmitter)
- TR-2000 A (Aircraft and Weather Processor)
- TR-2000 B (Aircraft Processor)
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CL

0 Cs

ii. Product

We can also access to complexity by multiplying the two components.
C = C x CL

Decreasing
Complexity

0

M Increasing

/V Complexity

C

As a conclusion, Table 3 summarizes the 48 different possibilities to compute Internal

Table 3 - The 48 possible Complexity metrics

IV. Applications and choice of the relevant metrics
In this section we compute the Internal Complexity of two systems: STAR 2000 and
SCOUT. Both systems are radars used in different transportation systems. STAR 2000 is
used in Air Transportation System while SCOUT is used in the Maritime Transportation
System. We choose these two test bed systems because they are complex systems which
both have commonalities (because they are both radars) and differences (different
environment and principles (pulse versus continuous wave)). Therefore, their comparison
is more direct and thus potentially valuable for studying the sources of complexity.
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Two of these subsystems (RCMS and AE 2000) are mono-functional and will not be
further decomposed to obtain the Reference Decomposition and to compute Internal
Complexity. One subsystem (MWA) is bi-functional, another one (SST(8)) is tri-
functional and the five others (Aerial System, GRA A and B, TR-2000 A and B) are
tetra-functional. All these seven subsystems will need to be further decomposed in order
to compute Complexity.

a. The Reference Decomposition

First, we illustrate the methodology to obtain the Reference Decomposition on the
example of the Aerial System, a subsystem of STAR 2000 (i.e., an element which
belongs to the first level (level 1) of STAR 2000 decomposition).
Figure 7 represents the first level of the decomposition of the subsystem "Aerial System"
which is only the part of the level 2 of STAR 2000 decomposition focusing on the Aerial
System. The colored rectangles represent the elements of this layer and the diamonds
represent the other subsystems of STAR 2000 liked with the Aerial System (Main
Distribution Unit AE 2000, MWA 2000 S, RCMS...) which belong to the level 1 of
decomposition and will not be decomposed in this example because we only focus on the
Aerial System.

I - Information 
E - Energy
M - Matter

RCMS

-Bidirectional ,

I-

I FTKxekangcor 4 ~ ~ ~ ~ ~ ~ ~~ .
Ernibe o,- + '

~T~~ade I ~MWA
TR-2000 TR-2000 2000

A B S

Figure 7 - Aerial System: level 2 of decomposition of STAR 2000

Figure 8 does not add any information: it is the same representation as Figure 7 but with
bigger boxes to make the representation of the further decomposition easier to
understand.
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IE
Main

Distribution
AE 2000

IE

1

.

TR-2000
A

TR-2000
B

Figure 8 - Redrawing of Figure 7

In Figure 9, each element of the level 2 which are not mono-functional (i.e., represented
with monochromatic boxes) are further decomposed into elements. These elements
consequently belong to the Level 3 of decomposition and are represented, according to
our convention, with smaller boxes.

I - Information
E - Energy
M - Matter

-Directional
-Bidirectional

I nem orI
MM1

MWA
TR-2000 TR-2000 2

2000A B
S

Figure 9 - Aerial System: level 3 of decomposition of STAR 2000
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Finally, Figure 10 shows the Reference Decomposition of the Aerial System. It is
obtained by keeping only the mono-functional elements of Figure 9. The Pedestal and the
MSSR Antenna (opt) which was enlarged earlier for convenience purposes are also
rescaled according to the convention.
The multifunctional element: "MSSR Antenna (optional)" is represented in the Reference
Decomposition while it should not be, just to remind us that it has to be considered for
decomposition if it were included into the system (which is not the case here as we
consider only the basic configuration of STAR 2000).

Main
Distribution
AE 2000

_

WI
TR-2000

A

--E

E

TR-2000
B

'E

MWA
2000

S

Figure 10 - Reference Decomposition of the Aerial System (with an optional element)

The figures detailing the methodology to obtain the Reference Decomposition of the
other STAR 2000 subsystems are in Appendices. Appendix A is for the GRA, Appendix
B for the MWA, Appendix C for the TR-2000 A, Appendix D for the TR-2000 B and
Appendix E for the SST(8).

Finally, following the methodology in section B.II.2 (p. 16), the Reference
Decomposition of STAR 2000 (Figure 11) is obtained by linking appropriately the
Reference Decompositions of all its subsystems.
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Figure 11 - Reference Decomposition of STAR 2000 (scale: 45%)
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b. Computation of Internal Complexity

First, we illustrate the process to compute Internal Complexity on a STAR 2000
subsystem: the processor TR-2000 B.

Figure 12 - Reference Decomposition of TR-2000 B

The computation of TR-2000 B Internal Complexity is based on its Reference
Decomposition (Figure 12) to assess the number of elements (Ej), the vocabulary (Vj) and
the hierarchy (Hj) for each level and the total number of links (L).

[ 2

3

. Ei V Hi |

3 2 1 2
19 4 1 3

Total 24 4
I Total 24 4 j 4

I L I

1 35 1

Table 4 - Quantitative description of TR-2000 B

Since, in this subsystem, there are no redundant or identical elements, the number of
elements (Ej) equals the number of non-redundant elements (EjNR) and the number of
non-identical elements (EjNI): Ej=EjNR=EjN'. This property reduces the number of possible
values of Internal Complexity given by alternative metrics because Scale Complexity (C,)
is identical counting all the elements, counting only the non-redundant ones or counting
only the non-identical ones.
Some Internal Complexity metrics are based on Connectivity. We detail in Figure 13 the
computation of Connectivity for TR-2000 B. The Connectivity of TR-2000 B is 103 (
4+6+30+32+25+6).
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Figure 13 - Computation of the Connectivity of TR-2000 B
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Finally, Table 5 presents the different components: Scale Complexity (Cs) and Link
Complexity (CL) of TR-2000 B. Table 6 summarizes the value of the different Internal
Complexity metrics (C) for this processor. For the components as well as for Complexity

itself, the different available alternatives (Micro/Macro for Cs, (1)/(2)/(Cty)/(Cty') for CL

and in each case, norm/product for C) are computed.

Components

Sca omplexity Link Complexity (C)
MACRO micro 1 2 Cty Cty'

55.73 49.72 0.06341 1.458 103 4.292

Table 5 - Components of the Internal Complexity of TR-2000 B

Complexity Metrics
C= (C2 + 2)1/2

1 2 Cty Cty'

55.73 55.75 117.1 55.89
49.72 49.74 114.4 49.90

1 2 Cty Cty'

3.533 81.27 5740 239.2
3.153 72.51 5121 213.4

Table 6 - Internal Complexity metrics for TR-2000 B

Following the process just detailed on the example of TR-2000 B, Table 7 summarizes
the different Scale Complexity (Cs) and Link Complexity (CL) metrics possible for the
different STAR 2000 subsystems.

Scale Complexity ()
MACRO

30.25
92.92
83.42
32.26
46.60
44.38
55.73

micro
29.39
85.40
69.50
32.26
46.60
44.38
49.72

Components
Link Complexity (G)

1

0.1593
0.03488
0.03565
0.1699
0.1292
0.04233
0.06341

2

2.071
1.465
1.176
2.889
3.231
1.143
1.458

cty
74

187

139
192
352
55

103

Table 7 - Complexity components of the main STAR 2000 subsystems

Finally, Table 8 shows the values of the 48 alternatives of Internal Complexity (C) for the
main STAR 2000 subsystems. All the parameters necessary to do the computation are in
Appendix G.
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MACRO
micro

Aerial System
TR-2000 A
GRA
SST(8)
SST(16)
MWA
TR-2000 B

Cty

10.57
4.250
4.088
9.600
12.57

1.964
4.292

L

C= 6 G
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Complexity ( C= ( 2 + G2 )/ 2 I = x C 2 + C
212 II = C x I

Scale () I MACRO micro

Link (C) I 1 2 I CtylCty'l 1 2 |CtylCty' 1 2 ctyct y' 1 2 Cty[Cty'j
erial System 30.25 30.32 79.95 32.05 4.821 62.67 2239 319.8 29.39 29.46 79.62 31.23 4.682 60.87 2174 310.6

R-200 A 92.92 92.93 208.8 93.02 3.241 136.1 17376 394.9 85.40 85.41 205.6 85.50 2.979 125.1 15970 362.9

bRA 83A2 83.43 162.1 83.52 2.974 98.14 11595 341.0 69.50 69.51 155.4 69.62 2.478 81.76 9660 284.1

SST(8) 32.27 32.39 194.7 33.66 5.483 93.21 6195 309.7 32.27 32.39 194.7 33.66 5.483 93.21 6195 309.7

ST(16) 46.60 46.72 355.1 48.27 6.023 150.6 16405 585.9 46.60 46.72 355.1 48.27 6.023 150.6 16405 585.9
MWA 44.38 44.39 70.67 44.42 1.878 50.72 2441 87.17 44.38 44.39 70.67 44.42 1.878 50.72 2441 87.17

R-2000 B 55.75 117.1 55.89 3.533 81.27 5740 239.2 49.72 49.74 114.4 49.91 3.153 72.51 5121 213.4

erial System NR 23.77 23.86 77.72 26.02 3.788 49.24 1759 251.3 22.90 23.00 77.46 25.22 3.649 47.44 1695 242.1

