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Abstract

Expression as complex and personal as music is not adequately represented by the sig-
nal alone. We define and model meaning in music as the mapping between the acoustic
signal and its contextual interpretation — the ‘community metadata’ based on popular-
ity, description and personal reaction, collected from reviews, usage, and discussion. In
this thesis we present a framework for capturing community metadata from free text
sources, audio representations general enough to work across domains of music, and
a machine learning framework for learning the relationship between the music signals
and the contextual reaction iteratively at a large scale.

Our work is evaluated and applied as semantic basis functions — meaning classifiers that
are used to maximize semantic content in a perceptual signal. This process improves
upon statistical methods of rank reduction as it aims to model a community’s reaction
to perception instead of relationships found in the signal alone. We show increased
accuracy of common music retrieval tasks with audio projected through semantic ba-
sis functions. We also evaluate our models in a ‘query-by-description’ task for music,
where we predict description and community interpretation of audio. These unbi-
ased learning approaches show superior accuracy in music and multimedia intelligence
tasks such as similarity, classification and recommendation.
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CHAPTER ONE
The Meaning of Music

“What’s that sound coming in from the side there?”
“Which side?”
“The left.”

“You mean that sound that sounds like the cutting edge of life? That sounds like polar bears
crossing Arctic ice pans? That sounds like a herd of musk ox in full flight? That sounds like
male walruses diving to the bottom of the sea? That sounds like fumaroles smoking on the
slopes of Mount Katmai? That sounds like the wild turkey walking through the deep, soft
forest? That sounds like beavers chewing trees in an Appalachian marsh? That sounds like
an oyster fungus growing on an aspen trunk? That sounds like a mule deer wandering
a montane of the Sierra Nevada? That sounds like prairie dogs kissing? That sounds like
witch grass tumbling or a river meandering? That sounds like manatees munching seaweed
at Cape Sable? That sounds like coatimundis moving in packs across the face of Arkansas?
That sounds like —”

Donald Barthelme, “The King of Jazz”

1.1 Six Seconds

In late 2000, a student of accomplished avant-garde flutist James Newton expressed
interest about his professor’s past work with popular hip-hop / rap group the Beastie
Boys. A surprised Newton, having never heard of the Beastie Boys, quickly discovered
that a six second sample from his 1982 piece “Choir” was looped some forty times
during the length of the song “Pass the Mic,” a very successful 1992 top 40 single by
the rap group. The sample was featured at the beginning of the song alone and then
used as a background component to the rest of the song, overlaid with a simple drum
beat and rapping by each of the Beastie Boys in turn. Enraged, Newton quickly filed
suit against the group, their record label, manager, producer and media distributors for
copyright violation.
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What separates this case from most copyright law scuffles is that both sides maintain
that the Beastie Boys followed the letter of the law: they bought the rights to the six-
second segment, comprising roughly 529,200 16-bit precision floating point numbers,
a megabyte of information, for “whatever use necessary in perpetuity” from New-
ton’s record label ECM for $1,000. ECM had never told Newton of the deal, nor were
they bound to, as Newton himself sold the rights to the entire sound recording where
“Choir” sits to ECM for $5,000 as part of a standard recording contract. The rights
for usage of the signal passed then from Newton to his record company to the Beastie
Boys. If 2 new musician were to sample Newton’s six second performance they would
now have to pay the Beastie Boys’ record label for the rights.

Copyright for music is normally divided into two tracks: the ‘mechanical’ rights which
cover the sound recording and whatever means necessary to play back the recording,
and the songwriting rights, which protect the ideas behind the recording: the score,
lyrics and arrangements. Mechanical rights are generally purchased by the artists’
record company while the artist (or composer) retains control of songwriting rights
through their personal corporation (in this case, Newton’s JANEW Music.) If a mu-
sician wanted to ’cover’ or perform Newton’s “Choir” on their own recording or on
stage, they are bound to JANEW’s terms. Newton’s main argument in his suit rests on
the fact that the Beastie Boys’ corporation never contacted JANEW Music for rights to
the songwriting. But sampling artists such as the Beastie Boys rarely consider song-
writing rights, as their trade is in the recontextualization of the sound sample: shaping,
rearranging and reforming those 529,000 numbers into their own work. Their belief is
that the signal contains only the information necessary to re-create a sound. All per-
mutations on this signal, including truncating it to six seconds, looping it and mixing
it with their own work are allowed. The instant the sampling artist performs this se-
lectional surgery all notions of musical meaning are instantly re-appropriated from the
sampled artist to the artists sampling. In their view, the signal did not contain any mes-
sage more important than to direct the movements in voltage a speaker should make
upon receiving it. As the song created by mixing samples from various sources is now
the Beastie Boys’ own, why would they consider the source signals to contain their own
identity? They are building blocks: tools that every musician can use to create music
from “nothing” In an unpublished letter explaining their defense to the editors at the
Washington Post, the rap group likens the sample they purchased to a sample of an
audiobook reader saying “as well as:” a simple phrase, meaningless without context,
containing no identity beyond the voice used to say it.

Obviously, Newton disagrees. The six second sample from “Choir” consists of three
notes: C, Db, C, played on a flute using a technique Newton terms “multiphonics:”
singing through the flute while fingering the notes. Newton considers his multiphonics
to be a unique sound, integral to his artistic identity. He states in a letter calling for
support that “there is a spectrograph that moves wildly when my multiphonics are
played.” Newton has spent thousands in legal fees trying to receive compensation for
not just the usage of 529,200 numbers which he created by playing the flute, but for
the meaning of those numbers. When he hears the introduction to "Pass the Mic”
he doesn’t just hear a flute, he hears his flute playing, he hears the multiphonics and
his style of playing, and he hears the artistic intent behind the flute playing, the “four
black women singing in a church in rural Arkansas” that inspired the piece. This extra-
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signal information is worth just as much, and probably more, than the original signal.
Newton believes that he encoded these features into the audio well enough so that
his listeners could achieve the same reaction as he did upon composition. And even
the smallest segment of his playing encodes this information. When the Beastie Boys
sampled his recording they took far more than the signal, even if the signal was all they
took. Where can we find the rest?

1.2 Music Understanding and Music Retrieval

We want to find more music that we like. We want to give something or somebody a
list of our favorite groups and be given a list of music we’ve never heard before. We
want to know who’s popular this week in California, who’ll be popular next week in
New York. We want to have our portable device know which songs to play, only play
jazz late at night, or never play anything sad when it’s raining. But we’re faced with a
glut of data that gets worse every day and careening standards and copyright miasmas,
and yet we still search for our music by filename, simple metadata such as artist or
album title, or through sales-based recommendation systems. Computers are better at
making sense of large amounts of data: they have more patience and don't give up so
easily. The goal of our work is to make machines link music to semantic features or the
outside world for the purposes of organization, recommendation, or classification. If
we do it right, they’ll have the same knowledge about the music as the aggregate of your
entire community: they can tell you about similar sounding music, or reccommend new
artists no one has heard yet, or make playlists for you.

Currently the field of music retrieval has followed alongside text retrieval for inspiration
of semantic tagging and organization techniques. Characters became samples, words
became frames, documents became songs. Currently we express music as either a fea-
ture vector of signal-derived statistics, approximating the ear or a speaker as in machine
listening approaches, or we express music only as its effect: marketing data from sales,
shared collections, or lists of favorite songs. With the signal-only approaches we can
predict with some accuracy the genre or style of a piece of music, or compute acous-
tic similarity, or detect what instruments are being used in which key, or discern the
high-level structure of music to tease apart verse from chorus.

Some of these approaches ignore the meaning of music: what happens in between the
music and the reaction. The retrieval systems don’t know what songs are about or how
they make people feel. They don’t understand why some artists are currently selling
millions of records. They are stuck inside a perceptual box: only being able to feel
the vibrations without truly experiencing the effect of music or its cause. Newton’s
problem was that he heard his identity along with the signal, and didn’t want to see it
re-applied in a new context. His defendants never considered it.

In this thesis we will be learning the meaning of music. To do this, we need to first
find where this extra-signal information of reaction and emotion is and find a way to
represent it in the same manner that we currently represent a music signal. Then we
need to ground this reaction and message in the perceptual data, entwining the context

1.2 Music Understanding and Music Retrieval
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Figure 1-1: Our problem: music data through some projection leads to interpre-
tation. The projection is an unknown process that may or may not be easy to
learn.

with the content in such a way that the resultant model acts as a meaning classifier able
to predict new contextual information on as-yet-unheard music. In effect we learn
the ‘semantic projection’ that links perceptual data to the outside world (Figure 1-1)
which might be derived from an entire community or from a personal user model.
When we do this, we find that machines do a far better job of tying music to semantic
classification, which helps computers organize, classify and recommend new music for

people.

1.3 Meaning and Information in Music

It should be clear to all listeners that there is something outside the signal that either
adds to or complements the larger ‘musical experience. One needs to look no farther
than the matter of personal taste: you and your cousin in Tennessee might both have
a strong emotional reaction to country music, but that reaction invariably widely dif-
fers. The signal coming over the airwaves, pulsing the radio’s speakers and modulating
your eardrum biologically is the same in both places, but somewhere in between the
performer’s message and your reaction is a coding scheme that takes into account some
extra-signal information. If we view the flow of a musical message akin to Shannon’s
[69] information theory schema (Figure 1-2), a musical message is interpreted through
a source (the performer) and then run through a channel which is susceptible to noise:
cultural factors, buzz and trends, and other marketing peculiarities. After the chan-
nel delivers the message to the receiver (the listener) they perform their own personal
decoding on the content which involves their past history with similar music, direct
connections to emotions and experiences. The received message is usually strikingly
different from the source message.

This whole process multiplexes a perceptible audio signal with some outside contextual
information. Immediately after the musical message is formed by the ‘transmitter’
they are entangled: one can’t exist without the other. But to date, most perceptual
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Source Received
o o =
’ —————

Figure 1-2: Shannon's general communication schema.

analysis of music and other media concentrates solely on the signal. Music similarity
research that aims to mimic the listener’s reaction to two different musical messages
currently only investigates the process from the performer’s point of view via signal
analysis, ignoring the channel or listener. Likewise, recommendation systems that track
aggregated sales data as in collaborative filtering [61] [70] ignore the personal reaction
as well as anything to the left of the channel. Any musical analysis approach that ignores
the contextual extra-signal information is doomed in the long run: they are making
decisions based on a very small part of the musical experience.

What we attempt to do here is computationally understand this extra-signal informa-
tion, and link it to the signal in such a way that it can be predicted for future audio.
The benefits of such an approach are obvious: personal reaction is not easy to come by,
and cultural transformations can only be studied for perception that elicits a cultural
reaction. A model of the contextual information given a signal allows us to accurately
‘understand’ music (extract semantic features or link to the outside world) that hasn’t
even been heard yet. So what we call meaning throughout this thesis is defined as the
relationship between the signal and its interpretation. In our work we create predictive
‘machines’ that analyze audio signals and extract projected community and personal
reactions: these are ‘meaning classifiers.

The use of the word ‘meaning’ raises hackles for its vagueness; it’s an overloaded term
that is considerably defined by personal interpretation. We try to bridge together three
distinct types of meaning into one global representation. At the outset we should make
it clear that our definition of meaning above is mostly referential, that is, it exists as
the connection between two representations. This contrasts with the purely absolutist
view discussed by Meyer [50], in which the meaning is encompassed purely within the
composition or signal. Our approach considers both with an emphasis on referential
types of meaning. Many musicologists study the absolutist view of musical meaning
simply because there is no formal mechanism of analyzing the contextual information.
What this thesis presents are ways of computationally representing both signal-derived
and contextual music information and then ways of learning a model to link the two.

1.3.1 Three types of musical meaning

We consider three types of musical meaning that have analogs in philosophical and
linguistic definitions.

1.3 Meaning and Information in Music
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Figure 1-3: Types of musical meaning.

1: Correspondence

The composer or performer’s transcription of the musical idea into a musical signal is
known as correspondence: the relationship between the message and its representation
(score, audio signal.) Any number of performers can perform an infinite amount of
transformations between the idea and the signal through different interpretations. Put
simply, correspondence is either “what the music is about” or “how the music was
made.” Sometimes the correspondence is still accessible from the signal, entangled
with the audio. Newton’s “four black women singing” is a form of correspondence
meaning that his defendants did not immediately discover. Songs with vocals often
tend to directly encode this type of meaning in the lyrics, which on their own can
be studied with relative success (46]. Even with high level language analysis we are
still sometimes left in the dark: in our example above in Figure 1-3 we cite the story
behind Elvis Costello and Robert Wyatt’s popular ballad “Shipbuilding,” [19], a song
with oblique lyrics whose meaning eluded us until we found a review of the song by
Stewart Mason on the popular music metadata web site All Music Guide [AMG] [1]:

The Falklands War brought a string of protest songs to the UK, most of
them released well after the abbreviated conflict was over ... Set in a de-
pressed coastal town, the song starts with the simple question “Is it worth
it?,” but in a flash, it moves from the abstract to the intimately personal,
as the song’s primary conflict is revealed: new contracts to build warships
bring much-needed money to the community, but they also promise dev-
astation to the very same working-class families whose sons will be fighting
in them. [1]

As the song in question was released in 1983 and continues to find fans well after the
close of the conflict with no explicit mention of “Falklands” or even war in the lyrics,
there has to be a way to tie together the audio and the implied message to fully un-
derstand the music. Metadata sites such as AMG provide such a service for listeners
as do music history books, record reviews and artist biographies but current music
understanding systems ignore such information.

There are also forms of explicit correspondence, such as the notes and structure in a
composition, the instruments used, the timbres and effects where they act as machines
to generate the musical message to its recorded signal. These can be thought of as
absolutist forms of meaning, although the choice of representation and model by the

20
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experimenter does link it to the outside world. (For example, a speech feature or model
of the human ear connects the signal to human physiology.) Some of this somewhat
absolutist meaning can be directly inferred from the signal, and we do not explicitly
capture this in our work. Work in instrument identification [47] or automatic tran-
scription [40] are examples of signal-only analyses of music that attempt to extract this
sort of correspondence.

2: Relational

Elvis Costello

:

Blur € XTC <4—» Squeeze

i

The Police Aimee Mann

Figure 1-4: Similar artist network starting with Elvis Costello.

Relational meaning is the connection between the music and other music. In linguis-
tic terms, the meaning of a word can be understood as its relationships (synonyms,
antonym, definitional) to other words: text ontologies such as WordNet [51] take this
view as does the “flat” dictionary and thesaurus to some extent. in music, understand-
ing the connections between artists and songs lends a valuable insight into personal
preference and organization along with bigger questions of music similarity.

Historically relation has been the one form of meaning captured in music organization
and understanding systems— but in the starved implementation of genres. Popular mu-
sic is usually split into the “big five” genres of Rock, Pop, World, Electronic and Jazz,
each ostensibly a cluster of music in which all members of a group share some com-
mon intra- and extra-signal features. The basic problem with these labels is that they
themselves do not mean anything— there is no accurate definition or correspondence
between the term Rock and the music that has been labeled ‘Rock.” There is often unex-
plainable overlap between adjacent genres, and worst of all as music changes over time,
the labels have stayed the same. There is no worse offender than ‘World’ music, whose
only possible definition is ‘non-American’ music. Music understanding systems that
claim to predict genre in music [79] are in fact performing a type of relational meaning
extraction, but the task can be thought akin to prediction of album sticker price or con-
tract amount from audio: meaningless targets to the music experience. The notion of
musical style is a bit better off due to their organic nature: they evolve over time and are

1.3 Meaning and Information in Music
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Figure 1-5: Delta between style identification results with context-based classifiers
vs. signal based classifiers. [85]

not bound to sales patterns or radio charts for their success. Styles are an edited form
of relational meaning that link a small subset of artists into a like-minded cluster. For
example, the style ‘intelligent dance music’ [[DM] was conceived of in the mid-1990s
to describe a set of artists that were breaking the boundaries of then-current dance mu-
sic by investigating new technologies and compositional methods. It would be hard to
train an acoustic classifier to predict membership in IDM (and in [85] we tried and
failed) as the signal-content widely varies. But styles such as IDM have a strong cul-
tural binding— invented to capture a new ideology of music making, not any particular
sound- and in fact a cultural classifier trained on text patterns of description fared far
better in predicting membership. In Figure 1-5 there are more results of this nature:
note that contemporary country was predicted equally well by both types of classifiers,
and rap and heavy metal performed better with a signal-based classifier.

We also consider the notion of “similar artists” in our work as part of relational mean-
ing. Often a new artist will be described in terms of an already well known artist to
bootstrap the experience to listeners. In our “Shipbuilding” example the songwriter
Clive Langer says in an interview that the song “fuses the English charm of songs like
‘When You Are A King’ and McCartney’s ‘Junk’ with the charged rhythmic restraint of
Ketty Lester’s ‘Love Letters’” [3] and the song’s lyricist and performer Elvis Costello is
often said to be the “the best songwriter since Bob Dylan.” [1]. Sometimes this sort of
meaning is extractable from audio analysis alone, in the case where the two songs or
artists are in fact sonically similar- but more often than not there are other contextual
clues that relate two pieces of music or artists in some fashion. Again, edited sources
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such as AMG are valuable for this sort of meaning along with the formulaic sounds-like
segment of most record reviews.

3: Reaction

The last form of meaning we consider important to the music experience is reaction
meaning, or actionable meaning. Linguistically some claim that the meaning of a mes-
sage is the action that it conducts: the meaning of “I'm angry with you” is the effect
is has on the listener. Music has a similar effect in the message, it conveys various
emotions (sadness, joy) or physical states (dancing) or reminds a listener of a past ex-
perience. Music also causes listeners to listen to it: this is best captured as personal
usage data. Understanding reaction is necessary for any musically intelligent system; to
ignore it removes the listener from the path of music entirely.

