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ABSTRACT

Supercritical water oxidation (SCWO) is a thermally-based, remediation and waste-treatment
process that relies on unique property changes of water when water is heated and pressurized
above its critical point. Above its critical point (374. 10C and 220.9 bar), water becomes gas-like
and somewhat non-polar due to the decrease in density and disruption of the hydrogen-bond
network. When oxidants and organic compounds are combined with supercritical water (SCW),
they rapidly form a single phase, and these organics are quickly and completely oxidized to
simple molecules including water and carbon dioxide. Laboratory research is currently being
conducted in order to increase the level of understanding of key SCWO areas including reaction
kinetics, corrosion, and salt-related phenomena and in order to develop realistic SCWO process
and fluid-dynamic simulators. Understanding the phenomena in each of these areas requires
accurate thermodynamic- and transport-property predictions. However, these often do not exist.
Furthermore, available correlations are often used in operating regimes where they were not
originally validated, thereby potentially reducing their accuracy.

This thesis focuses on the development of accurate thermodynamic-property and diffusivity-
transport-property models for use at typical SCWO operating conditions, namely 25C < T <
650°C and 1 bar < P < 300 bar, along with the measurement of molecular diffusivity, an
important transport-phenomena property. These models can be incorporated into simulation
tools which are used to model SCWO processes or physically simulate the flow, kinetics,
corrosion, salt nucleation, and salt precipitation inside SCWO reactors. These large-scale
SCWO simulations should ultimately lead to improved reactor designs which have less operating
risk, appropriately sized reactors, optimized residence times, lower costs, fewer technical
limitations, and increased destruction efficiencies.

Thermodynamic-property research:
Hard-sphere, volume-translated van der Waals equation of state (EOS)

The hard-sphere, volume-translated van der Waals EOS is comprised of the semi-theoretical
Carnahan-Starling expression that properly represents the molecular interactions between hard
spheres and a simple van der Waals attraction term. It also utilizes volume translation to further
improve high density predictions. The translation constant is determined by a fit to liquid and
vapor coexistence density data while the Carnahan-Starling and van der Waals parameters are
determined from widely available critical-point data. An analysis of several important
thermodynamic properties (e.g., density, vapor pressure, and enthalpy) has been shown to fit
within average deviations of 1-30% over a wide range of conditions for the selected
components: ammonia, carbon dioxide, ethylene, methane, nitrogen, oxygen, and water.
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Thermodynamic-property research:
An analysis of EOS Zeno behavior

The behavior of the "Zeno" (Z = PVIRT = 1) line has been examined in a collaborative project in
order to investigate this recently rediscovered empirical regularity of fluids and to determine if
such a regularity can be utilized to improve EOSs and their predictions. For a wide range of pure
fluids, this contour of unit compressibility factor in the temperature-density plane has been
empirically observed to be nearly linear (and arrow-like, thus "Zeno") from the Boyle
temperature of the low density vapor to near the triple point in the liquid region. Although
quantitative agreement between Zeno EOS predictions and experimental data is not exact, the
general trends suggest that these EOS models adequately capture the dynamic balance that exists
between repulsive and attractive forces along the Zeno line. In addition, molecular simulation of
Zeno behavior showed good agreement with experimental data.

Transport-property research:
Measurement and modeling of molecular diffusivities

The transport-property research consists of measuring molecular diffusivities at SCWO operating
conditions using nuclear magnetic resonance (NMR) and validating diffusivity models with these
experimental and previously published results. Self-diffusivities of pure supercritical water have
been previously measured and published for a limited range of conditions, but accurate SCW
binary-diffusivity data are extremely limited. For this reason, diffusivities of aqueous acetone
mixtures have been measured at SCWO conditions using a novel, first-of-a-kind SCW/NMR
flow system and the NMR spin-echo technique. Experimental results are compared with
predictions from kinetic-gas-theory models and hydrodynamic-theory correlations. For SCWO
operating conditions, the Tracer Liu-Silva-Macedo (TLSM) and Mathur-Thodos correlations
were found to provide the most accurate diffusivity predictions. The Mathur-Thodos correlation
requires only critical constants and molecular weights and has an average absolute deviation
(AAD) of 18% for supercritical-water self-diffusivities and supercritical tracer & infinitely dilute
mutual diffusivities above 400°C. Similar results were obtained with the TLSM model (23%
AAD for data above 400°C) which requires only molecular weights and two Lennard-Jones (LJ)
6-12 parameters for each pure component. Further improvement was made when mole-fraction-
weighted experimental solute and LSM-provided water LJ parameters were used (20% AAD).

As a result of the improved thermodynamic- and transport-property modeling capabilities along
with the collection of additional aqueous supercritical diffusivities contained in this thesis, the
SCWO community now has additional thermodynamic- and transport-property knowledge that
leads to a greater understanding of key issues that impact the design and operation of SCWO
technology.

Thesis supervisors: Professor K.A. Smith
Edwin R. Gilliland Professor of Chemical Engineering

Professor J.W. Tester
Herman P. Meissner Professor of Chemical Engineering
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(-m = D2 = (249 + 4) x 10-5 cm2/s where 4 is the estimated standard deviation).

The conditions for this experiment are 4000 C, 0.10 g/cm, and 40 wt.%

acetone(l)-water(2). 242
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Figure 89. Pictures of the Saphikon flanged, closed-ended SCW NMR sample tubes. 247

Figure 90. (a) Drawing of HiP socket before and after machining and (b) Pictures of the
modified connector with the polished sealing surface (mirror-like), the gland with
its face flattened, and one of the four Bellevue washers used together to maintain
the seal. 249
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to exiting the magnet bore. 251
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Figure 93. 0.02" OD thermocouple placement in and around the sapphire sample tube (note
that the RF coil is not displayed). Two thermocouples are secured above and
below the tube, while one is internal with its vertical location unknown. The
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Figure 95. Flow pathways for the four-way control valve. With the isolation valve closed,
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Figure 96. RF electrical circuit used for 200.14 MHz H measurements. 257
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PVC port before passing the inner opening of the support ring and moving past
the Dewar outer diameter (not shown). The RF circuit is fastened to the left of
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uncertainties) including a close-up view of the overlapping data. Curves are
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uncertainties). Curves are intended to show general trends. 273

Figure 102. Water diffusivities at 404.30 C (with 95%-confidence-interval uncertainties).
Curves are intended to show general trends. 273
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Curves are intended to show general trends. 274

Figure 105. Tracer diffusivities at 506C (with 95%-confidence-interval uncertainties).
Curves are intended to show general trends. 275
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(with 95%-confidence-interval uncertainties). Curves are intended to show
general trends. 275
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Na Avogadro's number

P pressure for a fluid at a given T and V

q SR-POLAR-EOS used to fit ca as a function of Tr

r site-site interatomic separation distance

R gas constant

qi point charge

S entropy

t volume-translation parameter

T absolute temperature

T2 NMR spin-spin relaxation time

V specific volume

VUT untranslated specific volume

V total volume

x i mole fraction for component i

y hard-sphere excluded-volume ratio (y = bHs/4V)

Z compressibility factor (Z = PV/RT)

Greek letters

ca Part I: interaction energy parameter

Part II: thermodynamic correction factor

eA, aB HSVTvdW-EOS parameters used to fit ac as a function of Tr,

[3 sliding frictional coefficient

X diffusivity correction factor

6 Part I: volume-translation scaling parameter
Part II: Brokaw polar collision-integral correction term

,QD collision diameter

£ static dielectric constant

0i . Lennard-Jones energy well-depth parameter

so vacuum permittivity

kqi Part I and Part II: fugacity coefficient for pure component i

q2 Part II: Wilke-Chang solvent association factor

D(r) interatomic potential energy of interaction
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Y activity coefficient

'1 Part I: fitted volume-translation constant
Part II: viscosity

KT isothermal compressibility - (P )

p.u dipole moment

nt NMR pulse width

p density or mixture density

a hard-sphere molecular diameter

ciT Lennard-Jones soft-sphere diameter

Takahashi correction term

o NMR resonance frequency

Subscripts

b normal-boiling-point value

c critical value

calc calculated value

expt published experimental or smoothed data value

g glass-transition value

ii pure component i pair-interaction parameter

i, j component i orj

max maximum

min minimum

r reduced value (e.g., Tr = T /Tc)

sat saturation value

0 solvent close-packed hard-sphere value

1. solute value

12 mixture value

2 solvent value
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Superscripts

calc
calculated value

published experimental or smoothed data value
EOS equation-of-state value

HS hard-sphere value or contribution

ID ideal-gas-state value

L liquid-phase value

ideal gas ideal-gas reference state value

residual- or departure-function value
T translated value
UT untranslated value

yap vaporization value (e.g., AJHVaP)

V vapor-phase value

infinitely dilute value

Onsager coefficients
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DISSERTATION BACKGROUND, MOTIVATION, AND OBJECTIVES

FOR PART I AND II

PART I - THERMODYNAMIC-PROPERTY RESEARCH

PART II - TRANSPORT-PROPERTY RESEARCH
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1. Background and Motivation

1.1 Supercritical Water (SCW)

Water is one of the most important and unique molecules on this planet. The presence of

water is a key factor which makes Earth inhabitable. Water structure and interactions between

water molecules influence numerous water properties and the properties of solutes dissolved in

water.

Water (H20) is simply two hydrogen atoms covalently bonded to an oxygen atom.

According to valence-shell electron-pair-repulsion theory, it should form a tetrahedron (four sp3

orbitals) with two orbitals filled with unbonded pairs of unshielded valence electrons, have an

oxygen atom in the center, and have a H-O-H bond angle of 109.5°. Since the lone electron

pairs are not held in as close to the oxygen atom as the bonded pairs, the corresponding orbital

lobes occupy more space and force the hydrogen atoms closer towards each other until the

observed bond angle of 104.50 is reached (Levine, 1988). Furthermore, because there is an

unequal electron distribution in a water molecule, the lone pairs attain a negative charge, while

the hydrogen atoms become positively charged. These structural and electronic maneuvers

create a permanent dipole moment and turn water into a polar molecule which is shown in Figure

la (Campbell, 1987).

The unbalanced charge is also the basis for a coulombic attraction between a positively

charged hydrogen atom and a negatively charged oxygen atom of a neighboring water molecule.

This low-strength dipole-dipole interaction is called a hydrogen bond (HB) and has an

approximate bond energy of 25 kJ/mol (about a twentieth of the covalent bond strength) (Chang,

1988; Kalinichev and Bass, 1997). Although HBs only last for approximately 1 picosecond

(1012 s), at any instant a substantial percentage of water molecules are bonded (Campbell, 1987).

At ambient conditions (temperature () = 25°C, pressure (P) = 1 bar, and density (p) = 0.997

g/cm3) the average number of hydrogen bonds per water molecule, <nHB>, has been shown to

equal 3.2 (Kalinichev and Bass, 1997). When water is frozen, the average number of hydrogen

bonds per water molecule reaches its maximum of 4.0 since every tetrahedral lobe can bond with

another molecule as shown in Figure b. Additionally, there are dipole-induced-dipole van der

Waals interaction forces between neighboring oxygen atoms induced by a temporary additional
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Figure 1. a) Illustration of tetrahedral shape of water shown along with its bond angle and b) a
two-dimensional representation of a hydrogen-bonded water network with <nm> = 4.0 (one
water molecule is bolded and shown with all 4 HBs).

accumulation of negative charge in one atom and positive in the other, but these are very weak

(Campbell, 1987).

If water did not form such a strong hydrogen-bonded network, then it would behave more

like many non-polar compounds with atmospheric boiling temperatures below 1000 C. Because

water is hydrogen bonded, most water properties are atypical compared to a similarly sized

molecule. Water has a rather large specific heat value (ambient: Cp = 4.18 J g-1 oC-1) partly due

to the energy required to break up the hydrogen-bond network, and its large heat of vaporization

can be similarly explained since the heat of vaporization is roughly twice as much as that of

ethanol (Campbell, 1987). Water is a good solvent for other polar species such as alcohols, and

it dissociates into a hydronium (H30 +) and hydroxide (OH-) ion when a shared hydrogen atom

shifts to the other water molecule. Ionic molecules (e.g., salts) are also soluble after they are

dissociated, i.e., the ions are isolated between water molecules in what is described as the solvent

cage effect. This solvation strength is often correlated with the static dielectric constant

(ambient: & = 79.3) and the ion product (ambient: K, = [H+][OH - ] = 10-14 with pH = -log([H +] =

10-7) = 7). The dielectric constant of a material represents the change in force between electronic
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charges when that material is and is not present and is dependent on polarization and dipole

moments of that material (Levine, 1988). The ion product characterizes the degree of

dissociation and contributes to the overall solubility product constant which determines

solubility. There are many other water properties that are affected by hydrogen bonding, e.g.,

surface tension, but the focus will now be shifted to temperature, pressure, and density effects

and the resulting property changes in water.

When water is heated, the energy of the system increases, the hydrogen-bond network is

disrupted, and the density decreases. At the boiling temperature (100°C at 1 bar), liquid water

vaporizes, and the density drops to -5 x 10' 4 g/cm3.

When water is heated and pressurized above its critical point (T 2 T = 314.1 C and P 2>

P, = 220.9 bar where Pc = 0.326 g/cm3 ), the hydrogen bond network is further destabilized as

documented in Table 1, and the water solvation strength decreases. At these elevated

temperatures and pressures, water is supercritical, a term used to describe the fluid when there is

no longer a distinction between liquid and vapor and any further pressure increase can never

compress the fluid into a liquid state. A generic PT diagram of a pure material illustrating

locations of the liquid, solid, vapor, and supercritical regions is contained in Figure 2, while

critical parameters of several materials are listed in Table 2.

Other thermodynamic and transport properties also change when water becomes

supercritical, and property changes are more easily understood if compared along a supercritical

isobar. The density of water at 250 bar is shown as a function of temperature in Figure 3 through

Figure 10 along with enthalpy, entropy, heat capacity, ion product, speed of sound, static

dielectric constant, thermal conductivity, and viscosity in order to illustrate these dramatic

changes (Bandura and Lvov, 2000; Marshall and Franck, 1981; NIST, 1996). In addition to the

order of magnitude changes shown, some properties exhibit critical-point anomalies which either

approach zero or infinity. For example, the heat capacity at constant pressure approaches infinity

and the speed of sound approaches zero at the critical point (Bejan, 1988). It is worth noting that

critical phenomena effects are visible in Figure 5 and Figure 7 even though 250 bars is 13%

higher than the critical pressure (note that in this case the anomaly occurs at 3850C, the pseudo-

critical temperature where (2T/8V 2)p = 0).
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Table 1. Representative hydrogen-bonding levels for pure water

State T (oC) p (g/cm3) P (bar) <nm> a Source

Ice 0 0.92 1 4.0 Kalinichev and Bass, 1997
Ambient 25 1.00 1 3.2 Kalinichev and Bass, 1997
Near critical 374 0.45 226 0.5 Walrafen et al., 1999
Supercritical 400 0.20 264 0.4 Ikushima et al., 1998
Supercritical 500 0.08 229 0.3 Ikushima et al., 1998
Steam >500 0.001 <<1 -0 Hoffmann and Conradi, 1997

" <n> -= average number of hydrogen bonds per molecule

Table 2. Critical parameters for several materials

Tr Pa Va Z
Material (oC) (bar) (m /kmol) = Pc VIRTc

Ammonia

Benzene

Carbon dioxide

Ethanol

Ethylene

Methane

Nitrogen

Oxygen

Water

132.40

288.95

31.06

239.35

9.19

-82.62

-146.89

-118.57

374.14

112.775

48.940

73.821

80.959

50.404

45.979

33.980

50.430

220.899

0.0724

0.2590

0.0939

0.1180

0.1290

0.0990

0.0896

0.0734

0.0559

0.2422

0.2710

0.2741

0.2240

0.2770

0.2874

0.2900

0.2886

0.2295

a Obtained from Reid et al., 1977; Braker and Mossman, 1980; Walas 1985; Sato et al., 1991.

Temperature T

Figure 2. Pressure-temperature PT diagram for a pure material illustrating the location of the
critical point and supercritical region.
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Figure 3. Enthalpy and density comparisons for pure water at P = 250 bar (NIST, 1996).
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Figure 4. Entropy and density comparisons for pure water at P = 250 bar (NIST, 1996).
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Figure 5. Heat capacity and density comparisons for pure water at P = 250 bar (NIST, 1996).
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Figure 6. Ion product and density comparisons for pure water at P = 250 bar (Bandura and Lvov,
2000 for densities less than 0.4 g/cm3; Marshall and Franck, 1981 for densities greater than 0.4
g/cm3; NIST, 1996).
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Figure 7. Isentropic speed of sound and density
(NIST, 1996).
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Figure 8. Static dielectric constant and density comparisons for pure water at P = 250 bar (NIST,
1996).

43

1600

1400

1200

1000

800

600

400

o
CA

0

200

0

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

i.f
800

I



0.7
-
ob 0.6

E 0.5

;, 0.4

0.3

O 0.2

0.1

0.0

1.0

0.9

0.8

0.7 t

0.6 ¢

0.5 4

0.4 t
0.3 s

0.2

0.1

0.0
0 100 200 300 T4 0 0 500 600 700 800

Temperature (C)

Figure 9. Thermal conductivity and density comparisons for pure water at P = 250 bar (NIST,
1996).
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Figure 10. Viscosity and density comparisons for pure water at P = 250 bar (NIST, 1996).
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Solvation strength is dependent on the ion product and static dielectric constant and

decreases significantly at high temperatures above the critical pressure. Thus, supercritical water

has the features of a non-polar solvent, i.e., ionic and polar compounds are sparingly or no longer

soluble, while non-polar organic compounds and inorganic gases such as carbon dioxide,

hydrogen, nitrogen, and oxygen are highly soluble! Sodium sulfate (Na2SO4) solubility, for

example, is roughly 50 wt.% in ambient liquid water, but it drops to 3 wt.% at 362.80 C and 250

bar (Perry et al., 1984; Hodes, 1998). Benzene is sparingly soluble at ambient conditions (0.18

wt.% = 1800 wppm), yet it is completely miscible above 300°C and 250 bar (DiNaro, 1999;

Marrone, 1998).

If an organic compound and an oxidant such as oxygen are combined in supercritical

water, then a single homogenous phase will form that is primed for organic oxidation, a process

aptly named Supercritical Water Oxidation (SCWO).
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1.2 Supercritical Water Oxidation (SCWO)

Supercritical water oxidation (SCWO) is a thermally-based, remediation and waste-

treatment process that has emerged as a viable technology for the destruction of aqueous organic

wastes in a fully contained system. The SCWO process brings together an oxidant and organic

compounds (compounds containing carbon, hydrogen, oxygen, and nitrogen and heteroatoms

such as chlorine, phosphorous, and sulfur) in an aqueous environment to achieve complete

oxidation, with water, carbon dioxide and molecular nitrogen as the primary products (Modell,

1989; Tester et al., 1993). Heteroatoms form their corresponding mineral acids (HC1, H2PO4 ,

and H2SO4), but can be neutralized with base, thereby forming salts which can precipitate out of

the aqueous SCW phase.

Feed conditions are usually ambient whereas oxidation occurs above the critical point of

pure water at moderate temperatures (450C-650°C) and high pressures (250-300 bar). At these

elevated conditions oxygen and organics are completely soluble, and oxidation is essentially

complete in less than 60 seconds with destruction efficiencies consistently reaching >99.99%.

Detailed review articles are available and contain a wealth of information ranging from chemical

reactions (Subramaniam and McHugh, 1986; Savage et al., 1995; Hauthal, 2001; Akiya and

Savage, 2002) to salt formation in supercritical fluids and the current state of the SCWO

technology (Modell, 1989; Thomason et al., 1990; Barner et al., 1992; Tester et al., 1993; Shaw

and Dahmen, 2000; Hodes et al., 2004).

1.2.1 SCWOApplications

As previously stated, one of the most promising applications of the SCWO process is the

destruction of organic waste. As it turns out, extraction and chemical synthesis with SCW are

not generally considered practible due to the relatively difficult operating conditions and the high

energy levels of SCW which are more favorable for oxidation. The phase, type, and

concentration of waste are key factors in determining whether the SCWO process is economical

and practical. The first waste discussed is hazardous non-military organic waste.

Conventionally, this type of hazardous waste is either disposed in landfills or destroyed in

incinerators. Since landfills are no longer abundant, are for the most part more expensive, are

subject to tightening regulations, and do not even treat the waste, this disposal technique is not

ideal. Although incineration resembles the SCWO process, actually treats the waste, and is for
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the most part more economical, it nonetheless has encountered significant public resistance in the

United States which haunts current incinerators and hinders new ones from being built.

Furthermore, incinerator operational costs are sometimes high since auxiliary fuel may be

needed to heat and vaporize the water component (as previously shown, liquid water requires an

unusually large energy input to heat and vaporize). On the emissions front, SCWO does not by

design release NOxs and SOs, but incineration can. For the last two decades, industrial and

academic researchers have studied SCWO as an alternative waste-treatment technology since

toxic products are not formed and it destroys waste in a closed system, which the Environmental

Protection Agency (EPA) favors. Numerous organic wastes have been destroyed with SCWO,

and many are listed in Table 3. Multiple companies have been involved with commercializing

SCWO technology and are summarized in Table 4, and several have had operating pilot-plant

facilities including MODAR, MODEC, and EcoWaste Technologies, Inc. (Marrone et al., 2004).

Companies in Europe, Japan, and the United States are using SCWO for the destruction of

municipal sludge and pulp mills wastes and in semiconductor processing (Shaw, 2000 and

Marrone et al., 2004).

The United States military has also been involved in SCWO technology development.

As required by law, they have searched for alternative treatment technologies for the destruction

of their chemical weapons stockpile and have tested SCWO along with other technologies (NRC,

1993). An estimated 30,000 tons require treatment. They are located at eight domestic sites and

at one in the Pacific Ocean, as shown in Table 5 (Shaw and Cullinane, 1997). The US stockpile

consists of the nerve agents sarin/GB (C4H1oFO2P) and VX (C11H26NO2PS) and H, HD, and HT

vesicant mustards (C4H8C 12S, distilled C4HsC12S, and C8H 16C120S 2). The nerve agents disrupt

nerve-cell activity, making muscle response uncontrollable, and lead to death usually by

suffocation. In addition, a second inventory for research and testing and a third inventory of

recovered munitions and similar non-stockpile items amount to approximately 10 tons and are

stored at an estimated 65 sites.

Testing has shown that SCWO is capable of destroying chemical weapon agent (Downey

et al., 1995; Sprizter et al., 1995; Snow et al., 1996) along with other military waste including

energetics, propellants (Buelow, 1990; Buelow, 1992, Harradine et al., 1993; Spritzer et al.,

1995), smokes, and dyes (Robinson, 1992; Rice et al., 1994; LaJeunesse and Rice, 1997). As a

result, contracts were awarded to build SCWO units at Newport, Indiana (General
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Table 3. Hazardous organic waste treated with SCWO

Waste treated with SCWO Reference

Bacteria
Biopharmaceutical waste
Contaminated sludge
Dioxins

Flame retardant tetrabromobisphenol
Hexachlorobenzene
y-Hexachlorobenzene
Human waste

Manned-space-mission waste
Mixed sludge (bleach plant effluent, pond sludge,
and primary clarifier sludge)
Municipal sludge

Perchlorinated dibenzofurans in fly ash
Perchlorinated dibenzo-p-dioxines in fly ash
Pesticide DDT
Pharmaceutical waste
Polychlorinated biphenyls (PCBs)
Polyvinyl chloride (PVC)
Process waste water

Pulp and paper industry sludge

Urea

Thomason et al., 1990
Johnston et al., 1988

Shanableh, 1995
Thomason et al., 1990;

Thomason and Modell, 1984
Hirth et al., 1998
Hirth et al., 1998
Hirth et al., 1998
Hong et al., 1987;
Hong et al., 1988

Takahashi et al., 1988
Cooper et al., 1997

Shanableh and Gloyna, 1991;
Tongdhamachart and Gloyna, 1991;

Goto et al., 1997
Sako et al., 1997
Sako et al., 1997

Modell et al., 1992
Johnston et al., 1988
Staszak et al., 1987
Hirth et al., 1998
Li et al., 1993;

Sawicki and Casas, 1993
Modell, 1990;

Modell et al., 1992;
Modell et al., 1995

Timberlake et al., 1982
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Table 4. Companies involved in SCWO commercialization (Marrone et al., 2004)

Company Years of operation
MODAR, Inc. (now part of General Atomics) 1980-1996
MODEC (Modell Environmental Corp.) 1986- -1990
Oxidyne 1986-1991
EcoWaste Technologies, Inc. (now part of Chematur Engineering) 1990-1999
Abitibi-Price, Inc. (sold technology to Connor Pacific Environmental 1991-1997

Technologies)
General Atomics

Foster Wheeler Development Corp.

SRI International

KemShredder, Ltd. (now part of HydroProcessing)

Chematur Engineering AB

HydroProcessing, L.L.C.

1991-Present

1993-Present

1993-Present

1993-1996

1995-Present

1996-Present

Table 5. Location of US chemical weapons stockpiles

Location

Johnston Atoll in the Pacific Ocean
Edgewood, Maryland
Anniston, Alabama
Blue Grass, Kentucky
Newport, Indiana
Pine Bluff, Arkansas
Pueblo, Colorado
Tooele, Utah
Umatilla, Oregon
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Atomics), Pine Bluff, Arkansas (Foster Wheeler Development Corporation) (Haroldsen et al.,

1996a; Haroldsen et al., 1996b), Blue Grass, Kentucky (G.E. Parsons with the subcontractor

General Atomics) and on US Navy ships (General Atomics) (Kirts, 1995; Elliot et al., 2000; and

Parsons, 2003). The Newport, Indiana contract has since been canceled. The US Air Force is

also using SCWO to destroy aircraft maintenance wastes, and the US Department of Energy is

using SCWO to treat radioactive waste and explosives (Shaw, 2000). Other technologies being

evaluated or used at other chemical-weapons-stockpile locations include hydrolysis followed by

bioremediation (Pueblo, Colorado) and incineration.

SCWO treatment of other wastes is limited by the waste type and economic constraints,

although SCWO treatment is ideal for aqueous solutions containing 1 to 20 wt.% organic waste

(Thomason and Modell, 1984; Modell, 1989; Modell et al., 1995). Bioremediation and activated

carbon techniques are better suited for less than 1 wt.% solutions, but also have limitations. In

the case of bioremediation, any change in waste composition may kill the bacteria, stopping the

treatment process. Solutions with greater than 20 wt.% waste are better treated with

conventional incineration. Solids can be treated as long as they can be dissolved, so pretreatment

and dilution is usually necessary. Other supercritical fluids besides water are impractical to use

since they are not environmentally benign solvents, are expensive, or are not good solvents.

1.2.2 SCWO Process Description

SCWO processing occurs above the critical point of pure water at moderate temperatures

(450°C-600°C) and high pressures (between 250 and 300 bar). As shown in two simple process

flow diagrams (Figure 11 and Figure 12), several feed streams are used to introduce water, an

oxidant (oxygen, air, or hydrogen peroxide), waste, and if applicable, a basic solution for acidic

product neutralization. Each stream is pressurized to the SCWO process pressure. At a specific

location, the streams are combined either before preheating, during preheating, or inside the

SCWO reaction chamber depending on the vendor and system. The preheated, mixed stream,

which is usually a single phase, is further heated to the final operating temperature in the SCWO

reactor. The typical residence time is under 60 seconds, a sufficient time for nearly complete

oxidation. If any salts are present, customized techniques are used to isolate or re-dissolve the

salt products (Hodes et al., 2004). With the oxidation complete, the effluent is cooled using

standard heat-recovery techniques and then is depressurized, resulting in gas and liquid streams.
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Figure 11. Generic schematic of the SCWO process.

I

| I



250 psig steam
waste heat boila A air coolor pressure

etotdown varve
NVt~ wn va

boiler feed
water pump

high-
pressure
feed
pump

feed
(water &
organics)

liquid oxygen

rimary
heat _ . trim heater

oxygenvaporizer

Sexchnanger

reactor

liquid
effluent

Figure 12. Simplified process flow diagram of Eco Waste Technology SCWO process (Eco
Waste Technology, 1999).

water..... ....... ..

rr - ~~h·*r~LIU~.~"~L*IX'Y~"LC·ls~l~

?r
Off-gas

i

qb-



The liquid stream may be further processed or polished to remove any solids, salts, or byproducts

while gases are released after any required separation or treatment.

The components used in the SCWO apparatus must be able to tolerate long-term

exposure to the chemicals, high pressure, and moderate temperature. Nickel alloys such as

Hastelloy C276 and Inconel 625 are often used since they have high tensile strengths which are

capable of withstanding these conditions. These alloys are also used because they have been

found to have good corrosion resistance (Downey et al., 1995). Platinum-lined surfaces have

also been employed and show improvement over alloy surfaces when exposed to some SCWO

wastes (Downey et al., 1995).

Corrosion, salt fouling, and erosion are the three major technical challenges still facing

SCWO system designers and limit the commercial acceptance and widespread use of SCWO

technology. Supercritical water is corrosive and some aqueous species are extremely aggressive

(e.g., chlorides). System failures have occurred due to corrosion-weakened pressure-bearing

walls. The reader is referred to J. Cline's MIT Ph.D. dissertation for more information about

corrosion in SCWO systems (Cline, 2000).

Salt fouling is another serious SCWO issue (Armellini, 1993; Dipippo, 1998; Hodes,

1998; Hodes et al., 2004). In extreme cases, tubes or the reactor will plug, disable the reactor,

and force a system shutdown until the salt is redissolved in water or the salt can be physically

removed with mechanical force. Even partial salt restriction can force a shutdown since there

will be pressure and flow disruptions. On the other hand, salt nucleation and precipitation could

be used as an advantage if salt is to be deliberately isolated and collected in a SCWO system.

This design feature was incorporated into the MODAR system with some success, but their

system design has since been shelved by General Atomics, the new owners of MODAR.

Erosion is another issue that has often been dismissed or neglected. It is not uncommon

to have solid particles suspended, or even generated, in feed and product streams and the reactor.

Erosion is of greatest concern if there are large pressure drops where particle velocity is

dramatically increased and particles can collide with surfaces and wear away surfaces. Valves

and pressure relief devices bear the burden and, as a result, have experienced severely shortened

service lives. Due to all of these technical challenges, scale-up of bench-scale systems to pilot

and full-sized plant is difficult and requires alternative approaches in order to control erosion

(Barner et al., 1992; Lee, 1997).
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1.3 SCWO Research

Laboratory research is currently being conducted in order to increase the level of

understanding of key SCWO areas including reaction kinetics, corrosion, and salt-related

phenomena. Past MIT research includes work by R. Helling (1986), P. Webley (1990), R.

Holgate (1993), J. Meyers (1993), F. Armellini (1993), R. Lachance (1995), M. Dipippo (1998),

M. Hodes (1998), P. Marrone (1998), B. Phenix (1998), J. DiNaro (1999), J. Cline (2000), Y.

Kubo (2000), M. Reagan (2000), J. Taylor (2001), and P. Sullivan (2002). Other institutions

have SCWO research programs including the Los Alamos National Laboratory, Sandia National

Laboratory, Rutgers University (M. Klein was previously at the University of Delaware),

University of Illinois, University of Michigan, University of Texas at Austin, and Western

Michigan University (Tester et al., 1993; Savage et al., 1995; Shaw and Dahmen, 2000, Akiya

and Savage, 2002). Research usually includes experimental work along with predictions and

modeling of laboratory results. This modeling effort, whether it is for reaction kinetics or salt-

related phenomena, requires knowledge of supercritical-water or supercritical-water mixture

properties. These values can be categorized into thermodynamic and transport properties.

1.3.1 Key Thermodynamic Properties

Thermodynamic properties are usually calculated with empirical or semi-empirical

models called equations of state (EOSs) or with statistical-mechanics techniques based on

rigorous theoretical principles which often account for intermnolecular interactions. Both models

have parameters that are regressed directly to experimental data. The predictions usually needed

for SCWO modeling are density, enthalpy, heat capacity, and fugacities for vapor-liquid

equilibrium. As will be discussed in detail in a forthcoming chapter, some EOSs are very

accurate for predicting pure component properties, though they cannot be used for all SCWO

mixture modeling. Others can be used for mixtures, but have other deficiencies. Most often,

liquid-density predictions are poor, yet density is a key property in SCWO modeling. Without

accurate properties, process simulations will inaccurately model key components in a SCWO

system, e.g., reactors and heat exchangers. Accurate equations of state are needed.

1.3.2 Key Transport Properties

Transport properties are also predicted by using empirical or semi-empirical models.

Whether they are correlations strictly based on experimental data or are partially based on
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fundamental thermodynamic or transport theory, both types have parameters which are regressed

directly to experimental data. The transport properties used in SCWO modeling are viscosity,

thermal conductivity, and molecular diffusivity. Transport modeling typically covers a wide

range of topics including heat transfer, temperature profiles, salt deposition, corrosion, fluid-

dynamics simulation, species diffusion and overall SCWO process and equipment simulations.

Pure water properties are available for all three transport properties at typical SCWO conditions,

yet binary diffusivity data are scarce. Although most SCWO reactors are designed to avoid

mass-transfer limitations, they nonetheless can occur. For this reason, molecular-diffusivity data

are valued and needed. At SCWO conditions, the ratio between pure water self-diffusivities and

aqueous-salt binary diffusivities ranges from a factor of 5 to 50 (Lamb et al., 1981; Butenhoff et

al., 1996)! Self-diffusivity values are not necessarily accurate for binary predictions.

To further complicate matters, transport correlations are developed on the basis of either

data for pure water at SCWO conditions or on binary data at non-SCWO conditions. These two

approaches circumvent the ideal scenario which is to measure and develop correlations based on

data collected at SCWO process conditions (mixtures at moderate temperatures and high

pressures). As it turns out, collecting such data is difficult, although several have tried with

limited success and questionable accuracy (Lamb et al., 1981; Butenhoff et al., 1996). Accurate

binary diffusivity data and models are needed.

Nuclear magnetic resonance (NMR) is one technique that has been used to measure

molecular diffusivities at SCWO operating conditions and will be discussed shortly (Lamb et al.,

1981).
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2. Dissertation Objectives

The objectives of this dissertation are to develop accurate thermodynamic and transport-

property models for use at typical SCWO operating conditions. The dissertation is divided into

two sections and further subdivided into appropriate chapters. These sections are introduced and

summarized below.

2.1 Thermodynamic-property research

2.1. 1 Thermodynamic-property research: a hard-sphere, volume-translated van der

Waals equation of state for pure components

The first objective is to develop an accurate equation of state for use in SCWO PVT

modeling. A hard-sphere, volume-translated van der Waals EOS has been developed and is

comprised of the semi-theoretical Carnahan-Starling expression that properly represents the

molecular interactions between hard spheres and a simple van der Waals attraction term. It also

utilizes volume translation to further improve high density predictions. The translation constant

is determined by a fit to liquid and vapor coexistence density data, while the Carnahan-Starling

and van der Waals parameters are determined from widely available critical point data. An

analysis of several important pure component thermodynamic properties (e.g., density, vapor

pressure, and enthalpy) has been conducted in order to determine the accuracy of this EOS.

Background on EOS development and comparisons with other widely used EOSs is also

provided.

2.1.2 Thermodynamic-property research: a hard-sphere, volume-translated van der

Waals equation of state for mixtures

The volume-translated EOS has also been extended to model mixtures by using a

theoretically correct mixture form for hard-sphere interactions. Simple mixing and combining

rules and a simple binary parameter are also employed. Binary phase diagrams for several

mixtures have been calculated using this model.

2.1.3 Thermodynamic-property research: an analysis of EOS Zeno behavior

The behavior of the "Zeno" (Z = PV/IRT = 1) line has been examined in an attempt to

investigate this recently rediscovered empirical regularity of fluids and to determine if such a

regularity can be utilized to improve EOSs and their predictions. For a wide range of pure fluids,
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this contour of unit compressibility factor in the temperature-density plane has been empirically

observed to be nearly linear (and arrow-like, thus "Zeno") from the Boyle temperature of the low

density vapor to near the triple point in the liquid region (Ben-Amotz and Herschbach, 1990a;

Ben-Amotz and Herschbach, 1990b). An analysis which compares several EOSs and

experimental values has been performed. Comparisons between volume-translated EOSs,

variations of Peng-Robinson EOS models, and other species (methane and carbon dioxide) are

shown and discussed in detail.

2.2 Transport-property research

2.2.1 Transport-property research: molecular-diffusivity measurement

Molecular diffusivities of pure supercritical water and supercritical-water mixtures have

been measured by using nuclear magnetic resonance (NMR). Diffusivities of aqueous organic

mixtures were measured at typical SCWO operating conditions with a novel, first-of-a-kind

SCW/NMR flow system and the NMR spin-echo technique. Self-diffusivity measurements of

supercritical water were also made and are compared with values previously measured and

published.

2.2.2 Transport-property research: molecular-diffusivity modeling

Binary diffusivity models used for SCWO diffusivity predictions have only recently been

evaluated. Due to the lack of experimental data, such evaluations have not been performed in

great detail. With newly available data measured in this dissertation, several established models

were reexamined. Comparisons, new expressions, and a discussion of recommended models for

SCWO transport-property modeling are presented.

With these more accurate thermodynamic- and transport-property models, users of

simulation tools can increase their confidence in these tools. These simulation tools are used to

model SCWO processes and physically simulate the flow, kinetics, corrosion, salt nucleation,

and salt precipitation inside SCWO reactors. Improvements in large-scale SCWO simulations

should ultimately lead to improved reactor designs which will have less operating risk,

appropriately sized reactors, optimized residence times, lower costs, fewer technical limitations,

and increased destruction efficiencies.
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1.1. Hard-Sphere, Volume-Translated van der Waals Equation of State for Pure Components

I. 1.1 Introduction

For simulating a SCWO system, an equation of state (EOS) that relates the pressure (P),

specific volume (V) or density (p), absolute temperature (T) and composition or mole fraction

(xi) of the reacting fluid mixture is required. The objectives of this chapter are twofold: (1) to

review the applicability of available EOS models and (2) to propose a formulation that is

accurate for modeling properties from ambient to SCWO process conditions (P from 1 to 300

bar; T from 25°C to 600°C; p from gas-like (10-3 g/cm3) to liquid-like (1 g/cm3) conditions). A

suitable EOS should:

1) give accurate density predictions for pure components from ambient to supercritical

temperatures and pressures;

2) be explicit in either pressure or volume to facilitate analytical expressions for derived

thermodynamic properties;

3) give accurate predictions of density and phase compositions when extended to mixtures of

water, hydrocarbons and gases using a set of simple mixing and combining rules (see Section

1.2 on page 109); and

4) have a relatively small number of adjustable parameters.

In general, there have been two main approaches for formulating an EOS. One approach,

pioneered by physicists and physical chemists, is to build models based on rigorous theoretical

principles taking into account intermolecular interactions. The model results are then related to

observable macroscopic properties. Statistical mechanical techniques are used to solve this

problem, frequently with deterministic molecular simulations utilizing Monte Carlo or molecular

dynamics methods. Typically, intermolecular parameters are estimated by comparing predicted

theoretical results with experimental data.

The second approach, traditionally led by chemical engineers, is to propose empirical

expressions that are fit to experimental data. Two general empirical formulations have seen

sustained success. The first relies on the robust characteristics of the van der Waals formulation

which uses a cubic equation in volume to predict both volumetric and residual PVTx i -dependent
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properties with two to three fitted parameters. The second uses a truncated virial format with

modifications and numerous adjustable parameters to provide accurate PVTxi property

prediction. For supercritical-fluid properties, both semi-theoretical and empirical approaches

have been extensively used to model real systems (Brennecke and Eckert, 1989; Bruno and Ely,

1991).

Both theoretical and empirical approaches are discussed in detail along with the

presentation of the developed empirical EOS.

I. 1.2 Theoretical Approach

I. 1.2. 1 Classical Statistical Mechanics

From classical statistical mechanics, a PVT EOS may be developed by using the

thermodynamic relationship between pressure and the configurational part of the partition

function (Hirschfelder et al., 1964):

P -dA,,, = kT a In z, ,,, (1)
a __ T,N

Here, ZN is the classical configurational integral for a system containing N identical spherically

symmetric molecules and is defined by a spatial integral over all possible arrangements in a

defined volume V:

ZN = N! 3
N=N!Ah N

VN (2)

where A is the deBroglie wavelength defined as

I h2
'12rm kT (3)

rN are the position vectors for each molecule (rj = [xj, yj, zj]) and ~(rN) is the total potential

energy due to the interactions between the N molecules of mass m' in a given volume.

Thus, the relationship between the three macroscopic properties of the system, i.e.

pressure, volume and temperature, can be defined rigorously. This set of equations can be solved
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in a closed form for only the simplest cases. For instance, for an ideal gas (ID) where O(rN ) = 0,

it can be shown that:

= D = kTaN In NkT kT (4)aV )T,N - V

A second approach is one used by van der Waals (1873) where the configurational

integral is approximated as follows (Vera and Prausnitz, 1972):

ZNv - 3 N Vf exp (5)

while the mean potential energy 1[ i' is averaged over the pairwise-additive potential energy

and the radial distance:

IqD l=- f .ij(r.).g(r.).47Edr. 2a (6)
Va

Note that a captures the intennolecular interactions between the N molecules as defined above,

but is often empirically adjusted in an EOS model. The free volume f was also approximated

by assuming that N hard spheres of excluded volume bHS were placed in a volume V:

N 2 nNcy 3
V =V b s V (7)

- Na - 3

When Eqs. (1), (5), (6) and (7) are combined, the result is the van der Waals (vdW) EOS:

RT aP =RT - (8)
V-b V2 '

The vdW EOS is inaccurate for most real, highly compressible gases and liquids but nonetheless

provides a basis for the development of many other practical EOSs which usually simulate van

der Waals behavior in one form or another.

I.1.2.2 Statistical Mechanics Simulations

To treat real gases and liquids via statistical mechanics, one must resort either to

deterministic numerical techniques, asymptotic expansions or integral approximation methods.

An example of these numerical techniques is Monte Carlo simulation, where average properties
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are evaluated by generating a series of random configurations of the molecules comprising the

system. The total energy of the system in these states can be calculated if the intermolecular

forces and the positions of the molecules are known. The contributions from these

configurations can then be numerically integrated or averaged to approximate ZN. The computer

simulations themselves are quite tedious and repetitive, but with modem computers this is not a

major limitation. Such simulations have been carried out for several model fluids (Alder, 1964;

Henderson, 1979). The central problem is that the calculation of the potential energy of the

system in a given configuration requires detailed knowledge of the forces between the molecules,

for example their dependence on spatial position and orientation. This problem is made more

tractable by first approximating the total energy of the system by the sum of the energies of all

possible pairs, i.e. assuming pairwise additivity and then by adopting simple models to represent

the potential function between two molecules. Lennard-Jones 6-12 or other intermolecular

potential functions (Hirschfelder et al., 1964) that depend explicitly on the separation distance

and on the relative orientation are typically used for this purpose. A few commonly used

intermolecular potential models are listed in Table 6.

The second method to estimate ZN employs an integral equation or density functional

theory along with approximations that include only certain significant terms in Eq. (2). Again as

in Eqs. (5) and (6), a pairwise-additive mean potential energy function is employed. In addition,

one needs to know the pair or radial distribution function g(rN) of the molecules in the system.

Although g(rN) can be obtained experimentally, e.g., using x-ray scattering methods, it is not

possible to obtain its explicit dependence on V and T in analytic form directly from experiment.

Theoretical expressions of the radial distribution function depend on the potential function model

used and have been estimated only for some simple models such as hard spheres (Thiele, 1963;

Wertheim, 1964).

Even with these theoretical constraints, knowledge of molecular interactions can help in

developing the general form of the EOS. In particular, the expression for the pressure of a fluid

consisting of hard spheres with an uniform diameter a has been obtained by applying the Percus-

Yevick approximation (Wertheim, 1964) to Eq. (2):

HS RT (1 + y + y2 (9)
V (l -y) 3
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where y is the hard-sphere excluded-volume ratio defined as

bHs b o c73Na 1
4V V 6 V

Carnahan and Starling (1969) have proposed the following approximate expression for a hard-

sphere fluid which is quite accurate:

RT 1 + y + y3 (11)

Expansions for the compressibility factor Z are given in Table 7. For comparison, the

virial-expansion result obtained by Ree and Hoover (1967) is also included. In Figure 13 these

results are compared to the Monte Carlo simulation results of Henderson (1979). In the low

density limit (y < 0.05 where y = p/ pHs), the repulsive vdW term rigorously matches the

simulation results because it is correct to first order in y (see Table 7). But at moderate densities

(0.05 <y < 0.125), the values from the vdW term deviate and finally become meaningless at

higher densities. The agreement between the simulation results and the Camahan-Starling result

is excellent and is the reason the Camahan-Starling result is often used in the development of

semi-theoretical hard-sphere EOSs.

In short, attempts to relate properties of fluids to intermolecular interactions using

rigorous fundamental analysis do not yield exact expressions except for the case of an ideal gas.

The approximate methods used to solve these problems provide only partially satisfactory PVT

predictions for real fluids, especially in the dense fluid region (p, > 0.35) which is of importance

in SCWO processes.
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Table 6. Intermolecular potential energy models
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1. 1.3 Empirical Approach

As a rigorous theoretical approach to the formulation of an EOS is intractable except for

the simplest cases, one must resort to the use of an empirical EOS for engineering calculations.

At best, these EOSs represent average behavior and are not based on the exact nature of

molecular interactions. Therefore, one should not expect them to give accurate predictions over

the entire PVTxi space. A judicious choice of the parameters could extend the range of utility of

the EOS - usually, the greater the number of fitted parameters used, the more accurate the EOS

is. However, given the limited amount of reliable experimental data (particularly for

supercritical mixtures) to fit the parameters used in the EOS, it is wise to use as few adjustable

parameters as possible.

I. 1.3.1 Phase Stability Criteria

The empirical approach can yield reasonably accurate PVT predictions by the use of

creatively placed, although somewhat arbitrary, parameters that correlate the observed behavior

of the fluid (Reid et al., 1987). Typically, these empirical EOSs use fundamental phase stability

criteria at the critical point in an attempt to specify pure-component parameters. At this point the

spinodal stability locus and the vapor-liquid equilibrium binodal coexistence locus osculate,

requiring that

(P) =0 (12)
av) T,,N

a2 N

av (13)

Evaluation of Eqs. (12) and (13) specifies two parameters contained in the EOS.

Typically, these parameters are a molecular volume term b and an attraction interaction term a.

The critical temperature Tc and pressure PC are the properties most accurately known and,

therefore, are most commonly used for the evaluation of a and b. As a result, the critical volume

V, and critical compressibility Z, are determined by the form of the EOS using specified values

of T¢ and Pc. More complicated equations of state with additional parameters typically use
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experimental PVT data, in conjunction with the stability criteria, to determine the additional

constants.

Simple and straightforward mixing rules for mixtures are also advantageous. Again, one

wants to minimize the number of fitted parameters used to account for binary interactions, as

binary data in the supercritical region for many of the hydrocarbon-gas-water mixtures of

importance in SCWO are quite limited.

I. 1.3.2 Empirical Equations of State

The ideal gas law, which has both an empirical and theoretical basis, works well for

fluids at low reduced densities (Pr < 0.01):

p =D _ NRT RT (14)
V V

and was not improved upon until about 125 years ago when van der Waals (1873) proposed his

cubic equation of state:

RT a (15)
V-b V2

The van der Waals (vdW) EOS can predict vapor-liquid equilibrium for pure compounds and

reduces to the ideal gas equation at low densities. However, its volumetric PVT predictions get

considerably worse as the density of the fluid increases.

As this equation has only two parameters, both of which are fit to the stability criteria at

the critical point, it predicts a universal value of the critical compressibility factor (Zc = 0.375)

for all fluids. Introducing a third physical constant, analogous to the acentric factor in the

application of corresponding states concepts, would alleviate the constraint of a fixed Z.

Moreover, the vdW EOS does not give accurate estimates of derived thermodynamic properties,

e.g., enthalpies and entropies, although this failing may be diminished if a is allowed to vary

with temperature and/or other properties such as density.

Numerous modifications of vdW EOS have been proposed (Walas, 1985). Popular

pressure-explicit, cubic forms for chemical-engineering applications are due to Redlich and

Kwong (1949) (RK EOS),
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pRT a (16)
V-b JYV( + b)

Soave (1972) (RKS EOS)

P =RT a (17)
V-b V(V+b)

where

a = acc(ciiD) (18)

and co is the acentric factor, and Peng and Robinson (1976) (PR EOS)

RT a (19)
p_ =__ _T (19)

V-b V(V+b)+b(V-b)

where a is again defined by Eq. (18). All of these EOSs give far better predictions than the

original vdW EOS over a wide range of densities. Figure 14 presents density predictions for

several EOSs for pure water along the vapor ()-liquid (L) coexistence curve, which is obtained

by equating the pure-component fugacities:

V = fL (20)

or the corresponding fugacity coefficients ~i, where for the liquid phase

l =infiL fL[P ~
f.L~ InL jV- lnZL+ZL _ (21)
P Je, RT V
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and a similar expression can be written for the vapor phase. Figure 14 clearly illustrates the

inadequacy of these two-parameter cubic EOSs in providing accurate liquid density predictions

for water.

The RK, RKS and PR EOSs predict universal values of critical compressibility like the

vdW EOS, but ones that are closer to actual values for most substances (i.e., Z = 0.333 for the

RK and RKS EOSs and Zc = 0.307 for the PR EOS; typical experimental values are between

0.22 and 0.29). Further, the RKS and PR EOSs treat the attractive interaction parameter a as a

function of temperature and, therefore, predict more accurate vapor pressures, fugacities, residual

enthalpies and residual entropies than the vdW EOS. A residual or departure function is defined

as the difference between the actual property value and that which would pertain for a

hypothetical ideal-gas at the same P and T. Residual enthalpies and entropies can be calculated

with the following formulas:

A.Hr _ H(T,V)-HD(T,Vo = Y )=PV-RT- P-T a- V
P ~ oo aT 
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Figure 14. Density predictions for the vdW EOS (Eq. (15)), PR
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AS" _S(T,V)- SD(T,Vo = RT)=RnZ- R - aPi v (23)
P LVaT v

Another class of EOSs incorporates knowledge of specific molecular interactions with

additional fitted parameters. A good example of these is vdW-type EOSs that model the

repulsive contribution with the accurate hard-sphere relation proposed by Carnahan and Starling

(1969):

pHS RT +y+y 2_Y 3 (24)
= V (l - y) 3

where y is the hard-sphere excluded-volume ratio defined as

bHS bo 1c 3Na 1 (25)v = -= =- _
4V V 6 V

and a is the molecular hard-sphere diameter. Thereafter, empirical perturbation terms are added

to model real gases and fluids. For example, Vera and Prausnitz (1972) developed an EOS using

the Carnahan-Starling result for repulsive effects and the empirical Strobridge-Gosman EOS for

attractive effects. Johnston and Eckert (1981) used a simple first-order perturbation term in their

Carnahan-Starling van der Waals (CSvdW) EOS in an attempt to model the dense supercritical

region:

RT ) V3 + boV 2 + b2 V - b3 a (26)

V (V - bo)3 2

However, the CSvdW EOS did not accurately model the highly compressible critical

region. As a result, Johnston et al. (1982) introduced an Augmented van der Waals (AvdW)

EOS which had a second-order perturbation term for more accurate modeling of the critical

region. Recently, Heilig and Franck (1989) have proposed an EOS for supercritical mixtures

involving water and hydrocarbons that works well for predicting the critical curves of such

mixtures, but it does not give accurate values of density for liquids or supercritical fluids.
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The molecular volume term b used in most EOSs is qualitatively similar to the hard-

sphere excluded volume bHS described in Eq. (25). For hard spheres, the values of b and bHs are

equal:

bb-27&3Nab (27)
b = bHS = 3N = 4bo

3

However, for molecules of different structures and interactions, it is difficult to estimate the

correct value of b a priori. By using stability criteria instead, a fitted b can be obtained from the

critical data (Tc and Pc), avoiding the difficult calculation of a geometrically correct excluded

volume. A more realistic molecular-volume term was obtained by Shah et al. (1994) in their

twenty-three constant quartic EOS for pure non-polar fluids, as their molecular-volume term uses

the experimental critical volume Vc instead of P. Consequently, their EOS does not specify the

critical compressibility Z,, but relies on the assumption that Vc is accurately known, which is

often not the case.

As the true nature of the intermolecular interactions is unknown, the vdW-type terms

used to account for these interactions are merely closed-form approximations of a more complex

function. To achieve higher accuracy, some researchers have proposed equations with different

functional forms and/or additional adjustable parameters. Among these are the equations

proposed by Benedict et al. (1940), Starling and Han (1972), Starling (1973), Martin and

Stanford (1974) and Lee and Kesler (1975). These equations typically combine a virial format

with exponential terms for high-density behavior and, consequently, have many more parameters

than cubic EOSs. These parameters have typically been evaluated only for the specific classes of

compounds for which these EOSs were originally developed.

Higher precision is usually achieved in an EOS by fitting more parameters, e.g. in the

modeling of water, the Haar et al. (1984) EOS with eighty parameters is frequently used to

achieve high levels of accuracy. Errors of less than 0.1% are obtained by using multiple

parameter, non-linear regression methods to fit a comprehensive set of data. Such EOSs can be

used to generate smoothed "data" for important pure compounds, e.g., the 1967 American

Society of Mechanical Engineers (ASME) and the 1987 National Institute of Standards and

Technology (NIST) steam tables (Haar et al., 1984; Aspen Technology, 1994). Although these
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equations are highly accurate for certain pure compounds, they cannot, in general, be used for

mixtures.

In short, attempts to relate properties of fluids to intermolecular interactions using

rigorous fundamental analysis do not yield exact expressions, except for the case of an ideal gas.

Simple cubic-type EOSs provide only partially satisfactory PVT predictions for real fluids,

especially in the dense fluid region (p, > 0.35) which is of importance in SCWO processes. To

preserve simplicity and achieve higher accuracy, an alternative approach is needed.

I. 1.3.3 Volume-Translated Equations of State

Cubic vdW-type models can be improved significantly by translating the volume to

provide a more satisfactory match to liquid density data (see Figure 14). Martin (1967) was the

first to propose this concept, using a fixed volume translation t to arrive at a best-fit EOS that

gave substantially better density predictions than other cubic EOSs (Martin, 1979). In his

formulation:

V=VUT +t (28)

where V is the final predicted volume with translation and the superscript UT denotes the

untranslated volume VUT to emphasize the fact that Vut is the estimated volume from the

untranslated EOS. Consequently, two equations, in general, are needed to obtain the final

volume or density prediction at a given P and T: the untranslated EOS

Vu = VUT(P, T) (29)

and the equation that performs the translation

V = f(VUT, t). (30)

For pure water and aqueous supercritical mixtures, Martin's constant translation

formulation gives large positive errors (up to 25%) for Pc, < p < 1.5p, and negative errors for p >

2pc (Martin, 1979). To improve the fit for such systems, the volume translation can be

correlated to changes in density.
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Subsequently, Peneloux et al. (1982), Soave (1984), Chou and Prausnitz (1989) and

Mathias et al. (1989) have refined the use of translation to improve density predictions.

Peneloux et al. (1982) and Soave (1984) corrected the predictions for liquid volumes far away

from the critical point by using a fixed translation (see Eq. (28)):

t = 0.40768 R T c 0.29441 (31)
Pc RT )

Chou and Prausnitz improved these previous methods for the volume-translated RKS (VTRKS)

EOS by adding a "distance" variable d in order to account for the increasing difference between

the predicted and experimental state as one approaches the critical point and to match the

experimental critical volume Vc at the critical point:

V = V -t-(VU-v t() (32)

where

Rd saL ) U Tr < (33)

d=0 Tr=l (34)

d = ( T vr=vv Tr >1. (35)

The terms VcUTand VstL are the critical volume and saturated liquid volume predicted by

the untranslated EOS, respectively, Vc is the experimental critical volume and 1r is a

fitted universal constant. The volume-translation parameter for the VTRKS EOS was calculated

with Eq. (31). Note that at any particular temperature in the coexistence region, the volume

translation given by Eqs. (32) and (33) is a constant since Eq. (33) is always evaluated at the

saturated liquid volume. For this reason, it can be shown that the Chou and Prausnitz volume

translation is thermodynamically consistent for phase-equilibrium calculations where

equivalence of the fugacities or fugacity coefficients is required (see Eq. (20)).
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In an attempt to match the experimental critical volume Vc at the critical point and to

improve the liquid-density predictions elsewhere, Mathias and coworkers (1989) applied a

continuously variable translation to the PR EOS (VTPR EOS):

V=V + t + (Vc -VcrT -t) (36)

where

~6 ____pP~d p (37)
RT aVUT (37)

Translation values reported by Mathias et al. (1989) were used for the evaluation of the

VTPR EOS in this paper. Figure 15 shows how these volume translations improve the

predictions of the vapor-liquid coexistence curve of water. Note that for a polar compound such

as water, Chou and Prausnitz used a modified a as suggested by Soave (1979):

a=l+(1-Trm + T r(38)

where the constants m and n were regressed to vapor-pressure data and determined to be 0.5075

and 0.0261, respectively, for water. Further, Mathias and coworkers (1989) have found that by

fitting a temperature dependent t to data, they obtain more accurate coexistence densities, e.g.,

for water:

t = -5.26 +1801 (39)
1.8T
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where the average error for saturated liquid densities is reduced to 0.2% (Mathias and Klotz,

1994). In the above equation, the volume-translation parameter t is given in cubic centimeters

per mole and the temperature is in Kelvin.

More recently, investigators have decided to use volume translations that are independent

of temperature and volume as part of their effort to develop universal volume-translation

parameters. For example, Polishuk and coworkers (2000) developed a four-parameter vdW-like

EOS where volume-translation constants c and d are determined from the experimental critical

compressibility and liquid-phase triple-point volume for each pure species (a and b are still

determined from stability criteria). Another approach suggested by several researchers is to use

a constant translation calculated from the difference between the experimental and calculated

volumes at a reduced temperature of 0.7 (Ahler and Gmehling, 2002; Wang et al., 2003).

One limitation of using temperature-dependent volume translations is the potential for

isotherm crossing (Yelash and Kraska, 2003). When Pfohl (1999) examined the volume

translation evaluated by de Sant' Ana and Ungerer (1999),

c = co + (CC -co )exp([[1- T, ]) (40)
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he found that isotherms will cross at low volumes since low temperature isotherms with a small

translation will intersect higher (or critical) temperature isotherms which have a larger

translation. As a result, inconsistent volumes can be calculated during isobaric heating when the

liquid volume decreases. Therefore, the use of solely temperature-dependent volume translations

is not recommended, especially when used outside the PVT region that the empirically-based

volume translation was developed for.

Another volume-translation concern is whether derived thermodynamic properties are

properly determined. To obtain derived thermodynamic properties such as the fugacity, residual

enthalpy and residual entropy in a thermodynamically consistent manner, one must correctly

account for the volume translation. Thus, when volume translation is used, Eqs. (21)-(23)

assume more complicated forms:

ln4 In -I~r [P __l(a dVplnVUT-lnZ+Z - (41)ln~ -In =- In - - In 0- - I
P l~'uRT V1 aV T

L'Ir =PV-RT- P a TI(P) J la dVT (42)

ASr=RlnZ vUT R aP t av dVU T (43)AS' = R InZ-r d

where Vin all equations refers to the volume-translated value from Eq. (30). I addition,

where V in all equations refers to the volume-translated value from Eq. (30). In addition,

(P (aP v ad avUT) (44)
aT)Vy aT) VUT \aT)VUT aVUT T aVU T

which quantifies the contributions to (aP / aT)v from the untranslated EOS and from the volume-

translation equation. After substitution of Eq. (44) into Eqs. (42) and (43), all of the integrands

are in terms of VUT and constants. Mathias and coworkers did not use the volume-translated

derived property equations and, as a result, report thermodynamically inconsistent coexistence

curves. In their earlier treatment, the untranslated fugacity equation (Eq. (21) with V= VT) was

used and not the volume-translated equation (Eq. (41)). Likewise, Chou and Prausnitz would be

required to use Eqs. (41)-(44) if they wanted specific fugacity values or any other derived

thermodynamic properties. However, as they only utilized the equivalence of fugacity in their
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phase-equilibrium calculations for constant volume translation (Eq. (20)), they were able to use

the untranslated fugacity-coefficient equation (Eq. (21)). In principle, any EOS can be used with

volume translation as long as a thermodynamically consistent set of equations is applied (e.g.,

Eqs. (41)-(44) for a pressure-explicit EOS).

I.1.4 Hard-Sphere Volume-Translated van der Waals (HSVTvdW) Equation of State

In this section the development of a new, thermodynamically consistent, volume-

translated EOS is presented. First, the untranslated portion of this EOS is introduced, followed

by stability criteria analysis. The translation is then developed to provide accurate density

predictions.

I. 1.4.1 Approach

As the state of a single-phase, one-component system is fully specified by any two

intensive properties, the pressure can be explicitly written as a function of the temperature and

the untranslated specific volume:

P = f(T, VUT). (45)

Using a virial-type expansion, one can rewrite a pressure-explicit EOS in the form of a finite

series:

P f n(T) =ME(T)6DOr (46)
nl(VuT)n n=1

The lowest index on VUT in this series is unity which corresponds to the ideal gas state. To

simplify this expression further, the repulsive and attractive components of the intermolecular

forces between molecules are separated to give

Mlep 1 rep (T) Ma att(T) (47)

n=l (VUr n=l (VUT)n

An empirical EOS can be obtained by truncating either series after a certain number of terms or

by proposing a closed form that approximates the series to some order. For example, the vdW

EOS is obtained by proposing a certain closed form for the first series and truncating the second
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series after the second term with fl a tt (T) = 0. Most modifications of the vdW EOS, e.g. the RK

EOS, use a closed form for both series, and this may account for their better performance.