R-2000 A NR 92.92 92.93 208.8 93.02 3.241 136.1 17376 394.9 85.40 85.40 205.6 85.51 2.979 125.1 15970 363.0

RANR 73.60 73.61 157.3 73.72 2.624 86.59 10231 300.9 60.33 60.34 151.5 60.47 2.151 70.97 8386 246.6

ST(8) NR 14.34 14.63 192.5 17.26 2.437 41.43 2753 137.7 14.34 14.63 192.5 17.26 2.437 41.43 2753 137.7

ST(16) NR 14.34 14.70 352.3 19.07 1.853 46.33 5048 180.3 14.34 14.70 352.3 19.07 1.853 46.33 5048 180.3

WANR 33.28 33.30 64.29 33.34 1.409 38.04 1831 65.38 33.28 33.30 64.29 33.34 1.409 38.04 1831 65.38

R-2000 B NR 55.73 55.75 117.1 55.89 3.533 81.27 5740 239.2 49.72 49.74 114.4 49.91 3.153 72.51 5121 213.4

erlal System NI 23.77 23.86 77.72 26.02 3.788 49.24 1759 251.3 22.90 23.00 77.46 25.22 3.649 47.44 1695 242.1

R-2000 A NI 64.83 64.85 197.9 64.97 2.261 94.98 12123 275.5 59.40 59.42 196.2 59.55 2.072 87.03 11108 252.4

RA NI 63.79 63.80 152.9 63.92 2.274 75.05 8867 260.8 53.16 53.17 148.8 53.31 1.895 62.54 7389 217.3

ST(8)NI 14.34 14.63 192.5 17.26 2.437 41.43 2753 137.7 14.34 14.63 192.5 17.26 2.437 41.43 2753 137.7

ST(16) NI 14.34 14.70 352.3 19.07 1.853 46.33 5048 180.3 14.34 14.70 352.3 19.07 1.853 46.33 5048 180.3
WA NI 23.77 23.80 59.92 23.86 1.006 27.17 1308 46.70 23.77 23.80 59.92 23.86 1.006 27.17 1308 46.70

R-2000 B NI 55.73 55.75 117.1 55.891 3.533 81.27 5740 239.2 49.72 49.74 114.4 49.91 3.153 72.51 5121 213.4

Table 8 - 48 alternative Internal Complexity metrics for the STAR 2000 subsystems

2. Choice of the relevant Internal Complexity metrics
From all the 48 possible Complexity metrics we have identified and applied to STAR
2000, we will now pick the most relevant one. Following a top-down process, we will
eliminate the metrics which are not in accordance with our conception of Internal
Complexity. We will also assess the metrics taking into account the views of an expert of
STAR 2000 [17]. The subsystems listed by increasing order of complexity are:

- MWA (Microwave Assembly)
- Aerial System
- GRA (Generation Reception Assembly)
- SST(8) (Solid-State Transmitter)
- SST(16) (Solid-State Transmitter)
- TR-2000 B (Aircraft Processor)
- TR-2000 A (Aircraft and Weather Processor)

C(MWA) is low, C(SST(16)) is comparable to C(SST(8)) but slightly higher and C(TR-

2000 A) is a bit higher than C(TR-2000 B).

Even though these considerations are based upon deep practical knowledge based upon
experience, they may not be blindly followed in the discussion to assess the metrics.
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The mathematical properties of the Internal Complexity metrics defined as Norm
(C=(Cs2+CL2) 1/ 2 ) make it inapplicable when the two components are quite different. In our
example, Link Complexity (1), (2) and (Cty') are very different from Scale Complexity
(one or two order of magnitude). The resulting Complexity is thus arbitrarily dominated
by the higher component. We eliminate these metrics because they do not properly
balance the two components of Complexity we believe essential to internal complexity -
scale and link. Table 9 summarizes the remaining possible metrics where the black boxes
are eliminated metrics.

C I Norm I Product
MACRO micro MACRO micro

All I NR I NI All I NR I NI All I NR NI All INR NT

(1)

CL (2)
(Cty)

(Cty')

Table 9 - 30 remaining metrics

The Complexity metrics defined as a Product (C = Cs x CL) using Link Complexity (1) is
also not valid (Table 10). When we apply it to the different subsystems and to the overall
system, the complexity of STAR 2000 is lower than the complexity of some of its
subsystems (e.g., when all the elements are counted, C(STAR)=4.669 (for the MACRO
and 3.900 for the micro) while C(SST(8))=5.483 (for both the MACRO and the micro).
This contradiction arises because STAR is less dense than some of its subsystems. The
product relationship equally weights the two components of complexity: the Internal
Complexity emerging from the scale of the overall system does not compensate for the
reduced coupling due to the non-normalized density.

C Norm Product

I MACRO I micro I MACRO I Micro
Us

(1)CL (2)
(Cty)
(Cty')

Table 10 - 24 remaining metrics

In order to further examine the 24 remaining metrics, we now study each remaining
possible alternative metric individually. In Figure 14 and Figure 15, we represent for each
alternative metric the relative Internal Complexity of the different subsystems. From
now, the nomenclature for the metrics is:

- MACRO / micro for: C, Macro or micro
- (1) / (2)1 /(Cty) / (Cty') for: CL (1), (2), (Cty) or (Cty')
- (+) / (x) for: C Norm or Product
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- 0/NR/NI for: C, counting all the elements, only the non-
redundant or only the non-identical ones

(e.g., MACROlxNR: stands for the Product metrics based on the Link Complexity (1)
and on the Macro Scale Complexity counting only the non-redundant elements,
micro2+NI: stands for the Norm metrics based on the Link Complexity (2) and on the
micro Scale Complexity counting only the non-identical elements...)

In the figures presenting the different alternatives some metrics that have previously been
eliminated are shown to provide a better basis for comparison and understanding. The
data are presented in three sets ( / NR / NI) of two graphs (MACRO and micro) and are
analyzed following the order of appearance. Below is the list of all the metrics and for
each one eliminated the reason why it is not retained as a valuable metrics is shown.
Conversely, the metrics that can be potentially used as Internal Complexity metrics are
underlined in this list (restrictions appear in comments).

For 0:
- micro 1 x:
- micro2x:
- microCtyx:
- microCty+:
- MACROlx:
- MACRO2x:

- MACROCtyx:
- MACROCty+:

For NR:
- microlxNR:
- micro2xNR:

- microCtyxNR:
- microCty+NR:
- MACROlxNR:
- MACRO2xNR:
- MACROCtyxNR:
- MACROCty+NR:

For NI:
- microlxNI:
- micro2xNI:
- microCtyxNI:
- microCty+NI:
- MACRO xNI:

C(SST(16)) >> C(TR-2000 A) not retained
C(SST(16)) C(TR-2000 A) not retained
C(TR-2000 A) >> C(TR-2000 B) not retained
C(SST(16)) >> C(TR-2000 A) not retained
C(SST(16)) >> C(TR-2000 A) not retained
C(SST(16)) C(TR-2000 A) and

C(SST(16)) >> C(SST(8)) not retained
C(TR-2000 A) >> C(TR-2000 B) not retained
C(SST(16)) so high not retained

C(TR-2000 B) > C(TR-2000 A) not retained
C(TR-2000) >> C(SST) seems to be a bit exaggerated
C(TR-2000 A) and C(GRA) so high not retained

C(SST(16)) so high not retained
C(SST(8)) > C(SST(16)) not retained
C(TR-2000) >> C(SST) seems to be a bit exaggerated
C(TR-2000 A) >> C(TR-2000 B) not retained
C(SST(16)) >> C(TR-2000 A) and
C(TR-2000 B) >> C(GRA) not retained

C(TR-2000 B) > C(TR-2000 A) not retained
C(GRA) > C(SST(8)) a little questionable
C(TR-2000 A) and C(GRA) so high not retained

C(Aerial System) so low not retained
C(SST(8)) > C(SST(16)) and

C(TR-2000 B) > C(TR-2000 A) not retained

39



- MACRO2xNI: C(GRA) seems too high
- MACROCtyxNI: C(TR-2000 A) and C(GRA) so high not retained
- MACROCty+NI: C(Aerial System) so low not retained

Different Complexity Metrics - STAR Subsystems
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Figure 14 - Complexity of the STAR 2000 subsystems for different metrics (A)

The only parameter that has not been yet taken into account is the Link Complexity
defined as normalized Connectivity (Cty'). To evaluate it, we now present the data under
the same format as earlier with Cty' instead of Cty. The analysis will only focus on the
metrics featuring Cty'. Internal Complexity metrics defined as norm and featuring Link
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Complexity (1) or (2), having already been studied earlier, are presented only to provide a
better basis for comparison.
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Figure 15 - Complexity of the STAR 2000 subsystems for different metrics (B)

For 0:
- microCty'x: C(SST(16)) so high not retained

- microCty'+: C(GRA) >> C(Aerial System) not retained
- MACROCty'x: C(SST(16)) >> C(SST(8)) not retained

- MACROCty'+: C(GRA) >> C(Aerial System) and
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C(TR-2000 A) >> C(TR-2000 B) not retained

For NR:
- microCty'xNR: C(TR-2000 A) >> C(TR-2000 B) not retained
- microCty'+NR: C(SST) so low not retained
- MACROCtv'xNR:C(TR-2000 A) >> C(TR-2000 B) a little questionable

- MACROCty'+NR:C(GRA) >> C(Aerial System) and
C(TR-2000 A) >> C(SST(8)) not retained

For NI:
- microCty'xNI: C(GRA) > C(TR-2000 B) a little questionable
- microCty'+NI: C(SST(8)) so low not retained
- MACROCty'xNI: C(SST(8)) maybe a little too low
- MACROCty'+NI: C(GRA) so high not retained

Table 11 maps the remaining possible metrics.

C Norm Product
MACRO micro MACRO micro

All NR NI All NR NI All NR NI All NR NI

(1)
C, (2)

(Cty'j

Table 11 - 7 remaining metrics

Regarding Link Complexity (2), micro metrics appear superior to the Macro ones
because they give higher importance to the Aerial System; micro2xNI is also better than
micro2xNR because it gives more importance to the SST and the Aerial System in
accordance with the expert rating.

