System Theoretic Framework for Assuring Safety and
Dependability of Highly Integrated Aero Engine Control Systems

by

Malvern J. Atherton

Graduate Diploma in Control and Information Technology,
University of Manchester Institute of Science and Technology, UK, 1990

B.Sc Electrical and Mechanical Engineering, University of Edinburgh, Scotland, 1938

Submitted to the System Design and Management Program
in Partial Fulfillment of the requirements for the Degree of

Master of Science in Engineering and Management

At the

MASSACHUSETTS INSTITUTE]
OF TECHNOLOGY

Massachusetts Institute of Technology

o MAY 27 2005

" May 2005

LIBRARIES

© 2005 Malvern J. Atherton. All rights reserved

The author hereby grants to MIT permission to reproduce and to
distribute publicly paper and electronic copies of this thesis document in whole or in part.

20 ﬁﬂz@/ o ity
Signature of Author v

Malvern . Atherton
System Design and Management Program
May 2005

Certified by

/ Nancy Leveson
Thesis Supervisor
Professor of Aeronautics and Astronautics

BARKER

System Theoretic Framework for Assuring Safety and Dependability of
Highly Integrated Aero Engine Control Systems

by

Malvern J. Atherton

Submitted to the System Design and Management Program
in Partial Fulfillment of the requirements for the Degree of

Master of Science in Engineering and Management

ABSTRACT

The development of complex, safety-critical systems for aero-engine control is subject to the,
often competing, demands for higher safety and reduced development cost. Although the
commercial aerospace industry has a general good safety record, and has placed much
emphasis on process improvement within a strong safety culture, there continues to be a large
number of design and requirements errors found during development and after entry into
service.

The thesis assesses current system safety practice within the aero engine control system
industry, including international standards, and reviews the current practice against the

research at MIT by Professor Nancy Leveson. The thesis focuses in particular on software
safety as this is the area that has proven most challenging and most likely to experience high
costs. The particular research topics reviewed are Intent Specifications, the System Theoretic
Accident Modeling and Processes (STAMP) technique, and requirements completeness criteria.
Research shows that many problems arise from requirements and design errors rather than
component failures.

Several example incidents from an engine company are reviewed and these show a pattern of
common problems which could have been caught by the use of more comprehensive
requirements completeness checks and by the use of Intent Specifications. In particular,
assumptions are not currently documented in the specifications but are kept separately, and the
need to identify assumptions is not emphasized enough in existing processes.

It is concluded that the existing development process has significant room for improvement in
the coordination between the safety assessment and system development processes. In
particular, more could be done by the use of requirements completeness checks, software
hazard analysis, the adoption of the Intent Specification approach and in the use of the STAMP
models.

Acknowledgments

1 wish to thank my company and MIT for giving me the opportunity to become a part of the
SDM Community and my thesis advisor Nancy Leveson for her guidance. Additionally, there
are several people who have provided guidance and support who I would like to acknowledge.
At MIT I would like to thank Fernando Cela Diaz, Darrel Quah, Steve Friedenthal, Dan Fry
and Karen Marais. At my company I would like to thank Andy Pickard, Derek Achenbach,
William Fletcher and Stephen Fisher. Finally, I would like to thank my family and Jackie
Duane for their support.

Table Of Contents

5

ABSTRACT 3
ACKNOWLEDGMENTS 4
LIST OF FIGURES 7
LIST OF TABLES 8
ACRONYMS 9
1 INTRODUCTION 11
2 EXISTING SYSTEM DEVELOPMENT AND CERTIFICATION PROCESS 15
2.1 AIRWORTHINESS REQUIREMENTSccviretiseeeierisrereereersissestsstonsossessesssesessansesseseraseasessesssssensssssssesssessees 15
2.2 AEROSPACE RECOMMENDED PRACTICES.......ocovievieeimetistciererisresesessestssstesessessessessesseseeseesesassssssessasssassnnan 17
2201 ARP 4754 oottt ettt a ettt ettt e et e e en et eeresnen 18
222 ARP 701 .ottt ettt ettt sttt s et en e et earen e 20

223 DO-IT8B ..ottt ettt et e ettt e et e s en et et e n et e s eenneas 24

23 SYSTEM SAFETY AND DEVELOPMENT PROCESSES AT ONE AERO ENGINE COMPANYveoeevereeeereeeennnn. 26

3 ANALYSIS OF SAFETY RELATED INCIDENTS AND ISSUES 28
3.1 ENGINE SAFETY HAZARDS OVERVIEWcoviuiiiiieiiieteeeeeeeeeeeseeeeseeseessessssssesesssassasessessessesssssessessesssessess 28
32 AFRO ENGINE CONTROL SYSTEM ARCHITECTURE OVERVIEWoueeeeeeeetieeeeeeeeeeeeeeseesesesesssesessssesseressees 29
33 ENGINE TORCHED START INCIDENTcccivviiriiniiiniiiieeretcasieeeeseeessesssesesesssesesesesseensessseasessesssesesesseessanes 32
3.3 1 INCIAENE SUMINAYYccoeerevireieenieies et ere ettt s sttt es et e et eeee e emeeeeeesereoneone 32

3.3.2 Overview of Design and Changes Made in the Development Software...........cc.coooveeeeeeeeevennnn. 34

3.3.3 Analysis and LeSSONS LEAINEccouvvcueeveevurrrreeieireeseieaseseeesasseeeesees s es e eeeeeeseeee e en e 40

34 PRESSURE SENSOR REDUNDANCY VIOLATIONoovviveerreesierseesseesseessessseesseseesaessesessersssamssssesssessessessmses 42
3.4 EVEHESUMIATYc.oocorieerisiieeeeeeeeie et s ettt st bbb b s tss st ss s ab et s s b bas bttt b et te e e 43

34,2 REVIEW OF DESIGH......c.ceieeeieeieev et b st e st st e v s et e aeeer et rnene 43

3.4.3 SYSIEM DESIGN LESSONS......coeceeeieeeeieeeeeeeeeee e ee st ssas s st ess st stsseenesstensasressesesaenereens 45

3. 4.4 SYSIEM SAFELY LESSONSoveeeeeeeeeeeeeeeeeeeeeee ettt ettt et erenesaens s enenseseseenaneaen 46

3045 PFOCESS LESSONSc.veveseeeeeeeeeeeeeeeeeer e eeeeeee et eae e eeeees e e eee e e eseeenseaeassesssase st enseassessesteressensseans 47

35 ENGINE THRUST SHORTFALL WARNING ANOMALIESceiteeretiteeeeeeeerrereeeeesseesrsesssesseeseessessessssessesssses 48
3.5.1 Flow down of high-1evel FEqUIFEMERIS....................coooeeeveeeeeeereeeeeveeerereeeee e ereeor v ses st eeseeseeeraseeene 49

35,2 ATTCS AESIGN......cuoooeiirrereseteteeeee ettt ae st see e snssnesrasoneneones 50
3.5.3 Problems exXperienced.eeoeoeeeeeeesieieeee ettt e 51

3.5.4 LeSSONS LeAVNEd............coovoeeveeeoeeeeeeeeeeeeeeeeee e e e e et e e et eeee e e e ra e eant e e et e s ertrearerarns 53

36 FIELD MAINTENANCE ISSUEScovvvvivirivieeiteestestesteeesseesaessessaessesseseesasesssenssessesessssesssessesssesessssesssesssen 53

4 OVERVIEW OF MIT SYSTEM SAFETY RESEARCH 58
4.1 SYSTEM THEORETIC ACCIDENT MODELING AND PROCESSESveoveertireitisesesesessseseseesssesesssenseassssasesseas 59
411 Emergence and HIFarCHYcovevivieciciiisisisreeseeeeeeseeesseses et ssssosess st sssesesssreesson e 59

4.1.2 Communication aNA CORIFOL............coooeeeoeeeeeeeeeeeeeeeeeeseeeeeesaseseresessastessessassesssstessessssisssseeeeeeenes 60

4.1.3 Systems Theoretic Model Of ACCIAENISccccoouvicrnivecrisciiieieis e as s 61

414 STAMP MOl EXQMPIES.............c.ccooeeereeeeeieeicieieeeeee oottt ettt sttt steste s esnens 64

4.1.5 STAMP-Based Hazard ANGIYSIS..............covveveiieeroieseiovinseeneeeseeee e assesas s sssessssssessssenessnns 67

416 SPSIEM DYHAINICS.coneevieieeieieireeeeeie ettt b b sttt b s b ates s bt et esesses s ane 67
4.1.6.1 Some System Dynamics COMCEPLScuvueuererrrrueeiriaaietriessiaeasaesesesesssasesssnssnsesssssssaesssessssssasesesssssesenns 70

4.2 SOFTWARE REQUIREMENTS COMPLETENESS AND INTENT SPECIFICATIONSveeuveerieeereeeraressneorssseesanne 71
4.2.1 SEIMANLIC DISTAFICE. ...t eeee s et es et es e e s eneseaeeeere e eesees e e e es e e eneseneesaseseatae s 72

4.2.2 Black Box ReqUIFEMENLScococoovueuieeieiieiesesessesesesesssassesaessssseseseses st tssessseassssssassensbatesennas 72

F.2.3 MENIQI MOEIS.oovieoeeieiieeeeeeeeeeeeeeeeeeeeeeee e et e e e e een e e e e e eaeans et seseseaeaseseraseaaseesseastesesesiasans 72

A24 FEOABACKooeeeeeeeeeeeeeeeeeeee e eesvvasaesetasssasa e e ee s e st ssbbesht s sa st et s b e s s e n e e n e s an e e A e e m et n e s 73
4.2.5 Rationale Gnd ASSUIMPIIONSccoviviiviiieieieteeiie st 75
4.2.6 Identification of Hazardous States in SOftWare...............ccoceeviiiiiiniiiiniiisii 76
4.2.7 Requirements Completeness CRECKS ...t 77
4.2.8 INLENE SPECIJICALIONScooveviiiviviiiiiiieiinat ettt s 78
.29 SPECTRM ..ottt s 81

5 APPLICABILITY OF MIT SYSTEM SAFETY RESEARCH TO AERO ENGINE CONTROL
SYSTEM DEVELOPMENT 85
5.1 SYSTEM THEORETIC ACCIDENT MODELING AND PROCESSESccoovvieiaiiinninemnt et 85
5.1.1 Relationship between Safety Assessment Process and System Development Process..................... 89
5.2 INTENT SPECIFICATIONS ..vtiveeerereeeeeseessreseesseesetssessstossisssssssassssessssastaessssensssssmiosssssssssiniestntstassissesissnssees 91
53 REQUIREMENTS COMPLETENESS AND CONTROLLER INTERNAL MODELS......ooviurvisiniarinsinaninnssssnnsnsanans 94
5301 F@EABACK ..o eee et etr e ettt ettt st s b et s 95
5.3.2 Hazardous Software States and Infernal Models ... 95
5.3.3 Data Timing ISSUES........cccoeueuemiveeeienccr sttt b b b 100
5.4 OTHER RECOMMENDATIONScooviirierestentriesesesseseressmerssassssnsmsissessasnassessasessnsseesesseesessssssisssssssansssases 101
5.5 ORGANIZATIONAL LEARNINGveetesesieisteseeesesstesestestssamsssssssssasssssassaassesssesstassnessosmessassssssessssasnes 101
5.6 AEROSPACE RECOMMENDED PRACTICES.....cccotrvirmimiinminieninsesiesnisnsssasssesesanesstsessess osssanesssssnssnnssnss 103
6 CONCLUSIONS 105
REFERENCES 108
APPENDIX A FAR PART 25.1309 — SAFETY REGULATIONS 111
APPENDIX B REQUIREMENTS COMPLETENESS CRITERIA WITH EXAMPLE SYSTEMS 113

List Of Figures

Figure 1 Certification Guidance Documents Covering System, Safety, Software and Hardware

for Aerospace Systems, adapted from ED-79/ARP-4754 [7] .couoeveeeeieeeeeeeeeeeeeeieens 18
Figure 3 Safety Assessment Process Model from ED-79/ARP 4754 [7]...cvevvvvveeevvvereeienenns 20
Figure 3 Overview of System Safety Process from ARP 4761 [1]....coooveeveeeeiiveecieieieeeneans 23
Figure 4 System Safety-Related Information Flow Between System and Software Life Cycle

Processes, from DO-178B [2] ..ccueoieiiiiiiiieieceeeceeereetr et see et e ereesse e s ene s sreenne s 26
Figure 5 Engine Control System ArchiteCtureccoceeueerereresreieereieseseteeeeseeesessseseeesesenes 30
Figure 6 Cause and Effect Analysis of Engine Startup Anomalyccceeevveveevieieninrenereneenne. 35
Figure 7 Fault Isolation Failure Root Cause [17]....c.c.coevierieicrieiiiicececeeeeeee et eeeneneeneens 56
Figure 8 Potential problems with the design of fault-detection limits for BITE software.......... 57
Figure 9 System Context modeled as a closed-100p SyStem...........c.cveveveiererereverneerererrererenen 61
Figure 10 General Form of Control Structure for a Socio-Technical System [22]........c.ccuu.... 63
Figure 11 Control Structure for the Development Process of the Titan IV B/ Milstar-3 Satellite

ACCIACTIE [22] ...ttt ettt ettt e st eae st e saeereeaesnesneenreneennen 66
Figure 12 System Dynamics Causal Loop Diagram Example for Project Schedule Pressure...70
Figure 13 Mental Models of the System [28].........cecveiieieiricreiiicieeeeee et eaene 73
Figure 14 Semantic Distance between Models used in System Specification [29] 73
Figure 15 System Control Loop separating Automated and Human Controllers [29].............. 74
Figure 16 The structure of an Intent Specification [22]ccocvevveereereeiicreeeceeeeeeeeeceeeeeeeenes 79
Figure 17 The structure of an Intent Specification showing typical content [22]...................... 79
Figure 18 Extracts from TCAS II Intent Specifications [33]ccccevvvveeeveeeereereeeeeeeeeeeeeenns 81
Figure 19 Part of a SpecTRM-RL blackbox level specification, for TCAS [33]..cccceveeieiennn. 82
Figure 20 SpecTRM Visualization Display for an Altitude Switch [34].....cccovvevveevviieicieenne 83

Figure 21 SpecTRM-RL output variable specification example for an altitude switch [34].....84
Figure 22 High-level Control Structure for Aero Engine Control System Development Process

.. 86
Figure 23 Control Structure for Safety Assessment and System Development Processes (based

ON ARP 4754) ..ottt crte et e s eve e s bt e s e s s e s e e s aa e s s e e e e e n s e e n e e e nneeaeeasnes 87
Figure 24 Information Richness - Intent specifications vs. Current practice........c..c..ceceeverunnen. 93
Figure 25 Single and Double Loop Organizational Learning (from [43])cccccevvvevenverrenennns 102
Figure 26 Human Behavior Constraints ([44], adapted from [45])..c.cceeveverrreereneereieinreenen 103

List of Tables

Table 1 Requirements Completeness Criteria with Examples (from [5, 27, 46])

....................

Acronyms

AC

AD
ARINC
ARP
ATTCS
BIT
BITE
CCA
CCDL
CCM
CCR
CMC
CMR
DER
DOORS
DOT
EEC
EICAS

EUROCAE

FAA
FADEC
FAR
FCS
FHA
FMEA
FMECA
FNF
fpm
FPMU
FTA
GPS
HAZOP
HCI

HP

HSI

I/F
IFSD
IPT

Advisory Circular

Airworthiness Directive

Aecronautical Radio Inc (aerospace digital communication standard)
Acrospace Recommended Practice

Automatic Takeoff Thrust Control System

Built In Test

Built In Test Equipment

Common Cause Analysis

Cross Channel Data Link (data bus connecting FADECs)
Cause Consequence Matrix

Certification Check Requirements

Central Maintenance Computer

Certification Maintenance Requirement
Designated Engineering Representative
Dynamic Object Oriented Requirements System
Department Of Transport

Electronic Engine Controller

Engine Indications and Crew Alerting System
European Organization for Civil Aviation Equipment
Federal Aviation Authority

Full Authority Digital Engine Control

Federal Aviation Regulations

Fault Code Store

Functional Hazard Assessment

Failure Modes and Effects Analysis

Failure Modes, Effects and Criticality Analysis
Fault Not Found

Feet per minute

Fuel Pump and Metering Unit

Fault Tree Analysis

Global Positioning Satellite

Hazard and Operability Analysis

Human Computer Interface

High Pressure

Hardware/ Software Interface

Interface

In-Flight Shut Down

Integrated Product Team

JAA
b
LOTC
LP
LRU
LSOV
MIT
MMV
N1

N2
NFF
NTSB

P2.5
PM
PRA
PRV
PSSA
QA
QA

RSML
RTCA
SAE

SC

SE

SFTA
SIRT
SpecTRM
SpecTRM-RL
SQA

SSA
STAMP
STPA

TA

TBD
TCAS
V&V

V1

%3

Joint Airworthiness Authorities

pound mass

Loss Of Thrust Control

Low Pressure

Line Replaceable Unit

Latching Shutoff Valve (in the FPMU)
Massachusetts Institute of Technology

Main Metering Valve (in the FPMU)

LP shaft speed signal in rpm (i.e. fan speed)

HP shaft speed signal in rpm (i.e. core speed)

No Fault Found

National Transportation Safety Board

Non Volatile Memory

Pressure at engine station 2.5 (HP compressor inlet)
Program Management

Probabilistic Risk Assessment

Pressure Raising Valve (in the FPMU)

Preliminary System Safety Assessment

Quality Assurance

Quality Assurance

Resolution Advisory (in TCAS)

Reliability Block Diagram

Requirements State Machine Language

RTCA, Inc. (acronym no longer has an expansion)
Society of Automotive Engineers

RTCA Special Committee

Systems Engineering

Software Fault Tree Analysis

Systems Integration and Requirements Task Group (an SAE Committee)
Specification Tools and Requirements Methodology
SpecTRM Requirements Language

Software Quality Assurance

System Safety Assessment

System-Theoretic Accident Modeling and Processes
STAMP-based hazard analysis

Traffic Advisory (in TCAS)

To Be Determined/Defined

Traffic Collision Avoidance System

Verification and Validation

Pilot decision speed (for committing to perform a takeoft)
Fuel Flow Rate (to the engine, in Ib/hour)

10

1 Introduction

The aerospace industry has long been at the forefront of developments in systems engineering
and the emerging field of system safety. This research reviews current approaches used for
developing and certifying digital control systems for commercial aero engines, focusing on
software-based systems in particular. Despite great efforts on process improvements in the
industry, development costs continue to be high, particularly when safety-critical software is
involved. Much emphasis has been made on improved Program Management (PM) including
cost and schedule control and managing program risk. Systems Engineering (SE) concepts
have also gained a great deal of importance as a framework for managing complexity, which

goes hand in hand with PM.

However, despite these efforts, safety-critical software development projects continue to be
hampered by significant levels of rework, leading to projects being late and/or over budget.
Additionally, unforeseen problems encountered in service also continue to demand much
attention and rework after initial certification. The essential problem is one of system
complexity, and when software is involved the complexity problem is greatly multiplied.
Problems all too frequently seem to get past the rigorous design, validation and verification
processes and make it to integration testing, or worse, into service. Often, anomalies are found
that were not predicted by the system safety assessment process, and this raises the question of

the validity of the safety case itself.

This thesis takes a broad look at recent research in the Aeronautics/ Astronautics Department at
MIT in System and Software Safety (in particular looking at Intent Specifications and the

STAMP modeling technique developed by Professor Nancy Leveson) and evaluates the
11

existing aero engine control system development and certification process in light of this
research. The STAMP (System-Theoretic Accident Modeling and Processes) technique
provides a new perspective on system safety. In STAMP, the concept of failures as the atomic
element leading to accidents is replaced by the concept of constraints. The traditional role of
the numerically based Probabilistic Risk Assessment (PRA) in the certification safety case is
questioned in the STAMP analysis, which uses a broader set of considerations to establish the
safety of a complex system. Some examples of safety-related design problems found late in the
development process (i.e. during aircraft integration testing or operational service) are analyzed
to establish whether conceptual weaknesses exist in the system development and system safety

processes.

One example was a problem during an asynchronous power-up of two independent FADEC
(Full Authority Digital Engine Control) computer channels controlling a turbofan engine. The
turbofan engine was in a start sequence but the FADECs inadvertently scheduled the maximum
possible fuel flow to the engine, leading to a brief fireball at the back of the engine.
Furthermore, the subsequent pilot-commanded shutdown failed to close the fuel shutoff valve.
This event occurred during aircraft integration testing and was corrected before certification.
However, the software under test had already been through extensive software verification,
system requirements validation and system verification processes at the FADEC supplier and
engine manufacturer, including engine ground-tests. One factor in the event was that the pilots
operated the system in a way not foreseen by the designers and hence not tested in the system
verification process. The event was readily reproduced by the engine and FADEC suppliers
once the required entry conditions were understood. Analysis of the design revealed about
seven requirements errors in the affected part of the software design, only two of which were

newly created in that software build.

