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Abstract

In this thesis, I detail the design and control of a linear long stroke fast tool servo
(FTS) with integral balance mass. The long stroke fast tool servo consists of an air
bearing stage driven by a unique three phase oil cooled linear motor. The linear FTS
has a travel range of 25 mm and is capable of 100 m/s? accelerations. The FTS is
mounted to a T-base diamond turning machine (DTM). The FTS is attached to a
hydrostatic bearing supported in-feed stage which is driven by a second linear motor.
The in-feed stage is allowed to move in response to the FTS actuation forces and thus
acts as an integral balance mass.

We have developed a unique control structure to control the position of both the
FTS and the reaction mass. The FTS controller employs a conventional lead-lag
inner loop, an adaptive feedforward cancelation (AFC) outer loop, and command
pre-shifting. For the FTS controller, the AFC resonators are placed in the forward
path which creates infinite gain at the resonator frequency. The controller for the
hydrostatic stage consists of a conventional lead-lag control inner-loop and a base
acceleration feedback controller. The acceleration feedback controller consists of a
high-pass filter, a double integrator for phase compensation, and an array of AFC
resonators. For the base acceleration controller, the AFC resonators are placed in
the feedback path and thus act as narrow-frequency notch filters. The notch filters
allow the hydrostatic stage/balance mass to move freely at the commanded trajectory
harmonics thus attenuating the forces introduced into the DTM. The AFC control
loops are designed using a new loop shaping perspective for AFC control.

In this thesis, we present two extensions to AFC control. The first extension
called Oscillator Amplitude Control (OAC) is used to approximate the convergence
characteristics of an AFC controller. The second extension termed Amplitude Mod-
ulated Adaptive Feedforward Cancelation (AMAFC) is designed to exactly cancel
disturbances with a time varying amplitude.

Thesis Supervisor: David L. Trumper
Title: Professor of Mechanical Engineering
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Chapter 1

Introduction

1.1 Background

This thesis describes the design, development, and control of a unique long stroke fast
tool servo with integral balance mass. This project started for me in August 1999,
when | joined Joseph Calzaretta in his efforts to optimize and improve the rotary
fast tool servo equipped diamond turning machine developed by Stephen Ludwick for
turning asymmetric spectacle lenses. From August 1999 to June 2000, we conducted
a large number of cutting studies aimed at producing a lens that would be ready for
coating with no additional fining required. The summer of 2000, I worked to develop
an on-machine fining station that would lightly polish a cut lens so that all the
required machining operations could be incorporated in a single machine. From June
2000 to December 2000, I worked on designs for a second generation rotary fast tool
servo. In late 2000, Prof. Trumper purchased a Moore Nanotechnologies Nanotech
350 machine base to be the machining platform for all of his diamond turning research.
The machine arrived early in 2001, at which point I spent the spring and summer of
2001 constructing and testing the machine wiring harness, dSpace instrumentation
interface box, and establishing basic control of the machine spindle and slideways.
During this time, we made the decision to switch to a linear fast tool servo design. In
late 2001, we began to work in earnest on our loop shaping approach for controllers

with Adaptive Feedforward Cancelation. From Sept. 2001 to May 2002, I worked
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Figure 1-1: Schematic of the linear long stroke fast tool servo.

on the development of a unique liquid cooled voice coil motor design to actuate our
proposed linear fast tool servo. In May 2002, the decision was made to progress with
a less aggressive FST design that could be constructed using off the self components.
During the summer of 2002, a prototype linear FST was designed and constructed
using existing components. From Sept. 2002 to August 2003, I worked with Joseph
Cattell to test our loop shaping techniques for tuning AFC resonator and develop an
oscillator amplitude control perspective of AFC control. Sept. 2003 to May 2004 saw
the redesign of our prototype linear fast tool servo. Construction of the redesigned
FTS occurred from May 2004 through July 2004. The encoder serial interface was
developed in August and September 2004. Basic control of the FTS and reaction
mass stage occurred in October 2004. Feedforward and AFC control were applied to
the FTS in Nov. 2004. December 2004 saw the implementation of base acceleration
feedback on the reaction mass. Testing of AMAFC control occurred in Jan 2005.

Thesis preparation occurred from Jan. 2005 through April 2005.

1.2 Thesis Overview

In this section, we will provide a brief overview the key work and contributions in

this thesis.
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Figure 1-2: Rear view photo the prototype linear fast tool servo mounted on the
Moore Nanotechnologies machine base.

1.2.1 Linear Long Stroke Fast Tool Servo with Integrated

Balance Mass

Our linear long stroke fast tool servo (FTS) is specifically designed to produce asym-
metric optics. The innovative portion of our design is the use of an integral balance
mass to attenuate reaction force in the machine base. The prototype FTS, shown in
schematic in Figure 1-1 and in a photo in Figure 1-2, consists of a 2”x2" air bearing
stage actuated by an oil cooled linear motor designed and built by Michael Liebman
[46]. The fast tool servo has 25 mm travel and is capable of 100 m/s* accelerations.
The FTS is mounted on the in-feed axis of a T-base diamond turning machine (D'TM).
The in-feed axis of the DTM is allowed to move in response to the FTS actuation
forces, thus reducing the reaction forces in the base. The in-feed axis consists of a
hydrostatic stage actuated by a conventional linear motor. The T-based diamond
turning machine is completed by a second linear motor driven hydrostatic stage car-
rying an air bearing spindle. Position feedback is provided by glass-scale encoders on
all of the linear axis and an incremental encoder on the spindle. Since the position
of the FTS tooltip is a function of both the measured FTS position and the reaction

mass position, it is critical to accurately control both the FTS and the reaction mass.

35



9¢

"SSRUI Q0UB[B( [BISOIUL )M OAIOS

1009 3se] 8d£)0301d INO 10] 9INIONIYS [OIJUOD [[BISAO B} Jo ureIderp yoorg :¢-1 anS8i

Zss(z)

_FTS Controller

r—————— - — === = =7
Feedforward Filter |
A
| = P'1(an) Disturbance Forces
| n=1,..N W(s) |
| — |
Zsinusoid(2) -® =@]—-{? ®—+ |- Gole)r zests) |
-A = -
| : : e |
. Pfis(z) Conventional |
Feedforward| M | Inner Loop y
Filter Mp | @) @ |
| |C(z) Repetitive Control p |
A ~ S [
~Z)
r-———— - - - - - - 7 = - - - — - — — 09— - 71
i
| 2= 0 =@+ G(z)}—-l——[ c1(z)}-—(z? ® D+ Gple)+— Zstage(s)
| Acceleration | | 5 ! : wa l
| Controller 18 . Pstage(2z) Conventional |
| Inner Loop |
®
| - |
| C(z) Repetitive Control @- 1 ) |
- Mb | Machine Base
High Pass ;
| Fiter Acceleration |
|___._______________Ai(s)______J

Hydrostatic Stage Controller



1.2.2 Fast tool Servo/Reaction Mass control

We have developed a unique control structure to control the position of both the FTS
and the reaction mass. Figure 1-3 shows a block diagram of the overall FTS/reaction
mass control structure. The FTS controller employs a conventional lead-lag inner
loop, an adaptive feedforward cancelation (AFC) outer loop, and command pre-
shifting. The FTS controller is coupled to the hydrostatic stage controller through
the mixing of the measured positions. For the FTS controller, the AFC resonators are
place in the forward path which creates infinite gain, thus perfect command follow-
ing, at the resonator frequency (note: most asymmetric shapes can be described by a
summation of sinusoids and thus the FTS trajectory becomes a function of the har-
monics of the DTM spindle speed). The controller for the hydrostatic stage consists
of a conventional lead-lag position control inner-loop and a base acceleration feedback
controller. The acceleration feedback controller consists of a high-pass filter, a double
integrator for phase compensation, and an array of AFC resonators. For the base
acceleration controller, the AFC resonators are place in the feedback path for the
position controller and thus act as narrow frequency notch filters. The hydrostatic
stage is disturbed by the F'T'S actuation forces. The notch filters allow the hydrostatic
stage/balance mass to move freely at the commanded trajectory harmonics thus at-
tenuating the forces introduced into the DTM. The conventional lead-lag controllers
are tuned using classical loop shaping techniques, while the AFC control loops are

designed using our new loop shaping perspective for AFC control.

1.2.3 Adaptive Feedforward Cancelation from a Loop Shap-

ing Perspective

Figure 1-4 shows the canonical form of an AFC resonator in continuous time. This

structure is equivalent to the following linear time invariant (LTI) transfer function:

8COS Py, + Wy, SIN Py,
s? +w? '

= Cn(s) = gn (L.1)
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Figure 1-4: Resonator structure which forms the core of the AFC controller.

This transfer function places a single zero along the real axis and a pair of poles
directly on the imaginary axis of the complex plane. With the poles directly on the
imaginary axis, this transfer function has infinite magnitude and an instantaneous
—180° phase drop when w = w,. From a loop shaping perspective, the phase margin
of any system including an AFC resonator is maximized when the —180° phase drop

is centered on 0°. This is accomplished when

¢n = LP(jwy) (1.2)

where P(s) is the transfer function of all other elements in the system loop transmis-
sion. The controller gain can similarly be selected from a loop shaping perspective by
ensuring that the magnitude of the loop transmission is kept below 1 (0 dB) between
the AFC resonant peaks. We extend this direct approach to systems with multiple
AFC resonators. In this thesis, we will present a comprehensive summary of our loop
shaping perspective. There are two weakness of this approach. First, this analysis
does not predict how long it takes an AFC compensated system to cancel a distur-
bance. Second, this AFC structure cannot completely cancel out disturbances with a

time varying component.
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Figure 1-5: Simplification of the closed-loop block diagram for the sine channel of

the single resonator AFC system. The reference signal r,(t) has been removed from
frames A-D for simplicity.
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Figure 1-6: Block diagram of an AMAFC resonator plus disturbance subsystem.

1.2.4 OAC approximation and AMAFC control

In order to determine the convergence characteristics of an AFC resonator, we apply a
classic oscillator stabilization technique called Oscillator Amplitude Control (OAC).
Following up on the thesis work of Joseph Cattell [15], we can view an AFC resonator
as a control structure which detects the amplitude component of a disturbance at the
frequency w,. Once the amplitude is estimated, the AFC resonator produces a signal
to exactly cancel the disturbance. This makes an AFC resonator, an oscillator with a
control amplitude output. To determine, the stability and convergence characteristics
of the amplitude controller, we approximate that the sine and cosine channels are
independent and reduce the AFC system block diagram as shown in Figure 1-5. This

simplified system has an amplitude convergence time constant of

_ 2
gi| P(jws)|

T sec. (1.3)
The OAC approximation shows how important the proper selection of g; can be on
systermn performance.

While an AFC controller can exactly cancel out a disturbance with a constant
amplitude, it will always have some residual error if the amplitude of the distur-
bance varies with time (note: this error is very small if the magnitude varies slowly).
We have applied the Internal Model Principle (IMP) to develop an extension of
AFC control which we call Amplitude Modulated Adaptive Feedforward Cancela-
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Figure 1-7: Experimental conventional fast tool servo frequency response. The dashed
line indicates the predicted response.

tion (AMAFC). For AMAFC control, we make the assumption that we have some
knowledge about the time varying characteristics of the disturbance signal. If the
magnitude of the disturbance has the form A(t), we can build this knowledge into
our AFC resonator structure as an estimate fl(t). This is shown in Figure 1-6. If

A(t) = A(t), the AMAFC controller will completely cancel the disturbance.

1.2.5 Overview of Results

Our prototype fast tool servo achieves an exceptional closed-loop bandwidth of 540
Hz (this is twice the bandwidth of comparable long stroke FTS systems). The FTS
bandwidth is limited by the first structural resonance at 1600 Hz and the two unit
delay associated with the position measurement. Figure 1-7 shows the measured and
predicted closed-loop frequency response.

Using just the conventional inner loop controller, the FTS has a maximum fol-
lowing error of 42%. The introduction of command pre-shifting and AFC control

greatly reduce the following error by incorporating knowledge of the plant frequency
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Figure 1-8: Measured fast tool servo following error to a single 50 Hz 0.4 mm pk-pk
position command under conventional control, conventional control with command
pre-shifting, AFC control, and AFC control with pre-shifting.

Fast Tool Servo Trajectory

T T T T
1
E os
§ o
8 os
A
. N . N . )
0 0.05 0.1 0.15 02 0.25 03
Times 10’
onventional AFC
0.01 G 1
E €
E S
§ ¢ 50
fiv] w
-0.01 A
0 0.1 0.2 0.3
x10°
4 nventional+Pre-shift
g ? £
E E
W, w
-4
0 0.1 0.2 03 0 0.1 0.2 0.3
Time s Time s

Figure 1-9: Measured fast tool servo following error to a single 20 Hz position com-
mand with 3 Hz modulation under conventional control, conventional control with
command pre-shifting, AFC control, and AMAFC control.
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Figure 1-10: Measured base acceleration with no feedback, feedforward, and single
resonator AFC control. The fast tool servo trajectory is a single harmonic 12 Hz 6
mm pk-pk sinusoid.

response and information from previous passes to correct the trajectory input to the
conventional inner loop. Figure 1-8 shows the measured FTS following error to a
50 Hz 0.4 mm peak-to-peak sinusoidal trajectory. Command pre-shifting reduces the
peak-to-peak following error from 103 um to 31 pm. The introduction of AFC control
further reduces the following error to 1.7 pm pk-pk. Similarly the rms following error
for conventional control, command pre-shifting, and AFC control is 14.4 ym, 4 pm,
and 0.25 pm respectively. Our proposed AMAFC controller was less successful than
anticipated offering only a small reduction in the overall following error. Figure 1-9
shows the measured following error to 20 Hz trajectory with a 3 Hz amplitude mod-
ulation. The FTS has a peak-to-peak following error of 15.2 pm under conventional

control, 3 um under AFC control, and 2.1 ym under AMAFC control.

The integral balance mass successfully reduced the disturbance forces introduced
into the DTM base. Figure 1-10 shows the measured DTM base acceleration with
no feedback, feedforward control, and AFC control. The fast tool servo trajectory

is a single harmonic 12 Hz 6 mm pk-pk sinusoid with a peak acceleration of 1.72 g.
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The peak-to-peak base acceleration is 0.072 m/s? without acceleration feedback, 0.025
m/s? with feedforward control, and 0.015 m/s? with AFC control. More importantly
the acceleration component at 12 Hz is 0.028 m/s? pk-pk without feedback, 0.0049
m/s? with feedforward control, and 0.000327 m/s? with AFC control. Thus the use
of a balance mass has reduced the base reaction force introduced by the FTS at the

commanded frequency by a factor of approximately 100.

1.3 Thesis Contributions

The primary contributions of this thesis are:
e The development of a long stroke fast tool servo with integral balance mass.

e The development of a unique control structure combining the fast tool servo

position control, balance mass position control, and base acceleration feedback.

o The development of a novel loop shaping perspective for tuning control systems

with multiple adaptive feedforward cancelation resonators.

e The application and demonstration of our loop shaping perspective for tuning
adaptive feedforward cancelation control systems to both the fast tool servo

position control and base acceleration feedback.

e Correctly applying the oscillator amplitude control perspective to both chan-
nels of an adaptive feedforward cancelation resonator and demonstrating the

limitations ot this approach.

e The development of an extension to adaptive feedforward cancelation called am-
plitude modulated adaptive feedforward cancelation meant to improve tracking

performance for sinusoidal trajectories with time varying amplitude.

e The application and demonstration of amplitude modulated adaptive feedfor-

ward cancelation.

44



1.4 Thesis Organization
The chapters in this thesis are organized as follows:

e Chapter 1 contains the background of this thesis, an overview of the thesis
contents and results, and reviews the design of existing fast tool servos and

related actuators.

e Chapter 2 reviews our fast tool servo design process and contains a detailed

description of our prototype fast tool servo.

o Chapter 3 describes and reviews the control structures used to control fast tool

servos and reject periodic disturbance forces.

e Chapter 4 is a detailed presentation of our loop shaping perspective for tuning
controllers with AFC control. Chapter 4 also presents our proposed AMAFC

control structure.

e Chapter 5 includes a detailed analysis of AFC control from an oscillator ampli-

tude control perspective.

e Chapter 6 describes the application of the developed control theory to the pro-

totype diamond turning machine.

e Chapter 7 validates the performance of the developed control theory by exper-

imental results.

e Chapter 8 concludes this thesis with a summary of our results and suggestions

for further work.

1.5 Asymmetric Turning

There are a wide array of products which require the precision production of asym-
metric parts. These products include pistons, cylinder bores, crank shafts, engine

camshafts, and most relevant for this project, the production of asymmetric optics.
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Figure 1-11: Typical toric spectacle lens.

Figure 1-11 shows the shape of a typical toric lens used to correct astigmatism. In
general, these parts are either cast/molded directly to form (formed parts may require
some fining operations) or machined into the desired shape using a combination of

turning, grinding, and polishing.

In the case of spectacle lenses (the original motivation for this project), the tradi-
tional fabrication method for an asymmetric lens was to rough (typically in a grinding
operation) the asymmetric shape into a rough shaped lens blank and then progres-
sively polish the lens to the desired finish using a hard lap formed to the desired asym-
metric shape. This lens forming method has several production drawbacks. First, to
produce only the most commonly required asymmetric optics, the production facility
must have a dedicated tooling library of several hundred hard laps. Second, the pol-
ishing process is a multi-stage, time intensive process. Lastly, the polishing process
inevitably produces a lens with some form error, the magnitude of the error growing
with the size of the lens asymmetry. These production drawbacks have driven the
optical industry to explore alternate methods to form the asymmetric lens directly

with the ultimate goal of completely eliminating the polishing process.
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Figure 1-12: Diagram of LOH Optical Machinery, Inc. computer controlled lens
surfacer from U.S. Patent 5,231,587.

A general shift occurred in the consumer optics industry with the introduction of a
new machine by LOH Optical Machinery, Inc [48]. A diagram of the machine concept
from U.S. Patent 5,231,587 is shown in Figure 1-12. This machine incorporates a tool
carriage with a rapidly revolving tool (10,000+ rpm), a spindle which slowly revolves
(~ 60 rpm) the workpiece, and a machine carriage capable of moving the tool in
three dimensions relative to the workpiece. This machine, commercially available as
the LOH V75 with improved tool geometry, was the first machine capable of directly
producing lenses ready for coating at a commercially viable rate. The LOH V75 is
capable of producing lenses with up to 10 mm of asymmetry at a nominal production
rate of 60 lens/hr. A similar machine configuration is used in the Gerber-Coburn
SGX family of surface generators [32]. While the SGX family of machines quickly
piroduces goud qualily tough lenses, tiese ieuses are 0ot ready Ior coating and thus
require a small amount of polishing. To eliminate the need for a library of hard laps,

Gerber-Coburn produce disposable polystyrene laps in parallel with the rough lens.

The machines from LOH Optical Machinery, Inc. and Gerber-Coburn Inc. are
optimized for the spectacle industry and cannot produce parts of the shape and quality
desired by other branches of the optical industry. The most common method used to

generate complex optical shapes is to diamond turn the optics on an FTS-equipped
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diamond turning machine.

1.5.1 Fast tool servos

There are two main reasons to implement an FTS on a diamond turning machine.
The first is to cancel out repetitive errors that are introduced into a part during the
machining process (potential sources of error are external disturbances, resonances in
the turning machine structure, spindle/part imbalance, or bearing noise). The second
main reason to use an FTS on a diamond turning machine is to machine complex

geometries into a workpiece. We categorize F'TS for this purpose into three categories:
1. Short stroke (displacements less than 100 pm)
2. Intermediate Stroke (displacements between 100 pm and 1 mm)
3. Long stoke (displacement greater than 1 mm).

Table 1.1 list the associated organization, actuator type, displacement and bandwidth
for a number of error cancellation, short stroke, intermediate stroke, and long stroke
FTSs. As a general rule, FTSs trade displacement for bandwidth.

Short Stroke Fast Tool Servos
As we can see from Table 1.1, the short stroke fast tool servo category is dominated
by piezoelectric driven fast tool servos. There are a number of reasons for this.
First, piezoelectric stacks offer high stiffness, high bandwidth, high acceleration and
nanometer resolution position control. Secondly since, good piezoelectric stacks are
available commercially, researchers can focus their efforts on the mechanical design
of the FTS, the FTS controller strategy, and the trajectory generation as opposed to
specialized actuator design. Typically for piezoelectric FTS, a capacitance gauge is
used to measure tool displacement. Most piezoelectric FTS use flexure bearings.

Figure 1-13 shows a number of common configurations for piezoelectric fast tool
servos. In Figure 1-13-A, we see a configuration (adapted from [69]) where the piezo-
electric axis and the FTS axis are parallel but not collinear. This configuration has

the advantage that capacitance sensor may easily be placed collinear with the FT'S
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Figure 1-13: Typical configurations for piezoelectric fast tool servos. A adapted from
[69], B adapted from [102], and C adapted from [74]
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Error Cancellation

rganization/Name Actuator Stroke {(pm) | Bandwidth | Ref.

awrence Livermore Lab., LODTM Piezo 1.27 100 Hz [23]]72]
Georgia Tech. Piezo 60 350 Hz [20]
University of British Columbia Piezo 40 N/A 1104]

Short Stroke

Hitachi Piezo 20 N/A 65
Agency of Industrial Science and Technol- Piezo 5 200 69
ogy, Japan

orth Carolina State Piezo 20 2 kHz 24
Fraunhofer-Tustitute, FTS 1 Piezo 35 950 Hz 98
Fraunhofer-Institute, FTS 2 Piezo 30 1.5-2 kHz 98

niversity of lllinois Urbana-Champaign Piezo 50 200 Hz 74
University of Illinois Chicago, 3D Stage Piezo 3.5x3 200 Hz x3 86

“M.LT., Short stroke Rotary FTS Lorentz 50 2 kHz 60
M.IT., Electomagnetic F15 Var. Reluct. 50 10 kHz [61],[52
University of British Columbia Piezo 38 200 Hz 1102]
nt. for Adv. Engineering, So. Korea Piezo 7.5 100 Hz [42]
Intermediate dtroke
North Carolina State, Raleigh, MAC-T00 Piezo 100 100 Hz 121],125]
' Kinetic Ceramics, Precision Lathe PZT Piezo 100 1 kHz 143]

Stantord University, hydraulic F'TS hydraulic 180 3 kHz 93{,194

orth Carolina State, Raleigh magnetic servo 240/1000 10/300 Hz 361,|87

Long Stroke

niversity of lllinois Urbana-Champaign VCM 6.5 mm (min.) 7 Hz 175],17]

niversity of lllinois Urbana-Champaign Hydraulic 50 mm (min.) 100 Hz 95

niversity of Illinois Urbana-Champaign | Electro-hydraulic | 10 mm (min.) 100 Hz 41
Fraunhofer-Institute, Hybrid F'I'S Piezo & Linear 2 mm 85 Hz 1100]
Gerber-Coburn, Lensmaker XRT Servo 25 mm 50 Hz 32

I1.T., Rotary FTS Servo 25 mm 230 Hz 54
‘raunhofer-Institute, Aerostatic FTS Linear 16 mm 240 Hz 199],798]

Table 1.1: Table of error cancellation, short stroke, and intermediate FTS.

tool tip but offsetting the piezoelectric stack results in some internal torques. An
additional advantage of this structure is with proper placement of the piezo stack,
the designer can amplify or reduce the displacement of the piezo stack. Figure 1-13-B
shows a configuration where the tool tip, capacitance sensor, and piezoelectric actu-
ator are all collinear (adapted from {102]). The advantage of this structure is that
is minimizes the internal torques and places the capacitance gauge behind the tool
tip in most designs but properly fixturing the capacitance gauge can be a challenge.
Figure 1-13-C shows a configuration where the piezoelectric stack and tool tip are
neither collinear nor parallel (adapted from [74]. This type of structure is typically
used when space in the direction of the tool tip motion is limited (boring bars for
example). The capacitance gauge may be placed either inline with the tool tip or the
piezoelectric stack. This structure has the disadvantage that the tool tip has a rotary

motion. Since by definition these are short stroke FTS, the lateral component of the
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motion is ignored.

Two of the more innovative short stroke fast tool servo designs have been developed
here at M.L.T. in the Precision Motion Control Laboratory. Figure 1-14 shows Richard
Montesanti’s short stroke rotary fast tool servo [61], [60], and [62]. The fast tool servo
axis is guided by eight over-constrained flexure, four above the tool and four below.
Items 106 and 108 in Figure 1-15 are two of the eight over-constrained flexures. The
rotary axis is driven by a commercially available moving magnet Lorentz actuator
(256 Figure 1-14). The FTS position is measured using two capacitance gauges (280
Figure 1-14). This FTS has a full stroke of 50 yum and a bandwidth of 2 kHz. The
performance of this FTS is limited by the first torsional resonance of the tool axis,
the same resonance which limited the performance of Stephen Ludwick’s long stroke
rotary fast tool servo [54] discussed later.

One of the limitations of piezoelectric actuators is that when they undergo defor-
mation there are significant mechanical and electrical hysteresis losses which heat the
actuator. In high bandwidth applications this is a significant issue. In addition to
stack heating, piezoelectric FTS are limited by the structural resonance of the piezo-
electric stack. To avoid these issues Xiaodong Lu designed a high bandwith linear
short stroke FTS which is driven by a normal-stress variable reluctance actuator [51]
and [52]. Figure 1-16 shows a schematic of this FTS. This FTS has a 50 pum stroke up
to 1 kHz and a closed loop -3 dB bandwidth of 10 kHz. The maximum acceleration
is 160 g’s measured at 3 kHz.

Intermediate Stroke Fast Tool Servos
Intermediate stroke fast tool servos are essentially transition designs. In the case of
the piezoelectric fast tool servos, one from North Carolina State [21], [25] and one
from Kinetic Ceramics [43], the FTS designs are essentially short stroke fast tool
servos pushed to their size limits. The MAC-100 is a linear design of the style shown
in Figure 1-13-B, with a large piezoelectric stack. The MAC-100 design uses a single
O-ring for the FTS bearing. The Precision Lathe PZT [43] uses a design of the form
shown in Figure 1-13-C. The Precision Lathe PZT mechanism is designed such that

the tool tip travel is greater than the piezoelectric stack displacement.
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Figure 1-14: High bandwidth short stroke rotary fast tool servo with lorenz actuator
(from U.S. Patent application #20040035266 [62]).
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Figure 1-15: Tool axis for the high bandwidth short stroke rotary fast tool servo with
Lorentz actuator (from U.S. Patent application #20040035266 [62]).
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Figure 1-16: Schematic of a short stroke variable reluctance fast tool servo (adapted
from [51] and [52]).
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Figure 1-17: Schematic of intermediate stroke hydraulic fast tool servo (adapted from
[94]).

Figure 1-17 shows a schematic of the Stanford hydraulic FTS. As we can see, this
fast tool servo is of the same style as Figure 1-13-A, where the piezoelectric actuator
has been replaced by a hydraulic diaphragm and the short range capacitance gauge has
been replace with a Linear Variable Differential Transformer (LVDT). This actuator
has a 180 pm stroke with a quoted bandwidth of 3 kHz but since the LDVT is quoted
to have a bandwidth of 100 Hz this seems unlikely [94] and [93].

The magnetically levitated fast tool servo from North Carolina State is driven by
a total of four E-coil solenoids in a push-pull configuration. The FTS is supported
by a pair of flexures. Position feedback is accomplished using a heterodyne laser
interferometer. It is unclear exactly what the travel and bandwidth of the fast tool
servo are. In a brief paper in Precision Engineering [87], the travel and bandwidth
are quoted to be 1 mm and 300 Hz respectively. In [36], the travel and bandwidth
are stated to be 240 um and 10 Hz although it appears that the travel limitation is
due to the linearized model used in the FTS control loop. Lastly, while [35] does not
provide travel data, it claims a fast tool servo bandwidth of 2.5 kHz.

Long Stroke Fast Tool Servos
For the purposes of this research, the FTS in the long stroke category are of the

54



Servo

Valve
Cutter / \
—
Tool Slide [ | —ILDVT
[@] 0
Hydraulic
Cylinder

Figure 1-18: Schematic of a long stroke hydraulic fast tool servo (adapted from [95]).

most interest. There is limited data available for the two hydraulic FTS from the
University of Illinois. Figure 1-18 shows a schematic of the 50 mm, 100 Hz hydraulic
fast tool servo [95]. This is linear fast tool servo design with the tool axis running
on roller bearings with a hydraulic actuator. Position feedback is accomplished using
an LDVT. It is unclear if the second hydraulic fast tool servo is a different actuator
or not, since no design details are provided in the cited reference [41]. No mention
is made of reaction force management for either of these FTS which might explain
the relatively large tracking error of 26 um max and 6.8 um RMS despite the use of

feedforward and repetitive control.

More details are available for the two long stroke fast tool servos from the Fraunhofer-
Institute. The Fraunhofer hybrid FTS combines a short stroke piezoelectric actuator
(40 pm/1000 Hz) with a long stroke linear motor (2 mm/40 Hz). The piezoelectric
actuator has a maximum force of 2400 N, a stiffness of 50 N/um and a resonance
frequency with a loaded mass close to 2000 Hz. The long stroke actuator consists of
three moving magnet linear motors connected in series. The moving mass guides are
parallel springs (flexures). The linear motor has a peak force of 900 N. The total tool
movement is measured using a laser interferometer. The position of the short stroke
piezoelectric actuator is monitored using a capacitance gauge. The speed of the linear
motor is measured using a linear velocity transducer. Both the piezoelectric actuator
and linear motor coils are water cooled. This is the first fast tool servo design which

directly addresses the need to manage the fast tool servo reaction forces. In this fast
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tool servo, the linear motor coils are also mounted on springs and allowed to move
in reaction to the FTS actuation forces. This strategy was only partially successful
since the 68 Hz resonance of the motor coil/spring system cannot be attenuated us-
ing closed loop control which resulted in a significant resonant peak at 68 Hz for any
control loop with a bandwidth greater than 50 Hz (loops were closed as high as 84
Hz) [100].