Regarding, Link Complexity (Cty'), MACROCty'xNI appears superior to
MACROCty'xNR because it better agrees with the expert ranking of the SST and the
Aerial System; microCty'xNI is even better than MACROCty'xNI because it emphasizes
again the former argument and also decreases the importance of the GRA in agreement
with the expert rating.

C Norm Product
I MACRO I micro I MACRO I micro I

Cs

(1)

CL (Ct)
(Cty)

Table 12 - The 2 possible metrics
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Table 12 identifies the two remaining possible metrics for valuable Internal Complexity
metrics: microCty'xNI and micro2xNI. Even if they are both useful, they do not give
exactly the same result: the ranking of two subsystems is inverted and the respective
importance of the subsystems in complexity is not exactly the same (even if it is very
close). Finally, we prefer the second one, not for the result it gives, but only because it is
easier to compute. Indeed, while Connectivity is an algorithm which needs to be
computed manually, Density is just a simple calculation.
The Internal Complexity metrics we recommend is microCty'xNI:

CT(E,L,V,H) = L xEE N Ln((Vj +1) x(Hj +1))
E j Ln (4)

We now note some of its properties. As the product of two intensive components, CIT is
intensive.
c,,(0, L, V, H) = 0

L -+ C,(E, L, V, H) is an increasing function:
Moreover CN(E, 0, V, H) = 0

V -- C, (E, L, V, H) is an increasing function:

Moreover C,(E, L, 0, H) = 0 (also because V=O

H -> C,, (E, L, V, H) is an increasing function:

Moreover C,,NT(E, L, V, 0) = 0 (also because H=0

C,f(E, L+1, V, H) > C(E, L, V, H)

C,,,(E, L, V+1, H) >
=> E=L=0)

C,f (E, L, V, H+1) >

> E=L=0)

c,(E, L, V, H)

C,(E, L, V, H)

Further properties of this metric are specific to the system studied and it is difficult to say
more about its general behavior because it depends upon the relative evolution of the
elements (number, vocabulary and hierarchy) and the links.

3. Computation of STAR 2000 Internal Complexity
Since we have now identified the best Complexity metric, we can compute the Internal
Complexity of STAR 2000. Table 13 summarizes all the parameters necessary to apply
the metrics to this complex system.

E
197

LJ
373

Table 13 - Parameters to compute STAR 200 Internal Complexity
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L NI Ln((Vj + 1) x (Hj + 1)) =350.20So, ,(STAR 2000) - x E = 350.20
E j Ln (4)

We note that the sum of the Internal Complexities of each STAR 2000 subsystem is
appropriately lower than the complexity of the latter. (The computation of the sum of the
complexities of the different subsystems in order to be compared to the complexity of the
overall system is done counting only the non-identical elements (i.e., only counting one
GRA (and not two) and not counting the TR-2000 B because it is fully equivalent to a
part of TR-2000 A). The discrepancy between these two computations of Internal
Complexity reflects the increase in Link Complexity due to the connection between the
different subsystems.

4. Application to the maritime radar

In comparison to STAR 2000 (whose description is given p.28), SCOUT is an I-Band,
short-to-medium range, surface surveillance and navigation radar. It is a fully solid-state
system with high reliability, low weight and small dimensions. As a frequency modulated
continuous wave radar it is used in littoral, coastal and harbor surveillance applications.

Figure 16 - Reference Decomposition of SCOUT (scale: 45%)

From the Reference Decomposition in Figure 16 we can infer the data presented in Table
14 in order to compute the Internal Complexity of SCOUT.

Level E N V H
1 2 2 2 1

_ 2 .. 4 . 2
3 23 4 3

m
w2 

1 L
11 45 
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Table 14 - Parameters to compute SCOUT Internal Complexity

L NI Ln((Vj +) x (Hj + 1))
So, C(SCOUT) = ______Ej___IPg i 89.123

E Ln (4)

Page intentionally left blank
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C. Interface Complexity

Between a device and its environment lies, by definition, the interface. To understand the
influence of the external complexity on the internal complexity, the interface is an
obvious aspect to study.
Before focusing on interface complexity more precisely we want to identify its role in the
general complexity framework detailed in Figure 17. Requirements attempt to capture
what is asked of the system by its environment; therefore, interface complexity can be
studied in terms of requirements. Interface complexity can also be studied in terms of
performances. Indeed, performances echo requirements because they express how the
system acts on its environment. Requirements are imposed by the environment to the
system: they stem from the outside of the system and go inside the system; performances,
the counterpart of requirements, are the answer of the system to its environment: they
stem from the inside of the system and go outside the system.

Is

Figure 17 - Interface Complexity in the framework to study complexity

In this thesis, we first study interface complexity qualitatively in terms of performances.
Then, we study it quantitatively in terms of requirements.

I. Qualitative approach to Interface Complexity
One of our aims is to explore the relationship between internal and external complexity.
To assess the complexity at the interface between the system and its environment we
compare the respective performances of the two test bed systems. A qualitative
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framework is developed to inform the complexity of the interface and to help
understanding how external and internal complexities interact.

1. Method

The framework consists in making a comparative table of the respective performances of
both systems. In Table 15, the performance category is named in the first column and the
value of each performance for both systems is given in the two others. For each
performance category, a red cell signifies the system whose value is more stringent (i.e.,
hard to achieve) and a green cell, the system whose value is less stringent. Light red and
light green are used to compare performances which do not seem to weigh a lot in
complexity. Yellow is used for equal performances. A comparison of the dominant color
of the two columns will inform the relative complexity at the interface of the two systems
in their respective environment. Thanks to such table, we can assess comparatively the
Interface Complexity of the two systems in their environment.

2. Application to the ATC and maritime radar
In fact the comparative table (Table 15) presents two sub-columns for each test bed
system to increase the scope of comparison comparing two typical configurations of each
system.

3. Conclusion

Simply looking at the two main columns for the ATC and the maritime radar, one can
easily tell that red is the dominant color for STAR 2000 and green the dominant one for
SCOUT.
To conclude, Interface Complexity assessed in this qualitative performance comparison is
higher for STAR 2000 than for SCOUT:

CNTEAE (STAR 2000) > CNERFACE (SCOUT)

4. Drawbacks of this approach
We acknowledge that this way of proceeding works because we have chosen two
comparable systems: two radars. We also acknowledge, by way of consequence, that this
method cannot be generalized to systems whose performances are not comparable.
Moreover, we know that this method is not quantitative and we knew in advance that it
would help support our hypothesis because we expected much more "red" in one column
than in the other. In case of outcomes less distinguishable, it would be hard to draw a
conclusion because we do not know the respective weight of each typical performance in
complexity. Finally, while useful, this approach to interface complexity is not the only
one. We now present a quantitative approach to interface complexity.
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Beamwidth (Vert.)

Side lobe level

Range cell

Accuracy (range/azimuth)

Resolution (range/azimuth) (Pd = 80%

Improvement ground clutter

Factor rain clutter

Sub-clutter ground clutter

visibility rain clutter

PIIIP -nm-rPrE inn .ide InikP 1I _;n A%- I An A I en A, I n A I

Target Velocity range

Mancruvre

Handling

I Output delay I 1.2 sec I 1.2 sec I +/- 2ec I +/- 2ses I

MTBCF

MNTR

Pd(Pfa= I0. typical range and section)

Environment Temperature

Humidity I 93(or 80)% at +40°C I 93(or 80)% at +40°C 95% at +30°C I 95% at +30°C I

Wind (operation)

Wind (survival)

Solar Radiation I kW/m
2

at +45oC I kW/m
2

at +45°C 1120 W/m
2

at +40°C 1120 W/m
2

at +40°C

.alt Atmn.nhIre I VY I e I YI

Vibrations

Shock (Processor)

Table 15 - Comparative table to assess Interface Complexity

*: 16 modules version

II. Quantitative approach to Interface Complexity
A potentially valuable way to look at the interface complexity is to see it as the tension
that reigns on the "membrane" that separates the system from its environment. This
tension mainly depends upon two variables which are the resistance of the system and the
pressure of the environment. When both the pressure and the resistance are high,
interface complexity is high. Interface complexity is seen as the result of what is asked of
the system and what the system can offer.
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1. Method and theory
According to Nam Pyo Suh [18], "complexity is defined as a measure of the uncertainty
in achieving the specified Functional Requirements. Therefore, complexity is related to
information content, which is defined as a logarithmic function of the probability of
achieving the Functional Requirements. The greater the information required to achieve
the Functional Requirements of a design; the greater is the information content, and thus
the complexity". Thus,

I = - log2 (P)

The information content that the interface imposes on the system: Isys = - log2 (Psys) is a
function of the joint probability to satisfy all the Functional Requirements (Psys).
Therefore, the complexity defined as systemic information content depends upon Psys:
when Psys is low, the information content is high and the complexity is high too.
There are two reasons why Psys can be low. Firstly, the level of the Functional
Requirements which is aimed to be reached is high. Secondly, this level is hard to reach.
It is all the more improbable that one reaches one's aim if the aim is remote and if the
track to go there is steep. Psys depends upon the "where" to go and the "how" to go there.
The quantitative approach to Interface Complexity will take these two points into account
to justify the nature of the complexity emerging from the system and its environment.
Interface Complexity reflects the stringency of what is asked of the system by its
environment and how the system handles it.
From a system standpoint, Suh defines complexity as a logarithmic function of the
probability of achieving the Functional Requirements. Now, since we are interested in
interface complexity as the result of what is asked of the system and what it can offer, we
need to look at the problem from the other side and formulate Interface Complexity as a
function of the probability of not achieving what is required. All the Functional
Requirements are driven by the idea that the system must achieve its main functions
without failure. Ideally, every complex system should achieve what it is asked to perform
(i.e., its primary function: what it is "basically" designed for) without failing. Therefore,
the information content of the probability of failure for the system as it is used (P) can be
seen as what drives the Internal Complexity of the system in its environment. The lower
the probability of failure of a system in its configuration as used, the higher the Interface
Complexity.

