SEISMIC WAVE SCATTERING
FROM ROUGH INTERFACES

by
Michael D. Prange
B.S., University of California (1982)

Submitted to the Department of Earth, Atmospheric, and Planetary
Sciences
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
September 1, 1989

(© Massachusetts Institute of Technology 1989

Signature of Author................ e R S S P
’ Department of Earth, Atmospheric, and Planetary Sciences
September 1, 1989

Certified by--.amc.n-%v:'-'-i\--?-----'-u Y A VT e
M. Nafi Toks6z

Professor of Geophysics

Thesis Supervisor

Accepted by N RIS A2 ¥ SRS 2 Y e T T T e ci s e e s et tene s e
Thomas H. Jordan
Chairman

Department of Kagth,Atmespheric, and Planetary Sciences
OF T '

NOV 08 1989

LIBRAMLD
ARCHIVEY



,

’r
s

X . .
P
A A e AU Mt i it bt htasted

SEISMIC WAVE SCATTERING
FROM ROUGH INTERFACES

by
Michael D. Prange

Submitted to the Department of Earth, Atmospheric, and Planetary Sciences
on September 1, 1989, in partial fulfillment of the
requircments for the degree of
Doctor of Philosophy

ABSTRACT

In this thesis I present a perturbation method which can model three-dimensional scatter-
ing from an arbitrary elastic-elastic rough interface with great computational efficiency.
Using this method, I examine the changes introduced into the scattered wavefield by
the presence of interface roughness. The matrix method used is appropriate for direct
implementation in existing propagator matrix-based seismogram synthesis programs. It
is derived using a perturbation approach which requires interface height perturbations to
be small relative to the wavelengths of scattered waves, and interface slope perturbations
to be much less than unity. These conditions are numerically investigated by comparison
of frequency-wavenumber domain and time domain perturbation results with those gen-
erated by a second-order finite difference method for several rough interface models with
Gaussian autocorrelation functions. Error is acceptable for RMS height deviations of less
than about 20 percent and RMS slopes of less than about 0.25. A three-dimensional scat-
tering kernel is introduced which represents the scattered field response to a delta function
interface height function. This must be convolved with an interface height function in
order to produce a scattering coefficient, but by itself illustrates the general scattering
behavior of an interface contrast and source configuration independent of any particular
interface roughness function. These scattering kernels show that waves are maximally
scattered in directions for which the scattered wave particle motion coincides with that of
the incident wave. Scattering kernels also show that the critical angles in rough interface
scattering, i.e., those angles at which amplitude maxima or minima appear, correspond
to the critical angles of the mean planar interface problem with one qualification: since
the spectrum of the interface height function modulates the scattering kernel, an inter-
face whose spectrum does not contain energy at the critical angles will not have these
maxima or minima in its scattering coefficient. By assuming material contrasts across the
interface are small, further approximations can be made, yielding simple equations for
the scattering coeflicients which separate the influence of contrasts in P and S velocities
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and density on the scattered wavefield. From these forms it is seen that the scattered
field wavelet is the time derivative of the source ficld wavelet. Scattering coefficients and
seismograms for normally incident waves illustrate the relative contributions of the sep-
arate material contrasts on the scattered wavefield. Scattering coefficients for obliquely
incident waves show that the scattered wave amplitudes, excluding the background spec-
ular field, are not necessarily maximum in the direction of specular scattering. Finally, I
present seismic data from a vertical seismic profile experiment which contains evidence
of rough interface scattering. By generating scattering coefficients and seismograms for
several rough interface models, I explore the particular scattering mechanism at work at

this site.