The second long stroke fast tool servo from the Fraunhofer Institute has 16 mm
of travel and a closed loop bandwidth of 100 Hz. The FTS is driven by a linear
motor with two stationary coils and two moving magnets. The linear motor has a
significant non-linear force constant dependent on the position of the magnets. The
moving components are mounted on a synthetic fiber carriage. The FTS is supported
by a 12 pad air bearing. The bearing surfaces on the moving mass are nickel coated
aluminium bonded to the synthetic fiber frame. For position feedback, Weck tested
two different linear scales supplied by Heidenhain. The first was the LIP 382 with a
signal period of 128 nm and a resolution of 0.13 nm and a maximum speed of 0.06
m/s. With the LIP 382, the FTS displayed 1.4 nm of error but the low maximum
speed limited the dynamic performance. The second linear scale was the LIP 403
with a signal period of 2 pum, a resolution of 2 nm, and a maximum velocity of 0.8
m/s (the desired maximum velocity was 2 m/s). With the LIP 403, the system noise
rises to 10 nm. There is no attempt to manage the reaction forces in the fast tool
servo design but Weck notes that the reaction forces must be attenuated for high
acceleration profiles. Weck proposed that to manage reaction forces one could mount

a second FTS on the machine operating in the opposite direction {99].

Figure 1-19 shows a schematic diagram of the voice coil actuated FTS from the
University of Illinois at Urbana-Champaign. The FTS consist of a moving coil single
phase linear motor directly driving the FTS tool axis. The FTS is supported by a
Rulon-LR bearing and uses a laser position sensor with a resolution of 0.618 um for
position feedback. The voice coil motor is rated at 1670 N peak and 320 N continuous.
The moving mass is 1.5 kg, which result in a maximum FTS acceleration of 100 g’s.

Neither reference for this FTS gives a maximum travel range but the travel is at
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Figure 1-19: Schematic diagram of voice coil driven fast tool servo (adapted from
[75]).
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Figure 1-20: Schematic of the Lensmaker XRT.

least 6.5 mm, the magnitude of the cam trajectory used to generate data. The servo
bandwidth is assumed to be 500 Hz or less based upon the 5 kHz controller sampling
frequency. This FTS has a 100 um pk-pk error following a cam trajectory with a
tool travel of 6.5 mm, a peak acceleration of 9.8 m/s?, and a maximum velocity of
0.6 m/s. No mention is made of compensating for the FTS reaction force. It should
be noted that since the position controller for this FTS contained only proportional
and derivative control, the steady state cutting force (31 N) resulted in a significant

steady state following error [75] and [7].

The Lensmaker XRT, from Gerber-Coburn Optical [32], is a conventional turning
machine equipped with a 25 mm travel 50 Hz bandwidth FTS. Figure 1-20 shows a
simple schematic of the Lensmaker. The F'TS on the Lensmaker is driven by a high-
lead ballscrew and supported by a conventional roller bearing slideway. The Lens-

maker spring mounts the machine frame to allow it to serve as a reaction mass. Thus
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Figure 1-21: Photograph of the rotary fast tool servo.

in operation, the FTS introduces large reaction forces and motions in the machine
base. The Lensmaker XRT is capable of producing small amplitude toric spectacle
lens which require light polishing at a rate of 60 lens/hr, but production rate and part
quality quickly degrade as the amplitude of the asymmetry increases. The Lensmaker
XRT has been replaced by the DTL Generator. The DTL generator incorporates a
1000 Ib granite base and a 6 g tool actuator. Further details of this machine are not

available.

Stephen Ludwick, building on his experience of tuning and testing a Lensmaker
XRT FTS, arrived at the unique solution of managing reaction forces by designing
a rotary long stroke FTS. A picture of the rotary FTS is shown in Figure 1-21 and
Figure 1-22 shows a detailed cross section of the FTS. The lens is mounted on a
Professional Instruments [73] Model 4R Twin Mount air bearing spindle which has
an integrated motor and 10,000 count/rev encoder. The spindle is carried on a New
Way [68] air bearing cross-slide which is driven by a linear motor on the basis of linear

encoder feedback.

In this design, the diamond tool is mounted at the tip of an arm which pivots on

a rotary axis on two sets of angular contact bearings. The rotary axis is driven by an
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Figure 1-22: Schematic of the rotary fast tool servo.

Aerotech [3] model BM1400 brushless servo motor capable of 10 Nm torque in steady
state. This axis is driven on the basis of feedback from a 60 million count/rev MircoE
[59] rotary encoder. By using a balanced rotary arm, motor actuation inputs a pure
torque into the arm structure and thereby creates only a pure reaction torque on
the machine base. Because moment of inertia scales as a function of radius squared
for each increment of mass, the moment of inertia of the machine base is about 10°
larger than the moment of inertia of the servo axis. Further, the plate structure of the
machine base is extremely stiff in shear, and thus experiences little deflection under
the motor reaction torques. This large inertia ratio and machine stiffness means that
base vibrations due to the fast tool servo reaction torques are insignificant. This is a
compelling advantage over linear motion fast tool servos. The design and development

of this rotary FTS is detailed in [54], [16], [55], [53], and [14].

1.6 Other Actuators of Interest

In the course of our literature search, we came across a few actuators and mechanisms
that were not fast tool servos but were of interest to our FTS development. One is a

small voice coil driven linear actuator for disk drive track following [64]. A schematic
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Figure 1-23: Schematic of a linear actuator for disk drive servo track writing (adapted
from [64]).

of this actuator is shown in Figure 1-23. This actuator consist of a traditional orifice
compensated air bearing system made of extra-super duralumin (Al-Zn-Mg-Cu alloy
AT7075) driven by a custom voice coil motor. Two different voice coil motors were
tested. Figure 1-24 shows a schematic cross-section of the two voice coil motors. In
the MC1 version, the moving coil support frame consist an oval shell on which the
coils are wound and a single horizontal rib to which the fixing rod is attached. The
MC1 actuator assembly has a moving mass of 13.72 grams and the entire actuator has
a resonant mode at 6.9 kHz with this coil design. The MC2 version has a coil frame
consisting of an oval shell with ribs in both the horizontal and vertical directions. The
MC2 actuator assembly has a moving mass of 16.44 grams with a resonant mode at
14.4 kHz. The VCM force constant for both coil designs were within 4% of each other.
With a maximum motor thrust of 4 N, the maximum actuator acceleration was 29 g’s
with the MC1 coil and 24 g’s with the MC2 coil. Position feedback was accomplished
with two different sensors. Sensor-A is a MTI-2000 photonic sensor with a resolution
of 17 nm and a working range of 10 pum. Sensor-B is an ATOPS ATP-A30 with a
resolution of 0.8 nm and a working range of 5.12 pm. No information is given for
the total travel range of the actuator but from the design it is clearly greater than
the working ranges of the sensors. With the MC1 coil a bandwidth of 2.2 kHz was
achieved, while with the MC2 coil a bandwidth of 4 kHz was achieved. Tracking error
with this actuator was limited by the sensor resolution [64].

Another actuator of interest is the high speed, long travel, dual voice coil actuator

developed by ASM Assembly Automation Ltd. for the use in wire bonders and die

60



Vertical Rib

Magnet

Horizontal Rib
Back Yoke
MC1

Figure 1-24: Cross section of voice coil motor (adapted from [64]).
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Figure 1-25: Schematic of a dual VCM actuator (adapted from [17]).

bonders [17]. Figure 1-25 shows a schematic of this actuator. The small VCM portion
of this actuator is capable of 5 g accelerations and has an accuracy of 0.5 um. We are
interested in both the mechanical design of this structure and the controller design
for this actuator since the position of our FTS will be the compounded position of
the FTS and reaction mass stage. The designers note that because the position of the
end effector is a function of large and small VCM position that the two controllers are
coupled (Figure 1-26). Specifically, they note that the movement of the large VCM
significantly disturbs the small VCM controller. Unfortunately the reference [17] goes
into very little detail on the actual mechanical design and the actual controller used
to decouple to motion of the two VCM.

Another interesting multiple stage actuator is the the ultra-precision aerostatic
table developed at the Precision and Intelligence Laboratory, Tokyo Institute of Tech-
nology [82]. Figure 1-27 shows a top view schematic of this high speed nanometer
positioning stage and Figure 1-28 shows a cross-section view. This stage consist of
a coarsely positioned linear motor magnet track and a finely positioned aerostatic

stage/linear motor coil assembly. By using a short travel linear motor to actuate the
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Figure 1-26: Schematic of a dual VCM actuator controller (adapted from [17]).

aerostatic table, the designer avoid the force ripple associated with long travel linear
motors. The linear motor magnet track position is actuated by a DC servo motor
driven cable drive. What is of interest in this design is the control architecture. Just
as in our proposed F'T'S system, the position of two coupled system must be accurately
controlled to properly position the stage. Figure 1-29 shows a block diagram of the
control system for the hybrid stage. This structure is quite similar to the structure
we have proposed for our FTS/reaction mass system.

Lastly, we look at a proposal to compensate for the steady state cutting force
noted in [75] and [7]. Figure 1-30 shows a voice coil actuated fast tool servo which
incorporates an auxiliary stepper motor. In this design, the voice coil motor pro-
vides the force to follow the high frequency portion of the FTS trajectory while the
stepper motor provides the low frequency component. The controller for this system
incorporates two loops. First there is a high bandwidth conventional position control
loop arcund the voice coil motor. The stepper motor control loop is a low bandwidth
controller meant to drive the voice coil motor current to zero. In simulation, this

proposed control structure reduces the VCM copper losses by a factor of 10 [45].
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Figure 1-27: Top view schematic of a high speed nanometer positioning stage (adapted
from [82]).
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Figure 1-28: Cross-section of a high speed nanometer positioning stage (adapted from
(82]).
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Figure 1-29: Position control system for the high speed namometer positioning stage

(adapted from [82]).
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Figure 1-30: Schematic of a voice coil fast tool servo with auxiliary stepper motor to
reduce copper losses in the voice coil motor (adapted from [45]).
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1.7 Summary

In this chapter, we have provided a brief background detailing the motivations of this
thesis. We also provided a brief overview of the thesis contents and listed the key
contributions of this thesis. Lastly, we reviewed a number of existing fast tool servo
designs. In the next chapter, we will detail the design and development of our long

stroke linear fast tool servo with integral balance mass.
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Chapter 2

Fast Tool Servo Concept and

Design

In this chapter we review the design and development of our prototype linear long
stroke fast tool servo with integral balance mass. First, we review a proposed second
generation rotary fast tool servo. Second, we review a number of proposed linear fast
tool servo designs. Lastly, we review the design and construction of our long stroke
linear fast tool servo.

The performance goals for our long stroke fast tool servo are
1. A full length travel of 25 mm

2. A maximum acceleration of 500 m/s?

3. An accuracy of £0.1 pm.

These performance requirements are those required to follow a 1 c¢m sinusoidal tra-

jectory at 20 Hz, with sufficient accuracy for ophthalmic lenses.

2.1 Rotary Fast Tool Servo Concept

As part of our design process, we looked at the feasibility of replacing the rotary fast

tool servo designed and built by Stephen Ludwick [54], David Ma [55], and David
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Chargin [16] with an other rotary fast tool servo of a similar configuration which
would allow for higher performance and greater accuracy. There were a number of
issues that limited the performance and utility of the rotary fast tool servo as built.

These include:

1. The 2.5 um radial and axial error specifications of the Barden 206HDL angular
contact ball bearings used to support the tool axis introduced an unknown and

variable error motion at the tool tip.

2. The requirement to re-calibrate all of the tool arm position parameters after

each tool change.

3. The rotational compliance of the drive between the drive motor and the tool

arm.
4. The shaft windup between the tool arm and the rotary encoder.
5. The errors associated with the tool arm calibration process.

The obvious solution to the error caused by the angular contact bearing is to
replace the rolling element bearings with a non-contact fluid-static bearing. The use
of a fluid-static bearing was considered in the initial design process but for simplicity
and robustness angular contact ball bearings were selected [55],[54]. There are two
types of fluid-static bearings: hydrostatic in which the bearing fluid is either water or
oil and aerostatic in which the bearing fluid is air [83]. We considered three different

fluid-static bearings:

1. A traditional orifice compensated air bearing custom fabricated by Precision

Instruments [73].
2. A porous orifice-compensated air bearing from New Way Inc. [68].
3. A self-compensating hydrostatic bearing [97],(84].

A traditional orifice-compensated air bearing consists of a stationary metal cylinder

with orifices equally spaced around the circumference and a moving shaft. The air gap

68



[ i
S0~ Ex = :.:_-.'..“5. g_ E—E =i
mel” /LY Y 8
el T Sty 1 | 1
et ‘ /i H i i o
T T e S
17c-~———-h'-:-/‘r —ﬁ--—ﬁ:;
e[ 11 sEsSEERT vt
Wb %E\
g Srz==sw é
LB _TEES - B

L

80a

// 81a

N

Figure 2-1: Cross-section of a self-compensating hyrdostatic bearing from U.S. patent
#54660171.

between the stationary and moving components is between 1 and 5 pm. In a porous
compensated air bearing, a porous media, such as porous carbon for the New Way
[68] bearings, replaces the stationary metal cylinder. Since the media is porous, this
design effectively replaces the finite number of orifices in a traditional design with an
infinite number of orifices evenly spaced across a bearing surface. Air gaps are again
in the 1 to 5 um range. In general, a properly-designed traditional orifice air bearing
offers better performance than a porous air bearing operating at the same pressure.
This performance advantage comes at the expense of design robustness (porous air
bearings are much more robust to bearing crashes and environmental factors) and

manufacturing cost.

A self-compensating hydro-static bearing, for example the design shown in Fig-
ure 2-1, uses either oil or water as the bearing fluid. The hydro-static bearing offers
extremely high stiffness but has the disadvantage of being a challenge to manufacture
and requires the recovery of the fluid. At the time we elected to switch to a linear
FTS design, the porous air bearing was our leading bearing candidate based upon it

being the ease of manufacture, assembly, and cleanliness.
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There are a number of design issues with the toolholder design on the original
rotary fast tool servo. First the tool arms are clamped to the drive shaft. This
means that when a tool is changed, we need to release the clamp from the shaft to
make the coarse tool height change. The problem here is that when the clamp is
released, we lose calibration for both the toolarm height and angular position. Of
more consequence is that both toolarms are used to form the clamp. Adjusting the
rough tool height of one arm requires the readjustment of both arm positions. Lastly,
the original toolarm design did not incorporate features to aid the coarse positioning
of the toolarm. In the original rotary FTS, toolarm positioning was typically done
by slightly releasing the clamp pressure and then inserting a screwdriver between the
toolarm and the either the top or bottom labyrinth seal. Since the labyrinth seal was
also clamped to the shaft, it was often necessary to disassembly and re-assemble the

seal after making tool height adjustments.

Figure 2-2 shows a side view of the proposed rotary FTS shaft, toolarms, and
coarse height adjustment collar. Figure 2-3 show a top view cross-section of the
same toolarm system. In this proposed tooclarm system, each of the toolarms are
independently bolted directly to a square shaft using 5 #8 bolts. By bolting the
toolarms independently, the height of each arm may be coarsely adjusted separately.
Using a square shaft allows the tool height to be coarsely adjusted without affecting
the angular calibration. Fine tool height adjustment is achieved using the flexure
mechanism designed by David Chargin [16]. Lastly, coarse height adjustments are

made utilizing a removable clamp collar with a screw drive.

One of the main factors limiting the performance and bandwidth of the original
rotary FTS was the compliant mode between the motor inertia and the toolarm/tool
shaft inertia. During the design phase of the first generation rotary FTS, the mo-
tor /shaft /toolarm system was assumed to have a lumped element model consisting
of a motor inertia attached via a rotational spring to lumped inertia representing the
toolarm/shaft subsystem. The stiffness of the spring was assumed to be that of the
FTS shaft from the motor coupling to the center of pressure of the toolarm clamp

(Note: the motor coupling used in the rotary FTS was an order of magnitude stiffer
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Figure 2-2: Side view of the proposed rotary fast tool servo shaft, toolarms, and
coarse height adjustment collar.

Figure 2-3: Top view cross-section of the proposed rotary fast tool servo shaft and
toolarm.
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than the FTS shaft). The lumped model was correct in terms of the elements used
but incorrect in which element provided the limiting system. There are two shafts in
the rotary FTS, one connecting the motor rotor to the coupling and a second from
the coupling to the toolarms. The motor shaft is 0.5 inches in diameter and approxi-
mately 3 inches long. The toolarm shaft is 0.75 inches in diameter and approximately

5 inches long. The equation for the torsional stiffness of a round rod is

_ GrD*
T 32L

(2.1)

where

G = Modulus of Rigidity
D = Shaft diameter

L = Shaft length.

Assuming that both shafts have the same G, the toolarm shaft is 3 times as stiff
as the motor shaft. Since the springs are in series the equivalent spring stiffness is

expressed as

L2 }_1 (2.2)

ko= [+ 1
Thus the combination of the motor shaft and tool-shaft result in an equivalent spring
stiffness 1/4 that of the tool-shaft alone. Thus the use of a frameless motor where the
motor rotor attaches directly to the FTS tool-shaft would significantly improve the
dynamics of the rotary FTS. Since we had planned to increase the shaft diameter to
increase the aerostatic bearing stiffness, the shaft stiffness of a frameless motor design

was projected to be 20 the stiffness of the original rotary FTS.

Figure 2-4 shows a cross-section schematic of our proposed second generation ro-
tary FTS. The tool axis is supported by two radial bearing and axially constrained

by a single thrust plate. The bearings in this drawing are based upon the orifice

72



Optical
Encoder —

Radial Fluid-Static
== Bearing

% %— Toolarm
D NN

........

2 [ SNNNNNNNN
7777 /7777777777

Rough -
. = Radial Fluid-Static
Adjust ZN Beari
7N earing
YT
I~
] Fluid-Static
~ Thrust Bearing
Frameless

N\ - Fluid Filled

\ 7 Cavity
[’, g % 7 _  Hall Effect
Sensor
Viscous | ]
Damper "f ol ol ’ /

Figure 2-4: Cross-section schematic of a proposed rotary fast tool servo with fluid-
static bearings and frameless motor.

DC Motor ===

SN AN BN NN

73



compensated aerostatic bearings from Professional Instruments 73| and from design
discussions with their engineering staff. The FTS has two toolarms to maintain shaft
balance and to accommodate lens roughing and fining (rough cuts are made using a
polycrystalline diamond or cubic boron nitride tool while fine cuts are made using
a single crystal diamond tool). This cross-section is based upon the toolarm modifi-
cations discussed earlier. The axis is driven by an oil-cooled frameless motor. This
proposed axis uses an Aerotech Inc. S-130-123 frameless motor with a continuous
torque rating of 10.8 N-m and an inertia of 0.0078 kg-m? [3]. By cooling the mo-
tor, we should be able to significantly increase the maximum stall current and thus
significantly increase the maximum stall torque. A Hall effect sensor is used to gen-
erate the motor commutation. At the bottom of the cross-section we have included
an optional viscous damper. The angular position of the axis is measured using a
MicroE Mercury series rotary encoder with a resolution of 0.1 urad [59]. This leads

to a tool-tip resolution of 8 nm.

This design does not solve two of the design issues with the first generation rotary
FTS. First, it does not solve the problem of shaft windup between the toolarm and
encoder. In the case of our proposed design the encoder is mounted about 10 cm
from the nominal tool height. We can calculate the angular displacement of the shaft

using the following

where

T = the applied torque
= the modulus of rigidity

= the area moment of inertia.
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The applied torque can be expressed as

T() = I()9 (2.4)

m(\)r? = =m(l)D%. (2.5)

The shaft mass, m(l), can be expressed as

L 2 D?(], —
/ Ly = PmDUL ) (2.6)
4
Combining (2.3), (2.4), (2.5), and (2.6) results in
pr(L =) D*
dl. .
/ - 64GJ 27)
The area moment of inertia J for a round shaft is
nD*
J = o (2.8)
Combining (2.7) and (2.8) results in
p7r L-1) D464 / p
= 2.
¢ / T 64GrDY (29)
L
p I? p 2 L
= —|Ll-=]| =%|L"—— .
e ( [ 2) =C ( 5 (2.10)
pL? /0113
ﬁ \At-.LL}

This is an interesting result in that the windup error is a square function of the
distance between the tooltip and the encoder and a linear function of the ratio between
the material density and rigidity. This result clearly indicates that we want to place
the encoder as close to the toolarms as possible. While it is possible to bring the

encoder inside the bearing, this introduces a number of challenges. First, since the
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encoder scale is a continuous disk we must mount the encoder prior to fixing the
axial location of the tool shaft. Second, since the encoder is a sensitive device the
mounting structure for the encoder must include some protective structure which
prevents chips and cutting fluids from contaminating the scale while allowing the

fluid from the fluid-static bearing to escape.

The density/elasticity ratio lead to some interesting material properties investiga-
tions. Since we were unlikely to come up with a design that placed the encoder and
tool in the same plane, to minimize measurement errors we would like to select the
shaft material with the highest stiffness per unit mass. Table 2.1 shows the density,
elasticity, and elasticity /density ratio for several potential shaft materials. Elasticity

and rigidity are related by the following formula:

E

G=—— 2.12
2(1+v) (2.12)
where
E = the modulus of Elasticity (2.13)
v = Poisson’s ratio. (2.14)

Since G and v were not available for all the materials in the table, we used E as a
substitute for G. It is interesting to note that the elasticity to density ratio is nearly
constant for the three metals. In order to get a higher ratio, we needed to go to an
aluminum based ceramic. Shepal-M, a high performance machinable ceramic, has an
elasticity to density ratio twice that of the metals while Alumina has elasticity to

density ratio three times that of metals but has poor machinability.

Lastly, this design does not address at all the difficulties in accurately positioning
a rotary axis relative to the rest of the machine tool reference frame. Specifically,
measuring the pitch and the yaw of the FST axis relative to the x-y coordinate frame
of the machine base and then accurately adjusting this orientation is not addressed

here.
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Material Density gr/cm® | E GPa | E/D
AL-6061 T6 2.69 69 25.7
4140 Steel 7.8 200 25.6

Ti 5AL-2.5 Sn 4.48 115 25.7
Alumina AI?O° 3.67 300 81.7
Shepal-M (Al-nitride) 2.94 160 54

Table 2.1: Elasticity and density of potential shaft materials

Figure 2-5: Photo of Moore Nanotechnology machine base.

Since this design is primarily a derivation of the original rotary fast tool servo and
does not include any significant breakthrough technologies or topologies, we elected
to pursue a high acceleration linear fast tool servo design which would require incor-

porating a reaction mass to attenuate base accelerations.

2.2 Linear Fast Tool Servo Concepts

At the start of the fast tool servo design process, we made several component se-
lections. First, the fast tool servo was to be mounted on a Moore Nanotechnologies

Nanotech 350 machine base [63] as Moore was willing to supply this base to us with-
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out their standard controller at a significant discount. Figure 2-5 shows a photo of
the machine base without the protective canopy. The Nanotech 350 machine base
consists of two hydrostatic slides mounted in a T configuration on a epoxy-granite
base. The slides are driven by Aerotech linear motors [3]. The stage position is mea-
sured using Sony BS75A glass-scale laserscales (0.1379 um pitch) combined with 16x
interpolation (8 nm resolution) from Sony BD15 detectors with A quad B incremental
output [85]. The epoxy-granite base is mounted on air legs for passive vibration isola-
tion. The Nanotech 350 machine base was purchased without the standard high- and
low-voltage cabinets and without the standard Delta Tau motion controller. Instead,
we constructed a custom instrument chassis, incorporating a VME bus for the BD15
detectors, 5, 12, and 24 volt power supplies, amplifiers for the linear motors, and a
custom interface box for a dSPACE 1103 PPC controller board [26]. The Nanotech
350 has an axis straightness of 0.3 ym and a maximum velocity of 25 mm/s. Secondly,
a PI [73] 4R Twin-Mount spindle is used to hold the workpiece. The 4R spindle is
an air bearing spindle with a maximum speed of 10,000 Rpm (5,000 Rpm for our

spindle) and a maximum torque of 60 Ib¥*in.

Any linear fast tool servo is going to have three principal components:

1. Bearings

2. Actuator

J. densor.

Since we are building a long stroke linear F'TS to achieve maximum part accuracy we
need to attenuate the reaction forces in the machine base. In the following subsec-
tions, we will review the available bearing options, analyze several potential actuator
designs, review the sensor systems considered for the FTS, and lastly we will look at

several possible reaction mass configurations.
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2.2.1 Bearings

There are many different types of bearings available including sliding contact bear-
ings, rolling contact bearings, flexure bearings, fluid-static bearings, fluid-dynamic
bearings, and magnetic bearings. Since we would like to have extremely accurate mo-
tion, it is preferable to utilize a bearing without mechanical contact and thus sliding
contact and rolling contact bearings are not desirable for this application. Flexure
bearings offer smooth accurate movement but creating a flexure bearing with the
requisite travel and stiffness requirements seemed improbable. Hydrostatic and hy-
drodynamic bearings both use a pressurized fluid to support the bearing load. In
fluid-static bearings, the fluid is pressured from an external source. In fluid-dynamic
bearings, the fluid is pressured using the motion of the bearing components. Since
the FT'S bearings must support loads even when the FTS is stationary, we cannot use
a fluid-dynamic bearing. While properly-designed magnetic bearings would meet the
performance requirements of our FTS, there are a limited number of commercially
available magnetic bearings. Thus just as in the case of the rotary design, we focused
on designs which incorporate fluid-static bearings. Just as in the rotary design we

considered three bearing options:
1. A traditional orifice compensated air bearing .
2. A porous material compensated air bearing .

3. A traditional orifice compensated fluid-static bearing using oil as the bearing

fluid.

Just as in the rotary F'T'S, the porous material bearing offers the advantage of design
simplicity at the expense of slightly lower stiffness when compared to a properly
designed and constructed orifice design. An oil fluid-static bearing offers the highest
stiffness at the expense of having to recover and clean any oil used in the bearing.
In theory, an oil hydro-static bearing would result in the smallest slide and thus the

lowest moving mass.
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Figure 2-6: Sketch of a speaker style VCM with a 2"x2” air bearing slide.

Planar Voice Coil Motor

Figure 2-7: Sketch of a planar style VCM mounted between two 17x1” hydrostatic
bearings.
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Figure 2-8: Schematic diagram showing a conductor with current density J in a
magnetic field of density B with a resultant force density F.

We considered two configurations for the bearings. Figure 2-6 shows a sketch of a
2"x2” air bearing slide driven by a cylindrical voice coil motor. The air bearing slide
consists of two 2°x2” square air bushings set 6” apart. This configuration has the
advantage of allowing maximum flexibility in terms of actuator design. Figure 2-7
shows a sketch of planar VCM set between two 1”x1” hydrostatic bearings. This
layout potentially offers enhanced rocking stiffness but somewhat limits actuator de-
sign. The prototype FTS utilizes the slide design since a slide appropriate for our

application was available off the shelf.

2.2.2 Actuator

For the FTS actuator, we considered several styles of single phase permanent magnet
linear motors. Single phase permanent magnet linear motors can be constructed
with either moving magnets or moving coils (voice coil motors). The force density
of these motors is determined by a combination of the static magnetic field from the
permanent magnet and the maximum current density in the coil. To understand the
acceleration limits of a linear actuator, consider the Lorentz-type system shown in
Figure 2-8. In this schematic a conductor carrying current density J is placed in a
magnetic field of density B which results in a Lorentz force of density F. Typical
voice coil actuators without forced cooling have a magnetic field density B = 0.8 T

and maximum steady state current density J = 7 A/mm? [18] which results in a force
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Figure 2-9: Schematic diagram of a cylindrical voice coil motor design.

density

N

m?3

F = JxB=56% 10-3&% =5.6%10° (2.15)

Assuming that the conductor is copper with a density of 8900 kg/m3, a Lorentz

actuator has a maximum acceleration of

F 56210 N m
7" 800 kg 0% (2.16)

Amaz

Since the acceleration limit of the coil alone is near the desired acceleration of our
FTS, the actuator design needs to be modified to increase both the field density B

and the current density J.

2.2.3 Voice Coil Motor Design

The most common form of a single phase permanent magnet linear motor is the
moving coil style. The moving coil design is traditionally used because it allows for
designs where the magnetic flux stored in the permanent magnets is concentrated.
We considered several different motor designs which incorporate flux concentration.

Figure 2-9 shows a schematic drawing of a cylindrical voice coil motor design. In this
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Figure 2-10: Integration contour Cj.

design, the magnetic flux is concentrated in two dimensions. The flux is concentrated
in the radial direction by reducing the surface area of the air gap relative to the surface
area of the permanent magnets. The flux is concentrated in the axial direction by
reducing the length of the exposed area of flux concentrator at the air gap. As long
as the back-iron or flux concentrator do not become saturated all of the magnetic
field stored in the magnets is concentrated into the motor air gap. This design has
the further advantage that all of the copper in the moving coil is within the magnetic
field and thus generating force. The disadvantage of this design is that it is quite
difficult to achieve significant flux concentration without saturating the center yoke
of the back-iron.

To explore this let us study the magnetic circuit of this motor. For this analysis

we have made the following assumptions:
e That this system may be treated as a quasi-static magnetic-field system.

e The back-iron and flux concentrator are constructed of a highly permeable ma-
terial, 4 — oo. This assumption reduces magnetic field intensity H in these

components to 0.

e Flux leakage around the circuit is minimal.
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e The permanent magnet has approximately straight line magnetization B — H

characteristic in the second quadrant [47].
With these assumptions the magnetomotive force, F, is
.F=fH.d1=/J,.nda. (2.17)
c s

To determine H, we integrate along the contour C; (Figure 2-10). Since there are no

currents inside this contour, F is zero and

Hgtg + Hpt, =0 (2.18)
where
H;, = the magnetic field intensity in the airgap
H,, = the magnetic field intensity in the magnet
t, = the gap thickness
tm = the magnet thickness.

Gauss’s Law states that the magnetic flux through a volume must be conserved:
fBonda = 0 (2.19)
s

Using our assumption of no flux leakage, integrating over the cylinder defined by the

radius of magnet centerline and the radius of the airgap centerline (Figure 2-11) vields

0 = 2nRnLnBn —21R,L,B, (2.20)
By R, L
B = . mm 291
g Rng ( )
where
B, = the magnetic flux density in the airgap
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Figure 2-11: Integration surface sy.

B,, = the magnetic flux density in the magnet
R, = the centerline radius of the airgap
R,, = the centerline radius of the magnet
L, = the axial length of the airgap
L,, = the axial length of the magnet.

