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Abstract

In this thesis, I detail the design and control of a linear long stroke fast tool servo
(FTS) with integral balance mass. The long stroke fast tool servo consists of an air
bearing stage driven by a unique three phase oil cooled linear motor. The linear FTS
has a travel range of 25 mm and is capable of 100 m/s 2 accelerations. The FTS is
mounted to a T-base diamond turning machine (DTM). The FTS is attached to a
hydrostatic bearing supported in-feed stage which is driven by a second linear motor.
The in-feed stage is allowed to move in response to the FTS actuation forces and thus
acts as an integral balance mass.

We have developed a unique control structure to control the position of both the
FTS and the reaction mass. The FTS controller employs a conventional lead-lag
inner loop, an adaptive feedforward cancelation (AFC) outer loop, and command
pre-shifting. For the FTS controller, the AFC resonators are placed in the forward
path which creates infinite gain at the resonator frequency. The controller for the
hydrostatic stage consists of a conventional lead-lag control inner-loop and a base
acceleration feedback controller. The acceleration feedback controller consists of a

high-pass filter, a double integrator for phase compensation, and an array of AFC
resonators. For the base acceleration controller, the AFC resonators are placed in

the feedback path and thus act as narrow-frequency notch filters. The notch filters

allow the hydrostatic stage/balance mass to move freely at the commanded trajectory
harmonics thus attenuating the forces introduced into the DTM. The AFC control
loops are designed using a new loop shaping perspective for AFC control.

In this thesis, we present two extensions to AFC control. The first extension

called Oscillator Amplitude Control (OAC) is used to approximate the convergence

characteristics of an AFC controller. The second extension termed Amplitude Mod-

ulated Adaptive Feedforward Cancelation (AMAFC) is designed to exactly cancel

disturbances with a time varying amplitude.

Thesis Supervisor: David L. Trumper
Title: Professor of Mechanical Engineering

3



4



Acknowledgments

First, I would like to thank my advisor Professor David L. Trumper. Through my

entire tenure here at M.I.T., Prof. Trumper has challenged me to be a more thought-

ful researcher, student, and teacher. His clear insights into system theory, classical

control systems, magnetic circuit design, and teaching are what made the successful

completion of my doctoral studies possible. In particular the benchmark for teaching

performance he set while instructing 2.003 is one that I do not expect to be exceeded.

I would also like to thank the members of my committee Prof. Martin Culpep-

per and Prof. Samir Nayfeh. While I spent far too little time interacting with

Prof. Culpepper during my time here, his insightful comments on my research had

a significant impact on the mechanical design of the FTS and the final form of the

result presented here. I interacted with Prof. Nayfeh on a far more regular basis and

would like to thank him for his encouragement and support throughout my tenure in

the basement of Bldg. 35. I would never have made it through without your advice.

Special thanks go to Prof. David Gossard and Prof. David Hardt for allowing me

to TA 2.003 the terms that they ran the class and for their cheerful and ongoing

support. Similarly, I would like to thank Prof. Neville Hogan from whom I learned

more than I ever thought I would want to know about modeling and analysis. I

greatly enjoyed my time as a student in your classes and as a fellow instructor in

2.003 lab.

I have had the good fortune of having had my work supported by a great number

of people. Dr. Stephen Ludwick's rotary fast tool servo and suggestion for future

work formed the foundation on which my research is built. Joseph Calzaretta served

as my mentor my first year here at M.I.T. and his background work with AFC control

contributed greatly to the development of our loop shaping approach. Joseph Cattell

provided most of the heavy lifting in the development of the OAC perspective of AFC

control. Michael Liebman who in addition to being my tennis partner also designed

and built the oil cooled linear motor used to actuate the FTS. David Otten supplied

much of the C code used to implement the serial interface encoder.

5



Over the years many people have passed through the Precision Motion Control

Laboratory and each has had an impact on me either providing useful advice or

simply good companionship. They have included Aaron Mazzeo, Larry Hawe, David

Cuff, Andrew Stein, Katie Lilienkamp, David Chargin, Augusto Barton, and Ming-

chih Weng. Special thanks go to our Dutch visitors Mart and Twan who even in

their short stay provided a great deal of entertainment. This entire experience has

been shared with my fellow doctoral students Richard Montesanti and Xiaodong

Lu, who have provided timely advice for tackling both technical and administrative

hurdles. David Rodriguera, Maggie Sullivan, Denise Moody, and Laura Zaganjori

have cheerfully addressed all the administrative needs of the Lab. Thank you to the

rest of the basement 35 crowd who are too numerous to name.

A personal thanks goes out to my M.I.T. friends who occasionally managed to

pry me out of lab or off of my couch. Marty Vona has been my workout, cooking,

and hiking buddy in addition to providing help when ever I need programming or

electronics advice. Paul Konkola and Carl Gang Chen did their level best to make

sure I got a sunburn at least once a year.

Finally, I would like to thank my family. My sister Carolyn and her husband

Chris, my sister Jennifer and her husband and children Harry, Emily, Carrie, and

James, and my parents Fred and Nancy. I can only hope that someday I can support

all of you as you have supported me.

This research was partially funded by NSF grant DMI-9908325

6



Contents

1 Introduction 33

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

1.2 Thesis Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

1.2.1 Linear Long Stroke Fast Tool Servo with Integrated Balance Mass 35

1.2.2 Fast tool Servo/Reaction Mass control . . . . . . . . . . . . . 37

1.2.3 Adaptive Feedforward Cancelation from a Loop Shaping Per-

spective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

1.2.4 OAC approximation and AMAFC control . . . . . . . . . . . 40

1.2.5 Overview of Results . . . . . . . . . . . . . . . . . . . . . . . . 41

1.3 Thesis Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

1.4 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

1.5 Asymmetric Turning . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

1.5.1 Fast tool servos . . . . . . . . . . . . . . . . . . . . . . . . . . 48

1.6 Other Actuators of Interest . . . . . . . . . . . . . . . . . . . . . . . 59

1.7 Sum m ary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

2 Fast Tool Servo Concept and Design 67

2.1 Rotary Fast Tool Servo Concept . . . . . . . . . . . . . . . . . . . . . 67

2.2 Linear Fast Tool Servo Concepts . . . . . . . . . . . . . . . . . . . . . 77

2.2.1 B earings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

2.2.2 A ctuator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

2.2.3 Voice Coil Motor Design . . . . . . . . . . . . . . . . . . . . . 82

2.2.4 Coil Cooling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

7



2.2.5 Sensor . . . . . . . . . . . . . . .

2.2.6 Reaction Force Attenuation . . .

2.3 Prototype Fast Tool Servo Detail Design

2.3.1 M otor . . . . . . . . . . . . . . .

2.3.2 Linear Motor Amplifier . . . . . .

2.3.3 Air Bearing Slide . . . . . . . . .

2.3.4 Discrete Time Processor . . . . .

2.3.5 Sensor . . . . . . . . . . . . . . .

2.3.6 Prototype Assembly . . . . . . .

2.4 Summary . . . . . . . . . . . . . . . . .

3 Fast Tool Servo Control

3.1 Fast Tool Servo Control . . . . . . . . .

3.2 Memory-Loop Repetitive Control .

3.3 AFC Repetitive Control . . . . . . . . .

3.4 Summary . . . . . . . . . . . . . . . . .

. . . . . . . . . . 94

. . . . . . . . . . 96

. . . . . . . . . . 97

. . . . . . . . . . 99

. . . . . . . . . . 99

. . . . . . . . . . 100

. . . . . . . . . . 100

. . . . . . . . . . 101

. . . . . . . . . . 111

. . . . . . 117

119

119

122

127

133

4 Adaptive Feedforward Cancellation 135

4.1 Adaptive Feedforward Cancellation . . . . . . . . . . . . . . . . . . . 135

4.1.1 AFC Equivalence - Time domain approach . . . . . . . . . . . 137

4.1.2 AFC equivalence - Laplace Shifting Method . . . . . . . . . . 138

4.1.3 AFC equivalence - Differential Equation Method . . . . . . . . 140

4.1.4 Discrete Time AFC implementation . . . . . . . . . . . . . . . 142

4.2 Adaptive Feedforward Cancellation from a loop shaping perspective . 147

4.2.1 Phase Advance Parameter . . . . . . . . . . . . . . . . . .. 147

4.2.2 Resonator Gains . . . . . . . . . . . . . . . . . . . . . . . . . 162

4.2.3 Choosing Gains gn for N Parallel Resonators . . . . . . . . . 165

4.2.4 Experimental Results for the Rotary Fast Tool Servo . . . . . 169

4.3 Amplitude Modulated Adaptive Feedforward Cancellation . . . . . . 171

4.3.1 Multiplicative Amplitude Modulated Adaptive Feedforward Can-

cellation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

8



4.3.2 Additive Amplitude Modulated Feedforward Cancellation . . . 179

4.3.3 Example of Amplitude Modulated Adaptive Feedforward Can-

cellation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

4.4 Sum m ary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

5 Adaptive Feedforward Cancellation from an Oscillator Amplitude

Control Perspective 189

5.1 Simplified Sine Channel of the Single Resonator AFC Controller . . . 190

5.2 Example of sine-channel OAC . . . . . . . . . . . . . . . . . . . . . . 200

5.3 Simplified AFC system with Simultaneous Sine and Cosine channels . 204

5.4 Example of dual channel OAC . . . . . . . . . . . . . . . . . . . . . . 211

5.5 Multiple Resonator AFC System viewed from an OAC Perspective . . 214

5.6 Limitations of the Oscillator Amplitude Control Perspective . . . . . 219

5.7 Sum m ary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

6 Control System Implementation 227

6.1 Conventional Control . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

6.1.1 Fast Tool Servo Model and Position Control . . . . . . . . . . 230

6.1.2 Hydrostatic Stage model and Position Control . . . . . . . . . 241

6.2 Adaptive Feedforward Cancellation Applied to the Linear Fast Tool

Servo . . . . . . . . . ... . . . . . . . . . . . . . . . . . . . . . . . . 250

6.2.1 Single 20 Hz Resonator . . . . . . . . . . . . . . . . . . . . . . 251

6.2.2 Single 50 Hz Resonator . . . . . . . . . . . . . . . . . . . . . . 253

6.2.3 Eight Harmonic AFC Controller with wi = 12 Hz . . . . . . . 255

6.2.4 Six Harmonic AFC Controller with wi = 23 Hz . . . . . . . . 263

6.3 Hydrostatic Stage Base Acceleration Feedback . . . . . . . . . . . . . 264

6.3.1 Base Acceleration Feedback Loop . . . . . . . . . . . . . . . . 264

6.3.2 Base Acceleration Feedback Implementation . . . . . . . . . . 276

6.4 Amplitude Modulated Adaptive Feedforward Cancellation . . . . . . 287

6.5 Sum m ary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288

9



7 Results

7.1 Fast Tool Servo Adaptive Feedforward Cancelation. . . . . . . . . . .

7.2 Fast Tool Servo Amplitude Modulated Adaptive Feedforward Cance-

latio n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

7.3 Base Acceleration Feedback . . . . . . . . . . . . . . . . . . . . . . .

7.4 Base Acceleration Feedback AMAFC . . . . . . . . . . . . . . . . . .

7.5 Sum m ary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

8 Conclusion and Suggestions for Future Work

8.1 Summary of Results . . . . . . . . . . . . . . . . .

8.2 Future Work . . . . . . . . . . . . . . . . . . . . . .

8.2.1 Higher Accuracy Sensor . . . . . . . . . . .

8.2.2 Actuator . . . . . . . . . . . . . . . . . . . .

8.2.3 Cutting Studies . . . . . . . . . . . . . . . .

8.2.4 Investigate Effect of Integrator Saturation of

8.2.5 Additive AMAFC . . . . . . . . . . . . . . .

8.3 Conclusions . . . . . . . . . . . . . . . . . . . . . .

325

. . . . . . . . . . 325

. . . . . . . . . . 326

. . . . . . . . . . 326

. . . . . . . . . . 327

. . . . . . . . . . 328

AFC Control . . 329

. . . . . . . . . . 330

. . . . . . . . . . 331

A Tables

A.1 State Space Model of Rotary Fast Tool Servo . . . . . . . . . . . .

A.2 AFC resonator Values . . . . . . . . . . . . . . . . . . . . . . . . .

B Matlab Code for Voice Coil Motor Design

B.1 Cylindrical Motor Function . . . . . . . . . . . . . . . . . . . . . .

B.2 Square Motor Function . . . . . . . . . . . . . . . . . . . . . . . . .

C C code for SlaveDSP serial interface

C.1 Code for Cspi-microE.c . . . . . . . . . . . . . . . . . . . . . . . . .

C.2 Code for Fw240.c . . . . . . . . . . . . . . . . . . . . . . . . . . . .

C.3 Code for Usrdsp.c . . . . . . . . . . . . . . . . . . . . . . . . . . . .

C.4 Code for Usrdsp.h . . . . . . . . . . . . . . . . . . . . . . . . . . . .

10

289

289

303

310

321

321

333

333

334

335

335

338

343

343

349

351

357



D DS1103 Connections 361

E Drawings of Key Fast Tool Servo Components 365

11



12



List of Figures

1-1 Schematic of the linear long stroke fast tool servo. . . . . . . . . . . . 34

1-2 Rear view photo the prototype linear fast tool servo mounted on the

Moore Nanotechnologies machine base. . . . . . . . . . . . . . . . . . 35

1-3 Block diagram of the overall control structure for our prototype fast

tool servo with integral balance mass. . . . . . . . . . . . . . . . . . . 36

1-4 Resonator structure which forms the core of the AFC controller. . . . 38

1-5 Simplification of the closed-loop block diagram for the sine channel of

the single resonator AFC system. The reference signal rb(t) has been

removed from frames A-D for simplicity. . . . . . . . . . . . . . . . . 39

1-6 Block diagram of an AMAFC resonator plus disturbance subsystem. . 40

1-7 Experimental conventional fast tool servo frequency response. The

dashed line indicates the predicted response. . . . . . . . . . . . . . . 41

1-8 Measured fast tool servo following error to a single 50 Hz 0.4 mm pk-

pk position command under conventional control, conventional control

with command pre-shifting, AFC control, and AFC control with pre-

shifting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

1-9 Measured fast tool servo following error to a single 20 Hz position com-

mand with 3 Hz modulation under conventional control, conventional

control with command pre-shifting, AFC control, and AMAFC control. 42

1-10 Measured base acceleration with no feedback, feedforward, and sin-

gle resonator AFC control. The fast tool servo trajectory is a single

harmonic 12 Hz 6 mm pk-pk sinusoid . . . . . . . . . . . . . . . . . . 43

1-11 Typical toric spectacle lens. . . . . . . . . . . . . . . . . . . . . . . . 46

13



1-12 Diagram of LOH Optical Machinery, Inc. computer controlled lens

surfacer from U.S. Patent 5,231,587 . . . . . . . . . . . . . . . . . . . 47

1-13 Typical configurations for piezoelectric fast tool servos. A adapted

from [69], B adapted from [102], and C adapted from [74] . . . . . . . 49

1-14 High bandwidth short stroke rotary fast tool servo with lorenz actuator

(from U.S. Patent application #20040035266 [62]). . . . . . . . . . . 52

1-15 Tool axis for the high bandwidth short stroke rotary fast tool servo

with Lorentz actuator (from U.S. Patent application #20040035266

[62]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

1-16 Schematic of a short stroke variable reluctance fast tool servo (adapted

from [51] and [52]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

1-17 Schematic of intermediate stroke hydraulic fast tool servo (adapted

from [94]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

1-18 Schematic of a long stroke hydraulic fast tool servo (adapted from [95]). 55

1-19 Schematic diagram of voice coil driven fast tool servo (adapted from

[75]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 7

1-20 Schematic of the Lensmaker XRT. . . . . . . . . . . . . . . . . . . . . 57

1-21 Photograph of the rotary fast tool servo. . . . . . . . . . . . . . . . . 58

1-22 Schematic of the rotary fast tool servo. . . . . . . . . . . . . . . . . . 59

1-23 Schematic of a linear actuator for disk drive servo track writing (adapted

from [64]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

1-24 Cross section of voice coil motor (adapted from [64]). . . . . . . . . . 61

1-25 Schematic of a dual VCM actuator (adapted from [17]). . . . . . . . . 61

1-26 Schematic of a dual VCM actuator controller (adapted from [17]). . . 62

1-27 Top view schematic of a high speed nanometer positioning stage (adapted

from [82]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

1-28 Cross-section of a high speed nanometer positioning stage (adapted

from [82]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

1-29 Position control system for the high speed namometer positioning stage

(adapted from [82]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

14



1-30 Schematic of a voice coil fast tool servo with auxiliary stepper motor

to reduce copper losses in the voice coil motor (adapted from [45]). . 64

2-1 Cross-section of a self-compensating hyrdostatic bearing from U.S.

patent # 54660171. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

2-2 Side view of the proposed rotary fast tool servo shaft, toolarms, and

coarse height adjustment collar. . . . . . . . . . . . . . . . . . . . . . 71

2-3 Top view cross-section of the proposed rotary fast tool servo shaft and

toolarm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

2-4 Cross-section schematic of a proposed rotary fast tool servo with flu-

idstatic bearings and frameless motor . . . . . . . . . . . . . . . . . . 73

2-5 Photo of Moore Nanotechnology machine base . . . . . . . . . . . . . 77

2-6 Sketch of a speaker style VCM with a 2"x2" air bearing slide. .... 80

2-7 Sketch of a planar style VCM mounted between two 1"xl" hydrostatic

bearings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

2-8 Schematic diagram showing a conductor with current density J in a

magnetic field of density B with a resultant force density F. . . . . . 81

2-9 Schematic diagram of a cylindrical voice coil motor design. . . . . . . 82

2-10 Integration contour C1. . . . . . . . . . . . . . . . . . . . . . . . . . . 83

2-11 Integration surface s 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

2-12 Schematic of cylindrical voice coil motor with key dimensions. .... 86

2-13 Sample output of Matlab function motor-size. . . . . . . . . . . . . . 88

2-14 Sample output of Matlab function motor-size. . . . . . . . . . . . . . 88

2-15 Sample output of Matlab function motor-size-s. . . . . . . . . . . . . 89

2-16 Schematic drawing of end turn cooling from [46] . . . . . . . . . . . . 91

2-17 Schematic drawing of a square VCM with end turn cooling and a planar

VCM with end turn cooling. . . . . . . . . . . . . . . . . . . . . . . . 91

2-18 Schematic drawing of a coil cooling concept derived from U.S. Patent

application US-2004/0207273. . . . . . . . . . . . . . . . . . . . . . . 92

15



2-19 Schematic drawing of a coil cooling concept derived from U.S. Patent

application US-2004/0207273. . . . . . . . . . . . . . . . . . . . . . . 93

2-20 Schematic drawing of a coil cooling concept derived from [46. 93

2-21 Schematic drawing of a coil cooling concept. . . . . . . . . . . . . . . 94

2-22 Schematic of a linear FTS with a laser interferometer sensor. . . . . . 95

2-23 Schematic of a linear FTS with a linear encoder sensor. . . . . . . . . 95

2-24 Schematic drawing of three reaction force attenuation strategies. . . . 98

2-25 Measured prototype fast tool servo following error using a Heidenhain

LIP 501 linear encoder. . . . . . . . . . . . . . . . . . . . . . . . . . . 102

2-26 Photo of MicroE glass scale mounting. . . . . . . . . . . . . . . . . . 103

2-27 Photo of MicroE glass scale mounting. . . . . . . . . . . . . . . . . . 103

2-28 Photo of air bearing stage with encoder cover. . . . . . . . . . . . . . 104

2-29 Photo of bottom side of the encoder cover. . . . . . . . . . . . . . . . 104

2-30 Measured prototype fast tool servo following error using a MicroE

M 3500Si linear encoder. . . . . . . . . . . . . . . . . . . . . . . . . . 110

2-31 Photo of bench-top prototype long stroke fast tool servo. . . . . . . .111

2-32 Photo of the prototype long stroke fast tool servo mounted to the

Moore Nanotechnologies machine base. . . . . . . . . . . . . . . . . . 112

2-33 ProE model of bench-top prototype with the motor force center aligned

with the air bearing centerline. . . . . . . . . . . . . . . . . . . . . . 112

2-34 ProE model of machine mounted prototype with the motor force center

aligned with the center of mass of the moving FTS components. . . . 113

2-35 ProE model of the adapter plate used to mount the prototype FTS to

the hydrostatic slide. . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

2-36 ProE model of the prototype fast tool servo mounted to the hydrostatic

stage......... ................................... 114

2-37 Rear view photo the prototype linear fast tool servo mounted on the

Moore Nanotechnologies machine base. . . . . . . . . . . . . . . . . . 115

2-38 ProE model of the prototype fast tool servo mounted to the hydrostatic

stage with a structure designed to shift the center of mass location. . 116

16



3-1 Block diagram of a typical fast tool servo control system. . . . . . . . 120

3-2 Block diagram of a continuous time repetitive controller using memory

loops. ....... ................................... 123

3-3 Frequency response plot for a continuous time repetitive controller as

expressed in (3.3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

3-4 Block diagram of a continuous time repetitive controller using memory

loops. ....... ................................... 124

3-5 Frequency response plot for a continuous time repetitive controller as

expressed in (3.5) with Q(s) and L(s) from equations (3.6) and (3.7). 125

3-6 Block diagram of a discrete-time repetitive controller using memory

loops. ....... ................................... 126

3-7 Block diagram of an AFC system with zero error. . . . . . . . . . . . 127

3-8 Block diagram of an AFC controller as proposed by Bodson et.al. . . 128

3-9 A more general block diagram for a LTI adaptive feedforward system. 129

3-10 Block diagram of an AFC system with phase shift . . . . . . . . . . . 130

3-11 Block diagram of a continuous-time Higher Harmonic Controller. Fig-

ure adapted from Hall and Wereley [37]. . . . . . . . . . . . . . . . . 131

3-12 Automatic Vibration Rejection algorithm in an AFC equivalent form.

Figure adapted from [15]. . . . . . . . . . . . . . . . . . . . . . . . . 132

4-1 Resonator structure which forms the core of the AFC controller. . . . 136

4-2 Discrete Time AFC structure . . . . . . . . . . . . . . . . . . . . . . 142

4-3 Pole-Zero map of single resonator with -7r/2 < q, <7r/2. Correspond-

ing frequency responses are shown in Figure 4-4 for -7r/2 < 0,, < 0

and Figure 4-5 for 0 < 4, <7r/2. . . . . . . . . . . . . . . . . . . . . 148

4-4 Bode plot showing the effect of a negative phase advance parameter

0, on resonator shape. The resonance is centered on 62.8 rad/s (10 Hz). 149

4-5 Bode plot showing the effect of a positive phase advance parameter 0,,

on resonator shape. The resonance is centered on 62.8 rad/s (10 Hz). 149

17



4-6 Pole-zero plot for two resonators Ci(s) and C2 (s) taken in isolation

with # 1 = 0 and q2 = -45.. . . . . . . . . . . . . . . . . . . . . . . . 152

4-7 Pole-zero plot for two resonator blocks taken in parallel C(s) = C1(s) +

C2(s) with q1 = 0 and 02 = -450. . . . . . . . . . . . . . . . . . . . . 153

4-8 Pole-zero plot for three resonator blocks Ci(s), C2 (s), and C 3 (s) taken

in isolation with #1 = 02 = 0, and 03 = -45 . . . . . . . . . . . . . . 154

4-9 Pole-zero plot for three resonators in parallel C(s) = Ci(s) + C2(s) +

C3(s) with #1 = 02 = 0, and #3 = -45 . . . . . . . . . . . . . . . . . 154

4-10 Pole-zero plot of C(s) for 10 resonators in parallel. The parameters 04,

gn, and w, for this system are listed in Table A.2. . . . . . . . . . . . 155

4-11 Bode magnitude plot for a 2 resonator system with the phase angle

difference (A#) between the two resonators varied from 0 to -7r . . . . 156

4-12 Bode phase plot of two resonators illustrating how resonators with

01= q$ and 02 = q ± 7r result in a system with the two resonators in

phase in the frequencies between the two resonances. The dot indicates

the average phase at each resonance. . . . . . . . . . . . . . . . . . . 156

4-13 Bode phase plot of two resonators illustrating how resonators with

1 = 0 2 = q results in a system with the two resonators out of phase

in the frequencies between the two resonances. The dot indicates the

average phase at each resonance. . . . . . . . . . . . . . . . . . . . . 157

4-14 Bode plot for a three resonator system with 01 = 02 = 0, q3 = -45'.

The dots mark the center of the phase discontinuity to show the effect

of the phase parameter 0,; the phase at this point is equal to -0,. . . 158

4-15 Nyquist diagrams of C(s)P(s) for a system with an AFC resonator

w, = 628.3 rad/s (100 Hz) where in (a) 0=0 and in (b) The associated

Nyquist contour is shown in (c). The -1 point is shown as a cross in a)

and b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

18



4-16 Nyquist diagrams of C(s)P(s) for a system with 10 resonators where

in (a) q$=0 and in (b) The associated Nyquist contour is given in

(c), with detours around the imaginary axis poles of C(s)P(s). The

parameters On, gn, and Wn for this system are listed in Table A.2. . . 160

4-17 The negative of the AFC loop transmission Cn(jw)P(jw) with On = 0

and with gn and wn as listed in Table A.2). The dots mark the center

of the phase discontinuity to show the effect of the phase parameter

#n. This loop is unstable. . . . . . . . . . . . . . . . . . . . . . . . . 161

4-18 The negative of the AFC loop transmission Cn(jw)P(jw) for the rotary

fast-tool servo with 10 resonators and gn = 1 and , (values in Table

A.1). This loop is stable, with 840 phase margin. (Note excessive gain

margin at each minima; this issue is addressed in subsection 4.2.3.) . 161

4-19 Block diagram of a single resonator C(s) controlling the second order

plant P(s), and used to simulate the effect of resonator gain on system

response. Here w, = 20 rad/s and #1 = 0.023 . . . . . . . . . . . . . 162

4-20 Bode Plot for second order system P(s) used to simulate the effect of

resonator gain on system response. . . . . . . . . . . . . . . . . . . . 163

4-21 Percent error tracking a sinusoidal reference trajectory with W, = 20

rad/s with an AFC resonator tuned to uOi = 20 rad/s for resonator

gains gi = 0, 1, 5, and 10, respectively. . . . . . . . . . . . . . . . . . 163

4-22 Percent error tracking a sinusoidal trajectory with w, = 19.5 rad/s and

an AFC resonator tuned to wn = 20 rad/s for resonator gains gi = 0,

1, 5, and 10, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . 164

4-23 Typical fast tool servo closed loop transfer function, P(jw) from posi-

tion reference input to measured position output. The associated state

space matrices representing this model are given in section A.1. . . . 167

4-24 The negative of the AFC loop transmission Cn(jw)P(jw) for the rotary

fast-tool servo with 10 resonators and gn = 1 and , (values in Table

A.1). This loop is stable, with 84' phase margin. . . . . . . . . . . . 167

19



4-25 The negative of the AFC loop transmission -L(jw) for the rotary fast-

tool servo with 10 resonators after gain scaling to a desired minimum

gain margin of 20dB (07 , gn, and w, for this system are listed in Table

A.2). Note excessive gain margin at the low- and high-frequency minima. 168

4-26 The negative of the AFC loop transmission -L(jw) for the rotary

fast-tool servo with 10 resonators after hand tuning the low- and high-

frequency resonators to a target gain margin of 20dB (0, gn, and w,

for this system are listed in Table A.3). . . . . . . . . . . . . . . . . 168

4-27 Measured error for the rotary fast tool servo for a 1 cm 20 Hz air cut

with and without a 20 Hz AFC resonator. With AFC control, this

following error is about t0.3pm peak. . . . . . . . . . . . . . . . . . 170

4-28 Measured error with both AFC and command pre-shifting while cut-

ting a 0x4 toric in CR39 at 600 RPM. Data taken at a radius on the

part of 30 m m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

4-29 A multiplicative Amplitude Modulated Feedforward Cancellation con-

troller in two form s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

4-30 Block diagram of a multiplicative AMAFC resonator plus disturbance

subsystem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

4-31 Block diagram of an AMAFC controlled position loop. . . . . . . . . 175

4-32 Block diagram of an AMAFC controller with the modulation term A(t)

shifted to the plant. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

4-33 Block diagram for a multiplicative AMAFC controller with 1/A(t) lim-

ited . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

4-34 Block diagram of a standard AFC resonator and plant with zero input

into the AFC system . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

4-35 Block diagram of an additive AMAFC resonator. . . . . . . . . . . . 181

4-36 Block diagram of an additive AMAFC resonator. . . . . . . . . . . . 181

4-37 Block diagram of a control system incorporating both AFC and stan-

dard feedforward control. . . . . . . . . . . . . . . . . . . . . . . . . . 183

4-38 Frequency response plot of the example plant. . . . . . . . . . . . . . 184

20



4-39 Simulated following error for the example plant following a 20 Hz si-

nusoid with an amplitude modulated at 0.5 Hz with conventional AFC

control, multiplicative AMAFC control, and additive AMAFC control. 185

4-40 Simulated following error for the example plant following a 20 Hz si-

nusoid with an amplitude modulated at 1 Hz with conventional AFC

control, multiplicative AMAFC control, and additive AMAFC control. 185

4-41 Simulated following error for the example plant following a 20 Hz si-

nusoid with an amplitude modulated at 1.5 Hz with conventional AFC

control, multiplicative AMAFC control, and additive AMAFC control. 186

5-1 Single resonator AFC closed-loop block diagram designed to follow/reject

a signal with a frequency wi. Figure taken from [15]. . . . . . . . . . 190

5-2 Closed-loop block diagram of the portion of the single resonator AFC

system designed to follow/reject the sine component of a signal with

frequency w,. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

5-3 Simplification of the closed-loop block diagram for the sine channel of

the single resonator AFC system. The reference signal rb(t) has been

removed from frames A-D for simplicity and replaced in frame E. This

Figure adapted from [15]. . . . . . . . . . . . . . . . . . . . . . . . . 195

5-4 Comparison of the estimates of the Fourier coefficient b(t) of the dis-

turbance signal d(t) using a single resonator AFC system and a sine

only OAC loop. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

5-5 Zoomed view of the comparison of the estimates of the Fourier coeffi-

cient b(t) of the disturbance signal d(t) using a single resonator AFC

system and a sine only OAC loop for gi = 50. . . . . . . . . . . . . . 204

5-6 Comparison of system temporal outputs y(t) and yoAC(t) for a single

resonator AFC system and a single OAC loop. Note: the yAFC(t)

signal contains both the sine and cosine channels. . . . . . . . . . . . 205

5-7 Simplification process for a single resonator AFC system. . . . . . . . 206

21



5-8 Simplified block diagram of AFC system with qi = 0. Note decoupled

input channel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

5-9 Simplified block diagram of AFC system with qi = P(jwi). Note

decoupled feedback channel. . . . . . . . . . . . . . . . . . . . . . . . 209

5-10 Plot of AFC and OAC parameter estimates &(t) and b(t) versus time

for g, = 5,10,25, and 50. . . . . . . . . . . . . . . . . . . . . . . . . . 213

5-11 Plot of AFC and OAC parameter estimates a(t) and b(t) versus time

for g, = 50. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

5-12 Plot of AFC and OAC system outputs (y(t) and yoAc(t) respectively),

and OAC decay envelope (T(t)) versus time for g, = 5,10,25, and 50. 215

5-13 Frequency response of the negative loop transmission for the multi-

resonator AFC system. . . . . . . . . . . . . . . . . . . . . . . . . . . 217

5-14 Comparison of the estimates of the Fourier coefficients hi(t) and bi(t)

of the disturbance signal d(t) using a multi-resonator AFC system and

parallel OAC loops. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

5-15 Comparison of system outputs y(t) and yOAC(t) for a multi-resonator

AFC system and parallel OAC loop. . . . . . . . . . . . . . . . . . . 219

5-16 A common control system block diagram for systems using AFC res-

onators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220

5-17 Phase and Magnitude shifts as a function of a for a second order plant

(Wn= 250 r/s and ( = 0.1) for resonators at wo = 50 and 250 rad/s. . 224

6-1 Overall fast tool servo control system block diagram, including a con-

ventional lead/lag control loop, command pre-shifting, and repetitive

control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

6-2 Overall hydrostatic stage/reaction mass control block diagram includ-

ing a conventional lead/lag control loop, position command pre-shifting,

and a repetitive base acceleration control outer loop. . . . . . . . . . 228

6-3 Block diagram of the overall control structure for our prototype fast

tool servo with integral balance mass. . . . . . . . . . . . . . . . . . . 229

22



6-4 Free body diagram of the fast tool servo, hydrostatic stage, and ma-

chine base system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230

6-5 Experimental frequency response of the fast tool servo from a com-

manded current in dSpace (1 Amps peak) to measured fast tool servo

position (mm). The solid line shows the measured response while the

dashed line shows the predicted response. . . . . . . . . . . . . . . . . 233

6-6 Block diagram of the fast tool servo conventional position control loop. 234

6-7 A discrete-time lag compensator implemented with an anti-windup

trapezoidal integrator. . . . . . . . . . . . . . . . . . . . . . . . . . . 236

6-8 Experimental negative loop transmission response for the fast tool

servo. The solid line shows the measured response. . . . . . . . . . . 237

6-9 Experimental conventional fast tool servo frequency response. The

dashed line indicates the predicted response. . . . . . . . . . . . . . . 238

6-10 Experimental conventional fast tool servo frequency response. The

dashed line indicates the predicted response. . . . . . . . . . . . . . . 241

6-11 Experimental conventional fast tool servo frequency response. The

dashed line indicates the predicted response. . . . . . . . . . . . . . . 242

6-12 Experimental frequency response of the hydrostatic stage/reaction mass

from commanded current to stage position. The dashed line indicates

the predicted response. . . . . . . . . . . . . . . . . . . . . . . . . . . 244

6-13 Block diagram of the hydrostatic stage/reaction mass conventional po-

sition control loop. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245

6-14 Experimental negative loop transmission response for the hydrostatic

stage from position error to measure stage position. The solid line

shows the measured response. . . . . . . . . . . . . . . . . . . . . . . 247

6-15 Experimental closed loop response for the hydrostatic stage. The solid

line shows the measured response. . . . . . . . . . . . . . . . . . . . . 248

6-16 The calculated negative of the AFC loop transmission -Lajc(z) for the

linear fast tool servo with a single resonator at 20 Hz and g, = 1. . . 251

23



6-17 The calculated negative of the AFC loop transmission -Laf(z) for the

linear fast tool servo with a single resonator at 20 Hz and g, = 0.01. . 252

6-18 The calculated closed loop frequency response for the linear fast tool

servo with a single resonator at 20 Hz and g, = 0.01. . . . . . . . . . 253

6-19 The calculated closed loop frequency response for the linear fast tool

servo with a single AFC resonator at 50 Hz and g, = 0.01. . . . . . . 254

6-20 The calculated closed loop frequency response for the linear fast tool

servo with a single resonator at 50 Hz and gi = 0.01. . . . . . . . . . 255

6-21 AFC resonator implemented as an enabled subsystem in Simulink. 256

6-22 An alternate implementation of an AFC resonator in Simulink. . . .. 257

6-23 The calculated negative loop transmission -L(z) with a single res-

onator at 12 Hz and g, = 0.01. . . . . . . . . . . . . . . . . . . . . . . 258

6-24 The calculated negative loop transmission -L(z) with a six resonators

with a fundamental frequency of 12 Hz and gi = 0.01. . . . . . . . . . 259

6-25 The calculated negative loop transmission -L(z) with a seven res-

onators with a fundamental frequency of 12 Hz and gi = 0.01. .. .. 260

6-26 The calculated negative loop transmission -L(z) with a eight res-

onators with a fundamental frequency of 12 Hz and gi = 0.001. . . . . 261

6-27 Pole-zero plot of an AFC controller CN(z) with gi = 0.001 and #; from

6.55 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 1

6-28 The calculated negative loop transmission -L(z) with eight resonators

with a fundamental frequency of 12 Hz and gi from 6.56. . . . . . . . 262

6-29 Calculated closed loop frequency response of the fast tool servo with

an eight resonators with a fundamental frequency of 12 Hz and gi from

6 .56 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262

6-30 Calculated negative loop transmission -L(z) with six resonators with

a fundamental frequency of 23 Hz and gi = 0.001 and qi from 6.57. . 264

24



6-31 Calculated and measured closed loop frequency response of the fast tool

servo with six resonators with a fundamental frequency of 23 Hz and

gi = 0.001 and # from 6.57. The dashed line indicated the calculated

response . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . 265

6-32 Block diagram of the hydrostatic stage/reaction mass position control

loop with both conventional position control and acceleration feedback. 266

6-33 Block diagram of the hydrostatic stage/reaction mass position control

loop with both conventional position control and acceleration feedback

after removing the zero base acceleration reference. . . . . . . . . . . 266

6-34 Block diagram of the hydrostatic stage/reaction mass position control

loop with both conventional position control and acceleration feedback

after having manipulated the acceleration feedback across the stage

transfer function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267

6-35 Block diagram of the hydrostatic stage/reaction mass position control

loop with both conventional position control and acceleration feedback

after substituting P,(z) for the conventional inner loop position control. 267

6-36 Block diagram of the hydrostatic stage/reaction mass position control

loop with both conventional position control and acceleration feedback

after substituting for G,(s) and converting to discrete time . . . . . . 268

6-37 Calculated stage acceleration negative loop transmission La(z) (6.60)

with a single AFC resonator at 20 Hz. . . . . . . . . . . . . . . . . . 269

6-38 Block diagram of the hydrostatic stage/reaction mass position control

loop with both conventional position control and acceleration feedback

with CN(z) from (6.61) and Ga(z) from (6.62). . . . . . . . . . . . . . 270

6-39 Calculated stage acceleration negative loop transmission with CN(z)

from (6.61) and Ga(z) from (6.62). . . . . . . . . . . . . . . . . . . . 271

6-40 Block diagram of the hydrostatic stage/reaction mass position control

loop with both conventional position control and acceleration feedback

with CN(z) from (6.61) and Ga(z) from (6.62). . . . . . . . . . . . . . 272

25



6-41 Calculated stage acceleration negative loop transmission with CN(z)

from (6.61) and Ga(z) from (6.62). . . . . . . . . . . . . . . . . . . . 272

6-42 Block diagram of the hydrostatic stage/reaction mass position control

loop with both conventional position control and acceleration feedback

with CN(z) from (6.50) and Ga(z) from (6.64). . . . . . . . . . . . . . 274

6-43 Calculated stage acceleration negative loop transmission with CN(z)

from (6.50) and Ga(z) from (6.64). . . . . . . . . . . . . . . . . . . . 274

6-44 Block diagram of the hydrostatic stage/reaction mass position control

loop with both conventional position control and acceleration feedback

with CN(z) from (6.50) and Ga(z) from (6.65). . . . . . . . . . . . . . 275

6-45 Calculated stage acceleration negative loop transmission with CN(z)

from (6.50) and Ga(z) from (6.65). . . . . . . . . . . . . . . . . . . . 275

6-46 Block diagram of the hydrostatic stage/reaction mass acceleration con-

trol loop as implemented . . . . . . . . . . . . . . . . . . . . . . . . . 277

6-47 Calculated stage acceleration negative loop transmission with a single

AFC resonator at 12 Hz. . . . . . . . . . . . . . . . . . . . . . . . . . 278

6-48 Calculated closed loop frequency response from position command to

stage position with a single AFC resonator at 12 Hz with gi = 0.01. . 278

6-49 Calculated stage acceleration negative loop transmission with eight

AFC resonators at 12 Hz with gi = 1. . . . . . . . . . . . . . . . . . . 280

6-50 Calculated stage acceleration negative loop transmission with eight

AFC resonators at 12 Hz and gi from equation (6.70). . . . . . . . . . 280

6-51 Calculated closed loop stage position frequency response with eight

AFC resonators at 12 Hz andgi from equation (6.70). . . . . . . . . . 281

6-52 Calculated stage acceleration negative loop transmission with eight

AFC resonators at 135 Hz and gi from equation (6.70). . . . . . . . . 282

6-53 Calculated closed loop stage position frequency response with eight

AFC resonators at 135 Hz and gi from equation (6.70). . . . . . . . . 282

6-54 Calculated stage acceleration negative loop transmission with eight

AFC resonators at 135 Hz and gi from equation (6.73). . . . . . . . . 283

26



6-55 Calculated closed loop stage position frequency response with three

AFC resonators at 23 Hz and gi from equation (6.73). . . . . . . . . . 285

6-56 Calculated stage acceleration negative loop transmission with eight

AFC resonators at 135 Hz and gi from equation (6.74). . . . . . . . . 285

6-57 Calculated and measured closed loop stage position frequency response

with three AFC resonators at 23 Hz and gi from equation (6.74). The

dashed line indicates the calculated frequency response. . . . . . . . . 286

7-1 Power spectral density plots showing the full spectrum noise in the

position following error while following a 20 Hz sinusoid. . . . . . . . 291

7-2 Measured fast tool servo following error to a single 20 Hz 2 mm pk-

pk position command under conventional control, conventional control

with command pre-shifting, AFC control, and AFC control with pre-

shifting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293

7-3 Fourier transform of measured fast tool servo following error to a single

20 Hz 2 mm pk-pk position command under conventional control, con-

ventional control with command pre-shifting, AFC control, and AFC

control with pre-shifting. Upper plot displays results from 1 Hz to 6250

Hz. Lower plot shows data from 1 to 540 Hz. . . . . . . . . . . . . . . 294

7-4 Measured fast tool servo following error to a single 50 Hz 0.4 mm pk-

pk position command under conventional control, conventional control

with command pre-shifting, AFC control, and AFC control with pre-

shifting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295

7-5 Fourier transform of measured fast tool servo following error to a sin-

gle 50 Hz 0.4 mm pk-pk position command under conventional con-

trol, conventional control with command pre-shifting, AFC control,

and AFC control with pre-shifting. Upper plot displays results from 1

Hz to 6250 Hz. Lower plot shows data from 1 to 540 Hz. . . . . . . . 296

27



7-6 Measured fast tool servo following error for an eight harmonic 12 Hz

fundamental, 5 mm pk-pk sinusoid with conventional control and an

eight resonator AFC controller. . . . . . . . . . . . . . . . . . . . . . 298

7-7 Fourier transform of measured fast tool servo following error to an eight

harmonic 12 Hz fundamental, 5 mm pk-pk sinusoid with conventional

control and an eight harmonic AFC controller. Upper plot displays

results from 1 Hz to 6250 Hz. Lower plot shows data from 1 to 540 Hz. 299

7-8 Measured fast tool servo following error to a six harmonic 23 Hz funda-

mental, 4.8 mm pk-pk, 6.6 g sinusoid under conventional control, con-

ventional control with command pre-shifting, AFC control, and AFC

control with pre-shifting. . . . . . . . . . . . . . . . . . . . . . . . . . 301

7-9 Fourier transform of measured fast tool servo following error to a six

harmonic 23 Hz fundamental, 4.8 mm pk-pk, 6.6 g sinusoid under

conventional control, conventional control with command pre-shifting,

AFC control, and AFC control with pre-shifting. Upper plot displays

results from 1 Hz to 6250 Hz. Lower plot shows data from 1 to 540 Hz. 302

7-10 Measured fast tool servo following error to a single 20 Hz position com-

mand with 0.5 Hz modulation under conventional control, conventional

control with command pre-shifting, AFC control, and AMAFC control. 305

7-11 Measured fast tool servo following error to a single 20 Hz position com-

mand with 1 Hz modulation under conventional control, conventional

control with command pre-shifting, AFC control, and AMAFC control. 306

7-12 Measured fast tool servo following error to a single 20 Hz position com-

mand with 2 Hz modulation under conventional control, conventional

control with command pre-shifting, AFC control, and AMAFC control. 307

7-13 Measured fast tool servo following error to a single 20 Hz position com-

mand with 3 Hz modulation under conventional control, conventional

control with command pre-shifting, AFC control, and AMAFC control. 308

28



7-14 Fourier transform of the measured following error to an amplitude mod-

ulated 20 Hz sinusoid as the modulation frequencies is varied from 0.5

to 3 Hz. . ...... ....... .. .......... . . . .... ... 309

7-15 Measured base acceleration with no feedback, feedforward, and sin-

gle resonator AFC control. The fast tool servo trajectory is a single

harmonic 12 Hz 6 mm pk-pk sinusoid . . . . . . . . . . . . . . . . . . 313

7-16 Fourier transform of base acceleration with no feedback, feedforward,

and single resonator AFC control. The fast tool servo trajectory is a

single harmonic 12 Hz 6 mm pk-pk sinusoid. . . . . . . . . . . . . . . 313

7-17 Measured base acceleration with no feedback, feedforward, and an eight

resonator AFC controller. The fast tool servo trajectory is an eight

harmonic 12 Hz 6 mm pk-pk sinusoid . . . . . . . . . . . . . . . . . . 315

7-18 Fourier transform of base acceleration with no feedback, feedforward,

and an eight resonator AFC controller. The fast tool servo trajectory

is an eight harmonic 12 Hz 6 mm pk-pk sinusoid. . . . . . . . . . . . 315

7-19 Measured base acceleration with no feedback, feedforward, and an eight

resonator AFC controller. The fast tool servo trajectory is an eight

harmonic 13.5 Hz 6 mm pk-pk sinusoid . . . . . . . . . . . . . . . . . 317

7-20 Fourier transform of base acceleration with no feedback, feedforward,

and an eight resonator AFC controller. The fast tool servo trajectory

is an eight harmonic 13.5 Hz 6 mm pk-pk sinusoid. . . . . . . . . . . 318

7-21 Measured base acceleration with no feedback, feedforward, and a three

resonator AFC controller. The fast tool servo trajectory is a six har-

monic 23 Hz 4.8 mm pk-pk sinusoid. . . . . . . . . . . . . . . . . . . 319

7-22 Fourier transform of base acceleration with no feedback, feedforward,

and a three resonator AFC controller. The fast tool servo trajectory is

a six harmonic 23 Hz 4.8 mm pk-pk sinusoid . . . . . . . . . . . . . . 320

7-23 Measured base acceleration for a modulated 20 Hz fast tool servo tra-

jectory for AFC (left plots) and AMAFC (right plots) control. . . .. .322

29



7-24 Fourier transform of measured base acceleration for a modulated 20

Hz fast tool servo trajectory. . . . . . . . . . . . . . . . . . . . ... . . 323

8-1 Pro-E model of a proposed toolholder/bearing seal assembly. . . . . . 328

8-2 Block diagram of a standard AFC resonator and plant with zero input

into the AFC system . . . . . . . . . . . . . . . . . . . . . . . . . . . . 330

30



List of Tables

1.1 Table of error cancellation, short stroke, and intermediate FTS. . . 50

2.1 Elasticity and density of potential shaft materials . . . . . . . . . . . 77

5.1 Listing of the parameters for multiple resonator example. . . . . . . . 217

7.1 Following error summary for 20 Hz . . . . . . . . . . . . . . . . . . . 292

7.2 Following error summary 50 Hz . . . . . . . . . . . . . . . . . . . . . 293

7.3 Following error summary for eight harmonic trajectory with 12 Hz

fundam ental . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297

7.4 Following error summary for a six harmonic 23 Hz fundamental tra-

jectory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301

7.5 Following error summary following a modulated single harmonic 20 Hz

sinusoid. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304

7.6 Summary of measured base acceleration for a 12 Hz, 6 mm pk-pk, 1.72

g fast tool servo trajectory with no acceleration feedback, manually

tuned feedforward, and AFC control. . . . . . . . . . . . . . . . . . . 311

7.7 Summary of measured base acceleration for a 12 Hz, 6 mm pk-pk, 2.2

g 8 harmonic fast tool servo trajectory with no acceleration feedback,

manually tuned feedforward, and an eight harmonic AFC control. . . 314

7.8 Summary of measured base acceleration for a 12 Hz, 6 mm pk-pk, 2.85

g 8 harmonic fast tool servo trajectory with no acceleration feedback,

manually tuned feedforward, and an eight harmonic AFC control. . . 316

31



7.9 Summary of measured base acceleration for a 23 Hz, 4.8 mm pk-pk, 6.6

g 6 harmonic fast tool servo trajectory with no acceleration feedback,

manually tuned feedforward, and a three harmonic AFC control. . . . 318

7.10 Summary of measured base acceleration for a 20 Hz 2 mm pk-pk single

harmonic fast tool servo trajectory (1.6 g's) with modulated magnitude

for AFC and AMAFC control. . . . . . . . . . . . . . . . . . . . . . . 322

A.1 Resonator tuning values for a 10 resonator system with g, = 1 and . . 334

A.2 Resonator tuning values for a 10 resonator system with g = ... = g

and....... ........................ ........... .334

A.3 Resonator tuning values for a 10 resonator system with gn modified by

hand and....... ..................... ..... ...... 334

D.1 DS1103 analog connections. . . . . . . . . . . . . . . . . . . . . . . . 362

D.2 DS1103 digital connections. . . . . . . . . . . . . . . . . . . . . . . . 363

D.3 DS1103 incremental encoder/digital connector. . . . . . . . . . . . . . 364

32



Chapter 1

Introduction

1.1 Background

This thesis describes the design, development, and control of a unique long stroke fast

tool servo with integral balance mass. This project started for me in August 1999,

when I joined Joseph Calzaretta in his efforts to optimize and improve the rotary

fast tool servo equipped diamond turning machine developed by Stephen Ludwick for

turning asymmetric spectacle lenses. From August 1999 to June 2000, we conducted

a large number of cutting studies aimed at producing a lens that would be ready for

coating with no additional fining required. The summer of 2000, I worked to develop

an on-machine fining station that would lightly polish a cut lens so that all the

required machining operations could be incorporated in a single machine. From June

2000 to December 2000, I worked on designs for a second generation rotary fast tool

servo. In late 2000, Prof. Trumper purchased a Moore Nanotechnologies Nanotech

350 machine base to be the machining platform for all of his diamond turning research.

The machine arrived early in 2001, at which point I spent the spring and summer of

2001 constructing and testing the machine wiring harness, dSpace instrumentation

interface box, and establishing basic control of the machine spindle and slideways.