However, the repulsive term in these cubic EOSs is inherently inaccurate at higher densities

(Henderson, 1979). The Carnahan-Starling hard-sphere approximation given by Eq. (24)

provides an excellent choice for the repulsive part. Thus, a form similar to that originally

proposed by Carnahan and Starling is used here with y = biVUT and b calculated from stability

criteria at the critical point:

papHs t a(T) RT (VUT Y + b(VUT + b2VUTb3 1 f att(T) (48)

n=l (V UT) VU T UT _b)3 (V

Since the repulsive term models only the hard-sphere contribution, the first-order

perturbation attraction term must incorporate the unknown soft-sphere contribution in addition to

the attractive contribution. For the second series, a simple (but somewhat arbitrary) closed form

was selected. Thus, the modified equation of state, which is called a Hard-Sphere van der Waals

(HSvdW) EOS, is written as

p RT (VuT )3 + b(VUT ) 2 + b2 VUT - b 3 a (49)
R UT -VY V -b)(VuT - b 3 (Vu +2b)2

where

a = aa. (50)

Note that Eq. (49) represents an EOS without volume translation, hence the introduction of the

untranslated UT superscript for V. The integer multiplier of 2 in the (Vuv + 2b)2 term was

determined by duplicating the PV slope along the critical isotherm for several compounds and is

shown for water in Figure 16.

I. 1. 4.2 Stability Criteria

Equations (12), (13) and (49) form a system of three equations and five unknowns (ac, b,

Pc, Tc and VcT) at the critical point. Note that even though two equations are necessary to

predict fluid density, i.e., the untranslated EOS given by Eq. (49) and a volume-translation
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Figure 16. Comparison of the vdW attraction terms for several EOSs along the critical
isotherm of water.

equation, the stability criteria at the critical point (Eqs. (12) and (13)) may be expressed solely as

untranslated variables; this is easily shown using implicit derivatives, provided that the volume-

translation equation has finite partial derivatives with respect to VuT at the critical point, i.e.

dVTN (dV)TNaVUT TN aV(12)

The solution to this equation set is

R2 2 (51)
a¢ = 0 .4 4 96 0 8 8 R T

P,

b = 0.0245878 R T (52)
Pc

VUTp (53)
zUT V P = 0.3183919. (53)

I. 1.4.3 Volume Translation

A volume translation is used to improve the density predictions given by Eq. (49). By

examining PVT data for pure carbon dioxide, nitrogen and oxygen along their respective vapor-

88



liquid coexistence curves and PVT and H data for pure water along its vapor-liquid coexistence

curve, its critical isotherm (Tr = 1.0 for 1.0 < Pr < 1.8), and selected isobars (P, = 1.1 for

0.42 < T,. < 1.0 and Pr = 1.8 for 1.0 < Tr < 1.66), errors in the predicted density were significantly

reduced by use of the following expression:

VU V t (V U(8.0+ 0 7)VurTr4 .5+°.4 1 (54)
t( r= Vurl + t + (c -u t)[ (.50.7)r + 0.5]

where VUT is given by Eq. (49), t is the volume-translation constant and Vc is the experimental

critical volume. The exponents given in Eq. (54) are universal constants, independent of the

compound being modeled, while the volume-translation parameter t is obtained by regression of

liquid or vapor-liquid coexistence density data for each pure compound (see Table 8). The

exponents on Vr r (1 and 3) were previously determined and fixed during the optimization of the

other four universal constants. The constant, 0.5, in the denominator was adjusted during the

optimization of the universal constants in order for V = Vc at the critical point since the

rightmost-bracketed tenn in Eq. (54) should be unity at the critical point. In this paper, vapor-

liquid coexistence data were used for the t regression. The form of Eq. (54) insures that the EOS

predicts the experimental critical volume exactly. Note that thermodynamically consistent,

derived-property equations (Eqs. (41) through (44)) must be invoked, because a variable volume

translation has been employed. Also note that in the ideal-gas region (for large YJUT and 7), the

volume-translation equation correctly reduces to V= VUT as seen in Figure 17 for the critical

isotherm. The improvement of volume-translation predictions is clearly seen at higher densities

in Figure 17 and also demonstrates the validity of differentiating the stability criteria with

untranslated and volume-translated terms as shown in Eq. (12) on page 88. In all cases, the

volume-translated EOSs and their associated untranslated forms emulate (aPlaV)Tc = 0 with a

zero slope at the critical point.
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Table 8. Pure-component parameters for the HSVTvdW EOS

Compound Tc P, V b t ac aA B

(°C) (bar) (m3/kgmol) (m3/kgmol) (m3/kgmol) (m6bar/kgmol 2 )

CH4 -82.62 45.979 0.0990 0.0085 0.0140 2.45 0.037 0.501

CO2 31.06 73.821 0.0939 0.0084 0.0129 3.90 0.000 0.913

C2H4 9.19 50.404 0.1290 0.0115 0.0180 4.92 0.081 0.578

H20 374.14 220.900 0.0559 0.0060 0.0048 5.89 0.105 1.038

NH3 132.40 112.775 0.0724 0.0074 0.0069 4.53 0.114 0.844

N2 -146.89 33.980 0.0896 0.0076 0.0127 1.46 0.059 0.504

02 -118.57 50.430 0.0734 0.0063 0.0104 1.47 0.049 0.500
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Figure 17. Comparison of untranslated and volume-translated EOSs for pure water along the
critical isotherm.
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I. 1.4.4 a Determination

The functional form of a (or a for the pure component i) must be selected carefully

because coexistence curve predictions are very sensitive to the values of a. Soave (1972)

suggested that the value of a be evaluated using the equilibrium condition given by Eq. (20) for

each V-L tie line. This fitting ensures thermodynamic consistency along the coexistence curve,

and for this reason the EOS gives accurate predictions of thermodynamic properties. Soave

(1972) also proposed the following form for fitting ai as a function of Tr:

where kii is a pure-component expression or constant. To increase prediction accuracy further,

other forms of a, have been proposed, e.g., Twu et al. (1996). In the case of Eq. (49), it was

found that the plot of ai versus Tr (obtained using Eq. (20) and saturation vapor-pressure data) is

nearly the same curve for non-polar as well as polar substances. Therefore, ai can be regarded as

a universal correlation that represents all pure components i, and the subscript i can be dropped.

In addition to using saturation vapor-pressure data for a regression, saturation enthalpy data

were used for the fitting since the residual enthalpy is a function of the temperature derivative of

a, an expression that is extremely sensitive to temperature:

SAHr = PV - RT - ac[T(dt -a] rv, 1 av dVUT (56)
cdT, Th (VU + 2b) V ( 

UTa (av UT
r WK T aTr )VT

As a result, the following expression was developed for a as a function of T,:

a = exp (1- Tr, .9 75+0.±04 + aT0.93+0.04+T (57)

The use of an exponential function prevents calculations of negative a, as would occur if a linear

variation of a with Tr were used. The use of (I - T.) ensures thermodynamic consistency, i.e. at
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the critical temperature a = ac. The exponents -0.93 and 0.75 are universal, are crucial for

calculating accurate saturated residual properties, and were simultaneously optimized with the

other four universal constants given in Eq. (54). Finally, it is argued that the value of oa should

never increase with temperature, i.e.

da <0. (58)
dTr

so that as temperature is increased, numerical inconsistencies, as seen with several a

formulations, are never experienced (Polishuk et al., 2002). Therefore, it can be shown that the

pre-component constants and cB must not be negative. As as, a and t are coupled through

the volume-translated fugacity equation (Eq. (41)), they were simultaneously regressed with PVT

vapor-liquid coexistence data once all eight universal constants were determined. Table 8

contains aA and aB for several compounds. It has been determined that the use of Eq. (57) in the

Tr > 1 region is sometimes inaccurate for properties other than density, e.g., residual enthalpy

errors may reach 30%. Rather than develop an even more complicated expression for a, it was

decided to accept these deficiencies.

TM

ASPEN PLUS (Release 8.5-3, Aspen Technology, MA) was employed for the

regression of all universal constants and pure-component parameters in the HSVTvdW EOS and

the property predictions of all EOSs evaluated in this study. The generalized least-squares and

maximum-likelihood methods were used for the regression of all parameters. Regression data

and results are stored and are available (Kutney et al., 1996).

In summary, the HSVTvdW EOS is specified by three operating equations:

RT (VUT + b(VU )2 + b 2VUT - b 3 a (49)
- vUT-b( T_-b)3 - (VUT + 2b)2

[ Tfa exp(Il r 75 (59)
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8Vr(VTr4+6 .s;5 + 0.5(54)V = VT +t+(V -eCu-t) (Vrr) 3 6.5T-6'5 +0 5

where ac and b are fit to pure-component stability criteria at the critical point (Eqs. (12) and (13))

and a, a and t are simultaneously regressed from PVT vapor-liquid coexistence data.

I. 1.5 Results

The success of the a equation given by Eq. (57) is illustrated in Figure 18, where the

vapor-pressure percentage deviations of several EOSs are plotted for saturated water as a

function of temperature. Table 9 compares the average absolute error of the vapor-pressure

predictions for pure components, while Table 10 through Table 12 compare the average absolute

errors for other saturation properties. The average absolute error for the parameter of interest is

defined in the first footnote to Table 9. The effectiveness of using the translation given by Eq.

(54) for the coexistence curve of water is illustrated in Figure 19. Figure 20 and Figure 21

compare saturation residual enthalpies and entropies for water as predicted by the HSVTvdW,

RKS and PR EOSs, while Figure 22 and Figure 23 provide similar comparisons for saturated

carbon dioxide and methane, respectively. (Note that the residual entropy in Figure 21 is

calculated using the definition given in Eq. (43), whereas ASPEN PLUSTM uses a different

basis.) In all cases, the HSVTvdW EOS improved the untranslated density predictions

significantly.

In addition, improvements were observed for other thermodynamic property predictions.

Figure 24 and Figure 25 compare the predicted densities and residual enthalpies for water at

253.31 bar (250 atm) from ambient to 500C, which is of interest for SCWO processing. Figure

26 and Figure 27 present the results for water at 4000 C from 1 to 400 bar. Isobar and isotherm

results are summarized in Table 14 and Table 15 and show that the proposed HSVTvdW EOS is

reasonably accurate for pure compounds in both the supercritical and subcritical regions of

water. In some regions residual-property predictions may exhibit inaccuracies as large as 30%.

Figure 28 and Figure 29 present several pure water isotherms and demonstrate that the

HSVTvdW EOS is accurate for density and residual enthalpy, respectively, even though the

pure-component parameters (aA, aB and t) were regressed only to vapor-liquid coexistence data.

However, there is an improvement in high-pressure predictions when high-pressure data are used
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in the determination of pure-component parameters. This improvement may outweigh the

decrease in accuracy of coexistence-curve predictions. However, for a number of species

including carbon dioxide, methane and nitrogen, this decrease may be acceptable since their

coexistence-curve temperatures and pressures may not correspond to the temperatures and

pressures of interest. So if the pure-component parameters that are regressed to coexistence data

result in unsatisfactory predictions, it is recommended that these parameters be re-regressed

using available data in an attempt to improve the EOS accuracy in the region of interest.

The constants used in this analysis are given in Table 8. For an in depth examination of

the HSVTvdW EOS, including the regression data and a sensitivity analysis of the pure-

component parameters, see Kutney et al. (1996).
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Table 9. Comparison of saturated vapor-pressure predictions for several EOSs

Compound Range EOS average absolute percentage deviationa

HSVTvdW PR VTPRb RKS VTRKS

CH4 0.48 < T,. < 0.99 0.1 + 0.1 1.5 ± 0.7 - 1.9 + 1.9 1.9 ± 2.0

CO2 0.71 < Tr < 1.00 1.5 + 1.5 0.7 ± 0.5 - 0.4 ± 0.2 0.4 ± 0.2

C2 H4 0.37 < T < 0.99 1.0 + 2.0 4.8 + 7.5 - 1.0 + 0.5 1.0 + 0.5

H20 0.42 < T < 1.00 0.3 + 0.3 4.2 + 5.3 - 7.1 + 8.7 0.5 + 0.4C

NH 3 0.54 < T < 0.96 0.5 0.3 0.2 0.1 - 1.3 1.1 1.3 + 1.1

N2 0.50 < T,. < 0.98 0.3 ± 0.2 1.3 + 0.6 - 1.9 + 1.3 1.9 ± 1.3

02 0.35 < T,. < 0.98 0.4 ± 0.4 4.1 ± 3.3 - 3.3 + 3.0 3.3 ± 3.7

Average 0.6 + 0.4 2.4 + 1.4 - 2.4 + 1.4 1.5 + 0.7

1=100 M fcalc

M i=l f

- fdata

.data
, where f is the parameter of interest, in this case the

vapor pressure, M is the number of data points and ± x indicates the root-mean-square
uncertainty.
t' Not calculated due to thermodynamic inconsistency.

C For water, the VTRKS EOS used the polar ca equation given by Eq. (38).
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Figure 18. Deviations of the predicted vapor pressure for pure water using the 1967 ASME
steam table as the reference.
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Table 10. Comparison of vaporization enthalpy predictions for several EOSsa

Compound Range EOS average absolute percentage deviation

HSVTvdW PR VTPRb RKS VTRKSb

CH4 0.48 < T,< 0.99 1.7 2.7 2.0 3.5 - 2.9 3.0

CO2 0.71 < T< 1.00 3.4 4.2 2.9 4.5 - 3.5 4.6 -

C2H4 0.37 < T, < 0.99 1.9 2.3 2.2 2.5 - 1.6 2.4 -

H20 0.42 < T< 1.00 2.3 3.1 3.7 2.8 - 5.1 3.0 -

NH3 0.54 < T < 0.96 3.0 2.0 2.9 2.0 - 4.0 1.8

N2 0.50 < T, < 0.98 2.0 + 3.0 1.8 + 3.3 - 3.0 + 2.8

02 0.35 < Tr < 0.98 1.7 + 2.6 1.7 + 3.1 - 2.8 + 2.6

Average 2.3 + 1.1 2.5 + 1.2 - 3.3 + 1.1
a Defined as Hap = H,, - t

sat satL

b Not calculated due to thermodynamic inconsistency.

Table 11. Comparison of saturated vapor density sat' predictions for several EOSs

Compound Range EOS average absolute percentage deviation

HSVTvdW PR VTPRa RKS VTRKS

CH4 0.48 < Tr < 0.99 1.6 + 2.2 3.5 + 0.8 3.8 + 1.4 2.0 + 1.7 2.8 + 2.0

CO 2 0.71 < T,. < 1.00 2.8 ± 2.4 1.5 ± 0.8 2.6 ± 2.0 2.0 ± 1.3 1.9 ± 1.6
b

C 2 H 4 0.37 < T,. < 0.99 2.7 ± 3.7 4.6 ± 5.9 - 1.3 ± 1.6 1.9 ± 1.8

H2 0 0.42 < T,. < 1.00 2.8 + 5.5 5.7 + 4.9 4.9 + 5.2 8.5 + 8.4 1.9 + 1.0

NH3 0.54 < T,. < 0.96 2.5 ± 1.7 3.6 ± 3.0 - 4.9 ± 3.7 2.9 ± 1.0

N 2 0.50 < T,. < 0.98 1.4 ± 2.2 1.4 ± 1.5 1.6 ± 2.0 2.4 ± 2.4 2.9 ± 2.1

02 0.35 < T,< 0.98 3.0 5.3 3.4 3.2 - 4.8 7.6 5.2 7.3

Average 2.4 + 1.4 3.4 + 1.3 3.2 + 1.5 3.7 + 1.8 2.8 0.6

aCalculated for comparison, although not thermodynamically consistent since the untranslated
fugacity relation was used for the determination of the saturation pressure and density.
bNot calculated because no translation parameter was provided by Mathias et al. (1989).
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Table 12. Comparison of saturated liquid density PsatL predictions for several EOSs

Compound Range EOS average absolute percentage deviation

HSVTvdW PR VTPRa RKS VTRKS

CH4 0.48 < Tr < 0.99 0.8 + 0.8 8.9 + 3.8 0.7 + 0.8 4.6 + 5.0 2.7 + 1.3

C0 2 0.71 < T,,< 1.00 1.2 + 1.1 4.6+4.0 1.7 0.8 12.8 4.6 1.4 + 1.0

C2H4 0.37 < T, < 0.99 1.5 + 0.8 6.8 + 2.4 b 6.4 + 3.9 3.6 + 1.6

1120 0.42 < Tr < 1.00 1.2 + 1.6 19.0 + 4.1 1.8 + 1.0 28.2 + 3.7 3.3 + 1.9

NH3 0.54<T,.<0.96 2.1 + 1.2 13.6 3.8 - 23.5 3.0 1.2 + 1.0

N2 0.50 < T, < 0.98 0.9 + 0.8 9.7 + 3.9 0.9 + 0.6 3.8 + 4.7 2.5 + 1.1

(2 0.35 < T,. < 0.98 0.8 + 0.7 9.8 + 3.7 - 3.4 + 4.6 2.8 + 1.2

Average 1.2 + 0.4 10.3 + 1.4 1.3 + 0.4 11.8 + 1.6 2.5 + 0.5
a Calculated for comparison, although not thermodynamically consistent since the untranslated
fugacity relation was used for the determination of the saturation pressure and density.
b Not calculated because no translation parameter was provided by Mathias et al. (1989).
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Table 13. Comparison of density predictions for several EOSs at high pressures

Compound Range EOS average absolute percentage deviation

HSVTvdW PR VTPR RKS VTRKS

CH4 (250 bar) 1.15 <T,<3.25 12.6 ± 4.2 0.9 + 1.0 0.7 + 0.2 4.3 + 1.0 15.6 + 3.4

CO 2 (250 bar) 0.76 < T,. <2.53 10.2 ± 4.8 3.0 + 1.2 1.7 + 0.6 7.3 + 2.3 3.3 ± 6.6

C2 H4 (300 bar) 0.89 < T < 1.42 9.2 + 3.0 5.2 3.2 _a 4.5 1.7 11.8+± 11.7

H20 (253 bar) 0.42<T,.<1.19 2.4+3.3 15.2+8.1 3.8 ± 3.0 22.9 + 10.2 4.1 2.5

N2 (300 bar) 1.74 < Tr,< 6.02 10.9 ± 3.7 1.7 + 0.6 0.4 ± 0.3 1.8 + 1.4 0.5 + 0.4

Average 9.1 + 1.8 5.2 + 1.8 1.6 + 0.8 8.2 + 2.1 7.1 + 2.8

Not calculated because a translation parameter is not provided by Mathias et al. (1989).

Table 14. Comparison of isobaric enthalpy difference predictions for several EOSs at high
apressures

Compound EOS average absolute percentage deviation

HSVTvdW PR VTPR b RKS VTRKSb

CH4 (250 bar) 15.05 1.59 - 2.58

CO 2 (250 bar) 5.83 1.06 - 2.05

C2 H4 (300 bar) 31.77 0.51 - 2.32

H20 (253 bar) 2.13 2.09 - 4.83

N 2 (300 bar) 2.11 1.50 - 0.95

Average 11.38 ± 12.57 1.35 + 0.60 - 2.55 + 1.28 -

a Defined as AH = H(5000 C, - 250 bar)- H(25°C, - 250 bar).
b Not calculated due to thermodynamic inconsistency.
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Figure 24. Isobaric density comparisons for pure water at P = 253.31 bar.
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Figure 25. Residual enthalpy comparisons for pure water at P = 253.31 bar.
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I.1.6 Conclusions

The analysis indicates that the new hard-sphere volume-translated equation of state

(HSVTvdW EOS) can be used for accurate predictions of densities and thermodynamic

properties over a wide range of temperatures and pressures for pure materials such as carbon

dioxide, methane and water. Ammonia, ethylene, nitrogen and oxygen have also been accurately

modeled with the HSVTvdW EOS (Kutney et al., 1996). Densities and residual properties are

predicted in a thermodynamically consistent manner with average errors of 5% and 7%,

respectively, and within 13% and 32%, respectively, over temperatures and pressures ranging

from ambient to 5000 C and 400 bar. For each pure component i, the critical temperature Tci and

pressure Pci are required for determining aci and bi. The volume translation requires the

experimental critical volume Vci and a parameter ti which is correlated with the liquid or vapor-

liquid coexistence density. Two more parameters (aAi and aBi) are used to provide temperature

dependence and are fit to coexistence vapor-pressure data.

In addition to requiring accurate predictions for pure materials, another important feature

of a successful equation of state is its ability to simulate thermodynamic properties of mixtures.

For supercritical-water systems, these mixtures would most likely contain low concentrations of

gases and hydrocarbons. With the pure species analysis complete, the analysis of

thermodynamic properties can now begin for supercritical-water systems with additional

components such as these.

104



I. 1. 7 References
Ahlers, J., and Gmehling, J. (2002) "Development of a universal group contribution equation of state iii. prediction

of vapor-liquid equilibria, excess enthalpies, and activity coefficients at infinite dilution with the VTPR model."
Ind. Eng. Chem. Res., 41, 5890-5899.

Alder, B.J. (1964) "Studies in molecular dynamics. iii. a mixture of hard spheres." J. Chem. Phys., 40, 2724-2730.

Aspen Technology (1994) Physical Properties Methods and Models - Reference Manual, Volume 2, Cambridge,
MA.

Benedict, M., Webb, G.B. and Rubin, L.C. (1940) "An empirical equation for thermodynamic properties of light
hydrocarbons and their mixtures." J. Chem. Phys., 8, 334-345.

Braker, W. and Mossman, A.L. (1980) Matheson Gas Data Book, 6th ed., Lyndurst, NJ.

Brennecke, J.F. and Eckert, C.A. (1989) "Phase equilibria for supercritical process design." AIChE J., 35, 1409-
1427.

Bruno, T.J. and Ely, J.F. (1991) Supercritical Fluid Technology: Review in Modem Theory and Applications, CRC
Press, Boca Ratan, FL.

Carnahan, N.F. and Starling, K.E. (1969) "Intermolecular repulsions and the equation of state for fluids." J. Chem.
Phys., 51, 635-636.

Chou, G.F. and Prausnitz, J.M. (1989) "A phenomenological correction to an equation of state for the critical
region." AIChE J., 35, 1487-1496.

de Sant' Ana, H.B. and Ungerer, P. (1999) "Evaluation of an improved volume translation for the prediction of
hydrocarbon volumetric properties." Fluid Phase Equilibria, 154, 193-204.

Haar, L., Gallagher, J.S. and Kell, G.S. (1984) NIST standard reference database 10-steam tables, Hemisphere Pub.
Corp., New York, NY.

Heilig, M. and Franck, E.U. (1989) "Calculation of thermodynamic properties of binary fluid mixtures to high
temperatures and high pressures." Ber. Busenges. Phys. Chem., 93, 898-905.

Henderson, D.J. (1979) "Practical calculations of the equation of state of fluids and fluid mixtures using perturbation
theory and related theories." ACSAdv. Chem. Ser., No. 182, 1-30.

Hirschfelder, J.O., Curtiss, C.F. and Bird, R.B. (1964) Molecular Theory of Gases and Liquids, 2nd ed., Wiley, New
York, NY.

IUPAC thermodynamic table project (1978) "International thermodynamic tables of the fluid state 3: carbon
dioxide." Pergamon, Oxford.

Johnston, K.P. and Eckert, C.A. (1981) "An analytical Carnahan-Starling-van der Waals model for solubility of
hydrocarbon solids in supercritical fluids." AIChE J., 27, 773-779.

Johnston, K.P., Ziger, D.H. and Eckert, C.A. (1982) "Solubilities of hydrocarbon solids in supercritical fluids: the
augmented van der Waals treatment." Ind. Eng. Chem. Fund., 21, 191-197.

Kell, G.S., McLaurin, G.E. and Whalley, E. (1985) "The PVT properties of water v: the fluid to 1 kbar at 350-500°C
and along the saturation line from 150 to 350C." Phil. Trans. R. Soc. Lond. A, 315, 235-246.

Kell, G.S., McLaurin, G.E. and Whalley, E. (1989) "PVT properties of water VII: vapour densities of light and
heavy water fom 150 to 5000C." Proc. R. Soc. Lond. A, 425, 49-71.

Kutney, M.C., Dodd, V.S., Smith, K.A., Herzog, H.J. and Tester, J.W. (1996) "Equations of state for supercritical
process modeling." MIT Energy Laboratory, Cambridge, MA, MIT-EL 94-003 (revised).

Lee, B.I. and Kesler, M.G. (1975) "A generalized thermodynamic correlation based on three-parameter
corresponding states." AIChE J., 21, 510-527.

105



Martin, J.J. (1967) "Equations of state." Ind. Eng. Chem., 59, 34-56.

Martin, J.J. and Stanford, T.G. (1974) "Development of high precision equations of state for wide ranges of density
utilizing a minimum of input information: example argon." AIChE Symp. Ser., 70, 1-13.

Martin, J.J. (1979) "Cubic equation of state-which?" Ind. Eng. Chem. Fund., 18, 81-97.

Mathias, P.M., Naheiri, T. and Oh, E.M. (1989) "A density correction for the Peng-Robinson equation of state."
Fluid Phase Equilibria, 47, 77-87.

Mathias, P.M. and Klotz, H.C. (1994) "Take a closer look at thermodynamic property models." Chem. Eng. Prog.,
90, 67-75.

Osborne, N.S., Stimson, H.F. and Ginnings, D.C. (1939) "Thermal properties of saturated water and steam." J. Res.
NBS, 23, 261-270.

Peneloux, A., Rauzy, E. and Freze, R. (1982) "A consistent correction for Redlich-Kwong-Soave volumes." Fluid
Phase Equilibria, 8, 7-23.

Peng, D.-Y. and Robinson, D.B. (1976) "New two-constant equation of state." Ind. Eng. Chem. Fund., 15, 59-64.

Pfohl, 0. (1999) "Evaluation of an improved volume translation for the prediction of hydrocarbon volumetric
properties." Fluid Phase Equilibria, 163, 157-159.

Polishuk, I., Wisniak, J., and Segura, H. (2000) "A novel approach for defining parameters in a four-parameter
EOS." Chem. Eng. Sci., 55, 5705-5720.

Polishuk, I., Wisniak, J., Segura, H., and Kraska, T. (2002) "About the relation between the empirical and the
theoretically based parts of van der Waals-like equations of state." Ind. Eng Chem. Res., 41, 4414-4421.

Redlich, 0. and Kwong, J.N.S. (1949) "On the thermodynamics of solutions." Chem. Rev., 44, 233-244.

Ree, F.H. and Hoover, W.G. (1967) "Seventh virial coefficients for hard spheres and hard disks. J. Chem. Phys., 46,
4181-4197.

Reid, R.C., Prausnitz, J.M. and Poling, B.E. (1987) The Properties ofLiquids and Gases, McGraw-Hill, 4th ed.,
New York, NY.

Rivkin, S.L., Akhundov, T.S., Kremenevskaya, E.A., and Asadullaeva, N.N. (1966) Teploenergetika, 13, 59-76.

Shah, V.M., Bienkowski, P.R., and Cochran, H.D, (1994) "Generalized quartic equation of state for pure nonpolar
fluids." AIChEJ., 40, 152-159.

Soave, G.S. (1972) "Equilibrium constants from a modified Redlich-Kwong equation of state." Chem. Eng. Sci., 27,
1197-1203.

Soave, G.S. (1979) "Application of a cubic equation of state to vapor-liquid equilibria of systems containing polar
compounds." Int. Chem. E. Symp. Ser., No. 56, 12, 1-16.

Soave, G.S. (1984) "Improvement of the van der Waals equation of state." Chem. Eng. Sci., 39, 357-369.

Starling, K.E. and Han, M.S. (1972) "Thermo data refined for LPG." Hydrocarbon Processing, 51, 129-132.

Starling, K.E. (1973) Fluid Thermodynamic Properties for Light Petroleum Systems, Gulf Publishing, Houston, TX.

Thiele, E. (1963) "Equation of state for hard spheres." J. Chem. Phys., 39, 474-479.

Twu, C.H., Coon, J.E., Harvey, A.H. and Cunningham, J.R.. (1996) "An approach for the application of a cubic
equation of state to hydrogen-hydrocarbon systems." Ind. Eng. Chem. Res., 35, 905-910.

van der Waals, J.D. (1873) "Over de continuiteit van den gas-en vloeistoftoestand." Doctoral dissertation, Leiden,
Holland.

106



Vera, J.H. and Prausnitz, J.M. (1972) "Interpretive review-generalized van der Waals theory for dense fluids."
Chem. Eng. J., 3, 1-13.

Walas, S.M. (1985) Phase Equilibria in Chemical Engineering, Butterworth-Heinemann, Stoneham, MA.

Wang, L.S., Ahlers, J., and Gmehling, J. (2003) "Development of a universal group contribution equation of state. 4.
prediction of vapor-liquid equilibria of polymer solutions with the volume translated group contribution
equation of state." Ind. Eng. Chem. Res., 42, 6205-6211.

Wertheim, M.S. (1964) "Exact solution of the Percus-Yevick integral equation for hard spheres." Phys. Rev.
Letters, 110, 321-323.

Yelash, L.V. and Kraska, T. (2003) "Volume-translated equations of state: empirical approach and physical
relevance." AIChEJ., 49, 1569-1579.

Younglove, B.A. and Ely, J.F. (1987) "Thermophysical properties of fluids. ii. methane, ethane, propane, isobutane,
and normal butane." J. Phy. Chem. Ref: Data, 116: 577.

107



108

__ ·



1.2. Hard-Sphere, Volume-Translated van der Waals Equation of Statefor Mixtures

1.2.1 Introduction

Although equations of state are often used to predict pure component properties, a

majority of EOSs are developed in order to model a mixture of components and to generate

accurate thermodynamic properties and equilibria. For SCWO process modeling, typical

mixtures include water, hydrocarbons and gases, and EOSs used for SCWO process modeling

must make reliable predictions of these mixtures. At SCWO process conditions, the typical

water content of these mixtures is approximately 90 wt.%.

The HSVTvdW EOS can be extended to mixtures using simple mixing and combining

rules. Other groups (Huron and Vidal, 1979; Wong and Sandler, 1992; Novenario et al., 1996)

have recently derived theoretically correct mixing rules which try to reproduce the statistical-

mechanics result, i.e., a second virial coefficient with quadratic dependence on composition.

These mixing rules require estimation of the excess Helmholtz free energy in an infinite pressure

state using models such as the non-random, two-liquid (NRTL) model (Renon and Prausnitz,

1968). However, the use of simple mixing and combining rules has been chosen as a first step in

order to determine the accuracy of the mixture HSVTvdW EOS.

1.2.2 Mixture Hard-Sphere Volume-Translated van der Waals (HSVTvdW) Equation of State

In engineering practice, it is common to use unweighted Lorentz-Berthelot combining

rules to formulate mixing rules, for example:

ay = a ( - k) (60)

bi + b
bi = 2 - (61)b°'= 2

where bi, bj, ai and aj are pure component parameters, ky is a constant binary interaction

parameter. The proposed mixing rule for the HSVTvdW EOS follows from the classical van der

Waals weighted mixing rule used to represent a mixture as a pseudo single component:

N N
f= Yxixjfi (62)

i=1 j=1
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wheref is the EOS mixture parameter of interest andfj represents the binary i-j interaction which

is often based on the Lorentz-Berthelot combining rule. Although not consistent with rigorous

statistical mechanics in the low density limit and not successful for all simple mixtures, the van

der Waals rule has been successfully used in the modeling of non-ideal mixtures and is still

widely used today (Shibata and Sandler, 1989). When Eqs. (60) and (61) are substituted into

Eq. (62), the mixture is effectively reduced to a pseudo single component with

N N
a = amixture = E xixjayi(1 - ki) (63)

i=1 j=1

N
b = bmixture = xibi. (64)

i=1

For the translation parameter, the Lorentz combining rule and vdW mixing rule are adopted as

suggested by Martin (1979):

N

t = tmixture = ZXiti (65)
i=l

The pseudocritical mixture volume for the volume-translation equation (Eq. (54)) was obtained

using the usual combining and vdW mixing rule for binaries:

V (( ( 1/3 /)) (66)

N N

Vc = Vcmixture = E E XixjVc.. (67)
i=1 j=1

These pseudo parameters are then used in the EOS and property equations to predict mixture

densities and thermodynamic properties. These combining and mixing rules are reasonably

accurate provided that the ratio of the component diameters is not too large. At this time,

preliminary results indicate that mixture property predictions are not sensitive to the value of the

constant kui.

To be theoretically consistent with respect to hard spheres, one cannot simply substitute

Eqs. (63) and (64) into the HSVTvdW EOS (Eq. (49)) since the Carnahan-Starling result (Eq.

(1 1) or (24)) used in the EOS was developed for mixtures of hard spheres with uniform diameter
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a. For mixtures of fluids with varying sizes of hard spheres, the theoretical mixture result, which

was developed independently by Boublik (1970) and by Mansoori et al. (1971), should be used

(Dimitrelis and Prausnitz, 1986):

1+ 2 y+ - +1 y2
RT F F F ) F21

pHS -( (68)

when the following pseudo volume parameter and mixing rules obtained with Eq. (62) are

employed:

b s= 2Na F (69)
3

N
D = xii (70)

i=l

N
E = xiai 2 (71)

i=l

N
F = xia . (72)

i=l

A comparison of the Boublik-Mansoori (Eq. (68)), Carnahan-Starling (Eq. (11) or (24))

and the vdW repulsive term results (Eq. (15)) and the Molecular Dynamic simulations of Alder

(1964) for an equimolar binary hard-sphere mixture with aj /ci = 3.0 is presented in Figure 30.

Note that the ratio of aj /ci = 3.0 is unusually large for real mixtures and was used to exaggerate

the differences. For ca /a i = 1.0, the Boublik-Mansoori result reduces to the Carnahan-Starling
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result, as expected. So, to be consistent and more accurate for mixtures, the repulsive term of the

newly developed EOS should use the Boublik-Mansoori result:

V (V - b)3 (V + 2b) 2

where

bA = 3bDbE - 2 b (74)

b2 = 3b3 - 3bDbb + b2 (75)

b3 = b3b (76)

N
bD = Zxib) 3 (77)

i=1

N
bE = Zxibi 2 3 (78)

i=l

N
b=E xibi . (64)

i=1

When these mixing and combining rules are used in conjunction with the HSVTvdW EOS, a

complete mixture EOS is formed.

1.2.3 Results

Only a few mixtures have been examined, but the ones studied are in fact relevant to

SCWO process modeling. Furthermore, experimental data are required in order to regress binary

interaction parameters, and these data are not always available. The two mixtures modeled are

carbon dioxide and methane followed by carbon dioxide and water. For all EOSs considered

here, the binary interaction parameters were fit to all of the available experimental data.

Unfortunately, this method does not allow EOSs and non-regressed experimental data to be

compared at other PYT conditions where one can judge how accurate the EOSs are. Ideally,

parameters are regressed to only a single PVT region.

Though there are many performance tests which could be used to judge the performance

of the HSVTvdW EOS for mixtures, only vapor-liquid equilibria results are shown. In addition,
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one could look at other thermodynamic mixture property including mixture enthalpy and density,

however, finding experimental data for comparisons is difficult if not impossible. Three carbon

dioxide and methane P-x-y phase diagrams at incremented temperatures are shown in Figure 31

through Figure 33. At -43.15°C, there is no surprise that the PR and RKS EOS perform superbly

since these EOSs are well known to accurately model this type of binary system. As for the

HSVTvdW EOS, there is relatively good agreement, but the upper critical solution pressure is

clearly underestimated. Without comparing experimental solution densities, it is premature to

conclude that the HSVTvdW EOS performs poorly. Density differences would cause a change

in the predicted critical solution temperature. At the other two temperatures (-23.15°C and

-3.15°C) compared, similar trends are seen.

Carbon dioxide and water equilibria at 200 bar are shown in Figure 34. Since ASPEN

PLUSTM was unable to generate error-free PR and RKS EOS results, the HSVTvdW EOS was

the only EOS compared with zeroed and regressed binary interaction parameters. The

HSVTvdW EOS also had ASPEN PLUSTM flash errors and for this reason, only limited

composition results are available. Little difference is seen between the two (k = -0.035 and k =

0.000) model predictions, but this may be due to the limited number of experimental data near

these predictions where the regression occurred. A general fit is shown, but probably with the

same accuracy as in the carbon dioxide-methane case.

1.2.4 Conclusions

While the HSVTvdW EOS has not been thoroughly tested with a wide variety of

mixtures, these limited results nonetheless confirm that the HSVTvdW EOS can be used for

mixture modeling with sufficient accuracy. It also offers some advantages over other EOSs

currently used in SCWO thermodynamic modeling. Pure component liquid-density HSVTvdW

EOS predictions have been shown to be more accurate, along with other water properties

including enthalpy and entropy. Since a majority of SCWO process modeling streams typically

have more than 85% water content, the HSVTvdW EOS, which has been developed for SCWO

process modeling, provides thermodynamic properties with sufficient accuracy for use in stream

and property modeling. Although simple mixing and combining rules have been employed,
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there are no significant obstacles to using more complex rules, except the time and effort

required to examine their usage.

1.2.5 Recommendations

Since the HSVTvdW EOS has been originally formulated for more accurate density

predictions, a complete analysis including density comparisons of the mixture phases should be

completed. As already stated, an investigation of additional mixtures relevant to SCWO process

modeling should be also performed. Those systems studied should include ones that are well

characterized such as aqueous mixtures of:

simple feed waste, e.g., methanol, ethanol, ammonia,

oxidant, e.g., oxygen,

simple products, e.g., nitrogen.

Once more systems are studied and compared and the performance of the HSVTvdW EOS is

completely analyzed, it can then be determined if the HSVTvdW EOS is a worthwhile addition

to a SCWO process modeler's simulation toolbox.
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1.3. An Analysis of Equation of State Zeno Behavior

This section documents the results of collaborative work with M. Reagan who performed

Zeno molecular simulations. This joint work is documented in this dissertation, in the

dissertation by Reagan (2000), and is also published in Kutney et al. (2000).

I. 3.1 Introduction

For more than a century, researchers have recognized that fluids exhibit several regular

and scalable volumetric features including the following characteristics:

· The Theorem of Corresponding States which states that the volumetric properties of a

fluid are comparable when scaled by their critical-point values. For example, in the

two-parameter corresponding states model, the compressibility factor (Z), defined in

terms of the temperature (T), pressure (P), molar volume (V) or density (p - /V), is

functionally represented by:

Z PV_ P =f(Tr,Vr) or f(Tr,pr) (79)
RT pRT

where Pr - PIPc, Vr - V/Vcp, Pr P/Pc, and Tr = T/Tc represent reduced properties.

* The Law of Rectilinear Diameters which states that for any species the average of

vapor and liquid density is a linear function of temperature in the vapor-liquid

coexistence region (Ben-Amotz and Herschbach, 1990a; Ben-Amotz and Herschbach,

1990b; Boushehri et al., 1993).

· The Tait-Murnaghan Relation which states that the bulk modulus KT1of a liquid is a

linear function of pressure (Boushehri et al., 1993; Parsafar and Mason, 1993;

Parsafar and Mason, 1994).

Another less well known empirical regularity of fluids is known as the Zeno line (Ben-

Amotz and Herschbach, 1990a; Ben-Amotz and Herschbach, 1990b). Along the contour defined

by Z = 1, where the compressibility factor is the same as for an ideal gas, the density of many

fluids has been found to be nearly a linear function of temperature. For example, Zeno contours

for water, carbon dioxide and methane are shown in Figure 35 (see Table 15 for the data that are

generated from correlations which are regressed from experimental data and which are described
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Table 15. Experimentally-correlated data calculated from correlations based on experimental
data (Reduced properties are calculated with critical-point values given in Table 18)

H20

P
(g/cm3)
0.0003
0.062
0.149
0.201
0.233
0.266
0.016
0.032
0.048
0.064
0.081
0.097
0.113
0.129
0.145
0.161
0.177
0.193
0.209
0.225
0.242
0.258
0.274
0.290
0.306
0.322
0.338
0.354
0.370
0.386
0.403
0.419
0.435
0.451
0.467
0.483
0.499
0.515
0.531
0.547
0.564
0.580
0.596
0.612
0.628
0.644
0.660
0.676
0.692
0.708
0.725
0.741
0.757
0.773

Pr

0.001
0.19
0.46
0.63
0.72
0.83
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00
1.05
1.10
1.15
1.20
1.25
1.30
1.35
1.40
1.45
1.50
1.55
1.60
1.65
1.70
1.75
1.80
1.85
1.90
1.95
2.00
2.05
2.10
2.15
2.20
2.25
2.30
2.35
2.40

T(oC)

230.3
277.1
340.4
396.9
444.1
483.6
517.1
545.5
569.4
589.8
607.0
621.3
633.2
642.9
650.5
656.5
660.8
663.8
665.5
665.9
665.4
663.8
661.2
657.9
653.7
648.7
643.1
636.8
629.8
622.2
614.1
605.4
596.2
586.5
576.1
565.7
554.3
542.8
531.0
518.3
505.5
492.3
479.0
464.8
450.6
435.8
420.4
404.7

Z= 0.75

Tr

0.78
0.85
0.95
1.04
1.11
1.17
1.22
1.26
1.30
1.33
1.36
1.38
1.40
1.42
1.43
1.44
1.44
1.45
1.45
1.45
1.45
1.45
1.44
1.44
1.43
1.42
1.42
1.41
1.39
1.38
1.37
1.36
1.34
1.33
1.31
1.30
1.28
1.26
1.24
1.22
1.20
1.18
1.16
1.14
1.12
1.10
1.07
1.05

P
(bar)

28.1
61.4
102.7
149.5
200.0
253.3
308.5
365.3
422.9
481.3
540.0
598.6
657.2
715.2
772.7
829.6
885.6
940.6
994.7
1047.5
1099.3
1149.7
1198.6
1246.3
1292.3
1336.8
1379.8
1421.0
1460.5
1498.2
1534.0
1568.1
1600.1
1630.2
1657.8
1684.2
1707.6
1729.3
1749.1
1765.6
1780.5
1793.0
1803.8
1811.0
1816.4
1818.9
1818.0
1814.7

0.13
0.28
0.46
0.68
0.91
1.15
1.40
1.65
1.91
2.18
2.44
2.71
2.98
3.24
3.50
3.76
4.01
4.26
4.50
4.74
4.98
5.20
5.43
5.64
5.85
6.05
6.25
6.43
6.61
6.78
6.94
7.10
7.24
7.38
7.50
7.62
7.73
7.83
7.92
7.99
8.06
8.12
8.17
8.20
8.22
8.23
8.23
81.22

T (C)

308.8
460.6
562.8
635.1
688.3
728.8
760.4
784.7
803.3
817.5
827.9
835.3
839.8
842.1
842.3
840.9
838.0
833.6
829.0
822.7
813.8
805.6
798.1
788.9
778.6
766.7
755.5
744.1
732.5
720.6
707.1
693.7
680.9
667.2
652.4
637.8
623.7
608.1
593.4
577.2
562.0
545.9
529.4
512.7
495.7
478.4
460.8
4431_

Z= 0.90

Tr

0.90
1.13
1.29
1.40
1.49
1.55
1.60
1.63
1.66
1.69
1.70
1.71
1.72
1.72
1.72
1.72
1.72
1.71
1.70
1.69
1.68
1.67
1.66
1.64
1.62
1.61
1.59
1.57
1.55
1.54
1.51
1.49
1.47
1.45
1.43
1.41
1.39
1.36
1.34
1.31
1.29
1.27
1.24
1.21
1.19
1.16
1.13
1.11

P
(bar)

38.9
98.2
167.8
243.2
321.7
402.4
484.2
566.4
648.4
730.0
810.6
890.2
968.4
1045.0
1119.9
1193.0
1264.2
1333.3
1401.5
1466.9
1527.8
1588.3
1649.1
1706.0
1759.7
1809.4
1858.8
1906.3
1951.8
1995.3
2033.8
2070.7
2107.3
2140.0
2168.1
2194.9
2221.1
2241.3
2261.9
2276.4
2291.6
2302.2
2309.8
2314.1
2315.6
2313.9
2308.7
2301.4

0.18
0.44
0.76
1.10
1.46
1.82
2.19
2.56
2.94
3.30
3.67
4.03
4.38
4.73
5.07
5.40
5.72
6.04
6.34
6.64
6.92
7.19
7.47
7.72
7.97
8.19
8.41
8.63
8.84
9.03
9.21
9.37
9.54
9.69
9.81
9.94
10.05
10.15
10.24
10.31
10.37
10.42
10.46
10.48
10.48
10.47
10.45
10.42

T(oC)

1267.3
1222.1
1144.4
1092.6
1060.3
1031.1

972.5
955.9
938.5
922.2
905.8
888.5
870.9
854.0
837.8
819.3
802.3
785.0
767.3
749.6
731.6
713.9
695.9
677.9
659.8
641.4
623.4
605.0
586.1
567.8
548.7
529.8
510.5
491.4
471.9

7= 1 0

Tr

2.38
2.31
2.19
2.11
2.06
2.02

1.92
1.90
1.87
1.85
1.82
1.79
1.77
1.74
1.72
1.69
1.66
1.63
1.61
1.58
1.55
1.52
1.50
1.47
1.44
1.41
1.39
1.36
1.33
1.30
1.27
1.24
1.21
1.18
1.15

P
(bar)

1.4
366
933
1228
1397
1540

1853
1919
1982
2045
2104
2160
2212
2263
2313
2356
2399
2439
2476
2510
2540
2569
2594
2617
2636
2652
2667
2677
2684
2689
2689
2687
2681
2672
2659

0.006
1.66
4.22
5.56
6.32
6.97

8.39
8.69
8.97
9.26
9.52
9.78
10.01
10.24
10.47
10.67
10.86
11.04
11.21
11.36
11.50
11.63
11.74
11.85
11.93
12.01
12.07
12.12
12.15
12.17
12.17
12.16
12.14
12.10
12.04
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A
A
A
A
A
A
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B

Pr Pr
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H20 Z = 0.75 Z = 0.90 Z= 1.00

Pr T T(C) Tr P Pr T (C) Tr P PrT( 0 C) Tr P Pr Ref
(g/cm3) (bar) (bar) (bar)

0.789 2.45 388.8 1.02 1809.0 8.19 425.1 1.08 2290.0 10.37 451.8 1.12 2642 11.96 B
0.805 250 372.2 1.00 1799.8 8.15 406.7 1.05 2275.1 10.30 431.7 1.09 2621 11.87 B
0.821 2.55 355.1 0.97 1787.0 8.09 387.5 1.02 2255.0 10.21 411.2 1.06 2596 11.75 B
0.837 2.60 337.6 0.94 1771.2 8.02 368.1 0.99 2231.7 10.10 390.7 1.03 2567 11.62 B
0.853 2.65 319.7 0.92 1752.4 7.93 348.6 0.96 2205.4 9.98 369.6 0.99 2533 11.47 B
0.869 2.70 301.0 0.89 1729.3 7.83 328.1 0.93 2173.0 9.84 347.9 0.96 2494 11.29 B
0.886 2.75 281.8 0.86 1702.2 7.71 307.5 0.90 2137.2 9.67 326.1 0.93 2451 11.10 B
0.902 2.80 261.7 0.83 1670.6 7.56 285.8 0.86 2095.1 9.48 303.6 0.89 2402 10.87 B
0.918 2.85 241.0 0.79 1634.6 7.40 263.8 0.83 2048.3 9.27 280.3 0.86 2346 10.62 B
0.934 2.90 219.6 0.76 1594.1 7.22 241.0 0.79 1995.9 9.04 256.5 0.82 2284 10.34 B
0.950 2.95 197.0 0.73 1547.1 7.00 217.6 0.76 1937.7 8.77 232.0 0.78 2216 10.03 B
0.966 3.00 173.5 0.69 1494.8 6.77 193.0 0.72 1871.8 8.47 206.6 0.74 2140 9.69 B

H20 Z= 1.10 Z= 1.25 Z =2.00
P PrT( 0C) Tr P Pr T (C) Tr P Pr T(C) Tr P Pr Ref
Cm3

_ _ (bar) ___ (bar) (bar)

0.435 1.35 984.1 1.94 2776.8 1.59 B
0.451 1.40 957.3 1.90 2818.4 1.57 B
0.467 1.45 931.9 1.86 2858.7 1.55 B
0.483 1.50 904.9 1.82 2891.0 1.54 B
0.499 1.55 881.8 1.78 2928.8 1.51 B
0.515 1.60 857.5 1.75 2959.6 1.49 B
0.531 1.65 833.8 1.71 2988.2 1.47 B
0.547 1.70 810.5 1.67 3013.8 1.45 967.8 1.92 3922.0 17.75 B
0.564 1.75 787.8 1.64 3037.5 1.43 932.6 1.86 3922.9 17.76 B
0.580 1.80 764.8 1.60 3056.6 1.41 898.1 1.81 3919.4 17.74 B
0.596 1.85 742.2 1.57 3073.3 1.39 865.2 1.76 3915.3 17.72 B
0.612 1.90 720.0 1.53 3087.2 1.36 833.8 1.71 3910.1 17.70 B
0.628 1.95 698.0 1.50 3098.4 1.34 803.2 1.66 3902.0 17.66 B
0.644 2.00 676.1 1.47 3106.0 1.31 773.8 1.62 3892.7 17.62 B
0.660 2.05 654.4 1.43 3110.8 1.29 744.8 1.57 3879.6 17.56 B
0.676 2.10 632.8 1.40 3112.4 1.27 716.6 1.53 3864.1 17.49 B
0.692 2.15 611.1 1.37 3110.3 1.24 689.1 1.49 3846.2 17.41 B
0.708 2.20 589.6 1.33 3105.2 1.21 662.3 1.45 3826 17.32 B
0.725 2.25 568.3 1.30 3097.5 1.19 635.5 1.40 3801.1 17.21 B
0.741 2.30 546.8 1.27 3085.3 1.16 609.2 1.36 3773.0 17.08 B
0.757 2.35 525.3 1.23 3069.6 1.13 583.3 1.32 3741.9 16.94 B
0.773 2.40 503.5 1.20 3049.4 1.11 558.0 1.28 3708.4 16.79 B
0.789 2.45 481.7 1.17 3025.5 1.08 388.8 1.02 2412 10.92 B
0.805 2.50 459.6 1.13 2997.2 1.05 372.2 1.00 2400 10.86 B
0.821 2.55 437.5 1.10 2964.7 1.02 355.1 0.97 2383 10.79 987.0 1.95 9558.4 43.27 B
0.837 2.60 415.1 1.06 2927.6 0.99 337.6 0.94 2362 10.69 890.3 1.80 8998.3 40.73 B
0.853 2.65 392.5 1.03 2885.7 0.96 319.7 0.92 2336 10.57 809.5 1.67 8534.0 38.63 B
0.869 2.70 369.4 0.99 2838.3 0.93 301.0 0.89 2306 10.44 736.6 1.56 8109.8 36.71 B
0.886 2.75 346.0 0.96 2785.6 0.90 281.8 0.86 2270 10.28 674.9 1.46 7754.8 35.11 B
0.902 2.80 322.2 0.92 2726.9 0.86 261.7 0.83 2227 10.08 615.5 1.37 7401.3 33.51 B
0.918 2.85 298.0 0.88 2662.8 0.83 241.0 0.79 2179 9.86 561.7 1.29 7077.6 32.04 B
0.934 2.90 273.0 0.84 2590.9 0.79 219.6 0.76 2125 9.62 510.5 1.21 6759.9 30.60 B
0.950 2.95 247.4 0.80 2512.3 0.76 197.0 0.73 2063 9.34 461.5 1.14 6446.5 29.18 B
0.966 3.00 221.1 0.76 2425.5 0.72 173.5 0.69 1993 9.02 414.9 1.06 6140.1 27.80 B

A Source: ChemicaLogic (1999).

B Source: Haar et al. (1984).
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p (g/cm3)
0.002
0.016
0.032
0.049
0.065
0.081
0.097
0.113
0.129
0.146
0.162
0.178
0.194
0.210
0.226
0.243
0.259
0.275
0.291
0.307
0.323
0.340
0.356
0;372
0.388
0.404
0.420
0.437
0.453

CO 2

p (g/cm3 )
0.005
0.047
0.094
0.141
0.187
0.234
0.281
0.328
0.375
0.422
0.469
0.516
0.562
0.609
0.656
0.703
0.750
0.797
0.844
0.891
0.937
0.984
1.031
1.078
1.125
1.172

c Source: McCarty and

Z= 1.00

Pr
0.01

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0
2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8

Pr
0.01
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0
2.1
2.2
2.3
2.4
2.5

T(oC)
234.7
221.4
207.1
192.8
178.5
163.2
148.9
134.7
120.8
107.0
92.7
78.9
64.6
50.6
36.3
21.7
7.5

-6.8
-21.4
-35.8
-50.3
-65.0
-79.8
-94.8

-109.9
-125.3
-140.6
-156.0
-171.3

T (C)
441.7
425.6
408.9
390.9
371.8
352.0
333.1
313.4
294.5
275.9
257.7
239.4
221.2
202.9
184.7
166.1
147.3
129.0
110.8
92.2
74.0
55.4
36.5
18.0
-0.9
-19.7

Tr

2.67
2.59
2.52
2.45
2.37
2.29
2.21
2.14
2.07
2.00
1.92
1.85
1.77
1.70
1.62
1.55
1.47
1.40
1.32
1.25
1.17
1.09
1.01
0.94
0.86
0.78
0.70
0.61
0.53

Z= 1.00

Tr
2.35
2.30
2.24
2.18
2.12
2.06
1.99
1.93
1.87
1.81
1.75
1.69
1.63
1.57
1.51
1.44
1.38
1.32
1.26
1.20
1.14
1.08
1.02
0.96
0.90
0.83

Arp (1992).
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P (bar)
4.3

41.4
80.5
117.2
151.5
182.9
212.2
239.2
264.2
286.9
306.6
324.7
339.6
352.8
363.2
370.5
376.2
379.6
379.6
378.0
373.6
366.6
356.4
343.6
328.6
309.7
288.8
265.4
238.7

Ref
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

Ref

0.09
0.90
1.75
2.55
3.29
3.98
4.62
5.20
5.74
6.24
6.67
7.06
7.39
7.67
7.90
8.06
8.18
8.26
8.26
8.22
8.12
7.97
7.75
7.47
7.15
6.74
6.28
5.77
5.19

0.09
0.84
1.63
2.39
3.09
3.74
4.36
4.92
5.44
5.92
6.36
6.75
7.11
7.42
7.69
7.89
8.06
8.19
8.29
8.31
8.32
8.27
8.16
8.02
7.83
7.59

P (bar)
6.32
61.8
120.7
176.1
228.2
276.4
321.7
362.9
401.6
436.9
469.4
498.6
524.6
547.5
567.4
582.8
594.7
604.7
612.0
613.5
614.4
610.5
602.7
592.0
578.1
560.5

CH4

Pr

. .

Pr



later in the text). Although the linearity of the Z = 1 contour was discovered by Batschinski in

1906 (Batschinski, 1906), it appears to have been forgotten until nearly six decades later.

Beginning in the early 1960's, researchers at the University of Karlsruhe, Odessa Institute

of Marine Engineering, and several Russian institutes discussed the Zeno line extensively

(Morsy, 1963; Vasserman, 1964; Schaber, 1965), related it to other thermodynamic properties

(Nedostup, 1970; Burshtein, 1974; Nedostup and Gal'kevich, 1976) and incorporated it in the

development of various thermodynamic models (Nedostup and Gal'kevich, 1980; Nedostup and

Bekker, 1980). Independently, during the late 1960's Holleran and coworkers (Holleran and

Sinka, 1971; Holleran and Jacobs, 1972; Holleran and Hammes, 1975; Holleran, 1967-1990)

proposed several useful applications for the Z = 1 contour. Diverse names were used including

orthometric condition, ideal-gas curve, and unit compressibility line, but the term Zeno line

(Ben-Amotz and Herschbach, 1990a; Ben-Amotz and Herschbach, 1990b) has been adopted to

"emphasize the paradoxical character of its arrow-like linearity."

At low density, the Z = 1 contour is readily shown to be linear (Ben-Amotz and

Herschbach, 1990a). The p - 0 intercept of the supercritical vapor corresponds to the Boyle

temperature (TB) where the second virial coefficient vanishes and the slope at TB is given by

-B3l(dB 2/dT), the ratio of the third virial coefficient to the derivative of the second. Remarkably,

the Z = 1 contour retains its linearity even in the dense fluid region, as it nears the triple point.

Near the triple point, intermolecular interactions are important, but as has been shown, attractive

and repulsive contributions are in dynamic balance along the entire Zeno contour (Ben-Amotz

and Herschbach, 1990a).

For a wide range of normal fluids, extending well beyond the regime of Corresponding

States, the Zeno line is found to be strongly correlated with the line of rectilinear diameters (Ben-

Amotz and Herschbach, 1990a), even though the latter pertains to the subcritical region and a

portion of the Zeno contour lies in the supercritical region. This enables the critical density,

which is relatively difficult to measure, to be estimated to about 1% accuracy from the Zeno line

(Ben-Amotz and Herschbach, 1990a; Xu and Herschbach, 1992). Furthermore, the Zeno line

intercepts on the T and p axes are strongly correlated with the acentric factor of normal fluids

(Xu and Herschbach, 1992).
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Because this Zeno behavior appears to be a generic property of pure fluids, it is

advantageous to incorporate it in equation of state (EOS) model conception, development, and

parameter regression. In recent work of this kind, Nedostup and coworkers (1988) proposed

equations of state based on Helmholtz free energy and that are dependent on second virial

coefficients which are derived from Z = 1 contour properties. In addition, Serovskii (1990)

modified the van der Waals EOS to include Zeno-line dependent parameters in an attempt to

match experimental properties and provide the basis for new models of real and unknown

substances. Further, Marracho and Ely (1998) used the Zeno condition to refine and interpret

shape factors in applying their Extended Corresponding States Theory (ECST) to both polar and

non-polar fluids. Unfortunately, other EOS models that are commonly employed for estimating

PVTx i behavior do not take advantage of Zeno behavior to generalize their parameters.

Water (H20), methane (CH4), and carbon dioxide (CO2) are ideal candidates for analysis

because they have very different polarities and have widely accepted databases. For H2 0, the

National Institute of Standards and Technology (NIST) correlation of Haar, Gallagher, and Kell

(1984) was used for reduced temperatures Tr less than 2.0, and the International Association for

the Properties of Water and Steam (IAPWS) correlation used by ChemicaLogic (1999) was used

from Tr > 2.0 to the Boyle temperature, TB,r = 2.38. For CH4 and CO2, the Benedict-Webb-

Rubin-Starling EOS correlations given by McCarty and Arp was used (McCarty and Arp, 1992).

Accurate data for these substances are available over a wide range of densities from ambient to

very high pressures (>1 kbar). Figure 36 and Table 15 provide additional data for pure water for

constant values of Z ranging from 0.75 to 2.00.

Practical EOSs used in process engineering calculations are semi-empirical or fully

empirical expressions that are fit to experimental data. Popular, simple models frequently used

for pure fluids extend the cubic form of the van der Waals (vdW) EOS (van der Waals, 1873):

= (7T, - a(l, J (80)
( V - b )T) (80)

where ac and b are parameters that are commonly fit to critical point stability criteria and are

normally expressed as explicit functions of Tc and Pc. Examples of such extended models

include the Peng-Robinson (PR) EOS (Peng and Robinson, 1976)
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Z = a· L (81)
V-b 2 + 2b -b 2 RT(81)

and the Redlich-Kwong-Soave (RKS) EOS (Soave, 1972)

V =RT -b (82)
V - b V(V + b) RT (82)

where a = f(Tr, co) and o is the Pitzer acentric factor. Researchers have regressed and proposed

other a models in an attempt to increase EOS accuracy for other species, to extend predictions to

other density regions, or to predict other properties. A few representative a models for the PR

EOS are summarized in Table 16.

The accuracy of cubic-type EOSs has been improved by translating the volume to

provide a better match to liquid density data. Martin (1967), who was the first to propose this

concept, used a fixed volume translation t. In this case:

V = +t (83)

where V/T is the untranslated volume obtained from the EOS and V is the predicted specific

volume. It is important to note that the volume translation will have a substantial effect at small

specific volumes (i.e., high densities) under which conditions the magnitude of t approaches or

even exceeds VvT. The volume-translated EOSs evaluated in this investigation are the VTPR

EOS (Mathias et al., 1989) and HSVTvdW EOS (Kutney et al., 1996 and 1997) and are

summarized in Table 17.

The Zeno condition was used to examine whether cubic and hard sphere vdW EOSs can

be fundamentally improved. Given that EOSs typically have parameters which are regressed

from experimental data in specific pressure, volume, and temperature regimes, accurate Zeno-

line predictions at higher densities can test the robustness of the EOS model. Alternatively,

Zeno-point data can, themselves, be included in refining EOS parameter regressions. Zeno

behavior using molecular-simulation methods were also studied in order to test the hypothesis of

balanced repulsive and attractive interactions and to search for structural insights at a molecular

level.
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Figure 36. Water phase diagram showing the Zeno line (Z = 1) along with other contours of
constant compressibility factor produced using the experimentally-correlated water properties
from Haar et al. (1984) and ChemicaLogic (1999).