In order to solve for the flux density in the air gap, we need to employ the constitutive
laws relating magnetic flux density, B, to magnetic field intensity, H. In the airgap,

B and H are related as

B = pH (2.22)

where pg is the permeability of free space. Assuming linear straight line magnetization

characteristics, the relationship in the magnet is

B, = B,+ poHn. (2.23)
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Figure 2-12: Schematic of cylindrical voice coil motor with key dimensions.

Combining Equations (2.18), (2.20), (2.22), and (2.23) results in

RmLytm
B, = B,. 2.24
4 RyLgtm + RmLmtm (224)

We now have an expression for the flux density in the airgap. In order for our
assumption of no flux leakage to be accurate, we need to ensure that steel in the
back-iron does not become saturated. Most steels become saturated between 2 and
2.2 T with a significant decrease in permeability beginning at 1.8 T. So for design
safety, we would like to keep the flux density in the back-iron below 1.8 T. In terms
of the back-iron design, the only place we are not allowed to add additional material
is on the inner yoke, thus we need to check each design for saturation here. The flux

density in the center yoke can be expressed as

2rR,L,B
Bpio = _~T999 295
" m(Ry — ty/2)? .
We can calculate the minimum thickness t;; of the return yoke using
= otk (2.26)

t =
" (Rg - tg/ 2)Bmam
where Bpa = 1.8 T, the maximum desired flux density. The outer radius of the
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back-iron can be calculated from

27 RyLyBy/Bimas m + tm/2)
s
Figure 2-12 shows a schematic of a cylindrical voice coil motor with the key dimen-

sions.

We created a Matlab function motor_size to aid in the design of a cylindrical voice
coil motor. The code for this function is included in Section B.1. The inputs to this
function are t,,, t4, Rm, Ry, Lm, Lg, B, and L,, the width of the copper coil. The
version of the code included in this thesis assumes a copper packing factor of 70%.
Packing factor is the percentage of the copper coil area which actually contains copper.
The code also assigns some basic geometry to the coil assembly. In this version, we
assume that the FTS is supported by a 2.54 x 2.54 x 19.8 cm (1”x1”x7.75”) slideway
with oil hydrostatic bearings. The function outputs By, the flux density in the center
yoke, the mass of the copper coil, the total moving mass if the slideway is made
of aluminium, the total moving mass if the slideway is made of steel (Note: the
program assumes that the coil assembly is made of aluminum in both cases but other
alternatives include stainless steel and titanium}, and the required current density to
accelerate the moving mass for both steel and aluminium. The function output is a
single figure with a scaled schematic of the VCM with the input dimensions and the

calculated performance.

Figure 2-13 shows a sample output for the motor_size function. This is a fairly
conservative design, where if the slideway were constructed of aluminium the motor
coils would not need to be cooled. The disadvantage of this design is that the final
motor is quite large at 25 mm in diameter. Figure 2-14 shows a more aggressive motor
design where the overall motor volume is reduced by 45%. In this motor design, the

coil will need significant cooling to prevent the coil from overheating.

There were several iterations of the this Matlab function generated. The function
motor_size_s was a function designed to evaluate square voice coil motor designs. In

this design the magnetic circuit is broken into four equally sized rectangular sections.
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Figure 2-13: Sample output of Matlab function motor_size.
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Figure 2-14: Sample output of Matlab function motor_size.
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Figure 2-15: Sample output of Matlab function motor_size_s.

The four circuits share the same center yoke. This motor configuration is less efficient
electrically since some percentage of the copper is outside the magnetic field and thus
does not produce force. The inputs for the motor_size_s are a little different since the
magnet remanence (B, ) is assumed to be 1.2 T and the coil width is calculated using
the input gap length (L,) minus the motor travel (2.54 mm). Figure 2-15 shows a
sample output of the motor_size_s function. This sample motor is 19 x 19 mm and is
quite aggressive needing a coil current density of 16 A/mm? for the lightest moving
mass. The code for this Matlab function is in Section B.2. For the square VCM
the relationship between the remanent flux density of the magnet and the gap flux

density is

LWt B
B = LML s 2.28
* LoWytm + LWty (2.28)

where W,, and W, are the width of the magnet and air gap respectively. The flux

density in the center yoke is

Buc= =222 (2:29)



There are several additional variations of this function written including
e Square motors with only two opposing magnetic circuits (planar VCM).
e Square and cylindrical motors with moving magnet designs.

e Square and cylindrical motors using a 2.54 x 2.54 x 19.7 cm aerostatic stage,

the stage actually used for the FTS prototype, is modeled.

Since we did not utilize any of this analysis in our prototype FTS, I have elected
to include only a sample of the variations tested in this thesis. All of this analysis
assumes that we will be able increase the current density of the VCM coil with cooling.

In the next section, we introduce some of our cooling concepts.

2.2.4 Coil Cooling

As mentioned earlier, there are two ways to increase the force density of a voice coil

motor:
1. Increase the magnetic flux in the motor air gap.
2. Increase the maximum allowable current density of the coil.

As we saw in the previous section, there is a functional limit to how much we can
increase the flux in the gap based upon back-iron saturation (the maximum gap flux
I achieved in a calculated design was 1.2 T). This means we need to increase the
maximum allowable coil current density. Since the coil current density is limited by
thermal considerations, we need to cool the motor coils.

Michael Liebman designed and constructed a three phase linear motor where slots
were opened in the coil endturns to allow for the passage of cooling oil [46]. Figure 2-16
shows a schematic drawing of the end turn cooled coils. We can apply this technique
to several different motor configurations. Figure 2-17 shows a schematic drawing of
a square VCM with end turn cooling and a planar VCM with end turn cooling. The
square VCM has the advantage that most of the coil copper is captured in the VCM
magnetic field but the disadvantage of very little cooling area. The planar VCM has
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Figure 2-16: Schematic drawing of end turn cooling from [46].
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Figure 2-17: Schematic drawing of a square VCM with end turn cooling and a planar
VCM with end turn cooling.

91



Ceramic Cooling Jacket Coolant

Coolant Channel
Channel

Al
Carrier |

Copper Coils

Figure 2-18: Schematic drawing of a coil cooling concept derived from U.S. Patent
application US-2004/0207273.

a large cooling area at the expense of a large volume of copper outside the magnetic
field.

Figure 2-18 shows a schematic drawing of an alternate coil cooling concept derived
from U.S. Patent application US-2004/0207273 [31]. In this design, channels carrying
a coolant are placed at either end of the coil windings. The copper windings are then
captured between a pair of thermally conductive ceramic cylinders. The highly ther-
mally conductive material transfers the heat from the coils to the coolant. Figure 2-19
shows an extension of this concept where the heat transfer from the coil to the sheath
is enhanced with the use of vertical sheets of aluminium foil. There are a number
of issues with this concept. The most important is that these ceramic materials are
quite difficult to machine and are typically manufactured to final form. Rectangular
sheets are commercially available making this cooling concept more appropriate for
the square motor designs.

Figure 2-20 shows an alternate coil cooling concept derived from [46] where alu-
minium foil is place horizontally between winding layers. The ends of the foil are
then place in the coolant stream. The windings can be interrupted periodically to
introduce local cooling channels. Figure 2-21 shows a final coil cooling concept where
the aluminium carrier is slotted along the axial dimension of the carrier. These slots

allow coolant to circulate from the front to the back of the motor underneath the
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Figure 2-19: Schematic drawing of a coil cooling concept derived from U.S. Patent
application US-2004/0207273.
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Figure 2-20: Schematic drawing of a coil cooling concept derived from [46].
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Figure 2-21: Schematic drawing of a coil cooling concept.

copper coils.

Clearly all of these coil cooling concepts offer significant design and fabrication
challenges. It seems unlikely that we could design a motor which has sufficient struc-
tural integrity while having adequate cooling, coolant sealing, coolant plumbing, and
dynamic performance. Thus we choose to utilize the existing oil-cooled linear more
developed by Michael Liebman [46] to actuate the FTS. In the next section, we discuss

the sensor selection process.

2.2.5 Sensor

We considered two different sensor types for our FTS:
1. Laser interferometer
2. Linear encoder

Figure 2-22 shows a schematic of a linear FTS with a laser interferometer. A laser
interferometer offers several advantages. First, it offers extremely high resolution
(as fine as almost 0.1 nm) and extremely high maximum speeds (up to 5.1 m/s).
Second, laser interferometry is the only sensor that readily allows us to measure the

FTS position almost exactly at the tool tip. Third, the target reflector contributes
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Figure 2-22: Schematic of a linear FTS with a laser interferometer sensor.
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Figure 2-23: Schematic of a linear FTS with a linear encoder sensor.

very little to the moving mass of the FTS. Lastly, laser interferometry is the only
one of the sensors considered which measures the FTS position relative to the fixed
machine base coordinate frame. Offsetting these advantages are several significant
disadvantages. First, beam routing in the limited space available on the machine
base is challenging. Second, a laser interferometer is quite sensitive to disturbances
in the beam path. In the case of our machine, we are likely to produce a large amount
of airborne particulate either from the material being cut or any cutting lubricant
used. Lastly, laser interferometers are very expensive ($20,000 for the Zygo ZMI 4004
board alone). The interferometer availiable here in the Precision Motion Control Lab
had a resolution of 2 nm and a maximum speed of 350 mm /s which makes it unsuitable
for our purpose (a 12.5 mm pk-pk 20 Hz sinusoidal trajectory has a maximum tool

tip velocity of 1500 mm/s).
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Figure 2-23 shows a schematic of a linear FT'S with a linear encoder sensor. Specif-
ically, we considered using exposed glass scale diffraction-based linear encoders. There
are several reasons to use this type of sensor for this application. First, exposed scale
linear encoder are non-contact thus friction free. Second, the sensor can be placed
fairly close to the actual tool tip allowing for minimal position measurement error due
to component deformation. Third, diffraction based linear encoders provide nm level
resolutions without the beam routing and environmental issues associated with laser
interferometry. Lastly, exposed glass scale linear encoders meeting our performance
requirements are commercially available from several sources (Sony, Heidenhain, and
MicroE for example) at a reasonable price ($1000 for scale and electronics). There are
several disadvantages to using a linear encoder. Since the scale cannot be placed co-
incident with the tool tip, there will always be some error in the measured and actual
position. The second disadvantage is that a linear scale measures the FTS position
relative to the FTS reference frame. This means that to determine the position of the
tool tip relative to the base reference frame we need to measure the position of the
FTS reference frame relative to the base reference frame. Thus the tool tip position
measurement now incorporates two measurement errors. Lastly, the accuracy and
maximum velocity of a glass scale diffraction based linear encoder is a function of
the scale pitch. The longer the scale pitch, the higher the maximum velocity. The
smaller the scale pitch, the higher the accuracy. As will be discussed in more detail
in Section 2.3, there are encoders avaliable that meet either our velocity requirements

or our accuracy requirements but not scales currently avaliable which meet both.

2.2.6 Reaction Force Attenuation

There are several possible methods for reducing base movements in response to FTS
actuation forces. The simplest and most common strategy is to make the machine
base much more massive than the FTS. In the case of most short stroke FTS, the
moving portion of the FTS has a mass of tens of grams while the machine base has
a mass of hundreds of kilograms thus leading to a FTS/base mass ratio on the order

of 1000. For longer stroke FTS, the moving component of the FTS is much more
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massive (on the order of kilograms) while the machine base mass remains relatively
static. Thus the FTS/base mass ratio is on the order of 100. This means we must
explore more sophisticated strategies.

Figure 2-24 shows schematic drawings of three reaction force attenuation strate-
gies. In Figure 2-24-A, the FTS reaction forces are passively attenuated by a reaction
mass (in this case the magnet/back-iron assembly of a VCM) connected to the in-feed
slideway by a flexure. This design offers the advantage that it is completely passive
thus eliminating the need for any additional actuator or control elements but the suc-
cess of this strategy is very dependant on the dynamics of the reaction mass/flexure
system. As noted earlier Weck et al [100] utilized this strategy with limited success on
their hybrid FTS. Figure 2-24-B shows a reaction force attenuation strategy where
a second actuator (in this case a second FTS) is placed on the in-feed slide. The
two actuators act in opposite directions. In theory if the actuator trajectories and
masses are properly balanced the slide way sees no net force although there may be
net torques. The disadvantage of this design is that it requires the expense of an addi-
tional actuator system which has no functionality beyond attenuating reaction forces.
Figure 2-24-C shows a third strategy. In this case, the in-feed slide-way is allowed to
freely move in response to the FTS actuation forces. While this motion complicates
the trajectory generation and control of the in-feed slide, it has the advantage of
utilizing the existing machine hardware, thus saving money and effort.

In this section, we have reviewed the various different design options we explored
when designing our prototype fast tool servo. In the end, we elected to utilize an
off-the-shelf porous air bearing slide, an existing oil-cooled linear motor, a diffraction
based linear scale, and FTS/slideway reaction force attenuation strategy. In the next

section, we detail the design and construction of our prototype fast tool servo.

2.3 Prototype Fast Tool Servo Detail Design

In this section, we provide the detail design of the prototype fast tool servo. In

subsection 2.3.1, we detail the FTS actuator. In subsection 2.3.2, we discuss the
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Figure 2-24: Schematic drawing of three reaction force attenuation strategies.
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motor amplifier. In subsection 2.3.3, we discuss the air bearing stage used for the
FTS. In subsection 2.3.4, we provide the details of the dSPACE 1103 discrete time
processor used to control the FTS. In subsection 2.3.5, we detail the implementation
of the two different sensors used on the FTS. Lastly in subsection 2.3.6, we detail the

assembly of the linear FTS.

2.3.1 Motor

The motor for the linear FTS is an oil-cooled 3-phase linear motor built by Micheal
Liebman for his Master’s research [46]. The motor was partially constructed by Fred
Sommerhalter at Anorad Corporation [6] and utilizes an off-the-shelf 60 mm pitch
magnet track. As discussed earlier the motor incorporates coil windings with gaps
between the coil layers to allow coolant to flow between the layers. The resulting
motor has a maximum steady state force of 350 N (approximately 4 times that of a
conventional 3 phase linear motor). The measured force constant Ky for this motor
is

Ky = 35.4E . (2.30)

ms

Mobil Velocite No.10, the same oil used in the hydrostatic stages of the Moore machine
base, is used to cool the motor (Micheal Liebman used Mobiltherm 603 which has
slightly better thermal characteristics) [28]. The oil is pumped using a small centrifu-
gal pump form Gorman-Rupp Industries [33]. The motor temperature is measured
by a thermocouple placed between the first and second end-turns of one of the three

motor coils. The oil temperature is measured by a thermocouple in the oil reservoir.

2.3.2 Linear Motor Amplifier

The linear motor is driven by a prototype HPA-400-30 amplifier from Copley Controls
Corp [19]'. This is a PWM amplifier with a pulse frequency of 125 kHz. The maxi-

mum allowable supply voltage is 400 Volts. The maximum current output I, is 30 A.

!Copley Controls Corp of Canton, MA kindly donated this amplifier
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This amplifier has a continuous current rating I. of 12 A. Thus the maximum power
is 12 kilowatts while the maximum continuous power is 4.8 kilowatts. The amplifier is
tuned for a -3 dB bandwidth of 2 kHz (the amplifier has a maximum bandwidth of 5
kHz). The DC voltage is supplied by a 300 V/16 A Lambda EMS-300-16 D.C. power
supply [44] (thus the power available is 4.8 kW maximum and 3.6 kW continuous).
The amplifier accepts two phase (U and V) current commands (the current in the W
phase is constrained by the U and V currents in a Y configuration motor).

Motor commutation is done on the dSPACE DS1103 control board and is discussed

in detail in section 6.1.2.

2.3.3 Air Bearing Slide

The tool holder and motor coils are mounted to a custom 2”x2" porous media air
bearing slide from New Way Inc. [68]. The slide consists of eight 50 x 100 mm flat
air bearing pads. Each pad has a quoted stiffness of 100 N/um at 0.41 MPa (60 psi).
The pads are assembled into two rectangular bushings 50 mm apart. These bushings
support a 2" x 27 x 11.5” anodized aluminium beam. The aluminium beam has a
1.5” diameter hole bored through its length. The beam has a mass of 1.54 kg. The
air bearing stage has been machined to accept a Heidenhain LIP 501 linear scale [38].

The slide has a full range travel of 1.5”.

2.3.4 Discrete Time Processor

The machine base and linear FTS are controlled using a dSPACE DS1103 PPC con-
troller board [26]. The DS1103 has a 400 MHz PowerPC 604e main processor and a
20 MHz Texas Instruments TMS320F240 slave processor [90]. The system has

e 16 16-bit main processor ADC
e 4 12-bit main processor ADC
e 8 14-bit main processor DAC
e 4 8-bit main processor DAC
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e 6 digital incremental encoder interfaces
e 1 main processor serial RS232/RS422 serial interface

32 bits main processor digital I/0O

16 10-bit slave ADC
e 18 bits slave digital 1/O.

Appendix D list all of the connections used to run the prototype diamond turning

machine. The DS1103 is programmed using Matlab’s Simulink interface.

2.3.5 Sensor

The prototype FTS was tested in two forms, a bench-top version and the version
installed on the prototype diamond turning machine. The primary differences be-
tween the two versions are the linear diffraction style linear encoder used, the motor
attachment, and the plumbing and electrical connections. The motor attachment and
connections are dealt with in subsection 2.3.6. A Heidenhain LIP 501 exposed linear
scale [38] was used during bench-top testing while a MicroE M3500Si Mercury series
incremental encoder [59]

The Heidenhain LIP 501 utilizes a 4 pum pitch scale with a full travel accuracy of
+1um. The LIP 501 encoder electronic outputs 11 pA,, sinusoids with a 1 k2 load.
The encoder has a maximum velocity of 1 m/s. The encoder electronics are isolated
using an Analog Devices AD621 low drift instrumentation amplifier with a gain of
10 [5]. A differential signal is created using a Texas Instruments SN74L514 Hex
Schmitt-trigger inverter [90]. The encoder output is interpolated using an Aerotech
MXH250 multiplier [3]2. With x1000 interpolation, the Heidenhain encoder has 4 nm
resolution. The Aerotech multiplier supports speeds up to 0.128 m/s. The differential
output of the Aerotech multiplier is read onto the DS1103 control board through one

of the incremental encoder interfaces (max. input frequency 6.6 MHz/66 mm/s).

2Donated by Aerotech Inc of Pittsburgh PA.
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Figure 2-25: Measured prototype fast tool servo following error using a Heidenhain
LIP 501 linear encoder.

We used a standard 70 mm glass scale trimmed to a length of 55 mm. The scale
was bonded into a slot machined into the 2" x 2” slide using a cyanoacrylate-based
adhesive. The read-head is bolted to the slide chassis. The scale/read-head alignment
was adjusted using an oscilloscope in X-Y format.

Figure 2-25 shows a typical measured following error for the bench-top prototype
fast tool servo using the Heidenhain LIP 501 linear encoder. Under AFC control,
the measured following error is 0.18 um peak-to-peak and 0.05 pum rms. While the
accuracy /resolution of the Heidenhain encoder were excellent, the slow speed of the
DS1103 encoder interface made this sensor system unacceptable for machine level
testing.

For the machine level testing we used a MicroE M35008Si serial interface linear
encoder. The M3500si uses a 20 um pitch glass scale. We used a standard accuracy
L55 scale with a full range travel accuracy of +£3 ym. Both the scale and the read-head
of the MicroE encoder are much smaller than the Heidenhain encoder. Fortunately
the geometry was such that the scale and read-head could be mounted using the

existing Heidenhain mounting features with the use of a spacer to mount the scale
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Figure 2-26: Photo of MicroE glass scale mounting.

Encoder Interpolation Encoder Adapter

Figure 2-27: Photo of MicroE glass scale mounting.
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Figure 2-28: Photo of air bearing stage with encoder cover.

Figure 2-29: Photo of bottom side of the encoder cover.

and a spacer and clamp system to hold the read-head in place. Figure 2-26 shows a
photo of the MicroE scale mounting. The scale is bonded to the aluminum adapter
plate with a cyanoacrylate base adhesive and the adapter plate is screwed to the stage
beam. Figure 2-27 shows a photo of the MicroE read-head and encoder interpolation
electronics. The read-head is clamped to an adapter plate which is then screwed down
using the original Heidenhain mounting points. The interpolation electronics are also
mounted to the slide chassis. This entire installation is sealed from contamination by
an o-ring sealed cap (Shown in photo in Figures 2-28 and 2-29).

The M35008Si interpolation electronics provide up to x4096 interpolation (4.8 nm
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resolution) at a maximum speed of 7.2 m/s. The M3500Si serial interface outputs
a 38-bit word. The first 8-bits refer to the encoder status while the next 30-bits
are a twos-complement position word. The MicroE serial interface utilizes RS-422
differential voltage levels. Since the DS1103 serial interface utilizes single ended TTL
signals, a National Semiconductor DS3486 Quad RS-422/RS-423 line receiver converts
the received data to single ended form [66]. While a National Semiconductor DS3487
Quad Tri-State line driver is used to convert the DS1103 TTL single ended output to
RS-422 format. To read the serial data from the encoder electronics, we tried three

different implementations on the DS1103:

1. A S-function serial interface running on the DS1103 slave processor utilizing C

functions provided by dSPACE.

2. A S-function serial interface running on the main processor utilizing main pro-

cessor C functions provided by dSPACE.

3. A S-function serial interface running on the slave processor utilizing user pro-

vided C functions.

S-functions provide a means of introducing capabilities to a ASPACE 1/0 board via
Simulink. When a S-function is utilized a custom block is added to the Simulink
model, the S-function C code is incorporated into the existing Simulink model, and
the appropriate dSPACE hardware is accessed. S-functions are typically written using
a S-function template provided by dSPACE. For more information on S-functions refer
to [2]. All of these implementations were made possible by the work of Marsette Vona
[96] and David Otten |71]. Specitically, all of the slave DSP programming is based
upon the code developed by David Otten.

In the first implementation, we utilized the standard S-Function structure to create
a serial interface on the DS1103 Slave DSP. The S-function utilized the standard Slave
DSP Serial Interface functions provided by dSPACE [1]. As for all S-functions, most
of the overall processing occurs on the main DSP processor. This serial interface has

the following flow process for each computational cycle:
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1. The main DSP initializes the communication buffer with the Slave DSP.
2. The main DSP activates the encoder serial interface
3. The main DSP instructs the Slave DSP to read the serial interface.

4. The Slave DSP reads in 16-bits and transfers the data to the communication
buffer.

5. The main DSP reads the communication buffer and stores the last 8 bits (Note:
the first 8-bits are the encoder status which is not required to determine the

position).

6. The Slave DSP reads in 16-bits and transfers the data to the communication

buffer.

7. The main DSP reads the communication buffer and adds the 16-bits to the

previous data.
8. This repeats until the main DSP has formed a 30-bit position word.

9. The main DSP converts the 30-bit word from 2 complement and outputs a

position count to the Simulink model.

This implementation is very stable and robust but very slow (the turnaround time is
140 ps minimum resulting in a 7kHz maximum sample rate). The reason this imple-
mentation is so slow is that the slave DSP is very slow moving data from the input
register to the communication buffer (about 20 us per transfer). In this implementa-
tion, the slave DSP must transfer a total of 3 words to the communication buffer. One
way to speed the serial interface up is to completely avoid using the communication
buffer.

In our second implementation, we utilize the main processor digital I/Os to the
create a serial interface. The main processor digital 1/Os are grouped in 8-bit units.
Each 8-bit group can be configured as either input or output. As part of the overall

diamond turning machine control, groups 1 and 3 are configured for output while
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group 2 is configured for input (group 4 is unassigned). For this implementation, we
have used 1019 from group 3 to enable the serial interface and 1020, also group 3,
to generate the serial clock. I015 from group 2 is used to read in the serial data. In

this implementation, the serial interface has the following process flow:
1. Main processor enables the serial interface, 1019 high.
2. Main processor creates clock pulse, I020 toggled from low to high to low.
3. Repeat step 2 seven times.
4. Main processor toggles clock.
5. Main processor reads 1020 and stores bit.
6. Repeat steps 4 and 5 until complete 30-bit position word is read.

7. The main processor converts the 30 bit word from 2 complement and outputs

a position count to the Simulink model.

It takes 0.4 us to generate each clock pulse and it take 1.2 us to generate a clock pulse,
read the input bit, and then store the input bit. Including the conversion from two
complement and the output of the position word to Simulink, this implementation
has a total turnaround time of 42 us. This serial interface implementation is by far
the fastest of the three tested. The issue with this implementation is that while the
serial interface is running the main DSP is not available for other processes. Running
all the other task required for control of the DTM takes 60 us, which results in a
total turnaround time of 102 us which results in a maximum sample rate of 9.4 kHz.
While this serial interface is stable and fast, the overall sample rate is marginal for
our application (we would prefer a sample rate in the range of 20 kHz). This leads
to our third implementation.

In our third and final implementation, we run the serial interface on the slave DSP
using user defined C functions. This implementation has several advantages over the
implementation using the dSPACE provided functions. As noted earlier, the slow

part of the slave processor serial interface is the transfer of the serial data from the
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input register to the communication buffer. Using the canned C functions, we are
required to transfer 3 separate words to the communication buffer despite the fact
that our total word length is 30-bits and the communication buffer transfers 16-bits at
a time. Eliminating the extra word transfer can potentially save us 20 us. Four files
are required to run a custom C function. A file containing the code for the S-function,
a file to register the user defined function on the slave DSP, a file containing the user
defined function C code, and a header file for the user defined function. Appendix C
contains the four files used for this serial interface implementation.

The process flow for the serial interface interface running on the slave DSP utilizing

user defined functions is:

1. Main processor outputs the position word from the previous computational cycle

to Simulink.

2. Main processor reads the position word gather by the slave DSP during the

previous computational cycle from the communication buffer.
3. Main processor converts the 2 complement position word to absolute position.
4. Main processor request a new position word from the slave DSP.
5. Slave DSP enables encoder serial interface.
6. Slave DSP toggles serial clock 8 times.
7. Slave DSP toggles serial clock, reads and stores input bit 16 times.
8. Slave DSP transfers 16-bit word to communication buffer.
9. Slave DSP toggles serial clock, reads and stores input bit 12 times.
10. Slave DSP toggles serial clock 4 times to clear encoder serial buffer.

11. Slave DSP transfers the 12-bit word to the communication buffer in 16-bit

format.

12. Main processor outputs the position word to Simulink.
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As is fairly obvious from the process flow, this serial interface results in a 2 unit
delay on the position data available to the position control loop. The main processor
delay is determined by the interaction between the user defined S-function code and
the overall real time control code defined by Simulink. Attempts to eliminate the
main processor delay resulted in non-operational S-functions. The one unit delay in
the communication between the slave DSP and the main processor is intentionally
introduced to ensure that the entire position word is properly transferred. When we
attempted to both read and transfer the position word from the slave DSP to the main
processor on the same computational cycle, the main processor would often attempt
to read the position word before the slave DSP had finished reading and transferring
the data to the communication buffer. Thus the word read into the main processor
was incomplete. It takes the slave DSP 60 us to read and transfer the serial data to
communication buffer. This implementation was successfully tested at sample rates
as high as 14.5 kHz. For most data in this thesis, the DS1103 was running at 12.5
kHz.

Figure 2-30 shows a typical measured following error for the DTM mounted proto-
type FTS using the MicroE M35008Si linear encoder for position measurement. With
the exception of the different encoders, the controller and hardware for the Heiden-
hain data set (Figure 2-25) and the MicroE data set (Figure 2-30) are identical (Note:
the trajectory for the Heidenhain data had a maximum acceleration of 2 g's while the
MicroE trajectory had a maximum acceleration of 6.6 g’s). The measured following
error is 3.1 pum peak-to-peak and 0.28 gm rms using the MicroE scale. The measured
error has gone up because while the MicroE system has higher resolution than the
Heidenhain scale, it also has a greater interpolation error. Interpolation error is due
to asymmetry in the sinusoid diffracted from the encoder scale [27]. High quality
scales typically have an interpolation error of 1% the scale pitch. Thus for the Hei-
denhain LIP 501, the interpolation error is on the order of 0.04 um. The M3500Si
utilizes a 20 pm pitch scale which results in an interpolation error on the order of 0.2
pm. How exactly the interpolation error maps to the measured position error is not

explored in detail here but clearly to achieve the accuracy we would like, the M3500Si
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Figure 2-30: Measured prototype fast tool servo following error using a MicroE
M35008Si linear encoder.
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Figure 2-31: Photo of bench-top prototype long stroke fast tool servo.

scale should be mapped using a laser interferometer and the measured position data
corrected.

In this section, we explored two different linear scale systems. In one case, we
implemented a scale with excellent accuracy performance but with a low overall max-
imum velocity. In the second case, we implemented a scale with a very high maximum
velocity but with an accuracy lower than desired. In retrospect since the maximum
velocity of the Heidenhain system is limited by the interpolation electronics and the
DS1103 incremental encoder interface, we should simply have replaced the interpola-
tion electronics with faster electronics and a serial interface.

In the next subsection, we evaluate the detail design of the prototype FTS hard-

ware.

2.3.6 Prototype Assembly

As mentioned earlier, the prototype FTS was tested in two forms, a bench-top version
and the version installed on the diamond turning machine. The primary differences
between the two versions are the diffraction style linear encoder used, the motor
attachment, and the plumbing and electrical connections. The differences between the
sensors was discussed in section 2.3.5. In this section, we will discuss the mechanical
differences between the two prototype versions.

Figure 2-31 shows a side view photo of the bench-top prototype FTS while Fig-
ure 2-32 shows a side view photo of the prototype FTS mounted to the diamond
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Figure 2-32: Photo of the prototype long stroke fast tool servo mounted to the Moore
Nanotechnologies machine base.
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Figure 2-33: ProE model of bench-top prototype with the motor force center aligned
with the air bearing centerline.

turning machine. There are several obvious differences between the two prototypes.
The first clear difference is the length of the magnet track. In the bench-top proto-
type, the magnet track is 24 inches long allowing for a motor travel of 19 inches. Since
space was not available on the in-feed stage and we only needed a travel of 1.5 inches,
the magnet track was trimmed to 6.5 inches. This is the shortest we could make the
magnet track while not cutting any of the permanent magnets and still allow for 1.4

inches of travel.