During this time, we made the decision to switch to a linear fast tool servo design. In

late 2001, we began to work in earnest on our loop shaping approach for controllers

with Adaptive Feedforward Cancelation. From Sept. 2001 to May 2002, I worked

33



toolholder air bearing slide
encoder workpiece oil cooled linear motor

hydrostatic slide Spindle hydrostatic slide
(linear motor not shown)

linear motor

laserscale laserscale

Figure 1-1: Schematic of the linear long stroke fast tool servo.

on the development of a unique liquid cooled voice coil motor design to actuate our

proposed linear fast tool servo. In May 2002, the decision was made to progress with

a less aggressive FST design that could be constructed using off the self components.

During the summer of 2002, a prototype linear FST was designed and constructed

using existing components. From Sept. 2002 to August 2003, I worked with Joseph

Cattell to test our loop shaping techniques for tuning AFC resonator and develop an

oscillator amplitude control perspective of AFC control. Sept. 2003 to May 2004 saw

the redesign of our prototype linear fast tool servo. Construction of the redesigned

FTS occurred from May 2004 through July 2004. The encoder serial interface was

developed in August and September 2004. Basic control of the FTS and reaction

mass stage occurred in October 2004. Feedforward and AFC control were applied to

the FTS in Nov. 2004. December 2004 saw the implementation of base acceleration

feedback on the reaction mass. Testing of AMAFC control occurred in Jan 2005.

Thesis preparation occurred from Jan. 2005 through April 2005.

1.2 Thesis Overview

In this section, we will provide a brief overview the key work and contributions in

this thesis.
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Figure 1-2: Rear view photo the prototype linear fast tool servo mounted on the
Moore Nanotechnologies machine base.

1.2.1 Linear Long Stroke Fast Tool Servo with Integrated

Balance Mass

Our linear long stroke fast tool servo (FTS) is specifically designed to produce asym-

metric optics. The innovative portion of our design is the use of an integral balance

mass to attenuate reaction force in the machine base. The prototype FTS, shown in

schematic in Figure 1-1 and in a photo in Figure 1-2, consists of a 2"x2" air bearing

stage actuated by an oil cooled linear motor designed and built by Michael Liebman

[46]. The fast tool servo has 25 mm travel and is capable of 100 M/s 2 accelerations.

The FTS is mounted on the in-feed axis of a T-base diamond turning machine (DTM).

The in-feed axis of the DTM is allowed to move in response to the FTS actuation

forces, thus reducing the reaction forces in the base. The in-feed axis consists of a

hydrostatic stage actuated by a conventional linear motor. The T-based diamond

turning machine is completed by a second linear motor driven hydrostatic stage car-

rying an air bearing spindle. Position feedback is provided by glass-scale encoders on

all of the linear axis and an incremental encoder on the spindle. Since the position

of the FTS tooltip is a function of both the measured FTS position and the reaction

mass position, it is critical to accurately control both the FTS and the reaction mass.
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1.2.2 Fast tool Servo/Reaction Mass control

We have developed a unique control structure to control the position of both the FTS

and the reaction mass. Figure 1-3 shows a block diagram of the overall FTS/reaction

mass control structure. The FTS controller employs a conventional lead-lag inner

loop, an adaptive feedforward cancelation (AFC) outer loop, and command pre-

shifting. The FTS controller is coupled to the hydrostatic stage controller through

the mixing of the measured positions. For the FTS controller, the AFC resonators are

place in the forward path which creates infinite gain, thus perfect command follow-

ing, at the resonator frequency (note: most asymmetric shapes can be described by a

summation of sinusoids and thus the FTS trajectory becomes a function of the har-

monics of the DTM spindle speed). The controller for the hydrostatic stage consists

of a conventional lead-lag position control inner-loop and a base acceleration feedback

controller. The acceleration feedback controller consists of a high-pass filter, a double

integrator for phase compensation, and an array of AFC resonators. For the base

acceleration controller, the AFC resonators are place in the feedback path for the

position controller and thus act as narrow frequency notch filters. The hydrostatic

stage is disturbed by the FTS actuation forces. The notch filters allow the hydrostatic

stage/balance mass to move freely at the commanded trajectory harmonics thus at-

tenuating the forces introduced into the DTM. The conventional lead-lag controllers

are tuned using classical loop shaping techniques, while the AFC control loops are

designed using our new loop shaping perspective for AFC control.

1.2.3 Adaptive Feedforward Cancelation from a Loop Shap-

ing Perspective

Figure 1-4 shows the canonical form of an AFC resonator in continuous time. This

structure is equivalent to the following linear time invariant (LTI) transfer function:

Y(s) s cos On + Wnsin #
X~s) 2 + U)2
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sin (q~t+ On) sin wnt

Figure 1-4: Resonator structure which forms the core of the AFC controller.

This transfer function places a single zero along the real axis and a pair of poles

directly on the imaginary axis of the complex plane. With the poles directly on the

imaginary axis, this transfer function has infinite magnitude and an instantaneous

-180' phase drop when w = w,. From a loop shaping perspective, the phase margin

of any system including an AFC resonator is maximized when the -180' phase drop

is centered on 00. This is accomplished when

On = LP(jWn) (1.2)

where P(s) is the transfer function of all other elements in the system loop transmis-

sion. The controller gain can similarly be selected from a loop shaping perspective by

ensuring that the magnitude of the loop transmission is kept below 1 (0 dB) between

the AFC resonant peaks. We extend this direct approach to systems with multiple

AFC resonators. In this thesis, we will present a comprehensive summary of our loop

shaping perspective. There are two weakness of this approach. First, this analysis

does not predict how long it takes an AFC compensated system to cancel a distur-

bance. Second, this AFC structure cannot completely cancel out disturbances with a

time varying component.
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Figure 1-5: Simplification of the
the single resonator AFC system.
frames A-D for simplicity.

closed-loop block diagram for
The reference signal rb(t) has

the sine channel of
been removed from
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Figure 1-6: Block diagram of an AMAFC resonator plus disturbance subsystem.

1.2.4 OAC approximation and AMAFC control

In order to determine the convergence characteristics of an AFC resonator, we apply a

classic oscillator stabilization technique called Oscillator Amplitude Control (OAC).

Following up on the thesis work of Joseph Cattell [15], we can view an AFC resonator

as a control structure which detects the amplitude component of a disturbance at the

frequency w,,. Once the amplitude is estimated, the AFC resonator produces a signal

to exactly cancel the disturbance. This makes an AFC resonator, an oscillator with a

control amplitude output. To determine, the stability and convergence characteristics

of the amplitude controller, we approximate that the sine and cosine channels are

independent and reduce the AFC system block diagram as shown in Figure 1-5. This

simplified system has an amplitude convergence time constant of

__2

Ti = sec. (1.3)
gilP(jos)|

The OAC approximation shows how important the proper selection of gi can be on

system performance.

While an AFC controller can exactly cancel out a disturbance with a constant

amplitude, it will always have some residual error if the amplitude of the distur-

bance varies with time (note: this error is very small if the magnitude varies slowly).

We have applied the Internal Model Principle (IMP) to develop an extension of

AFC control which we call Amplitude Modulated Adaptive Feedforward Cancela-
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tion (AMAFC). For AMAFC control, we make the assumption that we have some

knowledge about the time varying characteristics of the disturbance signal. If the

magnitude of the disturbance has the form A(t), we can build this knowledge into

our AFC resonator structure as an estimate A(t). This is shown in Figure 1-6. If

A(t) = A(t), the AMAFC controller will completely cancel the disturbance.

1.2.5 Overview of Results

Our prototype fast tool servo achieves an exceptional closed-loop bandwidth of 540

Hz (this is twice the bandwidth of comparable long stroke FTS systems). The FTS

bandwidth is limited by the first structural resonance at 1600 Hz and the two unit

delay associated with the position measurement. Figure 1-7 shows the measured and

predicted closed-loop frequency response.

Using just the conventional inner loop controller, the FTS has a maximum fol-

lowing error of 42%. The introduction of command pre-shifting and AFC control

greatly reduce the following error by incorporating knowledge of the plant frequency
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Figure 1-8: Measured fast tool servo following error to a single 50 Hz 0.4 mm pk-pk

position command under conventional control, conventional control with command

pre-shifting, AFC control, and AFC control with pre-shifting.
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Figure 1-10: Measured base acceleration with no feedback, feedforward, and single
resonator AFC control. The fast tool servo trajectory is a single harmonic 12 Hz 6
mm pk-pk sinusoid.

response and information from previous passes to correct the trajectory input to the

conventional inner loop. Figure 1-8 shows the measured FTS following error to a

50 Hz 0.4 mm peak-to-peak sinusoidal trajectory. Command pre-shifting reduces the

peak-to-peak following error from 103 pm to 31 pm. The introduction of AFC control

further reduces the following error to 1.7 pm pk-pk. Similarly the rms following error

for conventional control, command pre-shifting, and AFC control is 14.4 pm, 4 pm,

and 0.25 pim respectively. Our proposed AMAFC controller was less successful than

anticipated offering only a small reduction in the overall following error. Figure 1-9

shows the measured following error to 20 Hz trajectory with a 3 Hz amplitude mod-

ulation. The FTS has a peak-to-peak following error of 15.2 pm under conventional

control, 3 pm under AFC control, and 2.1 pm under AMAFC control.

The integral balance mass successfully reduced the disturbance forces introduced

into the DTM base. Figure 1-10 shows the measured DTM base acceleration with

no feedback, feedforward control, and AFC control. The fast tool servo trajectory

is a single harmonic 12 Hz 6 mm pk-pk sinusoid with a peak acceleration of 1.72 g.
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The peak-to-peak base acceleration is 0.072 M/s 2 without acceleration feedback, 0.025

m/s 2 with feedforward control, and 0.015 M/s 2 with AFC control. More importantly

the acceleration component at 12 Hz is 0.028 M/s 2 pk-pk without feedback, 0.0049

m/s 2 with feedforward control, and 0.000327 m/s 2 with AFC control. Thus the use

of a balance mass has reduced the base reaction force introduced by the FTS at the

commanded frequency by a factor of approximately 100.

1.3 Thesis Contributions

The primary contributions of this thesis are:

" The development of a long stroke fast tool servo with integral balance mass.

" The development of a unique control structure combining the fast tool servo

position control, balance mass position control, and base acceleration feedback.

" The development of a novel loop shaping perspective for tuning control systems

with multiple adaptive feedforward cancelation resonators.

" The application and demonstration of our loop shaping perspective for tuning

adaptive feedforward cancelation control systems to both the fast tool servo

position control and base acceleration feedback.

" Correctly applying the oscillator amplitude control perspective to both chan-

nels of an adaptive feedforward cancelation resonator and demonstrating the

limitations ot this approach.

" The development of an extension to adaptive feedforward cancelation called am-

plitude modulated adaptive feedforward cancelation meant to improve tracking

performance for sinusoidal trajectories with time varying amplitude.

* The application and demonstration of amplitude modulated adaptive feedfor-

ward cancelation.
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1.4 Thesis Organization

The chapters in this thesis are organized as follows:

" Chapter 1 contains the background of this thesis, an overview of the thesis

contents and results, and reviews the design of existing fast tool servos and

related actuators.

" Chapter 2 reviews our fast tool servo design process and contains a detailed

description of our prototype fast tool servo.

" Chapter 3 describes and reviews the control structures used to control fast tool

servos and reject periodic disturbance forces.

" Chapter 4 is a detailed presentation of our loop shaping perspective for tuning

controllers with AFC control. Chapter 4 also presents our proposed AMAFC

control structure.

" Chapter 5 includes a detailed analysis of AFC control from an oscillator ampli-

tude control perspective.

" Chapter 6 describes the application of the developed control theory to the pro-

totype diamond turning machine.

" Chapter 7 validates the performance of the developed control theory by exper-

imental results.

" Chapter 8 concludes this thesis with a summary of our results and suggestions

for further work.

1.5 Asymmetric Turning

There are a wide array of products which require the precision production of asym-

metric parts. These products include pistons, cylinder bores, crank shafts, engine

camshafts, and most relevant for this project, the production of asymmetric optics.
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Figure 1-11: Typical toric spectacle lens.

Figure 1-11 shows the shape of a typical toric lens used to correct astigmatism. In

general, these parts are either cast/molded directly to form (formed parts may require

some fining operations) or machined into the desired shape using a combination of

turning, grinding, and polishing.

In the case of spectacle lenses (the original motivation for this project), the tradi-

tional fabrication method for an asymmetric lens was to rough (typically in a grinding

operation) the asymmetric shape into a rough shaped lens blank and then progres-

sively polish the lens to the desired finish using a hard lap formed to the desired asym-

metric shape. This lens forming method has several production drawbacks. First, to

produce only the most commonly required asymmetric optics, the production facility

must have a dedicated tooling library of several hundred hard laps. Second, the pol-

ishing process is a multi-stage, time intensive process. Lastly, the polishing process

inevitably produces a lens with some form error, the magnitude of the error growing

with the size of the lens asymmetry. These production drawbacks have driven the

optical industry to explore alternate methods to form the asymmetric lens directly

with the ultimate goal of completely eliminating the polishing process.
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Figure 1-12: Diagram of LOH Optical Machinery, Inc. computer controlled lens
surfacer from U.S. Patent 5,231,587.

A general shift occurred in the consumer optics industry with the introduction of a

new machine by LOH Optical Machinery, Inc [48]. A diagram of the machine concept

from U.S. Patent 5,231,587 is shown in Figure 1-12. This machine incorporates a tool

carriage with a rapidly revolving tool (10,000+ rpm), a spindle which slowly revolves

(~ 60 rpm) the workpiece, and a machine carriage capable of moving the tool in

three dimensions relative to the workpiece. This machine, commercially available as

the LOH V75 with improved tool geometry, was the first machine capable of directly

producing lenses ready for coating at a commercially viable rate. The LOH V75 is

capable of producing lenses with up to 10 mm of asymmetry at a nominal production

rate of 60 lens/hr. A similar machine configuration is used in the Gerber-Coburn

SGX family of surface generators [32]. While the SGX family of machines quickly

piuduceb goud qualy luugi lenses, ihese lenses are noL ready for coauing and uhus

require a small amount of polishing. To eliminate the need for a library of hard laps,

Gerber-Coburn produce disposable polystyrene laps in parallel with the rough lens.

The machines from LOH Optical Machinery, Inc. and Gerber-Coburn Inc. are

optimized for the spectacle industry and cannot produce parts of the shape and quality

desired by other branches of the optical industry. The most common method used to

generate complex optical shapes is to diamond turn the optics on an FTS-equipped
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diamond turning machine.

1.5.1 Fast tool servos

There are two main reasons to implement an FTS on a diamond turning machine.

The first is to cancel out repetitive errors that are introduced into a part during the

machining process (potential sources of error are external disturbances, resonances in

the turning machine structure, spindle/part imbalance, or bearing noise). The second

main reason to use an FTS on a diamond turning machine is to machine complex

geometries into a workpiece. We categorize FTS for this purpose into three categories:

1. Short stroke (displacements less than 100 Am)

2. Intermediate Stroke (displacements between 100 Am and 1 mm)

3. Long stoke (displacement greater than 1 mm).

Table 1.1 list the associated organization, actuator type, displacement and bandwidth

for a number of error cancellation, short stroke, intermediate stroke, and long stroke

FTSs. As a general rule, FTSs trade displacement for bandwidth.

Short Stroke Fast Tool Servos

As we can see from Table 1.1, the short stroke fast tool servo category is dominated

by piezoelectric driven fast tool servos. There are a number of reasons for this.

First, piezoelectric stacks offer high stiffness, high bandwidth, high acceleration and

nanometer resolution position control. Secondly since, good piezoelectric stacks are

available commercially, researchers can focus their efforts on the mechanical design

of the FTS, the FTS controller strategy, and the trajectory generation as opposed to

specialized actuator design. Typically for piezoelectric FTS, a capacitance gauge is

used to measure tool displacement. Most piezoelectric FTS use flexure bearings.

Figure 1-13 shows a number of common configurations for piezoelectric fast tool

servos. In Figure 1-13-A, we see a configuration (adapted from [69]) where the piezo-

electric axis and the FTS axis are parallel but not collinear. This configuration has

the advantage that capacitance sensor may easily be placed collinear with the FTS
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Figure 1-13: Typical configurations for piezoelectric fast tool servos. A adapted from

[69], B adapted from [102], and C adapted from [74]
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Error Cancellation
Organization/Name Actuator Stroke (ptm) Bandwidth Ref.
Lawrence Livermore Lab., LODTM Piezo 1.27 100 Hz
Georgia Tech. Piezo 60 350 Hz 2
University of British Columbia Piezo 40 N/A j104

Short Stroke
Hitachi Piezo 20 N/A [651
Agency of Industrial Science and Technol- Piezo 5 200 [691
ogy, Japan
North Carolina State Piezo 20 2 kHz 24
Fraunhofer-Institute, FTS 1 Piezo 35 950 Hz 98
Fraunhofer-Institute, FTS 2 Piezo 30 5- kTIMz 981
University of Illinois Urbana-Champaign Piezo 50 200 Hz 74
University of Illinois Chicago, 3D Stage Piezo 3.5x3 200 Hz x3 86

M.I.T., Short stroke Rotary FTS Lorentz 50 2 Hz 60
M.I.T., Electomagnetic FTS Var. Reluct. 50 10 kHz 5 ,'2
University of British Columbia Piezo 38 200 Hz 1102
Int. for Adv. Engineering, So. Korea Piezo 7.5 100 Hz 42

Intermediate Stroke
North Carolina State, Raleigh, MAC-100 Piezo 100 100 Hz 125|
Kinetic C erit, Precision Lathe PZT Piezo 100 1 kHz
tantord Universi , ydraulic FTS hydraulic 180 3 kHz

North Carolina State, Raleigh magnetic servo 240/1000 10/3W0H z 1361,1871
Long Sroke

University of Illinois Urbana-Champaign VCM 6.5 mm (min.) ? Hz 175,17
University of Illinois Urbana-Champaign Hydraulic 5 mm (min.) 100 Hz 5
University of Illinois Urbana-Champaign Electro-hydraulic 10 mm (min.) 100 Hz 4
Fraunhofer-Institute, Hybrid FTS Piezo & Linear 2 mm 85 Hz J1001
Gerber-Coburn, Lensmaker XRT Servo 25 mm 50 Hz 32
M.I.T., Rotary FTS Servo 25 mm 230 Hz 54
Fraunhofer-Institute, Aerostatic FTS Linear 16 mm 240 Hz 9998

Table 1.1: Table of error cancellation, short stroke, and intermediate FTS.

tool tip but offsetting the piezoelectric stack results in some internal torques. An

additional advantage of this structure is with proper placement of the piezo stack,

the designer can amplify or reduce the displacement of the piezo stack. Figure 1-13-B

shows a configuration where the tool tip, capacitance sensor, and piezoelectric actu-

ator are all collinear (adapted from [102]). The advantage of this structure is that

is minimizes the internal torques and places the capacitance gauge behind the tool

tip in most designs but properly fixturing the capacitance gauge can be a challenge.

Figure 1-13-C shows a configuration where the piezoelectric stack and tool tip are

neither collinear nor parallel (adapted from [74]. This type of structure is typically

used when space in the direction of the tool tip motion is limited (boring bars for

example). The capacitance gauge may be placed either inline with the tool tip or the

piezoelectric stack. This structure has the disadvantage that the tool tip has a rotary

motion. Since by definition these are short stroke FTS, the lateral component of the
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motion is ignored.

Two of the more innovative short stroke fast tool servo designs have been developed

here at M.I.T. in the Precision Motion Control Laboratory. Figure 1-14 shows Richard

Montesanti's short stroke rotary fast tool servo [61], [60], and [62]. The fast tool servo

axis is guided by eight over-constrained flexure, four above the tool and four below.

Items 106 and 108 in Figure 1-15 are two of the eight over-constrained flexures. The

rotary axis is driven by a commercially available moving magnet Lorentz actuator

(256 Figure 1-14). The FTS position is measured using two capacitance gauges (280

Figure 1-14). This FTS has a full stroke of 50 pm and a bandwidth of 2 kHz. The

performance of this FTS is limited by the first torsional resonance of the tool axis,

the same resonance which limited the performance of Stephen Ludwick's long stroke

rotary fast tool servo [54] discussed later.

One of the limitations of piezoelectric actuators is that when they undergo defor-

mation there are significant mechanical and electrical hysteresis losses which heat the

actuator. In high bandwidth applications this is a significant issue. In addition to

stack heating, piezoelectric FTS are limited by the structural resonance of the piezo-

electric stack. To avoid these issues Xiaodong Lu designed a high bandwith linear

short stroke FTS which is driven by a normal-stress variable reluctance actuator [51]

and [52]. Figure 1-16 shows a schematic of this FTS. This FTS has a 50 pm stroke up

to 1 kHz and a closed loop -3 dB bandwidth of 10 kHz. The maximum acceleration

is 160 g's measured at 3 kHz.

Intermediate Stroke Fast Tool Servos

Intermediate stroke fast tool servos are essentially transition designs. In the case of

the piezoelectric fast tool servos, one from North Carolina State [21], [25] and one

from Kinetic Ceramics [43], the FTS designs are essentially short stroke fast tool

servos pushed to their size limits. The MAC-100 is a linear design of the style shown

in Figure 1-13-B, with a large piezoelectric stack. The MAC-100 design uses a single

O-ring for the FTS bearing. The Precision Lathe PZT [43] uses a design of the form

shown in Figure 1-13-C. The Precision Lathe PZT mechanism is designed such that

the tool tip travel is greater than the piezoelectric stack displacement.
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Figure 1-14: High bandwidth short stroke rotary fast tool servo with lorenz actuator
(from U.S. Patent application #20040035266 [62]).
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Figure 1-15: Tool axis for the high bandwidth short stroke rotary fast tool servo with

Lorentz actuator (from U.S. Patent application #20040035266 [62]).
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Figure 1-16: Schematic of a short stroke variable reluctance fast tool servo (adapted

from [51] and [52]).
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Figure 1-17: Schematic of intermediate stroke hydraulic fast tool servo (adapted from

[94]).

Figure 1-17 shows a schematic of the Stanford hydraulic FTS. As we can see, this

fast tool servo is of the same style as Figure 1-13-A, where the piezoelectric actuator

has been replaced by a hydraulic diaphragm and the short range capacitance gauge has

been replace with a Linear Variable Differential Transformer (LVDT). This actuator

has a 180 prm stroke with a quoted bandwidth of 3 kHz but since the LDVT is quoted

to have a bandwidth of 100 Hz this seems unlikely [94] and [93].

The magnetically levitated fast tool servo from North Carolina State is driven by

a total of four E-coil solenoids in a push-pull configuration. The FTS is supported

by a pair of flexures. Position feedback is accomplished using a heterodyne laser

interferometer. It is unclear exactly what the travel and bandwidth of the fast tool

servo are. In a brief paper in Precision Engineering [87], the travel and bandwidth

are quoted to be 1 mm and 300 Hz respectively. In [36], the travel and bandwidth

are stated to be 240 pm and 10 Hz although it appears that the travel limitation is

due to the linearized model used in the FTS control loop. Lastly, while [35] does not

provide travel data, it claims a fast tool servo bandwidth of 2.5 kHz.

Long Stroke Fast Tool Servos

For the purposes of this research, the FTS in the long stroke category are of the
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Figure 1-18: Schematic of a long stroke hydraulic fast tool servo (adapted from [95]).

most interest. There is limited data available for the two hydraulic FTS from the

University of Illinois. Figure 1-18 shows a schematic of the 50 mm, 100 Hz hydraulic

fast tool servo [95]. This is linear fast tool servo design with the tool axis running

on roller bearings with a hydraulic actuator. Position feedback is accomplished using

an LDVT. It is unclear if the second hydraulic fast tool servo is a different actuator

or not, since no design details are provided in the cited reference [41]. No mention

is made of reaction force management for either of these FTS which might explain

the relatively large tracking error of 26 pm max and 6.8 pm RMS despite the use of

feedforward and repetitive control.

More details are available for the two long stroke fast tool servos from the Fraunhofer-

Institute. The Fraunhofer hybrid FTS combines a short stroke piezoelectric actuator

(40 [m/1000 Hz) with a long stroke linear motor (2 mm/40 Hz). The piezoelectric

actuator has a maximum force of 2400 N, a stiffness of 50 N/pm and a resonance

frequency with a loaded mass close to 2000 Hz. The long stroke actuator consists of

three moving magnet linear motors connected in series. The moving mass guides are

parallel springs (flexures). The linear motor has a peak force of 900 N. The total tool

movement is measured using a laser interferometer. The position of the short stroke

piezoelectric actuator is monitored using a capacitance gauge. The speed of the linear

motor is measured using a linear velocity transducer. Both the piezoelectric actuator

and linear motor coils are water cooled. This is the first fast tool servo design which

directly addresses the need to manage the fast tool servo reaction forces. In this fast
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tool servo, the linear motor coils are also mounted on springs and allowed to move

in reaction to the FTS actuation forces. This strategy was only partially successful

since the 68 Hz resonance of the motor coil/spring system cannot be attenuated us-

ing closed loop control which resulted in a significant resonant peak at 68 Hz for any

control loop with a bandwidth greater than 50 Hz (loops were closed as high as 84

Hz) [100].

The second long stroke fast tool servo from the Fraunhofer Institute has 16 mm

of travel and a closed loop bandwidth of 100 Hz. The FTS is driven by a linear

motor with two stationary coils and two moving magnets. The linear motor has a

significant non-linear force constant dependent on the position of the magnets. The

moving components are mounted on a synthetic fiber carriage. The FTS is supported

by a 12 pad air bearing. The bearing surfaces on the moving mass are nickel coated

aluminium bonded to the synthetic fiber frame. For position feedback, Weck tested

two different linear scales supplied by Heidenhain. The first was the LIP 382 with a

signal period of 128 nm and a resolution of 0.13 nm and a maximum speed of 0.06

m/s. With the LIP 382, the FTS displayed 1.4 nm of error but the low maximum

speed limited the dynamic performance. The second linear scale was the LIP 403

with a signal period of 2 pm, a resolution of 2 nm, and a maximum velocity of 0.8

m/s (the desired maximum velocity was 2 m/s). With the LIP 403, the system noise

rises to 10 nm. There is no attempt to manage the reaction forces in the fast tool

servo design but Weck notes that the reaction forces must be attenuated for high

acceleration profiles. Weck proposed that to manage reaction forces one could mount

a second FTS on the machine operating in the opposite direction [99].

Figure 1-19 shows a schematic diagram of the voice coil actuated FTS from the

University of Illinois at Urbana-Champaign. The FTS consist of a moving coil single

phase linear motor directly driving the FTS tool axis. The FTS is supported by a

Rulon-LR bearing and uses a laser position sensor with a resolution of 0.618 pm for

position feedback. The voice coil motor is rated at 1670 N peak and 320 N continuous.

The moving mass is 1.5 kg, which result in a maximum FTS acceleration of 100 g's.

Neither reference for this FTS gives a maximum travel range but the travel is at
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Figure 1-19: Schematic diagram of voice coil driven fast tool servo (adapted from

[75]).
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Figure 1-20: Schematic of the Lensmaker XRT.

least 6.5 mm, the magnitude of the cam trajectory used to generate data. The servo

bandwidth is assumed to be 500 Hz or less based upon the 5 kHz controller sampling

frequency. This FTS has a 100 pm pk-pk error following a cam trajectory with a

tool travel of 6.5 mm, a peak acceleration of 9.8 m/s 2 , and a maximum velocity of

0.6 m/s. No mention is made of compensating for the FTS reaction force. It should

be noted that since the position controller for this FTS contained only proportional

and derivative control, the steady state cutting force (31 N) resulted in a significant

steady state following error [75 and [7].

The Lensmaker XRT, from Gerber-Coburn Optical [32], is a conventional turning

machine equipped with a 25 mm travel 50 Hz bandwidth FTS. Figure 1-20 shows a

simple schematic of the Lensmaker. The FTS on the Lensmaker is driven by a high-

lead ballscrew and supported by a conventional roller bearing slideway. The Lens-

maker spring mounts the machine frame to allow it to serve as a reaction mass. Thus
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Figure 1-21: Photograph of the rotary fast tool servo.

in operation, the FTS introduces large reaction forces and motions in the machine

base. The Lensmaker XRT is capable of producing small amplitude toric spectacle

lens which require light polishing at a rate of 60 lens/hr, but production rate and part

quality quickly degrade as the amplitude of the asymmetry increases. The Lensmaker

XRT has been replaced by the DTL Generator. The DTL generator incorporates a

1000 lb granite base and a 6 g tool actuator. Further details of this machine are not

available.

Stephen Ludwick, building on his experience of tuning and testing a Lensmaker

XRT FTS, arrived at the unique solution of managing reaction forces by designing

a rotary long stroke FTS. A picture of the rotary FTS is shown in Figure 1-21 and

Figure 1-22 shows a detailed cross section of the FTS. The lens is mounted on a

Professional Instruments [73] Model 4R Twin Mount air bearing spindle which has

an integrated motor and 10,000 count/rev encoder. The spindle is carried on a New

Way [68] air bearing cross-slide which is driven by a linear motor on the basis of linear

encoder feedback.

In this design, the diamond tool is mounted at the tip of an arm which pivots on

a rotary axis on two sets of angular contact bearings. The rotary axis is driven by an
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Figure 1-22: Schematic of the rotary fast tool servo.

Aerotech [3] model BM1400 brushless servo motor capable of 10 Nm torque in steady

state. This axis is driven on the basis of feedback from a 60 million count/rev MircoE

[59] rotary encoder. By using a balanced rotary arm, motor actuation inputs a pure

torque into the arm structure and thereby creates only a pure reaction torque on

the machine base. Because moment of inertia scales as a function of radius squared

for each increment of mass, the moment of inertia of the machine base is about 105

larger than the moment of inertia of the servo axis. Further, the plate structure of the

machine base is extremely stiff in shear, and thus experiences little deflection under

the motor reaction torques. This large inertia ratio and machine stiffness means that

base vibrations due to the fast tool servo reaction torques are insignificant. This is a

compelling advantage over linear motion fast tool servos. The design and development

of this rotary FTS is detailed in [54], [16], [55], [53], and [14].

1.6 Other Actuators of Interest

In the course of our literature search, we came across a few actuators and mechanisms

that were not fast tool servos but were of interest to our FTS development. One is a

small voice coil driven linear actuator for disk drive track following [64]. A schematic
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Figure 1-23: Schematic of a linear actuator for disk drive servo track writing (adapted

from [64]).

of this actuator is shown in Figure 1-23. This actuator consist of a traditional orifice

compensated air bearing system made of extra-super duralumin (Al-Zn-Mg-Cu alloy

A7075) driven by a custom voice coil motor. Two different voice coil motors were

tested. Figure 1-24 shows a schematic cross-section of the two voice coil motors. In

the MC1 version, the moving coil support frame consist an oval shell on which the

coils are wound and a single horizontal rib to which the fixing rod is attached. The

MC1 actuator assembly has a moving mass of 13.72 grams and the entire actuator has

a resonant mode at 6.9 kHz with this coil design. The MC2 version has a coil frame

consisting of an oval shell with ribs in both the horizontal and vertical directions. The

MC2 actuator assembly has a moving mass of 16.44 grams with a resonant mode at

14.4 kHz. The VCM force constant for both coil designs were within 4% of each other.

With a maximum motor thrust of 4 N, the maximum actuator acceleration was 29 g's

with the MC1 coil and 24 g's with the MC2 coil. Position feedback was accomplished

with two different sensors. Sensor-A is a MTI-2000 photonic sensor with a resolution

of 17 nm and a working range of 10 pm. Sensor-B is an ATOPS ATP-A30 with a

resolution of 0.8 nm and a working range of 5.12 pm. No information is given for

the total travel range of the actuator but from the design it is clearly greater than

the working ranges of the sensors. With the MC1 coil a bandwidth of 2.2 kHz was

achieved, while with the MC2 coil a bandwidth of 4 kHz was achieved. Tracking error

with this actuator was limited by the sensor resolution [64].

Another actuator of interest is the high speed, long travel, dual voice coil actuator

developed by ASM Assembly Automation Ltd. for the use in wire bonders and die
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Figure 1-24: Cross section of voice coil motor (adapted from [64]).
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Figure 1-25: Schematic of a dual VCM actuator (adapted from [17]).

bonders [17]. Figure 1-25 shows a schematic of this actuator. The small VCM portion

of this actuator is capable of 5 g accelerations and has an accuracy of 0.5 pum. We are

interested in both the mechanical design of this structure and the controller design

for this actuator since the position of our FTS will be the compounded position of

the FTS and reaction mass stage. The designers note that because the position of the

end effector is a function of large and small VCM position that the two controllers are

coupled (Figure 1-26). Specifically, they note that the movement of the large VCM

significantly disturbs the small VCM controller. Unfortunately the reference [17] goes

into very little detail on the actual mechanical design and the actual controller used

to decouple to motion of the two VCM.

Another interesting multiple stage actuator is the the ultra-precision aerostatic

table developed at the Precision and Intelligence Laboratory, Tokyo Institute of Tech-

nology [82]. Figure 1-27 shows a top view schematic of this high speed nanometer

positioning stage and Figure 1-28 shows a cross-section view. This stage consist of

a coarsely positioned linear motor magnet track and a finely positioned aerostatic

stage/linear motor coil assembly. By using a short travel linear motor to actuate the
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Figure 1-26: Schematic of a dual VCM actuator controller (adapted from [17]).

aerostatic table, the designer avoid the force ripple associated with long travel linear

motors. The linear motor magnet track position is actuated by a DC servo motor

driven cable drive. What is of interest in this design is the control architecture. Just

as in our proposed FTS system, the position of two coupled system must be accurately

controlled to properly position the stage. Figure 1-29 shows a block diagram of the

control system for the hybrid stage. This structure is quite similar to the structure

we have proposed for our FTS/reaction mass system.

Lastly, we look at a proposal to compensate for the steady state cutting force

noted in [75] and [7]. Figure 1-30 shows a voice coil actuated fast tool servo which

incorporates an auxiliary stepper motor. In this design, the voice coil motor pro-

vides the force to follow the high frequency portion of the FTS trajectory while the

stepper motor provides the low frequency component. The controller for this system

incorporates two loops. First there is a high bandwidth conventional position control

loop around the voice coil motor. The stepper motor control loop is a low bandwidth

controller meant to drive the voice coil motor current to zero. In simulation, this

proposed control structure reduces the VCM copper losses by a factor of 10 [45].
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Figure 1-27: Top view schematic of a high speed nanometer positioning stage (adapted

from [82]).
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Figure 1-28: Cross-section of a high speed nanometer positioning stage (adapted from

[82]).
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Figure 1-29: Position control system for the high speed namometer positioning stage

(adapted from [82]).
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Figure 1-30: Schematic of a voice coil fast tool servo with auxiliary stepper motor to

reduce copper losses in the voice coil motor (adapted from [45]).
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1.7 Summary

In this chapter, we have provided a brief background detailing the motivations of this

thesis. We also provided a brief overview of the thesis contents and listed the key

contributions of this thesis. Lastly, we reviewed a number of existing fast tool servo

designs. In the next chapter, we will detail the design and development of our long

stroke linear fast tool servo with integral balance mass.
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Chapter 2

Fast Tool Servo Concept and

Design

In this chapter we review the design and development of our prototype linear long

stroke fast tool servo with integral balance mass. First, we review a proposed second

generation rotary fast tool servo. Second, we review a number of proposed linear fast

tool servo designs. Lastly, we review the design and construction of our long stroke

linear fast tool servo.

The performance goals for our long stroke fast tool servo are

1. A full length travel of 25 mm

2. A maximum acceleration of 500 M/s 2

3. An accuracy of ±0.1 pm.

These performance requirements are those required to follow a 1 cm sinusoidal tra-

jectory at 20 Hz, with sufficient accuracy for ophthalmic lenses.

2.1 Rotary Fast Tool Servo Concept

As part of our design process, we looked at the feasibility of replacing the rotary fast

tool servo designed and built by Stephen Ludwick [541, David Ma [55], and David
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Chargin [16] with an other rotary fast tool servo of a similar configuration which

would allow for higher performance and greater accuracy. There were a number of

issues that limited the performance and utility of the rotary fast tool servo as built.

These include:

1. The 2.5 pim radial and axial error specifications of the Barden 205HDL angular

contact ball bearings used to support the tool axis introduced an unknown and

variable error motion at the tool tip.

2. The requirement to re-calibrate all of the tool arm position parameters after

each tool change.

3. The rotational compliance of the drive between the drive motor and the tool

arm.

4. The shaft windup between the tool arm and the rotary encoder.

5. The errors associated with the tool arm calibration process.

The obvious solution to the error caused by the angular contact bearing is to

replace the rolling element bearings with a non-contact fluid-static bearing. The use

of a fluid-static bearing was considered in the initial design process but for simplicity

and robustness angular contact ball bearings were selected [55],[54]. There are two

types of fluid-static bearings: hydrostatic in which the bearing fluid is either water or

oil and aerostatic in which the bearing fluid is air [83]. We considered three different

fluid-static bearings:

1. A traditional orifice compensated air bearing custom fabricated by Precision

Instruments [73].

2. A porous orifice-compensated air bearing from New Way Inc. [68].

3. A self-compensating hydrostatic bearing [97],[84].

A traditional orifice-compensated air bearing consists of a stationary metal cylinder

with orifices equally spaced around the circumference and a moving shaft. The air gap
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Figure 2-1: Cross-section of a self-compensating hyrdostatic bearing from U.S. patent
#54660171.

between the stationary and moving components is between 1 and 5 Pim. In a porous

compensated air bearing, a porous media, such as porous carbon for the New Way

[68] bearings, replaces the stationary metal cylinder. Since the media is porous, this

design effectively replaces the finite number of orifices in a traditional design with an

infinite number of orifices evenly spaced across a bearing surface. Air gaps are again

in the 1 to 5 pm range. In general, a properly-designed traditional orifice air bearing

offers better performance than a porous air bearing operating at the same pressure.

This performance advantage comes at the expense of design robustness (porous air

bearings are much more robust to bearing crashes and environmental factors) and

manufacturing cost.

A self-compensating hydro-static bearing, for example the design shown in Fig-

ure 2-1, uses either oil or water as the bearing fluid. The hydro-static bearing offers

extremely high stiffness but has the disadvantage of being a challenge to manufacture

and requires the recovery of the fluid. At the time we elected to switch to a linear

FTS design, the porous air bearing was our leading bearing candidate based upon it

being the ease of manufacture, assembly, and cleanliness.
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There are a number of design issues with the toolholder design on the original

rotary fast tool servo. First the tool arms are clamped to the drive shaft. This

means that when a tool is changed, we need to release the clamp from the shaft to

make the coarse tool height change. The problem here is that when the clamp is

released, we lose calibration for both the toolarm height and angular position. Of

more consequence is that both toolarms are used to form the clamp. Adjusting the

rough tool height of one arm requires the readjustment of both arm positions. Lastly,

the original toolarm design did not incorporate features to aid the coarse positioning

of the toolarm. In the original rotary FTS, toolarm positioning was typically done

by slightly releasing the clamp pressure and then inserting a screwdriver between the

toolarm and the either the top or bottom labyrinth seal. Since the labyrinth seal was

also clamped to the shaft, it was often necessary to disassembly and re-assemble the

seal after making tool height adjustments.

Figure 2-2 shows a side view of the proposed rotary FTS shaft, toolarms, and

coarse height adjustment collar. Figure 2-3 show a top view cross-section of the

same toolarm system. In this proposed toolarm system, each of the toolarms are

independently bolted directly to a square shaft using 5 #8 bolts. By bolting the

toolarms independently, the height of each arm may be coarsely adjusted separately.

Using a square shaft allows the tool height to be coarsely adjusted without affecting

the angular calibration. Fine tool height adjustment is achieved using the flexure

mechanism designed by David Chargin [16]. Lastly, coarse height adjustments are

made utilizing a removable clamp collar with a screw drive.

One of the main factors limiting the performance and bandwidth of the original

rotary FTS was the compliant mode between the motor inertia and the toolarm/tool

shaft inertia. During the design phase of the first generation rotary FTS, the mo-

tor/shaft/toolarm system was assumed to have a lumped element model consisting

of a motor inertia attached via a rotational spring to lumped inertia representing the

toolarm/shaft subsystem. The stiffness of the spring was assumed to be that of the

FTS shaft from the motor coupling to the center of pressure of the toolarm clamp

(Note: the motor coupling used in the rotary FTS was an order of magnitude stiffer
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Figure 2-2: Side view of the proposed rotary fast tool servo shaft, toolarms, and
coarse height adjustment collar.

Figure 2-3: Top view cross-section of the proposed rotary fast tool servo shaft and

toolarm.
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than the FTS shaft). The lumped model was correct in terms of the elements used

but incorrect in which element provided the limiting system. There are two shafts in

the rotary FTS, one connecting the motor rotor to the coupling and a second from

the coupling to the toolarms. The motor shaft is 0.5 inches in diameter and approxi-

mately 3 inches long. The toolarm shaft is 0.75 inches in diameter and approximately

5 inches long. The equation for the torsional stiffness of a round rod is

GirD4

k = (2.1)
32L

where

G = Modulus of Rigidity

D = Shaft diameter

L = Shaft length.

Assuming that both shafts have the same G, the toolarm shaft is 3 times as stiff

as the motor shaft. Since the springs are in series the equivalent spring stiffness is

expressed as

keq= ++- . (2.2)
k1 k2

Thus the combination of the motor shaft and tool-shaft result in an equivalent spring

stiffness 1/4 that of the tool-shaft alone. Thus the use of a frameless motor where the

motor rotor attaches directly to the FTS tool-shaft would significantly improve the

dynamics of the rotary FTS. Since we had planned to increase the shaft diameter to

increase the aerostatic bearing stiffness, the shaft stiffness of a frameless motor design

was projected to be 20 the stiffness of the original rotary FTS.

Figure 2-4 shows a cross-section schematic of our proposed second generation ro-

tary FTS. The tool axis is supported by two radial bearing and axially constrained

by a single thrust plate. The bearings in this drawing are based upon the orifice
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Figure 2-4: Cross-section schematic of a proposed rotary fast tool servo with fluid-

static bearings and frameless motor.
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compensated aerostatic bearings from Professional Instruments [73] and from design

discussions with their engineering staff. The FTS has two toolarms to maintain shaft

balance and to accommodate lens roughing and fining (rough cuts are made using a

polycrystalline diamond or cubic boron nitride tool while fine cuts are made using

a single crystal diamond tool). This cross-section is based upon the toolarm modifi-

cations discussed earlier. The axis is driven by an oil-cooled frameless motor. This

proposed axis uses an Aerotech Inc. S-130-123 frameless motor with a continuous

torque rating of 10.8 N-m and an inertia of 0.0078 kg-m 2 [3]. By cooling the mo-

tor, we should be able to significantly increase the maximum stall current and thus

significantly increase the maximum stall torque. A Hall effect sensor is used to gen-

erate the motor commutation. At the bottom of the cross-section we have included

an optional viscous damper. The angular position of the axis is measured using a

MicroE Mercury series rotary encoder with a resolution of 0.1 ptrad [59]. This leads

to a tool-tip resolution of 8 nm.

This design does not solve two of the design issues with the first generation rotary

FTS. First, it does not solve the problem of shaft windup between the toolarm and

encoder. In the case of our proposed design the encoder is mounted about 10 cm

from the nominal tool height. We can calculate the angular displacement of the shaft

using the following

= -Tdl (2.3)

where

T = the applied torque

G = the modulus of rigidity

J = the area moment of inertia.
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The applied torque can be expressed as

T(1) = 1(1)9

where I(l), the mass moment of inertia, is

1 21
I(1) = -m(l)r2 = m(l)D 2 .

2 8

The shaft mass, m(l), can be expressed as

rL prD2  pwrD 2 (L - 1)
m(1) 1 4 dx= .

C 4 4

Combining (2.3), (2.4), (2.5), and (2.6) results in

0= pr(L - 1)D'
Jo 64GJ

The area moment of inertia J for a round shaft is

J rD 4

64

Combining (2.7) and (2.8) results in

0 _ [ L pir(L - l)D 4 64dl
JO 64Gw D4

pL 2

2G'

= f L p(L - 1)dl
(0 G

L 2 - L

This is an interesting result in that the windup error is a square function of the

distance between the tooltip and the encoder and a linear function of the ratio between

the material density and rigidity. This result clearly indicates that we want to place

the encoder as close to the toolarms as possible. While it is possible to bring the

encoder inside the bearing, this introduces a number of challenges. First, since the
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encoder scale is a continuous disk we must mount the encoder prior to fixing the

axial location of the tool shaft. Second, since the encoder is a sensitive device the

mounting structure for the encoder must include some protective structure which

prevents chips and cutting fluids from contaminating the scale while allowing the

fluid from the fluid-static bearing to escape.

The density/elasticity ratio lead to some interesting material properties investiga-

tions. Since we were unlikely to come up with a design that placed the encoder and

tool in the same plane, to minimize measurement errors we would like to select the

shaft material with the highest stiffness per unit mass. Table 2.1 shows the density,

elasticity, and elasticity/density ratio for several potential shaft materials. Elasticity

and rigidity are related by the following formula:

E
G = (2.12)

2(1 + v)

where

E = the modulus of Elasticity (2.13)

v = Poisson's ratio. (2.14)

Since G and v were not available for all the materials in the table, we used E as a

substitute for G. It is interesting to note that the elasticity to density ratio is nearly

constant for the three metals. In order to get a higher ratio, we needed to go to an

aluminum based ceramic. Shepal-M, a high performance machinable ceramic, has an

elasticity to density ratio twice that of the metals while Alumina has elasticity to

density ratio three times that of metals but has poor machinability.

Lastly, this design does not address at all the difficulties in accurately positioning

a rotary axis relative to the rest of the machine tool reference frame. Specifically,

measuring the pitch and the yaw of the FST axis relative to the x-y coordinate frame

of the machine base and then accurately adjusting this orientation is not addressed

here.
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U

Material Density gr/cm3 E GPa E/D
AL-6061 T6 2.69 69 25.7
4140 Steel 7.8 200 25.6

Ti 5AL-2.5 Sn 4.48 115 25.7
Alumina Al 20 3  3.67 300 81.7

Shepal-M (Al-nitride) 2.94 160 54

Table 2.1: Elasticity and density of potential shaft materials

Figure 2-5: Photo of Moore Nanotechnology machine base.

Since this design is primarily a derivation of the original rotary fast tool servo and

does not include any significant breakthrough technologies or topologies, we elected

to pursue a high acceleration linear fast tool servo design which would require incor-

porating a reaction mass to attenuate base accelerations.

2.2 Linear Fast Tool Servo Concepts

At the start of the fast tool servo design process, we made several component se-

lections. First, the fast tool servo was to be mounted on a Moore Nanotechnologies

Nanotech 350 machine base [63] as Moore was willing to supply this base to us with-
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out their standard controller at a significant discount. Figure 2-5 shows a photo of

the machine base without the protective canopy. The Nanotech 350 machine base

consists of two hydrostatic slides mounted in a T configuration on a epoxy-granite

base. The slides are driven by Aerotech linear motors [3]. The stage position is mea-

sured using Sony BS75A glass-scale laserscales (0.1379 jim pitch) combined with 16x

interpolation (8 nm resolution) from Sony BD15 detectors with A quad B incremental

output [85]. The epoxy-granite base is mounted on air legs for passive vibration isola-

tion. The Nanotech 350 machine base was purchased without the standard high- and

low-voltage cabinets and without the standard Delta Tau motion controller. Instead,

we constructed a custom instrument chassis, incorporating a VME bus for the BD15

detectors, 5, 12, and 24 volt power supplies, amplifiers for the linear motors, and a

custom interface box for a dSPACE 1103 PPC controller board [26]. The Nanotech

350 has an axis straightness of 0.3 Am and a maximum velocity of 25 mm/s. Secondly,

a PI [73] 4R Twin-Mount spindle is used to hold the workpiece. The 4R spindle is

an air bearing spindle with a maximum speed of 10,000 Rpm (5,000 Rpm for our

spindle) and a maximum torque of 60 lb*in.

Any linear fast tool servo is going to have three principal components:

1. Bearings

2. Actuator

3. bensor.

Since we are building a long stroke linear FTS to achieve maximum part accuracy we

need to attenuate the reaction forces in the machine base. In the following subsec-

tions, we will review the available bearing options, analyze several potential actuator

designs, review the sensor systems considered for the FTS, and lastly we will look at

several possible reaction mass configurations.
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2.2.1 Bearings

There are many different types of bearings available including sliding contact bear-

ings, rolling contact bearings, flexure bearings, fluid-static bearings, fluid-dynamic

bearings, and magnetic bearings. Since we would like to have extremely accurate mo-

tion, it is preferable to utilize a bearing without mechanical contact and thus sliding

contact and rolling contact bearings are not desirable for this application. Flexure

bearings offer smooth accurate movement but creating a flexure bearing with the

requisite travel and stiffness requirements seemed improbable. Hydrostatic and hy-

drodynamic bearings both use a pressurized fluid to support the bearing load. In

fluid-static bearings, the fluid is pressured from an external source. In fluid-dynamic

bearings, the fluid is pressured using the motion of the bearing components. Since

the FTS bearings must support loads even when the FTS is stationary, we cannot use

a fluid-dynamic bearing. While properly-designed magnetic bearings would meet the

performance requirements of our FTS, there are a limited number of commercially

available magnetic bearings. Thus just as in the case of the rotary design, we focused

on designs which incorporate fluid-static bearings. Just as in the rotary design we

considered three bearing options:

1. A traditional orifice compensated air bearing .

2. A porous material compensated air bearing .

3. A traditional orifice compensated fluid-static bearing using oil as the bearing

fluid.

Just as in the rotary FTS, the porous material bearing offers the advantage of design

simplicity at the expense of slightly lower stiffness when compared to a properly

designed and constructed orifice design. An oil fluid-static bearing offers the highest

stiffness at the expense of having to recover and clean any oil used in the bearing.

In theory, an oil hydro-static bearing would result in the smallest slide and thus the

lowest moving mass.
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Figure 2-6: Sketch of a speaker style VCM with a 2"x2" air bearing slide.

Planar Voice Coil Motor

1"x1" Hydrostatic slide

Figure 2-7: Sketch of a planar style VCM mounted between two 1"xl" hydrostatic

bearings.
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-+F(A/M3)

J(A/M2)

Figure 2-8: Schematic diagram showing a conductor with current density J in a
magnetic field of density B with a resultant force density F.