Significance, a form of reaction meaning, approaches the closest dictionary definition
of ‘meaningful’ for most listeners. It is a form of aggregated cultural reaction that di-
rectly informs preference, notice, or popularity. Significance is captured by the cultural
channel that filters a musical message towards a listener and is embedded in the buzz,
trends, peer opinion, and critical reaction. We more directly consider significance to
be closely related to usage or appearances in discussion in a community. Significance is
a valuable form of extra-signal meaning as it can directly relate to preference and taste,
along with influencing factors of future music. Current music understanding systems
such as collaborative filtering recommenders do take significance into account as sale
data, but often they do not grasp a larger view of trends and buzz that is not reflected
in sales (as is the case for independent artists.)

It bears noting the relationship between reaction meaning and correspondence: one is
attached by a community or person and one is attached by the original artist. Often-
times the two meanings vastly differ and this is a beautiful quirk that defines the music
experience.

1.3.2 Interpretation

Looking back on the three types of meaning we’ll be dealing with, we should come
back to our original definition of meaning as the relationship between the signal and
its interpretation. In this work ‘signal’ is taken to mean the musical signal, commonly
represented to a computer by discrete-time samples, but also the vibrations that even-
tually reach the ear. It can also be applied to analyses of the score or composition. The
three types of meaning above all relate this signal to some form of interpretation: how
the artist interpreted the musical idea, how the community interpreted the importance
of the artist and its relationship to others, and how the listener personally interpreted
the musical idea. Our meaning of music is then always found in a connection between
musical content and interpretation.

We note that the meaning as stated is not always extractable as the connection between
content and interpretation. Many types of meaning we catalog in this thesis are not
predictable from an audio signal; we can not reliably train a system to detect if a song is

1.3 Meaning and Information in Music
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about the Falklands war by the signal, nor can we predict (with any accuracy) if a song
will be influential or significant, but we can access this meaning from the contextual
representation of music already catalogued. Extracting meaning is not just the process
of connecting signal to interpretation, it is representing the result of that process: in-
dexing lyrics or reviews captures correspondence meaning without any signal analysis
involved, as does analyzing sale data and radio playlists for reaction. Our work con-
centrates on predictive approaches to meaning extraction, and as such we tackle both
the problems of representing meaning along with the problem of extracting meaning
where none yet exists in our representation. As we are driven by the problem of music
understanding and personalization to help people find music, our goal is to extract the
meaning of ‘unheard’ (by a community) music. However, the work detailed in this
thesis also proves useful for extracting meaning from contextual sources.

1.4 Our Approach
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Figure 1-6: Overview of our approach.

In this thesis we attempt to learn the meaning of music by combined analysis of con-
tent and context of music along with an algorithm that learns the relationship between
the two for predictive meaning extraction of new music. In our approach the contex-
tual emphasis is on the language of music description. While the system ‘listens’ it also
‘reads’ about the music, automatically monitoring communities of listeners for their
reactions to the audio as description and usage. The connection between perception
and reaction is then learned with a statistical machine learning model. The outputs of
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this model are ‘semantic basis functions, meaning classifiers that can predict descrip-
tion given a new piece of audio. We show significantly improved results in common
music retrieval tasks such as artist identification and music similarity using our ap-
proach, which lends validity to our thesis: that meaning extraction in music tasks is a
necessary step to fully representing music in a machine.

Our approach is almost entirely unsupervised and automatic. Our audio data is ran-
domly chosen from a large testbed and the cultural metadata is extracted from free web
text and internet service crawls. At no point do the experimenters train specific models
of genres, or self-select sets of artists, or choose which descriptive terms to learn — the
community defines the acoustic content and the descriptive metadata. From a machine
learning standpoint our process attempts to guess the target labels and ground truth
from the community. This process is iterative and computationally hungry — we use a
cluster of computers and sections of this work will discuss how to deal with parallelizing
common signal processing, language analysis and machine learning tasks. The system
can work across languages and all genres of music, and we also discuss approaches in
non-music acquisition domains such as images.

As seen in Figure 1-6, we perform audio signal analysis using the modulation cepstra
feature alongside extraction of “Community Metadata,” which is packed using various
language processing techniques. The community metadata representation is a major
contribution to representing contextual information of music; many types of mean-
ing can be directly inferred from this representation. However, together they create
a predictive model (the “black box,”) in our implementation using regularized least-
squares classification (RLSC). We intend this work to be a robust and accurate musical
understanding system as it is the first to attempt to understand both the signal and the
listener’s interpretation.

The output of our system include the community metadata representation as well as
the predictive semantic basis functions. In this thesis we concentrate on and evalu-
ate three specific applications using these outputs: semantic rank reduction (a way to
measure the effect of integrating meaning into a music understanding system,) query
by description, and perceptual text retrieval. Overall, the meaning connection between
acoustic analysis and community modeling reveals a number of possible solutions:

¢ Query-by-description as a music retrieval interface. The community analysis
and language modeling work can be used directly as a front end to a natural
query interface to popular artists, or linked to the audio to automatically describe
new music.

o Buzz prediction, popularity analysis. The community models of description
and usage can be collated into a global prediction model of popularity and buzz.
Community metadata can also be used to predict effects of new audio.

o Perceptual text analysis and text retrieval enhancements. With an understand-
ing of what perceptible data terms refer to, we perform more accurate summa-
rization and better similarity retrieval on new descriptive text (such as reviews
and discussion.)

1.4 Our Approach
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o Semantic rank reduction. Alternatives to statistical decomposition techniques
for multimedia retrieval and analysis: de-correlating music’s semantic attributes
instead of its acoustical statistics for far better accuracy in signal-level multime-
dia intelligence tasks.

o Trusted and natural recommendation. A recommender that knows not to offer
music from the mid-80s, or knows what you think ‘sad’ means might finally
change the public’s perception of marketing-led collaborative filtering systems
as music-blind sales agents.

1.41 Meaning Types Considered in Our Approach

To connect our specific approach back to the meaning types we discussed in Section
1.3.1, we note that we mostly find meaning as reaction in our community metadata
representation and its link to the signal due to the nature of our data mining tech-
niques. The strongest connection between signal and interpretation comes from per-
sonal reaction to music (such as ‘loud,” ‘romantic, ‘angry’) The notion of correspon-
dence meaning is captured in the community metadata but would rarely appear in the
learned predictive link. Relational meaning is captured in the community metadata
through similar artists and songs, and can be predicted with good accuracy from the
learned model.

Since our data collection approach for the contextual representation (covered in Chap-
ter 4) is based on free (unstructured) text analysis, higher level notions of song sto-
ries and involved hierarchies of musical influence and imitation are only captured very
broadly. Our community metadata relates ‘war’ to the song context “Shipbuilding”
only as a probability of salience, not as a position in a knowledge base. As a result our
approach works best for reaction-type meaning such as ‘funky; ‘loud’ and ‘romantic’
due to the simplicity of the terms and their high probability of being used in music
discussion. That said, our approach does embody the idea of meaning as correspon-
dence: a text-only search through our contextual representation would reveal ‘about
the Falklands war’ for only few songs. We do note that this connection is small and not
adequately dealt with in our first pass at the problem.

As the majority of our work considers the procedural link between audio perception
and reaction (‘grounding,’) our lack of a strong representation for correspondence
meaning does not get in the way of proving that meaning (or, more specifically, rela-
tional and reaction meaning) is useful for music understanding tasks. Correspondence
is normally not a type of meaning that can be predicted without contextual knowledge,
and for our evaluation and model of ‘semantic basis functions, reaction and relational
meaning can and does show that our learning algorithms are positively affecting our
task.

26

The Meaning of Music



1.5 Layout of Thesis

We first discuss the current state of the art in music retrieval as well as the relevant
research in grounding terms to perception and machine learning. We then look at var-
ious acoustic analysis techniques for music understanding. Next, we cover our work
in language and aggregate usage analysis of music, collated as ‘community metadata’
Next, we discuss the machine learning techniques used to learn the relationship be-
tween these two representations to capture the meaning of music. We then present
results in our evaluation tasks of query-by-description and artist identification, and
conclude with a note on other domains of perceptual grounding.

1.5 Layout of Thesis
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CHAPTER TWO
Background

Our work on meaning recognition in music is supported by recent advances in per-
ceptual ‘causal grounding’- learning the meaning of words by their use and action in
the perceptual domain. In this section we’ll be going over ways to represent meaning
in a computational model, and then move onto grounding research in speech, video,
images and sound. Afterwards we present a high level overview of signal-level and cul-
tural music retrieval, followed by a short survey of machine learning, rank reduction
and parameterization methods.

2.1 Meaning Modeling

Putnam famously states that “meaning ain’t in the head.” [56] His two examples re-
garding this statement both try to make the argument that the meaning of a word
cannot be defined by the psychological state of the speaker. In his ‘twin earth’ thought
experiment, where a doppelganger on a planet that has a substance called ‘water’ with
all the same uses and connections as the water back home yet has an entirely different
chemical structure, both twins’ ‘extension’ (their inside-the-head ‘meaning of water’)
is the same. Yet since the substance (the content) is quite different, the psychological
states are pointing to two different referents and therefore they did not in fact hold the
meaning.

A more musically relevant example is of the difference between the elm and the beech
tree, in which we have one reference to both trees in our psychological state that can be
used for either tree as we most likely don’t know what the difference is (we know there
is a difference, however.) The implied thesis here is that meaning is socially constructed
for the elm vs. beech division — there is a “linguistic division of labor.” We can assume
there is some expert to make the characterization for us if needed, but for the time
being, they both exist with the same internal psychological state. Our work follows
this view closely— our meaning-as-reaction and relation in music is divided among a
community of listeners rather than internally in one listener. Our meaning recognizers
never settle on a single view of ‘romantic’ or ‘popular, but rather update their models
often by polling the experts. This places meaning of music far outside the head.
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Our work is informed by previous attempts to model meaning to a machine. The oft-
cited case of modeling linguistic meaning in a computer is WordNet (52] [51], a lexical
database or ontology of words and their relationships. WordNet makes heavy use of
relational meaning, embedding the meaning of a word as their relationship (in a synset)
to other terms. Moving a level up to concepts, the work in distributed commonsense
modeling [71] uses free text facts submitted by users which is then parsed for content
and linked together in a large semantic database. Other ‘knowledge databases’ such
as Cyc [44] and ThoughtTreasure [49] use edited knowledge information by a team
of experts. ThoughtTreasure also supports spatial reasoning— representing places and
objects in ASCII ‘maps’ directly in the database.

Meaning has a strong biological component: our relationship with music is often in-
formed by our biological potential: music perception work in how we respond to beat
[67] or melody gives us clues to the types of music we appreciate and create. Our model
directly takes advantage of the biological constraints in a perceptual feature encoding
that models pitch response of the ear and time response of our perceptual system.

2.2 Grounding

Figure 2-1: Barnard et. al's work on grounding image annotations to images.

Our links between perception and interpretation are enabled by grounded models of
terms. We consider a term ‘grounded’ [34] if we can find a causal link between percep-
tion and reaction or interpretation — and our process of grounding then is to uncover
perceptual links to language. A term on its own, such as ‘loud’ means little to a ma-
chine that is asked to understand it. But a term with a related perceptual representa-
tion, such as loud paired with a befitting spectrograph or other audio-derived feature
or filter showing its effect, can be operated on procedurally and algorithmically. ‘Loud’

and ‘more’ grounded can beget ‘louder, ‘less quiet, ‘deafening, and an innumerable
amount of other descriptively dense labels.

We note two types of grounding — causal vs. predictive. In [64] grounding is defined
as the “process by which an agent relates beliefs to external physical objects.” The work
in our thesis is a purely causal form of grounding in which the perception causes a
reaction. (The ‘agent’ or in our case machine learning apparatus has no idea of its
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past interactions with perception or reaction, nor the future.) A predictive grounding
model approaches a formal view of meaning representation, linking the physical world
not only to beliefs but to the goals and actions that can be operated on those beliefs.
(64]

Work on grounding and meaning acquisition has progressed with better representa-
tions of multimedia and more robust machine learning. Grounding a large set of terms
requires immense computational power to capture the degrees of freedom in descrip-
tion and perception, and there are often unknown constraints on the expressive power
of terms. Often, we look to clues in the biological system [60]: the ‘human semantic
potential. In the visual domain, some work has been undertaken attempting to learn a
link between language and perception to enable a query-by-description system.

The lexicon-learning aspects in [22] study a set of fixed words applied to an image

database and use a method similar to EM (expectation-maximization) to discover where
in the image the terms (nouns) appear; [8] outlines similar work. This is the closest

analog to our meaning recognition work in that description is learned from a large

dataset of perceptual information with community-applied tags. However, in their case

the image labels were applied professionally by the photo editors and using a simple

grammar (usually just a list of words.) The results, however, are often worthwhile, in

Figure 2-1 the object segmentation and labeling work in concert to identify the ‘mean-

ing’ of the detected regions, often with good or close accuracy.

Regier has studied the visual grounding of spatial relation terms (above, across, below)
across languages from a set of human experiments, ending up with a mathematical
model and graphs for common prepositions [60]. Verb semantic grounding under-
taken in [72] maps a logical model of action to simple video representations such as
‘push’ or ‘pull’ In [63] color and shape terms were learned in a grounded word learning
system. In the general audio domain (sound effects) recent work linked sound samples
to description using the predefined labels on the sample sets [73]. The link between
musical content and generalized descriptive language is not as prominent, although
[20] shows that certain style-related terms such as ‘lyrical’ or ‘frantic’ can be learned
from the score level. Our previous work in [84] is the first general music ‘query-by-
description’ task, using a simple audio feature and adjective terms from community
description.

2.3 Music Retrieval

Music understanding and retrieval systems have existed for some time, starting with the
audio retrieval work of Jonathan Foote [29]. Retrieval tends to be either ‘score level,
analyses of symbolic music data (MID], scores, Csound, performance data), ‘audio-
level, analyses of recorded music using signal processing techniques, or recently ‘cul-
tural, studying web communities, text, description, and usage. In our work we con-
sider only the audio domain along with the culturally-derived extra-signal Community
Metadata.

2.3 Music Retrieval
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Music retrieval’s goals are to provide music content understanding to the end user for
categorization, classification, and recommendation. It is a timely field of research given
the current marketplace of digital music distribution. It addresses a set of challenging
problems:

2.3.1 Music similarity

Music similarity is concerned with the task of returning similar songs or artists given a
song or set of songs in the audio or score domain. Similarity is fundamentally the back
end to most other music retrieval and understanding problems, as a perfect similarity
metric would indicate a “perfect music intelligence.” Directly, similarity informs acous-
tic domain recommendation agents and playlist generators. It has both mathematical
and cognitive [36] underpinnings. In [86] attempts are made to abstract the content
from the style in a manner that could recognize cover versions or live versions of a
song in a database. Machine learning approaches as in [12] make use of ‘little experts’
or anchor models: single-class models of simple music metadata (is the singer male
or female, is it rock or not) pull together in similarity space to return a semantically-
anchored distance measure.

In our own previous work in this field we studied a large set of music similarity judg-
ments made by human raters. [23] We evaluated the similarity judgments against our
own predictions in the audio domain (both using the above anchor models and with-
out) and with culturally-derived data as in playlists, usage data and webtext.

2.3.2 Genre and style classification

Popularized by Tzanetakis in [79], genre ID attempts to cluster or classify audio-domain
music into one of a small set of genres. Style ID [85] is the same process but at a finer
grain and often requires cultural metadata. Genre ID systems claim high accuracy but
are often subject to incongruence in the ground truth: few listeners can agree on the
target genre of many artists (rock vs. electronic vs. pop, for example) and models
vary widely depending on the music metadata source used as ground truth. Related
subproblems include nationality detection in folk music [15], computed on the score
level.

2.3.3 Artist Identification

First attempted in our own work [82] from low level audio features, artist ID is a chal-
lenging retrieval problem with good ground truth and still low results. A robust artist
ID system could claim to understand the meaning of musical identity, as artists often
change styles (and spectral ‘fingerprints’) but still retain complex human-identifiable
features. Most attempts at artist ID currently use low-level audio features to create an
evolving model of the artist’s music averaged over time. In [11] the voice tracks are
isolated, which improved on the task but showed problems with scale over a large set
of music.
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2.3.4 Music metadata extraction

In organization and library work, automatic extraction of musical features such as
dominant pitch, tempo, key and structure are valuable tools. Tempo tracking’s state
of the art is found in [67], where a filterbank approximates the ear’s response to music.

Structural analysis of audio, useful for summarization and retrieval, is approached
in (18] using a similarity matrix computed over the spectral content of a song, with
heuristic clustering to find the segments. Other similar approaches using different
features and heuristics appear in [33] and [9]. A different approach using dynamic
programming can be found in [16]. Event segmentation (extracting smaller segments
than song structure components) is found in [38] for use in a time-axis redundancy
reduction scheme.

2.4 Text Understanding and Retrieval

The text approaches used in this work are inspired from research in natural language
processing for information retrieval. For example, in [25] extracted noun phrases are
used to aid a query task. For an overview of noun phrases and their grammar, see {24].
Work in text summarization (as in [48]) attempts to cull unnecessary and repeated
text from a series of documents using machine learning models of term frequencies
and meanings.

Text classification work, for example to cluster documents by topic or content, is a
closely related field covered in [39], where a support vector machine (SVM) learn topic
classifications from thousands of ‘bag of words’ features. Text categorization can be
applied to opinion and buzz extraction as in [21].