The second obvious difference is the vertical and horizontal position of the motor
relative to the air bearing slide has changed. In the bench-top prototype, the magnet

track of the motor sits approximately 0.5” below and 2” behind the the air bearing
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Figure 2-34: ProE model of machine mounted prototype with the motor force center
aligned with the center of mass of the moving FT'S components.

stage. In the machine mounted prototype, the magnet track is in the same horizontal
position but is now nearly level with the air bearing stage. In the bench-top prototype,
the motor coils were positioned such that the motor center of force acted in-line with
the air bearing stage centerline (shown in Figure 2-33). In the machine mounted
prototype, the motor force center has been positioned such that it acts through the
center of mass of the moving components (shown in Figure 2-34). In the machine
mounted prototype, the motor coil is mounted much closer (1.25 inches) to the air
bearing slide. This change simply reflects that I was uncertain about the desired coil
location in the bench-top prototype and placed the coils much further away from the
air bearing stage. The coils in the machine mounted prototype have been moved as
close to the air bearing as possible while allowing for 1.5 inches of motion. Drawings

of the key components require to assemble the prototype FTS are in appendix E.

The prototype FTS is mounted to the hydrostatic slide using an adapter plate.
The adapter plate is a 8 x 19.75 x 1.5 inch piece of steel plate with the top and bottom
faces ground for flatness and parallelism. Figure 2-35 shows an isometric view of the
ProE model of the adapter plate. The adapter plate has features which allow for the
attachment of the air bearing slide, the motor magnet track, the motor coolant hoses,
and the motor power cables. The adapter plate also incorporates feature to capture
the coolant oil leaked from the motor. Complete drawings for the adapter plate are
in appendix E

Figure 2-36 shows a ProE model of the complete prototype fast tool servo/hydrostic
stage assembly. Figure 2-37 shows a rear view photo of the fast tool servo mounted to

on the Moore Nanotechnologies machine base. In this design, we have done our best
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Figure 2-35: ProE model of the adapter plate used to mount the prototype FTS to
the hydrostatic slide.

Figure 2-36: ProE model of the prototype fast tool servo mounted to the hydrostatic
stage.
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Figure 2-37: Rear view photo the prototype linear fast tool servo mounted on the
Moore Nanotechnologies machine base.

to minimize the forces exerted on the moving portion of the fast tool servo. As can be
seen in both Figures, the oil coolant tubing and the electrical connections have been
carefully routed to avoid excessive flexion. The motor power cable is 3 conductor
18 AWG Alpha Wire XTRA*GUARD high flexibility cable in places where high
flexibility is required and 3 conductor 16 AWG Alpha Wire communication cable
elsewhere [4]. For the coolant oil plumbing, half inch TYGON tubing is used in
regions of high flexibility while 3/8” medium pressure SAE hydraulic tubing is used
in low flex regions. The air supply to the air bearing is 1/4” TYGON tubing and

utilizes a quick disconnect from Beswick Engineering [9].

One of the weakness of the prototype FTS/hydrostatic stage assembly as we have
built it is that the overall center of mass of the stage is not vertically aligned with
the center of mass of the FTS. This means that while the hydrostatic stage is able to
isolate the machine base from the FTS actuation forces, the relative motion of the two
centers of mass do introduce a torque into the machine base. To avoid this we designed
but did not implement a structure to raise the center of mass of the FTS/stage

assembly. Figure 2-38 shows a ProE model with a structure designed to shift the
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Figure 2-38: ProE model of the prototype fast tool servo mounted to the hydrostatic
stage with a structure designed to shift the center of mass location.
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stage center of mass to align with the FTS center of mass. Without this structure,
the center of mass of the stage assembly is 5.6 inches below the center of mass of
the FTS. With the structure the center of mass is 2.9 inches below the FTS center
of mass. There are two reasons we did not build this structure. First by introducing
this structure, we complicate the task of routing all of the FTS connections. Second,
this structure is quite massive (200+ lbs depending on configuration) and brings the
total load mass close to the stage carrying capacity. In the end, we decided the

complications outweighed the benefits.

2.4 Summary

In this chapter, we reviewed the design details of two long stroke FTS. Specifically,
we introduced a rotary fast tool servo concept with improved dynamics. We then
reviewed the detailed design of our linear long stroke FTS with integral balance mass.
In the next chapter, we will review the various control strategies used to control fast

tool servos and related systems.
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Chapter 3

Fast Tool Servo Control

This chapter is intended as general background and motivation for our research into
adaptive feedforward cancellation (AFC) and oscillator amplitude control (OAC)
which is detailed in chapters 4 and 5 respectively. This Chapter is broken into three
parts. In section 3.1, we briefly describe the control requirements for FTS and show a
typical F'TS control structure. In section 3.2, we give a brief overview of a repetitive
control implementation using memory loops. In section 3.3, we give a brief overview

of repetitive control using AFC control.

3.1 Fast Tool Servo Control

As mentioned in chapter 1, FTS are used for two purposes:
1. Cancel out repetitive error introduced into a part during the machining process.
2. Machine complex geometries into a workpiece.

In both of these applications the F'TS toolpaths are highly correlated with the angular
position of the part. Furthermore, the desired toolpath can be represented as a
summation of sinusoids at integer multiples of the spindle’s rotational frequency.
The class of control algorithms most suitable for this application are referred to as
repetitive control systems. Repetitive control systems are based upon the Internal

Model Principle (IMP) [29] where the repetitive controller contains a model of the
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Figure 3-1: Block diagram of a typical fast tool servo control system.

reference or disturbance signal. If the repetitive controller has an exact model of the
signal, the control system will have perfect track following and disturbance rejection.
From a loop shaping perspective, perfect track following requires infinite loop gain
at the tooltrack frequencies. Just as in the case of integral and derivative control,
if improperly implemented repetitive control will destabilize the overall control loop.
To ensure a stable controller implementation, FTS control systems usually employ
multiple control loops. In general, FTS control systems consist of a conventional
(PID, Lead-Lag, Pole-zero placement, etc.) inner loop which results in a well defined
plant and a repetitive control outer loop. Most repetitive controllers have infinite
gain at the harmonics of the spindle frequency and finite gain elsewhere. Since the
repetitive controllers typically have a large phase shift between each of the spindle
harmonics, the finite gain of the repetitive controller is intentionally low to ensure
stability. Thus in a system with repetitive control only, the tracking error is very
small at the spindle harmonics but quite large everywhere else. To improve general

tracking performance, most FTS control systems incorporate a feedforward channel.

Figure 3-1 show a block diagram of a typical FTS control system. The block

diagram elements are

r(s) = the reference input.
y(s) = the plant output.

Gp(s) = the plant transfer function.

G.(s) = a conventional controller (PID, Lead-Lag, etc.).
C(s) = an adaptive controller.
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F(s) = a feedforward filter.
P(s) = the transfer function of the conventionally controlled

inner-loop.

The adaptive controller C(s) can either be a sliding mode controller or a repetitive
controller. The inclusion of the feedforward filter F(s) is meant to improve the
general system tracking response. F'(s) can have several different forms. In the most
common implementation F(s) = 1 and thus acts as a feed-through channel. This
implementation is very robust since the general system response will be that of the
conventionally controlled inner-loop with the additional control authority from the
adaptive controller C(s). In other systems F(s) is used as a feedforward filter. In

theory if
F(s) = P7!(s) (3.1)

this control system would have perfect trajectory tracking at all frequencies. The
main difficulty with this approach is systems with non-minimum phase zeros in the
plant P(s). When P(s) is inverted, these non-minimum phase zeros become unstable.
In addition, completely inverting the plant may result in a non-causal system. The
most common approach to implementing a feedforward controller is the Zero Phase
Error Tracking Controller (ZPETC) introduced by Prof. Masayoshi Tamizuka in
[91]. The ZPETC algorithm operates by cancelling the cancellable poles and zeros,
and adjusting for the phase of the non-cancellable zeros. The ZPETC method of
feedforward control was applied to a hydraulic FTS by Tsu-Chin Tsau [95] and to
a piezoelectric FTS by Marc Crudele [20]. An alternate feedforward approach is to
take advantage of the fact that the FTS trajectory is a summation the sinusoids at
integer harmonics of the spindle frequency. In this case, we can directly produce a

feedforward signal

r(t) = > |P(wi)| " Aicos(wit — LP(jwi)) + B;sin(wit — LP(jw;))] (3.2)
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where A; and B; are the magnitude of cos(w;t) and sin(w;t) in r(¢). This method is
termed Command Pre-shifting and has been successfully employed on the LODTM
at Lawrence Livermore National Laboratory [80] and on Stephen Ludwick’s rotary
FTS [54]. We use the Command Pre-shifting method of Feedforward control.

As mentioned earlier, the adaptive controller C(s) is either a sliding mode con-
troller or a repetitive controller. Sliding mode control combines a feedback controller,
with both a feedforward controller and a disturbance observer to form a controller
which adaptively minimizes the tracking error. To learn more about applying sliding
mode control to FTS refer to [36] and [102].

In the case where C(s) is a repetitive controller, C'(s) may be implemented in
two fashions. In the case of controllers where the trajectory is predetermined and
repeatedly supplied (robotic assemblers for example), repetitive control is run in a
semi-open loop fashion known as iterative learning control. For more information
on iterative learning control and it’s similarities to closed-loop repetitive control see
Richard Longman’s paper on the subject [49]. For closed-loop repetitive controllers,

there are two common implementations:
1. Memory-Loop repetitive control.
2. Adaptive Feedforward Cancellation (AFC).

In section 3.2, we briefly review memory loop repetitive control. In section 3.3, we

review the background behind AFC control and show some related control structures.

3.2 Memory-Loop Repetitive Control

Figure 3-2 shows a block diagram of a continuous-time repetitive controller C(s)

implemented using a memory-loop. This system has a transfer function of

. 1
Cl-eh

C(s)
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Figure 3-2: Block diagram of a continuous time repetitive controller using memory
loops.
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Figure 3-3: Frequency response plot for a continuous time repetitive controller as
expressed in (3.3).
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E(s)

Figure 3-4: Block diagram of a continuous time repetitive controller using memory
loops.

where T, is the period of the frequency we wish to cancel. This transfer function

results in complex pole pairs on the imaginary axis when s = jw; where

27

T,

Wy =

ci=0,41,42, ..., +o0. (3.4)

Thus this transfer function has infinite gain at all integer harmonics of the funda-
mental frequency w. Figure 3-3 shows the frequency response plot for a repetitive
controller of the form (3.3) with T}, = 0.01 s. As we can see, this controller results
in a series of infinitely high peaks at integer harmonics of the 100 Hz fundamental.
Looking at the phase portion of Figure 3-3, we see that each peak has an associated
phase drop of —180°. Since the plant we are applying repetitive control to has an
associated phase and magnitude shift, applying a controller of the form (3.3) results

in closed-loop stability issues.

Figure 3-4 shows a block of a continuous-time repetitive controller C(S) imple-
mented using a memory-loop and two filters Q(s) and L(s) [88]. Q(s) limits the
working frequencies of the repetitive controller while L(s) compensates for the phase

shift from Q(s). The transfer function of this modified structure is now

Cls) - L9Q)

- GG (35)

Figure 3-5 shows the frequency response of this modified structure with T, = 0.01
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Figure 3-5: Frequency response plot for a continuous time repetitive controller as
expressed in (3.5) with Q(s) and L(s) from equations (3.6) and (3.7).

and

2
Qs) = - (3.6)
52 + 2Cwys + w}

§° + 2(wys + w}

L(s) = — (3.7)
f

where wy = 10007 and ¢ = 0.7. As we can see, the introduction of the two filters
has attenuated both the magnitude and the phase shift of the higher harmonics of
memory-loop. For more detail on the selection of Q(s) and L(s) please see [92]| and

[39).

A more common approach to implementing memory-loop repetitive control is
to implement the memory-loop digitally. Figure 3-6 shows the block diagram of a

discrete-time repetitive controller using memory-loops. The transfer function for this
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Figure 3-6: Block diagram of a discrete-time repetitive controller using memory loops.

discrete-time implementation is

cls) - H2QE)

T TS e
where n is the nearest integer value of
TP
n= TS (39)

where T}, is the period of the frequency we wish to cancel and T is the sample time.
Controllers of this form have been successfully implemented on FTS by Tsao [95],
Rasmussen [74], and Crudele [20]. More generally memory-loop repetitive controllers
have been used to cancel periodic disturbances in disk drives [78] and robotic manip-

ulators [58]. For a more comprehensive list of applications see [54].

The great advantage of memory-loop repetitive controllers is that they are com-
putationally very efficient. A single memory-loop will cancel all harmonics of the
fundamental frequency. There are two disadvantages to the memory-loop approach.
The first disadvantage is that continuous-time memory-loop repetitive controllers
contain all harmonics of the fundamental out to infinity (discrete-time memory-loop
repetitive controllers contain all harmonics to the Nyquist frequency). To ensure sta-
bility, we need to introduce a low-pass filter to eliminate the higher harmonics. This
low-pass filter attenuates the magnitude of both the low and intermediate frequency
peaks. Thus a while a memory-loop controller may perfectly cancel the fundamen-

tal frequency, it’s performance degrades at the intermediate frequencies. The second
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sin(wnt)

Figure 3-7: Block diagram of an AFC system with zero error.

disadvantage is that memory-loop controllers are not robust to perturbations in the
frequency of the disturbance. For example, if we design a memory-loop controller to
cancel disturbances at 60 Hz but the actual part spins at 58 Hz, the memory-loop
has no mechanism to incorporate this shift. In [88], Maarten Steinbuch proposes a
memory-loop repetitive controller which is more robust to changes in frequency.

An alternative approach to forming repetitive controller is to use adaptive feedfor-
ward cancellation. Each AFC resonator has the advantage of cancelling only a single
frequency and when applied in the canonical form can be driven by the measured
spindle speed making the control response more robust to variations in the spindle
speed. The disadvantage of the AFC structure is that it is much more computa-
tionally intensive. In the next section, we present a brief look at AFC control. In
chapter 4, we present a more detailed analysis of AFC control from a loop shaping

perspective.

3.3 AFC Repetitive Control

Adaptive feedforward cancellation is a control strategy based upon the Internal Model

Principle (IMP) [29]. The IMP essentially states that for a controller to exactly cancel
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Figure 3-8: Block diagram of an AFC controller as proposed by Bodson et.al.

a disturbance it must contain a model of the disturbance signal. For control systems

designed to reject sinusoidal disturbances of the form
d(t) = ancos(wyt) + by sin(wpt), (3.10)

the controller must be able to adaptively estimate and reproduce the magnitude and
phase of the disturbance. Figure 3-7 shows a block diagram of an AFC controller
with zero tracking error. For this system to have no error the magnitude estimates a

and b must equal the magnitude of the disturbance input:

i = a, (3.11)
= by. (3.12)

To form the magnitude and phase estimates, an AFC controller uses modulation
with a pair of sinusoids to detect for error components at the resonant frequency.
The detected error is then filtered to form the magnitude estimates.

Figure 3-8 shows the block diagram of the earliest form of AFC control proposed
by Bodson et.al. [11]. In this form, the AFC controller uses the same sinusoid to
both detect the error component at w, and generate the cancellation signal u(t). The

magnitude of the error component is estimated by integrating the error component at
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Figure 3-9: A more general block diagram for a LTI adaptive feedforward system.

wn. As we will discuss in more detail in chapter 4, this structure has an LTT equivalent

form of

Gns
C(s) = . 3.13
0= 72 (313)
Thus this form of AFC control places a zero at the origin and a pair of poles on the
imaginary axis at jw,. For frequencies below w,, the controller introduces a 90°
phase shift. At w,, the phase instantly drops 180° to —90°. Thus this form of AFC
control may be stably applied only to systems with a phase |¢| < 90°. There are

several methods of extending AFC control to more general systems.

Figure 3-9 shows a more general block diagram of an adaptive feedforward system.
In this case, the integrators have been replaced with transfer function L(s). For
adaptive feedforward systems, L(s) is typically a low pass filter. Using a low pass

filter of the form

L(s) = (3.14)

results in this structure having an LTI equivalent of

(s) = gn(s+ o)

= . 3.15
24208 + (w2 +0?) (3.15)
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Figure 3-10: Block diagram of an AFC system with phase shift.

As we can see, this system offers enhanced stability by moving the system poles off
of the imaginary axis, thus smoothing the phase transition, but this is at the expense
of perfect error tracking. As we can see in equation (3.15), the resonant frequency
of the adaptive system is no longer w,, thus this oscillator cannot perfectly cancel
disturbances at w,. For more information on adaptive feedforward systems with low-

pass filters see (8].

Figure 3-10 shows a block diagram of an AFC system where the stability is en-
hanced using a phase shift parameter ¢,. As will be shown in chapter 4, this block

diagram has the LTI equivalent of

Cls) = Gn (8 COS Py, + wp sin ¢y,) '

piary (3.16)

This system still places the pole pair on the imaginary axis, but offers enhanced
stability by allowing the designer to place the system zero anywhere along the real
axis. The development of this structure is detailed by Messner and Bodson in [57].
In the next chapter, we will present a loop shaping perspective for selecting g, and
¢n. This structure has the advantage of enhanced stability but has the disadvantage
of requiring the generation of four sinusoids. An equivalent structure titled Higher
Harmonic Control (HHC) was concurrently developed lowers the number of required

sinusoids to two.

130



sin(wnt)

Figure 3-11: Block diagram of a continuous-time Higher Harmonic Controller. Figure
adapted from Hall and Wereley [37].

Higher Harmonic Control was developed to cancel vibrations in helicopters due to
variations in the rotor blade loads. It was first developed by McHugh and Shaw [56]
and Shaw and Albion [81] as a discrete-time algorithm. Figure 3-11 shows a block
diagram of a continuous-time HHC controller as developed by Hall and Wereley [37].
In this controller the phase of the controller is determined by the rotation matrix T.

For higher harmonic control T is given by

TCC TCS
T= , (3.17)
TSC TSS
where
Tee = Tss = Re[G(jwn)] (3.18)
Tes = —Ts = Im[G(jwy)] (3.19)

and G(s) is the transfer function of the system to be controlled. This structure is
equivalent to within a gain factor of that shown in Figure 3-10 if the AFC phase
advance is set as ¢, = /P(jwy,), where P(jwy,) is the transfer function of system to

be controlled by the AFC resonator.

Figure 3-12 shows a block diagram of an Automatic Vibration Rejection algorithm
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Figure 3-12: Automatic Vibration Rejection algorithm in an AFC equivalent form.
Figure adapted from [15].

in an AFC equivalent form (Figure adapted from [15]). Automatic Vibration Rejec-
tion (AVR) is a self-tuning disturbance rejection system for use on magnetic bearings.
This structure has been used widely in magnetic bearings, and was recently patented
by Tamisier et al [89]. In this control structure, Tamisier et al have employed the gen-
eral form for adaptive feedforward controller where the integrator has been replaced
by a general purpose low-pass filter. Just as in the HHC structure, the phase of the
control structure is determined by a rotation matrix M. For AVR the rotation matrix

is defined as

M — |: cosy —siny } (3.20)
siny cos
where
Y= LS(jw) (3.21)
and
1

S(s) (3.22)

ERNEACTENE
where G.(s) is a conventional controller and G,(s) is the transfer function of the
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magnetic bearing. As we can see if the an integrator is used as the low-pass filter,
this control system is identical to the control structure we use on our FTS. Tamisier
et al have also developed a perspective on AVR control which is quite similar to the

oscillator amplitude control perspective we detail in chapter 5.

3.4 Summary

In this chapter, we have presented our FTS control structure. Qur FTS controller
consists of a feedforward outer loop, a conventional inner-loop, and a multiple res-
onator AFC controller. This chapter contained a brief description of the feedforward
controller and an introduction of AFC control. In chapter 4, we provide a detailed
analysis of AFC control from our loop shaping perspective. The development of the

conventional inner loop is presented in chapter 6.
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Chapter 4

Adaptive Feedforward Cancellation

In this chapter, we examine in detail a type of repetitive control called Adaptive
Feedforward Cancellation (AFC). One of the advantages AFC control has over the
techniques described in the previous chapter is that each AFC resonator (the core
element of an AFC controller) acts at only a single frequency. This means that the
controller can drive the system error to zero at selected frequencies with robust sta-
bility properties. Sections 5.1 through 5.4 detail how to tune AFC controllers from a
loop shaping perspective. The work presented here is an expanded version of the pre-
sentation [12]. In Section 5.5, we introduce an extension of conventional AFC control
which we term Amplitude Modulated Adaptive Feedforward Cancellation (AMAFC).
AMAFC is intended to reduce errors in trajectories where the commanded amplitudes

vary as a function of time.

4.1 Adaptive Feedforward Cancellation

Adaptive feedforward cancellation (AFC) algorithms form a special class of repetitive
control. Unlike memory loop repetitive controllers, equations (3.5) and (3.8), they
allow the designer to place controller poles at a specific frequency, resulting in an
infinite gain at the desired frequency, thus allowing perfect steady-state tracking and
disturbance rejection at the resonator frequency. Figure 4-1 shows the continuous time

structure of the AFC algorithm used in this research. This form of AFC control first
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Figure 4-1: Resonator structure which forms the core of the AFC controller.

appeared explicitly in the literature [57], while an equivalent structure called Higher
Harmonic Control using a rotation matrix to implement ¢, was presented earlier in
[37]. It has been shown in [54, 11] that the control structure in Fig. 4-1 with the
phase advance parameter ¢, set to zero is equivalent to a linear time-invariant (LTT)

system of the form

S
Cn(S) = g’n82 + (.U2 ki (41)

where the gain g, is a constant to be determined by the user. This system consists
of a complex conjugate pair of pole on the imaginary axis at s = *jw, and a single
zero at the origin. It has been shown in [57], [37], [12] that with the phase advance
parameter included the system is equivalent to

. _ 3uusyn T Wi Sl gy
= Cu(s) = gn Tt : (4.2)

where both the gain g, and the phase advance parameter ¢,, are to be selected by the
user. The system represented by (4.2) also has a complex pole pair on the imaginary

axis at s = +jw, but allows the designer to place the zero on the real axis at

§=—w S én, (4.3)

"cos ¢y,
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In principle, the steady state output of (4.1) and (4.2) are equivalent but in practice
(4.2) is superior because it offers enhanced stability robustness. The LTI forms in (4.1)
and (4.2) are important results because they allow the designer to use classic control
techniques (Root Locus plots, Bode plots, Nyquist diagrams, etc.) to determine the
closed-loop stability of the system.

In the following subsections, I detail three methods for showing the equivalence

between the AFC structure in 4-1 and (4.2)

4.1.1 AFC Equivalence - Time domain approach

In this approach, we base our argument almost completely in the time domain, waiting
until the final step to take the Laplace transform. We first published this in [12].

Examining Figure 4-1, the signals entering the integrator blocks are

a(t) = gaw(t) cos(wnt + ¢n),

b(t) = guz(t)sin(w,t + ¢y,). (4.4)

Assuming the system is at rest when ¢ = 0, integrating these signals with respect to

time ¢ yields

a(t) = /Ot gn2(7) cos(wnT + ¢y,) dr,

4
b(t) = / gnz(T) Sin(WnT + ¢n) dr. (4.5)
0
The output y(t) is the sum of these signals, a(t) and b(t), as modulated by sinusoids:

t
y(t) = coswnt/O gn@(T) cos(wnT + @) dT

t
+sin wnt/ gnz(7) sin(w,7 + ¢y) d7. (4.6)
0
Bringing the sinusoids into the integrals and combining the terms yields

y(t) = /Ot (T )[cos(wn Ty + ¢r) COSWnt
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+sin(wnT + ¢p,) sinwyt] dr. (4.7)

The term in brackets is the trigonometric identity for the cosine of a difference; and

thus
y(t) = /0 9n@(T) cos(wy [t — 7] — ¢y,) dr. (4.8)

This integral has the form of a convolution, namely

y(t) = z(t) * gy cos(wut — dy)

= z(t) * gn[cos(wnt) cos(¢n) + sin(wp,t) sin(ey, )] (4.9)

The analysis is completed by taking the Laplace transform of both sides, noting
that the convolution of the time signals corresponds to multiplication of the Laplace

transforms. Thus,
5CO8 ¢, + wy, 8N ¢y,

V() = X(s) ga 2L TR

, (4.10)

which gives the form of equation (4.2). This same proof is presented in [8] for more

general systems, where arbitrary transfer functions replace the integrator blocks.

4.1.2 AFC equivalence - Laplace Shifting Method

The following is an extension of the analyses performed in [54, 11] which do not
include the phase advance parameter ¢,. This approach depends upon the shifting

property of Laplace transforms

LU = Rl

v

L{f()e**} = F(s—sg), (4.11)

and the Euler definitions of sin and cos,

Jbn —Jpn

cos(wpt + ¢n) = %ejwnt + 5 o~ Jwnt
. eitn emitn
sin(wpt + ¢n) = __‘?J_.eywnt - o~ n (4.12)
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Egs. (4.11) and (4.12) together imply that

(i o—itn
LC{f(t) cos{wnt + ¢n)} = ——Q—F(s — jwn) + F(s+ jwn)
C{f(1) s 7 pls — j e st 413
{f(t) sin(wpt + ¢,)} = 5 (8 — jwn) — 5 (8 + jun) (4.13)

From Fig. 4-1, it can be seen that the coefficients a(t) and b(t) which are the signals

entering the integrators can be expressed as

a(t) = gnx(t) cos(wnt + ¢n)

b(t) = gnz(t)sin(wnt + ¢n). (4.14)

Taking the Laplace transforms of these as given by (4.13), and accounting for in the

integration with an additional factor of s, yields

gn€'% X (s — jwy) N Gn€ 9% X (s + jwy)

A =

(s) 2 s 2 s
b i —jén X ;

B(s) = &% X(s—jwn) gne ’ (s + jwn) (4.15)
27 5 27 s

The output y(t) can be expressed as

y(t) = a(t) cos(wnt) + b(t) sin(wnt) (4.16)

and therefore, the Laplace transform is

Als = juwn) | Als+jwn)  Bls=jun) _ Bls+ jwn)

Yis) = 2 2 2% 2

(4.17)

Now, by substituting in for the Laplace transforms of the coeflicients a(t) and b(t)

from Eq. (4.13), we arrive at

gne?® X(s = 2jwn) | gae?? X(s)

Y(s) =

4 § = Jwn 4 s+ jwy
gne " X(s)  gn€? % X(s + 2jwn)
+ o :
45— jwy 4 s+ jwn
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_ g€ X(s — 2jwn) | gne?Pn X(s)

4 § — jwy 4 5+ jw,
+gne‘7¢" X(s)  gne % X(s 4 2jwn)
4  s— jw, 4 5+ jwy
which can be simplified to
j¢n “~J¢n
Y(s) = gX(s)| e e

— + -
2 S+ jwn, 8 — Jwn
Bringing the terms in the sum into a common denominator, we have

gn X (8)[e7%"(s — jwn) + eI (s + Jwn)]
2(s + jwn)(s — jwn)

Y(s) =

This can be rearranged to be

an(S) ej¢n + e_jd’n ej¢n —_ e_j¢n
Y(s = n ’
() 82 + w? s 2 T 2j

and therefore

Y{(s) 5C0S ¢ + Wy Sin Py,
X (s) In 82 +w? ’

which is the same result as (4.2) and (4.10).

4.1.3 AFC equivalence - Differential Equation Method

(4.18)

(4.19)

(4.20)

(4.21)

(4.22)

This method is similar to the time domain approach in that we wait until the final step

to employ the Laplace transform, but in this analysis we prove the equivalence using

a linear constant-coefficient differential equation. Again from Fig. 4-1, we observe

that

a(t) = gnz(t) cos(wnt + dn)
b(t) = gn(t) sin(wpt + @)
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and
y(t) = a(t) coswyt + b(t) sin wyt.
Differentiating Eq. (4.24) with respect to time ¢ yields
J(t) = a(t) coswy + b(t) sin wnt — wpa(t) sinwat + wrb(t) cos wpt,
which, when combined with Eq. (4.23) becomes

y(t) = gnz(t)[cos(wnt + ¢n) cOSwnt + sin(wnpl + ¢p) sinwyt]

—wpla(t) sinwy — b(t) cos wyt].
By trigonometric identity, this reduces to
Y(t) = gox(t) cos(wnt — wnt + Pn) — wyla(t) sinwyt — b(t) cos wpt],
or more simply
Y(t) = gnz(t) cos ¢n, — wyla(t) sinwy,t — b(¢) cos wyt].
This equation can then be differentiated in time ¢, to yield

§(t) = gni(t)cosdy + wnb(t) cosw,t — a(t) sinwpt]

—w2[a(t) coswpt + b(t) sin wpt].

Substituting in Eq. (4.23), we have

(4.24)

(4.25)

(4.26)

(4.27)

(4.28)

(4.29)

i) = gnz(t) cos dpn + gnwnz(t)[cos wpt sin(wpt + @) — sinwpt cos(wnt + ¢n)]

~w?la(t) coswyt + b(t) sinwyt].
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Figure 4-2: Discrete Time AFC structure

The terms in the center brackets can be transformed by trigonometric identity, while

the terms in the right brackets are simply y(t) as given in Eq. (4.24). Thus,
§(t) = gni(t) cos dp + Gnwnz(t) sin(wnt ~ wnt + ¢n) — wiy(t). (4.31)
Separating variables, we have
G(t) + Wiy(t) = gn(2(t) cos dp + x(t)w, sin ¢y,). (4.32)

Taking the Laplace transform of both sides (assuming zero initial conditions) yields

Y(s)(s* +w?) = gn(scosg, + wysing,)X(s), (4.33)
or
Y{(s) 8 COS ¢y, + Wy sin b, TRy
=Yn s 4.0
X(s) Y 8% + w? \#o%

which is identical to the earlier results. A similar analysis is given in [57).

4.1.4 Discrete Time AFC implementation

In general, AFC control is implemented in discrete time. Figure 4-2 shows one dis-

crete time implementation of AFC control. This structure is nearly identical to the
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continuous time structure shown in Figure 4-1 except that we have replaced the con-
tinuous sinusoids with a discrete sinusoid and the integrators with summers. For the
purpose of controller design, we would like to find the LTI system equivalent for this
structure. In this section, we present a time domain approach to finding the equiva-
lent structure taking the Z-transform of the signals as a final step. This parallels the
earlier continuous time presentation.