We considered two configurations for the bearings. Figure 2-6 shows a sketch of a

2"x2" air bearing slide driven by a cylindrical voice coil motor. The air bearing slide

consists of two 2"x2" square air bushings set 6" apart. This configuration has the

advantage of allowing maximum flexibility in terms of actuator design. Figure 2-7

shows a sketch of planar VCM set between two 1"xl" hydrostatic bearings. This

layout potentially offers enhanced rocking stiffness but somewhat limits actuator de-

sign. The prototype FTS utilizes the slide design since a slide appropriate for our

application was available off the shelf.

2.2.2 Actuator

For the FTS actuator, we considered several styles of single phase permanent magnet

linear motors. Single phase permanent magnet linear motors can be constructed

with either moving magnets or moving coils (voice coil motors). The force density

of these motors is determined by a combination of the static magnetic field from the

permanent magnet and the maximum current density in the coil. To understand the

acceleration limits of a linear actuator, consider the Lorentz-type system shown in

Figure 2-8. In this schematic a conductor carrying current density J is placed in a

magnetic field of density B which results in a Lorentz force of density F. Typical

voice coil actuators without forced cooling have a magnetic field density B = 0.8 T

and maximum steady state current density J = 7 A/mm2 [18] which results in a force
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Figure 2-9: Schematic diagram of a cylindrical voice coil motor design.

density

F = J*B = 5.6 * 10- 3 N 5.6 * 1061. (2.15)
mm3  m3

Assuming that the conductor is copper with a density of 8900 kg/m 3 , a Lorentz

actuator has a maximum acceleration of

F 5.6x106 N m3 r
amax - F - -kg 630 (2.16)

p 8900 kg s

Since the acceleration limit of the coil alone is near the desired acceleration of our

FTS, the actuator design needs to be modified to increase both the field density B

and the current density J.

2.2.3 Voice Coil Motor Design

The most common form of a single phase permanent magnet linear motor is the

moving coil style. The moving coil design is traditionally used because it allows for

designs where the magnetic flux stored in the permanent magnets is concentrated.

We considered several different motor designs which incorporate flux concentration.

Figure 2-9 shows a schematic drawing of a cylindrical voice coil motor design. In this
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tm

Figure 2-10: Integration contour C1.

design, the magnetic flux is concentrated in two dimensions. The flux is concentrated

in the radial direction by reducing the surface area of the air gap relative to the surface

area of the permanent magnets. The flux is concentrated in the axial direction by

reducing the length of the exposed area of flux concentrator at the air gap. As long

as the back-iron or flux concentrator do not become saturated all of the magnetic

field stored in the magnets is concentrated into the motor air gap. This design has

the further advantage that all of the copper in the moving coil is within the magnetic

field and thus generating force. The disadvantage of this design is that it is quite

difficult to achieve significant flux concentration without saturating the center yoke

of the back-iron.

To explore this let us study the magnetic circuit of this motor. For this analysis

we have made the following assumptions:

" That this system may be treated as a quasi-static magnetic-field system.

" The back-iron and flux concentrator are constructed of a highly permeable ma-

terial, M -- oo. This assumption reduces magnetic field intensity H in these

components to 0.

" Flux leakage around the circuit is minimal.
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* The permanent magnet has approximately straight line magnetization B - H

characteristic in the second quadrant [47.

With these assumptions the magnetomotive force, F, is

.F= fHedl= jJenda.JC Js
(2.17)

To determine H, we integrate along the contour C1 (Figure 2-10). Since there are no

currents inside this contour, F is zero and

Ht + Hmtm = 0

Hg

Hm

(2.18)

the magnetic field intensity in the airgap

the magnetic field intensity in the magnet

tg = the gap thickness

tm = the magnet thickness.

Gauss's Law states that the magnetic flux through a volume must be conserved:

s Bonda = 0. (2.19)

Using our assumption of no flux leakage, integrating over the cylinder defined by the

radius of maenet centerline and the radius of the airgap centerline (Figure 2-11) vields

0 = 2irRmLmBm - 27rRLgB,

Bg = BmRmLmn
RgLg

(2.20)

(2.21)

where

B, = the magnetic flux density in the airgap
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Figure 2-11: Integration surface si.

Bm = the magnetic flux density in the magnet

Rg = the centerline radius of the airgap

Rm = the centerline radius of the magnet

Lg = the axial length of the airgap

Lm = the axial length of the magnet.

In order to solve for the flux density in the air gap, we need to employ the constitutive

laws relating magnetic flux density, B, to magnetic field intensity, H. In the airgap,

B and H are related as

B = pOH (2.22)

where Mo is the permeability of free space. Assuming linear straight line magnetization

characteristics, the relationship in the magnet is

Bm = B,+ poHm. (2.23)
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Figure 2-12: Schematic of cylindrical voice coil motor with key dimensions.

Combining Equations (2.18), (2.20), (2.22), and (2.23) results in

Bg = RnLmtm B.. (2.24)
RgLgtm + RmLmtm

We now have an expression for the flux density in the airgap. In order for our

assumption of no flux leakage to be accurate, we need to ensure that steel in the

back-iron does not become saturated. Most steels become saturated between 2 and

2.2 T with a significant decrease in permeability beginning at 1.8 T. So for design

safety, we would like to keep the flux density in the back-iron below 1.8 T. In terms

of the back-iron design, the only place we are not allowed to add additional material

is on the inner yoke, thus we need to check each design for saturation here. The flux

density in the center yoke can be expressed as

B c 2rRgLgBg (2.25)
7r(Rg - tg/2)2

We can calculate the minimum thickness ti of the return yoke using

= RgLgBg (2.26)
tbz= - (Rg - tg/2)Bmax

where Bmax = 1.8 T, the maximum desired flux density. The outer radius of the
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back-iron can be calculated from

= (2irRgLgBg/Bmax) + r(Rm + tm/2) 2  (2.27)
7r

Figure 2-12 shows a schematic of a cylindrical voice coil motor with the key dimen-

sions.

We created a Matlab function motor-size to aid in the design of a cylindrical voice

coil motor. The code for this function is included in Section B.1. The inputs to this

function are t., tg, R,, Rg, Lm, Lg, B, and L., the width of the copper coil. The

version of the code included in this thesis assumes a copper packing factor of 70%.

Packing factor is the percentage of the copper coil area which actually contains copper.

The code also assigns some basic geometry to the coil assembly. In this version, we

assume that the FTS is supported by a 2.54 x 2.54 x 19.8 cm (1"x1"x7.75") slideway

with oil hydrostatic bearings. The function outputs B,, the flux density in the center

yoke, the mass of the copper coil, the total moving mass if the slideway is made

of aluminium, the total moving mass if the slideway is made of steel (Note: the

program assumes that the coil assembly is made of aluminum in both cases but other

alternatives include stainless steel and titanium), and the required current density to

accelerate the moving mass for both steel and aluminium. The function output is a

single figure with a scaled schematic of the VCM with the input dimensions and the

calculated performance.

Figure 2-13 shows a sample output for the motor-size function. This is a fairly

conservative design, where if the slideway were constructed of aluminium the motor

coils would not need to be cooled. The disadvantage of this design is that the final

motor is quite large at 25 mm in diameter. Figure 2-14 shows a more aggressive motor

design where the overall motor volume is reduced by 45%. In this motor design, the

coil will need significant cooling to prevent the coil from overheating.

There were several iterations of the this Matlab function generated. The function

motorsize-s was a function designed to evaluate square voice coil motor designs. In

this design the magnetic circuit is broken into four equally sized rectangular sections.
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-10

-20 -15 -10 -5 0 5

Figure 2-13: Sample output of Matlab function motorsize.

1 0 -.--..- - -.- .- .- -.. .

8 - Coilwidth-1 cm- - - -.-.-.-.

Airgap Length 3.5:cm

6 -Magnet Length 4 CM -.-.-.-.-.-.-.-......
Airgap Radius 5 cm

4 -.- . -.Magnet -Radius-7 cm - - - ..-..

0--

-2 -. -.-.-.-.- ..

-4 -- Mass Cu.0;19572:kg - - . -

Moving Mass (AJ) 0.70931 kg

-6 -. Moving Mass- (St)-1.1093 kg. - - - - -

Flux Desity Air Gap (Bg) 1.0759 T

-8 -Flux Oesity backiron (Bbi) -1.8595 T - - -. -

Current Density (Al) 14.99 A/nmm
2

-10 Current Density (St) 23.4433 A -mm - - - - .- -

-20 -15 -10 -5 0

Figure 2-14: Sample output of Matlab function motor.size.

88



.U.... ..

10-

5-

0-

Flux Desity Air Gap (Bg) 0.81818 T
-5- Flux Desity bacidron (Bbi) 1.8701 T

Current Density (Al) 16.3741 A/mmr2

10 r-urrent Density (St) 24.9163 A/m n2
25 -20 -15 -10 -5 0 5

Magnet Width 12 cm
Airgap, Width 7 cm

5 Magnet Length 5 cm
Airgap Length 4 cm
Coil width 1.46 cm

0- Mass Cu 0.29107 kg
Moving Mass (Al) 0.76674 kg
Moving Mass (St) 1.1667 kg

-25 -20 -15 -10 -5 0 5 10 15 20 25

Figure 2-15: Sample output of Matlab function motorsize-s.

The four circuits share the same center yoke. This motor configuration is less efficient

electrically since some percentage of the copper is outside the magnetic field and thus

does not produce force. The inputs for the motor-size-s are a little different since the

magnet remanence (Br) is assumed to be 1.2 T and the coil width is calculated using

the input gap length (Lg) minus the motor travel (2.54 mm). Figure 2-15 shows a

sample output of the motor-sizes function. This sample motor is 19 x 19 mm and is

quite aggressive needing a coil current density of 16 A/mm2 for the lightest moving

mass. The code for this Matlab function is in Section B.2. For the square VCM

the relationship between the remanent flux density of the magnet and the gap flux

density is

Bg LmWmtmBr (2.28)
LgWgtm + LmWmtg

where Wm and Wg are the width of the magnet and air gap respectively. The flux

density in the center yoke is

_
4 LgBg

BM-,- g g.(2.29)
W9
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There are several additional variations of this function written including

o Square motors with only two opposing magnetic circuits (planar VCM).

o Square and cylindrical motors with moving magnet designs.

o Square and cylindrical motors using a 2.54 x 2.54 x 19.7 cm aerostatic stage,

the stage actually used for the FTS prototype, is modeled.

Since we did not utilize any of this analysis in our prototype FTS, I have elected

to include only a sample of the variations tested in this thesis. All of this analysis

assumes that we will be able increase the current density of the VCM coil with cooling.

In the next section, we introduce some of our cooling concepts.

2.2.4 Coil Cooling

As mentioned earlier, there are two ways to increase the force density of a voice coil

motor:

1. Increase the magnetic flux in the motor air gap.

2. Increase the maximum allowable current density of the coil.

As we saw in the previous section, there is a functional limit to how much we can

increase the flux in the gap based upon back-iron saturation (the maximum gap flux

I achieved in a calculated design was 1.2 T). This means we need to increase the

maximum allowable coil current density. Since the coil current density is limited by

thermal considerations, we need to cool the motor coils.

Michael Liebman designed and constructed a three phase linear motor where slots

were opened in the coil endturns to allow for the passage of cooling oil [46]. Figure 2-16

shows a schematic drawing of the end turn cooled coils. We can apply this technique

to several different motor configurations. Figure 2-17 shows a schematic drawing of

a square VCM with end turn cooling and a planar VCM with end turn cooling. The

square VCM has the advantage that most of the coil copper is captured in the VCM

magnetic field but the disadvantage of very little cooling area. The planar VCM has
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Figure 2-16: Schematic drawing of end turn cooling from [46].

Figure 2-17: Schematic drawing of a square VCM with end turn cooling
VCM with end turn cooling.

and a planar
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Figure 2-18: Schematic drawing of a coil cooling concept derived from U.S. Patent
application US-2004/0207273.

a large cooling area at the expense of a large volume of copper outside the magnetic

field.

Figure 2-18 shows a schematic drawing of an alternate coil cooling concept derived

from U.S. Patent application US-2004/0207273 [31]. In this design, channels carrying

a coolant are placed at either end of the coil windings. The copper windings are then

captured between a pair of thermally conductive ceramic cylinders. The highly ther-

mally conductive material transfers the heat from the coils to the coolant. Figure 2-19

shows an extension of this concept where the heat transfer from the coil to the sheath

is enhanced with the use of vertical sheets of aluminium foil. There are a number

of issues with this concept. The most important is that these ceramic materials are

quite difficult to machine and are typically manufactured to final form. Rectangular

sheets are commercially available making this cooling concept more appropriate for

the square motor designs.

Figure 2-20 shows an alternate coil cooling concept derived from [46] where alu-

minium foil is place horizontally between winding layers. The ends of the foil are

then place in the coolant stream. The windings can be interrupted periodically to

introduce local cooling channels. Figure 2-21 shows a final coil cooling concept where

the aluminium carrier is slotted along the axial dimension of the carrier. These slots

allow coolant to circulate from the front to the back of the motor underneath the
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Figure 2-19: Schematic drawing of a coil cooling concept derived from U.S. Patent
application US-2004/0207273.

/

Al
Carrier

Coolant

Al Foil

Copper Coils

Figure 2-20: Schematic drawing of a coil cooling concept derived from [46].
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Figure 2-21: Schematic drawing of a coil cooling concept.

copper coils.

Clearly all of these coil cooling concepts offer significant design and fabrication

challenges. It seems unlikely that we could design a motor which has sufficient struc-

tural integrity while having adequate cooling, coolant sealing, coolant plumbing, and

dynamic performance. Thus we choose to utilize the existing oil-cooled linear more

developed by Michael Liebman [46] to actuate the FTS. In the next section, we discuss

the sensor selection process.

2.2.5 Sensor

We considered two different sensor types for our FTS:

1. Laser interferometer

2. Linear encoder

Figure 2-22 shows a schematic of a linear FTS with a laser interferometer. A laser

interferometer offers several advantages. First, it offers extremely high resolution

(as fine as almost 0.1 nm) and extremely high maximum speeds (up to 5.1 m/s).

Second, laser interferometry is the only sensor that readily allows us to measure the

FTS position almost exactly at the tool tip. Third, the target reflector contributes
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Figure 2-22: Schematic of a linear FTS with a laser interferometer sensor.

Encoder Read Head

Encoder Scale

Air Bearings

Figure 2-23: Schematic of a linear FTS with a linear encoder sensor.

very little to the moving mass of the FTS. Lastly, laser interferometry is the only

one of the sensors considered which measures the FTS position relative to the fixed

machine base coordinate frame. Offsetting these advantages are several significant

disadvantages. First, beam routing in the limited space available on the machine

base is challenging. Second, a laser interferometer is quite sensitive to disturbances

in the beam path. In the case of our machine, we are likely to produce a large amount

of airborne particulate either from the material being cut or any cutting lubricant

used. Lastly, laser interferometers are very expensive ($20,000 for the Zygo ZMI 4004

board alone). The interferometer availiable here in the Precision Motion Control Lab

had a resolution of 2 nm and a maximum speed of 350 mm/s which makes it unsuitable

for our purpose (a 12.5 mm pk-pk 20 Hz sinusoidal trajectory has a maximum tool

tip velocity of 1500 mm/s).

95



Figure 2-23 shows a schematic of a linear FTS with a linear encoder sensor. Specif-

ically, we considered using exposed glass scale diffraction-based linear encoders. There

are several reasons to use this type of sensor for this application. First, exposed scale

linear encoder are non-contact thus friction free. Second, the sensor can be placed

fairly close to the actual tool tip allowing for minimal position measurement error due

to component deformation. Third, diffraction based linear encoders provide nm level

resolutions without the beam routing and environmental issues associated with laser

interferometry. Lastly, exposed glass scale linear encoders meeting our performance

requirements are commercially available from several sources (Sony, Heidenhain, and

MicroE for example) at a reasonable price ($1000 for scale and electronics). There are

several disadvantages to using a linear encoder. Since the scale cannot be placed co-

incident with the tool tip, there will always be some error in the measured and actual

position. The second disadvantage is that a linear scale measures the FTS position

relative to the FTS reference frame. This means that to determine the position of the

tool tip relative to the base reference frame we need to measure the position of the

FTS reference frame relative to the base reference frame. Thus the tool tip position

measurement now incorporates two measurement errors. Lastly, the accuracy and

maximum velocity of a glass scale diffraction based linear encoder is a function of

the scale pitch. The longer the scale pitch, the higher the maximum velocity. The

smaller the scale pitch, the higher the accuracy. As will be discussed in more detail

in Section 2.3, there are encoders avaliable that meet either our velocity requirements

or our accuracy requirements but not scales currently avaliable which meet both.

2.2.6 Reaction Force Attenuation

There are several possible methods for reducing base movements in response to FTS

actuation forces. The simplest and most common strategy is to make the machine

base much more massive than the FTS. In the case of most short stroke FTS, the

moving portion of the FTS has a mass of tens of grams while the machine base has

a mass of hundreds of kilograms thus leading to a FTS/base mass ratio on the order

of 1000. For longer stroke FTS, the moving component of the FTS is much more
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massive (on the order of kilograms) while the machine base mass remains relatively

static. Thus the FTS/base mass ratio is on the order of 100. This means we must

explore more sophisticated strategies.

Figure 2-24 shows schematic drawings of three reaction force attenuation strate-

gies. In Figure 2-24-A, the FTS reaction forces are passively attenuated by a reaction

mass (in this case the magnet/back-iron assembly of a VCM) connected to the in-feed

slideway by a flexure. This design offers the advantage that it is completely passive

thus eliminating the need for any additional actuator or control elements but the suc-

cess of this strategy is very dependant on the dynamics of the reaction mass/flexure

system. As noted earlier Weck et al [100] utilized this strategy with limited success on

their hybrid FTS. Figure 2-24-B shows a reaction force attenuation strategy where

a second actuator (in this case a second FTS) is placed on the in-feed slide. The

two actuators act in opposite directions. In theory if the actuator trajectories and

masses are properly balanced the slide way sees no net force although there may be

net torques. The disadvantage of this design is that it requires the expense of an addi-

tional actuator system which has no functionality beyond attenuating reaction forces.

Figure 2-24-C shows a third strategy. In this case, the in-feed slide-way is allowed to

freely move in response to the FTS actuation forces. While this motion complicates

the trajectory generation and control of the in-feed slide, it has the advantage of

utilizing the existing machine hardware, thus saving money and effort.

In this section, we have reviewed the various different design options we explored

when designing our prototype fast tool servo. In the end, we elected to utilize an

off-the-shelf porous air bearing slide, an existing oil-cooled linear motor, a diffraction

based linear scale, and FTS/slideway reaction force attenuation strategy. In the next

section, we detail the design and construction of our prototype fast tool servo.

2.3 Prototype Fast Tool Servo Detail Design

In this section, we provide the detail design of the prototype fast tool servo. In

subsection 2.3.1, we detail the FTS actuator. In subsection 2.3.2, we discuss the
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motor amplifier. In subsection 2.3.3, we discuss the air bearing stage used for the

FTS. In subsection 2.3.4, we provide the details of the dSPACE 1103 discrete time

processor used to control the FTS. In subsection 2.3.5, we detail the implementation

of the two different sensors used on the FTS. Lastly in subsection 2.3.6, we detail the

assembly of the linear FTS.

2.3.1 Motor

The motor for the linear FTS is an oil-cooled 3-phase linear motor built by Micheal

Liebman for his Master's research [46]. The motor was partially constructed by Fred

Sommerhalter at Anorad Corporation [6] and utilizes an off-the-shelf 60 mm pitch

magnet track. As discussed earlier the motor incorporates coil windings with gaps

between the coil layers to allow coolant to flow between the layers. The resulting

motor has a maximum steady state force of 350 N (approximately 4 times that of a

conventional 3 phase linear motor). The measured force constant Kf for this motor

is

N
Kf = 35.4 - (2.30)

Arms'

Mobil Velocite No.10, the same oil used in the hydrostatic stages of the Moore machine

base, is used to cool the motor (Micheal Liebman used Mobiltherm 603 which has

slightly better thermal characteristics) [28]. The oil is pumped using a small centrifu-

gal pump form Gorman-Rupp Industries [33]. The motor temperature is measured

by a thermocouple placed between the first and second end-turns of one of the three

motor coils. The oil temperature is measured by a thermocouple in the oil reservoir.

2.3.2 Linear Motor Amplifier

The linear motor is driven by a prototype HPA-400-30 amplifier from Copley Controls

Corp [19]1. This is a PWM amplifier with a pulse frequency of 125 kHz. The maxi-

mum allowable supply voltage is 400 Volts. The maximum current output Ip is 30 A.

'Copley Controls Corp of Canton, MA kindly donated this amplifier
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This amplifier has a continuous current rating I of 12 A. Thus the maximum power

is 12 kilowatts while the maximum continuous power is 4.8 kilowatts. The amplifier is

tuned for a -3 dB bandwidth of 2 kHz (the amplifier has a maximum bandwidth of 5

kHz). The DC voltage is supplied by a 300 V/16 A Lambda EMS-300-16 D.C. power

supply [44] (thus the power available is 4.8 kW maximum and 3.6 kW continuous).

The amplifier accepts two phase (U and V) current commands (the current in the W

phase is constrained by the U and V currents in a Y configuration motor).

Motor commutation is done on the dSPACE DS1103 control board and is discussed

in detail in section 6.1.2.

2.3.3 Air Bearing Slide

The tool holder and motor coils are mounted to a custom 2"x2" porous media air

bearing slide from New Way Inc. [68]. The slide consists of eight 50 x 100 mm flat

air bearing pads. Each pad has a quoted stiffness of 100 N/jim at 0.41 MPa (60 psi).

The pads are assembled into two rectangular bushings 50 mm apart. These bushings

support a 2" x 2" x 11.5" anodized aluminium beam. The aluminium beam has a

1.5" diameter hole bored through its length. The beam has a mass of 1.54 kg. The

air bearing stage has been machined to accept a Heidenhain LIP 501 linear scale [38].

The slide has a full range travel of 1.5".

2.3.4 Discrete Time Processor

The machine base and linear FTS are controlled using a dSPACE DS1103 PPC con-

troller board [26]. The DS1103 has a 400 MHz PowerPC 604e main processor and a

20 MHz Texas Instruments TMS320F240 slave processor [90]. The system has

* 16 16-bit main processor ADC

* 4 12-bit main processor ADC

* 8 14-bit main processor DAC

* 4 8-bit main processor DAC
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. 6 digital incremental encoder interfaces

* 1 main processor serial RS232/RS422 serial interface

* 32 bits main processor digital I/O

* 16 10-bit slave ADC

* 18 bits slave digital I/O.

Appendix D list all of the connections used to run the prototype diamond turning

machine. The DS1103 is programmed using Matlab's Simulink interface.

2.3.5 Sensor

The prototype FTS was tested in two forms, a bench-top version and the version

installed on the prototype diamond turning machine. The primary differences be-

tween the two versions are the linear diffraction style linear encoder used, the motor

attachment, and the plumbing and electrical connections. The motor attachment and

connections are dealt with in subsection 2.3.6. A Heidenhain LIP 501 exposed linear

scale [38] was used during bench-top testing while a MicroE M3500Si Mercury series

incremental encoder [59]

The Heidenhain LIP 501 utilizes a 4 pm pitch scale with a full travel accuracy of

tlpm. The LIP 501 encoder electronic outputs 11 pAp sinusoids with a 1 kQ load.

The encoder has a maximum velocity of 1 m/s. The encoder electronics are isolated

using an Analog Devices AD621 low drift instrumentation amplifier with a gain of

10 [5]. A differential signal is created using a Texas Instruments SN74LS14 Hex

Schmitt-trigger inverter [90]. The encoder output is interpolated using an Aerotech

MXH250 multiplier [3]2. With x1000 interpolation, the Heidenhain encoder has 4 nm

resolution. The Aerotech multiplier supports speeds up to 0.128 m/s. The differential

output of the Aerotech multiplier is read onto the DS1103 control board through one

of the incremental encoder interfaces (max. input frequency 6.6 MHz/66 mm/s).

2Donated by Aerotech Inc of Pittsburgh PA.
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Figure 2-25: Measured prototype fast tool servo following error using a Heidenhain
LIP 501 linear encoder.

We used a standard 70 mm glass scale trimmed to a length of 55 mm. The scale

was bonded into a slot machined into the 2" x 2" slide using a cyanoacrylate-based

adhesive. The read-head is bolted to the slide chassis. The scale/read-head alignment

was adjusted using an oscilloscope in X-Y format.

Figure 2-25 shows a typical measured following error for the bench-top prototype

fast tool servo using the Heidenhain LIP 501 linear encoder. Under AFC control,

the measured following error is 0.18 pim peak-to-peak and 0.05 im rms. While the

accuracy/resolution of the Heidenhain encoder were excellent, the slow speed of the

DS1 103 encoder interface made this sensor system unacceptable for machine level

testing.

For the machine level testing we used a MicroE M3500Si serial interface linear

encoder. The M3500si uses a 20 ,im pitch glass scale. We used a standard accuracy

L55 scale with a full range travel accuracy of t3 ,tm. Both the scale and the read-head

of the MicroE encoder are much smaller than the Heidenhain encoder. Fortunately

the geometry was such that the scale and read-head could be mounted using the

existing Heidenhain mounting features with the use of a spacer to mount the scale
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Figure 2-26: Photo of MicroE glass scale mounting.

Encoder Interpolation Encoder Adapter

Figure 2-27: Photo of MicroE glass scale mounting.
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Figure 2-28: Photo of air bearing stage with encoder cover.

Figure 2-29: Photo of bottom side of the encoder cover.

and a spacer and clamp system to hold the read-head in place. Figure 2-26 shows a

photo of the MicroE scale mounting. The scale is bonded to the aluminum adapter

plate with a cyanoacrylate base adhesive and the adapter plate is screwed to the stage

beam. Figure 2-27 shows a photo of the MicroE read-head and encoder interpolation

electronics. The read-head is clamped to an adapter plate which is then screwed down

using the original Heidenhain mounting points. The interpolation electronics are also

mounted to the slide chassis. This entire installation is sealed from contamination by

an o-ring sealed cap (Shown in photo in Figures 2-28 and 2-29).

The M3500Si interpolation electronics provide up to x4096 interpolation (4.8 nm
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resolution) at a maximum speed of 7.2 m/s. The M3500Si serial interface outputs

a 38-bit word. The first 8-bits refer to the encoder status while the next 30-bits

are a twos-complement position word. The MicroE serial interface utilizes RS-422

differential voltage levels. Since the DS1103 serial interface utilizes single ended TTL

signals, a National Semiconductor DS3486 Quad RS-422/RS-423 line receiver converts

the received data to single ended form [66]. While a National Semiconductor DS3487

Quad Tri-State line driver is used to convert the DS1103 TTL single ended output to

RS-422 format. To read the serial data from the encoder electronics, we tried three

different implementations on the DS1103:

1. A S-function serial interface running on the DS1103 slave processor utilizing C

functions provided by dSPACE.

2. A S-function serial interface running on the main processor utilizing main pro-

cessor C functions provided by dSPACE.

3. A S-function serial interface running on the slave processor utilizing user pro-

vided C functions.

S-functions provide a means of introducing capabilities to a dSPACE I/O board via

Simulink. When a S-function is utilized a custom block is added to the Simulink

model, the S-function C code is incorporated into the existing Simulink model, and

the appropriate dSPACE hardware is accessed. S-functions are typically written using

a S-function template provided by dSPACE. For more information on S-functions refer

to [2]. All of these implementations were made possible by the work of Marsette Vona

[96] and David Utten [71]. Specifically, all of the slave DSP programming is based

upon the code developed by David Otten.

In the first implementation, we utilized the standard S-Function structure to create

a serial interface on the DS1103 Slave DSP. The S-function utilized the standard Slave

DSP Serial Interface functions provided by dSPACE [1]. As for all S-functions, most

of the overall processing occurs on the main DSP processor. This serial interface has

the following flow process for each computational cycle:
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1. The main DSP initializes the communication buffer with the Slave DSP.

2. The main DSP activates the encoder serial interface

3. The main DSP instructs the Slave DSP to read the serial interface.

4. The Slave DSP reads in 16-bits and transfers the data to the communication

buffer.

5. The main DSP reads the communication buffer and stores the last 8 bits (Note:

the first 8-bits are the encoder status which is not required to determine the

position).

6. The Slave DSP reads in 16-bits and transfers the data to the communication

buffer.

7. The main DSP reads the communication buffer and adds the 16-bits to the

previous data.

8. This repeats until the main DSP has formed a 30-bit position word.

9. The main DSP converts the 30-bit word from 2 complement and outputs a

position count to the Simulink model.

This implementation is very stable and robust but very slow (the turnaround time is

140 ps minimum resulting in a 7kHz maximum sample rate). The reason this imple-

mentation is so slow is that the slave DSP is very slow moving data from the input

register to the communication buffer (about 20 its per transfer). In this implementa-

tion, the slave DSP must transfer a total of 3 words to the communication buffer. One

way to speed the serial interface up is to completely avoid using the communication

buffer.

In our second implementation, we utilize the main processor digital I/Os to the

create a serial interface. The main processor digital I/Os are grouped in 8-bit units.

Each 8-bit group can be configured as either input or output. As part of the overall

diamond turning machine control, groups 1 and 3 are configured for output while
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group 2 is configured for input (group 4 is unassigned). For this implementation, we

have used 1019 from group 3 to enable the serial interface and 1020, also group 3,

to generate the serial clock. 1015 from group 2 is used to read in the serial data. In

this implementation, the serial interface has the following process flow:

1. Main processor enables the serial interface, 1019 high.

2. Main processor creates clock pulse, 1020 toggled from low to high to low.

3. Repeat step 2 seven times.

4. Main processor toggles clock.

5. Main processor reads 1020 and stores bit.

6. Repeat steps 4 and 5 until complete 30-bit position word is read.

7. The main processor converts the 30 bit word from 2 complement and outputs

a position count to the Simulink model.

It takes 0.4 ps to generate each clock pulse and it take 1.2 Ias to generate a clock pulse,

read the input bit, and then store the input bit. Including the conversion from two

complement and the output of the position word to Simulink, this implementation

has a total turnaround time of 42 ps. This serial interface implementation is by far

the fastest of the three tested. The issue with this implementation is that while the

serial interface is running the main DSP is not available for other processes. Running

all the other task required for control of the DTM takes 60 ps, which results in a

total turnaround time of 102 pus which results in a maximum sample rate of 9.4 kHz.

While this serial interface is stable and fast, the overall sample rate is marginal for

our application (we would prefer a sample rate in the range of 20 kHz). This leads

to our third implementation.

In our third and final implementation, we run the serial interface on the slave DSP

using user defined C functions. This implementation has several advantages over the

implementation using the dSPACE provided functions. As noted earlier, the slow

part of the slave processor serial interface is the transfer of the serial data from the
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input register to the communication buffer. Using the canned C functions, we are

required to transfer 3 separate words to the communication buffer despite the fact

that our total word length is 30-bits and the communication buffer transfers 16-bits at

a time. Eliminating the extra word transfer can potentially save us 20 pis. Four files

are required to run a custom C function. A file containing the code for the S-function,

a file to register the user defined function on the slave DSP, a file containing the user

defined function C code, and a header file for the user defined function. Appendix C

contains the four files used for this serial interface implementation.

The process flow for the serial interface interface running on the slave DSP utilizing

user defined functions is:

1. Main processor outputs the position word from the previous computational cycle

to Simulink.

2. Main processor reads the position word gather by the slave DSP during the

previous computational cycle from the communication buffer.

3. Main processor converts the 2 complement position word to absolute position.

4. Main processor request a new position word from the slave DSP.

5. Slave DSP enables encoder serial interface.

6. Slave DSP toggles serial clock 8 times.

7. Slave DSP toggles serial clock, reads and stores input bit 16 times.

8. Slave DSP transfers 16-bit word to communication buffer.

9. Slave DSP toggles serial clock, reads and stores input bit 12 times.

10. Slave DSP toggles serial clock 4 times to clear encoder serial buffer.

11. Slave DSP transfers the 12-bit word to the communication buffer in 16-bit

format.

12. Main processor outputs the position word to Simulink.
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As is fairly obvious from the process flow, this serial interface results in a 2 unit

delay on the position data available to the position control loop. The main processor

delay is determined by the interaction between the user defined S-function code and

the overall real time control code defined by Simulink. Attempts to eliminate the

main processor delay resulted in non-operational S-functions. The one unit delay in

the communication between the slave DSP and the main processor is intentionally

introduced to ensure that the entire position word is properly transferred. When we

attempted to both read and transfer the position word from the slave DSP to the main

processor on the same computational cycle, the main processor would often attempt

to read the position word before the slave DSP had finished reading and transferring

the data to the communication buffer. Thus the word read into the main processor

was incomplete. It takes the slave DSP 60 pus to read and transfer the serial data to

communication buffer. This implementation was successfully tested at sample rates

as high as 14.5 kHz. For most data in this thesis, the DS1103 was running at 12.5

kHz.

Figure 2-30 shows a typical measured following error for the DTM mounted proto-

type FTS using the MicroE M3500Si linear encoder for position measurement. With

the exception of the different encoders, the controller and hardware for the Heiden-

hain data set (Figure 2-25) and the MicroE data set (Figure 2-30) are identical (Note:

the trajectory for the Heidenhain data had a maximum acceleration of 2 g's while the

MicroE trajectory had a maximum acceleration of 6.6 g's). The measured following

error is 3.1 pm peak-to-peak and 0.28 pm rms using the MicroE scale. The measured

error has gone up because while the MicroE system has higher resolution than the

Heidenhain scale, it also has a greater interpolation error. Interpolation error is due

to asymmetry in the sinusoid diffracted from the encoder scale [27]. High quality

scales typically have an interpolation error of 1% the scale pitch. Thus for the Hei-

denhain LIP 501, the interpolation error is on the order of 0.04 pm. The M3500Si

utilizes a 20 pm pitch scale which results in an interpolation error on the order of 0.2

pm. How exactly the interpolation error maps to the measured position error is not

explored in detail here but clearly to achieve the accuracy we would like, the M3500Si
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Figure 2-30: Measured prototype fast tool servo following error using a MicroE

M3500Si linear encoder.
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Figure 2-31: Photo of bench-top prototype long stroke fast tool servo.

scale should be mapped using a laser interferometer and the measured position data

corrected.

In this section, we explored two different linear scale systems. In one case, we

implemented a scale with excellent accuracy performance but with a low overall max-

imum velocity. In the second case, we implemented a scale with a very high maximum

velocity but with an accuracy lower than desired. In retrospect since the maximum

velocity of the Heidenhain system is limited by the interpolation electronics and the

DS1103 incremental encoder interface, we should simply have replaced the interpola-

tion electronics with faster electronics and a serial interface.

In the next subsection, we evaluate the detail design of the prototype FTS hard-

ware.

2.3.6 Prototype Assembly

As mentioned earlier, the prototype FTS was tested in two forms, a bench-top version

and the version installed on the diamond turning machine. The primary differences

between the two versions are the diffraction style linear encoder used, the motor

attachment, and the plumbing and electrical connections. The differences between the

sensors was discussed in section 2.3.5. In this section, we will discuss the mechanical

differences between the two prototype versions.

Figure 2-31 shows a side view photo of the bench-top prototype FTS while Fig-

ure 2-32 shows a side view photo of the prototype FTS mounted to the diamond

111



Figure 2-32: Photo of the prototype long stroke fast tool servo mounted to the Moore
Nanotechnologies machine base.

Center of Mass

Motor Fo
Center centr aCentedine of air bearing stage

Figure 2-33: ProE model of bench-top prototype with the motor force center aligned

with the air bearing centerline.

turning machine. There are several obvious differences between the two prototypes.

The first clear difference is the length of the magnet track. In the bench-top proto-

type, the magnet track is 24 inches long allowing for a motor travel of 19 inches. Since

space was not available on the in-feed stage and we only needed a travel of 1.5 inches,

the magnet track was trimmed to 6.5 inches. This is the shortest we could make the

magnet track while not cutting any of the permanent magnets and still allow for 1.4

inches of travel.

The second obvious difference is the vertical and horizontal position of the motor

relative to the air bearing slide has changed. In the bench-top prototype, the magnet

track of the motor sits approximately 0.5" below and 2" behind the the air bearing
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Figure 2-34: ProE model of machine mounted prototype with the motor force center
aligned with the center of mass of the moving FTS components.

stage. In the machine mounted prototype, the magnet track is in the same horizontal

position but is now nearly level with the air bearing stage. In the bench-top prototype,

the motor coils were positioned such that the motor center of force acted in-line with

the air bearing stage centerline (shown in Figure 2-33). In the machine mounted

prototype, the motor force center has been positioned such that it acts through the

center of mass of the moving components (shown in Figure 2-34). In the machine

mounted prototype, the motor coil is mounted much closer (1.25 inches) to the air

bearing slide. This change simply reflects that I was uncertain about the desired coil

location in the bench-top prototype and placed the coils much further away from the

air bearing stage. The coils in the machine mounted prototype have been moved as

close to the air bearing as possible while allowing for 1.5 inches of motion. Drawings

of the key components require to assemble the prototype FTS are in appendix E.

The prototype FTS is mounted to the hydrostatic slide using an adapter plate.

The adapter plate is a 8 x 19.75 x 1.5 inch piece of steel plate with the top and bottom

faces ground for flatness and parallelism. Figure 2-35 shows an isometric view of the

ProE model of the adapter plate. The adapter plate has features which allow for the

attachment of the air bearing slide, the motor magnet track, the motor coolant hoses,

and the motor power cables. The adapter plate also incorporates feature to capture

the coolant oil leaked from the motor. Complete drawings for the adapter plate are

in appendix E

Figure 2-36 shows a ProE model of the complete prototype fast tool servo/hydrostic

stage assembly. Figure 2-37 shows a rear view photo of the fast tool servo mounted to

on the Moore Nanotechnologies machine base. In this design, we have done our best
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Figure 2-35: ProE model of the adapter plate used to mount the prototype FTS to

the hydrostatic slide.

Figure 2-36: ProE model of the prototype fast tool servo mounted to the hydrostatic

stage.

114



Figure 2-37: Rear view photo the prototype linear fast tool servo mounted on the

Moore Nanotechnologies machine base.

to minimize the forces exerted on the moving portion of the fast tool servo. As can be

seen in both Figures, the oil coolant tubing and the electrical connections have been

carefully routed to avoid excessive flexion. The motor power cable is 3 conductor

18 AWG Alpha Wire XTRA*GUARD high flexibility cable in places where high

flexibility is required and 3 conductor 16 AWG Alpha Wire communication cable

elsewhere [4]. For the coolant oil plumbing, half inch TYGON tubing is used in

regions of high flexibility while 3/8" medium pressure SAE hydraulic tubing is used

in low flex regions. The air supply to the air bearing is 1/4" TYGON tubing and

utilizes a quick disconnect from Beswick Engineering [9].

One of the weakness of the prototype FTS/hydrostatic stage assembly as we have

built it is that the overall center of mass of the stage is not vertically aligned with

the center of mass of the FTS. This means that while the hydrostatic stage is able to

isolate the machine base from the FTS actuation forces, the relative motion of the two

centers of mass do introduce a torque into the machine base. To avoid this we designed

but did not implement a structure to raise the center of mass of the FTS/stage

assembly. Figure 2-38 shows a ProE model with a structure designed to shift the
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Figure 2-38: ProE model of the prototype fast tool servo mounted to the hydrostatic

stage with a structure designed to shift the center of mass location.

116



stage center of mass to align with the FTS center of mass. Without this structure,

the center of mass of the stage assembly is 5.6 inches below the center of mass of

the FTS. With the structure the center of mass is 2.9 inches below the FTS center

of mass. There are two reasons we did not build this structure. First by introducing

this structure, we complicate the task of routing all of the FTS connections. Second,

this structure is quite massive (200+ lbs depending on configuration) and brings the

total load mass close to the stage carrying capacity. In the end, we decided the

complications outweighed the benefits.

2.4 Summary

In this chapter, we reviewed the design details of two long stroke FTS. Specifically,

we introduced a rotary fast tool servo concept with improved dynamics. We then

reviewed the detailed design of our linear long stroke FTS with integral balance mass.

In the next chapter, we will review the various control strategies used to control fast

tool servos and related systems.

117



118



Chapter 3

Fast Tool Servo Control

This chapter is intended as general background and motivation for our research into

adaptive feedforward cancellation (AFC) and oscillator amplitude control (OAC)

which is detailed in chapters 4 and 5 respectively. This Chapter is broken into three

parts. In section 3.1, we briefly describe the control requirements for FTS and show a

typical FTS control structure. In section 3.2, we give a brief overview of a repetitive

control implementation using memory loops. In section 3.3, we give a brief overview

of repetitive control using AFC control.

3.1 Fast Tool Servo Control

As mentioned in chapter 1, FTS are used for two purposes:

1. Cancel out repetitive error introduced into a part during the machining process.

2. Machine complex geometries into a workpiece.

In both of these applications the FTS toolpaths are highly correlated with the angular

position of the part. Furthermore, the desired toolpath can be represented as a

summation of sinusoids at integer multiples of the spindle's rotational frequency.

The class of control algorithms most suitable for this application are referred to as

repetitive control systems. Repetitive control systems are based upon the Internal

Model Principle (IMP) [29] where the repetitive controller contains a model of the
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F(s) P(s)

r(s) - C(s) E I Gc(s) GO(s) y(s)

Figure 3-1: Block diagram of a typical fast tool servo control system.

reference or disturbance signal. If the repetitive controller has an exact model of the

signal, the control system will have perfect track following and disturbance rejection.

From a loop shaping perspective, perfect track following requires infinite loop gain

at the tooltrack frequencies. Just as in the case of integral and derivative control,

if improperly implemented repetitive control will destabilize the overall control loop.

To ensure a stable controller implementation, FTS control systems usually employ

multiple control loops. In general, FTS control systems consist of a conventional

(PID, Lead-Lag, Pole-zero placement, etc.) inner loop which results in a well defined

plant and a repetitive control outer loop. Most repetitive controllers have infinite

gain at the harmonics of the spindle frequency and finite gain elsewhere. Since the

repetitive controllers typically have a large phase shift between each of the spindle

harmonics, the finite gain of the repetitive controller is intentionally low to ensure

stability. Thus in a system with repetitive control only, the tracking error is very

small at the spindle harmonics but quite large everywhere else. To improve general

tracking performance, most FTS control systems incorporate a feedforward channel.

Figure 3-1 show a block diagram of a typical FTS control system. The block

diagram elements are

r(s) = the reference input.

y(s) = the plant output.

Gp(s) = the plant transfer function.

Gc(s) = a conventional controller (PID, Lead-Lag, etc.).

C(s) = an adaptive controller.
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F(s) = a feedforward filter.

P(s) = the transfer function of the conventionally controlled

inner-loop.

The adaptive controller C(s) can either be a sliding mode controller or a repetitive

controller. The inclusion of the feedforward filter F(s) is meant to improve the

general system tracking response. F(s) can have several different forms. In the most

common implementation F(s) = 1 and thus acts as a feed-through channel. This

implementation is very robust since the general system response will be that of the

conventionally controlled inner-loop with the additional control authority from the

adaptive controller C(s). In other systems F(s) is used as a feedforward filter. In

theory if

F(s) = P-'(s) (3.1)

this control system would have perfect trajectory tracking at all frequencies. The

main difficulty with this approach is systems with non-minimum phase zeros in the

plant P(s). When P(s) is inverted, these non-minimum phase zeros become unstable.

In addition, completely inverting the plant may result in a non-causal system. The

most common approach to implementing a feedforward controller is the Zero Phase

Error Tracking Controller (ZPETC) introduced by Prof. Masayoshi Tamizuka in

[91]. The ZPETC algorithm operates by cancelling the cancellable poles and zeros,

and adjusting for the phase of the non-cancellable zeros. The ZPETC method of

feedforward control was applied to a hydraulic FTS by Tsu-Chin Tsau [95] and to

a piezoelectric FTS by Marc Crudele [20]. An alternate feedforward approach is to

take advantage of the fact that the FTS trajectory is a summation the sinusoids at

integer harmonics of the spindle frequency. In this case, we can directly produce a

feedforward signal

n
r*(t) = IP(j'wi)lj'[Aicos(wit -ZP(jwi)) +Bisin(wit- LP(jwi))] (3.2)

1
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where Ai and Bi are the magnitude of cos(wit) and sin(wit) in r(t). This method is

termed Command Pre-shifting and has been successfully employed on the LODTM

at Lawrence Livermore National Laboratory [80] and on Stephen Ludwick's rotary

FTS [541. We use the Command Pre-shifting method of Feedforward control.

As mentioned earlier, the adaptive controller C(s) is either a sliding mode con-

troller or a repetitive controller. Sliding mode control combines a feedback controller,

with both a feedforward controller and a disturbance observer to form a controller

which adaptively minimizes the tracking error. To learn more about applying sliding

mode control to FTS refer to [36 and [102].

In the case where C(s) is a repetitive controller, C(s) may be implemented in

two fashions. In the case of controllers where the trajectory is predetermined and

repeatedly supplied (robotic assemblers for example), repetitive control is run in a

semi-open loop fashion known as iterative learning control. For more information

on iterative learning control and it's similarities to closed-loop repetitive control see

Richard Longman's paper on the subject [49]. For closed-loop repetitive controllers,

there are two common implementations:

1. Memory-Loop repetitive control.

2. Adaptive Feedforward Cancellation (AFC).

In section 3.2, we briefly review memory loop repetitive control. In section 3.3, we

review the background behind AFC control and show some related control structures.

3.2 Memory-Loop Repetitive Control

Figure 3-2 shows a block diagram of a continuous-time repetitive controller C(s)

implemented using a memory-loop. This system has a transfer function of

1
C(s) = 1 (3.3)

1- e-sT
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E(s) : I

e-sTp

U(s)

6. .... M ... . I

c(s)

Figure 3-2: Block diagram of a continuous time repetitive controller using memory

loops.
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Figure 3-3: Frequency response plot for a continuous time repetitive controller as

expressed in (3.3).
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E(s) Q(s) L(s) U(s)

e-sTp

C(s)

Figure 3-4: Block diagram of a continuous time repetitive controller using memory
loops.

where Tp is the period of the frequency we wish to cancel. This transfer function

results in complex pole pairs on the imaginary axis when s = jwi where

27ri
wi = T; i = 0, i1, i2, ... , t00. (3.4)

Thus this transfer function has infinite gain at all integer harmonics of the funda-

mental frequency w. Figure 3-3 shows the frequency response plot for a repetitive

controller of the form (3.3) with T, = 0.01 s. As we can see, this controller results

in a series of infinitely high peaks at integer harmonics of the 100 Hz fundamental.

Looking at the phase portion of Figure 3-3, we see that each peak has an associated

phase drop of -180'. Since the plant we are applying repetitive control to has an

associated phase and magnitude shift, applying a controller of the form (3.3) results

in closed-loop stability issues.

Figure 3-4 shows a block of a continuous-time repetitive controller C(S) imple-

mented using a memory-loop and two filters Q(s) and L(s) [88]. Q(s) limits the

working frequencies of the repetitive controller while L(s) compensates for the phase

shift from Q(s). The transfer function of this modified structure is now

L(s)Q(s)
1 - Q(s)e-Tp(

Figure 3-5 shows the frequency response of this modified structure with T, = 0.01
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Figure 3-5: Frequency response plot for a continuous time repetitive controller as
expressed in (3.5) with Q(s) and L(s) from equations (3.6) and (3.7).

and

W2
Q(s) = Wf (.6f22wsw (3.6)Q (S) s2+2(LLgfs + U)

s 2 + 2(wf s + W2
L(s) = 2(3.7)

f

where wf = 10007r and ( = 0.7. As we can see, the introduction of the two filters

has attenuated both the magnitude and the phase shift of the higher harmonics of

memory-loop. For more detail on the selection of Q(s) and L(s) please see [92] and

[39].

A more common approach to implementing memory-loop repetitive control is

to implement the memory-loop digitally. Figure 3-6 shows the block diagram of a

discrete-time repetitive controller using memory-loops. The transfer funption for this
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E(z) Q(z) L(z) U(z)

C(z)

Figure 3-6: Block diagram of a discrete-time repetitive controller using memory loops.

discrete-time implementation is

C L(z)Q(z)
1 - Q(z)z-(

where n is the nearest integer value of

n = --- (3.9)
TS

where T is the period of the frequency we wish to cancel and T, is the sample time.

Controllers of this form have been successfully implemented on FTS by Tsao [95],

Rasmussen [74], and Crudele [20]. More generally memory-loop repetitive controllers

have been used to cancel periodic disturbances in disk drives [78] and robotic manip-

ulators [58]. For a more comprehensive list of applications see [54].

The great advantage of memory-loop repetitive controllers is that they are com-

putationally very efficient. A single memory-loop will cancel all harmonics of the

fundamental frequency. There are two disadvantages to the memory-loop approach.

The first disadvantage is that continuous-time memory-loop repetitive controllers

contain all harmonics of the fundamental out to infinity (discrete-time memory-loop

repetitive controllers contain all harmonics to the Nyquist frequency). To ensure sta-

bility, we need to introduce a low-pass filter to eliminate the higher harmonics. This

low-pass filter attenuates the magnitude of both the low and intermediate frequency

peaks. Thus a while a memory-loop controller may perfectly cancel the fundamen-

tal frequency, it's performance degrades at the intermediate frequencies. The second
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COS((Ont)

a(t) x dt
d(t)

U (t)s +yt

b(t) Ix

sin(Ont)

Figure 3-7: Block diagram of an AFC system with zero error.

disadvantage is that memory-loop controllers are not robust to perturbations in the

frequency of the disturbance. For example, if we design a memory-loop controller to

cancel disturbances at 60 Hz but the actual part spins at 58 Hz, the memory-loop

has no mechanism to incorporate this shift. In [88], Maarten Steinbuch proposes a

memory-loop repetitive controller which is more robust to changes in frequency.

An alternative approach to forming repetitive controller is to use adaptive feedfor-

ward cancellation. Each AFC resonator has the advantage of cancelling only a single

frequency and when applied in the canonical form can be driven by the measured

spindle speed making the control response more robust to variations in the spindle

speed. The disadvantage of the AFC structure is that it is much more computa-

tionally intensive. In the next section, we present a brief look at AFC control. In

chapter 4, we present a more detailed analysis of AFC control from a loop shaping

perspective.