12

The fact that so many latent errors had existed in the system and were mostly unknown
(because they were masked by other factors) was surprising to the author, but is not uncommon
in such systems. This example is typical of many anomalies that are found in software-based
safety-critical systems. There is a need to develop more inherent robustness in the design
process to reduce the likelihood of such surprises. The safety case for a software-based system
depends strongly on how inherently robust the design is to design changes (the problem of
brittleness of software as it is modified) and how well understood the external environment is
(pilot behavior, external inputs and noise etc), in other words, a problem with the requirements.
It is hypothesized that if many of the anomalies that occur in service are the result of poor
requirements arising from misunderstood interfaces, then how accurate is the safety case if it is
based primarily on a PRA approach? The PRA approach does not model requirements errors
and assumes accidents are caused by mechanical failures. This is an issue which the STAMP

modeling process attempts to address.

Furthermore, if the design and certification process can be made more robust to uncertainty in
the environment, then the cost of rework can be reduced. In addition to looking at the system
safety process and the STAMP technique, this research will also consider weaknesses in the
requirements development process, and two lines of research will be reviewed for applicability
to FADEC systems - Intent Specifications and Requirements Completeness Criteria. One of the
reasons why design errors occur is because of misunderstandings and/or a lack of
documentation of the assumptions and rationale behind the existing design. Thus, when
changes are made, these assumptions can be violated and without an understanding of the

violated assumptions, the testing process may not be able to catch the problem.

13

So the issue of system safety is closely related to the issue of requirements and design
robustness and the certification process. They are also related to the overall objectives of
program management, which is to achieve certification of a safe product that meets the

customer's technical, schedule and cost objectives.

The insights gained from the reviews of MIT system and software safety research to the aero
engine development and certification process will be considered with regards to the existing
commercial aerospace recommended practices and standards (in particular ARP 4761, covering

system safety [1] and DO-178B covering the software life-cycle processes [2]).

14

2 Existing System Development and Certification
Process

2.1 Airworthiness Requirements

In the United States, the requirements for safety of highly integrated electronic control systems
for aero engines come under FAR part 25.1309 [3], which addresses system safety
requirements for airplane systems in general. These requirements are very general, and do not
provide specific guidance on how the safety objectives shall be met. In essence the FAR states
that the airplane must be designed so that the "occurrence of any failure condition that would
prevent the continued safe flight and landing of the airplane is extremely improbable" (refer to
APPENDIX A FAR Part 25.1309 — Safety Regulations, section (b)(1)). It also states that
warning must be provided to the crew to alert them of unsafe conditions, so that corrective
action may be taken. Regarding how to demonstrate compliance, section (d) states that
compliance must be demonstrated by analysis, and where necessary, by appropriate testing.
The analysis must consider possible modes of failure, the probability of multiple failures and
undetected failures, the resulting effects on the airplane considering the stage of flight and
operating conditions. The requirements seem quite comprehensive and cover some important
and challenging objectives. The ability to consider the probability of multiple failures and
undetected failures is quite a challenge as this requires a good understanding of the
complexities of the system, including the design weaknesses that may exist. Also, it would
only be possible if the external environment was well understood, so that the effect of all noise

sources and unexpected inputs (including pilot commands) were understood. However, as a set

15

of high-level requirements for aircraft safety, these seem to be comprehensive and appropriate.
This leaves the challenge of meeting these requirements in practice, and for this, the FAA

developed an associated Advisory Circular, AC 25.1309-1A [4].

This AC is a little dated (1988) but does provide guidance for compliance with FAR 25.1309
(b), (c) and (d), which are the pertinent parts addressing safety of highly integrated complex
systems such as those with embedded control software. FAR 25.1309 is based on the fail-safe
concept in which the failure of any single component, or connection, during any one flight
should be assumed, regardless of its probability [4, section 5 (a) (1), p.2]. This is a very sound
principle when considered relative to current thinking on complex systems, where the
complexity exceeds the ability of analysis to prove that the system will behave in a specific
way under all conditions. In particular, software cannot be fully tested, and therefore complete
reliance on probabilistic approaches is impossible. The Software Myths discussed in Section

2.2 of [5] provide evidence for this.

The Advisory Circular also requires that a Functional Hazard Assessment (FHA) is performed.
It discusses methods such as FTA (Fault Tree Analysis), FMEA (Failure Modes and Effects
Analysis), FMECA and RBD (Reliability Block Diagrams). Some emphasis is also given to the
issue of latent failures and the potential use of CCRs (Certification Check Requirements) and
CMRs (Certification Maintenance Requirements), which can be used to provide additional
checks for latent failures if the automated systems are unable to ensure complete detection. So,

it does include probabilistic approaches as forms of analysis.

The AC focuses on the system level, and hence does not explicitly cover software. It refers to
AC 20-115A (superseded by B [6]), which itself identifies DO-178B [2] as defining a suitable

means for demonstrating compliance for the use of software within aircraft systems.

16

The fail-safe principle leads to the requirement for protection against single-point electrical
failures. The aircraft industry is probably ahead of several other safety-critical industries in the
soundness of some of its fundamental safety concepts. In particular, the fail-safe principle leads
to an avoidance of relying on microprocessor control for some safety-critical engine functions
such as the detection and accommodation of an engine shaft over-speed or a shaft break. These
systems are designed to cut the fuel flow to an engine that has suffered some form of failure
causing the shafts to accelerate to speeds that could lead to blade release or other hazards. The
engine turbine casing is not designed to prevent release of turbine blades under these
conditions, and hence the condition itself must be prevented by removing the source of energy
to the turbine before the critical speeds are reached. The FADEC (digital) systems have all the
appropriate sensor and actuator controls to achieve this goal, but instead, the certified systems
use analog electrical systems for reasons of speed of response and to provide independence
from the software. Indeed the software would be considered to be one of the candidate systems
for creating the hazard, though no specific probability analysis is performed to analyze such a
possibility. The fail-safe principle works well for functions where mechanical (or analog
electrical) interlocks or devices (such as the over-speed shutdown system) can be used, and it is
the guiding principle for many system designs. However, for software, it is much harder to
demonstrate that a design will fail-safe because the number of states is so large that complete

analysis is impossible.

2.2 Aerospace Recommended Practices

Although AC 25.1309-1A provides guidance on concepts in designing for safety and suggests
some analytical methods such as FTA, it does not provide a comprehensive guide to the system

safety process. For this, ARP 4761 (Guidelines and Methods for Conducting the Safety

17

Assessment Process on Civil Airborne Systems and Equipment) has been produced by the SAE.
This sits alongside ARP 4754 (Certification Considerations for Highly-Integrated Complex
Aircraft Systems), which addresses system development and certification in general. The
relationship between these standards is shown in Figure 1 below. The figure also shows the life
cycle processes for software (DO-178) and hardware (DO-254). DO-254 primarily concerns

electronic hardware and is outside the scope of this report.

Safety Assessment Process

Guidelines & Methods
(ARP 4761)

Intended
Aircraft Function, Failurel System Design
Function & Safety Information
System Development functional
Y p System
‘S——
Processes
Aircraft (ARP 4754)
Systerm ‘
Development Functions & Imol catd
Process | Requivements _ _ _ _ __ _ _ _ _| "0 SRR
Hardware
Life-Cycle Hardware Development
Process T Life-Cycle
(DO-254)
Software + *
Lg%gggée Software Development
" Life-Cycle
(DO-178B)

Figure 1 Certification Guidance Documents Covering System, Safety, Software and Hardware for
Aerospace Systems, adapted from ED-79/ARP-4754 [7]

2.2.1 ARP 4754
ARP 4754 (ED-79 in Europe) addresses system development in general, and follows much that
is accepted current good practice in systems engineering. The document discusses the

requirements development and allocation process, including types of requirements, such as

18

customer requirements, functional requirements, operational requirements etc. It discusses the
relationship between architectural choices and partitioning and system safety and lists
development assurance levels based on the failure classification for system partitions. These
assurance levels (A to E) are similar in concept to those used for software development in DO-
178, and they define the set of processes to be followed for a given system. Systems with high

development assurance levels require more process steps.

The document also discusses verification and validation processes (V&V), documentation and
validation of assumptions, and configuration and change management. The relationship
between the system development and safety assurance processes is shown in Error! Reference

source not found..

Some research has raised concern about the degree of emphasis placed on development
assurance levels as a basis for assuring safety. A lot of ARP 4754 (and DO-178 discussed
below) is devoted to determining how to choose a level for a particular system or subsystem,
but there is not a great deal of evidence showing that systems developed to a particular level
will really achieve the anticipated level of safety [8]. This is discussed further in section 2.2.3

below.

19

Aircraft Level
FHA 6.1

Failure Condition, Effects,
Functi Inte Classification, Safety Requirements

= =

System-level -
Cature FHA Sections
Conditions , .
& Effects cha nmwdiy“g:&nm
' ey |
PSSAs
CCAS|s.araiion
rel—- 8.2
it
Item Requirements,
Safety Objectives,
Analyses Required
)
64 L SSAs
Separation & 83
Verification
Results
reference
e
baxes. Certification

Safety Assessment Process System Development Process

Figure 2 Safety Assessment Process Model from ED-79/ARP 4754 [7]

2.2.2 ARP 4761
The good summary of the ARP 4761 process, from Y. Papadopoulos and J. A. McDermid is

reproduced below [9]:

" The model is illustrated in Error! Reference source not found.. System development is defined

as a process of hierarchical system decomposition which is driven by the requirements derived at

each stage.

20

At the first level of this decomposition, the aircraft functional requirements are supplemented
with safety requirements and allocated to a number of systems. The safety requirements for these

systems are established from the results of an aircraft Functional Hazard Assessment (FHA).

At the second level of hierarchical decomposition, the potential functional failures of each system
are assessed by a system level FHA, and a decision is taken on an appropriate system architecture

that can meet the system requirements.

Preliminary System Safety Assessment (PSSA) of the architecture follows. The aim of the PS54 is
to establish the requirements for sub-systems or items of the architecture. The architecture is
likely to contain parallel, dissimilar, multiple channel elements. Any assumptions of
independence of failure between these elements, must be substantiated. Common Cause Analysis
(CCA4) is therefore appropriate at this stage in order to establish requirements for the physical or

functional separation of these systems.

Sub-system requirements are then interpreted to appropriate development assurance levels for
these sub-systems. When the decomposition process has reached the stage of implementation,
these development assurance levels define the techniques (& their rigour) for the specification,

development and assessment of hardware and software.

At the final stage, a System Safety Assessment (SSA) is conducted to collect, analyse and
document evidence that the implementation meets the safety requirements established by the FHA
and PSSA.

In the context of safety assessment, the results from the CCA provide the arguments that

substantiate assumptions of independence between parallel, dissimilar components. "

In summary, the analyses recommended by ARP 4761 are listed below:

¢ Functional Hazard Assessment (FHA, at aircraft level and system level)
e Preliminary System Safety Assessment (PSSA)
e System Safety Assessment (SSA)
e Common Cause Analysis (CCA), consisting of
o Particular Risk Analysis
o Common Mode Analysis

21

o Zonal Safety Analysis
The relationships between these are illustrated in Figure 3 below. ARP 4761 provides more
detail on common-cause analyses than was available previously and provides a more
systematic means to evaluate safety early in the design process and to reduce surprises at the
end of the development program [10]. It clarifies methods of calculating failure rates and latent

failure exposure times for fault tree analyses.

The methods of analysis proposed above (FHA, PSSA, SSA and CCA) are not universally used
by all aerospace companies. In one development site at an aero engine company reviewed, the
engine control system had not ever had a CCA performed, and the FHA was used only on more
recent projects. Only the PSSA and SSA have been consistently produced since ARP 4761

introduction.

22

Typical Development Cycle

Activity Requirements Design Test

Concept { Preliminary] Detailed ‘ Design Validation -
Developmant Design Design 5 & Verification
T Avcraft Functions Ismm Fuactions In«u’nmm I Tests
Aircraft Archtectyres System Archilmctures | Delailed Axchitsctures Anatyses
Aireraft Requirements System Requ Dotailed Reg ts
v
q N
Aircraft FHA System FHA . o
~ Functions « Functions
- Hazards - Hazards
« Eftects - Etlacts
- Classificatons « Classificatens
PSSAs ; 8SAs
[! 1
Aircraft FTAs System FTAs System System FTAs
- Quatkative Qualitatve FMEAs .a
I%ﬁ:’;& ?ﬁﬁum 'mm-ﬂ {[FMES - me:r :tﬁ:(:s
Dependoncies

Particular Risk Analyses CCAs

Common Mode Analyses

Zonal Safety Analyses

L Safety Assessment Processes

Figure 3 Overview of System Safety Process from ARP 4761 [1]

The basic approach discussed in ARP 4761 is to use the FHA to determine the top-level events
that should be analyzed by fault tree analysis. The basic root cause event in FTA 1is a failure of
some component. Therefore, it cannot effectively model design, maintenance or human errors.
The CCA should address some of these weaknesses because it addresses violations of
redundancy assumptions, such as those due to design errors, latent failures or maintenance

errors. However, the CCA analysis seems to be difficult for companies to produce. The

23

question of how to capture the effect of design errors is very hard because it does not lend itself
to traditional probabilistic methods. The approaches discussed in chapter 4 below (STAMP,
requirements completeness and Intent specifications) are offered as a possible means to address

this.

2.2.3 DO-178B

DO-178B (ED-12B in Europe) provides process guidance specifically for software. Software
cannot be said to fail in the sense of physical failures, and hence there are no quantitative safety
analyses applicable to software. The emphasis is on design and development assurance to
minimize the likelihood of design and implementation errors. This assurance is to be achieved
through processes for design, review, testing, configuration management, change management
and process assurance. The level of activity in these areas that is required on a particular
project depends on the safety assurance level required. In a similar way to ARP-4754, four
levels are defined, A to D, with A being the highest level. Aero engine control software is all

developed to DO-178B level A.

Figure 4 below shows the relationship between DO-178B and the system level safety
assessment process. It shows that the feedbacks from the software process include fault
containment boundaries, error sources and software requirements and architecture. Fault
containment boundaries refer to the boundaries around a partition in a partitioned software

system.

Traceability between system and software requirements and design is also fundamental to
ensuring that the software meets the system requirements. Appendix A2.2 of ARP-4754
confirms these items as coming up to the system level from the software level. It appears that

the assumption is that software process will determine what its fault containment capability is

24

and provide this to the system level for consideration in the system safety assessment process.
In practice however, any known weaknesses in the software will tend to be reviewed and
corrected (if known to cause a system effect). The events that cause problems in real systems

are generally unknown and therefore the information does not flow up to the system level.

An RTCA/EUROCAE special committee is currently considering revisions to DO-178B/ED-
12B. One comment in the discussion forum of this committee is that the existing document is
fairly prescriptive in terms of the processes to be followed [11]. Other standard documents
have made a move towards more "goal-based" approaches. Furthermore, it has been
acknowledged that DO-178B does not provide specific guidance on how to achieve software
safety, beyond the establishment of a development assurance level to be used for the software
development program. It appears that the assumption is that, having established the assurance
level, all the emphasis needs to be on ensuring that the requirements that flow down from the
system level are faithfully met in the implementation. In other words, safety attributes are
essentially handled at system level and flow to the software lifecycle process in the form of
requirements. This is in contrast to the approach taken in MIL-STD-882B, for example, which
has well defined tasks for "software system safety" (refer to task section 300 [12]). Also, a
good summary of the software system safety process of MIL-STD-882B (with comparisons to
DO-178B) is provided in sections 2.4 and 2.5 of the US DOD Joint Services Software Safety
Committee's Software System Safety Handbook [13]. It is argued in the following chapters that
the software lifecycle process can do more to ensure system safety than satisfy the
requirements flowing down from the system level. The approach taken in intent specifications

(see 4.2 below) aims to achieve this.

25

Airworthiness
Requirements

System SYSTEM LIFE CYCLE PROCESSES

Operational
Reguirements
EE——

System Safety Assessment Process

System Requirements
Allocated to Scftware

Fauit Containment
Boundaries

Software Levels (s)

Design Consfiraints Errar Sources
Hardware Definition ldentified/Eliminated

Software Requirements.
& Architecture

SOFTWARE LIFE CYCLES PROCESSES

Figure 4 System Safety-Related Information Flow Between System and Software
Life Cycle Processes, from DO-178B [2]

2.3 System Safety and Development Processes at one Aero Engine
Company

The aerospace industry standards above provide the framework for company specific processes.
In one aero engine company studied, the processes for the engine control system and software
were strongly influenced by the aerospace standards, such that it is not worth repeating the

company processes here.

A review of actual project experience, however, suggests that the system engineering and
software engineering processes covered by ARP-4754 and DO-178B have been easier to
follow than the safety assessment processes of ARP 4761. In general, the key concepts in ARP-
4754 and DO-178B are understood by engineers, such as the importance of traceability,
configuration and change management, process and design reviews, system and software

validation and verification. The fail-safe concept of AC 25.309-1A is broadly understood and

26

forms the basis of much architectural thinking. This discipline could be argued to have led to
the generally good safety record of digital control systems in the commercial aerospace
industry. Some of the practices being adopted in other industries such as SW-CMM have not
had a large impact on aero engine control system software because the existing process
framework addresses much of what SW-CMM aims to achieve and in a manner that offers

greater flexibility to companies to demonstrate compliance to the FARs than does SW-CMM.

Some of the safety assessment processes of ARP-4761 have proven to be difficult to produce,
such as the CCA, and the FHA. The CCA should cover design errors in systems and software,
but at one particular site at the company reviewed, this analysis has not been performed on any
project, so no attempt to try to understand potential redundancy violations has been performed.
As the examples in the following chapter will show, several system problems that had a safety
impact were caused by design errors and the complex nature of these would have made any

attempt at a Common-Cause Analysis very difficult.

27

3 Analysis of Safety Related Incidents and Issues

In this chapter, examples of design, operator and testing errors in an aero engine control system
are reviewed. The control system in question is for a small turbofan engine on a regional jet
aircraft. In each case, the review aims to establish to what extent these problems are due to
failures to apply the processes discussed in chapter 2 above, or weaknesses in the processes
themselves. This review must consider a broad system boundary that includes operator (pilot)
and maintenance processes, program pressures etc, rather than just the technical understanding
of the event. None of these examples led to an accident, but all required requirements changes
(and subsequent software changes) and could have affected system safety. These problems are
typical of the types of problems that are found and corrected in the industry on a regular basis.

They illustrate many of the common errors discussed in the literature [14-16].

3.1 Engine Safety Hazards Overview

The only catastrophic engine events are uncontained blade release due to shaft over-speed. For
this hazard, an automatic over-speed detection system is used to cut fuel off to the engine,
thereby removing the energy source driving the acceleration, and hence leading to engine
deceleration (probably with compressor surge). The over-speed protection system is
microprocessor independent (i.e. uses analog electronic hardware but no digital software), and
this form of architecture has been widely used in the industry in recognition of the inherent

risks of any software-based system.

However, although the catastrophic events are protected with mechanical systems, there are a

significant number of non-catastrophic hazards that do have software mechanisms. The

28

following two engine hazards (top-level events) receive much attention and analysis, in

predicting and monitoring in service event rates.

e Loss of Thrust Control (LOTC)

e In-flight Shut Down (IFSD)

These are broken down into more specific system hazards, such as for different flight phases.

There are several other hazards such as the inability to shutdown an engine, or the failure to
restart following an in-flight shutdown. These hazards have significant contributions from

software.

3.2 Aero Engine Control System Architecture Overview

Figure 5 below shows the basic elements in the engine control system used for the example
events. This architecture was developed during the 1980s and is not representative of new

designs in many respects. However, the main systems issues in the events discussed in this
chapter are applicable today. There are two identical, but separately housed, FADEC units

running identical software (an individual FADEC is often referred to as a "channel"). Both
FADEC channels are powered, and read and validate sensor inputs, however, only one channel
is in control of the primary fuel flow and compressor variable geometry at any given time. The

other FADEC acts as a hot standby.

Sensor input data is shared over an inter-FADEC digital link (CCDL) to allow each FADEC to
perform fault-detection of dual-redundant input signals. Each FADEC also performs fault

checks on its own output actuator drives and on the data received from the aircraft. The results

of these checks are shared across the CCDL. If one of the FADECs detects a fault that prevents

it from being able to control the engine, it declares itself "incapable", and this information is

29

shared across the CCDL and is used in the channel selection logic that determines which
channel shall be in control at any given time. If both FADECs are capable, then they both have

the ability to drive discrete outputs, such as the command to close the fuel shutoff valve.