Thesis Supervisor: M. Nafi Toksoz
Title: Professor of Geophysics
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Chapter 1

GENERAL INTRODUCTION

A fundamental component of forward modeling and inversion procedures in elastic wave
propagation problems is the ability to model scattering from sharp contrasts in the elas-
tic properties of the propagation medium. Although scattering from smooth interfaces
is easily modeled and well understood, the roughness inherent in many natural inter-
faces introduces a nonspecular, incoherent component to the scattered field which is
poorly understood. Most current methods for computing the scattered field are limited
to small, two-dimensional models by computational constraints, or apply only to oversim-
plified versions of the real interface. In this thesis I present a perturbation method which
can model three-dimensional scattering from an arbitrary elastic-elastic rough interface
with great computational efficiency. Furthermore, this method allows realistic interface
shapes, and is limited only by the RMS height and slope of the interface height function.
A three-dimensional scattering kernel is introduced which represents the scattered field
response to a delta function interface height function. T}iis must be convolved with an
interface height function in order to produce a scattering coefficient, but by itself illus-
trates the general scattering behavior of an interface contrast and source configuration
independent of any particular interface roughness function. Using these methods, I am
able to examine the changes introduced into the scattered wavefield by the presence of

interface roughness
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Scattering is typically formulated in terms of reflection and transmission coefficients
which relate the amplitude and phase of an incident wave in medium one to the am-
plitudes and phases of the waves scattered into media one and two, respectively. Exact
analytical solutions for these coefficients are available in the literature (Pao and Mow,
1973) for interface shapes which are coordinate surfaces of coordinate systems in which
the wave equation is separable, e.g., planar, cylindrical, and spherical interfaces. In
all, there are eleven coordinate systems in which the wave equation is separable (Ben-
Menahem and Singh, 1981). In reality, natural processes do not create interfaces which
can be exactly described by these simple surfaces. Numerical methods, such as the finite
difference (Levander and Hill, 1985; Virieux, 1986; Bayliss et al., 1986) and boundary
element (DeSanto, 1985; Campillo and Bouchon, 1985; Paul and Campillo, 1988) meth-
ods, are available which can cope with arbitrarily shaped interfaces. In addition to their
flexibility in handling interfaces, such numerical methods provide complete scattered field
solutions, including all diffracted, multiply scattered, and evanescent waves. The appli-
cability of these methods is limited, however, by the large computational memory and
time requirements which limit their usefulness to two-dimensional elastic wave scattering
problems. Furthermore, since the numerical solutions are not expressed in terms of closed
form analytical expressions, they cannot be directly decomposed and analyzed for the
sensitivity of the solution to model parameter variations.

An alternative to the exact methods are the formulations which describe elastic wave
scattering from bosses on a plane. The first of these me\éhods describes elastic wave scat-
tering from rigid or free bosses on a planar interface (Tv)‘ersky, 1957; Lucas and Twersky,
1984). In this development, the bosses have shapes which are coordinate surfaces of co-
ordinate systems in which the wave equation is separable. Exact analytical solutions for
scattering from a single boss are combined to model multiple scattering, and‘a‘n image
field on the other side of the interface is used to match the boundary conditions at the
interface. This approach, which is capable of providing an exact solution and has been

successfully tested against experimental data (Chu and Stanton, 1989), allows the contri-
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butions of successively higher orders of multiple scattering to be studied separately. The
drawbacks are that natural interfaces can only be approximated by such simply shaped
bosses on a planar surface, and that the method requires the interface to be rigid or
free. An extension of this approach, based on work by Biot (1968), allows the scatter-
ing bosses to be elastic (Menke, 1982). This is done by approximating the scattering
from each boss by a single source term. This extension, however, only describes the
low-frequency component of the scattered field.

Many times, an interface can be described as the sum of one of the separable co-
ordinate surfaces and a small perturbation surface. In this case, an analytical solution
for the reflection and transmission coefficients can be developed which expresses the
three-dimensional scattered wave field as the sum of a background field solution for the
separable coordinate surface and a scattered field solution which accounts for the pertur-
bations in this surface needed to describe the interface. Such solutions place restrictions
on the magnitude and shape of the interface perturbations necessary to obtain an accu-
rate solution, but for problems for which they are appropriate, a fully three-dimensional
solution is obtained as a simple, closed form expression which can be efficiently evaluated,
and which is convenient for analytical analysis of the properties of the scattered wave
field. Perturbation approaches are frequently used to evaluate rough interface scatter-
ing in ocean acoustics problems. A two-dimensional formulation based on the T-matrix
method (Dacol and Berman, 1988) and one based on the approach of Kennett (1972)
(Kuperman and Schmidt, 1989) have been used to compare the scattered field response
of a fluid-elastic rough interface with that of a fiuid-rigid rough interface. The fluid-rigid
approximation is commonly used to simplify modeling in ocean acoustics problems, but
fluid-elastic models are more realistic. Comparison of the two ocean floor models showed-
that there is a greater loss of energy in the fluid-elastic model due to transmission into
the elastic medium, and that the presence of the elastic medium introduces critical angles
at which there are sharp maxima and minima in the scattering coefficients.