3.3 AFC Repetitive Control

Adaptive feedforward cancellation is a control strategy based upon the Internal Model

Principle (IMP) [29]. The IMP essentially states that for a controller to exactly cancel
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cos(Cont)

I

x -x

e(t) u(t)

1b(t)
x x

sin(ont)

Figure 3-8: Block diagram of an AFC controller as proposed by Bodson et.al.

a disturbance it must contain a model of the disturbance signal. For control systems

designed to reject sinusoidal disturbances of the form

d(t) = a, cos(wat) + b, sin(wat), (3.10)

the controller must be able to adaptively estimate and reproduce the magnitude and

phase of the disturbance. Figure 3-7 shows a block diagram of an AFC controller

with zero tracking error. For this system to have no error the magnitude estimates &

and b must equal the magnitude of the disturbance input:

e =a, (3.11)

b = b,. (3.12)

To form the magnitude and phase estimates, an AFC controller uses modulation

with a pair of sinusoids to detect for error components at the resonant frequency.

The detected error is then filtered to form the magnitude estimates.

Figure 3-8 shows the block diagram of the earliest form of AFC control proposed

by Bodson et.al. [11]. In this form, the AFC controller uses the same sinusoid to

both detect the err component at w, and generate the cancellation signal u(t). The

magnitude of the error component is estimated by integrating the error component at
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cos((ont)

X L(s) 
X

e(t) u(t)

b(t)
X L(s) X

sin((ont)

Figure 3-9: A more general block diagram for a LTI adaptive feedforward system.

Wn. As we will discuss in more detail in chapter 4, this structure has an LTI equivalent

form of

C(s) = g2 . (3.13)

Thus this form of AFC control places a zero at the origin and a pair of poles on the

imaginary axis at ±jWn. For frequencies below w,, the controller introduces a 90'

phase shift. At Wn, the phase instantly drops 1800 to -90'. Thus this form of AFC

control may be stably applied only to systems with a phase 1<1 < 900. There are

several methods of extending AFC control to more general systems.

Figure 3-9 shows a more general block diagram of an adaptive feedforward system.

In this case, the integrators have been replaced with transfer function L(s). For

adaptive feedforward systems, L(s) is typically a low pass filter. Using a low pass

filter of the form

1
L(S) =(3.14)

S + o

results in this structure having an LTI equivalent of

C(s) gn(s + a-) . (3.15)
s2 + 2o-s + (Wn+ .2

129



COS((Ont+$n) COS(COnt)

x -L X
s bi(t)

e(t) u(t)

1b(t)

sin(COnt+On) sin((Ont)

Figure 3-10: Block diagram of an AFC system with phase shift.

As we can see, this system offers enhanced stability by moving the system poles off

of the imaginary axis, thus smoothing the phase transition, but this is at the expense

of perfect error tracking. As we can see in equation (3.15), the resonant frequency

of the adaptive system is no longer w,,, thus this oscillator cannot perfectly cancel

disturbances at w,. For more information on adaptive feedforward systems with low-

pass filters see [8].

Figure 3-10 shows a block diagram of an AFC system where the stability is en-

hanced using a phase shift parameter 0#,. As will be shown in chapter 4, this block

diagram has the LTI equivalent of

C(s) = g.(s cos 0, + w, sin (3.16)

This system still places the pole pair on the imaginary axis, but offers enhanced

stability by allowing the designer to place the system zero anywhere along the real

axis. The development of this structure is detailed by Messner and Bodson in [57].

In the next chapter, we will present a loop shaping perspective for selecting gn and

0,,. This structure has the advantage of enhanced stability but has the disadvantage

of requiring the generation of four sinusoids. An equivalent structure titled Higher

Harmonic Control (HHC) was concurrently developed lowers the number of required

sinusoids to two.
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cos(ont)

z(t) -- - u(t)

x A x

sin(ont)

Figure 3-11: Block diagram of a continuous-time Higher Harmonic Controller. Figure
adapted from Hall and Wereley [37].

Higher Harmonic Control was developed to cancel vibrations in helicopters due to

variations in the rotor blade loads. It was first developed by McHugh and Shaw [56]

and Shaw and Albion [81] as a discrete-time algorithm. Figure 3-11 shows a block

diagram of a continuous-time HHC controller as developed by Hall and Wereley [37].

In this controller the phase of the controller is determined by the rotation matrix T.

For higher harmonic control T is given by

T = Tcc TC4  (3.17)
Tse Ts

where

T = TI, = Re[G(jw,)] (3.18)

T = -T,, = Im[G(jow)] (3.19)

and G(s) is the transfer function of the system to be controlled. This structure is

equivalent to within a gain factor of that shown in Figure 3-10 if the AFC phase

advance is set as #, = LP(jw,), where P(jw,) is the transfer function of system to

be controlled by the AFC resonator.

Figure 3-12 shows a block diagram of an Automatic Vibration Rejection algorithm
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cos(Ont)

z(t) M u(t)

X X

sin(ont)

Figure 3-12: Automatic Vibration Rejection algorithm in an AFC equivalent form.
Figure adapted from [15].

in an AFC equivalent form (Figure adapted from [15]). Automatic Vibration Rejec-

tion (AVR) is a self-tuning disturbance rejection system for use on magnetic bearings.

This structure has been used widely in magnetic bearings, and was recently patented

by Tamisier et al [89]. In this control structure, Tamisier et al have employed the gen-

eral form for adaptive feedforward controller where the integrator has been replaced

by a general purpose low-pass filter. Just as in the HHC structure, the phase of the

control structure is determined by a rotation matrix M. For AVR the rotation matrix

is defined as

M cos -sin 1 (3.20)
sinO cosP

where

'= ZS(jw) (3.21)

and

1S(s) =(3.22)
1 + Gc(s)G,(s)

where Gc(s) is a conventional controller and Gp(s) is the transfer function of the

132



magnetic bearing. As we can see if the an integrator is used as the low-pass filter,

this control system is identical to the control structure we use on our FTS. Tamisier

et al have also developed a perspective on AVR control which is quite similar to the

oscillator amplitude control perspective we detail in chapter 5.

3.4 Summary

In this chapter, we have presented our FTS control structure. Our FTS controller

consists of a feedforward outer loop, a conventional inner-loop, and a multiple res-

onator AFC controller. This chapter contained a brief description of the feedforward

controller and an introduction of AFC control. In chapter 4, we provide a detailed

analysis of AFC control from our loop shaping perspective. The development of the

conventional inner loop is presented in chapter 6.
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Chapter 4

Adaptive Feedforward Cancellation

In this chapter, we examine in detail a type of repetitive control called Adaptive

Feedforward Cancellation (AFC). One of the advantages AFC control has over the

techniques described in the previous chapter is that each AFC resonator (the core

element of an AFC controller) acts at only a single frequency. This means that the

controller can drive the system error to zero at selected frequencies with robust sta-

bility properties. Sections 5.1 through 5.4 detail how to tune AFC controllers from a

loop shaping perspective. The work presented here is an expanded version of the pre-

sentation [12]. In Section 5.5, we introduce an extension of conventional AFC control

which we term Amplitude Modulated Adaptive Feedforward Cancellation (AMAFC).

AMAFC is intended to reduce errors in trajectories where the commanded amplitudes

vary as a function of time.

4.1 Adaptive Feedforward Cancellation

Adaptive feedforward cancellation (AFC) algorithms form a special class of repetitive

control. Unlike memory loop repetitive controllers, equations (3.5) and (3.8), they

allow the designer to place controller poles at a specific frequency, resulting in an

infinite gain at the desired frequency, thus allowing perfect steady-state tracking and

disturbance rejection at the resonator frequency. Figure 4-1 shows the continuous time

structure of the AFC algorithm used in this research. This form of AFC control first
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cos (oat + O) cos Cot

x~t) g X f(T)dT a(t) X
integrator

f(T) dr b(t t

integrator

sin (ont + $n) sin wnt

Figure 4-1: Resonator structure which forms the core of the AFC controller.

appeared explicitly in the literature [57], while an equivalent structure called Higher

Harmonic Control using a rotation matrix to implement #n was presented earlier in

[37]. It has been shown in [54, 11] that the control structure in Fig. 4-1 with the

phase advance parameter On set to zero is equivalent to a linear time-invariant (LTI)

system of the form

Y(s) _sY S Cn(s) = gn , (4.1)
X(s) s2 + Wn

where the gain gn is a constant to be determined by the user. This system consists

of a complex conjugate pair of pole on the imaginary axis at s = tjWn and a single

zero at the origin. It has been shown in [57], [37], [12] that with the phase advance

parameter included the system is equivalent to

I C n(S) = gno k b P -, (4.2)
X~s) 2 + W2

where both the gain gn and the phase advance parameter #n are to be selected by the

user. The system represented by (4.2) also has a complex pole pair on the imaginary

axis at s = ±jWn but allows the designer to place the zero on the real axis at

s = -n .io (4.3)
COS On
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In principle, the steady state output of (4.1) and (4.2) are equivalent but in practice

(4.2) is superior because it offers enhanced stability robustness. The LTI forms in (4.1)

and (4.2) are important results because they allow the designer to use classic control

techniques (Root Locus plots, Bode plots, Nyquist diagrams, etc.) to determine the

closed-loop stability of the system.

In the following subsections, I detail three methods for showing the equivalence

between the AFC structure in 4-1 and (4.2)

4.1.1 AFC Equivalence - Time domain approach

In this approach, we base our argument almost completely in the time domain, waiting

until the final step to take the Laplace transform. We first published this in [12].

Examining Figure 4-1, the signals entering the integrator blocks are

d(t) = g"X(t) cos(Wot + 4),

b(t) = gnx(t) sin(wnt + ). (4.4)

Assuming the system is at rest when t = 0, integrating these signals with respect to

time t yields

a(t) = jgX(r) cos(WnT + On) d-,

b(t) = gnx(r) sin(WnT + On) dr. (4.5)

The output y(t) is the sum of these signals, a(t) and b(t), as modulated by sinusoids:

y(t) = coswntf gnX(T)cos(wnT+On) dT

+ sin wot f gnX(r) sin(wr + On) dT. (4.6)

Bringing the sinusoids into the integrals and combining the terms yields

y(t) = j gnX(T) [cos(wnrT + On) cos Lnt
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+ sin(wrT + On) sin Wot] dr. (4.7)

The term in brackets is the trigonometric identity for the cosine of a difference; and

thus

y(t) = j gnx(T) cos(w,[t - r] - #n) d-r. (4.8)

This integral has the form of a convolution, namely

y(t) = X(t) * gn cos(wnt - #n)

= x(t) * g,[cos(wnt) cos(#n) + sin(wnt) sin(#n)] (4.9)

The analysis is completed by taking the Laplace transform of both sides, noting

that the convolution of the time signals corresponds to multiplication of the Laplace

transforms. Thus,

Y(s) = X(s) g S COS On + con sin On (4.10)
s2

which gives the form of equation (4.2). This same proof is presented in [8] for more

general systems, where arbitrary transfer functions replace the integrator blocks.

4.1.2 AFC equivalence - Laplace Shifting Method

The following is an extension of the analyses performed in [54, 11] which do not

include the phase advance parameter On. This approach depends upon the shifting

property of Laplace transforms

{f(t)} = F'(s)

C{f(t)esot } = F(s - so), (4.11)

and the Euler definitions of sin and cos,

cos(wnt + O4) = 2 eW"nt + 2ejWt
2 2

sin(wnt + 2) = ei wnt - e-jW"t (4.12)
2j j2
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Eqs. (4.11) and (4.12) together imply that

- F(s - jw) + 2 F(s + jw)
2 2L{f(t) cos(wot + #.)}

C f f(t) sin (wt + #2-)} =- . F(s
2j

- jwn) - . F(s + jw,)

From Fig. 4-1, it can be seen that the coefficients d(t) and b(t) which are the signals

entering the integrators can be expressed as

d(t) = g"X(t) cos(Wot + )

b(t) = gnx(t) sin(wt + 0n). (4.14)

Taking the Laplace transforms of these as given by (4.13), and accounting for in the

integration with an additional factor of s, yields

s) gne X(s - jWn) gne-ij' X(s + jWn)

2 s 2 s

Bs nei"ll X(s - ijn) gne-jon X(s + jWn)
2j s 2j s

The output y(t) can be expressed as

y(t) = a(t) cos(ont) + b(t) sin(wLt)

and therefore, the Laplace transform is

Y(S)
_ A(s- jWn) A(s + jWn) B(s - jWn)

2 2 2j

B(s + jwn)
2j

(4.15)

(4.16)

(4.17)

Now, by substituting in for the Laplace transforms of the coefficients a(t) and b(t)

from Eq. (4.13), we arrive at

Y(s) gn e"n X(s - 2jwn) g X(s)
4 S jWn +48+ n
4 -j )+ 4 s+jwn)

gne-itJ" X (s) gos4 X (s +1 2jwn)
4 s-jwn 4 S+jWn
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gnejO" X(s - 2jw,) geJ*k X(s)
4 s -jW. 4 S + jWn

gne~5O" X(s) gue-j" X(s + 2jWn) (4.18)
4 s-jwn 4 S+jWn

which can be simplified to

Y(s) gnX(S) [ji. + -J . (4.19)
2 IS+ jWn S - jon.

Bringing the terms in the sum into a common denominator, we have

gnX(s) [e'n(s - jWn) + e-ijn(s + jWn)] (4.20)
2(s + jWn)(S - jWn)

This can be rearranged to be

9nX(s) ejo* + e~5o" ejd" - e-jdn
Y(s) = 2 + s + n . , (4.21)s [ o2 2j .'

and therefore

Y(s) S cos #n + on sin On
X(s) - s2 +wl '

which is the same result as (4.2) and (4.10).

4.1.3 AFC equivalence - Differential Equation Method

This method is similar to the time domain approach in that we wait until the final step

to employ the Laplace transform, but in this analysis we prove the equivalence using

a linear constant-coefficient differential equation. Again from Fig. 4-1, we observe

that

(t) = gnx(t) cos(ont + On)

b(t) = gnx(t) sin(wnt + #n) (4.23)
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and

y(t) = a(t) cos wnt + b(t) sin wnt.

Differentiating Eq. (4.24) with respect to time t yields

y(t) = i(t) cos wn + b(t) sin wnt - wna(t) sin wnt + wnb(t) cos wnt,

which, when combined with Eq. (4.23) becomes

y(t) = g'x(t)[cos(Wot + on) cos W7 t + sin(wPt + On) sin wnt]

-Wn[a(t) sin wt - b(t) cos wnt].

(4.24)

(4.25)

(4.26)

By trigonometric identity, this reduces to

= gnx(t) cos(Wnt - wnt + On) - Wn[a(t) sin nt - b(t) cos Wnt), (4.27)

or more simply

y) = gnX(t) cos On - Wn[a(t) sin Wnt - b(t) cos Wnt].

This equation can then be differentiated in time t, to yield

f(t) = g.(t) cos On+ Wn[b(t) cos Wnt - a(t) sin wnt]

-W[a(t) cos wt + b(t) sin Wnt.

(4.28)

(4.29)

Substituting in Eq. (4.23), we have

V0() = gaX(t) cos # + gnwnX(t)[cosWntsin(Wnt + #n) - sin wnt cos(Wnt + On)]

-wn[a(t) cos Wnt + b(t) sin wnt]. (4.30)
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Figure 4-2: Discrete Time AFC structure

The terms in the center brackets can be transformed by trigonometric identity, while

the terms in the right brackets are simply y(t) as given in Eq. (4.24). Thus,

W(t) = ga±(t) cos 0. + gnwnx(t) sin(wt - wnt + 0,) - wy(t). (4.31)

Separating variables, we have

0(t) + wy(t) = gn(b(t) cos #n + x(t)wn sin #5). (4.32)

Taking the Laplace transform of both sides (assuming zero initial conditions) yields

Y(s)(s 2 + WI) = gn(scos On wsin #)X(s), (4.33)

or

Y(s) s cos #n +w sin d,
X(s) s2 + W2 4.4)

which is identical to the earlier results. A similar analysis is given in [57].

4.1.4 Discrete Time AFC implementation

In general, AFC control is implemented in discrete time. Figure 4-2 shows one dis-

crete time implementation of AFC control. This structure is nearly identical to the
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continuous time structure shown in Figure 4-1 except that we have replaced the con-

tinuous sinusoids with a discrete sinusoid and the integrators with summers. For the

purpose of controller design, we would like to find the LTI system equivalent for this

structure. In this section, we present a time domain approach to finding the equiva-

lent structure taking the Z-transform of the signals as a final step. This parallels the

earlier continuous time presentation.

In this section, we use the dot notation informally, in that it represents a discrete-

time equivalent of differentiation. Also, we have elected not to include the sample time

T as a part of the discrete time integration. This means that the appropriate value

of g changes with sample rate. This issue is addressed in more detail in chapter 6.

To start with, we note that the signals entering the summers are

r[n] = g j[n] cos (wTn + 4) (4.35)

b[n] = gx[n] sin (wTn+). (4.36)

This means that the signals exiting the summers are

n
a[n] g 1: x[k] cos(wTk + 9) (4.37)

k=O
n

b[n] = g x[k] sin(wTk + 9). (4.38)
k=O

The summer outputs are then modulated by cos(wTn) and sin(wTn) to form

Ua[n] =g cos(wTr) >3x[k] cos(wTk + 9) (4.39)
k=O

Ub[n] = gsin(wTn) 3x[k]sin(wTk+$). (4.40)
k=O

Moving the modulation signals into the summation yields

n

Ua[n] = g x[k] cos(wTk + 9) cos(wTn) (4.41)
k=O
n

UbHn = g >3 x[k] sin(wTk + 9$) sin(wTri). (4.42)
k=O
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The controller output y[n] is formed by adding Ua[n] and Ub[n] together to form

y[n] = g E x[k] (cos(wTk + #) cos(wTn) + sin(wTk + q) sin(wTn)).
k=O

Using the following trigonometric identity

cos(wT(k - n) + #) = cos(wTk + #) cos(wTn)

+ sin(wTk + #) sin(wTn),

we can manipulate y[n] such that

y[n] = gjEx[kcos(wT(k- n)±+).
k=O

Manipulating y[n] further using

cos(wT(k - n) + #) = cos(wT(k - n)) cos # - sin(wT(k - n)) sin #,

results in

y [n] =g Zx[k] (cos(wuT(k - n)) cos - sin(wT(k - n)) sin q).
k=O

(4.47)

Since cos # and sin # are not functions of k, we can move them out of the summation

so that

n2 n

y[n] = cos q0 1: x[k] cos(wT(k - in)) - sin q$ 1 x[k] sin(wT(k - n)).
P-0 Ak=O

(4.48)

It can be noted that the summations are the discrete-time convolution sums [70]

E x[k] cos(wT(k - n))
k=O

1:x[k] sin(wT(k -- n))
k=O

= x[n] * cos(wTn)

= x [n] * sin(wTn),
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resulting in

y[n] = g cos # (x[n] * cos(wTn)) - sin #(x[n] * sin(wTn)). (4.51)

Since convolution in the time domain is the equivalent to multiplication in the fre-

quency domain, we can take the Z-transform of y[n] to find Y(z),

Y(z) = g cos OX(z)Z{cos(wTn)} - sin #X(z)Z{sin(wTn)}. (4.52)

Manipulating this function into transfer function notation yields

Y(z)
X(z)

- g cos 4Z{cos(wTn)} - sin #Z{sin(wTn)}. (4.53)

Substituting in for the Z-transforms, and assuming zero initial conditions yields

Z{cos(wTn)}

Z{sin(wTn)}

z(z - cos(wT))

Z2- 2 cos(wT)z + 1
z sin(wT)

Z2- 2 cos(wT)z + 1

which results in

Y(z)
X(z)

Z2 cos # - z(cos(wT) cos 0 - sin(wT) sin #)

Sz2 - 2 cos(wT)z + 1

Z2 cos 0 - z(cos(wT + 0))

Z2 - 2 cos(wT)z + 1

(4.56)

(4.57)

Weerasooriya found a very similar LTI equivalent in [101] but did not include the

phase advance parameter 0. This LTI equivalent differs significantly from that pre-

sented in [54] which is

Cj(z) = giT
cos(wT)z - 1

(4.58)
Z2 cos # - z(cos(wT + 0))
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and the phase adjusted form

U(z-') z-'[cos(wT - #) - z- 1 cos(o)] (459)
Y(z-1) 1 - 2 cos(wT)z- 1 + z-2

from [57]. Clearly these forms are not equivalent. The difference arises due to differing

definitions of the summation opperation. Ludwick and Messner have based their

summations on a forward difference approximation to integration

y[n + 1] = x[n + 1+ y[n] (4.60)

1(Z) = . (4.61)
X z -1

While Weerasooriya and I use a backwards difference:

y[n] = x[n] + y[n - 1] (4.62)

-(z) = . (4.63)
X z -1

The resulting transfer functions are equivalent at frequencies near W, roughly equal

for frequencies below w, and vary greatly at higher frequencies. In general, control

systems designers try to limit the highest frequency they try to manipulate to 1/10

the sampling frequency and at low, relative to the sample rate, frequencies there is

no real advantage to either approach or difference between the approaches.

In this section, we have derived a discrete-time transfer function , Eq. (4.57), which

is analogous to the continuous time transfer function (4.2). In the next section, we

detail a loop shaping perspective to selecting resonator phase (#) and gain (g) which

is applicable to both the discrete and continuous time representation.
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4.2 Adaptive Feedforward Cancellation from a loop

shaping perspective

In this section, we develop a loop shaping perspective to tuning AFC controllers. In

subsection 4.2.1, we detail the impact of #, on the loop shape of a system utilizing

AFC control and how to select the value of #, which results in the maximum loop

phase margin. In subsection 4.2.2, we evaluate the impact of g" on the performance

of AFC systems. Lastly, we present our method of selecting #, and g" for robust

controller stability in subsection 4.2.3.

Experimental results applying our tuning method to the rotary fast tool servo

for accurate trajectory following are presented in subsection 4.2.4 Additionally, ex-

perimental results for our prototype linear FTS are presented in section 7.1. Lastly,

experimental results are presented in section 7.3 utilizing our tuning method for ma-

chine base acceleration attenuation (section 6.3 details how we adapted AFC control

for this purpose).

4.2.1 Phase Advance Parameter 05,

To properly tune a parallel array of AFC resonators, we first need to understand the

effects of the phase advance parameter 0, on the transfer function (4.2). We start by

examining the effect 0,, has on the pole-zero plot and frequency response for a single

resonator. Next, we examine the effect of 05, on the pole-zero plot and frequency

response of multi-resonator systems with two, three, and ten resonators, respectively.

Observations from these systems iead to generai tuning ruies for systems with any

number of parallel AFC resonators.

As noted earlier, a single AFC resonator (4.2) has a single real axis zero and

a complex conjugate pair of poles. The position of the zero along the real axis

is determined by the values of both w, and #,. In the design process, w, is first

chosen to match a desired error-nulling frequency. After selecting the desired W, the

resonator zero may be placed anywhere along the real axis by selecting 05,. Figure
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Figure 4-3: Pole-Zero map of single resonator with -7r/2 < 0, < 7r/2. Corresponding

frequency responses are shown in Figure 4-4 for -7r/2 < # < 0 and Figure 4-5 for

0 < #, < 7r/2.

4-3 illustrates the possible zero locations as #, is varied between -7r/2 and 7r/2 with

w, = 207r. The resonator zero is on the positive real axis when -7r/2 < 0" < 0,

and on the negative real axis when 0 < #0, < 7r/2. Since sin and cos are periodic,

the zero location simply wraps along the real axis for phase angles outside the range

-7/2 < 0, < r/2 with attendant alterations in the sign of the transfer function.

As can be seen in Figures 4-4 and 4-5, the location of the real axis zero affects

the frequency response of an AFC resonator in several ways. First, the zero location

affects the magnitude curve above and below the resonant peak. These effects are only

of secondary importance, as we primarily care about the magnitude near the resonant

peak at w,; here the magnitude is largely unaffected by #,,. This independence can be

seen by taking the magnitude of (4.2) for frequencies near w, i.e., for s = jW"(1 + c)

where jej < 1. This yields

jW(1 + E) cos #n + Wn sin #n
IC(jin(1 + ))j = gn - (1+ E)2W

148



20-

$=0

C/)2
-0

n/

Frequency (rad/sec)

Figure 4-4: Bode plot showing the effect of a negative phase advance parameter en
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Figure 4-5: Bode plot showing the effect of a positive phase advance parameter #n
on resonator shape. The resonance is centered on 62.8 rad/s (10 Hz).
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Wn (1 + 2E + E2 ) cos 2 On + sin 2 On
gn .(2cE2) (4.64)

2W(

Dropping terms in E2 and higher simplifies this expression to

wnV(1 + 2c) cos 2 On + sin 2 On
I C(jon (1 + C))| ~ . 2W21C|

wa g y/l1 + 2c cos2 q5a
2w~I (4.65)

Employing the approximation V1 +A ~ 1 + A/2 where IA < 1, results in

1 IE Cos 2 OnIC(jWn(l+ E))I gn + .

1 cos2 On
Sgn + sgn(f) co' (4.66)

Since JEl < 1 the first term dominates, and this simplifies to

IC(jWn(1+ E)) ~ " (4.67)
2wnllE(

This demonstrates that in the vicinity of the resonant peak, the magnitude is not

significantly affected by the choice of On.

More importantly for design, the location of the real axis zero affects the phase

response of the resonator. If the real axis zero is placed in the right half plane

(-7r/2 < On < 0), Figure 4-4, the resonator phase starts at 7r for w = 0 and then it

decreases to 7r/2 - On as w approaches wn from below. At wn, the phase drops by

7r to a value of -On - 7r/2, and then asymptotically approaches -7/2 as W -+ 00.

Similarly if the real axis zero is placed in the left half plane (7r/2 > On > 0), Figure

4-5, the resonator phase starts at 0 for w = 0 and then increases to ir/2 - On as w

approaches Wn from below. At w = wn the phase drops by 7r to -On - 7r/2, and then

asymptotically approaches -7r/2 as w -+ oo .

The key feature to note in Figures 4-4 and 4-5 is that the resonator phase discon-
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tinuity of -7r radians at w = w, is always centered on -On for all -7r/2 < #n < 7r/2.

This can be seen mathematically by looking at the phase of the numerator and de-

nominator of (4.2). The phase of the numerator at s = jwo can be determined as

follows:

N(jw,) JWn cos On + wn sin On = jwn(cos On - j sin On)

= . ne n = - =wnej(/2-.), (4.68)

and thus

7rLN(jw,) = - _ on (4.69)
2

Since the phase of the denominator is discontinuous at s = jwn, it is helpful to define

a term /b(jWn) which is the average angle of the denominator in (4.2) as w passes

through wn. That is

ZD(jwn) = 0

ZD(jw') = r (4.70)

where w- is just below wn and w+ is just above on. With this notation, the average

angle of the denominator is

(ZD(jw-) + LD(jw+)) 7r
ZD(jon) = " - -. * (4.71)

2 2

Combining equations (4.69) and (4.71), we define the average angle of the resonator

at s = jWn as /O(jWn), where

7r 7r
ZO(jWn) = ZN(jWn) - ZD(jWn) = - - On - - = -O. (4.72)

2 2

This is the key result which demonstrates the utility of the form 4.2. In this form, the
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Figure 4-6: Pole-zero plot for two resonators C1(s) and C 2(s) taken in isolation with

01 = 0 and #2 = -450.

average resonator phase at the resonant frequency is directly set by 0". Said another

way, the choice of 0, allows us to set the center of the -7r phase discontinuity to a

desired value, and thereby to maximize the AFC loop phase margin at each resonant

peak in a fashion decoupled from the choice of resonator gain g".

Analysis becomes more complicated when multiple resonators are employed. First,

the pole-zero plot of a multiple resonator system does not provide much design insight

since it is not obvious how changing the zero location of a single resonator in a

parallel array will affect the zero locations of the combined system. This point can

be understood in the context of a two resonator system as follows. Figure 4-6 shows

the pole-zero plot for two resonators taken in isolation with #1 = 0 and 02 = -45'.

The first resonator has a complex conjugate pair of poles at ±10j sec 1 and a real

axis zero at the origin. The second resonator has a complex conjugate pair of poles

at ± 2 0j sec' and a real axis zero at 20 sec-1. Figure 4-7 shows the pole-zero plot for

the same two resonators in parallel, C(s) = C1 (s) + C2 (s). In the parallel system, the

controller poles are in the same location but the system now has a complex conjugate

pair of zeros as well as a real axis zero. This is not surprising, since when systems
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Figure 4-7: Pole-zero plot for two resonator blocks taken in parallel C(s) = Ci(s) +
C2(s) with #1 = 0 and #2 = -45'.

are additively combined, zero locations are not preserved.

Figure 4-8 shows a pole-zero plot for three resonators taken in isolation, where

01 = 02 = 0 and #3 = -450. Figure 4-9 shows the pole-zero plot for the same three

resonators in parallel, C(s) = Ci(s) + C2(s) + C3(s). Once again, the poles remain

in the same location, but the real axis zeros have been transformed into two pairs of

complex conjugates and a single real axis zero.

Figure 4-10 shows the pole zero plot for the ten resonator controller developed later

in the section (o, g,, and w, listed in Table A.2). These diagrams clearly illustrate

the difficulty in adjusting the phase advance of an individual resonator from the pole-

zero plot of a multiple resonator system. We find however that a frequency domain

perspective does allow a rational design process, and the direct tuning of individual

resonator parameters as described below.

The frequency response of a multiple resonator system yields more design insight

than the pole-zero plot. In a system with N resonators added in parallel, the frequency

response contains N resonant peaks, N - 1 local minima between the resonant peaks,

and N phase discontinuities of -7r radians associated with the resonances. From
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Figure 4-8: Pole-zero plot for three resonator blocks Ci(s), C2(s), and C3(s) taken in

isolation with 01 = 02 = 0, and 3 = -45*.

200
0

150-

100. 0

so -

(1 O0......... .............0......................................

x

-100- 0

-150 -

-200 - 5>
1 0 0 10 20t

Re{s)

Figure 4-9: Pole-zero plot for three resonators in parallel C(s) = C1(s)+C2(s)+C3(s)

with 0 1 = 02 = 0, and #3 = -45'.
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Figure 4-10: Pole-zero plot of C(s) for 10 resonators in parallel. The parameters #,
gn, and wn for this system are listed in Table A.2.

a loop-shaping perspective the critical issue is how the AFC loop Nyquist plot is

influenced by the choice of the g, and , parameters. Within this context, we show

that the O, parameters can be simply chosen on the basis of the phase of P(s)

evaluated at wn. The gain parameters gn are then chosen to set the gain margin

associated with each of the magnitude minima between the resonant peaks.

To understand this tuning process it is helpful to examine the frequency response

characteristics of parallel resonator arrays as , is varied. Figure 4-11 shows a Bode

magnitude plot for a two resonator system where the phase difference (AO = 01 - 02)

between the first resonator phase advance #1 and the second resonator phase advance

#2 is varied over 0, -7r/2, and -r. The figure shows that the magnitude of the local

minima is maximized when AO = -7r, since for this choice the two resonators are in

phase at the local minima. Conversely, a sharp notch results when AO = 0, since for

this choice the two resonators are in anti-phase at the point where their magnitudes

are equal.

Figure 4-12 illustrates how for AO = ±r the -7r phase drop of the first resonator

at w, results in a system with the two resonators having equal phase shift between
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Figure 4-11: Bode magnitude plot for a 2 resonator system with the

difference (A#) between the two resonators varied from 0 to -7r
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Figure 4-12: Bode phase plot of two resonators illustrating how resonators with #1 = 0

and 02 = # i7r result in a system with the two resonators in phase in the frequencies

between the two resonances. The dot indicates the average phase at each resonance.
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Figure 4-13: Bode phase plot of two resonators illustrating how resonators with #1 =

02 = # results in a system with the two resonators out of phase in the frequencies
between the two resonances. The dot indicates the average phase at each resonance.

w, and W2. Thus the two magnitudes curves are in phase in the region where their

magnitudes are equal, and thus add constructively. This constructive combination

accounts for the shallow notch for A# = ±7r seen in Figure 4-11.

Similarly, the magnitude of the local minima is minimized, 0 on a linear scale

and -oo on a log scale, when AO = 0, such that the phases of the two resonators

differ by t7r between w, and W2. Figure 4-13 illustrates this for two resonators with

01 = 02 = #. As shown, this results in a system where, between w, and w2 , the

resonator phases differ by t7r, and thus add destructively in the region where their

magnitude curves are approximately equal. This destructive combination accounts

for the sharp notch associated with AO = 0 seen in Figure 4-11.

Figure 4-14 expands this viewpoint by showing the Bode plot of a three resonator

system with 01 = 02 = 0 and #3 = -45'. This figure shows several important

features. First, we see even in a multiple resonator system LO(jwo) = -#, at each

resonant peak, as shown by the dots on the phase curve. Second, we see that the

depth of all the local minima are dependent on the phase advance 0#' of all the

resonators. Thus even though the first and second resonators add destructively at

the first minima, the magnitude of the local minima is determined by the non-zero

magnitude of the third resonator. That is if Wminl is the frequency of the magnitude

minimum between w, and w2 , we have Ci(Wmini) = -C2(Wminl) and thus IC(Wmini)I =
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Figure 4-14: Bode plot for a three resonator system with 01 = #2 = 0, 3 = -45'.

The dots mark the center of the phase discontinuity to show the effect of the phase

parameter #n; the phase at this point is equal to -On.

C3(Wmini)|. Third, the frequency location of the local minima are roughly at the

geometric mean frequency of the adjacent resonant peaks and may be expressed as

Wmin ~ V)1U2 (4.73)

Lastly, the phase of the system changes by ±1800 in the vicinity of the frequency of

the local minima, i.e., for each complex pair of zeros. Thus, a way to ensure system

stability is to set #n to keep the AFC loop transfer function phase curve discontinuities

centered on 0', and to keep the magnitude of the local minima sufficiently below 0

dB.

So far we have examined ZC(jw), the phase angle of the AFC control block, in

isolation. In practice, we need to evaluate the phase angle of both the plant and

AFC control block, Z{C(jw)P(jw)}. We know from the previous discussion that at

each Wn, C(jw) has a -180' phase drop centered on -#n and thus LO(jwn) = -On.

Examining the system from a Nyquist perspective, to maximize the phase margin

of the system, we would like to center the phase discontinuity of L{C(jwn)P(jWn)}
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Figure 4-15: Nyquist diagrams of C(s)P(s) for a system with an AFC resonator
Wi = 628.3 rad/s (100 Hz) where in (a) #=0 and in (b) The associated Nyquist

contour is shown in (c). The -1 point is shown as a cross in a) and b).

about 00, so that the phase discontinuity lies between t900. By this choice, AFC

controlled systems will approach a phase margin of 900. If we define #. = ZP(jwo),

i.e. 0. is the angle of the plant at each resonator frequency, then the average phase

of the system at each resonance may be expressed as

L{C(jon)P(jwn)} = ZO(jWn) + LP(jOn) = --#n + #,n. (4.74)

Thus to make L{C(jWn)P(jwn)} = 00, all we need to do is set On = #,n. A similar

analysis and result is derived for zero phase error tracking (ZPTEC) in [91]. This

result is also presented for a single resonator in [57] and [11].

This phase adjustment is essential for plants in which the phase varies significantly

as a function of frequency. For example, Figure 4-15 illustrates the Nyquist diagrams

for the rotary fast tool servo system with a single AFC resonator operating at 100 Hz.

Figure 4-15(a) is the Nyquist plot for C(s)P(s) with #1 = 0 0and thus no phase

adjustment. Notice that the Nyquist plot for this system significantly penetrates the

left half plane, and thus the AFC loop exhibits a resulting phase margin of 390. The

reason for this is that the plant P(s) has a phase shift of -50' at 100 Hz. Figure

4-15(b) is the Nyquist plot for a controller where the phase is properly adjusted to

#1 = #,n. This AFC loop exhibits a phase margin of 89.20, which is significantly
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Figure 4-16: Nyquist diagrams of C(s)P(s) for a system with 10 resonators where

in (a) 0,=O and in (b) The associated Nyquist contour is given in (c), with detours

around the imaginary axis poles of C(s)P(s). The parameters #", gn, and w,- for this

system are listed in Table A.2.

more robust. Figure 4-16 depicts the Nyquist diagrams for the fast tool servo system

with 10 resonators (see Table A.2 for AFC resonator values). The system in Figure

4-16(a) which has no phase adjustment, #,, = 0, is unstable because the Nyquist loops

associated with the three highest frequency resonators (160, 180, and 200 Hz) encircle

-1. The Nyquist plot of Figure 4-16(b) with phase properly adjusted, #", = LP(jw"),

has a phase margin of better than 840 for all loops. Figure 4-17 shows the Bode plot

associated with the figure 4-16(a) Nyquist plot while Figure 4-18 is the Bode plot for

the Figure 4-16(b) Nyquist plot. Notice the unstable phase curve in Figure 4-17 and

the stable phase curve in Figure 4-18.

In this subsection, we learned that including a phase advance parameter to a res-

onator allows us to apply AFC control to systems with phases 1#1 > 900. Additionally,

we proved that setting the AFC controller phase 0, = LP(jw,)) maximizes the phase

margin of an AFC compensated system. In the next subsection, we explore the effect

the AFC controller gain g, has on the performance of an AFC controller.
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Figure 4-17: The negative of the AFC loop transmission Ca(jw)P(jw) with #,, = 0
and with g, and w, as listed in Table A.2). The dots mark the center of the phase
discontinuity to show the effect of the phase parameter 0,. This loop is unstable.
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Figure 4-18: The negative of the AFC loop transmission Ca(jw)P(jw) for the rotary
fast-tool servo with 10 resonators and g. = 1 and , (values in Table A.1). This loop
is stable, with 840 phase margin. (Note excessive gain margin at each minima; this
issue is addressed in subsection 4.2.3.)
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Figure 4-19: Block diagram of a single resonator C(s) controlling the second order
plant P(s), and used to simulate the effect of resonator gain on system response. Here
w, = 20 rad/s and 01 = 0.023'.

4.2.2 Resonator Gains

To maximize disturbance rejection in the vicinity of w, we would like to maximize

the gain g, for each resonator. Just as in a conventional controller, the resonator

gain affects relative stability as well as the system settling time and the system error

for inputs in the vicinity of w,. In the case of an AFC resonator, the settling time

represents the characteristic time to cancel out a disturbance or adjust to a magnitude

shift in the reference input component at the resonator frequency. The higher the

resonator gain, generally the more rapidly the resonator responds in the closed loop

within the limits of stability. Similarly while an AFC resonator with zero damping (i.e.

the resonant poles are on the imaginary axis) will eventually drive the system error

at exactly the resonator frequency Wn to zero regardless of the resonator gain g, the

system error to commands and disturbances near but not at the resonator frequency

is inversely proportional to the resonator gain. Thus the higher the resonator gain,

the lower the system error for disturbance inputs near the resonator frequency. This

result is important since any system is likely to have perturbations in the frequency

of the periodic motion which will shift the frequency of the disturbance inputs from

the resonator frequency, and as well, no system operates exactly in steady state in

finite time.

To illustrate the effects of resonator gain on system response, we simulated in time

a loop with a single 20 rad/s AFC resonator acting on a second order system P(s)

with a natural frequency wn = 1200 rad/s and a damping ratio of (n = 0.7. Figure

4-19 shows the block diagram of the simulated system while Figure 4-20 illustrates

the plant frequency response P(jw). Figure 4-21 plots the following error as a percent
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Figure 4-20: Bode Plot for second order system P(s) used to simulate the effect of
resonator gain on system response.
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Figure 4-21: Percent error tracking a sinusoidal reference trajectory with W, = 20

rad/s with an AFC resonator tuned to w, = 20 rad/s for resonator gains g, = 0, 1,
5, and 10, respectively.
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Figure 4-22: Percent error tracking a sinusoidal trajectory with W, = 19.5 rad/s and

an AFC resonator tuned to u), = 20 rad/s for resonator gains g1 = 0, 1, 5, and 10,

respectively.

of the reference input for a 20 rad/s input as a function of time for a resonator gain of

gi = 0 (no AFC control), and g, = 1, 5, and 10 respectively. For zero gain, the peak

following error is 2.3%. The addition of the AFC controller will drive the system error

to zero for all positive gains and where w, = wn (w, is the frequency of the reference

input), but the error settling time is reduced from greater than 7 seconds to less than

a second as the resonator gain increases from 1 to 10. The small steady-state ripple

observed in the figures for gi = 5 and g, = 10 is believed to be due to numerical

issues in our simulation.

We also use this simulated system to examine the error response to commands

slightly displaced from the resonator frequency. Figure 4-22 shows the error to an

Wr = 19.5 rad/s input for the same four resonator gains and w, = 20 rad/s. The plots

show that while the AFC resonator attenuates the system error for all three non-zero

gains, the residual system error is decreased proportionally as the resonator gain is

increased. This effect can be explained by a simple magnitude of loop transmission

argument. Chapter 5 documents an extension of our loop shaping perspective which
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we term Oscillator Amplitude Control (OAC). The OAC perspective uses an averaging

analysis to predict the time characteristics of the error envelope with varying g".

Overall, though, it is clear that for low errors and faster convergence, g, should be

maximized within the limits of stability.

4.2.3 Choosing Gains g, for N Parallel Resonators

There are a number of considerations that apply in selecting resonator gains g. in

multi-resonator systems. First, to avoid instability, the magnitude of the AFC loop

local minima must be kept sufficiently below 0 dB in order to avoid Nyquist encir-

clements in the AFC loop. Thus g, should not be too large. Secondly, the error in the

vicinity of each w, is approximately inversely proportional to the corresponding g,

and thus g, needs to be made as large as possible. Lastly, while the parameters g. and

0,, allow for some shaping of the frequency response, the underlying backbone of the

response is determined by the shape of the inner-loop plant P(s). This means that to

achieve a well-behaved response with an AFC controller, we need to start with a well

behaved plant P(s). That is, we would like a plant with slowly varying magnitude

and phase curves in the frequency range of the AFC resonators. We thus require high

performance and robust tuning of the conventional controller within P(s). Finally, it

is clear that the hardware itself must be well-designed to allow proper performance

of all the controllers. For example, non-linear effects such as drivetrain backlash or

A/D quantization will limit the performance achievable in the AFC loop.

Given the above, we employ two approximations to simplify the gain selection

process. First, since the frequency response of the system at any point is dominated

by the nearest resonators, we assume that the magnitude of a local minimum may be

controlled by adjusting the gains of the local resonators only. In the simplest case,

one can set the gain margin of a local minimum to a desired value by adjusting the

gains of just the two adjacent resonators. This approximation greatly streamlines

the design process and allows for ready hand tuning of the frequency response. This

assumption works particularly well for the low frequency resonators in multi-resonator

systems, but breaks down at the higher frequency resonators where the successive

165



linear harmonics are more closely spaced on the logarithmic frequency axis. The

second approximation is that the local minima are positioned at the logarithmic

mean frequency of the two adjacent resonators. While it is not difficult to calculate

the exact frequency of a local minimum, this assumption allows one to rapidly get a

good estimate for the gain margin of a local minimum. This assumption works well

when adjacent resonators have only small differences in gain. If large gain differences

occur, the local minima will shift towards the resonator with the lower gain because of

the shoulders of the higher gain resonator will dominate the sum of the two resonators

over a larger frequency range. Our AFC tuning method can be summarized as follows:

1. For each resonator set 0, = LP(jw,) to maximize phase margin.

2. Set initial resonator gains to unity.

3. Using the previously determined values, compute C(jw)P(jw) and determine

the local loop transmission minimum with the least gain margin.

4. Choose a desired gain margin.

5. Determine the ratio between the minimum gain margin found in step 3 and the

desired gain margin.

6. Scale all of the resonator gains by the ratio found in the previous step.

7. Recompute and plot C(jw)P(jw) to verify stability margins.

8. Adjust the gain margins of the local minima as desired by adjusting the gains

of the adjacent resonators to trade robustness for control authority.

We have applied this tuning procedure to the AFC control of our rotary fast tool

servo. The plant P(s) Bode plot for the rotary FTS is shown in Figure 4-23. Figure

4-24 shows the negative of the AFC loop transmission for the the rotary fast tool servo

system with 10 resonators with #, = ZP(jw,), and g, = 1. The parameters 0n, g",

and w, for this system are listed in Table A.1. The system has a minimum gain margin

of 34 dB at the local minimum centered between the 5th and 6th resonators. Notice
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Figure 4-23: Typical fast tool servo closed loop transfer function, P(jW) from position
reference input to measured position output. The associated state space matrices
representing this model are given in section A.1.
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Figure 4-24: The negative of the AFC loop transmission C(jw)P(jw) for the rotary
fast-tool servo with 10 resonators and g, = 1 and , (values in Table A.1). This loop
is stable, with 84' phase margin.
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Figure 4-25: The negative of the AFC loop transmission -L(jw) for the rotary fast-
tool servo with 10 resonators after gain scaling to a desired minimum gain margin of
20dB (#0, gn, and w, for this system are listed in Table A.2). Note excessive gain

margin at the low- and high-frequency minima.
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Figure 4-26: The negative of the AFC loop transmission -L(jw) for the rotary fast-

tool servo with 10 resonators after hand tuning the low- and high-frequency resonators

to a target gain margin of 20dB (0, gn, and w7, for this system are listed in Table

A.3).
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that the local minima tend to follow the shape of the inner loop P(s) illustrated

in Figure 4-23. This tuning clearly has too low a value of g, and thus sacrifices

performance.

Figure 4-25 shows the same loop after increasing all of the resonator gains by a

factor of 5.18 to achieve a desired minimum gain margin of 20 dB. The parameters 05,

gn, and w, for this system are listed in Table A.2. After gain scaling, the minimum

gain margin is still at the local minimum between the fifth and sixth resonators. Note

that there is still an excess of gain margin at both the lowest and highest frequencies.

Since the lens shapes that we are machining are dominated by the lower frequency

harmonics, we would like very good performance at low frequency. We now start to

individually tune each of the resonator gains.

Using the simplifications described above for the relationships between resonator

gains and local minima, we have scaled up the gains for the low frequency resonators,

and turned down the gains for the middle frequency resonators. The parameters 0",

g,, and w, for this system are listed in Table A.3. Figure 4-26 shows the results of

this tuning. The magnitude of the low frequency peaks has been increased by a factor

of 6, while the minimum gain margin has only been reduced from 20 dB to 15.9 dB

at the local minimum between the 5th and 6th resonators. This AFC loop is now

well-tuned for our machine and cutting requirements.

4.2.4 Experimental Results for the Rotary Fast Tool Servo

Figure 4-27 shows the measured error following a ±1 cm amplitude 20 Hz sine wave

air cut for the fast-tool servo with and without a 20 Hz AFC resonator included in

the control loop. This cut has a peak acceleration at the tool of approximately 15 g's.

The system error without the AFC resonator is 19.8%, as shown in the center plot

in Figure 4-27. The bottom plot shows that the peak system error with the 20 Hz

AFC resonator is reduced to t0.3 pm peak (0.0033%), a factor of 5000 improvement

over the system without AFC control. The controller used to generate the results in

Figure 4-27 does not include a command pre-shifting feed-forward term.

A more stringent test is to apply AFC while the tool is cutting. Figure 4-28
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Figure 4-27: Measured error for the rotary fast tool servo for a 1 cm 20 Hz air cut

with and without a 20 Hz AFC resonator. With AFC control, this following error is

about ±0.3p~m peak.
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Figure 4-28: Measured error with both AFC and command pre-shifting while cutting

a 0xA toric in CR39 at 600 RPM. Data taken at a radius on the part of 30 mm.
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plots the measured error while cutting a 0x4 diopter toric in CR39, an acrylic plastic

commonly used to make spectacle lenses, at a radius of 30 mm and a spindle speed of

600 RPM. The root-mean-square following error for this cut is 1.2 [m, or 0.06% of the

peak command amplitude. The controller used to generate the results for Figure 4-28

incorporates the conventional lead-lag controller within P(s), command pre-shifting

P1 (jw,), and ten AFC resonators at harmonics of the spindle speed.

In this section, we have documented and applied a loop shaping approach for tun-

ing AFC controllers. These techniques allow us to design controllers which precisely

follow sinusoid trajectories with constant or slowly time varying magnitude. In the

next section, we present an extension to AFC control called AMAFC control designed

to enhance trajectory following for sinusoids with more rapid time varying magnitude.

4.3 Amplitude Modulated Adaptive Feedforward

Cancellation

In this section, we present an extension of Adaptive Feedforward Cancellation (AFC)

which we term Amplitude Modulated Adaptive Feedforward Cancellation (AMAFC).

The goal of AMAFC control is to improve trajectory tracking for signals with time

varying magnitude by incorporating an estimate of the time varying magnitude in the

AFC structure. In section 4.3.1, we propose an AMAFC structure which incorporates

the estimate of the time varying magnitude using multiplication. This structure was

originally proposed by Joe Calzaretta [13]. Experimental results for this structure are

included in chapter 7. Section 4.3.2 presents an AMAFC structure which incorpo-

rates the estimate of the time varying magnitude using addition. This structure was

proposed by Prof. Trumper after reading an initial draft of this thesis and thus no

experimental results were obtained. Section 4.3.3 contains simulated results applying

both AMAFC forms to a sample system.
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Figure 4-29: A multiplicative Amplitude Modulated Feedforward Cancellation con-
troller in two forms.
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Figure 4-30: Block diagram of a multiplicative AMAFC resonator plus disturbance
subsystem.

4.3.1 Multiplicative Amplitude Modulated Adaptive Feed-

forward Cancellation

Figure 4-29 shows the multiplicative AMAFC control structure in two different forms.