Therefore, Interface Complexity is defined as:

CIERAC = - log2 (P)

P is the probability of failure of the system as it is used. The "as it is used" is essential in
the concept of Interface Complexity since it is what takes into account the resulting trade-
off between the external requirements and the internal capability of the system. The
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Interface Complexity metric proposed measures the degree of achievement of this trade-
off.

When P = 1, CERFACE = 0: the Interface Complexity of a system is null when it cannot

achieve the function it has been designed for.
When P = 0.5, CINTEAE = 1: the Interface Complexity of a system equals one when it

equally fails or succeeds in achieving its usual function.
When P -+ 0, CNTERAC - oo: the Interface Complexity of a system tends to infinity when

the system fully achieves what it has been designed for.

To conclude, Interface Complexity defined as the information content of the probability
of failure of the system under its normal conditions of use measures how hard it is to
achieve what the system achieves. Indeed, what the system achieves stems form the
trade-off between what can be done easily and what should be done ideally. Therefore the
degree of achievement of the primary function takes into account both the characteristics
of the system and the ones of its environment. According to this quantitative approach,
Interface Complexity lies in the degree to which the system achieves what it must
achieve.

2. Application to the ATC and maritime radar

Most of the performances of the two radars can be summarized into a "probability of
correct detection over time". For their typical range, their typical probability of false alert
(Pfa) and typical cross-section to be detected, both radars can be characterized by their:

- Probability of detection: Pd
- Availability: Av

Therefore, P' = Pd x Av is literally the probability that a target is correctly detected at
anytime, i.e., the "probability of correct detection over time".
Conversely, P = 1-P' = -(Pd x Av) is the probability of failure of the radar as it is used.

Thus, for a radar Interface Complexity becomes:

CIERFACE = - log2 (P) = - log2 (1-(Pd x Av))

Here, Pd and Av are the values as the radar is used.

For, STAR 2000, the usual range for the 8 modules version is 83.96 nmi and 97.79 nmi
for the 16 modules version. For a typical Pfa = 10-6 on a typical cross-section = 2m2 , Pd
and Av are:
Pd = 80%
Av = 0.99999

So, the Interface Complexity of STAR 2000 in its environment is:

50

·-- �----^-----·IIIIC --



CINTEPRACE= - log2 (1-(Pd x Av)) = 3.321

This value of Interface Complexity is both for the usual range of 83.96 nmi (for the 8
modules version) and 97.79 nmi (for 16 modules) and for typical parameters.

CNTEACE is the same when STAR 2000 is built with 8 or 16 modules. CINT is also nearly the
same for these two versions: 350.20 for 8 modules and 350.97 for 16 modules.
CINTERFACE is the same for the two configurations of STAR 2000 (range 60 nmi or 80 nmi).

C, is also the same in these two cases.

For SCOUT, the usual range is 5.2 nmi. For the typical Pfa = 10-6 on a typical cross-
section = lm 2, Pd and Av are:
Pd = 50%
Av = 0.99995

So, the Interface Complexity of SCOUT in its environment is:
CINERFACE

= - log2 (1-(Pd x Av)) = 0.9999

3. Conclusion

cNTERACE (STAR 2000) = 3.321

cNTEFAC (SCOUT) = 0.9999

So, CINTERFACE (STAR 2000) > C,,,NTERFA (SCOUT)
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D. External Complexity

To fully explore the relationship between internal and external complexity, we also need
to assess external complexity as we have internal complexity. Figure 18 which applies the
framework to study complexity to the two test bed large-scale systems, reminds that
external complexity is the complexity of the transport system. The transport system is
differentiated from the "Political" system but they both constitute the environment of the
radar. We propose metrics for external complexity that are to be computed in the
transportation system (in order to be fully quantitative) and that also take into account the
overall political system (in order for the metrics to be fully representative of the
environment).

'Political' System: · 'Political' System:
-institutional, -institutional,
-social, -social,
-economics, -economics,
-legal 4egalAirTransportaon Maritime· Air Transportatin TransportationSystem: System:
-planes -boats
-radars, -radars,
-airports, -ports,
-passengers, -passengers,
-controllers... -controllers...
ATC Radar: Maritime Radar:
-STAR 2000 -SCOUT

Figure 18 - Representation of the two radars in their respective environment

Focusing on the complexity of large-scale systems, we first implement a way to
characterize their complexity. Then, from this characterization, we define two possible
External Complexity metrics. Finally, we apply the characterization and the metrics to the
two test bed large-scale systems (plus another one in order to have a further basis for
comparison).

I. Characterization of complex systems
Failure is a characteristic common to all systems. No system is perfect: every system
presents a certain level of risk and a certain configuration of risk. We believe that the
configuration of risk, as a characteristic of systems, is a relevant indicator of the
complexity of large-scale systems.
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In order for a system to be a useful complex system, it must be reliable. Complex systems
only exist because they fulfill human needs and because these needs tend to be more
numerous and more stringent. Since there is no discontinuity in the fulfillment of human
needs, complex systems cannot be discontinuous: they must be reliable. A complex
system cannot be punctuated with many mistakes, as small as they could be. If it were so,
nobody would use the system anymore. Reliability is a necessary condition to the
existence of complex large-scale systems: the frequency of all failures (and specifically
small failures) of complex systems is low.

Conversely, J.M. Carlson and J. Doyle state that complex systems are "robust, yet
fragile" [19]. Extending their ideas, we assert that complex systems are reliable but also
catastrophic. Besides reliability, the "tendency to catastrophe" seems to be a second key
characteristic of complex systems. Complex large-scale systems present relatively high
degree of tendency to catastrophe: they entail non negligible occurrence of high
magnitude failures. On the other hand, "simple" systems are not complex enough to
achieve functions that may lead to high magnitude failures: "simple" systems do not have
high magnitude failures.

From these characteristics of complex large-scale systems: higher reliability and higher
tendency to catastrophe, one can draw a conclusion on their risk configuration: complex
large-scale systems are more extreme than "simple" systems - they are more reliable yet
more catastrophic. As illustrated in Figure 19, they present relatively low frequencies for
low magnitude failures as well as occurrences of high magnitude failures.