Text analysis can be coupled with link analysis on web pages to cluster communities for
topic detection where there are no explicit topics defined as in [31] and [28].

2.5 Cultural Approaches to Music Retrieval

Collaborative filtering [70] [61] is the ‘cultural’ music retrieval approach that is most
commonly implemented and in the widest use. In these types of approaches, users
are represented as vectors containing their preferences (either sales or explicit ratings)
and connections of preference are found by computing similarity metrics among users.
This is a circuitous method of performing music similarity (defining similarity by its
effect on users) but a valuable one that has found a strong foothold in the marketplace.
Collaborative filtering approaches are bound by the ‘popularity effect’ or ‘slow start’
problems, where only well known artists or titles can be recommended- they rely on
outside forces to make their similarity judgments.

Obtaining the ‘cultural zeitgeist’ of music perception without explicit ratings or sales is
an important part of music understanding but only recently has there been much work

2.4 Text Understanding and Retrieval
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relating music retrieval to text and usage mining. Our previous work [83] first defined
the notion of ‘Community Metadata’ as applied to artist information (which will be
described in greater detail in Chapter 3) and was inspired by work in [17] that extracted
musical recommendations from finding lists of artists on web pages. Since then the
notion of a ‘cultural representation” has proven valuable for many music retrieval tasks,
especially similarity [10] and style identification. [85] [53]

2.6 Machine Learning and Rank Reduction

Much work in multimedia analysis relies on a de-correlation or rank reduction step on
the extracted features. Oftentimes, especially in the case of audio-derived observations,
there are redundant or highly-correlated dimensions in the feature space. Supervised
machine learning approaches such as learning the artist or genre of a piece can be
viewed as a very low-rank semantic transform: from n dimensions of audio per frame,
the system returns one. But generally researchers have computed unsupervised cluster-
ing and rank reduction transforms on their entire training dataset to then make them
statistically sound for later classification or regression.

In general, removing statistical dependence of observations is used in practice to di-
mensionally reduce the size of datasets while retaining important perceptual features.
Using tools such as Principal components analysis (PCA), researchers often reduce the
dimensionality of a data set by only keeping the components of the sample vectors with
large variance. By projecting onto these highly varying subspaces, the relevant statis-
tics can be approximated by a smaller dimensional system. This provides efficiency in
storage, regression, and estimation as algorithms can take advantage of the statistical
compression. The main tool of Principal components analysis is the Singular Value
Decomposition (SVD) [32].

Non-negative matrix factorization (NMF) [42] performs a similar decomposition as
PCA but constrains its bases to be positive in an attempt to mimic part-finding in
observations. We find that noisy audio observations fare better with PCA, but highly
harmonic musical content (such as piano solo pieces) are a good fit for the additive
nature of NME.

Structurally-aware transforms such as Isomap [77] embed the observation space in a
manifold, where the experimenter defines the distance metric that encapsulates the
data. This model closely follows recent work in ‘categorization by combining’ [35] or
the mentioned ‘anchor models’ [12] where a series of sub-classifier experts each feed
into a larger combiner classifier. However, we note that these methods are far from
unsupervised, as the experimenter must set up the semantic content in each machine,
or in Isomap’s case, the distance function. In effect, the bias could be embedded directly
in the machinery of learning.

Our work makes extensive use of the support vector machine (SVM) [80]. The SVM
is a supervised machine learning algorithm that finds the optimal separating hyper-
plane or regression line within a set of multi-dimensional observations. The SVM is
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aided by the ‘kernel trick —” where data is first embedded into a Reproducing Kernel
Hilbert Space (RKHS) [7] via a kernel function of the experimenter’s choice. Much
like Isomap, this kernel function can be thought of as an ‘intelligent distance measure’
but the resultant kernel must matrix satisfy the conditions of being convex and semi-
definite positive (all zero or positive eigenvalues.) Much work has been done on kernel
functions for various tasks, including Fourier kernels for time-aware learning [65] and
geometric models [41].

2.6 Machine Learning and Rank Reduction
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CHAPTER THREE
Acoustic Analysis of Music

Machine listening [68] or computer audition [78] is concerned with extracting struc-
ture, symbols or semantic attachment from audio signals. Speech recognition using
hidden markov models [57] is an application of machine listening, as is source sepa-
ration [74], musical beat tracking [67], instrument identification [47] and music tran-
scription [40]. All of these tasks first require that the algorithm view the audio data
in some form that takes into account human perception, minimizes redundancy and
allows for similarity and correspondence operations to be performed. In this chapter
we will go over some basic methods for representing sound to a machine as a feature
vector, and discuss the various design goals of a generalized music audio representa-
tion. We work towards and then describe our feature, “Penny,” which is used in our
meaning recognizers.

3.1 Feature Extraction for Music Understanding

.|II| Frames (/)

Figure 3-1: Converting a signal to a feature vector: frames (£) by dimensions (d).

Dimensions (d)

In our work we use a frame-based or discrete feature representation of musical audio.
In this model, audio is decomposed into a set of ¢ vectors each with d dimension. (See
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Figure 3-1 for an example.) Each frame (vector) represents a small time slice of audio,
and normally the frames are aligned in chronological order. (It should be noted that
most machine learning or pattern classification systems ignore the order of features.)

The features within each frame should represent some measure of the target audio,
either explicitly or statistically. For example, the first dimension of the frame could
indicate the overall energy of the audio frame, the second dimension could indicate a
measure of harmonicity, average beat, and so on. On the other hand, each dimension
could reflect the coefficient of some basis projection through the audio, or spectral con-
tent from a frequency transform. The decision is a trade-off: either an attempt is made
to explicitly define ‘music’ by extracting and presenting the system with cleanly musi-
cal features, or the machine learning apparatus figures it out with a more bottom-up
perceptual approach. The question can be stated as: “Is the intelligence in the feature
or the pattern recognition?” In our work we side mostly on the machine learning, for
two reasons:

o Generalizable to all types of music: a beat or pitch explicit feature would not
work on atonal or free-form music.

o Unknown task: since our ground truth labels are never known until evaluation,
we often do not know ahead of time what we are looking for in the music. A gen-
eralized feature space is more valuable for a task that starts with no knowledge
of the target class.

There are normally a few ‘ground rules’ in developing a musical feature, and usually
most work in conjunction with whatever learning algorithm is used. For example,
if the feature vectors are treated as a matrix A of size d4 x £ with a ground truth
vector y of size d, x £, the ‘machine’ (the transformation operated on new features
to predict the ground truth) is x as in Ax = y. Seen as a system of equations, d must
always < ¢, meaning feature size should never eclipse the amount of frames in a model.
There is often a relationship between £ and the number of classes in the target ground
truth (often thought of as the dimensionality of y, d,) — many multi-class learning
algorithms will need a significant amount of £ per class in y to properly distinguish
among different classes.

Features must maintain coordination among position in d, this is shown above in Fig-
ure 3-1 as a shaded box. Each position in a frame must ‘mean’ the same thing among
different frames, as most machine learning or similarity functions will treat each di-
mension as a variable or coefficient in a function. This shows up in music as a threat to
time-aware feature extraction: for example, a feature that is simply the samples of au-
dio over some short window would not work, as the position in each frame would not
have any important reference to the music. However, if the song was first segmented
at a beat level, and the first dimension of each frame would be guaranteed to be the
samples starting with the beat, then the dimensions among different frames would be
coordinated. There is usually no such restriction for adjacent dimensions: the first and
second dimensions of a frame can refer to wholly separate audio features (such as dom-
inant pitch and harmonicity), as long as they still refer to the same principles in other
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frames. However, most machine learning algorithms would like the dimensions to be
whitened or have mean removed and set to unit variance; a simple euclidean distance
between vectors that were composed of both integer note number and continuous val-
ues of energy might run into issues of normalization and scale.

The scale of the frames is one of the more important facets of feature representations
in music. A single frame can refer to an entire song, a small part of a song, a whole
segment, an entire artists’ work, or a single discrete-time sample. Often the task should
inform the scale of the feature: if performing song similarity each frame could represent
an entire song; if doing artist identification some within-song scale seems to work best,
and for parameterization tasks such as pitch or beat tracking a finer grained scale is
necessary. The scale can be viewed as a ‘control rate’ in the application, determining the
granularity of decision for the test or application case. For a beat tracker, for example,
the decisions must be made within £0.1 Hz and the frame scale must reflect this.

3.1.1 Design Goals for Meaning Recognition

As mentioned above, we are looking for a generalizable music representation that makes
little to no assumptions about music. We will assume that time is important for under-
standing music, as is the psychoacoustic response of music in humans. To this end our
resultant feature space, “Penny,” makes use of varying levels of structural information
along with a perceptual model that scales frequencies to better approximate the ears’
response.

The target semantic classification in our task varies from single-frame filters such as
“loud” and “funky” but moves up to higher-level descriptors such as “driving” or “ro-
mantic.” The notion of significance, correspondence and preference are also very com-
plex targets that require a need to understand music at different structural levels. That
said, since our problem is so large and must scale to thousands of artists with dozens
of songs each along with tens of thousands of descriptors, we need to optimize the
tradeoff between feature size and information content.

3.2 Features

In this section we’ll briefly cover a few different types of features used in music un-
derstanding systems, starting with time approaches, then spectral approaches, then
cepstral approaches.

3.2.1 The time domain

It’s hard to derive structure by studying the signal of a test song (Costello’s “Shipbuild-
ing”) as in Figure 3-2. To the trained eye one could pick out onsets, sample positions
where a low-energy to high-energy transition is made, and perhaps the overall struc-
ture of volume could be determined. But to a frame-based machine learning system,
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Figure 3-2: Audio signal of the first 60 seconds of “Shipbuilding.”

time domain data needs to be packed into some form fit for cross-frame dimensional
analysis.

Root-mean-square (RMS) Energy

One simple way of packing time domain data into frames is to take some aggregate
analysis over a small window size. The spectral approaches below will tackle this in
more detail, but for a simple view of the energy of the signal, one can compute the
root-mean-square energy of small windows of audio. The root-mean-square energy »
an audio signal frame z of length n is defined as:

n—1 2
Ve o
n
To form RMS into a feature vector, we can take the RMS estimation at evenly-spaced
frames of the time domain signal. For example, in our 60 second signal, approximating
the RMS at 5 Hz returns 300 estimates of energy which we can align in a feature vector.
Figure 3-3 shows the results of such an analysis.

3.2.2 Spectral approaches

Often we want to represent music in the frequency domain before trying to learn struc-
ture. The intuition behind this approach comes from the natural ‘matrix-ness’ of the
short time spectral transform of a signal X[k, j] = F(z[n]), in which given a sample
window size w, a matrix of frequency x time (j frames, one for each window of length
w) is generated. Since each bin 1..k of X|[k] refers to a fixed frequency in time, a ma-
chine learning system operating with the assumption that the features are coefficients
will attempt find correlation among the different frames.
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Figure 3-3: RMS energy computed in 5 Hz frames across the first 60 seconds of
“Shipbuilding.”

There are few machine learning algorithms that handle the instability of phase in the
complex numbers of X[k] as the dimensions would be inconsistent over successive
frames. [59] We usually immediately take the magnitude of the spectral transforma-
tion: X[k, j] = || F(z[n])||.

Power spectral density

Power spectral density (PSD) is normally interpreted as the mean of the short time
spectral transform over some fixed window size. In our work we normally use a PSD
window of 0.5 to 5 Hz. At the low end, for every two seconds of audio, a vector of
% + 1 coefficients of frequency are returned. This is the ‘sound of the sound:’ no
particular event happening in the audio will be represented, nor will time information
get across if each frame is treated independently. See Figure 3-4 for the first 8 frequency
bins of the first 60 seconds of “Shipbuilding” from a 5 Hz 256-point (w) PSD. Note the
correlation among adjacent bands; this redundancy should be eliminated either by the
learning system or a rank reduction pre-processing step.

“Beatogram” - Spectral Autocorrelation

A simple and popular permutation on the PSD or short-time Fourier transform is col-
loquially known as the ‘beatogram,’ or more directly the spectral autocorrelation. The
beatogram is the “STFT of the STFT,” where each vector of time variation per frequency
bin is transformed with a single FFT into the frequency domain. The intuition behind
the beatogram is to represent frames of music as their repetitive bases. Strong energies
in the low bins of a beatogram vector represent low-frequency oscillations.

By segmenting the audio (at a rate between 0.5 and 5Hz) in the same fashion as the
PSD, we take first the STFT of each sample frame, and then for each resultant row
X2, 7] representing spectral energy at frequency bin i F,. at frame j where F, is the
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Figure 3-4. Top: power spectral density vectors for the first 8 bins of frequency
information over the first 60 seconds of “Shipbuilding.” Bottom: first 16 bins of
frequency information arranged as a matrix.

analysis rate, we compute || F(X[i])||. The resulting frequency transform represents
the spectral activity’s modulation over one period of the analysis rate. We average this
modulation energy over large sections of frequency content (computing it once per
X|[i] in 1..k); in practice we set a cutoff between ‘low frequency modulation’ (0 — %‘-,
where F| is the sampling rate) and ‘high frequency modulation’ (—2‘ - —F;.) It should
be noted that higher analysis rates (such as 5 Hz) do not capture musically informative
modulations, we normally use a base analysis rate of 0.5 Hz for the beatogram. We
then align the modulation as a column in the final beatogram, and repeat this process
for each period of the base analysis. The result is a matrix B where B, ; represents the
modulation energy at time slice ¢ for modulation frequency j. j ranges from DC to
&gﬂ, the base analysis rate.

In the example of “Shipbuilding” in Figure 3-5 we see that the beatogram and PSD give
adifferent view of the same data. In this example, we show the beatogram computed on
the initial frequency range of 0 — ER-* and then the upper range of % - Ezl The intuition
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Figure 3-5: PSD and spectral autocorrelation frames at 0.5 Hz for 0 — ESL and
%- - ’—;ﬂ for the first 60 seconds of “Shipbuilding.”

behind this split was to model ‘bass’ type beat information (drums, bass guitar) vs.
the rest of the spectrum. The song “Shipbuilding” begins with a piano vamp for a
bar, followed by a slow drum pattern and bass. The low-end beatogram shows higher
energies at the point where the drums stay stable, reflecting the modulations in the
frequency domain.

3.2.3 Cepstral approaches

We now discuss two cepstral approaches, derived from speech research. Cepstral anal-
yses are computationally cheap, well studied, and are a popular choice for music rep-
resentations. [45]

Mel-frequency Cepstral Coefficients (MFCCs)

Mel-frequency cepstral coefficients (MFCCs) are defined as the mel-scaled cepstrum
(the inverse fourier transform of the logarithm of the power spectrum on a mel scale
axis) of the time-domain signal. They are widely used in speech recognizers and other
speech systems as they are an efficiently computable way of reducing the dimensionality
of spectra while performing a psychoacoustic scaling of frequency response.

To compute MFCCs from a (usually pre-emphasized) time domain signal z, the log
power spectrum P(z) is applied at some fixed windowing rate:

Py = log| F{=}|| (32)
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Figure 3-6: MFCC vectors 2-13 for the first 60 seconds of “Shipbuilding.”

At this point the mel scale is applied, through integrating the frequency ranges of P.
The mel scale was proposed in [76] from a listener study of pitch perception. A mel is
a unit of pitch, and a mel of z is thought to appear twice as high as a mel of . Starting
with 1000 mel = 1000 Hz, listeners were asked to increase the frequency until they
heard a tone twice the pitch of the original, and so on. The mel scale can be expressed
as a weighting of frequency in Hz as:

mel(f) = 2595 logyo(1 + (3.3)

700)
A plot of mel vs. frequency can be seen in Figure 3-7. After the power spectra is mel
scaled (either through bin realignment or a filterbank) the cepstrum is computed either
through an inverse fourier transform F ! or the discrete cosine transform (DCT.) For
computational efficiency, the DCT is often used since the input signal (the log mel
scaled power spectra) is real and symmetric. The amount of mel filters in the frequency
integration sets a maximum on the amount of mel cepstral coefficients that can be
returned, but usually 13 are desired for most speech and music tasks.

Studies of MFCC for music analysis (45] [81] [10] have shown them to be useful for
retrieval tasks. Specifically, in [45], a comparison between the de-correlating proper-
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Figure 3-7: Mel scale: mels vs. frequency in Hz.

ties of principal components analysis (PCA) and the DCT step of the MFCC is made,
showing them functionally equivalent for a speech / music discriminator. See Figure
3-6 for coefficients 2-13 of our test song.

Penny - Modulation Cepstra

Figure 3-8: Penny V1, 2 and 3 for the first 60 seconds of “Shipbuilding.”
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Our feature space, nicknamed “Penny” is based on the MFCC, and could also be termed
‘modulation cepstra:’ Penny is the Fourier transform of the MFCC along time, with a
weighting function to combine different cepstral coefficients. It is meant to capture
cepstral rate changes along with the cepstra, thus including knowledge about time into
the system. It is a cepstral analog to the ‘beatogram’ explained in Section 3.2.2.

Modulation
range

‘--‘ 0-15 Hz

Figure 3-9: Six levels of structure are decoded for the song “A Journey to Reedham"
by Squarepusher from the Penny feature.