The perturbation approach is the most promising way to compute three-dimensional
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seismic wave scattering from rough interfaces given realistic constraints on computer re-
sou-rces. Kennett (1972) applied a perturbation approach to the analysis of surface wave
scattering from two-dimensionally rough interfaces. Our approach was to extend the per-
turbation approach of Kennett (1972) to handle three-dimensional body wave scattering
(Prange and Toksoz, 1989). It differs from that of Kuperman and Schmidt (1989) in that
we evaluate a deterministic scattered field and they work with the coherent component
of a stochastic scattered wave field. A single-scattering approximation is used to replace
the rough interface contribution to the scattered wavefield by a planar distribution of
sources at the mean depth of the rough interface. This source is in the form of a discon-
tinuity in the displacement-stress vector at the source depth, and as such is suitable for
direct insertion into an exact solution algorithm for propagation of elastic waves through
a vertically stratified medium (Kennett, 1983). Integration of the perturbation methods
into stratified media formulations has been demonstrated for two-dimensional models by
Kuperman and Schmidt (1989).

In this thesis we study the scattering from interfaces consisting of small perturbations
about a planar surface bounding two elastic half-spaces. In chapter 2 a perturbation for-
mulation is developed to model three-dimensional scattering from such interfaces. The
method is formulated in terms of simple matrix operators. The range of interface pa-
rameters for which the perturbation method is valid is determined by comparison of
seismograms and scattering coefficients with those generated by a highly accurate finite
difference formulation. The models used in this combarison have Gaussian autocorrela-
tion functions. The concept of a scattering kernel is introduced as a convenient way {o
separate influences on the scattered field into two parts: the effects of the interface rough-
ness function and those of the material contrast and the source parameters. Scattering
kernels and scattering coefficients are then used to discuss the properties of converted
waves in the three-dimensional scattering.

In chapter 3 the perturbation method is used to examine the effect of P and S velocity

and density contrasts on the scattered wavefield. In order to separate the effects of these

10



three material contrasts, a small material contrast approximation is made which reduces
the three-dimensional scattered field equations to simple linear forms which decouple
the influences of the three contrasts. From these simple expressions, we discuss the
three-dimensional behavior of the scattered wavefield relative to changes in interface
properties. We then present and discuss the influence of obliquely incident P and SV
waves on scattered P, SV, and SH waves.

In chapter 4 we present seismic data from a vertical seismic profile! which contains
evidence of rough interface scattering. Our perturbation formulation is applied to gen-
erate scattering coefficients and seismograms for several rough interface models for this
data set in a effort to explore the particular scattering mechanism at work at this site.

Discussion and conclusions are contained in chapter 5.
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Chapter 2

PERTURBATION
APPROXIMATION OF 3-D
SEISMIC SCATTERING

2.1 ABSTRACT

A method is presented for computing three-dimensional seismic wave scattering from
a rough interface. The matrix method used is appropriate for direct implementation
in existing propagator matrix-based seismogram synthesis programs. It is derived us-
ing a perturbation approach which requires interface height perturbations to be small
relative to the wavelengths of scattered waves, and interface slope perturbations to be
much less than unity. These validity conditions are based on an order-of-error analysis
of the truncation of the perturbation series. These conditions are humerically investi-
gated by comparison of frequency-wavenumber domain and time domain perturbation
results with those generated by a second-order finite difference method for several rough
interface models with Gaussian autocorrelation functions. In the w-k domain compar-
isons, the perturbation method is accurate for RMS interface height deviations of less

than about 10 percent of the smallest wavelength in the scattered field. This result is
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independent of RMS interface slope in the tested range of 0.037 to 0.99. Comparisons of
scismograms generated by the two methods show that error does increase with increasing
RMS siope, but at half the rate of error growth with increasing height. Time domain
error is acceptable for RMS height deviations of less than about 20 percent and RMS
slopes of less than about 0.25. A three-dimensional scattering kernel is defined which

facilitates analysis of two- and three-dimensional scattered field results.