Frequency

High

Low

"Simple"
tem

<~ ~ ~ ~Complex ~
~~~- ~~System .

IL X+s A
u lvlagmluue

0 Low High

Figure 19 - Risk configuration of complex large-scale systems
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"Reliable, yet catastrophic" seems to be one of the characteristics of complex large-scale
systems. Acknowledging that other aspects of complex systems may be neglected, we
would nonetheless recognize this characteristic as the basis for characterization of
complex large-scale systems. Therefore: the more "reliable, yet catastrophic" a large-
scale system, the more complex.

II. External Complexity metrics
1. General theory

Based upon the former statement which characterizes the complexity of large-scale
systems with an ordered relationship, External Complexity metrics should simply relate
failures of large magnitude with those of small magnitude. Now, we explore two such
possibilities: C1 ,EX and C 2 XT.

The notations used to define the metrics are:
i: magnitude
pi: frequency associated with the failures of magnitude i
N: the highest magnitude possible

C is defined as the ratio of the risk associated with all failures of higher than average
magnitude over the risk associated with all failures of lower than average magnitude.
Thus, if m is the average magnitude, the risk associated with the failures of higher than

N

average magnitude is: sipi and the risk associated with the failures of lower than
i=[m]

[m]

average magnitude is: ipi .
i=l

N

ip:

[ipi
i=I

failure) is, by definition, the total risk (i.e., the risk associated with all the failures)
N

N N eipi
i=i(Eipi ) over the total number of failures (pi ): m = =

i=l i= Pi

i=l

Here are some examples of the basic behavior of C'EXT:

C I' = 0 when the risk is constant. This occurs when the frequency of each failure (and
for all magnitudes) is inversely proportional to its associated magnitude.
C 'EX = 1 when the risk associated with the failures of higher than average magnitude

equals the risk associated with the failures of lower than average magnitude.
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C' IT = 3 when the risk linearly increases with magnitude. This occurs when the
frequency of all the failures is constant (i.e., the frequency does not depends upon the
magnitude). (The computation of these three typical behaviors is detailed in Appendix H)

C :,xT is defined as the risk associated with the failures with the top 10% magnitude
N

( "ip ) over the risk associated with the failures with the bottom 10% magnitude
i=[0.9N]
[O 1N]

( ip i ).
i=l

'ipi
C 2xT = i=[0.9N]

EXT [OAN]

' ipi
i=l

By construction, CEXT emphasizes much more than C'XT the prevailing reliability and the
tendency to catastrophe of complex large-scale systems.

Here are examples of the basic behavior of C2 EXT:

C xT = 1 when the risk is constant. This occurs when the frequency of each failure (and
for all magnitudes) is inversely proportional to its associated magnitude.
c 2x,, = 1 also when the risk associated with the failures with the top 10% magnitude
equals the risk associated with the failures with the bottom 10% magnitude.
C :,,x = 19 when the risk linearly increases with magnitude. This occurs when the
frequency of all the failures is constant (i.e., the frequency does not depends upon the
magnitude).
(The computation of these three typical behaviors is detailed in Appendix H)

2. Application of the general theory to transportation systems
a. Transcription of the concepts

In order to apply these metrics to the respective environment of the two test bed systems,
one must define the systemic failure of the large-scale systems in which the radars are
embedded. In order to apply the metrics, one needs to choose the right type of failure and
then to identify its frequency, magnitude and associated risk.

The aim of transportation systems is to transport safely people form one point of to
another in time. A failure can be characterized by the non fulfillment of this function, i.e.,
that a person does not reach safely its destination. A failure may be a crash. But, if we
consider safety in its most restrictive meaning, a failure is a fatal crash. As a conclusion,
for transportation systems:

- a failure is a fatal accident
- the magnitude of a failure is the number of fatalities in a given fatal accident
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- the risk is the total fatality (because Risk = Frequency i x Magnitudei )

b. Transcription of the metrics

Applied to transportation systems the first External Complexity metrics CIx, is defined as

the total fatality occurring in the higher than average magnitude fatal accidents over the
total fatality occurring in the lower than average magnitude fatal accidents.

N N

Lipi ' ipi
C IgXT = [m] where m = i=l is the average fatality per fatal accident (i.e., the total

[m] N

Eipi i
i=l i=l

fatality over the total number of accidents).

C x has several advantages. This metrics, as the ratio of numbers of same dimension, is
independent of the number of passengers traveling, the time or the distance traveled.
Moreover, as the ratio of the fatality in accidents above and below the average fatality per
fatal accident, is independent of the carrying vehicle size.
These two characteristics allow pure comparison of the different transportation modes.

Applied to transportation systems the second External Complexity metrics C 2 x is

defined as the fatality occurring in the top 10% fatal accidents over the fatality occurring
in bottom 10% fatal accidents.

N

ipi
C2 T _ i=[0.9N]

[0.1N]

i=l

C 2 x, also has several advantages. As the first metrics, being the ratio of numbers of same
dimension, it is independent of the number of passengers, the time or the distance
traveled. Moreover, as the ratio of fatality in the top 10% fatal accidents over the one in
the bottom 10% is, contrarily to the first one, dependent on the carrying vehicle size.
These two characteristics allow a good measure of the complexity of the different
transportation systems if we consider that the potential magnitude of the event is deeply
linked to the complexity of the system.

III. Application to the test bed large-scale systems
In addition to the two test bed complex large-scale systems: the air and maritime
transportation system, we also study a supplementary system: the land transportation
system. To have an even better basis for comparison, we will look at these large-scale
systems at three different scales. We study these systems in the case of France, the United
States of America and the world. (However, due to the lack of reliable data on the
worldwide land transportation system, this system will not be studied at this global level).
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1. Characterization of the complexity of test bed large-scale
systems

Figure 20, Figure 21 and Figure 22 illustrate the characterization of the complexity of the
large-scale systems for France, the United States and the world. The data used to obtain
these figures are respectively in Appendix I, Appendix J and Appendix K. Data on air
and water transportation focus on public transportation because the test bed radars are
designed for this system. Thus, from the sources on air transportation only plane
accidents in the category passenger and cargo (e.g., pleasure is excluded) are considered.
Just like for air transportation, the water transportation data do not consider recreational
boating.

In France, as shown in Figure 20, the water and the air transportation systems are very
reliable, mainly in comparison to the land transportation system. Conversely, the air
transportation system is more catastrophic than the water transportation system mainly
due to the high magnitude accident (113 deaths).
Since reliability is a necessary condition of complex large-scale systems, land
transportation which is not very reliable tends to drive relatively less complexity into
lower-level elements. On the other hand, the water and the air transportation systems tend
to drive more complexity into these lower-level elements. But, the only real complex
system tends to be air transportation because of its tendency to catastrophe which the
water transportation has not. This analysis can be summarized in:

CEXT (air transportation) > CT (water transportation) > C (land transportation)

Studying the case of the United States of America is even more striking. Figure 21 shows
that water and air transportation once again meet the first criteria of complex large-scale
systems: they are reliable; while land transportation is not. Conversely, air transportation
is very catastrophic while maritime transportation only shows small tendency to
catastrophe.
So, we come up with the same conclusion as for France:

CXT (air transportation) > C (water transportation) > C,, (land transportation).
While the French data may not be sufficiently significant for air and water transportation,
the American data for air transportation are better. Besides this restriction, the American
air transportation system tends to be much more complex than the French one because of
higher tendency to catastrophe. Thanks to this characterization we can identify, in the
United States, three distinct levels of complexity in the systems examined.

The relative order of complexity brought out is confirmed in Figure 22 studying the air
and the water transportation system on a more significant scale: the world. Both systems
are quite reliable. They are also quite catastrophic. Nonetheless, the air transportation
system presents higher occurrences of very fatal accidents and therefore would tend to be
more complex than the water transportation system.
So, we would say that both systems are highly complex and that:

CXT (air transportation) > C,,T (water transportation)
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Figure 20 - France: characterization of the complexity of transportation systems
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Figure 22 - World: characterization of the complexity of transportation systems
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2. Measurement of the complexity of test bed large-scale systems
The values of External Complexity computed with the two metrics for the different large-
scale systems studied are presented in Table 16 and plotted in Figure 23 and Figure 24.

CEXT CEXT

Air Water Land Air Water Land
World 3.611 3.529 World 118.5 71.92
U.S. 5.299 1.579 0.2429 I U.S. 228.9 11.63 2.232

France 3.093 3.000 0.2373 France 113.0 8.000 2.206

Table 16 - External Complexity of the large-scale systems studied
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The two metrics C 'EXT and c ',2T confirm the qualitative results for all the geographical
scales obtained form the characterization of complex large-scale systems presented in the
former section:

CEXT (air transportation) > CT (water transportation) > CT (land transportation)
These metrics also emphasize that air transportation tends to be a complex system while
land transportation tends to be a "simple" system.
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E. Results and discussion

This section presents the results and some comments on complexity. The discussion aims
at more abstractly developing and challenging the concepts and the methodology used in
this thesis. It also aims at providing a holistic understanding of complexity.

I. Remarks

1. Remarks on the metrics

Regarding Internal Complexity, it is important that the process to obtain the Reference
Decomposition is reproducible. For any system, the Reference Decomposition (and
therefore Internal Complexity) is unambiguously determined following the methodology.
The allocation of functions is the critical step: the top down approach enables the
uniqueness of the outcome. The basic function attributed to a higher-level element is its
macroscopic function which does not take into account the potentially different functions
performed by its sub-elements. This occurs firstly because these different functions are