127



Table 16. Published a models for use with the PR EOS

a =J(Tr) Model

Peng-Robinson (PR)
(Peng and Robinson,

1976)

= (10.37464 + K.5422&o - .26992

c = 0.37464 + 1.54226o - 0.26992c2

Stryjek-Vera (PRSV2)
(Stryjek and Vera, 1986)

a = (1 + K"(1 - 'I)

K = K +(K1 +K 2 (K3 - Tr X)(1- JrI + r X.7 -Tr)
KO =0.378893+ 1.4897153o)-0.17131848o + 0.01965540)3

a = a2 + (a3 - a2 )
Twu et al. (1995)

Tr>1 a = ao + (al -ao)

ak = T Nk(Mk- 1) eLk(1-TrkMk) k = 0,1,2,3

Lk, Mk, and Nk are universal constants

-_Tr k(+ ) 2ii+ rH1Boston-Mathias (Aspen
Technology, 1994)

Tr>1

Tr <1
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Table 17. Volume-translated EOSs examined

VT EOSs
RT

VUT -b

VTPR EOS
(Mathias et al., 1989)

V=VUT +t+

aca
VUT (VUT + b) + b(VUT - b)

(V- - t)_ 

ap

avUT, T

P= RT ((VUT)3 +UT _ b 3 2UT ac a
(VUT + 2b)2

HSVTvdW EOS
(Kutney et al., 1997)

a = exp{1 - Tr 93 + aBTr )

UT i~~BgV UT 9/22 
V= VUT +t+(Vc -Vt[-t){(Vr T/+

13 T-13/2 1
2 r, + 2/
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I.3.2 Empirical Zeno Behavior

Contours for several values of Z are plotted for pure water for the vdW, RKS, and PR

EOSs in Figure 37 through Figure 39 using parameters given in Table 18. For Z greater than 1.0,

none of the models match the Tr-Pr values or curvature of the experimentally-correlated pure

water data. This discrepancy might be expected as none of these EOSs had parameters fit in this

region. However, in the lower density region, e.g. for Z= 0.75 in Figure 37, closer agreement

between experimental data and the RKS and PR EOS predictions is observed, because the EOSs

have approached the region of PVT space where the EOS parameters were fit. The differences

between the plotted EOSs indicate that both the algebraic form and parameter values of the EOS

influence the slope and curvature of the calculated Zeno lines.

1.3.2.1 Peng-Robinson (PR) EOS

The a model used in the EOS is considered and examined next. The PR EOS was chosen

because of its wide acceptance and the existence of numerous a model treatments. Thus, one

can examine the effect of a since it alters the attractive term of the EOS which, along the Zeno

contour, should be balanced by the repulsive term. Models typically used for a show larger

deviations from experimental behavior at higher temperatures.

Figure 40 compares several a models and clearly shows that the Twu et al. (1995) model

is superior. Though not shown here, similar improvements were seen with the Twu et al. (1995)

model over the original PR EOS for other Z-contours. It is well established that the original PR

EOS a model form is inadequate for very high temperatures since a becomes negative.

However, Figure 40 clearly shows that a well-formulated a model performs better, even if the

model has not been regressed explicitly to the Zeno region of PVT space.

1.3.2.2 Redlich-Kwong-Soave (RKS) EOS

As shown in Figure 37 through Figure 39, the RKS EOS performed comparably to the PR

EOS along the Z = 0.75, 1.00, and 1.25 isocompressibility contours. The effects of an a-model

variation or volume translation for the RKS EOS model were not explored.

I.3.2.3 Hard-Sphere, Volume-Translated van der Waals (HSVTvdW) EOS

The final EOS feature examined was volume-translation. An example is shown for pure

H20 in Figure 41 using the VTPR EOS and the HSVTvdW EOS (see Table 17). In earlier work
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(Kutney et al., 1997), volumetric accuracy was improved substantially by volume translation.

Thus, one might expect a close match between the HSVTvdW EOS Zeno line and the

experimental Zeno line. However, this was not the case. By comparing the untranslated

(HSUTvdW) and translated (HSVTvdW) forms of the EOS in Figure 41 with the same a model,

one observes both a translation of the Zeno line and a significant change in curvature. The

untranslated HSUTvdW EOS is also shown in Figure 41 with a fixed at 1.0 to demonstrate the

substantial effect that the a model has on the Zeno line. In general, volume translation in the

HSvdW model clearly affects the slope and curvature of the Zeno line, but the translation is far

from uniform over the range of densities examined. As expected, there is substantial translation

at high densities (p, > 1.0), but the curvature in the Zeno line at lower densities was unexpected

since the volume translation is reduced in that region. As shown in Figure 41, volume translation

was also performed on the PR EOS using the method suggested by Mathias et al. (1989)

resulting in comparable improvements to that of the Twu et al. (1995) a model.
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Figure 37. Predicted versus experimental Z = 0.75 contours for water as a function of Tr and Pr.
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Figure 38. Predicted versus experimental Z = 1 Zeno line for water as a function of Tr and Pr,.
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Figure 39. Predicted versus experimental Z = 1.25 contours for water as a function of Tr and pr.
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Table 18. Equation of state critical properties and parameters used for pure H2 0, CH4, and CO2
(Tc, P, and Vc values are based on available experimental data from several sources (Reid et al.,

1987; DIPPR, 1995))

EOS Tc Pc ac b Vc t co CA B

(°C) (bar) (m6MPa/kgmol2) (m3/kgmol) (m3/kgmol) (m3/kgmol)

H20
vdW 374.1 220.9 0.553 0.0305 - - -

PR 374.1 220.9 0.599 0.0190 - - 0.344 - -
RKS 374.1 220.9 0.560 0.0211 - - 0.344 - -

VTPR 374.1 220.9 0.599 0.0190 0.0559 -0.0034 0.344 - -
HSVTvdW 374.1 220.9 0.589 0.0060 0.0559 0.0048 - 0.105 1.038

CH4

PR -82.62 45.95 0.250 0.0268 - - 0.0105 - -
HSVTvdW -82.62 45.95 0.245 0.0085 0.0990 0.0140 - 0.037 0.501

CO2

PR 31.06 73.82 0.396 0.0267 - - 0.225 - -
HSVTvdW 31.06 73.82 0.390 0.0084 0.0939 0.0129 - 0.000 0.913
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Figure 41. Z = 1 Zeno line for water for the volume translated VTPR EOS (Mathias et al., 1989)
and HSVTvdW EOS (Kutney et al., 1997) including contours for the HSUTvdW EOS (without
volume translation) and HSUTvdW EOS with a = 1 (without volume translation).
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1.3.2.4 Zeno-Line Fitting of the a Parameter

The results of these comparisons indicate that the forms of the a and volume-translation

models have a significant effect on Zeno-line predictions. Given the general complexity of the

EOS and the large number of a parameter treatments available, a new approach was formulated

in order to determine how the a model itself affects the Zeno performance of an EOS. With the

general form of an untranslated cubic EOS and the required water parameters ac and b for the

EOS (calculated from stability criteria), one can determine the values of a required to match the

experimentally correlated Zeno data at various temperatures. These fit a values can then be

compared to the values from a representative set of published a models. Figure 42 provides such

a comparison for the PR EOS for several isocompressibility-factor contours, where it is noted

that a common point at a(Tr = 1.0) = 1.0 exists regardless of the magnitude of Z. The Twu et al.

(1995) model appears to come closest to the fit a's.

Figure 43 shows results for similar calculations for the HSVTvdW EOS. Here one sees a

larger separation between each fit a curve and some double-valued behavior. These curves

imply that the a parameter will require a complex dependence on density as well as temperature.

The simpler PR EOS formulation, however, does not show this large disparity, indicating that the

mathematical form of the PR EOS is superior for matching isocompressibility-factor behavior.

In fact, one could extrapolate this improvement further by hypothesizing that the "perfect EOS"

might have a form such that the fit a values closely match experimental data and are expressible

as a simple function of reduced temperature. The PR EOS with the Twu et al. (1995) a model

comes reasonably close to meeting this criterion for pure H20.
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Figure 42. For the PR EOS, a values are fit to match experimentally-correlated water property
data for several isocompressibility-factor conditions (thinner lines) and compared to published a
equations which are independent of Z (thicker lines).
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property data for several isocompressibility-factor conditions and compared to the a equation
actually used for the HSVTvdW and HSUTvdW EOSs.
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I.3.3 Empirical EOS Zeno Lines for Pure Methane and Pure Carbon Dioxide

I.3.3.1 Methane

Zeno calculations were performed for pure CH4 using the PR and HSVTvdW EOS

models. Figure 44 compares the experimental Zeno line to predictions for several EOSs. The

volume-translated HSVTvdW EOS shows dramatic curvature while the PR EOS with the

Boston-Mathias a model shows an improvement over the original a and Twu et al. (1995) a

models. The Zeno-line prediction using the Boston-Mathias a model approaches the

experimental reduced Boyle temperature of methane (TB,, = 2.67) at low density, confirming its

usefulness for representing hydrocarbon properties. At a reduced density (Pr) of 0.2, the Twu et

al. (1995) a is 0.56, but by reducing a to the Boston-Mathias a value of 0.50 and leaving the

EOS repulsive contribution unchanged, then the correct Z = 1 temperature is predicted. The

standard PR EOS Zeno line deviates more from the NIST data at low density, presumably

because the PR EOS attractive term which contains a does not accurately represent the attractive

effects and its compensation for repulsive effects is not complete.

1.3.3.2 Carbon Dioxide

Zeno calculations were also performed for pure CO2 (TB,r = 2.35) again using the PR and

HSVTvdW EOS models. Figure 45 shows trends similar to those for pure methane given in

Figure 44. However, in this case, the original PR EOS model matches the experimental data

best.

Clearly, for these three representative fluids, species-dependent effects are not captured

by customary critical point scaling. Using available cubic-type EOS models with reformulated

a parameters and volume translations fitted to the Zeno condition was not sufficient to fully

generalize the results. In addition, in Figure 45, results are plotted for the Song-Mason EOS

which is based on a statistical mechanical perturbation model with an empirically-fitted constant

(y = 1.303) used to account for the temperature dependence of the second virial coefficient (Xu

and Herschbach, 1992). It too falls short of providing an exact fit. Further research is required

to find an EOS which can accurately model the Zeno line over the entire density and temperature

regime. With an accurate model, one will not need density-dependent a models or variable
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volume translation to match Zeno behavior. Given these limitations of macroscopic EOS

models, molecular simulation was used to probe molecular-level effects along the Zeno contour.

L3.4 Molecular Simulation of Zeno Behavior

I.3.4. 1 Potential Models and Computational Methods

A thorough molecular-simulation analysis has been conducted by M. Reagan and is

explained in detail in Reagan (2000) and presented in a subsequent journal publication by

Kutney et al. (2000). Only a brief review and select results are provided here.

The rigid Simple-Point-Charge (SPC) model for water is used for most of the molecular-

simulation work and has previously been shown to provide accurate predictions of several water

properties including the dielectric constant at ambient conditions (Berendsen et al., 1981). The

SPC model captures both short-range van der Waals interactions and long-range Coulombic

interactions and as a result, predicts many important structural and electrostatic features of water

(Berendsen et al., 1981). Overall, the total intermolecular potential between two water

molecules is given as a sum of Lennard-Jones and Coulombic interactions:

(r) waterwater= (r()?Lennard-Jones + 1(r)Coulombic (84)
site-site

where

126

(r)Lennard-Jones =4Eij r4) (85)

1 qjqj

(rJCoulombic = 4Se - ' (86)

so is the vacuum permittivity ((Coulombs)2 kJ - mol nm-1), ci is the diameter (nm), sl' is the

potential well depth (kJ/mol), qi is the point charge (Coulombs), and r is the site-site interatomic

separation distance (nm). Additional assumptions and equations are also used in the SPC model

and are described in Kutney et al. (2000) and Reagan (2000).

The SPC/E (Extended Simple Point Charge) model is also used for some simulations

since it generates more accurate self-diffusivity predictions and a realistic critical point

calculation. For example, Guissani and Guillot (1993) report a SPC/E critical temperature of
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378.60C and SPC/E critical density of 0.326 g/cm3 which are close to the experimental values

374.1°C and 0.322 g/cm3 (For comparison, Tc,spc = 313.9 0C and Pc,spc = 0.27 g/cm3 ).

To provide a basis of comparison for the SPC and SPC/E water results, M. Reagan also

performed Molecular-Dynamics simulations using simple Lennard-Jones (LJ) soft spheres with a

6-12 potential (Kutney et al., 2000; Reagan, 2000).

I. 3.4.2 LJ, SPC, and SPC/E Simulation Results

Lennard-Jones Z = 1 simulation results are shown in Table 19 while SPC and SPC/E

results are contained in Table 20 (Kutney et al., 2000; Reagan, 2000). In addition, a range of

compressibilities were computed at 367C (Tr,spc = 1.0903) at densities from 0.0059 to

0.881 g/cm3 and are available in Table 21. Figure 46 is an isothermal plot of Z versus Or at Tr =

1.0903 that compares the molecular simulation results given in Table 21 with experimentally

correlated data for pure H2 0. The Zeno lines for SPC and SPC/E water are compared with

experimental data in Figure 47.

The Zeno lines generated by Molecular-Dynamics simulations for both SPC and SPC/E

water are similar and fall just above (for SPC) and below (for SPC/E) the experimentally-

correlated Z = 1 line as shown in Figure 47. When properly scaled, the LJ model provides a

linear fit as well, although it does not match experimental behavior on the Zeno contour as well

as the SPC and SPC/E models. In earlier work, Ben-Amotz and Herschbach (1990a) showed

similar results for Lennard-Jones fluids based on EOS and integral equation calculations (Nicolas

et al., 1979). For completeness, their results are also plotted on Figure 47. These comparisons

indicate that all of these molecular simulation models capture the dynamic balance that exists

between repulsive and attractive forces along the Zeno contour.

A SPC hydrogen-bonding analysis was also performed in order to examine the structure

of water clusters and because there is widespread interest in water hydrogen bonding, especially

at elevated temperatures and pressures. The combined distance-energy criteria of Kalinichev and

Bass (1994) is often used to estimate the extent and the geometry of the hydrogen-bond network.

The technique defines two water molecules to be hydrogen bonded if the O-H distance is less

than 0.24 nm and the total water-water interaction energy is more negative than -10 kJ/mol. By

sampling selected configurations from each simulation run that satisfy the Kalinichev and Bass
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criteria, the average number of hydrogen bonds per molecule, <nB>, can be estimated and a

matrix of connectivity for each simulated configuration can be generated.

Several <nB>'s for points on the Zeno line, as well as for ambient conditions and

supercritical water at 450C and 250 bar, are given in Table 22. Ambient water is known to have

<nB> = 3.2, versus the SPC <nB> value is 3.04. Knowing the complete matrix of connectivity

for each independent configuration generated in the Molecular-Dynamics simulations, it is

possible to determine the size and extent of hydrogen-bonded molecular clusters (Kalinichev and

Churakov, 1999).

Cluster distributions are shown in Figure 48. As expected, the highest density system at

77°C shows a single large cluster containing 254 of the 256 molecules in the system. At 2080 C,

one still sees a predominance of large, percolating clusters that change size over time. By

367°C, despite only small changes in system density, a dramatically different liquid structure

appears, with a large number of individual water molecules and groupings with less than 10

molecules as well as a wide distribution of clusters with sizes ranging from 10 to 200 molecules.

Above 367°C, small groups of trimers, dimers, and single molecules begin to dominate as

density decreases. Three-dimensional molecular visualizations of each SPC-calculated state

point are shown in Figure 49 corresponding to the clustering depicted in two-dimensional

projections shown in Figure 48.

146

__



Table 19. Lennard-Jones simulation results for Z = 1, the Zeno line

T (C) Tr P (bar) Z p (g/cm3) p,.

49 0.549 748 ± 25 1.01 ± 0.03 0.504 1.87
208 0.819 681 + 18 1.00 + 0.02 0.308 1.14
367 1.090 349 10 1.01 + 0.03 0.118 0.44
508 1.331 150 + 3 1.01 ± 0.04 0.042 0.15

Table 20. SPC and SPC/E model water simulation results for Z = 1, the Zeno line (95%-
confidence-intervals uncertainties given for Z and P)

SPC Model

T (C) T, P (bar) Z P (g/cm3) Pr

77 0.6 1644 + 52 1.01 + 0.03 1.011 3.74
208 0.82 2044 + 55 1.01 + 0.02 0.914 3.39
367 1.09 2290 + 49 1.01 + 0.02 0.776 2.87
508 1.33 2296 + 45 1.00 + 0.02 0.643 2.38
637 1.55 2145 39 1.00 0.03 0.513 1.90
766 1.77 1858 + 32 0.99 + 0.03 0.393 1.45
1097 2.33 181 + 17 1.00 + 0.02 0.029 1.06

SPC/E Model

T (C) Tr P (bar) Z p (g/cm3) Pr

77 0.54 1677 ± 54 1.01 ± 0.03 1.034 3.17
208 0.74 2095 + 58 1.00 0.03 0.949 2.91

367 0.98 2421 + 52 1.00 + 0.02 0.825 2.53

508 1.20 2490 + 48 1.00 0.02 0.698 2.14

637 1.40 2410 + 42 1.00 + 0.03 0.580 1.78

766 1.59 2316 ± 40 1.01 ± 0.03 0.483 1.48

1097 2.10 647 21 1.00 + 0.04 0.103 0.32
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Table 21. SPC and SPC/E model water simulation results at T,. = 1.0903 data
SPC Model

P (bar) Z P (g/cm3 ) Pr

16.6 0.954 0.006 0.02
171 0.571 0.102 0.38
409 0.351 0.397 1.47

828 0.479 0.589 2.18
1624 0.770 0.718 2.66
1995 0.901 0.754 2.79
4157 1.61 0.881 3.26

SPC/E Model

P (bar) Z P (g/cm3 ) Pr

202 0.610 0.102 0.31
493 0.381 0.397 1.22
994 0.517 0.589 1.81
1921 0.820 0.718 2.20

2346 0.954 0.754 2.31
4617 1.61 0.881 2.70

Table 22. SPC hydrogen-bond simulation results

T (C) P (bar) P (g/cm3 ) <nHB

77 1595 1.010 2.85
208 2043 0.914 2.31
367 2290 0.776 1.73
508 2296 0.643 1.28
637 21.45 0.513 0.93
766 1858 0.393 0.66
1097 181 0.029 0.04

25 1 0.980 3.05
450 250 0.080 0.34
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Figure 46. Molecular-Dynamics simulation of the Tr = 1.09 isotherm for water using the SPC
and SPC/E models. A comparison with experimentally-correlated data given in Table 15 is
shown.
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Figure 47. Molecular-Dynamics simulation of the Zeno line for water using the SPC, SPC/E,
and LJ models. A comparison with experimentally-correlated data given in Table 15 is shown.
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Figure 49. Two-dimensional projections of three-dimensional simulations of SPC water at
points on the Zeno contour for seven different conditions of T and p (see Table 22).
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I.3.5 Conclusions

The generic linearity of the Z = 1 contour in the T-p plane provides a quantitative

criterion to evaluate and refine both macroscopic and molecular equations of state. By using

critical-point scaling, species-dependent Z = 1 data can be partially generalized in a

Corresponding-States framework. This observation has been used to examine if and how cubic

equations of state could be fundamentally improved for three specific pure component cases

(H20, CH4, and CO2). EOSs typically use parameters that are regressed from experimental PVT

data which are far removed from the Zeno condition at high pressure and density. Thus, accurate

Zeno line predictions indicate EOS robustness over a larger domain of PVT space.

Although the two-parameter van der Waals EOS yields a straight Zeno line (Batschinski,

1906; Ben-Amotz and Herschbach, 1990a), it does not match experimental observations even for

simple fluids such as methane or argon. The Peng-Robinson EOS and other cubic EOSs show

substantial improvement with reasonably close matches to empirical Zeno behavior with only

one additional regressed parameter, a, which captures attractive interactions and is fit to vapor-

liquid equilibrium data well outside the Zeno region. Modified PR EOSs with alternative a

parameters can show improvements over the original PR EOS. In particular, the PR EOS with

the Twu et al. (1995) a model shows excellent agreement with the Zeno conditions for water,

implying that sensitivity to the magnitude and functional form of a may have a more

fundamental connection to density-dependent interactions. A volume-translated PR EOS (VTPR

EOS), which adds an adjustable parameter to provide improved estimates of high density PVT

properties, provides substantially improved estimates of Zeno behavior. However, a hard-sphere

volume-translated van der Waals EOS formulation (Kutney et al., 1997) does not result in

superior Zeno performance.

These comparisons indicate that, one should consider examining the Z = 1 contour to test

for the observed universal linearity when developing an EOS. This Zeno criterion provides a

species-independent check of the EOS robustness. When used effectively, new EOSs can be

quickly compared to these observations and modified to increase accuracy.

Molecular simulations of Zeno behavior using SPC, SPC/E, and Lennard-Jones models

for pure water match experimental behavior over a wide range of density, thereby confirming

that these models can make water property predictions as accurate as pure component EOS

predictions.
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II.. Introduction and Background

In addition to a need for accurate thermodynamic properties for pure supercritical water

and supercritical-water mixtures, there is also a need for accurate transport properties of these

species. Transport properties are usually predicted using empirical or semi-empirical models and

typically employ parameters that are regressed directly to experimental data. Transport

properties govern heat and mass transfer and can potentially affect important phenomena in

supercritical water including corrosion, reaction kinetics, salt nucleation, and salt precipitation.

Transport modeling typically covers a wide range of applications including heat and mass

transfer, fluid-mixing profiles, salt deposition, corrosion, species diffusion, and overall SCWO

process and equipment simulations.

The transport property addressed in this dissertation section is molecular diffusivity.

Pure water diffusivity data are available at typical SCWO conditions, but binary molecular-

diffusivity data for aqueous mixtures are scarce. Compounding this scarcity is the concern that

SCWO reactors intended to operate with maximum destruction efficiencies could possibly

operate in a mass-transfer-limited mode due to limited availability of aqueous-mixture diffusivity

data. For these reasons, this thesis section presents aqueous-mixture diffusivity data preceded by

a discussion of

· molecular diffusivity,

* critical phenomena of transport properties,

* supercritical diffusivity publications,

* the nuclear magnetic resonance diffusivity-measurement approach, and

* the measurement apparatus.

Following the introduction of this dissertation's diffusivity data, an analysis of models with

previously published data is presented.
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II. 1.1 Molecular Diffusivity

II. 1. 1. 1 Diffusivity

Diffusion can be defined as the spontaneous permeation of"particles" through a

collection of"particles." For a system in which the particles are molecules, molecular diffusion

represents the permeation of molecules through a collection of molecules in contact with them

and was first defined in a scientific manner by Berthollet in 1803 when he used the term

"diffusion" to describe the movement of a dissolved salt particle away from salt crystals and into

the bulk water solution (Tyrell and Harris, 1984). Later in 1808, Dalton stated that "the diffusion

of gases through each other is effected by means of the repulsion belonging to the homogeneous

particles (Simpson and Weiner, 1989)." The motion that is described by molecular diffusion

develops due to a concentration gradient, although as will be discussed, the driving force is

actually the chemical potential or free energy gradient. Molecular diffusion strives to minimize

the gradient by equalizing the free energy throughout the system while increasing entropy and is

dependent on the temperature, density, pressure, and concentration along with the molecule's

shape, charge, size, and intramolecular interactions.

Close to an equilibrium condition in a simple system, the transfer rate of molecules (or

mass) is proportional to the concentration gradient. The constant of proportionality is the

diffusivity or the diffusion coefficient. Typical molecular diffusivities are presented in Table 23

which also demonstrates sensitivity to solute and temperature. Depending on the system in

which molecular diffusion is occurring, distinct diffusion coefficients have also been defined in

the context of Fick's First Law discussed below. Interdiffusion or mutual diffusion occurs when

a single species i with a mutual diffusivity Dij (i •j) diffuses through a multi-component system.

Intradiffusion or tracer diffusion occurs when a portion of a single species i with a tracer

diffusivity Di is labeled and diffuses through a homogeneous system in which a concentration

gradient exists for the labeled species i. Isotopic radioactive labeling was often used in the past,

but other labeling techniques are also now available including nuclear-magnetic-resonance. Self-

diffusion is a unique intradiffusion case, which occurs when the system has one only species,

namely i, and has self-diffusivity defined as Dii.
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Table 23. Diffusivity examples (Atkins, 1990; Holz et al., 2000)

Temperature, Pressure, Diffusivity,
Species T (°C) P (bar) D12x 10 (cm 2/s)

Solute effect
]H2 in liquid CC14 25 1 9.75

02 in liquid CC14 25 1 3.82

CH4 in liquid CC14 25 1 2.89

Sucrose in liquid H20 25 1 52.2

]H2 O in liquid H20 25 1 2.30

CH3OH in liquid H20 25 1 1.58

Temperature effect
]H20 in liquid H20 25 1 2.30

]H20 in liquid H2O 35 1 2.91

]H20 in liquid H20 45 1 3.59

]H20 in liquid H20 55 1 4.34

Ion effect
I+ in liquid H20 25 1 9.31

Na+ in liquid H2 0 25 1 1.33

Examples of mutual, tracer, and self-molecular diffusivities are shown in Figure 50 for a

n-dodecane (1) and n-octane (2) system. As the n-dodecane concentration increases, the mutual

diffusivity (D1 2) and the tracer diffusivities (D1 and D2) decrease. At the pure n-dodecane limit,

the mutual diffusivity equals the n-octane tracer diffusivity (D2). Correctly written as

lim(D12) -> D2 as x1 -* 1, this observation has been verified theoretically (Tyrell and Harris,

1984). Conversely, lim(D 12) - D1 as x1 - 0. It has also been shown that D12 = D21 for binary

systems (Kestin and Wakeham, 1988). Figure 50 also illustrates that there is not a simple

relationship between either self-diffusivities (D and D22) and mutual diffusivity (D1 2).

Although significant research effort has been invested, there are not any universal theories or

formulas that correctly model diffusivities or hold for all binary systems (Cussler, 1997).

Fick was the first to develop an expression relating the mass-transfer-rate flux to the

concentration gradient, and he based his theory on parallel research performed by Fourier for

heat conduction and Ohm for current flow (Tyrell and Harris, 1984). Fick showed that the molar

flux Ji is proportional to the driving force defined by the molar concentration gradient, which is

often referred to as Fick's First Law of Diffusion:
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Figure 50. Diffusivities of n-dodecane (1) and n-octane (2) at 1 bar and 60°C (Van Geet and
Adamson, 1964).

Ji = -DiVC- (87)

where Dij has dimensions length2 /time while for the Cartesian coordinate system

VC( a x )y, Iay + a k (88)

The negative sign in Eq. (87) ensures that molecules are, on the average, transferred from higher

to lower concentrations.

Fick was not entirely correct when he related the flux to the concentration gradient and

called the proportionality constant diffusivity. To be theoretically correct, flux is proportional to

the chemical potential gradient (VCpi or d./ldz for one dimension). Correction terms involving

activities, infinitely dilute diffusivities, and concentrations have been employed with some

success (Poling et al., 2001).

Molecular diffusivity can be modeled using activation, free volume, hydrodynamic, and

kinetic models (Tyrell and Harris, 1984). Hydrodynamic models are typically used for

predicting properties of liquid-like fluids, while kinetic models are typically for gaseous

predictions. Activation models are based on the Arrhenius concept where transition states must
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be reached before diffusion may proceed and have resulted in semi-empirical diffusivity models

of the following form

D=Ae RT (89)

Once a molecule reaches an activated or energetic state, a diffusion "jump" may occur, but only

a fraction of molecules should be activated. Unfortunately, compared to chemical-reaction

kinetic values, activation energies are quite small for liquid-phase diffusivities and result in a

significant proportion of activated molecules (Tyrell and Harris, 1984). Due to this substantial

inconsistency, activation models should not be used for supercritical water diffusivity modeling,

even though activation theories have had some success for other systems.

Based on the concept that vacant cages can form and then become occupied by random

molecular movements, free volume models have also been used to model diffusivities but with

limited success. For example, they have been used to accurately predict benzene self-diffusion

coefficients and iodine-tetrachloromethane mutual diffusivities (Hildebrand, 1977). For

benzene, n-heptane, n-decane, and some halogenated benzenes, Ertl and Dullien (1973) used

Di =B' P -1 (90)
Pg 

in order to successfully predict tracer diffusivities. The terms B' and m are species-dependent

fitted variables, and pg is the limiting density at infinite viscosity (infinite viscosity typically

corresponds to a liquid at its glass-transition point). Due to their limited modeling success, free

volume models in their original forms were not considered for supercritical-water diffusivity

modeling. Recently, however, hard sphere modeling researchers have incorporated free-volume

concepts into their formulations and have had some success. This approach will be addressed

shortly.

II 1.1.2 Hydrodynamic Theory of Diffusion

Since the level of understanding of liquid structure and interactions is far from complete,

it should be no surprise that accurate theoretical liquid diffusivity models are not available.

]Nevertheless, semi-theoretical and idealized models are available, provide valuable insight into

the diffusion mechanism in liquids, and allow diffusivity correlations to be developed.
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Consider the case of a single rigid solute particle moving through a solvent continuum (at

infinite dilution) where molecular motions are uncorrelated. The Nernst-Einstein equation

relates the diffusion coefficient to temperature and the friction factorf, which represents the

force necessary to make the particle move with unit velocity (or the inverse of the mobility, the

steady-state particle velocity when under a unit force) (Bird et al., 1960)

kT
D12 =- (91)f

Friction factor models continue to be difficult to develop and use due to the inadequate level of

understanding of liquid structure, model assumptions, and model limitations.

Based on Stoke's 1903 analysis of a spherical particle with radius rl in creeping flow,

classical hydrodynamic theory can relate the friction factor to the solvent viscosity

2n2

f =rl2r 32 (92)
1+

where 3 is the sliding frictional coefficient between the diffusing sphere and the solvent liquid.

Sliding friction varies between two limiting cases.

1. 3 -> oo where liquid solvent molecules completely wet the diffusing sphere, and there is

"no slip" between them. For example, consider a large particle in a bath of low molecular

weight solvent or where the solvent is a continuum (Tyrell and Harris, 1984). The friction

factor reduces to

f = 6nr 2 r 1 (93)

By substituting Eq. (93) into Eq. (91), the Stokes-Einstein equation results:

DSEns = kT (94)

2. 3 - 0 where the liquid molecules do not wet and do not stick to the sphere, and there is

slippage between them. The friction factor and reduced Nemst-Einstein equations are then

f = 4 rn112r (95)
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DSEs kT
DlS2£s = (96)

4rnc2r

The "slip" limit typically occurs when the solute and solvent molecules are approximately

the same size or are alike as in the case for self-diffusivities. Given this observation, self-

diffusivities of polar and non-polar liquids have been predicted using Eq. (96) with errors of

±12%.

For non-spherical particles, e.g., macromolecules, the friction factor must be modified to

account for the friction factor difference along each of the three dimensions (Kiado, 1974), but

for this dissertation, it is beyond the scope of what is needed. Although these diffusivity models

are derived for specialized cases, i.e., the solute molecules should be much larger than the

solvent molecules and the solution should be dilute, they nonetheless provide a basis for

comparisons. They also provide a starting point for the development of more complex and

accurate correlations.

The infinitely dilute assumption is often invalid for mixtures of interest and several

investigators have attempted to account for solute concentrations. Batchelor introduced a simple

first-order correction term using the solute volume fraction for a mixture of non-attracted hard

spheres (Tyrell and Harris, 1984)

kT
D12 = (1 + 1.456v ) (97)6n'12rl

This linear dependence on volume would always scale the diffusivity between 1.0 and 2.45,

which is not always the case. Corrections based on activity coefficients have also been

proposed. One of the simpler correlations is summarized by Kiado (1974), which starts with the

solute chemical-potential gradient as developed by Hartley, Onsager, and Fuoss

vRT 1 1cr , V (98)
where is the solute activity lncfficient. For concentrated solutions, Hartley and Crank (1949)

where y1 is the solute activity coefficient. For concentrated solutions, Hartley and Crank (1949)

found that

___kT ln x 2+
x l I, h 2 (99)D12 = -7 (ay1xl )r ,( + x (99)2)

71( 1In XI , I
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where X is the proportionality constant between the friction factor and species viscosity. If the

X's are assumed to be independent of concentration, then the model reduces to the form that was

independently developed by Carman and Stein (1956) when they examined mixtures of ethyl

iodide and n-butyl iodide

DCS= 1 I(alny1 xl j X 2 12 D-2-°l TI O+ 2 0D O

11 2 ( alnXl T,P (00)
(100)

1 71X ) (X2~2Dl + XlrlD2)
where2 is the solution viscosity and i the mutual diffusivity of an infinitely diluteP

where 112 is the solution viscosity and D is the mutual diffusivity of an infinitely dilute

solution of i in speciesj (solvent). For each of these approaches, there are binary systems that

are accurately modeled (less than 10% error). However, for complex systems such as associated

solutions, these models often provide poor fits.

To provide practical predictive capabilities of hydrodynamic-based theories, numerous

researchers have used experimental data in order to develop semi-empirical and empirical

correlations for liquid-like diffusivities. One of the most widely used for infinitely dilute

spherical mixtures is based on the work of Wilke and Chang (1955). They examined 285 points

among 251 binary systems and achieved approximately 10% average error when they used

DWC[cm2/s] = 7.4 x 10-8 T[K]l 2M 2[g/mole] (101)

1 2[cP]Vo6[cm 3/mole]

where q2 is a fitted dimensionless solvent association factor for "associated liquids such as water

and other hydrogen-bonding solvents ... introduced to define the effective molecular weight of

the solvent with respect to the diffusion process" (Wilke and Chang, 1955), Vbl is the solute

liquid molar volume at the normal boiling point (NBP), and 12 is the solution viscosity but the

solvent viscosity, '12, is often used instead. Original association-factor values are reported in

Table 24 along with values updated by more recent research (e.g., Hayduk and Laudie (1974)

report 12 = 2.26 for water at ambient conditions). Note that there is a strong correlation between

the association factor and number of hydrogen bonds, as shown in Table 24, so caution must be

exercised when using the Wilke-Chang correlation for hydrogen-bonded liquids that may

experience changes in the number of hydrogen bonds, e.g., when they are heated. To this day,
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this simple-to-use correlation is still regarded as one of the best available for liquid-like

diffusivity predictions, although some replace the NBP molar volume with other expressions

(e.g., estimated molar volumes based on hydrated contact ion pair structures for supercritical

aqueous salt mixtures (Butenhoff et al., 1996)) and is often used as a precursor to more

complicated expressions.

One such correlation was developed by Reddy and Doraiswamy (1967) where they

eliminated the need for an association factor by using a ratio of solvent and solute molecular

volume

D12 [cm2/s]=H rT[K] M 2 [g/mole] V2 /V1
< 1.5 1= 10 2)

l2[cP]V1/3 [cm 3/mole]V2/ 3[cm3/mole] V2 /V1 > 1.5 I = 8.5 x 10- 8

Since volumes may not be available at some process conditions, NBP volumes are used instead.

Using Eq. (102), they report a 13.5% deviation for 76 systems with V2 /V1 < 1.5 and 18%

deviation for 20 systems with V2/V l > 1.5. Such a correlation further simplifies the need for

data. However, by using NBP volumes, the accuracy of the Reddy-Doraiswamy prediction is at

risk.

Table 24. Association factors for the Wilke-Chang correlation and ambient average number of
hydrogen bonds (Wilke and Chang, 1955; Hayduk and Laudie, 1974; Kalinichev and Bass, 1997;

Hoffmann and Conradi, 1998)
Species q2 <nHB>

Heptane 1.0 0.0
Ether 1.0 0.0

Benzene 1.0 0.0
Ethyl alcohol 1.5 0.8

Methyl alcohol 1.9 1.9
Water 2.6

Updated water 2.26 3.2
Assuming linearity, 42 = 0 .4 2 4 <nHB> + 1 (R2 = 0.95)
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Tyn and Calus proposed a correlation for infinitely dilute systems with equal-sized solute

and solvent molecules since they correctly argue that the Stokes-Einstein equation assumes that

"large, rigid spheres diffuse through a medium of small particles (Tyn and Calus, 1975a)." Their

approach is different from the previously mentioned correlations because they focus on using

parachors which are "secondary derived function(s) dependent of the primary properties of

surface tension, density, and molecular weight." A parachor can be described then as "a measure

of the effect of the forces due to molecular attraction on the molecular volumes." They point out

several system limitations and write that their model has an overall absolute average error of

12.0% versus 16.5% for the Wilke-Chang correlation for the 113 self-diffusivities, 996 total data

points, and 535 systems used. Poling et al. (2001) describe the limitations and give several

examples of the Tyn-Calus correlation, which requires the surface tension of the system

components at the conditions of interest since the parachors are slightly temperature dependent.

Since system surface tensions are challenging to obtain at supercritical-water process conditions,

the Tyn-Calus correlation is difficult to implement.

Other correlations based on other material properties such as heat of vaporization have

been developed, but as is commonly the case, nearly all are regressed to numerous organic-

solvent-based systems and to only a limited number of water-solvent-based systems. Of notable

interest is the Lusis and Ratcliff (1968) correlation that specifically states in the article that

water-solvent-based systems should not be used with their expression, although some researchers

have used it for water systems despite this disclaimer (e.g., Butenhoff et al., 1996).

Hydrodynamic theories and the subsequent correlations are often extended for use at

lower densities, higher temperatures, and for concentrated systems. At these conditions, many of

these expressions are inaccurate, but are often refined in an attempt to improve their accuracy.

For this dissertation and for comparison reasons only, these hydrodynamic-based expressions

will be evaluated under SCWO-processing test conditions using many of the same refinements

that have been previously proposed. They include the infinitely dilute mutual-diffusivity Stokes-

Einstein, Wilke-Chang, and Reddy-Doraiswamy correlations.

168



.1.1.3 Kinetic Theory of Diffusion

For the analysis of gas diffusivities, a fundamentally different approach based on the

kinetic theory of gases is often used. From this simple theory of matter, equations of state and

other physical property models can be developed. In its simplest (hard sphere) version, the

kinetic theory of gases is based on four assumptions:

1. Gases are molecules that are in constant chaotic and random motion.

2. All molecules have an average kinetic energy proportional to kT, a mass m, and a

diameter 6.

3. All molecules are negligible in size compared to the mean free path.

4. Perfectly elastic collisions are the only allowed interactions between molecules

(Hirschfelder et al., 1966).

With these assumptions, the root-mean-square speed of the molecules can be derived

Ic=, R (103)
= M

along with the Maxwell-Boltzmann distribution of velocities

2 M 3/2 ( M2 (104)
f(v)= 47tv2exp Mi? (104)

The mean speed of the Maxwell-Boltzmann distribution can then be calculated along with the

mean free path of a perfect gas, which is the product of the mean speed and the mean time

between each collision (Atkins, 1990)

f8R (105)
= J( (R5)

V RT
x-CNA JaNAP (106)

Finally, it can be shown that the diffusivity of a pure perfect gas can be written as

Di i = UA = 2(RT) 3/2 (107)

3 37rl/2cN4M1/2p

In real gases, molecules are not hard spheres and mixtures do not have the same size

species. Thus, it is logical to expect refinements to the kinetic-gas-theory approach. For

example, Chapman and Enskog, working independently, solved the Maxwell-Boltzmann
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equation for a dilute, non-polar, monatomic, spherical binary gas mixture that has attractive and

repulsive interactions (Hirschfelder et al., 1966; Chapman and Cowling, 1970; Tham and

Gubbins, 1971; McLennan, 1989). Their result is what is commonly referred to as the Chapman-

Enskog equation

E 3 kT fD
D 2 =8- f fM 2 n (108)

8 M12 n12f D

where M1 2 = 2/{(1/M1 ) + (1/M2)} [g/mol], n is molecular number density in the mixture, c12 [A]

is the collision diameter, fD is the collision integral for diffusion calculated from a

intermolecular-potential function, andfD is a correction term that is often unity unless there are

unequal molecular masses and the light species is in trace amounts (Poling et al., 2001). To

reiterate, interactions need to be elastic and instantaneous in order to ensure that only binary

interactions occur and molecular velocities are not correlated, thereby assuring low densities and

uncorrelated motion.

Using the ideal-gas law to express the number density, n = P/kT, and settingfD to unity

for molecular weights of the same order of magnitude, Eq. (108) reduces to (Poling et al., 2001)

~~E 2 ~~~~T3/2
D12[cm 2 /s] = 0.002663 (109)

P[bar]012 [A]2LD M12

where the superscript E stands for Chapman-Enskog. For non-polar gases, the Lennard-Jones

(LJ) 12-6 potential function is often chosen to determine the collision integral and relates the

intermolecular energy to the separation distance (ri), potential-well depth (i), and diameter (i)

Wi =4E [IJ [ ] (110)

Using traditional mixing rules, the effective collision diameter and effective potential-well depth

of a binary (12) mixture can be determined (Hirschfelder et al., 1966).

12 = 01 + 2 (111)
2

e12 = s2 or 12 /k= 1- (112)kk
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The effective-diameter combining rule (Eq. (111)) is theoretically correct for hard-sphere

molecules while the effective well-depth rule (Eq. (112)) is semi-empirical and is based on

successful property modeling. The theoretical underpinning for Eq. (112) comes from a simple

interpretation of dispersion forces in a mixture (Hirschfelder et al., 1966). With the effective

collision diameter, effective well depth, and the temperature, the collision integral for diffusion

(also written as Q(1,1)* in Hirschfelder et al. (1966) and Q(1)(1) in Chapman and Cowling (1970))

can be determined. Neufield et al. (1972) fit an expression to accurately determine and allow

fast calculation of the collision integral for the LJ 6-12 potential

1.06036 0.19300

(kT/s 2 )0.15610 exp(0.47635(kT/c 12 )) (113)
1.03587 1.76474

exp(1.52996(kT/J 12 )) exp(3.8941 l(kT/c 12 ))

Given that mixtures of interest may not be at low density, corrections have been

developed to extend the kinetic-theory models to situations in which the mean free path is not

large compared with the molecular diameters. Due to the smaller mean free path, dense-gas

models can also account for a reduction of the collision frequency and can accommodate

complex synchronized collisions rather than being limited to kinetic-gas-theory instantaneous

binary collisions. Furthermore, there may now be molecular velocity correlation, all of which

strain fundamental kinetic-gas-theory assumptions. One of the first attempts to account for dense

gas effects was made by Enskog who used a collision-probability correction based on the belief

that, for a hard sphere, there is a volume that the center of the sphere can no longer occupy when

that sphere is in its collision state (Chapman and Cowling, 1970). The total restricted volume for

the two spheres is the combination of the non-impacted sphere portion and the other colliding

sphere. So as a result, the probability of molecular collisions is increased by 1/(1 - Vsphe,.e) per

unit molecular volume. However, there is a competing factor that reduces the collision

probability due to the shielding of one molecule by another and has been determined to be (1 -

11/16 Vsphe,.e) (Chapman and Cowling, 1970). The overall enhancement factor is the product of

the two expressions. For hard spheres, the theoretical correction factor is
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or = 1+ 96AM for the first-order correction (114)
96M

Refinements to Eq. (114) have been generated by Clausius (1879) and Boltzmann (1899),

namely

% = 1 + 5 7dVA sps) + 0 286907CNspo3 ) o+11 3 +... (115)
8 j 12M 012 12M15)

Thorne extended Enskog's methods to binary mixtures that resulted in an enhancement factor for

dissimilar molecules (Chapman and Cowling, 1970)

Thorne I+ Xlpi 4 31 + X22 ( 32 (116)
48 M l Cl + 2 M2 C + Y2

However, this correction is not expected to significantly improve the accuracy of the kinetic-

theory models since other phenomena are also affecting the dense-gas molecules. Nonetheless,

the correction factor scales the low-density diffusivity prediction to the diffusivity at the density

of interest using a low-density value such as the ideal-gas density (p ) at the same system

pressure and temperature

ET PID
D12 Thorne DJ1 (117)

PX

where the superscript ET signifies Enskog-Thome. Other corrections have also been published in

order to adjust for high pressure and dense systems. Takahashi (1974) developed a generalized

chart based on self- and mutual-diffusivity values for gases at high pressures with an average

deviation of 4.1% for the 27 systems investigated

DE(= pID)= I-AIT (118)2 Takahahi D12 (P=P)=D (1A1C/Tr ) (118)

where , A , B , CT, and E are regressed values that are all a function of reduced pressure as

shown in Table 25. For mixtures, linear combining rules (e.g., T,. = T/T, = T/ExiTci) are used to

determine the critical mixture temperature and pressure to complete the list of formulas needed

to use Takahashi's corresponding-states approach to correct for high pressure and dense systems.
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Table 25. Table of coefficients for the Takahashi diffusivity correction (1974)

PI AT BT CT ET

< 0.1 1.01 0.038042 1.52267 0 0
< 0.2 1.01 0.067433 2.16794 0 0
< 0.3 1.01 0.098317 2.4291 0 0
< 0.4 1.01 0.13761 2.77605 0 0
< 0.5 1.01 0.175081 2.98256 0 0
< 0.6 1.01 0.216376 3.11384 0 0
< 0.8 1.01 0.314051 3.50264 0 0
< 1.0 1.02 0.385736 3.07773 0.141211 13.45454
< 1.2 1.02 0.514553 3.54744 0.278407 14
< 1.4 1.02 0.599184 3.61216 0.372683 10.009
< 1.6 1.02 0.557725 3.41882 0.504894 8.57519
< 1.8 1.03 0.593007 3.18415 0.678469 10.37483
< 2.0 1.03 0.696001 3.3766 0.665702 11.21674
< 2.5 1.04 0.79077 3.27984 0 0
< 3.0 1.05 0.5021 2.39031 0.602907 6.19043
< 4.0 1.06 0.837452 3.23513 0 0
< 5.0 1.07 0.89039 3.13001 0 0

Another approach correlated self-diffusivity for spherical non-polar gases using a virial

expansion with universal parameters regressed from sub- and supercritical methane NMR self-

diffusivity data (Dawson et al., 1970)

D D-HS= IDDI = ID D /(1+0.053432Pr 0.030182P2-0.029725p3) (119)pDawson P 1+UrUr)

Although developed for a pure species, Eq. (119) could be adapted in order to predict mixture

mutual diffusivities, but is limited to reduced densities of less than 2.5.

Returning to low density modeling, the Chapman-Enskog formulation was originally

derived for non-polar molecules. Modifications have been introduced for polar molecules, and

two will be summarized below that modify the intermolecular-potential function. Brokaw

(1969) introduced a modification of the collision integral in order to account for the polarity of

the mixture molecules, and it relied solely on the dipole moments for polar dependency (Poling

et al., 2001). Eq. (109) is still used, but the following formulae are used to determine the

collision integral OD:
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1.06036 0.19300
+ +

OD = (kT/ 12)o.1561 exp(O.47635(kT/F12)) +

1.03587 1.76474 0.192 (120)
+ +

exp(1.52996(kT/s12 )) exp(3.89411(kT/ 12)) + (kT/E12 )

where

1 gL 1.94x 103 p 121pi
8i = aVp (121)

2 8 VbiTbi

ppi [Debyes] is the dipole moment for pure component i, Tbi is the normal-boiling-point

temperature for pure component i, Vbi is the NBP molar volume,

i =1.18(1 + 1.38'bi (122)

1.585Vb )(123)

812 = 6162 (124)

F,12 1 2 (125)
k k k

0Y12 = I C2 (126)

The well depths and/or diameters can be calculated or be based on published or experimentally

determined values.

The second approach starts by defining a modified LJ potential called the Stockmayer

potential

Vi= 4gi i - j( i )(2cos01 cos0 2 -sin0 1 sin0 2 cosp) (127)

where 01 and 02 are the inclination angles of the axes of the two dipoles to the line joining the

molecule centers and p is the azimuthal angle between them (Monchick and Mason, 1961). Note

that if one component is non-polar, Eq. (127) reduces to the LJ 6-12 potential. Unfortunately,

unrealistic parameters were obtained when experimental data were used to determine the
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parameters. For this reason, other approaches have been used including using a central field

instead of dipole fields (Monchick and Mason, 1961)

Wi = 4i -J 3 ( ] (128)
ri ri ri

where 5s is optimized according to pure parameter data such as viscosity or self-diffusivity.

Monchick and Mason (1961) document the estimation procedure and provide values for the

Stockmayer-potential parameters along with a table of diffusion collision-integral values as a

function of kT/s and 6s. Numerical expressions to replace these tables have not been developed,

but given the powerful computer capabilities available today, it would not be difficult to generate

such expressions.

In addition to the kinetic-theory diffusivity models developed with strong theoretical

underpinnings, many researchers have developed semi-empirical and empirical expressions for

low-to-high densities relying on kinetic gas theory fundamentals. For example, Wilke and Lee

(1955) developed an infinitely dilute mutual-diffusivity expression based on Eq. (108) where LJ

6-12 s and c parameters were estimated from pure component liquid NBP properties

10-3 I .03 0.98 T3/

D12 [cm2/s= 2

Pa12 2D M12

where

Ci =1.15Tbi (130)
k

ai =1.18Vb/3 (131)

The collision integral was evaluated for particular values of si and oi using the Eq. (111) and

(112) combining formulae.

Mathur and Thodos (1965) used a novel approach to develop their relation for self-

diffusivity. They started with the kinetic theory for diffusivity and the assumption that self-

diffusivity is a function of critical constants, molecular weight along with the fact that diffusivity

is a function of temperature and density or pressure. They found that for pressures close to one
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atmosphere, self-diffusivity is most sensitive to temperature (Eq. (132)); for denser gases,

temperature and density are the most appropriate parameters (Eq. (133)); and for liquids,

temperature and pressure are the best to employ (Eq. (134)). By using dimensional analysis and

experimental-data regression, Mathur and Thodos developed expressions for the following three

cases

44 x 10- 5 P2/3 [atm]T5/6T,l71 6

Normal pressures: DI I[cm s]= 7 LC[ n for Tr, > 1.5

D1 T[cm 2/] = 2.427xlO-5Pc2/3[atm]T5 6 (7.907T,. -1.66 for T.338 (132)
Is. MT 2 /,] - c for T < 1.5

Elevated pressures: Dll [cm2/s]= 10 rl for 0.15 <Prl <1.5 (133)
PcDl [atm]P, fo
3.67 x 10- 5T5/6T. 5

Liquid state: DMT [cm 2 /s]= 13 C1 for p > 2 (134)
D 1/3[atm]pO0 1l~" 

The species used for the regressions include argon, krypton, xenon, nitrogen, and carbon dioxide.

Although developed for pure species, by using combining and mixing rules, these correlations

can be extended to predict mixture mutual diffusivities.

The kinetic theory of gases and its modifications introduced by multiple researchers

offers several approaches to modeling supercritical mixture diffusivities. The non-polar and

polar Chapman-Enskog equations, the Enskog-Thorne correction, the Takahashi correction, the

Dawson correction, Wilke-Lee expression, and Mathur-Thodos expressions will be evaluated

and compared with the data of this dissertation and with previously published measurements.

II. 1.1. 4 Hard-Sphere Theory of Diffusion

Another approach to predicting diffusivities is based on hard-sphere theory, which has its

foundations in the kinetic theory of gases and usually begins with the Enskog-Thorne diffusivity

equation for dense gases (Shenai et al., 1993). The basis of hard-sphere theory is that motion is

correlated rather than uncorrelated for kinetic-gas theory due to the fact that molecular diameters

are no longer negligible when compared to the mean free path. Furthermore, exchanges of

energy are probable since molecules are no longer assumed to have kinetic-gas-theory length

scales significantly smaller than the mean free path and to have infrequent binary collisions. A

simple representation of the overall hard-sphere diffusivity can be written as
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=HS = A rDET (135)D12=D12 =AID12

where superscript HS stands for rough hard sphere. A is called the "roughness factor," and it

attempts to correct for the angular-momentum exchange when molecules collide. Typically, the

roughness factor is an adjustable parameter used to makeup any difference between theory and

experiment, and it usually varies between 0.5 and 1.0.

The term ( accounts for backscattering and hydrodynamic vortex formation in dense

systems and is available only from molecular-dynamics simulation. Backscattering refers to the

situation in which a collision between a light solute molecule and a heavy solvent molecule can

reverse the direction of the solute molecule (Alder et al., 1970; Alder et al., 1974). Without a

backscattering correction, the hard-sphere theory typically overestimates the diffusivity. Vortex

formation around a moving heavier solute molecule can alter the velocities of neighboring

molecules and is dependent on the momentum and, hence, the molecule mass (Alder et al., 1974;

Tyrell and Harris, 1984). Without vortex formation taken into account, the hard-sphere theory

typically underestimates the diffusivity.

At present, the molecular simulation required to represent all of the regimes of interest is

incomplete thereby making calculation of the rough-hard-sphere (HS) diffusivity difficult.

Furthermore, models resulting from the simulations are limited in number. A critique of several

of these models is provided in Liu et al. (1998) and is summarized here. Several researchers

start with the original Chapman-Enskog equation for a binary hard-sphere mixture so that they

can use a radial distribution function that was provided by Alder et al. (1974)

12 8kT 1 2 (136)
OV tIVI12 12

g12 = l 1 + 2g 22 (137)
2(12

1 3y i y2
g -- + () + (138)Ir-x 2 2(1- x)3

i (= (139)
6 C) 

X-= (ni3 njac3) (140)
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or for self-diffusion (Liu et al., 1998), the Camahan-Starling (1969) expression

1- Tr3n/12
g= - 3 n(141)

(1 -7UG3n16Y

where n [molecules/length 3] is the number density. The backscattering and vortex-formation

correction term, r, scales the smooth-hard-sphere (SHS) diffusivity (before roughness

corrections are factored in) with the low density Chapman-Enskog diffusivity and is often

written as DSHs/DE. There are several ways to determine this correction term including using the

limited tables and figures provided by Alder et al. (1974) or Easteal and Woolf (1990), using the

Erpenbeck and Wood (1991) DEW-HSIDE expression, using the Sun and Chen (1985a) D 1
s -H

tracer expression which already incorporates DE and a 0.7 roughness factor, or using the free-

volume-based molecular-volume concept used by Liu et al. (1998). A fifth method proposed by

Speedy (1987), which does not use long-time contributions (t --> oo) in the diffusivity calculation,

has been subject to noteworthy criticism by Erpenbeck and Wood (1991) due to this exclusion

and, thus, will not be considered.

Erpenbeck and Wood (1991) (Valid for 1.6 < M/p V < 25)

EW-HS

11E = 1 + 0.054034 pV0 /M + 6.3656(pVo /M)2 - 10.9425(p V0/M)3 (142)
Di 

Sun and Chen (1985a)

D1SC -HS[cm 2 /s] =

3.482x10-62[A]RM2 0167 02 2 M 2 -1383M2 j'165 1 0.129 (143)
Ml cl tX2P2Vo Ml (2

(Valid for 0.5 < M1/M2 < 4.0, 0.5 < Cl/Go2 < 1.5, and 1.5 < M2/X2P2 Vo < 3 0)

Liu et al. (1998)

DLSM-HS ( 0.75n&c 3

D E 1.2588 - vDV 1 ex1- 3 (144)
where V0 [cm3/molecule] is the solvent close-packed hard-sphere volume (NAC2

3 /21 2). Note that

the LSM constants are actually fit to the Erpenbeck-Wood expression so this expression will

behave in a similar fashion, but that the LSM expression later becomes part of the complete LSM

diffusivity expression introduced next.
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Using Eq. (144), Liu and coworkers had previously extended their self-diffusivity

modeling efforts with good success to include mutual diffusivities for infinitely dilute solutes.

However, they make it clear that their predictive tracer (TLSM) model is not successful for

hydrogen-bonded molecules (Liu et al., 1997 and 1998).

-2 exp - 3 0.27862 (145) 
DTLSM-HS _ 669.1V2 /T2 s M 4

NACTLSM M12 1.25 88-N 2 /V 2 kT45)
1/3 2

2 2 a 1 2
CTLSM = 1/3

1+1.2 kTTLSM3 3

TLSM 1C3£ (1C47)
812 = 2 (147)

k kC32

When the pure component Lennard-Jones values are adjusted in the TLSM model instead of

using established values or values estimated from established correlations, the TLSM

performance is significantly improved and was found to give acceptable predictions for

hydrogen-bonded species. However, the model is no longer predictive using this regressed

approach. Including sub- and supercritical water in their regressed analysis, they report an

average deviation of 5.45% for their self-diffusivity predictions (Liu et al., 1998). TLSM self-

diffusivity predictions were further improved after their TLSM model was altered to include two

additional adjustable parameters that are also regressed to available experimental data. The third

parameter is an empirical temperature-dependent regressed parameter for the effective diameter

while the fourth is the roughness factor that is used to take into account the coupling between

translational and rotational momentum exchange during collisions (Liu and Macedo, 1995; Silva

et al., 1998). These tailored models limit their widespread use since they are no longer

predictive models that do not require additional regressed terms or parameters. The TLSM-HS

will be examined using available Lennard-Jones values and also with those values provided by

the Liu, Silva, and Macedo research group.

Another approach to determining diffusivity was proposed by Eaton and Akgerman

(1997) for their infinitely dilute mutual diffusivity model for supercritical fluids in many

solvents, excluding water. They start with a MD-simulation-based correlation originally

developed by Dymond (1974) and refined by Easteal and Woolf (1990). Dymond originally
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showed that MD simulations of DSHS/DE could be consolidated into a series of straight lines with

the following linear function

SHSD1 2 1 V 2 J b
E - (148)

D E g12 VO ( 1 )

Eaton and Akgerman were able to derive relations for K, a, and b, in part by developing

functions for a and b which consolidate Dymond's straight lines into one single curve. As a

result, K was found to be l/a2 - 1/3 for the systems studied by Eaton and Akgerman, and a & b

were fit to the slope & intercept of the single curve. Their fit had an average absolute deviation

of less than +1.5% (Eaton and Akgerman, 1997). Next they added a roughness term, used the

observation of Erkey and Akgerman (1989) that it is dependent on the ratio 1l/a2 , and fit it with

experimental data. Infinitely dilute diffusivity measurements were obtained for 1-octene in

supercritical ethane, hexane, and propane over a 41-290°C, 0.07-0.5 g/cm3, and 44-124 bar

range in their Taylor dispersion apparatus. These were then used to obtain two regression

parameters. The final result is

DEA HS[cm 2 /s] = 0.4924 j 1 ) V0 [cm 3 /mole] V2 a (149)M12 2 -1

T2 2 T - M,,l,,-0.03587 (10)
b -= - 0.2440I +0.8491 +0.6001 .3587(150)

2 a k (l 6 ]( M2 1)

(Valid for 0.1 < M 1/M2 < 1.67, 0.5 < al/a 2 < 1.0, and 1.5 < V2/ VO < 2.0)

According to Eaton and Akgerman, Eqs. (149) and (150) estimate their measured diffusivities

with an average absolute error of 4.01%. When compared to self-diffusivities of carbon dioxide,

ethylene, toluene, and fluoromethane, Eqs. (149) and (150) predictions have an average absolute

error of 3.64%. When their expressions were tested on 101 systems and over 1,500 data points,

they report an error of 15.08%.

He (1997) used the general form of the Eaton-Akgerman equations and regressed two

parameters to a complete set of data that spanned 107 binary systems with 10 solvents (water
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was not considered) and 1,167 supercritical infinitely dilute data points. The resulting equation

had an average absolute deviation of 7.5% for all of the data that were regressed

12 (v2 -23 (151)D-Ho = F. 616 14 + 3 09 02 exp -0 877 56 M2Vc2 [cm3 /mol] 1110'6 (v_23) ; (151)Pc2 [bar] M

k= Pr2 >1.2

k rl+( 12) (152)
k=l + 2 P,2 < 1.2

lie and Yu (1998) attempted to improve high temperature diffusivity predictions by

incorporating solvent density in a new correlation. The correlation they chose is based on Cohen

and Tumbull's (1959) notion that molecular transport occurs by the movement of solute

molecules into voids opened by solvent molecules in a grid, which is consistently changing and

evolving

14.882 + 5.9081r C2 2 + 2.0821 2 x105 x
HY-HS I 00OM2 1000M 2DH¥_HS = (153)

0.3887Vc2 I Texp0.23VC2 -V2iM,
As a result, the solute-molecule diffusivity is dependent on the movement of the solute, namely

its velocity, and the probability of finding an empty void in the grid. For the 1,303 data points in

113 binary systems (again, water was not considered), Eq. (153) resulted in an 8.2% average

absolute deviation. Predictions with this correlation will be performed in the analysis section.

When Fu et al. (2000) attempted to model solute contaminants in dense carbon dioxide,

he recommended using the Enskog equation for predicting mutual diffusivities in liquid carbon

dioxide, but not in supercritical carbon dioxide. They found that the Eaton-Akgerman model

gives reasonably accurate predictions in liquid and supercritical carbon dioxide (1.1%-6.5%

average absolute error). They also found that the TLSM model does not give satisfactory

predictions (7.7%-27% and 6.8%-12% error for liquid and supercritical systems) (Fu et al.,

:2000).

Overall, the hard-sphere theory of diffusion is an area of active research, and refinements

and new approaches appear when new experimental data become available. However since
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1998, there have been essentially zero publications. Even with this publication stoppage, the

previously published expressions provide another approach to model diffusivity, along with the

kinetic- and hydrodynamic-theory diffusivity models. From this section, the Erpenbeck-Wood

correction, Sun-Chen equation, TLSM equation, Eaton-Akgerman equation, He expression, and

He-Yu expression will be evaluated for their performance in estimating supercritical mixture

diffusivities. For the most part, these models are used for self-diffusivity or infinitely dilute

mutual diffusivity predictions, but are not necessarily used to predict tracer and mutual

diffusivities when there are concentrated species present. The next section explores theories and

expressions developed for the real world possibility of mixtures that are not infinitely dilute.

II.1.1.5 Diffusivity Concentration Dependence

The concentration dependence of mutual and tracer diffusivities is a research area with

very limited progress. Partly due to the lack of well-established and accurate predictive models

for self- and binary diffusivity that can then used in concentration-weighted models and partly

due to the lack of experimental data, there are only a few published correlations. For liquid

systems, expressions have been developed to relate mutual diffusivity as a function of

composition, but only a few are worth describing because of their generality and lack of accuracy

(Poling et al., 2001). One of the first to publish is Darken (1948) who related the mutual

diffusivity to tracer diffusivity and mole fraction

D = (DlI xl +D21X X 2)1 (154)

where a is the thermodynamic correction factor

a (lnylx1 J InY2x2 (155)
aInxl TP In X2 TP

The thermodynamic correction factor corrects for the fact that, for a binary system that is

suddenly in a non-equilibrium state, the system can return to equilibrium with a diffusive flow

that is related to the chemical-potential gradient, and not just a concentration gradient as is

originally defined in Eq. (87). However, for low pressure gases, the thermodynamic correction

factor is close to unity and is assumed to be one for most other applications (Poling et al., 2001).