AIRCRAFT SYSTEMS (with dual redundancy)
Including EICAS, Air Data Computers, Pilot thrust lever inputs,
engine shutdown request, FADEC fault reset discrete input etc.

—d
-y o

g 1585 |8 £ 3 g ¢ @
I 112 [REE ¢ &
2 |gus g 25 Z| ¢
& [< <g @

CROSS-CHANNEL DATA LINK Q

{DIGITAL}
L= FADEC A .

HARDWIRED DISCRETES

Enging mountad

A B |efectical ganeraior A I B
SENSORS dedicated to the SENSORS
engine control
A PMA systam ACTUATORS B
ENGINE

Figure 5 Engine Control System Architecture

The system is designed to provide dual redundancy of the FADEC hardware, external sensor

inputs, including aircraft input data and pilot commands, and actuator drives.

Note that many aircraft systems use triple redundancy in which voting is used to select the
active system for control. In aero engines, dual redundancy (as shown above) is standard. This
does mean that voting schemes cannot be used because only an odd number of systems can
generate an obvious winner. Dual redundancy requires logic to detect when a particular input
or output system has failed, initially without reference to the other channel. For example, if a

particular sensor signal goes outside its normal operating range, it is declared failed. The

30

alternative channel's signal will then be used. In addition, signals from the two channels can be
cross-checked and in the event of a difference exceeding a certain tolerance (accounting for
sensor measurement errors and other factors such as transient errors due to communication
delays), the signal furthest from an independent model can be declared as failed for the
purposes of signal selection. The independent model is typically the expected value of the
sensor, based on different sensor signals altogether. For example, a modeled (synthesized)
value of the high-pressure shaft speed can be derived from the low pressure shaft speed, taking

advantage of the well defined thermodynamic relationships in the engine.

The FADEC typically uses range checks and cross-checks (in combination with model
arbitration where appropriate, as discussed above) to detect and isolate faults. It also uses a
fault confirmation counter to confirm the existence of a fault (the fault is said to be confirmed
if it exists for longer than a defined confirmation time) and provide some protection against
transient effects. Once a fault has been confirmed, it is typically latched so that the affected

signal cannot be reused even if the original fault condition goes away.

However, the pilot has the ability to reset the latches via a pilot input ("fault reset" button
provided on the overhead panel). This reset would only be performed on rare occasions as part
of a checklist item or in the event that the pilot was particularly concerned about the engine

control.

The FADEC software executes at two iteration rates. A fast rate of 25ms is used for main
closed-loop control functions and the slow rate, at 125ms, is used for less time-critical
functions. In the following discussion, an "iteration" refers to a 25ms cycle in the fast loop of

the software.

31

3.3 Engine Torched Start Incident

This example is chosen because it illustrates the extent to which latent errors can exist in a
system and how a hazardous condition can be created after apparently small changes are made
that expose new mechanisms. In this example, a "torched" start (flame observed at the back of
the engine during a ground start attempt) occurred in engine ground-tests at the aircraft
manufacturer, while testing a new version of FADEC software prior to certification. The
design was changed after the incident, prior to certification, and with no further incidents. The
FADEC software had already been through the system development process and extensive
system verification tests at the engine manufacturer prior to release to the aircraft manufacturer
for engine/airframe integration ground-tests (no flight). Several anomalies were observed in

this incident, which has parallels with incidents and accidents reported in the industry.

3.3.1 Incident Summary

An engine ground start was performed, but the test procedure included cycling power to both
FADEC channels (causing an intentional dual channel reset) and then cycling power to one
FADEC channel (causing an intentional single channel reset) prior to moving the engine start
switch to on. This sequence had been performed in previous ground-tests and was designed to
test the robustness of the system to power interrupts. Power interrupts are more likely to occur
in the FADECSs prior to engine start because the dedicated FADEC power supply (from a
permanent magnet alternator) is not available until the engine has spooled up to a certain (low)
speed. Prior to this, the FADECs run on aircraft battery electrical power, which is not designed

to be guaranteed reliable.

When the engine start was requested, the pilot observed fuel introduction (on the cockpit

displayed fuel flow) to the engine without ignition (no indication of a temperature rise), which

32

was interpreted as a "no-light" start, the procedure for which is to shutdown the engine and
perform a "dry motor" to flush out the un-burnt fuel before attempting another start. In the "dry
motor” procedure, the engine is spooled up by the starter motor, but fuel and ignition are both
set to off. The airflow through the engine flushes out any un-burnt fuel that has collected in the
combustion chamber. This avoids a potentially large flame that could occur in the subsequent
start attempt. However, the dry motor had the opposite effect to that expected, and a large

flame was observed at the back of the engine during the dry motor.

Analysis by the engine manufacturer revealed a complex mechanism in which one of the
FADECs became locked in a ground-test mode throughout the whole sequence. The other
FADEC attempted to perform the engine start, but the mode mismatch between the two
FADECs led to abnormal behavior in which the latching shutoff valve (LSOV) in the Fuel
Pump and Metering Unit (FPMU) was inadvertently opened too early in the start sequence,
thus creating the initial no-light start. Subsequently, when the pilots shutdown the engine in
preparation for the dry-motor procedure, this valve was left open. Additionally, the FADEC
that was attempting to perform the engine start subsequently declared itself "incapable” and
one of the fail-safe actions in this scenario is to set ignition on. Another factor was that the
FADEC that was locked in ground-tests was sending out a maximum (electrical) current to the
fuel metering valve actuator (this was part of the ground-test sequence), which led to the
FPMU delivering the maximum fuel flow rate possible (limited only by the pump speed). All
these factors led to a large flame. There was no risk of the engine accelerating to a self-

sustaining speed, and the engine actually surged and spooled down without further incident.

33

3.3.2 Overview of Design and Changes Made in the Development Software

The software under test included two particular changes relevant to the incident mechanism.
Figure 6 below shows the relevant events and design errors and features that contributed to the
incident. This diagram is similar to a cause-consequence diagram but uses a different symbol
set. A labeling scheme is used to identify the events and design features. The two changes in
the development software are labeled CN1 and CN2. CN1 was an intentional change that was
associated with a new power-up check to determine the hardware configuration standard of an
external device. This check was executed only in a ground power-up (that is when the FADEC
is powering up with the engine not running and the aircraft on the ground). The check needed
to be performed in both FADEC channels and each channel waited for the other channel to
annunciate its check results before the FADEC could exit power-up checks mode (also known
as self-tests). This design was developed to ensure both FADECs agreed on the results of the
test, thus increasing the reliability of the check result. The idea was that the check should be
over well before an engine start attempt was made. However, just in case there was a
circumstance in which a FADEC was still waiting for test results when a start was requested,
an unlock feature had been designed to pull a FADEC out of this mode when entering start

mode.

The second software change, CN2, was an unintentional requirements change that arose from a
redesign of the fuel scheduling during engine start. Although not explicitly intentional, the
change was known before this incident and its impact evaluated and determined to be
acceptable. The change meant that when an engine start was requested by the pilot, a FADEC

would only transition from ground-test mode to starting mode when N2 exceeded 500rpm.

34

CAUSE AND EFFECT CHART OF ENGINE START INCIDENT (WITH DEVELOPMENT SOFTWARE)
/

| SHUTDOWN
\ PHASE
~

DRY MOTOR PHASE

"‘“—_
e

——D__ US10: Oper:
- MMV o max [(]
rd
T i DS
E. more
open afier slop rl
!

_I
/" symBoLkev: | [
:1 ::xr. bt i one .;NIC ¢ 'f
L
¥ One FADEC con i en oo o ;,hmm’}; \‘ S ! .
i] s \ | us1a:
= ! T '\ i COMBUSTION
POWE ‘ | us12: WITH HIGH
f i T i COMBUSTION (UNCONTROLLED)
e || \ i . FUEL FLOW
PHASE !' ,‘ condiion {US) !l
1
| e | DRYmoTOR
S:A':)Ectsn wm%m ‘\‘ STARTING | sHUTDOWN Taatuna (D) “ PHASE
i
\ |

-

Figure 6 Cause and Effect Analysis of Engine Startup Anomaly

35

Note that the pilot start request switch is directly hardwired to the Air Turbine Starter (ATS)
valve, independent of the FADECs. Thus, N2 would be expected to climb above 500rpm soon
after the start request, and this 500rpm threshold would therefore have no functional impact on
the start sequence. However, an existing feature of the FADEC ground power-up sequence is
that the N2 signal is not validated while executing self-tests. This is because one of the self-
tests is to exercise the over-speed shutdown system by creating a simulated high N2 speed
signal to check that the microprocessor independent over-speed shutdown system operates
correctly. Therefore, while self-tests are in progress, the N2 signal internal to the FADEC is set
to zero to avoid creating confusion with the FADEC logic while this simulated high value is
being generated in hardware. This test is only executed in a ground power-up with zero initial

shaft speed, so the forcing of this signal to zero is not normally a problem.

Prior to the incident, the engine had just been shut down, and when the dual power reset was
performed, N2 had not yet dropped to zero. This meant that the FADECs powered up in
shutdown mode rather than in ground-test mode. This is not in itself a problem, as a subsequent
start request would allow both FADECsS to enter start mode. However, in this incident, a single
channel power interrupt was also performed just prior to a start request. This second interrupt
occurred when N2 had dropped to zero, so this FADEC did power-up in ground-test mode.
This FADEC therefore performed self-tests in which the N2 speed signal was forced to zero. It
also performed the new hardware configuration test described above and waited for a
corresponding test result from the other FADEC. However, because the other FADEC had
powered up in shutdown mode, it did not perform this particular configuration test.
Consequently, the FADEC in ground-test mode got locked up, waiting for a test result from the
other FADEC that never came. However, the unlock feature in that check should have been

able to pull the FADEC out of that test when the start was requested. However, the CN2

36

change meant that this FADEC could only enter start mode when N2 exceeded 500 rpm, which
was not possible because the self-tests were still in progress in which this signal was forced to
zero. Hence this FADEC remained locked in ground-test mode after the start request was

received.

When the pilot pressed the start switch, the FADEC that was in shutdown mode did enter start
mode. One of the first tasks performed in start mode is to close the FPMU latching shutoff
valve. This may seem like an unusual action considering that this valve should be closed to
begin with. In fact, the valve would be closed, but under some circumstances the latching
solenoid could get into the wrong state during power-up tests. One possible cause of this
solenoid being in the wrong state was a result of the system design of the LSOV. To ensure
that a single FADEC could not inadvertently cause an engine shutdown, agreement between
FADECSs must be obtained for the LSOV to close. This is a good fail-safe design when the
engine is running. It ensures that no single electrical failure could lead to an engine in-flight
shutdown (IFSD). Part of the ground power-up tests involved energizing the LSOV open and
then closed. This was to test the continuity of the LSOV circuits. However, a feature that was
never appreciated in the system design was that in the event of an asynchronous ground power-
up (that is, the two FADECs powering up more than 2 seconds apart in time), the LSOV would
be left in the open state following the power-up tests (because the two FADECs would pass
through the "close LSOV" task at different times and hence fail to get agreement on this action.
Despite this feature not being appreciated/understood, it never had any functional effect,
because the first task that was performed when an engine start is commanded was to go ahead
and close the LSOV. This would typically be done synchronously and thus would ensure
LSOV closure. The requirements that specified that the LSOV be closed on entry to start mode

may well have been designed to address the problem of a potentially open LSOV from ground-

37

tests, but no rationale was documented about these requirements, and the memory of why this

feature existed had been lost over time.

Therefore, when the pilot requested the start, only one FADEC entered start mode and the
other "distressed" FADEC was waiting for a test result that would never come. Consequently
the backup action of closing the LSOV on entry to start mode did not work, because agreement
between FADECs was not achieved and hence the start was commenced with an LSOV in the
open state. The LSOV had been left open due to the asynchronous power-up. When the engine
started to spool up, the fuel pump pressurized the fuel system enabling the valves in the system
to start moving. The LSOV is connected to the PRV (pressure raising valve), which is the last
fuel valve before the engine combustion chamber. Thus when servo pressure was available,
fuel could start to flow into the combustor at a much lower engine speed than normal for fuel
introduction. In a normal start, the PRV would only be opened at a speed of at least 25% HP

shaft speed.

Several other errors and features in the design compounded the problem of premature fuel
introduction. Firstly, the FADEC in control happened to be the one locked in ground-test mode.
It was still in "self-test" mode and one action in this mode is to set the main metering valve
torque motor current to its maximum value. This is not normally a concern in self-test mode
when the engine should be static and shutdown. However, in this incident, with the engine
spooling up and the PRV open, the main metering valve was also allowed to become fully open.
The fuel flow rate would therefore be the maximum that the fuel pump could deliver, without

regulation by the metering valve.

Even this scenario of premature fuel introduction would not necessarily have been a problem.

The pilot observed fuel introduction without light-off and hence initiated a shutdown to be

38

followed by a dry motor, as discussed in 3.3.1 above. This course of action by the pilot is in
accordance with standard pilot procedures for a "no-light" engine start. However, further
complications arose in this shutdown. First, the FADEC locked in ground-test mode was
unable to recognize the shutdown request. The fail-safe feature in which both FADECs must
agree before executing a shutdown is a feature of hardware design (interlocks) and software
(mode transition logic). Thus neither FADEC was able to enter shutdown mode. This created a
further complication for the FADEC that was in start mode. In that FADEC, when N2
exceeded 2250 rpm (which was achieved in the aborted start), the N2 fault detected logic
changed the minimum range check limit for the N2 signal to 500 rpm. This is designed to
improve fault-detection for a running engine. When the engine is running, the N2 speed would
always be well above 500 rpm. This range check limit would revert to 0 only when shutdown
mode is entered, which never happened, hence this FADEC detected a perceived dual channel
N2 speed signal fault when the engine spooled down. Total loss of the N2 signal is very serious
and the affected FADEC declared itself incapable. One of the actions performed when a

FADEC goes incapable is to default its ignition system to ON (a fail-safe action).

It is interesting to reflect on the N2 fault-detection logic here. If the engine had been running
(at or above idle speed) and the FADECS had failed to agree to perform an engine shutdown,
then the engine would never have spooled down. The minimum range check limit could have
stayed at 500 rpm without any problems. However, in an aborted start sequence, the only thing
keeping the engine shafts spinning is the torque from the starter motor, which is not under
FADEC control. Therefore, the normally simple logical connection between FADEC shutdown
agreement and actual engine spool-down does not apply during an aborted start, and this

system feature was completely missed in the requirements. Essentially, there was an implicit

39

assumption in the requirements that there was a causal link between FADEC shutdown

agreement and engine spool-down. No such assumption was ever documented however.

Consequently, we now have an engine spooling down with one FADEC incapable and the
other locked in ground-test mode. The pilot then initiated a dry motor, which involved
selecting the start switch to ON with ignition set to OFF. When the FADECs perform a start
with ignition off, they will not open the LSOV, and hence no fuel will be admitted to the
engine. However, in this incident, neither FADEC was able to enter start mode. Furthermore,
the LSOV was still left open from the mechanism described above and the FADEC that was
incapable had set ignition on as a fail-safe action, overriding the ignition off command from the
pilot. The FADEC in ground-test was still in control and had opened the main metering valve
fully open. Consequently all the conditions were set for combustion in the dry motor. A high
fuel flow rate in combination with low air speed may have led to a large flame visible at the
back of the engine, but was not particularly hazardous, as an engine is unlikely to sustain this

condition or accelerate. It is much more likely to stall and run down.

3.3.3 Analysis and Lessons Learned

In this incident there were nine latent design features of which about five could be argued to be
requirements errors or could create conditions that were not adequately handled in the overall
design. There were also two newly introduced problems. In chapter 15 of Safeware [5], a
comprehensive list of requirements completeness criteria are presented. These criteria apply to
state-based requirements and the relationships between state-based logic and the external
environment. Many of the issues observed in this example could have been caught using these

requirements completeness criteria. See Table 1 (in APPENDIX B Requirements

40

Completeness Criteria With Example Systems) for details. The following summarizes the

process weaknesses.

1. Off-normal conditions not adequately tested or not tested in combination :

a. Power interrupts during a shutdown sequence

b. Asynchronous power interrupts

c. Start request shortly after a power interrupt (while self-tests still in progress)
2. No completeness criteria assessed against state-based requirements.

3. Lack of coordination between hazard analysis and software design process. That is,

potentially hazardous states not identified in the software design.

4. Lack of documentation of assumptions. For example, the original design of power-up
tests assumed the two channels would go through this mode synchronously. There was
actually a two second tolerance on this, implemented as a software design assumption

but was not flowed back up the system hierarchy to create a system constraint.

5. Lack of documentation of design rationale. For example, the rationale for closing the
LSOV on entry to start mode seemed in retrospect to be valuable as a means of
addressing the possibility of an LSOV left open after an asynchronous power-up, but

this interpretation was inferred only after analysis of the incident.
Design weaknesses are summarized below :

1. Design did not provide for the use of defaulted data. For example, when the N2 signal
was defaulted to zero, the downstream software used it without regard to its validity.
The completeness criteria in Table 1 below identify the need to specify timing bounds

on the use of input data.

41

2. Lack of detection of mode mismatch between the two FADEC channels. The analysis
revealed the significant problems that could result when two channels are allowed to
operate in different modes for a prolonged period. Analysis of the design should have
recognized the risks of this situation and should have logged a mode mismatch if it
lasted for a "significant” period (perhaps over 20 seconds, which would allow time for a

FADEC to recover from a power interrupt).

3. Controller conflict. In this case the pilot start/stop switch is directly connected to the
Air Turbine Starter (ATS) control valve, and hence it is outside the control of the
FADEC. Thus, a conflict of competing controllers could result. The aircraft/engine
system architecture should have highlighted this conflict and led to requirements in
which special attention was given to potential command conflicts. In this example, the
software did not consider the possibility that an engine could spool up when a FADEC
was in ground-test, because the FADEC in that mode would not have commanded a
start. Similarly, the software did not handle the possibility that an engine could spool-
down without the FADECS agreeing to command a shutdown. Hence the minimum N2
range check limit would remain above zero, which subsequently caused one FADEC to
go incapable on the grounds that the N2 signal had dropped well below what would be

regarded as a minimum possible value for a running engine.

3.4 Pressure Sensor Redundancy Violation

This example was chosen because it is a typical example of a redundancy assumption violation,
and it concerns a dual redundant pressure signal that measures air pressure at the inlet to the
high-pressure compressor. The pressure signal is known as "P25" (station 2.5 in the engine,

following the international station numbering scheme for jet engines). This pressure 1s used by

42

the FADEC to limit the maximum and minimum fuel flow to the engine, to help avoid and
recover from surge and to help avoid combustor lean blowout. Small errors in the signal have
no effect on engine control because the signal is not used as part of the primary thrust control
loop. However, large errors can lead to a loss of thrust control (LOTC) or combustor flameout

(causing an in-flight shutdown, IFSD).

3.4.1 Event Summary

In this event, a loose connector for FADEC channel A led to intermittent open circuit faults on
a number of sensor inputs carried by this particular connector. The open circuit conditions
occurred particularly when vibration levels increased such as when the engine power level was
changed by the pilot. These open circuit faults occurred over the course of a flight lasting about
one hour. All the affected open circuits were successfully detected and accommodated except
for the P25 signal. The P25 logic initially declared that the channel B P25 signal had failed,
which forced the controlling FADEC to use the intermittently erroneous channel A signal. This

led to uncommanded thrust perturbations (an LOTC hazard).

The pilot subsequently performed a fault reset, which cleared the condition, and the FADEC A
then detected its own signal as having failed. The thrust oscillations were reported, and
investigated by the engine manufacturer, making use of fault recording data inside the FADEC
and in the aircraft Central Maintenance Computer. The aircraft completed its flight with no

further anomalies.

3.4.2 Review of Design

The FADEC input conditioning circuitry is designed to ensure that open circuit faults lead to

an input signal voltage that quickly goes out of the normal operating range (ideally within one

43

iteration), enabling easy detection of the fault. However, this is not always the case and drifts

of a signal towards an out-of-range condition can occur.