2.2 INTRODUCTION

The presence of a rough interface can strongly affect seismic waves reflected from and
transmitted through that interface, even when the scale of roughness is much less than a
wavelength. These effects include changes in the amplitude, scattering angle, frequency
content, and wave-type conversion of the scattered wave. Available exact solutions take
the form of integral equations (DeSanto and Brown, 1986) or ﬁnit;z difference/finite ele-
ment formulations (Levander and Hill, 1985) that are prohibitively :expensive to solve in
three dimensions. In this paper, I present a perturbation approach to the solution of the
three-dimensional elastic wave equation which satisfies welded boundary conditions at a
rough interface. This solution is an extension of two-dimensional surface wave scatter-
ing formulations (Kennett, 1972; Gilbert and Knopoff, 1960). The method requires the
height and slope of interface irregularities to be small with respect to the wavelengths of
the elastic waves present. The accuracy of the perturbation method is then explored for
two-dimensional models by comparing solutions for a series of rough interface models with

those generated by a second-order finite difference method. The scattering results are

first compared in the frequency-wavenumber domain in the form of scattering coefficients:= =~

The scattered wave fields computed with the perturbation and finite difference methods
are separated into up- and down-going P and SV waves, and these scattering coefficients
are individually compared. Comparisons are also made in the time-space domain using

seismograms. Finally, we discuss the features of the three-dimensional scattered field. '

14
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2.3 THREE-DIMENSIONAL SCAT(fERING
FORMULATION

A fine-scale blow-up of a three-dimensional rough interface is shown in Figure 2-1. The
in.gular interface is described by z = h(z,y), and has a downward normal n(z,y).
It separates an upper medium, described by compressional and shear wave velocities
a; and f; and density p;, from a lower medium, described by a3, 8, and p;. The
essence of the formulation is to project displacements and stresses on the two sides of the
rough interface onto a planar surface whose depth equals the mean depth of the rough
interface. These projected fields are then expanded in a perturbation series in h about
a background field consisting of the known planar interface solution. This procedure
results in a formulation in which the rough interface scattering problem is replaced by
a planar interface scattering problem with sources along the planar interface generating
the rough interface component of the scattered field.

The general form of the elastic wave equation which is valid for small displacements

in the absence of body forces is

— pwiu; = 15, i, € {z,y,2}, (2.1)
where u; is the ith component of the displacement vector, 7;; is the ¢,j component of
the Cauchy stres-s tensor, the comma denotes differentiation of 7;; in the j-th coordinate
direction, w is the temporal frequency, and the Einstein summation convention applies.
Throughout this paper, the Fourier transform in z, ;, and ¢ uses an implied phase factor
of exp(ikzz + ikyy — twt). For an isotropic solid, stresses are related to displacements by

the constitutive relation

Tij = Aurabi; + plu; + uj,:), (2.2)

where §;; is the Kroniker symbol, and X and g are the Lamé parameters. Equations (2.1)

and (2.2) can be expressed as a 6 x 6 matrix wave equation in the form

15



j 2 —4o (23)
. where r is the displacement-stress vector defined by r = [uz, uy, u;, Tzzy Tyss 7..)T and

A is defined by

-
1
0 0 -0, " 0 0
0 0 -0y 0 ;‘; 0
gy -
b ~r25 0 A+/2\n a 0 0 0 4\:21‘
A= _p2 ~n(1+53:)0y O 0 0 20 (2.4)
—(0:z — I‘ay!l
—pu(1'+ X%;—,,)azy —pw? 0 0 0 T;%;ay
—#0pz — (Oyy
0 0 -pw? -8, -9, O

with ¢ = 4p(X + p)/ (X + 2p).

Welded boundary conditions at the rough interface require continuity of displacement
and traction at each point on the interface. These tractions are measured with respect
to the local tangent plane at each point on the interface, and are given by T; = ojxns,

where the downward unit normal n; is defined by

, g ng —h .