In this section, we use the dot notation informally, in that it represents a discrete-
time equivalent of differentiation. Also, we have elected not to include the sample time
T as a part of the discrete time integration. This means that the appropriate value

of g changes with sample rate. This issue is addressed in more detail in chapter 6.

To start with, we note that the signals entering the summers are

fl

afn] gzn] cos (wTn + ¢) (4.35)

bjn] = gz[n]sin (WTn + ¢). (4.36)

This means that the signals exiting the summers are

n

aln] = g z[k]cos(wTk + ¢) (4.37)
k=0

bln] = ¢ f: zlk]sin(wTk + ¢). (4.38)
k=0

The summer outputs are then modulated by cos(wTn) and sin(wTn) to form

n

Ugn] = geos(wln) ) xlk] cos(wTk + @) (4.39)
up|n] = gsin(wTn) i Isin(wTk + ¢). (4.40)

Moving the modulation signals into the summation yields

n

ug[n] = Z_: cos(wT'k + ¢) cos(wTn) (4.41)
wpln] = i | sin(wTk + ¢) sin(wT'n). (4.42)
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The controller output y[n] is formed by adding u,[n] and u,[n] together to form

n

yln] = g zlk] (cos(wTk + ¢) cos(wTn) + sin(wTk + ¢)sin(wTn)). (4.43)
k=0

Using the following trigonometric identity

cos(wT'(k —n)+¢) = cos(wTk + ¢)cos(wTn)

+sin(wTk + ¢) sin(wTn), (4.44)

we can manipulate y[n| such that

o] = g :Zo 2[k] cos(WT (k — n) + ¢). (4.45)
Manipulating yfn] further using
cos(WT'(k =)+ ¢) = cos(wI'(k —n))cosd — sin(WT'(k — n))siné, (4.46)
results in

Xn: (cos(wT'(k —n))cos¢ —sin(wT'(k —n))sing).  (4.47)

Since cos ¢ and sin ¢ are not functions of &£, we can move them out of the summation

so that
y[n] = cos ¢ Z Jcos(wT'(k — n)) —sin¢ i zlk] sin(wT'(k — n)). (4.48)

It can be noted that the summations are the discrete-time convolution sums [70]

Xn: zlk]cos(wT'(k —n)) = z[n|*cos(wTn) (4.49)
k=0
i klsin(wT'(k —n)) = z[n]*sin(wTn), (4.50)
k=0
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resulting in
y[n] = g cos ¢(z{n] * cos(wTn)) — sin ¢p(z[n] * sin(wTn)). (4.51)

Since convolution in the time domain is the equivalent to multiplication in the fre-

quency domain, we can take the Z-transform of y[n] to find Y'(2),
Y(2) = gcosdX(2)Z{cos(wTn)} — sin pX (2)Z{sin(wTn)}. (4.52)

Manipulating this function into transfer function notation yields

Y(z)
X(2)

= gcos@pZ{cos(wTn)} — sin pZ{sin(wTn)}. (4.53)

Substituting in for the Z-transforms, and assuming zero initial conditions yields

Z{cos(wTn)} = zzz—(ZZZO(;(()Z(;)Y;)ll (4.54)

) _ zsin(wT)
Z{sin(wTn)} = Py o g (4.55)

which results in

Y(z)  z%cos¢ — z(cos(wT) cos ¢ — sin(wT) sin ¢)
X(z) g 22 —2cos(wT)z + 1 (4.56)
_ gz2 cos ¢ — z(cos(wT + ¢)) (4.57)

22 — 2cos(wT)z + 1

Weerasooriya found a very similar LTI equivalent in [101] but did not include the
phase advance parameter ¢. This LTI equivalent differs significantly from that pre-

sented in [54] which is

cos(wT)z — 1

Cila) = 9T 7 T = eosT £ )

(4.58)
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and the phase adjusted form

Ut _ 27 Heos(wT — @) — 27" cos(¢)]
Y (1) 1—2cos(wT)z=! + 22

(4.59)

from [57]. Clearly these forms are not equivalent. The difference arises due to differing
definitions of the summation opperation. Ludwick and Messner have based their

summations on a forward difference approximation to integration

yn+1] = zn+1]+yn (4.60)
Y 1
—X—(z) = 7 (4.61)

While Weerasooriya and I use a backwards difference:

yln] = z[n]+yh-1] (4.62)

Y
@ = == (4.63)

The resulting transfer functions are equivalent at frequencies near w, roughly equal
for frequencies below w, and vary greatly at higher frequencies. In general, control
systems designers try to limit the highest frequency they try to manipulate to 1/10
the sampling frequency and at low, relative to the sample rate, frequencies there is

no real advantage to either approach or difference between the approaches.

In this section, we have derived a discrete-time transfer function , Eq. (4.57), which
is analogous to the continuous time transfer function (4.2). In the next section, we
detail a loop shaping perspective to selecting resonator phase (¢) and gain (g) which

is applicable to both the discrete and continuous time representation.
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4.2 Adaptive Feedforward Cancellation from a loop

shaping perspective

In this section, we develop a loop shaping perspective to tuning AFC controllers. In
subsection 4.2.1, we detail the impact of ¢, on the loop shape of a system utilizing
AFC control and how to select the value of ¢, which results in the maximum loop
phase margin. In subsection 4.2.2, we evaluate the impact of g, on the performance
of AFC systems. Lastly, we present our method of selecting ¢, and ¢, for robust
controller stability in subsection 4.2.3.

Experimental results applying our tuning method to the rotary fast tool servo
for accurate trajectory following are presented in subsection 4.2.4 Additionally, ex-
perimental results for our prototype linear FTS are presented in section 7.1. Lastly,
experimental results are presented in section 7.3 utilizing our tuning method for ma-
chine base acceleration attenuation (section 6.3 details how we adapted AFC control

for this purpose).

4.2.1 Phase Advance Parameter ¢,

To properly tune a parallel array of AFC resonators, we first need to understand the
effects of the phase advance parameter ¢, on the transfer function (4.2). We start by
examining the effect ¢,, has on the pole-zero plot and frequency response for a single
resonator. Next, we examine the effect of ¢, on the pole-zero plot and frequency
response of multi-resonator systems with two, three, and ten resonators, respectively.
Ubservatlons from these systems lead to general tuning rules for systems with any
number of parallel AFC resonators.

As noted earlier, a single AFC resonator (4.2) has a single real axis zero and
a complex conjugate pair of poles. The position of the zero along the real axis
is determined by the values of both w, and ¢,. In the design process, w, is first
chosen to match a desired error-nulling frequency. After selecting the desired w,, the

resonator zero may be placed anywhere along the real axis by selecting ¢,,. Figure
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Figure 4-3: Pole-Zero map of single resonator with —7/2 < ¢,, < 7/2. Corresponding
frequency responses are shown in Figure 4-4 for —7/2 < ¢, < 0 and Figure 4-5 for
0< ¢, <m/2

4-3 illustrates the possible zero locations as ¢, is varied between —m/2 and 7/2 with
wn = 20m. The resonator zero is on the positive real axis when —m/2 < ¢ < 0,
and on the negative real axis when 0 < ¢, < m/2. Since sin and cos are periodic,
the zero location simply wraps along the real axis for phase angles outside the range

—7/2 < ¢ < /2 with attendant alterations in the sign of the transfer function.

As can be seen in Figures 4-4 and 4-5, the location of the real axis zero affects
the frequency response of an AFC resonator in several ways. First, the zero location
affects the magnitude curve above and below the resonant peak. These effects are only
of secondary importance, as we primarily care about the magnitude near the resonant
peak at w,; here the magnitude is largely unaffected by ¢,,. This independence can be
seen by taking the magnitude of (4.2) for frequencies near wy, i.e., for s = jwn(1 + ¢)
where |e| < 1. This yields

Jwa(1 + €) cos ¢p + wy Sin @y,
2 —(1+ a2

[Clwn(1+€)| = 9n
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Figure 4-4: Bode plot showing the effect of a negative phase advance parameter ¢,
on resonator shape. The resonance is centered on 62.8 rad/s (10 Hz).
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Figure 4-5: Bode plot showing the effect of a positive phase advance parameter ¢,
on resonator shape. The resonance is centered on 62.8 rad/s (10 Hz).
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wn\/(l + 2€ + €2) cos? ¢, + sin® ¢,

_— 4.
g W22 1 )] (4.64)
Dropping terms in €2 and higher simplifies this expression to
wn\/(l + 2€) cos? ¢y, + sin® ¢,
C j n ]- ~ n
Clm+) ~ ¢ Tl
wn/1+ 2ecos? @,
In 2] . (4.65)
Employing the approximation v'1 + A = 1+ A/2 where |A| < 1, results in
. 1 € cos? ¢,
Cliun(+ )] ~ o (5o + 20
2wy, €| |€|wn
1 cos? ¢y,
oo (g + 022 (4.66)
Since |€| < 1 the first term dominates, and this simplifies to
IC(jwa(l +€))| ~ 2 (4.67)

2wple|”

This demonstrates that in the vicinity of the resonant peak, the magnitude is not

significantly affected by the choice of ¢,.

More importantly for design, the location of the real axis zero affects the phase
response of the resonator. If the real axis zero is placed in the right half plane
(—7/2 < ¢, < 0), Figure 4-4, the resonator phase starts at 7 for w = 0 and then it
decreases to 7/2 — ¢, as w approaches wy, from below. At w,, the phase drops by
7 to a value of —¢, — 7/2, and then asymptotically approaches —7/2 as w — oo.
Similarly if the real axis zero is placed in the left half plane (7/2 > ¢, > 0), Figure
4-5, the resonator phase starts at 0 for w = 0 and then increases to 7/2 — ¢, as w
approaches w, from below. At w = w, the phase drops by = to —¢, — 7/2, and then

asymptotically approaches —7/2 as w — 00 .
The key feature to note in Figures 4-4 and 4-5 is that the resonator phase discon-
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tinuity of —7 radians at w = w,, is always centered on —¢,, for all —7/2 < ¢, < 7/2.
This can be seen mathematically by looking at the phase of the numerator and de-

nominator of (4.2). The phase of the numerator at s = jw, can be determined as

follows:
N(jwn) = jwncosdy, + wysing, = jw,(cos ¢, — jsin ¢,)
= jwpe I = wnej”/ze”jd’" — wnej(ﬁ/?—d’n)7 (4.68)
and thus
IN(jon) = 7= (4.69)

Since the phase of the denominator is discontinuous at s = jw,, it is helpful to define
a term /D(jw,) which is the average angle of the denominator in (4.2) as w passes

through w,,. That is

(D(jw;) = 0
(D(jwl) = « (4.70)

where w; is just below w,, and w; is just above w,. With this notation, the average

angle of the denominator is

D) = (ZD(jw;);ZD(JWI)):Z;.. (4.71)

Combining equations (4.69) and (4.71), we define the average angle of the resonator

at s = jwy, as [C’(jwn), where

LC(juwn) = LN(jun) = LD(jwn) = 5 = du = 5 =~ (4.72)

This is the key result which demonstrates the utility of the form 4.2. In this form, the
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Figure 4-6: Pole-zero plot for two resonators Cy(s) and Cy(s) taken in isolation with
(].!)1 = ( and qbg = —45°.

average resonator phase at the resonant frequency is directly set by ¢,. Said another
way, the choice of ¢, allows us to set the center of the —m phase discontinuity to a
desired value, and thereby to maximize the AFC loop phase margin at each resonant
peak in a fashion decoupled from the choice of resonator gain gn.

Analysis becomes more complicated when multiple resonators are employed. First,
the pole-zero plot of a multiple resonator system does not provide much design insight
since it is not obvious how changing the zero location of a single resonator in a
parallel array will affect the zero locations of the combined system. This point can
be understood in the context of a two resonator system as follows. Figure 4-6 shows

the pole-zero plot for two resonators taken in isolation with ¢ = 0 and ¢ = —45°.

1

The first resonator has a complex conjugate pair of poles at £10j sec™ and a real

axis zero at the origin. The second resonator has a complex conjugate pair of poles
at 2075 sec™! and a real axis zero at 20 sec™!. Figure 4-7 shows the pole-zero plot for
the same two resonators in parallel, C(s) = Ci(s)+ Ca(s). In the parallel system, the
controller poles are in the same location but the system now has a complex conjugate

pair of zeros as well as a real axis zero. This is not surprising, since when systems
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Figure 4-7: Pole-zero plot for two resonator blocks taken in parallel C(s) = Ci(s) +
Cs(s) with ¢; = 0 and ¢ = —45°.

are additively combined, zero locations are not preserved.

Figure 4-8 shows a pole-zero plot for three resonators taken in isolation, where
¢1 = ¢ = 0 and ¢3 = —45°. Figure 4-9 shows the pole-zero plot for the same three
resonators in parallel, C(s) = Ci(s) + Ca(s) + Cs(s). Once again, the poles remain
in the same location, but the real axis zeros have been transformed into two pairs of

complex conjugates and a single real axis zero.

Figure 4-10 shows the pole zero plot for the ten resonator controller developed later
in the section (¢, gn, and w, listed in Table A.2). These diagrams clearly illustrate
the difficulty in adjusting the phase advance of an individual resonator from the pole-
zero plot of a multiple resonator system. We find however that a frequency domain
perspective does allow a rational design process, and the direct tuning of individual
resonator parameters as described below.

The frequency response of a multiple resonator system yields more design insight
than the pole-zero plot. In a system with N resonators added in parallel, the frequency
response contains N resonant peaks, N — 1 local minima between the resonant peaks,

and N phase discontinuities of —7 radians associated with the resonances. From
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Figure 4-8: Pole-zero plot for three resonator blocks Ci(s), Cz(s), and C3(s) taken in
isolation with ¢; = ¢ =0, and ¢3 = —45°.
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Figure 4-9: Pole-zero plot for three resonators in parallel C(s) = C1(s)+Ca(s)+Cs(s)
with ¢1 = (252 = 0, and ¢3 = —45°.
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Figure 4-10: Pole-zero plot of C(s) for 10 resonators in parallel. The parameters ¢,
gn, and w,, for this system are listed in Table A.2.

a loop-shaping perspective the critical issue is how the AFC loop Nyquist plot is
influenced by the choice of the g, and ¢, parameters. Within this context, we show
that the ¢, parameters can be simply chosen on the basis of the phase of P(s)
evaluated at w,. The gain parameters g, are then chosen to set the gain margin
associated with each of the magnitude minima between the resonant peaks.

To understand this tuning process it is helpful to examine the frequency response
characteristics of parallel resonator arrays as ¢, is varied. Figure 4-11 shows a Bode
magnitude plot for a two resonator system where the phase difference (A¢ = ¢, — ¢2)
between the first resonator phase advance ¢; and the second resonator phase advance
¢2 is varied over 0, —m/2, and —m. The figure shows that the magnitude of the local
minima is maximized when A¢ = —m, since for this choice the two resonators are in
phase at the local minima. Conversely, a sharp notch results when A¢ = 0, since for
this choice the two resonators are in anti-phase at the point where their magnitudes
are equal.

Figure 4-12 illustrates how for A¢ = 7 the —7 phase drop of the first resonator

at w; results in a system with the two resonators having equal phase shift between
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Figure 4-11: Bode magnitude plot for a 2 resonator system with the phase angle
difference (A¢) between the two resonators varied from 0 to -m
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Figure 4-12: Bode phase plot of two resonators illustrating how resonators with ¢; = ¢
and ¢ = ¢ + 7 result in a system with the two resonators in phase in the frequencies
between the two resonances. The dot indicates the average phase at each resonance.
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Figure 4-13: Bode phase plot of two resonators illustrating how resonators with ¢; =
¢2 = ¢ results in a system with the two resonators out of phase in the frequencies
between the two resonances. The dot indicates the average phase at each resonance.

w; and ws. Thus the two magnitudes curves are in phase in the region where their
magnitudes are equal, and thus add constructively. This constructive combination

accounts for the shallow notch for A¢ = £7 seen in Figure 4-11.

Similarly, the magnitude of the local minima is minimized, 0 on a linear scale
and —oo on a log scale, when A¢ = 0, such that the phases of the two resonators
differ by =7 between w; and wy. Figure 4-13 illustrates this for two resonators with
¢1 = ¢y = ¢. As shown, this results in a system where, between w; and ws, the
resonator phases differ by £, and thus add destructively in the region where their
magnitude curves are approximately equal. This destructive combination accounts

for the sharp notch associated with A¢ = 0 seen in Figure 4-11.

Figure 4-14 expands this viewpoint by showing the Bode plot of a three resonator
system with ¢, = ¢ = 0 and ¢3 = —45°. This figure shows several important
features. First, we see even in a multiple resonator system /C(jw,) = —@, at each
resonant peak, as shown by the dots on the phase curve. Second, we see that the
depth of all the local minima are dependent on the phase advance ¢, of all the
resonators. Thus even though the first and second resonators add destructively at
the first minima, the magnitude of the local minima is determined by the non-zero
magnitude of the third resonator. That is if Wy, is the frequency of the magnitude

minimum between w; and ws, we have C}(wWmin1) = —C2(wWmin1) and thus |C(wmin1)| =
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Figure 4-14: Bode plot for a three resonator system with ¢; = ¢o = 0,93 = —45°.
The dots mark the center of the phase discontinuity to show the effect of the phase
parameter ¢,; the phase at this point is equal to -¢p.

|C3(wmin1)|- Third, the frequency location of the local minima are roughly at the

geometric mean frequency of the adjacent resonant peaks and may be expressed as
Wnin =~ y/Wiwa. (473)

Lastly, the phase of the system changes by £180° in the vicinity of the frequency of
the local minima, i.e., for each complex pair of zeros. Thus, a way to ensure system
stability is to set ¢, to keep the AFC loop transfer function phase curve discontinuities
centered on 0°, and to keep the magnitude of the local minima sufficiently below 0
dB.

So far we have examined /C(jw), the phase angle of the AFC control block, in
isolation. In practice, we need to evaluate the phase angle of both the plant and
AFC control block, Z{C(jw)P(jw)}. We know from the previous discussion that at
each w,, C(jw) has a —180° phase drop centered on —¢, and thus LC(wy) = —¢n.
Examining the system from a Nyquist perspective, to maximize the phase margin

of the system, we would like to center the phase discontinuity of Z{C(jwn)P(jwn)}
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Figure 4-15: Nyquist diagrams of C(s)P(s) for a system with an AFC resonator
w; = 628.3 rad/s (100 Hz) where in (a) ¢=0 and in (b) The associated Nyquist
contour is shown in (c¢). The -1 point is shown as a cross in a) and b).

about 0°, so that the phase discontinuity lies between £90°. By this choice, AFC
controlled systems will approach a phase margin of 90°. If we define ¢y, = £P(jwn),
i.e. ¢pn is the angle of the plant at each resonator frequency, then the average phase

of the system at each resonance may be expressed as
£{C(jwn)P(jwn)} = LC(jwn) + LP(jwn) = —bn + pm- (4.74)

Thus to make Z{C(jwn)P(jwn)} = 0°, all we need to do is set ¢n = ¢pn. A similar
analysis and result is derived for zero phase error tracking (ZPTEC) in [91]. This
result is also presented for a single resonator in [57] and [11].

This phase adjustment is essential for plants in which the phase varies significantly
as a function of frequency. For example, Figure 4-15 illustrates the Nyquist diagrams
for the rotary fast tool servo system with a single AFC resonator operating at 100 Hz.
Figure 4-15(a) is the Nyquist plot for C'(s)P(s) with ¢; = 0°and thus no phase
adjustment. Notice that the Nyquist plot for this system significantly penetrates the
left half plane, and thus the AFC loop exhibits a resulting phase margin of 39°. The
reason for this is that the plant P(s) has a phase shift of -50° at 100 Hz. Figure
4-15(b) is the Nyquist plot for a controller where the phase is properly adjusted to
$1 = ¢pn. This AFC loop exhibits a phase margin of 89.2°, which is significantly
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Figure 4-16: Nyquist diagrams of C(s)P(s) for a system with 10 resonators where
in (a) ¢,=0 and in (b) The associated Nyquist contour is given in (c), with detours
around the imaginary axis poles of C(s)P(s). The parameters ¢y, g,, and w, for this
system are listed in Table A.2.

more robust. Figure 4-16 depicts the Nyquist diagrams for the fast tool servo system
with 10 resonators (see Table A.2 for AFC resonator values). The system in Figure
4-16(a) which has no phase adjustment, ¢,, = 0, is unstable because the Nyquist loops
associated with the three highest frequency resonators (160, 180, and 200 Hz) encircle
-1. The Nyquist plot of Figure 4-16(b) with phase properly adjusted, ¢, = ZP(jwy),
has a phase margin of better than 84°for all loops. Figure 4-17 shows the Bode plot
associated with the figure 4-16(a) Nyquist plot while Figure 4-18 is the Bode plot for
the Figure 4-16(b) Nyquist plot. Notice the unstable phase curve in Figure 4-17 and

the stable phase curve in Figure 4-18.

In this subsection, we learned that including a phase advance parameter to a res-
onator allows us to apply AFC control to systems with phases |¢| > 90°. Additionally,
we proved that setting the AFC controller phase ¢, = /P(jwn)) maximizes the phase
margin of an AFC compensated system. In the next subsection, we explore the effect

the AFC controller gain g, has on the performance of an AFC controller.
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Figure 4-17: The negative of the AFC loop transmission Cy,(jw)P(jw) with ¢, =0
and with g, and w, as listed in Table A.2). The dots mark the center of the phase
discontinuity to show the effect of the phase parameter ¢,. This loop is unstable.
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Figure 4-18: The negative of the AFC loop transmission Cy,(jw)P(jw) for the rotary
fast-tool servo with 10 resonators and g, = 1 and , (values in Table A.1). This loop
is stable, with 84° phase margin. (Note excessive gain margin at each minima; this

issue is addressed in subsection 4.2.3.)
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Figure 4-19: Block diagram of a single resonator C(s) controlling the second order
plant P(s), and used to simulate the effect of resonator gain on system response. Here
wy = 20 rad/s and ¢; = 0.023°.

4.2.2 Resonator Gains

To maximize disturbance rejection in the vicinity of w,, we would like to maximize
the gain g, for each resonator. Just as in a conventional controller, the resonator
gain affects relative stability as well as the system settling time and the system error
for inputs in the vicinity of w,. In the case of an AFC resonator, the settling time
represents the characteristic time to cancel out a disturbance or adjust to a magnitude
shift in the reference input component at the resonator frequency. The higher the
resonator gain, generally the more rapidly the resonator responds in the closed loop
within the limits of stability. Similarly while an AFC resonator with zero damping (i.e.
the resonant poles are on the imaginary axis) will eventually drive the system error
at exactly the resonator frequency wy, to zero regardless of the resonator gain g,, the
system error to commands and disturbances near but not at the resonator frequency
is inversely proportional to the resonator gain. Thus the higher the resonator gain,
the lower the system error for disturbance inputs near the resonator frequency. This
result is important since any system is likely to have perturbations in the frequency
of the periodic motion which will shift the frequency of the disturbance inputs from
the resonator frequency, and as well, no system operates exactly in steady state in
finite time.

To illustrate the effects of resonator gain on system response, we simulated in time
a loop with a single 20 rad/s AFC resonator acting on a second order system P(s)
with a natural frequency w,, = 1200 rad/s and a damping ratio of {,, = 0.7. Figure
4-19 shows the block diagram of the simulated system while Figure 4-20 illustrates

the plant frequency response P(jw). Figure 4-21 plots the following error as a percent
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Figure 4-20: Bode Plot for second order system P(s) used to simulate the effect of
resonator gain on system response.
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Figure 4-21: Percent error tracking a sinusoidal reference trajectory with w, = 20
rad/s with an AFC resonator tuned to w; = 20 rad/s for resonator gains g; = 0, 1,
5, and 10, respectively.
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Figure 4-22: Percent error tracking a sinusoidal trajectory with w, = 19.5 rad/s and
an AFC resonator tuned to w, = 20 rad/s for resonator gains g; = 0, 1, 5, and 10,
respectively.

of the reference input for a 20 rad/s input as a function of time for a resonator gain of
g1 = 0 (no AFC control), and g; = 1, 5, and 10 respectively. For zero gain, the peak
following error is 2.3%. The addition of the AFC controller will drive the system error
to zero for all positive gains and where w, = w, (w, is the frequency of the reference
input), but the error settling time is reduced from greater than 7 seconds to less than
a second as the resonator gain increases from 1 to 10. The small steady-state ripple
observed in the figures for g; = 5 and g; = 10 is believed to be due to numerical
issues in our simulation.

We also use this simulated system to examine the error response to commands
slightly displaced from the resonator frequency. Figure 4-22 shows the error to an
w, = 19.5 rad/s input for the same four resonator gains and w, = 20 rad/s. The plots
show that while the AFC resonator attenuates the system error for all three non-zero
gains, the residual system error is decreased proportionally as the resonator gain is
increased. This effect can be explained by a simple magnitude of loop transmission

argument. Chapter 5 documents an extension of our loop shaping perspective which
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we term Oscillator Amplitude Control (OAC). The OAC perspective uses an averaging
analysis to predict the time characteristics of the error envelope with varying g,.
Overall, though, it is clear that for low errors and faster convergence, g, should be

maximized within the limits of stability.

4.2.3 Choosing Gains g, for N Parallel Resonators

There are a number of considerations that apply in selecting resonator gains g, in
multi-resonator systems. First, to avoid instability, the magnitude of the AFC loop
local minima must be kept sufficiently below 0 dB in order to avoid Nyquist encir-
clements in the AFC loop. Thus g, should not be too large. Secondly, the error in the
vicinity of each w, is approximately inversely proportional to the corresponding g,,
and thus g, needs to be made as large as possible. Lastly, while the parameters g, and
¢y, allow for some shaping of the frequency response, the underlying backbone of the
response is determined by the shape of the inner-loop plant P(s). This means that to
achieve a well-behaved response with an AFC controller, we need to start with a well
behaved plant P(s). That is, we would like a plant with slowly varying magnitude
and phase curves in the frequency range of the AFC resonators. We thus require high
performance and robust tuning of the conventional controller within P(s). Finally, it
is clear that the hardware itself must be well-designed to allow proper performance
of all the controllers. For example, non-linear effects such as drivetrain backlash or
A /D quantization will limit the performance achievable in the AFC loop.

Given the above, we employ two approximations to simplify the gain selection
process. First, since the frequency response of the system at any point is dominated
by the nearest resonators, we assume that the magnitude of a local minimum may be
controlled by adjusting the gains of the local resonators only. In the simplest case,
one can set the gain margin of a local minimum to a desired value by adjusting the
gains of just the two adjacent resonators. This approximation greatly streamlines
the design process and allows for ready hand tuning of the frequency response. This
assumption works particularly well for the low frequency resonators in multi-resonator

systems, but breaks down at the higher frequency resonators where the successive
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linear harmonics are more closely spaced on the logarithmic frequency axis. The
second approximation is that the local minima are positioned at the logarithmic
mean frequency of the two adjacent resonators. While it is not difficult to calculate
the exact frequency of a local minimum, this assumption allows one to rapidly get a
good estimate for the gain margin of a local minimum. This assumption works well
when adjacent resonators have only small differences in gain. If large gain differences
occur, the local minima will shift towards the resonator with the lower gain because of
the shoulders of the higher gain resonator will dominate the sum of the two resonators

over a larger frequency range. Our AFC tuning method can be summarized as follows:
1. For each resonator set ¢, = /P(jw,) to maximize phase margin.
2. Set initial resonator gains to unity.

3. Using the previously determined values, compute C(jw)P(jw) and determine

the local loop transmission minimum with the least gain margin.
4. Choose a desired gain margin.

5. Determine the ratio between the minimum gain margin found in step 3 and the

desired gain margin.
6. Scale all of the resonator gains by the ratio found in the previous step.
7. Recompute and plot C(jw)P(jw) to verify stability margins.

8. Adjust the gain margins of the local minima as desired by adjusting the gains

of the adjacent resonators to trade robustness for control authority.

We have applied this tuning procedure to the AFC control of our rotary fast tool
servo. The plant P(s) Bode plot for the rotary FTS is shown in Figure 4-23. Figure
4-24 shows the negative of the AFC loop transmission for the the rotary fast tool servo
system with 10 resonators with ¢, = /P(jw,), and g, = 1. The parameters ¢n, gn,
and w,, for this system are listed in Table A.1. The system has a minimum gain margin

of 34 dB at the local minimum centered between the 5th and 6th resonators. Notice
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Figure 4-23: Typical fast tool servo closed loop transfer function, P(jw) from position
reference input to measured position output. The associated state space matrices

representing this model are given in section A.1.
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Figure 4-24: The negative of the AFC loop transmission C,,(jw)P(jw) for the rotary
fast-tool servo with 10 resonators and g, = 1 and , (values in Table A.1). This loop

is stable, with 84° phase margin.
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Figure 4-25: The negative of the AFC loop transmission —L(jw) for the rotary fast-
tool servo with 10 resonators after gain scaling to a desired minimum gain margin of
20dB (¢n, gn, and w, for this system are listed in Table A.2). Note excessive gain

margin at the low- and high-frequency minima.
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Figure 4-26: The negative of the AFC loop transmission —L(jw) for the rotary fast-
tool servo with 10 resonators after hand tuning the low- and high-frequency resonators
to a target gain margin of 20dB (¢, gn, and w,, for this system are listed in Table

A3).
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that the local minima tend to follow the shape of the inner loop P(s) illustrated
in Figure 4-23. This tuning clearly has too low a value of g, and thus sacrifices
performance.

Figure 4-25 shows the same loop after increasing all of the resonator gains by a
factor of 5.18 to achieve a desired minimum gain margin of 20 dB. The parameters ¢,
gn, and w, for this system are listed in Table A.2. After gain scaling, the minimum
gain margin is still at the local minimum between the fifth and sixth resonators. Note
that there is still an excess of gain margin at both the lowest and highest frequencies.
Since the lens shapes that we are machining are dominated by the lower frequency
harmonics, we would like very good performance at low frequency. We now start to
individually tune each of the resonator gains.

Using the simpilifications described above for the relationships between resonator
gains and local minima, we have scaled up the gains for the low frequency resonators,
and turned down the gains for the middle frequency resonators. The parameters ¢,
gn, and w, for this system are listed in Table A.3. Figure 4-26 shows the results of
this tuning. The magnitude of the low frequency peaks has been increased by a factor
of 6, while the minimum gain margin has only been reduced from 20 dB to 15.9 dB
at the local minimum between the 5th and 6th resonators. This AFC loop is now

well-tuned for our machine and cutting requirements.