To compute modulation cepstra we start with MFCCs at a cepstral frame rate (often
between 5 Hz and 100 Hz), returning a vector of 13 bins per audio frame. We then stack
successive time samples for each MFCC bin into 64 point vectors and take a second
Fourier transform on these per-dimension temporal energy envelopes. We aggregate
these results into 6 octave wide bins to create a modulation spectrum showing the
dominant scales of energy variation for each cepstral component over a range of 1.5 Hz
to 50 Hz (if the cepstral frame rate was 100 Hz.) The result is six matrices (one for
each modulation spectrum octave) each containing 13 bins of cepstral information.
The first matrix gives information about slow variations in the cepstral magnitudes,
indicating things like song structure or large changes in the piece, and each subsequent
matrix concentrates on higher frequencies of modulation for each cepstral coefficient.
An example set of six matrices from the Penny analysis can be seen in Figure 3-9.

In practice, we found that using the first two matrices of Penny performed the best
in music classification tasks. The high modulation data in the top four matrices low-
ered accuracy, perhaps at fault for representing inaudible or unimportant modulation
response.

3.3 Evaluation

To get a feel for the different features’ performance in a music retrieval task, we pitted
Penny, MFCCs and PSD against each other in an artist identification task. (See Section
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6.2.9 for more details.) We used an SVM (Section 5.2) with C' = 100, ‘auto-aux mode’
on a gaussian kernel, (Section 5.3.2) and a maximum of 1,000 observations per class
(chosen by pick-every-n) in a 1-in-20 artist ID problem. We used:

e Penny (first two matrices unrolled) at a 20 Hz cepstral frame rate

e MFCCs at a 20 Hz frame rate

Penny (first two matrices unrolled) at a 5 Hz cepstral frame rate

MFCCs at a 5 Hz frame rate

e MFCCs at a 5 Hz frame rate with delta embedding (computing the difference
between adjacent frames and ‘stacking’ those results for a total of 26 dimensions
per frame)

PSD at a 5 Hz frame rate with w = 256.

MFCC SHz Delta
MFCC 5Hz
MFCC 20Hz
Penny 20Hz
Penny SHz

PSD 5Hz

0% 25% 50%

Figure 3-10: Evaluation of six features in a 1-in-20 artist ID task.

The results are shown in Figure 3-10: the percentage is based on how many songs were
correctly classified (first choice) into the 20 artist bins on the test set. There were 200
songs total in the test set (10 song per artist), and 200 for training. We trained across
albums if available. We see that the MFCC (best with delta embedding) outperforms
Penny which vastly outperforms the PSD. Reading ahead to Chapter 6, it might be a
surprise that we use the Penny feature in our meaning recognizers. There are two rea-
sons that Penny is still a valuable feature for us: low data rate and time representation.
Because of the overlap in the fourier analysis of the cepstral frames, the Penny data
rate is a fraction of the cepstral rate. In usual implementation (Penny with a cepstral
frame rate of 5 Hz, 300 MFCC frames per minute) we end up with 45 Penny frames
per minute of audio. Even if MFCCs outperform at equal cepstral analysis rates, Penny
needs far less actual data to make its classifications. This becomes more important in

3.3 Evaluation
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a meaning recognition context where each artist or song is represented by only 10 or
100 frames of information due to the amount of data. The time-awareness of Penny is
also important to us as we wish to capture meaningful reactions such as ‘fast’ or ‘driv-
ing, which would not appear in non-periodic analyses (at low frequencies) such as the
MFCC analysis.

3.4 Conclusions

Throughout the meaning recognition component, we stick with Penny or modulation
cepstra as it’s an easily graspable concept with a simple implementation, high informa-
tion content and musical applicability. We consider our design goals met: a musically
informative feature that makes no assumptions and packs as much as it can into the
dimensions.
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CHAPTER FOUR
Contextual Analysis of Music

Just as the signal content of a piece of music needs to be packed in a form fit for later
analysis, the extra-signal context associated with music needs to be identified and put
into a robust representation. We call the contextual representation of music “commu-
nity metadata,” and it encompasses various types of data including free text, usage and
correlation. In this chapter we formally define community metadata and describe ways
of evaluating its utility.

4.1 Contextual Analysis for Music Understanding

“angry loud
guitars"
bum of 2004"
Ml WQHT adds
. s

My Rating v Play Count 18
L& & & & 4 4
* ok & 2

2

Figure 4-1: Types of contextual information a signal can refer to: critical comment,
community description, community usage, personal description, personal usage.

What should a contextual representation capture? Why is it worthwhile? Often, mu-
sic is defined just as strongly by its signal as its relationship to other signals, which
we can capture with similarity and co-occurence. Its effect, captured through usage




and description, addresses meaningful reaction. And music’s significance and corre-
spondence can often be captured in critical description (record reviews, editorial in-
formation) or even its lyrics. Overall, a contextual representation should encompass
everything about music that is missed in the signal. If we can’t understand what a song
is about and look it up on a metadata source such as All Music Guide [1] (AMG),
it should be in a contextual representation. If an artist performs frequently in both a
heavy metal and jazz group, that relation should be in a contextual representation. And
a song played thirty times in the last week that hasn’t been played before then should
be noted in the contextual representation.

A larger question than ‘why?’ or ‘what?’ is how?’ There is a long history of getting
computers to understand signals, and no clear analog to contextual information (which
is a fuzzy concept to begin with.) Our main task is to first define what sort of data we
can work with, and then figure out how to get it in a vector.

4.2 Community Metadata

We first defined community metadata in [83]. In our earlier work, we referred to com-
munity metadata as a ‘cultural’ representation, where ‘cultural’ was a way to refer to a
community at large’s opinion to a single point of reference (an artist.) Since then, we
extended community metadata to various kinds of new sources, including usage data,
playlists and similarity judgments. In this section we’ll define community metadata as
it relates to mined description, with additions in the form of new data sources.

421 Webtext

Our first goal is to model what people say when they are talking about music. To this
end we try to capture a general gestalt reference from web mined data. Put simply, we
crawl the web for music talk, parse it, and form it into a compact representation. This
data mixes together and encapsulates many types of contextual data, including reac-
tion, significance, editorial information, along with relational information. It should
be noted that much like our Penny feature (Section 3.2.3) webtext is general, not spe-
cific to any type of music, and not with a predefined notion of structure. (We don’t
look for any words in particular or start from any set of web sources.) Our design
goals were to represent some ground context M in a community k using unsupervised
crawling, mining, extraction and clustering techniques. Our webtext representation
can be applied just as cleanly to images, video and books.

Our input feature space for webtext community metadata comes from a a natural lan-
guage feature extractor we developed for freeform web-extracted text. Our crawler
takes as input a query term (usually an artist name, but also can work for album titles,
etc.) which we augment with the search terms (domain dependent) such as ‘music’
and ‘review. For example, the ‘review’ search enhancement serves to limit the results
to topical text about the artist (hopefully a review of an album, song, or concert.)
Many results for the single-term only query ‘Madonna, for example, return splash
pages or marketing concerns. The ‘music’ search enhancement similarly hopes to limit
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common-word artist names such as ‘War’ or ‘Texas’ to return only musically-related
pages.

We send the query to a search engine' and then download a large amount of the top
returned pages (this will be important later, we’ll refer to the downloaded page count
as p.) Each page in p is fed to a HTML parser that extracts the screen-viewable text. We
then remove all extraneous whitespace and special characters and begin the process of
feature extraction. We extract n-grams (sequences of ordered words having n words)
for n = 1 (nl or unigrams) and n = 2 (n2 or bigrams) from each page. We also feed
the plain text input to a part-of-speech tagger (Brill’s [13]), which fits each single word
into a part of speech class (noun, verb, pronoun, adjective, etc.). Finally, we apply a
noun phrase (NP) chunker (Penn’s baseNP [58]), which selects terms to populate the
np class.

Noun Phrases

Noun phrases Not noun phrases
kittens kittens went
angry guitars guitars that become
the loud first gasp loud first
not very funky music funky

Table 4.1: An example of valid noun phrases and invalid noun phrases.

Noun phrases can be thought of as a noun extended with a maximal amount of de-
scriptive text surrounding it. There is a defined grammar for noun phrase extraction,
and once part-of-speech tagging has occurred, a simple rule-based NP chunker can op-
erate on any amount of text. Noun phrases suggest more than a simple bi- or tri-gram
since their content is limited to one idea. In the music domain, the sentence “Metallica
employs screeching heavy metal guitars” leads to both ‘metal guitars’ and ‘screeching
heavy metal guitars’ as noun phrases, but only the first is a possible bigram. Noun
phrases can also serve as a simple noise reduction technique. A possible trigram from
the above text could be ‘employs screeching heavy, which on its own does not provide
much in the way of semantic description. But the NP extractor would retrieve the max-
imal NPs ‘Metallica’ and ‘screeching heavy metal guitars, as well as ‘heavy metal’ and
‘heavy metal guitars’ The NP extractor would also return possibly musical problem-
atic phrases like ‘metal guitars’ in a different context. Overall, the intuitive descriptive
nature of noun phrases led us to believe that they should perform better than n-grams
in the same retrieval or description task.

Adjective set

We also chose an adjectives-only subset adj of the n1 class as a semantically descriptive
feature set. The adjectives term set consists of every nl term tagged as an adjective by
the part of speech tagger. The adjectives encapsulate a large amount of generalized de-

'We initially used GoogleTMand later a larger variety of web service search engines
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n2 Term Score np Term Score adj Term Score
dancing queen 0.0707 || dancing queen | 0.0875 || perky 0.8157
mamma mia 0.0622 mamma mia 0.0553 nonviolent 0.7178
disco era 0.0346 || benny 0.0399 || swedish 0.2991
winner takes 0.0307 || chess 0.0390 || international | 0.2010
chance on 0.0297 || its chorus 0.0389 || inner 0.1776
swedish pop 0.0296 || vous 0.0382 || consistent 0.1508
my my 0.0290 || the invitations | 0.0377 || bitter 0.0871
s enduring 0.0287 | voulez 0.0377 || classified 0.0735
and gimme 0.0280 || something’s 0.0374 || junior 0.0664
enduring appeal | 0.0280 || priscilla 0.0369 || produced 0.0616

Table 4.2: Top 10 terms of various types for ABBA. The score is TF-IDF for adj
(adjective), and gaussian weighted TF-IDF for term types n2 (bigrams) and np
(noun phrases.) Parsing artifacts are left alone.

scriptive content concerning the artists and are human-readable and understandable.
For the entire list of unigrams, important descriptive terms tend to get lost among
common words, technical terms, Internet-specific terms and typos. For applications
such as query-by-description and description synthesis, the adjectives set is very use-
ful. We also note that the adjective set is orders of magnitude smaller than the rest.
The identified adjectives compose only about 1% of the unigrams found from our web
crawls. An average adjective set for an artist is only 100 terms. The smaller number of
terms helps speed learning and reduce complexity.

Artist terms

An important part of our feature space is the “artist term” set, art. We parse nl for
terms that appear in the list of the top 6,000 artists found in our peer-to-peer crawling
(see Section 4.2.2.) By doing this, we hope to be able to designate a section of our
feature space to “similar artist” explanations. Many reviews of artists use other similar
artists as touchstones to describe the music, and by creating a feature space that directly
makes use of this, we may gain greater accuracy in our evaluation.

Although n2 ends up performing best (alone) in a similarity evaluation, we tend to
use in practice either adj or np for specific meaning recognition tasks. adj gives us
‘filters, terms that describe effects of music such as ‘loud’ or ‘romantic’ while np gives
us ‘events:” terms that denote something happening in the music (‘heavy metal guitars)
or specific information about the music (artist names, song titles.)

Scoring

After extracting the terms from our webtext mining, we now look to representing the
salience of each term. Salience is the importance of a term ¢ given the ground context
M. 1t is explicitly not the probability of a term given a context: P(t|M), as this would
only lead to optimizing specific terms appearing in the music context (band members’
names, song titles) Rather, the salience should reflect value in a summarized version of
M (i.e. a test should indicate that the topmost salient terms for M would adequately
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describe M,) and to achieve this we need to slightly modify the usual information
retrieval task.

After extracting the features, we can compute term frequency and document frequency
for each term type in each context set. Term frequency ( f;) was defined as the percent-
age of retrieved pages that contained the given term (treating each retrieved page in p
separately). Document frequency (fy) was computed across the entire retrieved set,
treating each entire context as a document. We treat both f; and f; as a normalized
probability between 0 and 1 (where f; is P(t|M) and f, is P(t|M°)), and then com-
pute the TE-IDF (f;/ fa) [66] value of each term, which we also normalize between the
local minimum and maximum values for each artist.

If two contexts share a term in their feature space, we say that those terms overlap with
an associated salience. The scores for overlap are accumulated to create a numerical
similarity metric between two contexts. We compute overlap for all term types that we
have extracted. To compute the score of two terms having overlap, we experimented
with various thresholding and smoothing metrics. The score of an overlap could simply
be 1 (a match of a term on two contexts) or it could a function of the term and/or
document frequency. In the former case, common words such as ‘music’ or ‘album’ get
very high overlap among all contexts, and typically do not retrieve musically intelligent
terms. Considering this, we use a metric that is based on the TF-IDF value of the term
in question. The nature and size of the n1, n2 and np sets (in the tens of thousands for
each context) led us to believe that we needed a way to emphasize the terms found in
the middle of the span of IDF values. The intuition is that very rare words, such as typos
and off-topic words rarely used on music pages, should be down-weighted in addition
to very common words such as ‘the’ To achieve this, we used a gaussian smoothing
function that, when given appropriate u and ¢ (mean and standard deviation) values,
can down-weight both very common and very rare terms to create a salience function

s(t,M):

P(t|M)e~(og(PEIM=)—)?

st,M) = 507

(4.1)

where P(t|M°) is renormalized such that the maximum is the total document count.
Through an empirical evaluation on an artist similarity task (shown below) we ended
up choosing 0.9 for o and 6 for . To compute an overlap score, we simply add the
gaussian-weighted result for each term found in both the comparison and the base
artists’ sets.

Evaluating Webtext

To see which forms of webtext were more apt at understanding the aboutness of their
context, we performed an artist similarity evaluation. In these experiments, we chose
artist names (414 artists) for our M. Our experiments concentrate on evaluating the
fitness of our representation by comparing the performance in computing artist sim-
ilarity with an edited collection. We note that our representation is suitable for many
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tasks; but artist similarity is well-posed and we can perform formal evaluation with
“ground truth” data.

During each of the following experiments, we ran a system that computes overlap of
terms. Our grounding assumption is that similar artists share features in our space,
and that our representation allows for enough generality to classify artists into similar
clusters. To evaluate, we compare the performance of our varying feature types in the
task of predicting the All Music Guide’s [1] similarity lists (for each of our 414 artists,
AMG on average lists 5 other artists also in our set that are known similar).

For each artist in our set, we take the top n terms from their feature space. n is defined
as a rough minimum for the size of the feature space; we want each artist to have the
same amount of terms for comparison purposes. For the nl term type, for example, n
is 1000 (n2: n=5000, np: n=5000, adj: n=50, art: n=500). The top n terms are sorted
by the overlap scoring metric, either using the gaussian-weighted TF-IDF (Equation
4.1) with 4 = 6 and 0 = 0.9 or the ‘flat’ TF-IDF alone. We then compare this feature
space against every artist in the current artists’ edited similarity list. The overlap scoring
metric is averaged for each similar artist. We then do the same for a randomly chosen
set of artists. If the overlap score is higher for the similar artist set, we consider that our
feature space correctly identified similar artists. The percentages shown below indicate
the percentage of artists whose similar cluster was predicted. We expect this task to be
relatively easy, i.e., we expect percentages > 50%. Note although that the entire set
of artists (which correlates with the interests of OpenNap users from our peer-to-peer
crawling in Section 4.2.2) is predominately rock and pop with few artists from other
styles of music.

We also compute a more powerful metric which we call overlap improvement, which
is the ratio between overlap scores for similar artists compared to randomly chosen
artists. A higher overlap improvement indicates a stronger confidence of the feature
space for this task.

nl n2 np adj art
Accuracy 78% | 80% | 82% | 69% | 79%
Improvement | 7.0x | 7.7x | 52x | 6.8X | 6.9x%

Table 4.3: Results for the flat TF-IDF scoring metric for artist similarity.

nl n2 np adj art
Accuracy 83% | 88% | 85% | 63% | 79%
Improvement | 3.4x | 2.7x | 3.0x | 4.8x | 8.2x

Table 4.4: Results for the gaussian-weighted TF-IDF scoring metric for artist simi-
larity.

We see in the results of Table 4.3 and Table 4.4 (and as a chart in Figure 4-2) that
the gaussian weighted TF-IDF outperforms the unweighted TF-IDF for a few key term
classes in accuracy. The improvement metric is less obvious, however, but explained by
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the lower scale of the gaussian weighted TF-IDF, and the poor normalization of the flat
TF-IDE Overall, however, the results are promising: using contextual features alone,
we can predict with high accuracy similar artist clusters.

™ TF.IDF ™ Gaussian smoothed

0%

60%

30%

.
|

0%
Unigram Bigram Noun Phrase Adjectives Artist Terms

Figure 4-2: Results for both gaussian-weighted and flat TF-IDF accuracy in an
artist similarity task.

4.2.2 Peer to Peer Usage

We also created a similarity measure of artists based completely on user collections in
peer to peer networks. We defined a collection as the set of artists a user had songs by on
their shared folder during a crawl of the OpenNap peer-to-peer music sharing network.
If two artists frequently occur together in user collections, we consider them similar
via this measure of community metadata. We also define a collection count C(artist)
which equals the number of users that have artist in their set. C(a, b), likewise, is the
number of users that have both artists @ and b in their set.