: 1

; NN . 2.5
: M| T ARt kg | TR (23)
' n, 1

A new displacement-stress vector 7 is defined using these tangent plane tractions so that

L is continuous at the rough interface. 7 is defined as

16
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Uz 0 1 0 0 0 0 Yz

Uy 0 0 1 0 0 0 Uy

u, - U,
= | —h (8, —h',;;\?_—éf;ay 0 1 0 h,zﬁ—%"

Tey/1+ h% + 1Y —hud, ~h 18, Tez
T, /1+ h% + k2 .
1+ 0+ —h pd, —h_pd, 0 0 1 k||

T.\/1+ k% + 13 ] ”h.y%ar ~h {0y T2z |

0 0 0 —~hy —h, 1

(2.6)
Writing (2.6) in a form which explicitly expresses the h dependence, this transformation

takes the form

£z yih) = (L +haQo + hyQy)r (z,y5 k) (27)

where £ and r. are evaluated along the rough interface, I is the identity matrix, and @ »

and _Q y are

17
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0 0 0 0 0 O
—€3: 3£, 0 0 0 533
~pd, —pd, 0 0 0 O
0 0 0 -1 0 O
and
0 0 00 O 0
0 0 G0 O 0
0 0 00 O 0
g v = (2.9)
—-pb6, —pd; 00 0 O
“32";—\'2#761 ¢, 00 0 'A_:-;"u
0 0 00 -1 o0
The rough interface boundary conditions may then be expressed in the form
£ (a,y; k) = 2Oz, y; h) (2.10)

where superscripts indicate the respective media.
In order to relate the scattered field (the rough interface solution) to the background
field (the mean planar interface solution), the scattered field at the mean planar interface

r(0) is extrapolated to the rough interface by the power series expansion

18



(k) =r(0) + hr .(0) + g;r_,,z(()) +... (2.11)

Making use of the wave equation (2.3), (2.11) is reduced to the form

r(h)=(L+hrA + %:-4__2 +...)z(0). (2.12)

So far the formulation is exact as long as the series in (2.12) converges. It is easy to
demonstrate convergence for the case of a planar interface. In this case k is constant and
(2.12) can be easily Fourier transformed to the (k;,k,) domain to form the power series

expansion of the exponential function, converging to

r(kz, ky; h) = e"Ar (kg ky; 0) (2.13)

This is the standard form for the propagator matrix (Aki and Richards, 1980, p. 275),
which is an exact extrapolation operator which forms the basis of the propagator matrix
method for formulating wave equation solutions in plane layered media (Kennett, 1983).

After the displacement-stress vectors along the rough interface have been extrapolated
to the mean planar interface, they are expanded in a perturbation series about r4(0),

the displacement-stress vector at the interface of the background planar interface model:

£O(0) = £.6(0) + hz(0) + A2 (0) + ... 5, (2.14)

where superscripts indicate the respective media and subscripts indicate the approxima-
tion order of the field. Since r(0) is the displacement-stress vector for the background
planar interface model, it is continuous across the planar interface and needs no super-
script. The higher order terms reflect the influence of the rough interface. Combining
(2.7), (2.12), and (2.14), each side of the boundary condition expressed in (2.10) can be

written as (omitting the superscripts)

19
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£(h) = (L+hQz+h,Q,) (2.15)
L+rA+2a74.)
(zo+hri + 1;212 +...)
~ (L+h:Qs+hy@Qy)ro+hAro+ hry (2.16)
+ O(h?) + O(hh ;) + O(Rhy)

where O(-) denotes order of accuracy.

Applying the boundary condition (2.10) to (2.16) results in

R ~rM) = MAD Ao+ h(QP —QP)ro (2.17)

+ hy(QP - QPra,

which is accurate to second-order in k and its derivatives. The right-hand side of (2.17)
is clearly zero in a planar interface model. The presence of interface roughness results in
discontinuities in the displacement-stress vector. Such discontinuities represent sources
(Aki and Richards, 1980, p. 38). Thus, to first order in h, the effects of a rough interface
can be duplicated by adding sources along the mean planar interface. These sources will
be designated by s = k(r {2’ —-r ?’). This use of sources to represent material deviations
from a background model is shared with standard Born theoretical developments (Wu
and Aki, 1985). The mapping of heterogeneity into source terms is also used in exact
formulations based on Huygen’s principle (Paul and Campillo, 1988).