usually scarce and secondly because the holistic basic function of the elements prevails in
the complex configuration of the system. The complex integration of these basic
functions is what we claim is responsible for the emergent behavior.
A good understanding of the process also clarifies the reason why the Reference
Decomposition is built from functional block diagrams. The functional block diagrams of
the system, the subsystems and the elements are used to attribute the function to each
element and, if necessary, to develop the decomposition further down in order to identify
the mono-functional elements. These diagrams are also used to identify the links, their
directionality and the substance flowing.

Regarding External complexity, C I'xT and c 2XT seem to be useful metrics for complex
large-scale systems, but one has to remember that they are based on only one
characteristic of these systems (higher reliability and higher tendency to catastrophe).
Even though we believe that this characteristic is sufficient to characterize complex large-
scale systems, the application of the two metrics to the test bed systems already allows us
to bring out potential differences in the relevant aspects of complexity. While the two
metrics are fully coherent, they do not have exactly the same behavior. The French water
transportation system is complex for C I'e (Figure 23 p. 59). Since it is a reliable system

(Figure 20 p. 58), this metric seems to emphasize reliability as a major feature of
complex systems. Conversely, for this system, C 2Ex is low (Figure 24 p. 59); the system

not being prone to catastrophes (Figure 20 p. 58), this metric seems to emphasize the
tendency to catastrophe as a major feature of complex systems.
C'T is quite similar for the worldwide water and air transportation systems while C 2EX is
much higher for the worldwide air transportation system than for the other system. Now,
both systems tend to be equally reliable (mainly in comparison to the land transportation
system) but the air is more prone to catastrophes than the water. So, C 2r, seems to

emphasize more the discrepancy between reliability and tendency to catastrophe. Finally,
we note from Table 16 (p. 59) that C 2 , clearly separates, for all scales, the three different

systems attributing to them very distinct complexities.

62

__ __



2. Remarks on the approach to complexity

Since people do not fully agree on the characteristics and the metrics of complexity, the
framework which identifies three sets (Figure 1 p. 11) offers the opportunity to define
different kinds of complexity focusing on different characteristics in each set. This
division also offers the opportunity to develop different metrics to compute the identified
complexities. Indeed, this framework enabled us to propose an Internal Complexity
metrics taking into account the number of links, the number of elements, the function and
hierarchy of the elements, an Interface Complexity metric based upon the information
content of the probability of failure of the system as it is used in its environment and
External Complexity metrics which deal with the risk configuration of large-scale
systems emphasizing their reliability and their tendency to catastrophe.
Moreover, one of the rationales for identifying three sets and focusing on three
complexities is the distinction between the complexity directly created by man and the
one indirectly created. Designers generate directly the complexity of the radar while the
complexity of the air transport system is exogenous in that it is the result of many human
actions undertaken somewhat independently.
This framework also allows us to put aside from quantification one aspect of complexity.
This thesis does not tackle the complexity of the political system because it is difficult to
define and quantify it meaningfully. Some people argue that the highest complexity
exactly lies where we are not able to compute it yet, i.e., in the political system. Here, the
complexities computed are closely linked with the ability to quantify them. Further
studies may well expand the frontiers of knowledge and then the areas where complexity
can be computed. Nonetheless, not to be so restrictive, it is proposed in E.III.2 (p. 68) a
speculative framework to attempt to better perceive the role of the socio-political
complexity.

Internal complexity which stems from the network (i.e., hierarchy and links) of functions
in the system must be unambiguously defined. Now, the Reference Decomposition and
then internal complexity heavily depend upon the choice of the basic elements. But we
believe that the set of the five basic functions we use is fully representative of the
functions elements can achieve. There may be other generator sets of basic functions but
they are certainly very close to the one we use; the resulting complexity must be very
similar too because the alternative internal complexities would capture the same idea.

Interface Complexity has to be computed in the normal condition of use of the system.
For radars, the usual range is a trade-off between what could be done ideally and what
can be done reasonably. As the range is decreased to account for the performance of the
possible radar, more radar units are needed to achieve the required overall system needs.
The higher numbers of radar are the way that the system meets its overall complexity
while controlling the internal complexity of individual systems. Multiplying the radars
and increasing their practical range (while keeping an acceptable level of detection): both
actions impact external complexity. Considering the argument on maneuverability and
self-organization [12], the transportation system shaped by the political one tends to find
its optimal complexity. Once external complexity is set, interface and internal complexity
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are largely determined. What is true for the range is also true for the probability of false
alert. The typical Pfa is also a trade-off because increasing the accuracy of detection also
increases the occurrence of false alert. The threshold being lower to improve detection,
noise is more frequently interpreted as a false target. As a summary, typical data take into
account what is required of the system from its environment and what can be guaranteed
by the designers.

Finally, regarding external complexity, Table 16 - External Complexity of the large-scale
systems studied (p. 59) shows that for the two metrics C I'xT and C 2ExT, the worldwide

water transportation system is much more complex than any of the two national water
transportation systems studied. The reason may be that the world is the "right" scale for
the system to be complex. Scale seems to be a driver of external complexity. However,
for both metrics, the U.S. air transportation is more complex than the two other air
transportation systems. The U.S. system has an intensity that the two others may not
have: the French one is too small and the worldwide one is too dispersed. Intensity seems
to be also a driver of external complexity. This intuition is confirmed studying the land
transportation system. Its complexity is low but it is slightly higher for the U.S. than for
France: while the U.S. system is larger than the French one, their intensity may be
comparable.

II. Results and findings
Table 17 summarizes the three complexities of the two test bed systems where the
External Complexity shown is C 2EX applied to the world. Internal, Interface and External
Complexities of the ATC radar are clearly higher than the ones of the maritime radar.

ATC Radar Maritime Radar

QCN 350.2 89.12

GCNTACE 3.321 0.9999
[CnXT 118.5 71.92

Table 17 - The three complexities of the two test bed systems

Plotting the three complexities in the three dimension diagram of Figure 25 one can
notice that the triangles linking the three complexities of each system do not cross. This
illustrates that the ATC radar and its environment are more complex than the maritime
radar and its environment.
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Figure 25 - Interaction between Internal, Interface and External Complexity metrics

From Figure 26 we note that Internal and Interface Complexities are somewhat
proportional. Indeed, the ratio of Interface Complexity (3.3) and Internal Complexity
(3.9) between the two set bed systems is quite similar. If it were confirmed on a wider
variety of systems, a simple linear relationship between interface and internal complexity
would appear to be factual.
Interface complexity which was first introduced as a tool to understand the propagation
of complexity from the environment to the system now appears to be much more than
that. The combination of interface complexity and internal complexity seems to give a
full and accurate insight into the complexity of a complex system. An attempt to analyze
qualitatively this relationship is presented in section E.III. 1 (p.67).

Plotting in the 3D diagram of Figure 27 the three complexities where the External
Complexity is C xT applied to United States, we note that the blue triangle for the ATC
radar and the pink one for the maritime radar are nearly homothetic. The dotted purple
triangle is the theoretical extrapolation from the maritime radar to the ATC radar. The
extrapolated shape of the complexity of the ATC radar is very close to the real one.
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Even if this result may not be generalized, at least it supports the idea already illustrated
in Figure 25 that the three complexities are closely linked.
These complexities were identified on the complexity framework because it was both
relevant and convenient to do so. Now, it seems that they really need to be brought
together to describe an overall complexity. This multifaceted overall complexity seems to
be accurately described integrating the three dimensions of complexity identified (or even
more). More than a propagation of complexity from the environment to the complex
system itself, it seems that there is a whole dynamics of complexity. The following
section (E.III. 1) attempts to illustrate qualitatively this dynamics.

A last finding deals with the relationship between complexity and price. The ratio of
Internal Complexity for the two set bed systems is 3.93 while the price ratio is roughly
15. The price seems to increase much faster than complexity. Indeed, the price may
depend more upon the incremental complexity (the increase in complexity form the old to
the new version of a system) than upon the absolute complexity. Conversely, from the
result which emphasizes the proportionality between internal and interface complexity,
the absolute complexity seems to be responsible for the systemic behavior.

III. Interplay of the different complexities
1. Relationship between internal, interface and external

complexity

The link between internal, interface and external complexity may be clearly understood
through the analysis of a particular case. The Interface Complexity of a system tends to
infinity (CINTERACE -+ oo ) when the system fully achieves what it was designed for (P - 0 ).
Now, "what the system was designed for" is the outcome of the trade-off between the
external requirements and the internal capability. It is, up to a certain extent, the
potentially maximum complexity. When Interface Complexity which measures the
degree of achievement of this trade-off (i.e., how close you are from it) tends to infinity,
internal complexity of the complex system tends to the maximum complexity it is
required to have by its environment.

A more theoretical way to understand the mechanism is to look at the complexity defined
by Suh. This complexity is high because the Functional Requirements are "far" and
"hard" to reach. The stringency of the Functional Requirements is the source of internal
complexity. The set of Functional Requirements being "far", designers must design a
complex system in order to reach them. Internal complexity tends to be high and it
becomes harder to achieve the Functional Requirements. The outcome being less