During such drift scenarios, erroneous in-range sensor readings are presented to the fault-
detection software. In the case of the P25 fault-detection software, a synthesized model of the
P25 signal based on fan speed (and considering external air pressure and temperature) was used
to arbitrate between the channel A and B readings once a cross-check tolerance is exceeded.
Provided the synthesis model is sufficiently accurate compared to the cross-check tolerance,
the model is able to reject the failing signal without difficulty, and ensure that the healthy
signal is selected for engine control, with no noticeable effects on control. However, the more
inaccurate the synthesis model is, then the higher the probability that the model will "pick” the
wrong signal. The software was designed to pick the signal closest to the model for up to 10
iterations (250ms) after which a fault confirmation counter would latch the signal furthest from
the model out and prevent use of that signal for the rest of the flight (or until the pilot performs

a "fault reset” or a power interrupt occurs).

This design had a number of weaknesses. First, the accuracy of the synthesis model was not
well understood; it was found that model errors could be large in comparison to the cross-
check tolerance at some conditions, leading the model to potentially prefer the failing signal in
the event of a cross-check failure. Secondly, when the signal does go out of range, the cross-
check and model arbitration logic was allowed to continue operating with the "last good" value
of the signal before it went out of range. At this point, it should have been clear that the out-of-
range signal had failed, but the range check logic did not pass back the out-of-range fault flag
to the cross-check logic until 250ms later (when its own fault confirmation counter had

latched). Thus the cross-check logic initially had no knowledge that the signal it was using was

44

a "last good" value and hence should be treated with suspicion. If the "last good" value
happened to be closest to the model, the cross-check would then latch out the healthy signal
after 250ms. The range check fault counter would subsequently latch out the failed signal, thus

leading to both channels being declared failed.

This design had to be substantially overhauled. The use of two separate fault counters (one for
out-of-range failure and one for cross-check failure) that could get into a race condition has
been avoided in the new design and the synthesis model has been optimized to improve its
accuracy. Furthermore, the detailed implementation of the cross-check has been changed to
improve its robustness, along with a significant lengthening of the (single) fault confirmation

counter.

3.4.3 System Design Lessons

In the example application, the system requirements essentially stated that the system "shall
detect and accommodate single channel electrical faults", such as the one in this example.
Some aircraft manufacturers have expressed the fault-detection and annunciation requirements
with a quantitative goal, such as "at least 99% of single channel faults". The FAA guidelines

call for all single electrical faults to be accommodated.

In this example, the design had already been through a design change about two years
previously, to address earlier weaknesses in the design. The earlier changes had greatly
reduced the frequency of these events but had not eliminated them. Schedule pressures in the
first change had curtailed the amount of analysis that could be performed and hence a tactical
solution that addressed the known problems was performed, without conducting a widespread

review aimed at finding other potential weaknesses.

45

One contributing factor was a lack of awareness of best practice in fault-detection design, and a
second was a lack of time planned for a thorough analysis. A full analysis of fault-detection
requirements and designs such as this takes a lot of time and effort. A full analysis requires an
understanding of the failure modes of the sensor and associated systems (including harnesses,
connectors, FADEC input-conditioning circuitry etc.), an understanding of the consequences of
erroneous signals on the engine control at various operating conditions and flight phases, and
an understanding of the sensitivity of any models used as part of the detection scheme,
including both steady-state and transient accuracy. Furthermore, the ideal design process would
have started with a system architecture that considered the best design of FADEC input
conditioning circuitry to support easier fault-detection. All too often the hardware is designed

with assumptions about the control functions and may not use the best techniques available.

3.4.4 System Safety Lessons

The first issue from a safety perspective was that this problem was caused by a loose connector,
which is regarded as a maintenance error rather than a random physical fault. Second, the fault
tree assumed that a single channel open circuit would have been detected and accommodated

and therefore would not have led to a LOTC event.

The safety case relied heavily on the FTA due to the lack of a Common-Cause Analysis (CCA),
and the FTA is designed to match the system "as specified", and not "as built". It is impossible
to develop a safety case that realistically accounts for design errors that are not actually known.
The weaknesses of the design were actually known before this LOTC event, but an earlier,
simpler design change was assumed to have addressed the service problems. In practice, the

earlier design change did greatly reduce the probability of these events.

46

When a complete redesign was implemented after this event, the safety analysis was reviewed
to determine what changes would be needed. No changes were required, because the design
change simply makes the system more compliant with the original system requirements. It
seemed paradoxical that a safety-related design change would have no impact on the safety
case. The designers of the new fault-detection software were confident that the new design
would now finally address any weaknesses in the fault-detection logic, and this was consistent

with all the analysis that was performed, as well as system testing.

If there were any weaknesses in the new design, then these would have been unknown. Indeed,
had there been known weaknesses, these would simply have been addressed in the design.
Therefore, the lack of awareness of where redundancy violations may occur makes it unlikely
that these will ever be addressed in the existing safety analyses. In other words, design errors

cannot be modeled in a system safety analysis.

Furthermore, it is the design errors (and maintenance errors etc.) that are likely to have the
greatest impact on the safety of the system. This is because, in the absence of design,
maintenance or operator errors, any random failure that does occur will lead to top-level
hazards as predicted by the safety analyses, which will thus be at rates that can be managed.
This is particularly true in systems with a lot of redundancy because (assuming the redundancy
always works), the system will be less sensitive to increases in the failure rate of random base

events.

3.4.5 Process Lessons

The conclusion from the above is that the quantitative approaches to safety analysis are not
helpful in determining the real safety of a complex system, where design errors are likely to

play a dominant role.

47

The qualitative analyses have proven difficult for the industry to perform and as a result, the
actual safety level of complex aero engine control systems are hard to define. Clearly more
guidance is needed on how a safety case can be developed that considers potential design,
maintenance or operator errors, and redundancy assumptions should be backed up with

analyses aimed at establishing more thoroughly the weaknesses in designs.

3.5 Engine Thrust Shortfall Warning Anomalies

This example involves a higher level function with a pilot interface. The aircraft application
involved was a twin engine regional jet, in which reduced thrust takeoffs are permitted with an
ATTCS (Automatic Takeoff Thrust Control System). An ATTCS is an FAA-allowed system in
which the engine takeoff power can be set up to 10% below that required to meet single
engine-out climb performance. The system must be capable of automatically detecting an
engine failure and automatically raising the thrust on the good engine by 10%, so as to achieve
the required climb performance. Additionally, if the engine failure is detected before the pilot
decision speed, V1, then the pilot must abort the takeoff. Thus a message is provided in the
cockpit, known as a "LOW N1" warning (a reference to the engine fan speed, N1, which is the
engine thrust setting parameter). This warning is displayed on the EICAS. EICAS messages are
categorized into three priority levels: warning (red), caution (amber) and advisory (cyan), with

warning being the highest priority.

The engine failure detection and thrust bumping logic was implemented in the FADEC, and a
signal is sent to the aircraft EICAS system for displaying the "LOW N1" warning. Suppression

of the warning above V1 was a feature of the aircraft EICAS logic.

High-level requirements for the engine failure detection logic were therefore provided by the

aircraft manufacturer, but the design of the detection logic was the responsibility of the engine

48

manufacturer. Clearly because this system involves the engine and aircraft interface, with the
pilot in the loop, close coordination of the interface was needed. The aircraft manufacturer
performed integration tests specially designed to look for false positives (nuisance messages)
and failures to detect real thrust shortfalls. This system was regarded as safety-critical and
received a significant amount of design and test attention at both companies (aircraft and

engine).

3.5.1 Flow down of high-level requirements

When an engine loses power during takeoff, the aircraft acceleration will be slowed, so a
longer field length will be required, assuming the takeoff is not aborted. The speed of response
of the ATTCS system will determine how quickly the good engine power is bumped 10% after
the bad engine loses power. This will affect takeoff field performance calculations, which are
published in the airplane flight manual. The field performance calculations were based on early
tests of the engine in which engine failures were simulated by the pilot pulling the fire-handle.
This is a device the pilot uses to shut down an engine in the case of a fire emergency, and this
cuts fuel to the engine independently of the FADEC. The FADEC will therefore not know why
engine power has been lost and should thus trigger an ATTCS event. Note that a normal engine
shutdown is commanded by the pilot using a run/cut switch and this signal is routed via the

FADEC. The FADEC inhibits the ATTCS logic when performing a normal engine shutdown.

The aircraft requirements specified that the ATTCS system must be sensitive enough to detect
steady-state thrust losses as small as 3%. The time to detect this was not specified, but the
initial FADEC design allowed 12 seconds to confirm such a power loss. Larger losses had to

be detected sooner, though no specific aircraft requirements were defined. A detection time of

49

0.5 seconds was used in the FADEC software requirements for rapid power losses (logic based

on rapid HP shaft (N2) deceleration).

The aircraft takeoff performance calculations were based on the results of ATTCS response
times from testing of engines with early FADEC software. One key feature of the calculations
was an assumption that the engine thrust would not drop more than 40% below nominal takeoff

power before the ATTCS system triggered.

The engine manufacturer did not include this function in its own safety analysis because it is an
aircraft function and does not contribute to any of the top-level engine hazards. The probability
of an engine failure is covered in the engine safety analysis, but not the operation of the
ATTCS. The aircraft manufacturer performed the safety analysis of this function, and this was

based on the above assumptions about the ATTCS responsiveness.

3.5.2 ATTCS design

The logic implemented involved two basic approaches for detecting a power loss. One based
on a rapid deceleration in the HP shaft ("N2DOT" logic) and the other based on a prolonged
shortfall (12 seconds) between the requested fan speed, N1R, and the actual speed, N1. Both
forms of logic were only active when the throttle was near the takeoff throttle setting. The 12
second period for the second type of logic ("slow" logic) was designed to avoid false warnings
in a normal acceleration to high power, when N1 would naturally be below N1R until the
engine had had time to accelerate to full power. Both FADEC channels executed the logic, but
in the initial EICAS design, only the warning from the controlling FADEC was used to set the

cockpit message.

50

3.5.3 Problems experienced

The early logic was found to be too sensitive in some situations, which resulted in false
warnings when the pilot advanced the throttle in a certain way at the start of the takeoff. These
led to some unnecessary aborted takeoffs at low aircraft speed. This was an inconvenience but
not a safety hazard. Before new FADEC software could be implemented in the fleet, advice
was provided to operators about how to advance the throttle to reduce the risk of these
problems. New FADEC software was introduced in which some of the tolerances in the

N2DOT branch of the logic were opened up to avoid these problems.

At about the same time as these improvements were being introduced, however, another
change was being implemented in the EICAS display logic that allowed cockpit warnings to be
based on data from either FADEC, rather than just the one in control. This change was
independent of the new ATTCS FADEC logic. It transpired that this exposed a previously
hidden problem with the logic, which led to false warnings at high aircraft speed. The warnings
occurred close to V1, which led to high speed aborted takeoffs that were much more stressful
than low speed aborts. In all cases there were no actual engine failures. Analysis revealed that
the standby FADEC was generating false warnings. The reason was that under some conditions
the standby FADEC could end up in a different thrust mode from the controlling FADEC, and
thus believe that the requested fan speed, N1R, was higher than the controlling FADEC.
Because the controlling FADEC was the one actually controlling the engine, the real fan speed
achieved, N1, would match the lower demand of that FADEC. The standby would thus
complain that the engine was not at the required power level, and this used the 12 second slow
logic, hence leading to warnings 12 seconds after the start of the takeoff. This was typically

close to V1 speed. Further requirements changes were implemented to ensure that the standby

51

FADEC would always be in the same thrust mode as the controlling FADEC, thus correcting

this problem.

However, when this new logic was undergoing aircraft integration tests, it was found that some
fire-handle-induced shutdowns were undetected by the FADECs. This caused some confusion
because the logic changes at that time did not affect the sensitivity of the logic, and this
problem had not been observed in previous tests. It transpired that all the previous tests had
been conducted on prototype aircraft, but the new tests were on a production aircraft. The
prototype aircraft was wired slightly differently than production aircraft with respect to the
fire-handle. On the prototypes, the fire-handle-shutdown signal closed fuel valves in the wing
roots and also sent a signal directly to the engine FPMU (fuel pump and metering unit) to close
the valve there. On production aircraft, the signal only went to the fuel valves in the wing roots.
The difference meant that on production aircraft, there was an additional 7 gallons of fuel in
the lines from the wing roots to the engines, and hence this would continue to burn for a few
seconds after the shutdown command, thus leading to a much slower shutdown. Instead of a
rapid deceleration of HP shaft speed, these tests showed a gradual deceleration, which was then
dubbed a "splutter out". It was just slow enough to evade the N2DOT detection logic. The
FADEC did detect the problem using the "slow" logic after 12 seconds, but this was deemed to

be too slow for this type of shutdown.

The error required a more significant redesign of the logic, and it was decided to start by
carefully reviewing all the aircraft and engine system requirements before proceeding. This
exercise revealed that several assumptions about the ATTCS that had been central to the
takeoff field performance calculations had never been communicated to the engine company as

requirements. These included the assumption that the ATTCS would trigger before thrust had

52

dropped 40% below takeoff power. The design of new logic to meet this requirement, while
avoiding the possible reintroduction of false trips, was quite a challenge. The new design was
constrained by the need to develop a system that was compatible with the existing airplane
flight manual published takeoff field performance charts. Ultimately new system requirements
were agreed between the aircraft and engine companies that allowed for a significant

improvement in responsiveness without new false warnings.

3.5.4 Lessons Learned
e Assumptions built into important aircraft takeoff field performance calculations had not

been flowed down as requirements to the engine manufacturer.

e Aircraft-level safety analyses were based on the same assumptions about the operation

of the ATTCS.

e Several aircraft used for airframe/engine integration tests had configuration differences

from production aircraft, which affected test results.

e Changes unconnected with the ATTCS (in this case to the EICAS) had side effects that
exposed a latent ATTCS error in the standby FADEC. This problem arises from the

coupling between complex systems.

3.6 Field Maintenance Issues

The cases described above illustrate how easy it is for problems to arise when system
complexity is high. Numerically based system safety analyses are not accurate when the
likelihood of requirements and design errors are high in comparison to the likelihood of

random mechanical failures. A further example of the problems caused, in part, by system

53

complexity is the widespread problem of No Fault Found (NFF) removals in the aerospace

industry.

The engine FADEC systems and other digital systems on the aircraft all have a significant
amount of BITE capability. The faults detected by all these systems are typically recorded in a
central maintenance computer (CMC) or similar system on the aircraft. Each BITE capable
system usually has its own internal non-volatile memory (NVM) for recording fault and other

diagnostic data that can be analyzed by the unit manufacturer when returned for maintenance.

When faults are detected and annunciated to the aircraft, field maintenance engineers will
attempt to diagnose the problems with the aid of a Fault Isolation Manual (FIM). The FIM
provides detailed instructions on how to isolate the cause of the problem and thus which LRU
or LRUs to replace on the aircraft. Replaced LRUs are then sent to their manufacturers for
testing. However, a high proportion have no fault found (NFF), in some cases over 50% [17].
The problem of NFF removals is proving to be a rapidly growing problem in the industry. The

causes of NFF removals have been classified into three groups:

e Troubleshooting Procedures: The aircraft operator may have certain maintenance
policies that exacerbate the NFF rate, such as a policy of tending to remove the digital
devices first, as they are usually easiest to remove. The FIM is intended to provide an
effective sequence for diagnostic activity, but this sequence may be time consuming
and the pressure to return the aircraft into service to meet flight schedules could lead
the maintenance engineer to short circuit the FIM and replace more parts than needed.
In this NFF category, the part should not have been removed had the FIM been

correctly followed.

T 54

e Fault Isolation Manual: Even when the FIM is carefully followed, NFF removals could
still occur. The fault messages are designed to isolate the problem as closely as possible
to a specific LRU, but isolation is not always possible. For example, when a connector
is loose, several systems may appear to have "failed". It is not obvious whether the
diagnosis should start with the devices attached to the connector, or with the harness, or
the connector itself. Sometimes similar fault messages may appear in the event of a
power supply loss. The diagnostic sequence in the FIM is designed to identify which
mechanism is most likely to have led to the observed fault message or messages, but the
reliability of this diagnostic activity depends on how well understood the system is
under the various failure scenarios. For example, intermittent faults can be almost
impossible to detect, and the mere act of breaking into a system to perform diagnosis
may remove the problem. In this NFF category, the recorded faults should not have

indicated that the part be replaced, but errors in the FIM led to inappropriate removal.

e System Design: For example, the design of the fault-detection software may have
detection limits that are too sensitive, leading to false trips or the design may not be
very good at handling certain off-nominal scenarios such as power interrupts,
communication interruptions between devices etc. In this NFF category, the fault
messages did incriminate the removed part, but the fault messages were themselves

erroneous, arising from design errors in the fault-detection logic.

Figure 7 below shows the relative frequency of NFF causes in one study and breaks down the
three categories above into subcategories. In the system design category, only a very small
proportion is labeled "software error", with the major contributors in this category being poor

system understanding and inappropriate limits for the detection logic.

35

@ nappropriate Limits

B Sw Error

B Poor System Understanding
@ Poor BITE implementation

@ System Design
W Troubleshooting
0 Fauit Isolation Manual

EIPoor Sequence
W Accuracy Policy
[lEase Of Use E Troubleshooting

OTools

Figure 7 Fault Isolation Failure Root Cause [17]

The following quote from [17] suggests that actual part failures are a much smaller problem
than the errors in the design of fault-detection systems, or errors in the associated fault isolation

manuals or troubleshooting procedures.

"It can be seen that improving the system to reduce the number of product removals
with no apparent failure will have far more effect on the overall reliability than a

corresponding improvement in the product failure rate".

The design of fault-detection and isolation systems is not trivial, and the robustness of such
designs depends on how well the complete system is understood including off-nominal
operating conditions, signal noise, timing issues in communication between devices etc.
Quantitative system safety analyses cannot model these types of problems. In the author's

experience, the setting of limits on fault-detection and isolation schemes can be extremely

56

challenging. One school of thought is to set limits as wide as possible while still ensuring that
all real faults are detected. This strategy aims to minimize the risk of nuisance faults. This
approach requires a very good understanding of the range of observed behavior of real faults.
Another school suggests that limits should be set based on the largest size of signal error that
can be tolerated in the system before operational performance is affected, which requires a
good understanding of the effect of signal errors on performance, under various operating

conditions.

Figure 8 below shows how a lack of understanding of the range of operation of a system under
normal and faulty conditions can lead to nuisance faults or fault-detection "holes". Interactive
complexity makes it very hard to accurately identify where the boundaries of observed normal

and faulty behavior will lie. Assumptions are frequently made and these are often not well

documented.

Universal set of range of operation of a parameter or control function\

Nuisance Faults
(Contributing to No Fault Found,
NFF, maintenance burden)

Actual range of
faulty operation

Assumed range of
normal operation

Assumed range
of faulty
operation

*~.._ normal operation __.--"~

- -
————————

Undetected faults, or
No fault detected "holes" (safety hazard) A\ Fault detected

-

Fault detection limit (detection threshold)

Figure 8 Potential problems with the design of fault-detection limits for BITE software

57

4 Overview of MIT System Safety Research

Given the great dependence of modern society on highly complex integrated systems, such as
aircraft, electric power generating plants, medical technology, telecommunications etc, it is not
surprising to find a significant amount of research attempting to improve the safety and
dependability of these systems. Traditional system safety research has been built on the
concept of reliability in which accidents are treated as a sequence of events (event chain) that
lead from some causal event to the accident [18]. This model works well for accidents in which
component failure plays a major role. Such models can make use of component reliability data,

such as failure rates, and analysis tools such as FTA.

However, investigations into several aerospace accidents is revealing a much richer set of
scenarios, in which a broader context of the system needs be studied to fully understand the
accident, for example, operator and maintenance actions, and policies, design errors, and
financial and schedule pressures as well. Systems that include control software also do not lend
themselves to traditional analysis methods such as FTA (although attempts have been made in
the past such as software fault trees). Accidents involving software often have requirements
and design errors as contributing factors. Although this has been acknowledged for some time,

effective tools and methods for analyzing and preventing such accidents have proven elusive.

This thesis will review the developments in the Aeronautics and Astronautics Department at
MIT, under Professor Nancy Leveson. In particular, the development of software requirements
completeness criteria, Intent specifications and the new STAMP model (System Theoretic
Accident Modeling and Processes). Some other research will also be considered such as robust

design approaches in systems engineering. However, the system safety research by Professor

58

Leveson comes closest to addressing the specific needs of aero engine control system safety
and aircraft safety in general. Much of the system safety research at MIT has also been directed
at problems at NASA, where the challenges are often greater than in the commercial aircraft

industry [16, 19, 20].

4.1 System Theoretic Accident Modeling and Processes

Because traditional accident models treat accidents as a sequence of events that lead from a
causal event through to the accident, engineers will then tend to design the system to eliminate,
minimize or control these events. It is common to focus on the most obvious cause, or the
component that can most readily be blamed and redesigned. This can lead to a narrow focus
that overlooks the organizational structures responsible for building and deploying a safety-
critical system. Many accidents are a result of a number of small and seemingly harmless
decisions over a long period of time. It is not helpful then to single out any single component in
such accidents, but better to understand the full context of the accident including the

contributing factors in the technical system and the organizational context [18].