However, according to Hardt et al. (1959), the Darken expression is not successful for modeling

associated mixtures such as acetone and water.
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Since tracer diffusivities are often unavailable, several researchers have focused on using

infinitely dilute mutual diffusivities with limited success (Poling et al., 2001). Vignes (1966)

developed an expression for accurate fits of non-associated ideal or near-ideal systems

D1 =((D21) 1 (D2) (2 (156)

but is only partially successful for associated systems such as ethanol-water, acetone-water, and

acetone-chloroform where the mean deviation is approximately 14% (Tyn and Calus, 1975b).

Leffler and Cullinan (1970) also had success when they scaled the Vignes relation with

viscosities

D12 = (D21'11 (D 2 12 t/ll 2 (157)

However, three different viscosities are required for their expression, and viscosity data of this

nature are often unavailable. When compared with the Vignes relation, Tyn and Calus (1975b)

did not find an advantage to using the Leffler-Cullinan relation for the associated systems, so it

appears that this relation does not offer any advantage over the Vignes expression. A variation

of the Vignes approach that was previously introduced and that is accurate for some associated

and non-associated systems is the Carman and Stein relation (1956)

D1S = (x2ri2D2 + xlID,/l/1 2 (100)

As before, limiting tracer diffusivities could be employed, however solution viscosities would

also be needed.

Another approach is to use the inherent concentration dependence that several kinetic-

theory-of-gas expressions have. The Eaton-Akgerman (1997), Erpenbeck-Wood (1991), and Liu

et al. (1998) expressions have a density correction that could be exploited in order to weight

diffusivity with respect to concentration. Furthermore, by using combining and mixing rules, the

Mathur-Thodos and Wilke-Lee expressions and all of the intermolecular potential functions

could be modified in order to have a concentration dependence. As a result, concentration

expressions for diffusivity can be made, and they will be explored in Section 11.5 of this

dissertation.

In summary, many diffusivity models have been developed, each with benefits, yet also

with shortcomings. Hydrodynamic-theory and kinetic-gas-theory based approaches have
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become the standard when predicting diffusivities. Semi-empirical correlations are the mainstay,

but there is still a low level of understanding regarding diffusivities and their dependence on

concentration. Fundamental to all of these issues is the scarcity of diffusivity measurements,

especially supercritical mixture diffusivities. Following a discussion about currently available

supercritical data, this dissertation will then focus on NMR diffusivity measurements obtained

during this dissertation and then examine many of the diffusivity models introduced in this

section.
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II. 1.2 Critical Phenomena

II. 1.2.1 Observations & Theories

Near the critical point, many thermodynamic and transport properties deviate

substantially from their bulk mean value at any instance of time. Since supercritical-fluid

processing can occur near the critical point, a discussion regarding these critical-phenomena

deviations is, therefore, warranted. Observations of large deviations date to 1869 when Thomas

Andrews (1869) reported a critical opalescence, e.g., normally transparent fluids turning "milky"

or opaque near or at the critical point.

The correlation length, ,, is a measure over which these density deviations in one region

are influenced by and can be correlated with density deviations in another region, and it has been

shown to correlate with dimensionless temperature near the critical point (Bejan, 1997). When

the critical temperature and critical density are closely approached, the correlation length

diverges. Near the critical point, properties such as the correlation length are generally simulated

with critical-scaling laws that are represented by truncated series

,oc lim (IATrl-V(+C2 ATr v' ...))=ATrIV = T (158)

For the correlation length, v is a positive universal critical-exponent symbol. Regardless of the

substance, with T- Tc = 0.01 K at the critical isochore, the correlation length of molecular

interaction is approximately 100 nm, which is much larger than the typical 0.3 nm intermolecular

distance of simple molecules far away from the critical point (Bejan, 1997). These large

correlation lengths imply long-range density deviations which also vary slowly in time and result

in increasing difficulty in achieving thermal equilibrium (Sengers, 1994).

It has also been well established that in the critical-point limit, phase transitions of

different substances and systems behave similarly, e.g., some thermodynamic properties diverge,

thereby allowing the use of universal values for these property predictions. For properties that

vanish at the critical point, a power series like Eq. (158) can be used with a positive exponent.

The critical-scaling law defined in Eq. (158) for the correlation length is regarded as the

most accurate model for predicting properties of pure fluids and mixtures near the critical point.

The scaling law is fashioned after the Ising-lattice model which is based on interactions between
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cell elements in a d-dimensional lattice (Bejan, 1997). When the degrees of freedom or the

order-parameter dimensionality is set to one (n = 1), each Ising-lattice cell has two possible

discrete options, e.g., occupied or empty in the case of a unimolecular system or for a binary

system without an empty cell, species one or two of the mixture. Critical-scaling laws are

frequently based on the d = 3, n = 1 Ising case, but since there are slight variations between the

original Ising exponents and theoretically and experimentally refined critical exponents, the

critical-scaling laws are often described as Ising-like.

Further away from the critical point, properties are weaker functions of density and

temperature and can be classically represented by mean-field values without having any

deviations. Mean-field theory starts with the classical belief that a molecule interacts with all

neighboring molecules in a similar fashion and that deviations from the mean value can be

neglected (Bejan, 1997). When these deviations are neglected close to the critical point, the

Helmholtz free-energy distribution of the system can be written in terms of a Taylor's series or,

in this case, a Landau expansion. At the critical point, the Helmholtz free-energy representation

remains finite and analytical and allows direct determination of mean-field critical exponents

(Bejan, 1997; Sengers, 1994). These exponents match critical exponents that are derived from

the van der Waal's equation of state (Bejan, 1997).

Universal exponents can be derived for the thermodynamic and transport properties of

interest and have been confirmed experimentally for a large number of systems (Sengers, 1985;

Bejan, 1997; Sakonidou et al., 1998; Sengers, 1994; Abdulkadirova et al., 2002; Anisimov et al.,

2004). Thermodynamic properties are summarized in Table 26, while universal exponents for

the Ising, Ising-like, and mean-field universality classes are listed in Table 27. Negative critical

exponents will result in parameters diverging near the critical point, while parameters with

positive critical-exponents will vanish. For the most part, mixtures exhibit similar trends, but as

stated by Abdulkadirova and coworkers (2002), some pseudo-single-component properties

exhibit weaker singularities including the isothermal compressibility and isobaric heat capacity

for IATrl < 10 4, while the isochoric heat capacity continues to weakly diverge.
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Table 26. Critical-phenomena power laws (Levelt-Sengers and Givens, 1993)

Property System Dependent variable Independent Power law
variable

Coexistence curve (p) One component APr= (PL- PV)/P ATr BI ATr 13

Coexistence curve Two component jAxl AT, BI ATr I1

Coexistence curve (P) One component P - Pc AP DlApl

Isothermal One component KT=-(aV/P)T/V ATr rl ATr .1-
compressibility <10 

Two component KT= -(aV/aP)T/V 2
1ATrl >10- 2 rl Ar I- 1

Isochoric heat One and two ATr A ATr 
capacity component

Isobaric heat capacity One component Cp ATr c KT

IATl <10-4 A'I AT, I- a
Two component CpxI ATl >10 oc KT

Correlation length One and two ATr 0ol ATr I
components

Table 27. Critical-phenomena exponents for the Ising, Ising-like, and mean-field universality
classes (Bejan, 1997; Anisimov et al., 2004)

Universality 6
class

Ising (d = 3) 0.125 0.312 5.0 1.250 0.625

Ising-like & 0.110 0.325 4.8 1.241 0.630
Wilson

Mean-field &
Mean-field & 0 0.5 3 1 0.5van der Waals
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Because the Ising, Ising-like, and mean-field universality classes have limited operating

regimes, another universality class is often used when operating between two classes in order to

improve property predictions. Aptly called "crossover theory", it usually has its own critical-

exponent set, and experimental results indicate that crossover theories are sensitive to the type of

species being modeled, e.g., polymers, ionic fluids, or simple fluids with short-range forces such

as carbon dioxide and methane. The crossover to Landau's classical or mean-field class is also

property dependent, but nonetheless occurs further away from the critical point when the Ising

model begins to fail to capture classical behavior (Landau, 1966).

Sengers has estimated where the Ising model fails and where traditional methods cannot

match observed critical phenomena (Sengers, 1994). Using renormalization-group theory, the

secondary isothermal-compressibility critical exponent defined generically in Eq. (158) is 0.51

(Sengers, 1994), i.e.,

KT = Cl ATr(l + C 2 ATr[051 +...) (159)

With this theory, long-range interactions not considered by the Ising model can now be included

and properties can be repeatedly rescaled within a transformed correlation-length constraint.

With this correction term and with c2 of order one, ATrl must be less than 10-4 in order to keep

the secondary correction shift under 1%. From this result, most asymptotic scaling laws are

valid for only a very small reduced temperature range near the critical point (IATrI < 10-4) before

secondary and mean-field terms can no longer be ignored.

There is still debate about when and if crossovers exist for ionic fluids since experimental

evidence for systems with varying levels of ionic character do not always crossover back to the

Ising regime (Levelt-Sengers and Givens, 1993; Pitzer, 1995). However, most researchers agree

that for those particular systems, the crossover region may not have been entered due to the

limitations of the experimental data and apparatus as the critical point is approached.

II. 1.2.2 Transport Properties

In the classical approach, transport properties are not supposed to be affected near the

critical point because properties such as thermal conductivity, X; viscosity, rl; and diffusivity, D,

are dependent on short range molecular-level interactions and should not be affected by large
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correlation lengths (Sengers, 1994). However as the critical region is approached, some

properties are observed to show evidence of anomalous behavior due to a greater sensitivity to

the dynamic behavior of critical deviations. Experimental evidence has shown that for mixtures,

all three properties exhibit asymptotic qualities close to the liquid-liquid consolute critical point

and even closer to the liquid-vapor plait critical point. Thermal conductivities and viscosities

diverge weakly as temperature is reduced to the critical temperature, while mutual diffusivities

vanish (Sakonidou et al., 1998). For mixtures above IATr > 10-2 and for pure components,

thermal conductivities are strongly enhanced near the critical point while careful self-diffusivity

measurements do not show any deviations at the critical point (Sakonidou et al., 1998; Harris,

2002).

Dynamic renormalization-group theory and mode-coupling theory of critical dynamics

are two theoretical approaches that have been developed to address critical effects of transport

properties since critical effects cannot be adequately addressed by static models. These

approaches shift from examining correlation lengths to the corresponding correlation times

associated with critical-point deviations at the critical point. In addition, both approaches can

account for large deviations that extend past intermolecular lengths and for nonequilibrium

dynamics that affect transport properties and that are best described with hydrodynamic models

(Sengers, 1994). Mode-coupled solutions to the Boltzmann-like kinetic equations that describe

slowed-down motions near the critical point yield time-correlation functions of the critical

deviations (Kawasaki, 1970). These frequency-based solutions are then used to obtain decay

rates of concentration deviations and in the low frequency and large deviation limits near the

critical point, obtain diffusivities (Senger, 1994). A fundamental review of dynamic and static

approaches has been organized by Hohenberg and Halperin (1977).

II. 1.2.2.1 Viscosity

Viscosity can be divided into a baseline rb contribution and a critical-enhancement ic

contribution that can be represented by scaling laws (Sengers and Keyes, 1971)

'l(p,T)= rlc(p,T)+ rib(p,T) (160)

The background viscosity, 'rb, is independent of the critical-point effects and is often further

decomposed into an ideal-gas/low-density limit of viscosity and an excess viscosity
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rb (p,T) = rIG (P - 0, T)+ A'Texcess(P,T) (161)

For viscosity, renormalization-group theory and mode-coupling theory have both shown

that the critical enhancement for viscosity is inversely proportional to the correlation length

c (T) cC 4-Z oC ATr I-Uz C AITr (P (162)

where from a first order estimate, z = 8/1572 = 0.054 (Sengers, 1985). The exponent, z, has since

been theoretically estimated to be 0.063 when higher order effects are included, thereby making

the viscosity critical exponent, gp, equal to about 0.040 (Sengers, 1994). This small critical-point

divergence is valid for pure fluids and binary mixtures and has been experimentally validated

(Sengers, 1994; Luettmer-Strathman, 2002).

II. 1.2.2.2 Diffusivity

The enhancements for mass-mutual diffusivity and thermal diffusivity can be derived

with mode-coupling theory by starting with Onsager kinetic coefficients (Sengers, 1985;

Anisimov et al., 1998). Using the Onsager expressions for thermal current and mass-diffusion

current for a binary mixture

Jq = -8'Vjt- y'VT + Jd (163)

Jd = -a'V - 'VT (164)

where a', A', y', and 6' = 'T are the Onsager kinetic coefficients and = 2 - ptl, the mutual-

mass diffusivity is

D cca' a1~ 1, (165)
P aX2 T,P

where a' is equivalent to mass conductivity.

Isolating background and enhancement effects is the next key step during the analysis of

critical-point diffusivity behavior. Using the decomposition approach previously used, the

Onsager kinetic coefficient, a', can be written in termns of background, cX'b, and critical-

enhancement, a'c, contributions. Using mode-coupling theory, the enhancement solution takes
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the form of the Stokes-Einstein equation in the hydrodynamic zero-frequency limit and diverges

at the critical point according to

k= R Tp M2M2 a , (166)
6~nrl MA i 2 T,P

where M 12 is the mole-fraction-weighted molecular mass (Kawasaki, 1970; Sengers, 1985).

Solutions of the mode-coupling zero-frequency boundary conditions result in a first-order

estimate of the universal dynamic-amplitude ratio, RD, of one (Luettmer-Strathmann, 2002).

Since diffusivity is proportional to the Onsager kinetic coefficient, the diffusivity critical-

enhancement factor, D12 , near a mixture consolute point can be extracted (Burstyn et al., 1980;

Landau and Lifshitz, 1987)

_ M2pac al = RDkBT
2 2a 8T (167)

12M2M 2 aX2 TP 67riC4

Given that the critical exponents for viscosity and correlation length are -p = -0.040 and

--v = -0.63, respectively, the critical-phenomena power law and exponent take the following

form

D oc AT,. (V+°) AT, +0.67 (168)

while the background term takes the form atb(ap/1X2)rp/p. The exponent +0.67 is reasonably

close to the experimental critical-exponent value of +0.63 calculated from systems including

phenol-water and aniline-cyclohexane, and its sign dictates that mass-mutual diffusivity vanishes

at the critical point (Bak and Goldburg, 1969; Swinney and Henry, 1973). Diffusivities for an

equimolar 3-methylpentane and nitroethane mixture are shown in Figure 51 and clearly show a

decrease before experimental scattering affects alter the reported values for T- Tc < 10- K

(Burstyn et al., 1983). Once scattering effects are removed, mutual-diffusivity critical

contributions have been shown to vanish.

Unlike mutual diffusivities, self-diffusivities do not vanish at the critical point, although

their slopes may show some anomalous behavior usually due to impurities. Mutual diffusivities

vanish because the large, dynamically slow critical-point deviations and their associated

chemical-potential gradients give rise to only small driving forces. On the other hand, the self-

191



1 I,,

-V

C4

E

_10
a .v

,o% Is ' 8

C (nm)

__ 103 102 10

-- U
_ .. O

-u _C 0
O 3 3 0 

I I1111111 ,I, ,,,,,1 , I, 11,111 I I I,,,,,ll

2xlOi4 10-30 10o I 2
T- Tc (K)

Figure 51. Mutual diffusivities of an equimolar 3-methylpentane and nitroethane mixture for
three light-scattering angles, 0, where for T- Tc > -0.05 K, a diffusivity decrease of v + cp - 0.7

is observed (Source: Burstyn et al., 1983). For T- T¢ < -0.05 K, the measured diffusivity is

dependent on the scattering angle due to experimental scattering effects which are later resolved.

diffusion driving force is associated with concentrations of labeled (e.g., isotope-tagged A*) and

unlabeled (A) species which are not directly affected by large critical-point deviations due to the

chemical-exchange indifference and the lack of a chemical-potential gradient

([a(~A - B)IaxB]Trp = 0) in the dynamic analysis (Kawasaki, 1966). Multiple experimental

studies corroborate this analysis. Harris reviewed chlorotrifluoromethane and carbon-dioxide

self-diffusivity measurements made near the critical point with the NMR spin-echo technique

and concluded that critical-point anomalies are not seen while Oosting and Trappeniers reported

self-diffusivities for methane near the critical point without any irregularities (Oosting and

Trappeniers, 1971; Harris, 2002). As shown in Figure 52, deviations or a divergence at the

critical density (Pr = P/Pc = 1) do not appear to exist for the Oosting and Trappeniers data.

Xenon self-diffusivities for IATrl > 3 x 10- were also measured with NMR and did not reveal

any anomalies (Ehrlich and Carr, 1970). Sengers reports that self-diffusivity peculiarities near

the critical point have not been reported in peer-reviewed literature, but that more sensitive

experiments should be performed in order to explore this issue with greater detail (Sengers,

2003).
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Figure 52. Methane self-diffusivity near and around the critical point for the liquid- and vapor-
coexistence curves and the 190.48 K isotherm as reported by Oosting and Trappeniers (1971).
Deviations and divergence are not evident (Tc = 190.6 K according to the authors).

Since pure fluid thermal diffusivities and binary-mutual diffusivities are related by their

Onsager coefficients, their critical contributions are identical, and the thermal-diffusivity critical

contribution is

DTc kBT ATrIl = a 0T.r67  (169)

where the first-order estimate of the universal amplitude, RD, is again one (Sengers, 1994). Pure

species thermal diffusivities shrink at the critical point as shown in Figure 53 for carbon dioxide.

Based on ATr > 1 x 10-4 thermal conductivity, heat capacity, and density data, the estimated

critical exponent for carbon-dioxide is +0.79 which is close to the sulfur-hexafluoride critical-

exponents of +0.83 and +0.89 calculated from experimental IATrI > 6 x 10-4 saturated

coexistence and critical isochore data, respectively (Sengers, 1994; Bejan, 1997). Hcwever,

when sulfur-hexafluoride diffusivities were measured on Space-Shuttle Flight STS-65 in a low-

gravity environment at temperatures closer to the critical point (AT r > 4 x 10 - 6) and when

background contributions were assumed nonexistent, the critical exponent was estimated to be
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+0.73 which is nearer to the theoretical v + (p = +0.67 value given by Eq. (169) (Wilkinson et al.,

1998). For comparison and as shown in Figure 54, the STS-65 exponent for ATr > 10-4 is +0.88,

which validates the previously reported exponent in this temperature range. Exponent

differences of this magnitude between adjacent temperature ranges and different species are not

unusual since transport properties with large exponents (e.g., thermal and mass diffusivity) are

sensitive to background contributions which are dependent on large species-dependent density

deviations as the critical point is approached. Background contributions become significant

further away from the critical point, and when they are neglected during critical-contribution

analysis, the calculated critical-contribution exponent is erroneously large. On the other hand,

background contributions become negligible closer to the critical point as seen in Figure 54 when

the critical contribution with exponent +0.67 is the sole-contributing term in the model.

Unlike pure fluid thermal diffusivities which vanish near the critical point, thermal

diffusivities for mixtures remain finite at the plait point primarily due to the mixture thermal

conductivity remaining finite. Thermal-diffusivity calculations based on experimental thermal

conductivities of equimolar methane-ethane mixtures substantiate these plait-point predictions

(Sakonidou et al., 1998).

.a

o-'

10

DENSITY (kg m

Figure 53. Experimental (DT) and calculated (X/pCp) carbon-dioxide thermal diffusivities
(symbols) clearly show a critical depression around the critical point (Tc - 304.31 K) and are
similar to the theoretical solid lines calculated with Eq. (169) (Source: Sengers, 1994).
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Figure 54. Critical exponents for the experimental (DTexpt) sulfur-hexafluoride thermal
diffusivities (symbols) differ depending on their proximity to the critical point, but clearly
approach the theoretical exponent v + <p = +0.67 given by Eq. (169) (Wilkinson et al., 1988).
Background contributions become significant further away from the critical point, and when they
are neglected during critical-contribution analysis, the calculated critical-contribution exponent is
erroneously large. Experimental data are shown with the reported 95%-confidence-interval
uncertainties.

II.1.2.2.3 Thermal Conductivity

Unlike viscosity and diffusivity at critical point, pure fluid thermal conductivity shows a

significant enhancement (Sakonidou et al., 1998). Thermal conductivity can also be

decomposed into two additive terms which independently describe the critical-point

enhancement and the background contribution. By rearranging the thermal-diffusivity definition

%c = DTcPC•c (170)

and by using thermal-diffusivity enhancement defined in Eq. (169), the critical-enhancement

term for thermal conductivity can be written

c Oc CPC c c ATrI +U- oc AT I(1+z)Y AT I"'
1c, I- ATr,.I-" ,LAT r l '

195

... -. Model: critical contribution only (v + (p = +0.67)
-- -- Model: critical and backgrotund conltribltons

-- AT,. >4 x 10-6 data and fit (v + (p = +0.73) D r•,, , AT, >

----- AT,. > 1 x 10-4 data and fit (v + T = +0.88)

D A, ~ T, The Wilkinson et al. (1998)
exponent is similar to the
Bejan (1997) exponent in
this temperature range

D o. when background
contributions are neglected

D T >> D T, for AT, < 10-5

I.. - L I I . 1 1 . I I I I , I I i I I I I L

(171)

0-6 10 -4



The critical exponent, A, is calculated to be 0.57 and has been experimentally validated (Sengers,

1994).

For mixtures, the situation is quite different. Consensus has been recently achieved

between theoretical and experimental results indicating that the enhancement is small, but finite
_9

for mixtures below ]AT,.l < 10 -, scaling directly with the smaller enhancement to the isobaric

heat-capacity (see Table 26). Also for mixtures, chemical-potential gradients are no longer zero

and can no longer be neglected (Sakonidou et al., 1998).

Based on the experimental evidence and theoretical decomposition approach, accurate

background models are required for correctly predicting transport-property critical effects.

Traditional EOSs and their thermodynamic predictions are typically valid for IATr > 10 ,

however, for transport properties, the reduced temperature range is much larger. For example,

thermal-conductivity enhancements for carbon dioxide are seen over a wide operating range

covering 0.05 < Pr < 2 and 0.8 < T,. < 1.4 as shown in Figure 55 and clearly demonstrate that

transport-property enhancements occur over a wide range and that accurate background terms are

needed (Sengers, 1994).

Now that the discussion of thermodynamic and transport properties is complete, the focus

can now shift to the limitations of critical-phenomena experiments perfonned in a normal

terrestrial gravitational field. Although, temperature and density are the preferred control

variables as the critical point is approached in order to minimize system perturbations,

temperature and pressure are routinely controlled. Even so, density is difficult to control in a

gravity-based environment. Near the critical point, gravitational forces induce large macroscopic

density deviations due to the fluid weight and unavoidable fluid temperature variations, and

therefore distort any light-scattering decay-rate measurements of the microscopic deviations

(Sengers, 2003). Without gravity, macroscopic deviations will be reduced, and as a result,

remaining density deviations will control the system and enable more accurate scattering

experiments. Experiments of this nature could then confirm many of the critical exponents

discussed in this section and resolve any lingering discrepancies. An example of this includes

the thermal-diffusivity measurements made on Space Shuttle Flight STS-65 (Wilkinson et al.,

1998).
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Figure 55. Stippled region and its borders show the thermal-conductivity enhancement for
carbon dioxide where one percent or more of the total thermal conductivity is contributed by
critical enhancements (Source: Sengers, 1994).

Clearly, critical phenomena influence thermodynamic and transport properties at and

close to plait and consolute points for mixtures and critical points for pure species. In this

dissertation, the diffusivity-model analysis will be improved when data influenced by critical

phenomena are excluded from this analysis.
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II. 1. 3 Supercritical Diffusivity Publications

The availability of supercritical diffusivity data is proportional to the ability to make

measurements at these conditions and general interest in a particular component. Factors

influencing the interest include whether specific diffusivity data are required or whether a

particular species may be representative of a class such as electrolytes. The ability to measure

the diffusivity is influenced by the operating conditions, which could be severe, and the

measurement technique, which could be limited by the operating conditions or other technical

limitations. For non-aqueous solutions near the critical point and for supercritical fluids,

extensive lists have been developed and are summarized by He and Yu (1998) and Catchpole

and King (1994). These lists primarily contain data for the solvent carbon dioxide, but contain

data for other solvents such as ethylene, propane, methanol, ethanol, and sulfur hexafluoride.

Supercritical self-diffusivities have also been measured for benzene (Asahi and Nakamura,

1997), toluene-d8 (Baker et al., 1985), and methane (Dawson et al., 1970) while it should be

noted that Balenovic et al. (1970) report subcritical mutual diffusivities for 11 binary dense-gas

systems (combinations of helium, nitrogen, argon, hydrogen, and other simple organics up to

1360 atm), Sun and Chen (1985a and 1985b) report sub- and near-critical mutual diffusivities of

several organics in n-hexane and cyclohexane, and later they report subcritical tracer diffusivities

in dense ethanol, methanol, and 2-propanol (Sun and Chen, 1986 and 1987).

For aqueous systems, diffusivity data near the critical point are much more limited. Self-

diffusivities for pure water have been reported by Lamb et al. (1981) for reduced temperatures

1.04 < Tr < 1.50, by Krynicki et al. (1978) for 0.43 < Tr < 0.77, and by Wilbur et al. (1976) for

heavy water (D20) for 0.44 < T, < 0.73. Molecular simulations of supercritical water diffusivity

have also been performed and match the experimental results within the uncertainty range

(Kalinichev, 1993). Protonated diffusivity measurements and molecular-dynamic simulations

are listed in Table 28 and Table 29, respectively, and are summarized in Figure 56 through

Figure 58. In 1982, Weingtirtner provided a reassessment for the self-diffusivity of liquid water

in order to judge the results of a variety of work reporting widely varying diffusivities and

reports the self-diffusivity of normal (protonated) water to be 2.30 x 10- 5 cm2/s at 250C and 1

bar.
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Table 28. Published pure (protonated) water diffusivity data near the critical point with
calculated densities (with 95%-confidence-interval uncertainties) (Krynicki et al., 1978; Lamb et

al., 1981; NIST, 1996)

Calculated Reduced Self-
density Reduced calculated Reduced diffusivity,

Temperature, (NIST, 1996), Pressure, temperature, density, pressure, D22 X 105
T (C) P2 (g/cm) P (bar) Tr Pr2 (cm2/s)

Lamb et al. (1981) data
0.100
0.122
0.150
0.203
0.259
0.298
0.407
0.505
0.602
0.701

0.093
0.123
0.150
0.180
0.250
0.300
0.401
0.500
0.599

0.100
0.125
0.150
0.180
0.250
0.299
0.399
0.499

0.100
0.124
0.150
0.200
0.250
0.299
0.399

1.000
1.000
0.997
0.988
0.978
0.965
0.951
0.935

199
221
241
265
280
291
314
378
565
1056

256
314
359
403
491
551
691
910
1313

336
403
467
584
696
809
1074
1459

397
480
568
731
893
1060
1455

1.04
1.04
1.04
1.04
1.04
1.04
1.04
1.04
1.04
1.04
1.04

1.19
1.19
1.19
1.19
1.19
1.19
1.19
1.19
1.19

1.35
1.35
1.35
1.35
1.35
1.35
1.35
1.35

1.50
1.50
1.50
1.50
1.50
1.50
1.50

Krynicki et al. (1978) data
0.007 0.43
0.012 0.44
0.032 0.46
0.124 0.50
0.312
0.701
1.43
2.70

0.53
0.56
0.59
0.62

0.31
0.38
0.47
0.63
0.80
0.93
1.26
1.57
1.87
2.18

0.29
0.38
0.47
0.56
0.78
0.93
1.25
1.55
1.86

0.31
0.39
0.47
0.56
0.78
0.93
1.24
1.55

0.31
0.39
0.47
0.62
0.78
0.93
1.24

0.90
1.00
1.09
1.20
1.27
1.32
1.42
1.71
2.56
4.79

1.16
1.42
1.63
1.83
2.23
2.50
3.13
4.13
5.95

1.52
1.83
2.12
2.65
3.16
3.67
4.87
6.61

1.80
2.18
2.57
3.31
4.05
4.81
6.60

3.11
3.11
3.10
3.07
3.04
3.00
2.95
2.90

0.00003
0.0001
0.0001
0.001
0.001
0.003
0.01
0.01

286 57
243 ± 49
203 41
161 32
120 24
112 ± 22
89.7 18
70.0 14
57.1 ± 11
47.4 ± 9

326 ± 65
251 ± 50
213 ± 43
189 ± 38
141 28
125 ± 25
95.6 19
74.5 15
61.7 12

361 ± 72
282 ± 56
242 ± 48
194 ± 39
156 ± 31
125 ± 25
97.0 19
76.4 15

471 ± 94
346 ± 69
285 ± 57
226 ± 45
172 ± 34
155 ± 31

108 ± 22

1.17 ± 0.1
1.43 ± 0.1
2.30 ± 0.2
3.89 ± 0.4
5.61 ± 1
7.42 1
9.81 ± 1
12.8 1
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400
400
400
400
400
400
400
400
400
400

500
500
500
500
500
500
500
500
500

600
600
600
600
600
600
600
600

700
700
700
700
700
700
700

2

10

25
50
70
90
110
130



Table 28. Continued published
0.917 4.76
0.893 8.93
0.865 15.5
0.834 25.5

1.005
1.014
1.024
1.032
1.041
1.049
1.057
1.064
1.071

1.004
1.014
1.022
1.031
1.039
1.047
1.054
1.061
1.068

1.001
1.010
1.018
1.026
1.034
1.042
1.049
1.056
1.062

0.992
1.001
1.009
1.016
1.024
1.031
1.038
1.045
1.051

0.982
0.991
0.999
1.006
1.014
1.021
1.028
1.034
1.041

0.970
0.978
0.987

10

30
50
70
90
110
130
150
170

10

30
50
70
90
110
130
150
170

10

30
50
70
90
110
130
150
170

10
30
50
70
90
110
130
150
170

10

30
50
70
90
110
130
150
170

10

30
50

pure (protonated) water diffusivity data
0.65 2.85 0.02
0.69 2.77 0.04
0.73 2.69 0.07
0.77 2.59 0.12

0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43
0.43

0.44
0.44
0.44
0.44
0.44
0.44
0.44
0.44
0.44

0.46
0.46
0.46
0.46
0.46
0.46
0.46
0.46
0.46

0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50

0.53
0.53
0.53
0.53
0.53
0.53
0.53
0.53
0.53

0.56
0.56
0.56

3.12
3.15
3.18
3.21
3.23
3.26
3.28
3.30
3.33

3.12
3.15
3.17
3.20
3.23
3.25
3.27
3.30
3.32

3.11
3.14
3.16
3.19
3.21
3.23
3.26
3.28
3.30

3.08
3.11
3.13
3.16
3.18
3.20
3.22
3.24
3.26

3.05
3.08
3.10
3.13
3.15
3.17
3.19
3.21
3.23

3.01
3.04
3.06

0.05
0.14
0.23
0.32
0.41
0.50
0.59
0.68
0.77

0.05
0.14
0.23
0.32
0.41
0.50
0.59
0.68
0.77

0.05
0.14
0.23
0.32
0.41
0.50
0.59
0.68
0.77

0.05
0.14
0.23
0.32
0.41
0.50
0.59
0.68
0.77

0.05
0.14
0.23
0.32
0.41
0.50
0.59
0.68
0.77

0.05
0.14
0.23

200

150
175

200
225

2
2
2

2

2
2
2
2
2

10

10
10

10

10

10

10

10

10

25
25
25
25
25
25
25
25
25

50
50
50
50
50
50
50
50
50

70
70
70
70
70
70
70
70
70

90
90
90

15.7 2
19.6 2
23.8±2
280 3

1.18±0.1
1.20 + 0.1
1.20 + 0.1
1.18 0.1
1.17 + 0.1
1.16 + 0.1
1.15 + 0.1
1.14 0.1
1.13 0.1

1.45 ± 0.1
1.49 ± 0.1
1.50 0.2
1.48 + 0.1
1.46 · 0.1
1.43 4 0.1
1.41 ± 0.1
1.40 + 0.1
1.39 I0.1

2.31 ± 0.2
2.34 i 0.2
2.37 ± 0.2
2.39 ± 0.2
2.39 ± 0.2
2.38 ± 0.2
2.36 0.2
2.33 ± 0.2
2.30 ± 0.2

3.90 ± 0.4
3.92 ± 0.4
3.95 ± 0.4
3.95 ± 0.4
3.94 ± 0.4
3.93 ± 0.4
3.89 ± 0.4
3.80 ± 0.4
3.74 ± 0.4

5.60 ± 0.6
5.55 ± 0.6
5.50 ± 0.6
5.44 ± 0.5
5.40 ± 0.5
5.31 0.5
5.28 ± 0.5
5.21 + 0.5
5.15 + 0.5

7.40 ± 0.7
7.28 ± 0.7
7.20 ± 0.7

- �----*



Table 28. Continued published pure (protonated) water diffusivity data
90 0.995 70 0.56 3.09 0.32 7.09 ± 0.7
90 1.002 90 0.56 3.11 0.41 6.97 0.7
90 1.010 110 0.56 3.14 0.50 6.89 ± 0.7
90 1.017 130 0.56 3.16 0.59 6.79 0.7
90 1.023 150 0.56 3.18 0.68 6.67 ± 0.7
90 1.030 170 0.56 3.20 0.77 6.59 q- 0.7

110 0.956 10 0.59 2.97 0.05 9.78 1.0
110 0.965 30 0.59 3.00 0.14 9.66 1.0
110 0.973 50 0.59 3.02 0.23 9.57 + 1.0
110 0.982 70 0.59 3.05 0.32 9.44 + 0.9
110 0.990 90 0.59 3.07 0.41 9.38 ± 0.9
110 0.997 110 0.59 3.10 0.50 9.21 0.9
110 1.004 130 0.59 3.12 0.59 9.13 + 0.9
110 1.011 150 0.59 3.14 0.68 9.01 0.9
110 1.018 170 0.59 3.16 0.77 8.92 + 0.9

130 0.940 10 0.62 2.92 0.05 12.7 1
130 0.950 30 0.62 2.95 0.14 12.5 1
130 0.959 50 0.62 2.98 0.23 12.3 - 1
130 0.967 70 0.62 3.00 0.32 12.2 1
130 0.976 90 0.62 3.03 0.41 12.0 1
130 0.983 110 0.62 3.05 0.50 11.9 1
130 0.991 130 0.62 3.08 0.59 11.8 ± 1
130 0.998 150 0.62 3.10 0.68 11.7 1
130 1.005 170 0.62 3.12 0.77 11.6 ± 1

150 0.922 10 0.65 2.86 0.05 15.6 -2
150 0.933 30 0.65 2.90 0.14 15.3 ± 2
150 0.943 50 0.65 2.93 0.23 15.1 ± 2
150 0.952 70 0.65 2.96 0.32 14.9 ± 1
150 0.961 90 0.65 2.98 0.41 14.7 1
150 0.969 110 0.65 3.01 0.50 14.4 ± 1
150 0.977 130 0.65 3.03 0.59 14.2 1
150 0.984 150 0.65 3.06 0.68 14.0± 1
150 0.992 170 0.65 3.08 0.77 13.8 1

175 0.898 10 0.69 2.79 0.05 19.4 ± 2
175 0.910 30 0.69 2.83 0.14 19.0 ± 2
175 0.921 50 0.69 2.86 0.23 18.7 ± 2
175 0.931 70 0.69 2.89 0.32 18.3 ± 2
175 0.940 90 0.69 2.92 0.41 18.0± 2
175 0.949 110 0.69 2.95 0.50 17.7 + 2
175 0.958 130 0.69 2.97 0.59 17.4 ± 2
175 0.966 150 0.69 3.00 0.68 17.0 2
175 0.974 170 0.69 3.02 0.77 16.7 ± 2

200 0.871 10 0.73 2.70 0.05 23.5 ± 2
200 0.885 30 0.73 2.75 0.14 22.8 ± 2
200 0.897 50 0.73 2.79 0.23 22.2 + 2
200 0.908 70 0.73 2.82 0.32 21.6 -2
200 0.919 90 0.73 2.85 0.41 21.0 ± 2
200 0.929 110 0.73 2.88 0.50 20.4 - 2
200 0.938 130 0.73 2.91 0.59 19.8 ± 2
200 0.946 150 0.73 2.94 0.68 19.2 ± 2
200 0.955 170 0.73 2.96 0.77 18.6 ± 2

225 0.840 10 0.77 2.61 0.05 27.8 -3
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Table 28. Continued published pure (protonated) water diffusivity data
225 0.857 30 0.77 2.66 0.14 27.1 ± 3
225 0.871 50 0.77 2.70 0.23 26.5 ± 3
225 0.884 70 0.77 2.74 0.32 25.9 ± 3
225 0.895 90 0.77 2.78 0.41 25.3 ± 3
225 0.906 110 0.77 2.81 0.50 24.8 ± 2
225 0.916 130 0.77 2.85 0.59 24.1 ± 2
225 0.926 150 0.77 2.88 0.68 23.6 ± 2
225 0.935 170 0.77 2.90 0.77 22.9 ± 2

Table 29. Molecular-dynamic diffusivity simulations of pure water (Kalinichev, 1993 and NIST,
1996)

Calculated Reduced Self-
density Reduced calculated Reduced diffusivity,

Temperature, (NIST, 1996), Pressure, temperature, density, pressure, D22 x 105
T (OC) P2 (g/cm3) P (bar) Tr Pr2 Pr (cm2/S)

400 0.167 250 1.04 0.52 1.13 196
499 0.528 994 1.19 1.64 4.51 76
357 0.693 570 0.97 2.15 2.58 37
407 0.972 6435 1.05 3.02 29.2 23
498 1.286 32000 1.19 3.99 145 11
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Figure 56. Water self-diffusivity measurements and simulations from NMR measurements and
MD simulations, respectively, versus the calculated water density (Krynicki et al., 1978; Lamb et
al., 1981; Kalinichev, 1993; NIST, 1996). Lamb et al. 95%-confidence-interval uncertainties are
also shown.
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Figure 57. Water self-diffusivity measurements acquired using NMR and their 95%-confidence-
interval uncertainties versus the calculated water density (Lamb et al., 1981; NIST, 1996).
Curves are intended to show general trends.
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Figure 58. Water self-diffusivity measurements acquired using NMR and their 95%-confidence-
interval uncertainties versus the calculated water density (Krynicki et al., 1978; NIST, 1996).
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For mixtures, data are also scant and are limited to

1. supercritical aqueous sodium-nitrate (NaNO3) electrolyte-salt mixtures measured

with the laser-induced grating method (Butenhoff et al., 1996),

2. near-critical aqueous mixtures of hydroquinone and (potassiumn-) iodide ions at

240 bar measured with an electrical test cell (Flarsheim et al., 1986),

3. sub- and near-critical aqueous binary mixtures of infinitely dilute inorganics

(electrolytes) and organics (acetone and benzophenone) at 300 bar measured with the

Taylor-Aris dispersion technique (Goemans, 1996), and

4. supercritical aqueous mixtures of infinitely dilute benzene at 250 bar measured with

the Taylor-Aris dispersion technique (Bartle et al., 1994).

These data are summarized in Table 30 and Table 31 and are shown in Figure 59 through Figure

61 as a function of pure water density. From Figure 60 and Figure 61, the iodide-ion data exhibit

smoothness irregularities even with the 95%-confidence intervals shown, although the overall

diffusivity trends are consistent with the other mixtures. For benzene, the data are also irregular,

but are consistently isolated from the other datasets, thus raising suspicion about their accuracy.

When plotted as a function of solution density in Figure 62, the benzene data are also outliers

and thus, will not be used in the modeling analysis section. From further examination of Figure

62, the concentrated sodium-nitrate diffusivities no longer overlap and represent the only dataset

that needs to be represented by mixture densities (Goemans, 1996).

In order to provide an overall picture of the available sub-, near, and supercritical

diffusivity data, all of the data are plotted in Figure 63 where several trends can be seen. First,

subcritical liquid diffusivities have higher densities and typically have lower diffusivities. Less

dense and infinitely dilute supercritical-water mixtures have higher diffusivities, while

concentrated aqueous mixtures have lower diffusivities. The dramatic diffusivity drops of the

sodium-nitrate solutions are consistent with critical-point phenomena, but it should not be

assumed that mixture diffusivities will always decrease at low densities. One region of Figure 63

that would benefit from additional data free of critical-phenomena effects is the low density

supercritical region (0.1-0.4 g/cm3, i.e., the left side of Figure 63). Furthermore, understanding

the concentration effect would be beneficial since SCWO processing conditions are not usually

infinitely dilute.
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Table 30. Aqueous sodium-nitrate(1) mutual diffusivity data along with calculated-pure-water
densities (with 95%-confidence-interval uncertainties) (Butenhoff et al., 1996; NIST, 1996)

Solute Solute Calculated-pure-
concentration mole fraction, Temperature, water density, Pressure, Mutual diffusivity,

(wt.%l) Xl T(°C) P2 (g/cm3) P (bar) D 12 x 105 (cm2/s)

2.08%
2.08%
2.08%
2.08%
2.08%
2.08%

7.83%
7.83%
7.83%
7.83%
7.83%
7.83%
7.83%

7.83%
7.83%
7.83%
7.83%
7.83%
7.83%
7.83%
7.83%
7.83%
7.83%
7.83%
7.83%
7.83%
7.83%

7.83%
7.83%
7.83%
7.83%
7.83%
7.83%
7.83%

20.3%
20.3%
20.3%
20.3%
20.3%
20.3%
20.3%
20.3%
20.3%
20.3%
20.3%

0.004
0.004
0.004
0.004
0.004
0.004

0.018
0.018
0.018
0.018
0.018
0.018
0.018

0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018

0.018
0.018
0.018
0.018
0.018
0.018
0.018

0.051
0.051
0.051
0.051
0.051
0.051
0.051
0.051
0.051
0.051
0.051

450
450
450
450
450
450

400
400
400
400
400
400
400

450
450
450
450
450
450
450
450
450
450
450
450
450
450

500
500
500
500
500
500
500

450
450
450
450
450
450
450
450
450
450
450

0.285
0.308
0.343
0.402
0.446
0.480

0.225
0.246
0.357
0.475
0.523
0.578
0.612

0.282
0.286
0.305
0.322
0.343
0.375
0.402
0.446
0.480
0.506
0.528
0.547
0.564
0.591

0.294
0.299
0.339
0.406
0.457
0.497
0.529

0.272
0.289
0.308
0.343
0.375
0.402
0.446
0.480
0.506
0.528
0.548

409.5
425.1
450.1
500.0
550.3
600.1

271.6
276.9
300.0
350.0
399.9
500.0
600.0

407.3
410.3
422.8
435.0
450.1
475.0
500.0
550.1
600.0
650.0
700.0
750.0
800.0
900.0

544.0
550.2
600.1
700.0
800.1
900.0
1001.0

401.0
412.1
425.2
450.0
475.1
500.0
550.1
601.2
650.4
699.2
751.5

13.0 2
14.7 1

17.0 1
19.8 ±3
18.3 ±3
20.2 ± 4

10.6 ± 1
12.1 ± 1
15.8 ± 1
20.1 2
21.2 ± 3
23.2 ± 4
21.7 ± 3

1.42 ± 0.2
2.72 ± 0.2
6.35 ± 1
9.04 ± 1
11.4 ± 1
14.6 ± 1
17.1 ± 2
20.3 ± 2
21.7 ± 2
23.1 2
23.1 ±4
24.8 ± 3
24.7 ± 3
24.0 ± 4

4.0 ± 1
5.4 ± 1
12.2 ± 1
19.6 ± 1
22.7 ± 2
25.0 ± 3
27.1 ±4

8.9 ± 0.4
11.0± 1

12.8 ± 2
14.7 ± 2
16.3 ± 1
17.5 ± 2
19.0 ± 2
19.6 ± 3
20.5 ± 2
19.6 ± 2
20.5 ± 3
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Table 31. Published aqueous-mixture diffusivity data that are near or supercritical along with
calculated-pure-water densities (with 95%-confidence-interval uncertainties) (NIST, 1996)

Solute Solute Calculated-pure- Mutual
concentration mole fraction, Temperature, water density, Pressure, diffusivity,

(wt.% 1) xl T(°C) P2 (g/cm3) P (bar) D12 x 105 (cm /s)

Acetone(l)-water(2) (20 T - 20 C & 2 cp - 2 bar) (Goemans, 1996)

0.58% 0.002 25.1 1.010 300.7 0.958 4- 0.1
0.58% 0.002 100.0 0.972 299.7 3.59 + 0.2
0.29% 0.001 200.2 0.884 300.2 10.6 + 0.1
0.06% 0.000 299.8 0.751 299.7 25.9 ± 1
0.29% 0.001 300.3 0.750 300.1 24.5 ± 5
0.29% 0.001 300.0 0.751 300.0 25.2 3
0.29% 0.001 350.1 0.644 301.6 43.6 ± 5

Benzophenone(l )-water(2) (2 aT - 20C & 2 up - 2 bar) (Goemans, 1996)

0.01% 0.00001 100.0 0.972 300.4 2.28 + 0.1
0.01% 0.00001 200.0 0.885 300.3 7.57 1

0.001% 0.000001 300.0 0.751 299.6 19.1 4
0.001% 0.000001 349.9 0.644 300.1 31.7 10

Sodium nitrate(1)-water(2) (2 0 T - 20C & 2 cp - 2 bar) (Goemans, 1996)

2.081% 0.004 24.4 1.010 300.0 1.78 ± 0.4
0.843% 0.002 50.6 1.000 299.5 2.62 4- 0.4
0.843% 0.002 100.2 0.972 300.6 4.49 ± 0.5
0.507% 0.001 149.8 0.933 299.6 7.32 ± 1
0.339% 0.001 200.0 0.885 300.0 10.5 ± 2
0.170% 0.0004 249.5 0.826 300.2 17.0 ± 1
0.170% 0.0004 299.9 0.751 299.8 19.2 4- 5
0.085% 0.0002 349.9 0.644 300.0 40.7 13

Hydroquinone(l)-water(2) (Flarsheim et al., 1986)
-0.27% 25 1.008 240 0.74 - 0.1
-0.28% 70 0.988 240 1.8 1
-0.28% 100 0.969 240 2.7 ± 0.2
-0.30% 150 0.930 240 3.8 ± 0.6
-0.31% 200 0.881 240 7.9 1
-0.33% 250 0.820 240 12 ± 2
-0.37% 300 0.741 240 19 6

Iodide ions(1)-water(2) (Flarsheim et al., 1986)
-0.31% 25 1.008 240 1.4 ± 0.2
-0.32% 70 0.988 240 3.2 -0.2
-0.33% 100 0.969 240 4.6 0.4
-0.34% 150 0.930 240 9.1 ± 1
-0.36% 200 0.881 240 16 2
-0.39% 250 0.820 240 16 ± 2
-0.43% 300 0.741 240 22 - 2
-0.51% 350 0.621 240 37 ± 8
-0.65% 375 0.486 240 49 4 18

Benzene(1)-water(2) ( 2ap - 4 bar) (Bartle et al., 1994)

-0.1% -0.0002 100 0.970 250 1.3 4 0.3

-0.1% -0.0002 150 0.930 250 1.7 ± 0.3
-0.1% -0.0002 200 0.881 250 5.1 ± 1
-0.1% -0.0002 250 0.821 250 5.4 1
-0.1% -0.0002 300 0.743 250 7.4 1

-0.1% -0.0002 350 0.625 250 25 ± 5
-0.1% -0.0002 380 0.451 250 66 13

-0.1% -0.0002 400 0.167 250 160 32
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Figure 59. Aqueous sodium-nitrate mutual-diffusivity measurements reported as a function of
calculated-pure-water density (Butenhoff et al., 1996; NIST, 1996). Curves are intended to show
general trends.
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Figure 60. Aqueous-mutual-diffusivity measurements reported as a function of calculated-pure-
water density (Flarsheim et al., 1986; Bartle et al., 1994; Goemans, 1996; NIST, 1996). Curves
are intended to show general trends.
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Figure 61. Aqueous-mutual-diffusivity measurements reported as a function of temperature
(Flarsheim et al., 1986; Bartle et al., 1994; Goemans, 1996). Curves are intended to show
general trends.
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Figure 62. Aqueous sodium-nitrate mutual-diffusivity measurements plotted as a function of
mixture solution density (Butenhoff et al., 1996; Goemans, 1996). Curves are intended to show
general trends.
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Figure 63. Global view of aqueous mutual and self-diffusivity measurements reported as a
function of solution density (Krynicki et al., 1978; Lamb et al., 1981; Flarsheim et al., 1986;
Bartle et al., 1994; Butenhoff et al., 1996; Goemans, 1996; NIST, 1996). Curves are intended to
show general trends.

Another anomaly to discuss involves the curvature of the 7.8 wt.%1 sodium-nitrate curves

in Figure 62. The authors speculate that dramatic diffusivity drops at lower density are due to

critical-phenomena slowing near the critical-solution points (see Section 11.1.2 for a critical-

phenomena introduction). When 7.8 wt.%l diffusivity data are plotted as a function of pressure,

slowing trends are seen for each of the 7.8 wt.%, diffusivity isotherms (Butenhoff et al., 1996).

They conclude that while the 450 0 C isotherm is close to the critical point, the 4000 C and 5000 C

isotherms are further away from the plait point since they do not exhibit a drop comparable to

450 0 C data and that is characteristic of fluids near the critical point. Without accurate plait-point

information, validating their conclusions is difficult.

However, if their assumption that the 5000 C data are further away from the plait point is

correct, then the 5000 C diffusivities should not have a steep slope like that of the 4500 C data.

The 5000 C data that they report have the same slope, implying that the 500 0 C data are closer to
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the critical plait point. Due to this critical-point diffusivity decrease for each of their isotherms

and the fact that much of the data is close to the critical-solution point, the data collected with the

laser-induced-grating technique should not be used in the diffusivity-analysis section. In fact, for

the diffusivity analysis performed by Butenhoff and coworkers, they tested correlations with the

three densest data points which are least affected by critical effects for each concentration and

temperature dataset so that their analysis was free of critical effects (Butenhoff et al., 1996;

Goemans, 1996). In order to avoid introducing diffusivity data possibly contaminated with

critical effects, these data, along with the benzene data previously discussed, will not be used in

the analysis section of this dissertation.

Ohmori and Kimura have recently performed molecular-dynamic simulations for sub-

and supercritical water mixtures with oxygen and methane (2003), and these tracer diffusivities

are contained in T and presented in Figure 64 and Figure 65 for oxygen and Figure 66 and Figure

67 for methane. When combined with all of the data used in the upcoming analysis section in

Figure 68, the Ohmori and Kimura data are similar to and extend past the Lamb et al. (1981) data

located in the low density supercritical regime.

Given the limited number of available diffusivities for supercritical aqueous solutions,

especially with organic solutes, additional data would be useful in developing new and validating

existing diffusivity models for supercritical water systems. Diffusivity measurements that

address these issues are the focus of this dissertation, and this matter will be discussed further in

Sections 11.2 through 11.4. The diffusivity models screened by the authors of the previously

published supercritical diffusivity data will also be introduced in the diffusivity-analysis section.
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Table 32. Published aqueous-mixture diffusivity simulation data along with calculated-pure-
water densities (with 95%-confidence-interval uncertainties)

(NIST, 1996; Ohmori and Kimura, 2003)

Solute Solute Reported Calculated- Solute tracer Solvent tracer
concen- mole Temp- solution pure-water diffusivitr, diffusivit',
tration fraction, erature, density, density, Pressure, D x 10 DX 10

(wt.%l) xi T(°C) P12 (g/cm) P2 (g/cm) P (bar) (cm2/s) (cm2/s)

1.38% 0.0078

0.115
0.217
0.426
0.663
0.994

0.217

0.115
0.217
0.426
0.663
0.994

0.115
0.217
0.426
0.663

0.115
0.217
0.426
0.663

0.115
0.217
0.426

0.115
0.217
0.426

0.115
0.217
0.426

Oxygen(l )-water(2)
0.075
0.109
0.484
0.699
0.993

0.135

0.097
0.182
0.431
0.682
0.994

0.105
0.199
0.429
0.677

0.108
0.206
0.430
0.675

Methane(l)-water(2)
0.076
0.112
0.500

0.099
0.187
0.441

0.106
0.201
0.437

153
186
235
778
6550

231

266
406
745
1910
9270

349
581
1170
2820

427
750
1600
3730

155
188
242

269
413
766

352
587
1200

397 + 18
197 ± 6
83 6
40 4

16.5 1

182 16

391 24
183 14

89 4
41 6

20.4 1

388 ± 24
189± 24
87± 6
47. 4

401 ± 14
218 + 16
93 4
57 6

355 ± 20
187 ± 20
78 4

384 14
203 12
81.5 ± 2

405 16
210± 14
92± 6

228 4- 8
114 6
72 ± 6

44.6 1.2
21.7 ± 0.6

148 ± 6

291 20
178 14
95 6

55 ± 1.6
25.7 1.4

3204 ±16
193 10

1044 6
64 4

387 18
220 12
110+ 8

64. 4

235 ± 8
128 ± 6

70.9 ± 2.8

305 ± 20
166± 6
85 4

348 ± 6
208 16
103 ± 8

0.70% 0.0078 700 0.217

1.38%
1.38%
1.38%
1.38%
1.38%

0.0078
0.0078
0.0078
0.0078
0.0078

374
374
374
374
374

1.38%
1.38%
1.38%
1.38%
1.38%

1.38%
1.38%
1.38%
1.38%

1.38%
1.38%
1.38%
1.38%

0.70%
0.70%
0.70%

0.70%
0.70%
0.70%

0.70%
0.70%
0.70%

0.0078
0.0078
0.0078
0.0078
0.0078

0.0078
0.0078
0.0078
0.0078

0.0078
0.0078
0.0078
0.0078

0.0078
0.0078
0.0078

0.0078
0.0078
0.0078

0.0078
0.0078
0.0078

400

500
500
500
500
500

600
600
600
600

700
700
700
700

374
374
374

500
500
500

600
600
600

0.208 758 225 16 223 12
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Figure 64. Simulated aqueous oxygen tracer diffusivities plotted as a function of mixture
solution density for a 1.38 wt.%l oxygen-water mixture (Ohmori and Kimura, 2003). Curves are
intended to show general trends.
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Figure 65. Simulated aqueous tracer diffusivities plotted as a function of mixture solution
density for a 1.38 wt.%i oxygen-water mixture (Ohmori and Kimura, 2003). Curves are
intended to show general trends.
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Figure 66. Simulated aqueous methane tracer diffusivities plotted as a function of mixture
solution density for a 0.70 wt.%, methane-water mixture (Ohmori and Kimura, 2003). Curves
are intended to show general trends.
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Figure 67. Simulated aqueous tracer diffusivities plotted as a function
density for a 0.70 wt.%l methane-water mixture (Ohmori and Kimura,
intended to show general trends.
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Figure 68. Global view of aqueous mutual and self-diffusivity measurements reported as a
function of solution density (Krynicki et al., 1978; Lamb et al., 1981; Flarsheim et al., 1986;
Goemans, 1996; NIST, 1996; Ohmori and Kimura, 2003). Curves are intended to show general
trends.
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II. 1.4 Nuclear Magnetic Resonance

Nuclear magnetic resonance (NMR) has been widely applied in many scientific fields

including biology, chemistry, physics, and medicine, along with numerous engineering

disciplines including nuclear, chemical, mechanical, and civil engineering. Since its first use in

1946 (Bloch et al., 1946; Purcell et al., 1946), NMR has evolved into a diagnostic tool capable of

performing diffusivity, imaging, material characterization & differentiation, velocity, and

acceleration experiments and has numerous chemistry and biology applications. Several of the

key features of NMR are the non-invasive nature of sample and flow measurements; that NMR

signals can be made sensitive to a variety of parameters including density, chemical shift,

molecular motion, and NMR relaxation times; and that NMR is capable of measuring and

resolving fast dynamic processes of order milliseconds.

II.1. 4. 1 NMR Diffusivity Measurement

The NMR diffusivity measurement is analogous to forced Rayleigh scattering. A spatial

grating of the spin magnetization is created, and the attenuation induced by molecular diffusion

is measured. One of most straightforward methods to explain NMR diffusivity measurements is

to consider the magnetization grating across the sample. The wave vector k of the spin

magnetization was introduced by Mansfield (1988) as

Ak(G,t) = 2 lyG(t)dt (172)

where G(t) is the time-dependent magnetic-field gradient. The detected NMR signal is the

spatially invariant part of the spin magnetization modulated by the spin precession due to the

gradient

S(k, t) c exp(iAcot)exp(- t/T2 )fp(r)exp(2niiAk r)dr (173)

In the pulsed-gradient spin-echo (PGSE) measurements employed here, the spatial

modulation of the spin magnetization is described by a single wave number whose amplitude

attenuates as exp(-Dk2t). For those portions of the measurement when k is time dependent, the

attenuation is exp(-jDk2(t)dt). Since k(t) is under experimental control, the diffusivity analysis

from a series of measurements is straightforward. Finally, there are a variety of considerations

associated with background gradients and hardware limitations that are well reviewed in the
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literature (and Stejskal and Tanner, 1965; Hoult and Richards, 1975; Hoult and Richards, 1976;

Callaghan and Xia, 1991; Price and Kuchel, 1991; Price et al., 1999).

II. 1.4.2 NMR Probes for High Temperature and High Pressure Applications without

Magnetic-Field Gradients

In addition to serving as a link between the spectrometer and sample, the NMR probe is

assembled so that it can be placed easily in the magnet and can be able to reliably hold the

sample vessel. When making measurements of samples held at elevated pressures and elevated

temperatures, there is greater risk of harm for the operator, magnet, and the probe, so great care

must be used. Numerous probe designs have been developed for a variety of high temperature or

high pressures applications, and several will now be presented in chronological order.

In 1972 Jonas published the design of his probe that could achieve temperatures of 350°C

and pressures of 5,000 bar with a Pyrex sample vessel and the RF coil placed inside a heavy

walled, externally heated titanium cylinder (the probe is shown in Figure 69). High pressure

seals were maintained at lower temperatures further away from the titanium heating zone. In

1979, DeFries and Jonas reported an improved design for their relaxation experiments with water

(Lamb and Jonas, 1981) which could operate up to 7000 C and 2,000 bar. As shown in Figure 70,

the pressure-balanced sample cell (letter K) was made of alumina for corrosion resistance, and

the design had the heater furnace (letter H) and RF coil (letter L) inside the argon-pressurized

titanium cylinder (letter A).

In 1983, Shimokawa and Yamada made a probe for 13C NMR experiments up to 550° C

and 1,000 bar so that. residues of thermal degradation of polyvinyl chloride could be monitored.

The sample vessel material was not documented, but as shown in Figure 71, it was pressure

balanced and placed inside a compact titanium alloy cylinder (2 cm ID, letter B) along with the

heater (letter E) and RF coil (letter F). In 1990, Adler and coworkers reported 170 spectra and

relaxation for multiple ceramic samples using a water-cooled copper tube shaped to become the

RF coil, which is then wrapped around the furnace containing the solid sample. The probe was

reported to operate up to 1050C as it sat in a cooling air stream at atmospheric pressure (the

probe is shown in Figure 72). In 1992, Jonas and coworkers reported their work on a 6,000 bar

probe along with other probes developed and previously discussed for use in their biological
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studies. All of their results were below 100°C, had high resolution (0.003 ppm), and had high

SNR (50), while the sample volumes (2 cm 3) were large.

In 1995, de Langen and Prins developed a heated titanium-alloy pressure vessel with the

-RF coil and pressure-balanced sample tube inside that could operate up to 10,000 bar and 337°C

(the probe is shown in Figure 73). They report 5,500 bar proton relaxation data for polyethylene

from 340 K through its melting line at 540 K.
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Figure 69. Illustrations of the high pressure NMR probe (Source: Jonas, 1972).
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Figure 70. Illustrations of the high pressure NMR probe (Source: DeFries and Jonas, 1979).
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Figure 71. Illustrations of the high pressure NMR probe (Source: Shimokawa and Yamada,
1983).

220



FIG. 2. Probe cross-section.
(1) Copper NMR coil, 1/8-
in. copper tubing. (2) Outer
quartz furnace shell. (3)
Annular furnace element.
(4) Monitor thermocouple.
(5) Sample. (6) Quartz
sample tube containing 1702
gas. (7) Alumina fiber insu-
lation. (8) Control thermo-
couple. (9) Coaxial furnace
power lead. (10) Brass fit- water-cooled
ting. (11) Support plate. furnace NMR coil
(12) Teflon water line. (13)
Variable capacitor, 2 to 9 pf.
(14) Fixed capacitor, 5 pf.
(15) Fixed matching capac-
itor, r-1300 pf. (16) BNC
radio frequency input/
output. (17) Cylindrical
brass probe body.

sample

H20 in

H 0 out

Figure 72. Illustrations of the high pressure NMR probe (Source: Adler et al., 1990).
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Figure 73. Illustrations of the high pressure NMR probe (Source: de Langen and Prins, 1995).

II. 1.4.3 NMR Probes for High Temperature and High Pressure Applications with Magnetic-

Field Gradients

All of the probes described in Section II. 1.4.2 were used for relaxation measurements that

did not require magnetic-field gradients. Unfortunately, only a limited number of NMR

measurements are possible without gradients. If magnetic-field gradients are used, diffusivity

experiments can be performed.