probable, the systemic information content increases. The "hard", as the consequence of
the "far", is in fact tightly linked with internal complexity. The Interface Complexity
metric proposed attempts to catch the dynamics previously described.

Interface and internal complexity are also tightly linked. The stringency of the
requirements which is partly responsible for high interface complexity comes from
external complexity. A complex large-scale system fulfilling higher functions may either
ask more of its composing systems or have more composing systems (according to the
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"divide and conquer" rule). A balance must be found between the internal and external
complexity so that, at the end, the emergent behavior of the complex large-scale system is
correctly achieved. This balance results in the proper allocation of complexity between
internal and external complexity. Complexity has both positive and negative
consequences; complex systems require a certain amount of complexity to achieve their
function. The balance is reached when that complexity is properly allocated so that the
overall function is correctly fulfilled. This Pareto equilibrium imposes the level of
internal and external complexity and, consequently, the level of interface complexity.

More specifically, following this line of thought, two complexities: internal and interface
complexities are directly related. Internal complexity attempts to quantify how the sum of
functions creates the emergent behavior of the system. Conversely, interface complexity
attempts to quantify how well the emergent behavior is created. Looking at these two
complexities together seems to give a pretty accurate view of the overall complexity of a
complex system.
The example of the ATC radar may clarify this argument. The Internal Complexity
metric may underplay certain aspects of complexity because it only takes redundancy into
account through Link Complexity. Conversely, Interface Complexity emphasizes the
importance of redundancy. Indeed, the accepted outcomes of redundancy which are
higher availability (if one channel breaks down, the other allows the system to work) and
higher accuracy (if one channel does not perform well, the other one is used) are taken
into account in the probability of failure and then in Interface Complexity. So, looking at
these two complexities in parallel may help to better describe the overall complexity of
the ATC radar.
The need for two measures to properly assess complexity is also made in the literature.
Seth Lloyd [20] criticizing complexity metrics based on Logical Depth and Breadth [21]
argues that information alone is not sufficient to describe complexity. Thus, Interface
Complexity based on information content cannot be self sufficient. From a systems
standpoint, he argues that what is missing in Logical Depth is the measuring of
complexity based on the function of the system. Interestingly, our formulation of Internal
Complexity exactly achieves this last feature.

From a different point of view, the reason why external and internal complexities (and
more broadly the three complexities) are linked is simply because large-scale complex
systems are recursive. The external complexity of a complex system is part of the internal
complexity of the large-scale system in which it is embedded; the internal and external
complexities of a complex system correspond to the internal complexity of the large-scale
system.

2. Attempt to link the external and the socio-political complexity
Let's start with an example. The argument made in D.I (p.52) stating that the tendency to
catastrophe characterizes complex large-scale systems may be contested. Some people
may argue for instance that, in the air transportation system, high magnitude failures tend
to have very high magnitude, which are much higher than the most catastrophic failures
in land transportation because planes are bigger than cars and therefore no conclusion on
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complexity can be drawn from our analysis. While their argument is of course true, their
conclusion is false. The reason why the system is reliable is the same reason why it is
catastrophic. The reason why planes can be big is the complexity and the reliability of the
air transportation system. If this system was not that complex and that reliable, no plane
manufacturers would have ever built such big planes (e.g., Boeing 747-400 or Airbus A-
380) for fear that repetitive accidents would hinder the confidence people put in this
plane, the development of the plane and their profitability. It is precisely because the
system is complex and reliable that big planes may exist. It is also precisely because of
the complexity, the reliability and the existence of big planes that catastrophic events
exist in this complex system. Finally, we come back to the initial conclusion that complex
systems are reliable, yet catastrophic.
A hypothetical more complex land transportation system would be, for instance, a
transportation system with faster semi-automatically driven cars and buses which
maximizes the passenger flow. Seldom catastrophic failures such as the crash of hundreds
of cars due to a major failure in the overall positioning system (despite its redundancy,
reliability...) might be of high magnitude because people would not have been able to
avoid the collision by mere lack of experience due to general over-confidence in the
reliability of the semi-automatic driving system. Such a crash, even very seldom would
be associated with very high fatality. This hypothetical land transportation system would
be more complex and much more costly (which is probably part of the reason why it does
not exist).
The latter argument on cost is non negligible in the overall dynamics of complexity.
Wealth allocated to the design or to the improvement of a system is what allows the
system to be more complex (since complexity has a cost), to have its complexity better
allocated and therefore to be more reliable.

The importance of the political system can be described using a Systems Dynamics
model. We remind that in Systems Dynamics [22], arrows between two variables
represent the influence from a variable to another and the polarity of the arrows is the
sign of the correlation between the variables linked. A double bar on arrows represents a
delay in the influence.
Figure 28 illustrates the socio-political dynamics of external complexity. External
complexity has two opposite consequences on risk: reliability which tends to decrease
risk and tendency to catastrophe which tends to increase it. Reliability and tendency to
catastrophe also impact risk perception in the same way. Nonetheless, regarding risk
perception, the impact of catastrophes is much stronger than the influence of reliability.
Risk perception also takes into account the effective risk. Then, risk perception and risk
are responsible for policies that shape the large-scale system while increasing its
complexity.
This Systems Dynamics model unfolds over three periods of time with different relative
strength of loops. First, the Catastrophe-Perception loop prevails, then the Reliability-
Perception loop and finally the Reliability-Risk loop.
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Figure 28 - Socio-political dynamics of external complexity

Figure 29 summarizes the influence of risk perception and risk in the political decision-
making process and may clarify the lower right part of the Systems Dynamics model
(Figure 28). The determination of the level of risk perception is based upon the
lexicographic consideration of, firstly, the magnitude and secondly the level of risk
(which is the magnitude of events times their frequency). Magnitude is the main driver of
risk perception.
Magnitude of events, due to its huge impact on people's mind is the first determinant of
risk perception. If it is high, risk perception will be high too. If it is low, risk perception
will be low too. (This is why the color used to qualify risk perception in Figure 29 is the
same as the one used to qualify magnitude).
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Figure 29 - Political decision-making process to deal with risk

The effective level of risk can simply moderate this first categorization of risk perception.
If the magnitude of an event and the level of its risk are opposite (i.e., if one is high and
the other is low), the level of risk perception formerly categorized by the magnitude will
be moderated by the level of risk. For example, the outcome of high magnitude and low
level of risk is high/medium level of perception of risk ; the outcome of low magnitude
and high level of risk is low/medium level of risk perception. This process is illustrated
by the pink and blue arrows in Figure 29.
Moreover, we mention that risk perception encloses something broader than mere
magnitude and that falls under the concept of tendency to catastrophe. Even if it is
ethically hard to acknowledge, the "importance" of the person who dies in an accident
clearly influences people's mind and therefore the political decision-making process. The
death of a star is much more striking than the death of an anonymous person.

Besides, policy actions shape the complexity of the transportation systems. The
implementation of political decisions is at the source of the socio-technical complexity of
transportation systems.

Thus, the transportation system and the political system are in fact tightly linked in a
feedback loop. This is the reason why we can easily group them under the name of
"environment". The Systems Dynamics model indicates that, at the end, a dynamic
equilibrium is reached. The complexity of the environment emerges from this dynamic
equilibrium between the two systems.
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3. Holistic approach to complexity

The higher the socio-political complexity is, the more numerous and the more stringent
the requirements on the complex large-scale system are. Higher external complexity
results in higher interface complexity due to necessary better fulfillment of the
requirements. Now, to correctly fulfill the numerous stringent requirements, internal
complexity must be high. The environment dictates the requirements to be correctly
fulfilled by the system. External and internal complexities echo each other thanks to
interface complexity. On the ATC radar example, the goals of the large-scale system
which are safety, efficiency and cost-effectiveness are shaped by the Political system.
These goals, to be fulfilled, require complex functions performed by the complex systems
which need to implement a variety of characteristics and techniques to achieve them. Part
of this holistic dynamics of the ATC radar in its environment is illustrated in Figure 30.

Goals Functions Characteristics Techniques

Figure 30 - Partial illustration of the holistic approach to complexity

IV. Future work
The first future work would be to continue attempting to improve the metrics. Even if the
Internal Complexity metric identified in B.IV.2 (p. 37) is a good metric, we may propose
some improvements. Quality is a fundamental concept in internal complexity. For this
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purpose, C. Magee and O. de Week [2] distinguish four different types of links: flows of
energy, matter, information and value but we do not really take advantage of this
distinction in the computation of complexity. A way to integrate it in the algorithm is to
subdivide each basic function into four supplementary functions depending upon the
operand on which it operates. Thus, for instance, instead of having simply the basic
function: "transform", we would have the four basic functions: "transform energy",
"transform matter", "transform information" and "transform value". This will increase
the number of vocabulary available (Vmax) from 5 to 20. The drawback of this method is
that the representation of complexity with the Reference Decomposition will be less