In the STAMP approach, the system and surrounding organizations are viewed as interacting
control loops. Hazardous states are the result of inadequate or missing control actions by
systems or organizations. The concept of a "failure" is replaced by the concept of a "constraint".
The STAMP approach has its roots in systems theory, which is founded on two pairs of ideas:

(1) emergence and hierarchy, and (2) communication and control [21].

4.1.1 Emergence and Hierarchy

A key feature that distinguishes a "system" from a "component" is the hierarchical structure of

systems into layers, in which the higher layers have more complexity than the lower layers.

59

Properties can emerge in higher layers that have no meaning in the lower layers. Safety itself
can be regarded as an emergent property of a system. For example, it is not possible to
establish the safety of sensor. The context in which the sensor operates, such as the interfaces
with the FADEC, control functions etc, are all needed to establish the safety of the system
using this sensor. It is possible to describe the reliability of the sensor however, and this is
identified in the FMEA. This is the key distinction between safety and reliability. They are not

the same thing [21].

In the system-theoretic approach to safety, emergent safety properties are controlled by a set of
safety constraints that specify those relationships among system variables or components that
constitute the non-hazardous or safe system states. For example, the jet engine must not
accelerate or decelerate inconsistently from pilot commands. These constraints will typically be
related to the hazards identified in the hazard analysis. Accidents result from interactions

between system components that violate the safety constraints.

4.1.2 Communication and Control

Systems incorporating feedback and control can be regulated to achieve desired functional
behavior. The communication required, flows between levels in the hierarchy and the higher
levels impose constraints upon the behavior of the lower levels. Figure 9 shows the basic

control loop structure of a system.

To be effective, any controller must meet the following conditions [22]:

e Goal Condition: The controller must have a goal or goals (e.g., to maintain the set
point).

e Action Condition: The controller must be able to affect the state of the system.

60

¢ Model Condition: The controller must be (or contain) a model of the system

e Observability Condition: The controller must be able to ascertain the state of the system.

Disturbances
D

l

Sysiam input . System Qutput
I ™ Process bt o R
P
»
Manipulater variables Controlled Variables
Vi Ve

Actuators Sensors

Controiler
Qutput ¢ Input

Commanrd Signal

uu

Figure 9 System Context modeled as a closed-loop system

The model condition is not always appreciated, but essentially amounts to saying the controller
must have some understanding of the nature of the process and the current process state. This
knowledge is often effectively embodied in the design of the control logic. The importance of

the model condition is discussed further in 4.2.

4.1.3 Systems Theoretic Model of Accidents

In the STAMP approach, accidents or hazardous conditions are viewed as arising when
component failures, external disturbances, and/or dysfunctional interactions among system
components are not handled adequately by the control system. That is, when safety constraints
that should be enforced by the system control structure are violated. A STAMP model will
typically include a diagram of the safety control structure that is broad enough to include the
full socio-technical context of the system. This can then be broken down and parts analyzed in

more detail as required. The diagram illustrates the relevant communication and control actions.

61

The following example, Figure 10, shows the safety control structure for a generic socio-
technical system. A key feature in Figure 10 is the representation of control and feedback
paths, which should typically be in pairs. Lack of one of these paths can reveal flaws in the
safety structure. The control structure should be expanded to encompass as much of the

broader system as needed to cover all safety constraints.

For example, an understanding of the Space Shuttle Challenger and Columbia accidents cannot
be developed from the component failures alone, but requires the organizational relationships,
including the role of the safety organization and pressures to meet the launch window. These

influences can be represented in the control structure diagram.

62

Reguiations T .
Standards Certification Info. geguiatnons Accident and incident reports
Certification Cha_:nge reports tan.dard's Operations reports
: Whistleblowers Certification - R
Legal penalties Accidents and incident Legal penatties Maintenance Reports
Case L cei incidents egal penaltie: Chenge reports
fse Law Case Law
Whistieblowers
Company]
Management
Safety Policy Status Reports Mc ompany t
Standards Risk Assessments anagemen
R Incident Reports H
esources ncident Repol Safety Policy Operations Reports
Policy, stds. Standards
Y, s Project
N Resources
————* Management
Hazard Analyses Operations
Safety Standards I Hazard Analyses Safety-Related Changes Management
Progress Reports Reports
Progress Repo Work Instructions Cha‘nge requests
Design, Audit reports
Documentation Problem reports
. Operating Assumptions
Safety Constraints ;
Standards Test reports Operating Procedures Operating Process
N Hazard Analyses
Test Requirements i
Review Results { Human Centroller(s) J
impiementation ; :
and assurance Aulomated
Safety Revised Controller
‘ Reports Hezard Ancl operating procedures i ¢
azale Anayses Software revisions [Actuator(s) | [Sensor(s) |
Manufacturing Documentation Hardware replacements
Management Design Rationale Physical
Procass
Work safety reports Maintenance
Procedutes | audits and Evolution Problem Reports
yvork logs Incidents
inspections Change Requests
Manufacturing Performance Audits

SYSTEM DEVELOPMENT

Congress and Legislatures

Legislation l T Lobbying

Accidents

Government Regulatory Agencies
Industry Assoclations,
User Associations, Unions,
Insurance Companies, Courts

Government Reports

Hearings and open meetings

SYSTEM OPERATIONS

Congress and Legislatures
Government Reports

Legislation Lobbying

Hearings and open meetings

Accidents

Government Regulatory Agencies
Industry Associations,
User Associations, Unions,
Insurance Companies, Courts

Figure 10 General Form of Control Structure for a Socio-Technical System [22]

63

4.14 STAMP Model Examples

STAMP models have been created at MIT for diverse systems related accidents including:

e Water contamination (e-coli) incident, Walkerton, Ontario, Canada, May 2000 [21]

e Friendly fire shooting of two US Army Black Hawk helicopters by the US Air Force in

the Iraq No-Fly Zone in 1994 [22].

¢ Failure to achieve a geostationary orbit of a Milstar-3 satellite due to a trajectory

problem of the Titan IV B-32, April 1996 [23]

e Loss of the Ariane-5 on its maiden flight, June 1996 [22].

In the Titan IV-B and Ariane 5 losses, the control software was a major contributor. The nature
of the design errors in these losses has much in common with some of the design errors
identified for aero engine control systems in chapter 3 above. In these cases, there was no
component failure and the software performed in accordance with the software requirements.
However, the system failed to impose constraints on behavior so as to prevent a hazardous
event. In the case of the Ariane 5 loss, the reuse of inertial navigation software from the Ariane
4 was a major factor. This software was not designed for the larger loads experienced on the
heavier Ariane 5 and led to a data overflow that led to two redundant systems both shutting
down. Several assumptions in the earlier design had not been adequately documented. The fact
that this software had performed well on the Ariane 4 had led to a perception that it was error
free. This mindset arises from a view of component errors (reliability) rather than system errors

(system safety).

The basic concepts in these models, particularly in the Titan-IVB and Ariane 5 losses are very

applicable to aero engine control systems and aerospace systems in general. Figure 11 shows

64

the control structure for the development process of the Titan-IVB/ Milstar-3 accident. The
controller boxes are expanded with information on the safety constraints that the particular
level imposes on the level below, the mental model flaws that exist in the individuals within
that organizational unit and the control flaws at that level. Other types of information that

"N

could be used is "inadequate control actions", "coordination problems" etc [21].

65

Space and Missile Systems
Center Launch Directorate (SMC) Detense Contract Management Command

Safety Constraint: Must ensure prime has created | Safety Constraint: Must provide effective oversight
an effective development and system satety program

. ol development processand quality assurance
Ineftective
Control Flaws:

ws Coordination? Control Flaws: '
= No monitoring of software development process * Approved an incomplete W&V program
* No plan for transition from oversight to insight

* Provided Ineffective quality assurance
+ No system safety standards or guidance

Mental Model Flaws: Inadequate understanding of
Mental Model Flaws: Inadequate understanding of software development and testing process
software development and testing process

3
y ? ¥

Prime Contractor (LMA)
Safety Constraint:

= Etftective development processes must be established and monitored

= System safety processes must be created to identity and manage system hazards
Controf Flaws:

* Approved an incomplete V&V program

* No specified or documented process lor creating load tape
+ Did not create a effective system satety program

* |nadequate control and monitoring of software development process

Mental Model Flaws: Inadequate understanding of testing coverage and load tape development processes

i &

| §
LMA Quality Assurance LMA System Engineering
Safety Constraint: Must monitor quality Safety Constraint: Must reduce software risks
of all safety criticcal processes Control Flaws: Kept an unneeded software filte
Control Flaws: for consistency
* Verified only that reports had proper signatures
¢ Risk analysis considered only problems that had
occurred betore Analex IV&V
Mental Model Flaws: Safety Constraint:
* Misunderstanding of risks = |V&V must be performed on the as-tlown system
* Misunderstanding of software constant process = Ali satety-crtiical data and software must be included
Control Flaws:
» Designed an V&V process that did not include load tape
Aerospace Corp. Software Design and Development * Used default values lor testing software implementation
Inadequate monitoring and Safety Consfraint: Safety-critical constants * Validated design constant but not actual constant
evaluation must be identified and their generation controlledd Mental Model Flaws:
and checked. * Misunderstanding about what could be tested
e Misunderstainding of load tape creation process
Control Flaws:

® Supervisor did not check manually entered value
* CD engineer did not spot error

¢ No hazard analysis or control process for software

LMA System Test Lab
Mental Model Flaws: Misunderstanding of Safety Constraint:

constant generation and testing process Testing must be performed on the as-fown system

Control Flaws:

* Simulation file rather than actual flight tape values
used for system test

Mental Model Flaws:
Misunderstood capability of test facility

Figure 11 Control Structure for the Development Process of the Titan IV B/ Milstar-3 Satellite Accident [22]

66

4.1.5 STAMP-Based Hazard Analysis

A STAMP-based hazard analysis (STPA) involves the following steps [18]:

1. Identify the system hazards.

2. Identify system-level safety-related requirements and constraints.

3. Define the basic system control structure.

4. Identify inadequate control actions that could lead to a hazardous system state.

5. Determine the ways the system safety constraints could be violated and attempt to
eliminate them, or if that is not possible, to prevent or control them in the system or

component design.
a. Create the process models for the system components.

b. For each of the inadequate control actions identified, the parts of the control
loop within which the controller is embedded are examined to determine if they
could cause or contribute to the inadequate control action (or lack of a necessary

control action).

The first two steps are standard in existing system safety processes; however, steps 3 to 5 are

unique to the STPA approach [18].

4.1.6 System Dynamics

In STAMP, the broad socio-technical system is treated as a control/ communication problem.
This is similar to the approach used in the field of system dynamics, and system dynamics
models can be used as part of a STAMP analysis. System Dynamics was developed at the
Sloan School of Management at MIT (formerly the School of Industrial Management) in the
1950s and 1960s by Jay Forrester. In system dynamics, the principles of dynamic systems and

67

control theory are applied to socio-technical systems. Some of the early application areas
investigated included supply chain management, marketing, project management, quality and
so on. It has been used to gain insights into the structure and dynamics of complex systems,
which helps in developing policies (control actions) that are more effective than when relying

on individual manager's mental model.

System dynamics models have value in helping to communicate each individual's mental
model about how a socio-technical system behaves, and what effect interventions may have.
The models can be executed to simulate behavior over time, and the effect of stimuli can be
investigated, which can help design more effective intervention policies. Some of the first
applications that Jay Forrester investigated concerned oscillatory behavior of production and
employment levels in manufacturing firms [24] and [25]. System dynamics models were able
to show how communication delays between the market forecasting process, production
planning, supply chain, employee recruitment process and so on, created a naturally unstable

system.

More recently, Repenning has studied the tendency of companies to enter firefighting modes of
behavior in managing large engineering design projects [26], such as in the aerospace industry.
The value of this research is in showing how an individual's mental model may not lead to the
best behavior (management decision making). For example, in a project that is running behind
schedule (creating schedule pressure), there is a natural tendency to increase overtime or hire
more people. The expectation is that the overtime will allow more work to be accomplished per
unit of elapsed time. Similarly the additional employees on the project will increase the work
accomplishment rate. However, a good system dynamics model will include factors such as

fatigue, which rises with increasing overtime, particularly if the overtime is allowed to persist

68

for more than a couple weeks (a factor that can also be modeled). New employees also require
training and hence are ineffective initially, and may lead to a temporary reduction in
productivity while they demand training and support from experienced employees. All these
factors can be modeled, thereby providing greater insights into the real behavior to be expected

from such policy decisions.

In the Walkerton STAMP analysis (listed in 4.1.4 above), a system dynamics model was
developed to model the risk of e-coli contamination of a public water supply. Some of the
variables in the model included "operator confidence", "municipality oversight", "quality of

training" and "pressure to cut budget".

Currently research at MIT is being done to develop a system dynamics model of the safety of
the space shuttle. This will include such variables as the launch rate, fraction of funds allocated

to safety, quality system oversight capacity, incident learning, staffing levels etc.

A criticism of system dynamics models is that they can be constructed to support whatever
explanation of the world the creator wants, particularly because the tuning of the model
parameters is usually done by trial and error to match up with past data. However, good system
dynamics models should be developed after extensive interviews with actors in the system, in
which individual mental models are documented, and causal relationships identified. Each
person in the system will see the relationships differently, but by looking at all the models and
trying to break the system down to the fundamental causal relationships, useful models can be
developed. The models are useful even if they are not tuned to real data and hence executed.
The first stage in creating a model is to construct a "causal loop diagram" which shows the
variables and states in the system. These diagrams can be useful in communicating concepts

between managers.

69

4.1.6.1 Some System Dynamics Concepts

Figure 12 below shows a causal loop diagram for project schedule pressure. The +' and '-'
arrows indicate the sense of the causal relationship between variables. For example, when work
remaining increases, then schedule pressure also increases, so a '+' sign is shown in the diagram.
There are four loops in the diagram denoted as either balancing (B1 and B2) or reinforcing (R1
and R2). Balancing loops are analogous to negative feedback control loops in control theory,

and reinforcing loops are analogous to positive feedback loops in control theory.

Time
rerralnmg

Schedule

Pressure V\
- Corner / Work

R
Time per Cutting Qvertime Mi dmght emammg
Task 011 -

Conplction
Rate

Figure 12 System Dynamics Causal Loop Diagram Example for Project Schedule Pressure

Often actions are taken based on an understanding of a constructive balancing loop. For
example, if schedule pressure increases, overtime may be increased. This increases the
completion rate and hence reduces the amount of work remaining, thus counteracting the
schedule pressure increase. However, many systems also have delayed loops that may be

reinforcing and harmful. If the action is used too strongly, or for too long, the other loops may

70

start to have a more powerful effect. For example, increased overtime may increase fatigue,

which reduces productivity and hence reduces the completion rate.

Research in system dynamics has revealed the importance of an individual's mental model in
understanding socio-technical systems. Individual's are unable to keep in their heads all the
loops, and hence tend to choose actions based on what changes have the most immediately
observable response, rather than what may ultimately lead to the greatest benefit. This behavior
aims to maximize short-term gain. When stress levels increase, the tendency to focus on the

short term will increase.

4.2 Software Requirements Completeness and Intent Specifications

Analysis of apparently dissimilar aerospace accidents involving software reveals some
systemic patterns [14]. Traditional accident analysis has tended to look for a chain of events
and a root cause. The analyses have also tended to look for mechanical failures, software
coding errors, or operator errors. It is not common to look for requirements errors or at the
software and system development processes or at the safety culture. Common problems include
misunderstandings about the software requirements, lack of documentation of design rationale

or design assumptions, and problems with reuse.

This section discusses some key aspects of software requirements that cause problems, and
uses these as a basis for developing requirements completeness criteria. Finally, intent
specifications put the elements together into a structure that glues the organizational, system,

safety, and software design and requirements into a coordinated whole.

71

4.2.1 Semantic Distance

Requirements specifications exist in order to communicate the required behavior from a system
component down to the next level. In going down through the system hierarchy, requirements
and architecture/ design are developed together in increasing detail down the system.
Requirements are developed based on the specifier's mental model of how the component will
function in its environment. However, it is very hard to capture all of the thinking that takes

place in the specifier, such as the specifier's mental model.

The semantic distance between the model in the specifier's mind and that implied in the
requirements specification needs to be minimized to ensure communication is not lost between

the specifier and the reader.

4.2.2 Black Box Requirements

It has been found that black box requirements (i.e. what vs. how) are preferred over white box
requirements because they ensure that all specified functional behavior is observable at the
system boundary. This approach also provides implementers as much freedom as possible to
make implementation decisions [27]. It has been found that when designers think in black box
terms, their requirements can be more easily comprehended because they avoid creating

internal hierarchy and reduce the tendency to create hidden features and interactions .

4.2.3 Mental Models

Section 4.1.6.1 above shows how system dynamics can be used to help understand how one's
mental model of a process may differ from the real process. The differences between the
mental models of individuals involved in the design process (specifiers and specification users)

and the real system are important factors in creating requirements errors (see Figure 13).

72

manufacturing evolution and
and construction changes over time
variances

operational

original -
experience

design

Designer deals ; 0 i
S1g. operational perators
with ideals or [DESIGNER'S | procedures . |OPERATOR'S | continually test
averages, not MODEL — CDEL their models
constructed training M against reality
system

Figure 13 Mental Models of the System [28]

Figure 14 below illustrates how the different mental models create semantic distance between

the original user's intentions and the final implementation.

T S
User's Mental |~ Blackbox e
Model of Desired Specification Design Implementation
Process-Control | d1 | of Controller Specification g,
Behavior Behavior i

Figure 14 Semantic Distance between Models used in System Specification [29]

4.2.4 Feedback

The system control loop view in Figure 15 shows the models in the controller and the human
operator and the feedbacks that allow these models to be updated to reflect the current state of
the controlled process. Many accidents have been caused by designs that omit feedback. For
example, in the Three Mile Island nuclear power station accident in 1979, an indicator light on

the operator display panel was wired to indicate the presence of power to open a relief valve,
73

not its actual position [22]. A position sensor would have cost more and added complexity. It is

not always possible or practical to obtain feedback to confirm the system response to every

output, but the following requirements completeness criteria insist that this be checked, and the

rationale for any output without feedback must be documented and the safety implications

understood.

Process inputs ——————=

Controlled
variables

Disturbances

}

Controlled Process

——————=Process outputs

Actuators

A
i

[\

Automated
Controller
(Assistant)

Internal model
of process

Controller
Operating Modes

Internal model
of supervisory
interface

Measured
variables

Sensors

There should ideally be

Displays

!

Controls

feedback for every controller
output or documentation of
why it is acceptable to
operate without. The
feedback can be used to
update the controller's
internal model of the process.

Human
Supervisor(s)
(Controller(s))

Internal model
of process

Internal model
of automation

Figure 15 System Control Loop separating Automated and Human Controllers

[29]

74

4.2.5 Rationale and Assumptions

The following quote from [16], a paper on the analysis of causation of acrospace accidents,

describes the observations from several accident investigations:

Software-related accidents almost always are due to misunderstandings about what the
software should do. Almost all the accident reports studied refer to poor specification
practices. The Ariane accident, for example, notes that inadequate specification practices
and the structure of the documentation obscured the ability to review the critical design
decisions and their underlying rationale. Complete and understandable specifications are
not only necessary for development, but they are critical for operations and the handoff
between developers, maintainers, and operators. Good specifications that include

requirements tracing and design rationale are critical for long-lived systems.

Intent specifications aim to increase the profile of assumptions and rationale and the
SpecTRM-RL [30] toolset has been designed to promote the documentation of assumptions
and rationale. Within the industry, there has been a tendency to focus mainly on the
requirements themselves. Rationale and assumptions are to be documented as part of the design
process, but not appear in the final specification. In Intent specifications, and in SpecTRM-RL,
rationale and assumptions are viewed as integral to the requirements themselves. By keeping
the extra information with the requirements, then the possibility that an assumption may be
violated can be seen by a specification user, thus alerting the specifier to a potential problem.

Rationale that is documented separately from the specification is much less likely to be seen.

Assumptions and rationale are particularly important when the software, or software
requirements, are to be reused. The assumptions may not hold in the new environment. For

example, when an air traffic control system that had worked well in the United States for many

75

years was reused in the UK, it was discovered that the zero longitude condition was not
handled in the software. The system effectively folded the UK air space in half, around the
Greenwich Meridian [5]. Violation of assumptions in reused software was also a major factor

in the Ariane-5 loss [22].