The canonical from is shown on the left while the right side shows a form where the

basic AFC structure has been replaced with the LTI equivalent. The basic theory for

AFC control comes from the Internal Model Principle (IMP) [29]. The IMP essentially

states that for a controller to exactly cancel a disturbance it must contain a model of

the disturbance signal. Stated in another fashion, when a controller has no input, it

must be able to output exactly the negative of the disturbance signal. AFC control
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satisfies this condition if the disturbance w(t) has the form

w(t) = ao sin(wt) + bo cos(wt) = A cos(wt -9 ). (4.75)

AFC control does not satisfy the IMP if the disturbance has the form

w(t) = ao(t) sin(wt) + bo(t) cos(wt) = A(t) cos(wt - 0) (4.76)

since the time varying magnitude A(t) is not included in the controller model (Note:

the A(t) cos(wt - 0) form makes the assumption that a() is constant, a more generalbo (t)

form would allow 0 to vary with time). To exactly cancel w(t), we must incorporate

A(t) into our controller. Since A(t) is unknown, we are forced to make an estimate

A(t) such that

A(t) = A(t)R(t). (4.77)

In this case A(t) is a known function representing the best estimate of the time

varying magnitude and R(t) is a multiplicative residual function representing the

unknown error between the estimated and actual magnitudes. Figure 4-30 shows a

block diagram of the AMAFC plus disturbance subsystem. To show that this new

structure obeys the IMP, we need only set x(t) = 0. Because both integrators have

zero input, the integrator outputs become constant:

a(t) = ao (4.78)

0) 7,(1 70)

Thus the controller output is

u(t) = A(t)[ao cos(wit) + bo sin(wit)]. (4.80)
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If the integrator outputs happen to be

ao = - cos 0

bo = - sin 0,

(4.81)

(4.82)

the controller output becomes

u(t) = -A(t)[cos9coswjt+sin0sinwit]

= -A(t) cos(wit - 9). (4.83)

Thus the subsystem output

d(t) = A(t) cos(wit - 9) - A(t) cos(wit - 0)

= A(t)[R(t) - 1] cos(wit - 0). (4.84)

If R(t) = 1, that is if we have perfectly modeled A(t), then d(t) = 0 and the internal

model principle is obeyed.

Alternately if R(t) = Ro, where RO is a non-zero constant, w(t) becomes

w(t) = RoA(t) cos(wit - 9). (4.85)

The IMP is obeyed if the integrator outputs are

ao = -ROcos0

bo = -Ro sin 0 (4.86)

which results in

u(t) = -RoA(t)[cos~coswit+sin0sinwjt]

= -RoA(t) cos(wit - 9). (4.87)
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Figure 4-31: Block diagram of an AMAFC controlled position loop.
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e*t) cos(O1)s+otisin~i)II
yd*(t) gi csi + X P(s) y*(t)

Figure 4-32: Block diagram of an AMAFC controller with the modulation term A(t)
shifted to the plant.

If R(t) is time varying, the AMAFC control structure departs from the IMP which

results in a time-varying error.

In order to analyze the characteristics of the time-varying closed loop following

error e(t) under AMAFC, we need to look at the signals in more detail. Figure 4-

31 shows the block diagram of a generic plant P(s) under AMAFC control. As

we can see, we are comparing a desired output yd(t) to the actual output y(t) to

produce an error signal e(t). This signal is then divided by our estimate of the time

variation of the disturbance A(t) to form e*(t), which is acted upon by the standard

LTI AFC controller to produce u*(t). The AMAFC controller output u(t) is then

produced by dividing u*(t) by A(t). The plant input v(t) is produced by adding

w(t) = A(t)R(t) cos(wit - #) to u(t). From a block diagram perspective, this system

is a time varying controller acting upon an LTI plant. Since the controller is not

LTI, it is difficult to analyze the behavior of the system. It is useful to change our

perspective by shifting the A(t) modulation terms around the block diagram.

In order to shift the modulation terms around the block diagram, we define a
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transformed signal

f = f(t)/A(t). (4.88)

Figure 4-32 shows the block diagram of this system with the A(t) modulation terms

moved around the block diagram. This now appears to be a system in which an LTI

controller is acting on a time-variant plant P*(s, t) (the combination of the modulation

terms and the plant P(s)) which does not appear to be much of an improvement. Note:

the time varying form P*(s, t) is not a mathematically correct and is utilized here

only to indicate that the system is LTV. In a specific case, if P(s) were a constant

PO, the time variant plant is

P*(s, t) A(t)P - (4.89)
A(t)

which is LTI. This structure now looks like our conventional AFC control loop. More

generally P(s) is often nearly constant near P(jwi) and thus if A(t) and R(t) vary

much slower than wi, we can approximate P*(s, t) as a LTI constant P(jw). This

nominally implies that e*(t) and thus e(t) should decay to zero resulting in perfect

rejection of the disturbance w(t). In addition the LTI plant approximation means

that we can apply the tuning rules developed for selecting gi and <5i for a standard

AFC controller to the AMAFC controller and be confident that the resulting AMAFC

controller will be stable.

To evaluate the disturbance rejection of the multiplicative AMAFC control struc-

ture it is useful to find D(s), the transfer function between the error e*(t) and the

disturbance w*(t). From Figure 4-32 we see that

-P*(s, t)
D(s) = + gi C +si + p*(s, t). (4.90)

Lets assume that R(t) has the form

R(t) = cos at (4.91)
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where a << wi. This results in

w*(t) = cos at cos(wit - 0). (4.92)

Employing the following two trigonometric identities

cos(A + B) = cos A cos B - sin A sin B (4.93)

cos(A - B) = cos A cos B + sin A sin B, (4.94)

allows us to express w* (t) as

1
w*(t) = I[cos((wi - a)t - 0) + cos((wi + a)t - 6)]. (4.95)

2

Thus the input into the transfer function D(s) is simply two sinusoids each shifted

off of wi by a (Note: this same result can be achieved using Fourier transforms as we

do later for the Oscillator Amplitude Control perspective). Since a is much less than

wi, we are only interested in the response of D(s) at frequencies near wi. Since the

magnitude of the AFC resonator is extremely high near wi, D(s) reduces to

p*(st) 2

D (s) =* =S - S w (4.96)
D i C s csO +Wsin iP*(s t) gj(s cos Oi + wi sin #i)

which is just the negative inverse of the AFC controller. The magnitude of this

transfer function is zero at s = jwi indicating perfect error rejection.

So far we have only discussed the effect of AMAFC control on disturbance rejec-

tion. We may also be interested in the error response for a modulated input

yd(t) = sin Ot sin wit. (4.97)

In this case, we have an excellent estimate of the amplitude modulation since we

should have precise knowledge of the desired position. From Figure 4-32, we can see
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that

E*(s) 1 (4.98)

Y*(s) 1+ g+i 8 32+C 2 sL0iP*(s, t)

If we assume that 3<< w, this transfer function reduces to

E*(s) s2 + W
1 (4.99)Y*(s) P*(s, t)(s cos Oi + w sin ji)

which is similar to the (4.96), the transfer function between disturbance and error,

except the time variant plant dynamics are not canceled. This would seem to imply

that even with a perfect model of the amplitude variation, we would have some

residual error due to the time varying nature of the plant.

There are a number of issues with implementing the multiplicative AMAFC struc-

ture. One of the most significant is that for many cases A(t) = 0 at some point, this

means that 1/A(t) = oo. This is clearly unacceptable. One way to avoid this issue is

to avoid applying multiplicative AMAFC to signals which have zero value. One class

of modulation signals we might wish to cancel is

A(t) = 1I + ao sin Ot (4.100)

where laol < 1. This is the strategy we employed in generating the experimental

results. More generally, we can limit the magnitude of the 1/A(t) signal. Figure 4-33

shows a block diagram of a multiplicative AMAFC control structure with

1 J 1/A(t) for IA(t)I > c (4.101)
A(t) sgn[A(t)]/c for I A(t)l < c

This is the structure we use to generate all of our simulated results.

In addition to the implementation issues with the multiplicative AMAFC struc-

ture, from our analysis we have found that the multiplicative AMAFC structure will

perfectly cancel a disturbance with time varying magnitude if we have an accurate
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Figure 4-33: Block diagram for a multiplicative AMAFC controller with 1/A(t) lim-
ited.
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sin(Ont)

Figure 4-34: Block diagram of a standard AFC resonator and plant with zero input
into the AFC system.

estimate of the time variance. We also found that the multiplicative AMAFC struc-

ture did not perfectly follow a commanded trajectory with time varying magnitude

even with a perfect estimate of the time variance. Since, we never really have detailed

knowledge of the disturbance this result seems the inverse of what we would like. To

correct these issues, we have proposed an additive AMAFC structure.

4.3.2 Additive Amplitude Modulated Feedforward Cancella-

tion

One of the weakness of the multiplicative AMAFC structure is the inability to per-

fectly follow commanded trajectories with time varying magnitude. As mentioned in

the previous section, the IMP essentially states that for a controller to exactly follow

a signal it must contain a model of the signal. Thus to perfectly follow a commanded
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input of the form,

Yd(t) = a(t) cos(wnt) + b(t) sin(wot) (4.102)

where

a(t) = ancos(at)

b(t) = a, cos(at) (4.103)

the AMAFC structure must output a signal which when passed through the plant

generates yd(t). Figure 4-34 shows a standard AFC resonator and plant P(s) with

zero input into the AFC systems. Since know the form of the input from (4.102) and

(4.103), it makes sense to assume d(t) and 6(t) are of the form

d(t) = bcos(at) (4.104)

b(t) = b cos(at). (4.105)

If a << w, then we can replace the plant transfer function P(s) with P(jwn). Thus

the plant output becomes

y(t) = IP(jw) I cos(at) [cos(wnt + 0n) + bsin(wnt + On)} (4.106)

where #, = ZP(jw,). For the error to be zero, we clearly would like

= an) (4.107)

Abn

b = " (4.108)
JP0jWn)j

but this selection of d(t) and b(t) does not result in the correct phase for the Wn

sinusoid. One way to correct for the phase of the wn sinusoid is to change the phase

of the modulation terms of the AFC resonator to be cos(wnt - #n) and sin(wnt - On).

Figure 4-35 shows a block diagram of an additive AMAFC resonator. As we can
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Figure 4-35: Block diagram of an additive AMAFC resonator.

cOS(iont) a tCOS(AOnt-$n)

x x

x(t) I yMt

x x

sin((Ont) t) sin((Ont-$n)

Figure 4-36: Block diagram of an additive AMAFC resonator.
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see, this structure is identical to the standard AFC controller accept, we have added

&(t) and b(t) to the resonator after the integrator and we have included an additional

phase shift to the second sinusoid. Setting &(t) = b(t) = 0, we find that this structure

has a LTI equivalent of

s cos(20n) + wn sin(20n)
C(s) = g+ 2 .(4.109)S2 2

The phase drop of this system is now centered on 20n meaning this is stable only for

system where IP(jWn)l < 7r/2. To correct for this, we eliminate the phase shift on

the first set of resonators. Figure 4-36 shows the resulting block diagram with this

adjustment. With &(t) = b(t) = 0, the structure shown in Figure 4-36 has a LTI

equivalent of

C(s) = gn CWsin(0,,) (4.110)
s2 + Wn

which is identical to the previous AFC structures. This result implies, that if the

system is tuned as a standard AFC resonator for robust stability, the resulting additive

AMAFC resonator will also have robust stability.

Typically, AFC control is combined with other forms of feedforward control. Fig-

ure 4-37 shows a control system incorporating both AFC and standard feedforward

control. One of the advantages of using sinusoidal trajectories of the form

y(t) = an cos(wnt) + bn sin(Wnt), (4.111)

is that we can replace the inverted plant P'(s) with a second trajectory signal

1
y*(t) = [an cos(wnt - On) + bn sin(Wnt - On)] (4.112)

IP(jon)l

where On = LP(jw,). Independent of the time varying amplitude, the structure

shown in Figure 4-36 has essentially incorporated the outer feedforward loop into to

the AFC structure. There is a significant computational advantage to this, since it
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Figure 4-37: Block diagram of a control system incorporating both AFC and standard

feedforward control.

eliminates the need to generate 2 sinusoids for the feedforward channel per trajectory

harmonic.

In this section and the one prior, we have proposed two extensions to AFC control

that incorporate the time varying magnitude of a reference input. In one, the varying

magnitude is incorporated using multiplication. In the second, the time variation is

incorporated using addition. In the next section, we present some simulated examples

applying our AMAFC extensions to a system.

4.3.3 Example of Amplitude Modulated Adaptive Feedfor-

ward Cancellation

In this example, we consider the effect of our two proposed AMAFC structures on a

system following a sinusoidal trajectory with time varying magnitude. We utilize a

simple second order system as our plant

P(s) = (4.113)82 + 2(p S + W2
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Figure 4-38: Frequency response plot of the example plant.

where w, = 200wr (100 Hz) and ( = 0.7. Figure 4-38 shows the frequency response of

the plant. For this example, we have selected the frequency of the trajectory to be

wi= 40wr (20 Hz). Using our loop shaping technique, we selected #1~ = LP(jwi) =

-0.284 radians and gi = 44.5 for both AMAFC structures. The reference trajectory

for our example is

yd(t) = sin(at)[cos(wit) + 0.25 sin(wit)] (4.114)

where oa is varied from wr to 4wr radians/s (0.5-2 Hz). For the multiplicative AMAFC

structure, we set

A /(t) t)*10 for |A(t)j ><0.001

() sgr[A(t) 10 for |A(t)I < 0.001(415

Figure 4-39 plots the simulated following error for the example plant under con-

ventional AFC control, multiplicative AMAFC control, and additive AMAFC control

with a trajectory modulation oa = wr r/s. The peak-to-peak following error is 30%

with conventional AFC control, 1.2% with multiplicative AMAFC, and 0.4% with
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Figure 4-39: Simulated following error for the example plant following a 20 Hz sinusoid
with an amplitude modulated at 0.5 Hz with conventional AFC control, multiplicative
AMAFC control, and additive AMAFC control.
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Figure 4-40: Simulated following error for the example plant following a 20 Hz sinusoid

with an amplitude modulated at 1 Hz with conventional AFC control, multiplicative

AMAFC control, and additive AMAFC control.
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Figure 4-41: Simulated following error for the example plant following a 20 Hz sinusoid

with an amplitude modulated at 1.5 Hz with conventional AFC control, multiplicative

AMAFC control, and additive AMAFC control.

additive AMAFC control. Note: all of these simulated results are taken with the

system in steady-state operation. The data shown here was collected 2 seconds af-

ter the simulation started. Figure 4-40 plots the simulated following error for the

example plant under conventional AFC control, multiplicative AMAFC control, and

additive AMAFC control with a trajectory modulation a = 27r r/s. The peak-to-

peak following error is 50% with conventional AFC control, 3% with multiplicative

AMAFC, and 0.8% with additive AMAFC control. Figure 4-41 plots the simulated

following error for the example plant under conventional AFC control, multiplicative

AMAFC control, and additive AMAFC control with a trajectory modulation a = 37r

r/s. The peak-to-peak following error is 80% with conventional AFC control, 9% with

multiplicative AMAFC, and 1.8% with additive AMAFC control.

As we can see from these results, AMAFC is a significant enhancement over con-

ventional AFC control when following sinusoidal trajectories with time varying am-

plitude. The performance of the AMAFC systems drops off as the speed of the

modulation increases since the quasi-static plant model used in the derivation of our
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AMAFC structures breaks down. In general, the additive AMAFC structure is supe-

rior to the multiplicative AMAFC structure offering both better trajectory following

and improved computational speed. In simulation, the run time of the multiplicative

structure was twice that of the additive structure. We believe that these results can

be improved further with the addition of a phase shift to the modulation terms so

that

e(t) = a sin(at + p) (4.116)
1P(jw,)

b
b(t) = IPiWn)I sin(at + p). (4.117)

The determination of p is left for future work.

4.4 Summary

In this chapter, we have detailed a loop shaping technique for tuning control systems

with AFC control. This loop shaping technique shows that the AFC phase shift

is optimally set to #i = ZP(jwi). Our loop shaping perspective for selecting AFC

controller gain gi, allows the designer to ensure robust stability while maximizing the

AFC controller performance. We also presented two strategies for extending AFC

control to trajectories and disturbances with time varying magnitude. We term this

extension AMAFC control. One strategy utilizes a multiplicative structure to exactly

cancel errors with time-varying magnitude. The second strategy utilizes a more robust

additive structure to more accurately follow trajectories with time varying magnitude.

In the next chapter, we will utilize an Oscillator Amplitude Control perspective to

approximate the convergence and error properties of AFC controller.
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Chapter 5

Adaptive Feedforward Cancellation

from an Oscillator Amplitude

Control Perspective

In this chapter, we present a method of characterizing the convergence and error prop-

erties of control systems using Adaptive Feedforward Cancellation (AFC). Specifically,

we view the AFC controller structure from an oscillator amplitude control (OAC) per-

spective. The OAC approach uses an averaging analysis to simplify a properly tuned

single resonator AFC system into two single-input single-output amplitude control

loops. In this chapter, we will simplify the sine channel of a single resonator AFC

controller. Next, we verify our analysis by comparing the output of an AFC controller

to the OAC approximation for a simulated system. We then simultaneously simplify

both the AFC sine and cosine channels. Once again, we verify our analysis by com-

paring the parameter estimates for both the OAC approximation and AFC control.

Next, we apply the OAC perspective to a multiple resonator AFC controller. Lastly,

we explore the limitations of the OAC approach.

This chapter is derived principally from a forthcoming paper I co-wrote with Joe

Cattell and Prof. David Trumper. Section 5.1 is a condensed version of Joe's analysis

in [15]. Section 5.2 contains new simulations which start with the system in steady-

state prior to the application of AFC or OAC control. Eliminating the transient
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Figure 5-1: Single resonator AFC closed-loop block diagram designed to follow/reject
a signal with a frequency w1. Figure taken from [15].

response of the plant results in a much better correlation between the OAC and AFC

system response. Section 5.3 significantly expands on the dual channel work in [15]

and contains a complete OAC analysis of the AFC system with and without phase

adjustment. Sections 5.4 and 5.5 contain new simulated results based upon the revised

dual channel results from Section 5.3 and the steady-state plant assumption. Lastly,

Section 5.6 follows up Joe's suggestions for further work and presents an analysis of

some limitations of the OAC approach.

5.1 Simplified Sine Channel of the Single Resonator

AFC Controller

Figure 5-1 illustrates the single resonator AFC closed-loop block diagram. We view

this system as the combination of two oscillator amplitude systems, where the sine and

cosine channels correspond to two individual feedback loops in which the oscillation

amplitude is to be controlled. The first sinusoidal modulators in Figure 5-1 are

considered the amplitude detectors, and thus serve as sensors. Next, in concert with

the gain gi, the integrators act as the amplitude stabilization controllers, a(s), while
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the second modulators and plant P(s) can be viewed as sinusoidal oscillators, whose

output amplitude in y(t) is to be controlled to a desired level, as set by the component

of frequency wi in the reference r(t). The reason for taking this perspective is that

we can now write results in terms of the dynamics of the oscillation amplitude.

The sine and cosine channels in the AFC controller are thus coupled controllers

in a multiple-input multiple-output (MIMO) sense. Under the assumption that we

have correctly implemented the phase advance parameter #i = LP(jwi), these two

channels can be decoupled. That is, the system can be diagonalized. These two

decoupled channels essentially yield equivalent closed-loop dynamics, as shown later.

Thus in the following analysis, we simplify just the sine channel of the AFC controller

into an equivalent oscillator amplitude control loop.

Figure 5-2 highlights the portion of the single resonator AFC closed-loop block

diagram designed to follow/reject the sine component of a signal with frequency

wi. We will analyze this system for loop dynamics and disturbance rejection by

setting the reference signal equal to zero, r(t) = 0. We assume that the feedback

loop has an input disturbance signal with a constant amplitude and single frequency

component, d(t) =bi sin(wit). In a manner analogous to Roberge's presentation of

oscillator amplitude control (Chapter 12,[76]), we want to be able to analyze the AFC

closed-loop output and error signals from the amplitude dynamics alone, independent

of the detailed time variation of the sine and cosine waves. In order to do this, a few

assumptions must be made.

First, we assume that the sine and cosine channels of the single resonator AFC

system consist of multiple times-scales. By this we mean that the dynamics of the

plant transfer function P(s) are considered to be much faster than the dynamics of the

amplitude control loops. Said another way, the time scales on which the estimates of

the Fourier coefficients di(t) and bi(t) vary are slow compared to the plant output y(t).

We call y(t) the fast state while hi(t) and bi(t) are considered slow states [791. This

means that P(s) has essentially settled to steady-state before the AFC feedback loop

develops a significant error signal. We can ensure that the estimates of the Fourier

coefficients vary relatively slowly when compared to y(t) by selecting a sufficiently
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Figure 5-2: Closed-loop block diagram of the portion of the single resonator AFC

system designed to follow/reject the sine component of a signal with frequency wi.

Figure from [15]
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low controller gain value gi.

Secondly, we assume that the time variations of &i(t) and bi(t) are much slower

than the AFC resonator frequency wi. The applicability of this statement is shown in

the following analysis. Considering just the output sine channel of the single resonator

AFC system, as shown at the bottom of Figure 5-2, we see that the control input into

the plant is

6b(t)= 0(t) sin(wit), (5.1)

where 0(t) is some slowly time-varying amplitude. For simplicity, we have set db(t) =

b sin(wit) = 0. We will consider the effect of db(t) in more detail later. In order to

understand the envelope dynamics, at present we will assume that 0(t) is given by

0(t) = sin(at). (5.2)

Substituting (5.2) into (5.1) gives

1
6b(t) sin(wit) sin(at) = [cos(wi - a)t - cos(wi + a)t], (5.3)

2
1

= [cos wt - cosw+t] . (5.4)
2

where

= (wi - a), (5.5)

w+= (w + a). (5.6)

After reaching steady-state oscillation, the plant output yb(t), due to the control input

defined in (5.4), is given by

1
yb(t) = I [IP(jw-)I cos(wt + /P(jw-)) - IP(jw+)I cos(w+t + ZP(jw+))]. (5.7)2

Now, we assume the frequency a of (5.2) is much less than the frequency wi of

the modulator, a < w, and further that the magnitude and phase of the frequency
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-response of the plant P(jw) do not change significantly in the vicinity of wi. Then (5.7)

can be approximated by

1
yb t I (IP jW)I cos(w t + ZP(jw )) - IP(iWo)I cos(w+t + ZP(jwO))). (5.8)2

Recalling w+ = (P + a) and w_ = (w, - a), this gives

1
Yb -IP(ciw)I (cOs(wit + ZP(jwi) - at) - cos(wit + ZP(jwi) + at)). (5.9)

Using the trigonometric relationship

1
sin a sin3 = [cos(a - 3) - cos(a + 3)], (5.10)

2

equation (5.9) reduces to

yb (t) I P(i)I sin(wit + ZP(jwi)) sin(at). (5.11)

Thus, for a sufficiently slow time-varying bi(t), the output of the sine channel for the

single resonator AFC system can be approximated as

Yb(t) IPUiw0) sin(wit + PUji))b(t). (5.12)

Thus (5.12) shows that as long as the feedback loops for the sine and cosine

channel in Figure 5-1 have a much lower crossover frequency than wi, we can analyze

the amplitude dynamics of the AFC loop alone, independent of the time-variation of

the sinusoids. This approximation is akin to the analysis given in Roberge Chapter

12,[76].

Our simplification begins by viewing the control input to the plant 3 b(t), as shown

in Figure 5-2, as the difference between the estimated and actual disturbance signal

Fourier coefficient multiplied by a sine wave,

6b(t) = Ub(t) - db(t) = [b(t) - bi] sin(wit). (5.13)
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Figure 5-3: Simplification of the closed-loop block diagram for the sine channel of
the single resonator AFC system. The reference signal rb(t) has been removed from
frames A-D for simplicity and replaced in frame E. This Figure adapted from [15].
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Next, we define the difference between the estimated and actual disturbance signal

Fourier coefficient as

bAMP(t) = [I(t) - bi] , (5.14)

where bAMp(t) is the amplitude dynamics of the decoupled sine channel oscillator

amplitude control loop. Thus, we can group the second sinusoidal modulator and

plant transfer function together, as shown in Figure 5-3-A.

Next we employ the quasi-steady assumption in (5.12) to remove the plant transfer

function from the feedback loop and view the output of the oscillator as a magnitude

attenuated and phase shifted sinusoid of frequency wi. The resulting simplified block

diagram is illustrated in Figure 5-3-B. The resulting oscillator output is given by

Yb(t) = bAMP(t)IP(jwi) sin(wit ± LP(jwi)), (5.15)

which is equivalent to the results obtained in (5.12) with the addition of multiplication

by the disturbance magnitude bAMP(t).

We further simplify the loop by moving the second modulator from the output,

around the feedback loop, and grouping it with the modulator in front of the inte-

grator. Since

Oi = ZP(jWi), (5.16)

the two sines may be grouped together as

sin(Wit + LP(jwi)) sin(wit + #j)] = sin2 (Wit + i). (5.17)

(5.18)

Figures 5-3-B and 5-3-C illustrates this process. Using the following trigonometric

relationship
1

sin 2 a= -(1 - cos 2a), (5.19)
2
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the squared modulator term in Figure 5-3-D is equivalent to

sin 2 (w t + #,) = - [1 - cos 2(wit + 0i), (5.20)
2

which consists of a DC term and a second harmonic of wi. Since this amplitude

feedback loop is inherently low-pass, the high-frequency second harmonic can be

removed from the analysis, leaving only the average DC component. That is, we

replace the sin 2 term with simply a gain of 1 . A similar approximation and analysis

is used in [10] and [103] to estimate the phase, magnitude, and frequency of periodic

signals of unknown frequency.

Figure 5-3-E illustrates the final simplified sine channel of the single resonator

AFC closed-loop block diagram. Here, we have defined the reference and disturbance

input as bREF and bDIST, respectively, where bREF is the magnitude of the reference

input

rb(t) = bREF sin wit. (5.21)

Also, we have defined the average oscillator amplitude error and output amplitude

envelope as eAMP(t) and %Ib(t) respectively. The average oscillator amplitude error is

given by

eAMP(t) = [bREF - bAMP(t)], (5.22)

which equals the average DC component of the plant output (sinusoidal oscillator

output) yb(t) combined with the first sine wave modulator (amplitude detector), while

the oscillator output amplitude envelope is

'Jb(t) = |P(jwi)jbAMp(t), (5.23)

which is equivalent to the amplitude dynamics of (5.12).

In Figure 5-3-E, we refer to the combination of the AFC proportional gain gi and

integrator as the OAC amplitude stabilization controller. This controller integrates
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the average oscillator amplitude error to create the controlled amplitude output enve-

lope 'b(t) which, when modulated with the ZP(jwi) phase shifted sinusoid, provides

the approximate AFC closed-loop output (ybOAC(t)) to a reference/disturbance sine

wave with frequency wi. The output of the sinusoidal oscillator is

YboAC (t) = Ib(t) sin(wit + LP(jWi)), (5.24)

which is equivalent to the output of the sine channel for the single resonator AFC

system, as defined in (5.12). This closed-loop block diagram serves as our OAC

perspective for the decoupled sine and cosine channels of the single resonator AFC

system.

The loop transmission of the time averaged envelope of the decoupled sine and

cosine channels is thus given by

L(s) = - ,PW (5.25)
2s

and the characteristic equation is of the form

1 - L(s) = 0, (5.26)

or

2s + giIP(jwi)I = 0. (5.27)

Thus, under the assumption that the dynamics of the feedback loop are slow relative

to the oscillation frequency, the OAC closed-loop pole is located at

_ gIP(jWi)I 5.8
SOAC- 2 sec. (5.28)

Further , the first order time constant Ti is

2
rTi = sec. (5.29)

g9P(jw8)(
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The output of the sine only OAC system becomes

YbOAC(t) = '1b(t) Sin (wit+ iZP(wi)) (5.30)

= bjP(jwi)te-'/1 sin (wit + ZP(jwi)). (5.31)

An equivalent result is presented in [77] using an averaging analysis. The advantage of

this analysis is that it gives a model for the time-evolution of the envelope amplitude,

and thus allows us to understand the settling characteristics of the AFC loop.

To this point the analysis assumes that the phase advance parameter is set prop-

erly as #i = ZP(jwi). In the following analysis, we consider the case where this

equality is not enforced. If we do not use the phase advance parameter in the single

resonator AFC controller (0i = 0), then the combined sinusoidal modulators are

sin(wit + LP(jwi)) sin(wit). (5.32)

Note that this analysis is only valid if d(t) contains no cosine component and ignores

the coupling from the sine to the cosine channel. The coupling will be explored in

more detail later in this chapter. Using the trigonometric relationship

1
sin a sin 3 =- [cos(a - /3) - cos(a + 3)], (5.33)

2

equation (5.32) can thus be re-written as

sin(wit + ZP(j'w)) sin(wit) = [cos(LP(jwi)) - cos(2wit + ZP(j'w))] . (5.34)

Once again dropping the higher harmonic terms, the loop transmission for the de-

coupled and simplified sine and cosine channels of the single resonator AFC system

is given by

L(s) = - gIP (jwi)| Cos (zP(jo)), (5.35)
2s
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and the dominant closed-loop pole is now located at

gi IP (jwi) ICos (Z P(jj)) _
SOAC = - 2 sec 1 . (5.36)

From (5.36), we see that if the plant contributes 00 of phase lag at the resonator

frequency wi, then as the pole moves to the origin the closed-loop settling time will

be the same as given in (5.29). However, with #i = 0, as ZP(jwi) approaches ±90',

then the time constant grows Ti -- o, since

7r
cos(±) = 0. (5.37)

Also, again for 4O = 0, if E < LP(jwi) < 3, the resulting loop transmission effectively

creates positive feedback and hence will be unstable. This result re-emphasizes the

importance of using a properly chosen qi with an AFC controller.

The physical meaning of this result is as follow. We see that the single-channel

OAC loop gain goes to zero as the unmatched phase #i = LP(jwi) approaches ±r/2.

This occurs because the sine demodulator gives no DC output for a cosine input,

since the average of the product /sin(wit) cos(wit) is zero. That is, if the AFC is

outputting sin(wit), but the plant has ±7/2 phase shift at this frequency, then the

error signal will be a ± cos(wit), which results in zero average at the integrator.

In this section, we simplified the sine channel of a single harmonic AFC resonator

to determine the time-evolution of the amplitude estimate. In the next section, we

simulate and compare the amplitude estimate and the total output of the approximate

OAC system and a single resonator AFC controller.

5.2 Example of sine-channel OAC

In this example, we consider a single resonator AFC system designed to reject a

constant amplitude disturbance input given by

di(t) = b1 sin wit (5.38)
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where the parameters are selected as bi = 1 and wi = 225 rad/s. Setting the phase

advance parameter q1 = ZP(jwi) decouples the sine and cosine channels and allows

us to evaluate the system response using only the sine channel OAC model. The

cosine channel will have identical dynamics. We assume a simple second order plant

model

P(s)= " (5.39)
s2 + 2(wns + W2

where the parameters are selected as w, = 250 rad/s and ( = 0.707. The key OAC

parameters are

IP(jwi) = 0.777 (5.40)

01 = -1.423 rad (5.41)

bREF = 0 (5.42)

bDIsT = 1. (5.43)

In order to ensure that the simulation matches our quasi-static approximation from

the previous Section, we allow the plant to reach a steady-state output in response to

the disturbance input before activating the OAC and AFC control loops (we allow 1

sec. for the plant to reach steady-state in this simulation). We compare the systems

at four different gains (91 = 5, 10, 25, and 50).

For this simulation, we are interested in five things:
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boAc(t) = the Fourier coefficient estimate of the OAC approximation. This

is the output of the OAC integrator.

bAFC (t) = the Fourier coefficient estimate of the AFC sine channel. This

is the output of the AFC sine channel integrator.

%Ib(t) = the convergence envelope of the OAC approximation. This is

the output of the OAC loop prior to the sinusoidal modulation

to form ybOAC(t).

YbOAC(t) = the temporal output of the OAC approximation.

YAFC(t) = the closed loop temporal output of the simulated plant under

closed-loop AFC control.

Note 'b(t), the convergence envelope of the OAC approximation is

qIb(t) = bDIST.P(jwLi)|e (5.44)

where ri is the time constant of the OAC approximation as defined in equation 5.29.

The 'b(t) plotted in Figure 5-6 is calculated from this. This envelope should perfectly

encapsulate the measured YoAc(t) and if our approximation is correct closely follow

yAFC(t). An important thing to remember when we look at our results is the signal

YAFC(t) is composed of the output of both the sine and cosine channels of the AFC

controller.

Figure 5-4 plots the estimate of the Fourier coefficient bAFC(t) and bOAC(t). As

we can see, the estimates match very well. The elimination of the 2nd harmonic from

the OAC approximation is validated by these results since the 2nd harmonic is only

apparent in the AFC estimate at high gain values gi > 25. Figure 5-5 shows a zoomed

view of the Fourier coefficients for the gi = 50 simulation to better illustrate the 2nd

harmonic. Figure 5-6 compares the output yAFC(t), the output of yboAc(t), and the

amplitude envelope 'b(t). As we would anticipate from the results in Figure 5-4, the

OAC approximation correlates very well with the AFC output while 'Jb(t) provides

an accurate estimate of the AFC decay envelope.

These results show that there is excellent correlation between the approximate
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Figure 5-4: Comparison of the estimates of the Fourier coefficient b(t) of the distur-

bance signal d(t) using a single resonator AFC system and a sine only OAC loop.
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Figure 5-5: Zoomed view of the comparison of the estimates of the Fourier coefficient

b(t) of the disturbance signal d(t) using a single resonator AFC system and a sine
only OAC loop for gi = 50.

sine-only OAC system and the actual AFC system for a sine-only disturbance even at

moderately high system gains. In the next section, we extend the OAC approximation

to both the sine and cosine channels.

5.3 Simplified AFC system with Simultaneous Sine

and Cosine channels

In this section we will employ the same techniques we used to simplify sine-only

channels to simplify the entire AFC loop. Figure 5-7 illustrates the first few steps in

the AFC loop simplification. Figure 5-7-A graphically shows the block diagram of a

standard single resonator AFC system. The reference input to the system is defined

as

r(t) = Ra cos wit + Rbsinwit (5.45)
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Figure 5-6: Comparison of system temporal outputs y(t) and yOAC(t) for a single

resonator AFC system and a single OAC loop. Note: the yAFC(t) signal contains

both the sine and cosine channels.
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Figure 5-7: Simplification process for a single resonator AFC system.
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while the disturbance input to the system is

d(t) = ai cos wit + bi sin wit. (5.46)

To begin the simplification process, we divide the disturbance signal into it's sine and

cosine component and move them back through the sine and cosine multiplier in the

AFC resonator. The results of this process are shown in Figure 5-7-B.

Next, we employ the same quasi-steady assumption (5.12) we used in simplifying

the sine-only loop to replace the plant transfer function (P(s)) with a simple gain

IP(jwi)I and associated phase shift LP(jwi)) in both the sine and cosine loops. To

clarify the separation of the sine and cosine loops, we separate the sine and cosine

loops on the left side of the block diagram by adding the reference signal (r(t)) into

the sine and cosine loops individually. The results of these two steps are shown in

Figure 5-7-C.

Next by following the signals around the loop we arrive at the following two

relationships

d(t) = gi[Ra cos wit + Rb sinwit - TIa(t) cos (wit + ZP(jo))

-Ib(t) sin (wit + /P(jwi))] cos (wit + #i) (5.47)

d
+b(t) = gi[Ra cos wit + Rb sin wit - qI'a(t) cos (wit + LP(jwi))

-Ib(t) sin (wit + ZP(jwi))] sin (wit + #i) (5.48)

Employing Werner's trigonometric identities (equation (5.33) is Werner's identity for

the sine functions) in equations (5.47) and (5.48) results in the following

d(t)= i[R[cos(-#i) + cos(2wit + 0i)]
dt 2

Rb[sin(-#i) + sin(2wit + )]

-a(t)[cos (ZP(jwi) - 0i) + cos(2wit + #i + ZP(jwi))]

-b(t) [sin (ZP(jwi) - 0i) + sin(2wit + #i + ZP(jwi))]] (5.49)

db(t) = [Ra[cos(2wit + 0/) - sin(-#i)]
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Figure 5-8: Simplified block diagram of AFC system with #i = 0. Note decoupled
input channel.

Rb[cos(-Oi) - sin(2wit + 0)]

-TJa(t)[sin(2wit + 0i + LP(jwi)) - sin(LP(jwi) - 0j)]

-I'b(t)[cos(LP(jWi) - 0j) - cos(2wit + 0i + LP(jwi))]]. (5.50)

Removing the double-frequency terms, these expressions simplify to

d(t) = [Ra cos (-0i) + Rbsin (-i)
dt 2

-Xa(t) cos (LP(jWi) - #i) - Tb(t) sin (ZP(jwi) - 05)] (5.51)
d6(t) = [-Rasin (-i) + R cos (-#i)

dt 2
+xPa(t) sin (ZP(jwi) - #i) - X(t) sin (LP(jWi) - #j)). (5.52)

Equations (5.51) and (5.52) show that the sine and cosine channels have both

coupled inputs and coupled feedback loops. In the case where the phase advance

parameter is not implemented (0i = 0), the input channels are decoupled. The block

diagram for this system is shown in Figure 5-8. Setting the phase advance parameter
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Figure 5-9: Simplified block diagram of AFC system with q5 = P(jwi). Note decou-
pled feedback channel.

Oi = ZP(jwi) decouples the feedback channel but results in coupled inputs; Figure 5-

9 shows the block diagram for this system. The matrices coupling the inputs and

feedback loops in Figures 5-8 and 5-9 are similar to the rotation matrix used to

couple the sine and cosine channels in Higher Harmonic Control (HHC) [37] and the

rotation matrix used to couple the sine and cosine in Automatic Vibration Rejection

(AVR) [89].

In the special case where Ra(t) and Rb(t) are constants or the ratio Rb(t)/Ra(t)

is a constant and we have selected q5 = ZP(jwi), we can replace the inputs into the

decoupled sine and cosine loop with equivalent reference signals. In the case that

Ra(t) = Ra and Rb(t) = Rb, the equivalent reference inputs may be expressed as

Raeqv Racos(-i) + Rbsin(-Oi) (5.53)

Rbeqv -Rasin(-i) + Rbcos(-Oi). (5.54)

In the constant ratio case, the equivalent inputs are expressed as

Raeqv = Ra(t)[cos(-i) + Ksin(-)] (5.55)

Rbeqv = Ra(t)[Kcos(-$i)-sin(-Oi)] (5.56)

209



where

K Rb(t)
Ra(t) (5.57)

We will use this result later to write an expression for the time output of the decoupled

sine and cosine channels.

When #i = ZP(jwi), the loop transmissions of the sine and cosine loops are

decoupled and equivalent:

L(s) g P(jw )
L~s) - 2s (5.58)

Thus the characteristic equation for both loops is

+ gPjW)= 0
2 (5.59)

with a pole at

gs P=W -
2

(5.60)

and thus the associated time constant

2

gilP(ijW)L
(5.61)

This is the same result achieved for the simplified sine channel.

The time output of the dual channel OAC system yOAC(t) is given by

yOACt IP(ji)['Ja(t) cOS(wit + ZP(j*w)) + 'b(t) sin(wit + ZP(jwi))](5.62)

In the special case where reference inputs Ra(t) and Rb(t) are constants or the ratio

Rb(t)/Ra(t) is a constant and we have selected /, = ZP(jwi), we can find the total
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solution to each loops characteristic equation (5.59):

Pa(t) IP(jwi) Raeqv(1 - et/ri) + aie-t/ri) (5.63)

'Ib(t) j P(j'i )Rbeqv( I- et/Ti) + bj6t/Ti) (5.64)

where T is determined from (5.61), Raeq is determined by either (5.53) or (5.53),

and Raeq is determined by either (5.54) or (5.54). Recall ai and bi are the Fourier

coefficients of the disturbance input. Thus

YOAC(t) = JP(jj)j[Raqv(1 - e-'/'Ti) + aie'/'ri]cos(wit + 0j)

+[Rbeqv(1 - e~t/i) + bie-'/i] sin(wit + 01)]. (5.65)

As we learned in Chapter 4, the choice of resonator phase qi is important to the

overall loop stability. Since an incorrect selection of #i results in cross-coupling of

the OAC sine and cosine channels, this cross-coupling result effectively indicates a

destabilization of the AFC system. More specifically, we would like the sine channel

of an AFC resonator to detect and compensate only the sine component of the error

signal. Similarly, we would like the cosine channel of an AFC resonator to detect and

compensate only the cosine component of the error signal. When coupling is present,

the sine and cosine channels are detecting and compensating for both sine and cosine

components. If the cross-coupling is severe enough, the system will become unstable.

In this section, we applied our OAC approximation to both the sine and cosine

channels of a single resonator AFC controller. We used this simplification to derive

time output expressions for of estimates of the Fourier coefficients for both the sine

and cosine. In the next Section, we use a simulation to verify our results.

5.4 Example of dual channel OAC

In Section 5.2, we compared the output of the OAC sine channel and the AFC system

to a sine disturbance. In this section, we compare the output of the combined OAC
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sine and cosine loops with #1 = ZP(jwi) (the system shown in Figure 5-9) to a single-

resonator AFC system with a disturbance containing both sine and cosine terms. The

plant parameters and disturbance frequency used for this evaluation are identical to

that in Section 5.2. Just as in Section 5.2, we allow the plant to reach steady-state

before engaging OAC or AFC control. The disturbance is given as

di(t) = a, cos wt + b, sin wt (5.66)

where a, = 0.5 and b1 = 1. The reference inputs are

Ra = RbO = 0. (5.67)

yOAC(t) can be determined by substituting the simulation conditions into Eqns.

(5.65),(5.53),and (5.54). The decay envelope Ti(t) for yOAC(t) can be calculated

by by combining the sine and cosine components of the yOAC(t) signal into a single

sine term using harmonic addition as follows:

yOAC(t) =IP(j i)I[e-t/s(aicos(wot+LP(jwi))+bisin(wit±ZP(jwo))]

= IP(J)I[ a + b e- t ri sin(wit + ZP(jwi) + )] (5.68)

i= tan- (a±) (5.69)

The decay envelope is thus

i(t) = IP(jw|)I a + b e- 1 '. (5.70)

We evaluate this system at four gains (g = 5,10,25, and 50).

Figure 5-10 plots the parameter estimates d(t) and I(t) for the AFC system and

the simplified dual channel OAC system. Just as in section 5.2, we see that OAC

and AFC parameter estimates are nearly identical for low gains but as the resonator

gain is increased the second harmonic components in the AFC system become more

prominent and the estimates diverge slightly. Figure 5-11 shows a zoomed view of
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Figure 5-10: Plot of AFC and OAC parameter estimates d(t) and b(t) versus time for
gi = 5, 10, 25, and 50.
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Figure 5-11: Plot of AFC and OAC parameter estimates &(t) and b(t) versus time for

g, = 50.

d(t) and b(t) to better illustrate the divergence for gi = 50. Figure 5-12 plots the

output of the OAC system yOAC(t), the output of the AFC system yAFC(t), and the

decay envelope 1(t). The OAC system and the decay envelope provide an excellent

approximation of the AFC system for the dual channel system. In the next Section,

we will expand the OAC view point to controllers with multiple AFC resonators.

5.5 Multiple Resonator AFC System viewed from

an OAC Perspective

In order to view a multiple resonator AFC system from an OAC perspective, we

look at each AFC resonator individually. First we analyze the particular amplitude

dynamics of each resonator separately and then use superposition to approximate

the entire closed-loop response. For a multiple resonator AFC system designed to

follow/reject N frequency components, there exist 2N estimates of the Fourier coeffi-

cients with N values of gi, wi, and #i respectively. Implementing the phase advance

parameter #5 = ZP(jwi) effectively decouples the systems into 2N individual OAC

214

-....--.--.

-- (-)-AFO.... . b t .

- b(t) AFC
a(t) AFC^
b(t) OAC ..

--- (t) OAC

...-.........---.--.--



E

-y(t) AFC
--y(t) OAC

0.5 .. . .- (t)

0

-0 .5 - ..-.-.- . ... .-.... . .. .-:.-- -. ..-- -. ..-- -.:.-- - --

4ggi=5

0.5 1 1.5 2 2.5

Time(s)

0.5 1 1.5

Time(s)
2 2.5

0 .5 .......-- .- ..-.--.-L)

E

-y(t) AFC
-- y(t) OAC

gi=10O

-0.5

1 . .. ...

E)

E

0.

-0.5

0 0.5 1 1.5 2 2.

Time(s)

L- y(t) AFC
--y(t) OAC

5 1 .. . .--- .. -- - - - (t)-

nL

0 0.5 1 1.5

Time(s)

5

2 2.5
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loops, where the dynamics of the sine and cosine channels at each frequency are

identical and characterized by (5.36). Thus for a multiple loop OAC system, we can

estimate the output amplitude in response to a disturbance input as

N

f(t) ~- JWi(t). (5.71)
i=1

From (5.70)

'i(t) =P(jUw) a? + bi (5.72)

where from (5.61)

2
i (5.73)

gilP(jwi)l

and where

N

d(t) = [ai cos wit + bi sin wit]. (5.74)

Defining the initial value of each decay harmonic as

I(0) = IP(jw)I a+b?. (5.75)

allows us to express the total amplitude envelope as

N

T(t) ~' Ji(0)e-t/. (5.76)

At this point we should note that while we have considered only the response of

OAC and AFC loops to disturbance inputs, a parallel analysis maybe performed to

predict the system response to reference inputs. When considering the response to

reference inputs, the error signals, eAFC(t) for the AFC system and eAMp(t) for the

OAC system, should replace yAFC(t) and yOAC(t) as the system outputs of interest.

To show the utility of (5.76) lets us consider a system with three AFC resonators
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i wi #i (rad) IP(jwil gi ai b ri (s)
1 75 -0.436 0.996 6.5 1 0.5 0.309
2 150 -0.925 0.941 6.5 0.25 0.5 0.327
3 225 -1.423 0.77 8.7 0.25 0.125 0.295

Table 5.1: Listing of the parameters for multiple resonator example.

0 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ... .---- ------- -. .. ..--.. - - . . -- -- -- -- - - - - - - -- - --
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Figure 5-13: Frequency response of the negative loop transmission for the multi-

resonator AFC system.

at w, = 75, w2 = 150, and w3 = 225 rad/s. Using the same second order plant model

used in sections 5.2 and 5.4, we maximize the phase margin of the AFC system by

setting #i = LP(jwi) and select gi such that the minimum gain margin of combined

plant and AFC system is 20 dB. The key AFC, OFC, and disturbance parameters

are listed in Table 5.1. Figure 5-13 shows the frequency response of the negative of

the loop transmission of the combined plant and AFC system. This is a standard

analysis (not OAC) and so is useful for stability considerations but does not give a

model for the envelope dynamics. For this, we turn to an OAC perspective.

Figure 5-14 compares the estimate of the Fourier coefficients &i(t) and bi(t) for
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Figure 5-14: Comparison of the estimates of the Fourier coefficients &i(t) and bi(t)

of the disturbance signal d(t) using a multi-resonator AFC system and parallel OAC

loops.

the multi-resonator AFC system and the multi-loop OAC approximation. As can be

seen, the OAC systems does a good job of predicting the first order convergence of

the AFC system but does not contain the higher harmonics that are generated by the

AFC system through coupling of the individual resonators. Figure 5-15 compares the

AFC temporal system output yAFC(t) and OAC system output yOAC(t). The OAC

output yOAC(t) and the AFC output yAFC(t) match quite well. The predicted decay

envelope I(t) does an excellent job of predicting the maximum magnitude of the AFC

system output. The picture is slightly complicated by virtue of the sinusoidal signal

adding destructively with positive amplitude.
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Figure 5-15: Comparison of system outputs y(t) and yOAC(t) for a multi-resonator

AFC system and parallel OAC loop.

5.6 Limitations of the Oscillator Amplitude Con-

trol Perspective

While the OAC approximation provides some valuable insight into the performance

of AFC system, the OAC approach has a number of limitations. The first limitation

is that the accuracy of the OAC approximation is highly dependant on the estimates

IP(jwi)I and ZP(jwi). As derived in section 5.1, the time constant ri of the OAC

approximation is inversely proportional to IP(jwi)l while the magnitude of the am-

plitude envelope, TI(0), is proportional to IP(jwi)l. Thus any errors in the estimate

of IP(jw) I result in errors in both the convergence of the amplitude envelope and the

magnitude of the amplitude envelope. Similarly in sections 5.1 and 5.3, we showed

that the independence of the OAC loops is dependent on Oi = ZP(jwi). If our esti-

mate of LP(jwi) is off, significant errors may result in the OAC approximation due

to the coupling of the AFC sine and cosine channels. In our examples, we use a
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Figure 5-16: A common control system block diagram for systems using AFC res-
onators.

well-defined simulated plant, thus our simulated results do not include these errors.

In real systems, the characteristics of the plant are often either not well known or

vary with time. In the case of unknown plant characteristics, errors in the estimates

of IP(ji)i and ZP(jwi) can be avoided by directly measuring the frequency response

of the plant at the desired AFC frequencies. To reduce plant variations with time, an

inner feedback loop using conventional control techniques (PID, lead-lag, pole-zero

placement, ect.) can be established to provide a more predictable plant for the outer

AFC loop.

The second limitation is the quasi-static assumption (5.12) used to simplify the

sine and cosine loops. This assumption applies only if the magnitude and phase

of the plant change slowly near the frequency of the resonator. In the following

analysis, we will explore the limits of the quasi-static assumption by using a Fourier

transformation analysis of the sine only loop signals to derive a more accurate model

of the loop response.