However, one particular problem of this method is that extremely popular artists (such
as Madonna) occur in a large percentage of users’ collections, which down-weights
similarity between lesser-known artists. We developed a scoring metric that attempts
to alleviate this problem. Given two artists a and b, where a is more popular than b
(i.e., C(a) > C(b)), and a third artist ¢ which is the most popular artist in the set; they
are considered similar with normalized weight:

C(a,b)
C(b)

_IC(a) —C(®)|
C(e)

S(a,b) = (1 ) (4.2)

The second term is a popularity cost which down-weights relationships of artists in
which one is very popular and the other is very rare. We evaluated this similarity metric

4.2 Community Metadata
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by replacing the All Music Guide ground truth with this data on the same experiments
as in Section 4.2.1. The results are in Table 4.5.

nl n2 np adj art
Accuracy 80% | 82% | 84% | 68% | 72%
Improvement | 2.6x | 2.1x | 2.4x | 7.1x | 4.5X

Table 4.5: Similarity accuracy using OpenNap community data as ground truth.

4.2.3 Other forms of contextual data

Baseline m ‘
Webtext TENEE | l

Collections BE- ! ‘
Playlists I

Expert (AMG) XM ‘ '
Audio (MFCC) | |
‘ |

Audio (anchor) IJA \
Survey (self) _ ) 1

0% 25% 50% 75%

Figure 4-3: Top-rank similarity agreement against the Musicseer [23] similarity
survey among different types of signal data and community metadata. [10]

We investigated other forms of contextual data for the meaning recognition, which we
will briefly mention here. In [23] we created the ‘Musicseer’ game, which asked users
to rate artist similarity directly or through an ‘erdos distance’ metric. Using that data as
ground truth, we evaluated self-similarity (using the user data as extracted community
metadata to test against itself), edited artist similarity metadata (from AMG), collec-
tion data as extracted from the OpenNap analysis (Section 4.2.2) and user submitted
playlist data from the popular web site Art of the Mix [2]. A large scale evaluation
of these contextual sources (along with two audio-derived features) was performed in
[10], using top rank agreement to the Musicseer rankings as a fitness metric.

The results from this analysis is in Figure 4-3. The baseline results were from random
similarity, the ‘self’ results indicate inter-rater reliability between all survey respondents
(i.e. the respondents agreed with themselves 54% of the time.) The picture as painted
should be clear: there is no single type of contextual or signal derived data that solves
the ‘meaning problem’ By considering all possible forms together we hope to capture
as much contextual data as we can, and let the recognition system sort out what is
important.
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4.3 Community Modeling

An immediate problem with extracting contextual data from the internet as in our
webtext analysis is that there is no notion of intra-domain meaning specificity. That
is, we assume that the salience of ‘romantic’ to a context like “Barry White” is agreed
upon as the mean of the entire world’s salience. In reality, there are many meanings
of romantic and in particular many views on how romantic Barry White is. We want
to create multiple sub-contexts within each ground context M, and we need to do this
without any explicit survey or heuristic measure.

>
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loud '
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Figure 4-4: Community modeling process: expanding a ground context vs. term
matrix to the sub-contexts, and then reducing the p sub-contexts into k community
views on a single term.

The problem becomes: given a ground context M (an artist name, album title, song)
and a set of p returned pages each with a group of terms ¢ each with associated salience
s(t, M), how can we compute a model of salience given a sub-context: s(¢, M), x?
Thanks to the large amount of p stored for each M (usually between 50 and 200) and
the variety of internet sites with their own communities and language patterns, we
can cluster the ground context into kK communities without any domain knowledge
or demographics. We rely on the assumption that there are extractable differences in
description among those p pages, and over a large enough set, correspondences among
p will form communities.

The actual implementation relies on singular value decomposition (SVD) (see Section
6.2.4 for more details.) When SVD is applied to text stores such as ours, it is often
called Latent Semantic Analysis or Latent Semantic Indexing. However, our aim is
not to reduce the dimensionality of the term space, as LSI methods do, but rather to

4.3 Community Modeling
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reduce the dimensionality of the sub-contextual space, the pages p. We assume that
at the outset each of these extracted p per ground context M represents their own
community. This is overall not true, so we rely on the SVD to reduce the rank of this
space from p to k.

Implementationally, we collect the webtext data as usual but do not bag all the returned
pages p into the same s(¢, M) equation as usual, but rather create a s(t, M, p) function
from each p. We then arrange this new data as ¢ matrices of size p x M, one matrix for
each term. Each matrix represents view of page p for ground context M of its term ¢.
We'll call this matrix R, or the sub-context vs. context space.

We extract the k top principal components using PCA (Section 6.2.4) of R, which
results in a k x M matrix for each term in t. The PCA step reduced the dimensionality
of the sub-contextual space from p to k by looking at correspondences of the target
label across ground contexts. Projecting this subspace back onto the entire contextual
space allows us to go from a ‘global’ s(t, M) to a set of k s(t, M), .. . We can treat this
space as “k versions of ‘funky” for later meaning recognition tasks if needed.

431 Time-aware Community Metadata

We note that the contextual data extracted in community metadata has an important
benefit in that it can be crawled or extracted at regular intervals, this ‘time-aware’ qual-
ity of the representation is a clear advantage over signal-based analyses. Just as we store
sets of k s(t, M);.. , models per community, we can also store a memory of recent
contextual perception. A user model can inform which point in time the listener wants
to relate to. We can also perform analyses of community perception over time, and
integrate those results into a stronger contextual representation.

4.4 Conclusions

By looking at web-mined description, peer to peer usage patterns and other globally-
available data, we can reliably show that we are extracting necessary contextual infor-
mation about music. Our later experiment make heavy use of linking the contextual
description to the signal, but the types of contextual community metadata described
here can be used for many tasks alone, without any perception involved.

We note our largest problem is one of contextual scale: through the process of our data
collection, most of our context is at the artist level. This becomes problematic when
linking song or sub-song level acquired description (“This break is funky,” or “This
song is sad, but the band is usually happy”) to audio signals. Much of the contextual
scale issues are considered part of future work: our goal here is to generate a generalized
representation of aboutness given a large set of data.
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CHAPTER FIVE
Learning the Meaning

Now that we know how we’re going to represent music (modulation cepstra) and how
we’re going to represent the contextual extra-signal part of music (community meta-
data) we now need a way to actually learn the meaning (the link between the two.) In
this chapter we discuss our two main tools, the well-known support vector machine
(SVM) and its relative, regularized least-squares classification. We'll talk about the de-
sign goals for learning the relationship between high dimensional audio data and up to
200,000 output classes and how to implement this problem at a large scale.

5.1 Machine Learning for Meaning Recognition

The machine learning algorithm will hopefully create a link between the perception
and the interpretation. It should be able to create ‘machines’ that can classify new per-
ception offline (after training is completed.) We would like to train a single machine
for each particular type of interpretation. This includes descriptors (“loud,” “roman-
tic,” “funky”), events (“beating drums,” “first loud burst of noise,”) and anything else
we can think of. However, the problem has three important caveats that separate it
from most classification tasks:

¢ Too many output classes: Each audio frame can be related to up to 200,000
terms (in the unconstrained case.) Most contexts have community metadata
vectors of 10,000 terms at one time. For a standard machine learning technique,
this would involve costly multi-class learning.

e Classes can be incorrect or unimportant: Due to the unsupervised and auto-
matic nature of the contextual feature extraction, many are incorrect (such as
when something is wrongly described) or even unimportant (as in the case of
terms such as ‘talented’ or ‘cool’ — meaningless to the audio domain.) We would
need a system that could quickly fetter out such errant classes.

e Outputs are mostly negative: Because the decision space over the entire artist
space is so large, most class outputs are negative. In an example 51 artist set, only
two are described as ‘cynical” while 49 are not. This creates a bias problem for
most machine learning algorithms and also causes trouble in evaluation.
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One possible way to learn this relation is to train a binary classifier on each possible
interpretation, given the audio frames as input examples. However such training has a
large startup time for each new class. We show below a novel algorithm that eliminates
this startup time and allows for multiple classes to be tested easily.

5.2 Support Vector Machines

Support vector machines (SVM) {80] [14] are a classification technique based on struc-
tural risk minimization (SRM), where the lowest probability of error given a hypothesis
is found. The output of the SVM is a set of support vectors w and a classification func-
tion given data in x and a bias term b:

f(z) = sgn ((W,x) +) (5.1)

The problem can be viewed as form of Tikhonov regularization [26], finding the best
function f in the hypothesis space H

1
min - Z (i F(x:)) + MIf 1 (5.2)

where V(f(z), y) is a loss function that shows the loss (or ‘price’) when, given x, we say
f(z) and the ground truth is actually y. x contains the observation space of £ frames
or observations. If the chosen loss function is a hinge loss,

V(f(x),y) = max(1 — yf(x),0) (5.3)

the regularization problem now is

£
min %Z 1 — g f(0)) + A Fl1% (5.4)

Because the hinge loss function V' (f(z), y) is not differentiable adding in a necessary
slack variable £ makes the new regularization problem

e
! 2
min 3 ,-E=1 & + Al fll% where (5.5)
yif(x:) 21-§, and§; >0 (5.6)
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5.2.1 Representer Theorem

Figure 5-1: The optimally separating hyperplane of two classes, where the data is
linearly separable.

The usefulness of the SVM lies in the representer theorem, where a high dimensional
feature space x can be represented fully by a generalized dot product (in a Reproducing
Kernel Hilbert Space [7]) between x; and x; using a kernel function K (x;,x;). For
example, the binary classification problem shown in figure 5-1 could be classified with
a single linear hyperplane learned by an SVM. However, non-linearly separable data
as in Figure 5-2 need to consider a new topology, and we can substitute in a gaussian
kernel function that represents data as

K¢(zy,22) = e~ T (5.7)

where o is a tunable parameter. Kernel functions can be viewed as a ‘distance function’
that compares all the high-dimensionality points in your input feature space and rep-
resents all your data as some distance between points. There is a bit of engineering in
choosing the best kernel function, as the function should reflect structure in your data,
and later we discuss an alternate kernel for music analysis. For now it should be noted
that kernel matrices (the £ x £ matrix K that contains all the kernel evaluations) should
be symmetric positive semi-definite; that is, all the eigenvalues of K are non-negative.

If we substitute f(z) with the new f*(x)

2

%)= aK(x,xi) (5.8)

i=1

we end up with the ‘primal’ SVM problem, a constrained quadratic programming
problem:

5.2 Support Vector Machines
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Figure 5-2: The generalized optimally separating linear hyperplane of two classes
(dashed line) along with the optimally separating gaussian radial basis hyperplane.

[4
1 o
celgj,ler.lskl 7 ; & + Ac’ Kc where (5.9)
I3
yi(ZCjK(.’L‘i,Ij)-Fb) 2 1—6,' and{i ZO (510)

=1

(Here K is the filled-in kernel matrix, not the kernel function.) It should be noted that
through Lagrangian analysis the primal is presented as a dual program that is easier to
solve. In practice, refer to [14] for more information.

A is a ‘regularization parameter’ often in practice re-appropriated as C as a tunable
training parameter:

C=— (5.11)

C is colloquially the ‘generalization knob’ as it affects the tradeoff between accuracy in
classification given the observations in x and generalization to new data. Substituting
in the new definition of C and relating the kernel vectors to the support vectors leaves
us with the new primal of

¢
. b o
werg)}genc i§=] &+ §||w|| where (5.12)
vi((w,x) +b) >1-¢and & >0 (5.13)
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Where the f(z) of new data can be predicted once w is found using Equation 5.1.
Note that the generalized dot product used in the primal program must also be used to
classify new data.

5.3 Regularized Least-Squares Classification

Regularized Least-Squares Classification (RLSC) is a powerful approach to solving ma-
chine learning problems [62]. It is related to the Support Vector Machine in that they
are both instances of Tikhonov regularization, but whereas training a Support Vec-
tor Machine requires the solution of a constrained quadratic programming problem,
training RLSC only requires solving a single system of linear equations. Recent work
[30], [62] has shown that the accuracy of RLSC is essentially identical to that of SVMs.

Starting with the regularization problem in Equation 5.2, we substitute the square loss
for V(f(x,9)):

V(f(x,3:) = (f(x) —y) (5.14)

which makes the problem now

¢
f = arg min ; ;(f(xi) — ) + A% (5.15)

Using the representer theorem, we can again repurpose the regularization problem us-
ing Equation 5.8. However, if we keep the entire kernel matrix K, we can classify data
with

It would be helpful at this stage to refer to K as your observations (run through the
kernel space) and c as your ‘machine’ that transforms a point of data into the output
of the function. Using the representer theorem, our regularization problem is now

.1

f = min (Ke —y)* + M| fli% (5.17)

and knowing that our function f(z) is in the form of Equation 5.8, we now need to
minimize a function g(c) to find c:

g(c) = >(Ke-y)? + AcTKc (5.18)

|-

5.3 Regularized Least-Squares Classification
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which, after taking the derivative with respect to c and setting the equation 0, we arrive
at

c=(K+ Xy (5.19)

where I is the identity matrix. Remembering the definition of A from Equation 5.11,
we are left with

I
(K + 55)(: =y, (5.20)

Since C is a constant that in practice remains the same with different problems, we
usually ignore the 2 in the denominator.

5.3.1 Multiclass RLSC

A key property of this approach is that in Equation 5.20 the solution c is linear in
the right-hand side y. We compute and store the inverse matrix (K + é)"l (this is
numerically stable because of the addition of the regularization term é), then for a
new right-hand side y, we can compute the new c via a simple matrix multiplication.

For example, given a fixed set of training observations, we can create the kernel matrix
K, add the regularization term, and invert. (In practice we use iterative optimization
techniques.) To create machines for each possible output class, simply multiply the
inverted matrix by a truth y vector (where y is —1. .. 1 for each observationin1...Z.
The resultant ¢ will be able to classify new data by projecting a test point X¢es¢ through
the kernel function K and then c:

f(xtest) = CK(xlesta X) (5.21)

in implementation, this can be interpreted as your classifier multiplied by every point
of training data evaluated through the kernel against your new test point. In effect,
RLSC can be seen as equivalent to an SVM in which every training observation be-
comes a support vector. The vector c for each class weights each observation’s impor-
tance to the resultant classifying function.

In most multi-class problems, training time is linear in the amount of classes n. Train-
ing an SVM to discriminate amongst n classes either requires n SVMs in a one-vs-all
scheme (in which each SVM is asked to discriminate between membership in their class
or no membership,) or up to (n * (n — 1)) SVMs in a one-vs-one scheme (1 vs. 2, 2 vs.
3,3 vs. 4,4 vs. 5, 1vs. 3, etc.) [55] For RLSC, since adding new classes is implemented
with a simple matrix multiplication, otherwise intractable problems are now possible.

5.3.2 RLSC Optimizations

RLSC does have the downside of being memory-hungry: storing the entire K in mem-
ory or disk becomes unwieldy soon. 10,000 observations stored in a full matrix using
double-precision floating point numbers requires 800 megabytes of storage. To imple-
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ment RLSC we investigated two short-circuit paths for a large-scale implementation,
as well as a method of estimating the kernel parameter 0. In our case we fully solve the
system of equations, we should note that there exist ways of iteratively optimizing the
RLSC inversion using conjugate gradient methods [32].

Cholesky Decomposition

The Cholesky decomposition [32] is a well known method of matrix factorization
meant as a front end to full inversion. It allows inversions of positive definite matrices
to be computed in half the operations over Gaussian elimination, and in implemen-
tation only requires the lower triangle of the matrix to be stored. The inverse of the
kernel matrix K (which by definition is symmetric positive semidefinite, the é term
makes it fully definite) is

K™!=(@LT)! (5.22)

where L was derived from the Cholesky decomposition. There are highly tuned algo-
rithms for both computing the Cholesky decomposition in place on a lower-triangular
matrix and also the inverse of the Cholesky factorization available in LAPACK [6].

In our implementations, we use the single precision LAPACK Cholesky (SPPTRF) and
inverse (SPPTRI) on a packed lower triangular matrix. This halves the memory con-

straints (only % 4-byte floats are stored and is roughly twice as fast as a full inversion.

Parallel RLSC

Our work is computed on a cluster of machines, each with two processors. RLSC solv-
ing is both memory and processor bound, so the collection of multiple machines, each
with their own memory subsystems, is a boon to solving very large RLSC problems. To
solve a ‘parallel RLSC’ problem we first split our observation space in £ into ¢ slices, in
which the kernel evaluations are all only among their own slice. For example, instead
of having an (currently infeasible) 50,000 x 50,000 matrix (5 gigabytes) we partition
the data among 10 processors randomly, and each node in ¢t receives an observation
space of £ = 5000. This randomized subsampling is a ‘curse of dimensionality’ fix for
the observation space and increases accuracy over the small single node results in an
artist identification task.

Auto-aux Mode

The variance parameter ¢ in the gaussian kernel (Equation 5.7) is often an important
optimization in the learning process. ¢ needs to reflect the scale of the data, and is
normally set to o = 0.5 if the data has been pre-normalized. But in our task we com-
bine features from different sources and we’ve found that normalization has a harmful
effect on testing accuracy. To that end, we created a quick heuristic estimation of o,

5.3 Regularized Least-Squares Classification
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where A contains your observation vectors:

~ | A 5.23
o ig}g)éf( ) (5.23)

We find with this simple approximation that training on non-normalized data with
a gaussian kernel approaches the performance of a hand-tuned (or derived through
cross-validation) o without the computation cost. For multi-class tasks, o can be es-
timated per class instead of over the whole dataset, which has a net positive effect on
multi-class scaling.

5.4 RLSC vs. SVM

® RLSC & SVM

100 1000 10000 50000 100000

Observations

Figure 5-3: RLSC vs. SVM for accuracy in a 1-in-20 prediction task. Last two
SVM datapoints not computed.