4.2.6 Identification of Hazardous States in Software

The Functional Hazard Assessment (FHA, see 2.2.2), identifies system hazards. The system
hazards should be traced to the system/software interface, so that the software states that could
contribute to these hazards are known and can be considered in the software requirements
development process. For example, the failure to arm the ATTCS system in all FADECs
during a takeoff (see section 3.5) is a hazard that can be traced into the software. In the
reviewed system, the FADECs were able to recognize this hazardous state and it was handled
by triggering the ATTCS, thus providing the extra thrust whether needed or not. This is a fail-
safe design, but led to nuisance cockpit warnings and aborted takeoffs. However, this does
meet one requirement completeness criterion which is that "every hazardous state must have a

path to a safe state" (see completeness criterion 54 in Table 1, Appendix B).

It is worth noting that DO-178B, being process-based, does not prescribe any specific methods
for software hazard analysis, in contrast with MIL-STD-882B (task section 300). DO-178B
does make some recommendations about good practices for verification, which includes some
checks similar to the requirements completeness criteria. For example, the following extract

from DO-178B section 6.4.3 part (a):

76

Typical errors revealed by this testing method include:
- Incorrect interrupt handling.
- Failure to satisfy execution time requirements.

- Incorrect software response to hardware transients or hardware failures, for
example, start-up sequencing, transient input loads and input power transients.

4.2.7 Requirements Completeness Checks

Leveson and Jaffe worked on software requirements completeness criteria for safety-critical
systems in the late 1980s [27, 29]. This research was built partly on formal methods, and made

use of the Requirements State Machine Language (RSML).

The completeness criteria are listed in Table 1 in APPENDIX B Requirements Completeness
Criteria With Example Systems. They are based on analyses of typical accidents and design
errors. The criteria work for black box specifications of state-based systems. The criteria are
based on a control model of the system, as shown in Figure 9 above. Of particular interest is

the attention paid to the following areas:

e System startup
e Timing behavior
o Determinism of state transitions

e Environmental assumptions

The example problems discussed in chapter 3 fall into several of the above categories.

DO-178B [31] states the following (in its Appendix D):

Research into software development programs suggests that as many as half of the software
errors actually result from missed or incorrect requirements or the incorrect interpretation of

requirements.

77

McDermid summarizes the ways a system can fail as follows [32]:

A system may generally fail in one of two ways; (1) as a result of a component failure or (2) as a
result of unintended functioning when all components are behaving to specification. Each of these
may be caused by either (1) a fault intrinsic to the component or system or (2) by an external

disturbance.

These support the arguments in Leveson's research on the importance of requirements

validation, and the documentation of assumptions and rationale.

4.2.8 Intent Specifications

Intent specifications aim to capture the full context of information in the system and software
design process into a hyper-linked environment. Figure 16 shows the structure of an intent
specification. This approach has been effectively used for the TCAS-II specification,
developed for the FAA [33], as well as several other examples [20, 34]. The objective is to
integrate the formal and the informal parts of the specification, and to support varying levels in

the system hierarchy.

78

Part-Whole

Reﬁnefw

Verification
Validation 6

nvEronmer/Opm’ator /System

Level 0: Program
Management

(Management View)

A Level 1. System
Purpose

(Customer View)

Level 2: System
Design Principles

(System Engineering View)

Level 3. System
Architecture

(Interface between System and Component Engineers)

Level 4: Design
Representation

(Component Designer View)

Level 5. Physical
Representation

(Component Implementer View)

Level 6: System
Y Operations

(Operations View)

Figure 16 The structure of an Intent Specification [22]

e Environment / Operator /System and components / vav

Level 0 Project management plans, status information, safety plan, etc.
Prog. Mari.) gement p Y pian, etc
Level 1 Assumptions Responsibilities System goals, high-level Preliminary
System || Constraints Requirements requirements, 3esign Hazard Analysis,
Purpose I/F requirements constraints, limitations Reviews
Level 2 External Task analyses Logic principles, Validation plan
System || interfaces Task allocation _control laws, and results,
Principles Controls, displays functional decomposition System Hazard
and allocation Analysis
Level 3 . i Analysis plans
Blackbox E";?é‘;;em OpemelTsask Blackbmﬂguoml and results,
Models HCI models Interface specifications Subsystem
Hazard Analysis
Level 4 ; Test plans
. HCld Software and hardware est plal
Dsggn e design specs and resufts
Level 5 GUI design, Software code, hardware Test plans
Physical physical controls assembly instructions and results
ep. design
Level 6 Audit Opﬁf;mfemamals Error reports, change Pm%m‘;;e
i dures uests, etc. M
Operations || Proce Training materials o and audits

Figure 17 The structure of an Intent Specification showing typical content [22]

Traditional specifications have placed the informal information such as design rationale and
assumptions in design records, but not part of the published and configuration controlled

artifact. In intent specifications, the information is kept together. Conceptually, much of the

79

information in Intent Specifications could be put into a commercial requirements management
tool such as DOORS, however, the handling of the informal information such as assumptions
and rationale may not be well handled in environments such as DOORS. In the case of
DOORS, the fundamental unit of information is a requirement, and each requirement has a
unique identifier to which can be added a prefix, such as "SRS" (software requirements

specification). However, no other prefixes are allowed in a given specification.

In the commercial tool SpecTRM [30], there is greater flexibility in prefixing information
fields, as shown in Figure 18 below. Note the mixing of different types of information in one
specification, including requirements (R), safety constraints (SC) and limitations (L), each of
which has associated assumptions. In a traditional specification, the safety constraint shown in
Figure 18 below would probably be labeled as a requirement, and the limitation would be
documented separately as part of the design rationale, perhaps in the change paperwork, or in a
design report. However, the explicit labeling of safety constraints helps encourage system

safety thinking and traceability to the functional hazard analysis (FHA).

80

RI Provide collision avoidance protection for any two aircraft closing horizontally at any rate
up to 1,200 knots and vertically up to 10,000 feet per minute.

Assumption:

This requirement is derived from the assumption that commercial aircraft can operate up to
600 knots and 5,000 fom during vertical climb or controlled descent (and, therefore, two

planes can close horizontally up to 1,200 knots and vertically up to 10,000 fpm).

SC5.1. The pilot of a TCAS-equipped aircraft must have the option to switch to the Traffic-Advisory-
Only mode, where TAs are displayed but display of resolution advisories is inhibited.
Assumption.
This feature will be used during final approach to parallel runways, when two aircraft are

projected to come close to each other and TCAS would call for an evasive maneuver.

L4. TCAS is dependent on the accuracy of the threat aircraft's reported altitude. Separation
assurance may be degraded by errors in intruder pressure altitude as reported by the
transponder of the intruder aircraft.

Assumption.
This limitation holds for existing airspace, where many aircraft use pressure altimeters
rather than GPS. As more aircraft install GPS systems with greater accuracy than current

pressure altimeters, this limitation will be reduced or eliminated.

Figure 18 Extracts from TCAS II Intent Specifications [33]

4.2.9 SpecTRM

The research into requirements completeness criteria led to the creation of SpecTRM-RL, a

requirements language available as part of the commercially available SpecTRM package [30].

SpecTRM-RL provides an intuitive (human-centric) language for specifying state transition logic

using "AND/OR" tables and does not require a graphical state transition diagram. Automated

completeness checks are provided and a requirements animation facility. SpecTRM supports

intent specifications and allows the black box specification to be executed. The specification of

inputs and outputs also provides fields for encouraging the documentation of requirements and

assumptions associated with timing behavior, fault-detection and accommodation etc.

81

INTRUDER.STATUS

Other-Traffic

Proximate-Traffic

Potential-Threat

Threat

Threat Other-Traffic
OR
Alt-Reporting in-state Lost T T T
A Bearing-Valid .. FLL T
N | Range-Valid .. - EHTH -
D | Proximate-Traffic-Condition . HIERILA I
Potential-Threat-Condition _, ., HisLs
Other-Aircraft in-state On-Ground | |. ||. ||. || T

Description: A threat is reclassified as other traffic if its altitude reporting
has been lost (A PR13) and either the bearing or range inputs are invalid;
if its altitude reporting has been lost and both the range and bearing are
valid but neither the proximate nor potential threat classification criteria
are satisfied; or the aircraft is on the ground (G PR12).

Mapping to Level 2: APR23, APR29
Mapping to Level 4: ¥ Section 7.1, Traffic-Advisory

Figure 19 Part of a SpecTRM-RL blackbox level specification, for TCAS [33]

Part of a SpecTRM-RL blackbox behavior level description of the criteria for downgrading the status of

an intruder (into our protected volume) from being labeled a threat to being considered simply as other

traffic. Intruders can be classified in decreasing order of importance as a threat, a potential threat,

proximate traffic, and other traffic. In the example, the criterion for taking the transition from state

Threat to state Other Traffic is represented by an AND/OR table, which evaluates to TRUE if any of its
columns evaluates to TRUE. A column is TRUE if all of its rows that have a "T" are TRUE and all of

its rows with an "F" are FALSE. Rows containing a dot represent "don't care" conditions. The

subscripts denote the type of expression (e.g., v for input variable, m for macro, ¢ for table, and f for

function) as well as the page in the document on which the expression is defined. A macro is simply an

ANDY/OR table used to implement an abstraction that simplifies another table.

82

Analog Digital Digital
Altimeter Altimeter 1 Altimeter 2

Analog-Alt-Signal DA1-Alt-Signal DA2-Alt-Signal
{Below,Above} {-50..2500} ¢ (-50..2500}m

Analog-Alt-Status DA1-Status-Signal DA2-Status-Signat
{invalid, valid} {Fail NCD,Test,Norm} {Fail, NCD, Test Norm}

Altitude Switch Y Y

| |
[Unknown | [Fault-detected |
A}

SUPERVISORY E INFERRED SYSTEM STATE
MODE ; Analog-Alt Dig1-Alt
i DOI-Power-On
: vaiid | vaid | {High}
Cockpit Controls | |
H Invalid | Invalid l
Cockpit o T i’ Unknown Unknown) De\;ice
L 1 O
Inhibit {On,Off} i
Fault { CONTROL ' Interest
:_"d'camf MODES ; Alrcratt Altitude Dig2-Alt (DOl
amp \
! 1 Below-ttreshoid | vaid |
Reset {T.F} - H At-or-above-threshold | Invalid_|
i L Unown [unknown
e ; Cannot-be-determined ‘
i DO¥-status-signal
' DOI-Status {On, Off}
3

Watchdog-Strobe {High}

___ Watchdog Timer

Figure 20 SpecTRM Visualization Display for an Altitude Switch [34]

The visualization display shown in Figure 20 above illustrates some concepts discussed in
422, 42.3,4.2.4and 4.2.7. Firstly, this level of specification is blackbox, so the information
can be shown at a high enough level to illustrate all the behavior of interest in one diagram.
Secondly the term "inferred system state" indicates the internal model of the process (the
controller's "mental" model of the system). Thirdly, the illustration of the external devices
helps clarify the output and feedback relationships in the system. Lastly, the inputs are shown

with their valid ranges or as enumerated types as appropriate.

83

Eutput Command |-

DOI-Power-On

Destination: DOI
Acceptable Values: ¢high}
Initiation Delay: G milliseconds
Completion Deadline: 50 milliseconds
Exception-Handling: (What to do if cannot issue command within deadline time)
Feedback Information:
Variables: DOl-status-signal
Values: high {on)
Relationship: Should be on if ASW sent signal to turn on
Min. time (latency): 2 seconds
Max. time: 4 seconds
Exception Handling: DOi-Status changed to Fault-Detected

Reversed By: Turned off by some other component or components. Do not know which ones.

Comments: | am assuming that if we do not know if the DOl is on, itis better to turn it on again, i.e., that
the reason for tha restriction is simply hysteresis and not possible damage to the device.

This product in the family will turn on the DOE only when the aircraft descends below the
threshold altitude. Only this page needs to change for a product in the family that is
triggsred by rising above the threshold.

References: § ¥

Figure 21 SpecTRM-RL output variable specification example for an altitude switch [34]

The specification of the output command in Figure 21 shows the additional data recommended
by the requirements completeness criteria (see 4.2.7 and Table 1). In traditional specifications,
much of this data would be defined using separate requirements, such as the requirements for
reading feedback and performing fault-detection (referred to above as exception handling). The
extra fields provided for input and output variables could probably be prompted using well

designed checklists, which is standard practice in the industry.

84

5 Applicability of MIT System Safety Research to
Aero Engine Control System Development

In chapter 4, system safety research at MIT was reviewed. Chapter 5 looks at which of these
techniques may be applicable to the design, development and certification of aero engine

control systems and to commercial aircraft systems in general.

5.1 System Theoretic Accident Modeling and Processes

The STAMP approach currently lends itself best to problems at the organizational, socio-
technical level, although work is underway to try to extend the STAMP framework to help in
designing for safety. Figure 22 below shows a high-level STAMP control structure diagram for
the aero engine development and certification process. This does not attempt to cover every
controller and every communication path, but, the principle control and feedback paths are

shown.

Figure 23 expands on the safety assessment and system development processes. This diagram
is based on the process model for the interaction between the safety assessment and system
development processes, as defined in ARP 4754 [31]. These two views may help in identifying
control and feedback failures, particularly in the lower level systems. The control structure
diagram can also be expanded down to the physical system level to show the control and

feedback signals in the actual system architecture.

85

EURQCAE

Congress and KEY
Legisiatures ——p Control action
Legislation] > Feedback
Re| Non specific
Lobbying etc. Legislation | | Lobbying et > communicason
Weak or missing
Fa:gral Ai\::ory Dot ~ 7 communicasion
Guideline : aports Controlie
objectives TS"‘““""‘* Policy | |Lobbyingete. satety
ry Bodh recommendations
Caoordination IHRTdqu i OSAEm s} FAA NTSB
' Regulations,
Guideine | |Recom- Commitiee representation| ADs, ACs Airframer
objectives “"‘% Commities Teedback
Industry feedback Engine project Engine project
Special Commitiees _ and requirements status reports,
Reguiations recommendatlons (1echnical, budget, project risks,
ARPs, Comminee . Pikied wsbynis
DO-xx Y e 3 Regulatory requirements
X represen FAA DERs (Designated *™ {Engine) Pragram
Engineering g e
PR Representatives) ” N Management/ IPT
disiyp oy Cerificalion plans, design
Company Standards efc. reports and rationale, est
-3 Interpretations and results, safety analyses
guidance on Project Leadership, Control system
Company quality Policy regulations Technical Engine control sysiem project project status feports,
system development and challenges and requirements {t_emniq.al, project risks, hazard
st amomde recommendalions oS RO budget, schedule) including analyses
quidance safety requirements
j ! Resource requirements, +
Process needs skill requirements
StaLr%c:ﬂs and Worki tesource Managers / Control System Lead
Pras ng Local Process Owrers > Engineer
A Processes eic. ; - Resource levals
Audit results Team leadership, 4’
Local etc. Skills, Training, Performance H:Q—Sysm-:a
pecabnan Processes, feedback uirements
Lessons leamed {including safety P'Zied !:r;gf:s updates
raquirements) G projacs few,
Hazard analyses
A
Revi Safety Assessment and System Development Processes
ew
gt Heind .
oA >
Project Saf
feporta Assas:fnvem
Process

Figure 22 High-level Control Structure for Aero Engine Control System Development Process

86

certification process, refer 1o parent diagram}

Safety Assessment System Development
Frocass Process
. _ Alrcrafl Functions Ajrcraft Level
Bircraft Level FHA | Requirsments
Safety R b F ional !
ety Requiremants, | Functional unctional Design details
Effects, Classification : interactions requirements V&V results
b
Faiure condi:i?nf _ ¥ . " System Functions Allocation of Aircraft
- System-level FHA 1€ Functions to Systems
________ Sections
Faifure effects 3 Subsysten requirements, | ?De:sign delails, V&Y
1 . assumptions f results, rgmnts
Safaty | Analysis Architectural f complateness analysis
Objectives { results requirsments N
CCAs Separation ! i ® Development of
 requirements_ | System System Architecture
A e
mmmmmmmm o PSSAs architecture | 4., requirements. : mﬁjﬁﬁxﬁéﬁﬁss
i i assumptions req
Dasign constraints ? mp l : analysis
- ltem requirements, 1 ltem requiremants Allccation of tem KEY
! séfety ﬁh]ecﬁv’.ias: | » Reguirements to '
i analyses required : Analysis Hardware ey GONMIO} SCtION
| results P
i | Verification naquirementsl Tvav Feedback
L H Non specific
results 2 pecific
i SSAs communication
Separation and ©) Impesnentation System _ _ Weak or missing
verification A alvsi Implementation conmunication
nalysis ,
inasults Le’ Physical system Controller,
Certification Process Process
[ordy showing feedbacks — for control actions from

Figure 23 Control Structure for Safety Assessment and System Development Processes

(based on ARP 4754)

At each level, the key safety requirements and constraints can be identified along with a

description of mental model flaws, flawed assumptions and coordination issues. Refer to

Figure 11 in 4.1.4 for an example that was created for the Titan-IVB/ Milstar-3 satellite

accident. No attempt has been made to create such a diagram for aero engine control system

development, however, some weak communication lines are shown in Figure 23.

In the case of the engine thrust shortfall anomaly (section 3.5), poor flow down of requirements

from the aircraft manufacturer was a factor, caused partly by flawed assumptions about the

timing of the engine control system response to an engine failure.

87

In the case of the safety assessment process, weak communications are shown in the common
cause analysis and in several of the feedback paths up the system hierarchy. This is based on
the system discussed in chapter 3. The feedback paths on the design side are indicated as weak
because of a lack of adequate documentation of assumptions, rationale and inadequate
requirements completeness analysis in the examples studied. Wilkinson also discusses

difficulties in the System Level FHA process as well [35].

Much of the information shown in the above diagrams is available in several sources within the
company site studied, and in industry guidelines. It appears that the value of the STAMP
framework is in the concepts behind the analysis. In STAMP, the emphasis is on viewing the
levels in the socio-technical system as system levels which impose constraints on the behavior
of the level below, and require feedback to monitor status. Each level has a mental model of
the process they are trying to control underneath them, and their model can only be updated
based on feedback received. Delayed or missing feedback will therefore lead to disconnects in

the mental models and consequently leads to inappropriate control actions.

This thinking process is very similar to that needed to construct system dynamics models of
socio-technical systems. It would seem useful therefore to try to develop a system dynamics
model alongside the STAMP control structure, and the two views could support each other.

This approach is similar to work being done in looking at the NASA safety culture.

In the specific case of aero engine control systems however, it could be argued that the high-
level control structure depicted in Figure 22 is working quite well. The weakness noted in the
thrust shortfall example are not typical of other problems reviewed. However, it does appear
that the weaknesses in the coordination of the safety assessment process are more fundamental,

though great progress has been made in recent years in the company studied.

88

Research by Hawkins and McDermid discusses the concept of safety contracts in object
oriented safety-critical systems [36]. These safety contracts appear to have some similarities to

the safety constraints in STAMP models.

5.1.1 Relationship between Safety Assessment Process and System Development
Process

A basic problem with the safety analysis, which was discussed in the introduction, is that the
FTA approach only models component failures and does not handle requirements errors such
as those discussed in chapter 3. The failure rate figures for top-level events such as IFSD and
LOTC based on the FTA do not account for the majority of actual event scenarios, in which
requirements errors are a major factor. Lindsay and McDermid state that "design error

dominates over physical failure for software and other logically complex elements” [37].

It could be argued that the types of events most likely to lead to real safety problems are very
unlikely to be in the FTA. The real problem scenarios arise from misunderstandings and
violated assumptions, including redundancy assumptions. Because these are unknown, clearly
they cannot be in the FTA. Indeed, if they were known, they would have been addressed in the
design already, and hence would not need to be in the FTA. It is not normally acceptable to
discover a requirements problem with safety impact and leave it unresolved for any length of
time, particularly when it involves software, which tends to go through post-EIS updates about

once every year or two.

This leads to a paradox which can be observed between the system/software development
process and safety assessment process. The safety analysis is often chasing the tail of the
software development process and never catches it. Consider the example of the P25 sensor

fault-detection errors in section 3.4. When the problem was understood to the extent that the

89

issue could be discussed with the safety assessment team, it was already planned to correct the
design. The FTA is built assuming the redundancy works and hence was an inaccurate model
of the old software design. There would be no point updating the FTA, however, because the
new software would then be under development, which would bring the new design back into
line with the assumptions in the FTA. The FTA is still very important in modeling the response
of the system to mechanical failures, assuming the system behaves as intended (according to
the system requirements). Clearly other processes are needed to ensure dependability of a

system liable to have requirements errors.