4.2.4 Experimental Results for the Rotary Fast Tool Servo

Figure 4-27 shows the measured error following a +1 cm amplitude 20 Hz sine wave
air cut for the fast-tool servo with and without a 20 Hz AFC resonator included in
the control loop. This cut has a peak acceleration at the tool of approximately 15 g’s.
The system error without the AFC resonator is 19.8%, as shown in the center plot
in Figure 4-27. The bottom plot shows that the peak system error with the 20 Hz
AFC resonator is reduced to £0.3 um peak (0.0033%), a factor of 5000 improvement
over the system without AFC control. The controller used to generate the results in
Figure 4-27 does not include a command pre-shifting feed-forward term.

A more stringent test is to apply AFC while the tool is cutting. Figure 4-28
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Figure 4-27: Measured error for the rotary fast tool servo for a 1 cm 20 Hz air cut
with and without a 20 Hz AFC resonator. With AFC control, this following error is

about £0.3um peak.
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Figure 4-28: Measured error with both AFC and command pre-shifting while cutting
a 0x4 toric in CR39 at 600 RPM. Data taken at a radius on the part of 30 mm.
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plots the measured error while cutting a 0x4 diopter toric in CR39, an acrylic plastic
commonly used to make spectacle lenses, at a radius of 30 mm and a spindle speed of
600 RPM. The root-mean-square following error for this cut is 1.2 gm, or 0.06% of the
peak command amplitude. The controller used to generate the results for Figure 4-28
incorporates the conventional lead-lag controller within P(s), command pre-shifting

P7!(jwy), and ten AFC resonators at harmonics of the spindle speed.

In this section, we have documented and applied a loop shaping approach for tun-
ing AFC controllers. These techniques allow us to design controllers which precisely
follow sinusoid trajectories with constant or slowly time varying magnitude. In the
next section, we present an extension to AFC control called AMAFC control designed

to enhance trajectory following for sinusoids with more rapid time varying magnitude.

4.3 Amplitude Modulated Adaptive Feedforward

Cancellation

In this section, we present an extension of Adaptive Feedforward Cancellation (AFC)
which we term Amplitude Modulated Adaptive Feedforward Cancellation (AMAFC).
The goal of AMAFC control is to improve trajectory tracking for signals with time
varying magnitude by incorporating an estimate of the time varying magnitude in the
AFC structure. In section 4.3.1, we propose an AMAFC structure which incorporates
the estimate of the time varying magnitude using multiplication. This structure was
originally proposed by Joe Calzaretta [13]. Experimental results for this structure are
included in chapter 7. Section 4.3.2 presents an AMAFC structure which incorpo-
rates the estimate of the time varying magnitude using addition. This structure was
proposed by Prof. Trumper after reading an initial draft of this thesis and thus no
experimental results were obtained. Section 4.3.3 contains simulated results applying

both AMAFC forms to a sample system.
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Figure 4-30: Block diagram of a multiplicative AMAFC resonator plus disturbance
subsystem.

4.3.1 Multiplicative Amplitude Modulated Adaptive Feed-

forward Cancellation

Figure 4-29 shows the multiplicative AMAFC control structure in two different forms.
The canonical from is shown on the left while the right side shows a form where the
basic AFC structure has been replaced with the LTI equivalent. The basic theory for
AFC control comes from the Internal Model Principle (IMP) [29]. The IMP essentially
states that for a controller to exactly cancel a disturbance it must contain a model of
the disturbance signal. Stated in another fashion, when a controller has no input, it

must be able to output exactly the negative of the disturbance signal. AFC control
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satisfies this condition if the disturbance w(t) has the form
w(t) = agsin(wt) + by cos(wt) = Acos(wt — ). (4.75)
AFC control does not satisfy the IMP if the disturbance has the form
w(t) = ag(t) sin(wt) + by(t) cos(wt) = A(t) cos(wt — ) (4.76)

since the time varying magnitude A(Z) is not included in the controller model (Note:
the A(t) cos(wt — #) form makes the assumption that %—% is constant, a more general
form would allow 8 to vary with time). To exactly cancel w(t), we must incorporate

A(t) into our controller. Since A(t) is unknown, we are forced to make an estimate

P

A(t) such that
A(t) = A(t)R(2). (4.77)

In this case A(t) is a known function representing the best estimate of the time
varying magnitude and R(¢) is a multiplicative residual function representing the
unknown error between the estimated and actual magnitudes. Figure 4-30 shows a
block diagram of the AMAFC plus disturbance subsystem. To show that this new
structure obeys the IMP, we need only set z(t) = 0. Because both integrators have

zero input, the integrator outputs become constant:

a(t) = dy (478)
b(t) — L. (1.79)

Thus the controller output is
u(t) = A(t)[ag cos(wgt) + by sin(w;t)]. (4.80)
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If the integrator outputs happen to be

a = —cosb (4.81)
by = —siné, (4.82)
the controller output becomes
u(t) = —A(t)[cos 8 cosw;t + sin @ sin w;t]
= —A(¢) cos(wit — 8). (4.83)

Thus the subsystem output

d(t) = A(t)cos(wit — ) — A(t) cos(wit — 6)
= A(t)[R(t) — 1] cos(wit — 6). (4.84)

If R(t) = 1, that is if we have perfectly modeled A(t), then d(¢) = 0 and the internal

model principle is obeyed.

Alternately if R(t) = Ry, where Ry is a non-zero constant, w(t) becomes
w(t) = RoA(t) cos(wit — ). (4.85)

The IMP is obeyed if the integrator outputs are

ay = —Rgcosd
bo = —-Rosin9 (486)
which results in
u(t) = —RyA(t)[cos b cosw;t + sin 6 sin wyt]
= —R,A(t) cos(w;t — ). (4.87)
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Figure 4-31: Block diagram of an AMAFC controlled position loop.
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Figure 4-32: Block diagram of an AMAFC controller with the modulation term A(t)
shifted to the plant.

If R(t) is time varying, the AMAFC control structure departs from the IMP which

results in a time-varying error.

In order to analyze the characteristics of the time-varying closed loop following
error e(t) under AMAFC, we need to look at the signals in more detail. Figure 4-
31 shows the block diagram of a generic plant P(s) under AMAFC control. As
we can see, we are comparing a desired output y4(t) to the actual output y(¢) to
produce an error signal e(t). This signal is then divided by our estimate of the time
variation of the disturbance A(t) to form e*(t), which is acted upon by the standard
LTI AFC controller to produce u*(t). The AMAFC controller output u(t) is then
produced by dividing u*(t) by /i(t) The plant input v(t) is produced by adding
w(t) = A(t)R(t) cos(wit — ¢) to u(t). From a block diagram perspective, this system
is a time varying controller acting upon an LTI plant. Since the controller is not

LTI, it is difficult to analyze the behavior of the system. It is useful to change our

perspective by shifting the A(t) modulation terms around the block diagram.
In order to shift the modulation terms around the block diagram, we define a
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transformed signal

f(t) = FO/A). (4.88)

Figure 4-32 shows the block diagram of this system with the A(t) modulation terms
moved around the block diagram. This now appears to be a system in which an LTI
controller is acting on a time-variant plant P*(s, t) (the combination of the modulation
terms and the plant P(s)) which does not appear to be much of an improvement. Note:
the time varying form P*(s,t¢) is not a mathematically correct and is utilized here
only to indicate that the system is LTV. In a specific case, if P(s) were a constant
Py, the time variant plant is
A(t)Py

P*(s,t) = 0 =P, (4.89)

which is LTI. This structure now looks like our conventional AFC control loop. More
generally P(s) is often nearly constant near P(jw;) and thus if A(¢) and R(t) vary
much slower than w;, we can approximate P*(s,t) as a LTI constant P(jw). This
nominally implies that e*(¢) and thus e(t) should decay to zero resulting in perfect
rejection of the disturbance w(t). In addition the LTI plant approximation means
that we can apply the tuning rules developed for selecting g; and ¢; for a standard
AFC controller to the AMAFC controller and be confident that the resulting AMAFC

controller will be stable.

To evaluate the disturbance rejection of the multiplicative AMAFC control struc-
ture it is useful to find D(s), the transfer function between the error e*(t) and the

disturbance w*(t). From Figure 4-32 we see that

D(5) = s (490
1 + 9 s;+wl» ZP*(S’t)
Lets assume that R(t) has the form
R(t) = cosat (4.91)
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where a << w;. This results in
w*(t) = cos at cos(w;t — 6). (4.92)
Employing the following two trigonometric identities

cos(A+ B) = cosAcosB —sin Asin B (4.93)
cos(A —~ B) = cosAcos B + sin Asin B, (4.94)

allows us to express w*(t) as
1
w(t) = §[cos((wi — a)t —0) + cos((w; + a)t — 6)]. (4.95)

Thus the input into the transfer function D(s) is simply two sinusoids each shifted
off of w; by & (Note: this same result can be achieved using Fourier transforms as we
do later for the Oscillator Amplitude Control perspective). Since « is much less than
w;, we are only interested in the response of D(s) at frequencies near w;. Since the

magnitude of the AFC resonator is extremely high near w;, D(s) reduces to

—P*(s,t) $? + w?

D(s) = Y == .
(s) giﬂ;;&ﬁ?ﬂﬁP*(s,t) gi(s cos ¢; + w; sin ¢;)

(4.96)

which is just the negative inverse of the AFC controller. The magnitude of this

transfer function is zero at s = jw; indicating perfect error rejection.

So far we have only discussed the effect of AMAFC control on disturbance rejec-

tion. We may also be interested in the error response for a modulated input

yq(t) = sin [t sinw;t. (4.97)

In this case, we have an excellent estimate of the amplitude modulation since we

should have precise knowledge of the desired position. From Figure 4-32, we can see
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that

E*(s) 1 (4.98)
Vi) | T4 g pes gy |

If we assume that 8 << w;, this transfer function reduces to

E*(s) _ §* 4+ w?
Yi(s)  P*(s,t)(scos ¢ + wisin ;)

(4.99)

which is similar to the (4.96), the transfer function between disturbance and error,
except the time variant plant dynamics are not canceled. This would seem to imply
that even with a perfect model of the amplitude variation, we would have some

residual error due to the time varying nature of the plant.

There are a number of issues with implementing the multiplicative AMAFC struc-
ture. One of the most significant is that for many cases A(t) = 0 at some point, this
means that 1/A(t) = oo. This is clearly unacceptable. One way to avoid this issue is
to avoid applying multiplicative AMAFC to signals which have zero value. One class

of modulation signals we might wish to cancel is
A(t) =1+ agsin 5t (4.100)

where |ag| < 1. This is the strategy we employed in generating the experimental
results. More generally, we can limit the magnitude of the 1/ A(t) signal. Figure 4-33

shows a block diagram of a multiplicative AMAFC control structure with

1 :{ 1/A(t)  for |A(t)] > ¢ w101

At) | sgn[A@)]/c for |A(t)] < ¢
This is the structure we use to generate all of our simulated results.

In addition to the implementation issues with the multiplicative AMAFC struc-
ture, from our analysis we have found that the multiplicative AMAFC structure will

perfectly cancel a disturbance with time varying magnitude if we have an accurate
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Figure 4-33: Block diagram for a multiplicative AMAFC controller with 1/A(t) lim-
ited.
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Figure 4-34: Block diagram of a standard AFC resonator and plant with zero input
into the AFC system.

estimate of the time variance. We also found that the multiplicative AMAFC struc-
ture did not perfectly follow a commanded trajectory with time varying magnitude
even with a perfect estimate of the time variance. Since, we never really have detailed
knowledge of the disturbance this result seems the inverse of what we would like. To

correct these issues, we have proposed an additive AMAFC structure.

4.3.2 Additive Amplitude Modulated Feedforward Cancella-
tion

One of the weakness of the multiplicative AMAFC structure is the inability to per-

fectly follow commanded trajectories with time varying magnitude. As mentioned in

the previous section, the IMP essentially states that for a controller to exactly follow

a signal it must contain a model of the signal. Thus to perfectly follow a commanded
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input of the form,

ya(t) = a(t) cos(wnt) + b(t) sin(wnt) (4.102)
where
a(t) = apcos(at)
b(t) = ancos(at) (4.103)

the AMAFC structure must output a signal which when passed through the plant
generates yq(t). Figure 4-34 shows a standard AFC resonator and plant P(s) with
zero input into the AFC systems. Since know the form of the input from (4.102) and

(4.103), it makes sense to assume a(t) and b(t) are of the form

a(t) = acos(at) (4.104)
b(t) = beos(at). (4.105)

If o« << wy then we can replace the plant transfer function P(s) with P(jw,). Thus

the plant output becomes
y(t) = [P(jwn)| cos(at)]d cos(wnt + ¢p) + bsin(wnt + ¢y)] (4.106)

where ¢, = /P(jwy,). For the error to be zero, we clearly would like

i = (4.107)
[\ JWn)|

- b

b = 2 (4.108)
|P(jwn)|

but this selection of a(t) and b(t) does not result in the correct phase for the w,
sinusoid. One way to correct for the phase of the w, sinusoid is to change the phase

of the modulation terms of the AFC resonator to be cos(wyt — ¢) and sin(w,t — ¢y ).

Figure 4-35 shows a block diagram of an additive AMAFC resonator. As we can
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Figure 4-35: Block diagram of an additive AMAFC resonator.

cos(wnt) a(t) cos(wnt-on)
X % )
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Figure 4-36: Block diagram of an additive AMAFC resonator.
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see, this structure is identical to the standard AFC controller accept, we have added
a(t) and b(t) to the resonator after the integrator and we have included an additional
phase shift to the second sinusoid. Setting a(t) = b(t) = 0, we find that this structure
has a LTI equivalent of

5 c08(2¢n) + wp sin(2¢y,)
s+ w2

C(s) = gn . (4.109)

The phase drop of this system is now centered on 2¢, meaning this is stable only for
system where |/P(jw,)| < /2. To correct for this, we eliminate the phase shift on
the first set of resonators. Figure 4-36 shows the resulting block diagram with this
adjustment. With a(t) = b(t) = 0, the structure shown in Figure 4-36 has a LTI

equivalent of

5 €08(¢n) + wn sin(¢n)
§2 4 w?

C(s) =gn

(4.110)

which is identical to the previous AFC structures. This result implies, that if the
system is tuned as a standard AFC resonator for robust stability, the resulting additive

AMAFC resonator will also have robust stability.

Typically, AFC control is combined with other forms of feedforward control. Fig-
ure 4-37 shows a control system incorporating both AFC and standard feedforward

control. One of the advantages of using sinusoidal trajectories of the form
y(t) = a, cos(wnt) + by sin{wyt), (4.111)
is that we can replace the inverted plant P~1(s) with a second trajectory signal

yr(t) = [@n cOS(Wrt = Pn) + by sin(wnt — ¢n)] (4.112)

|P(jwn)l

where ¢, = /P(jwy,). Independent of the time varying amplitude, the structure
shown in Figure 4-36 has essentially incorporated the outer feedforward loop into to

the AFC structure. There is a significant computational advantage to this, since it

182



\

P'(s)

cos(wnt) cos(wnt-0n)

1
s

ya(t) ——E&—] gn e —PE) - y(t)

0l

sin(wnt) sin(wnt-¢n)

Figure 4-37: Block diagram of a control system incorporating both AFC and standard
feedforward control.

eliminates the need to generate 2 sinusoids for the feedforward channel per trajectory
harmonic.

In this section and the one prior, we have proposed two extensions to AFC control
that incorporate the time varying magnitude of a reference input. In one, the varying
magnitude is incorporated using multiplication. In the second, the time variation is
incorporated using addition. In the next section, we present some simulated examples

applying our AMAFC extensions to a system.

4.3.3 Example of Amplitude Modulated Adaptive Feedfor-

ward Cancellation

In this example, we consider the effect of our two proposed AMAFC structures on a
system following a sinusoidal trajectory with time varying magnitude. We utilize a

simple second order system as our plant

2

P(s) = P 4.113
(s) 8% + 2(pwps + w? ( )
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Figure 4-38: Frequency response plot of the example plant.

where w, = 2007 (100 Hz) and ¢ = 0.7. Figure 4-38 shows the frequency response of
the plant. For this example, we have selected the frequency of the trajectory to be
w; = 407 (20 Hz). Using our loop shaping technique, we selected ¢1 = ZP(jw1) =
—0.284 radians and ¢; = 44.5 for both AMAFC structures. The reference trajectory

for our example is
ya(t) = sin(at)[cos(wyt) + 0.25 sin(w; t)) (4.114)

where « is varied from 7 to 47 radians/s (0.5-2 Hz). For the multiplicative AMAFC
structure, we set
1/A(t for |A(t)| > 0.001
A(t) sgn]A(t)] * 1000 for |A(t)| < 0.001
Figure 4-39 plots the simulated following error for the example plant under con-
ventional AFC control, multiplicative AMAFC control, and additive AMAFC control
with a trajectory modulation @ = 7 r/s. The peak-to-peak following error is 30%

with conventional AFC control, 1.2% with multiplicative AMAFC, and 0.4% with
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Figure 4-39: Simulated following error for the example plant following a 20 Hz sinusoid
with an amplitude modulated at 0.5 Hz with conventional AFC control, multiplicative
AMAFC control, and additive AMAFC control.
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Figure 4-40: Simulated following error for the example plant following a 20 Hz sinusoid
with an amplitude modulated at 1 Hz with conventional AFC control, multiplicative
AMAFC control, and additive AMAFC control.
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Figure 4-41: Simulated following error for the example plant following a 20 Hz sinusoid
with an amplitude modulated at 1.5 Hz with conventional AFC control, multiplicative
AMAFC control, and additive AMAFC control.

additive AMAFC control. Note: all of these simulated results are taken with the
system in steady-state operation. The data shown here was collected 2 seconds af-
ter the simulation started. Figure 4-40 plots the simulated following error for the
example plant under conventional AFC control, multiplicative AMAFC control, and
additive AMAFC control with a trajectory modulation @ = 27 r/s. The peak-to-
peak following error is 50% with conventional AFC control, 3% with multiplicative
AMAFC, and 0.8% with additive AMAFC control. Figure 4-41 plots the simulated
following error for the example plant under conventional AFC control, multiplicative
AMAFC control, and additive AMAFC control with a trajectory modulation o = 37
r/s. The peak-to-peak following error is 80% with conventional AFC control, 9% with
multiplicative AMAFC, and 1.8% with additive AMAFC control.

As we can see from these results, AMAFC is a significant enhancement over con-
ventional AFC control when following sinusoidal trajectories with time varying am-
plitude. The performance of the AMAFC systems drops off as the speed of the

modulation increases since the quasi-static plant model used in the derivation of our
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AMAFC structures breaks down. In general, the additive AMAFC structure is supe-
rior to the multiplicative AMAFC structure offering both better trajectory following
and improved computational speed. In simulation, the run time of the multiplicative
structure was twice that of the additive structure. We believe that these results can

be improved further with the addition of a phase shift to the modulation terms so

that
o a .
- b .

The determination of p is left for future work.

4.4 Summary

In this chapter, we have detailed a loop shaping technique for tuning control systems
with AFC control. This loop shaping technique shows that the AFC phase shift
is optimally set to ¢; = /P(jw;). Our loop shaping perspective for selecting AFC
controller gain g;, allows the designer to ensure robust stability while maximizing the
AFC controller performance. We also presented two strategies for extending AFC
control to trajectories and disturbances with time varying magnitude. We term this
extension AMAFC control. One strategy utilizes a multiplicative structure to exactly
cancel errors with time-varying magnitude. The second strategy utilizes a more robust
additive structure to more accurately follow trajectories with time varying magnitude.
In the next chapter, we will utilize an Oscillator Amplitude Control perspective to

approximate the convergence and error properties of AFC controller.
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Chapter 5

Adaptive Feedforward Cancellation
from an Oscillator Amplitude

Control Perspective

In this chapter, we present a method of characterizing the convergence and error prop-
erties of control systems using Adaptive Feedforward Cancellation (AFC). Specifically,
we view the AFC controller structure from an oscillator amplitude control (OAC) per-
spective. The OAC approach uses an averaging analysis to simplify a properly tuned
single resonator AFC system into two single-input single-output amplitude control
loops. In this chapter, we will simplify the sine channel of a single resonator AFC
controller. Next, we verify our analysis by comparing the output of an AFC controller
to the OAC approximation for a simulated system. We then simultaneously simplify
both the AFC sine and cosine channels. Once again, we verify our analysis by com-
paring the parameter estimates for both the OAC approximation and AFC control.
Next, we apply the OAC perspective to a multiple resonator AFC controller. Lastly,
we explore the limitations of the OAC approach.

This chapter is derived principally from a forthcoming paper 1 co-wrote with Joe
Cattell and Prof. David Trumper. Section 5.1 is a condensed version of Joe’s analysis
n [15]. Section 5.2 contains new simulations which start with the system in steady-

state prior to the application of AFC or OAC control. Eliminating the transient
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Figure 5-1: Single resonator AFC closed-loop block diagram designed to follow/reject
a signal with a frequency w;. Figure taken from [15].

response of the plant results in a much better correlation between the OAC and AFC
system response. Section 5.3 significantly expands on the dual channel work in [15]
and contains a complete OAC analysis of the AFC system with and without phase
adjustment. Sections 5.4 and 5.5 contain new simulated results based upon the revised
dual channel results from Section 5.3 and the steady-state plant assumption. Lastly,
Section 5.6 follows up Joe’s suggestions for further work and presents an analysis of

some limitations of the OAC approach.

5.1 Simplified Sine Channel of the Single Resonator
AFC Controller

Figure 5-1 illustrates the single resonator AFC closed-loop block diagram. We view
this system as the combination of two oscillator amplitude systems, where the sine and
cosine channels correspond to two individual feedback loops in which the oscillation
amplitude is to be controlled. The first sinusoidal modulators in Figure 5-1 are
considered the amplitude detectors, and thus serve as sensors. Next, in concert with

the gain g;, the integrators act as the amplitude stabilization controllers, a(s), while
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the second modulators and plant P(s) can be viewed as sinusoidal oscillators, whose
output amplitude in y(t) is to be controlled to a desired level, as set by the component
of frequency w; in the reference r(t). The reason for taking this perspective is that

we can now write results in terms of the dynamics of the oscillation amplitude.

The sine and cosine channels in the AFC controller are thus coupled controllers
in a multiple-input multiple-output (MIMO) sense. Under the assumption that we
have correctly implemented the phase advance parameter ¢; = /P(jw;), these two
channels can be decoupled. That is, the system can be diagonalized. These two
decoupled channels essentially yield equivalent closed-loop dynamics, as shown later.
Thus in the following analysis, we simplify just the sine channel of the AFC controller

into an equivalent oscillator amplitude control loop.

Figure 5-2 highlights the portion of the single resonator AFC closed-loop block
diagram designed to follow/reject the sine component of a signal with frequency
w;.  We will analyze this system for loop dynamics and disturbance rejection by
setting the reference signal equal to zero, r(t) = 0. We assume that the feedback
loop has an input disturbance signal with a constant amplitude and single frequency
component, d(t) =b;sin(w;t). In a manner analogous to Roberge’s presentation of
oscillator amplitude control (Chapter 12,{76]), we want to be able to analyze the AFC
closed-loop output and error signals from the amplitude dynamics alone, independent
of the detailed time variation of the sine and cosine waves. In order to do this, a few

assumptions must be made.

First, we assume that the sine and cosine channels of the single resonator AFC
system consist of multiple times-scales. By this we mean that the dynamics of the
plant transfer function P(s) are considered to be much faster than the dynamics of the
amplitude control loops. Said another way, the time scales on which the estimates of
the Fourier coefficients a;(t) and b;(t) vary are slow compared to the plant output y(t).
We call y(t) the fast state while ;(t) and b;(t) are considered slow states [79]. This
means that P(s) has essentially settled to steady-state before the AFC feedback loop
develops a significant error signal. We can ensure that the estimates of the Fourier

coefficients vary relatively slowly when compared to y(t) by selecting a sufficiently
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Figure 5-2: Closed-loop block diagram of the portion of the single resonator AFC
system designed to follow/reject the sine component of a signal with frequency w;.
Figure from [15]
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low controller gain value g;.

Secondly, we assume that the time variations of @;(t) and b;(t) are much slower
than the AFC resonator frequency w;. The applicability of this statement is shown in
the following analysis. Considering just the output sine channel of the single resonator
AFC system, as shown at the bottom of Figure 5-2, we see that the control input into

the plant is
0 (t) = B(t) sin(wyt), (5.1)

where ((t) is some slowly time-varying amplitude. For simplicity, we have set dy(t) =
bsin(w;t) = 0. We will consider the effect of dy(t) in more detail later. In order to

understand the envelope dynamics, at present we will assume that 3(t) is given by
B(t) = sin(at). (5.2)

Substituting (5.2) into (5.1) gives

O0(t) = sin{w;t)sin(at) = % [cos(w; — a)t — cos(w; + a)t], (5.3)
= -;— [cosw_t — cosw,t]. (5.4)
where
wo = (w—a), (5.5)
wy = (wita). (5.6)

After reaching steady-state oscillation, the plant output y,(t), due to the control input
defined in (5.4), is given by

yo(t) = % (IP(w-)cos(w-t + [P(jw_)) — [P(jwy )| cos(wyt + LP(jws))] . (5.7)

Now, we assume the frequency o of (5.2) is much less than the frequency w; of

the modulator, a@ <« wj;, and further that the magnitude and phase of the frequency
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tesponse of the plant P(jw) do not change significantly in the vicinity of w;. Then (5.7)

can be approximated by

1

yp(t) = 3 (1P (jwi)| cos(w-t + LP(jw;)) — [P(jw;)| cos(wit + LP(jw;))) . (5.8)

Recalling wy = (w; + @) and w_ = (w; — «), this gives
1
yp(t) =~ §[P(jw,-)| (cos(w;t + LP(jw;) — at) — cos(wit + LP(jw;) + at)). (5.9)
Using the trigonometric relationship
. : 1
sinasin 8 = 3 [cos(a — B) — cos(a + B)], (5.10)
equation (5.9) reduces to
y(t) = |P(jws)]| sin{wit + LP(jw;)) sin(at). (5.11)

Thus, for a sufficiently slow time-varying Bi(t), the output of the sine channel for the

single resonator AFC system can be approximated as
yo(t) = |P(juw;)| sin(wit + /P (juw;))bi(t). (5.12)

Thus (5.12) shows that as long as the feedback loops for the sine and cosine
channel in Figure 5-1 have a much lower crossover frequency than w;, we can analyze
the amplitude dynamics of the AFC loop alone, independent of the time-variation of
the sinusoids. This approximation is akin to the analysis given in Roberge Chapter
12,[76).

Our simplification begins by viewing the control input to the plant d(t), as shown
in Figure 5-2, as the difference between the estimated and actual disturbance signal

Fourier coefficient multiplied by a sine wave,

86(t) = wp(t) — dy(t) = [B(t) — by] sin(wit). (5.13)
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Figure 5-3: Simplification of the closed-loop block diagram for the sine channel of
the single resonator AFC system. The reference signal r;(t) has been removed from
frames A-D for simplicity and replaced in frame E. This Figure adapted from [15].
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Next, we define the difference between the estimated and actual disturbance signal

Fourier coefficient as

bamp(t) = [b(t) - b], (5.14)

where bapp(t) is the amplitude dynamics of the decoupled sine channel oscillator
amplitude control loop. Thus, we can group the second sinusoidal modulator and

plant transfer function together, as shown in Figure 5-3-A.

Next we employ the quasi-steady assumption in (5.12) to remove the plant transfer
function from the feedback loop and view the output of the oscillator as a magnitude
attenuated and phase shifted sinusoid of frequency w;. The resulting simplified block

diagram is illustrated in Figure 5-3-B. The resulting oscillator output is given by
yb(t) = bAMp(t)IP(jw¢)| sin(wit + ZP(jwi)), (515)

which is equivalent to the results obtained in (5.12) with the addition of multiplication

by the disturbance magnitude bpp(t).

We further simplify the loop by moving the second modulator from the output,
around the feedback loop, and grouping it with the modulator in front of the inte-

grator. Since
¢i = LP(jwy), (5.16)
the two sines may be grouped together as

sin(w;t + ZP(jw;)) sin(wit + ¢;)] = sin®(w;t + é;). (5.17)

(5.18)

Figures 5-3-B and 5-3-C illustrates this process. Using the following trigonometric
relationship

sin

1
a= 5(1 — cos 2a), (5.19)
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the squared modulator term in Figure 5-3-D is equivalent to
1
sin®(wit + ¢;) = 3 [1 — cos2(wit + ¢)], (5.20)

which consists of a DC term and a second harmonic of w;. Since this amplitude
feedback loop is inherently low-pass, the high-frequency second harmonic can be
removed from the analysis, leaving only the average DC component. That is, we
replace the sin? term with simply a gain of % A similar approximation and analysis
is used in [10] and [103] to estimate the phase, magnitude, and frequency of periodic

signals of unknown frequency.

Figure 5-3-E illustrates the final simplified sine channel of the single resonator
AFC closed-loop block diagram. Here, we have defined the reference and disturbance
input as brgr and bpjsrt, respectively, where brgr is the magnitude of the reference

input
Tb(t) = bREF sinwit. (521)

Also, we have defined the average oscillator amplitude error and output amplitude
envelope as ey p(t) and ¥, (¢) respectively. The average oscillator amplitude error is
given by

eamp(t) = [brer — bamp(t)], (5.22)

which equals the average DC component of the plant output (sinusoidal oscillator
output) y»(t) combined with the first sine wave modulator (amplitude detector), while

the oscillator output amplitude envelope is
Uy(t) = |P(jws)|banep(t), (5.23)

which is equivalent to the amplitude dynamics of (5.12).

In Figure 5-3-E, we refer to the combination of the AFC proportional gain g; and

integrator as the OAC amplitude stabilization controller. This controller integrates
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the average oscillator amplitude error to create the controlled amplitude output enve-
lope ¥(t) which, when modulated with the ZP(jw;) phase shifted sinusoid, provides
the approximate AFC closed-loop output (ys0ac(t)) to a reference/disturbance sine

wave with frequency w;. The output of the sinusoidal oscillator is
Uboac(t) = Up(t) sin(w;t + LP(Jw;)), (5.24)

which is equivalent to the output of the sine channel for the single resonator AFC
system, as defined in (5.12). This closed-loop block diagram serves as our QAC
perspective for the decoupled sine and cosine channels of the single resonator AFC

system.