In 1985, Roe developed a high pressure sample tube (0.5 cm OD, 0.34 cm ID) made from

sapphire that was mounted to a titanium valve assembly in order to perform high pressure

experiments (the sample tube is shown in Figure 74). The closed-ended tube was glued and

sealed to the metal with an epoxy adhesive and was quoted as operating safely at 140 bar,

although the hydrostatic burst point of the tube was 1,000 bar (the seal was still intact during an

actual pressure test). Experiments with different nuclei were performed and had 0.0014 ppm

resolutions. In 1991, Horvath and Ponce redesigned Roe's sample tube by simplifying the

titanium valve connected to the sapphire tube. The novel features of the Roe (1985) and Horvath

222

_ _ _ _ _



and Ponce (1991) sample tubes include that the 0.5 cm OD tube could be swapped with the

standard 0.5 cm OD NMR sample tube. In addition, the sample tube could be precharged and

pressurized away from the magnet before being placed in the magnet and probe. Their tube,
which is manufactured by Saphikon, Inc. (Milford, NH), is glued in place with an aluminum-

based polyamide adhesive in order to generate the high pressure seal (the sample tube is shown

in Figure 75). In 1995, Yonker and coworker's novel design used fused-silica capillary tubing
that was looped multiple times in a 0.5 cm NMR tube in order to study protonated

organometallic reactions at ambient temperatures up to 1,000 bar (the sample tube is shown in
Figure 76). They also report proton chemical shifts of subcritical propane and supercritical

ethylene, supercritical-xenon chemical shifts (129Xe), and local shielding of near-critical sulphur
hexafluoride ( 19F). Unfortunately, their apparatus is limited to low temperatures due to tensile-
strength reduction at higher temperatures, and they only report less than 680C data.

Figure 74. Illustrations of the high pressure NMR probe (Source: Roe, 1985).

223

'' '



16.8 mm

Figure 75. Illustrations of the high pressure NMR probe (Source: Horvath and Ponce, 1991).
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Figure 76. Illustrations of the high pressure NMR sample tube (Source: Yonker et al., 1995).

In 1996, Bai and coworkers modified the designs of Roe, Horvath, and Ponce by

decoupling pressure and temperature. Since the previous sample tubes were sealed with a

constant volume, an increase in temperature would increase the vapor pressure. Bai removed the

valve door assembly, placed a pressure-balanced movable piston inside the sample tube that

connects the sample tube to capillary tubing, and pressurized the back of the piston and the

volume of the valve assembly (the sample tube is shown in Figure 77). They were now able to

control the pressure by regulating the backside pressure of the piston, and add samples through

the access port and capillary tubing of the back face of the piston. They reported 13C spin-lattice

relaxation times for carbon dioxide from 30 to 300 bar and 15 to 700 C.
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C

Figure 77. Illustrations of the high pressure NMR probe (Source: Bai et al., 1996). Note the
sample-tube restriction used to isolate the sample from the piston and capillary feed tubing in
order to minimize natural convection.

In 1999, Gaemers and coworkers built a sapphire tube assembly similar to Bai's but

without the piston and used one access port in the metal body to pressurize (up to - 100 bar) and

the second to monitor the pressure with a transducer (the sample tube is shown in Figure 78).

The last example of a closed-ended tube is that from Haake and coworkers (1998) who used a

Pyrex tube with a pressurized port in order to perform sub- and supercritical xenon experiments

up to 80 bar and 700 C. In all of these designs, the sample is measured at one end of the sample

tube and the sample inside this end would be difficult to change since the access ports for new

samples are all located at the other end of the tube.
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Figure 78. Illustrations of the high pressure NMR probe (Source: Gaemers et al., 1999).

One of the most important features about these last approaches is that standard NMR

probes can be used, including probes which have gradient sets that are built into the probe or

gradient sets that permanently line the superconducting magnet which the probes sit in. As a

result, more interesting NMR experiments can be performed including imaging experiments.

However, the tube-to-metal interface does not allow the use of high temperatures that are needed

for SCW studies.

In 1996, Matenaar and coworkers designed and built a pressure vessel similar to those of

Jonas, but were able to include a gradient set (#11) between the pressure vessel and the RF coil

(#10) and sample (the probe is shown in Figure 79). The gradient set was formed on a

MACOR® (a Coming machinable ceramic) base, and the probe was able to operate up to 2,000

bar and 4000 C for their molten-salt (23Na) diffusion studies.
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Figure 79. Illustrations of the high pressure NMR probe (Source: Matenaar et al., 1996).

In 1997, Hoffmann and Conradi simplified Jonas's design in order to make chemical shift

measurements for pure water, pure ethanol, and pure methanol (Hoffman and Conradi, 1997a;

Hoffman and Conradi, 1997b; Hoffman and Conradi, 1998). Nonetheless, they report shifts up

to 400 bar and 6000 C with 0.1 ppm FWHM water peaks. Their probe also contains a one-axis

gradient coil located on top of the cooling coils covering their titanium-alloy pressurize vessel

(the probe and its argon-pressure-balanced sample cell is shown in Figure 80).
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Figure 80. Illustrations of the high pressure NMR probe (Source: Hoffmann and Conradi,
1997a).

Also in 1997, Matubayasi and coworkers report their probe design for their studies

(1997a and 1997b) of hydrogen bonding in sub- and supercritical water. Their water sample is

sealed in a small quartz capillary, which is then placed in a standard 0.5 cm tNi tube filled

with the heat transfer fluid DEMNUM S-200 (Daikin Co.). This tube is then placed in a vertical

bore magnet and is placed inside the RF coil. A double-walled cylindrical Dewar is located

between the sample tube and the RF coil and is used as an insulator to keep the RF coil cool

while hot nitrogen gas flows past the sample tube (the probe is shown in Figure 81). The Dewar

tube functions as a thermal insulator since the gap between the double set of walls is sealed and

placed under vacuum, thereby reducing the thermal conductivity and heat-transfer coefficient

across the Dewar wall. The nitrogen that is flowing past the sample tube is heated upstream with

an electrical heater located inside the Dewar. Temperatures up 4000 C are reported, and since the
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sample capillary is sealed, the maximum pressure is estimated to be 260 bar based on their

reported density of 0.19 g/cm3. A noteworthy feature is the use of a cool RF coil since the SNR

is inversely dependent on the temperature (Hoult and Richards, 1976). Only Matubayasi et al.

(1997b) and Adler et at. (1990) use a low temperature coil with a high temperature sample.

However, Matubayasi's coil has a much larger diameter which reduces the RF-coil filling factor,

and consequently, the SNR.

SCI

Figure 81. Illustrations of the high pressure NMR probe (Source: Matubayasi et al., 1997b).

All of these probes have their various advantages and limitations, but one aspect never

addressed is using the probe for monitoring molecular motion besides mentioning that

measurements can be made. Furthermore, these probes offer little in terms of fast, convenient

replacement of sample within the same sample vessel and within the actual location surrounded

by the RF coil.
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11.2. Objectives and Approach

SCW binary diffusivity data are scarce and difficult to obtain due to the limited ability to

make diffusivity measurements at harsh SCWO process conditions. NMR is a technique that has

been successfully used to accurately measure diffusivities and has been used at SCWO

conditions to measure pure supercritical water properties such as chemical shift, self-diffusivity,

and relaxation effects (Lamb et al., 1981; Lamb and Jonas, 1981; Hoffmann and Conradi, 1997).

Furthermore, up to now, SCW NMR measurement samples are contained in closed vessels so

changing sample composition is rather difficult and time consuming. Some designs have

incorporated a piston so that pressure, and hence, density could be altered while temperature

could be easily adjusted, but none have been capable of flowing new sample into the sample

region in order to deliver new sample or, possibly, examine molecular motion such as molecular

velocity.

The first objective for this part of the dissertation is to design and construct a SCW NMR

apparatus capable of making SCW measurements under flowing conditions for the reasons

described above. Validating apparatus performance and measurement capacity will be achieved

by confirming SCW self-diffusivity data of Lamb et al. (1981). A second objective is to use this

system to measure diffusivities of a binary system in order to generate additional binary

diffusivity data and consists of tracer diffusivity experiments for three different concentrations of

a model aqueous mixture, namely acetone(l)-water(2). The third objective is to use the collected

data for the development and validation of diffusivity models. Kinetic-gas and hydrodynamic

theories will be tested in order to determine their accuracy with the collected and previously

published data. The following three sections address each of these objectives.
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11.3. SCWNMR Apparatus Design and Fabrication

The SCW NMR apparatus is composed of several major components which will be

described in this section. The NMR experimental details will be discussed prior to the

introduction of the NMR probe assembly. The probe assembly discussion will follow. The

focus of this section then shifts to its subsystems such as thermal and high temperature features,

pressure and flow capabilities, measurements, controls, NMR circuitry, and safety features.

II.3. 1 Pulsed Gradient Spin Echo Technique

The PGSE experiment employed here used eight dummy scans, CYCLOPS phase

cycling, and signal averaging (depending on the signal strength and by repeating the phase

cycling four to six times for a total of sixteen to twenty-four scans) (Hoult and Richards, 1975).

Maximum gradient strengths, Gmax, were determined at each experimental condition in order to

achieve sufficient attenuation of the multi-peak spectra, while the gradient strength was varied

from near zero, Gmin, (smallest signal attenuation) to the maximum value, Gmax (greatest signal

attenuation) in approximately twelve steps. The sequence used is illustrated in Figure 82. The

gradient was calibrated using water at atmospheric conditions (25°C and 1 atmosphere) where

the water self-diffusivity is (2.299 + 0.005) x 10-5 cm2/s (Weingartner, 1982; Holz et al., 2000).

An example of the data processing is shown in Figure 83 where the stacked plot clearly shows

increasing attenuation from each of the scans, while Figure 84 and Figure 85 show the

diffusivity-calculation results of for acetone and water, respectively.
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Figure 82. PGSE sequence used for the SCW NMR diffusivity experiments.
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varying-gradient-strength scans is determined and is then used to calculate the tracer diffusivity
for acetone and for water. The conditions for this experiment are 4000 C, 0.10 g/cm, and 40
wt.% 1 acetone(1 )-water(2).
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Figure 84. Acetone(l) tracer-diffusivity plot for the data shown in Figure 83

(-m = D 1 = (154 ± 10) x 10- 5 cm 2/s where 10 is the estimated standard deviation). The

conditions for this experiment are 400°C, 0.10 g/cm, and 40 wt.%1 acetone(l)-water(2).
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Figure 85. Water(2) tracer-diffusivity plot for the data shown in Figure 83

(-m = D2 = (249 ± 4) x 10- 5 cm 2/s where 4 is the estimated standard deviation). The conditions

for this experiment are 400°C, 0.10 g/cm, and 40 wt.%l acetone(l)-water(2).
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II. 3.2 NMR Probe Assembly

II.3.2.1 High Temperature Features

The approaches used by other researchers have resulted in either sample tubes that are

used in standard commercial NMR probes or thick-walled metallic pressure vessels that can be

pressure balanced with thin-walled sample tubes (Hoffmann and Conradi, 1997; Matubayasi et

al., 1997). Both cases could be adapted for flow at high temperatures, but none have published

such data. The design by Matubayasi and coworkers (1997) offers several features that were

transferred to this researcher's SCW NMR probe including the use of a vacuum Dewar and hot

gas to maintain a high temperature. The hot gas is a safety concern since this gas has to be

cooled. The hot gas was designed to mix downstream with cooling gas, which is used to keep

the magnet bore and other temperature-sensitive components cool. Early tests with Dewars

showed that a significant radial temperature (AT= 100C at 3500 C) could exist inside the Dewar

if the outside temperature were ambient when the Dewar vacuum was not actively pumped.

From these tests, the Dewar was modified to be actively pumped during high temperature

exposure in order to minimize heat loss. In order to minimize radiation heat losses, the surface

emissivity was lowered by silver coating the internal Dewar surfaces. The final design of the

Dewar that was prepared by H.S. Martin, Inc. (NJ) and used in this research is shown in Figure

86.

To further reduce temperature variation near the sample tube, the hot gas flowing in the

Dewar was forced to turn around in an annular section in order to behave like a counter-current

heat exchanger. As a result, the Dewar inner wall was heated with recycled hot gas flowing

away from the sample, and temperature gradients were minimized near the sample region (See

Figure 87). Typical air-flow rates were 150 SCFH (limited by the building compressor) and

typical annular exhaust temperatures were 4000 C. The Dewar outer wall registered 35°C for a

520°C inlet-hot-air temperature and a 500°C sweet-spot temperature. Over approximately 40 cm

of the Dewar, this 200C difference yields an approximate axial temperature gradient of-2°C/cm

which is close to the -3 ± 3°C/cm that was estimated from temperature readings of

thermocouples mounted in known axial positions on the NMR sample vessel.

A vacuum turbo-pump was used to evacuate the Dewar before and during all

experiments. Temperature monitoring confirmed that the Dewar functioned as an insulator since
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500°C/cm radial-temperature gradients were often seen across the Dewar double wall. Since the

vacuum equipment had to be placed outside the shielded magnet room, /4¼" ID copper tubing

joined the vacuum pump to the valve mounted on the NMR probe assembly, which was

connected to a flexible 321 stainless-steel vacuum tube (Swagelok 321-4-x-24-b2). The flexible

tubing was connected directly to the Dewar pump port. IsofraxTM 1260C (Unifrax) thermal

insulation was used to provide additional thermal resistance in areas where airflow was not

needed and in any gaps. Pieces of one-inch thick blankets were cut and molded where necessary.

40 CFM of 20°C cooling air was provided by a R41 10-2 regenerative blower (Gast

Manufacturing Inc., MI) and a counter-current air-water heat exchanger (HF-202-HY-1P, Young

Radiator Co., OH). Additional cooling-flow details will be provided when the NMR electrical

circuit is discussed (see Section II.3.2.5).

Figure 86. Rendering of the silver-coated quartz dual-walled Dewar with a 3/8" pumping port in
order to actively pump and improve thermal-insulation properties.
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IL.3.2.2 SCWPressure and Flow Features

11.3.2.2.1 High temperature and high pressure sample vessel

With the sample vessel heated, attention can now turn to pressurizing and flowing the

sample. Because SCW mixtures are well known to be chemically and mechanically corrosive

(e.g., chemical attack and pitting), the choice of materials to house SCW is limited, but well

documented (Downey et al., 1995; Cline, 2000). Inconel alloy 625 and Hastelloy alloy C276 are

the materials of choice for non-chlorinated SCWO systems. However, metal will interfere with

RF energy so it cannot be used to store the sample fluid in the vicinity of the RF coil.

Furthermore, magnetic metals must be avoided in order to prevent these materials from being

accelerated and potentially flying. As a result, only high nickel and stainless-steel alloys are

considered. For high temperature, high pressure applications, the best non-metallic option is

sapphire, which is single crystal aluminum oxide. Saphikon, Inc. (Milford, NH) is a reputable

supplier of custom-made sapphire tubes (Horvath and Ponce, 1991). However, their tubes have

been used in the past for high pressure studies, but not for high pressure and high temperature

studies. The temperature must remain low because epoxy adhesives are often used to join the

sapphire tube to any other surface, and epoxies have a temperature limit of approximately 00°C.

A new approach is needed to seal sapphire with metal at high temperatures and pressures.

High pressure and high temperature sapphire sealing is rather difficult, but not

impossible, and in the MIT supercritical fluids research group, it is quite common to use

sapphire-to-metal seals (Armellini, 1993; Dipippo, 1998; Hodes, 1998). One method used to

seal sapphire windows is to use a gold foil O-ring at the high pressure fluid interface when these

windows are tightened in a threaded socket-gland (nut) arrangement. However, due to thermal

expansion coefficient differences, there is a tendency for the seal to leak. Bellevue washers

placed between the gland and window are now used since their angled surface provides

additional compression force and compensates for thermal expansion effects that may lessen the

force holding the seal.

Using this type of sealing technique would not work on typical closed-ended sapphire

tubes since there is not a sealing surface. The solution is the world's first flanged sapphire tube
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Delivered flange
ID = 0.0625"

Ed Arcdini 8/3/01
Sketch - Probe CeLU

Figure 88. Saphikon print (in inches) for the flanged, closed-ended SCW NMR sample tube.

Figure 89. Pictures of the Saphikon flanged, closed-ended SCW NMR sample tubes.

for use in high pressure, high temperature SCW NMR studies. Saphikon Inc. was able to

provide flanged sapphire tubes as drawn in Figure 88 and shown in Figure 89.

The tube was designed to avoid metal and RF interaction and to avoid bounded diffusion.

Using a 5" (12.7 cm) length would ensure that large metal fittings would not interfere with the

NMR RF energy. Bounded diffusion is a concern for large diffusivities and occurs when a

diffusing molecule impacts a surface instead of another molecule or when the spin magnetization

is weakened by excessive spin dephasing. The resulting diffusivity is artificially skewed, unless

further experiments are performed to compensate for bounded diffusion. Typically, in a

bounded-diffusion environment, the measured diffusivity often reaches a limit, e.g., due to
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repeated impacts with vessel walls. Bounded diffusion requires knowledge of the distance that a

molecular could randomly travel during the NMR experiment along with the intrinsic length

scale that a spin may travel during one revolution (27c radians) of precession. Assuming a

diffusivity of 0.02 cm /s, an experimental scan time of 100 ms, the average RMS distance can be

estimated

XRMS = 2Dt = 0.063 cm = 0.025" (174)

Wayne and Cotts (1966) derived a dephasing bounded-diffusion relationship in terms of the

gradient strength and the length scale so that precession-related bounded diffusion which

artificially increases the spin-magnetization attenuation and inflates the calculated diffusivity can

be avoided

YGl3 1 for bounded diffusion (175)
D

Using a 0.5 G/cm gradient strength, the critical length for bounded diffusion is 0.021 cm

= 0.008". Using the inner diameter of the sapphire tube (0.1" (0.254 cm)), yG?/D = 1700, which

is three orders of magnitude larger than the bounded-diffusion criterion. For this reason and due

to the fact that diffusion is monitored axially (not radially), bounded diffusion is not expected to

occur for the SCW NMR experiments.

For the probe used in this study, the sample tube is required to interface with a standard

High Pressure Equipment Co. (HiP, Erie, PA) Hastelloy C276 fitting. Purchased fittings and

hardware were altered and machined in order to mate with the sapphire sample tube. One end of

a Hastelloy C276 60-21HF6 connector was machined and polished in order to have a scratch-free

surface that could maintain a high pressure, high temperature seal. The other end was left intact

so that a standard HiP connection could be made. A drawing of the socket and a picture of the

modified parts, along with a Bellevue washer used to produce the high temperature, high

pressure seal, are shown in Figure 90. When a gold foil washer is used to cushion the large area

between the sapphire and fitting sealing surfaces, microscopic crevices or holes that could form a

leak path are filled, and 300 bar pressures can be reached. Four stacked Inconel Bellevue

washers (Key Bellevilles Inc.) are also used in order to provide sufficient sealing force at

elevated temperatures. Without completely compressing the washers, a room temperature torque
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of 120 inch-lbs (13.6 N-m) was sufficient to maintain 300 bar seals at 4000 C. If the washers are

ever fully compressed, then they become permanently deformed and cannot be used again.

I -- 3/4"-16TPI ý

it~ 60

3/16"

5/16"

+-

"1 'V1

Figure 90. (a) Drawing of HiP socket before and after machining and (b) Pictures of the
modified connector with the polished sealing surface (mirror-like), the gland with its face
flattened, and one of the four Bellevue washers used together to maintain the seal.

Given the success reported in the literature, C-seals were considered as a sealing method

since an increased pressure-differential increases the force between the seal and the other sealing

faces (Jonas, 1972; DeFries and Jonas, 1979). Silver-plated Inconel 600 C-seals from Garlock

Helicoflex (U5214-00500 SEB) were used to seal the flanged sample tube and a modified HiP

connector, but had difficulty maintaining pressure at high temperatures. The failure is based on

the creation of a second seal between the flange and connector surfaces. As a result, the C-seal

pressure-differential lessened as pressure increased between the C-seal and the second seal.

Eventually, the second seal would leak to the atmosphere and the primary C-seal pressure

differential would momentarily increase and reseal the C-seal preventing any system pressure

drop. Unfortunately, this leak cycle would repeat so this method was shelved in favor of the

previously discussed gold-film method. It should be noted that at ambient temperature, C-seals

leaks were not observed up to the tested pressure of 400 bar, indicating that the C-seals were

under greater stress at higher temperatures.
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11.3.2.2.2 Flow and pressurization system

To be able to place fluid into the sample tube, a delivery system had to be developed.

The best approach is to use a small nozzle or inner feed tube to deliver new fluid in a co-annular

configuration. Not only does a tube placed near the end of the sample tube ensure that new

sample is delivered, it provides a means to have macroscopic motion, i.e., convection.

Furthermore, the additional volume restriction from the inner tube in the non-sampled part of the

sapphire tube reduces the flow induced by thermal gradients and thereby makes the end of the

tube appear to be a sample bulb. A nozzle made out of 0.032" (0.8 mm) OD stainless-steel

tubing was used to deliver fluid inside the sample vessel (MicroGroup, Inc., Medway, MA).

Since small amounts of metal can be located near the RF coil and since metal thermocouples

were already offset 1.9 cm from the coil, using a metal nozzle with a similar offset did not affect

the NMR signal. In order to avoid interfering with the internal thermocouple, the nozzle had a

larger offset of 2.3 cm and will be described in more detail shortly.

The delivery and return flow path must start and end on the same side of the magnet due

to the annular flow design and the layout of other probe components including the RF electrical

circuit. Using standard flow fittings, the inner flow can be delivered so that new sample fluid

can reach the tip of the sapphire sample vessel. These fittings are kept cool, used to hold and

support the sample holder in a cantilevered position, and are located in the air-mixing zone on

the left side of the magnet drawing shown in Figure 91. Pictures of the NMR probe are shown in

Figure 92. The 13/64" ID, 3/8" OD stainless-steel 316 tubing (HiP) that was used for fluid

containment and as an arm to hold the sample tube served its purpose well by not bowing,

leaking (failing), or becoming magnetic due to thermal cycling.
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Magnet and shim-set b

cool air

RP tube

Figure 91. NMR probe visualization showing the sample tube, connector, and cantilevered feed
tubing that is anchored in the exhaust region on the left. Also shown is the Ohmic heater that
heats air which heats the inner annular core. This hot air is eventually mixed with ample cooling
air under the aluminum support track prior to exiting the magnet bore.
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a)

b)
Figure 92. Pictures of the NMR probe assembly. (a) Mixing zone region which shows the
Inconel 625 inner annular feed tube (0.125" (3.2 mm) OD) entering the cantilevered HiP cross
fitting mounted to the aluminum support track, the insulated Ohmic heater, and the Dewar that is
located in the fiber-reinforced plastic (FRP) probe body. (b) Close-up view of the outer FRP
support tube, which shows a second FRP tube supporting the Dewar and forms the cooling air
channel. Hot air leaves the Dewar and immediately mixes with the much larger flow of cooling
air.
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11.3.2.3 Process-Condition Measurement and Control Features

Temperature and pressure within the NMR probe are independently controlled using

calibrated thermocouples and a pressure transducer. Ungrounded Nicrosil/Nisil Type N

thermocouples (Omega Technologies Co., CT) were used to control the sample temperature and

to monitor multiple locations so that axial and radial temperature gradients could be determined.

They were NIST-traceable calibrated at 4000 C, 450°C, 500°C, 550°C, and 600°C, and the 0.020"

OD thermocouples were within 0.4°C of the actual temperatures (Refer to Omega Technologies

Co. catalog for NIST calibration information). Type N thermocouples were chosen because of

their low level of magnetic-field interaction since the two conductors are non-magnetic nickel-

chromium alloys. The Inconel 600 sheath was left isolated from the thermocouple wires and

junction (ungrounded) in order to reduce electrical noise and grounding loops. One 0.0625" (1.6

mm) OD thermocouple with an exposed junction (no sheath coverage) was permanently

positioned -4 cm past the Ohmic heater (001-10009 Convectronics), but before the air flow was

diverted to the main axial section. The exposed junction was partially covered in order to

minimize radiation effects from the glowing-red heater elements. The heater was powered with

a Variac transformer that was manually adjusted until a temperature of interest was reached.

Four-foot-long, 0.020" (0.5 mm) OD ungrounded thermocouples were strung along the inside of

the flow system to near the end of the sample tube and secured to the sample-tube surface.

Early tests had two thermocouples located inside the sample tube and two located

externally separated axially in order to determine the internal and external temperature gradients.

When calculated at 4000 C and 450°C, the -0.3°C/cm and -0.4°C/cm (+ 0.3°C/cm (95%

confidence interval)) temperature gradients are nearly the same since they fall within the range of

the temperature measurements. Due to space limitations within the sample tube, only one

thermocouple could be installed internally during the actual SCW NMR experiments. The

external ones were arranged to measure radial temperature gradients since it was observed that

these gradients were larger than the axial gradients. For the SCW NMR experiments, the

thermocouple configuration is shown in Figure 93. By having knowledge of thermocouple

locations, thermal gradients, and temperatures, the average sample volume temperature can be

estimated along its variation during the NMR data collection. Temperatures were scanned and

stored every two seconds (0.5 Hz) using a personal computer running Omega data acquisition

253



3.7 cm--

F-r

I

Figure 93. 0.02" OD thermocouple placement in and around the sapphire sample tube (note that
the RF coil is not displayed). Two thermocouples are secured above and below the tube, while
one is internal with its vertical location unknown. The inner nozzle is shown and appears as a
thick solid line in the sample tube.

hardware (WB-ASC 12-bit DAQ card) and software with 60 Hz filtering enabled in order to

remove house voltage signal interference. Other thermocouples were placed in the annular

regions where hot and cold air were flowing, along with one in the mixed air region of Figure

92a and one mounted to the bottom outer diameter of the main FRP tube.

Pressure is monitored with a 5,000 psig (340 bar) PX945 pressure transducer (Omega

Technologies Co.). Since the transducer has magnetic components, it was located near the base

of the magnet where the high pressure sample feed and return lines are located. It was mounted

to a wood panel that was secured to the floor and that also housed a pneumatic four-way control

valve. The control valve allows automatic isolation of the NMR probe and the pumping station

(Bertram Controls Corp., CT). In order to verify the pressure accuracy, the pressure was verified

with transducers used by the MIT Supercritical Fluids Group. The flow diagram and layout is

shown conceptually in Figure 94. A chromatography pump was used to pump and pressurize the

sample. Pure water is stored in a 10 gallon (37.9 L) polypropylene tank where it is continuously

deaerated with helium gas. This deaeration technique has been shown to remove oxygen from

water solutions (DiNaro, 1999). A Millipore filtering unit equipped with reverse-osmosis,

carbon filtering, and ultraviolet filtering provided the deionized, filtered water. A switching

valve allowed the pump to siphon from a second reservoir containing the experimental aqueous

organic mixture.

Following the pumping, the aqueous mixture is brought to the base of the magnet where

it can be diverted back to the pumping station or flowed through the NMR probe depending on

the position of the four-way control valve as shown in Figure 94. Flow enters the NMR probe
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S... I (• = Temperature-sensor port Not to scale

Figure 94. Flow diagram and layout of the flow system including the pumping station and
hardware near and in the magnet.

system through the inner annular tube (0.0625" (1.6 mm) ID, 0.125" (3.2 mm) OD, Inconel 625).

This tube is then stepped down twice to smaller diameter tubing (0.020" (0.5 mm) ID, 0.032"

(0.8 mm) OD, SS316) with 0.042" (1.1 mm) ID, 0.0625" (1.6 mm) OD SS321 tubing in order for

the inner-tube outer diameter to clear the sapphire-tube inner diameter. The seals between the

larger and smaller tubes are achieved by crimping the tubes together. Since the seal is pressure

balanced, there is essentially zero driving force for the seal to leak. After passing through the

sample tube, the return flow passes counter-currently through the 3/8" (9.5 mm) OD stainless-

steel 316 tubing before it is diverted back to the magnet base through the HiP cross fitting that

serves as the support for the cantilever tubing. At the magnet base, the pressure is measured.

When there is little or no flow, the pressure does not fluctuate. At higher flow rates when the

pump strokes are more frequent and a pressure drop develops from the flow restrictions between

the sample tube and pressure transducer, fluctuations can be as high as 5 bar. The flow passes

through the control valve once more before it is depressurized through a manually adjusted back-

pressure regulator (BP-66, Go).
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Control Control
valve valve

-- From
Pump station

-'- To

-- * From

Pump station
--- To

valve valve

Flow through the NMR probe Flow diverted around the NMR probe
(open isolation valve keeps NMR probe pressurized)

Figure 95. Flow pathways for the four-way control valve. With the isolation valve closed,
configuration a) allows flow through the NMR probe, while configuration b) isolates the NMR
probe while flow continues from and to the pumping station.

II. 3.2.4 Nuclear-Magnetic-Resonance Electrical-Circuit Features

An RF coil must surround the sample of interest and is designed to be slightly larger than

the sample tube. Given the location, the coil temperature is approximately that of the sample. A

1 cm long, saddle-shape RF coil was constructed with one piece of 0.2 cm diameter copper wire

(Callaghan, 1993). The coil is connected to the NMR probe circuit that must be operating at a

near ambient temperature since the variable capacitors and solder junctions will fail at

temperatures above 100°C. To ensure that the electrical circuit operates at an acceptably low

temperature, cooling air is used.

The RF circuit used for proton NMR requires that it be tuned to 200.14 MHz and have

the load impedance matched to 50 Q. In order for the variable capacitors to have sensitivity

around 200.14 MHz, they must have a small capacitance range (1-10 pf). The circuit used

appears in Figure 96. Electrical arcing occurred during the use of high power pulses, so the

power was lowered to 75 W by using two 3dB attenuators for a total of 6dB attenuation.

Although the 7n/2 pulse time increased slightly to 10 p.s, the arcing was eliminated, and the NMR

experiment produced repeatable results.

A close up view of the electrical circuit and support is shown in Figure 97, while the

overall NMR probe assembly is shown in Figure 98. A picture of the completed NMR probe is

shown in Figure 99.
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Match
1-lOpf 16pf

t 2 f RpfRF
Tune coil

-1-10pf
_ 18pf

Figure 96. RF electrical circuit used for 200.14 MHz H measurements.
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Figure 99. Picture ot NMK probe assembly snowing on tne ngnt slae: tne outer Prt'" support
tube, the electrical probe end cap with connected cooling airline (and tethered screw to lock the
cooling airline in place), and RF tuning rods under the airline. On the left side, the aluminum
support track is connected to the outer FRP support tube. Black tape on the FRP provides extra
thickness and cushioning for the probe when it is inserted in the magnet gradient set.

11.3.2.5 Safety

Safety to both the operator and magnet was of utmost concern requiring strategies and

techniques for several parts of the experimental system. For the pumping station, high pressure

tubing was isolated behind polycarbonate windows (1/2" (1.3 cm) thick GE Lexan). Pressure

relief valves were used to prevent unsafe pressure surges. Due to the high magnetic field

strength generated by the magnet, several rules are required to protect operators and the magnet.

First, magnetic materials must be isolated or kept a sufficient distance from the magnet in order

to minimize attractive forces. Thus, the pumping station, the vacuum pump, and the blower/heat

exchanger were located outside of the shielded room. Furthermore, magnetic or slightly

magnetic objects that had to be located in the shielded room were secured so that they could not

be pulled towards the magnet. For operators, the common safety rules were in place including

no pacemakers, magnetic-encoded cards, or analog watches.

In terms of the NMR probe assembly, since there are numerous hazards, it is appropriate

to discuss them in terms of their energy hazard category.

11.3.2.5.1 Electrical energy

Since the heater consumes up to 15 amps of current, it is considered

hazardous. All wires were electrically insulated and secured to minimize wear and
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tear on wire feedthroughs. Nichrome heater wire is slightly magnetic, and there is a

chance for wire movement when placed near the magnet. These heating elements

were contained in a quartz tube in order to prevent contact with the surrounding metal

grounding tube. Since water and other liquids are nearby, wire, outlets, and junction

boxes were kept off flat surfaces where liquids may collect.

11.3.2.5.2 Thermal energy

Since heaters raise the temperature of the fluid and of neighboring materials,

bums are a possibility. The NMR probe was designed so that surfaces could be held

and operators would not be harmed. Hot surfaces were insulated as best as possible

in order for protection and to minimize heat loss. Multiple barrier layers were in

place in order to prevent hot objects from touching any magnet component including

the gradient set. The magnet bore was lined on both ends with 1/8" (3.2 mm) thick

high temperature insulation and 1/8" (3.2 mm) thick acrylic tubing that extended past

the magnet and into the shielded room. This tube would act as a barrier for any hot

materials or projectiles that may come in contact with the magnet bore.

FRP tubes and plates were used to line and protect the gradient set. They

served a dual role since they were also used to support and contain the entire NMR

probe. A continuously monitored thermocouple was attached to the outer surface of

the FRP tube where a hot projectile may land if the sample tube failed. The inner

FRP tube placed in the outer FRP tube was held in place with feet, located at 12, 4,

and 8 o'clock and in two axial locations. The resulting '/2" (1.3 cm) gap between the

tubes was used as a safety gap in case of a sample tube and inner FRP tube failure. In

such a catastrophic event, the 1/4" (6.4 mm) OD plastic tubing winded inside the gap

would have cold nitrogen gas (from a liquid nitrogen tank) flowing rapidly in order to

cool the gap. Further, it was reasoned that if a hot object did touch the tubing, the

tubing would melt and gas would immediately start to flow out of that opening and

start cooling that hot object. Fortunately, the inner FRP was never damaged, and the

gas tubing system was never used.

Inside the inner FRP, approximately 40 CFM of 20°C cooling air was

flowing in order to keep the Dewar outer diameter cool. This air stream is the first
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line of defense for thermal deviations when the Dewar fails (it occurred once when

the sample tube failed). This air also protected the mixed region inside the magnet

bore (see Figure 87) from excessive temperatures as was described in the text.

In the case of a power failure, the control computer, blower, heater, pump,

vacuum pump, and pneumatic valves would shutdown and the following sequence of

events would take place

* Dewar vacuum valve would be closed to maintain a vacuum in the Dewar

and its insulation;

* Control valve would isolate the probe from flow and maintain pressure;

* House compressed air would flow through the non-powered heater and

follow the normal route;

* Cold nitrogen gas would immediately flow between the inner and outer

FRP gap in order to keep the FRP tubes and gradient set cool along with

flow near the aluminum support track;

* If the house compressed air failed, then a separate cylinder of nitrogen gas

is ready to be used to replace the lost compressed air; and

* These steps would to be followed until the power is restored and the entire

SCW NMR system is inspected.

If a high pressure, high temperature fluid line failed, then depending on it location

the steps above would be followed to ensure that thermal energy is safely

dissipated. The heater would be shut off while the blower would still be used to

generate cooling air in order to dissipate the heat. Any generated hazardous waste

is properly contained, and all contaminated areas are decontaminated.

11.3.2.5.3 Mechanical energy associated with compressive energy

The control valve is pneumatically controlled and has moving parts that are

pinching hazards. The metal support housing of the valve adequately cover the

moving parts, but nonetheless, a small hazard exists. High pressure lines are a

mechanical hazard due to the stored energy in the compressed fluid. The steps listed

above for a high pressure, high temperature failure would be followed. Any
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generated hazardous waste is properly contained, and all contaminated areas are

decontaminated.

11.3.2.5.4 Hazardous materials

Personal protective equipment is used to handle chemicals and other

hazardous materials. Protective gloves are used when chemicals are handled. Waste

chemicals were handled according to MIT Safety Office guidelines and properly

stored and tagged prior to removal by staff. For spills, the generated hazardous waste

is properly contained, and all contaminated areas are decontaminated.

II.3.2. 6 System Startup and Shutdown

II.3.2.6.1 Startup

The best-known method to reach supercritical conditions is to heat slowly (< 10°C/min

above 200°C) at a pressure below 100 bar in order to reduce the tensile and thermal stresses on

the system, sample tube, and sample-tube seal. During this time, water can slowly be pumped

through the system, but pumping will delay reaching thermal equilibrium. Instead, the control

valve can be switched to recirculate mode and the exposure valve opened in order for the NMR

probe to equilibrate its pressure with the pumping station and quickly achieve thermal

equilibrium. The following list summarizes the key steps in preparing the NMR system for SCW

NMR measurements and important rates to lower the likelihood of system damage.

1. Prior to pumping, purge water supply with helium in order to remove dissolved

oxygen.

2. Pump down on Dewar with turbo pump in order to reach the lowest possible

pressure and have the greatest insulation character.

3. Temporarily turn on the liquid pump and flush the entire system at high flow (-10

cm3/min) at ambient pressure.

4. Turn on cooling-air blower and heat exchanger water flow (> 6 L/min).

5. Setup emergency cooling systems.

6. Verify data acquisition system functionality and perform any ambient NMR

experiments.
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7. Recirculate the water flow, but open the exposure valve and begin any under 100

bar operations.

8. Turn on the heater compressed air and the heater in order to slowly start heating

the system with -50°C increments in order to maintain a less than 10°C/min

sample-tube temperature rise.

9. The 10°C/min temperature rate increase should not be exceeded at temperatures

above 200°C or the thermal stress may damage the sample tube.

10. At steady-state, perform necessary experiments with low or no flow.

11.3.2.6.2 Shutdown

Shutdown follows the startup procedure in reverse order and with opposite commands.

Thermal stress dictates a slow cool-down rate with a low flow rate and pressure. The heater

should not be turned off, and the compressed air flow should not be increased. Slowly ramp the

heater down to achieve a less than 20°C/min ramp-down rate. By following these procedures,

the sample tube should not be damaged.
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II.4. Diffusivity Measurements

Using the NMR probe, diffusivity experiments can be performed at SCW conditions for

both pure water and selected model aqueous mixtures at several temperatures, densities, and for

the mixtures, at several concentrations. Acetone was chosen as the model solute for the mixture

experiments for the following reasons:

1. It has sufficient proton (1H) density and NMR signal;

2. It has low hydrolysis rates in SCW so that the mixture composition is constant

during an NMR experiment;

3. For the investigated concentrations, it is miscible with water at ambient conditions

where it is stored and pumped; and

4. Its critical temperature, pressure, and density (235.05°C, 47.01 bar, 0.278 g/cm 3)

are lower than those for pure water, resulting in lower mixture critical properties,

thus ensuring a supercritical mixture when the acetone concentration is increased

(See Table 33 for critical values for several materials).

Low SCW hydrolysis rates were confirmed with twenty-minute-long NMR spectroscopy

experiments. During these experiments, spectra were collected every few minutes and acetone

signal intensities did not decrease or shift. The process conditions were chosen to address the

following:

1. Pure supercritical water results could be compared with the results of Lamb et al.

(1981) in order to validate the NMR probe;

2. First-of-its-kind measurements of pure water in the subcritical, low pressure, high

temperature range in order to identify low density diffusivity trends;

3. First-of-its-kind measurements of aqueous organic mixtures at sub- and

supercritical conditions at several concentrations.

In order to separate density from temperatures effects on diffusivity, a series of

experiments were conducted at constant pure water density for several temperatures. Since

temperature and pressure are the process-control variables, densities were calculated using the
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Table 33. Critical parameters for several materials

T~a pa Va
Material (C) (bar) (m3 /kmol) = PcVc/RTc

Acetone 235.05 47.01 0.2090 0.2326

Ammonia 132.40 112.775 0.0724 0.2422

Benzene 288.95 48.940 0.2590 0.2710

Carbon dioxide 31.06 73.821 0.0939 0.2741

Ethanol 239.35 61.37 0.1670 0.2406

Ethylene 9.19 50.404 0.1290 0.2770

Methane -82.62 45.979 0.0990 0.2874

Nitrogen -146.89 33.980 0.0896 0.2900

Oxygen -118.57 50.430 0.0734 0.2886

Water 374.14 220.899 0.0559 0.2295

a Obtained from Braker and Mossman, 1980; Walas, 1985; Sato et al., 1991; Poling et al., 2001.

NIST steam-table EOS for pure water in order to identify the pressures that would be required to

generate isochoric (constant density) data at a specified temperature (NIST, 1996). For mixtures,

the pure water EOS was also used since mixture densities have not been measured for the

acetone-water mixture at sub- and supercritical conditions, and experimental solution densities

are, therefore, not available. Other EOSs could have been used, but for consistency (especially

at low concentrations), the pure water density formulation was used.

Preliminary experiments indicated that concentrated acetone(1)-water(2) solutions were

required in order to have sufficient acetone NMR signal-to-noise ratios (SNRs). Infinitely dilute

solutions would have been ideal to measure acetone tracer diffusivities, since the tracer

diffusivity would then equal the infinitely dilute mutual diffusivity (Tyrell and Harris, 1984). At

concentrations other than infinitely dilute, the mutual diffusivity and solute tracer diffusivity are

not equal as is shown in Section II.1.1.. The acetone(1) concentrations used are 20 wt.%l, 40

wt.%l, and 60 wt.% ( 0.3 wt.%1 (95%-confidence-interval uncertainties)), which correspond to

acetone mole fractions, xl , of 0.0724, 0.171, and 0.319 (± 0.6%) and the following approximated

pseudo-single-component critical-mixture properties (T, Pc, & Pc):

· 20 wt.%l: 363.9°C, 208.0 bar, & 0.319 g/cm3,

· 40 wt.%l: 350.1 0 C, 190.8 bar, & 0.315 g/cm3, and

· 60 wt.%l: 329.6°C, 165.2 bar, & 0.308 g/cm .
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The chosen temperatures and densities are matched to the previously published near and

supercritical self-diffusivities, while the process-condition set is expanded to include lower

densities and an intermediate temperature (450°C). NMR-probe-safety issues prevent higher

temperatures and densities from being investigated. The test matrix is shown in Table 34.

The PGSE NMR diffusivity sequence was used, but because of the order of magnitude

difference in diffusivities over these process conditions, the gradient strength and pulse times

were adjusted in order to obtain sufficient attenuation of the NMR signal. If one or more tdl

scans had intensities near the background noise level due to significant attenuation, then the

gradient strength was reduced to lower the extent of attenuation. Typically, the PGSE gradients

varied between 0.5 and 2.1 G/cm with 6 = 5 ms and A = 10 ms. At each process condition

shown in Table 34, at least three experiments are performed, and the calculated diffusivities are

averaged. Since there is a small sample size (small number of degrees of freedom), Student's t-

distribution is used to estimate the standard deviation at the 95% confidence interval (Devore,

1990). During the approximately five-minute-long experiment, temperature and pressure drifts

will occur. The experiment will be considered an outlier, and datum will not be used if the

temperature and pressure variations exceed thresholds determined by the following conditions:

· For each set of isothermal (4000 C, 450C, or 500°C) experiments, an overall

average temperature is calculated using each individual experiment average

temperature. If the overall average temperature is outside of the 95% confidence

interval for an individual experiment, then this individual experiment is

considered an outlier and its datum is not used in the future analysis.

· A similar approach is used to filter pressure outliers. Individual experiments are

considered outliers if their 95% confidence intervals do not include the average

pressure calculated to match the desired density. With the outliers removed,

overall temperature, pressure, and density averages are then recalculated.

267



0o

o0

o

No
o0tD

o0

o

o

o

W

o

o

o
o

N0

0000

cS0CD

0

oR0

0.- J.

CD

0

.-I0

N

0CD

C:)o

. ro0N
0

Q-C 0

)coB

_-

n
3)

Cr CJN N

N cD C
0 CD

I1C !

a)a)

51

a -lka)
Q~ ..
Ci m

0 .= 'C

=h~O oa) o

CT -e X
U) x 

C^ CL,a)O 3L oX O E

o O

e

a)a~=__o
Ho(' 0E o cns_

a) ._

E O

ou*0

.)a

a
I

C.)1
o0)
N
0
q
0
-H
r-

o,

oLD

co

oCNC)-0)0
0
0

4i6CD

a0CI
.)

0)
0
0

0

-H
cD

M
civ
IL

6
.)
0)

0
000

Cv)N

6
-2c

0)

0
0-H06

C--
0)

0
0

ILr
0)t:,

0
090
6

-H

a)J
0

Y
0)

0

0
+1
Cr
CD4N
06
1I

C)ar

a

a

oC,
oN

co

0o

o

oo
CDN

0(Oe

0C)

.a) T

0-
C.)0 -

to 0 CDtN) I o D _ V) I o U

C1 IV L
1 It url

co
C--a,
CD

C-

'a

C.)
0

CUIQ,11

I

o

o
o

0
0

C)-.1

o

o

N00

oo

0CN

0

0oo

CD

o

oo
No

0_
0

.-I

o0co-._0

0NCDoS°

C:,

to

C)

-I,cm
N
O

oC.)NN
D

C.,
0)
N
6

tC.)
Lo

ci

C.)
0)

0o
c~

I.
0.CDU')
q
0

C)

c0
CN
0

0

-T,

p

I-

x
. -

E

a)
a,

ca

a)-a)

0

0

I'ca)

o

©

o"0

a)ci).-

c~a)a)
s-

a)Sa)
H

cr1a)

H

00

Cl

0o

-
CD

00)
0

Lo

0

cN
c
I-

CD0C.

6
-H
0.o
+
n

o

CR

--

CDI--

-H

LOLO
+1

I--

"r
coCD

CD

-I
(D
CDLO

c

I

l

I

I 

L



The resulting process conditions are shown in Table 35. Note that the temperature

averages for the three temperature datasets are 404°C, 455°C, and 506°C. With the process

conditions well defined, the diffusivity measurement results are now presented.

I 4. 1 Pure Water Results and Analysis

Pure water (0 wt.%l) self-diffusivities were measured first in order to validate the SCW

NMR probe and the self-diffusivities reported by Lamb et al. (1981). Table 36 presents the data

collected and the previously published results. The data are also compared in Figure 100. The

density is determined with the NIST Steam-Table EOS while the uncertainty in density is

calculated by using the worst case of experimental temperature and pressure deviation

(maximum of p(T + AT,P - AP)- p(T, f and p(T - AT, P + AP)- p(T, PI) (NIST, 1996).

From a review of the data and Figure 100, it appears that there is an excellent agreement

between Lamb et al. (1981) data and the data collected in the SCW NMR probe, given the

uncertainty in the measurements.

II. 4.2 Binary Organic Aqueous Mixture Results

The tracer diffusivities of acetone(1) and water(2) are shown next in Table 37 as a

function of acetone concentration, experimental temperature, calculated-pure-water density, and

the experimental pressure. The density is calculated in a similar fashion as described earlier,

even though the mixture density is altered by the addition of acetone solute. The discussion with

mixture densities follows shortly.

The diffusivity data are plotted as a function of the calculated-pure-water density in a

series of figures:

· Figure 101 contains acetone tracer-diffusivity data at 404.30 C for several

concentrations as a function of density.

* Figure 102 contains water tracer and self-diffusivity data at 404.30 C for several

concentrations as a function of density.

· Figure 103 contains tracer and self-diffusivity data at 404.30 C for several

concentrations as a function of calculated-pure-water density. Acetone and pure
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Table 36. Pure water self-diffusivities at sub- and supercritical water conditions, including Lamb
et al. (1981) data (with 95%-confidence-interval uncertainties)

Experimental Calculated-pure- Experimental Measured self-

temperature, water density, pressure, diffusivity, Lamb et al.,

T (oC) P2 (g/cm3) P (bar) D22 x 105 (cm2 /s) D22 x 105 (cm2/s)

402.7 ± 0.2 0.0247 ± 0.0003 69.7 + 0.8 1291 ± 21
403 ± 2 0.0498 ± 0.0005 125.5 ± 0.5 628 ± 5
404 ± 1 0.0976 ± 0.0009 199.5 ± 0.5 298 ± 22
400 0.100 199 286 ± 57
400 0.122 221 243 ± 49

403.2 ± 0.6 0.144 ± 0.001 241.2 ± 0.7 201 ± 15
400 0.150 241 203 ± 41

403 ± 1 0.188 ± 0.004 264.4 ± 0.8 166 ± 15
400 0.203 265 161 ± 32
400 0.259 280 120 ± 24
400 0.298 291 112 ± 22
400 0.407 314 90 ± 18

o7,

x

ci,

1 AAA
ILtVV
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400

300

200

100

0
0.00 0.05 0.10 0.15 0.20 0.25 0.30

Calculated-pure-water density, p2 (g/cm 3)
Figure 100. Pure water self-diffusivities at 404.30 C (with 95%-confidence-interval uncertainties)
including a close-up view of the overlapping data. Curves are intended to show general trends.
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Table 37. Acetone(1)-water(2) tracer diffusivities at sub- and supercritical
(with 95%-confidence-interval uncertainties)

water conditions

Acetone Experimental Calculated-pure- Experimental Acetone tracer Water tracer
concentration temperature, water density, pressure, diffusivity, diffusivity,
(wt.%l) =x T (°Ccm) P (bar) D1 x 10 (cm2/s) D2 X 10 (cm2 /s)_~~D 0 c2s
20 = 0.0724
20 = 0.0724
20=
20 =
20 =
20 =
20 =
20 =
20 =
20 =
20 =

0.0724
0.0724
0.0724
0.0724
0.0724
0.0724
0.0724
0.0724
0.0724

409 ± 2
404.4 ± 0.8

404 ± 1
403.2 ± 0.1
404.1 ±t 0.9

402 ± 3
404.4 ± 0.1
455.3 ± 0.4
456.5 ± 0.8

0.0246 ± 0.0005
0.0494 t 0.0002
0.0977 ±t 0.0008

0.144 I 0.001
0.182 ± 0.005
0.234 ± 0.003
0.258 ± 0.001

0.0494 0.0003
0.0973 ± 0.0008

506 1 0.049 0.001
504 5 0.099 0.002

70 ± 1
125.2 ± 0.5

200 1

240.7 ±t 0.7
264 1

278.5 ± 0.9
289.6 ± 0.3
140.8 ± 0.8
236.6 ± 0.4

155 ±3
271.3 ± 0.8

403 ± 1
402.5 ± 0.3

403 ± 1
404.3 ± 0.4
404.1 ± 0.1

404 ± 1
404 1

452.7 ±- 0.7
455.2 ± 0.9
454.7 ± 0.4
500.9 + 0.7

505 ± 1
504.8 ± 0.8

402.8 ± 0.2
403 1

404 1

404.2 ± 0.9
404 1

404.3 ± 0.7
403.7 ± 0.4

456 1

455 ± 1
456.0 ± 0.5
504.8 ± 0.6
506.5 ± 0.3

507 ± 2

0.025 ± 0.0004
0.0497 ± 0.0001

0.098 ± 0.001
0.1418 ± 0.0008

0.184 ± 0.001
0.217 ± 0.002
0.255 ± 0.003

0.0260 ± 0.0001
0.0492 ± 0.0002
0.0984 ± 0.0004
0.0244 ± 0.0005
0.0494 ± 0.0001

0.098 ± 0.001

0.0251 ±- 0.0004
0.0497 ± 0.0002

0.097 ± 0.001
0.142 ± 0.001
0.184 ± 0.001

0.2202 ± 0.0008
0.262 ± 0.003

0.0246 ± 0.0001
0.0492 ± 0.0002
0.0975 ± 0.0005

0.025 ± 0.001
0.0494 ± 0.0005
0.0979 ± 0.0007

70.2 ± 0.9
125.3 ± 0.3
199.9 ± 0.7
240.7 ± 0.3
264.2 ± 0.6
278.2 ± 0.8
288.9 ± 0.9
79.8 ± 0.1
140.3 ±t 0.5
237.2 ± 0.4

82 ± 2
155 ±t 0.4
271 ± 1

70.5 ± 0.9
125.6 ± 0.5
200.0 ± 0.6
241.1 ± 0.6
264.4 ± 0.6
279.1 ± 0.4
289.0 ± 0.1
76.4 ± 0.2
140.4 ± 0.1
236.7 ± 0.6

84 3

156 ± 1
271 ± 1

271

<<SNR
374 98
168± 12
130 10
106 t 18
87 ± 32
85 - 22

514 ± 26
295 ± 31
615 ± 56
352 ± 36

1282 + 378
588 ± 23
282 12
239 8
189 5

177± 16
168 20
828 70
351 10

938 112
383 9

40=
40 =
40=

0.171
0.171
0.171

40 = 0. 171
40 = 0.171
40 = 0.171
40 = 0. 171
40 = 0.171
40 = 0.171
40 = 0.171
40 = 0.171
40 = 0.171
40 = 0.171

60 = 0.319
60 = 0.319
60 = 0.319
60 = 0.319
60 = 0.319
60 = 0.319
60 = 0.319
60 = 0.319
60 = 0.319
60 = 0.319
60 = 0.319
60 = 0.319
60 = 0.319

585 t 45
300 ± 40
150 ± 36
143 ± 23
121 15

98 9
86 + 31

766 ± 25
460 ± 32
217 ± 71
958 ± 47
580 ± 63

286 107

656 15
305 ± 17
174 ± 30
133 ± 7

117 24
91 ± 9
80 9

782 ± 34
466 ± 85
252 51
888 ± 98

554 138
349 18

943 ± 103
470 ± 37
253 ±t 33
275 ± 35
221 4

201 ± 76
190 ± 8

1202 - 76
640 10
310+t 81
1475 ± 21
803 ± 2

369 ± 26

982 ± 7
480 ± 36
307 10
218 ± 32
204 ± 28
184 4- 9
180 7

1205 74
632 ± 204
357 ± 30

1189 101
785 19

441 ± 180



water data from this study are shown side by side in order to compare their

calculated-pure-water-density trends. Also included are the pure water self-

diffusivity data from Lamb et al. (1981).

* Figure 104 contains tracer and self-diffusivity data at 4550 C for several

concentrations as a function of calculated-pure-water density.

* Figure 105 contains tracer and self-diffusivity data at 506C for several

concentrations as a function of calculated-pure-water density.

The following figures contain pure-calculated-water isochors as a function of temperature or

concentration.

* Figure 106 contains acetone tracer-diffusivity data for several isochors as a

function of temperature.

* Figure 107 contains water tracer and self-diffusivity data for several isochors as a

function of temperature.

* Figure 108 contains acetone tracer-diffusivity data for several 404.3°C isochors as

a function of concentration.

* Figure 109 contains water tracer-diffusivity data for several 404.3°C isochors as a

function of concentration.

· Figure 110 contains acetone and water tracer-diffusivity

isochors as a function of concentration.

J- Figure 111 contains acetone and water tracer-diffusivity

isochors as a function of concentration.

· Figure 112 contains acetone and water tracer-diffusivity

0.025 g/cm 3 isotherms as a function of concentration.

· Figure 113 contains acetone and water tracer-diffusivity

0.049 g/cm3 isotherms as a function of concentration.

· Figure 114 contains acetone and water tracer-diffusivity

0.098 g/cm3 isotherms as a function of concentration.

data for several 455°C

data for several 506°C

data for several

data for several

data for several
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Figure 101. Acetone tracer diffusivities at 404.30 C (with 95%-confidence-interval
uncertainties). Curves are intended to show general trends.
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Figure 102. Water diffusivities at 404.30C (with 95%-confidence-interval uncertainties). Curves
are intended to show general trends.
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Figure 103. Acetone and water diffusivities at 404.30 C (with 95%-confidence-interval
uncertainties). Curves are intended to show general trends.
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Figure 104. Tracer diffusivities at 4550 C (with 95%-confidence-interval uncertainties). Curves
are intended to show general trends.
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Figure 105. Tracer diffusivities at 5060 C (with 95%-confidence-interval uncertainties).
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Figure 106. Acetone tracer diffusivities for several isochors as a function of temperature (with
95%-confidence-interval uncertainties). Curves are intended to show general trends.
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Figure 107. Water diffusivities for several isochors as a function of temperature (with 95%-
confidence-interval uncertainties). Curves are intended to show general trends.
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404.3 0C (with 95%-confidence-interval uncertainties). Curves are intended to show general
trends.
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Figure 109. Water diffusivities for several isochors as a function of concentration at 404.30 C
(with 95%-confidence-interval uncertainties). Curves are intended to show general trends.

1400

200

1000

800

600

400

200

• • • I • • • • I • • • • I • • • I • • • • I • • • I • • •

- Calculated-pure-water density (g/cm3)
Acetone - water
+ -- - - 0.0253 d 0.0001

- - - - - * - 0.0494 + 0.0001
-- - A- - 0.0977 ± 0.0001

4550C ± 20C acetone(1)-water(2) solution

--------------------------- 4

----------------I ----------------- - -----
. .

± .............. .... . . .l l.... ...
I I I p pll l l l p l l p I

0.05 0.10 0.15 0.20

Mole fraction, x1

0.25 0.30

I

0.00 0.35

Figure 110. Acetone and water diffusivities for several isochors as a function of concentration at
455 0 C (with 95%-confidence-interval uncertainties). Curves are intended to show general
trends.
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Figure 112. Acetone and water diffusivities for several isotherms as a function of concentration
for 0.025 g/cm3 (with 95%-confidence-interval uncertainties). Curves are intended to show
general trends.

278

Calculated-pure-water density (g/cm 3)
Acetone-water

---- +-- 0.0253 0.0001
- - -- * - 0.0494 ± 0.0001

A ..- - A*. 0.0977 ± 0.0001

1400

1200

1000

800

600

400-

200

- ------- --------------------
........ . .............. . .

5060C 40C
-acetone(1)-water(2) solution

, , , , I . . , t | I | I | i | t I i I i . I ..I, , I , , i a

0.0253 ± 0.0001 g/cm3

acetone(1 )-water(22 solution

LK.r

Temperature
Acetone - water

i 0.- , n, - , , -

---- -. - 455 0C 42 0C
... ... -- A- 404.3 0C 0.30C I .....................

I . . a - a . . . .a

' ' ' ' '''''~~'~-~~~~~~`~~ - - - - ---

0.093 at 5000C



1100

1000

900

800

700

600o

500

400

300

200

0

x

c42

0.35

Temperature
Temperature

Acetone - water
-U- -U- 5060C 40C
---- -o- 4550C +2 0CS--- .. .- -A- - 404.30 C ± 0.3 0C

irU.

T -- - - --

--- -
-

0.0494 0.001 g/cm 3  ........ ... ......... ..................

acetone(1)-water(2) solution
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . i . . .

0.05 0.10 0.15 0.20 0.25 0.30

Mole fraction, xl
Figure 113. Acetone and water diffusivities for several isotherms as a function of concentration

3
for 0.049 g/cm (with 95%-confidence-interval uncertainties). Curves are intended to show
general trends.

own

x

4).
0

@21

H
-0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

Mole fraction, x1
Figure 114. Acetone and water diffusivities for several isotherms as a function of concentration

3
for 0.098 g/cm (with 95%-confidence-interval uncertainties). Curves are intended to show
general trends.

279

I-

.

.

-

-

-

O00.

-

11 r-



II. 4.3 Binary Organic Aqueous Mixture Results with Mixture Densities

In order to correct the density representation for mixture diffusivities when acetone is

present and to avoid the use of calculated-pure-water densities, the mixture densities can either

be measured or estimated for all of the experimental process conditions. Experimental density

data are not available, so mixture densities will be estimated using an equation of state. As

shown in the first part of this dissertation, EOS predictions can be inaccurate, so caution must be

employed when relying on EOS results, even when an EOS has been validated with experimental

data.

In an attempt to identify a suitable EOS that could predict mixture densities for the

acetone-water diffusivity experiments, several EOSs were examined. The first tests were

performed on pure water since water is the major component in the experiments performed.

Furthermore, since acetone and water have similar properties (e.g., polar, hydrogen bonded,

reasonably close critical temperatures, and completely miscible) and since acetone PVT data is

scarce, identifying an EOS with accurate water predictions is an appropriate first step in

identifying an EOS for mixture-density predictions. Water predictions were compared to

reference values calculated with the NIST Steam-Table EOS at the experimental process

conditions (NIST, 1996). Starting with the Ideal-Gas Law and comparing its density ratio with

the Steam-Table EOS, the extent of ideality was found to be low in the supercritical region

(density ratio = 0.70 ± 0.4095%), as is evident in Table 38. The Ideal-Gas Law is a poor choice

for modeling dense fluids.

An EOS that has more accurate dense-fluid property predictions and that is recommended

for SCWO applications is the Schwartzentruber-Renon EOS (Peneloux et al., 1982; Modell et

al., 2000). Often referred to as the SR-POLAR EOS, this EOS has six-regressed-parameters (c0,

cl, c2 , q0 , q1 , q2) and reduces to the RKS EOS when five parameters are set to zero (denominator

parameter c2 should not be set to zero) (Aspen Technology, 1994).