The block diagram for the sine-only OAC structure is shown in Figure 5-2. If we

break the loop after the integrator and assume that b(t) is of the form

b(t) = sin at (5.77)
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where a < w. The signal u(t), the input to the plant P(s), becomes

u(t) = sin at sin wot. (5.78)

Since we are working with the frequency response of the plant P(s), we need to convert

the time signal u(t) to U(jw). The Fourier transformation of a signal is defined as

F(X(t)) = j x(t)e-' t'dt. (5.79)

One of the properties of the continuous Fourier transform is that multiplication in

the time domain is equal to convolution in the domain

F(x(t)y(t) = X(jw) * Y(jw) = J X(jW)Y(j(w - W))dW. (5.80)

More information of the properties of Fourier transforms can be found in [70]. Thus

we can determine the Fourier transform of u(t) as follows:

.F(u(t)) = F(sin at) * .F(sinwot) (5.81)

F(sin wot) = 27r (W 2W 2 (5.82)

.F(sin at) = 27r 6(w a) 6(w + a) (5.83)
2j 2j

U(jw) = 27r (6(w-WO) 6(w+WO) * (6(w+ a) 6 + a)) (5.84)
2j 2j 2j 2j

U(jw) 2J (6 (W - wo) 6(W + wo)

-o0 2j 2j

(6(w- a -W) 6 (w + a W) dW (5.85)

U(jw) = [6(w - wo + a) - J(w - wo - a)
2

+i6(w + WO - a) - 65(w + wo + a)]. (5.86)
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Using the frequency response of the plant P(s) and the Fourier transform U(jw), we

can determine the Fourier transform of y(t).

y(t) = P(t) * UN(t) (5.87)

Y(jW) = P(j)U(jw) (5.88)

= i(IP(j(wo - a))ejZP(j(wo-))6(w - wo + a)
2

-IP(j(a + wo))eZP(j(c+won (w - wo - a)

+IP(j(a - wo)) eiZP(j(-wo)) (w + wo - a)

-IP(-j(a + wo))IejZP(-j(a+wo))6(w + wo + a)). (5.89)

We then define

P = IP(j(wo - a))ejzP(j(wo-)) (5.90)

P2 = jP(j(a + wo))ejZP(j(a+wo)) (5.91)

P3 = jP(j(a - wo))IejLP(j(wL0)) (5.92)

P4 = IP(-j(a + wo))IejP(-j(a+wo)). (5.93)

The Fourier transform of the error signal E(jw) is expressed as

E(jw) = (P2(W - WO - a) - P6(W - WO + a)

+P 46(w + wo + a) - P36(w + wo - a)). (5.94)

The error signal is now multiplied by the second oscillator such that

- I+(t) E(jw) * .F(sin(wot + #)) (5.95)

= E(jw) * 6(w - WO) e i06(O + wo)) (5.96)
2j 2j j

- L((Pie- + P4ej)6(w + a) - (P2ejO + P3ej)6(w - a)
4j

-P 4e-6(w + 2w0 + a) + P3 e-jO5(w + 2wo - a)

-Piej"6(w - 2wo + a) + P2ej"6(w - 2wo - a)). (5.97)
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Ignoring the higher harmonic components of (5.97), 2b(t) can be express as

db(t) = Psin(at + T) (5.98)

where

|PI = (P-cos - + P+ cos qI+)2 + (P- sin i- + P+ sin I+)2 (5.99)
_ P-sin1-+ P~sin'I+~

T = tan 1 P-sI'-±Pcs (5.100)
(P--cosf- + P+ cos'F+)

~ = P(j(wo - a)) - LP(jWo) (5.101)

+ = LP(j(wo + a)) - ZP(jwo) (5.102)

P~ = IP(j(wo - a))1 (5.103)

P+ = P((wo + a)) (5.104)

As we can see, the inclusion of frequency response characteristics of the plant

can result in a magnitude and phase shift in the estimate of b(t). This variation is

particularly apparent when the magnitude and phase of the plant change rapidly with

frequency. To illustrate this result, we use our sample second order system (5.39) but

select w, = 250 rad/s and ( = 0.1 so that the frequency response has more radical

phase and magnitude shifts, and compare the resulting phase and magnitude shift in

the estimate of b(t) as a function of a for wo = 50 and 250 rad/s. Figure 5-17 plots

the phase and magnitude shift of -b(t) as a function of a. As expected, the resonator

at wo is much more sensitive to a. This dependence on a once again emphasizes how

critical it is to have a well-behaved plant.

5.7 Summary

In summary, the OAC perspective allows us to accurately predicted the convergence

and error properties of control systems using AFC control for a broad range of con-

troller gains gi. Specifically, we found that AFC estimate of the Fourier coefficients

of an error signal is a first order response whose time constant is proportional to the
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Figure 5-17: Phase and Magnitude shifts as a function of a for a second order plant

(w, = 250 r/s and ( = 0.1) for resonators at wo = 50 and 250 rad/s.
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AFC gain gi. Thus for rapid error cancellation, we would like to set the controller gain

as high as possible. The OAC perspective also reinforced the importance of properly

selecting the AFC phase parameter #i. Just as the loop shaping perspective of AFC

control from Chapter 4 yields an optimal phase value of qi = ZP(jwj) for maximum

phase margin, the OAC approach shows that setting i = LP(jow) results in the

fastest estimation of the Fourier coefficients of the error signal for a given controller

gain. Lastly, we found that the OAC approximation is limited to systems where the

phase and magnitude of the plant have only small changes across the frequencies of

interest. In the next Chapter, we present the actual controller implementation where

we actually apply our loop shaping techniques to apply AFC control to both the fast

tool servo and the in-feed stage.
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Chapter 6

Control System Implementation

This chapter details the design and implementation of the controllers used on the

linear fast tool servo. In the first section, we detail the design and discrete-time

implementation of the conventional controllers on both the fast tool servo and the

hydrostatic stage. In the second section, we utilize the design rules detailed in Chapter

4 to apply adaptive feedforward cancellation to the fast tool servo. In the next section,

we detail the design process used to implement AFC acceleration feedback on the

hydrostatic stage. Lastly, we detail the implementation of an amplitude modulated

adaptive feedforward cancellation controller on both the fast tool servo and machine

stage.

6.1 Conventional Control

The position controllers for both the fast tool servo (FTS) and the reaction mass stage

incorporate multiple control loops. The controller for the fast tool servo, shown in

Figure 6-1 consist of a conventional lead-lag inner loop, a repetitive control outer loop,

and a feedforward command channel. The controller for hydrostatic slide/reaction

mass, shown in Figure 6-2 consist of lead-lag conventional controller incorporating a

high frequency pole, a feedforward command channel which scales and phase shifts

the fast tool servo trajectory, and a repetitive base acceleration control outer loop.

Figure 6-3 shows the overall control structure with both the FTS and reaction mass
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Feedforward Filter

-1I n Disturbance Forces
n=1,..,NW(s)

C11(Jz )ia +(...)-. G .... I Gps Z(s)

Figure 6-1: Overall fast tool servo control system block diagram, including a conven-

tional lead/lag control loop, command pre-shifting, and repetitive control.

Za(z) = 0

MS FTS Reaction Forces
Zd(z) Mb- + Disturbance Forces

from FTS W(s)
Feedforward Filter

I Ga(z) C1(z) I )- G)(Z) Gp(s) Z(s)

HAcceleratiron
Controller P(z) Conventional

Inner Loop

CN(Z)

C(z) Repetitive Control f(

High P Ms b Machine Base
ihtPr Acceleration

FilterAb(s)

Figure 6-2: Overall hydrostatic stage/reaction mass control block diagram including

a conventional lead/lag control loop, position command pre-shifting, and a repetitive

base acceleration control outer loop.
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Figure 6-4: Free body diagram of the fast tool servo, hydrostatic stage, and machine
base system.

controller. In this Figure, we see that the FTS control loops are coupled to the

reaction mass controller through the mixing of the measured positions. Similarly, the

reaction mass controller is coupled to the FTS controller through the FTS actuation

forces. In this section, we will detail the conventional controllers for both the fast

tool servo and hydrostatic stage.

6.1.1 Fast Tool Servo Model and Position Control

Plant Model

Figure 6-4 shows the free body diagram of our fast tool servo, hydrostatic stage/reaction

mass, and machine base system. As can be seen, we propose to treat all three compo-

nents as free masses linked only by the actuation forces required to follow the desired

paths. In the case of the fast tool servo, this model is quite appropriate since the

fast tool servo is supported by a nearly friction free air bearing and actuation forces

are generated by a linear motor. The forces exerted by the motor cooling tubes and

power wires have been minimized by design and are neglected in our model. Thus,

the transfer function of the fast tool servo can be expressed as

1
Go(s) = 1 2 . (6.1)

Mfts
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Our ProE model predicted that the moving mass of the fast tool servo, including the

cooling oil but not the power wires and tubing, would be 3.011 kg. The measured

moving mass of the fast tool servo without oil, motor cables, tubing, and miscellaneous

hardware was 2.93 kg. For analysis, I assumed that the moving mass of the fast tool

servo was

Mft8 = 3 kg. (6.2)

Forces are applied to the free mass by the linear motor which has a measured force

constant of

Kf = 35.4 AN (6.3)
Arms

as developed by Michael Liebman in his Master's thesis [46]. Since the motor has

three phases and we are commanding DC current not the RMS current, we need to

include the following conversion constant

KDCtoRms = vr/ ADM (6.4)
V/3 ADC

which comes from the fact that for a three phase motor the DC current value is v'3/2

of the peak current and the RMS current is 1/x/2 of the peak current. The Copley

HPA-400-25 amplifier 'has a measured gain of

A A
V V=

The amplifier has a measured bandwidth of 2 kHz, a factor of 4 greater than our

desired bandwidth, so I have ignored the amplifier dynamics. Thus the complete

model of the continuous time elements of the model is

KcopKDCtoRmsKf _ 38.5 6.6GP (S) = "MPS 2 S2-.'
MftSS2  

- (6.6)

1This amplifier was kindly donated by Copley Controls Inc. of Canton, MA [19]
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Since our controller is implemented digitally with a sample time of T,=80 ps

(12.5 kHz), we need to convert our continuous time model Gp(s) to a discrete time Z

transform equivalent. For this analysis I have chosen to employ a bilinear transform,

often referred to as Tustin's method [22], where

2 z- 1 (67)

T, z + I

The resulting FTS transfer function is

Gp(z) = 61.6x10- 9  .2 2z+1 (6.8)Z 2 - 2z + I*

Before we can begin to design our controller, we need to take into account a couple of

digital hardware issues. First, on the DS1103 board the digital to analog converters

(D/A) have a gain of 10 while the analog to digital converters (A/D) have a gain of

0.1. We are generating the amplifier input by converting a discrete time number into

a voltage, thus we need to include the D/A gain in our model. We are measuring the

FTS position, the transfer function output, with a MicroE M3500Si serial interface

encoder. The serial interface between the DS1103 and encoder electronics is handled

by the DS1103 Slave DSP. The code as implemented on the Slave DSP results in

a one unit delay in collecting the position data. There is an additional unit delay

generated in transferring the data from the Slave DSP to the main DSP. A discrete

unit delay is represented as

-. (6.9)
z

Thus with the D/A gain and the 2 unit delay, the transfer function becomes

Gp(z) = 616x10-9 Z (6.10)
z 4 -2z 3 + z 2

The serial interface transfers a 30-bit position word with a displacement of 0.0048828

Pm/count. I have chosen to use mm for my internal controller units which means I
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Figure 6-5: Experimental frequency response of the fast tool servo from a commanded
current in dSpace (1 Amps peak) to measured fast tool servo position (mm). The

solid line shows the measured response while the dashed line shows the predicted
response.

need to include a conversion factor

mm
Km-mm = 1000 -. (6.11)

m

Lastly, I have employed saturation blocks in my discrete time controller to limit the

current output of the amplifier. To prevent error in selecting the proper saturation

limits, I have chosen to null the amplifier and D/A gains so that a unity controller

output results in a 1 A amplifier output. The resulting discrete transfer function is

Gp(z) = 15.4x10- 9 z + 2z + 1(612)
z4 - 2z3 + z 2 (

Figure 6-5 show the open loop frequency response of the fast tool servo from a

commanded current in dSpace (1 Amp peak) to measured fast tool servo position.

The solid line shows the measured response while the dashed line shows the predicted
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Encoder Error
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Figure 6-6: Block diagram of the fast tool servo conventional position control loop.

response. The measure and predicted response match quite well from 2 to 1000 Hz.

The deviations at low frequencies are due to the high gain of the transfer function

(ie. a very small current results in a large motion). Above 1000 Hz, we observe

some unmodelled dynamics in the magnitude plot. In particular, it appears that the

first resonance mode of the fast tool servo structure occurs at 1600 Hz. Since the

peak associated with this resonance is relatively mild, we did not have to modify our

control structure to attenuate this response. Similarly, we observe deviations in the

phase response. Some of these deviations are directly related to the unmodelled fast

tool servo dynamic response seen in the magnitude plot, but the rapid phase roll-off

observed above 1000 Hz is likely caused by the amplifier dynamics (as previously

noted the amplifier has a bandwidth of 2 kHz) which are not included in my model.

Since the predicted and measured response match well in the frequencies of interest,

I elected to leave out the amplifier model even after noting the increased phase rolloff

at high frequency.

Position Control

The primary fast tool servo position control loop is composed of a single lead-lag

compensator. Figure 6-6 shows the block diagram for the fast tool servo conventional

position control loop. Both the lead and lag are placed in the forward path. The

lead compensator has a pole-zero separation of a = 10 and is centered at 300 Hz. In

continuous time, a lead compensator has the form

Glead(S) = + 1 (6.13)
TS+ 1
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where r = 11w and w = 27rf. I choose to implement this digitally as

=z - Lz
Glead(Z) = Lp (6.14)z - Lp

where Lz and Lp are

Lz = e-T8/\1' (6.15)

Lp = e-T"EVa (6.16)

and T, is the sample rate. This digitization method is called the matched pole zero

method and is found by extrapolating from

z = e T, (6.17)

the relationship between and s- and z- planes [301. One disadvantage of this form

is that the lead transfer function no longer has unity gain at low frequencies, but we

adjust for this when we select the overall G,. The Lead transfer function with a = 10,

a center frequency fc = 300 Hz, and T. = 0.00008 s is

z - 0.9534331

z - 0.62072928 (6.18)

In continuous time, a lag compensator has the form

Ts + 1
Giag(s) = TS (6.19)

TS

where w = 1/T = and is the frequency of the Lag zero along the negative real axis.

We have placed the zero at 30 Hz (one decade below the desired crossover frequency

of 300 Hz). We use the following discrete-time equivalent for the lag compensator:

Glag (Z) =(Tswz + 2)z + (wzT, - 2) (6.20)
2(z - 1)

where wz is the desired zero frequency in rad/s. This odd transfer function is a
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x[n] 'szl y[n]

Figure 6-7: A discrete-time lag compensator implemented with an anti-windup trape-
zoidal integrator.

result of the lag implementation shown in Figure 6-7 where the lag compensator is

constructed using an anti-windup trapezoidal integrator. If we were to implement the

Lag with a backward integrator

Gst (z) Tz (6.21)
z - 1

the Lag transfer function would be

Giag - (wZT + 1)z - 1 (6.22)
z - 1

We experimented with both forms and after finding no functional difference (the

slightly more complex trapezoidal integration had no impact on the DSP turnaround

time), we used the more accurate trapezoidal implementation [40]. The Lag transfer

function with the zero at 30 Hz and T, = 0.00008 s is

2.0150796z - 1.9849204 (6.23)
2(z - 1)

To set the overall controller gain, we plotted the frequency response of the Lead,

the Lag, and the Plant and selected G, = 948 such that

|GcGjead(z)Glag(z)Gp(z)| = 1 (6.24)

at the desired crossover frequency of 300 Hz. The negative loop transmission of the

compensated system is

L(z) = 0.0294704z 4 + 0.0018343z 3 - 0.0571069z 2 - 0.00177235z + 0.0276776 (6.25)
2z 7 - 7.24146z 5 + 9.72438Z4 - 5.72438Z3 + 1.24146Z2
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Figure 6-8: Experimental negative loop transmission response for the fast tool servo.

The solid line shows the measured response.

Figure 6-8 shows the measured and predicted negative loop transmission for the

fast tool servo. The loop transmission was measured while the fast tool servo was

operating in closed-loop control and is calculated by comparing the measured error

signal (input) to the fast tool servo position (output). For frequencies below 15.9

Hz, the reference position command is a 2 mm pk-pk sinusoid. Above 15.9 Hz, the

reference input is selected such the fast tool servo has a maximum acceleration of 1

g. Note: the peak acceleration of any sinusoidal trajectory may be calculated as

z(t) = a sin wt (6.26)

f(t) = aw cos wt (6.27)

z(t) = -aw 2 sin wt (6.28)

a = "2 (6.29)

As we can see, there is a fairly large difference between the measured and predicted

loop transmissions. At low frequencies, the differences are a result of a extremely
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Figure 6-9: Experimental conventional fast tool servo frequency response. The dashed

line indicates the predicted response.

small error resulting in a large motion. At high frequencies, we see a fairly large

difference between the measured and predicted due to unmodelled dynamics.

The closed loop plant model is generated by converting the loop transmission L(z)

to state-space form and then setting

P(z)
L(z)

1 + L(z)
(6.30)

which results in the following state-space matrices for the closed loop plant model

P(z):
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3.621 -4.862 2.862 -0.6207 0 0 0 -0.01179 -7.254E-4 0.02284 7.089E-4 -0.01107

1 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0

A= 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 3.621 -4.874 2.861 -0.5979 7.089E-4 -0.01107

0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 1 0

1

0

0

0

0

B = 0 , C = 0 0.01179 7.254E-4 -0.02284 -7.089E-4 0.0110.7 0 0 0 0 0 0
1

0

0

0

0

0

D = 0.

(6.31)

Figure 6-9 compares the measured and predicted closed loop frequency response

of the fast tool servo. The data was generated by commanding a 2 mm peak to peak

sinusoid below 15.9 Hz and a trajectory with a maximum acceleration of 1 g above 15.9

Hz. The measured bandwidth is 540 Hz, very close to the desired 500Hz. As before,

the dashed line indicates the predicted response. The predicted and modelled results

match quite well at low frequencies, as expected since the large loop gain of both the

measured and predicted loop transmission dominate the closed loop response. There

is some variation between the predicted and measured responses between 200 and

500 Hz. Again, this is somewhat to be expected since the magnitude of the loop
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transmission in this region is near unity with the shape of the closed loop response

being very sensitive to small variations in loop gain and phase. If we look carefully at

Figure 6-5, which plots the predicted and measured open loop transfer function, we

find that there is a 1 dB difference between the measured and predicted magnitude

and a 1 degree difference in the phase of the plant at 300 Hz.

Figure 6-10 shows the predicted and measured response with GC2 = 0.89G,. As

we can see, this 11% reduction in the predicted loop gain causes the two responses

to match quite well up to 500 Hz. There are three likely sources of the difference

between our predicted and measured systems. First, it is likely that we have underes-

timated the moving mass of the fast tool servo. As mentioned earlier, we weighted the

moving portion of the fast tool servo without cables, hoses, and cooling oil. While

we added 0.1 kg to the measured mass of the fast tool servo to account for these

components, it is very possible we have underestimated the mass of the components.

Second, it is very possible that as the system is tuned the force constant of the linear

motor (Kin) is lower than predicted. As described in Chapter 3, we are generating the

commutation for the linear motor in Simulink. This commutation is dependent on

relating the electrical position of the motor to the measured position of the fast tool

servo. We determined this relationship by running 1 Amp through 2 motor phases

and then measuring the resulting motor location. This physical location is electri-

cally 90 degrees from the position of maximum force. This allowed us to determine

the relationship between FTS location and commutation phase. Any errors in this

relationship results in a reduction in motor force. We selected the commutation con-

stant from an average motor position based on multiple trials but there was a fair

amount of variation in the actual neutral location so i suspect there is some error

in this constant. Lastly, it is possible that the amplifier dynamics are affecting the

magnitude of the response.

As a point of interest, we also implemented a controller where the designed loop

transmission crossover is 500 Hz. The controller was identical to the one described

earlier with the lead center frequency moved to 500 Hz and the gain selected to give

unity magnitude at 500 Hz. Figure 6-11 shows the measured and predicted closed-
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Figure 6-10: Experimental conventional fast tool servo frequency response. The

dashed line indicates the predicted response.

loop frequency response. The measured -3 dB bandwidth with the 500 Hz crossover is

955 Hz. While this controller configuration is stable, it has a number of issues. First,

the peak magnitude is 13 dB. This means that the step response of the fast tool servo

will be quite oscillatory which is not desirable. Second, the unmodeled dynamics at

1600 Hz could become an issue in with this controller implementation. We used the

300 Hz implementation for all of the results presented in this thesis.

6.1.2 Hydrostatic Stage model and Position Control

Plant Model

Figure 6-4 shows the free body diagram for the entire fast tool servo, hydrostatic

stage, and machine base system. As discussed in Section 6.1.1, we are treating all of

the system components as free masses connected only by the actuator forces. As seen

in Section 6.1.1, this assumption works quite well for the linear fast tool servo which

is supported by an air bearing and driven by a linear motor. In this section, we will

see that this basic model does not fit the hydrostatic stage quite as well.
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Figure 6-11: Experimental conventional fast tool servo frequency response. The
dashed line indicates the predicted response.

The hydrostatic stage system consists of the non-moving portions of the fast tool

servo including the bushings and support frame for the air bearing, the magnet track

of the fast tool servo linear motor, the large adapter plate to mate the fast tool servo

to the stage, the coil assembly for the Aerotech BLM-203 linear motor 2 , and all of

the cable and hoses for the operation of both the fast tool servo and hydrostatic slide.

The mass of the stage was estimated by measuring the mass of the New-Way air

bearing (7.7 kg), the mass of the magnet track (4.1 kg), the adapter plate (29.4 kg),

Aerotech coil mass (0.9 kg), and adding them to the estimated mass of the moving

stage components (~ 100 kg), for a total mass of approximately 142 kg. Since, the

actual mass of the moving components of the stage was unknown, I rounded this total

up such that

Mtage =150 kg. (6.32)

2 Aerotech Inc. of Pittsburg, PA kindly donated the two linear motors used in the DTM [3].
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The Aerotech BLM-203 linear motor has a force constant

N
Kf, = 23.6 . (6.33)

Apk

The linear motors are driven by an Aerotech BA10-40 amplifier 3 with an amplifier

gain of

Ka = 1 Apk (6.34)
V

for safety reasons the amplifier is current limited to 54% of the maximum current. In

the case of the BA10-40 amplifier a change in the amplifier current limits results in a

change in the amplifier gain, thus the amplifier gain becomes

Ka = 0.54AP. (6.35)
V.

The BA10-40 amplifier has a bandwidth of 2kHz and a switching frequency of 20

kHz. Just as in the case of the Copley Controls amplifier used on the fast tool servo,

we ignore the effect of the amplifier dynamics on the system response. The amplifier

performs Hall-effect based motor commutation, eliminating one source of modeling

error. Thus the complete model of the continuous time elements is

KaKfs _ 0.085 (6.36)
Mstages2  S2

Once again, I employ a bilinear transform, Eqn. (6.7), to determine the discrete time

equivalent transfer function. With Ts = 80ps, the stage has the following discrete

time transfer function

G,(z) = 136x10- z2 + 2z + 1 (6.37)
Z2- 2z + 1

As with the fast tool servo, we need to take into account that the DS1103 board D/A's

3Aerotech Inc. of Pittsburg, PA kindly donated the both the in-feed and cross-feed amplifiers
used in the DTM 13].

243



Frequency response of Stage
50

---- Measured

0 - Predicted

-50

2-100
10 10 10 10

0

o -100 - -.....

00 -200 -a......a,.:

-300-

100 101 102 103
Frequency (Hz)

Figure 6-12: Experimental frequency response of the hydrostatic stage/reaction mass

from commanded current to stage position. The dashed line indicates the predicted

response.

have a gain. The stage position is measured using one of the incremental encoder

interface channels on the DS1103 board. This interface is run on the main processor

and unlike the serial interface for the fast tool serve does not have an appreciable

delay. As before, I have chosen millimeters as my internal unit and must include

(6.11). The complete stage model is

z2+ 2z + 1
G,(z) = 136x-6 2z1 (6.38)

Z2 - 2z + I

Figure 6-12 shows the measured and predicted frequency response of the hydrostatic

stage. As can be seen, the model and actual system match up quite well over the

frequencies of interest. Not shown in this Figure is a resonant mode in the stage

occurring at 1200 Hz. This resonance impacts the controller design and will be

discussed in the next section.

Position Control
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Figure 6-13: Block diagram of the hydrostatic stage/reaction mass conventional po-
sition control loop.

The conventional control loop used on the hydrostatic stage is nearly identical to that

employed on the fast tool servo. Figure 6-13 shows a block diagram of the conven-

tional position control loop. As we can see, the principal differences between the fast

tool servo position control loop and the stage position control loop are the position

feedback channel is implemented through the main DSP using the incremental end-

coder interface which eliminates the two unit delay seen in the fast tool servo control

loop and a high frequency pole is placed in the forward path to further attenuate the

high frequency dynamics of the stage. The design goal for the stage compensation

loop is a bandwidth of at least 100 Hz with a moderately damped step response.

To achieve these goals, we have designed the loop transmission to crossover at 100

Hz. As in Section 6.1.1, the lead compensator is implemented as Eqn. (6.14) where

Lz and Lp are as defined in Eqns. (6.15) and (6.16). For the stage lead, we have set

a = 10, the center frequency f = 100 Hz, and as always T, = 80ps. Thus the transfer

function for the stage lead is

Gslead(Z) = z - 0.98423032 (6.39)
z - 0.8530361

Similarly, the lag compensator is implemented as Eqn. (6.20) and where the zero is

place at 10 Hz (one decade below the desired crossover frequency). This results in

the lag having a transfer function of

2.0050265z - 1.9949735
Giags()2(z - 1)(6.40)
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The new element in the stage control loop is addition of a high frequency pole to

attenuate the high frequency dynamics of the stage. This element was not included

in the original control loop since when we set up the stage originally, we only mea-

sured the open loop response out to 1000 Hz (1 decade above the desired crossover

frequency) and as a result missed a stage resonance at 1700 Hz. As it turns out, in

our original machine testing this did not cause any problems. This resonance was

brought to my attention by my fellow doctoral student Xiadong Lu in his work with

ultra-fast servos. Xiadong elected to suppress this resonance using a high order notch

filter [50]. Rather than use a notch filter, Richard Montesanti attenuated this reso-

nance using a high frequency pole [61]. I have elected to replicate Rick's work and

use a high frequency pole to cancel out the high frequency dynamics. The transfer

function for the high frequency pole is

1
Ghfp(z) - (6.41)

z -- Lhfp

where

Lhf_ - e-WhfpTs (6.42)

and Whfp is the frequency of the high frequency pole in rad/s. I elected to place the

high frequency pole at 500 Hz which resulted in a 13' drop in phase at my desired

crossover frequency (100 Hz) and a 10 dB drop in the magnitude of the resonance at

1700 Hz. The transfer function of the high frequency pole as implemented is

1
Ghfp = . (6.43)

G z - 0.77776778

As in the case of the fast tool servo controller to set the overall controller gain, I

plotted the frequency response of the combined Lead, Lag, high frequency pole and

Plant and selected G,, = 292 such that

jGcsGIeads(z)GIags(z)Gs(z) 1. (6.44)
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Figure 6-14: Experimental negative loop transmission response for the hydrostatic
stage from position error to measure stage position. The solid line shows the measured
response.

Combining all of the loop components results in the following transfer function for

the negative loop transmission

L,(z) = (z) (6.45)
D,(z)

N,(z) = 8.4195566E - 4z4 + 1.749889E - 5z3 - 1.6663459E - 32...

-1.7365746E - 5z + 8.2452334E - 3 (6.46)

D,(z) = 2z - 9.2616076z 4 + 17.11175Z3 - 15.765606Z2 + 7.242391z - 1.326M2M')

Figure 6-14 plots the predicted and measured negative loop transmission response

of the stage control loop. The loop transmission was calculate from the position

error to the stage position while the stage was operating in closed loop control. For

frequencies below 11.2 Hz, the reference position command is a 0.02 mm peak to

peak sinusoid. Above 11.2 Hz, the magnitude of the trajectory was selected such that
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Figure 6-15: Experimental closed loop response for the hydrostatic stage. The solid
line shows the measured response.

the maximum stage acceleration was 0.5 m/s 2 (0.05 g). The compensated system

has crossover at 100 Hz with a phase margin of 350 and a gain margin of 5. The

discrepancy between the measured and predicted responses at low frequencies is likely

caused by two factors. First, there is some issue in comparing the large response cause

by a small error signal. Second, in the case of the hydrostatic stage, we have neglected

the viscous damping from the oil in the hydrostatic bearing. Including the damping

causes one of the integrators to move out along the negative real axis and thus reduce

the low frequency gain of the loop. I have not attempted to model the effect of the

damping because as we can see from Figure 6-14, the current model correctly predicts

the frequency response around the crossover frequency of 100 Hz. Above 100 Hz, we

see quite a bit of un-modeled dynamics in both the magnitude and phase plots. Since

we have sufficiently attenuated the resonant peak at 1700 Hz, we did not attempt to

correct the model at higher frequencies.

Figure 6-15 shows the closed loop frequency response of the hydrostatic stage.
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The response was calculated from the reference position input to the measured stage

position. For frequencies below 11.2 Hz, the reference position command is a 0.02 mm

peak to peak sinusoid. Above 11.2 Hz, the magnitude of the trajectory was selected

such that the maximum stage acceleration was 0.5 M/s 2 (0.05 g). The closed loop

stage has a -3 dB bandwidth of 190 Hz. As we did for the fast tool servo, we have

converted to the loop transmission transfer function L,(z) to state space form and

then calculated the closed loop transfer function P (z). This results in a closed loop

plant model P(z) with the following state matrices:

1

0

0

0

0

1

0

0

0

0

4.631

1

0

0

0

0

0

0

0

0

-8.556

0

1

0

0

0

0

0

0

0

7.883

0

0

1

0

0

0

0

0

0

-3.621

0

0

0

1

0

0

0

0

0

0.6635

0

0

0

0

0

0

0

0

0

-4.21E-4

0

0

0

0

4.63

1

0

0

0

-8.746E-6

0

0

0

0

-8.556

0

1

0

0

8.332E-4

0

0

0

0

7.884

0

0

1

0

8.683E-6

0

0

0

0

-3.621

0

0

0

43123E-4

0

0

0

0

0.6631

0

0

0

0

I C 4.21E-4 8.749E-6 -8.332E-4 -8.683E-6 4.123E-4 0 0 0 0 0 ,

D = 0.

(6.48)
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6.2 Adaptive Feedforward Cancellation Applied to

the Linear Fast Tool Servo

In section 4.2.3, we detailed a method for applying adaptive feedforward control to

a generic system. In this section, we will be applying that method to the linear

fast tool servo. We implemented and conducted experiments using the following four

configurations:

1. A single AFC resonator canceling a single harmonic sinusoid at 20 Hz.

2. A single AFC resonator canceling a single harmonic sinusoid at 50 Hz.

3. An eight harmonic AFC controller applied to an eight harmonic trajectory with

a fundamental frequency at 12 Hz.

4. A six harmonic AFC controller applied to a six harmonic trajectory with a

fundamental frequency of 23 Hz.

Due to the large number of data points required to measure the frequency response

around the resonators, we only measured the frequency response of the final AFC

implementation. Note: The measurement of this frequency response took on the

order of one hour and during the test the pump for the coolant oil seized, thus

preventing any further high acceleration testing.

In this section when we refer to the negative of the loop transmission, we are

referring to the following transfer function

La!c(Z) = CN(Z)P(Z) (6.49)

where P(z) is the transfer function of the fast tool servo under conventional control

determined from Eqn. 6.30 and where

N 2 cos Oi - z cos(wiT + 0i)
CN (z) i.(.)

Z2 - 2cos(wiT)z + 1 (6.50)
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Figure 6-16: The calculated negative of the AFC loop transmission -Laf(z) for the

linear fast tool servo with a single resonator at 20 Hz and gi = 1.

In general when we refer the to closed loop AFC transfer function, we are referring

to

Z(z) _ P(z)(I + CN(z (6.51)

Zd(z) 1+ P(z)CN(z)

which is derived by setting the feedforward filter in Figure 6-1 equal to 1.

6.2.1 Single 20 Hz Resonator

The first AFC configuration that we implemented was a single resonator at 20 Hz. To

tune a single resonator system, we need to select only two parameters gi and #1. This

means that we need to modify step 3 of our procedure in section 4.2.3 to evaluate the

magnitude of the loop at each frequency the phase passes through ±1800 instead of

specifically evaluating the local minima between resonators. Following the procedure

in section 4.2.3, we set the phase advance parameter # equal to the measured plant
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Figure 6-17: The calculated negative of the AFC loop transmission -Lajc(z) for the
linear fast tool servo with a single resonator at 20 Hz and gi = 0.01.

phase

# = ZP(207rj) = 0.1' = 0.003 rad. (6.52)

In this case since the plant phase is essentially zero, the phase advance parameter

does little to enhance stability. Figure 6-16 shows the calculated negative of the AFC

loop transmission -Laef(z) for the linear fast tool servo with a single resonator at 20

Hz and gi = 1. As can be seen from the plot, this is clearly an unstable tuning since

the phase wraps through -18 0 'with a magnitude of 20 dB at 348 Hz. In general, we

tune systems with AFC control to have a gain margin of at least 10 (20 dB). This

means that we need to reduce the gain by a factor of 100. Figure 6-17 shows the

calculated negative of the AFC loop transmission -Lafc(z) for the linear fast tool

servo with a single resonator at 20 Hz and gi = 0.01. As we can see, the system now

has the desired gain margin of 10 at 348 Hz.

Figure 6-18 shows the calculated closed loop frequency response for the fast tool
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Figure 6-18: The calculated closed loop frequency response for the linear fast tool

servo with a single resonator at 20 Hz and g, = 0.01.

servo with a single AFC resonator at 20 Hz and g, = 0.01. This plot does not look

different from the system without AFC (Figure 6-9) since the calculated magnitude

of the system without AFC is 0.047 dB at 20 Hz, while the AFC compensated system

has a magnitude of 0 dB at 20 Hz. While it is not clear in Figure 6-18 that AFC

control improves trajectory following, we will see in the next chapter that AFC control

significantly reduces the following error.

6.2.2 Single 50 Hz Resonator

The second AFC controller we employed was a single resonator at 50 Hz. We used the

same design procedure as the previous section to choose g, and #1 . Figure 6-19 shows

the calculated negative of the AFC loop transmission for the fast tool servo with a

single resonator at 50 Hz, g, = 0.01 (the gain selected for a single 20 Hz resonator),
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Figure 6-19: The calculated closed loop frequency response for the linear fast tool

servo with a single AFC resonator at 50 Hz and 91 = 0.01.

and

# = LP(1007rj) = 0.03' = 0.0005 rad. (6.53)

Once again, the phase advance does not appreciably enhance the stability of the

system. As we can see from the plot, the parameters as selected result in loop with a

gain margin of 7.9 at 348 Hz. While the gain margin is a little less than the previous

system, it is sufficient to ensure that the closed loop system will remain stable.

Figure 6-20 shows the calculated frequency response of the fast tool servo with

a single resonator at 50 Hz and g1 = 0.01. In the case of the 50 Hz resonator, we

begin to see the functionality of AFC compensation. Without AFC compensation,

the conventionally controlled plant has a magnitude of 0.8 dB (1.096) at 50 Hz which

results in almost a 10% error following a 50 Hz sinusoidal trajectory. In the AFC

compensated system, the closed loop magnitude crosses through 0 dB (1) at 50 Hz.

Thus the system would perfectly track a sinusoid of 50 Hz. It should be noted that
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Figure 6-20: The calculated closed loop frequency response for the linear fast tool
servo with a single resonator at 50 Hz and g, = 0.01.

the closed loop magnitude near 50 Hz is non-zero so any variations in the frequency

of the sinusoid would result in small following errors. As mentioned in chapter 4, the

higher the AFC gain the better the closed loop response near the resonator frequency

is.

6.2.3 Eight Harmonic AFC Controller with w, = 12 Hz

The third AFC controller that we implemented was a network of 8 resonators with

Wi = 75 rad/s = 11.64 Hz ~ 12 Hz. We had a number of issues designing and

implementing this controller.

First, at low frequencies both the closed-loop plant model and the measured plant

have a positive phase shift. The phase of the measured plant becomes negative for

frequencies about 50 Hz, while the model becomes negative above 60 Hz. As discussed

in chapter 4, in continuous time 0 < 0 < 7r/2 locates the AFC zero on the negative

real axis while 0 > 0 > -7r/2 places the zero on the positive real axis. Similarly, in
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Figure 6-21: AFC resonator implemented as an enabled subsystem in Simulink.

discrete time 0 < # < 7r/2 results in the zero being on the real axis inside the unit

circle and 0 > 0 > -7r/2 results in a zero outside the unit circle on the real axis.

When an array of resonators in which some of the zeros are inside the unit circle and

some are outside the unit circle are summed, the result is a system where there are

complex zero pairs both inside and outside the unit circle (alternately stated there

are zeros in both the right and left half planes). As it happens, each complex zero

pair is located between two resonant peaks. If the complex zero pair is located in the

right half plane or outside the unit circle, the phase of the system drops 180'between

resonant peaks. This is the condition studied in detail in chapter 4. If the complex

zero pair is located inside the unit circle, the system phase rises 180'. While this

result does not change our tuning rules, it did take us some time to confirm that the

odd (too me at least) looking frequency response plots we were generating in Matlab

were correct.

Second, I initially implemented each AFC resonator as an enabled subsystem in

Simulink. To turn on AFC control, I would switch to ControlDesk where I would first

enable the amplifiers, then enable the conventional control loops, and lastly enable

the AFC resonators. As it turns out when more than six resonators are implemented

as enabled subsystems, the initialization process when the subsystems are turned
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Figure 6-22: An alternate implementation of an AFC resonator in Simulink.

on cause the DSP turnaround time to overrun, crashing the entire system. Figure

6-21 shows an AFC resonator implemented as an enabled subsystem. The internal

states are held when the system is disabled and reset each time the system is enabled.

Since the states are held when the system is disabled, we need to include a switch

which ensures that the signal input into the conventional control loop is zero when

the AFC controller is disabled. The output and internal state of the integrator is

limited by a saturation block. Figure 6-22 shows an alternate implementation of the

AFC resonator in Simulink, where the delay line integrator is replaced by a saturation

limited backward integrator from the Simulink library. Since the Simulink integrator

includes T, we needed to add a block where we divided by T, if we wanted to maintain

continuity in the values of gi. In this implementation, the AFC controller is always

running but is just switched in and out of the control loop. The integrator states are

reset each time the resonator is switched into the control loop. This implementation

allowed us to run up to 12 total resonators distributed between the fast tool servo

controller and the base acceleration feedback.

My final issue with this controller is that I did not follow my own tuning rules

and attempted to implement an unstable controller. Specifically, I implemented this

controller in steps. I started with one resonator then tested the controller, added a

second resonator and tested, etc. When I added the seventh AFC resonator the system

failed. Initially, this failure was the result of the time step over-run problem mentioned
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Figure 6-23: The calculated negative loop transmission -L(z) with a single resonator

at 12 Hz and gi = 0.01.

above yet even after altering the resonator structure the controller still failed. The

issue here was that I had chosen my resonator gain gi = 0.01 based on my work with

a single resonator. With a single resonator, this resulted in a controller with nearly

20 dB of gain margin (Figure 6-23). With six resonators, the controller gain margin

has been reduced to 2.5 dB (Figure 6-24). With seven resonators, the controller

has a calculated gain margin of 1 dB (Figure 6-25) but is actually unstable when

implemented. I have included this here because my experience carelessly designing

an unstable controller gave me some insight when analyzing my results in the next

chapter.

Figure 6-26 shows the calculated negative loop transmission of the fast tool servo

system with 8 resonators with a fundamental frequency of 12 Hz and gi = 0.001. As

with all the controllers in this subsection,

qi = LP(wij). (6.54)
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Figure 6-24: The calculated negative loop transmission -L(z) with a six resonators
with a fundamental frequency of 12 Hz and gi = 0.01.

When expressed in vector form # has the following values

# = [0.0016, 0.008, 0.0136, 0.0132, 0.0045, -0.0128, -0.0384, -0.0712] (6.55)

where 0 has been determined from the closed loop plant model. With all of the

resonator gains gi = 0.001, the system has a gain margin of 20 dB. In Figure 6-

26 we also take note of the how having the complex zero pair inside or outside the

unit circle shapes the plant phase between resonant peaks. As stated earlier, the

phase rises 1800 if the zeros are inside the unit circle and drops 180' if the zeros are

outside the unit circle. Figure 6-27 shows the pole-zero plot for this 8 resonator AFC

controller with #i from 6.55 and gi = 0.001. We can see from the pole-zero plot that

the four lowest frequency zero pairs are located inside the unit circle while the three

highest frequency pole pairs are located outside the unit circle. This corresponds with

the phase wraps in Figure 6-26 where the phase rises 180' between resonators until we

reach the fifth peak at which point the phase drops between peaks. In theory if all of
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Figure 6-25: The calculated negative loop transmission -L(z) with a seven resonators

with a fundamental frequency of 12 Hz and gi = 0.01.

the zero pairs where inside the unit circle, we should be able to significantly increase

all of the resonator gains since the phase never passes through ±180'. Practically

speaking this is unlikely to be true because this would require the plant phase to be

positive at all of the resonant peaks and that the plant phase also not wrap through

t1800. Taking our system as an example, what limits the resonator gains is not the

phase wraps between resonators but the the fact that the loop transmission wraps

through -180" at 348 Hz due to the -900 of phase from the plant and the -900 from

AFC compensation.

In general the amplitudes of the first several components of a multiple harmonic

trajectory are significantly larger than the higher harmonics, thus it is generally de-

sirable to assign as much gain to the lower harmonics as possible. Thus I choose to

implement the eight resonator AFC controller with the following gains:

g = [0.01, 0.01, 0.01, 0.001, 0.001, 0.001, 0.001, 0.001]. (6.56)
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Figure 6-26: The calculated negative loop transmission -L(z) with a eight resonators
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Pole-zero plot of an AFC controller CN(z) with gi = 0.001 and #i from
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Figure 6-28: The calculated negative loop transmission -L(z) with eight resonators
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Figure 6-29: Calculated closed loop frequency response of the fast tool servo with an

eight resonators with a fundamental frequency of 12 Hz and gj from 6.56.
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Figure 6-28 shows the calculated loop transmission for this tuning. As we can see, this

calculated system is stable with a gain margin of 7.5 dB at 348 Hz. This controller

was stable when implemented. Figure 6-29 shows the calculated closed loop frequency

response of the fast tool servo with the controller tune with # from (6.55) and gi

from (6.56). As we expected, the magnitude of the transfer function is zero at each

resonator harmonic. On the negative side, this controller tuning has significantly

increased the magnitude of closed loop plant between 200-400 Hz. This magnitude

increase explains the undesirable dynamics we see in chapter 7.

6.2.4 Six Harmonic AFC Controller with w, = 23 Hz

The final AFC configuration is one with six resonators with a fundamental frequency

of 23 Hz. This configuration is a result of several factors. First by employing only

six resonators, we were able to employ AFC control on the fast tool servo and base

acceleration loops. Second, as will be discussed in chapter 7, the accelerometer has a

large 60 Hz noise component. A fundamental frequency of 23 Hz was chosen to avoid

placing a resonator at 60 Hz. Lastly, based upon our results with the eight resonator

system, the resonator gains were selected to ensure that we did not significantly

increase the magnitude of the plant between 200-400 Hz. Figure 6-30 show the

calculated negative loop transmission with fundamental frequency of 23 Hz and with

gi = 0.001 and #5 = ZP(jwi). When expressed as a vector # for this system has the

value:

= [0.0083, 0.0154, -0.0094, -0.0696 , -0.1602, -0.2757] (6.57)

where # has been determined from the closed loop plant model. This system has

a gain margin of 22 dB at 348 Hz. Figure 6-31 show the measured and calculated

response of the fast tool servo with this controller. Given the complexity or the

numerical model as well as the overall control loop, the two responses match quite

well.
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Figure 6-30: Calculated negative loop transmission -L(z) with six resonators with a

fundamental frequency of 23 Hz and gi = 0.001 and #i from 6.57.

6.3 Hydrostatic Stage Base Acceleration Feedback

In this section, we will detail the design and implementation of a base acceleration

feedback control loop for the hydrostatic stage. The goal of this compensation loop is

to minimize the base acceleration and allow the hydrostatic stage to absorb all of the

fast tool servo reaction forces. Figure 6-2 shows the complete control system for the

hydrostatic stage. In this section, we will first detail the development of the acceler-

ation compensation loop including the selection of Ga(z) (a general control function)

and Ghp(z) (a high pass filter). Next, we detail the actual loop implementations

including the selection of the gain and phase of the AFC controller CN(z).

6.3.1 Base Acceleration Feedback Loop

Figure 6-32 shows the block diagram of the hydrostatic stage position control loop

with both conventional position control and base acceleration feedback loop. The

design and implementation of the conventional position control loop is documented
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# from 6.57. The dashed line indicated the calculated response
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Disturbance Forces +
Fast tool servo reaction Force

Zd(Z) W1(s) + Ffts(s)

Zbd(z)=O Gca(z) CN(Z) x Gc Glead(z) Glag(z) Ghtp(Z) D/A Ka Kf Y Gs(s) Z(s)

Incremental Encoder

W2(s)
Sensor noise +

Drift

Figure 6-32: Block diagram of the hydrostatic stage/reaction mass position control
loop with both conventional position control and acceleration feedback.

Disturbance Forces +
Fast tool servo reaction Force

W 1(s) + Ffts(s)

Zd(z) I I Gc Glead(z) Glag(Z) Ghfp(z) D/A Ka Kf T Gs(s) Z(s)

GmmIncrernental EncoderInterface

Ga(z) +-CN(Z) AD Y a

W2(s)
Sensor noise +

Drift

Figure 6-33: Block diagram of the hydrostatic stage/reaction mass position control
loop with both conventional position control and acceleration feedback after removing
the zero base acceleration reference.

in 6.1.2. Here we will detail the design and implementation of the base acceleration

feedback loop. To start with we should note that with the introduction of base accel-

eration feedback the system has become a multiple input/multiple output (MIMO)

system with two inputs (the stage trajectory Zd and the desired base acceleration ia)

and two outputs (stage position z and base acceleration Z). In general, controlling

MIMO systems is significantly more challenging than controlling single input/single

output (SISO) systems so what we would like to do is manipulate our control model

so we can apply the conventional SISO loop shaping tools to the acceleration feed-

back loop. We begin our manipulation by noting that our desired acceleration input

Zbd = 0. This allows us to remove the first summation block from the block diagram
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Figure 6-34: Block diagram of the hydrostatic stage/reaction mass position control
loop with both conventional position control and acceleration feedback after having
manipulated the acceleration feedback across the stage transfer function.

Zd(z) - Ps(z) Z(s)

Ga(z) CN(Z) A/D X Gac 1 G(s)

W2(s) W3(s)
Sensor noise + Base Disturbance

Drift Forces

Figure 6-35: Block diagram of the hydrostatic stage/reaction mass position control
loop with both conventional position control and acceleration feedback after substi-
tuting P,(z) for the conventional inner loop position control.

for the stage controller. Figure 6-33 shows the controller block diagram with the

elimination of the acceleration input and some minor block placement changes. The

loop now looks much more like a conventional controller with both an inner loop and

and an outer loop. From a block diagram algebra standpoint, there is no issue with

moving the acceleration feedback signal across the plant transfer function such that

Z becomes a function of z. Figure 6-34 illustrates manipulation. At this point, it is

clear that the inner loop solves to P (z) which is the closed loop transfer function of

the stage under conventional control. Figure 6-35 shows the block diagram after we

replace P3 (z) for the conventional inner loop position control.
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G I 4Ms(z2 -2z+1)
Ga~z +--CN~z E IMb(Z2+2z+1)

W2(s) W3 (s)
Sensor noise + Base Disturbance

Drift Forces

Figure 6-36: Block diagram of the hydrostatic stage/reaction mass position control
loop with both conventional position control and acceleration feedback after substi-
tuting for G,(s) and converting to discrete time.

At this point, we have a loop which has a mix of continuous and discrete elements

so it make sense to convert all of the transfer functions to discrete time. From 6.1.2,

we know that

G,(s) = M1s2 (6.58)

Applying the bilinear transform to this transfer function results in the following dis-

crete equivalent

TG2(z 2 + 2z + 1)
4M,(z2 - 2z + 1)'

(6.59)

Figure 6-36 shows the block diagram after substituting for G,(s) and converting to

discrete time. Note: At this point I have dropped the gains associated with the

accelerometer and the D/A converter. I will bring them back when we discuss the

actual implementation.

The loop transmission for Figure 6-36 is

(6.60)La(Z) = Ps(z)CN(z)Ga(Z)
G,(z)

As a starting point for determining the correct tuning rules and form for Ga(z), I

set Ga(z) = 1 and plotted the calculated frequency response for a CN(z) consisting
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Figure 6-37: Calculated stage acceleration negative loop transmission La(z) (6.60)
with a single AFC resonator at 20 Hz.

of a single resonator at 20 Hz (#1 = /P,(407rj)). Figure 6-37 shows the calculated

frequency response. As we can see with Ga(z) = 1, the system is unstable because

the phase wraps through 180' at the frequency of the resonator (note: there is no

possible gain we can select that results in a stable system because the gain at 20 Hz is

always infinite). If we look at the system transfer function in more detail, we see that

moving the acceleration feedback signal through the stage transfer function G,(s) has

added a pair of zeros at the origin 1/G,(s) = Mos 2. Since ZP,(407rj) 0, the zero

of the AFC resonator is placed very close to the origin. Thus at low frequencies, the

loop transmission has a phase of +270'. At 20 Hz, the resonator poles contribute a

phase drop of 1800 causing the loop phase to drop through +180'. In order to make

this loop stable, we need to drop the low frequency phase of the plant by more than

90' and preferably by 1800 thus ensuring 90' of phase margin both before and after

the resonator.

Initially, to drop the loop phase by 180*, we made two modifications to the loop

transfer function. First, as noted earlier, the AFC resonator contribute +90' because
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Figure 6-38: Block diagram of the hydrostatic stage/reaction mass position control
loop with both conventional position control and acceleration feedback with CN(z)
from (6.61) and Ga(z) from (6.62).

the resonator zero is place below 20 Hz. To eliminate this phase shift we can simply

eliminate this the low frequency zero. Thus the transfer function of our AFC resonator

becomes

z
C (Z) =-2 (6.61)z2 - 2 cos(wT8)z + I(

The second modification was to introduce an addition integrator in the control loop.

To do this we set

T (z + 1)Ga(Z) = . (6.62)
2(z - 1)

thus removing another 90" of phase from the loop. Figure 6-38 shows the block

diagram for this system. Figure 6-39 shows the calculated negative loop transmission

for this system. As we can see from Figure 6-39, the loop phase now starts at +90"

and drops to -900 at the resonant frequency. Thus, with the proper selection of the

loop gain, this control strategy will result in a stable closed loop system.