The loop transmission of the time averaged envelope of the decoupled sine and

cosine channels is thus given by

9| P(jws)|
L(s) = ———~ 25
(s) = -2, (5.25)
and the characteristic equation is of the form
1—L(s)=0, (5.26)
or
2s + g;|P(jw;)| = 0. (5.27)

Thus, under the assumption that the dynamics of the feedback loop are slow relative

to the oscillation frequency, the OAC closed-loop pole is located at

s0Ac = _gllP(2]w1)| sec™! (5.28)
Further , the first order time constant 7; is
2 (5.29)
T; = ————— SeC. .
9| P(jws)]
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The output of the sine only OAC system becomes

Wy (t) sin (wit + LP(jw;)) (5.30)

Yo ac(t)

= b|P(jw;)|le”¥™ sin (wit + LP(juw;)). (5.31)

An equivalent result is presented in [77] using an averaging analysis. The advantage of
this analysis is that it gives a model for the time-evolution of the envelope amplitude,

and thus allows us to understand the settling characteristics of the AFC loop.

To this point the analysis assumes that the phase advance parameter is set prop-
erly as ¢; = /P(jw;). In the following analysis, we consider the case where this
equality is not enforced. If we do not use the phase advance parameter in the single

resonator AFC controller (¢; = 0), then the combined sinusoidal modulators are
sin(w;t + LP(jw;)) sin(w;t). (5.32)

Note that this analysis is only valid if d(¢) contains no cosine component and ignores
the coupling from the sine to the cosine channel. The coupling will be explored in

more detail later in this chapter. Using the trigonometric relationship
. . 1
sinasin § = 3 [cos(a — B) — cos(a + B)], (5.33)
equation (5.32) can thus be re-written as

sin(w;t + ZP(jw;)) sin(w;t) = %[cos(lP(jwi)) — cos(2w;t + (P(jw;))] . (5.34)

Once again dropping the higher harmonic terms, the loop transmission for the de-

coupled and simplified sine and cosine channels of the single resonator AFC system

is given by
_gilP(jwi)| cos(£P(juwi))

Lis) = 2s

: (5.35)
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and the dominant closed-loop pole is now located at

i| Pljwi LP(jw;
s - ~PUeSePi) .

From (5.36), we see that if the plant contributes 0° of phase lag at the resonator
frequency w;, then as the pole moves to the origin the closed-loop settling time will
be the same as given in (5.29). However, with ¢; = 0, as /P(jw;) approaches £90°,

then the time constant grows 7; — oo, since
i
cos(:}:a) = 0. (5.37)

Also, again for ¢; = 0,if § < /P(jws) < §2I, the resulting loop transmission effectively
creates positive feedback and hence will be unstable. This result re-emphasizes the
importance of using a properly chosen ¢; with an AFC controller.

The physical meaning of this result is as follow. We see that the single-channel
OAC loop gain goes to zero as the unmatched phase ¢; # ZP(jw;) approaches £ /2.
This occurs because the sine demodulator gives no DC output for a cosine input,
since the average of the product /sin(w;t)cos(w;t) is zero. That is, if the AFC is
outputting sin(w;t), but the plant has /2 phase shift at this frequency, then the
error signal will be a & cos(w;t), which results in zero average at the integrator.

In this section, we simplified the sine channel of a single harmonic AFC resonator
to determine the time-evolution of the amplitude estimate. In the next section, we
simulate and compare the amplitude estimate and the total output of the approximate

OAC system and a single resonator AFC controller.

5.2 Example of sine-channel OAC

In this example, we consider a single resonator AFC system designed to reject a

constant amplitude disturbance input given by

d](t) = bl sin wlt (538)
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where the parameters are selected as b = 1 and w; = 225 rad/s. Setting the phase
advance parameter ¢; = /P(jw;) decouples the sine and cosine channels and allows
us to evaluate the system response using only the sine channel OAC model. The
cosine channel will have identical dynamics. We assume a simple second order plant
model

w2

P — n 5.39
(s) 82 + 2Cwns + w? (5.39)

where the parameters are selected as w, = 250 rad/s and ¢ = 0.707. The key OAC

parameters are

|P(jwy)| = 0.777 (5.40)
¢ = —1423 rad (5.41)

brper = 0 (5.42)
bprisr = 1. (5.43)

In order to ensure that the simulation matches our quasi-static approximation from
the previous Section, we allow the plant to reach a steady-state output in response to
the disturbance input before activating the OAC and AFC control loops (we allow 1
sec. for the plant to reach steady-state in this simulation). We compare the systems

at four different gains (g; = 5, 10, 25, and 50).

For this simulation, we are interested in five things:
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bo 4ac(t) = the Fourier coefficient estimate of the OAC approximation. This
is the output of the OAC integrator.

barc(t) = the Fourier coefficient estimate of the AFC sine channel. This
is the output of the AFC sine channel integrator.

Uy(t) = the convergence envelope of the OAC approximation. This is
the output of the OAC loop prior to the sinusoidal modulation
to form ypoac(t).

ywoac(t) = the temporal output of the OAC approximation.
yarc(t) = the closed loop temporal output of the simulated plant under
closed-loop AFC control.

Note W,(t), the convergence envelope of the OAC approximation is
\I/b(t) = bD[STlp(jw,‘He_T_is (544)

where 7; is the time constant of the OAC approximation as defined in equation 5.29.
The W, (t) plotted in Figure 5-6 is calculated from this. This envelope should perfectly
encapsulate the measured yoac(t) and if our approximation is correct closely follow
yarc(t). An important thing to remember when we look at our results is the signal
yarc(t) is composed of the output of both the sine and cosine channels of the AFC
controller.

Figure 5-4 plots the estimate of the Fourier coefficient b arc(t) and Bo ac(t). As
we can see, the estimates match very well. The elimination of the 2nd harmonic from
the OAC approximation is validated by these results since the 2nd harmonic is only
apparent in the AFC estimate at high gain values g, > 25. Figure 5-5 shows a zoomed
view of the Fourier coefficients for the g; = 50 simulation to better illustrate the 2nd
harmonic. Figure 5-6 compares the output yarc(t), the output of ypoac(t), and the
amplitude envelope ¥, (t). As we would anticipate from the results in Figure 5-4, the
OAC approximation correlates very well with the AFC output while ¥,(t) provides

an accurate estimate of the AFC decay envelope.

These results show that there is excellent correlation between the approximate
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Figure 5-4: Comparison of the estimates of the Fourier coefficient b(t) of the distur-
bance signal d(t) using a single resonator AFC system and a sine only OAC loop.

203



Amplitude

—;SAFC(HE

. f i § 3 "~ Boacth]

0 005 01 045 0.2 025 0.3 035 04 045 05
Time (S)

0

Figure 5-5: Zoomed view of the comparison of the estimates of the Fourier coefficient
b(t) of the disturbance signal d(t) using a single resonator AFC system and a sine
only OAC loop for g; = 50.

sine-only OAC system and the actual AFC system for a sine-only disturbance even at
moderately high system gains. In the next section, we extend the OAC approximation

to both the sine and cosine channels.

5.3 Simplified AFC system with Simultaneous Sine

and Cosine channels

In this section we will employ the same techniques we used to simplify sine-only
channels to simplify the entire AFC loop. Figure 5-7 illustrates the first few steps in
the AFC loop simplification. Figure 5-7-A graphically shows the block diagram of a
standard single resonator AFC system. The reference input to the system is defined

as

r(t) = R, cosw;t + Rpsinw;t (5.45)
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Figure 5-6: Comparison of system temporal outputs y(t) and yoac(t) for a single
resonator AFC system and a single OAC loop. Note: the yapc(t) signal contains

both the sine and cosine channels.

205



A cos(wit+¢;)

cos(wjf)

d(t)=a cos(wjt)+b sin(w;t)
e(t) ‘é‘)—{ yt)
rit)+ P (S ) g
sin(wit+¢;)
B cos(wjt+d;)
- fE
)+ ,~8(0 s | y(
- .?_* g
S
sin(wit+¢;)
C
/L cos(wjt+o;) a cos(wit+/P(jow))
+ 1= =] a(t) Palt)
—— QLD‘;%_ "é)‘ IPGor) |— y(0
& A—@* L]
— b(t) Wp(t)
sin(oit+¢i) b sin(ait+/ P(jor))

Figure 5-7: Simplification process for a single resonator AFC system.
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while the disturbance input to the system is

d(t) = a; cosw;t + b; sinw;t. (5.46)

To begin the simplification process, we divide the disturbance signal into it’s sine and
cosine component and move them back through the sine and cosine multiplier in the
AFC resonator. The results of this process are shown in Figure 5-7-B.

Next, we employ the same quasi-steady assumption (5.12) we used in simplifying
the sine-only loop to replace the plant transfer function (P(s)) with a simple gain
|P(jw;)| and associated phase shift /P(jw;)) in both the sine and cosine loops. To
clarify the separation of the sine and cosine loops, we separate the sine and cosine
loops on the left side of the block diagram by adding the reference signal (r(¢)) into
the sine and cosine loops individually. The results of these two steps are shown in
Figure 5-7-C.

Next by following the signals around the loop we arrive at the following two

relationships
d . .
Ea(t) = g|Rscoswit + Rysinw;t — U, (¢) cos (wit + LP(jw;))
=W, (t) sin (wt + LP(jw;))] cos (wit + ¢;) (5.47)
%i)(t) = gi[R4cosw;t + Rysinw;t — W,(t) cos (wit + LP(jw;))
—Wy(t) sin (wit + LP(jw;))] sin (w;it + ¢;) (5.48)

Employing Werner’s trigonometric identities (equation (5.33) is Werner’s identity for

the sine functions) in equations (5.47) and (5.48) results in the following

Do) = L{Rufoos(~4,) + cos(2uit + 60
Ry[sin(—¢;) + sin(2w;t + ¢;)]
—W,(t)[cos (LP(jw;) — ¢;) + cos(2wit + ¢y + LP(jw;))]
—W,(t)[sin (LP(Jw;) — ¢:) + sin(2w;it + ¢ + LP(jws))]]  (5.49)
d ~

—b(t) = %[Ra[cos@wit + ¢;) — sin(—¢;)]
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Figure 5-8: Simplified block diagram of AFC system with ¢; = 0. Note decoupled
input channel.

Ry[cos(—¢;) — sin(2w;t + ¢)]
=W, (8)[sin(2w;t + ¢ + LP(jw;)) — sin(LP(Fwi) — &)
—Ws(t)[cos(LP(jwi) — ¢1) — cos(2wit + i + LP(jwi))]].  (5.50)

Removing the double-frequency terms, these expressions simplify to

aft) = L[Rocos (~4) + Rysin(~¢)

—Wq(t) cos (LP(juws) — i) — Uo(t) sin (LPGws) — d)] (5.51)
Zb(t) = L[-Rasin(~4s) + Rycos (~4)
+Wa(t) sin (LP(jws) — ¢:) — Wy(t) sin (LP(ws) — ¢))- (5.52)

Equations (5.51) and (5.52) show that the sine and cosine channels have both
coupled inputs and coupled feedback loops. In the case where the phase advance
parameter is not implemented (¢; = 0), the input channels are decoupled. The block

diagram for this system is shown in Figure 5-8. Setting the phase advance parameter
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Figure 5-9: Simplified block diagram of AFC system with ¢; = P(jw;). Note decou-
pled feedback channel.

¢; = LP(jw;) decouples the feedback channel but results in coupled inputs; Figure 5-
9 shows the block diagram for this system. The matrices coupling the inputs and
feedback loops in Figures 5-8 and 5-9 are similar to the rotation matrix used to
couple the sine and cosine channels in Higher Harmonic Control (HHC) [37] and the

rotation matrix used to couple the sine and cosine in Automatic Vibration Rejection

(AVR) [89).

In the special case where R,(t) and Ry(t) are constants or the ratio Ry(t)/R,(t)
is a constant and we have selected ¢; = /P(jw;}, we can replace the inputs into the
decoupled sine and cosine loop with equivalent reference signals. In the case that

R,(t) = R, and Ry(t) = Ry, the equivalent reference inputs may be expressed as

Raequ = R, COS(-—(ﬁi) + R, Sin(—¢i) (553)
Rpeqv = —Rgsin(—¢;) + Ry cos(—¢;). (5.54)

In the constant ratio case, the equivalent inputs are expressed as

Raeqv = Ra(t)[cos(—¢:) + K sin(—¢;)] (5.55)
Rpequ = Ro(t)[K cos(—¢;) — sin(—;)] (5.56)
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where

(5.57)

We will use this result later to write an expression for the time output of the decoupled

sine and cosine channels.

When ¢; = /P(jw;), the loop transmissions of the sine and cosine loops are

decoupled and equivalent:

gi|P(jwi)|
L(s) = — . .
(5) = ~ &2 (5.55)
Thus the characteristic equation for both loops is
i| P(jwi
s+ gil (ij)l -0 (5.59)
with a pole at
s= _gilPGwi)l (5.60)
2
and thus the associated time constant
2
T = ————. 5.61
1P| (561
This is the same result achieved for the simplified sine channel.
The time output of the dual channel OAC system yoac(t) is given by
yoac(t) = |PHw)|[¥a(t) cos(wit + LP(jw;)) + Wp(t) sin(w;t + LP(jw;))](5.62)

In the special case where reference inputs R,(t) and Ry(t) are constants or the ratio

Ry(t)/Ra(t) is a constant and we have selected ¢; = /P(jw;), we can find the total
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solution to each loops characteristic equation (5.59):

Uo(t) = |P(jw;)|Raeqn(l — €7™) + aze™™) (5.63)
Uy(t) = |[P(jw;)|Roequ(l — €™ + bie™t™) (5.64)

where 7; is determined from (5.61), Rgeq, is determined by either (5.53) or (5.53),
and Rgeq is determined by either (5.54) or (5.54). Recall a; and b; are the Fourier

coeflicients of the disturbance input. Thus

yoac(t) = |P(jwi)|[Raeq(l — e ™) + a;e™™] cos(wit + ¢;)

+([Rpequ(1 — e“t/”) + bie_t/”] sin(w;t + ¢;)]. (5.65)

As we learned in Chapter 4, the choice of resonator phase ¢; is important to the
overall loop stability. Since an incorrect selection of ¢; results in cross-coupling of
the OAC sine and cosine channels, this cross-coupling result effectively indicates a
destabilization of the AFC system. More specifically, we would like the sine channel
of an AFC resonator to detect and compensate only the sine component of the error
signal. Similarly, we would like the cosine channel of an AFC resonator to detect and
compensate only the cosine component of the error signal. When coupling is present,
the sine and cosine channels are detecting and compensating for both sine and cosine

components. If the cross-coupling is severe enough, the system will become unstable.

In this section, we applied our OAC approximation to both the sine and cosine
channels of a single resonator AFC controller. We used this simplification to derive
time output expressions for of estimates of the Fourier coefficients for both the sine

and cosine. In the next Section, we use a simulation to verify our results.

5.4 Example of dual channel OAC

In Section 5.2, we compared the output of the OAC sine channel and the AFC system

to a sine disturbance. In this section, we compare the output of the combined OAC
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sine and cosine loops with ¢; = /P(jw:) (the system shown in Figure 5-9) to a single-
resonator AFC system with a disturbance containing both sine and cosine terms. The
plant parameters and disturbance frequency used for this evaluation are identical to
that in Section 5.2. Just as in Section 5.2, we allow the plant to reach steady-state

before engaging OAC or AFC control. The disturbance is given as
di(t) = aj coswt + by sinw, (5.66)
where a; = 0.5 and b; = 1. The reference inputs are
R,=R,=0. (5.67)

Yyoac(t) can be determined by substituting the simulation conditions into Eqns.
(5.65),(5.53),and (5.54). The decay envelope ¥;(t) for yoac(t) can be calculated
by by combining the sine and cosine components of the yoac(t) signal into a single

sine term using harmonic addition as follows:

Yoac(t) = |P(w)lle™™ (aicos(wit + LP(jw;)) + bisin(wgt + LP(jw;))]
= |P(jw;)|[y/a? + b2e™7 sin(wit + LP(jw;) + 6;)] (5.68)
6, = tan! (Z—) . (5.69)

The decay envelope is thus

U, (t) = |P(jw;)|y/a2 + ble™¥™, (5.70)

We evaluate this system at four gains (g, = 5, 10,25, and 50).

Figure 5-10 plots the parameter estimates a(t) and b(t) for the AFC system and
the simplified dual channel OAC system. Just as in section 5.2, we see that OAC
and AFC parameter estimates are nearly identical for low gains but as the resonator
gain is increased the second harmonic components in the AFC system become more

prominent and the estimates diverge slightly. Figure 5-11 shows a zoomed view of
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Figure 5-11: Plot of AFC and OAC parameter estimates a(t) and b(t) versus time for
g1 = 50.

a(t) and b(t) to better illustrate the divergence for g; = 50. Figure 5-12 plots the
output of the OAC system yoac(t), the output of the AFC system yapc(t), and the
decay envelope ¥(t). The OAC system and the decay envelope provide an excellent
approximation of the AFC system for the dual channel system. In the next Section,

we will expand the OAC view point to controllers with multiple AFC resonators.

5.5 Multiple Resonator AFC System viewed from
an OAC Perspective

In order to view a multiple resonator AFC system from an OAC perspective, we
look at each AFC resonator individually. First we analyze the particular amplitude
dynamics of each resonator separately and then use superposition to approximate
the entire closed-loop response. For a multiple resonator AFC system designed to
follow/reject N frequency components, there exist 2N estimates of the Fourier coeffi-
cients with N values of g;, w;, and ¢; respectively. Implementing the phase advance

parameter ¢; = /P(jw;) effectively decouples the systems into 2N individual OAC
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and OAC decay envelope (¥(t)) versus time for g; = 5,10, 25, and 50.
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loops, where the dynamics of the sine and cosine channels at each frequency are
identical and characterized by (5.36). Thus for a multiple loop OAC system, we can

estimate the output amplitude in response to a disturbance input as
U(t) = D (). (5.71)
From (5.70)
y(t) = | Pljer)ly/a? + bR/ (5.72)

where from (5.61)

2

T = — 5.73
TP G (573)
and where
N
d(t) = Y [a; cosw;t + b;sinwt). (5.74)

i=1

Defining the initial value of each decay harmonic as

U0) = [Pw)lya + 62, (5.75)

allows us to express the total amplitude envelope as

U(t) =~ fj\yi(o)e—t/ﬂ. (5.76)

=1

At this point we should note that while we have considered only the response of
OAC and AFC loops to disturbance inputs, a parallel analysis maybe performed to
predict the system response to reference inputs. When considering the response to
reference inputs, the error signals, esrc(t) for the AFC system and e p(t) for the

OAC system, should replace yarc(t) and yoac(t) as the system outputs of interest.

To show the utility of (5.76) lets us consider a system with three AFC resonators
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i| w | ¢ (rad) [ |[PQJwi| | ¢ | a: bi | 7 (s)
1] 75| -0.436 0996 |65 1 0.5 | 0.309
2150 | -0.925 | 0.941 [6.5]|0.25| 0.5 |0.327
3225 | -1.423 0.77 |8.7]0.25|0.125 | 0.295

Table 5.1: Listing of the parameters for multiple resonator example.

Magnitude (dB)
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-180
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Figure 5-13: Frequency response of the negative loop transmission for the multi-
resonator AFC system.

at wy = 75, wy = 150, and w3 = 225 rad/s. Using the same second order plant model
used in sections 5.2 and 5.4, we maximize the phase margin of the AFC system by
setting ¢; = /P(jw;) and select g; such that the minimum gain margin of combined
plant and AFC system is 20 dB. The key AFC, OFC, and disturbance parameters
are listed in Table 5.1. Figure 5-13 shows the frequency response of the negative of
the loop transmission of the combined plant and AFC system. This is a standard

analysis (not OAC) and so is useful for stability considerations but does not give a

20

20

70

100
Frequency (rad/s)

200

400

model for the envelope dynamics. For this, we turn to an OAC perspective.

Figure 5-14 compares the estimate of the Fourier coefficients a;(¢) and b;(t) for
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Figure 5-14: Comparison of the estimates of the Fourier coefficients a;(t) and bi(t)
of the disturbance signal d(¢) using a multi-resonator AFC system and parallel OAC

loops.

the multi-resonator AFC system and the multi-loop OAC approximation. As can be
seen, the OAC systems does a good job of predicting the first order convergence of
the AFC system but does not contain the higher harmonics that are generated by the
AFC system through coupling of the individual resonators. Figure 5-15 compares the
AFC temporal system output y4rc(t) and OAC system output yoac(t). The OAC
output yoac(t) and the AFC output yapc(t) match quite well. The predicted decay
envelope ¥(t) does an excellent jo(b of predicting the maximum magnitude of the AFC
system output. The picture is slightly complicated by virtue of the sinusoidal signal

adding destructively with positive amplitude.
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Figure 5-15: Comparison of system outputs y(t) and yoac(f) for a multi-resonator
AFC system and parallel OAC loop.

5.6 Limitations of the Oscillator Amplitude Con-

trol Perspective

While the OAC approximation provides some valuable insight into the performance
of AFC system, the OAC approach has a number of limitations. The first limitation
is that the accuracy of the OAC approximation is highly dependant on the estimates
|P(jw;)| and ZP(jw;). As derived in section 5.1, the time constant 7; of the OAC
approximation is inversely proportional to |P(jw;)| while the magnitude of the am-
plitude envelope, ¥;(0), is proportional to |P(jw;)|. Thus any errors in the estimate
of | P(jw;)| result in errors in both the convergence of the amplitude envelope and the
magnitude of the amplitude envelope. Similarly in sections 5.1 and 5.3, we showed
that the independence of the OAC loops is dependent on ¢; = ZP(jw;). If our esti-
mate of /P(jw;) is off, significant errors may result in the OAC approximation due

to the coupling of the AFC sine and cosine channels. In our examples, we use a
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Figure 5-16: A common control system block diagram for systems using AFC res-
onators.

well-defined simulated plant, thus our simulated results do not include these errors.
In real systems, the characteristics of the plant are often either not well known or
vary with time. In the case of unknown plant characteristics, errors in the estimates
of |P(jw;)| and £P(jw;) can be avoided by directly measuring the frequency response
of the plant at the desired AFC frequencies. To reduce plant variations with time, an
inner feedback loop using conventional control techniques (PID, lead-lag, pole-zero
placement, ect.) can be established to provide a more predictable plant for the outer

AFC loop.

The second limitation is the quasi-static assumption (5.12) used to simplify the
sine and cosine loops. This assumption applies only if the magnitude and phase
of the plant change slowly near the frequency of the resonator. In the following
analysis, we will explore the limits of the quasi-static assumption by using a Fourier
transformation analysis of the sine only loop signals to derive a more accurate model

of the loop response.

The block diagram for the sine-only OAC structure is shown in Figure 5-2. If we

break the loop after the integrator and assume that b(t) is of the form

b(t) = sinat (5.77)
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where & < w. The signal u(t), the input to the plant P(s), becomes
u(t) = sinatsinwyt. (5.78)

Since we are working with the frequency response of the plant P(s), we need to convert

the time signal u(t) to U(jw). The Fourier transformation of a signal is defined as

Flz(t)) = /°° (t)e~7tdt, (5.79)

One of the properties of the continuous Fourier transform is that multiplication in

the time domain is equal to convolution in the domain

Fla(ty(t) = X(w)x Y(jw) = [ XGWY(ilw - W)W, (580)

More information of the properties of Fourier transforms can be found in [70]. Thus

we can determine the Fourier transform of u(t) as follows:

F(u(t)) = F(sinat)* F(sinwgt) (5.81)
Flsinwpt) = 21 (5(“’ Q_j“")) - ‘5(“’2"; “"’)) (5.82)
F(sinat) = 27 (5(“’2; @) _ 5(“5 o‘)> (5.83)
Uljw) = 2r (5(w2——jwo) B 5(w2+ng)) . <6(w2; @) 5(w2; a)) (5.84)
U(]w) - on /_O; (5(W2; LUO) _ 6(W2j w0)>
fw—a-W) dw+a-W)
« ( 5 - > ) AW (5.85)
U(jw) = g[é(w —wp+a)—d(w—wy—a)
+o(w + wp — @) — 5w + wy + a)). (5.86)
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Using the frequency response of the plant P(s) and the Fourier transform U(jw), we

can determine the Fourier transform of y(t).

y(t) = Pt)=u(t)
Y(jw) = P(w)U(jw)

We then define

— (Pliln - @)D~ + )
~|P(j(a+ wo))lejlp(j(awo»é(w —wp — a)

+|P(j(e = wo)) e U §(w + wp — )

=[P(=j(a+ wo)le! PN 50 1wy + a)).

Py = |P(jlwg — a))|eftPGlwoa)
Py = |P(j(a +wp))|e! FUl+e0)
P = |P(]'(a_wo))leij(j(wwO))
Py = |P(—j(a+wp))|eltPiteteo)),

The Fourier transform of the error signal E(jw) is expressed as

E(jw) = %’i(fza(w —wp—a) — Py8(w — wy + )

+Pyo(w + wo + &) — Psd(w + wp — )).

The error signal is now multiplied by the second oscillator such that

7

d

dt

é(t))

= FE(jw) * F(sin(wpt + ¢))

e1%5(w —wy) e I8 (w + wo
_ E(jw)*( e >)

(5.87)
(5.88)

(5.89)

(5.94)

(5.95)

(5.96)

- "’%((Pw_j‘zs + Pie?®)(w + a) — (Pre ™% + P3e’?)o(w — )

—Pie%5(w + 2wo + a) + Pye ™ %5(w + 2wy — )

—Pie?8(w — 2wy + a) + Pae?®8(w — 2wp — a)).
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Ignoring the higher harmonic components of (5.97), %i)(t) can be express as

d. g .
= = -2 t+ W .
dtb(t) 2(PI sin(at + V) (5.98)
where
|P| = \/(P‘ cosW~ + PtcosU*)2 + (P~ sinU~ + P+sinU+)2  (5.99)
_ (P sin¥™ + Ptgin¥+
vo= tanl (P— cos U~ + P+ cos \Il+) (5.100)
U™ = [P(j(wy—a)) — LP(jup) (5.101)
Ut = /P(j(wo+a)) — LP(jw) (5.102)
P = |P(jwo — a))] (5.103)
Pt = |P(j(un+ ) (5.104)

As we can see, the inclusion of frequency response characteristics of the plant
can result in a magnitude and phase shift in the estimate of l;(t) This variation is
particularly apparent when the magnitude and phase of the plant change rapidly with
frequency. To illustrate this result, we use our sample second order system (5.39) but
select w, = 250 rad/s and ¢ = 0.1 so that the frequency response has more radical
phase and magnitude shifts, and compare the resulting phase and magnitude shift in
the estimate of b(t) as a function of a for wy = 50 and 250 rad/s. Figure 5-17 plots
the phase and magnitude shift of %l;(t) as a function of a. As expected, the resonator
at wy is much more sensitive to a. This dependence on « once again emphasizes how

critical it is to have a well-behaved plant.

5.7 Summary

In summary, the OAC perspective allows us to accurately predicted the convergence
and error properties of control systems using AFC control for a broad range of con-
troller gains g;. Specifically, we found that AFC estimate of the Fourier coeflicients

of an error signal is a first order response whose time constant is proportional to the
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Figure 5-17: Phase and Magnitude shifts as a function of « for a second order plant

11

09

08

07
06
05

T T ! ! L ) 1 '
........ .“-.""'v..._‘_
—— W0=50 ris : Tt~ Ll :
— — . W0=250 rfs 5 P
: i . i : ; . i
2 4 6 8 10 12 14 16 18 20
o (rad/s)
T T T T T T T T L
: .w0=50l|'/s ................................ ..”,.’ .........
A o o WO=250 /8 | ce v S E...’..,.mf ...........................

o (rad/s)

(wn = 250 r/s and ¢ = 0.1) for resonators at wp = 50 and 250 rad/s.
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AFC gain g;. Thus for rapid error cancellation, we would like to set the controller gain
as high as possible. The OAC perspective also reinforced the importance of properly
selecting the AFC phase parameter ¢;. Just as the loop shaping perspective of AFC
control from Chapter 4 yields an optimal phase value of ¢; = /P (jw;) for maximum
phase margin, the OAC approach shows that setting ¢; = /P(jw;) results in the
fastest estimation of the Fourier coefficients of the error signal for a given controller
gain. Lastly, we found that the OAC approximation is limited to systems where the
phase and magnitude of the plant have only small changes across the frequencies of
interest. In the next Chapter, we present the actual controller implementation where
we actually apply our loop shaping techniques to apply AFC control to both the fast

tool servo and the in-feed stage.
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Chapter 6

Control System Implementation

This chapter details the design and implementation of the controllers used on the
linear fast tool servo. In the first section, we detail the design and discrete-time
implementation of the conventional controllers on both the fast tool servo and the
hydrostatic stage. In the second section, we utilize the design rules detailed in Chapter
4 to apply adaptive feedforward cancellation to the fast tool servo. In the next section,
we detail the design process used to implement AFC acceleration feedback on the
hydrostatic stage. Lastly, we detail the implementation of an amplitude modulated
adaptive feedforward cancellation controller on both the fast tool servo and machine

stage.

6.1 Conventional Control

The position controllers for both the fast tool servo (FTS) and the reaction mass stage
incorporate multiple control loops. The controller for the fast tool servo, shown in
Figure 6-1 consist of a conventional lead-lag inner loop, a repetitive control outer loop,
and a feedforward command channel. The controller for hydrostatic slide/reaction
mass, shown in Figure 6-2 consist of lead-lag conventional controller incorporating a
high frequency pole, a feedforward command channel which scales and phase shifts
the fast tool servo trajectory, and a repetitive base acceleration control outer loop.

Figure 6-3 shows the overall control structure with both the FTS and reaction mass
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Figure 6-1: Overall fast tool servo control system block diagram, including a conven-
tional lead/lag control loop, command pre-shifting, and repetitive control.