RT aP= R - a(176)
V+c-b (V+cXV+c+b)
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Table 38. Pure water density predictions for the SCW/NMR mixture process conditions for
several EOSs including subcritical-water, supercritical-water, and overall statistics

Calculated- Ideal- Untranslated Translated Translated
~ > pure-water gas-law SR-POLAR SR-POLAR two-point-fit

Oo 5 9 density, water water density water density SR-POLAR water

E ·a P2 (g/cm3) densi ratio, ratio, ratio, density ratio,
SR UT SRM p2SR/p2

(NIST, 1996) P2 P2 P2 'P2 P2 'P2 P2 P2

408.7 70.2
404.4 125.2
403.8 199.8
403.2 240.7
404.1 263.9
402.2 278.5
404.4 289.6
455.3 140.8
456.5 236.6
505.8 154.6
504.0 271.3
402.5 70.2
402.5 125.3
403.1 199.9
404.3 240.7
404.1 264.2
404.4 278.2
404.3 288.9
452.7 79.8
455.2 140.3
454.7 237.2
500.9 81.7
504.8 155.0
504.8 271.1
402.8 70.5
403.0 125.6
404.0 200.0
404.2 241.1
404.1 264.4
404.3 279.1
403.7 289.0
456.2 76.4
455.3 140.4
456.0 236.7
504.8 84.4
506.5 155.6
506.6 271.3

0.0246
0.0494
0.0977
0.1436
0.1820
0.2336
0.2581
0.0494
0.0973
0.0491
0.0988
0.0250
0.0497
0.0983
0.1418
0.1835
0.2171
0.2547
0.0260
0.0492
0.0984
0.0244
0.0494
0.0985
0.0251
0.0497
0.0975
0.1421
0.1840
0.2202
0.2622
0.0246
0.0492
0.0975
0.0252
0.0494
0.0979

0.905
0.811
0.654
0.537
0.464
0.382
0.359
0.848
0.722
0.877
0.765
0.902
0.809
0.651
0.543
0.461
0.410
0.363
0.917
0.848
0.718
0.935
0.874
0.767
0.902
0.809
0.657
0.543
0.460
0.405
0.353
0.923
0.848
0.721
0.934
0.875
0.770

1.009
0.992
0.962
0.918
0.892
0.799
0.804
1.151
1.307
1.313
1.761
0.994
0.986
0.956
0.929
0.888
0.858
0.809
1.105
1.150
1.300
1.206
1.309
1.765
0.996
0.987
0.965
0.931
0.886
0.853
0.787
1.110
1.150
1.305
1.215
1.315
1.780

1.033
1.042
1.067
1.080
1.116
1.054
1.099
1.055
1.103
1.057
1.094
1.019
1.036
1.061
1.093
1.112
1.131
1.104
1.025
1.054
1.096
1.021
1.054
1.097
1.020
1.037
1.071
1.095
1.110
1.127
1.074
1.030
1.054
1.101
1.027
1.057
1.105

1.033
1.042
1.066
1.079
1.116
1.054
1.099
1.055
1.103
1.057
1.094
1.019
1.036
1.060
1.092
1.111
1.131
1.104
1.025
1.054
1.095
1.021
1.054
1.097
1.020
1.037
1.070
1.095
1.110
1.127
1.074
1.030
1.054
1.101
1.027
1.057
1.104

Subcritical water mean: 0.83 1.12 1.05 1.05
Subcritical water c95%: 0.19 0.27 0.05 0.05

Supercritical water mean: 0.52 1.08 1.10 1.10
Supercritical water o95%: 0.31 0.80 0.04 0.04

Overall mean: 0. 70 1.09 1.07 1.07
Overall a95%: 0.40 0.52 0.07 0.07
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c=c + 1 for T < 1
1+C 2 -Tr

c 1 ( 1 (177)

c=b+ ( for Tr> 1
C2(CO - b +1 - T.

a = 0.45724aR 2T 2 / P (178)

b = 0.08664RTc/ Pc (179)

-~= 1+(.48508+1.55171co-0.15613co2 l-Tr )-qo(1-i )(l+ lTr +q2Tr

=exp( Tr Id) for Tr>1 forT< (180)

d=I+ (0.48508+ 1.55171co-0.15613co2) q(1 + + 2)
2

For mixtures, Lorentz-Berthelot combining rules are used to develop mixture relations

a = Z xixj aa (1-ka, (ij X -(xi-xj)) (181)
i j

b= xixj bi + bj)(lkb,) (182)

C = Z XiCi (183)

where the following binary-interaction parameters can be regressed, e.g., to phase-equilibria data

(184)
ka, = kao, + kaiyT + ka2,/T (184)

lij = lo,i + l,ojT + 12,./rT (185)

kb, = kbo,U + kbl,ijT + kb2,ij /T (186)

(187)
ka,y =ka,ji

lj = -lji (188)

kb = kbji (189)
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Density improvements are possible with the use of three regressed volume-translation

parameters (c0, cl, c2). In Aspen PlusT , these parameters can be simultaneously regressed with

the three other parameters (q0, ql, q2,), which are automatically regressed to vapor pressures

generated from the extended Antoine formulation. With the untranslated SR-POLAR EOS, the

Table 38 water-density ratio is closer to unity, but has a large range (ratio = 1.09 ± 0.5295%) and

significant deviations (ratios < 1.8), implying that this EOS does not significantly improve upon

the Ideal-Gas Law. The untranslated SR-POLAR parameters are listed in Table 39.

Using the SR-POLAR parameters optimized by Modell et al. (2000) with several

hundred density and enthalpy data points, the water-density ratio for the SR-POLAR is 1.07 i

0.0795% which is a significant improvement over the previously discussed EOSs. The SR-

POLAR parameters are also shown in Table 39, but its optimization approach is not suitable for

acetone since hundreds of acetone data points are not available.

Since acetone data points are available at ambient conditions, the SR-POLAR EOS for

water was re-regressed using several ambient water data points in order to check the two-point-

fit SR-POLAR EOS for water. Specifically, the six SR-POLAR water parameters were re-

regressed using only two ambient liquid density points (P = 1 bar, T = 25°C & 90°C, p = 0.997

g/cm3 & 0.965 g/cm3) and Antoine vapor pressures. The resulting translated-water SR-POLAR

Table 39. SR-POLAR parameters regressed for the EOS mixture-density analysis*
Untranslated- Translated-water Translated- Translated- Translated-

water SR-POLAR water acetone ethanolParameter
SR-POLAR (M=Modellet SR-POLAR SR-POLAR SR-POLAR

al., 2000) (two point fit) (two point fit) (two point fit)

CO - -0.00149 -0.00114 0.0118 0.00704
cl - 0.00702 0.00711 0.00320 0.00155

c2 - 0.446 0.466 0.0509 0.0117

qo 0.0670 0.0671 0.0412 -0.332 -0.393

q1 -0.630 -0.630 0.236 0.0609 -0.0447
q2 -1.15 -1.15 1.60 -1.89 -1.85

*Pure component parameters used for the simulations, COacetone = 0.306 and owater 0.345.
Critical constants are listed in Table 33.
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parameters are similar to the SR-POLAR M volume-translated parameters and are listed in Table

39. The overall water-density ratios for the process conditions are the same as shown in Table

38 (ratio = 1.07 - 0.0795%), implying that when the SR-POLAR EOS is regressed with two

ambient densities and vapor pressures, the translated SR-POLAR EOS can be extrapolated to

supercritical conditions with acceptable density errors (<10%) for fluids behaving like water.

Using the same approach, two ambient densities for acetone (P = 1 bar, T= 25°C & 50°C, p =

0.785 g/cm3 & 0.756 g/cm 3), along with ASPEN PLUSTM vapor pressures, were used to regress

the six SR-POLAR parameters for pure acetone. The parameters for acetone are presented in

Table 39. Unfortunately, the acetone SR-POLAR predictions at the experimental process

conditions cannot be verified since experimental PVT data are not available at these PT

conditions.

Since densities of pure water (Steam-Table, SR-POLARM, and SR-POLAR) and pure

acetone are now made, the next activity is to determine the mixture density. For non-ideal

solutions, volumetric changes due to mixing exist, thereby requiring that partial volumetric

properties be used to determine the mixture volume

V= xiVi e.g., for a binary mixture, V 2 = xl + x2V2= xl + x 2 P, T (190)

Another approach to determine the mixture volume is to use the volume change attributed to

mixing which is often referred to as the excess volume

V = V12 = XlVI + X2V2 + VE (191)

One advantage to this approach is that pure species volumes are used instead of partial molar

volumes, however excess properties are also scarce. Without these non-ideality corrections,

these mixture formulae reduce to fonnrmulae reserved for ideal solutions.

Another approach is to use combining rules. Some combining rules have a rational basis,

while others are completely empirical. Options include weighting volume, mass, or density

(inverted volume) while the scaling could be by mass, mole, or volume fractions. The Lorentz-

Berthelot combining rule is often used and treats the mixture as an ideal solution of pure species

weighted by their respective mole fractions
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V = xiV i, e.g., for a binary mixture, V = V12 = xlV1 + x2V2

i

For a binary system, the mixture-density would be

xlMW + X22 MW2
P - P12 = MW MW2 (193)

X1 + X2

Pi P2

In order to identify an appropriate mixture method for determining mixture densities of

the acetone-water system, methods were compared using experimental PVT data. Since

experimental data are not available for the acetone-water system, high pressure and high

temperature data for another aqueous hydrogen-bonded-organic system were used. Safarov and

Shakhverdiev (2001) report mixture densities for several concentrated (25, 50, and 75 wt.%1)

ethanol(1)-water(2) solutions from 1-600 bar and 25-250°C. Their data are presented in Table

40 and are estimated to have a 0.05-0.10% error. Using these densities, the mixture-density

approaches can be evaluated. Since pure ethanol parameters are needed for the SR-POLAR

EOS, two ambient densities (P = 1 bar, T= 25°C & 70°C, p = 0.787 g/cm3 & 0.740 g/cm3) are

used to determine these parameters, which are summarized in Table 39.

Before testing the mixture-density approaches, pure water density ratios were calculated

using the SR-POLAR and Steam-Table EOSs in order to check the robustness of the SR-POLAR

EOS. The average density ratios of the untranslated and volume-translated SR-POLAR EOSs

are 0.73 ± 0.0295% and 1.00 ± 0.0295%, respectively, indicating that the two-point volume-

translated SR-POLAR EOS is accurate for dense fluids (see Table 41 for the pure water volume-

translated density ratios). Next, the Lorentz-Berthelot combining rule was evaluated with the

ethanol-water PVT data:

· SR-POLAR ethanol(1) and Steam-Table water(2) volumes weighted by mole

fractions and

· SR-POLAR ethanol(l) and SR-POLAR water(2) volumes weighted by mole

fractions
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Table 40. Experimental ethanol(l)-water(2) solution mixture densities at several concentrations,
temperatures, and pressures (Safarov and Shakhverdiev, 2001)

Acetone Pressure, P (bar)
concentration Temperature, 1 50 100 200 300 400 500 600

(wt.%l) = xl T (°C) Mixture density, P12 (g/cm3)

25 = 0.115 25 0.958 0.960 0.962 0.965 0.969 0.972 0.976 0.980
25 = 0.115 50 0.939 0.942 0.945 0.950 0.953 0.957 0.961 0.966
25 = 0.115 75 0.919 0.922 0.925 0.930 0.935 0.939 0.943 0.948
25 = 0.115 100 0.902 0.905 0.911 0.916 0.921 0.925 0.930
25 = 0.115 125 0.879 0.883 0.891 0.897 0.903 0.909 0.915
25 = 0.115 150 0.850 0.855 0.864 0.873 0.880 0.886 0.893
25 = 0.115 175 0.812 0.820 0.833 0.845 0.855 0.863 0.872
25 = 0.115 200 0.771 0.781 0.799 0.814 0.826 0.838 0.848
25 = 0.115 250 0.642 0.659 0.704 0.735 0.759 0.777 0.793

50 = 0.281 25 0.909 0.911 0.914 0.918 0.923 0.926 0.932 0.935
50 = 0.281 50 0.888 0.890 0.893 0.898 0.902 0.908 0.913 0.917
50 = 0.281 75 0.864 0.868 0.871 0.878 0.884 0.889 0.895 0.900
50 = 0.281 100 0.845 0.849 0.856 0.862 0.868 0.875 0.881
50 = 0.281 125 0.819 0.823 0.831 0.838 0.845 0.851 0.858
50 = 0.281 150 0.789 0.795 0.805 0.813 0.821 0.827 0.835
50 = 0.281 175 0.748 0.761 0.778 0.790 0.799 0.806 0.812
50 = 0.281 200 0.699 0.712 0.734 0.755 0.767 0.778 0.787
50 = 0.281 250 0.555 0.625 0.663 0.690 0.711 0.724

75 = 0.540 25 0.854 0.857 0.860 0.866 0.871 0.876 0.880 0.885
75 = 0.540 50 0.831 0.835 0.838 0.844 0.850 0.856 0.861 0.867
75 = 0.540 75 0.809 0.813 0.817 0.824 0.830 0.837 0.843 0.850
75 = 0.540 100 0.789 0.793 0.801 0.809 0.816 0.823 0.830
75 = 0.540 125 0.760 0.766 0.777 0.787 0.796 0.805 0.812
75 = 0.540 150 0.725 0.734 0.749 0.763 0.774 0.785 0.794
75 = 0.540 175 0.680 0.693 0.715 0.732 0.747 0.759 0.771
75 = 0.540 200 0.627 0.646 0.676 0.698 0.716 0.732 0.745
75 = 0.540 250 0.506 0.575 0.619 0.649 0.673 0.693
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Table 41. Pure water density ratio of the volume-translated SR-POLAR and Steam-Table EOSs
at the experimental Safarov and Shakhverdiev (2001) process conditions (NIST, 1996)

Pressure, P (bar)

Temperature, 1 50 100 200 300 400 500 600

T (C) Pure water density ratio, P2 / P2

25 1.000 0.999 0.998 0.996 0.993 0.991 0.989 0.987

50 0.998 0.998 0.997 0.995 0.994 0.993 0.991 0.990
75 0.999 0.999 0.998 0.997 0.997 0.996 0.995 0.994
100 1.001 1.001 1.000 1.000 1.000 1.000 0.999
125 1.003 1.003 1.004 1.004 1.005 1.005 1.006
150 1.005 1.006 1.007 1.009 1.010 1.011 1.013
175 1.005 1.007 1.010 1.013 1.015 1.018 1.020
200 1.004 1.006 1.011 1.016 1.020 1.024 1.027
250 0.987 0.994 1.006 1.017 1.026 1.034 1.041

Mean: 0.9991 1.000 1.001 1.003 1.005 1.01 1.01 1.02

cY95%: 0.0004 0.006 0.005 0.005 0.008 0.01 0.01 0.02

Overall: 1.00 ± 0.0295%

which resulted in mixture density ratios of 1.11 i 0.2895% and 1.11 + 0.2995%, respectively, for

the 196 mixture-density points compared. Ratios for these two cases are summarized in Table 42

and Table 43. Given the large density-ratio variations observed with the mole-fraction weighted

volumes especially between 50 and 300 bar, which is the process pressure range used for the

NMR diffusivity experiments, other density-weighting approaches were investigated.

When the pure component densities are weighted by their respective mole fractions,

p = :xip i e.g., for a binary mixture, p = P12 = x1pl + x 2 P2 (194)

the average SR-POLAR(1)-Steam-Table(2) density ratio is 1.05 + 0.0695% while the average SR-

POLAR(1)-SR-POLAR(2) density ratio is 1.06 + 0.0795%. The individual density ratios are

presented in Table 44 and Table 45 and do not exhibit the large variations that were evident with

weighted-volume approaches. The density-weighted mixture method is superior to the volume-

weighted approach for the ethanol-water system evaluated and has acceptable error for dense

fluids, which are usually difficult to predict.

By employing mixing and combining rules, EOSs can also calculate mixture properties

by treating a mixture as a pseudo-single component. As shown in Eq. (184) through Eq. (189),

the SR-POLAR model uses combining rules for evaluating its a, b, and c terms, and was tested

for its ethanol-water density predictions. With all of the binary-interaction parameters set to zero
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(by default), the average density ratio of the SR-POLAR(12) EOS is 0.96 ± 0.0695% for the ratios

shown Table 46. Without binary parameters, the SR-POLAR(12) EOS is slightly more accurate

than the previously discussed EOSs for the dense ethanol-water system investigated.

Another option is to regress the binary-interaction parameters, but as previously

discussed, binary data at the conditions of interest are not available. As reported by Modell et al.

(2000), another approach that is included in ASPEN PLUSTM is to fit these parameters to activity

coefficients generated from internal UNIFAQ correlations. Since these activity coefficients are

based on ambient temperature data with low, vapor-like and high, liquid-like densities, the

resulting SR-POLAR EOS densities at intermediate supercritical densities are interpolated

densities, not extrapolated. Using this approach, the ethanol-water binary parameters were

estimated to be ko ij = -0.0656, k2,,. = -1.46, loi = 0.0754, and 12,i = -19.0. As shown in Table 47,

the average density ratio of the SR-POLAR(12) EOS with binary parameters is 0.98 i 0.0695%, a

slight improvement over the zeroed binary-parameter predictions. Note that the binary

parameters appear to only offset the density as indicated by the same uncertainty. So, for the

dense ethanol-water system investigated, the SR-POLAR(12) EOSs with or without binary

parameters are slightly better than the SR-POLAR(1)-Steam-Table(2) EOS and SR-POLAR(l)-

SR-POLAR(2) EOS mixture approaches previously discussed.
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Table 42. SR-POLAR(1)-Steam-Table(2) volume-weighted mixture-density ratios at several
concentrations, temperatures, and pressures (NIST, 1996; Safarov and Shakhverdiev, 2001)
Ethanol Pressure, P (bar)

concentration Temperature, 1 50 100 200 300 400 500 600(wt.%1)~ T=~~~ x ~ ~SR2STM(wt.%,) = xl T (C) Mixture-density ratio, i 2 / P
25 = 0.115 25 0.975 1.041 0.920 0.871 1.043 1.043 1.043 1.043

25 = 0.115 50 0.980 0.917 1.050 0.866 1.050 1.050 1.050 1.049
25 = 0.115 75 0.981 0.913 0.856 1.058 1.056 1.056 1.056 1.055
25 = 0.115 100 0.904 0.844 1.062 1.061 1.060 1.059 1.059
25 = 0.115 125 0.891 0.830 1.065 1.063 1.061 1.059 1.057
25 = 0.115 150 0.878 0.816 1.074 1.069 1.066 1.064 1.061
25 = 0.115 175 0.866 0.808 1.085 1.077 1.071 1.067 1.062
25 = 0.115 200 0.848 0.809 1.099 1.087 1.078 1.071 1.065
25 = 0.115 250 0.415 0.629 1.159 1.123 1.100 1.084 1.072

Mean: 0.979 0.9 0.8 1.0 1.07 1.07 1.06 1.058

cY95%: 0.003 0.2 0.1 0.1 0.02 0.02 0.01 0.009

50 = 0.281 25 0.968 1.097 0.915 1.095 1.094 1.095 1.093 1.093
50 = 0.281 50 0.969 0.912 1.111 1.109 1.109 1.107 1.105 1.104
50 = 0.281 75 0.969 0.907 1.124 1.120 1.118 1.115 1.112 1.110
50 = 0.281 100 0.896 1.134 1.130 1.127 1.124 1.120 1.117
50 = 0.281 125 0.882 1.147 1.142 1.138 1.134 1.131 1.127
50 = 0.281 150 0.864 1.160 1.152 1.147 1.142 1.139 1.134
50 = 0.281 175 0.849 1.181 1.162 1.152 1.147 1.142 1.141
50 = 0.281 200 0.832 1.224 1.196 1.172 1.162 1.153 1.148
50 = 0.281 250 1.451 1.306 1.246 1.209 1.185 1.174

Mean: 0.969 0.91 1.2 1.16 1.15 1.14 1.13 1.13

1J95%: 0.001 0.08 0.1 0.06 0.05 0.03 0.03 0.03

75 = 0.540 25 0.972 1.166 1.164 1.162 1.160 1.158 1.158 1.155
75 = 0.540 50 0.973 1.186 1.184 1.181 1.177 1.173 1.171 1.168
75 = 0.540 75 0.966 1.202 1.199 1.194 1.190 1.185 1.181 1.176
75 = 0.540 100 1.218 1.214 1.207 1.201 1.196 1.191 1.186
75 = 0.540 125 1.239 1.232 1.221 1.211 1.204 1.196 1.190
75 = 0.540 150 1.268 1.256 1.238 1.223 1.212 1.201 1.193
75 = 0.540 175 1.316 1.295 1.266 1.243 1.226 1.213 1.201
75 = 0.540 200 1.383 1.349 1.299 1.267 1.244 1.225 1.212
75 = 0.540 250 1.593 1.419 1.334 1.285 1.252 1.227

Mean: 0.971 1.25 1.3 1.24 1.22 1.21 1.20 1.19

a95%: 0.004 0.07 0.1 0.08 0.05 0.04 0.03 0.02

Overall: 1.11 ± 0.2895%
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Table 43. SR-POLAR(1)-SR-POLAR(2) volume-weighted mixture-density ratios at several
concentrations, temperatures, and pressures (Safarov and Shakhverdiev, 2001)

Ethanol Pressure, P (bar)
concentration Temperature, 1 50 100 200 300 400 500 600

SR SR
(wt.%) = xl T (°C) Mixture-density ratio, Pi 2 / P12

25 = 0.115 25 0.975 1.040 0.919 0.870 1.036 1.034 1.032 1.030

25 = 0.115 50 0.979 0.916 1.047 0.865 1.043 1.042 1.041 1.038
25 = 0.115 75 0.980 0.912 0.856 1.055 1.053 1.052 1.050 1.048
25 = 0.115 100 0.904 0.844 1.063 1.061 1.060 1.059 1.058
25 = 0.115 125 0.892 0.830 1.070 1.068 1.066 1.064 1.063
25 = 0.115 150 0.879 0.817 1.082 1.079 1.076 1.076 1.074
25 = 0.115 175 0.868 0.809 1.096 1.091 1.087 1.086 1.083
25 = 0.115 200 0.849 0.810 1.111 1.104 1.100 1.096 1.093
25 = 0.115 250 0.414 0.629 1.166 1.142 1.128 1.121 1.116

Mean: 0.978 0.9 0.8 1.0 1.08 1.07 1.07 1.07

095%: 0.002 0.2 0.1 0.1 0.03 0.03 0.03 0.03

50 = 0.281 25 0.968 1.095 0.914 1.091 1.087 1.086 1.081 1.080
50 = 0.281 50 0.969 0.912 1.108 1.104 1.102 1.098 1.095 1.093
50 = 0.281 75 0.969 0.907 1.122 1.117 1.114 1.111 1.107 1.104
50 = 0.281 100 0.896 1.135 1.130 1.127 1.124 1.120 1.116
50 = 0.281 125 0.883 1.150 1.146 1.143 1.140 1.137 1.133
50 = 0.281 150 0.865 1.167 1.161 1.157 1.153 1.153 1.149
50 = 0.281 175 0.850 1.189 1.173 1.167 1.164 1.163 1.163
50 = 0.281 200 0.833 1.232 1.210 1.190 1.185 1.180 1.179
50 = 0.281 250 1.443 1.314 1.266 1.240 1.225 1.222

Mean: 0.968 0.91 1.2 1.16 1.15 1.15 1.14 1.14

c95%: 0.001 0.08 0.2 0.07 0.05 0.05 0.05 0.05

75 = 0.540 25 0.972 1.165 1.161 1.156 1.153 1.148 1.145 1.140
75 = 0.540 50 0.973 1.184 1.181 1.175 1.170 1.164 1.161 1.156
75 = 0.540 75 0.966 1.200 1.197 1.191 1.186 1.179 1.175 1.169
75 = 0.540 100 1.219 1.215 1.208 1.201 1.196 1.191 1.186
75 = 0.540 125 1.242 1.236 1.226 1.217 1.210 1.202 1.197
75 = 0.540 150 1.274 1.264 1.248 1.233 1.224 1.215 1.208
75 = 0.540 175 1.323 1.304 1.278 1.259 1.245 1.234 1.225
75 = 0.540 200 1.388 1.357 1.313 1.287 1.269 1.254 1.245
75 = 0.540 250 1.584 1.428 1.357 1.319 1.294 1.277

Mean: 0.971 1.25 1.3 1.25 1.23 1.22 1.21 1.20

095%: 0.004 0.08 0.1 0.08 0.06 0.05 0.05 0.04

Overall: 1.11 i 0.2995%
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Table 44. SR-POLAR(1)-Steam-Table(2) density-weighted mixture-density ratios at several
concentrations, temperatures, and pressures (NIST, 1996; Safarov and Shakhverdiev, 2001)

Ethanol Pressure, P (bar)
concentration Temperature, 1 50 100 200 300 400 500 600
(wt%l) = X SR2STM
(wt.% 1 ) =x1 T (C) Mixture-density ratio, Pl 2 / P12

25 = 0.115 25 1.015 1.016 1.016 1.017 1.018 1.018 1.019 1.019
25 = 0.115 50 1.024 1.024 1.023 1.023 1.024 1.024 1.024 1.023
25 = 0.115 75 1.031 1.030 1.029 1.029 1.029 1.029 1.029 1.028
25 = 0.115 100 1.033 1.032 1.032 1.032 1.032 1.032 1.032
25 = 0.115 125 1.036 1.035 1.033 1.033 1.032 1.031 1.030
25 = 0.115 150 1.042 1.041 1.040 1.038 1.036 1.036 1.035
25 = 0.115 175 1.057 1.055 1.050 1.046 1.043 1.041 1.038
25 = 0.115 200 1.074 1.072 1.065 1.060 1.056 1.052 1.049
25 = 0.115 250 1.131 1.145 1.100 1.073 1.055 1.043 1.034

Mean: 1.02 1.05 1.05 1.04 1.04 1.04 1.03 1.03

C9 5%: 0.02 0.07 0.08 0.05 0.04 0.03 0.02 0.02

50 = 0.281 25 1.032 1.032 1.031 1.031 1.031 1.032 1.029 1.030
50 = 0.281 50 1.041 1.041 1.041 1.041 1.041 1.040 1.038 1.038
50 = 0.281 75 1.050 1.049 1.048 1.046 1.046 1.045 1.044 1.043
50 = 0.281 100 1.052 1.052 1.052 1.051 1.051 1.049 1.048
50 = 0.281 125 1.056 1.057 1.058 1.058 1.059 1.059 1.057
50 = 0.281 150 1.062 1.062 1.064 1.065 1.066 1.068 1.066
50 = 0.281 175 1.078 1.074 1.070 1.071 1.074 1.076 1.079
50 = 0.281 200 1.103 1.109 1.108 1.101 1.104 1.104 1.107
50 = 0.281 250 1.224 1.144 1.110 1.089 1.075 1.072

Mean: 1.04 1.06 1.08 1.07 1.06 1.06 1.06 1.06

1795%: 0.02 0.05 0.12 0.07 0.05 0.05 0.05 0.05

75 = 0.540 25 1.034 1.034 1.033 1.031 1.031 1.029 1.029 1.027
75 = 0.540 50 1.043 1.042 1.041 1.040 1.038 1.037
75 = 0.540 75 1.044 1.044 1.044 1.043 1.043 1.042
75 = 0.540 100 1.045 1.045 1.046 1.046 1.047
75 = 0.540 125 1.046 1.048 1.049 1.050 1.050
75 = 0.540 150 1.051 1.053 1.056 1.055 1.056
75 = 0.540 175 1.066 1.070 1.074 1.075 1.076
75 = 0.540 200 1.088 1.105 1.115 1.121 1.124
75 = 0.540 250 1.114 1.081 1.055 1.040

Mean: 1.04 1.05 1.06 1.06 1.06 1.06

795%: 0.01 0.03 0.06 0.05 0.05 0.06

Overall: 1.05 0.0695%

1.036 1.034
1.041 1.039
1.046 1.045
1.049 1.049
1.055 1.055
1.077 1.076
1.126 1.129
1.030 1.021

1.05 1.05

0.06 0.07
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Table 45. SR-POLAR(1)-SR-POLAR(2) density-weighted mixture-density ratios at several
concentrations, temperatures, and pressures (Safarov and Shakhverdiev, 2001)

Ethanol Pressure, P (bar)
concentration Temperature, 1 50 100 200 300 400 500 600

SRSR
(wt.%l) =X1 T (C) Mixture-density ratio, Pl 2 / P12

25 = 0.115 25 1.015 1.015 1.014 1.013 1.012 1.010 1.009 1.007

25 = 0.115 50 1.023 1.022 1.020 1.018 1.018 1.017 1.016 1.014
25 = 0.115 75 1.030 1.028 1.028 1.027 1.025 1.025 1.024 1.023
25 = 0.115 100 1.034 1.033 1.032 1.032 1.032 1.032 1.031
25 = 0.115 125 1.038 1.038 1.037 1.037 1.037 1.036 1.035
25 = 0. 115 150 1.047 1.047 1.047 1.046 1.046 1.047 1.047
25 = 0.115 175 1.063 1.062 1.060 1.058 1.057 1.058 1.057
25 = 0.115 200 1.078 1.079 1.077 1.075 1.075 1.075 1.074
25 = 0.115 250 1.117 1.138 1.107 1.090 1.080 1.075 1.073

Mean: 1.02 1.05 1.05 1.05 1.04 1.04 1.04 1.04

c95%: 0.01 0.06 0.08 0.06 0.05 0.05 0.05 0.05

50 = 0.281 25 1.032 1.031 1.030 1.028 1.025 1.025 1.021 1.020
50 = 0.281 50 1.040 1.040 1.039 1.037 1.036 1.034 1.031 1.030
50 = 0.281 75 1.049 1.048 1.047 1.044 1.043 1.042 1.040 1.038
50 = 0.281 100 1.053 1.053 1.052 1.052 1.051 1.049 1.047
50 = 0.281 125 1.059 1.060 1.061 1.062 1.063 1.063 1.061
50 = 0.281 150 1.066 1.067 1.070 1.073 1.074 1.077 1.077
50 = 0.281 175 1.082 1.079 1.079 1.082 1.086 1.090 1.095
50 = 0.281 200 1.106 1.114 1.118 1.115 1.120 1.124 1.129
50 = 0.281 250 1.218 1.150 1.125 1.111 1.104 1.107

Mean: 1.04 1.06 1.1 1.07 1.07 1.07 1.07 1.07

095%: 0.02 0.05 0.1 0.08 0.07 0.07 0.07 0.07

75 = 0.540 25 1.034 1.033 1.031 1.029 1.027 1.024 1.023 1.020
75 = 0.540 50 1.042 1.040 1.039 1.038 1.035 1.033. 1.032 1.029
75 = 0.540 75 1.043 1.043 1.043 1.042 1.041 1.039 1.038 1.035
75 = 0.540 100 1.045 1.046 1.047 1.046 1.047 1.046 1.045
75 = 0.540 125 1.048 1.049 1.051 1.052 1.053 1.051 1.052
75 = 0.540 150 1.054 1.056 1.060 1.060 1.062 1.062 1.062
75 = 0.540 175 1.069 1.074 1.080 1.083 1.085 1.086 1.087
75 = 0.540 200 1.090 1.109 1.122 1.130 1.136 1.139 1.144
75 = 0.540 250 1.110 1.085 1.065 1.055 1.049 1.045

Mean: 1.04 1.05 1.06 1.06 1.06 1.06 1.06 1.06

095%: 0.01 0.04 0.06 0.06 0.06 0.07 0.07 0.08

Overall: 1.06 + 0.0795%
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Table 46. SR-POLAR(12), zero-binary-parameter mixture-density ratios at several
concentrations, temperatures, and pressures (Safarov and Shakhverdiev, 2001)

Ethanol Pressure, P (bar)
concentration Temperature, 1 50 100 200 300 400 500 600

(wt.%l) = xl T(°C) Mixture-density ratio, Pl2 / P12

25 = 0.115 25 0.969 0.969 0.968 0.968 0.967 0.966 0.964 0.963
25 = 0.115 50 0.972 0.971 0.970 0.969 0.969 0.969 0.968 0.966
25 = 0.115 75 0.975 0.974 0.973 0.973 0.972 0.973 0.972 0.971
25 = 0.115 100 0.974 0.974 0.974 0.975 0.975 0.976 0.976
25 = 0.115 125 0.975 0.975 0.975 0.975 0.976 0.977 0.977
25 = 0.115 150 0.979 0.979 0.980 0.981 0.982 0.984 0.985
25 = 0.115 175 0.992 0.992 0.991 0.991 0.992 0.995 0.996
25 = 0.115 200 1.014 1.013 1.013 1.014 1.017 1.019 1.021
25 = 0.115 250 0.978 0.981 0.961 0.954 0.953 0.954 0.956

Mean: 0.972 0.98 0.98 0.98 0.98 0.98 0.98 0.98

095%: 0.006 0.03 0.03 0.03 0.03 0.04 0.04 0.04

50 = 0.281 25 0.957 0.957 0.956 0.955 0.953 0.953 0.950 0.950
50 = 0.281 50 0.958 0.958 0.958 0.957 0.957 0.956 0.955 0.954
50 = 0.281 75 0.959 0.958 0.958 0.957 0.957 0.957 0.956 0.956
50 = 0.281 100 0.955 0.956 0.957 0.958 0.960 0.959 0.959
50 = 0.281 125 0.952 0.954 0.958 0.961 0.964 0.966 0.967
50 = 0.281 150 0.950 0.953 0.958 0.964 0.969 0.974 0.977
50 = 0.281 175 0.959 0.958 0.961 0.969 0.978 0.986 0.994
50 = 0.281 200 0.985 0.992 1.002 1.006 1.018 1.028 1.038
50 = 0.281 250 0.926 0.903 0.904 0.908 0.912 0.923

Mean: 0.958 0.96 0.96 0.96 0.96 0.96 0.97 0.97

095%: 0.002 0.02 0.03 0.05 0.05 0.06 0.06 0.06

75 = 0.540 25 0.962 0.962 0.961 0.959 0.958 0.956 0.956 0.954
75 = 0.540 50 0.962 0.962 0.961 0.961 0.960 0.959 0.959 0.957
75 = 0.540 75 0.956 0.957 0.957 0.958 0.959 0.959 0.959 0.958
75 = 0.540 100 0.949 0.951 0.954 0.957 0.959 0.960 0.961
75 = 0.540 125 0.942 0.945 0.950 0.954 0.958 0.959 0.962
75 = 0.540 150 0.935 0.940 0.949 0.954 0.960 0.964 0.968
75 = 0.540 175 0.937 0.946 0.960 0.970 0.979 0.986 0.991
75 = 0.540 200 0.949 0.971 0.998 1.018 1.033 1.045 1.056
75 = 0.540 250 0.797 0.847 0.860 0.870 0.877 0.883

Mean: 0.960 0.95 0.9 0.95 0.95 0.96 0.96 0.97

095%: 0.008 0.02 0.1 0.08 0.08 0.08 0.09 0.09

Overall: 0.96 ± 0.0695%
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Table 47. SR-POLAR(12), binary-parameter mixture-density ratios at several concentrations,
temperatures, and pressures (Safarov and Shakhverdiev, 2001)

Ethanol Pressure, P (bar)
concentration Temperature, 1 50 100 200 300 400 500 600

= T(0C) 7 . SR(wt.%) = Xl T(°C)- Mixture-density ratio, P12 / P12

25 =0.115 25 0.974 0.974 0.973 0.973 0.971 0.970 0.969 0.967
25 = 0.115 50 0.979 0.978 0.977 0.975 0.975 0.974 0.973 0.971
25 = 0.115 75 0.983 0.982 0.981 0.980 0.979 0.979 0.979 0.977
25 = 0.115 100 0.984 0.983 0.983 0.983 0.983 0.983 0.983
25 = 0.115 125 0.986 0.986 0.985 0.985 0.986 0.985 0.985
25 = 0.115 150 0.993 0.993 0.993 0.993 0.993 0.995 0.995
25 = 0.115 175 1.010 1.009 1.007 1.006 1.006 1.007 1.007
25 = 0.115 200 1.037 1.035 1.032 1.032 1.033 1.034 1.036
25 = 0.115 250 1.017 1.016 0.989 0.978 0.973 0.972 0.973

Mean: 0.979 1.00 0.99 0.99 0.99 0.99 0.99 0.99

c95%: 0.009 0.04 0.04 0.04 0.04 0.04 0.04 0.04
50 = 0.281 25 0.965 0.964 0.963 0.962 0.960 0.960 0.957 0.956
50 = 0.281 50 0.968 0.968 0.967 0.966 0.966 0.964 0.962 0.961
50 = 0.281 75 0.971 0.970 0.969 0.968 0.967 0.967 0.965 0.964
50 = 0.281 100 0.970 0.970 0.970 0.970 0.971 0.970 0.969
50 = 0.281 125 0.970 0.971 0.973 0.975 0.977 0.979 0.978
50 = 0.281 150 0.973 0.974 0.978 0.982 0.985 0.989 0.990
50 = 0.281 175 0.989 0.985 0.986 0.991 0.997 1.003 1.011
50 = 0.281 200 1.028 1.030 1.034 1.034 1.044 1.050 1.059
50 = 0.281 250 0.990 0.945 0.937 0.935 0.936 0.944

Mean: 0.968 0.98 0.98 0.98 0.98 0.98 0.98 0.98

c95%: 0.006 0.04 0.04 0.05 0.05 0.06 0.07 0.07
75 = 0.540 25 0.968 0.967 0.966 0.964 0.963 0.961 0.960 0.958
75 = 0.540 50 0.970 0.969 0.968 0.967 0.966 0.964 0.964 0.962
75 = 0.540 75 0.965 0.965 0.965 0.965 0.966 0.965 0.965 0.963
75 = 0.540 100 0.960 0.961 0.964 0.965 0.967 0.967 0.968
75 = 0.540 125 0.955 0.958 0.961 0.964 0.967 0.968 0.970
75 = 0.540 150 0.954 0.957 0.963 0.967 0.971 0.974 0.977
75 = 0.540 175 0.963 0.969 0.978 0.985 0.992 0.998 1.002
75 = 0.540 200 0.990 1.004 i.023 1.038 1.051 1.060 1.070
75 = 0.540 250 0.856 0.876 0.881 0.886 0.891 0.894

Mean: 0.967 0.97 0.96 0.96 0.97 0.97 0.97 0.97

095%: 0.005 0.02 0.08 0.08 0.08 0.08 0.09 0.09

Overall: 0.98 0.0695%
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Given the apparent success of validating the mixture-density approaches, the SR-

POLAR(1)-Steam-Table(2) EOS with weighted densities is selected over the SR-POLAR(12)

EOS in order to calculate mixture densities for the experiments performed. The reasons are six

fold:

1. As shown in Table 48, the average mixture-density ratio calculated for the ethanol-

water validation work is reasonable (0.90 < P12 s/pl2 < 1.10) and is nearly the best.

2. Overestimating mixture densities (ratio = 1.10 for the ethanol-water system) will

allow density effects to be compared in the mutual-diffusivity analysis. Since

diffusivities are density dependent and since pure-water-calculated densities

underestimate the mixture density, diffusivities based on these density approaches

should represent the lowest and highest possible values. Values that are similar imply

that pure-water-calculated-based diffusivities are sufficient and mixture-based

diffusivities can be represented by the pure-water-based counterparts.

3. By using the Steam-Table EOS for the water component, density inaccuracies will be

reduced as the mixture becomes dilute (and eventually becomes pure water) since the

Steam-Table EOS is more accurate than the SR-POLAR(12) EOS for pure water

predictions. This approach also prevents density discontinuities since they would

exist if mixture-density predictions were made using the SR-POLAR(12) EOS for

dilute mixtures and then predictions were made using the NIST Steam-Table EOS for

pure water.

4. Only two readily available liquid densities are needed (in addition to vapor pressures

provided by ASPEN PLUSTM in order to regress the six SR-POLAR pure component

parameters.

5. Furthermore, binary parameters would not be needed.

6. The difference in acetone-water mixture-density predictions between the SR-

POLAR(12) EOS with and without binary parameters is only -0.2% ± 0.8%95% for the

set of experimental process conditions, indicating that binary parameters do not

significantly affect acetone-water mixture densities.
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With the EOS and mixture-density choices selected, the mixture densities can be calculated for

the experimental process conditions, and they are shown in Table 49.

In the worst-case scenario, the SR-POLAR acetone density may have up to 10% error

(especially for supercritical densities which show a larger deviation). Since the acetone density

does not contribute more than a third (x1 = 0.32) to the mixture density, then the mixture-density

error can be estimated to be less than 4%, but in order to be cautious, the mixture error should be

doubled to 8%. Although 8% may seem rather large, it is comparable to several of the

diffusivity 95%-confidence-interval uncertainties. With the mixture densities approximated,

plots of diffusivity as a function of the mixture density can be shown. Tracer-diffusivity data are

again tabulated in Table 50 with the calculated mixture density, while Figure 101 through Figure

105 are re-plotted in Figure 115 through Figure 119.

Table 48. Average mixture-density ratios for several mixture-density approaches when
compared to experimental ethanol(1)-water(2) mixture-density data, P12 (Safarov and

Shakhverdiev, 2001)

Approach for the 196 data points examined Mixture-density ratio Mean + c 9 5%

Volume & mole-fraction weighted SR sR 0.29
SR-POLAR(1)-SR-POLAR(2) 2 P12

Volume & mole-fraction weighted SR STM 1.110.28
SR-POLAR(1)-Steam-Table(2)

Density & mole-fraction weighted SR sR1.060.07
SR-POLAR(1)-SR-POLAR(2)

Density & mole-fraction weighted SR STM 1.05 0.06
SR-POLAR(1 )-Steam-Table(2)

Internally (a, b, & c) weighted, zeroed-binary- SR 0.96 ± 006
parameters SR-POLAR(12) P12 / P12

Internally (a, b, & c) weighted, regressed- SR 0.98 006
binary-parameters SR-POLAR(12) P12 P12
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Table 49. Mixture-density predictions using the SR-POLAR and Steam-Table EOSs for the
subcritical and supercritical process conditions

Acetone Temperature, Pressure, Translated Calculated-pure- Calculated
concentration T ("C) P (bar) SR-POLAR water density, mixture density,
(wt.%1) = x1 acetone density, P2 (/C) PP1SR STM

P1 (g/cm) (NIST, 1996) (g/cm 3 )

20 = 0.0724 408.7 70.2 0.1034 0.0247 0.030
20 = 0.0724 404.4 125.2 0.2510 0.0494 0.064
20 = 0.0724 403.8 199.8 0.4602 0.0978 0.124
20 = 0.0724 403.2 240.7 0.5583 0.1435 0.174
20 = 0.0724 404.1 263.9 0.6068 0.1830 0.214
20 = 0.0724 402.2 278.5 0.6418 0.2347 0.264
20 = 0.0724 404.4 289.6 0.6591 0.2595 0.288
20 = 0.0724 455.3 140.8 0.2335 0.0495 0.063
20 = 0.0724 456.5 236.6 0.4429 0.0974 0.122
20 = 0.0724 505.8 154.6 0.2198 0.0492 0.062
20 = 0.0724 504.0 271.3 0.4354 0.0989 0.123

40 = 0.171 402.5 70.2 0.1057 0.0250 0.039
40 = 0.171 402.5 125.3 0.2540 0.0498 0.085
40 = 0.171 403.1 199.9 0.4618 0.0983 0.161
40 = 0.171 404.3 240.7 0.5558 0.1417 0.213
40 = 0.171 404.1 264.2 0.6074 0.1837 0.257
40 = 0.171 404.4 278.2 0.6359 0.2192 0.291
40 = 0.171 404.3 288.9 0.6577 0.2571 0.326
40 = 0.171 452.7 79.8 0.1069 0.0260 0.040
40 = 0.171 455.2 140.3 0.2325 0.0493 0.081
40 = 0.171 454.7 237.2 0.4473 0.0986 0.159
40 = 0.171 500.9 81.7 0.0967 0.0245 0.037
40 = 0.171 504.8 155.0 0.2212 0.0494 0.079
40 = 0.171 504.8 271.1 0.4340 0.0986 0.156

60 = 0.319 402.8 70.5 0.1063 0.0251 0.051
60-=-0.319 403.0 125.6 0.2541 0.0498 0.115
60 = 0.319 404.0 200.0 0.4601 0.0978 0.214
60 = 0.319 404.2 241.1 0.5569 0.1424 0.275
60 = 0.319 404.1 264.4 0.6078 0.1842 0.319
60 = 0.319 404.3 279.1 0.6380 0.2227 0.355
60 = 0.319 403.7 289.0 0.6596 0.2635 0.390
60 = 0.319 456.2 76.4 0.0999 0.0246 0.049
60 = 0.319 455.3 140.4 0.2325 0.0493 0.108
60 = 0.319 456.0 236.7 0.4440 0.0977 0.208
60 = 0.319 504.8 84.4 0.0999 0.0252 0.049
60 = 0.319 506.5 155.6 0.2211 0.0495 0.104
60 = 0.319 506.6 271.3 0.4319 0.0981 0.205
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Table 50. Acetone(l)-water(2) tracer diffusivities at sub- and supercritical water conditions
(with 95%-confidence-interval uncertainties)

Acetone Experiment Calculated Experimental Acetone(l) tracer Water(2) tracer
concentration temperature, mixture density, pressure, diffusivity, diffusivity,

(wt.%l) =X1 T( ° C) p (g/cm3 ) PD 1 x 1 (cm /s) D2 X 10 (cm /s)

20 = 0.0724
20 = 0.0724
20 = 0.0724
20 = 0.0724
20 = 0.0724
20 = 0.0724
20 = 0.0724
20 = 0.0724
20 = 0.0724
20 = 0.0724
20 = 0.0724

40 = 0.171
40 = 0.171
40 = 0.171
40 = 0.171
40 = 0.171
40 = 0.171
40 = 0.171
40 = 0.171
40 = 0. 171
40 = 0.171
40 = 0.171
40 = 0. 171

40 = 0.171

60 = 0.319
60 = 0.319
60 = 0.319
60 = 0.319
60 = 0.319
60 = 0.319
60 = 0.319
60 = 0.319
60 = 0.319
60 = 0.319
60 = 0.319
60 = 0.319
60 = 0.319

409 + 2
404.4 + 0.8

404 + 1
403.2 + 0.1
404.1 + 0.9

402 3
404.4 + 0.1
455.3 + 0.4
456.5 + 0.8

506 1

504 + 5

403 1

402.5 + 0.3
403 1

404.3 ± 0.4
404.1 0.1

404 1
404 1

452.7 + 0.7
455.2 + 0.9
454.7 - 0.4
500.9 - 0.7

505 1

504.8 + 0.8

402.8 +t 0.2
403 1

404 1

404.2 + 0.9
404 1

404.3 + 0.7
403.7 + 0.4

456 1
455 1

456 + 0.5
504.8 4 0.6
506.5 + 0.3

507 - 2

U.UO3

0.064
0.124
0.174
0.214
0.264
0.288
0.063
0.122
0.062
0.123

0.039
0.085
0.161
0.213
0.257
0.291
0.326
0.040
0.081
0.159
0.037
0.079
0.156

0.051
0.115
0.214
0.275
0.319
0.355
0.390
0.049
0.108
0.208
0.049
0.104

0.205

70 ± 1
125.2 t 0.5

200 1

240.7 ± 0.7
264 1

278.5 ± 0.9
289.6 ± 0.3
140.8 ± 0.8
236.6 ± 0.4

155+3
271.3 ± 0.8

70.2 ± 0.9
125.3 + 0.3
199.9 ± 0.7
240.7 - 0.3
264.2 + 0.6
278.2 + 0.8
288.9 + 0.9
79.8 I0.1
140.3 ± 0.5
237.2 ± 0.4

82 ± 2
155 ± 0.4
271 1

70.5 4- 0.9
125.6 4- 0.5
200 4 0.6

241.1 + 0.6
264.4 + 0.6
279.1 - 0.4
289 - 0.1
76.4 t 0.2
140.4 - 0.1
236.7 - 0.6

84- 3
156 1

271 1
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<<SNR
374 ± 98
168 ± 12
130 ± 10
106 ± 18
87 ± 32
85 ± 22

514 ± 26
295 ± 31
615 ± 56
352 ± 36

585 +t 45
300 4- 40
150 + 36
143 ± 23
121 + 15

98 + 9
86 + 31

766 - 25
460 32
217 + 71
958 4- 47
580 + 63

286 + 107

656 t 15
305 17
174 - 30
133 7
117 - 24
91 + 9
80 9

782 + 34
466 + 85
252 + 51
888 ± 98

554 138

349 - 18

1282 + 378
588 + 23
282 12
239 + 8
189 4 5
177 + 16
168 - 20
828 - 70
351 t 10
938 112
383 + 9

943 - 103
470 - 37
253 - 33
275 + 35
221 ± 4
201 76
190 4 8

1202 - 76
640 10
310 - 81
1475 + 21
803 2

369 - 26

982 t 7
480 - 36
307 10
218 + 32
204 + 28
184 - 9
180 ± 7

1205 - 74
632 - 204
357 + 30

1189 101
785 19

441 180



650 j 404.30C + 0.3°C acetone(1)-water(2) solution
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Calculated mixture density, p (g/cm 3)
Figure 115. Acetone tracer diffusivities at 404.30 C (with 95%-confidence-interval
uncertainties). Curves are intended to show general trends.
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Figure 116. Water diffusivities at 404.30 C (with 95%-confidence-interval uncertainties). Curves
are intended to show general trends.
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Calculated mixture density, p (g/cm3)
Figure 117. Acetone and water diffusivities at 404.30 C (with 95%-confidence-interval
uncertainties). Curves are intended to show general trends.
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Figure 118. Tracer diffusivities at 4550C (with 95%-confidence-interval uncertainties). Curves
are intended to show general trends.
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Figure 119. Tracer diffusivities at 5060C (with 95%-confidence-interval uncertainties). Curves
are intended to show general trends.
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II. 4.4 Analysis and Discussion

This section will focus on observed diffusivity trends and on the estimation of infinitely

dilute mutual diffusivities, Di2®, from acetone tracer diffusivities.

II. 4. 4.1 Diffusivity Trends

The diffusivity dependence on concentration shows trends similar to those seen in the

literature. For example, tracer and mutual diffusivities often reach a minimum at low solute

concentrations as is shown in Figure 120 for an acetone-water mixture at several temperatures, in

Figure 121 for an acetone-n-butylacetate mixture at several temperatures, and in Figure 122 for

an acetone-water mixture at 25C. Note that the Figure 122 acetone-water tracer-diffusivity data

do not agree at concentrated solutions, but show similar minima near mole fractions of 0.2. The

published data show temperature trends and slope changes near the diffusivity minima that are

also visible in the data of this dissertation (see Figure 112 through Figure 114). For example, at

lower densities and higher temperatures, there appears to be an increase in diffusivity as infinite

dilution is approached.

Ferrario et al. (1990) report hydrogen-bonding simulation results for several systems

including ambient acetone-water. They report that the jump in diffusivity at higher acetone

concentrations correlates to the significant disruption of the water-water hydrogen-bonding

network and the formation of coordinated solute-water species. These species are linked less

than the original water-water network and support greater molecular movement. They also find

that, at low solute concentrations, the solute has enhanced-receptor qualities that further stabilize

the hydrogen-bonding network and lead to diffusivity minima near -0.3 mole fractions. The

minima can be seen in ambient data (see Figure 122) and in the high temperature, high pressure

data (see Figure 112 through Figure 114). Hydrogen bonding is known to exist in high

temperature and high pressure SCWO (Hoffmann and Conradi, 1997), and acetone appears to

behave in a similar fashion as it does at ambient conditions.

For the 40 wt.% 1 data, an anomaly exists that is associated with day-to-day repeatability

since measurements around 0.20 g/cm3 were taken on different days with different solutions. In

order to demonstrate that other data are not affected, Figure 123 and Figure 124 show the day of
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Figure 120. Mutual diffusivity for an acetone(1)-water(2) mixture at ambient pressure with
95%-confidence-interval uncertainties (Baldauf and Knapp, 1983). The diffusivity minima
appear to shifts from -0.3 to -0.2 as the temperature is lowered.
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Figure 121. Mutual diffusivity for an acetone(1)-n-butylacetate(2) mixture at ambient pressure
with 95%-confidence-interval uncertainties (Baldauf and Knapp, 1983). The diffusivity minima
are sensitive to temperature, and for T = 1 0°C, the minimum is at x1 - 0.
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Figure 122. Tracer diffusivities for an acetone(A)-water mixture at 250 C. Small solid and open
circles are experimental data from two sources, while the large open circles, triangles, and
squares are MD-simulated data for water and acetone, respectively (Source: Ferrario et al.,
1990).

collection for all of the multi-day 4040 C experimental data. The 60 wt.%1 data are consistent

during the two-day collection period. The only anomaly is for the 40 wt.%1 solution which may

have been more dilute for the low-density, day-two experiments and been more concentrated for

the denser experiments on day four.

11.4.4.2 Infinitely Dilute Mutual Diffusivities

Infinitely dilute mutual diffusivities can now be estimated by extrapolating isochoric and

isothermal acetone-tracer-diffusivity data to zero acetone concentration. This extrapolation will

be performed using the calculated mixture-density diffusivity data (Table 50) and the calculated-

pure-water-density diffusivity data (Table 37) although these pure-water-density results will be

suspect due to the use of the pure water densities. Weighted second-order fits (y = b + mx + nx2)

were made for several isochoric data sets extracted from density-versus-diffusivity figures

including Figure 115. These fits are summarized in Table 51, and note that other isochoric data

sets could be extracted. Data from Table 50 cannot be used since mixture densities are not
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Figure 123. Tracer diffusivities at 4040C showing the day number of collection with curves. 40
wt.%1 and 60 wt.%1 had multiple collection days, and only 40 wt.%1 exhibits an anomaly.
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Figure 124. Tracer diffusivities at 4040C showing the day number of collection. Concentrations
of 40 wt.%1 and 60 wt.%1 had multiple collection days, and only 40 wt.%1 exhibits an anomaly.
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identical and cannot be clustered together. Due to data scattering and uncertainty below

0.2 g/cm3 mixture densities, 404°C isochore-data estimation is limited to the region above

0.2 g/cm3 .

Three isochore sets are estimated from Figure 115 and are plotted in Figure 125 in order

to estimate the infinitely dilute mutual diffusivity. Similar tracer-diffusivity trends are seen since

the mutual diffusivity exponentially decreases near the critical point and becomes relatively

linear with density at higher densities. Diffusivity also increases with temperature, but further

analysis will follow when diffusivity models and functional dependencies are validated.

Extrapolations are also performed on pure-water-density isochors that have at least three

data points, and the extrapolated infinitely dilute mutual diffusivities are presented in Table 52

and are shown in Figure 126. These extrapolations allow a comparison of the mutual diffusivity

using two distinct mixture density sets. The reported uncertainty is rather large, but this is due to

the small number of data points, which also have large uncertainties. These results are consistent

with the results obtained using mixture-water isochors, and all are shown in Figure 127. There

appears to be acceptable agreement between the mutual diffusivities extrapolated from different

isochoric dataset approaches (pure water versus mixture densities).

Table 51. Extrapolated infinitely dilute mutual diffusivities, D 12
®, and their corresponding

process conditions (with 95%-confidence-interval uncertainties)

Infinitely dilute
Temperature, Mixture density, Pressure, mutual diffusivity,

T (C) p (g/cm 3) P (bar) D12 x 105 (cm2/s)

404 0.22 278 86 + 20
404 0.26 289 70 + 30
404 0.30 299 57 + 20
455 0.05 142 520 + 80
455 0.10 240 380+ 100
506 0.05 157 680 + 150
506 0.10 275 440 + 180
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Figure 125. Tracer and extrapolated infinitely dilute mutual diffusivities at
calculated mixture densities (with 95%-confidence-interval uncertainties).

x 105 (cm 2/s)=
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Table 52. Extrapolated infinitely dilute mutual diffusivities, D12®, for several temperatures and
calculated-pure-water densities (with 95%-confidence-interval uncertainties)

Infinitely dilute
Experimental Calculated-pure-water Experimental pressure, mutual diffusivity,

temperature, T (C) density, P2 (g/cm) P (bar) D12 x 10 (cm2/s)

404 0.0494 125 500 + 200
404 0.0977 200 200 + 60
404 0.1838 264 90 + 50
404 0.2206 279 70 + 70
404 0.257 289 80 + 70
455 0.0494 141 580 + 80
455 0.0977 237 300 + 100
506 0.0494 155 700 + 200
506 0.0977 271 400 + 200
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When Table 51 and Table 52 are compared, the analyses with two different isochoric data

sets yield similar results, which should be expected given that less than 30 mole% of acetone is

used. The pure-water-isochore diffusivities are within the uncertainty of the mixture-isochore

diffusivities indicating that the pure-water-isochore tracer diffusivities could be used to

determine the infinitely dilute mutual diffusivities, and surely be used to generate, e.g.,

temperature trends. The agreement also holds at higher densities where one expects that the

difference between density models is the largest and where the extrapolated infinitely dilute

mutual diffusivities could deviate. That is not evident from the data presented in Figure 127. At

low densities, ideal behavior ensures that density predictions would be similar and would yield

comparable infinitely dilute mutual diffusivities. Additional infinitely dilute mutual diffusivities

can be extrapolated since one is not limited to the density values used in Table 51 and Table 52.

Further analysis of these mutual diffusivities will be performed in the next section when

diffusivity models are investigated in order to validate the diffusivity models and their functional

dependences.
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11.5. Diffusivity Modeling

In this final section, diffusivity models will be evaluated against previously discussed

data so that models with greater accuracy and versatility can be recommended for SCWO

modeling applications. The compared models are based on hydrodynamic, kinetic, and hard-

sphere theories of diffusion, while the referenced diffusivity data include:

· experimental pure water self-diffusivities,

* experimental aqueous dilute-solute mutual diffusivities,

· experimental aqueous concentrated-solute tracer diffusivities, and

* simulated aqueous dilute-solute tracer diffusivities.

The 303 sub- and supercritical-water data points span an order of magnitude of densities

(0.1 to 1.1 g/cm3) and temperatures from ambient to supercritical-water temperatures (25°C to

700°C) and ensure a wide supercritical-processing window for examining the selected diffusivity

models. The previously published data are contained in Section 1. 1.3 and visually summarized

in Figure 68, while the acetone tracer and mutual diffusivities collected in this thesis are listed in

Section II.4's Table 36, Table 50, and Table 51.

The models evaluated in this analysis were previously introduced in Section II. 1.1.2

through Section II. 1.1.4 and are listed in Table 53. Prior to examining each diffusivity model

and offering modeling recommendations, constants and properties that are employed in these

models are introduced.
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II. 5.1 Species Constants and Properties

All of the diffusivity models examined employ species-dependent constants or

parameters. These parameters include critical properties, phase-change temperatures and

volumes, and 6-12 Lennard-Jones (LJ) constants since the Lennard-Jones intermolecular

potential function is employed. The solutes compared are acetone, benzene, benzophenone,

hydroquinone, iodide ions (potassium-iodide salt), methane, oxygen, and sodium-nitrate.

Critical properties for water and the solutes investigated are listed in Table 54, while molecular

weights, acentric factors, and phase-change properties are listed in Table 55.

Table 53. Diffusivity models evaluated
Model

Hydrodynamic theory of diffusion
Stokes-Einstein equation with the no-slip condition
Stokes-Einstein equation with the slip condition
Wilke-Chang equation
Reddy-Doraiswamy equation (original form)

(with NBP-volumes)

Kinetic theory of diffusion
Chapman-Enskog equation

CE equation with the Enskog-Thorne correction
Weighted CE equation with the ET correction
CE equation with the Takahashi correction
CE equation with the Dawson HS correction
CE equation with the Erpenbeck-Wood HS correction

Polar Chapman-Enskog equation
Polar CE equation with the Enskog-Thorne correction
Polar, weighted CE equation with the ET correction
Polar CE equation with the Takahashi correction
Polar CE equation with the Dawson HS correction

Wilke-Lee equation
WL equation with the Enskog-Thorne correction
WL equation with the Takahashi correction
WL equation with the Dawson HS correction

Mathur-Thodos equations

Hard-Sphere Theory of Diffusion
Sun-Chen equation
Eaton-Akgerman equation
He equation
He-Yu equation
Tracer Liu-Silva-Macedo equation

in this analysis
Section

11.5.2.1
11.5.2.1.1

I1.5.2.1.1
11.5.2.1.2
11.5.2.1.3
11.5.2.1.3

11.5.2.2
11.5.2.2.1
I1.5.2.2.1.1
11.5.2.2.1.1
11.5.2.2.1.2
11.5.2.2.1.3
11.5.2.2.1.4
11.5.2.2.2
11.5.2.2.2
11.5.2.2.2
11.5.2.2.2
11.5.2.2.2
11.5.2.2.3

11.5.2.2.3
11.5.2.2.3
11.5.2.2.3
11.5.2.2.4

11.5.2.3
11.5.2.3.1
11.5.2.3.2
11.5.2.3.3
11.5.2.3.4
11.5.2.3.5
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Table 54. Pure component critical properties used in this modeling analysis
(Braker and Mossman, 1980; Walas, 1985; Sato et al., 1991; Poling et al., 2001; Knovel, 2004;

NIST, 2004)
Critical Critical Critical Critical

temperature, pressure, density, compressibility,
Species T (C) P, (bar) P, (cm 3/mol) Zc

Water 373.9 220.6 0.322 0.229
Acetone 235 47.01 0.278 0.232
Benzophenone 543 30.0 0.308 0.262
Hydroquinone 549 74.5 0.367 0.327
Iodide ion 2601 214.5 0.549 0.207
(used KI values)
Methane -83 46.0 0.162 0.287
Oxygen -119 50.4 0.435 0.289
Sodium nitrate Constants were not found and not estimated

Note that the iodide-ion properties are based on its salt, potassium iodide, except for its

molecular weight. The normal-boiling-point (NBP) molar volume for acetone in Table 55 has

several entries and includes the published 77.5 cm3/mole value and a temperature-dependent list

developed and used by Goemans (1996) during his modeling analysis. For consistency reasons,

his list is not used during this analysis. The temperature-dependent volumes were computed

after he used his experimental data and the Stokes-Einstein equation to calculate the effective

Stokes-Einstein radii, thereby enabling his Stokes-Einstein predictions to be flawless! Goemans

used this volume-estimation technique so that he could compensate for hydrogen-bonding effects

since molecular volume scales according to the static dielectric constant (Goemans, 1996). As a

result of using variable boiling volumes, hydrogen-bonding effects could be included in his

evaluated models that normally do not have such corrections (the Wilke-Chang association factor

was preset to one during the Goemans' analysis in order to not overcompensate). Since the

current analysis attempts, as much as possible, to compare diffusivity models with traditional

calculation approaches and with constant properties that do not vary, 77.5 cm3/mole is used for

the boiling molar volume of acetone. Similarly, fixed volumes and ratios are used for

benzophenone, instead of Goemans' temperature-dependent lists.
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Table 55. Additional pure component properties used in this modeling analysis
(Braker and Mossman, 1980; Walas, 1985; Sato et al., 1991; Poling et al., 2001; Knovel, 2004;

NIST, 2004)
Melting Normal boiling Normal boiling

Molecular temperature temperature molar volume
weight, Acentric (at P = 1 bar), (at P = 1 bar), (at P = 1 bar),

Species MW(g/mol) factor, co Tm (C) Tb (C) Vb (cm /mol)
Water 18.015 0.344 0.0 100 18.8
Acetone 58.08 0.306 -94 55.9 77.5

Acetone
(Goemans, 1996)

Benzophenone

Benzophenone
(Goemans, 1996)

Hydroquinone
Iodide ion

Methane
Oxygen
Sodium nitrate

For consistency, these data are not used
(77.5 is used):

182.2 0.545 48 306

For consistency, these data are not used
(211 is used):

110.1
126.9

16.04
32.00
84.99

0.686
0.585

(KI value)
0.011
0.022

170
733

(KI value)
-183
-218
308

285
1324

(KI value)
-162
-183

43.3 at 25°C
& 100°C

28.5 at 200°C
29.5 at 300°C
13.1 at 350°C

211
233 at 100°C
99.1 at 200°C
53.4 at 3000C

1 53.4 at 350°C
134
78.3

(KI value)
37.8
28.1
76.5

(Goemans, 1996)

The 6-12 Lennard-Jones constants are presented in Table 56 and include, for comparison,

Goemans' estimates that are inappropriately back-calculated from the Stokes-Einstein equation.