The square loss function of RLSC makes it a much simpler process that handles mul-
ticlass learning more cleanly, but we are concerned if it performs adequately against
the SVM. To evaluate this performance, we pitted RLSC against SVM in an artist iden-
tification task (covered in more detail in Section 6.2.9.) Artist ID is a hard music-IR
problem with solid ground truth and a strong reliance on features and learning algo-
rithm. We chose a baseline feature space (MFCCs) and ran both on the same 1-in-20
artist ID problem. We varied the amount of observations (£), kept C' at 100, used a
gaussian kernel (Equation 5.7) with ‘auto-aux’ mode (described in Section 5.3.2) for
the o kernel parameter. Our SVM solver was Nodelib [27] and we used our own RLSC
solver. We should note that the observation count for the SVM is per-class, that is for
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each 1 vs. all classifier it loads £ in to learn the model. For RLSC, since it is learning all
classes at once, the £ is over all the classes.

€ RLSC 4 SVM

60000 min

30000 min @ ——

0 min

5 10 100 1000 5000 10000

Classes

Figure 5-4: RLSC vs. SVM for compute time, number of classes variable. Last two
SVM datapoints simulated.

The accuracy results are in Figure 5-3. With small observation counts RLSC does not
fare as well as the SVM mostly due to the low observation count per class. But at signif-
icant counts (10,000) the RLSC approaches the SVM and continues to climb with more
observations. We did not stick around for the SVM to finish computing 50,000 obser-
vations per class or above. We note the simulated memory (Figure 5-5) and processor
time (Figure 5-4) comparisons for the two algorithms: RLSC is memory dependent
on observation count, where SVMs normally look at small pieces of the data at a time
in a cache, so the memory use stays static. For computation time the SVM is linearly
dependent on class count, while RLSC stays static independent of class count.

5.5 Conclusions

Our take-home message is to show that RLSC is not fit for binary or small multi-class
problems but for larger multi-class problems the accuracy matches and can even eclipse
that of the SVM, and can be easily and efficiently implemented. The SVM is simply not
applicable to our large in-use test case of up to 10,000 output classes operating on over
200,000 £.

5.5 Conclusions
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Figure 5-5: RLSC vs. SVM for memory / disk allocation, number of observations
variable.
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CHAPTER SIX
Semantic Basis Functions

In this chapter we’ll evaluate our meaning recognition system in two separate forms:
first through the lens of “query-by-description,” in which a predictive model of com-
munity supplied reaction applies to new ‘unheard’ data. We’ll discuss the reasoning
behind this evaluation along with two applications of this type of evaluation: parame-
ter learning and textual analysis in the form of a bi-corpus of record reviews. We then
discuss our more robust evaluation in the concept of ‘semantic basis functions—" mean-
ing classifiers which predict types of meaning (mostly relational and reaction) from
perception and represent any new perception by a linear combination of this reaction—
and how meaning can directly influence music and other multimedia understanding
tasks for better accuracy in classification.

6.1 Query By Description

We test the strength of our perception to interpretation models by an on-line ‘query-
by-description’ (QBD) task, in which the system is asked to label as-yet-unheard mu-
sic, and we use prediction accuracy to evaluate the models. The work in query-by-
description has two direct uses: first as an interface (“play me something romantic”)
and second as an analysis method to detect musicality of terms. Our evaluation frame-
work allows us to detect which terms have naturally higher correlations to audio than
others. Words such as ‘funky’ have high predictive accuracy, while words like ‘bad’ or
‘sexy’ do not. This analysis provides an insight into the meaning of music description
and can be used for numerous text and audio understanding tasks.

6.1.1 Term prediction

To compute a predictive model c, for each term ¢, we use RLSC to learn the relationship
between the audio features and each term in the community metadata vector. For this
type of experiment, we use artists as our ground context: each term will be related
at the artist level, and the audio data will be culled randomly from any of that artists’
music. This represents an enormous chasm of scale: terms in free description can relate
to all kinds of structure, from the artist and its community to the notes and samples in
their recordings. Our intuition is that for this type of experiment, faced with thousands
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Figure 6-1: Mean spectral characteristics of four different terms evaluated from a
query by description task. Magnitude of frequency on the y-axis, frequency in Hz
on the x-axis.

of artists and tens of thousands of target classifiers, we are up against more than issues
of scale in semantic attachment. Our hope is that the evaluation component of the
learning will lead us to tune our models and be able to tell which types of classifiers are
in fact learning a strong connection between the perception and interpretation.

After choosing a set of a artists, we choose 5 random frames of audio from each, where
£ is our total amount of frames to consider over the entire term prediction set. Using
the gaussian kernel process described in Chapter 5, we create the full kernel matrix
K, stored either in full or distributed across processors, and add the é term, usually
choosing a C of 100 and the ‘auto-aux’ (Section 5.3.2) mode for o. We then invert
the matrix using the Cholesky decomposition and store the result. This becomes our
support vector matrix S.

For each term in t, to create the c; we simply multiply a ground truth vector y; by
S. y; is an £-long vector, normally containing the s(t, M) salience metric outlined
in Chapter 4: the s(¢, M) values for a single term ¢ for each of the contexts in M
corresponding to the audio-derived feature frames used to create S. We create a c for
each term in t.

To evaluate new data in a vector x (in a test set or on-line application), one simply
computes the kernel product K (S, x) using the same o as in training, and then mul-
tiplies the result by c; for each ¢t. The result will be a single scalar, which is usually
regularized to its own sign (—1...1). This is the prediction of membership for audio
frame x in term class t.
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Scoring metrics

If the sign of s(t, M) (or its thresholded version) is the same as our computed mem-
bership, we consider the prediction successful. The evaluation is then computed on
the test set by computing a weighted precision: where P(x,) indicates overall pos-
itive accuracy (given an audio frame, the probability that a positive association to a
term is predicted) and P(x,) indicates overall negative accuracy, P(a) is defined as
P(z,)P(z,). However, to rigorously evaluate our term model’s performance in a re-
action prediction task, we note that this value has an undesirable dependence on the
prior probability of each label and rewards term classifiers with a very high natural £,
often by chance. For example, the term ‘sad’ could have a prior positive probability
of P(sad) = 0.5 (the amount of frames overall that have a ‘sad’ ground truth.) If we
guessed randomy with knowledge of the prior, P(z,) would be 0.5 and P(z,,) would
also be 0.5 (P(z,) = 1 — P(x,).) This would make P(a)sqq have a baseline of 0.25,
25%. We counter this by noting that none of our terms have priors close to 0.5, most
havea f4 of under 0.1, which would make the baseline P(a) = 0.1 x 0.9 = 0.09 (9%).

In practice, the P(a) measure is a useful evaluation metric for term attachment. When
the classifier accuracy needs to be measured in a more robust way, we use a model of
relative entropy, using the Kullback-Leibler (K-L) distance to a random-guess proba-
bility distribution.

We use the K-L distance in a two-class problem described by the four trial counts in a
confusion matrix, where ¢ is ‘sad’ for the classifier ¢4q4:

Classifier says ‘sad’ | Classifier says ‘not sad’
Ground truth says ‘sad’ a b
Ground truth says ‘not sad’ c d

a indicates the number of frames in which a term classifier positively agrees with the
truth value (both classifier and truth say a frame is ‘sad, for example). b indicates the
number of frames in which the term classifier indicates a negative term association but
the truth value indicates a positive association (the classifier says a frame is not ‘sad,
but truth says it is). The value c is the amount of frames the term classifier predicts a
positive association but the truth is negative, and the value of d is the amount of frames
the term classifier and truth agree to be a negative association. We wish to maximize
a and d as correct classifications; by contrast, random guessing by the classifier would
give the same ratio of classifier labels regardless of ground truth i.e. a/b =~ ¢/d. With
N = a + b+ ¢ + d, the K-L distance between the observed distribution and such
random guessing is:
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[Term Precision Parameter Precision
busy 42.2% big - little 30.3%
steady 41.5% present - past 29.3%
funky 39.2% unusual - familiar 28.7%
intense 38.4% low - high 27.0%
acoustic 36.6% male - female 22.3%
african 35.3% hard - soft 21.9%
melodic 27.8% loud - soft 19.8%
romantic 23.1% smooth - rough 14.6%
slow 21.6% clean - dirty 14.0%
wild 25.5% vocal - instrumental 10.5%
young 17.5% major - minor 10.2%

Table 6.1: On the left: select adjective terms discovered by the time-aware ad-
jective grounding system. Overall, the attached term list is more musical due to
the increased time-aware information in the representation. On the right: select
automatically discovered parameter spaces and their weighted precision — the most
semantically significant description spaces for music understanding uncovered au-
tonomously by our system.

ko= fox (iiersy) * o (meoa)
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(6.1)

This measures the distance of the classifier away from a degenerate distribution; we
note that it is also the mutual information (in bits, if the logs are taken in base 2)
between the classifier outputs and the ground truth labels they attempt to predict.

The results for a select set of terms using the P(a) measure are shown on the left of
Table 6.1. While the overall accuracy is low, we should consider the extremely low
baseline of the problem itself compounded with our low trust in the ground truth
used for this evaluation. We see immediately that more musically relevant terms are
predicted with far higher accuracy. In this manner, we can easily remove low-scoring
classes, both for data reduction and for accuracy. This type of evaluation provides
keen insights into the amount of descriptive power certain terms have against acoustic
content.

We can also use these results to visualize the spectral fingerprints of various descrip-
tions. We perform the QBD task and then take the mean of all spectral content de-
scribed as certain high-scoring terms, weighting each frame by its s(t, M) salience
score. Figure 6-1 shows two sets of comparisons. We see the expected result for ‘quiet’
versus ‘loud” and a curious but understandable increase in the bass level bins of the
‘funky’ spectrum versus ‘lonesome”s flat response.
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foreign - native foreign - domestic | dissonant - musical | physical - mental | partial - fair
empirical - theoretical | concrete - abstract | curved - straight lean - rich lean - fat

Table 6.2: Example synant relations.

6.1.2 Parameter Learning

Given a set of ‘grounded’ single terms, we now discuss our method for uncovering
parameter spaces among them. This model assumes that certain knowledge is not in-
ferred from sensory input or intrinsic knowledge but rather by querying a ‘linguistic
expert. If we hear ‘loud’ audio and we hear ‘quiet’ audio, we would need to know
that those terms are antonymially related before inferring the gradation space between
them.

WordNet

WordNet [51] is a lexical database hand-coded by a team of lexicographers. Its main
organization is the ‘synset) a group of synonymous words that may replace each other
in some linguistic context. The meaning of a synset is captured by its lexical relations,
such as hyponymy, meronymy, or antonymy, to other synsets. A certain subset of ad-
jectives in WordNet are organized in two polar clusters of synsets, with each adjective
linking to some antonym adjective. The hypothesis is that descriptive relations are
stored as polar gradation spaces, implying that we can’t fully grasp ‘loud’ without also
understanding ‘quiet. We use these antonymial relations to build up a new relation
that encodes as much antonymial expressitivity as possible, which we describe below.

Synant Sets

We defined a set of lexical relations called synants, which consist of every antonym of
a source term along with every antonym of each synonym and every synonym of each
antonym. In effect, we recurse through WordNet’s tree one extra level to uncover as
many antonymial relations as possible. For example, quiet’s anchor antonym is ‘noisy,
but ‘noisy’ has other synonyms such as ‘clangorous’ and ‘thundering. By uncovering
these second-order antonyms in the synant set, we hope to uncover as much gradation
expressivity as possible. Some example synants are shown in Table 6.2.

The obvious downside of computing the synant set is that they can quickly lose their
atonymial relation — following from the example above, we can go from ‘quiet’ to its
synonym ‘untroubled, which leads to an synantonymial relation of ‘infested. We also
expect problems due to our lack of sense tagging: ‘quiet’ to its fourth sense synonym
‘restrained’ to its antonym ‘demonstrative,’ for example, probably has little to do with
sound. But with so many possible adjective descriptors and the large potential size
of the synant set, we expect our connection-finding machines to do the hard work of
throwing away the mistakes but looking to perception.

To create a set of grounded parameters, we simply search through the set of grounded
single terms (as in the left side of Table 6.1) and average the P(a) score for each polar
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Figure 6-2: Residual variance elbows (marked by arrows) for different parameter
spaces. Note the clear elbows for grounded parameter spaces, while less audio-
derived spaces such as ‘alive - dead’ maintain a high variance throughout. Bad
antonym relations such as ‘quiet - soft’ also have no inherent dimensionality.

side of all possible synants. For example, the P(a) for ‘quiet .. loud’ is simply P(a)guyiet
+ P(a)ioud divided by two. This simple method has good results as shown in the
right side of Table 6.1 — most of the groundable parameter spaces can all be considered
musical.

Locally-Linear Embedding

We use the Isomap algorithm from [77] to attempt capture the structure of the audio
features. Isomap scales dimensions given a £ x £ matrix of distances between every
observation in £. It roughly computes global geodesic distance by adding up a number
of short ‘neighbor hops’ (where the number of neighbors is a tunable parameter, here
we use k = 20) to get between two arbitrarily far points in input space. For our
purposes, we use the same gaussian kernel (Equation 5.7) for a distance metric.

Isomap can embed in a set of dimensions beyond the target dimension to find the best
fit. By studying the residual variance of each embedding, we can look for the elbow
(the point at which the variance falls off to the minimum) — and treat that embedding
as the ‘innate’ one. We use this variance to show that our highly-grounded parameter
spaces can be embedded in fewer dimensions than ungrounded ones.

For each parameter space a; ... as, we take all observations automatically labeled by
the test pass of RLSC as ay and all as a; and separate them from the rest of the observa-
tions. The observations F,,, are concatenated together with F,, serially, and we choose
an equal number of observations from both to eliminate bias. We take this subset of
observation F,,, and embed it into a distance matrix D with the gaussian kernel. We
feed D to Isomap and ask for a one-dimensional embedding of the space. The result
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is a weighting that we can give completely new unlabeled audio to and retrieve scalar
values for each of these parameters.

By studying the residual variances of Isomap as in Figure 6-2, we can see that Isomap
finds inherent dimensionality for our top grounded parameter spaces. We can look
for the ‘elbow’ (either by sight or finding the maximum negative slope of the residual
variance vector) which should define the dimensionality of embedding that maximizes
information content. But for ungrounded parameters or non-antonymial spaces, there
is less of a clear ‘elbow’ in the variances indicating a natural embedding. For example,
we see from Figure 6-2 that the ‘male - female’ parameter (which we construe as gender
of artist or vocalist) has a lower inherent dimensionality than the more complex ‘low -
high’ parameter and is lower yet than the ungroundable (in audio) ‘alive - dead. These
results allow us to evaluate our parameter discovery system (in which we show that
groundable terms have clearer elbows) but also provide an interesting window into the
nature of descriptions of perception.

6.1.3 Text Understanding

We next apply our work to the specific domain of record reviews. A system for re-
view understanding is useful even to text-only retrieval systems: Consider a site that
encourages on-line reviews of its stock; user-submitted text can be used in place of
a sales-based collaborative filtering recommendation agent, and such systems prove
to work well as buzz or opinion tracking models[21]. Of course, reviews have their
problems. By their nature they are hardly objective — the author’s own background
and musical knowledge color each review. Music reviews can often be cluttered with
outside-world information, such as personal relationships and celebrity trivia. While
these non-musical tidbits are entertaining for the reader and sometimes (if obliquely)
give a larger picture of the music in question, our current purpose would be best served
by more concise reviews that concentrated on the contents of the album so that our
models of music understanding and similarity are dealing with purely content-related
features.

We chose 600 albums, two reviews for each (AMG [1] and Pitchfork [5]) to use later in
interrater studies and as an agreement measure. Each pair {review, term} retrieved
is given the associated salience weight from the community metadata crawler. We limit
the {review,term} pairs to terms that occur in at least three reviews so that our
machine learning task is not overwhelmed with negative bias. We perform the same
query-by-description learning process as above in Section 6.1.1, with results using the
K-L scoring metric in Table 6.3.

Many problems of non-musical text and opinion or personal terms get in the way of
full review understanding. A similarity measure trained on the frequencies of terms
in a user-submitted review would likely be tripped up by obviously biased statements
like “This record is awful” or “My mother loves this album.” We look to the success of
our grounded term models for insights into the musicality of description and develop
a review trimming system that summarizes reviews and retains only the most descrip-
tive content. The trimmed reviews can then be fed into further textual understanding
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Term | K-Lbits || npTerm K-L bits
aggressive | 0.0034 reverb 0.0064
softer 0.0030 the noise 0.0051
synthetic 0.0029 new wave 0.0039
punk 0.0024 elvis costello 0.0036
sleepy 0.0022 the mud 0.0032
funky 0.0020 his guitar 0.0029
noisy 0.0020 guitar bass and drums | 0.0027
angular 0.0016 instrumentals 0.0021
acoustic 0.0015 melancholy 0.0020
romantic | 0.0014 three chords 0.0019

Table 6.3: Selected top-performing models of adjective and noun phrase terms used
to predict new reviews of music with their corresponding bits of information from
the K-L distance measure.

Sentence g(s)

The drums that kick in midway are also decidedly more similar to Air’s previous work. 3.170%
But at first, it’s all Beck: a harmonica solo, folky acoustic strumming, Beck’s distinctive, | 2.257%
marble-mouthed vocals, and tolls ringing in the background.
But with lines such as, "We need to use envelope filters/ To say how we feel,” the track isalso | 2.186%
an oddly beautiful lament.
The beat, meanwhile, is cut from the exact same mold as The Virgin Suicides— from the | 1.361%
dark, ambling pace all the way down to the angelic voices coalescing in the background.