There have been attempts to build software fault trees [38-40], however this technique can only
be as good as the software hazard identification (the top-level events for an SFTA), and may
then only provide the same results as a static analysis. Any hazardous paths found should

simply be eliminated, so there would be no need to quantify any problems found [5].

The lack of a documented common-cause analysis on the system investigated could be viewed
as a weakness, but a more fundamental problem appears to be the tracing of system hazards
down to the software interface, and then designing the software in such a way as to maximize
the robustness to uncertainty. This is discussed more in the next section. When hazardous
software states are identified and handled, it may then be possible to produce a common-cause

analysis using this information.

The following quote from the US DOD Software System Safety Handbook [13] makes this

point quite well:

Although the software engineer may implement a combination of fault avoidance, fault
removal, and/or fault tolerance techniques in the design, code, or test of software, they

usually fail to tie the fault or error potential to a specific system hazard or failure mode.

90

While these efforts most likely increase the overall reliability of the software, many fail to
verify that the safety requirements of the system have been implemented to an acceptable

level.

Clearly, system developers need to be more aware of the hazards that are relevant to the
functions they are working on, and be able to trace these down into the software, with

documented assumptions and run-time tests to check these assumptions as appropriate.

5.2 Intent Specifications

The conclusions in 5.1.1 above on system safety suggest that more emphasis should be placed
on assuring design robustness and less on quantitative analyses. This is not to suggest that
FTAs and Markov analyses are not valuable, but their applicability is restricted to
understanding the system response to random (mechanical) failure mechanisms, assuming the

system functions as specified.

The broad class of safety problems arising from requirements errors requires a different
approach. Furthermore, this class of problems appears to account for the majority of scenarios
that could cause accidents. It appears that the concepts behind Intent Specifications and the

software requirements completeness criteria demands a paradigm shift from current practice.

In current system development processes, "requirements"” are the central elements in the
process. Traceability is used to ensure coverage of requirements at the lower levels in the
system hierarchy. Validation and verification are used to ensure that the requirements are
correct and have been implemented correctly. Other processes, such as configuration
management, are used to ensure that consistency is achieved between requirements, tests and

safety analyses in a typical environment of evolutionary or iterative development. The existing

91

process step that is designed to capture assumptions and rationale and ensure requirements are
complete is the requirements validation process. In current practice, the requirements
validation process is making increasing use of requirements animation and simulation, and this
helps to identify some of the unanticipated behavior that requirements completeness checks
aim to avoid. Furthermore, stage gate reviews, quality audits and certification audits and
reviews also provide opportunities to iron out misunderstandings, validate assumptions, capture

rationale, and review how well the system will meet the safety requirements.

The objective of the above (current) activities is to ensure that the requirements are correct at
the specification stage and that additional information such as assumptions and rationale are
documented somewhere (not usually in the published specification). Once the requirements are
deemed to be correct, then they can be implemented and verified. If there is found to be a need
to update the requirements at some later time, then the previously documented assumptions and

rationale can be consulted by the designers/ specifiers to help in the redesign effort.

However, there is a feedback missing in this process, i.e. the ongoing validation of assumptions
and continuing validity of the rationale, as seen by all specification readers, not just the
designers. In Intent Specifications, the assumptions and rationale (and other information such
as safety constraints, limitations etc) are elevated in importance to a level alongside the
requirements. In other words, the requirements cannot be allowed to exist without carrying this
accompanying information with them. The accompanying information is seen as essential to
provide meaning to the requirements (the requirements are naked without this accompanying

information).

92

If one views this other information as needing to live with the requirements continuously, then
a different perspective of the ideal development process emerges. Figure 24 shows how intent

specifications carry more information content than current best practice.

Existing iterative system development process

Iterations

Richness of
information
content

Assumptions and rationale archived

A:ssumptlor?s and after approval. Not typically seen by May nfzed to re'v:szt ff;ll
rationale reviewed as implementers, verifiers, customers data if changing this
part of the operations support etc. Information Junction in an iteration.
development process

content drops to the bare requirements.

Intent specification process

Richness of
information
content

Time

>

Figure 24 Information Richness - Intent specifications vs. Current practice

The reason for not carrying the full "intent" of the specification in the traditional process is that
specifications have traditionally been viewed as a document that defines the task list for an
implementer rather than a document that describes a mental model of the systems engineer.
The research has revealed the importance of mental models (see Figure 13) in the various
actors in the development process including the actual system controller. In the traditional
approach, the aim is to get the specification "correct" at each level of the system hierarchy

before passing it down to the next stage. But if the specification is right, what would be the

93

need for the extra information referred to above, if it isn't needed by the lower level to ensure
compliance to the requirements? In a sense, Intent specifications have the same initial objective
(to ensure the specification is "correct") but the difference is that intent specifications recognize
that "correctness" cannot always be guaranteed in the initial development process, and it takes
more account of the life cycle development of the system in which the environment may
change, use cases may change etc. Only by keeping the assumptions and rationale together can

the validity of the system in its changing environment be confirmed.

It is also worth noting that DO-178B, and more particularly ARP-4754 (for example, refer to
Figure 5 of ARP 4754 [7]), do place a lot of emphasis on assumptions, but this emphasis does

not seem to lead to the same degree of attention in actual system development.

5.3 Requirements Completeness and Controller Internal Models

This section considers how realistic it would be to make the software comply with some of the
completeness pre-requisites, such as the existence of an internal controller model and the
objective of obtaining feedback for every output. These are some of the more challenging
objectives that were not satisfied in the examples reviewed in chapter 3. It is recognized in the
requirements completeness table in '"APPENDIX B Requirements Completeness Criteria With
Example Systems' that the failure to have an internal controller model and the lack of use of

feedback were major factors in these incidents.

In the existing aerospace development process, requirements completeness comes under the
'requirements validation' process step. The activities of this step are reviewed in several design
review meetings (for each functional change), and in various stage gate reviews including the

preliminary design review (PDR) and critical design review (CDR). A certification audit,

94

known as the validation audit, is also performed to review the outcome of the other reviews.
However, the existing process does not apply requirements completeness checks to the depth
recommended in the research (see Table 1, in APPENDIX B Requirements Completeness

Criteria With Example Systems).

Commercial tools such as SpecTRM [30] include automated completeness checks. Other tools
such as SCADE [41] also claim to have completeness checks (refer to the 'Design verifier' part

of SCADE).

5.3.1 Feedback

Consider for example, the engine torched start incident in 3.3. The command to open or close
the LSOV had no feedback from the final valve, and therefore the software was unable to
confirm the appropriate state of the valve. However, even in situations lacking feedback, the
software could still incorporate a model to indicate the expected state-based on past actuator
outputs. The design reviewed had no explicit model in the FADEC. In the actual system, a
FADEC does receive data from the opposite FADEC channel indicating the output status of the
LSOV commands, and so a simple model of the expected state of the valve could have been
developed. This would have helped identify the inappropriate states that the software entered

into as part of this incident.

5.3.2 Hazardous Software States and Internal Models

In the system reviewed in chapter 3, the loss of sensor signals, or disagreements between
FADEC states are generally recognized and have associated fault-detection and
accommodation software. This leads to transitions to less hazardous states, as required by the

requirements completeness criteria. Aerospace systems have a huge amount of BITE (built in

95

test equipment) which detects faults, logs the faults internally, transmits them to aircraft
systems such as a central maintenance computer etc. However, these designs are not explicitly
developed in response to the hazard analyses. Rather, the redundancy objectives have driven
the need for fault-detection. Thus there may be several potentially hazardous software states

that are not being identified by the existing design process.

It is suggested here that the identification of hazardous software states can be enhanced using
the documented assumptions and by ensuring that the software models the anticipated state of

all output devices. Some design assumptions can be checked in software.

For example, in the redesign of the P25 fault-detection logic discussed in 3.4, there was a
feature in which the validated signal value would be set to the lowest of the two channels under
certain conditions (actually when the synthesis model had failed in combination with a cross-
check failure between channels). This design was chosen on the assumption that the typical
failure mode of the sensor was low (this is consistent with analysis of sensor failure data). It
would be possible to test this assumption in software automatically by detecting cross-check
failures in which the failed signal was high and logging this event in NVM (that is, logging this
as an assertion). Currently, there is no precedent for adding this type of design feature because

it does not directly contribute to meeting the higher level functional requirements.

The NASA software safety standard refers to this feature as a "trap" and provides the following

definition of it [42]:

Trap. Software feature that monitors program execution and critical signals to provide
additional checks over and above normal program logic. Traps provide protection against

undetected software errors, hardware faults, and unexpected hazardous conditions.

96

With regard to the possible use of internal process models, consider the torched start example
in section 3.3. The software controlled the LSOV but did not incorporate any explicit model to
anticipate the state of the external device. Its state was implicitly inferred from the condition of
the engine. For example, while the engine is running, the valve must obviously be open (if it
was closed there would be no fuel going to the engine). However, in startup, particularly before
servo pressure is available to move the PRV, it is not possible to infer the state of the LSOV
from externally observable inputs. However, this does not mean that no model can exist. All
control commands to the LSOV are actually visible to each FADEC, therefore the FADEC
could predict its state from the sequence of commands to the LSOV. As part of the power-up
sequence, the FADECs perform ground-tests including the opening and closing of the LSOV.
Only one FADEC is needed to open the LSOV, but agreement between FADEC:s is needed to
close it. In the case of an asynchronous power-up, the two FADECs will fail to agree on their
closing commands. However, the FADECs do share their command statuses across the CCDL,
and hence the failure to synchronize commands could have been identified. The predicted
LSOV state could then have been left at "open", which should have been identified as a
hazardous state, and logged as an assertion in NVM. In the actual design, there was code to
close the LSOV on entry to start mode. The rationale for this was undocumented, but a system
that logged an assertion that the "LSOV was believed to be left open after power-up checks"
state would have provided evidence to validate the need for such a requirement. In the actual
redesign following the incident discussed in 3.3, the power-up test to open the LSOV was
deleted, thus eliminating the potential for this hazard altogether. However, this was not
necessarily the most elegant solution as the system was now unable to detect a failure to open
the valve until an actual commanded engine start, which although safe, may have delayed any

necessary maintenance action to address the problem.

97

The discussion above is not to suggest that every documented assumption must be tested in
software or that there must be a process model for every output. However, the existing design
process focuses on the flow-down of requirements and on ensuring traceability between levels,
but does not allow for additional requirements that are associated with checking assumptions
and identifying hazardous states. Where the requirements specifier may have thought to add
such requirements then they will be implemented and verified, but there is no review process
that comprehensively and proactively establishes how assumptions will be validated and how

hazardous software states will be identified and eliminated.

Therefore, there appears to be an opportunity to enhance the system and software safety
process by improved coordination with the system development process, using the
requirements completeness criteria listed in Table 1, the concepts behind Intent Specifications,

and developing assertions in software to monitor these processes.

In a discussion with Nancy Leveson on what to do when the completeness criteria detects a
missed transition criteria from a software state, the author suggested that if the external
environment was such that the transition could never occur, then perhaps the missed criteria
may not be needed. Nancy's recommendation was to add the missing criteria to the software
requirements anyway even if the system design suggested it should not be needed. For example,
the entry conditions for the FADEC ground-test mode included the requirement that N2=0;
however, the exit conditions included only the condition that the start switch was pressed. The
requirements completeness criteria would identify the lack of an N2 exit condition as an
omission (an incomplete specification). However, the assumption about the system was that the
only way that N2 could go above zero is if the engine had started, which would require a start

command from the pilot, and hence there should be no need for an N2 exit condition. This was

98

an undocumented assumption. In the actual incident, the FADEC was unable to recognize the
start switch because of an inadvertent (and separate) design change, which meant that the start
switch could only be recognized when N2>500 rpm. However, during ground-test mode, N2
validation had been temporarily halted (leaving a fixed N2 value of zero), so this meant the
start switch could not be recognized and hence the assumption upon which the ground-test exit
requirements were based did not hold. This illustrates the problem with hidden assumptions
that may hold in initial versions of software, but can fall apart with apparently small design

changes later on.

Software is said to become more "brittle" as it is progressively developed. This is the
phenomenon that as changes are progressively made, a lot of (often inadequately documented)
assumptions and design rationale start to be violated. Essentially the cohesiveness that the

original architecture had starts to break down, and the interactive complexity rises rapidly.

This suggests that the overhead of explicitly testing assumptions in software, and including
apparently redundant state transition paths (with logged assertions) may be worthwhile for
future-proofing the software, i.e. reducing the brittleness and improving the robustness to

changes in the environment.

99

5.3.3 Data Timing Issues

There were several cases in the incidents reviewed where external input parameters were used
when they had stale or defaulted data. One of the implications of the requirements
completeness criteria is that every external input signal should have an associated status

variable that indicates the following types of information:

e Data age
e Use status (failed, defaulted, synthesized, data borrowed from other FADEC, etc.)

o this is information for downstream processes on how and whether the signal

should be used

e Maintenance Status (latched failed, not latched failed)

The completeness objectives associated with specifying the time bounds of each signal (high
and low) can be captured in the fault-detection logic. The goal of the age indication 1s to
capture the case of using a last good value of the signal (which was an issue in the P25 logic —

refer to section 3.4).

Some of the above signals do exist in the current design; however, there is no process for
enforcing downstream functions to use the status information. The requirements completeness
criteria would regard as incomplete any function that does not explicitly define how the
function should operate for each state of the input. In the case of the torched start incident, the
software used an N2 signal that was being defaulted to zero. Had the requirements for entering
start mode considered such a scenario, the designer would have been prompted to develop an

exception where start mode could be entered without meeting the N2>500 criterion, in the case

100

where N2 was defaulted. The software could also detect a start switch being pressed while the

N2 signal was defaulted and log an assertion in NVM.

5.4 Other Recommendations

The following are additional recommendations from the MIT system safety research that are

not specifically discussed elsewhere in this chapter.

¢ Software safety must be part of the system safety plan (software hazards)

e The software needs to specify the off-nominal behavior as much as the nominal (e.g.
asynchronous power-ups, unusual pilot commands such as a start soon after an interrupt)

¢ The specifications must include what the software must not do as well as what it must do

e Assertions and run-time checking must be used (several of the recommendations in 5.3
suggested the logging of information on unexpected states in NVM, particularly in
connection with the violation of assumptions or the entering of hazardous software states
(5.3.2))

e Robustness testing shall be performed (testing outside the specifically defined
requirements, to cover range of possible input variable values including noise and timing

skews)

5.5 Organizational Learning

When organizations learn from mistakes, they typically engage initially in "single loop"
learning, as shown in Figure 25 below. In this mode, the organization applies well known
techniques to the problem. For example, organizations typically address apparent process

failings by creating more processes to plug the perceived gaps. However, there is a danger that

101

this process just creates a bow wave of process change as it attempts to plug more and more

holes found.

It is hypothesized here that some of the recommendations discussed above require a change in
the mental model of system development, which involves "double loop" learning. In the
company studied, it has often been said that the engineering was working well, and that
program management was the area that needed most improvement. Better processes would
help address the deficiency, it was believed. What this thesis finds is that there are weaknesses
in the engineering process, caused by a lack of application of systems theory to the system
safety and system development processes. This suggests that there is an opportunity for some
fundamental rethinking about the engineering process — that is, the creation of a new mental

model about how to design and develop safe complex highly integrated systems.

DOUb'e-.loop Single-Loop
Leamning Learning
Mental : o Actual ____ Results Desired
Model »Actions Results Gap Results

Figure 25 Single and Double Loop Organizational Learning (from [43])

Figure 26 below (adapted by Carroll [44] from Rasmussen's model [45]) shows some of the
boundaries which affect how an organization balances the competing needs of safety,
economic competitiveness and workload. Individuals naturally explore the space available
between the boundaries, and rely on indicators to help establish where the boundaries are.
These indicators are provided by the various checks and balances that an organization creates,

such as reviews, audits, professional judgment etc. The safety culture of an organization

102

depends on the strength of the safety culture boundary relative to the pressures imposed by the

other boundaries.

It is argued in this thesis that the safety culture in the aero engine industry is generally healthy,
but the existing safety assessment processes do not handle the complexity issues created by the
use of software well, and there is considerable room for improvement. A greater emphasis on
software hazard analysis, requirements completeness checks and requirements modeling should
create a more effective safety assessment process, may reduce the likelihood and cost of

rework, and facilitate greater requirements reuse.

Boundary to
economic failure

w
o
Q w
4] o o)
9 c c
= =
oo = Work
oo o "
wq o pracuce
85 S
—ty
] 3
—
< 5
<

Small —,
accident, or Boundary to
incident unacceptable
workload

N\

Figure 26 Human Behavior Constraints (j44], adapted from [45])

5.6 Aerospace Recommended Practices
The conclusions drawn above have some implications for the ARP guidelines. First, ARP 4761

implies that much of the safety analysis will make use of techniques such as FTA or Markov

103

models. The issues raised here about the significance of requirements errors in the system
safety process needs to be reflected in the ARP at some point. Thus more emphasis on the
documentation of safety constraints, assumptions, rationale and mental models and how these
are flowed down through the system and into software may be needed. Emphasis on this area

may displace some of the emphasis on the quantitative approach.

Currently, the ARP delegates software safety to DO-178B, which focuses on ensuring that the
software performs its required functions. DO-178 may need to be modified to better recognize
the importance of identifying hazardous software states and the techniques for testing for
requirements completeness. DO-178 may also need to consider the importance of internal
process models in the software and the concept of continuously ensuring that the perceived
system state matches the actual system state. Previously such considerations have always been
regarded as being application-specific design decisions and outside the scope of DO-178. Both
of the system development ARPs (4761 and 4754) and DO-178 can be said to be "process
centric". That is, they avoid any guidance on specific design techniques or approaches but

provide process guidance that could be applied to a broad range of system environments.

However, what the research at MIT suggests is that there are some fundamental design issues
that are common to safety-critical digital-control systems, and these should be the focus of
some of the objectives and recommendations in these guides. For example, the role of

assumptions, rationale, internal models, feedback etc.

104

6 Conclusions

The complexity of highly integrated aero engine control systems exceeds the capability of
designers to understand or test all possible modes of operation. Furthermore, the system
complexity increases significantly when embedded software is used in the system. The existing
development process focuses on requirements. More specifically, the existing process
addresses the development, configuration, allocation, implementation, validation and
verification of requirements. The documentation of the rationale and assumptions of
requirements are currently addressed as part of the requirements validation process, and will
typically be documented separately from the requirements themselves. The lack of emphasis on
(and documentation of) rationale and assumptions has contributed to a significant number of

incidents during development and service operation.

Intent specifications have been developed at MIT and provide a new framework and discipline
for the development of requirements, including assumptions, rationale, safety constraints,
operator and maintenance requirements etc. Intent specifications allow for a richer set of
information, i.e. going beyond the pure requirements themselves. This aims to ensure that
violations of assumptions can be identified earlier in the program, thus reducing development

and rework costs.

The existing safety assessment process for aero engine control systems makes significant use
of quantitative methods such as fault tree analysis (FTA). The FTA approach addresses random
mechanical failures, but no design or requirements errors. It has been found, however, that the

majority of safety issues involving software are not caused by random mechanical failures but

105

by requirements errors. The FTA is designed to match the requirements, which represent the
intended operation of the system. However, when software requirements errors or code errors
are discovered, the requirements and code will be corrected, to match the original intent.
Therefore, the FTA will often not need to change for such software updates. This reduces the

usefulness of the FTA approach in predicting the rate of the top-level hazards.

In general, it has been found that the aerospace recommended practices for system
development (ARP 4754) and software development (DO-178B) are better understood and
followed than the safety assessment process (ARP 4761). At one site in an aero engine
company, the common cause analysis recommended by ARP 4761 had not been generated on

any program.

The software lifecycle process (DO-178B) primarily addresses system safety by the selection
of a development assurance level (A to D) for the software. Once this choice has been made,
system safety is assumed to be achieved by following the software lifecycle processes defined
in DO-178B, but not via any specific software hazard analysis methods. This is in contrast to
MIL-STD 882B which places significant emphasis on software hazard analysis. The system
development approach recommended in Intent Specifications (and the commercial tool
SpecTRM) allows for the specification of safety constraints and the identification of hazardous

states i1n the software.

Analysis of several software-related incidents that occurred during development or operational
service of an aero engine control system revealed requirements and design errors that were
similar to accidents that have been documented in the literature. A comprehensive set of
requirements completeness criteria were developed at MIT and these were found to cover a

significant proportion of the errors analyzed.

106

Some key concepts in the completeness criteria include feedback, internal models, input
parameter fault status and timing issues, and range testing etc. The SpecTRM commercial tool
automates the checking of black-box software requirements against the completeness criteria,

though a checklist approach could be used instead of the automated checks.