Fourier transforming (2.17) to the k,, k, domain,

. 1 oo
§.(kzy ky) = Z?;;/;m h(kr - k;;,ky - k;)_Ll_(kz’ky; k.:;v k;)ﬂﬁ(k;:vk;)dk; dk; ’ (218)

where L is defined by
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2.3.1 Definition of the Scattering Kernel

(2.19)

For plane wave sources it is possible to define a factorization of the scattered field into

a product of the wavenumber spectrum of -the interface and a function that is called

the scattering kernel.

The scattering kernel is independent of the interface roughness
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function, and contains the features of the scattered field related to the material contrast
and the source frequency and illumination angle. For a plane wave source of the form

ro(kl, k) = 4x’r (K2, kD)S(K, — k2, k, — k), (2.20)

'y T

equation (2.18) reduces to

s (ks ky) = h(kz — k2, By — K))L (k= Ky; K2, KY) p(RE, K))- (2.21)

The scattered field source term in this case is separated into a part associated with a par-
ticular interface roughness function, h(k;—k2, k,—k?), and a part associated with the ma-
terial contrast and the source frequency and illumination angle, L (kz, ky; k2, kP)r (K2, kD).
The latter part is designated as the scattering kernel.

Knowledge of the scattering kernel allows one to evaluate the scattering potential of a
model independent of any particular interface. For example, the transmission scattering
kernels for the two-dimensional model in Figure 2-2 are given in Figure 2-3. The source
is a normally incident, planar P wave. The scattering kernels here have been resolved
into down-going P and S wave scattering coefficients using a technique described in the
next section. Superimposed on these plots is the Fourier transform of the interface.
The scattered field is simply the product of the two curves. From these plots it is clear
that an interface with a smaller correlation length, and hence a broader spectrum in the
transform domain, would result in large amplitude cusps for large scattering angles in P
and S. For the transmitted P wave, the scattered wave amplitude increases for scattering
angles larger than the P reflection critical angle. An amplitude boost at large angles may
also be seen in the P and S reflection coefficients as it will be shown later with examples.
This effect has also been demonstrated by Levander and Hill (1985) using finite difference
methods and by by Paul and Campillo (1988) using boundary integral equation methods.
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2.3.2 Describing Reflection and Transmission

The source term given by (2.18) generates P and S waves above and below the interface.
To determine the displacement coefficients of these waves requires a relation between the
displacement-stress vector and the up- and down-going P, SV, and SH wave components,
the form of which is given by

r=Fb, (2.22)

where b = [PST PST]T, the grave and acute symbols * and * denote down- and up-going
waves, respectively, and P, S, and T are the displacement coefficients of P, SV, and SH

waves, respectively. Using the reflection coefficient sign conventions of Aki and Richards

(1980), E is given by
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with K = (Jk2+ k2 a = /(A+2u)/p, B = fulp, v = Jw?/a? ~K?, and v =

\/w?/B% — K2, To recover scattered field displacements from the source term note that

s=r@_p0 ==_1‘:(2)_b_(2) —_.E_.(l)é(l) (2.24)

and that s generates no down-going waves in the upper medium and no up-going waves

in the lower medium. Hence,
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The wave displacement coefficients generated by s are given by

=F7s. (2.26)

1o

The inverse of ﬁ exists for all values of (k;,k,) except (k;,k,) = (0,0). At this
point in the k plane the scattered waves are propagating normal to the mean planar
surface, and SV waves are indistinguishable from SH waves. For example, consider an
S plane wave traveling in the z direction with particle motion in the z direction. If
the wave direction is slightly perturbed in the z direction it becomes an SV wave. A
perturbation in the y direction makes it an SH wave. These distinctions are true even
when the perturbations are infinitesimal. Hence, to remove the singularity of £ , an
arbitrary naming convention must be adopted for vertically propagating S waves. In this
paper, the x component of such waves is labeled SV, and the y component is labeled SH.