Table 6.4: Selected sentences and their g(s) in a review trimming experiment. From
Pitchfork’s review of Air's “10,000 Hz Legend.”

systems or read directly by the listener. To trim a review we create a grounding sum
term operated on a sentence s of word length n,

gls) = L= P (62)

where a perfectly grounded sentence (in which the predictive qualities of each term
on new music has 100% precision) is 100%. This upper bound is virtually impossible
in a grammatically correct sentence, and we usually see g(s) of {0.1% .. 10%}. The
user sets a threshold and the system simply removes sentences under the threshold. See
Table 6.4 for example sentences and their g(s). We consider future work in this area
of perceptual information retrieval: for example, the grounding sum operator could
be used to only index certain terms in a webtext analysis and clustering agent for topic
detection and similarity, enforcing that all the text is perceptually sound before the
analysis.
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Figure 6-3: Review recall rates at different g(s) thresholds for two different review
collections. At lower g(s) thresholds (shown towards the right of the x-axis) more
of the review is kept in a summarization task.

We see that the rate of sentence recall (how much of the review is kept) varies widely
between the two review sources; AMG’s reviews have naturally more musical content.
See Figure 6-3 for recall rates at different thresholds of g(s).

6.1.4 Predicting Context from Content

To evaluate our perceptual link to audio in the context of reviews, we created a ‘review
prediction’ task in which a new piece of audio is linked to its corresponding review.
The evaluation is simply an accuracy measure: the number of albums whose audio was
correctly linked with the correct review. We simply compute the term prediction task
as above on half the albums of the record review set. For the second half, we generate
our ‘automatic review—" and if the terms lit up by the prediction have the closest match
to the actual review, we consider it a successful prediction.

Using the same RLSC approach and features in Section 6.1.3, we chose 232 albums
total, 116 albums per set. After computing the predicted review (a set of positive and
negative term correlation for the audio) we compute Euclidean distance between the
term vector and the truth term vector. We note this measure is not a very useful text
similarity metric as it does not take into account the probabilities of the terms. With
this metric, no song was accurately predicted, but overall the task scored 2.5% over the
baseline (random), computed by finding the top predicted 50% mark (means of the
predicted rank of the ground truth) at rank 951 out of 2000. The mean KL divergence
of the task (as above but substituting reviews for terms) is 0.00032.

This task acts as a ‘sanity check’ for the term prediction and later semantic basis func-
tion music understanding task. The low results should not be alarming; review pre-
diction is a very similar task to term prediction but averaged over an entire context
instead of single term classifiers. With thousands of terms for each context, it would
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be hard to imagine that every classifier has good or even passable accuracy, and when
considered in aggregate the poorly performing classifiers (which are removed in the
rank reduction scheme described below) outweigh the well performing ones. A future
review prediction task would have to take into account properly groundable terms as a
threshold before prediction.

6.2 Semantic Rank Reduction

PCA NMF Semantic
2 1 1
OT\/———-J 05 05 ] Kfunky
“nz a4shz Sonz  ohz 34shz 69hz  Ohz 345hz 600hz
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/\/; A‘ highest
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Figure 6-4: Comparison of the top five bases for three types of signal decomposition,
trained from a set of five second power spectral density frames.

We use a method of ‘semantic rank reduction’ to test our hypothesis of meaning’s im-
portance to music understanding. As we’ve seen, using the outputs from our QBD clas-
sifiers we gain insights into the semantic attachment of various types of interpretation.
In a closed set of music, we can list the r top-performing terms from an evaluation mea-
sure (either P(a) or the K-L divergence) and then use those audio-to-interpretation
classifiers on new audio. We can represent each frame of new audio as a combination
of the top r term classifiers’ outputs. In this manner we aim to connect statistical de-
correlation techniques currently helpful in increasing the accuracy of music classifiers
with the semantics of music, in effect creating a set of ‘semantic basis functions’ that
can decompose new music audio into a compact representation that retains a maxi-
mal link from meaning to perception. We show that these ¢ audio to term functions
retain more information about the underlying music than other popular statistical de-
correlation approaches evaluated in a music understanding task.

6.2.1 Anchor Models and ‘Little Experts’

Our work in this area is based on research on anchor models: ‘little experts’ or combi-
nation classification. They are novel machine learning approaches with a clear vision:
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Figure 6-5: Flow diagram of the Heisle et. al component combination face recog-
nizer. [35]

instead of training a single machine to do a complex task, use the combination of a
set of more refined experts to inform the larger machine. This allows for hierarchical
levels of structure to be explicitly represented by the machine learning algorithm and
process, or rather just as a simple human-readable way of ‘getting’ what is going on
in the system. These processes usually mention a biological underpinning and have
shown success in tasks that humans normally do well in, such as face recognition [35],
where sliding windows moves over a face, looking for eyes, noses, or mouths. (See
Figure 6-5 for a diagram.)

We note the difference between this approach and the ‘mixture of experts’ (ME) ap-
proach often used in neural network research [37] where the sub-classifiers are created
and combined based on statistics of the task data. The above approaches have their sub-
classifiers supervised (i.e. we have ground truth for each anchor model or little expert),
where as in classic ME approaches, the task is ‘semi-supervised’ as only the larger task
(the one whose error the sub-classifiers attempt to minimize) needs to have ground
truth assigned. ME approaches also are not human-readable; their sub-classifier divi-
sion is not based on any preconceived notion of the structure or semantic content of
the underlying data, rather just statistics that cleanly separate the data. Our following
work takes the ‘supervision’ out of anchor models while retaining this semantic link to
the outside world.

In music, the notion of parameters or anchors is less clear and a current area of re-
search. Some music applications such as Apple’s Soundtrack (a composition program)
tracks the semantics of its base component loops through a series of 10 descriptor pairs.
(See Figure 6-6 for an example.) These anchors are manually entered. Recent work in
music similarity and classification performed best with a set of 12 genre ‘anchors’ as
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Figure 6-6: Musical anchors used in the Apple Soundtrack Loop Utility

well as two extra descriptors (male/female, and Lo-Fi/Hi-Fi) [12]. These anchors (see
Figure 6-7) were manually entered in the training stage; once each sub-classifier was
learned they can be evaluated on new data to create an anchored feature representation
for later classification.
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Figure 6-7: The genre+2 anchors chosen in Berenzweig et. al's anchor-space music
similarity browser.[12]

In music, projecting data through a semantic anchor space is a tempting choice for
its connection to outside-the-signal semantics. However, the main problem with the
manual choice of anchors is that there is an immediate scientist bias: the experimenter
chooses what they feel are the best descriptors for music. Even worse, in the above simi-
larity case, the chosen anchors were mostly meaningless styles such as ‘Singer/Songwriter’
and ‘New Wave! We now note again our work above in parameter grounding, where,
instead of manually determining important musical ‘knobs, we had the community
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define what they felt best separated large amounts of music. In this section we’ll be
showing how we created our own anchor space, defined more broadly as ‘semantic
basis functions:’ and we’ll show music projected through semantic basis functions to
perform better at a very hard music understanding task than other rank reduction
competitors that do not consider the meaning of music.

6.2.2 Obtaining a Semantic Decomposition

Testbed set of 619 artists

Figure 6-8: Process of the semantic rank reduction experiment. A large testbed
set of audio is split into basis learning and artist ID sets. Various rank reduction
methods (NMF, PCA, semantic, genres, styles and random) are performed on the
artist ID set through the basis set and evaluated in a 1-in-n artist ID task.

We find our semantic decomposition by performing the query-by-description evalu-
ation task outlined above, and keeping only the top r term classifiers, where r is the
user’s requested rank.

We choose a set of music audio, split it into equal-sized train and test segments, and la-
bel the observations with the artist names. The community metadata system retrieves
the term types from the artist names creates community vectors for each artist a and
term t. Concurrently, we form the audio from each artist into a frame-based repre-
sentation. We then feed the training audio observations and the description vectors
to a multiclass learning system to learn a new description vector for incoming audio
frames.

We have the RLSC process create a ¢, term classifier for each descriptor ¢ in our crawl.
To do so, we arrange a new y composed of the saliences for each descriptor on the fly.
(For example, ysq4 is a vector of the amount of ‘sad’ for each audio frame.) To deter-
mine which terms have stronger links between meaning and perception than others,
we evaluate each c; against the test set of audio using the P(a) measure.

We sort the term list by P(a);, and leave it up to the user to select a rank r. The
semantic basis functions are defined as the top 7 c; classifiers ordered by our sort.
(See Figure 6-4 for PSD bases of the top five classifiers kept in our experiment.) New
data can be parameterized by a set of r coefficients, each one the result of asking the
top audio-to-term classifiers to return a scalar of what they think of the incoming audio
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observation. This parameterization aims to retain maximal semantic value, where each
dimension corresponds to some high-level descriptor of the input perception.

The set of ¢ can be stored away for future use against any new set of music given that
the representation of audio remains the same. For example, a generalized semantic
rank reduction set of classifiers can be learned from a large set of all possible genres of
music audio and later used against a new set of music audio. In this application case,
the new set of audio does not need to be labeled with an artist tag or with description
and we can view the semantic rank reduction of this data as an analogy to applying a
weighting transform learned from a previous PCA (Section 6.2.4.) We note that some
of the same caveats apply: bases should be learned from data that will be similar to data
found in the classification task. Semantic classifiers trained on only classical music, for
example, might retrieve specific term relations (such as ‘bright’ or ‘brassy’) and will
not generalize well to rap music.

6.2.3 Statistical Rank Reduction Techniques

To evaluate our semantic rank reduction against other statistical techniques, we’ll de-
scribe two currently popular methods of rank reduction used on audio signals, Princi-
pal components analysis (PCA) and non-negative matrix factorization (NME.)

6.2.4 Principal components analysis

Principal components analysis (PCA) is a rank reduction technique that creates a weight
matrix w and projection f of smaller rank than its source matrix A by extracting the
principal components of A. The principal components of a matrix A are the r eigen-
vectors of the covariance matrix AAT with the largest eigenvalues. The eigenvectors
w of a matrix A when Aw = Aw. (X are the eigenvalues: ) is an eigenvalue if and
only if det(A — AI) = 0.)

We use the singular value decomposition (SVD) [32] to compute the eigenvectors and

eigenvalues:
A =UxVT (6.3)

Here, if A is of size m x n, U is the left singular matrix composed of the singular
vectors of size m X n, V is the right singular matrix matrix of size n x n, and X is
a diagonal matrix of the singular values o. The highest singular value will be in the
upper left of the diagonal matrix ¥ and in descending order from the top-left. For
the covariance matrix input of AAT, U and V7 will be equivalent for the non-zero
eigenvalued vectors. To reduce rank of the observation matrix A we simply choose the
top r vectors of U and the top r singular values in X.

To compute a weight matrix w from the decomposition we multiply our (cropped)
eigenvectors by a scaled version of our (cropped) singular values: [74]

w=vx-1uT (6.4)
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This w will now be of size r x m. To project the original data (or new data) through the
weight matrix one simply multiplies w by A, resulting in a whitened and rank reduced
matrix f of size 7 x n. To ‘resynthesize’ rank reduced matrices projected through w
one first computes w~! and then multiplies this new iw by f.

The intuition behind PCA is to reduce the dimensionality of an observation set; by
ordering the eigenvectors needed to regenerate the matrix and ‘trimming’ only the top
r, the experimenter can choose the rate of lossy compression. The compression is
achieved through analysis of the correlated dimensions so that dimensions that move
in the same direction are minimized. Geometrically, the SVD (and, by extension, PCA)
is explained as the top r best rotations of the input data space so that variance along
the dimensions is maximized.

6.2.5 NMF

Non-negative matrix factorization (NMF) [43] is a matrix decomposition that enforces
a positivity constraint on the bases. Given a positive input matrix V of size m x n, it
is factorized into two matrices W of size m x r and H of size r X n, where r < m.
The error of (W-H) &~ V is minimized. The advantage of the NMF decomposition
is that both H and W are non-negative, which is thought to force the decomposition
to consider ‘parts’ in the observation space. Many applications of NMF have been
proposed, including face analysis [42] and polyphonic music transcription [75]. The
distance or divergence between V and (W- H) can be measured by

D(V||W - H) = ||V x log(w%) ~V+W-H| (6.5)

where X is a per-element multiply. The divergence measure here is found to be nonin-
creasing given the following two update rules:

- WH (6.6)

(6.7)

where 1 is a m x n matrix of all 1.

6.2.6 Manual Anchors

Along with the statistical rank reduction methods, we also hand-chose two sets of
‘manual anchors’ in the form of Berenzweig et. al’s work [12]. We chose a ‘genre’
set which contains seven genre terms and a ‘style’ set which contains up to 109 styles.
The ground truth for the basis extraction step was pulled from the All Music Guide
(AMG) [1] database.
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Genre Albums labeled | % Coverage | KL divergence
Alt-Rock 131 56% 0.0966
Electronic 67 29% 0.0988
Rock 20 8.5% 0.0202
Rap 9 3.9% 0.1104
Country 3 1.3% 0

Folk 2 0.8% 0.0193
Soundtrack 1 0.7% 0

Table 6.5: Ground truth coverage of genres in our manual anchor genre set along
with KL divergence for each classifier in a genre prediction task.

Genre Anchors

The genre anchors were chosen directly from AMG over our test set of 233 albums.
The coverage of this set is shown in Table 6.5. We see a wide bias for specific types of
genres in our set, especially towards Alt-Rock and Electronic. Country, rap and folk are
barely represented. This data is from a random subsampling of a large music database
shared among students at MIT; it is meant to represent an ‘average’ music collection.
The ground truth numbers alone show problems of coverage and scope.

Using these seven classes we predicted genres on a held out test set of music (1,000
songs fit into 10,000 observation frames) using the Penny feature; overall we achieved
69.3% per-song accuracy with a mean KL divergence of 0.0493 in predicting the correct
genre. The per-classifier KL divergence measures are in Table 6.5. We note that the
genres with the least coverage perform poorly, and that ‘Rock’ is not able to perform
well but ‘Alt-Rock’ is.

Genre Rock | Alt-Rock | Rap | Folk | Flectronic
Rock 56% 6.5% 2.3% 0% 2.6%
Alt-Rock 36% 75% 4.6% 0% 25%
Rap 0% 1.2% 89% 0% 2.6%
Folk 0% 1.0% 0% 100% 0%
Electronic 8% 1.3% 4.6% 0% 68%

Table 6.6: Confusion for the 1-in-7 genre task (two genres had no data points.)

The genre identification confusion matrix in Table 6.6 shows that the task performed
adequately overall (i.e. in a real world case, content labeled ‘Rap’ was guessed correctly
89% of the time) but there are some troubling confusions between the Rock and Alt-
Rock tags as well as Electronic and Alt-Rock. (In our experiment test data, there was
no randomly selected data labeled ‘Country’ or ‘Soundtrack.)

Style Anchors

Table 6.7 shows coverage along styles, smaller clusters of music used for finer-grained
classification. Again, we chose the ground truth styles from AMG for our test set. One
major difference between genres and styles is that styles overlap and have a many-to-
one relationship with artists and albums, a single album can have more than one style.
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Style Albums labeled | % Coverage | KL divergence
Experimental Techno 16 6.9% 0.0041
Singer-songwriter 19 8.2% 0.0200
Punk Revival 3 1.3% 0.0232
Shibuya-Kei 3 1.3% 0
Trip-Hop 20 8.6% 0.0017
IDM 28 12% 0.0040
Noise Pop 12 5.2% 0.0036

Table 6.7: Ground truth coverage of selected styles (from 109 total) in our manual
anchor style set along with KL divergence for each selected classifier in a style
prediction task.

As well, artists can be linked to multiple styles through multiple albums. Styles are
a better solution to the ‘Madonna problem’ listed below for artist ID as they try to
directly incorporate knowledge of trends over time. There naturally more styles than
genres; in our set of 233 albums (1,000 songs, 10,000 frames) we had 7 distinct genres
and 109 total styles. Due to the surfeit of styles we have even worse bias problems than
genres, however; many styles have only one or two positive examples.

Overall, we achieved a 48.1% accuracy on the same 1,000 songs with a mean KL diver-
gence of 0.0055 in predicting at least one of the ground truth styles (due to overlap in
style labels, the KL measure is far more enlightening.) Only 64 of the 109 style classi-
fiers had a KL divergence over € = 2723, The best performing style classifiers according
to the KL measure were Hip-hop, Indie Rock, Underground Rap, Alternative Pop-Rock
and Indie Pop.

For both the style and genre manual semantic reduction tasks, we stored the sorted list

of classifiers for each style or genre along with their corresponding performance in the
KL measure.

6.2.7 Semantic Basis Classifiers

Descriptor | KL divergence || Descriptor | KL divergence
punk 0.01996 drunken 0.00002
electronic 0.01447 cheap 0.00044
romantic 0.01313 famous 0.00020
moody 0.01251 confident 0.00002

Table 6.8: Term prediction results for the semantic basis classifiers. On the left: the
top scoring classifiers with their KL divergence. On the right: selected badly-scoring
classifiers.

We computed semantic basis functions using the RLSC method described above. For
this experiment, we chose a subset of our entire community metadata, concentrating
only on the adjectives. For our 233 artist basis learning set, we found 993 distinct
adjectives from the webtext crawl. We split the basis set into two and evaluated the
classifiers on the test set to achieve the ordered list of top-performing classifiers. We
scored 72% accuracy in the positive prediction task (we guessed positive ground truth

6.2 Semantic Rank Reduction
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for the 1,000 songs 72% of the time overall) but this metric is not valuable due to the
bias and prior of each classifier. In Table 6.8 we show instead a few selected classifiers
(good on the left, bad on the right) with their KL divergence measure. Like the previous
examples for query-by-description we see the set of terms on the left are ‘musical’ while
the terms on the right are not groundable.