Practically there are two problems with this controller implementation. First,

removing the phase compensating zero from the AFC controller means that AFC

control can only be applied to loops where the phase is between 0' and +1800. For

our system, this means that this form of base acceleration feedback control can only

be applied below 120 Hz. Second, this controller does not work in practice because

the accelerometer measurement has a D.C. offset, drift, and a significant noise com-
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Figure 6-39: Calculated stage acceleration negative loop transmission with CN(z)

from (6.61) and Ga(z) from (6.62).

ponent. When this controller is implemented the acceleration feedback causes a large

stage translation in an attempt to cancel the offset component of the accelerometer

measurement. One solution to this problem is to introduce a high pass filter on the

accelerometer measurement. We used a simple second-order high pass filter with a

pair of zeros at z = 1 and a well damped (( = 0.7) complex pole pair at 1 Hz. When

implemented at 12.5 kHz, the filter had the following transfer function:

Z2 - 2z + 1
G z2 -- 1.9992963z + 0.99929653

Figure 6-40 shows the block diagram with the inclusion of the high pass filter while

Figure 6-41 shows the calculated negative loop transmission frequency response. As

described later, this control structure results in a stable response.

As mentioned earlier, the controller in Figure 6-40 results in a stable loop but can

only be applied to system with a phase between 0' and +180. A more general control

structure requires that the AFC controller incorporates the phase compensating zero.
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Figure 6-40: Block diagram of the hydrostatic stage/reaction mass position control
loop with both conventional position control and acceleration feedback with CN(z)

from (6.61) and Ga(z) from (6.62).
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Figure 6-41: Calculated stage acceleration negative loop transmission with CN(z)
from (6.61) and Ga(z) from (6.62).
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One way to accomplish this is to add an additional integrator to Ga(z) such that the

compensator transfer function becomes

T,2(z 2 + 2z + 1)Ga(z) = .(Z2 +2z+1) (6.64)
4(Z2 -2z + )

As in the case for the single integrator solution, this controller requires that the ac-

celerometer data be filtered using a high pass filter. Figure 6-42 shows the block

diagram for this system while Figure 6-43 shows the calculated negative loop trans-

mission. With properly selected loop gain selection, this acceleration feedback struc-

ture will result in a stable closed loop response for systems of any plant phase. One

undesirable characteristic of this compensation structure is the inclusion of the slow

responding high pass filter. We can eliminate the need for the high pass filter replac-

ing the integrator poles at z = 1 with low frequency poles inside the unit circle. In

this case, I replaced (6.64) with

T 2
G,,(z) = - (6.65)

(z - 0.999)2'

which is the same as replacing the poles in a double forward Euler integrator with 2

poles at 1 Hz (these are essential the high pass filter poles with ( = 1). Notice that

this does not really speed up the loop dynamics since we retain the slow pole dynamics

of the high pass filter, but we do simplify the overall control structure. Figure 6-44

shows the block diagram for this structure and Figure 6-45 shows the negative loop

transmission frequency response. In practice this controller was stable but displayed

more sensitivity to the low frequency drift in the accelerometer measurement. For all

of the data presented in chapter 7, we used the controller shown in Figure 6-42 which

included the high pass filter, double integrator, and the phase compensated form of

the AFC resonator.
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Figure 6-42: Block diagram of the hydrostatic stage/reaction mass position control
loop with both conventional position control and acceleration feedback with CN(Z)

from (6.50) and Ga(z) from (6.64).
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Figure 6-44: Block diagram of the hydrostatic stage/reaction mass position control
loop with both conventional position control and acceleration feedback with CN(z)

from (6.50) and Ga(z) from (6.65).
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Figure 6-45: Calculated stage acceleration negative loop transmission with CN(z)

from (6.50) and Ga(z) from (6.65).

275

150

G 100

- 50
Mn

10 0

18CI

0
a)
L)

90

0

-90

100

................

.. . .. . .. . ..... .. . .... . . . .. . . .. . . . .. . .. . . .

. ............. . . . . ... .. . . .. .. .

........ ....... ........

.......... ...-



6.3.2 Base Acceleration Feedback Implementation

In Subsection 6.3.1, we detailed a generalized base acceleration loop structure. In

this section, we will detail the base feedback implementation for the following four

cases (these are the implementations for which results are presented in chapter 7):

1. A single AFC resonator at 12 Hz.

2. An eight harmonic AFC resonator with a fundamental frequency of 12 Hz.

3. An eight harmonic resonator with a fundamental frequency of 13.5 Hz.

4. A three harmonic resonator with a fundamental frequency of 23 Hz.

In the previous subsection we dealt with the acceleration feedback in general terms

ignoring many of the details of our actual implementation. In order to design our

actual control loop, we need to determine the actual loop gain. As was the case for

the stage and fast tool servo, we are assuming that the machine base can be modeled

as a free mass. Since the shipping weight of the machine was 4000 lb (1360 kg) and

each of the cross-slide weigh an estimate 330 lb (120 kg), we started with a base mass

estimate of Mb = 1000 kg. The base acceleration is measured using a PCB piezotron-

ics Model 333A30 ceramic shear accelerometer. The accelerometer is power by a PCB

Model 482A06 power supply. The accelerometer output has a gain of 100 mV/g (10.2

mV/(m/s 2 )). Since the base accelerations we are measuring are on the order of 0.03

g (Max. FTS acceleration/(FTS to Stage Mass*Stage to Base Mass)), we needed to

amplify the accelerometer measurement before the analog to digital conversion (the

A/D resolution is on the order of t0.6 mV) to have meaningful resolution of the ac-

celerometer data. Signal amplification was done using a Tektronic AM502 differential

amplifier set to a gain of 200 and a 0.3 kHz bandwidth. Combining the accelerometer

gains with the differential amplifier gain and the A/D gain of 0.1 units/V results in a

value of 0.2 units/(m/s 2 ) once the accelerometer measurement is converted to discrete

time. Once again, we would prefer to have the internal controller design variable to

be easily convertible to actual units so we added a gain of 5 inside the model to make
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Figure 6-46: Block diagram of the hydrostatic stage/reaction mass acceleration con-
trol loop as implemented

the control signal have 1 unit=1 M/s 2 . The combined position controlled inner loop

and accelerometer feedback system now has the following transfer function:

Lsa = Ps(z)Ga(Z)CN(z)G(z)z 1) (6.66)T (z 2 + 2z + 1)

where P8 (z) is from (6.48), Ga(z) as defined by (6.64), CN(z) from (6.50), and Ghp(z)

from (6.63). Figure 6-46 shows the acceleration feedback block diagram as imple-

mented.

Single Harmonic resonator at 12 Hz

As documented in 6.3.1, we have selected Ga(z) and Ghp(z) such that we can ap-

ply our AFC tuning rules from section 4.2.2 to the AFC compensated acceleration

feedback loop. Thus in all cases, we are selecting qi = ZPas(z) where

z2- 2z + 1
Pas(z) = 0.6Ps(z)Gh(z)Ga(Z) z 2 - 2z + 1. (6.67)

T2(z2 + 2z + 1)

Figure 6-47 shows the calculated negative loop transmission frequency response with

a single AFC resonator at 12 Hz with gi = 1 and

01 = ZPas(24j) = 0.1298 rad. (6.68)

The system as modeled has a gain margin of -11 dB at 118 Hz. Selecting gi = 0.01

results in a gain margin of 29 dB at 118 Hz. Figure 6-48 show the calculated closed

loop position frequency response with g, = 0.01.

Eight Harmonic Resonator with a 12 Hz Fundamental

Since the fast tool servo is following a multiple harmonic trajectory, we need to be able
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Figure 6-47: Calculated stage acceleration negative loop transmission with a single
AFC resonator at 12 Hz.
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Figure 6-48: Calculated closed loop frequency response from position command to
stage position with a single AFC resonator at 12 Hz with g, = 0.01.
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cancel out multiple harmonics of the base acceleration. In this case, we implement an

eight harmonic resonator with a fundamental frequency of 12 Hz. Setting #i = LPas(z)

results in

# [0.1298, 0.0395, -0.0882, -0.2602, -0.4630, -0.6865, -0.9224, -1.1611].

(6.69)

Figure 6-49 shows the calculated stage acceleration negative loop transmission with

eight AFC resonators with a fundamental frequency of 12 Hz with gi = 1. This

system has a gain margin of -33 dB at 91.8 Hz (this is the local minima between the

last two resonant peaks). Using

g = [0.01, 0.01, 0.001, 0.001, 0.001, 0.001, 0.001, 0.001], (6.70)

results in a system with a gain margin of 17.5 dB at 93 Hz. Figure 6-50 shows

the calculated stage acceleration negative loop transmission for this system. Fig-

ure 6-51 shows the calculated closed loop position frequency response with gi from

equation (6.70).

Eight Harmonic Resonator with a 13.5 Hz Fundamental

When we implemented the eight harmonic resonator with a 12 Hz fundamental de-

scribed above, we found that the acceleration compensator appeared to amplify the

base acceleration at 60 Hz. We believe that this was a case where the controller was

attempting to cancel out a 60 Hz electrical noise signal in the acceleration measure-

ment. One way to avoid this issue is to simply avoid acceleration compensation at 60

Hz. In this case, we simply move the fundamental frequency to 13.5 Hz, thus placing

resonators at 54 and 67.5 Hz. The tuning for this was nearly identical to that for the

12 Hz fundamental. When the resonators are moved to 13.5 Hz

# = [0.1171, 0.0123, -. 1483, -0.3585, -0.6008, -0.8627, -1.1315, -1.3927].

(6.71)
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Figure 6-49: Calculated stage acceleration negative loop transmission with eight AFC
resonators at 12 Hz with gi = 1.
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Figure 6-50: Calculated stage acceleration negative loop transmission with eight AFC

resonators at 12 Hz and gi from equation (6.70).
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Figure 6-51: Calculated closed loop stage position frequency response with eight AFC
resonators at 12 Hz andg, from equation (6.70).

Since the resonators have only shifted slightly, we retained the gain tuning from

equation (6.70). Figure 6-52 shows the calculated stage acceleration negative loop

transmission for this systems. As we can see, the system now has a phase margin

of 17.5 dB at 91.2 Hz. At this point we should note that for multiple resonator

compensation, the system has minimum phase margin near the peak magnitude of

P,(z). This makes sense since P,(z) forms the backbone of the frequency response.

Figure 6-53 shows the calculated closed loop position frequency response for this

compensator.

Three Harmonic Resonator with a 23 Hz Fundamental

The final AFC acceleration compensation loop implemented is a three harmonic

resonator at 23 Hz. In this case, the fast tool servo was following a six harmonic

trajectory with a maximum acceleration of 6.6 g's. Since we could only implement a

limited number of AFC resonators at a single time, we were forced to utilize only 3

resonators in the acceleration loop. We made this choice since the fourth component
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Figure 6-52: Calculated stage acceleration negative loop transmission with eight AFC
resonators at 135 Hz and gi from equation (6.70).
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Figure 6-53: Calculated closed loop stage position frequency response with eight AFC

resonators at 135 Hz and gi from equation (6.70).
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Figure 6-54: Calculated stage acceleration negative loop transmission with eight AFC
resonators at 135 Hz and gi from equation (6.73).

of the trajectory has a magnitude 1/512 the first harmonic, which theoretically results

in an acceleration at the fourth harmonic 1/8th that of the first harmonic. The three

harmonic controller was implemented in two forms to test the impact of resonator gain

on acceleration cancellation (see Chapter 7 for the results). As always i= /Pa,(wij),

which for this case results in

O = [0.0478, -0.2291, -0.6292]. (6.72)

In the first case, we set the resonator gains to what we consider to be a reasonable

maximum. In this case setting

g = [0.01, 0.01, 0.01], (6.73)

results in a system with a calculated gain margin of 16 dB at 60 Hz. Figure 6-54 shows

the calculated stage acceleration negative loop transmission for the compensator tun-
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ing. Figure 6-55 shows the calculated position closed loop frequency response. In the

second case, we reduced the gain by a factor of ten such that

g = [0.001, 0.001, 0.001]. (6.74)

Figure 6-56 shows the calculated frequency response for this system. As expected,

the system now has a gain margin of 36 dB at 60 Hz. Figure 6-57 shows both the

calculated and measured closed loop position frequency response for this system.

Given the number of block diagram manipulations and modeling approximations we

made in our system model, the measured and calculated frequency response match

quite well. As noted earlier in Section 6.2, we have only a limited amount of data on

the closed loop frequency response of AFC compensated systems because of the large

number of data points required to accurately measure the response. The measurement

of the stage response was made more difficult because of the slow response of the

acceleration feedback loop. The measurement of this one frequency response took

on the order of 2 hours during which time the oil coolant pump failed, significantly

limiting the fast tool servo utility. Thus this data set is the only one, we recorded for

the acceleration feedback loop.
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Figure 6-56: Calculated stage acceleration negative loop transmission with eight AFC
resonators at 135 Hz and gi from equation (6.74).
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6.4 Amplitude Modulated Adaptive Feedforward

Cancellation

As discussed in chapter 4, one possible improvement of adaptive feedforward cancel-

lation is to incorporate an estimate of the time varying properties of the control input

or system disturbances. In Chapter 4, we proposed both a multiplicative implemen-

tation and a additive implementation. Since we derived the additive structure after

disassembly of the FTS, we did not actually implement the additive structure. In

the case of the multiplicative structure, the modification to the standard structure

converts the AFC resonator from a linear time invariant system into system that is

time varying and generally non-linear. This makes it impractical to analyze for sta-

bility using the classical control approach we have taken to tuning systems with AFC

control. As we discussed in chapter 4, we can manipulate the amplitude modulated

adaptive feedforward cancellation (AMAFC) block diagram to appear as a standard

AFC controlled system. Thus selecting the AMAFC gains and phase as described in

Chapter 4 should result in a stable control system.

Since stability analysis is quite difficult for multiplicative AMAFC structure, we

limited ourselves to only a single resonator implementation. In this case, we elected to

modify an existing AFC controller to AMAFC control. Specifically, we took the single

20 Hz harmonic fast tool servo AFC controller and the single 12 Hz harmonic base

acceleration AFC controller, with 6 adjusted for the new fundamental, and added

the multiplicative amplitude modulation as described in chapter 4. We elected only

to apply multiplicative AMAFC control to signals with non-zero values to avoid the

problem of 1/A(t) becoming un-bounded. Specifically, we test only the case where

Zd(t) = (1 + a, sin at) sin(wit) (6.75)

where laol < 1. Results are presented in Chapter 7.
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6.5 Summary

In this chapter, we discussed in detail the design and implementation of the FTS/in-

feed slide control systems. Specifically, we detailed the design and implementation of

the conventional inner loop position controller for the FTS, the implementation of an

AFC position control outer loop on the FTS with both single and multiple resonators,

the implementation of the conventional inner-loop position controller for the in-feed

slide position control, and lastly the design and implementation of an AFC controller

for the in-feed slide whose purpose is to minimize the accelerations in the machine

base. In the next chapter, we present the measured performance of the controller

described in this chapter.
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Chapter 7

Results

This chapter summarizes the results we achieved with our linear fast tool servo and

hydrostatic stage/reaction mass. In the first section, we present the following er-

ror results for the fast tool servo for conventional AFC control (single and multiple

harmonics). In the second section, we review the performance of the fast tool servo

for a single harmonic AMAFC system. In the third section, we present the results

using the hydrostatic stage as a reaction mass using both feedforward control and

AFC (single and multiple harmonics). Lastly, we show the result of using AMAFC

to reject a sinusoidally varying disturbance force in the DTM base.

7.1 Fast Tool Servo Adaptive Feedforward Cance-

lation

As detailed in chapter 6, we implemented four different AFC controllers on the fast

tool servo.

1. A single 20 Hz resonator AFC controller.

2. A single 50 Hz resonator AFC controller.

3. An eight resonator AFC controller with a fundamental frequency of 12 Hz.

4. A six resonator AFC controller with a fundamental frequency of 23 Hz.
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In three of the cases, we measured the following error under

1. Conventional control

2. Conventional control with command pre-shifting

3. Conventional control with AFC

4. Conventional control with command pre-shifting and AFC.

We measured the eight resonator system only under conditions 1 and 3. The perfor-

mance of the fast tool servo system was limited by two factors. First, the fast tool

servo, as designed and built, is limited to maximum acceleration of 10 g's continuous

(temperature limit) and 14 g's peak (current limit). Second, the performance of the

fast tool servo was limited by the errors of the optical encoder used for position feed-

back. Specifically, we are using an glass-scale encoder with a resolution of 0.004882

pm and a scale pitch of 20 jim. For accurate interpolation, the sinusoids diffracted

from the glass-scale must be perfectly symmetric. In general, the diffracted sinusoids

have 1-2% distortion [38]. Factoring in the interpolation error, the accuracy of the

scale is +0.12 pm over a 20 pm movement and t3 pm over the entire range of the

scale. Combined these two position uncertainties yields a full spectrum noise domi-

nated by the harmonics of fundamental sinusoidal motion. Figure 7-1 plots the power

spectral density of the following error for the system under conventional, conventional

with command pre-shifting, AFC, and AFC with command pre-shifting control while

following a 20 Hz sinusoid. Ignoring the base harmonic of the sinusoid, we can see

that for all four control cases the spectral content of the error signal is constant and

composed principally of components outside our control authority. For the most part

the encoder error signal is approximately 1 pm pk-pk but greater errors are apparent

at high velocities.

Table 7.1 contains the measured peak to peak following error, the rms following

error, both the rms error component with in the controller bandwidth and outside,

and the 20 Hz error component for the fast tool servo following a 20 Hz 2 mm pk-pk

sinusoidal position command. The frequency specific rms error is calculated using
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Measured following error - 20 Hz, 2 mm pk-pk, 1.6 g
Conventional Pre-shift AFC AFC+Pre-shift

Error pk-pk (mm) 0.0219 0.0065 0.0019 0.0020
Errorrms (mm) 0.0074 0.002 0.00020 0.00020
Errorrms (540-6250 Hz) 3.56E-4 2.50E-4 2.50E-4 2.46E-4
Errorrms(0-540 Hz) 1.05E-2 2.75E-3 1.49E-4 1.49E-4
Error(20 Hz) 9.45E-3 2.46E-3 8.11E-7 3.037E-7

Table 7.1: Following error summary for 20 Hz

the following formula

n2

Errorrms = E(X[n])2 (7.1)
n1

where X[n] is the Fourier transform coefficient found by an N point FFT, fi =

f, * ni/N, and f2 = f, * n2 /N [67]. Figure 7-2 displays the measured error as

a function of time, while Figure 7-3 shows the Fourier transform of the position

error. The following error is 1.1% with conventional control, 0.3% with conventional

control with pre-shifting, and 0.1% with the addition of AFC. Of more interest, the

component of the following error at 20 Hz is 0.95% for conventional control, 0.25%

with pre-shifting, 0.000081% with AFC, and 0.00003% with AFC and pre-shifting.

This shows the utility of AFC in canceling a constant amplitude sinusoid.

Table 7.2 summarizes the measured following error results for a 0.4 mm pk-pk 50

Hz sinusoid, while Figures 7-4 and 7-5 show measured following error with respect to

time and frequency. The following error is 10% under conventional control, 3% with

pre-shifting, 0.43% with AFC, and 0.48% with AFC and command pre-shifting. The

percentage numbers for the AFC compensated systems are a little misleading since

the peak to peak error is almost exactly that seen following the 20 Hz sinusoid and

consist primarily of the sensor uncertainty. The percent following error has gone up

because the magnitude of the trajectory has dropped by a factor of 5. As we can see

in Figure 7-5, the following error component at 50 Hz drops by a factor of 3 with

command pre-shifting and a factor of 5000 with AFC control.
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Fast Tool Servo Trajectory
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Figure 7-2: Measured fast tool servo following

position command under conventional control,
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error to a single 20 Hz 2 mm pk-pk
conventional control with command

pre-shifting, AFC control, and AFC control with pre-shifting.

Measured following error - 50 Hz, 0.4 mm pk-pk, 2 g

Conventional Pre-shift AFC AFC+Pre-shift

Error pk-pk (mm) 0.04 0.012 0.0017 0.0019

Errorrms (mm) 0.0144 0.004 0.000252 0.000253

Errorrms (540-6250 Hz) 3.04E-4 3.055E-4 2.55E-4 2.57E-4

Errorrms(0-540 Hz) 2.035E-2 5.67E-3 2.49E-4 2.47E-4

Error(50 Hz) 1.97E-2 5.O1E-3 1.43E-6 2.37E-6

Table 7.2: Following error summary 50 Hz
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Fast Tool Servo Trajectory
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Measured following error for an eight harmonic
12 Hz fundamental, 5 mm pk-pk, 2.2 g sinusoid

Conventional AFC
Error pk-pk (mm) .027 0.0060
Errorrms (mm) 0.0079 0.00057
Errorrms (540-6250 Hz) 3.00E-4 2.99E-4
Errorrms(0-540 Hz) 1.11E-2 8.12E-4
Errorrms(200-540 Hz) 1.62E-4 8.095E-4

Table 7.3: Following error summary for eight harmonic trajectory with 12 Hz funda-
mental

Table 7.3 summarizes the measured following error results for an eight harmonic

5 mm pk-pk, 12 Hz sinusoidal trajectory. The trajectory coefficients are

A = [2.5 0.312 0.039 0.0048 0.001 0.001 0.001 0.001]. (7.2)

Figures 7-6 and 7-7 show the measured following error as a function of time and

frequency. We can see a number of interesting results in these plots. First, AFC

control has reduced the following error at each of the resonator harmonics below

2x1~- 6 mm which is comparable to the results achieved in the single resonator cases.

On the other hand, the peak to peak following error with 8 AFC resonators is much

larger than in the single resonator tuning. Looking at the frequency response, we

can see that the eight resonator tuning has significantly increased the following error

in the 200-400 Hz range (rms following error has increased from 1.62x10- 4 mm for

conventional control to 8x10- 4 for AFC control in the 200-400 Hz range). Going back

to Figure 6-30, we see that this implementation of an eight resonator AFC controller

increases the closed loop frequency response of the fast tool servo by about 10 dB in

the range of 200-400 Hz over the conventionally controlled fast tool servo. Since the

encoder error is added to the actual position signal, any increase in the closed loop

response also increases the controller response to the error. Although this system

is stable, the increase error in this range lead me to reduce my controller gains for

future multiple resonator implementations.
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The final AFC controller we tested was a six harmonic controller designed to

cancel a 4.8 mm pk-pk 23 Hz fundamental sinusoid. The trajectory coefficients are

A = [2.39 0.299 0.037 0.0047 0.00058 7.3x10 5 9.1x10-6]. (7.3)

This trajectory resulted in a peak acceleration of 6.6 g's, the highest we tested.

Table 7.4 summarizes the measured following error. Figures 7-8 and 7-9 show the

following error versus time and frequency. We have a number of interesting results

for this trajectory. First, the peak to peak following error for the AFC compensated

systems are twice that of the single resonator cases. The majority of this additional

error is occurring in a narrow band where the fast tool servo is traveling at maximum

velocity (0.373 m/s). In this case it might be more informative to look at the rms

error. We see that in the case of AFC control alone that the rms error is twice that of

the single 50 Hz resonator system but that with feedforward control the rms errors are

approximately equal. This is the one case studied where command shifting combined

with AFC control resulted in a reduced following error. This improvement is quite

apparent at lower frequencies where the rms error is reduced from 7.252x10- 4 mm to

1.82x10- 4 mm. Secondly it is interesting to note that unlike the eight harmonic 2.2

g trajectory tested earlier, this six harmonic trajectory has significant error at higher

harmonics of the 23 Hz fundamental. Specifically, 7th through 9th harmonics have

prominent peaks. As we can see, the six harmonic AFC controller does an excellent

job canceling the first six harmonics but does nothing, even when combined with

command pre-shifting, to reduce the higher harmonic components. This makes it

clear that in general. we would like to employ as many AFC resonators as possible

to reduces all the harmonics. In general, the following error contains more harmonics

of the fundamental than the trajectory. This will become quite clear later when we

look at the base acceleration cancelation controller.
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Measured following error for a six harmonic

23 Hz fundamental, 4.8 mm pk-pk, 6.6 g sinusoid

Conventional Pre-shift AFC AFC+Pre-shift

Error pk-pk (mm) 0.103 0.029 0.0044 0.0031
Errorrms (mm) 0.031 0.0083 0.00049 0.00028
Errorrms (540-6250 Hz) 5.894E-4 4.234E-4 4.235E-4 3.443E-4
Errorrms(0-540 Hz) 4.412E-2 1.173E-2 7.252E-4 1.820E-4

Table 7.4: Following error summary for a six harmonic 23 Hz fundamental trajectory.
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Figure 7-8: Measured fast tool servo following error to a six harmonic 23 Hz funda-

mental, 4.8 mm pk-pk, 6.6 g sinusoid under conventional control, conventional control

with command pre-shifting, AFC control, and AFC control with pre-shifting.

301

Conventional
E
E
0

0.05

0

-0.05

Conventional+Pre-shift

AFC

E
E

U

0.02

0.01

0

-0.01

r) n)

0

1 AFC+Pre-shift
.

-

-



106

102

104

10 _

- Conventional
AFC-
Conventional+Preshift
AFC+Preshift

-. . -.-.. .....

10 1 102
Frequency Hz

10 1

103

102
Frequency Hz

Figure 7-9: Fourier transform of measured fast tool servo following error to a six har-

monic 23 Hz fundamental, 4.8 mm pk-pk, 6.6 g sinusoid under conventional control,

conventional control with command pre-shifting, AFC control, and AFC control with

pre-shifting. Upper plot displays results from 1 Hz to 6250 Hz. Lower plot shows

data from 1 to 540 Hz.

302

10-2

104
E
E

- Conventional
- - AFC

Conventional+Preshift
- AFC+Preshift

.--



7.2 Fast Tool Servo Amplitude Modulated Adap-

tive Feedforward Cancelation

In this section, we present our results using AMAFC control on the fast tool servo.

We evaluated the effect of AMAFC control on a single harmonic sinusoid

Zd(t) = (1 + ao sin at) sin(wit) (7.4)

where w, = 40w (20 Hz), ao = 0.25, and a = w, 2w, 4w, 6w (0.5, 1, 2, and 3 Hz).

The AFC controller at the heart of the AMAFC controller was that employed in the

previous section to cancel the constant single harmonic 20 Hz sinusoid. The base line

trajectory has a maximum acceleration of 1.6 g's. Table 7.5 summarizes the following

error when using AMAFC control. Command pre-shifting is used with both the AFC

and AMAFC control. Table 7.5 summarizes the measured following error for all of

the trials. Figures 7-10 through 7-13 plot the following error vs time for conventional

control, conventional control with command pre-shifting, AFC control with command

pre-shifting, and AMAFC with command pre-shifting as a is varied from 0.5 to 3 Hz.

Figure 7-14 plots the Fourier transform of the measured following error as a is varied

from 0.5 to 3 Hz.

These results are a bit of a disappointment. From Table 7.5, we see there is

very little difference between the measured following error for the AFC controlled

system and the AMAFC controller system until the modulation term reaches 2 Hz

(10% of the fundamental frequency). In fact there is very little difference in AMAFC

following error compared to the AFC controller canceling a fixed magnitude 20 Hz

sinusoid studied in the previous section. For both the 2 Hz and 3 Hz modulation

trials, the AMAFC system shows a small but appreciable reduction in the peak to

peak error and a more distinct reduction in the rms error. We see the same trends

when we examine the following error vs time plots in Figures 7-10 through 7-13. In

this case there are no obvious difference for the following error for AFC and AMAFC

control (Note: the time window for these plots is much larger than those in the
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Measured following error - 0.5 Hz Modulation
Conventional Pre-shift AFC AMAFC

Error pk-pk (mm) 0.0144 0.0081 0.0018 0.0022
Errorrms (mm) 0.0075 0.0020 0.00020 0.00020
Errorrms (540-6250 Hz) 3.4E-4 2.56E-4 2.38E-4 2.41E-4
Errorrms(0-540 Hz) 9.892E-3 3.17E-3 1.40E-4 1.42E-4

Measured following error - 1 Hz Modulation
Conventional Pre-shift AFC AMAFC

Error pk-pk (mm) 0.0142 0.00762 0.0019 0.0018
Errorrms (mm) 0.0074 0.0020 0.00021 0.00021
Errorrms (540-6250 Hz) 2.96E-4 2.59E-4 2.49E-4 2.49E-4
Errorrms(0-540 Hz) 1.09E-2 2.77E-3 1.54E-4 1.44E-4

Measured following error - 2 Hz Modulation

Conventional Pre-shift AFC AMAFC
Error pk-pk (mm) 0.0149 0.0084 0.0024 0.0021
Errorrms (mm) 0.0075 0.0020 0.00033 0.00022
Errorrms (540-6250 Hz) 3.56E-4 2.72E-4 2.54E-4 2.51E-4
Errorrms(0-540 Hz) 1.12E-2 2.83E-3 3.99E-4 1.74E-4

Measured following error - 3 Hz Modulation
Conventional Pre-shift AFC AMAFC

Error pk-pk (mm) 0.0152 0.0083 0.0030 0.0021
Errorrms (mm) 0.0075 0.0021 0.00045 0.00026
Errorrms (540-6250 Hz) 2.64E-4 2.61E-4 2.49E-4 2.54E-4
Errorrms(0-540 Hz) 1.05E-2 2.93E-3 5.99E-4 2.56E-4

Table 7.5: Following error summary following a modulated single harmonic 20 Hz

sinusoid.

previous section so the underlining error structure seen in the previous section is not

apparent). For a = 2 and 3 Hz, we can see that the following error for both AFC

and AMAFC control begins to match the shape of the modulated trajectory. Lastly

in Figure 7-14, we see that AMAFC offers a small advantage over AFC control in

reducing the error following a modulated signal. As expected from our analysis in

chapter 4, the following error for both AFC and AMAFC control the error grows as

the modulation frequency rises.
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Fast Tool Servo Trajectory
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Figure 7-10: Measured fast tool servo following error to a single 20 Hz position

command with 0.5 Hz modulation under conventional control, conventional control

with command pre-shifting, AFC control, and AMAFC control.
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Fast Tool Servo Trajectory
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Figure 7-12: Measured fast tool servo following error to a single 20 Hz position

command with 2 Hz modulation under conventional control, conventional control

with command pre-shifting, AFC control, and AMAFC control.
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Figure 7-14: Fourier transform of the measured following error to an amplitude mod-

ulated 20 Hz sinusoid as the modulation frequencies is varied from 0.5 to 3 Hz.
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7.3 Base Acceleration Feedback

In this section, we present our base acceleration feedback results. We employed two

strategies to reduce base acceleration. First, we implemented a feedforward controller

where the commanded stage trajectory was

Zsd(t) - M- Z (t) (7.5)
Astage

where

Zsd = commanded stage trajectory (7.6)

Zd = commanded fast tool servo trajectory (7.7)

Mts = fast tool servo mass (7.8)

Mstage = stage mass. (7.9)

As we discussed in chapter 6, our model assumes that both the fast tool servo and

hydrostatic stage are free masses, thus the fast tool servo actuation force is equal and

opposite on the stage. This means

Mstage~s = -Mftsfts. (7.10)

Assuming that both masses have zero initial position and zero initial velocity, we have

Mfts
Z= - Zjt. (7.11)

'Stage

The optimal mass ratio Mfts/Mstage was determined experimentally to be 1/42=0.024.

In practice, the stage is not a free mass since there are significant damping and drag

forces between it and the machine base. A more optimal tuning for this would adjust

both the phase and the magnitude of the feedforward signal. This leads to our second

strategy, in which we use the measured base acceleration to adaptively feedforward

the stage trajectory. In this case, we are using adaptive feedforward cancelation not
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Measured base acceleration
12 Hz , 6 mm pk-pk, 1.72 g FTS trajectory

No Feedback Feedforward AFC
Acceleration pk-pk (m/s2 ) 0.072 0.025 0.015
Accelerationm, (m/s') 0.022 0.0043 0.0020
Acceleration @ 12 Hz (m/s') 0.028 0.0049 3.27E-4

Table 7.6: Summary of measured base acceleration for a 12 Hz, 6 mm pk-pk, 1.72 g
fast tool servo trajectory with no acceleration feedback, manually tuned feedforward,
and AFC control.

to cancel an error but to cancel the base acceleration.

Before we present our results, we should note there are a number of limitations

to our stage acceleration cancelation controllers. In the case of the fixed feedforward

control, we know that the two masses are not really free masses. Specifically we know

that there are significant damping and drag between the stage and the base. It is

possible to select the magnitude and phase of the feedforward controller to account

for any viscous friction and spring forces but we can not adjust for any Coulomb

drag. In the case of the AFC cancelation, we automatically adjust the magnitude

and phase to account for any forces at a specific frequency but just as in the case

of fixed feedforward we can not completely eliminate the base acceleration because

the Coulomb forces (essentially square wave in form) have components at all the

harmonics of fundamental stage motion. To completely cancel the Coulomb forces,

we would need an infinite number of AFC resonators. Lastly, just as in the case of the

fast tool servo controller, we are limited in performance by our sensor. Specifically, the

acceleration measurement is noisy. With both the fast tool servo and stage stationary

(no control), the measured base acceleration was 0.008 M/s 2 pk-pk with an rms value

of 0.0013 m/s 2 . As we will see later, this noise is a significant portion of the measured

base acceleration when the reaction mass is under AFC control. All of our acceleration

measurement contain a large 60 Hz noise component, which we will see became an

issue in the case of trajectory 2 (see next paragraph).

We gathered data for our reaction mass controllers for four fast tool servo trajec-

tories:
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1. A single harmonic 12 Hz 6 mm pk-pk sinusoid (1.72 g's)

2. An eight harmonic 12 Hz 6 mm pk-pk sinusoid (2.2 g's)

3. An eight harmonic 13.5 Hz 6 mm pk-pk sinusoid (2.85 g's)

4. A six harmonic 23 Hz 4.8 mm pk-pk sinusoid (6.6 g's).

For trajectories 1-3, we recorded the base acceleration without feedback, with feed-

forward control, and with AFC control. For the first three trajectories, the AFC

controller had a resonator for each trajectory harmonic. For trajectory 4, we were

unable operate the machine without reaction mass compensation since the fast tool

servo reaction forces exceeded the force limit of the stage linear motor. For case 4,

we recorded the base reaction forces for feedforward control and for a three resonator

AFC controller with resonator gains of 0.01 and 0.001. It should be noted in cases 2

and 3, the reason we were able to run an eight resonator AFC controller on the base

is that there was no AFC compensation on the fast tool servo. In case 4 we were run-

ning 6 resonators on the fast tool servo and while it was possible to run 6 resonators

on the base, the data collection process caused a communication bus conflict and the

data collected was polluted when we ran more than 9 total resonators.

Table 7.6 summarizes the measured base acceleration results for a single harmonic

12 Hz 6 mm pk-pk fast tool servo trajectory. Figure 7-15 shows fast tool servo

trajectory, the measure base acceleration without feedback, base acceleration with

feedforward control, and base acceleration with AFC control versus time. Figure 7-16

plots the Fourier transform of the measured base acceleration without feedback, with

feedforward control, and with AFC control. In this case, feedforward control reduces

the peak to peak base acceleration by a factor of 2.9 and rms acceleration by a factor

of 5.11. Comparing AFC control to no feedback, we see a factor of 4.8 reduction in

peak to peak acceleration and a factor of 11 reduction in rms acceleration. Since we

know that acceleration signal has significant noise pollution, it is valuable to look at

just the 12 Hz component. In this case, we see that feedforward control delivers a

factor of 5.7 improvement vs no feedback while AFC reduces the 12 Hz component

by a factor of 85 vs no feedback.
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Measured base acceleration
12 Hz , 6 mm pk-pk, 2.2 g 8 harmonic FTS trajectory

No Feedback Feedforward AFC
Acceleration pk-pk (m/s 2) 0.085 0.0221 0.0147
Accelerationrms (m/s ) 0.024 0.0042 0.0018
Acceleration C 12 Hz (m/s 2 ) 0.028 0.0048 1.3E-4
Acceleration © 24 Hz (m/s ) 0.013 0.0011 1.42E-4
Acceleration U 36 Hz (m/s') 0.0022 8.7E-5 1.91E-5
Acceleration U 48 Hz (m/s ) 1.75E-3 4.66E-4 7.07E-5
Acceleration Q 60 Hz (m/s 2 ) 5.09E-4 2.96E-4 1.03E-3
Acceleration © 72 Hz (m/s 2) 2.56E-4 9.39E-4 6.26E-5
Acceleration A 84 Hz (m/s 2) 2.35E-4 1.52E-4 6.53E-5
Acceleration A 96 Hz (m/s ) 3.56E-4 4.2E-4 1.74E-5

Table 7.7: Summary of measured base acceleration for a 12 Hz, 6 mm pk-pk, 2.2 g
8 harmonic fast tool servo trajectory with no acceleration feedback, manually tuned
feedforward, and an eight harmonic AFC control.

Table 7.3 summarizes the measured base acceleration results for an eight harmonic

12 Hz 6 mm pk-pk fast tool servo trajectory. Figure 7-19 shows fast tool servo

trajectory, the measure base acceleration without feedback, base acceleration with

feedforward control, and base acceleration with AFC control versus time. Figure 7-

20 plots the Fourier transform of the measured base acceleration without feedback,

with feedforward control, and with AFC control. Once again we see that feedforward

control reduces the peak to peak acceleration by approximately 3 and reduces the

rms acceleration by a factor of 5. Similarly, AFC control reduces the peak to peak

acceleration by a factor of 5 and the rms acceleration by a factor of 200. Looking at

components of the acceleration at each trajectory harmonic, we see that AFC control

reduces the first four harmonics by a factor of at least 100. AFC control is less

effective on the higher harmonics partly because the magnitude of the acceleration

is near the resolution limit of the accelerometer (1.5x10- 5 m/s 2 ). The one problem

with this controller is that the AFC controller increases the magnitude of the 60 Hz

harmonic. We believe this increase is due to the AFC resonator trying to cancel out

the 60 Hz noise signal. To avoid this problem, we change the frequency of the fast

tool servo trajectory to 13.5 Hz.
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No Feedback Feedforward AFC
Acceleration pk-pk (m/s 2) 0.154 0.056 0.044
Accelerationm, (m/s 2) 0.048 0.0115 0.0040
Acceleration Q 13.5 Hz (m/s 2 ) 0.063 0.0126 1.08E-4
Acceleration © 27 Hz (m/s2 ) 0.021 0.0024 8.76E-5
Acceleration A 40.5 Hz (m/s 2 ) 0.0063 0.0015 3.78E-5
Acceleration A 54 Hz (m/s') 3.51E-3 3.25E-4 1.32E-4
Acceleration A 67.5 Hz (m/s 2) 3.82E-3 4.44E-3 9.42E-5
Acceleration A 81 Hz (m/s2 ) 2.84E-3 2.56E-3 1.02E-4
Acceleration A 94.5 Hz (m/s 2 ) 3.25E-3 3.65E-3 8.80E-4
Acceleration A 108 Hz (m/s 2 ) 1.93E-3 1.59E-3 3.38E-4

Table 7.8: Summary of measured base acceleration for a 12 Hz, 6 mm pk-pk, 2.85 g
8 harmonic fast tool servo trajectory with no acceleration feedback, manually tuned
feedforward, and an eight harmonic AFC control.

Table 7.8 summarizes the measured base acceleration results for an eight harmonic

13.5 Hz 6 mm pk-pk sinusoidal fast tool servo trajectory (2.85 g's). Figure 7-19

shows fast tool servo trajectory, the measure base acceleration without feedback,

base acceleration with feedforward control, and base acceleration with AFC control

versus time. Figure 7-20 plots the Fourier transform of the measured base acceleration

without feedback, with feedforward control, and with AFC control. Once again, we

see that feedforward control and AFC control reduce the base acceleration but the

reduction in the peak to peak acceleration is approximately 3, significantly less than

the previous trials. The RMS acceleration results are much closer to the previous

trials with reductions of a factor of 4 and a factor of 10. Looking at the acceleration

component at each harmonic, we see that at low frequency harmonics AFC reduces

the acceleration by a factor of 100. At the two harmonics near 60 Hz, the AFC

controller has reduced the acceleration by a factor of 10. For some reasons, the

AFC controller does not cancel the 94.5 Hz harmonic component as well as the other

harmonics. In Figure 7-20, we can see that the higher harmonics of the fast tool servo

trajectory compose a significant portion of the total base acceleration. If our DSP

was sufficiently fast enough, we would want to use a minimum of 12 AFC resonators
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Figure 7-19: Measured base acceleration with no feedback, feedforward, and an eight

resonator AFC controller. The fast tool servo trajectory is an eight harmonic 13.5 Hz

6 mm pk-pk sinusoid.

to cancel the base acceleration.

Table 7.9 summarizes the measured base acceleration for a 23 Hz, 4.8 mm pk-

pk 6 harmonic fast tool servo trajectory (6.6 g's). For this trial, we measured base

acceleration for feedforward control, and AFC control with resonator gains of 0.01 and

0.001. Figure 7-21 plots the base acceleration versus time, while Figure 7-22 plots the

Fourier transform of the base acceleration. As mentioned earlier, we employed only 3

AFC resonators for this system so the fourth through sixth harmonics dominate the

measured base acceleration. In addition to the commanded harmonic components

the seventh and eight harmonics have a significant contribution. Since we could not

measure the acceleration without some form of reaction mass compensation, we can

not compare the controlled acceleration to it. The rest of the results are what we

would expect with both forms of AFC outperforming the feedforward control and the

higher gain AFC controller having better performance. In this case, the lower gain

AFC controller offered only a moderate performance advantage over the feedforward

controller. This illustrates the importance of proper AFC gain selection, if the gains
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Figure 7-20: Fourier transform of base acceleration with no feedback, feedforward,

and an eight resonator AFC controller. The fast tool servo trajectory is an eight

harmonic 13.5 Hz 6 mm pk-pk sinusoid.

Measured base acceleration
23 Hz , 4.8 mm pk-pk, 6.6 g 6 harmonic FTS trajectory

Feedforward AFC g=0.001 AFC g=0.01

Acceleration pk-pk (m/s 2 ) 0.059 0.0278 0.0299

Acceleration,m, (m/s') 0.0115 0.0043 0.0044

Acceleration © 23 Hz (m/s 2) 0.0118 9.36E-4 5.77E-5

Acceleration U 46 Hz (m/s 2 ) 9.49E-3 5.76E-4 1.46E-4

Acceleration © 69 Hz (m/s') 4.06E-3 1.42E-4 1.79E-4

Table 7.9: Summary of measured base acceleration for a 23 Hz, 4.8 mm pk-pk, 6.6 g

6 harmonic fast tool servo trajectory with no acceleration feedback, manually tuned

feedforward, and a three harmonic AFC control.
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Figure 7-21: Measured base acceleration with no feedback, feedforward, and a three
resonator AFC controller. The fast tool servo trajectory is a six harmonic 23 Hz 4.8
mm pk-pk sinusoid.

are too low the utility of AFC control is limited while if the gains are too high we

develop undesirable dynamics as seen in the fast tool servo AFC section.
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Figure 7-22: Fourier transform of base acceleration with no feedback, feedforward,

and a three resonator AFC controller. The fast tool servo trajectory is a six harmonic

23 Hz 4.8 mm pk-pk sinusoid.
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7.4 Base Acceleration Feedback AMAFC

In this section, we present our results for applying AMAFC control to the base ac-

celeration feedback. We evaluated the effect of base AMAFC control on a single

harmonic fast tool servo trajectory of the form

Zd(t) = (1 + ao sin at) sin(wit) (7.12)

where w, = 407 (20 Hz), ao = 0.25, and a = 7r, 27r, 47r, 67r (0.5, 1, 2, and 3

Hz). Table 7.10 summarizes the measured base acceleration. Figure 7-23 shows the

measured base acceleration versus time. Figure 7-24 plots the Fourier transform of

the measured base acceleration for the system under both AFC and AMAFC control.

As we can see from Table 7.10, the AMAFC peak to peak base acceleration is 2/3

the AFC peak to peak acceleration for all of the modulation frequencies. Similarly,

we see that AMAFC cuts the rms base acceleration in half for all cases. As we noted

in the previous section, the base acceleration measurement is quite noisy and the

peak to peak acceleration and the rms acceleration are of limited utility. Examining

Figure 7-24 we see that for a = 0.5 and 1 Hz, AMAFC control reduces the frequency

components near 20 Hz by a factor of 10. For a = 2 and 3 Hz the convolution of the

modulation signal and fundamental trajectory harmonic have caused the measured

base acceleration to move to 20 ± a Hz. As expected from our analysis in chapter 4,

AMAFC becomes less effective as the speed of the modulation is increased. In this

case when a = 3 Hz, AMAFC offers only a factor of 5 advantage canceling the

controlled base acceleration components.

7.5 Summary

In this Chapter, we presented the measured FTS following error under several different

AFC controller implementations. The measured following error was typically 2 [Lm

peak-to-peak and 0.2 pm rms for moderate acceleration trajectories. When using

the multiplicative AMAFC structure, AMAFC offered a small advantage reducing
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AFC AMAFC
a pk-pk (m/s 2 ) rms (M/s2) pk-pk (m/s 2 ) rms (M/s2)

0 Hz 0.017 1.81E-3 -
0.5 Hz 0.030 5.1E-3 0.022 2.83E-3

1 Hz 0.029 3.67E-3 0.019 1.81E-3
2 Hz 0.034 2.97E-3 0.017 1.26E-3
3 Hz 0.026 3.14E-3 0.016 1.63E-3

Table 7.10: Summary of measured
harmonic fast tool servo trajectory
AMAFC control.
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the following error at the frequency of the trajectory harmonic by a factor of two.

Applying, AFC control to eliminate machine base acceleration reduced the overall

measured acceleration by a factor of 10 and the component at the FTS trajectory by

a factor of 100. Applying AMAFC to the base acceleration feedback offers a factor of

3 advantage canceling FTS reaction forces with time varying amplitude. In the next

Chapter, we conclude this thesis with with summary of the thesis contributions and

suggestions for further work.
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Chapter 8

Conclusion and Suggestions for

Future Work

8.1 Summary of Results

The primary results of this thesis are:

" The design and construction of a 25 mm travel linear fast tool servo.

- 100 m/s 2 (10 g's) maximum acceleration with 6.6 g's demonstrated.

- Demonstrated ±1.5 pm following error with MicroE scale.

- Demonstrated ±0.1 pm following error with Heidenhain scale.

" Assembly and control of the linear fast tool servo on a machine base with integral

balance mass.

- A factor of three measured reduction in base acceleration using classic

feedforward control.

- A factor of 10 reduction in overall measured base acceleration using base

acceleration feedback with adaptive feedforward control.

- A factor of 100 reduction in the measured base acceleration at the adaptive

feedforward controller frequency.
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" Demonstration in simulation that the Oscillator Amplitude Control perspec-

tive correctly predicts the convergence properties of both single and multiple

resonator AFC control systems.

" Demonstration in experiment of a multiplicative amplitude modulated AFC

(AMAFC) controller with enhanced performance following trajectories with

time varying magnitude.

- A factor of 5 reduction in the measure FTS following error at 20 Hz for a

20 Hz sinusoid with a 0.5 Hz modulation.

- A factor of 10 reduction in the measured base acceleration at 20 Hz for a

20 Hz sinusoid FTS trajectory with a 0.5 Hz modulation.

" Demonstration in simulation of an additive AMAFC structure with significant

improvements in both trajectory following and numerical stability versus the

multiplicative AMAFC structure.

8.2 Future Work

While our linear fast tool servo prototype worked quite well as built, there remains

significant development to be done to achieve the original design goals of 500 m/s 2

maximum acceleration and 0.1 pm form accuracy. Outlined below are several sugges-

tion for future work to reach the ultimate design goal.

8.2.1 Higher Accuracy Sensor

It is quite clear that the performance of our prototype FTS was limited by the quality

of the sensor. There are essentially four ways to improve the sensor accuracy. First is

to map the existing MicroE scale. This could be done using an interferometer while

the FTS is mounted on an optical table. Using the scale mapping, a lookup table

could be added to the control structure to correct for the know position error. This

approach has the advantage of using only existing hardware but it is unknown how
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well the DS1103 controller- will accommodate the large lookup file required for this

approach. A second option is to build a serial interface for the Heidenhain LIP501

encoder. This approach offers the advantage of enhanced accuracy while utilizing

existing hardware and software. The disadvantage of this approach is that the max-

imum speed of the Heidenhain electronics is on the low side of the requirements. A

third option is to investigate if there are other scales and electronics which would

meet our requirements. A brief review of the current Heidenhain and MircoE prod-

uct lines indicate that the dual read head scales from MicroE may be applicable. For

the dual read head scales, two read heads make measurements off of the same scale

and the position output is the average of the two values. MicroE currently offers only

a rotary version of this encoder but their literature suggest that the hardware can

also be applied to linear systems. This system offers enhanced accuracy but at the

expense of adding a second serial interface. Since the serial interface is one on the

major items limiting our overall sample rate, it is likely the addition of a second serial

interface would make the overall control loop unacceptably slow. The last option is

to implement a laser interferometer based measurement system. This approach offers

enhanced accuracy and allows the position of the FTS to be measured relative to the

absolute machine reference frame. As mentioned earlier there are several disadvan-

tages to this approach specifically cost and beam routing. The current FTS hardware,

specifically the linear motor, do not support this approach, since they would block

the beam path.

8.2.2 Actuator

The second major component limiting the performance of the FTS system is the

actuator. While Micheal Liebman's oil-cooled linear motor has proven more than

adequate for proving the validity of the overall control structure, it is incapable of

meeting the 50 g requirement. In chapter 2, we reviewed several proposed voice

coil motor designs. As mentioned there, any proposed actuator is going to require

both a flux concentrating design and coil cooling. It is my belief that a single phase

motor with a moving coil is the design option of choice since the magnetic fields
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Figure 8-1: Pro-E model of a proposed toolholder/bearing seal assembly.

required in a moving magnet design have the potential to demagnetize the permanent

magnets. Specifically, if the magnets were to experience a significant temperature rise,

demagnetization of the magnets is a significant risk. It should be possible to enhance

the performance of any motor with forced cooling by refrigerating the coolant. While

this offers some enhanced thermal performance, it may introduce unwanted thermal

distortion in the overall system. It should be noted that any further testing with

the existing prototype will require a redesign of the coolant circuit since the existing

circuit failed due to pump overload.