The _E_ matrix for vertical propagation is
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0 0 1 0 0 -1
. 1 0 0 1 0 0
F(0,0) = (2.27)
0 iwpaf2 0 0 wp15 0 ’
0 0 iwpzﬁz 0 0 iwpl ,31
iwpgag 0 0 -’iwp101 0 0

2.4 COMPARISON WITH FINITE DIFFERENCE

The simple form of the scattered field source term (2.18) was made possible by the trun-
cation of (2.15) to yield the second-order perturbation approximation given in (2.16).
The error resulting from the exclusion of higher order terms is difficult to evaluate an-
alytically. It is possible, though, to determine bounds on the domain of validity of ?;his
approximation. Kennett (1972) derived two conditions on the model which must hold in
order for (2.18) to be valid. The first condition constrains the scattered field to be much
weaker than the background field, a requirement for the single scattering approximation

to apply. This condition is expressed by the relation

s(kz, ky) < ina}cx Iz o(Kzs ky)lv (2.28)
xRy

where s is the scattered field source term defined by (2.18). Kennett (1972) reduced
this to a simpler, but stricter, form by replacing the convolution integral in (2.18) by an

upper-bound approximation, yielding

KowlL

o

_

2.29) .

mzmax |h(z)] €1, max|h.(z)| <1,
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where

ayflyy — Oz lﬁl/’x — B2p2
apy +oap2 || + Bap2|)

1. is the periodicity length of the rough interface, and the wavenumber spectrum of the

T = max{

incident field is bounded by k] < k¢. The second condition is that the background field
mnst not contain wavenumbers so close to grazing incidence that shadow zones form.
Shadow zones will be avoided if the radius of curvature of the interface is much longer
than a wavelength, Such waves will then propagate as guided waves along the interface.

This condition is expressed by

2 maxlh.] <1, (2.30)
‘/r;?, +k2

where k, is the vertical wavenumber component associated with the maximum horizontal
component Kg.

These conditions are not satisfactory for practical use, however. Approximations used
in the derivation of (2.29) result in a much stricter bound than is necessary, and the prac-
tical limit imposed by (2.30) nceds to be better defined. In order to empirically construct
more realistic constraints on interface roughness, reflection and transmission coefﬁcientsl
obtained using the perturbation method described above will be compared with those
derived from two-dimensional finite difference solutions. By comparing results for a range
of interface height and slope statistics, the domain of validity of the perturbation method
can be explored.

The finite difference algorithm used here is a two-dimensional, second-order formula-
tion. To summarize, the wave equations (2.1) and (2.2) are solved in the time-space
domain by replacing the time and space derivatives by their second-order centered-
difference approximations. The accuracy is improved by using a staggered mesh formu-
lation in which horizontal and vertical displacements are represented on separate grids.
each shifted by half of the grid point spacing in both coordinate directions with respect
to the other. This has the added benefit of increasing the grid-point density by a factor of

two. The formulation differs from that of Virieux (1986) in that we use the second-order

0)7
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displacement /stress wave equations instead of the first-order velocity/stress equations.
This modification improves efficiency, since the final solution was desired in terms of
displacement. The stability conditions and grid dispersion relations are identical with
those of Viricux’s formulation. A low-order, staggered-mesh scheme was chosen because
it is the most eflicient method when dense grid point spacings are necessary, as is the
case in our models where small interface irregularities must be represented. Higher order
schemes, such as those which use fourth-order (Bayliss et al., 1986) or Fourier spatial'
derivative operators (Kosloff et al., 1984; Fornberg, 1988), are generally thought to be
more efficient than second-order schemes, but this is not necessarily true. The dense
grid point spacing used in modeling small interface perturbations puts the second-order
derivative operator well within its domain of acceptable accuracy, and the short operator
length makes it the most efficient scheme..