readable because the representation would contain much more different and difficult to
distinguish colors.
Integrating heterogeneity among layers may improve the metric. However, it is hard to
identify the heterogeneous configuration which is responsible for higher complexity: is it
10/4/10 or 12/8/1 for instance? Nonetheless, it worth noticing that Link Complexity
modestly integrates the idea of heterogeneity since it is normalized for homogeneous
systems (i.e., it equals 1 for systems having each of its elements linked once and only
once).
Weighing the links may also improve the metric. The normalized density used for Link
Complexity (C,) could become a normalized weighted density. The weighted density,
which is the sum of the links weighed by their intensity over the maximum number of
links weighted by the higher intensity found in the system, is normalized to 1 for a
system having each of its elements linked once and only once by links of equal intensity.

L

Iwi
Thus: CL(E,L) = . However, it is hard to identify the intensity of each link and

WMax X E

even harder to combine weighted links of different nature (energy, information,
matter.. .).
Loops would also worth being introduced in Link Complexity but there are hard to define
meaningfully (a system may present loops but some are irrelevant for complexity).

External Complexity metrics may also be improved. One of the drawbacks of the two
metrics proposed is that they are based upon statistical data and that their accuracy
heavily depends upon the amount of data collected. France not being really a large-scale
system (due to its small geographic span), the data for the air and the water transportation
system (Appendix I p. 92) may not be significant enough. This may explain the reason
why the values of the two metrics C IEX and C2 XT are very different for the French water
transportation system. Noise may be responsible for this apparent inconsistency. The
External Complexity for those two systems may not be fully reliable. Nonetheless, one
can state that complex systems generate a lot of data and the lack of significance of data
may only mean that the system is not a complex system.
More conceptually, complexity and mainly external complexity seem to be plural. The
differences between the two External Complexity metrics and the variety of features
external complexity may have (E.I.2) make us realize that complexity is multi-faceted.
Having this plurality in mind, External Complexity metrics would by highly improved
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attempting to assess the variety of complexity instead of focusing on only one aspect as
we have done.

A second future work may be the improvement of the framework. What may be missing
in the framework to study complexity is a global approach. To facilitate
conceptualization, quantification and understanding, we first identified three sets and
three complexities and then we tried to link them. Since the conclusions drawn seem to
indicate that the three complexities are linked, it would worth trying to study complexity
in a more holistic way. Of course, this work will require a huge conceptualization and
formalization effort.

A third work would be to confirm the results of this thesis studying a wider variety of
complex systems. The relationships between interface and internal complexity as well as
the one between internal/interface complexity and other variables such as cost, price or
engineering effort would be interesting to further investigate.
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CONCLUSION

The quantification and the analysis of the three complexities identified in the proposed
framework to study complexity allow us to draw several conclusions.
The Internal, Interface and External Complexity metrics calculated for the Air Traffic
Control radar are higher than those calculated for the maritime radar. In the case of the
United States (for C 'Ix) the three complexities of the two test bed systems are even nearly
homothetic. These results highlight the close relationship between the three complexities,
the influence of external complexity on internal complexity and the need for a holistic
approach to complexity.
For the two test bed systems the more rigorous and quantitative complexity metrics:
Interface and Internal Complexity are approximately linearly related. This relationship
should be further investigated and these two dimensions of complexity should also be
studied in parallel in order to infer an overall complexity of a complex system.
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APPENDICES

Appendix A: Complexity Diagrams of the GRA
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The Reference Decomposition is:
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Appendix B: Complexity Diagrams of the MWA

The Reference Decomnosition is:
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Appendix C: Complexity Diagrams of the TR-2000 A
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The Reference Decomposition is:

The diagram used to compute TR-2000 A Complexity is:
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Appendix D: Complexity Diagrams of the TR-2000 B
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Th, rliarnsrm ,iiQ t cnmnite TR-2000 B Complexitv is:
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Appendix E: Complexity Diagrams of the SST(8)

The Reference Decomposition is:

The diagram used to compute SST(8) Complexity is:
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Appendix F: Data for the Internal Complexity of the STAR 2000 subsystems
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Appendix G: Recapitulation of Internal Complexity components and metrics for the
STAR 2000 subsystems

Link Complexity
(C)

1 2 Cty Cty'
0.159 2.07 74 10.6
0.035 1.47 187 4.25
0.036 1.18 139 4.09
0.17 2.89 192 9.6

0.129 3.23 352 12.6
0.042 1.14 55 1.96
0.063 1A6 103 4.29
0.159 2.07 74 10.6
0.035 A7 187 4.25
0.036 1.18 i39 4.09
0.17 2.89 192 9.6
0.129 3.23 352 12.6
0.042 1.14 55 1.96
0.063 1.46 103 4.29
0.159 2.07 74 10.6
0.035 1.47 187 4.25
0.036 1.18 139 4.09
0.17 2.89 192 9.6
0.129 3.23 352 12.6
0.042 1.14 55 1.96
0.063 1iA6 103 4.29

C
30.3
92.9
83.4
32.3
46.6
44.4
55.7
23.8
92.9
73.6
14.3
14.3
33.3
55.7
23.8
64.8
63.8
14.3
14.3
23.8
55.7

Scale Complexitv - MACRO

30.3 30.3 79.9 32
92.9 92.9 209 93
834 83.4 162 83.5
32.3 32.4 195 33.7
46.6 46.7 355 48.3
44.4 44.4 70.7 444
55.7 55.7 117 55.9
23.8 23.9 77.7 26
92.9 92.9 209 93
73.6 73.6 157 73.7
14.3 14.6 193 17.3
14.3 14.7 352 19.1
33.3 33.3 64.3 33.3
55.7 55.7 117 55.9
23.8 23.9 77.7 26
64.8 64.8 198 65
63.8 63.8 153 63.9
14.3 14.6 193 17.3
14.3 14.7 352 19.1
23.8 23.8 59.9 23.9
55.7 55.7 117 55.9

1 2 CtrytY
4.82 62.7 2239 320
3.24 136 17376 395
2.97 98.1 11595 341
5.48 93.2 6195 310
6.02 151 16405 586
1.88 50.7 2441 87.2
3.53 81.3 5740 239
3.79 49.2 1759 251
3.24 136 17376 395
2.62 86.6 10231 301
2.44 41.4 2753 138
1.85 46.3 5048 180
1.41 38 1831 654
3.53 81.3 5740 239
3.79 49.2 1759 251
2.26 95 12123 276
2.27 75 8867 261
2.44 41.4 2753 138
1.85 46.3 5048 180
1.01 27.2 1308 46.7
3.53 81.3 5740 239

29.4
85.4
69.5
32.3
46.6
44.4
49.7
22.9
85.4
60.3
14.3
14.3
33.3
49.7
22.9
59.4
53.2
14.3
14.3
23.8
49.7

Scale Complexity - micro

1 2 crylcY
29.4 29.5 79.6 31.2
854 85.4 206 85.5
69·5 69.5 155 69.6
32.3 32.4 195 33.7
46.6 46.7 355 48.3
44.4 44.4 70.7 44.4
49.7 49.7 114 49.9
22.9 23 77.5 25.2
85.4 85.4 206 85.5
60.3 60.3 152 60.5
14.3 14.6 193 17.3
14.3 14.7 352 19.1
33.3 33.3 64.3 33.3
49.7 49.7 114 49.9
22.9 23 77.5 25.2
59.4 59.4 196 59.6
53.2 53.2 149 53.3
14.3 14.6 193 17.3
14.3 14.7 352 19.1
23.81 23.8 59.9 23.9
49.7 149.7 114 49.9

1 2 Ct It'
4.68 60.9 2174 311
2.98 125 15970 363
2.48 81.8 9660 284
5.48 93.2 6195 310
6.02 151 16405 586
1.88 50.7 2441 87.2
3.15 72.5 5121 213
3.65 47.4 1695 242
2.98 125 15970 363
2.15 71 8386 247
2.44 41.4 2753 138
1.85 46.3 5048 180
1.41 38 1831 65.4
3.15 72.5 5121 213
3.65 47.4 1695 242
2.07 87 11108 252
1.9 62.5 7389 217
2.44 41.4 2753 1138
1.85 46.3 5048 1ii80
1.01 27.2 1308 46.7
3.15 72.5 5121 213

(2 CxcC+

erial
R-2000 A
RA

MWA
TR-2000 B

enal NR
R-A NR

GRA NR
SST(8) NRSNR
MWA NR

R-B NR
erial NI
R-A NI

GRANI
SST(8) N
SST(16) NI
MWA NI
R-B NI
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Appendix H: Typical values of CEXT

For C EXT

Example 1: Constant riskk. *pi= ., i-N*
I

kN

k(ln(N) + y +

N

o( )) ln(N) + + o(
N

N

iPi

i=[m]

Zipi
i=l

N k [m]-l k
-_ ln(N)+y+

i=1 i i=1 i

N k

HM 

k
[mi=l k
i=l 1

[m] k 
i= 1.
i=I I

1
o( )

N
-(ln([m]-l1)+ + o(

ln([m]) + + o(
1

[m]

N m1
ln( )+ o( )

[m ]- [in]

ln([m]) + +

Now, [m]

o( )
[m]

N N
-N and -- l In(N)

+ In(N) [m] -1 +o

SO, C EXT > 0
N--+oo

Example 2: Linearly growing risk
The risk linearly increases with magnitude: the annual frequency of events is thus
constant for every magnitude i.
Pi = k

N

ipi
i=l
N

Ipi
i=1

N

_ i=[m
C EXT =

i=l

Nki _(N(N +) N+1)
= i=l 2 J N+I

Nk kN 2
k=

i=l

ipi

iPi

N

Zki
i=[m]
[m]

-ki
i=l

N [m]-I

Eki -ki
i=l i=l

[m]

'ki
i=l

N

ZiPi
= i=l1

N

'Pi
i=l

N

Zk
i=l 

Nk +o

Z.
i=l 1

1

N )

1[m] 
[in]_l )
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N(N + 1) -[m]([m] -1)

[m]([m] + 1)

N 2

N
Now, [m]--

+ 2

N(N +1) ( 1)
2 2

N N
+1)

2 2

3N 2

4
+x N 2 +oo

4

SO, CEXT -- 3

For C2 EXT

Example 1: Constant risk
k .

pi = --, i EN
1)

N

CZ-EX T i=[0.9N] _

[0. IN]

lipi
i=l

NIk
i=[0.9N] =
[0. I N]

Ik
i=l

k(N-[0.9N] + 1)
k[O. IN]

N-[0.9N]+1
[0.1N]

So, C2 EXT -- 1
N-+o

Example 2: Linearly growing risk
pi= k

N

lipi
C2 E-XT_ i=[0.9N]

[0.1N]

lipi
i=l

N [0.9N]-I

ski- yki
i=l i=l

[0.IN]

-ki
i=l

k(N(N + ) ) k([.9N]([0.9N] -1)

k([0.1N]([0.1N] + 1))
2

N(N + 1) - (0.9N(0.9N - 1))
+ 0.1 N(O.N + 1)

N(N + 1) - ([0.9N]([0.9N] -1))

[O.1N]([O.1N] + 1)

(1- 0.92)N 2

+o 0.12 N2

So, C2 EXT -- 19
N->+m
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Appendix I: Data to draw Figure 20 - France: characterization of the complexity of
transportation systems

Air
Magnitude Frequency

1 2

2 1

4 1

5 1

6 1

10 1

14 1

20 1

113 1

Source: [23]

Land
Magnitude Frequency

1 70205

2 5902
3 1018

4 287
5 80
6 16
7 4
8 3

10 2

12 2

15 1

22 1

28 1

Source: [24]

Water
Magnitude Frequency

1 4

4 1

8 1

Source: [25]
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Appendix J: Data to draw Figure 21 - United States: characterization of the
complexity of transportation systems

Land
Magnitude Frequency

1 963322

2 82379
3 14646
4 3876
5 1104
6 360
7 150

8 57
9 14

10 12
11 9
12 2
13 2
14 2
20 1

21 2
22 1

Source: [27]

Water
Magnitude Frequency

1 6

2 5
3 1

4 1

5 1

6 1

15 1

Source: [25]

Source:[26]
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Air
Magnitude

1

2
4
7
9
10
12

19
20
21

25
27
37
38
56
58
64
70
81

83
105
110
126
127
137
148
152
212
243
248
251

Frequency

.-



Appendix K: Data to draw Figure 22 - World: characterization of the complexity of
transportation systems

I Magnitude Frequency I
1 205
2 74

Water >

Source:[25]
< Air

Source:[28]

Frequency

1

1

1

1

3

1

1

1
3

1

2

4

1

1

1

1

1

1

1

1

1

1

1

2

1

2

1

1

1

1

2

1

1

1

2

1

2

1

1

2

1

1

1

1

1

1

1

1

1

1

1

Frequency

50
42

28
27
15
17
10

13
4
7
6
8
2
4
5
5
3
4

3
3

2
5
4
6
6
3
4
2
1

1

2

1

2
1

1

1

1

1

1
1

1

1

1

1

1
1

1

1

1

1

1 

Magnitude

1

2

3
4
5
6
7
8
9

10

11

12

13
14
15

16
17
18
19

20
21
22
23
24
25
26
27
28
29

30
31
33

34
35
36

37
38
40
41
42
43
44
45
46
49
50
51
53
54
55
57

Frequency

143
85

45

31
41

21
27
32

19

28
8
7
7
13
5
13
6
6
7
3
6
3
6

8
1

2
4

2
1

1

1

2
2

3
1

2
1

1

1

2
1

3

2

1

2

2

2
2

1

2

2

Magnitude

60
61

63
64
65
66
68
69
70
71
74
75
78
80
83
85
88
92

93
96
98
101

102
104
109

110

112
116
117
123
125

129
131
132
140
141
143

145
148
160
169
197
217
225
228
229
230
234
260
264
312

Magnitude

3
4

5
6
7
8

9

10
11

12
13
14

15
16
17
18
19

20
21
22
23
24
25

26
27
28
29
30
31
32
33
35
36
37
38
40
41
43
46
51
55
63
83
121
141
145
150
216
464
543
852
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