8.2.3 Cutting Studies

One of the clear flaws to the results presented in this thesis is that they were all

acquired during air cuts. Air cuts represent the best conditions for FTS operation,

minimizing disturbance and actuation forces. The performance of both the FTS

position control loop and the base acceleration feedback loop may be significantly

degraded when parts are being cut. Of particular concern is the base acceleration

feedback loop when the base is being excited by both the FTS/reaction mass sub-
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system and the workpiece/spindle subsystem. The FTS requires several additional

components before being able to support cutting operations:

* a tool holder

" a seal for the air bearing to prevent contamination.

Figure 8-1 shows a Pro-E model of one possible toolholder/air bearing seal assembly.

In this figure, the toolholder is a basic design utilizing a standard 1/4" tool shank,

a slotted sliding mechanism which is oriented horizontally and in roll by a slot in

the toolholder mounting face. The sliding mechanism is bolted to the mounting

face utilizing four 8-40 bolts. The air bearing is sealed utilizing a 4"x4" square

polyethylene bellows. The bellows are attached to both the toolholder mounting

face and the air bearing bushing assembly. All of the components for this toolholder

have been fabricated except for the tool holder sliding mechanism and mounting face.

This design is acceptable for rough cutting but since it does not incorporate a fine

height adjustment in is not acceptable for fine cutting. A more appropriate toolholder

would incorporate features for coarse and fine adjustment. It is likely a flexure could

be utilized for fine adjustment.

8.2.4 Investigate Effect of Integrator Saturation of AFC Con-

trol

One of the major theoretical evaluations that has yet to be performed on AFC con-

trollers is the effect that integrator saturation has on the performance and stability

of an AFC controller. As is common practice when utilizing integrators, we have lim-

ited the integrator windup by placing saturation limits on the state of the integrator.

This prevents the integrators from developing large overshoot but can have a negative

impact on the system performance. Specifically if the integrator saturation limit is

set too low, we may artificially prevent the AFC controller from properly estimat-

ing the disturbance magnitude. This occurred on at least one occasion for the base

acceleration feedback controller. Alternately, the integrator saturation limits may
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Figure 8-2: Block diagram of a standard AFC resonator and plant with zero input
into the AFC system.

combine to form a conditionally stable system [34]. In a conditionally stable system

the magnitude of the loop response determines if the system is stable or unstable. For

the most common situation, if the magnitude of the loop response is small the system

is unstable while if the magnitude is large the response is stable. Thus the system

enters a limit cycle oscillation. On more than one occasion the FTS controller en-

tered a marginally stable condition where the FTS motion contained frequencies other

than those commanded. It is unclear if these oscillations were a result of conditional

stability and this bears further study.

8.2.5 Additive AMAFC

There are several incomplete components to the additive AMAFC analysis. While it

is clear in simulation that the additive structure has superior tracking and numer-

ical performance when compared with multiplicative AMAFC control, this has not

been proven experimentally. Results should be gathered comparing the performance

of additive AMAFC control to classic AFC control and AFC control with command

pre-shifting. In Chapter 4, we suggested that additive AMAFC control appeared to

integrate the command pre-shifting channel with the AFC controller and that this

would be a more compact and numerically efficient control model. A more detailed
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analysis of this should be conducted comparing the turnaround time of both the addi-

tive AMAFC structure and AFC with command pre-shifting to verify this hypothesis.

Lastly in Chapter 4, we proposed that for the additive AMAFC structure shown

in Figure 8-2, for a desired trajectory of

yd(t) = cos at[a, cos(wnt) + bn sin(wnt)] (8.1)

that the additive components d(t) and b(t) should be

&(t) = a" cos at (8.2)
PU(jwn)J

b(t) = ") cos at. (8.3)
JPUjon)J

As we saw in Chapter 4, this does not result in perfect error tracking since it does not

account for the phase shift in the a sinusoid from the plant dynamics. We propose

that an improved estimate would be

a(t) = w) cos(at + 6) (8.4)
1 P (jLn) I

bn
b(t) = . cos at + 6) (8.5)

where 6 can be determined from a Fourier analysis similar to that used while evalu-

ating the limitations of the OAC approximation in Chapter 5.

8.3 Conclusions

The main results of this thesis have been the design and development of a linear long

stroke fast tool servo with an integral balance mass and the development of a loop

shaping technique for tuning systems with AFC control. While the performance of

the linear FTS did not meet our desired goals, the long travel tracking performance of

the FTS matches or exceeds the long travel tracking performance of comparable FTS

devices. The unique feature of this design is the incorporation of an integral balance
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mass. This design successfully allowed for a significant attenuation in the reaction

forces in the machine base without any apparent loss of FTS performance. Our loop

shaping approach to AFC control was successfully applied to both the FTS position

control loop and the base acceleration feedback loop. In summary, the success of

both the FTS design and our control approach indicate the general applicability of

this approach to the wider precision manufacturing community.
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Appendix A

Tables

A.1 State Space Model of Rotary Fast Tool Servo

-1632.2 753.98 753.98 0

0 0 188.5 0

0 0 0 0

-2.69e6 1.87e6 1.87e6 -498.1

0 0 0 16384

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

4.31e7 -2.99e7 -2.99e7 0

0 0 0 0

0 0 0 0

-1.80e6 1.24e6 1.24e6 0

0
0

0

-32

0

0

0

0

512

0

0

0

0 0

0 0
0 0

-13744 -557

0 0

8192 0

0 8192

0 0
0 0
0 0

0 0

0 0

0 0

0 0 2530 0

0 0 632.5 0

0 0 632.5 0

-4710 0 6.26e6 15000

0 0 0 0

0 0 0 0

0 0 0 0

64 0 0 0

0 32 0 0

0 0 -1.0e8 -1.2e5

0 0 0 6.55e5

0 0 0 0

0 0 4.17e6 0

C= -2.81e5 1.94e5 1.94e5 0 0 0 0 0 6.52e5 0 0 0 0 D= [0]

333

0

0

0

0

0

0

0

0

0

-9.16e5

0

3.28e5

0

0 0

0 0

0 0

6985 -1632

0 0

0 0

0 0

0 0

0 0

-5.59e5 2.61e5

0 0

0 0

0 -1632

A=



A.2 AFC resonator Values

Resonator Tuning Values
n 1 2 3 4 5 6 7 8 9 10

Wn 125.7 251.3 377 502.7 628.3 754.0 879.7 1005 1131 1256
gn 1 1 1 1 1 1 1 1 1 1

q5,(deg) -7.7 -11.2 -17.4 -30.7 -50.3 -70.7 -87.4 -100.3 -110.8 -119.7

Table A.1: Resonator tuning values for a 10 resonator system with g = 1 and

Resonator Tuning Values
n 1 2 3 4 5 6 7 8 9 10

Wn 125.7 251.3 377 502.7 628.3 754.0 879.7 1005 1131 1256
gn 5.18 5.18 5.18 5.18 5.18 5.18 5.18 5.18 5.18 5.18

4(deg) -7.7 -11.2 -17.4 -30.7 -50.3 -70.7 -87.4 -100.3 -110.8 -119.7

Table A.2: Resonator tuning values for a 10 resonator system with g1 = ... = gn and

Resonator Tuning Values
n 1 2 3 4 5 6 7 8 9 10

Wn 125.7 251.3 377 502.7 628.3 754.0 879.7 1005 1131 1256

I I 31.1 I20.7 5.1 2.59 I2.59 2.59 I5.18 I5.18 I5.18 I5.18
On(deg) -7.7 -11.2 -17.4 -30.7 -50.3 -70.7 -87.4 -100.3 -110.8 -119.7

Table A.3: Resonator tuning values for a 10 resonator system with g, modified by
hand and .
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Appendix B

Matlab Code for Voice Coil Motor

Design

B.1 Cylindrical Motor Function

This section contains the Matlab code for the function motor-size which analyzes

cylindrical voice coil motor designs.

function motor-size

clear all; close all;

disp(['This program computes the performance parameters for a ...

circular VCM'])

tm=input('Magnet thickness (cm)')/100;

tg=input('Thickness of airgap (cm)')/100;

Rm=input ('Magnet radius (cm)')/100;

Rg=input('Airgap Radius (cm) ')/100;

Lm=input ('Length of magnet (cm)')/100;

Lg=input ('Length of Airgap (cm)')/100;

Br=input ('Magnet remenence (T)I);

Lcu=input('Coil Width (cm)')/100;

rhocu=8900; rhoal=2700; PF=0.7; muz=pi*4E-7;

disp(['Density of copper I num2str(rhocu) ' kg/m^3'])

disp(['Density of AL ' num2str(rhoal) ' kg/m^3'])

disp(['Packing Factor ' num2str(100*PF) '.'])

%Mass and volume of copper
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Vcu=2*PF*pi*Rg*tg*Lcu; disp(['Volume of Copper ' num2str(Vcu) ' m^3'])

Mcu=rhocu*Vcu; disp(['Mass Copper ' num2str(Mcu) ' kg'])

%Flux density in Airgap

Bg=Br/((Rg*Lg)/((Rm-tm/2)*Lm)+tg/tm);

disp(['Magnetic field in Gap ' num2str(Bg) ' Ti)

%Flux density in Backiron

Bbi=Bg*2*pi*Rg*Lg/(pi*(Rg-tg/2)^2);

disp(['Magnetic field in Backiron ' num2str(Bbi) ' T'])

if Bbi>1.8, disp(['Backiron is Saturated']), end

tbi=Bg*2*pi*Rg*Lg/(2*pi*1.8*(Rg-tg/2));

Rbi=sqrt((Bg*2*pi*Rg*Lg/1.8+pi*(Rm+tm/2)^2)/pi);

%Mass and volume of Al

Lal=(Lg-Lcu)/2+1.27/100;

Val=pi*tg*Rg^2+pi*(Rg^2-(Rg-tg/2)^2)*Lal;

Mal=rhoal*Val; disp(['Mass AL ' num2str(Mal) ' kg'])

%Moving mass, slide mass = 0.2 kg Al, 0.6 St

Mml=0.2+Mcu+Mal; Mm2=0.6+Mcu+Mal;

%Required Current Density A/mm^2

F1=500*Mml; F2=500*Mm2;

J1=F1/(Bg*Vcu*1000^2); J2=F2/(Bg*Vcu*1000^2);

disp(['Current Density for Al actuator ' num2str(Ji) ' A/mm^2'])

disp(['Current Density for ST actuator ' num2str(J2) ' A/mm^2'])

close all;

figure(i)

x=[-Lm/2 Lm/2 Lm/2 -Lm/2]*100;

y=[Rm-tm/2 Rm-tm/2 Rm+tm/2 Rm+tm/2]*100;

fill(x,y,'r',x,-y,'r')

hold on;

x=[-Lm/2 Lm/2 Lg/2 -Lg/2]*100;

y=[Rm-tm/2 Rm-tm/2 Rg+tg/2 Rg+tg/2]*100;

fill(x,y,'b',x,-y,'b')

x=[-Lcu/2 Lcu/2 Lcu/2 -Lcu/2]*100;

y=[Rg+tg/2 Rg+tg/2 Rg-tg/2 Rg-tg/2]*100;

fill(x,y,'m',x,-y,'m')

x=[-Lg/2 Lm/2 Lm/2 -Lm/2 -Lm/2 Lm/2+tbi Lm/2+tbi -Lg/2]*100;

y=[Rg-tg/2 Rg-tg/2 Rm+tm/2 Rm+tm/2 Rbi Rbi 0 0]*100;
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fill(x,y,'b',x,-y,'b')

x=[-(Lcu)/2 -Lg/2-0.0127-tg -Lg/2-tg-0.0127 -Lg/2-0.0127 ...

-Lg/2-0.0127 -(Lcu)/2]*100;

y=[Rg Rg 0 0 Rg-tg/2 Rg-tg/2]*100;

fill(x,y,'g',x,-y,'g')

x=[-Lg/2-0.0127-tg -Lg/2-0.0127-tg-7.75*2.54/100 ...

-Lg/2-0.0127-tg-7.75*2.54/100 -Lg/2-0.0127-tg]*100;

y=[2.54 2.54 -2.54 -2.541/2;

fill(x,y,'g')

x=[-Lg/2-2*0.0127-tg -Lg/2-6*0.0127-tg -Lg/2-6*0.0127-tg ...

-Lg/2-2*0.0127-tg]*100;

y=[2.54 2.54 2.5*2.54 2.5*2.541/2;

fill(x,y,'k',x,-y,'k')

x=[-Lg/2-6*0.0127-tg-(2.54*2.25/100) -Lg/2-10*0.0127-tg-(2.54*2.25/100)...

-Lg/2-10*0.0127-tg-(2.54*2.25/100) -Lg/2-6*0.0127-tg-(2.54*2.25/100)]*100;

y=[2.54 2.54 2.5*2.54 2.5*2.541/2;

fill(x,y,'k',x,-y,'k')

axis equal

lab=['Mass Cu ' num2str(Mcu) ' kg'];

text(-20,-4,lab)

lab=['Moving Mass (Al) ' num2str(Mml) ' kg'];

text(-20, -5,lab)

lab=['Moving Mass (St) ' num2str(Mm2) ' kg'];

text(-20, -6,lab)

lab=['Flux Desity Air Gap (Bg) ' num2str(Bg) 'T';

text(-20, -7,lab)

lab=['Flux Desity backiron (Bbi) ' num2str(Bbi) ' T'1;

text(-20, -8,lab)

lab=['Current Density (Al) ' num2str(J1) ' A/mm-2'];

text(-20, -9,lab)

lab=['Current Density (St) ' num2str(J2) ' A/mm^2'];

text(-20, -10,lab)

lab=['Magnet Radius ' num2str(Rm*100) ' cm'];

text(-20,4,lab)

lab=['Airgap Radius ' num2str(Rg*100) ' cm'];

text(-20,5,lab)
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lab=['Magnet Length ' num2str(Lm*100) ' cm'];

text(-20,6,lab)

lab=['Airgap Length ' num2str(Lg*100) ' cm'];

text(-20,7,lab)

lab=['Coil width ' num2str(Lcu*100) ' cm'];

text(-20,8,lab)

grid

hold off;

B.2 Square Motor Function

This section contains the Matlab code for the function motor-size-s which analyzes

square voice coil motor designs.

function motor-size-s

clear all; close all;

trm=0.0254; disp(['Motor travel ' num2str(trm*100) ' cm'])

Br=1.2; disp(['Magnet Remenance ' num2str(Br) ' T'])

rhocu=8900; rhoal=2700; PF=0.7; muz=pi*4E-7;

disp(['Density of copper ' num2str(rhocu) ' kg/m^3'])

disp(['Density of AL ' num2str(rhoal) ' kg/m^3'])

disp(['Packing Factor ' num2str(100*PF) '%'])

tm=input('Magnet thickness cm')/100;

tg=input('Gap thickness cm')/100;

tfc=input('Thickness of concentrator cm')/100;

Lm=input('Magnet Length cm')/100;

Lg=input('Gap Length cm')/100;

Wm=input('Magnet Width cm')/100;

Wg=input('Gap Width cm')/100;

%Length of Copper

Lcu=Lg-trm;

%Flux density in air gap

Bg=Br/((Lg*Wg)/(Lm*Wm)+tg/tm);

disp(['Flux density in air gap ' num2str(Bg) ' T']);

%Flux density in backiron

Bbi=4*Bg*Lg/Wg;
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disp(['Flux density in backiron ' num2str(Bbi) ' T');

%Volume of copper

Vcul=4*Wg*Lcu*tg*PF; Vcu2=4*tg^2*Lcu*PF; Vt=Vcul+Vcu2;

%mass copper

Mcu=Vt*rhocu;

%Volume Al

Val=trm*(2*tg*Wg +tg^2)+(Wg+tg)^2*tg;

%Mass Al

Mal=Val*rhoal;

%Total mass Mi=0.2 M2=0.6

Mi=0.2+Mcu+Mal; M2=0.6+Mcu+Mal;

%Force 500 m/s2

Fi=M*500; F2=M2*500;

%Current Density

J1=F1/(Vcu*Bg*1000^2);

J2=F2/(Vcui*Bg*1000~2);

figure(1)

subplot(2,1,1)

hold on;

base=Wg/2+tg+tfc;

x=[-Lm/2 Lm/2 Lm/2 -Lm/2]*100;

y=[base base base+tm base+tm]*100;

fill(x,y,'r',x,-y,'r')

x=[-Lm/2 Lm/2 Lg/2 -Lg/2]*100;

y=[base base base-tfc base-tfc]*100;

fill(x,y,'b',x,-y,'b')

base=base-tfc;

x=[-Lcu/2 Lcu/2 Lcu/2 -Lcu/2]*100;

y=[base base base-tg base-tg]*100;

fill(x,y,'m',x,-y,'m')

base=base-tg/2;

x=[-Lcu/2 -(Lcu/2+tg+trm) -(Lcu/2+tg+trm) -(Lcu/2+trm) -(Lcu/2+trm)

-(Lcu/2)] *100;

y=[base base 0 0 base-tg/2 base-tg/2]*100;

fill(x,y,'g',x,-y,'g')

base=base-tg/2;
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x=[-Lg/2 Lm/2 Lm/2 -Lm/2 -Lm/2 Lm/2+2*tm Lm/2+2*tm -Lg/2]*100;

y=[base base base+tg+tm+tfc base+tg+tm+tf c base+tg+3*tm+tf c...

base+tg+3*tm+tfc 0 0]*100;

fill(x,y,'b',x,-y,'b')

basex=-(Lcu/2+tg+trm);

s1=-7.75*2.54/100;

x=[basex basex+sl basex+sl basex]*100;

y=[0.0 25 4 /2 0.0254/2 -0.0254/2 -0.0254/2]*100;

fill(x,y,'g')

lab=['Flux Desity Air Gap (Bg) ' num2str(Bg) ' T'1;

text(-20, -3,lab)

lab=['Flux Desity backiron (Bbi) ' num2str(Bbi) ' T'];

text(-20, -5,lab)

lab=['Current Density (Al) ' num2str(J1) ' A/mm^2'];

text(-20, -7,lab)

lab=['Current Density (St) ' num2str(J2) ' A/mm^2'];

text(-20, -9,lab)

hold off;

subplot(2,1,2)

hold on;

basex=Wg/2+tg+tfc+3*tm;

x=[-basex basex basex -basex]*100;

y=[basex basex -basex -basex]*100;

fill(x,y,'b')

basex=basex-2*tm;

x=[-basex basex basex -basex]*100;

y=[basex basex -basex -basex]*100;

fill(x,y,'w')

x=[-basex -basex -basex+tm -basex+tm]*100;

y=[Wm/2 -Wm/2 -Wm/2 Wm/2]*100;

fill(x,y,'r',-x,y,'r')

axis equal

x=[Wm/2 -Wm/2 -Wm/2 Wm/2]*100;

y=[-basex -basex -basex+tm -basex+tm]*100;

fill(x,y,'r',x,-y,'r')

basex=basex-tm;
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x=[basex basex basex-tfc basex-tfc]*100;

y=[Wm/2 -Wm/2 -Wg/2 Wg/2]*100;

fill(x,y,'b',-x,y,'b')

x=[Wm/2 -Wm/2 -Wg/2 Wg/2]*100;

y=[basex basex basex-tfc basex-tfc]*100;

fill(x,y,'b',x,-y,'b')

basex=basex-tfc;

x=[-basex basex basex -basex]*100;

y=[basex basex -basex -basex]*100;

fill(x,y,'m')

basex=Wg/2;

x=[basex basex -basex -basex]*100;

y=[basex -basex -basex basex]*100;

fill(x,y,'g')

lab=['Magnet Width ' num2str(Wm*100) ' cm'];

text(15,10,lab)

lab=['Airgap Width ' num2str(Wg*100) ' cm'];

text(15,8,lab)

lab=['Magnet Length ' num2str(Lm*100) ' cm'];

text(15,6,lab)

lab=['Airgap Length ' num2str(Lg*100) ' cm'];

text(15,4,lab)

lab=['Coil width ' num2str(Lcu*100) ' cm'];

text(15,2,lab)

lab=['Mass Cu ' num2str(Mcu) ' kg'];

text(15,0,lab)

lab=['Moving Mass (Al) ' num2str(M1) ' kg'];

text(15, -2,lab)

lab=['Moving Mass (St) ' num2str(M2) ' kg'];

text(15, -4,lab)

axis equal

hold off

341



342



Appendix C

C code for SlaveDSP serial

interface

This appendix contains the c code required to run the serial interface on the DS1103

SlaveDSP. There are four function required for the code to run. Cspi-microE.c is the

code for a custom S-function block in the Simulink model. Fw240.c registers the users

custom code in the compiler. To activate the Fw240.c function, compile the Simulink

model. Start Controldesk assign the variable file. Then from the toolbar reassign the

slave application using Instrumentation/Slave Application/Assign slave application.

Once the slave application has been assigned recompile the Simulink model. Usrdsp.c

is the c code which defines the custom functions. Usrdsp.h is the header file for the

custom functions.

C.1 Code for Cspi-microE.c

/* File: Cspi-microE.c

* Author: Marten Byl

* Created: 8/30/04

* Based on: sfuntmpl-basic.c and Ser-AIO.c by David Otten

* Also based on examples in the DS1103 RTLib Reference July 2001

* Description: S-function to operate a clocked serial interface to

* a microE encoder on the slave dsp using user specific
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* commands. Based Upon Dave Otten's work with a multi-channel

* A to D interface on the slave DSP

* sfuntmpl-basic.c: Basic 'C' template for a level 2 S-function.

*--------------------------------------------------------------------------

* I See matlabroot/simulink/src/sfuntmpl-doc.c for a more detailed template I

*--------------------------------------------------------------------------

* Copyright 1990-2000 The MathWorks, Inc.

* $Revision: 1.24 $

* You must specify the S-FUNCTIONNAME as the name of your S-function

* (i.e. replace sfuntmplbasic with the name of your S-function).

#define SFUNCTIONNAME Cspi-microE #define SFUNCTIONLEVEL 2

/*

* Need to include simstruc.h for the definition of the SimStruct and

* its associated macro definitions.

#include "simstruc.h"

/* When compiling for RTI target, include the

brtenv.h file.*/ #ifndef MATLABMEXFILE

#include <brtenv.h>

#include <usrdsp.h> /* user module definitions */

#include "slvdspll03.h"

#include "ticl103.h" /* just for diagnostics */

/* variables for communication with dSPACE */

/* variables for communication with Slave DSP */

Int16 cspi.sample-idx = -1; /* command table index */

Int16 task-id = 0; /* communication channel 0 */

UInt32 slave-error; /* function return error code */

UInt32 Cspi-raw[2]; /*Serial Data*/

UInt32 posit; /*Position count*/

#endif

/* Error handling
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* --------------

* You should use the following technique to report errors encountered within

* an S-function:

* ssSetErrorStatus(S,"Error encountered due to ... ");

* return;

* Note that the 2nd argument to ssSetErrorStatus must be persistent memory.

* It cannot be a local variable. For example the following will cause

* unpredictable errors:

* mdlOutputs()

* {

* char msg[256]; {ILLEGAL: to fix use "static char msg[256]; "}

* sprintf(msg,"Error due to %s", string);

* ssSetErrorStatus(S,msg);

* return;

* }

* See matlabroot/simulink/src/sfuntmpldoc.c for more details.

-/

* S-function methods *

/* Function: mdlInitializeSizes

* Abstract:

* The sizes information is used by Simulink to determine the S-function

* block's characteristics (number of inputs, outputs, states, etc.).

static void mdlInitializeSizes(SimStruct *S) {

/* See sfuntmpl-doc.c for more details on the macros below */

ssSetNumSFcnParams(S, 0); /* Number of expectea parameters */

if (ssGetNumSFcnParams(S) != ssGetSFcnParamsCount(S)) {

/* Return if number of expected != number of actual parameters */

return;

}

ssSetNumContStates(S, 0);

ssSetNumDiscStates(S, 0);

/* No input ports
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if (!ssSetNumInputPorts(S, NumADChan)) return;

for (i = 0; i < NumADChan; i++)

ssSetInputPortWidth(S, i, 1); */

/* One Output port*/

if (!ssSetNumOutputPorts(S, 1)) return;

ssSetOutputPortWidth(S, 0, 1);

ssSetNumSampleTimes(S, 1);

ssSetNumRWork(S, 0);

ssSetNumIWork(S, 1);

ssSetNumPWork(S, 0);

ssSetNumModes(S, 0);

ssSetNumNonsampledZCs(S, 0);

ssSetOptions(S, 0);

}

/* Function: mdlInitializeSampleTimes

* Abstract:

* This function is used to specify the sample time(s) for your

* S-function. You must register the same number of sample times as

* specified in ssSetNumSampleTimes.

static void mdlInitializeSampleTimes(SimStruct *S) {

ssSetSampleTime(S, 0, INHERITEDSAMPLETIME);

ssSetOffsetTime(S, 0, 0);

}

#undef MDLINITIALIZECONDITIONS /* Change to #undef to remove

function */ #if defined(MDLINITIALIZECONDITIONS)

/* Function: mdlInitializeConditions

* Abstract:

* In this function, you should initialize the continuous and discrete

* states for your S-function block. The initial states are placed

* in the state vector, ssGetContStates(S) or ssGetRealDiscStates(S).

* You can also perform any other initialization activities that your

* S-function may require. Note, this routine will be called at the

* start of simulation and if it is present in an enabled subsystem

* configured to reset states, it will be call when the enabled subsystem
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* restarts execution to reset the states.

static void mdlInitializeConditions(SimStruct *S)

{

}

#endif /* MDLINITIALIZECONDITIONS */

#define MDLSTART /* Change to #undef to remove function */ #if

defined(MDLSTART)

/* Function: mdlStart

* Abstract:

* This function is called once at start of model execution. If you

* have states that should be initialized once, this is the place

* to do it.

static void mdlStart(SimStruct *S)

{

#ifndef MATLABMEXFILE

UInt32 dummy;

dummy=0;

/* init communication with slave-dsp */

ds103_slavedsp-communication-init();

/* initialize port B to input, port A and C to output */

ds1103_slave-dsp-usrfct-execute (task-id, SLVDSPUSRFCTCSPIINIT,

SLVDSPUSRFCTINITPCNT, &dummy);

/* register usrfct2 (_cspi-sample) */

dsl103_slavedsp-usrfct-register(task-id, &cspi_sample-idx,

SLVDSPUSRFCT-CSPISAMPLE, SLVDSPUSRFCTLSAMPLEDINCNT,

SLVDSPUSRFCTSAMPLEDOUTCNT, SLVDSP-USRFCTSAMPLEPCNT, &dummy);

/* start an initial sample on the serial port */

ds1103_slave-dsp-usrfct-request (task-id, cspi-sample-idx, (UInt32*)dummy);

#endif

}

#endif /* MDL-START */

/* Function: mdlOutputs

* Abstract:
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* In this function, you compute the outputs of your S-function

* block. Generally outputs are placed in the output vector, ssGetY(S).

static void mdlOutputs(SimStruct *S, intT tid) { #ifndef

MATLABMEXFILE

UInt32 i;

for(i=0;i<l;i++){

realT *y = ssGetOutputPortRealSignal(S,O);

y[0] =ssGetIWorkValue(S,O);

} #endif }

#define MDLUPDATE /* Change to #undef to remove function */ #if

defined(MDLUPDATE)

/* Function: mdlUpdate-======================================================

* Abstract:

* This function is called once for every major integration time step.

* Discrete states are typically updated here, but this function is useful

* for performing any tasks that should only take place once per

* integration step.

static void mdlUpdate(SimStruct *S, intT tid)

{

#ifndef MATLABMEXFILE

int i;

UInt32 dunmmy=O;

dsl103_slave-dsp-usrfct-data-read(task_id,cspi-sample-idx,(UInt32*)Cspi-raw);

posit=Cspi-raw[0]*16384+Cspi-raw[1]/4;

if (posit>536870912) posit=posit-1073741824;

ssSetIWorkValue(S,0,posit);

/*Request data Serial port data*/

ds1103_slave-dsp-usrfct-request(task-id, cspi-sample-idx, (UInt32*)dummy);

/*Read in the Serial port data*/

#endif

}

#endif /* MDLUPDATE */

#undef MDLDERIVATIVES /* Change to #undef to remove function */

#if defined(MDLDERIVATIVES)
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/* Function: mdlDerivatives

* Abstract:

* In this function, you compute the S-function block's derivatives.

* The derivatives are placed in the derivative vector, ssGetdX(S).

static void mdlDerivatives(SimStruct *S)

{

}
#endif /* MDLDERIVATIVES */

/* Function: mdlTerminate

* Abstract:

* In this function, you should perform any actions that are necessary

* at the termination of a simulation. For example, if memory was

* allocated in mdlStart, this is the place to free it.

static void mdlTerminate(SimStruct *S) { }

* See sfuntmpl-doc.c for the optional S-function methods *

*============ ============= ============= ============*/

* Required S-function trailer *

#ifdef MATLABMEX-FILE /* Is this file

MEX-file? */ #include "simulink.c" /*

mechanism */ #else #include "cg-sfun.h"

registration function */ #endif

being compiled as a

MEX-file interface

/* Code generation

C.2 Code for Fw240.c

* PROGRAM

* Firmware program for TMS320C240 Slave DSP on DS1103 Controller Board

* FILE

* Fw240.c

* RELATED FILES
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* - dsscom.h => embedded in ds240.lib

* - slvdsp.h => embedded in ds240.lib

* - usrdsp.h => user specific module

* DESCRIPTION

* This program performs the slave DSP command service. First of all the

* communication with the master PPC is initialized.

* User defined functions are installed in the slave DSP function vector table.

* Finally the dsscomcmd-service routine is called repeatedly to poll

* the slave DSP receive buffers until a command is detected. As a result the

* appropriate function is called.

* REMARKS

* AUTHOR(S)

* H.-J. Miks, M. Heier

* REVISED

* Marten Byl 8/30/04

* dSPACE GmbH, Technologiepark 25, 33100 Paderborn, Germany

* $Workfile: Fw240.c $ $Revision: 7 $ $Date: 10.08.00 10:49 $

* $Archive: /sw/CRT/Projects/Demos/Src/RTLib1103/SlaveDsp/SlvUser_1103_hc/Fw240. c $

#include <dsscom.h>

#include <slvdsp.h>

#include <usrdsp.h>

* main routine

void main()

{

Int16 error;

/* set user firmware revision number */

SLVDSPUSR-FIRMWARE_REVSET;

/* initialization of master-slave communication */

error = slvdsp-communication-inito;

if (error != DSCOMDEFNOERROR)

{

exit(0);

}
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/* installation of user function 1 (-usrfct-cspi-init) */

error = slvdsp-usrfct-install(SLVDSPUSRFCTCSPIINIT,

slvdsp-usrfct-cspiinit);

if (error ! DSCOMDEFNOERROR)

{

exit(0);

}

/* installation of user function 2 (_usrfct-cspi-sample) */

error = slvdsp-usrfct-install(SLVDSP-USRFCTCSPISAMPLE,

slvdsp-usrfct-cspi-sample);

if (error DSCOMDEFNOERROR)

{

exit(0);

}

/* perform slave DSP command service */

while (1)

f

dsscom-cmdserviceO;

}

}

C.3 Code for Usrdsp.c

*

* MODULE

* Common TMS320F240 slave DSP user module.

* FILE

* usrdsp.c

* RELATED FILES

* usrdsp.h, reg240.h, fw240.c

* DESCRIPTION

* This module may contain user defined functions for the TMS320F240

* slave DSP.

* Each additional function must be registered in the fw240.c module by

* using the function slvdsp-usrfct.install().
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* AUTHOR(S)

* M. Heier

* dSPACE GmbH, Technologiepark 25, 33100 Paderborn, Germany *

* REVISED

* Marten Byl 8/30/04

* This file defines two slavedsp user functions

* slvdsp-usrfct-cspi-init

* slvdsp-usrfct-cspi-sample

* which initialize and then run a clocked serial interface

* on the slave dsp. The data is transfered to the main dsp in

* the sample operations

* $Workfile: Usrdsp.c $ $Revision: 6 $ $Date: 9.08.00 16:33 $

* $Archive: /sw/CRT/Projects/Demos/Src/RTLib1103/SlaveDsp/SlvUser_1103_hc/Usrdsp.c $

#include <dstypes.h> /* data type

definitions */ #include <reg240.h>

TMS320C240 register defines */ #include <usrdsp.h>

* global objects and variables

* user functions

* FUNCTION

* Initialize the hardware ports for the Analog I/0 Subsystem

* SYNTAX

* slvdsp-usrfctcspi-init(UIntl6 index)

* DESCRIPTION

* All available bits in ports A, B, and C are selected as digital I/O pins.

* All bits in port B are set to input, all bits in ports A and C are set to ouput.

* PARAMETERS

* index command table index

* RETURNS *

* REMARKS
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void slvdsp-usrfct-cspi-init(UIntl6 index) {

/* init the I/O MUX control registers to I/O */

*OCRA = OxOOOO; /*sets all pins 1/0*/

*OCRB = OxOQOC; /*sets all pins to I/O PC*/

/* init the I/O port data and direction registers */

*PADATDIR = OxFFOO; /*Sets Group A to Output*/

*PBDATDIR = OxOOQO; /*Sets Group B to Inputs*/

*PCDATDIR = OxFFOO; /*Sets Group C to Output*/

}

* FUNCTION

* Take a sample to/from the Analog I/O Subsystem

* SYNTAX

* slvdsp-usrfct-cspi-sample(UIntl6 index)

* DESCRIPTION

* This function outputs 36 clock pulses on slave dsp group A bit 2

* at each clock pulse. The first 8 data bits are ignores (MicroE

* status byte), The next 32 bits are read then assembled into 2 16bit

* words, which are then sent the master DSP

* PARAMETERS

* index command table index

* RETURNS *

* REMARKS

void slvdsp-usrfct cspi-sample(UInt16 index) {

UInt16 Cspi-raw[2];

Int16 i;

*PCDATDIR=OxFFOC;

slvdsp-usrfctcomm-read(SLVDSPUSRFCTSAMPLEDOUTCNT,i);

*PCDATDIR=OxFFOO;

/* This takes group A bit 3 high to enable encoder interface*/

*PADATDIR = OxFF08; /*P1B 31*/

/*clock but not read first 8 bits*/

*PADATDIR = OxFFOC; // toggle PlA 31 for clock

*PADATDIR = OxFF08;

*PADATDIR = OxFFOC; // toggle PlA 31 for clock

353



*PADATDIR

*PADATDIR

*PADATDIR

*PADATDIR

*PADATDIR

*PADATDIR

*PADATDIR

*PADATDIR

*PADATDIR

*PADATDIR

*PADATDIR

*PADATDIR

*PADATDIR

/*Read first 16 bit word*/

/*Read Data from Group B, & operation eliminates top 15 bits, shift

operation moves the last bit to the correct postition in the word

Note the extended code entry is for speed for loops slow execution*/

Cspi-raw[01=0;

*PADATDIR = OxFFOC; //

*PADATDIR = 0xFF08;

Cspi-raw[0]= (*PBDATDIR & OxOO1) << 15;

*PADATDIR = OxFFOC; //

*PADATDIR = OxFF08;

Cspi-raw[0]= Cspi-raw[0]+((*PBDATDIR &

*PADATDIR = OxFFOC; /

*PADATDIR = OxFF08;

Cspi-raw[0]= Cspi-raw[01+((*PBDATDIR &

*PADATDIR = OxFFOC; //

*PADATDIR = OxFF08;

Cspi-raw[0]= Cspi-raw[0]+((*PBDATDIR &

*PADATDIR = OxFFOC; //

*PADATDIR = OxFF08;

Cspi-raw[0]= Cspi-raw[0]+((*PBDATDIR &

*PADATDIR = OxFFOC; //

*PADATDIR = OxFF08;

Cspi-raw[0]= Cspi-raw[0]+((*PBDATDIR &

toggle PlA 31 for clock

toggle PlA 31 for clock

OxOO1) << 14);

toggle PlA 31 for clock

OxOO1) << 13);

toggle PlA 31 for clock

Ox001)

toggle

Ox001)

toggle

<< 12);

PlA 31 for clock

<< 11);

PlA 31 for clock

Ox001) < 10);
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OxFF08;

OxFFOC;

OxFF08;

OxFFOC;

OxFF08;

OxFFOC;

OxFF08;

OxFFOC;

OxFF08;

OxFFOC;

OxFF08;

OxFFOC;

OxFF08;

// toggle PlA 31 for clock

// toggle PlA 31 for clock

// toggle PlA 31 for clock

// toggle PlA 31 for clock

// toggle PlA 31 for clock

// toggle PlA 31 for clock



*PADATDIR = OxFFOC;

*PADATDIR = 0xFF08;

Cspi-raw[0]= Cspi-raw[0]+(

*PADATDIR = OxFFOC;

*PADATDIR = OxFF08;

Cspi-raw[0]= Cspi.raw[0]+(

*PADATDIR = OxFFOC;

*PADATDIR = OxFF08;

Cspi-raw[0]= Cspi-raw[0]+(

*PADATDIR = OxFFOC;

*PADATDIR = OxFF08;

Cspi-raw[0]= Cspi-raw[0]+(

*PADATDIR = OxFFOC;

*PADATDIR = OxFF08;

Cspi-raw[0]= Cspi-raw[01+(

*PADATDIR = OxFFOC;

*PADATDIR = OxFF08;

// toggle PIA 31 for clock

(*PBDATDIR &

//

(*PBDATDIR &

//

(*PBDATDIR &

(*PBDATDIR &

//

(*PBDATDIR &

//

Cspi-raw[0]= Cspi-raw[0]+((*PBDATDIR &

*PADATDIR = OxFFOC; //

*PADATDIR = OxFF08;

Cspi-raw[0]= Cspi-raw[0]+((*PBDATDIR &

*PADATDIR = OxFFOC; //

*PADATDIR = OxFF08;

Cspi-raw[0]= Cspi-raw[0]+((*PBDATDIR &

*PADATDIR = OxFFOC; //

*PADATDIR = OxFF08;

Cspi-raw[0]= Cspi-raw[0]+((*PBDATDIR &

*PADATDIR = OxFFOC; //

*PADATDIR = OxFF08;

Ox001)

toggle

Ox001)

toggle

Ox001)

toggle

Ox001)

toggle

Ox001)

toggle

Ox001)

toggle

<< 9);

PlA 31 for clock

<< 8);

PlA 31 for clock

<< 7);

PlA 31 for clock

<< 6);

PlA 31 for clock

<< 5);

PlA 31 for clock

<< 4);

PIA 31 for clock

OxOO1) << 3);

toggle PlA 31 for clock

OxOO1) << 2);

toggle PIA 31 for clock

Ox001) " 1);

toggle PlA 31 for clock

Cspi-raw[0]= Cspi-raw[0]+(*PBDATDIR & OxOO1);

/*Read 2nd 16 bit word*/

Cspi-raw[11=0;

*PADATDIR = OxFFOC; // toggle PIA 31 for clock

*PADATDIR = OxFF08;

/*Read Data

operation

from Group B, & operation eliminates top 15 bits, shift

moves the last bit to the correct postition in the word
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Note the extended code entry is for speed for loops slow execution*/

Cspi-raw[1]= Cspi-raw[1]+((*PBDATDIR & OxOO1)) << 15;

*PADATDIR = OxFFOC;

*PADATDIR = OxFF08;

Cspi-raw[l]= Cspi-raw[l]+(

*PADATDIR = OxFFOC;

*PADATDIR = OxFF08;

Cspiraw[1]= Cspi-raw[1]+(

*PADATDIR = OxFFOC;

*PADATDIR = OxFF08;

Cspi-raw[1]= Cspi-raw[1]+(

*PADATDIR = OxFFOC;

*PADATDIR = OxFF08;

Cspi-raw[1]= Cspi-raw[1]+(

*PADATDIR = OxFFOC;

*PADATDIR = OxFF08;

Cspi-raw[1]= Cspi-raw[1]+(

*PADATDIR = OxFFOC;

*PADATDIR = OxFF08;

Cspi-raw[1]= Cspi-raw[1]+(

*PADATDIR = OxFFOC;

*PADATDIR = OxFF08;

Cspi-raw[1]= Cspi-raw[l]+(

*PADATDIR = OxFFOC;

*PADATDIR = OxFF08;

Cspiraw[1]= Cspi-raw[1]+(

*PADATDIR = OxFFOC;

*PADATDIR = OxFF08;

// toggle PlA 31 for clock

(*PBDATDIR &

/I

(*PBDATDIR &

//

(*PBDATDIR &

/I

(*PBDATDIR &

(*PBDATDIR &

(*PBDATDIR &

(*PBDATDIR &

(*PBDATDIR &

//

Cspi-raw[1]= Cspi-raw[1]+((*PBDATDIR &

*PADATDIR = OxFFOC; //

*PADATDIR = OxFF08;

Cspi-raw[11= Cspi-raw[1]+((*PBDATDIR &

*PADATDIR = OxFFOC; //

*PADATDIR = OxFF08;

Cspi-raw[1]= Cspi-raw[1]+((*PBDATDIR &

*PADATDIR = OxFFOC; //

Ox001)

toggle

<< 14);

PlA 31 for clock

Ox001) << 13);

toggle PIA 31 for

Ox001)

toggle

Ox001)

toggle

<< 12);

PIA 31 for

clock

clock

<< 11);

PlA 31 for clock

OxOOl) << 10);

toggle PlA 31 for clock

Ox001)

toggle

Ox001)

toggle

Ox001)

toggle

Ox001)

toggle

Ox001)

toggle

Ox001)

toggle

<< 9);

PIA 31 for clock

<< 8);

PIA 31 for clock

<< 7);

PlA 31 for clock

<< 6);

PIA 31 for clock

<< 5);

PIA 31 for clock

<< 4);

PIA 31 for clock
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*PADATDIR = OxFF08;

Cspi-raw[1]= Cspi-raw[1]+((*PBDATDIR & OxOO1) << 3);

*PADATDIR = OxFFOC; // toggle PlA 31 for clock

*PADATDIR = OxFF08;

Cspi-raw[1]= Cspi-raw[1]+((*PBDATDIR & OxOO1) << 2);

/* Per Marty Vona's advice I am going to clock but not store the

last two bits from the encoder*/

*PADATDIR = OxFFOC; // toggle PlA 31 for clock

*PADATDIR = OxFF08;

*PADATDIR = OxFFOC; // toggle PlA 31 for clock

*PADATDIR = OxFF08;

/* This takes group A bit 3 low to disable encoder interface*/

*PADATDIR = OxFFOO;

/* write results to transmit buffer*/

*PCDATDIR=OxFFOC;

slvdsp-usrfct-comm-write (index, SLVDSPUSRFCTSAMPLEDINCNT, Cspi-raw);

*PCDATDIR=OxFFO;

}

C.4 Code for Usrdsp.h

*

* MODULE

* TMS320F240 slave DSP user module template.

*

* FILE

* usrdsp.h

*

* RELATED FILES

* usrdsp.c

*

* DESCRIPTION

* This module may contain user defined functions for the TMS320F240

* slave DSP.

* Each additional function must be registered in the fw240.c module by
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* using the function slvdspusrfct-install().

*

* AUTHOR(S)

* M. Heier

*

* dSPACE GmbH, Technologiepark 25, 33100 Paderborn, Germany

*

* REVISED

* M.Byl 8/30/04

* This file is the header file that defines the custom commands to run a clocked

* serial interface on the slavedsp and then transfer the data to the main dsp

*

* $Workfile: Usrdsp.h $ $Revision: 6 $ $Date: 9.08.00 16:33 $

* $Archive: /sw/CRT/Projects/Demos/Src/RTLib1103/SlaveDsp/SlvUser_1103_hc/Usrdsp.h $

#ifndef __USRDSP_H__

#define __USRDSP_H__

#include <dstypes.h> /* data type definitions */

* constants and defines

/*------------- opcodes for user functions (0x0300 - OxO3FF) ----------------

/* opcodes for user defined functions */

#define SLVDSP-USRFCT-CSPIINIT 0x301 /* user function _CSPIinit */

#define SLVDSPUSRFCTCSPISAMPLE 0x302 /* user function _CSPI-sample */

/* parameters for user defined functions */

#define SLVDSPUSRFCTLINITPCNT 0 /* parameter count for _aio-init */

#define SLVDSPUSRFCTSAMPLEPCNT 0 /* parameter count for _aio-sample */

#define SLVDSPUSRFCTSAMPLEDOUTCNT 1

/* number of words transfered from master to slave*/

/* 16 bits per channel, up to 8 channels */

/* data is packed 2 bytes per word */

#define SLVDSPUSRFCTSAMPLE-DINCNT 2

/* number of words transfered from slave to master */

/* 32 bits per channel, up to 8 channels */

/* data is packed 2 bytes per word */
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* global objects and variables

/*------------------- user firmware revision numbers ------------------------

/* set user firmware version to 1.2.3, for example */

#define USERMAJORRELEASE 1

#define USERMINORRELEASE 1

#define USERSUBMINORRELEASE 0

* function prototypes

void slvdsp.usrfct-cspi-init(UIntl6 index);

void slvdsp-usrfct-cspi-sample(UIntl6 index);

#endif /* __USRDSPH__ */
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Appendix D

DS1103 Connections

This appendix contains all of the connection used to run the prototype diamond

turning machine.
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Analog Connector (P1)

Connection
In-feed motor current monitor
Cross-feed motor current monitor
FTS U current monitor
FTS V current monitor
In-feed motor current command
Spindle RPM
Cross-feed motor current command
Spindle RPM
FTS U current command
Spindle Torque limit
FTS V current command
FTS current limit
In-feed limit switch low
In-feed limit switch high
Cross-feed limit switch high
Cross-feed limit switch low
Serial 10 enable
Serial 10 clock

dSPA CE
Signal

ADCH1
ADCH3
ADCH5
ADCH7
DACHI
DACH2
DACH3
DACH4
DACH5
DACH6
DACH7
DACH8

SADCH1
SADCH3
SADCH5
SADCH5
SADCH9

SADCH10

dSPA CE
D-SUB Pin

P1B-34
P1B-2

P1B-19
P1B-36
P1B-25
P1A-25
P1B-42
P1A-42
P1B-10
PIA-10
P1B-27
P1A-27
P1B-12
P1B-39
P1B-46
P1B-14
P1B-31
P1A-31

Description
16-bit ADC
16-bit ADC
16-bit ADC
16-bit ADC

10 v
10 V
10 V

t10 v
t10 v

10 V
±10 V

10 V
±10-bit ADC
±10-bit ADC
±10-bit ADC
±10-bit ADC

0-5V
0-5V

Table D.: DS1103 analog connections.
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Digital Connector (P2)
dSPACE dSPACE

Connection
In-feed encoder reset
Spindle enable
Cross-feed encoder reset
In-feed brake release
Cross-feed amplifier enable
Cross-feed brake release
In-feed amplifier enable
FTS amplifier enable
Cross-feed amplifier fault
FTS amplifier fault
In-feed amplifier fault
Cross-feed encoder fault
In-feed encoder fault
SPI Clock
SPI Enable
SPI Slave out
MicroE power
FTS amp 5V power
In-feed/Cross-feed thermistors
In-feed/Cross-feed limits
Serial 10 bit input

Signal
100
101
102
103
104
105
106
107
108
108
108
1012
1014

SCLK
SSTE

SSOMI
VCC1
VCC2
VCC3
VCC4

SPWM7

D-SUB Pin
P2B-18
P2A-18
P2B-2
P2A-2
P2B-19
P2A-19
P2B-3
P2A-3
P2B-20
P2A-20
P2B-20
P2B-21
P2B-5
P2B-15
P2A-15
P2A-48
P2B-33
P2A-33
P2B-17
P2A-17
P2B-29

Description
Digital I/O TTL
Digital I/O TTL
Digital I/O TTL
Digital I/O TTL
Digital I/O TTL
Digital I/O TTL
Digital I/O TTL
Digital I/O TTL
Digital I/O TTL
Digital I/O TTL
Digital I/O TTL
Digital I/O TTL
Digital I/O TTL
Digital I/O TTL
Digital I/O TTL
Digital I/O TTL

PC 5V power supply
PC 5V power supply
PC 5V power supply
PC 5V power supply

Digital I/O TTL

Table D.2: DS1103 digital connections.
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Incremental/Digital Connector (P3)

Connection
In-feed encoder 00
In-feed encoder 00

In-feed encoder 900
In-feed encoder 900
In-feed encoder index
In-feed encoder index
Cross-feed encoder 00
Cross-feed encoder 00
Cross-feed encoder 900
Cross-feed encoder 9_0"
Cross-feed encoder index
Cross-feed encoder index
Spindle encoder 00
Spindle encoder 0'
Spindle encoder 900
Spindle encoder 90"
Spindle encoder index
Spindle encoder index
FTS encoder 0'
FTS encoder 00
FTS encoder 90'
FTS encoder 9_0"
FTS encoder index
FTS encoder index
Spindle encoder power

dSPA CE
Signal

PHIO(1)
/PHIO(1)
PH190(1)

/PHI90(1)
INX(1)
/IDX(1)
PHIO(2)

/PHIO(2)
PH190(2)

/PHI90(2)
INX(2)
/IDX(2)
PHIO(3)

/PHIO(3)
PHI90(3)

/PHI90(3)
INX(3)

/IDX(3)
PHIO(4)

/PHIO(4)
PH190(4)

/PHI90(4)
INX(4)

/IDX(4)
VCC3

dSPA CE
D-SUB Pin

P3B-41
P3A-41
P3B-25
P3A-25
P3B-9
P3A-9
P3B-26
P3A-26
P3B-10
P3A-10
P3B-43
P3A-43
P3B-11
P3A-11
P3B-44
P3A-44
P3B-28
P3A-28
P3B-45
P3A-45
P3B-39
P3A-39
P3B-13
P3A-13
P3A-12

Description
TTL
TTL
TTL
TTL
TTL
TTL
TTL
TTL
TTL
TTL
TTL
TTL
TTL
TTL
TTL
TTL
TTL
TTL
TTL
TTL
TTL
TTL
TTL
TTL

PC 5V power supply

Table D.3: DS1103 incremental encoder/digital connector.
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Appendix E

Drawings of Key Fast Tool Servo

Components

This Chapter contains drawings of a few key components for the FTS prototype.
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