Mrs FTS Reaction Forces
Z4(z) —- Mo + Disturbance Forces
from FTS W(s)
Feedforward Filter
Za(2)= 0 —=@—| Ga(z)}—T—[ c1(z)|——§-} ® @ Gpls) frt— Z(s)
i Acceleration ! !
Controller | 4 P(z) Conventional
Inner Loop
®
C(z) Repetitive Control 1
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Figure 6-2: Overall hydrostatic stage/reaction mass control block diagram including
a conventional lead/lag control loop, position command pre-shifting, and a repetitive

base acceleration control outer loop.
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Figure 6-4: Free body diagram of the fast tool servo, hydrostatic stage, and machine
base system.

controller. In this Figure, we see that the FTS control loops are coupled to the
reaction mass controller through the mixing of the measured positions. Similarly, the
reaction mass controller is coupled to the FTS controller through the FTS actuation
forces. In this section, we will detail the conventional controllers for both the fast

tool servo and hydrostatic stage.

6.1.1 Fast Tool Servo Model and Position Control

Plant Model

Figure 6-4 shows the free body diagram of our fast tool servo, hydrostatic stage/reaction
mass, and machine base system. As can be seen, we propose to treat all three compo-
nents as free masses linked only by the actuation forces required to follow the desired
paths. In the case of the fast tool servo, this model is quite appropriate since the
fast tool servo is supported by a nearly friction free air bearing and actuation forces
are generated by a linear motor. The forces exerted by the motor cooling tubes and
power wires have been minimized by design and are neglected in our model. Thus,

the transfer function of the fast tool servo can be expressed as

1
Gy(s) = W (6.1)
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Our ProE model predicted that the moving mass of the fast tool servo, including the
cooling oil but not the power wires and tubing, would be 3.011 kg. The measured
moving mass of the fast tool servo without oil, motor cables, tubing, and miscellaneous
hardware was 2.93 kg. For analysis, I assumed that the moving mass of the fast tool

servo was
My, = 3kg. (6.2)

Forces are applied to the free mass by the linear motor which has a measured force

constant of

N
K; = 3545—

(6.3)

as developed by Michael Liebman in his Master’s thesis [46]. Since the motor has
three phases and we are commanding DC current not the RMS current, we need to

include the following conversion constant

K V2 Apms
DCtoRms — ~7=
V3 Apc

(6.4)

which comes from the fact that for a three phase motor the DC current value is V3 /2
of the peak current and the RMS current is 1/v/2 of the peak current. The Copley
HPA-400-25 amplifier has a measured gain of

<l

~ 4 (6.5)

<|»

Keop = 3.98

The amplifier has a measured bandwidth of 2 kHz, a factor of 4 greater than our
desired bandwidth, so I have ignored the amplifier dynamics. Thus the complete

model of the continuous time elements of the model is

_ KepKpctornmsKy _ 38.5
a Mft352 N 82 ’

Gyls) (6.6)

IThis amplifier was kindly donated by Copley Controls Inc. of Canton, MA {19]
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Since our controller is implemented digitally with a sample time of T,=80 us
(12.5 kHz), we need to convert our continuous time model G,(s) to a discrete time Z
transform equivalent. For this analysis I have chosen to employ a bilinear transform,

often referred to as Tustin’s method [22], where

_2z-1 (6.7
5= Toz+1 7)
The resulting FTS transfer function is
22 +2z+1
=61.601079 =—"——, .
Gp(z) = 61.6210 PR (6.8)

Before we can begin to design our controller, we need to take into account a couple of
digital hardware issues. First, on the DS1103 board the digital to analog converters
(D/A) have a gain of 10 while the analog to digital converters (A/D) have a gain of
0.1. We are generating the amplifier input by converting a discrete time number into
a voltage, thus we need to include the D/A gain in our model. We are measuring the
FTS position, the transfer function output, with a MicroE M35008Si serial interface
encoder. The serial interface between the DS1103 and encoder electronics is handled
by the DS1103 Slave DSP. The code as implemented on the Slave DSP results in
a one unit delay in collecting the position data. There is an additional unit delay
generated in transferring the data from the Slave DSP to the main DSP. A discrete

unit delay is represented as
1
-y 6.9
- (69)

Thus with the D/A gain and the 2 unit delay, the transfer function becomes

g 2242241

GP(Z) = 616210~ m

(6.10)

The serial interface transfers a 30-bit position word with a displacement of 0.0048828

pm/count. I have chosen to use mm for my internal controller units which means I
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Figure 6-5: Experimental frequency response of the fast tool servo from a commanded
current in dSpace (1 Amps peak) to measured fast tool servo position (mm). The
solid line shows the measured response while the dashed line shows the predicted
response.

need to include a conversion factor
Ko = 1000 H:n—m (6.11)

Lastly, I have employed saturation blocks in my discrete time controller to limit the
current output of the amplifier. To prevent error in selecting the proper saturation
limits, I have chosen to null the amplifier and D/A gains so that a unity controller

output results in a 1 A amplifier output. The resulting discrete transfer function is

2
B 9 2°+2z+1

Figure 6-5 show the open loop frequency response of the fast tool servo from a
commanded current in dSpace (1 Amp peak) to measured fast tool servo position.

The solid line shows the measured response while the dashed line shows the predicted
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Figure 6-6: Block diagram of the fast tool servo conventional position control loop.

response. The measure and predicted response match quite well from 2 to 1000 Hz.
The deviations at low frequencies are due to the high gain of the transfer function
(ie. a very small current results in a large motion). Above 1000 Hz, we observe
some unmodelled dynamics in the magnitude plot. In particular, it appears that the
first resonance mode of the fast tool servo structure occurs at 1600 Hz. Since the
peak associated with this resonance is relatively mild, we did not have to modify our
control structure to attenuate this response. Similarly, we observe deviations in the
phase response. Some of these deviations are directly related to the unmodelled fast
tool servo dynamic response seen in the magnitude plot, but the rapid phase roll-off
observed above 1000 Hz is likely caused by the amplifier dynamics (as previously
noted the amplifier has a bandwidth of 2 kHz) which are not included in my model.
Since the predicted and measured response match well in the frequencies of interest,
I elected to leave out the amplifier model even after noting the increased phase rolloff
at high frequency.
Position Control

The primary fast tool servo position control loop is composed of a single lead-lag
compensator. Figure 6-6 shows the block diagram for the fast tool servo conventional
position control loop. Both the lead and lag are placed in the forward path. The
lead compensator has a pole-zero separation of a = 10 and is centered at 300 Hz. In

continuous time, a lead compensator has the form

ars+ 1

Glead(s) = s+ 1

(6.13)
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where 7 = 1/w and w = 27 f. 1 choose to implement this digitally as

z— Lz
6.14
Glead( ) > — Lp ( )
where Lz and Lyp are
Lz = ewh/ve (6.15)
Lp = e vTV@ (6.16)

and T is the sample rate. This digitization method is called the matched pole zero

method and is found by extrapolating from
z = el (6.17)

the relationship between and s— and z— planes [30]. One disadvantage of this form
is that the lead transfer function no longer has unity gain at low frequencies, but we
adjust for this when we select the overall G.. The Lead transfer function with o = 10,

a center frequency f, = 300 Hz, and T, = 0.00008 s is

z —0.9534331

= — .18
Creaa(2) = 5 62072928 (6.18)
In continuous time, a lag compensator has the form
Grag(s) = 542 (6.19)
ag(8) = .
lag TS

where w = 1/7 = and is the frequency of the Lag zero along the negative real axis.
We have placed the zero at 30 Hz (one decade below the desired crossover frequency

of 300 Hz). We use the following discrete-time equivalent for the lag compensator:

Gugle) = Tt EZJ_F (1“;T = (6.20)

where w, is the desired zero frequency in rad/s. This odd transfer function is a
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Figure 6-7: A discrete-time lag compensator implemented with an anti-windup trape-
zoidal integrator.

result of the lag implementation shown in Figure 6-7 where the lag compensator is
constructed using an anti-windup trapezoidal integrator. If we were to implement the

Lag with a backward integrator

Tz
Grni(2) = T (6.21)
the Lag transfer function would be
T+ Dz —1
Grag= el D21 (6.22)

z—1

We experimented with both forms and after finding no functional difference (the
slightly more complex trapezoidal integration had no impact on the DSP turnaround
time), we used the more accurate trapezoidal implementation [40]. The Lag transfer

function with the zero at 30 Hz and T, = 0.00008 s is

2.01507962 — 1.9849204
2(z—1)

Glag(z) = (623)

To set the overall controller gain, we plotted the frequency response of the Lead,

the Lag, and the Plant and selected G, = 948 such that
IGcGlead(z)Glag(Z)GP(z)| =1 (624)
at the desired crossover frequency of 300 Hz. The negative loop transmission of the

compensated system is

_0.02947042* + 0.00183432° — 0.05710692% — 0.00177235z + 0.0276776

L
(2) 227 — 7.241462° + 9.724382% — 5.724382% + 1.2414622

(6.25)
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Figure 6-8: Experimental negative loop transmission response for the fast tool servo.
The solid line shows the measured response.

Figure 6-8 shows the measured and predicted negative loop transmission for the
fast tool servo. The loop transmission was measured while the fast tool servo was
operating in closed-loop control and is calculated by comparing the measured error
signal (input) to the fast tool servo position (output). For frequencies below 15.9
Hz, the reference position command is a 2 mm pk-pk sinusoid. Above 15.9 Hz, the
reference input is selected such the fast tool servo has a maximum acceleration of 1

g. Note: the peak acceleration of any sinusoidal trajectory may be calculated as

2(t) = asinwt (6.26)
z(t) = awcoswt (6.27)
3(t) = —aw’sinwt (6.28)

0 = zz;" (6.29)

As we can see, there is a fairly large difference between the measured and predicted

loop transmissions. At low frequencies, the differences are a result of a extremely
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Figure 6-9: Experimental conventional fast tool servo frequency response. The dashed
line indicates the predicted response.

small error resulting in a large motion. At high frequencies, we see a fairly large

difference between the measured and predicted due to unmodelled dynamics.

The closed loop plant model is generated by converting the loop transmission L(z)

to state-space form and then setting

P(z) = (6.30)

which results in the following state-space matrices for the closed loop plant model

Pl z):
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Figure 6-9 compares the measured and predicted closed loop frequency response

of the fast tool servo. The data was generated by commanding a 2 mm peak to peak

sinusoid below 15.9 Hz and a trajectory with a maximum acceleration of 1 g above 15.9

Hz. The measured bandwidth is 540 Hz, very close to the desired 500Hz. As before,

the dashed line indicates the predicted response. The predicted and modelled results

match quite well at low frequencies, as expected since the large loop gain of both the

measured and predicted loop transmission dominate the closed loop response. There

is some variation between the predicted and measured responses between 200 and

500 Hz. Again, this is somewhat to be expected since the magnitude of the loop
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transmission in this region is near unity with the shape of the closed loop response
being very sensitive to small variations in loop gain and phase. If we look carefully at
Figure 6-5, which plots the predicted and measured open loop transfer function, we
find that there is a 1 dB difference between the measured and predicted magnitude

and a 1 degree difference in the phase of the plant at 300 Hz.

Figure 6-10 shows the predicted and measured response with G., = 0.89G.. As
we can see, this 11% reduction in the predicted loop gain causes the two responses
to match quite well up to 500 Hz. There are three likely sources of the difference
between our predicted and measured systems. First, it is likely that we have underes-
timated the moving mass of the fast tool servo. As mentioned earlier, we weighted the
moving portion of the fast tool servo without cables, hoses, and cooling oil. While
we added 0.1 kg to the measured mass of the fast tool servo to account for these
components, it is very possible we have underestimated the mass of the components.
Second, it is very possible that as the system is tuned the force constant of the linear
motor (K,,) is lower than predicted. As described in Chapter 3, we are generating the
commutation for the linear motor in Simulink. This commutation is dependent on
relating the electrical position of the motor to the measured position of the fast tool
servo. We determined this relationship by running 1 Amp through 2 motor phases
and then measuring the resulting motor location. This physical location is electri-
cally 90 degrees from the position of maximum force. This allowed us to determine
the relationship between FTS location and commutation phase. Any errors in this
relationship results in a reduction in motor force. We selected the commutation con-
stant from an average motor position based on multiple trials but there was a fair
amount of variation in the actual neutral location so I suspect there 1s some error
in this constant. Lastly, it is possible that the amplifier dynamics are affecting the

magnitude of the response.

As a point of interest, we also implemented a controller where the designed loop
transmission crossover is 500 Hz. The controller was identical to the one described
earlier with the lead center frequency moved to 500 Hz and the gain selected to give

unity magnitude at 500 Hz. Figure 6-11 shows the measured and predicted closed-
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Figure 6-10: Experimental conventional fast tool servo frequency response. The
dashed line indicates the predicted response.

loop frequency response. The measured -3 dB bandwidth with the 500 Hz crossover is
955 Hz. While this controller configuration is stable, it has a number of issues. First,
the peak magnitude is 13 dB. This means that the step response of the fast tool servo
will be quite oscillatory which is not desirable. Second, the unmodeled dynamics at
1600 Hz could become an issue in with this controller implementation. We used the

300 Hz implementation for all of the results presented in this thesis.

6.1.2 Hydrostatic Stage model and Position Control

Plant Model

Figure 6-4 shows the free body diagram for the entire fast tool servo, hydrostatic
stage, and machine base system. As discussed in Section 6.1.1, we are treating all of
the system components as free masses connected only by the actuator forces. As seen
in Section 6.1.1, this assumption works quite well for the linear fast tool servo which
is supported by an air bearing and driven by a linear motor. In this section, we will

see that this basic model does not fit the hydrostatic stage quite as well.
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Frequency Response of FTS 500 Hz crossover
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Figure 6-11: Experimental conventional fast tool servo frequency response. The
dashed line indicates the predicted response.

The hydrostatic stage system consists of the non-moving portions of the fast tool
servo including the bushings and support frame for the air bearing, the magnet track
of the fast tool servo linear motor, the large adapter plate to mate the fast tool servo
to the stage, the coil assembly for the Aerotech BLM-203 linear motor?, and all of
the cable and hoses for the operation of both the fast tool servo and hydrostatic slide.
The mass of the stage was estimated by measuring the mass of the New-Way air
bearing (7.7 kg), the mass of the magnet track (4.1 kg), the adapter plate (29.4 kg),
Aerotech coil mass (0.9 kg), and adding them to the estimated mass of the moving
stage components (=~ 100 kg), for a total mass of approximately 142 kg. Since, the
actual mass of the moving components of the stage was unknown, I rounded this total

up such that

Myyage = 150 kg. (6.32)

2 Aerotech Inc. of Pittsburg, PA kindly donated the two linear motors used in the DTM ([3].
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The Aerotech BLM-203 linear motor has a force constant

N
Kpg =23.6—. 6.33
=265 (63

The linear motors are driven by an Aerotech BA10-40 amplifier 3 with an amplifier

gain of
Apk
=1—= .34
K,=1 v (6.34)

for safety reasons the amplifier is current limited to 54% of the maximum current. In
the case of the BA10-40 amplifier a change in the amplifier current limits results in a

change in the amplifier gain, thus the amplifier gain becomes

K, = 0.54%. (6.35)
The BA10-40 amplifier has a bandwidth of 2kHz and a switching frequency of 20
kHz. Just as in the case of the Copley Controls amplifier used on the fast tool servo,
we ignore the effect of the amplifier dynamics on the system response. The amplifier
performs Hall-effect based motor commutation, eliminating one source of modeling
error. Thus the complete model of the continuous time elements is

KKy 0.085
===

Gps(s) = (6.36)

Miages* s

Once again, [ employ a bilinear transform, Eqn. (6.7), to determine the discrete time
equivalent transfer function. With T, = 80us, the stage has the following discrete

time transfer function

1222+22+1

Gs(z) = 136210 poRT s

(6.37)

As with the fast tool servo, we need to take into account that the DS1103 board D/A’s

3Aerotech Inc. of Pittsburg, PA kindly donated the both the in-feed and cross-feed amplifiers
used in the DTM [3].
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Figure 6-12: Experimental frequency response of the hydrostatic stage/reaction mass
from commanded current to stage position. The dashed line indicates the predicted
response.

have a gain. The stage position is measured using one of the incremental encoder
interface channels on the DS1103 board. This interface is run on the main processor
and unlike the serial interface for the fast tool serve does not have an appreciable
delay. As before, I have chosen millimeters as my internal unit and must include

(6.11). The complete stage model is

0_6z2 +2z4+1

=l s
Gs(z) = 13621 g

(6.38)

Figure 6-12 shows the measured and predicted frequency response of the hydrostatic
stage. As can be seen, the model and actual system match up quite well over the
frequencies of interest. Not shown in this Figure is a resonant mode in the stage
occurring at 1200 Hz. This resonance impacts the controller design and will be
discussed in the next section.

Position Control
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Figure 6-13: Block diagram of the hydrostatic stage/reaction mass conventional po-
sition control loop.

The conventional control loop used on the hydrostatic stage is nearly identical to that
employed on the fast tool servo. Figure 6-13 shows a block diagram of the conven-
tional position control loop. As we can see, the principal differences between the fast
tool servo position control loop and the stage position control loop are the position
feedback channel is implemented through the main DSP using the incremental end-
coder interface which eliminates the two unit delay seen in the fast tool servo control
loop and a high frequency pole is placed in the forward path to further attenuate the
high frequency dynamics of the stage. The design goal for the stage compensation
loop 1s a bandwidth of at least 100 Hz with a moderately damped step response.
To achieve these goals, we have designed the loop transmission to crossover at 100
Hz. As in Section 6.1.1, the lead compensator is implemented as Eqn. (6.14) where
Lz and Lp are as defined in Equs. (6.15) and (6.16). For the stage lead, we have set
a = 10, the center frequency f = 100 Hz, and as always Ty = 80 us. Thus the transfer

function for the stage lead is

2z —0.98423032

z — 0.8530361 (6.39)

Gslead(z) =

Similarly, the lag compensator is implemented as Eqn. (6.20) and where the zero is
place at 10 Hz (one decade below the desired crossover frequency). This results in

the lag having a transfer function of

2.00502652z — 1.9949735

2 —T) (6.40)

Glags(z) =
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The new element in the stage control loop is addition of a high frequency pole to
attenuate the high frequency dynamics of the stage. This element was not included
in the original control loop since when we set up the stage originally, we only mea-
sured the open loop response out to 1000 Hz (1 decade above the desired crossover
frequency) and as a result missed a stage resonance at 1700 Hz. As it turns out, in
our original machine testing this did not cause any problems. This resonance was
brought to my attention by my fellow doctoral student Xiadong Lu in his work with
ultra-fast servos. Xiadong elected to suppress this resonance using a high order notch
filter [50]. Rather than use a notch filter, Richard Montesanti attenuated this reso-
nance using a high frequency pole [61]. I have elected to replicate Rick’s work and
use a high frequency pole to cancel out the high frequency dynamics. The transfer

function for the high frequency pole is

1
Gz 6.41
ap(2) = —— 7y (6.41)
where
thp = e~ wrspTs (642)

and wyyp is the frequency of the high frequency pole in rad/s. I elected to place the
high frequency pole at 500 Hz which resulted in a 13° drop in phase at my desired
crossover frequency (100 Hz) and a 10 dB drop in the magnitude of the resonance at

1700 Hz. The transfer function of the high frequency pole as implemented is

1

N 6.43
7 — 077776778 (6.43)

Ghpp =

As in the case of the fast tool servo controller to set the overall controller gain, I
plotted the frequency response of the combined Lead, Lag, high frequency pole and
Plant and selected G, = 292 such that

chsGleads(z)Glags(z)Gs(z)| =1 (644)
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Figure 6-14: Experimental negative loop transmission response for the hydrostatic
stage from position error to measure stage position. The solid line shows the measured

response.

Combining all of the loop components results in the following transfer function for

the negative loop transmission

Ny(z
L(z) = § Ez; (6.45)
Ny(z) = 8.4195566E — 42" + 1.T49889F — 52* — 1.6663459F — 32°...

—1.73657T46 E — 5z + 8.2452334F — 3 (6.46)
Dy(z) = 22°—9.26160762* + 17.111752 — 15.7656062% + 7.242391z — 1.3260R78)

Figure 6-14 plots the predicted and measured negative loop transmission response
of the stage control loop. The loop transmission was calculate from the position
error to the stage position while the stage was operating in closed loop control. For
frequencies below 11.2 Hz, the reference position command is a 0.02 mm peak to

peak sinusoid. Above 11.2 Hz, the magnitude of the trajectory was selected such that
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Figure 6-15: Experimental closed loop response for the hydrostatic stage. The solid
line shows the measured response.

the maximum stage acceleration was 0.5 m/s* (0.05 g). The compensated system
has crossover at 100 Hz with a phase margin of 35° and a gain margin of 5. The
discrepancy between the measured and predicted responses at low frequencies is likely
caused by two factors. First, there is some issue in comparing the large response cause
by a small error signal. Second, in the case of the hydrostatic stage, we have neglected
the viscous damping from the oil in the hydrostatic bearing. Including the damping
causes one of the integrators to move out along the negative real axis and thus reduce
the low frequency gain of the loop. I have not attempted to model the effect of the
damping because as we can see from Figure 6-14, the current model correctly predicts
the frequency response around the crossover frequency of 100 Hz. Above 100 Hz, we
see quite a bit of un-modeled dynamics in both the magnitude and phase plots. Since
we have sufficiently attenuated the resonant peak at 1700 Hz, we did not attempt to

correct the model at higher frequencies.

Figure 6-15 shows the closed loop frequency response of the hydrostatic stage.
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The response was calculated from the reference position input to the measured stage
position. For frequencies below 11.2 Hz, the reference position command is a 0.02 mm
peak to peak sinusoid. Above 11.2 Hz, the magnitude of the trajectory was selected
such that the maximum stage acceleration was 0.5 m/s? (0.05 g). The closed loop
stage has a -3 dB bandwidth of 190 Hz. As we did for the fast tool servo, we have
converted to the loop transmission transfer function L,(z) to state space form and
then calculated the closed loop transfer function Ps(z). This results in a closed loop

plant model P,(z) with the following state matrices:

4.631 -8556 7.883 -3.621 0.6635 -4.21E-4 -8.746E-6 8.332E-4 8.683E-6 43123E-4

1 0 0 0 0 0 ) 0 0 0

0 1 0 0 0 0 ) 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

A=]| o 0 0 0 0 4.63 -8.556 7.884 -3.621 0.6631

0 0 0 0 0 1 ) 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1 0
1
0
0
0

B= (1) ,C=| 421E-4 B8.749E-6 -8.332E4 -8.683E6 412384 0 0 0 0 0|,
0
0
0
0
D=0
(6.48)
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6.2 Adaptive Feedforward Cancellation Applied to

the Linear Fast Tool Servo

In section 4.2.3, we detailed a method for applying adaptive feedforward control to
a generic system. In this section, we will be applying that method to the linear
fast tool servo. We implemented and conducted experiments using the following four

configurations:
1. A single AFC resonator canceling a single harmonic sinusoid at 20 Hz.
2. A single AFC resonator canceling a single harmonic sinusoid at 50 Hz.

3. An eight harmonic AFC controller applied to an eight harmonic trajectory with

a fundamental frequency at 12 Hz.

4. A six harmonic AFC controller applied to a six harmonic trajectory with a

fundamental frequency of 23 Hz.

Due to the large number of data points required to measure the frequency response
around the resonators, we only measured the frequency response of the final AFC
implementation. Note: The measurement of this frequency response took on the
order of one hour and during the test the pump for the coolant oil seized, thus
preventing any further high acceleration testing.

In this section when we refer to the negative of the loop transmission, we are

referring to the following transfer function
Lose(z) = Cn(2)P(z) (6.49)

where P(z) is the transfer function of the fast tool servo under conventional control
determined from Eqn. 6.30 and where

N 22cos ¢y — zcos(wiT + )
Cnlz) = 24 22 — 2cos(w;T)z + 1

i=1

(6.50)
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Figure 6-16: The calculated negative of the AFC loop transmission —Lgg.(2) for the
linear fast tool servo with a single resonator at 20 Hz and ¢, = 1.

In general when we refer the to closed loop AFC transfer function, we are referring
to
Z(2) P(z)(1 + Cn(z))

Ziz) ~ 1+ P(0ONG) (6:50)

which is derived by setting the feedforward filter in Figure 6-1 equal to 1.

6.2.1 Single 20 Hz Resonator

The first AFC configuration that we implemented was a single resonator at 20 Hz. To
tune a single resonator system, we need to select only two parameters g, and ¢;. This
means that we need to modify step 3 of our procedure in section 4.2.3 to evaluate the
magnitude of the loop at each frequency the phase passes through +180° instead of
specifically evaluating the local minima between resonators. Following the procedure

in section 4.2.3, we set the phase advance parameter ¢ equal to the measured plant
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Figure 6-17: The calculated negative of the AFC loop transmission —Lgg.(2) for the
linear fast tool servo with a single resonator at 20 Hz and g; = 0.01.

phase
¢ = LP(207j) = 0.1° = 0.003 rad. (6.52)

In this case since the plant phase is essentially zero, the phase advance parameter
does little to enhance stability. Figure 6-16 shows the calculated negative of the AFC
loop transmission — L,f.(z) for the linear fast tool servo with a single resonator at 20
Hz and g, = 1. As can be seen from the plot, this is clearly an unstable tuning since
the phase wraps through -180°with a magnitude of 20 dB at 348 Hz. In general, we
tune systems with AFC control to have a gain margin of at least 10 (20 dB). This
means that we need to reduce the gain by a factor of 100. Figure 6-17 shows the
calculated negative of the AFC loop transmission —Lgs.(2) for the linear fast tool
servo with a single resonator at 20 Hz and g; = 0.01. As we can see, the system now

has the desired gain margin of 10 at 348 Hz.

Figure 6-18 shows the calculated closed loop frequency response for the fast tool
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Figure 6-18: The calculated closed loop frequency response for the linear fast tool
servo with a single resonator at 20 Hz and g; = 0.01.

servo with a single AFC resonator at 20 Hz and g; = 0.01. This plot does not look
different from the system without AFC (Figure 6-9) since the calculated magnitude
of the system without AFC is 0.047 dB at 20 Hz, while the AFC compensated system
has a magnitude of 0 dB at 20 Hz. While it is not clear in Figure 6-18 that AFC
control improves trajectory following, we will see in the next chapter that AFC control

significantly reduces the following error.

6.2.2 Single 50 Hz Resonator

The second AFC controller we employed was a single resonator at 50 Hz. We used the
same design procedure as the previous section to choose g, and ¢;. Figure 6-19 shows
the calculated negative of the AFC loop transmission for the fast tool servo with a

single resonator at 50 Hz, g; = 0.01 (the gain selected for a single 20 Hz resonator),
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Figure 6-19: The calculated closed loop frequency response for the linear fast tool
servo with a single AFC resonator at 50 Hz and ¢g; = 0.01.

and
¢ = (P(1007j) = 0.03° = 0.0005 rad. (6.53)

Once again, the phase advance does not appreciably enhance the stability of the
system. As we can see from the plot, the parameters as selected result in loop with a
gain margin of 7.9 at 348 Hz. While the gain margin is a little less than the previous

system, it is sufficient to ensure that the closed loop system will remain stable.

Figure 6-20 shows the calculated frequency response of the fast tool servo with
a single resonator at 50 Hz and ¢; = 0.01. In the case of the 50 Hz resonator, we
begin to see the functionality of AFC compensation. Without AFC compensation,
the conventionally controlled plant has a magnitude of 0.8 dB (1.096) at 50 Hz which
results in almost a 10% error following a 50 Hz sinusoidal trajectory. In the AFC
compensated system, the closed loop magnitude crosses through 0 dB (1) at 50 Hz.
Thus the system would perfectly track a sinusoid of 50 Hz. It should be noted that
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Figure 6-20: The calculated closed loop frequency response for the linear fast tool
servo with a single resonator at 50 Hz and g; = 0.01.

the closed loop magnitude near 50 Hz is non-zero so any variations in the frequency
of the sinusoid would result in small following errors. As mentioned in chapter 4, the
higher the AFC gain the better the closed loop response near the resonator frequency

is.

6.2.3 Eight Harmonic AFC Controller with w;, =12 Hz

The third AFC controller that we implemented was a network of 8 resonators with
w; = 75 rad/s = 11.64 Hz ~ 12 Hz. We had a number of issues designing and
implementing this controller.

First, at low frequencies both the closed-loop plant model and the measured plant
have a positive phase shift. The phase of the measured plant becomes negative for
frequencies about 50 Hz, while the model becomes negative above 60 Hz. As discussed
in chapter 4, in continuous time 0 < ¢ < 7/2 locates the AFC zero on the negative

real axis while 0 > ¢ > —n /2 places the zero on the positive real axis. Similarly, in
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Figure 6-21: AFC resonator implemented as an enabled subsystem in Simulink.

discrete time 0 < ¢ < m/2 results in the zero being on the real axis inside the unit
circle and 0 > ¢ > —m/2 results in a zero outside the unit circle on the real axis.
When an array of resonators in which some of the zeros are inside the unit circle and
some are outside the unit circle are summed, the result is a system where there are
complex zero pairs both inside and outside the unit circle (alternately stated there
are zeros in both the right and left half planes). As it happens, each complex zero
pair is located between two resonant peaks. If the complex zero pair is located in the
right half plane or outside the unit circle, the phase of the system drops 180°between
resonant peaks. This is the condition studied in detail in chapter 4. If the complex
zero pair is located inside the unit circle, the system phase rises 180°. While this
result does not change our tuning rules, it did take us some time to confirm that the
odd (too me at least) looking frequency response plots we were generating in Matlab

were correct.

Second, I initially implemented each AFC resonator as an enabled subsystem in
Simulink. To turn on AFC control, I would switch to ControlDesk where I would first
enable the amplifiers, then enable the conventional control loops, and lastly enable
the AFC resonators. As it turns out when more than six resonators are implemented

as enabled subsystems, the initialization process when the subsystems are turned
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Figure 6-22: An alternate implementation of an AFC resonator in Simulink.

on cause the DSP turnaround time to overrun, crashing the entire system. Figure
6-21 shows an AFC resonator implemented as an enabled subsystem. The internal
states are held when the system is disabled and reset each time the system is enabled.
Since the states are held when the system is disabled, we need to include a switch
which ensures that the signal input into the conventional control loop is zero when
the AFC controller is disabled. The output and internal state of the integrator is
limited by a saturation block. Figure 6-22 shows an alternate implementation of the
AFC resonator in Simulink, wh<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>