As noted earlier, these estimates will not be used in this analysis. Benzophenone and

hydroquinone radii are estimated after scaling the van der Waals volumes for benzene, acetone,

benzophenone, and hydroquinone and are not significantly different from the benzophenone

values back-calculated by Goemans (Knovel, 2004). These similarities indicate that Goemans'

experimental diffusivities are reasonable which are also evident in Figure 60 and Figure 68.

Since densities are also required during this analysis and experimental density data are

not available, EOS predictions are used. Densities of experimental dilute aqueous solutions and

pure water are predicted with the NIST Steam Table (NIST, 1996). Mixture densities for the

experimental acetone diffusivities have been estimated using EOSs in Section II.4.3. Mixture

densities of the MD-simulated aqueous-methane and aqueous-oxygen systems are provided by
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Ohmori and Kimura (2003). When solvent close-packed hard-sphere molar volumes are needed,

they are set equal to V0 = 2-1/2N 3 for all systems, including concentrated systems when the

packed volumes will be partially influenced by the solute.

Solvent viscosities are also needed, and they are estimated with the NIST Steam Table

since water is the solvent (NIST, 1996). For concentrated mixtures, solution viscosities may be

noticeably different from the pure water viscosities, so solution viscosities have also been

estimated. Concentrated-solution viscosities were approximated with the Rogers and Pitzer

(1982) approach that was used for concentrated sodium-chloride solutions. In this concentration-

dependent approach, the solution viscosity is set equal to the pure water viscosity evaluated at

the solution density (instead of the pure water density). For example, solution viscosity is an

estimated 34% larger for the most dense and concentrated acetone solution (0.39 g/cm &

60 wt.%l) used in this analysis.
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Table 56. Pure component 6-12 Lennard-Jones properties used in this modeling analysis
Species Well-depth potential, Elk (K) Radius, r (A)

363
(Lienhard and Lienhard, 2002)

560
(Lienhard and Lienhard,.2002)

Goemans (1996) back-
calculated estimates are not

used (2.28 is used):

1.375 - 0.0011(T[°C] - 25)
(Wilhelm, 1973)

2.28
(Lienhard and Lienhard, 2002)

2.41 at 25°C
& 100°C

2.29 at 200°C

1.98 at 300°C

1.57 at 350°C

3.98 at 100°C

Benzophenone
Goemans
(1996)

Benzophenone

Hydroquinone

Iodide ion

Goemans (1996) back-
calculated estimates are not

used (3.7 is used):

640
(estimated from critical properties

(Perry, 1984))

630
(estimated from critical properties

(Perry, 1984))

1900
(estimated from KI critical
properties (Perry, 1984))

3.56 at 200°C

1.95 at 300°C
& 350°C

3.7
(estimate larger than benzene: 2.67

(Lienhard and Lienhard, 2002))

3.0
(estimate larger than benzene: 2.67

(Lienhard and Lienhard, 2002))

2.20
(iodine ionic radius (Atkins, 1990))

148.6
(Lienhard and Lienhard, 2002)

106.7
(Lienhard and Lienhard, 2002)

1.88
(Lienhard and Lienhard, 2002)

1.73

(Lienhard and Lienhard, 2002)

Sodium nitrate
1000

(estimated from melting volume
(Perry, 1984))

3.12
(NaNO 3-4H 20 (Goemans, 1996))
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11.5.2 Diffiisivity-Model Analysis

Due to the large number of diffusivity models and data points examined during this

analysis, it is necessary to consolidate and simplify the reporting process. For this reason, x-y

scatter plots with fixed ranges are used to display the results of each model. Mixture density is

shown on the abscissa, while the ordinate displays the ratio of calculated and experimental

diffusivities, Dcalc/Dexpt where Dcalc is the model prediction and Dexpt is the experimental

diffusivity.

Ideally, the plotted ratios should all be unity, but finding such an accurate model is

unlikely. Diffusivity ratios, for the most part, should remain inside the range 0.5 < Dcalc/Dexpt <

2.0 in order for the model to be considered worthy for SCW diffusivity modeling. Models that

fall within this range can replicate temperature, density, and species dependencies fairly well and

should extend to other SCW systems in a straightforward manner. Multiple excursions beyond

this range indicate that the diffusivity predictions are poor and that these models should be

considered suspect. Multiple excursions may be caused by poor model form or inherent model

limitations. For example, some models are limited to a specific density regime such as low

(p < -0.5 g/cm3 ) or high (p > -0.5 g/cm 3) density. Plotted ratios may also be skewed by

experimental-data inaccuracies, although these effects are minimized by qualitatively examining

the isothermal and isobaric trends and by using the same experimental diffusivities in every

modeling-analysis plot. Later in this analysis, experimental uncertainties and their scatter-plot

impact will be discussed.

To judge the performance of each model, three performance zones will be used in order

to classify both low and high mixture-density prediction capabilities. These zones are

summarized in Table 57. Two scatter plots are shown for each model since it is difficult to

distinguish all of the plotted data. The first plot contains mutual diffusivities (D 12) and solute

tracer diffusivities (D1), while the second plot focuses on water and contains pure water self-

diffusivities (D22) and water tracer diffusivities (D2) for models that can provide such data.

Examples of the plots that are shown with fixed legend symbols are shown in Figure 128.

Diffusivity ratios for models that have limited prediction capabilities are consolidated in a single

plot instead of two. Average diffusivity ratios and their corresponding 95%-confidence-interval

uncertainties are also reported for the low density range and high density range.
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Figure 128. Scatter plot templates used to display diffusivity-model predictions. The top plot
contains ratios of mutual diffusivities (D12) and solute tracer diffusivities (D1), while the bottom
plot contains ratios of pure water self-diffusivities (D22) and water tracer diffusivities (D2).
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Table 57. Modeling-analysis performance
Zone color Zone range

zones for SCW mixture densities
Model judgment & recommendation

Black
0.25 > DcaljDexpt > 4.0 Failed and not recommended for use

0.25 < Dcalc/Dexpt < 0.5 Use with Caution
2.0 < Dcalc/Dexpt < 4.0

White
0.5 < DcalcDexpt < 2.0 Gives Adequate predictions

Low density performance indicator +- [- High density performance indicator
on the left (p <-0.5 g/cm3) on the right (p > -0.5 g/cm3 )

11.5.2.1 Hydrodynamic Theory ofDiffusion

11.5.2.1.1 Stokes-Einstein Equation

The first hydrodynamic model evaluated is the Stokes-Einstein (SE) equation with slip

variations first discussed in Section II.1.1.2. The no-slip (Eq. (94)) and slip (Eq. (96)) conditions

were examined and are shown in Figure 129 through Figure 132 and Figure 133 through Figure

136, respectively. In both cases, the low density predictions are inaccurate since a key

hydrodynamic-theory requirement is not met. Viscous forces no longer dominate at low

densities, thereby limiting the range of the Stokes-Einstein equation. For dense predictions using

pure water viscosities, the no-slip equation underestimates the mutual diffusivities shown in

Figure 129 and the self-diffusivities shown in Figure 130. The effectiveness of using mixture

viscosities, instead of pure solvent viscosities, is evaluated for concentrated-solute diffusivities

and is visually shown in Figure 131 for solute and Figure 132 for solvent tracer diffusivities. As

explained earlier, mixture viscosity is computed using the mixture density and is another

approach that can introduce concentration dependence into the diffusivity calculation. Self-

diffusivity and infinitely dilute diffusivity predictions will not change, so they are not plotted. In

all cases, calculated diffusivities are smaller with the larger mixture viscosities, including in the

low density region where hydrodynamic models are considered invalid.

The no-slip Stokes-Einstein equation evaluated in its original form is rated:

(mean low & high density diffusivity ratios: 0.5 ± 0.595% & 0.9 ± 0.395%)
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Figure 131. Stokes-Einstein D12 and D1 predictions using the
denominator), mixture viscosities, and solute radii (r = rl).
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Figure 132. Stokes-Einstein D22 and D2 predictions using the no-slip condition (6 in
denominator), mixture viscosities, and solvent radii (r = r2).
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Predictions with the slip Stokes-Einstein equation are similar to the no-slip predictions

and observed trends, except that the dense predictions are 6/4 = 50% larger as seen in Figure 133

and Figure 134. As predicted and as seen, the dense slip self-diffusivities are more accurate

since the slip limit typically occurs when the solute and solvent molecules are approximately the

same size. When calculated with mixture viscosities, concentrated slip diffusivities are reduced

as shown in Figure 135 and Figure 136. For dense solutions, the equivalent reduction will

improve the slip Stokes-Einstein model accuracy.

The slip Stokes-Einstein equation evaluated in its original form is rated: A

(mean low & high density diffusivity ratios: 0.7 + 0.895% & 1.3 ± 0.495%)

The final approach used to examine the Stokes-Einstein model for supercritical water

self-diffusivities was also used by Lamb et al. (1981). In their work, they used their

experimental results in order to determine the ideal slip coefficients, CSE, and showed the density

range where the Stokes-Einstein model is reasonably accurate. Their coefficient plots are

updated in this dissertation with additional data and results in the same conclusions previously

stated. Mutual and solute tracer diffusivities are shown in Figure 137 while self- and solvent

tracer diffusivities are shown in Figure 138. When mixture viscosities are used, the computed

solute and solvent tracer coefficients are slightly reduced and are presented in Figure 139 and

Figure 140, respectively. The ideal coefficients are mostly between the slip and no-slip limits

and suggest that water systems are represented by a mixture of slip and no-slip states. Results

outside this band indicate that the system is not well represented by hydrodynamic behavior and

theory. This is clearly the case at low densities.
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Figure 133. Stokes-Einstein D12 and D1 predictions using the slip condition (4 in denominator),
pure water viscosities, and solute radii (r = rl).
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Figure 134. Stokes-Einstein D22 and D2 predictions using the slip condition (4 in denominator),
pure water viscosities, and solvent radii (r = r2).
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Figure 135. Stokes-Einstein D12 and D1 predictions using the slip condition (4 in denominator),
mixture viscosities, and solute radii (r = rl).

* 404*C 20 wt.% -acetone D2

0 404*C 40 wt.% I-acetone D2

O 4040
C 60 wt.% I-acetone D2

+ 455*C 20 wt.% 1-acetone D2

x 4550C 40 wt.% 1-acetone D2

X 455*C 60 wt.% I-acetone D2

* 506*C 20 wt.%l-acetone D2

o 506*C 40 wt.% 1-acetone D2

O 506°C 60 wt.%l-acetone D2

.*o

+ 0
oRX

xX
40o

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Mixture density, p (g/cm 3)

Figure 136. Stokes-Einstein D22 and D2 predictions using the slip condition (4 in denominator),
mixture viscosities, and solvent radii (r = r2).
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Figure 137. Stokes-Einstein CSE predictions for
solute radii (r = rl).
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Figure 138. Stokes-Einstein CSE predictions for D22 and D2 using pure water viscosities and
solvent radii (r = r2).

325



100

10

-------------------------------------- ----- --- ------------

* 0
00

- x

* .* o

0.1 .

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Mixture density, p (g/cm3)

Figure 139. Stokes-Einstein CSE predictions for D12 and D1 using
radii (r = r ).

100 : ... .

10 -- -.

*0 0

xx1 0
O0

0 -tp

X -0.00 wt.% 1-acetone D12 (Kutney)

* 404
0
C 20 wt.%l-acetone DI

0 404oC 40 wt.%l-acetone DI

0 4040C 60 wt.%l-acetone DI

+ 455"C 20 wt.%l-acetone DI

x 4550
C 40 wt.%i-acetone DI

X 455DC 60 wt.%l-acetone DI

* 506*C 20 wt.%l-acetone DI

o 5060
C 40 wt.%l-acetone DI

O 506*C 60 wt.%I-acetone D I

mixture viscosities and solute

S40,,C U20 wt. l-acetone UD2

O 404WC 40 wt.% I-acetone D2

o 4040C 60 wt.%I-acetone D2

+ 4550C 20 wt.% l-acetone D2

x 455"C 40 wt.%l-acetone D2

X 4550C 60 wt.% l-acetone D2

* 506
0

C 20 wt.%l-acetone D2

o 5060C 40 wt.%1-acetone D2

O 5060C 60 wt.%l-acetone D2

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Mixture density, p (g/cm3)

Figure 140. Stokes-Einstein CSE predictions for D22 and D2 using mixture viscosities and
solvent radii (r = r2).
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11.5.2.1.2 Wilke-Chang Equation

Although the Wilke-Chang equation presented in Eq. (101) has a hydrodynamic-theory

foundation, the final form was chosen following the fitting of several constants to several

hundred high density binary systems over a tenfold solution-viscosity range. Given their

approach and fitting region, the Wilke-Chang equation performs adequately for the dense

systems evaluated in this analysis as shown in Figure 141 when pure water solvent viscosities

over a hundredfold range are used. However, the predictions are inaccurate in the low density

region since the Stokes-Einstein criteria are no longer met and since this region is outside the

original range of this model. When larger mixture viscosities are employed for concentrated

tracer diffusivities, predictions become slightly smaller and worse as seen in Figure 142.

However, at higher densities, these reductions will likely improve the Wilke-Chang accuracy for

concentrated systems since predictions are currently overestimated with the pure solvent

viscosity.

The Wilke-Chang equation evaluated in its original form is rated:

(mean low & high density diffusivity ratios: 0.5 ± 0.595% & 1.2 + 0.495%)

In an attempt to expand the use of the Wilke-Chang correlation for systems with

unknown normal-boiling-point volumes, solute volumes were replaced with the solute molar

volumes at the condition of interest (i.e., the system temperature, density, and pressure).

Diffusivities which have readily available solute densities are plotted in Figure 143. Liquid-like

self-diffusivities are not altered since the molar volumes hardly differ. Underestimated dense

acetone mutual diffusivities are now larger and similar to the self-diffusivity predictions, even

though the Wilke-Chang equation is specifically developed with normal-boiling-point volumes.

The convergence of self- and mutual predictions at high density may be a significant result and

should be validated with other systems. Low density predictions became obviously smaller and

worse since the molar volume significantly increases. As shown in earlier figures as well as in

Figure 144, mixture viscosities reduce the predictions when solute molar volumes are used.

327



10 . 400
0

C D22
* 500

0
C D22

A 600'C D22
* 7000C D22
A 404

0
C D22 (Kutney)

o Saturated water D22
a 250C D22
-50C D22

70"C D22
- 90C D22
+ 110

0
C D22

- 13o0 C D22
x 1500 C D22

* - 175
0
C D22

A 20PC D22
Ig 2250C D22

E <0.01 wt.% l-benophenone DI2 at 300 bar
1 - . .. a -0.63 wt.% l-sodium-nitrate D12 at 300 bar

o a A --0.31 wt.%l-hydroquinone D12 at 240 bar
- E - -- 0.34 wt.% -acetone D12 at 300 bar (Goernans)

.*A oo • -0.00 wt.%1-acetone D12 (Kutney)
: A 0 - U 0 404TC 20 wt.%l-acetone DI
A* E 0 13 404"C 40 wt.%l-acetone D1

._ 1A1O 404"C 60 wt.% I-acetone DI
U2 Al i + 455 0C 20 wt.%l-acetone D1

x 455 0C 40 wt.%l-acetone D1
x X 455*C 60 wt.%l-acetone DI

a X * 506TC 20 wt.%l-acetone DI
3i4 o o 506C 40 wt.% l-acetone DI

S* O O 5060C 60 wt.%l-acetone DI
' 3740C 1.38 wt.%l-oxygen DI

Ax• r 4000 C 1.38 wt.%l-oxygen DI
It O * 500C 1.38 wt.%l-oxygen D1

0. . A 6000C 1.38 wt.%-oxygen Dl* 700"C 1.38 wt.%l-oxygen D1
+ 374

0
C 0.70 wt.%I-methane DI0.0 0.2 0.4 0.6 0.8 1.0 1.2 03740C 0.70 wt.% -methane D13 ,,, 500C 0.70 wt.%l-methane DI

Mixture density, p (g/cm3) , 00o 0.70 wt.%t-methane DI

Figure 141. Wilke-Chang D22, D12, and D1 predictions using pure water viscosities, constant
solute normal-boiling-point volumes, and temperature- and density-dependent solvent
association factors.
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Figure 142. Wilke-Chang D12 and D1 predictions using mixture viscosities, constant solute
normal-boiling-point volumes, and temperature- and density-dependent solvent association
factors (D22 predictions do not change).
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Figure 143. Wilke-Chang D22, D12, and D1 predictions
temperature- and density-dependent solvent association
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Figure 144. Wilke-Chang D12 and D1 predictions using mixture viscosities and temperature- and
density-dependent solvent association factors and solute volumes.
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I1.5.2.1.3 Reddy-Doraiswamy Equation

The Reddy-Doraiswamy equation defined in Eq. (102) eliminated the need for solute

normal-boiling-point volumes and solvent association factors and, instead, requires solute and

solvent molar volumes. Designed specifically for liquid diffusivities, the predictions were found

to be significantly better than the Wilke-Chang predictions according to Reddy-Doraiswamy,

especially for systems when water is the solute (25% error rather than 100%) (Reddy and

Doraiswamy, 1967). Results with molar volumes for this analysis are contained in Figure 145

and are noticeably closer to one and more accurate for the liquid water self-diffusivities. Liquid-

like acetone mutual diffusivities are overestimated and comparable to the Wilke-Chang

predictions that are made with molar volumes. Low density predictions are inaccurate and not

significantly different from the Wilke-Chang predictions that are made with molar volumes.

When normal-boiling-point properties are used instead of volumetric properties, the

Reddy-Doraiswamy liquid self-diffusivities do not change substantially as seen in Figure 146.

For species that are now included in Figure 146, their Reddy-Doraiswamy predictions are

remarkably good indicating that the Reddy-Doraiswamy equation provides acceptable estimates

of high density diffusivity. Low density predictions are also improved when normal-boiling-

point volumes are used, but are still considered inaccurate. Predictions for densities between 0.3

and 0.5 g/cm3 are fairly accurate and fall within a smaller band, indicating that this equation can

predict diffusivities for a wider range than the Wilke-Chang and Stoke-Einstein equations.

Finally, when mixture viscosities are used instead of pure solvent viscosities, the

predictions are slightly worse and are consistent with Wilke-Chang and Stokes-Einstein

equations using mixture viscosities. These mixture results are shown in Figure 147.

The Reddy-Doraiswamy equation evaluated in its original form is rated:

(mean low & high density diffusivity ratios: 0.6 ± 0.695% & 1.0 ± 0.495%)

The Reddy-Doraiswamy equation evaluated with NBP volumes is rated for

densities greater than 0.3 g/cm 3: (low & high mean ratios: 0.2 ± 0.495% & 1.0 ± 0.295%) Cj
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Figure 145. Reddy-Doraiswamy D22, D12, and D 1 predictions using pure water viscosities and
temperature- and density-dependent solute volumes.
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Figure 146. Reddy-Doraiswamy D22, D 12, and DI predictions using pure water viscosities and
constant solute and solvent normal-boiling-point volumes.
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Figure 147. Reddy-Doraiswamy D12 and D1 predictions using mixture viscosities and constant
solute and solvent normal-boiling-point volumes (D22 predictions do not change).

The NBP-volume equation is not recommended for 0.3 g/cm3 densities or less:

(mean low & high density diffusivity ratios: 0.2 ± 0.495% & 1.0 + 0.295%)

All three examined hydrodynamic models perform well in the liquid density regime, but

they cannot extend to the low density region. As reflected in Table 58, the Reddy-Doraiswamy

correlation is the only hydrodynamic model that can be used with acceptable accuracy for

mixture densities greater than 0.3 g/cm3 when normal-boiling-point molar volumes are

employed. Also, it is the only model which has subcritical self-diffusivity ratios centered on one

as seen in Figure 146. Mean diffusivity ratios and their corresponding uncertainties are

presented in Figure 148, and this figure visually demonstrates the success of all the

hydrodynamic models at high densities, especially the Reddy-Doraiswamy correlation. From

this analysis, solvent viscosities should be used in these models, since mixture viscosities always

reduce the diffusivity ratios. With the hydrodynamic-theory analysis complete, the kinetic-

theory analysis will be discussed next.
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Table 58. Low and high density performance rankings for the
hydrodynamic diffusivity models evaluated in this analysis

Density
Model Section Low I High

Hydrodynamic theory of diffusion 11.5.2.1
Stokes-Einstein equation with the no-slip condition 11.5.2.1.1
Stokes-Einstein equation with the slip condition 11.5.2.1.1
Wilke-Chang equation 11.5.2.1.2
Reddy-Doraiswamy equation (original form) 11.5.2.1.3

(>0.3 g/cm 3 with NBP-volumes) 11.5.2.1.3

No-slip Stokes-Einstein

Slip Stokes-Einstein

Wilke-Chang

Reddy-Doraiswamy (RD)

NBP-volume RD

0.1 10

Average diffusivity ratio with 95%-confidence-interval uncertainties

Figure 148. Low and high density mean diffusivity ratios with 95%-confidence-interval
uncertainties for the hydrodynamic diffusivity models evaluated in this analysis.
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II.5.2.2 Kinetic Theory of Diffusion

The kinetic-theory analysis first begins with the Chapman-Enskog equation in its original

form before any corrections are employed. These corrections are needed to extend the kinetic-

theory models from its low density origin to higher densities where the mean free path is not

large compared to the molecular diameters. Following discussion of the Chapman-Enskog

corrections, semi-empirical models will be discussed.

II.5.2.2.1 Chapman-Enskog Equation

Chapman-Enskog diffusivity is calculated with Eq. (109) and the Lennard-Jones 6-12

collision integral (Eq. (113)). Unweighted combining rules are used to calculate the effective

collision diameter (Eq. (111)), the effective potential well depth (Eq. (112)), and the molecular

weight (M12 = 2/{(1/M1 ) + (1/M2)}). Results using the original formulation of the Chapman-

Enskog equation with unweighted combining rules are provided in Figure 149 for the systems

with known Lennard-Jones constants. Although Figure 149 appears to be accurate at low

density, it has high density shortcomings as seen when the ordinate is expanded in Figure 150.

High density predictions are clearly poor and immediately lead to the need for higher density

corrections.

Prior to correcting the Chapman-Enskog formulation, attempts were made to introduce

concentration dependence into the model since tracer-diffusivity data are available at several

concentrations. Diffusivities with mole-fraction-weighted molecular weights and Lennard-Jones

parameters were evaluated first. Molecular weight and the collision diameter were linearly

weighted, i.e., M12 = XIM1 + x2M2 and C12 = xlO + x2a 2, while the potential well depth was

arbitrarily weighted with 612 = 1 x2 . Weighting infinitely dilute mutual diffusivities in this

fashion essentially neglect the solute contributions since all mixtures wind up having solvent-like

properties. Results with this combined weighting are contained in Figure 151 and Figure 152.

Diffusivity ratios increase and are observably worse over the entire density range. Also note that

infinitely dilute mutual diffusivities are now similar to self-diffusivities since solute effects are

purged.
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Figure 149. Chapman-Enskog D22, D12, and D1 predictions using unweighted molecular weight
and Lennard-Jones parameters.
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Figure 150. Chapman-Enskog D22, D 12, and DI predictions using unweighted molecular weight
and Lennard-Jones parameters and shown with a larger ordinate range.
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Figure 151. Chapman-Enskog D22, D12, and D1 predictions using weighted molecular weight
and Lennard-Jones parameters.
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Figure 152. Chapman-Enskog D2 2 , D12 , and D 1 predictions using weighted molecular weight
and Lennard-Jones parameters and shown with a larger ordinate range.
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In order to understand which weighting term contributes to the deteriorating predictions,

weighting is only performed for the molecular weight. The results, as seen in Figure 153 and

Figure 154, are nearly equivalent with the original Chapman-Enskog predictions, thereby

implying that the Lennard-Jones weighting is the source of the weighting-prediction

deterioration. As a final check, when the Lennard-Jones terms are the only terms weighted, the

predictions are significantly worse as verified in Figure 155 and Figure 156. In all cases the

predictions are inadequate which indicate that the uncorrected Chapman-Enskog equation is not

appropriate for use in supercritical-water diffusivity modeling.

The Chapman-Enskog equation in its original unweighted form is rated:

(mean low & high density diffusivity ratios: 2 + 295% & >10 ± >1095%)
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Figure 153. Chapman-Enskog D22, D12, and D 1 predictions using weighted molecular weight
and unweighted Lennard-Jones parameters.
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Figure 154. Chapman-Enskog D22, D12, and D1 predictions using weighted molecular weight
and unweighted Lennard-Jones parameters and shown with a larger ordinate range.
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Figure 155. Chapman-Enskog D22, D12, and D1 predictions using unweighted molecular weight
and weighted Lennard-Jones parameters.
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Figure 156. Chapman-Enskog D22, D 12, and D1 predictions using unweighted molecular weight
and weighted Lennard-Jones parameters and shown with a larger ordinate range.
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11.5.2.2.1.1 Chapman-Enskog Equation with the Enskog-Thorne Correction

Since the Chapman-Enskog model is not normally extended beyond the ideal-gas region,

several approaches have been developed in order to compensate for this limitation. The first

correction explored in this dissertation is developed by Enskog and Thorne and is introduced in

Eq. (117). Their correction factor scales the low density diffusivity to the diffusivity at the

density of interest using a density-dependent correction factor. As seen in Figure 157, the

Enskog-Thorne correction reduces the higher density diffusivities an order of magnitude

compared to the uncorrected Chapman-Enskog results in Figure 149 and Figure 150. For the

most part, self-diffusivities are overestimated, while tracer and mutual diffusivities are

underestimated. Since molecular weights, well-depths, and diameters are the only terms that

induce this partition, weighting effects were also investigated.

When the Chapman-Enskog weighting approach previously tested is used and all three

terms are weighted, the partition is greatly reduced as seen in Figure 158. For dilute solutes, this

mole-fraction weighting approach reduced the partition since the solute contribution becomes

effectively zero. For this reason, the diffusivities approach the self-diffusivity values which are,

of course, unchanged using any weighting approach. In order to understand which term

contributed to the partition reduction, molecular-weight weighting is performed first. As seen in

Figure 159, the weighted-molecular-weight results are nearly similar to the original Enskog-

Thorne predictions shown in Figure 157, thereby implying that the Lennard-Jones weighting is

the origin for the partition reduction. The weighted-Lennard-Jones corrections are shown in

Figure 160, and the resulting diffusivities are fairly accurate, except at very high densities.

Based on these weighting results, the partition between self- and other diffusivities seen with the

unweighted Enskog-Thorne correction can be reduced by using mole-fraction-weighted Lennard-

Jones parameters. This weighting technique also provides a method to incorporate concentration

dependence. Otherwise, solute concentration is unaccounted for.

The Enskog-Thorne correction of the Chapman-Enskog equation is rated:

(mean low & high density diffusivity ratios: 1.0 + 0.795% & 2 ± 395%)

The Enskog-Thorne correction using mole-fraction-weighted Lennard-Jones

terms is rated: (mean low & high density diffusivity ratios: 1.2 ± 0.595% & 2 ± 395%) [7
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Figure 157. Chapman-Enskog D22, D12, and D 1 predictions with the Enskog-Thorne correction
using unweighted molecular weight and Lennard-Jones parameters.
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Figure 158. Chapman-Enskog D22, D12, and DI predictions with the Enskog-Thorne correction
using weighted molecular weight and Lennard-Jones parameters.
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Figure 159. Chapman-Enskog D22, D12, and D1 predictions with the Enskog-Thorne correction
using weighted molecular weight and unweighted Lennard-Jones parameters.
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Figure 160. Chapman-Enskog D22, D12, and D1 predictions with the Enskog-Thorne correction
using unweighted molecular weight and weighted Lennard-Jones parameters.
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11. 5.2.2.1.2 Chapman-Enskog Equation with the Takahashi Correction

The next correction evaluated is the Takahashi correction defined in Eq. (118) using

experimentally regressed parameters contained in Table 25. These parameters were fit to a

collection of organic and inert mutual diffusivities over a reduced temperature and pressure

range of 0.88 < Tr < 6.41 and 0.02 < Pr < 9.83, respectively (Takahashi, 1974). When this

correction is applied to the original Chapman-Enskog equation as shown in Figure 161, the low

density predictions are significantly improved, but still overestimate the diffusivity. Also, these

predictions do not resemble the bimodal Enskog-Thorne predictions which were minimized with

weighted Lennard-Jones parameters. At high densities the Takahashi correction results in

significant errors and is essentially unusable since the Takahashi correction becomes negative for

the majority of low temperature (T. 5 0.88) and high pressure diffusivity data.

The Takahashi correction is inherently mole-fraction-weighted since mole-fraction-

weighted reduced temperatures and pressures are used throughout the calculation. Weighting

calculations were also performed using mole-fraction-weighted molecular weights and Lennard-

Jones parameters. As seen in Figure 162, accuracy is not improved with the weighted Chapman-

Enskog terms, and high density predictions are still not possible. As previously noted, the

weighting minimizes the solute contribution, and the predicted diffusivities essentially mimic the

water self-diffusivities. Duplicating the analysis approach used earlier, the weighting effect is

examined first using unweighted Lennard-Jones parameters and mole-fractioned-weighted

molecular weights (see Figure 163) followed by the unweighted molecular weights and weighted

Lennard-Jones parameters (see Figure 164). As previously seen, the Lennard-Jones weighting

has the strongest influence to force the diffusivity to match self-diffusivity values. Neither of

these schemes are worthy of recommendation, but they clearly indicate that weighting can result

in significant prediction modifications.

The Takahashi correction of the Chapman-Enskog equation is rated:

(mean low & high density diffusivity ratios: 1 ± 195 % & >10 + >1095%)
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Figure 162. Chapman-Enskog D22, D 12, and D1 predictions with the Takahashi correction using
weighted molecular weight and Lennard-Jones parameters.
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163. Chapman-Enskog D22, D12, and D1 predictions with the Takahashi correction using
weighted molecular weight and unweighted Lennard-Jones parameters.

I - 'AF US-

* 50'C D22

A 600C D22
•A * 7000C D22

-- *, P ..••, . .S 404- UC 2'umney)
* r Saturated water D22

S23-C D22

r 700C 22
S -90CD22

s . + i 100C D22
a * 0 . 130PC D22

0 8- • 0 x ISx C D22
-175C D22

o0 aA2250C D22

o• X 0 <0.01 wt.%l-benzophenone D12 at 300 bar
.. ........... A-0.3wt.%-yrqun D2 at 240 bar -

Ox *1 -0.40 wt% l-bdlde-Kons DI2 at 240 bar
-_A .I _ IN0II" * D I tI0

S--0.00 wt.%l-acetone D12 (Kuney)
* 404.C 20 wt.%l-acetone D
10 4040C 40 wt.%l-acetme D
0 4040C 60 wt.%l-acetone DI
+ 45P5C 20 wt.%-acetmne D
x 455-C 40 wt.%I-acetone DI
X 455C 60 wt.%I-acetone DI
S 5060C 20 wt.% -acetone DI
o 50 6C 40 wt.%l-acetone DI
0 5060C 60 wt.%-acetone DI
/ 3740C 1.38 wt.%l.oxygen DI
a 400°C 1.38 wt.%l-oxygen DI
* 50PC 1.38 wL%l-aygen DI
6"001C 1.38 wt.%•I-oxygen DI

* 7000C 1.38 wt.%l-ocygsenDI
+ 374*C 0.70 wt.%l-nwmethane DI

0.0 0.2 0.4 0.6 0.8 1.0 1.2 o 503 C 0.70 wt.%I-methane D
. m3 0 600C 0.70 wt.%l-mtthane DIMixture density, p (g/cm ) o 700c 0.70 wt.% -methane D

Figure 164. Chapman-Enskog D22, D 12, and D1 predictions with the Takahashi correction using
unweighted molecular weight and weighted Lennard-Jones parameters.
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11.5.2.2.1.3 Chapman-Enskog Equation with the Dawson HS Correction

The next Chapman-Enskog modification discussed is the Dawson correction which

attempts to correct for non-ideal densities of spherical non-polar gases (Dawson et al., 1970).

Introduced in Eq. (119),-this volume viiial expansion is based on the theoretical argument that

the self-diffusivity of dense hard spheres can be written in terms of the compressibility (Douglass

et al., 1961). The fixed Dawson constants were fit from experimental methane sub- and

supercritical self-diffusivities. Due to success of this correction for other gases such as

hydrogen, krypton, and carbon dioxide, it is evaluated for sub- and supercritical water and its

mixtures. For every mixture, reduced density is estimated using mixture density and the mole-

fraction-weighted critical density given by Eq. (194). When combined with the original

Chapman-Enskog equation, the Dawson correction is successful in reducing low density

diffusivities to acceptable levels as shown in Figure 165. Dense predictions are poor and

significantly drop off due to the mathematical form of the Dawson correction. As noted in

earlier in this dissertation, this correction is limited to reduced densities of less than 2.5,

otherwise, it becomes negative.
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Figure 165. Chapman-Enskog D22, D 12, and D1 predictions with the Dawson hard-sphere

correction using unweighted molecular weight and Lennard-Jones parameters.
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To complete the analysis, the Dawson correction is separately tested with mole-fraction-

weighted Chapman-Enskog terms including when molecular weight is weighted, Lennard-Jones

parameters are weighted, and when all three are weighted. When all three are weighted (see

Figure 166), tracer and mutual diffusivities increase while their diffusivity ratios become

noticeably imprecise (self-diffusivities obviously remain the same). When molecular weight is

weighted, the low density predictions become slightly less accurate as seen in Figure 167, while

the denser mixture diffusivities become markedly more accurate. Finally, as revealed in Figure

168, the Lennard-Jones-weighted ratios are similar to the substandard case when all three

parameters are weighted.

In principle, the Dawson correction is similar to the Takahashi correction because both

are limited to low density predictions due to their choice of regressed datasets. Both

significantly improve the Chapman-Enskog predictions in the low density regime, but are not

recommended for higher densities.

As a result, the Dawson correction of the Chapman-Enskog equation is rated:

(mean low & high density diffusivity ratios: 1.2 + 0.695% & 0.4 ± 0.595%)
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Figure 166. Chapman-Enskog D22, D12, and D1 predictions with the Dawson hard-sphere
correction using weighted molecular weight and Lennard-Jones parameters.
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Figure 167. Chapman-Enskog D22, D 12, and D, predictions with the Dawson hard-sphere
correction using weighted molecular weight and unweighted Lennard-Jones parameters.

U

i

ac

0

X
0

A

A

70

0.0 0.2 0.4 0.6 0.8 1.0 1.2

Mixture density, p (g/cm 3)

*40O0CD22
S5000 C D22
A 600*C D22
* 7000 C D22
a 404WC D22 (Kutney)
* Saturated water D22

W 50C D22
S70

0
C D22

- 90C D22
+ 110

0
C D22

- 130*C D22
150

0
C D22

- 1750C D22
A 2000 C D22
* 2250C D22
i <0.01 wt.%1-bemophenone D12 at 300 bar
A-0.31 wt.%1-hydroquinone D12 at 240 bar

--0.40 wt.%l-iodide-ions D12 at 240 bar
-- 0.34 wt.% -acetone D12 at 300 bar (Goemans)

X -0.00 wt.% 1-acetone D12 (Kutney)
* 4040C 20 wt.%l-acetone Dl
O 404

0
C 40 wt.%l-acetone DI

1 404
0
C 60 wt.%l-acetone DI

+ 455
0

C 20 wt.%l-acetone D1
x 4550C 40 wt.%l-acetone DI
X 4550C 60 wt.%l-acetone DI
* 506C 20 wt.%l-acetone DI
0 506

0
C 40 wt.% -acetone DI

O 506*C 60 wt.%l-acetone DI
/ 3749C 1.38 wt.%l-oxygen DI
* 400

0
C 1.38 wt.%l-oxygen DI

* 5000C 1.38 wt.%1-oxygen DI
A 6000C 1.38 wt.%l-oxygen DI
* 7000C 1.38 wt.%l-oxygen DI
+ 3740C 0.70 wt.% -methane DI
0 500°C 0.70 wt.%l-methane DI
el 600*C 0.70 wt% 1-methane DI
O 7000C 0.70 wtL% l-methane DI

Figure 168. Chapman-Enskog D22, D12, and D1 predictions with the Dawson hard-sphere
correction using unweighted molecular weight and weighted Lennard-Jones parameters.
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II. 5.2.2.1.4 Chapman-Enskog Equation with the Erpenbeck- Wood HS Correction

The correction developed by Erpenbeck and Wood for self-diffusivities of hard-sphere

fluids is based on Monte-Carlo simulations performed for 1.6 < V/V0 < 25 reduced-volume

ratios. Presented in Eq. (142), the coefficients are based solely on their simulation work and are

not regressed to experimental data. Their simulations include backscattering and vortex-

formation effects that are included in hard-sphere theories and that are described in Section

II. 1.1.4. When applied to the original Chapman-Enskog equation, the Erpenbeck-Wood

correction performed poorly over the entire density range as seen in Figure 169.

The form of their correction is mathematically similar to the Dawson correction

previously discussed, but it is fundamentally superior since this correction varies between 0.84

and 1.34 and can never become negative. However, the failure of this correction is in part due to

its lack of flexibility since all of the universal constants are regressed from theoretical, and not

experimental, results. Due to its failure to improve low density predictions, the Erpenbeck-

Wood analysis is stopped.

The Erpenbeck-Wood correction of the Chapman-Enskog equation is rated:

(mean low & high density diffusivity ratios: 2 + 295% & >10 ± >1095%)
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Figure 169. Chapman-Enskog D22, D12, and dilute D1 predictions with the Erpenbeck-Wood
hard-sphere correction using unweighted molecular weight and Lennard-Jones parameters.

11.5.2.2.2 Polar Chapman-Enskog Equation

Since water is polar even while it is supercritical, it is reasonable to consider polar

modifications of the Chapman-Enskog equation. The Brokaw approach affixes a polar
correction term onto the non-polar Lennard-Jones collision integral (Eq. (120)). This binary
term is dependent on the dipole moment of both components and will be ineffective if either
component is non-polar (i.e., no correction if the solvent is polar and the solute is not). Reliance
on the dipole moment exclusively is a potential drawback of the Brokaw method since dipole
moments may not fully account for all polarity effects. Nonetheless, the Brokaw correction is

tested for water self-diffusivities and acetone-water mutual and tracer diffusivities.

Using Brokaw's recommended values for water (82 = 0.95 for 0 to 10000C) and acetone

(61 = 0.63 for 0 to 3000C), the original Chapman-Enskog equation is reexamined (Brokaw,

1969). Compared to the non-polar results in Figure 149, the polar Chapman-Enskog approach

shown in Figure 170 is not noticeably different at low densities, but the mean diffusivity is
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reduced approximately 6% for low density predictions. At high densities, the reduction is 10%

(but still greater than the current ordinate scale) since temperatures of these dense datasets are

usually lower and collision integrals are usually larger at these higher densities. Due to the

rather small improvement observed, the remaining analysis will be brief.

When the Enskog-Thome, Takahashi, and Dawson corrections are applied to the

unweighted polar Chapman-Enskog equation, the resulting downward shifts are the same since

these corrections only scale the Chapman-Enskog predictions. Accordingly, the low and high

density predictions are reduced by approximately 6% and 10%, respectively, for each approach.

The Enskog-Thome correction is updated in Figure 171, while the non-polar equation is in

Figure 157. The Takahashi results are in Figure 172 and Figure 161, respectively, while the

Dawson corrections are in Figure 173 and Figure 165. The polar offset does not change the

diffusivity-ratio scatter, but since supercritical self-diffusivities are overestimated, the downward

offset shifts diffusivity ratios closer to one, thus improving their accuracy in all cases. The

Enskog-Thorne supercritical self-diffusivity predictions are the most accurate so far.

The polar correction does provide some benefit, especially self-diffusivity predictions as

just noted. However, this benefit is outweighed by disadvantages including the lack of data for

other solutes, the complete reliance on dipole moments, and the uncorrected case of a non-polar

solute and polar water solvent mixture. In summary, the polar correction is straightforward and

offers greater accuracy for low density predictions of water self-diffusivity. For water mixtures,

the correction is not recommended.

The Chapman-Enskog equation with its polar correction is still rated:

(mean low & high defisity diffusivity ratios: 2 ± 295% & >10 ± >1095%)

The Enskog-Thome correction of the polar Chapman-Enskog equation is rated:

(mean low & high density diffusivity ratios: 0.9 ± 0.695% & 2 ± 295%)

The Enskog-Thorne correction using mole-fraction-weighted Lennard-Jones

terms is rated (note that it is not shown): (1.1 ± 0.595% & 2 ± 295%)

The Takahashi correction of the polar Chapman-Enskog equation is rated:

(mean low & high density diffusivity ratios: 1.4 ± 0.995% & >10 ± >1095%)

The Dawson correction of the polar Chapman-Enskog equation is rated: IFAI
(mean low & high density diffusivity ratios: 1.1 ± 0.695% & 0.3 ± 0.695%)
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Figure 171. Polar Chapman-Enskog D22, D12, and D1 predictions with the Enskog-Thorne
correction using unweighted molecular weight and Lennard-Jones parameters.
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Figure 173. Polar Chapman-Enskog D22, D12, and D1 predictions with the Dawson hard-sphere
correction using unweighted molecular weight and Lennard-Jones parameters.
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II.5.2.2.3 Wilke-Lee Equation

The Wilke-Lee equation is adapted from a model developed by Hirschfelder, Bird, and

Spotz (Wilke-Lee, 1955). Hirschfelder et al. estimated the diffusivity for pairs of non-polar

gases with the Lennard-Jones potential function, but Wilke and Lee utilized a larger database of

gaseous diffusivities and identified several trends that simplified the model form and increased

its robustness and accuracy. The resulting model is defined in Eq. (129) and by default, uses

estimates of Lennard-Jones parameters calculated from normal-boiling-point temperatures and

molar volumes. It is functionally similar to the Chapman-Enskog model, but since LJ terms have

been estimated with experimental data, it is supposed to be more accurate than the uncorrected

Chapman-Enskog equation.

Since Lennard-Jones values are also available (see Table 56), the Wilke-Lee equation

will also be evaluated with these known values (compared to the default estimated values).

Wilke-Lee diffusivity predictions are first made with the estimated values in Figure 174 followed

by those with known Lennard-Jones parameters in Figure 175. As is the case for the Chapman

Enskog and as expected, the high density self-diffusivity predictions are inaccurate and off the

current ordinate since the Wilke-Lee model is a kinetic-gas theory model meant for ideal-gas

systems. Figure 176 displays the Wilke-Lee predictions with known Lennard-Jones values with

a larger ordinate. Very low density predictions with the estimated LJ values are slightly

improved compared to the original Chapman-Enskog equation shown in Figure 149 and Figure

150, but predictions with the known LJ values do not reveal any benefit. These results indicate

that original Wilke-Lee model with its additional empirical work does not offer additional

benefit when compared to the Chapman-Enskog equation. Thus, it is not recommended for

supercritical-water diffusivity modeling.

The Wilke-Lee equation in its original form is rated:

(mean low & high density diffusivity ratios: 1.4 ± 1.395% & >10 ± >1095%)
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Figure 175. Wilke-Lee D22, D12, and D1 predictions using known Lennard-Jones parameters.
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Figure 176. Wilke-Lee D22, D1 2, and D 1 predictions using known Lennard-Jones parameters and
shown with a larger ordinate range.

Since the Wilke-Lee equation is developed for ideal-gas-like densities, the same

approaches that were previously used for the Chapman-Enskog equation were used to extend the

Wilke-Lee equation beyond the ideal-gas region. When the Enskog-Thorne correction given in

Eq. (117) is applied to Wilke-Lee equation using Wilke-Lee-estimated Lennard-Jones

parameters, diffusivity predictions are significantly reduced as seen in Figure 177. At low

densities, self-diffusivities diverge from the mutual and tracer diffusivities, but the overall

response is basically identical to the Enskog-Thome correction of the unweighted Chapman-

Enskog equation shown in Figure 157. At higher densities, mutual diffusivities are

underestimated while self-diffusivities predictions are scattered above one, but are nearly

identical with the equivalent Chapman-Enskog predictions.

When known Lennard-Jones values are used, the low density bimodal response is smaller

as seen in Figure 178, and is now generally underestimated compared to the Enskog-Thorne

correction of the Chapman-Enskog equation (see Figure 157). Higher density self-diffusivities

are scattered about the ratio one which makes the Wilke-Lee equation a better choice for high

densities when the Wilke-Lee equation is used with known Lennard-Jones parameters.
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Figure 177. Wilke-Lee D22, D12, and D1 predictions with the Enskog-Thorne correction using
Wilke-Lee-estimated Lennard-Jones parameters.
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Figure 178. Wilke-Lee D22, D12, and D1 predictions with the Enskog-Thorne correction using
known Lennard-Jones parameters.
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While the estimated-Lennard-Jones results at low densities are superior to the results

calculated with known parameters, the high density predictions are worse. Since the Enskog-

Thorne correction of the Wilke-Lee model with known parameters provides somewhat balanced

results with high density predictions scattered around one and low density predictions equal to or

under one, this model comes close to the results of the Enskog-Thorne correction using mole-

fraction-weighted Lennard-Jones terms.

The Enskog-Thorne correction of the Wilke-Lee equation employing known

Lennard-Jones parameters is rated:

(mean low & high density diffusivity ratios: 1.0 ± 0.795% & 2 ± 395%)

Using the Takahashi correction shown in Eq. (118) and the Wilke-Lee-estimated

Lennard-Jones constants, low density predictions are predicted with sufficient accuracy as seen

in Figure 179. These results are superior to the equivalent Takahashi-corrected Chapman-

Enskog results shown in Figure 161. However, the high density predictions are large and are not

shown on the current ordinate. As mentioned earlier, the Takahashi correction is fit to a

collection of organic and inert mutual diffusivities over a reduced temperature and pressure

range of 0.88 < Tr 5 6.41 and 0.02 5 Pr 5 9.83, respectively, but is not intended for dense liquid

systems. Predictions made with the Wilke-Lee equation with known Lennard-Jones parameters

were less accurate and are not presented.

As a result, the Takahashi correction of the original Wilke-Lee equation is

rated: (mean low & high density diffusivity ratios: 1.0 + 0.695% & >10 ± >1095%)
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Figure 179. Wilke-Lee D22, D 12, and D1 predictions with the Takahashi correction using Wilke-
Lee-estimated Lennard-Jones parameters.

The Dawson correction that is shown in Eq. (119) and that improves Chapman-Enskog

predictions is also applied to the Wilke-Lee equation when the default estimated Lennard-Jones

values are used. Compared to the Dawson-corrected Chapman-Enskog equation, Wilke-Lee

diffusivity ratios are further reduced as shown in Figure 180, and as a result, improve low density

supercritical self-diffusivity predictions. On the other hand, due to the shift downward, multiple

tracer diffusivities are now significantly underestimated. Self-diffusivities are accurately

modeled, but as the density is increased, the predictions will become significantly

underestimated along with other diffusivities.

For these reasons, the Dawson correction of the original Wilke-Lee equation is

rated: (mean low & high density diffusivity ratios: 0.8 ± 0.595% & 0.3 ± 0.495%)
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Figure 180. Wilke-Lee D22, D12, and D1 predictions with the Dawson correction using Wilke-
Lee-estimated Lennard-Jones parameters.

In summary, the Wilke-Lee predictions are similar to the Chapman-Enskog results,

although a slight improvement is seen when the original formulation with estimated Lennard-

Jones parameters is used. Of course, the use of estimated parameters in empirical models always

raises suspicion, but if known values are used, then the Wilke-Lee equation is nearly identical to

the Chapman-Enskog equation. Ideal-gas Corrections offer some benefit and their results are

summarized below.

The Wilke-Lee equation in its original form is rated: -
(mean low & high density diffusivity ratios: 1.4 ± 1.395%/1 & >10 + >1095%)

The Enskog-Thorne correction of the Wilke-Lee equation employing known

Lennard-Jones parameters is rated: (low & high mean ratios: 1.0 ± 0.795% & 2 ± 395%)

The Takahashi correction of the original Wilke-Lee equation is rated: [W

(mean low & high density diffusivity ratios: 1.0 ± 0.695% & >10 ± >1095%)
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The Dawson correction of the original Wilke-Lee equation is rated:

(mean low & high density diffusivity ratios: 0.8 ± 0.595% & 0.3 ± 0.495%)

Although there is not a clear advantage for low density predictions, low density self-

diffusivity predictions using the Dawson-corrected Wilke-Lee equation have the least scatter and

are the best yet observed during this analysis.

11.5.2.2.4 Mathur-Thodos Equations

The semi-empirical Mathur-Thodos diffusivity approach is based upon dimensional

analysis and experimental-data regression and is considered unconventional compared to the

other kinetic-gas theory approaches. As shown in Eqs. (132) through (134), three self-diffusivity

equations are used to cover a wide range of temperatures and densities. Since gases at

atmospheric pressures are not included in this analysis, Eq. (132) will not be evaluated. This

multi-equation approach will have discontinuities near the equation crossover points which will

introduce prediction discrepancies when switching between equations. Additional user scrutiny

is required whenever such predictions are made. Since this analysis also includes mutual and

tracer diffusivities, the Mathur-Thodos equations are modified so that these predictions can be

made. Mixture densities are used along with mole-fraction-weighted properties including

molecular weights and critical temperatures, densities, and pressures.

Water self-diffusivities predictions are shown in Figure 181. Most high density

diffusivity ratios are less than one, but they have less scatter compared to models previously

discussed. In particular, low temperature diffusivity ratios (less than 1000 C) are nearly one,

while high temperature diffusivity ratios are below one. The predictions are remarkable given

that the model was originally developed with simple, non-hydrogen-bonded gases such as argon,

carbon dioxide, krypton, nitrogen, and xenon. At low densities, the agreement is superior than

others in this analysis so far and is likely due to the fact that hydrogen bonding is less prevalent

at these conditions.

Mutual and solute-tracer diffusivities are shown next in Figure 182, and although

diffusivity-ratio points are scattered at most densities, the predictions lie near a diffusivity ratio

of one. Over 95% of the predictions lie in the acceptable region, and this indicates that the

Mathur-Thodos model can simulate reasonable diffusivities for supercritical-water systems over

a wide density range.
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Figure 181. Mathur-Thodos D22 predictions using the low and high density formulae.
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Figure 182. Mathur-Thodos D 12 and D1 predictions using the low and high density formulae.
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Solvent tracer diffusivities were also computed and are plotted in Figure 183 along with

the previously discussed self-diffusivities. The tracer predictions are clearly underestimated and

clustered, yet they can be easily explained. Due to the simplistic binary-weighting approach,

calculated Mathur-Thodos predictions cannot be differentiated (solute Dl,,alc = solvent D2calc).

As a result, the computed diffusivity ratios are calculated with identical Mathur-Thodos

predictions. Since the experimental solvent diffusivities are always larger than the solute values,

the resulting solvent diffusivity ratios (D2calc /D 2expt) will always be smaller than the solute

diffusivity ratios (Dlcac /DIexpt) and hence, underestimated.

The accuracy of the solute-diffusivity predictions clearly establish that the current

weighting scheme used in the Mathur-Thodos model should be used for solute, and not solvent,

tracer predictions. What is unclear is why the small contribution from solute critical properties

results in accurate solute predictions, yet makes the solvent predictions worse. When using the

current mixture-weighted mixture rules (i.e., for mole-fraction weighted critical properties) for

concentrated acetone tracer diffusivities, the Mathur-Thodos predictions are automatically

reduced 27 + 3%, 40 + 9%, and 60 + 5% for the 20 wt.l%, 40 wt.l%, and 60 wt.l% solutions,

respectively, from their equivalent pure water counterpart. Yet, the experimental water tracer

diffusivities never decrease more than 30% from their equivalent self-diffusivities. As a result,

the solvent tracer diffusivity ratios will become worse as the solution becomes concentrated

when this simplistic weighting approach is used. Conversely, the benefits of this concentration-

weighting method include smooth, continuous predictions as the system becomes more dilute

and the lack of the usual discontinuity at infinite dilution when traditional LJ rules are employed

(e.g., Eq. (111) and Eq. (112)). Other weighting schemes can possibly avoid the solvent-tracer-

accuracy issue, but are much more likely to be complicated.

Now that the significant drop in solvent-tracer accuracy can be explained in terms of the

current concentration-weighting approach, solvent tracer diffusivities are no longer included in

the Mathur-Thodos analysis. When the other predictions are combined in Figure 184, the plotted

diffusivity ratios are scattered about one symmetrically along the entire abscissa with limited

excursions into the caution zone. For these reasons, the Mathur-Thodos kinetic-gas-theory-based

approach is superior at predicting self-, mutual, and solute-tracer diffusivities than the other

examined models.
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Figure 184. Mathur-Thodos D22, D12, and D1 predictions using the low and high density
formulae.

364

Figure

l rOt' rplot



Based on the Mathur-Thodos performance in Figure 184, the Mathur-Thodos

approach with mixture density and mole-fraction-weighted parameters is rated:

(mean low & high density diffusivity ratios: 1.0 + 0.595% & 0.9 ± 1.095%)

A summary of the performance for each of the investigated kinetic-theory models is

given in Table 59 while mean diffusivity ratios with uncertainties are plotted in Figure 185.

Nearly all kinetic-theory models have unacceptable accuracies at higher densities (>0.5 g/cm3),

except for the empirical Mathur-Thodos equations or for models adjusted with the Enskog-

Thorne correction. The Mathur-Thodos approach is currently the only model that is considered

reliable for low and high density predictions of sub- and supercritical water systems. It is also

unique in that it can be computed with critical properties, molecular weight, and operating

conditions (i.e., temperature, density, and pressure) and is not dependent on potential functions.

Reliable low density predictions can also be made with the original or polarity-adjusted

Chapman-Enskog equations corrected with either the Enskog-Thorne or Dawson modifications.

The Takahashi-corrected Wilke-Lee equation is successful for low density diffusivity

predictions, but its Lennard-Jones parameters are estimated which casts doubt about extending it

to untested water systems.

It is apparent from Figure 185 that low density kinetic-gas-theory predictions are more

accurate than the hydrodynamic-theory predictions. In general, the low density kinetic mean

diffusivity ratios have less variability, while the high density ones have more. The Mathur-

Thodos diffusivity ratios are centered about one, but have larger high density uncertainties than

the hydrodynamic models. Given its success in predicting low density diffusivities and its

reliable high density predictions, the Mathur-Thodos model currently is the recommended model

for supercritical-water diffusivity predictions.
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Table 59. Low and high density performance rankings for the hydrodynamic- and
kinetic-based diffusivity models evaluated in this analysis

Model

Hydrodynamic theory of diffusion
Stokes-Einstein equation with the no-slip condition
Stokes-Einstein equation with the slip condition
Wilke-Chang equation
Reddy-Doraiswamy equation (original form)

(>0.3 g/cm 3 with NBP-volumes)
Kinetic theory of diffusion

Chapman-Enskog equation
CE equation with the Enskog-Thorne correction
Weighted CE equation with the ET correction
CE equation with the Takahashi correction
CE equation with the Dawson HS correction
CE equation with the Erpenbeck-Wood HS correction

Polar Chapman-Enskog equation
Polar CE equation with the Enskog-Thorne correction
Polar, weighted CE equation with the ET correction
Polar CE equation with the Takahashi correction
Polar CE equation with the Dawson HS correction

Wilke-Lee equation
WL equation with the Enskog-Thorne correction
WL equation with the Takahashi correction
WL equation with the Dawson HS correction

Mathur-Thodos equations

Section
11.5.2.1
11.5.2.1.1
11.5.2.1.1
11.5.2.1.2
11.5.2.1.3
11.5.2.1.3
11.5.2.2
11.5.2.2.1
11.5.2.2.1.1
11.5.2.2.1.1
11.5.2.2.1.2
11.5.2.2.1.3
11.5.2.2.1.4
11.5.2.2.2
11.5.2.2.2
11.5.2.2.2
11.5.2.2.2
11.5.2.2.2
11.5.2.2.3
11.5.2.2.3
11.5.2.2.3
11.5.2.2.3
11.5.2.2.4

Density
Low I High

A
A
A
A
A

IAIAI
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Figure 185. Low and high density mean diffusivity ratios with 95%-confidence-interval
uncertainties for the hydrodynamic- and kinetic-based diffusivity models evaluated in this
analysis.
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II.5.2.3 Hard-Sphere Theory of Diffusion

11.5.2.3.1 Sun-Chen Equation

The first approach discussed in this section is the tracer-diffusivity expression developed

by Sun and Chen because it is based completely upon MD hard-sphere simulation results. It also

includes a roughness correction that is used to adjust for angular-momentum exchanges when

molecules collide. The Sun-Chen model is defined in Eq. (143) and is convenient to use because

Chapman-Enskog variables, such as potential-function parameters and collision integrals, are not

needed.

Their approach should be limited to systems where 0.5 < M 1/M2 < 4.0, 0.5 < ol/a 2 < 1.5,

and 1.5 < M2/x2p2 VO < 3.0 since their modification is based on MD data with these restrictions.

Of the three-hundred data points in this analysis, only 120 meet these criteria. Those valid points

are the high density self-diffusivities between 25°C and 225°C. The other 180 data points fail to

satisfy one or more of the criteria, but nonetheless, are included in the analysis in order to test the

extendibility of the Sun-Chen model.

Later on, Sun and Chen customized their model for n-hexane systems by performing a

linear regression with their experimental n-hexane diffusivities and assumed cai = Vciil

However, the resulting semi-empirical model is intended for n-hexane systems and is not

applicable to other fluid systems. For this reason, the generic form defined in Eq. (143) will be

evaluated.

Mutual diffusivities along with solute tracer diffusivities determined with the generic

form are shown in Figure 186. Low and high density results are clustered about one, even

though these data do not meet the original model criteria. The only exceptions to this are the

simulated oxygen and methane datasets which are consistently underestimated. Self-diffusivity

predictions are also plotted in Figure 186. Low density self-diffusivities are reliably centered

about one and come close to matching the Mathur-Thodos performance seen in Figure 181.

However, the diffusivity ratios have a larger distribution since the diffusivity ratios are greater

than one at very low densities and decrease as the density increases. The Mathur-Thodos ratios

do not show this behavior and have near-zero slopes. The high density self-diffusivities are also

centered about one, but their scatter is worse than the Mathur-Thodos results. The Sun-Chen
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results are surprisingly accurate given that this model is fit to computer-simulated tracer

diffusivities (experimental data are not regressed). In addition, the Sun-Chen model requires

only a small list of parameters (e.g., molecular diameters and weights), yet it can reliably

simulate supercritical self-diffusivities over ranges that do not satisfy the original regression

criteria.

Based on these results, the Sun-Chen model is rated: E
(mean low & high density diffusivity ratios: 0.9 ± 0.595% & 1 ± 295%)
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Figure 186. Sun-Chen D22, D12, and D 1 predictions using the default model.
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II.5.2.3.2 Eaton-Akgerman Equation

In contrast to the Sun-Chen methodology, Eaton and Akgerman used a semi-empirical

approach in order to develop an expression for infinitely dilute mutual diffusivities. Starting

with Dymond's hard-sphere expression which was developed from MD data, Eaton and

Akgerman used experimental supercritical carbon-dioxide diffusivities and additional MD data

in order to identify model trends and eliminate the need for several arduous terms such as the

collision integral (Eaton and Akgerman, 1997). With their model form simplified, two

remaining constants are estimated from experimental 1-octene diffusivities in ethane, propane,

and hexane and are permanently fixed. So while the Sun-Chen model is based entirely on MD

simulations, the Eaton-Akgerman formulae shown in Eq. (149) and Eq. (150) are based on

experimental data that they fit their model to and then conveniently evaluate their model with.

Due to their dependence on MD simulations, their model is limited to 0.1 < M1/M2 <

1.67, 0.5 < C1 l/ 2 < 1.0, and 1.5 < V2/VO < 2.0. Only fourteen out of 303 data points in this

analysis satisfy these constraints and are considered valid. Seven of the fourteen points are part

of the 25°C self-diffusivity dataset, while the remaining five and two are part of the 50°C and

70°C datasets, respectively. Since the Sun-Chen model is successful modeling diffusivities

outside of its MD range, the Eaton-Akgerman model is also examined.

Mutual and solute-tracer diffusivity predictions are shown in Figure 187 and are

inaccurate at low and high densities. Self-diffusivities are also shown and, in general, match the

mutual- and tracer-diffusivity trends. Low density diffusivity-ratio predictions are closer to one,

but are still underestimated, while high density predictions steadily increase with density. The

fourteen valid data points lie in the region where the ordinate is one, thus validating the Eaton-

Akgerman model at this density only (-0.9 g/cm3). The narrow width illustrates that a much

wider simulation and experimental database should have been used during the development of

the Eaton-Akgerman model. Due to the extremely wide range of diffusivity ratios observed in

Figure 187, the form of the model is unsuitable for predicting supercritical diffusivities. The

Eaton-Akgerman approach is not recommended for predicting supercritical-water diffusivities

because of its poor predictions.