The development approach recommended in Intent Specifications requires a paradigm shift
from existing practice. In particular, a greater diversity of information types should be
documented in the specifications, including assumptions, rationale and safety constraints. The
software lifecycle process should also be better integrated with the system safety process, and
these changes should ultimately be reflected in the international aerospace recommended

practices.

107

REFERENCES

1.

10.

11.

12.

13.

14.

15.

SAE, Guidelines and Methods for Conducting the Safety Assessment Process on Civil
Airborne Systems and Equipment, in ARP 4761. 1996, Society of Automotive
Engineers.

RTCA, DO-178B, Softiware Considerations in Airborne Systems and Equipment
Certification. 1992.

FAA, FAR Part 25.1309 'Equipment, Systems, and Installations', US Department of
Transportation, Federal Aviation Authority.

FAA, Advisory Circular AC 25.1309-14 'System Design and Analysis'. 1988, US
Department of Transportation, Federal Aviation Administration.

Leveson, N., SafeWare: system safety and computers. 1995, Reading, Mass.: Addison-
Wesley. xvii, 680 p.

FAA, Advisory Circular AC 20.115B 'Radio Technical Commission for Aeronautics,
Inc. Document RTCA/DO-178B'. 1993, US Department of Transportation, Federal
Aviation Administration.

EUROCAE, Certification Considerations for Highly-Integrated Complex Aircraft
Systems, in ED-79/ARP 4754. 1996, EUROCAE.

McDermid, J.A., Software safety: where's the evidence? in Sixth Australian workshop
on Safety critical systems and sofiware - Volume 3. 2001, Australian Computer Society,
Inc.: Brisbane, Australia.

Papadopoulos, Y. and J. A. McDermid, The potential for a generic approach to
certification of safety critical systems in the transportation sector. Reliability
Engineering & System Safety, 1999. 63(1): p. 47.

Treacy, J., 2003 FAA National Software Conference - Overview of SAE ARP 4761.
2003, FAA.

Discussion Forum for the RTCA Special Committee/EUROCAE Working Group: SC-
205/ WG-71 'Software Considerations in Aeronautical Systems'. 20035.

DOD, MIL-STD-882B: System Safety Program Requirements, D.o. Defense, Editor.
1984.

Alberico, D., et al., Software System Safety Handbook, DOD, Editor. 1999, Joint
Services Software Safety Committee.

Leveson, N., The Role of Software in Spacecraft Accidents. AIAA Journal of Spacecraft
and Rockets.

Rodriguez, M., et al., Identifying Mode Confusion Potential in Software Design. IEEE,
2000.

108

16.

17.

18.

19.

20.

21.

22.

23.

24.
25.

26.

27.

28.

29.

30.

31.

Weiss, K.A., et al. An analysis of causation in aerospace accidents. in Digital Avionics
Systems, 2001. 2001. Daytona Beach, FL, USA: IEEE.

James, 1., et al. Investigating No Fault Found in the Aerospace Industry. in IEEE
Reliability and Maintainability Symposium. 2003.

Howard, J. and K. Kelley, 4 Notation Supporting a Systems-Theoretic Hazard Analysis
Technique, Safeware Engineering Corporation: Seattle, Washington, USA.

Leveson, N., et al. Effectively Addressing NASA’s Organizational and Safety Culture:
Insights from Systems Safety and Engineering Systems. in Engineering Systems
Division Symposium, March 2004. 2004. Cambridge: Engineering Systems Division,
MIT.

Leveson, N.G., Shuttle Thermal Tile Processing Example Intent Specification. 2002,
Massachusetts Institute of Technology.

Leveson, N., et al., 4 Systems Theoretic Approach to Safety Engineering. 2004,
Massachusetts Institute of Technology: Cambridge, MA.

Leveson, N.G., A New Approach To System Safety Engineering (unpublished book
draft). 2002, Massachusetts Institute of Technology.

Leveson, N.G., 4 systems-theoretic approach to safety in software-intensive systems.
Dependable and Secure Computing, IEEE Transactions on, 2004. 1(1): p. 66.

Forrester, J.W., Industrial dynamics. 1961, [Cambridge, Mass.]: M.I.T. Press. 464 p.

Forrester, J.W., System Dynamics and the Lessons of 35 Years, in The Systemic Basis of
Policy Making in the 1990s, K.B.D. Greene, Editor. 1991.

Repenning, N.P., P. Goncalves, and L.J. Black, Past the tipping point: The persistence
of fire fighting in product development. California Management Review, 2001. 43(4): p.
44-63.

Leveson, N.G., Completeness in formal specification language design for process-
control systems, in Proceedings of the third workshop on Formal methods in sofiware
practice. 2000, ACM Press: Portland, Oregon, United States.

Leveson, N., Lecture Notes for MIT Course 16.683J/ ESD.683J: System Safety. 2005,
Massachusetts Institute of Technology.

Leveson, N.G., M.P.E. Heimdahl, and J.D. Reese. Designing Specification Languages
Jor Process Control Systems: Lessons Learned and Steps to the Future. in
ESEC/FSE'99: 7th European Software Engineering Conference, Held Jointly with the
7th ACM SIGSOFT Symposium on the Foundations of Software Engineering. 1999.
Toulouse, France: Springer-Verlag GmbH.

Leveson, N., Safeware Engineering Corporation - SpecTRM (commercial software
application), http://www .safeware-eng.com/.

SAE, Certification Considerations for Highly-Integrated Complex Aircraft Systems, in
ARP 4754. 1996, Society of Automotive Engineers.

109

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

Murdoch, J., J.A. McDermid, and P.J. Wilkinson. Failure Modes and Effects Analysis
(FMEA) and Systematic Design. in 19th International System Safety Conference. 2001.
Hunstfield, Alabama: ISSC.

Leveson, N.G., Intent specifications: an approach to building human-centered
specifications. Software Engineering, IEEE Transactions on, 2000. 26(1): p. 15.

Leveson, N.G., Sample Intent Specification: Altitude Switch. 1999, Massachusetts
Institute of Technology: Cambridge.

Wilkinson, P.J. and T.P. Kelly. Functional hazard analysis for highly integrated
aerospace systems. 1998. London, UK: IEE.

Hawkins, R., J. McDermid, and 1. Bate. Developing Safety Contracts for OO Systems.
in 21st International System Safety Conference. 2003. Ottawa, Ontario, Canada: ISSC.

Lindsay, P.A., J.A. McDermid, and D.J. Tombs, Deriving quantified safety
requirements in complex systems.

Gerogiannis, V.C., I. Caragiannis, and M.A. Tsoukarellas, 4 General Framework for
Applying Safety Analysis to Safety Critical Real-Time Applications Using Fault Trees.
IEEE, 1997.

Leveson, N., S.S. Cha, and T.J. Shimeall, Safety Verification of Ada Programs Using
Software Fault Trees. IEEE, 1991.

Leveson, N.G. and P.R. Harvey, Software fault tree analysis. Journal of Systems and
Software, 1983. 3(2): p. 173.

Esterel Technologies Inc., SCADE Suite (commercial software application),
http://www.esterel-technologies.com/products/scade-suite/overview.html: Toulouse,
France.

NASA, Technical Standard: NASA-STD-8719.134 'Software Safety’. 1997.

Carroll, J.S., Organizational Learning Activities in High-hazard Industries: The Logics
Underlying Self-Analysis.] Management Studies, 1998. 35(6): p. 699-717.

Carroll, J.S., Class Notes for MIT System Safety Course (16.863J): Talk by Prof. John
Carroll (Operations and Management, Sloan School). April 2005, MIT.

Rasmussen, J., The role of error in organizing behaviour. Qual Saf Health Care, 2003.
12(5): p. 377-383.

Heimdahl, M.P.E. and N.G. Leveson, Completeness and Consistency in Heirarchical
State-Based Requirements. IEEE Transactions on Software Engineering. 22, Issue: 6: p.
363-377.

110

APPENDIX A FAR Part 25.1309 — Safety Regulations

§ 25.1309 Equipment, systems, and installations.

(a) The equipment, systems, and installations whose functioning is required by this
subchapter, must be designed to ensure that they perform their intended functions
under any foreseeable operating condition.

(b) The airplane systems and associated components, considered separately and in
relation to other systems, must be designed so that—

(1) The occurrence of any failure condition which would prevent the continued safe
flight and landing of the airplane is extremely improbable, and

(2) The occurrence of any other failure conditions which would reduce the
capability of the airplane or the ability of the crew to cope with adverse
operating conditions is improbable.

(c) Warning information must be provided to alert the crew to unsafe system operating
conditions, and to enable them to take appropriate corrective action. Systems,
controls, and associated monitoring and warning means must be designed to
minimize crew errors which could create additional hazards.

(d) Compliance with the requirements of paragraph (b) of this section must be shown
by analysis, and where necessary, by appropriate ground, flight, or simulator tests.
The analysis must consider—

(1) Possible modes of failure, including malfunctions and damage from external
sources.

(2) The probability of multiple failures and undetected failures.

(3) The resulting effects on the airplane and occupants, considering the stage of
flight and operating conditions, and

(4) The crew warning cues, corrective action required, and the capability of
detecting faults.

(e) Each installation whose functioning is required by this subchapter, and that
requires a power supply, is an “essential load” on the power supply. The power
sources and the system must be able to supply the following power loads in
probable operating combinations and for probable durations:

(1) Loads connected to the system with the system functioning normally.

(2) Essential loads, after failure of any one prime mover, power converter, or
energy storage device.

(3) Essential loads after failure of—
(i) Any one engine on two-engine airplanes; and
(i) Any two engines on three- or more- engine airplanes.

111

(4) Essential loads for which an alternate source of power is required by this
chapter, after any failure or malfunction in any one power supply system,
distribution system, or other utilization system.

(f) In determining compliance with paragraphs (e)(2) and (3) of this section, the power
loads may be assumed to be reduced under a monitoring procedure consistent
with safety in the kinds of operation authorized. Loads not required in controlled
flight need not be considered for the two-engine-inoperative condition on airplanes
with three or more engines.

(g) In showing compliance with paragraphs (a) and (b) of this section with regard to
the electrical system and equipment design and installation, critical environmental
conditions must be considered. For electrical generation, distribution, and
utilization equipment required by or used in complying with this chapter, except
equipment covered by Technical Standard Orders containing environmental test
procedures, the ability to provide continuous, safe service under foreseeable
environmental conditions may be shown by environmental tests, design analysis,
or reference to previous comparable service experience on other aircraft.

{Amdt. 25-23, 35 FR 5679, Apr. 8, 1970, as amended by Amdt. 25-38, 41 FR 55467,
Dec. 20, 1976; Amdt. 2541, 42 FR 36970, July 18, 1977}

112

APPENDIX B Requirements Completeness Criteria With Example Systems

Table 1 Requirements Completeness Criteria with Examples (from [5, 27, 46])

Examples Reviewed

No. | Category Criteria Engine Failure
Torched Start P25 Fault Detection | Warning Other
Human Computer Interface Criteria
Engine thrust
loss during
1 | Displays What events cause this item to be displayed? takeoff
Can and should this item ever be updated once it After 4 seconds,
2 is displayed? stops flashing
Cleared after V1
or when no
Events that should cause the data display item to longer in takeoff
3 disappear mode.

State Completeness

4 The s/w and system must start in a safe state
The internal software state (assumed prior to The FADECs initially powered up in
receiving external data) must be updated to shutdown mode, and probably should
reflect the actual state, when data is received have entered ground-test mode after N2
5 from outside had dropped to zero.
All system and local variables must be
6 initialized upon startup, including clocks
The behavior of the software with respect to
inputs received before startup, after shutdown or | The software had no provision for
when temporarily off-line must be specified or recognizing an engine start request that
7 analyzed to show it can be ignored may have occurred when off-line
This should have been specified for the
Maximum time that the computer waits before hardware standard test (see Figure 6
8 first input must be specified item CN1).

113

Examples Reviewed

No. | Category Criteria Engine Failure
Torched Start P25 Fault Detection | Warning Other
Once a fault had been
detected in one
channel, it was
latched and only pilot
action (pressing fault
reset) could unlatch
the fault. This is in
contrast to some
FADEC systems
which allow self
Paths from fail-safe states must be specified. clearing after a
The time in a safe, but reduced function state Inadequate exit transitions from period of time with
9 must be specified ground-test mode. no fault indications.
The fact that both FADECs were in
differing modes when performing the
self-tests involving the opening and
closing of the LSOV (which should
have been recognized as potentially
leading to a hazardous state) should
have been recognized as an interlock
failure. The shutdown agreement
interlock would only work in self-tests
Interlock failures should result in the halting of | if both FADECs were in the same
10 hazardous functions mode.
There was no response specified for a
There must be a response for an input in any non-zero N2 value while in ground-test
11 state, including indeterminate states mode.

Input and Qutput Variable Completeness

13

All information from inputs must be used
somewhere in the specification

14

Legal output values that are never specified
should be checked for specification
completeness (e.g. specifying when a valve
should be opened, but omitting the specification
of closure)

114

Examples Reviewed

No. | Category Criteria Engine Failure
Torched Start P25 Fault Detection | Warning Other
Trigger Event Completeness
Robustness Every state must have a behavior defined for This is not generally ensured in the
15 | Criteria every input system analyzed.
The entry condition to ground-test
The logical OR of the conditions on every mode included the condition N2=0, but
16 transition must form a tautology did not specify what to do if N2>0.
The P25 signal
communicated
between channels
would be set to "last
good value" when it
had gone out of range
in one channel. This
The N2 signal was forcibly set to zero | made the data out of
while self-tests were in progress, well date when read by
Every state must have a software behavior after the actual N2 started to rise. Thus | the other channel, but
(transition) defined in case there is no input for a | the software had no provision for how | no accounting for this
17 given period of time (a timeout) to handle stale data. was made.
The behavior of the state machine should be
deterministic (only one exit transition possible at
18 | Nondeterminism [any given time)
All incoming values should be checked and a
Essential Value | response specified in the event of an out-of-
19 | Assumptions range or unexpected value
If a start request is received while a
FADEC is going through power-up
checks, its entry to start mode would be
delayed until power-up checks were
complete. The start request would at
that time be stale, but no time stamping
All inputs must be fully bounded in time, and of momentary inputs was used in this
the proper behavior specified in case the limits design, so no accounting of this was
20 | Timing Intervals | are violated or an expected input does not arrive | made.

115

No.

Category

Criteria

Examples Reviewed

Torched Start

P25 Fault Detection

Engine Failure
Warning

Other

21

A trigger involving the nonexistence of an input
must be fully bounded in time

There was a feature in the software to
abort the hardware check in the event
of a lack of input from the other
channel, but it was invoked by entry to
start mode and not by a time bound.

22

Capacity or Load

A minimum and maximum load assumption
must be specified for every interrupt-signaled
event whose arrival rate is not dominated
(limited) by another type of event

23

A minimal arrival rate check by the s/w should
be required for each physically distinct
communication path. Software should have the
ability to query its environment over a given
communication path

24

The response to excessive inputs (violations or
load assumptions) must be specified

25

If the desired response to an overload condition
is performance degradation, the specified
degradation should be graceful and operators
should be informed

26

If function shedding or reconfiguration is used, a
hysteresis delay and other checks must be
included in the conditions required to return to
normal processing load

Qutput Specification Completeness

27

Safety-critical outputs should be checked for
reasonableness and for hazardous values and
timing

The high output current to the MMV
during self-test mode should have been
recognized as potentially hazardous if
allowed to continue in a state when the
engine was running.

28

Environmental

capacity
considerations

For the largest interval in which both input and
output loads are assumed and specified, the
absorption rate of the output environment must
be equal or exceed the input arrival rate

29

Contingency action must be specified when the
output absorption rate limit will be exceeded

116

No.

Category

Criteria

Examples Reviewed

Torched Start

P25 Fault Detection

Engine Failure
Warning

Other

30

Update timing requirements or other solutions to
potential overload problems, such as operator
event queues, need to be specified

31

Automatic update and deletion requirements for
information in the human-computer interface
must be specified

32

The required disposition for obsolete queue
events must include specification of what to do
when the event is currently being displayed and
when it is not

33

Data age

All inputs used in the specifying output events
must be properly limited in the time they can be
used (data age). Output commands that may not
be able to be exceeded immediately must be
limited in the time they are valid

34

Revocation of a partially completed action
sequence may require (1) specification of
multiple times and conditions under which
varying automatic cancellation or postponement
actions are taken without operator confirmation,
and (2) specification of operator warnings to be
issued in the event of such revocation

35

Latency

A latency factor must be included when an
output is triggered by an interval of time without
a specified input and the upper bound on the
interval is not a simple, observable event.

36

Contingency action may need to be specified to
handle events that occur within the latency
period

37

A latency factor must be specified for
changeable human-computer interface data
displays used for critical decision making.
Appropriate contingency action must be
specified for data affecting the display that
arrives within the latency period.

117

Examples Reviewed
No. | Category Criteria Engine Failure

Torched Start P25 Fault Detection | Warning Other

A hysteresis delay action must be specified for

human-computer interface data to allow time for

meaningful human interpretation. Requirements

may also be needed that state what to do if data

should have been changed during the hysteresis

38 period.
Output to Trigger Event Relationships

Although there was no direct means to
verify the opening and closing of the
LSOV, had a fuel flow meter signal
been available to the FADEC, it may

Basic feedback loops, as defined by the process | have been possible to perform partial

control function, must be included in the confirmation of the action. Further, a

software requirements. That is, there should be shutdown request would be expected to

an input that the software can use to detect the lead to a drop in N2, and the

effect of any output on the process. The observation of a drop in N2 without a

requirements must include appropriate checks shutdown request could have been

on these inputs in order to detect internal or checked during starting (was in engine

39 external failures or errors. running mode only).

Every output to which a detectable input is

expected must have associated with it: (1) a

requirements to handle the normal response, and

(2) requirements to handle a response that is

missing, too late, too early, or has an unexpected

40 value See above

The software checks for a turbine
temperature rise as an indication that
the engine has lit, but there was no
provision to look for such as event
prior to the software commanding an

Spontaneous receipt of a non spontaneous input | opening of the fuel valve. Thus there

must be detected and responded to as an was no ability to recognize this

41 abnormal condition spontaneous input.
Stability requirements must be specified when
42 the process is potentially unstable.

118

Examples Reviewed

No. | Category Criteria Engine Failure
Torched Start P25 Fault Detection | Warning Other

Specifications of Transitions Between States
DO-178B
also
requires that
there be no
"dead code"

Reachability of | All specified states must be reachable from the in the
43 | States initial state software.

Desired recurrent behavior must be part of at
least one cycle. Required sequences of events

Recurrent must be implemented in and limited by the
44 | behavior specified transitions
States should not inhibit the production of later
45 required outputs
46 | Reversibility Output commands should usually be reversible

If x is to be reversed by y, there must be a path
between the state where x is issued and where y
47 is issued.

Preemption requirements must be specified for
any multistep transactions in conjunction with
48 | Preemption all other possible control activations

The pilot start request which occurred
during one FADEC's power-up
sequence preempted the ground-tests.
Requirements were not robust in
handling this.

Soft and hard failure modes should be
eliminated for all hazard-reducing outputs.
Hazard-increasing outputs should have both soft
49 | Path robustness | and hard failure modes

Multiple paths should be provided for state
changes that maintain or enhance safety.
Multiple inputs or triggers should be required
50 for paths from safe to hazardous states.

119

Examples Reviewed

No. | Category Criteria Engine Failure
Torched Start P25 Fault Detection | Warning Other
Constraint Analysis
Safety constraints should have
highlighted the risks of several ground-
tests, such as the opening of the LSOV
and the max current output to the
MMYV. However, no explicit analysis
Transactions must satisfy software system safety | connected the safety analyses to these
51 requirements and constraints design features.
Reachable hazardous states should be eliminated
or, if that is not possible (they need to achieve
the goals of the system), their frequency and
52 duration reduced.
There must be no paths to unplanned hazardous
53 states
The software
detected a failure
of all FADECs to
arm the ATTCS
in a takeoff as a
W Every hazardous state must have a path to a safe hazard. This led
3 state. All paths from the hazardous state must to an immediate
lead to safe states. Time in the hazardous state transition to a
must be minimized, and contingency action may safer state which
be necessary to reduce the risk while in the was to trigger the
54 hazardous state. ATTCS.
A pilot warning
was provided
when the
software detected
a hazardous
state, so that
even if the
If a safe state cannot be reached from a ATTCS failed to
hazardous state, all paths from the state must increase thrust,
lead to a minimum risk state. At least one such pilot action could
55 path must exist. be taken.

120