For the purposes of this experiment, we save the sorted list of classifier performance on
the test set for later rank reduction.

6.2.8 "Basis Functions”

As the manual and automatic semantic classifiers we extract cannot be used to resyn-
thesize the observation, they are not explicitly ‘basis functions.” Likewise, the ordered
list of the top r classifiers does not represent the maximal variance among coefficients.
For example, the top performing classifier might be ‘quiet’ while the second best per-
forming classifier could be ‘soft” As both point to the same type of semantic con-
nection, there would be little difference between the two classifiers and as a result the
‘functions’ they create would not do well at maximizing variance among the observa-
tion’s dimensions. And in the genre case, ‘Rock’ and ‘Alt-rock’ both contain a large
amount of confusion with each other. Future work is concentrating at determining
the best combination of classifiers, rather than arbitrarily choosing the best performing
ones.

6.2.9 Evaluation using Artist Identification

We use an artist identification problem to evaluate different dimensionality reduction
methods. Artist ID [82] [11] is a well-defined problem with obvious ground truth
and requires a representation and learning algorithm that can capture a high level of
musical information. Artist ID problems are usually formed as multi-class problems
with a high number of output classes; as a result they benefit from dimensionality
reduction steps that reduce noise in the input space.

There are two known problems with artist ID: “The Producer Effect” (aka “The Album
Effect”): an artist ID classifier might learn the production (EQ, compression, sound
field) rather than the actual music. As well, there is the “Madonna Problem:” artists
change over time. 1985 Madonna is not 2004 Madonna, but she’s still Madonna. Which
features actually define an artist? Often the ‘producer effect’ is minimized by training
across albums when available, but in practice most artists stay with a ‘sound’ through-
out their careers. Training on remixes or live versions as well as studio recordings could
help this effect but the accuracy of these processes has yet to be evaluated.

6.2.10 Evaluation 1; Statistical vs. Semantic Basis Functions

In our first experiment we compare statistical methods such as PCA and NMF against
the automatic semantic basis functions pulled from webtext.
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Testing: non | pca nmf | sem rand
Per-class 31.6% | 28.6% | 43.8% | 66.3% | 25%
Per-observation | 22.2% | 24.6% | 19.5% | 67.1% | 3.9%

Table 6.9: Results for 1-in-20 artist ID experiment. Per-class accuracy is the P(a)
measure for RLSC bias correction averaged over all class t. Per-observation accuracy
is a more natural metric: for each observation, was the artist classifier correct?

To evaluate artist ID, we start with a set of artists’ songs and split the songs into two
subsets: half of the artists for the basis extraction and half of the artists for the 1-in-
20 artist ID task. Each artist was represented by five songs worth of material chosen
randomly (across albums if available.) We compute a feature vector space on the entire
music set, here we use Penny (Section 3.2.3) at 5 Hz.

We initially choose r = 10, and compute the PCA on the basis extraction set. We store
only the transform weight matrix PCA,,. We also compute the NMF in the same
manner (over 5,000 iterations) and store its NMF,,.

For the semantic basis function extraction, we subdivide the basis extraction set into
two smaller sets of artists (training and testing) since labels are tied at the artist level,
and use the community to get the set of P(a);. After performing the RLSC step (with
C = 10 and ¢ = 0.5) we evaluate against the basis extraction test set and retain the
top 10 from our sorted list of c¢ classifiers.

We then apply the stored PCA,, and NMF, to the set used for the artist ID task.
Each process creates an observation matrix of » = 10. To obtain the semantic re-
ductions, we evaluate each point in our artist set against the stored c; (for all the 993
adjectives as well as the genre and style terms), returning 7 = 10 scalar values for each
classifier. (Note that we do not need to label the artist ID dataset with description,
either from the genre/style labels or from the semantic basis functions after learning
the decompositions on other data.) We arrange these results and treat the results as a
r = 10 observation matrix.

The results for this experiment are shown in Table 6.9 along with the baseline (random)
results. Confusion matrices for each experiment are in Figure 6-9. We see overall very
high accuracy in training across the board, with perhaps the NMF hurting the accuracy
versus not having an reduced rank representation at all. For the test case, results widely
vary. PCA shows a slight edge over no reduction in the per-observation metric while
NMEF appears to hurt accuracy. We believe the NMF step is not a good fit for noisy au-
dio observations where data is specifically not harmonic and easily separable. However,
the semantic rank reduction step appears to do a good job in clustering the observa-
tions into a low dimensionality. It far exceeds the accuracy of a PCA pre-processing
step and proves to be better than not doing any rank-reduction at all. Clearly the se-
mantic reduction is informing the artist classifier in considering meaningful spectral
characteristics not obviously present from statistical analyses.

6.2 Semantic Rank Reduction
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Figure 6-9: Confusion matrices for the artist ID experiments considering just the two
statistical approaches (PCA and NMF) against automatic semantic rank reduction
and no rank reduction. Lighter points indicate that the examples from artists on
the x-axis were thought to be by artists on the y-axis.

Testing: | genre | style | sem | baseline
Accuracy | 29% | 4.7% | 5.0% | 1%

Table 6.10: Results for 1-in-100 artist |D experiment (song accuracy) comparing
semantic basis functions with manual anchors, r = 5.

6.2.11 Evaluation 2: Semantic Basis Functions vs. Manual Anchors

Now that we’ve shown that statistical rank reduction does not perform as well as se-
mantic rank reduction, we now look at two types of semantic reduction: the semantic
basis functions vs. the ‘manual anchors’ discussed above. The genre and style anchors
are computed as detailed above along with the semantic basis functions, using a gaus-
sian kernel and auto-aux mode. We chose r = 5 since the genre classifier is limited to a
r = 7. This is now a 1-in-100 artist ID task, a much harder task with a baseline of 1%
over 1,000 songs.

We see in Table 6.10 that the style method outperforms the genres, but the semantic
basis functions outperform both. The genre is especially a poor performer, and even
when the same amount of classes are used for genres vs. styles (r = 5), the descriptive
content of the style is greater.

6.2.12 Evaluation 3: Effect of Rank

We lastly vary the rank of the decomposition to see which type of rank reduction
method worked better with less data. The point of this experiment is to find the
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Accuracy: | genre | style | sem
=1 1.5% | 1.9% | 1.3%
r=2 1.8% | 2.7% | 1.5%
r=3 29% | 3.4% | 1.9%

=5 29% | 4.7% | 5.0%
r =10 NA 4.1% | 7.7%

Table 6.11: Varying results for accuracy depending on requested rank during 1-in-
100 artist ID experiment. Baseline is 1%.

amount of information towards the artist ID problem that each dimension along each
reduction method provides. This sort of feedback is important for designing music
understanding systems: the less dimensions required in the classifiers the faster they
can execute with less memory.

Using the same approach above, we compute the manual and semantic anchors at vary-
ingr, fromr = 1tor = 10.

We can see in Table 6.11 that increasing the rank generally increases classifier accu-
racy across the board up to a certain ‘elbow’ point. Future work needs to consider the
tradeoffs of rank in a semantic basis function, especially considering the overlap be-
tween different classifiers we discussed in Section 6.2.8. The semantic basis functions
actually do worse with less rank than other manual anchors, but we have available to us
up to tens of thousands of possible classifiers to choose among, while genre and style
are limited to the dozens. Eventually the target dimensionality of the task (here, 100
for artist ID) should somehow inform the rank of the semantic reduction.

6.3 Conclusions

In this chapter we evaluate our meaning recognizer using two mechanisms: a predic-
tion of interpretation from the audio, and through a music intelligence task (artist ID)
after projecting the audio data through our semantic basis functions. We show that the
meaning extraction is a necessary step for understanding music at a higher order than
statistics can provide.

6.3 Conclusions
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CHAPTER SEVEN
Conclusions

Throughout this thesis we’ve been re-iterating the idea that perhaps there’s more to
music than the signal, that perhaps looking at the content only is ill-advised and that
looking at sales derived or marketing data is even worse. Our driving force behind this
work is that fundamentally, the current approaches anger us: they don’t seem right.
Music is a personal force that resists ‘processing, ‘packing’ or ‘understanding. Our
gasps at trying to approach music from two directions at once are illuminating but
need to be refined and studied further. We’re confident that looking at meaning is the
right way to analyze music, but this feels to us like saying that looking at color is the
right way to analyze images. Our hope is that this thesis can provide a framework for
future music analysis systems to work within the realms of extra-signal and contextual
data, and then linking that data to perception.

7.1 Our Meaning of Music

We can connect out work back to the meaning types we visited in Chapter 1 to get a
handle on what we’ve accomplished and what is left to do. Our goal was to initially
represent contextual and extra-signal data concerning music in the form of Commu-
nity Metadata; this alone informs all three of our meanings: song stories and musical
message in the correspondence meaning, similar artist description and artist clusters
in relational meaning, and personal and cultural reaction as reviews and discussion.
However, the main contribution of this thesis was to link and predict this meaning
given a new signal, and in this model we were successful mostly at representing reac-
tion meaning, both personal and cultural.

in Figure 7-1 we connect our approach with the meaning types, both of which we
initially saw in Chapter 1. Our work in a contextual representation of audio allows
us to ‘understand” music at a different level than was previously possible. However,
the work in prediction of reaction in semantic basis functions will inform many more
audio understanding tasks as well as other multimedia tasks. The notion of grounding
perceptual signals in interpretation is a growing field worthy of further study, and we
present this work as the first step in music grounding.
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Figure 7-1: Linking our approach with types of represented meaning. Dotted lines
indicate predictive extraction that can be applied to new (unheard) audio. Solid
lines do not need an audio relation.

7.2 Query by Description as Interface

We note that we used query-by-description (QBD) as an evaluation task in Chapter 6,
but never evaluated query-by-description as an interface, which is its first natural ap-
plication. We found in small user tests that QBD, based on the audio and trained with
the unsupervised term collection methods outlined in Chapter 5, was not effective for
a general music search problem. We blame the sparsity of the term ground truth, the
non-restraint on choosing the term ground truth, and the issues of bias and coverage
outlined in Chapter 6.

A larger question is if QBD is valuable at all for music: there’s a number of user interface
and retrieval issues that need to be studied. Listeners are not used to describing types
of music they want to hear (in a formal search-box type setting.) It’s obvious that other
external cues would be needed to make it valuable to users, such as drop down lists of
artists or styles to choose among, or perhaps a user model that contains past listening
experience and the transformations between query and result. It’s also obvious that
some terms with a high semantic attachment to audio via our analysis are not always
understandable by human raters: we witnessed an ever-present ‘junior’ tag on top of
most of our QBD prediction results. Although the tag is referring to something (we
can plot its audio response) the returned music automatically tagged as ‘junior’ seems
to have no graspable correlation. This could be a fault of either our feature extraction
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or learning system, but more likely the fault lies in our evaluation: what we do to
determine which classifiers are the most meaningful.

An obvious step of future work is to perform a serious user study using QBD as the
sole interface to interacting with music. We begun work on such an evaluation on
a large music server where over 300 members of a community stream music to their
players during the work day. Our plan is to replace the normal methods of browsing
and searching with text-only and audio-linked QBD for certain users, and track relative
success of relevance.

7.2.1 Text-only Query by Description

waot o heac something romastic te L)
1sten to with my gicl meer the fice.|

Figure 7-2: Query by description interface.

We do note that QBD was shown to work well in the non-audio case, that is, simply a
similarity metric between query and webtext-community metadata (Figure 7-2.) This
is a weaker approach as new audio as yet uncatalogued for context can not be evaluated
or retrieved. However, for large collections we can assume coverage over much of the
music, and we hope to work more in this text-retrieval only approach.

7.2.2 Description Synthesis

The presentable results we show in Figure 6-1 look promising but in reality there are
only a dozen or so types of interpretation that can be appreciated in this manner. Even
if a descriptor like ‘angry folk’ has a strong groundable connection to audio, what
would it sound like? The inversion of the meaning classifiers is subject to much further
work, hinging on a more expressive (and time aware) musical representation.

7.2 Query by Description as Interface

93



funky 5 7 7 ‘ qﬁil

Figure 7-3: Example of meaning recognition output.

7.2.3 Time aware Meaning Recognition

Work has already begun on an intra-song meaning recognizer that addresses the is-
sues of scale brought up in Chapter 6. Since our audio is related to only the level
of ground context (artist name, album) we have no ground truth relating reaction to
songs. However, we’ve recently been looking into song reviews to be able to train a
‘bootstrap’ model that goes from artists to songs. We’ve also investigated an unsuper-
vised model of learning short time scale meaning by expectation-maximization (EM),
where a hidden markov model (HMM) learns the temporal evolution of terms given
the rough ground truth at the album or artist level. Figure 7-3 shows a possible output
of such a system, where fine grained decisions can be made at the signal level.

7.3 Perceptual Data Mining

np Term Score
austrailia exhibit 0.003
light and shadow 0.003
this incredibly beautiful country | 0.002
sunsets 0.002
god’s creations 0.002
the southeast portion 0.002
[adj Term Score
religious 1.4
human 0.36
simple 0.21
beautiful 0.13
free 0.10
small 0.33

Figure 7-4: Top terms for community metadata vectors associated with the image
at left.

We want to close with a larger view on the problem: currently pattern recognition and
media understanding systems optimize information as defined to a computer. Com-
pression schemes pack bits in a way that can be efficiently and quickly unpacked by a
machine later. Even perceptual coding schemes that acknowledge human interaction
with the media rely on the bits containing all the information needed to get the mes-
sage across. Following the analogy of information flow in Chapter 1, we should note
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that Shannon defines the informational content of a message X through the channel
by its bits of entropy:

N-1
H(X)=-_ piloga(pi) (7.1)

=0

informed by the probabilities p(¢) of each symbol ¢ in X. More ‘surprising’ symbols
in a message need more bits to encode as they are less often seen. This equation com-
monly gives a upper bound for compression ratios and is often studied from an artistic
standpoint. [54] In this model, the signal contains all the information: its significance
is defined by its self-similarity and redundancy, a very absolutist view. Shannon in-
formation applied to a music signal reflects a particular type of meaning: applied to
audio or the score, ‘surprising’ signals can affect the musical message as in correspon-
dence meaning, and studying the entropy of a usage pattern can lead to understand-
ing reaction in the form of buzz and trends. But alone the entropy of any signal can
not cover our full forms of meaning. We intend instead to consider the meaning of
those bits along with the bits themselves, and by working with other domains, differ-
ent packing schemes, and methods for synthesizing new data from these significantly
semantically-attached representations we hope to bring meaning back into the notion
of information.

7.3.1 Images and Video

LowTerm | Type | Accuracy || HighTerm | Type | Accuracy
antiquarian | adj 0% sea np 20%
boston np 0% pure adj 18.7%
library np 0% pacific adj 17.1%
analytical adj 0% cloudy adj 17.1%
disclaimer np 0% air np 17.1%
generation | np 0% colorful adj 11.1%

Table 7.1: Selected high- and low-scoring terms for an image description task.

Although our work has concentrated on music, we are very interested in other do-
mains, especially images and video, as the models fit cleanly and have a more direct use.
A query-by-description front end for image retrieval is a strong inspirational dream,
and with the help of an already excited community, it appears the time is right to be-
gin a large scale evaluation of the possibilities. In Table 7.1 and Figure 7-4 we point
to our first try at performing the same meaning recognition on images using unstruc-
tured webtext. Our approach is similar to Barnard et al in [8], however, whereas they
required hand-labeled single-term images, we would like to work from the free text
surrounding an image.

The problems of image segmentation for object detection before meaning recognition
is also in our reach with recent advances in online communities for photo sharing and
distribution. The popular photo site Flickr [4] allows users to not only annotate their
images with tags (single term descriptors, see Figure 7-6 for an example with cats) but
also to physically segment the image in the web browser and annotate the segments as

7.3 Perceptual Data Mining

95



This is Papa, my great-grandfather
{maternal grandmother's father). He

- was in his early ninties when this
photo was taken, I think,

Figure 7-5: Community-provided image segmentation and annotation. [4]

in Figure 7-5. This community-supplied data, en masse, is extremely useful for on-line
meaning extraction systems that want to learn the identity and meaning of images and
objects within images. It even could be more successful than the music experiments as
the annotations are directly relating to a single image, not an entire body of work like
most music description.

In the realm of video, recent work in video categorization and analysis interests us, such
as the TREC Video Track, where text queries are given and, in a timed experiment, users
must find the best matching video clips from a large database. These evaluations can
be aided by taking advantage of contextual data such as viewer opinion and associated
articles.

7.4 Fixing Music

Our work in this thesis is a first step toward adequately learning and representing the
meaning of music, both by understanding the audio and its audience. As the funda-
mental problem of music distribution and organization sorts itself out over the next
short while, we hope that these methods will be integrated into user interfaces, data
mining systems and music similarity techniques as the other options are blind to the
personal and cultural attachment to music. Specifically, we are interested in the prob-
lem of music recommendation — how to get people to find more music that they like
— and the current culture- and meaning-blind methods are lacking in many ways.
Through this work and its extensions we are looking forward to connecting music’s
interpretation to its perception, and the natural and musically knowledgeable applica-
tions should soon follow.
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Figure 7-6: Community-provided image annotation: some of 32,000 ‘cat’ images.
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7.4 Fixing Music
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