The Eaton-Akgerman hard-sphere-theory approach is rated:

(mean low & high density diffusivity ratios: 0.4 + 0.595% & 2 + 395%)
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11.5.2.3.3 He Equation

Whereas the Eaton-Akgerman model is developed using data from three solvents, He

uses ten solvents and a much larger diffusivity database during the development of his model.

The He model originates with the Eaton and Akgerman version of the Dymond model, but He

regresses and develops new terms since He's database is much larger. The resulting model is

presented in Eq. (151) and requires less inputs than the Eaton-Akgerman model. It is claimed to

have better results due in part to the 1,167 point database that spans a solvent reduced-

temperature range of 1.00 _ T,2 5 1.78 and a reduced-density range of 0.21 < pr2 5 2.29. Despite

the use of this larger database, He starts with the extended Dymond model that is based on MD

simulations with 0.1 < M 1/M2 5 1.67, 0.55 1l/a2 5 1.0, and 1.5 < V2/ Vo < 2.0 limits (He, 1997).

He never mentions that these constraints may hinder or restrict the extension of his model to the

larger range of experimental data.
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Figure 187. Eaton-Akgerman D22, D12, and D 1 predictions using the default model.
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In fact, the Eaton-Akgerman and He models are regressed to data that extend past the MD

boundaries used during the model development, and the Eaton-Akgerman results clearly

illustrate how poor these extrapolations are. For the He model, the results are worse than the

Eaton-Akgerman- results (see Figure 188).- For example, high density predictions are negative

since the reduced density is greater than 2.29 and outside the regressed range of the He database.

These results demonstrate that semi-empirical models need to be validated for the systems of

interest before they are qualified for use. This is especially important when models are

developed with experimental data which are beyond the fundamental limits of the model. The

evaluation performed here indicates that the He correlation is not suitable for supercritical-water

diffusivity modeling.

The He hard-sphere-theory approach is rated:

(mean low & high density diffusivity ratios: 0.3 ± 0.295% & <0.1 + <0.195%)

10 - *400'C D22
* 500"C D22
A 6000C D22
* 700"C D22
* 4040C D22 (Kutney)
* <0.01 wt.%l-benzophenone D12 at 300 bar
* -0.63 wt.%l-sodium-nitrate D12 at 300 bar
A -0.31 wt.%l-hydroquinon D12 at 240 bar
O --0.40 wt.%l-iodide-ions D12 at 240 bar
S--0.34 wt.%l-acetone DI2 at 300 bar (Goemans)
X -0.00 wt.%l-acetone D12 (Kutney)
- 4040C 20 wt.%l-acetone DI
10 4404*C 40 wt.%l-acetone D1

1 - 404 0C 60 wt.%l-acetone Dl
• ,+ 455*C 20 wt.%l-acetone DI

x 455*C 40 wt.%l-acetone DI

X 455*C 60 wt.%l-acetone D1
+ * 5060C 20 wt.%l-acetone D1

". U -n j 0 506*C 40 wt%l-acetone DI
0 506*C 60 wt.%l-acetone DI
Sx 374*C 1.38 wt.%l-oxygen DI

X X 400"C 1.38 wt.%l-oxygen DI
X> o 500"C 1.38 wt.%l-oxygen DI

3.o , 0 1 6000 C 1.38 wt.%l-oxygen DI
S*700"C 1.38 wt.%l-oxygen DI

0.1 i + 374*C 0.70 wt.%l-methane DI

0.0 0.2 0.4 0.6 0.8 1.0 1.2 O 500"C 0.70 wt.%I-methane DI
3 A 600*C 0.70 wt.%l-methane DI

Mixture density, p (g/cm ) 700WC 0.70 wt.%l-methane DI

Figure 188. He D22, D 12, and D 1 predictions using pure water solvent properties.
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11.5.2.3.4 He-Yu Equation

Since He and Yu were not satisfied with the He model for high temperature liquids, they

developed a new correlation to improve these and supercritical infinitely dilute diffusivity

predictions. They used the Cohen and Turnbull notion that molecular transport occurs by the

movement of solute molecules into voids opened by solvent molecules in a grid, which is

constantly changing and evolving (He and Yu, 1998). With a larger 1,303-point database, the

He-Yu correlation is formed from experimental data that span from 0.70 < T,2 < 1.78, 0.22 < Pr2

< 2.62, and 58.1 < MW1 < 885. MD simulations are not used so the He-Yu expression is free of

additional constraints that limit the Eaton-Akgerman and He expressions.

The He-Yu model, as shown in Eq. (153), does not explicitly depend on the solvent

close-packed hard-sphere molar volume, V0, because He and Yu use an estimate of 0.23 Vc2.

Results from the default model with the He-Yu estimated volume are presented before the results

with the real hard-sphere volume are presented. Diffusivity ratios are reported in Figure 189

using the default He-Yu V0 expression. High density diffusivity predictions are underestimated,

along with diffusivity ratios with densities smaller than 0.2 g/cm3 . Predictions for densities in

between are reasonable.

The actual close-packed volume is roughly 40% smaller than the He-Yu estimated

volume. When the real volume is used in the He-Yu model instead of 0.23 Vc2, high density

predictions are significantly increased as seen in Figure 190. The diffusivity ratios are also

scattered more and as a result, imply that the He-Yu model should not be used for dense-fluid

predictions. The low density predictions are unchanged since the hard-sphere volumes are

negligible compared to the actual volumes in the exponential term in Eq. (153). Volumes are

large because molecules are no longer packed together. Due to the poor low density

performance along with the difficulty of predicting liquid-like diffusivities, the He-Yu model is

not recommended for supercritical-water diffusivity predictions.

Therefore, the He-Yu hard-sphere-theory approach is rated:

(mean low & high density diffusivity ratios: 0.7 + 0.895% & 2 + 395%)
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189. He-Yu D22, D12, and D1predictions using He-Yu's estimated Vo.
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Figure 190. He-Yu D22, D12, and D1 predictions using the real experimental V0.
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11.5.2.3.5 Tracer Liu-Silva-Macedo Equation

The final hard-sphere model evaluated is developed by Liu, Silva, and Macedo (LSM).

They start with a free-volume-theory expression for hard spheres, and following development

work with MD simulations, they generate a kinetic-theory correction. MD-related restrictions

for their self-diffusivity correction are never discussed. The resulting expression is defined in

Eq. (144) and is the foundation for their overall expression. Next, they insert a pseudo-

activation-energy term into the exponential grouping in order to replicate statistical-mechanics

results which suggest that a temperature-dependent attractive correction is needed for Lennard-

Jones fluids (Chung, 1966; Liu and Macedo, 1995). Note that when densities and interaction

energies are small (e.g., in the ideal-gas limit), the modified expression correctly reduces to

unity.

With their database of over forty substances and 1,500 self-diffusivity data points, they

developed the LSM self-diffusivity model that is the basis of their work. Recently, they

extended the LSM model so that infinitely dilute mutual diffusivities can be predicted. Defined

in Eq. (145), the Tracer LSM (TLSM) model reduces to the LSM form when predicting self-

diffusivities. The TLSM model requires molecular weights, volume, temperature, the effective

hard-sphere diameter, TLSM, which is defined in Eq. (146), and the effective well-depth

potential, TLSM, which is defined in Eq. (147). Effective hard-sphere theory corrects for

differences between perfect Lennard-Jones fluids and real fluids that sometimes have weaker

attractive interactions. These differences are noticeable often at low temperatures and high

densities. For the LSM and TLSM models, the effective diameter in Eq. (146) is based upon the

effective hard-sphere correction developed by Ben-Amotz and Herschbach (1990).

In order to further improve the accuracy of their LSM and TLSM models, Liu and

coworkers opted to regress the normally fixed Lennard-Jones values with the data in their

database. They write that the Lennard-Jones well-depth potential and diameter can be made

adjustable for species in their diffusivity database since these diffusivities are already known,

and the additional regression often improves the model accuracy (Liu et al., 1998). In most

cases, the regressed Lennard-Jones values are similar to the known values, indicating that the

model form reasonably simulates the system.
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Regressed Lennard-Jones parameters for hydrogen-bonded species are significantly

different from the known values and imply that the LSM model is not well suited for hydrogen-

bonded species. For example, water self-diffusivity predictions are improved when a well-depth

of s2/k = 3789 K and diameter of a2 = 1.53 A are used instead of the accepted values of 363 K

and -2.66 A (see Table 60 for differences of other species). Using the regressed water constants,

the average-absolute deviation is approximately 30% for all of the 118 water self-diffusivities in

their database, yet only 12% for the 34 supercritical self-diffusivities. Since these percentages

are higher than for other examined species, Liu et al. (1998) do not recommend using the two-

parameter TLSM model for water. Instead, they recommend their empirical model with four

adjustable parameters for hydrogen-bonded species. This complicated model is not evaluated

because this analysis avoids models that require regression of parameters for each species.

For species that are not part of the original regressed database, Liu and coworkers

recommend using the following generalized equations provided by Silva et al. (1998) for both

Lennard-Jones parameters, even if values are available in the literature

= 0.774Ti (197)
k

oi =j.1779 +11. 779 - 0.049029 ( (198)

These relations will not be used because Lennard-Jones values are available in Table 56, and

they have been used already throughout the analysis.

Table 60. Known and the TLSM-regressed pure component 6-12 Lennard-Jones properties
Known well-depth Known TLSM well-depth TLSM
potential, a/k (K) radius, r (A) potential, e/k (K) radius, r (A)

1.375 -
Water 363 3789 0.765

0.00 1 (T[C] - 25)

Acetone 560 2.28 333 2.34

Methane 149 1.88 167 1.79

Wilhelm, 1973Lienhard and
Source Lienhard 2002 (water); Lienhard Liu et al., 1998

and Lienhard, 2002

376



Since differences are expected between regressed and known Lennard-Jones based

predictions, the TLSM model will be examined with both sets of values. With known Lennard-

Jones values and the default TLSM equations (Eq. (145), Eq. (146), and Eq. (147)), low density

mutual, and solute-tracer-diffusivity predictions-are reasonably accurate. as observed in Figure

191 while high density diffusivity ratios are scattered and underestimated. Simulated methane

and oxygen diffusivity ratios straddle one along the entire abscissa. Using known Lennard-Jones

values, self-diffusivities are overestimated in Figure 192 for both low and high densities. Since

solvent and solute tracer diffusivities are identical when calculated with the TLSM model and

since experimental solvent diffusivities are always larger than the equivalent solute diffusivities,

the solvent diffusivity ratios in Figure 192 will be smaller than the solute diffusivity ratios in

Figure 191. Due to this numerical limitation, water tracer diffusivities for the acetone-water

systems will be underestimated. Likewise, water tracer diffusivities are overestimated at low

densities and become underestimated at higher densities for the methane and oxygen datasets.

0 0]

to
:ZOI

0.0

Figure 191.
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TLSM D 12 and D1 predictions using the original formulation and known LJ values.
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the original formulation and known LJ values.

Overall, the default TLSM model with known LJ values is rated:

(mean low & high density diffusivity ratios: 1.1 ± 0.695% & 1 ± 295%)

When the TLSM-regressed Lennard-Jones values that are listed in Table 60 are used for the

solvent water and solutes acetone and methane, several differences are observed. On the whole,

methane diffusivity ratios increase and are now overestimated by approximately 30% as seen in

Figure 193 and Figure 194. Acetone tracer predictions improve slightly at low densities, but

increase substantially at higher densities and become unreasonable. Conversely, self-

diffusivities decrease at high densities and are now underestimated. These self-diffusivities are

also clustered and indicate better model performance compared to the model calculated with

known Lennard-Jones values (see Figure 192). Low density self-diffusivities show the opposite

effect and have larger scatter, although the self-diffusivity ratios are scattered around one. So

while the binary predictions become worse using TLSM-regressed Lennard-Jones values, the

self-diffusivities become more accurate. This improvement is expected because the Lennard-

Jones values were optimized with the experimental data that this model is being tested with.
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Figure 193. TLSM D12 and D1 predictions using the original formulation and TLSM-regressed
LJ values.

0 *04 CD22
S500"C D22

A 600PC D22
* 700*C D22
0 404"C D22 (Kutney)
* Saturated water D22
* 250C D22
- 50C D22
x 700C D22
-90C D22

+ 110C D22
S i 130C D22

- . - .1500C D22

- 1750C D22

As iA 20P"C D22

D3O ! * 225C D22

o G * 404*C 20 wt.%l-acetone D2
30 404C 40 wt.%1-acetone D2

0 4040C 60 wt.%l-acetone D2
+ 455*C 20 wt.%l-acetone D2

X 4550C 60 wt% l-acetone D2
* 5060C 20 wt.%1-acetone D2
o 5060C 40 wt.%l-acetone D2
O ... .C 60 w.tl-aceton D2

u. 1 + 3746C 0.70 wt.%l-mentane D2

0.0 0.2 0.4 0.6 0.8 1.0 1.2 o 500C 0.70 wt.%l-methne D2
Miure3 6000C 0.70 wt.%-methane D2Mixture density, p (g/cm) 70C 0.70 wt.%l-methane D2

Figure 194. TLSM D22 and D2 predictions using the original formulation and TLSM-regressed
LJ values.
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The default TLSM model with TLSM-regressed LJ values is rated: A

(mean low & high density diffusivity ratios: 1.1 ± 0.595% & 1 ± 295%)

Now that the original formulation of the TLSM model has been evaluated, variations will

be explored in order to further increase the accuracy of the TLSM model. The following

variations will be tested.

1. Use mixture volumetric properties instead of solvent properties since Liu et al. developed the

TLSM model for infinitely dilute solutes which do not need mixture properties. For

concentrated systems, the volumetric terms are not always adequately represented by pure

solvent properties and therefore, it is appropriate to consider using mixture terms. For the

first test, the solvent density (P2) and the solvent diameter (02) will be replaced with the

mixture density (p) and the effective diameter (cTLSM), respectively.

2. Weigh the other unweighted terms since there have been past instances when weighing these

terms improve the overall model accuracy. In particular, the unweighted 012, FTLSM, and M12

terms will be replaced with weighted versions. Finally, use TLSM-regressed LJ values for

water and known LJ values for the solute. Since the ultimate goal is to accurately predict

diffusivities for supercritical water and its systems, it is reasonable to consider using the

TLSM-regressed LJ values for water because they will result in accurate self-diffusivities.

Since only around forty solutes have been regressed by Liu and coworkers, the list of TLSM-

regressed solute LJ values is small. This limitation is due to the fact that experimental solute

self-diffusivities are not always available and therefore, cannot be regressed. Even if

regressed solute values are available, it has just been shown that regressed solute values

result in worse binary predictions. For these reasons, known solute LJ values are

recommended for binary diffusivity TLSM predictions and offer the highest degree of

flexibility when modeling supercritical-water systems.

The first variation tested is the replacement of pure solvent volumetric terms with

mixture terms. The TLSM model has several volumetric terms as shown in Eq. (145)
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"12 -z ZM2
P2NATTLSM L M l (145)

ex- 0.75P2NA02 /M 2 -0.27862 1 

e 1.2588-p2NA2 / M2 kT
21/3 2

0CTLSM = 1 1/3 (146)

1 + 12 JTLSM

T2LSM 1 C28 1 2 (147)

k koC3

2
012 = 01o ;2 (111)

2

M 1 2 - 2 (199)
/MI +1/M2

Since the pure solvent number density (p2NA 23 ) is influenced by the addition of solute, it is

appropriate to convert this term into a mixture number density. Since the effective hard-sphere

diameter is solute weighted and appears elsewhere in the TLSM model, all solvent diameters in

Eq. (145) are replaced with the effective diameter. The solvent density is also replaced with the

mixture density which results in the following TLSM model

DTLSM-HS 669.1M12 IRT

PNA 6 TLSM M 12

3
0.75NA oTLSM I M1 2 0.27862LSM

expt 1.2588 - NAcLSM /M12 kT 

2 _ 21/3 22
TLSM ' - /

1 + 1.2 SM (146)
812

12LM 12C12 (147)
k kc32

012 = 7 + C2 (111)
2

M12= 2 (199)
1/M1 +1/M 2
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It is crucial that any change that improves binary predictions and introduces concentration

dependence does not negatively impact infinitely dilute or pure solvent predictions. When the

mixture volume reduces to the solvent volume in the infinitely dilute and pure solvent limit, the

original LSM model is intentionally reformed.

Mutual and tracer diffusivity ratios with known LJ values are shown in Figure 195.

Compared to the original predictions shown in Figure 191, the low density diffusivity predictions

are scattered more, but still lie about the diffusivity ratio of one. High density predictions are

worse, and some results are off the ordinate scale. The extreme values are the result of using an

unweighted combining rule (Eq. (111)) which is used in Eq. (147) and then cubed in the TLSM

equation (Eq. (146)). On the other hand, the self-diffusivity predictions do not change as seen in

Figure 196 since Eq. (200) reduces to the original LSM model when solutes are not present.

When the TLSM-regressed LJ values are used instead of known values for methane,

acetone, and water systems, similar trends are seen. Mutual and tracer diffusivities are dispersed

more as shown in Figure 197. However, high density mutual diffusivities in Figure 197 are

overestimated compared to those in Figure 193 when solvent volumetric terms are used. Self-

diffusivity ratios that are plotted in Figure 198 do not change at low densities, but decrease

slightly at high densities because effective diameters are used in the hard-sphere exponential

term (compared to when the solvent diameters are used in Figure 194).

The original TLSM model (Eq. (145)) cannot have concentration dependence since it is

specifically designed for self- and infinitely dilute mutual diffusivities. By weighting volumetric

parameters in Eq. (200), predictions are now dependent on the system concentration, but are

scattered more. This increased scattering can be explained in terms of unweighted energy terms

such as the hard-sphere diameter, and this issue will be addressed next. Both models still reduce

to the original LSM form for self-diffusivity predictions.
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Figure 197. TLSM D12 and D1 predictions using TLSM-regressed LJ values, mole-fraction-
weighted V2, and all a2  aTLSM.
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Figure 198. TLSM D22 and D2 predictions using TLSM-regressed LJ values, mole-fraction-
weighted V2, and all 02 = aTLsM.
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In order to avoid abnormally large mean molecular diameters and predictions for larger

solute species, several terms are weighted. The well-depth potential will be weighted according

to Eq. (202). The mean molecular diameter will be represented by a linear mole-fraction

combination of diameters as defined in Eq. (203). These changes introduce concentration

dependence in a simple fashion and avoid a significant change to the term when solute is added

to the system. To be consistent with the other weighted terms, the mixture molecular weight is

the last term scaled, and it is defined in Eq. (204).

DTLSM-HS 669. 1M 2 IRT

PNAaTLSM M 12
pN____ ____M 0.27862_TLSMI 2(201)

0.75pNAoLSM /M 1 2 8exp- 1.2588 - pN oLSM I M12 0.27862 kT
l/3M MI

2 21/3 2
aTLSM =

( 1kT (146)
TLSM

TLSM xl X2812 1 2 (202)

k k

C1 2 = X1al1 + X2 Ca2 (203)

M12 = XlM 1 + x2 M 2 (204)

TLSM predictions can be made with known LJ values now that all mixture terms are

weighted with respect to mole fraction. Mutual and solute-tracer diffusivities using Eqs. (201),

(146), (202), (203), and (204) are plotted in Figure 199, while self-diffusivities are shown in

Figure 200. High density mutual diffusivities are no longer larger than the ordinate scale, but are

still overestimated and dispersed compared to the original predictions shown in Figure 191.

Likewise, low density predictions are larger and scattered more compared to the original

predictions in Figure 191, although there is less scatter for the oxygen and methane tracer results

over its density range. Self-diffusivities are identical to those in Figure 196 because the

combining rules are ineffective when modeling pure species.
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Figure 199. TLSM D12 and D1 predictions using known LJ values, mole-fraction-weighted V2,
02 = rTLSM, and mole-fraction-weighted 012, 812 = 812, & M 12 "
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Figure 200. TLSM D22 and D2 predictions using known LJ values, mole-fraction-weighted V2,

02 = aTLSM, and mole-fraction-weighted 0(12, E12 = 812, & MW 12 .
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Based on the previous TLSM results with different combinations of weighting and

mixture properties, an optimum approach for modeling diffusivity of sub- and supercritical-water

systems has been developed. This approach is dependent on the solute concentration, so the

TLSM model is no longer limited to infinitely dilute predictions. In addition, experimental

solute self-diffusivities are not needed in order to regress the solute Lennard-Jones parameters

used in the TLSM model. Instead, solute Lennard-Jones parameters can be estimated using

critical-constant correlations in case known parameters are unavailable. Solute molecular weight

is the only other solute property that is required.

Given that the solvent in this analysis is always water and since the most accurate self-

diffusivity results are obtained with the TLSM-regressed Lennard-Jones values (see Table 60),

TLSM-regressed Lennard-Jones values are recommended for use when using the TLSM model

to predict diffusivities of sub- and supercritical water systems. Solvent molecular weight and

density at the process condition of interest are the only other solvent properties that are required.

Using the original TLSM model contained in Eqs. (145) and (146) along with the mole-

fraction-weighted mixture well-depth, diameter, and molecular weight defined in Eqs. (202),

(203), and (204), the recommended TLSM equation set is complete.

DTLSM-HS 669. 1M2 RT

P2NATLSM 12 (145)
( N 3 TLSM

ex 0.75P2NAc 2 / M 2 - 0.27862-12
ex 1.2588- p2 NA / M2 kT )

2 21/3 2

C TLSM 1 -

TLSM

TLSM Xl X2
612 1 2 (202)

k k

aC12 = XlCaI + X2 C 2 (203)

M12 = xlM 1 + x2M2 (204)

Using known solute Lennard-Jones values, the diffusivity can be simply computed since

regression is no longer necessary. This equation set is nearly identical to the set published by
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Liu and coworkers. In fact, the only differences are the use of mole-fraction-weighted well-

depths, diameters, and molecular weights and that they recommend using regressed Lennard-

Jones values for the solvent and the solute.

As stated earlier, it is recommended to use available solute Lennard-Jones values since

experimental solute self-diffusivities are not consistently available. Using TLSM-regressed

water values is recommended since these values provide the most accurate sub- and supercritical

water self-diffusivity predictions.

Mutual and tracer diffusivities using the recommended TLSM model are shown in Figure

201. Low density tracer predictions are scattered about one and are all reasonable. Accuracy is

fairly consistent for the oxygen and methane tracer predictions as density increases, although the

diffusivity ratios are scattered at low densities. High density mutual diffusivities are slightly

overestimated, but are reasonable. Above densities of 1 g/cm3, the results become significantly

overestimated and demonstrate the need for a high density limit for the TLSM model. At very

low densities, the TLSM model approaches the diffusivity ratio of one which indicates that the

model can accurately represent ideal-gas-like diffusivities in the region where kinetic-gas

theories dominate.

Water self-diffusivities are shown in Figure 202 and are also reasonable over the entire

abscissa. At the low density supercritical conditions, the predictions are slightly overestimated

but are clustered together reasonably well. At high density, low temperature self-diffusivities are

accurate due to the use of regressed-TLSM Lennard-Jones values. Higher temperature

predictions are clustered below the unity diffusivity ratio and are also reasonable. When known

values are used, the high density, high temperature predictions are similar to those in Figure 200

and are unreasonable. The solvent tracer diffusivity ratios for the simulated oxygen and methane

systems are accurate and clustered together over its entire density range. Water tracer diffusivity

ratios are also plotted in Figure 202 and are underestimated for two reasons. First, solvent and

solute tracer diffusivities are identical in the TLSM calculation. Second, the experimental water

data are always larger, thereby making the prediction ratios always smaller.
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Figure 201. TLSM D12 and D1 predictions using known-solute(1) & TLSM-regressed-water(2)
Lennard-Jones values and mole-fraction-weighted 12, 12 M 812, & MW 2.
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Figure 202. TLSM D22 and D2 predictions using known-solute(1) & TLSM-regressed-water(2)
LJ values and mole-fraction-weighted a 12, 812 = E12, & 1MW 2.
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All of these results indicate that the TLSM model using known-solute and TLSM-

regressed-solvent Lennard-Jones values and Eqs. (145), (146), (202), (203), and (204) can

reasonably predict self-, mutual, and tracer diffusivities over a large process regime. When these

data are combined together (without the secondary solvent tracer diffusivities) in Figure 203,

several conclusions can be drawn. First, low density predictions remain inside the acceptable

zone with no excursions into the caution zone. They are scattered symmetrically about the

diffusivity ratio of one, although low temperature (400°C) self-diffusivities are slightly

underestimated, and the other self-diffusivities are overestimated. Second, high density

predictions are scattered about the diffusivity ratio of one, but are bimodal. The underestimated

predictions are primarily self-diffusivities, while the overestimated predictions are mainly mutual

diffusivities. Nevertheless, the TLSM predictions are reasonable and are the best yet observed in

this hard-sphere theory section.

For these reasons, the TLSM model with known-solute and TLSM-regressed-solvent

Lennard-Jones values and calculated with Eqs. (145), (146), (202), (203), and (204) is

rated: (mean low & high density diffusivity ratios: 1.0 + 0.495% & 0.9 ± 1.095%) A I

As summarized in Table 61 and Table 62 and Figure 204, the most promising hard-

sphere models are developed by Sun and Chen (1985) and Liu et al. (1998). The Sun-Chen

model is successful at low densities, but its high density predictions are inaccurate. Most

surprising about its success is that Sun-Chen model is based entirely on computer-simulated

tracer diffusivities. Experimental data are not used in the development of this model.

The Tracer Liu-Silva-Macedo (TLSM) model is also based on MD simulations, but it is

also based on experimental data. The recommended version uses TLSM-regressed water

Lennard-Jones values for accurate self-diffusivity predictions, while solutes use known values

for accurate mutual and tracer diffusivities. The resulting predictions are reasonable for low and

high densities with only a few excursions into the caution zone. The TLSM model is also

successful at simulating the ideal-gas-like regime where kinetic-gas theories are valid.

390

�I



i

ii
.

A

AA

* Xx

OXa000
*

U *
A

a* ~
* ..-- -. ;i~---•tC e o

· p~DL-

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Mixture density, p (g/cm3)

a 400C D22
* 5000C D22
A 6000 C D22
* 7000C D22
* 4040C D22 (Kutney)
* Saturated water D22
* 250C D22

50°C D22
S700C D22 -
- 90

0 C D22
+ I10C D22
- 130C D22

1500C D22
- 175*C D22
A 2000 C D22
* 2250C D22
N <0.01 wt.%l-bennpbVnone DI12 at 300 bar
* -0.63 wt.%l-odian-nitrate D12 at 300 bar
A -0.31 wt.%l-hydroquiane D12 at 240 bar

S-0.40 wt.%l-iodide-iom D12 at 240 bar
-- 0.34 wt.%l-acetone DI12 at 300 bar (Goemams)
x -0.00 wt.% l-acetone D12 (Kutney)
a 404*C 20 wt.%l-acetone DI
o 404C 40 wt.%l-acetone DI
O 404°C 60 wt.%l-acetone DI
+ 4550C 20 wt.%l-acetone DI
x 4550C 40 wt.%l-acetone DI
X 4550C 60 wt.%l-acetone DI
* 5060C 20 wt.%l-acetone DI
o 5060C 40 wt.%l-acetone DI
O 5060C 60 wt.%l-acetone DI
x 374-C 1.38 wt.%l-oxygen DI
* 4000C 1.38 wt.%l-oxygen DI
* 500C 1.38 wt.%l-oxygen DI
A 600C 1.38 wt.%l-oxygen DI
* 7000C 1.38 wt.%l-oxygen DI
+ 374*C 0.70 wt.%l-methue DI
O 5000C 0.70 wt.%l-methane DI
A 600C 0.70 wtL%l-meanm DI
0 7000C 0.70 wt.%Il-methue D!

Figure 203. TLSM D22, D12, and D1 predictions using known-solute(1) & TLSM-regressed-
water(2) LJ values and mole-fraction-weighted o 12, F12 ns = 812, & MW12.
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Table 61. Low and high density performance rankings for the hydrodynamic-, kinetic-, and
hard-sphere-based diffusivity models evaluated in this analysis

Model
Hydrodynamic theory of diffusion

Stokes-Einstein equation with the no-slip condition
Stokes-Einstein equation with the slip condition
Wilke-Chang equation
Reddy-Doraiswamy equation (original form)

(>0.3 g/cm3 with NBP-volumes)

Kinetic theory of diffusion
Chapman-Enskog equation

CE equation with the Enskog-Thorne correction
Weighted CE equation with the ET correction
CE equation with the Takahashi correction
CE equation with the Dawson HS correction
CE equation with the Erpenbeck-Wood HS correction

Polar Chapman-Enskog equation
Polar CE equation with the Enskog-Thorne correction
Polar, weighted CE equation with the ET correction
Polar CE equation with the Takahashi correction
Polar CE equation with the Dawson HS correction

Wilke-Lee equation
WL equation with the Enskog-Thorne correction
WL equation with the Takahashi correction
WL equation with the Dawson HS correction

Mathur-Thodos equations

Hard-Sphere Theory of Diffusion
Sun-Chen equation
Eaton-Akgerman equation
He equation
He-Yu equation
Tracer Liu-Silva-Macedo equation (known LJ values)
Tracer Liu-Silva-Macedo equation (regressed LJ values)
Tracer Liu-Silva-Macedo equation (known(1)-regressed(2))

Section
11.5.2.1
11.5.2.1.1
11.5.2.1.1
11.5.2.1.2
11.5.2.1.3
11.5.2.1.3

11.5.2.2
11.5.2.2.1
11.5.2.2.1.1
11.5.2.2.1.1
11.5.2.2.1.2
11.5.2.2.1.3
11.5.2.2.1.4
11.5.2.2.2
11.5.2.2.2
11.5.2.2.2
11.5.2.2.2
11.5.2.2.2
11.5.2.2.3
11.5.2.2.3
11.5.2.2.3
11.5.2.2.3
11.5.2.2.4

11.5.2.3
11.5.2.3.1
11.5.2.3.2
11.5.2.3.3
11.5.2.3.4
11.5.2.3.5
11.5.2.3.5
11.5.2.3.5

Density
Low I High

A
A
A
A
A

LAIAI

AIAI
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Table 62. Low and high density mean diffusivity ratios and 95%-confidence-interval
uncertainties for the hydrodynamic-, kinetic-, and hard-sphere-based diffusivity models

evaluated in this analysis
Density

Model Low I High
Hydrodynamic theory of diffusion

Stokes-Einstein equation with the no-slip condition
Stokes-Einstein equation with the slip condition
Wilke-Chang equation
Reddy-Doraiswamy equation (original form)

(>0.3 g/cm 3 with NBP-volumes)

Kinetic theory of diffusion
Chapman-Enskog equation

CE equation with the Enskog-Thorne correction
Weighted CE equation with the ET correction
CE equation with the Takahashi correction
CE equation with the Dawson HS correction
CE equation with the Erpenbeck-Wood HS correction

Polar Chapman-Enskog equation
Polar CE equation with the Enskog-Thome correction
Polar, weighted CE equation with the ET correction
Polar CE equation with the Takahashi correction
Polar CE equation with the Dawson HS correction

Wilke-Lee equation
WL equation with the Enskog-Thorne correction
WL equation with the Takahashi correction
WL equation with the Dawson HS correction

Mathur-Thodos equations

Hard-Sphere Theory of Diffusion
Sun-Chen equation
Eaton-Akgerman equation
He equation
He-Yu equation
Tracer Liu-Silva-Macedo equation (known LJ values)
Tracer Liu-Silva-Macedo equation (regressed LJ values)
Tracer Liu-Silva-Macedo equation (known(1)-regressed(2))

0.5 ± 0.5
0.7 ± 0.8
0.5 ± 0.5
0.6 ± 0.6
0.2 ± 0.4

2 2
1.0 ± 0.7
1.2 ± 0.5

1+1
1.2 0.6

2 2
2+2

0.9 + 0.6
1.1 0.5
1.4 ± 0.9
1.1 +0.6

1I1
1.0 + 0.7
1.0 + 0.6
0.8 ± 0.5
1.0 ± 0.5

0.9
0.4
0.3
0.7
1.1
1.1
1.1

0.5
0.5
0.2
0.7
0.6
0.5
0.4

A
A
A
A
A

SAJA

IAIAI

0.9
1.3
1.2
1.0
1.0

>10 >10
2+3
2+3

>10+>10
0.4 + 0.5

>10 +>10
>10 +>10

2+2
2 2

>10 + >10
0.3 ± 0.6

>10+ >10
2 3

>10 >10
0.3 ± 0.4
0.9 ± 1.0

1 2
2+3

<0.1 ± <0.1
2+3

1.4 + 2.0
0.8 ± 2.0
0.9 + 0.9
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Figure 204. Low and high density mean diffusivity ratios and uncertainties for the
hydrodynamic-, kinetic-, and hard-sphere-based diffusivity models evaluated in this analysis.
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11. 5.3 Discussion and Error Analysis

With the initial analysis of each model complete and the results summarized concisely in

Table 61 and Table 62, the focus can now shift to summarizing the recommendations of the

analysis before an error analysis is performed. The hydrodynamic-theory analysis reveals that

low density (<0.5 g/cm 3) diffusivity predictions are inaccurate. Dense predictions are reasonable

for all of the models evaluated. The most accurate results were obtained using the Reddy-

Doraiswamy equation when normal-boiling-point volumes are used instead of the default

approach (which uses volumes at the condition of interest).

D [cm 2/S] = T[K] /M2 [g/mole]

12 [cP]VNBP1/3 [cm 3 /mole]V2 NBPl3 [3/mo le]

(102)

V 2NBP/NBP <1.5 rI = 10- 7

V2NBP /VN BP > 1.5 r = 8.5 x 10- 8

As seen is Table 61, this model is recommended for densities greater than 0.3 g/cm .

Predictions at lower densities are inaccurate as seen in Figure 146. Another noteworthy feature

is the lack of scattered data for high density predictions, especially for the water self-

diffusivities. The recommended form of the Reddy-Doraiswamy equation is independent of

concentration so predictions are insensitive to the solute concentration and cannot be

distinguished (Reddy and Doraiswamy, 1967). Even though the Reddy-Doraiswamy results are

accurate over a wide density range, only a few of these data points are at supercritical conditions.

Since this analysis is focused on identifying models that can accurately predict diffusivities for

sub- and supercritical water systems and this model has poor prediction capabilities for a

majority of the supercritical data, the Reddy-Doraiswamy model cannot be recommended for

subcritical-water diffusivity modeling.
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; -0.40 wt.% l-iodide-is D 12 at 240 bar

CO --0.34 wt.% -acetone D12 at 300 bar (Goemans)
X --0.00 wt.%l-acetone D12 (Kutney)
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0
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* 4504C 40 wt.Cl-acetone D1
A* x 404C 60 wt.% 1-acetone DO Xh O+ 4550 C 20 wt.%I-acetone DI
O- x 4550C 40 wt.%l-acetone DI
0 O X 4550C 60 wt.% l-acetone D

* 5060 C 20 wt.%1-acetone DI
X i o 506C 40 wt.%l-acetone DI

dK oO O 506C 60 wt.%l-acetone DI
x 374*C 1.38 wt.%l-oxygen DI

, a 400*C 1.38 wt.%l-oxygen D1
S500

0
C 1.38 wt.%1-oxygn DI

0.1 A..: 600
0 C 1.38 wt.%l-oxygen D

* 700C 1.38 wt.%l-oxygen DI

0.0 0.2 0.4 0.6 0.8 1.0 1.2 + 3740C 0.70 wt.% -methane D

3 6 500-C 0.70 wt.%l-methane DI
Mixture density, p (g/cm) ; 700C 0.70 wt.%l-methane Dl

Figure 146. Reddy-Doraiswamy D22, D12, and D1 predictions using pure water viscosities and
constant solute and solvent normal-boiling-point volumes.

The Mathur-Thodos self-diffusivity model is rated the best overall kinetic-theory model

due to its accuracy along the entire density range (Mathur and Thodos, 1965)

44 x 10-5 P2/3 [atm]T5 /6 T11716
Normal pressures: DMT[cm2 /s] = cl cl for Tl 2 1.5

.3 38 t(132)
2.427 x 10-5 p2/3 [atm]Tc6 (7.907T -1.66 .338

1 Icm2/s] =for Trl < 1.5

MT 2 10.7 x 10-5 T5 16T
Elevated pressures: D11  [cm2/s = cl rl for0.15 p l 51.5 (133)

PC [atm]prl JMI
3.67 x 10-T T5 /6 .5

Liquid state: Dl[cm2/s] = cl1 rl for p > 2 (134)
Pc1(3[atm]P°' -f I

When extended to mixtures using mole-fraction-weighted terms instead of solute terms, the

predictions fall into the acceptable zone as seen in Figure 184. The scatter is larger than the

Reddy-Doraiswamy scatter, but low density predictions are reasonably accurate. Needing only
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critical constants, molecular weights, and densities, the Mathur-Thodos approach is simple to use

and is accurate for sub- and supercritical-water diffusivity predictions. On the other hand, this

multi-equation approach will have discontinuities when switching between the different

equations and will lead to prediction discrepancies.

The TLSM model is the other model that performed admirably. As indicated in Table 61,

the best results were obtained when known Lennard-Jones well-depths and diameters were used

for the solute and TLSM-regressed Lennard-Jones values were used for the solvent water. The

model is extended to concentrated systems by employing simple mole-fraction-weighted terms

that are written below

DTLSM-HS 669.1M2 RRT

P2NATLSM 12
A12( M MI 3 2 ITLSM (145)

exp -7P2NA2 / M2 -0.27862 -
e 1.2588-p 2Nc /2 M2 kT

1/3 2
2 2 0s12

TTLSM = 1/3

1+12 kT (146)

TLSM Il XX 2
l2 =1 2 (202)

k k

012 = X1 1 + X2 a2 (203)

M12 = x1M 1 + x2 M 2 (204)

Results with these formulae are shown in Figure 203 and are nearly identical to the

Mathur-Thodos results that are shown in Figure 184. The agreement is remarkable given that the

Mathur-Thodos equation set is based upon dimensional analysis. Likewise, average absolute

deviations (AAD) at any temperature show a similar trend for the Mathur-Thodos and TLSM

models as seen in the second section of Table 63. The second section also shows that the

modified TLSM expression has smaller uncertainties than the Mathur-Thodos equation set and

the TLSM model when known Lennard-Jones values or regressed Lennard-Jones values are used

for both species. The third section of Table 63 contains AAD statistics for predictions above

400°C, while the fourth section contains statistics for only supercritical predictions. Statistics
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Figure 184. Mathur-Thodos D22, D12, and D1 predictions using low and high density formulae.
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Figure 203. TLSM D22, D12, and D1 predictions using known-solute(1) & TLSM-regressed-
water(2) LJ values and mole-fraction-weighted C012, 912 M = 812, & MW 12.
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Table 63. Low and high density mean diffusivity ratios and corresponding average absolute
deviations along with 95%-confidence-interval uncertainties for the Mathur-Thodos and Tracer

Liu-Silva-Macedo diffusivity models evaluated in this analysis
Overall density Density

Model Low & High Low I High
n

Mean diffusivity ratios = i
n

Mathur-Thodos equations 0.9 ± 0.8 1.0 ± 0.5 [MA 0.9 ± 1.0

TLSM equation (known LJ values) 1.3 ± 1.6 1.1 ± 0.6

TLSM equation (regressed LJ values) 0.9 ± 1.4 1.1 ± 0.5

1.4 ± 2.0

0.8 ± 2.0

TLSM equation (known(1)-regressed(2)) 1.0 ± 0.8 1.1 ± 0.4 AAIA 0.9 ± 0.9

EI(Dcalc - Dexpt)/Dexpt!i
Average absolute deviations = i

n

Mathur-Thodos equations 30% ± 62% 17% ± 32% [ 39% ± 72%

TLSM equation (known LJ values) 48% ± 145% 24% ± 37%

TLSM equation (regressed LJ values) 32% ± 122% 20% ± 32%

4% ± 179%

2% ± 159%

TLSM equation (known(1)-regressed(2)) 29% + 50% 18% + 27%IAIA 37% + 56%

For T 2 4000 C data, average absolute deviations

Mathur-Thodos equations 18% ± 39% 16% ± 32% IAA 62% ± 72%

TLSM equation (known LJ values) 23% ± 36% 23% ± 36%

TLSM equation (regressed LJ values) 19% - 25% 19% ± 25%

7%N a9%

No data

TLSM equation (known(1)-regressed(2)) 19% ± 30% 18% ± 28%A AA 47% ± 38%

For supercritical data, average absolute deviations

Mathur-Thodos equations 18% ± 41% 15% ± 33% AIA 53% ± 63%

TLSM equation (known LJ values) 23% ± 37% 24% + 38

TLSM equation (regressed LJ values) 18% ± 22% 18% ± 22

8% ± 13%

No data

TLSM equation (known(1)-regressed(2)) 20% ± 31% 18% + 27% AA 41% + 43%
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independent of density are contained in the second column of Table 63 and are helpful when

comparing overall model performance.

At high densities, the Mathur-Thodos model has several predictions entering the caution

zone and according to Table 63, has larger variability than the TLSM model. For densities

greater than 1 g/cm3, mutual-diffusivity ratios for both models are likely to increase

exponentially and become unreasonable, but this operating regime is unlikely for typical

supercritical-water applications. Diffusivity ratios for the simulated oxygen and methane

datasets are nearly identical in both models, but the Mathur-Thodos scatter is less. Mathur-

Thodos self-diffusivities are slightly overestimated at low densities and are underestimated at

high densities. At high densities, the self-diffusivity predictions of both models cannot match the

precision observed with the Reddy-Doraiswamy model, but low temperature self-diffusivities are

slightly more accurate. One key modified-TLSM-model benefit is the superior accuracy of low

density tracer diffusivities. There are zero excursions into the caution zone in the low density

region where most supercritical-water systems operate, and the modified-TLSM AAD is 17% +

27%95% versus 19% ± 26%95% for the Mathur-Thodos. Based on this analysis and combined-

density statistics in Table 63 (column two), the modified TLSM model is the recommended

approach for predicting diffusivities of sub- and supercritical water systems. The Mathur-

Thodos approach comes in a close second, but is recommended as a backup model that can be

used to verify TLSM results or in place of TLSM results if solute Lennard-Jones values are not

available.

A final issue to be discussed involves the accuracy of the experimental data that are used

in the analysis figures. As mentioned earlier, plotted diffusivity ratios may be skewed by

experimental-data inaccuracies in every figure, but these errors have been neglected during the

preliminary analysis since they do not change from one plot to another. Now that the Mathur-

Thodos and the modified TLSM approaches have been recognized as the leading candidates for

sub- and supercritical water systems, an analysis of errors is needed.

Experimental uncertainities can be incorporated into the analysis by merely adding it to

the analysis plots. Uncertainty errors for the experimental data used in this analysis are provided

by most authors and can be easily incorporated into the analysis plots. Individual experimental
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uncertainties with 95% confidence intervals have been added to the Mathur-Thodos and

modified TLSM plots in Figure 205 and Figure 206, respectively.

The uncertainty clouds generated by the clustered data and their respective experimental

errors remain, for the most part, in the acceptable prediction-ratio range. At low densities, the

Mathur-Thodos cloud in Figure 205 occupies the caution zone because the predictions are

slightly less accurate and closer to the center-zone boundary. The modified TLSM cloud is

slightly smaller in Figure 206, because the diffusivity ratios are scattered less and the uncertainty

errors remain the same. Since nearly all of experimental error remain in the acceptable range,

previous model recommendations remain unchanged.

Another potential source of error could be the property terms that are used in the

prediction models. Although property constants and variables such as density are assumed to be

well-known, all will have uncertainties. These errors can be ignored in this analysis for several

reasons. First, the current analysis attempts to mimic the calculation approaches that are

generally used. Parameters used in most diffusivity calculations are not usually subjected to an

error analysis as long as their source is credible and the values are reasonable. The values used

in this analysis fall within this classification. Furthermore, the calculated errors are small

compared to the experimental errors, and thus, they do not play a major role in this analysis.
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Figure 205. Mathur-Thodos D22, D12, and DI predictions with the experimental uncertainties
shown (95% confidence intervals).
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Figure 206. TLSM D22, D12, and D, predictions with the experimental uncertainties shown
(95% confidence intervals).
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II. 5.4 Conclusions

Based on the analysis performed with a wide range of experimental and simulated data,

two models are capable of providing reliable diffusivity predictions. The modified TLSM model

is the primary recommended model for sub- and supercritical water predictions. The governing

equations are Eqs. (145), (146), (202), (203), and (204) and known Lennard-Jones values should

be used for the solute species. Lennard-Jones values for the solvent water are fit to experimental

self-diffusivities in order to improve the model accuracy and are listed in Table 60. Compared to

the other models analyzed, it is accurate at low densities where most supercritical-system

modeling will occur. High density predictions are bimodal with self-diffusivities

underestimated, while mutual diffusivities are overestimated. The modified TLSM model is not

recommended for densities above one.

The second model recommended is developed by Mathur and Thodos (1965). Defined

by Eqs. (132), (133), and (134), the Mathur-Thodos approach can be extended to mixtures using

linear mole-fraction-weighted terms for the required critical constants and reduced variables.

Lennard-Jones constants are not needed. The Mathur-Thodos approach is slightly more accurate

than the modified-TLSM model at low densities, but is less accurate at high densities and has a

larger overall uncertainty compared to the modified-TLSM model as seen in Table 63. The

Mathur-Thodos model is also not recommended for densities above one. Both models are

capable of providing reasonably accurate diffusivities as demonstrated for the systems in this

analysis. When doubts are raised about predictions from either of these models, it is

recommended to calculate diffusivities with the other model in order to validate the predictions

and minimize suspicion.
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3. Conclusions and Recommendations

This thesis focuses on the development of accurate thermodynamic and diffusivity

transport-property models for use at typical SCWO operating conditions, namely 250C < T <

650°C and 1 bar < P < 300 bar, along with the measurement of molecular diffusivity using a

novel high pressure, high temperature flow system.

Thermodynamic-property research:

A hard-sphere, volume-translated van der Waals equation ofstate for pure components

A hard-sphere, volume-translated van der Waals equation of state has been developed for

use in SCWO PVT modeling and is comprised of the semi-theoretical Carnahan-Starling

expression that properly represents the molecular interactions between hard spheres and a simple

van der Waals attraction term. It also utilizes volume translation to further improve high density

predictions. The translation constant is determined by a fit to liquid and vapor coexistence

density data, while the Carnahan-Starling and van der Waals parameters are determined from

widely available critical point data. For each pure component i, the critical temperature Tci and

pressure Pci are required for determining aci and bi. The volume translation requires the

experimental critical volume Vci and a parameter ti which is correlated with the liquid or vapor-

liquid coexistence density. Two more parameters (aAI and aBi) are used to provide temperature

dependence and are fit to coexistence vapor-pressure data.

The analysis indicates that the new hard-sphere volume-translated equation of state
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ies over a wide range of temperatures and pressures for pure materials such as carbon

methane and water. Ammonia, ethylene, nitrogen and oxygen have also been accurately

i with the HSVTvdW EOS. Densities and residual properties are predicted in a

ynamically consistent manner with average errors of 5% and 7%, respectively, and

3% and 32%, respectively, over temperatures and pressures ranging from ambient to

nd 400 bar. Pure component liquid-density HSVTvdW EOS predictions have been

o be more accurate than other EOSs currently used in SCWO thermodynamic modeling,

'ith other water properties including enthalpy and entropy.
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A hard-sphere, volume-translated van der Waals equation of state for mixtures

Another important feature of a successful equation of state is its ability to simulate

thermodynamic properties of mixtures, and for supercritical-water systems, these mixtures would

most likely contain low concentrations of gases and hydrocarbons. The HSVTvdW EOS has

been extended to model mixtures by using a theoretically correct mixture form for hard-sphere

interactions. Simple mixing and combining rules and a simple binary parameter have been

employed.

Binary phase diagrams for several mixtures have been calculated using the HSVTvdW

EOS and confirm that the HSVTvdW EOS can be used for mixture modeling with sufficient

accuracy. While the HSVTvdW EOS has not been thoroughly tested with a wide variety of

mixtures, the limited results indicate that this EOS will be suitable for modeling SCWO

properties and process streams which typically have more than 85% water content. Although

simple mixing and combining rules have been employed, there are no significant obstacles to

using more complex rules in order to further increase the accuracy of the HSVTvdW EOS.

Since the HSVTvdW EOS has been originally formulated for more accurate density

predictions, a complete analysis including density comparisons of the mixture phases should be

completed. As already stated, an investigation of additional mixtures relevant to SCWO process

modeling should be also performed. Those systems studied should include ones that are well

characterized such as aqueous mixtures of:

simple feed waste, e.g., methanol, ethanol, ammonia,

oxidant, e.g., oxygen,

simple products, e.g., nitrogen.

Once more systems are studied and compared and the performance of the HSVTvdW EOS is

completely analyzed, it can then be determined if the HSVTvdW EOS is a worthwhile addition

to a SCWO process modeler's simulation toolbox.
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An analysis of EOS Zeno behavior

The behavior of the "Zeno" (Z = PV/IRT = 1) line has been examined in a collaborative

project in order to investigate this recently rediscovered empirical regularity of fluids and to

determine if such a regularity can be utilized to improve EOSs and their predictions. For a wide

range of pure fluids, this contour of unit compressibility factor in the temperature-density plane

has been empirically observed to be nearly linear (and arrow-like, thus "Zeno") from the Boyle

temperature of the low density vapor to near the triple point in the liquid region. Although

quantitative agreement between Zeno EOS predictions and experimental data is not exact, the

general trends suggest that these EOS models adequately capture the dynamic balance that exists

between repulsive and attractive forces along the Zeno line. Accurate Zeno-line predictions

indicate EOS robustness over a larger domain of PVT space. Molecular simulations of Zeno

behavior using SPC, SPC/E, and Lennard-Jones models for pure water match experimental

behavior over a wide range of density, thereby confirming that these models can make water

property predictions as accurate as pure component EOS predictions.

The generic linearity of the Z = 1 contour in the T-p plane provides a quantitative

criterion to evaluate and refine both macroscopic and molecular equations of state. By using

critical-point scaling, species-dependent Z = 1 data can be partially generalized in a

Corresponding-States framework and can be used to fundamentally improve cubic equations of

state. The predictions of the Peng-Robinson EOS and other cubic EOSs are reasonably close to

the experimental Zeno behavior with the regressed parameter, a, which captures attractive

interactions and is normally fit to vapor-liquid equilibrium data well outside the Zeno region.

Modified PR EOSs with alternative a parameters show improvements over the original PR EOS.

In particular, the PR EOS with the Twu et al. a model shows excellent agreement with the Zeno

conditions for water, implying that sensitivity to the magnitude and functional form of a may

have a more fundamental connection to the density-dependent interactions.

These comparisons and others indicate that, one should examine the Z = 1 contour to test

for the observed universal linearity when developing an EOS. This Zeno criterion provides a

species-independent check of the EOS robustness. When used effectively, new EOSs can be

quickly compared to these observations and modified to increase accuracy.
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Transport-property research:

Molecular-diffusivity measurement

Self-diffusivities of pure supercritical water has been previously measured and published

for a limited range of conditions, but accurate SCW binary-diffusivity data are extremely limited.

SCW binary-diffusivity data are scarce and difficult to obtain due to the limited ability to make

diffusivity measurements at harsh SCWO process conditions. In this dissertation, diffusivities of

pure supercritical water and supercritical-water mixtures have been measured by using NMR.

Tracer diffusivities of aqueous acetone mixtures were measured at three different concentrations

at typical SCWO operating conditions with a novel, first-of-a-kind SCW/NMR flow system and

the NMR spin-echo technique. Water self-diffusivity measurements are comparable with

previously published values and validate the apparatus performance and the measurement

capacity.

Molecular-difusivity modeling

Binary-diffusivity models used for SCWO-diffusivity predictions have only recently been

evaluated. Due to the lack of experimental data, such evaluations have not been performed in

great detail. With newly available data measured in this dissertation, kinetic-gas and

hydrodynamic models were reexamined. Based on the analysis performed with a wide range of

experimental and simulated data, two models are capable of providing reliable diffusivity

predictions.

For SCWO operating conditions, the Tracer Liu-Silva-Macedo (TLSM) and Mathur-

Thodos correlations were found to provide the most accurate diffusivity predictions over a wide

density range (0.01-1.0 g/cm3). The Mathur-Thodos correlation requires only critical constants

and molecular weights and has an average absolute deviation (AAD) of 18% for supercritical-

water self-diffusivities and supercritical tracer & infinitely dilute mutual diffusivities above

400°C. The Mathur-Thodos approach can be extended to mixtures using simple mole-fraction-

weighted terms for the required critical constants and reduced variables. Similar results were

obtained with the TLSM model (23% AAD for data above 400°C) which requires only

molecular weights and two Lennard-Jones parameters for each pure component. Further

improvement was made when mole-fraction-weighted experimental-solute and LSM-regressed-
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water Lennard-Jones parameters were used (20% AAD). This modified-TLSM method is the

recommended approach because higher density supercritical predictions have a 41% AAD versus

the Mathur-Thodos 53% AAD and has a smaller overall uncertainty compared to the Mathur-

Thodos model. Neither model is recommended for densities above one.

Both models are capable of providing reasonably accurate diffusivities as demonstrated

for the systems in this analysis. When doubts are raised about predictions from either of these

models, it is recommended to calculate diffusivities with the other model in order to validate the

predictions and minimize suspicion. With the modified Tracer Liu-Silva-Macedo and the

Mathur-Thodos correlations recommended for use in sub- and supercritical-water diffusivity

modeling based on datasets used in this dissertation analysis, additional investigations should be

performed. Validation work should continue with commonly used supercritical solvents, e.g.,

carbon dioxide, and for other water-based systems when additional data become available.

Alternative mixing rules should also be evaluated since accuracy is sensitive to the form of

model mixture terms.

As a result of the improved thermodynamic- and transport-property modeling capabilities

along with the collection of additional aqueous supercritical diffusivities contained in this thesis,

the SCWO community now has additional thermodynamic- and transport-property knowledge

that leads to a greater understanding of key issues that impact the design and operation of SCWO

technology.
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PGSE SPECTROMETER PULSE PROGRAM

; 2xPulse-Gradient-Spin-Echo - incr gradient method
; hard90 - hard 180 - hard 180 rf - k space
; AMX2 version
; modified to include presaturation (if needed)
; MK.pgsevg2

d0=d4/10-p31*(1+1/l0)
0.5s ze ; zero data block and initialize

; START DUMMY SCANS
5 dl thi ; T1 delay

pl phl ; 90 degree hard pulse
d2 ; stabilization delay
d4 ; first k pulse delta
d2 ; stabilization delay
d5 ; delay for big DELTA
p2 ph2 ; 180 degree hard pulse
d2 ; stabilization delay
d4 ; second k pulse delta
d2 ; stabilization delay
d5 ; delay for big DELTA

;START DOUBLE PGSE PART OF DUMMY SCANS
d6
d2
d4
d2
d5
p2 ph2
d2
d4
d2
d5
d6

;'stabilization delay
; third k pulse delta
; stabilization delay
; delay for big DELTA
; 180 degree hard pulse
; stabilization delay
; fourth k pulse delta
; stabilization delay
; delay for big DELTA

d5* 1.5 ; something close to ak time
lo to 5 times 11 ; 11 dummy scans
first pgse part
dl
pl phl
d2
p31:ngrad
dO
lo to 100
p31:ngrad

d2
d5
p2 ph2

; 90 degree hard pulse
; stabilization delay
; k gradient on
; first k pulse delta

times 10 ; shaped pulse loop
; k gradient off
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d2
200 p31:ngrad ; k gradient on

dO ; second k pulse delta
lo to 200 times 10 ; shaped pulse loop
p31:ngrad ; k gradient off

d2 ; stabilization delay
d5 ; delay for big DELTA

;START DOUBLE PGSE PART
d6
d2

300 p31:ngrad ; k gradient on
dO ; third k pulse delta
lo to 300 times 10 ; shaped pulse loop
p31:ngrad ; k gradient off

d2
d5
p2 ph2
d2

400 p31:ngrad ; k gradient on
dO ; fourth k pulse delta
lo to 400 times 10 ; shaped pulse loop
p31:ngrad ; k gradient off

d2 ; stabilization delay
d5 ; delay for big DELTA
d6

;ACQUIRE
5u ph3 adc
aq
rcyc=10 phO
30m wr #0 if #0 zd
lo to 10 times tdl ; number of k-scans
30m rf #0

ipO ; phase cycle
ipO
ipl
ipl
lo to 10 times 12 ; number of signal averaging scans
exit

phO = 0 ; initial phase of receiver
phl = 0 ; initial phase of pulse 1
ph2 = 1 ; initial phase of pulse 2
ph3 = 0 ; initial phase of pulse 3
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PGSE SPECTROMETER GRADIENT PROGRAM

In the gradient program, a half-period sine wave is divided into 1,000 intervals and used

in order to generate the gradient shape file that is partially shown below. Only eleven of the

increment lines are shown in order to save space. The combination of multipliers, cnstX, allow

the operator to change the gradient minimum, maximum for each gradient (x, y, and z) according

to the following table:

Axis %Gmin %Gma x

x cnst 1

y cnstl2

z cnstl3

cnst14

cnstl5

cnst 16

CnstO is + 1 depending on if the operator wants the k-scans to start with a maximum gradient (-1)

or minimum gradient (+ 1). Before the first "I", the calculation gives the spectrometer the correct

middle (mean) x-gradient value to use followed by the x-gradient required to move from

maximum-to-middle and minimum-to-middle (the A from the mean). Before the second "I" is

they-gradient calculation and before the "I" is the z-gradient calculation. Each complete "{}" set

is a new line for the next shaped pulse increment. For all of the experiments performed here, all

x- and y- constants were set to zero and cnst0 was left at -1.

loop tdl <2D>
{

(0.0000*(cnst14+cnstll)/2), r2d(0.0000*cnst0*(cnst14-cnstll)/2)
(0.0000*(cnst15+cnstl2)/2),
(0.0000*(cnst16+cnst13)/2),

{(0.0126*(cnst14+cnstll)
(0.0126*(cnst15+cnst12)/2),
(0.0126*(cnst16+cnst13)/2),

(0.0251*(cnst14+cnstll)
(0.0251*(cnstl5+cnst12)/2),
(0.0251*(cnstl6+cnst13)/2),

{(0.0377*(cnst14+cnstll)
(0.0377*(cnst15+cnstl2)/2),
(0.0377*(cnst16+cnstl3)/2),

((0.0502*(cnst14+cnstll)
(0.0502*(cnst15+cnst12)/2),
(0.0502*(cnst16+cnst13)/2),

{(0.0628*(cnst14+cnstll)
(0.0628*(cnst15+cnst12)/2),

r2d(0.0000*cnst0*(cnstl5-cnstl2)/2)
r2d(0.0000*cnst0*(cnstl6-cnstl3)/2)}

/2), r2d(0.0126*cnst0*(cnstl4-cnstll)/2)
r2d(0.0126*cnstO*(cnstl5-cnstl2)/2)
r2d(0.0126*cnst0*(cnstl6-cnstl3)/2)1

/2), r2d(0.0251*cnst0*(cnstl4-cnstll)/2)
r2d(0.0251*cnst0* (cnstl5-cnstl2)/2)
r2d(0.0251*cnst0*(cnst16-cnst13)/2)}
/2), r2d(0.0377*cnst0*(cnstl4-cnstll)/2)
r2d(0.0377*cnst0*(cnstl5-cnstl2)/2)
r2d(0.0377*cnstO*(cnstl6-c1nstl3)/2)
/2), r2d(0.0502*cnst0*(cnstl4-cnstll)/2)
r2d(0.0502*cnst0*(cnstl5-cnstl2)/2)
r2d(0.0502*cnst0*(cnst16-cnst13)/2) }
/2), r2d(0.0628*cnst0*(cnstl4-cnstll)/2)
r2d(0.0628*cnst0*(cnstl5-cnstl2)/2)

(0.0628*(cnst16+cnst13)/2), r2d(0.0628*cnst0*(cnst16-cnst13)/2)}
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{(0.0753*(cnstl4+cnstll)/2), r2d(0.0753*cnst0*(cnstl4-cnstll)/2)
(0.0753*(cnst15+cnstl2)/2), r2d(0.0753*cnstO*(cnst15-cnst12)/2) I
(0.0753*(cnstl6+cnstl3)/2), r2d(0.0753*cnstO*(cnst6cnst6-nst13)/2) }

{(0.0879*(cnstl4+cnstll)/2), r2d(0.0879*cnstO*(cnstl4-cnstll)/2)
(0.0879*(cnstl5+cnstl2)/2), r2d(0.0879*cnstO*(cnstl5-cnst12)/2) I
(0.0879*(cnstl6+cnstl3)/2), r2d(O.0879*cnstO*(cnst6cns6-cnst3)/2)

{ (0.0251*(cnstl4+cnstll)/2), r2d(0.0251*cnstO*(cnstl4-cnstll)/2)
(0.0251*(cnst15+cnstl2)/2), r2d(0.0251*cnstO*(cnstl5-cnst12)/2)
(0.0251*(cnstl6+cnstl3)/2), r2d(0.0251*cnstO*(cnst16-cnst13)/2) 

{(0.0126*(cnstl4+cnstll)/2), r2d(0.0126*cnstO*(cnstl4-cnstll)/2)
(0.0126*(cnst15+cnstl2)/2), r2d(0.0126*cnstO*(cnst15-cnst12)/2) I
(0.0126*(cnstl6+cnstl3)/2), r2d(0.0126*cnst0*(cnst16-cnst13)/2) 

{(0.0000*(cnstl4+cnstll)/2), r2d(0.0000*cnstO*(cnstl4-cnstll)/2)
(0.0000*(cnst15+cnstl2)/2), r2d(0.0000*cnstO*(cnst15-cnst12)/2) I
(0.0000*(cnstl6+cnstl3)/2), r2d(0.0000*cnst0*(cnst16-cnst13)/2) 

}
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