The finite difference method is known to be accurate when the wave fields and the
model are both well discretized. Hence, when models with large interface irregularities
are cornpared, the finite difference method will be used as the standard. On the other
hand, the perturbation method is accurate for models with small interface height and
slope irregularities and will be used as the standard for such models. The comparison
with finite difference solutions will proceed in two parts. First it is necessary to show that
the range of interface irregularities over which the finite difference method is accurate
extends into the range over which the perturbation method is accurate. This will be
done by showing that the finite difference method results match the perturbation method
results for a model with very small height and slope irregularities. If the finite difference
method works well in this case, results for larger interface irregularitieé will also be v'alid
because they will be more accurately represented on the finite difference grid. * Finite
difference solutions will then be used a basis for comparison with perturbation solutions
for a series of models with larger height and slope irregularities in order to probe the

limits of validity of the perturbation approximation.
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2.4.1 Accuracy of the Finite Difference Method

All results for scattering from a rough interface in this paper are expressed as reflection
and transmission coefficients. The procedure for deriving these coefficients from the
finite difference solution is similar to that described in Section 2.3.2 for the perturbation
solution. In short, (2.22) is used to convert r into b, and then P and S wave amplitudes
in b are scaled by the source wave amplitude. The displacements and stresses in . are
computed by the finite difference method in the time-space domain along a horizontal
linear array of uniformly spaced receivers that do not intersect the interface at any point.
The receiver array should be located between the source and the interface to allow incident
waves to be separated from reflected waves based on whether they are traveling downward
or upward. r is then Fourier transformed into the w-k domain to yield a form suitable
for use in (2.22). The distance of the receiver array from the interface is accounted for
by the z term in the definition of F in equation (2.23). If the finite difference model
is such that reflections from the top or bottom edges of the grid will arrive within the
seismogram time window, absorbing boundaries must be implemented which attenuate
those reflections to a level much smaller than the reflection and transmission coefficients
to be measured. Periodic boundary conditions were applied on the horizontal boundaries
of the grid in order to duplicate the periodicity of the spatial Fourier transform, and the
length of the array, L, was set to the horizontal dimension of the finite difference grid to
take advantage of this periodicity. For a point source, L controls the range of incidence
and scattering angles that are within the receiver array, and the horizontal grid size
should be large enough to capture the incidence and scattering angles of interest. Since
the range of incident and scattering angles detected is also dependent on the distance
of the source and the receiver array from the interface, it is best to put the source and
the receiver array as close to the interface as possible to minimize the grid size and the
seismogram length. Receiver spacing controls the maximum representable wavenumber
in r, and was set equal to the grid point spacing to avoid aliasing.

The reflection and transmission coefficients obtained from finite difference modeling
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are compared with analytical coeflicients (Cerveny et al., 1977) for the case of a planar
interface model. The model is shown in Figure 2-4. The source has an 18 Hz Ricker time

function of the form

R(t)=(1- %wgﬁ)e-%w%", (2.31)

where wyg is the primary angular frequency of the wavelet. The source is implemented as a
body force representing a point explosion source smoothed by a Gaussian with standard
deviation equal to the grid point spacing. This smoothing is necessary to make the infinite
bandwidth explosion source dipoles representable on the finite bandwith finite difference
grid. This source isotropically radiates pure P waves. It is located 20 grid points above
the interface, and the two arrays of receivers are located 10 grid points above and 10
grid points below the interface. Reflection and transmission coefficients derived from the
finite difference seismograms for this model are shown in Figure 2-5 along with analytical
cocfficients. There is generally good agreement for both pre- and post-critical waves. The
small disagreement present at the larger scattering angles results from the finite aperture
of the receiver array.

The finite difference and perturbation methods will now be compared for a moélel
with very small height and slope perturbations shown in Figure 2-2. The source is
a downward propagating, planar P wave with an 18 Hz Ricker time function. The
interface roughness has a Gaussian autocorrelation function with a correlation length of
L =100 m and an RMS height deviation of & = 16.7 m. The interface is periodic with
a period of 2.70 km, the width of the model. The finite difference sampling parameters,
Az =6.67 m, Az = 2.22 m, and At = 0.00156 s, result in a maximum phase dispersion
error of —1.1 percent at 18 Hz. The two receiver arrays are located as close as possible to
the interface without intersection. The Fourier transform of the interface function which
has been discretized for the finite difference grid is shown in Figure 2-6a as a function
of horizontal slowness evaluated at 18 Hz. The zero spectra} power at the origin results

from the zero mean interface deviation. Histograms of interface height and slope are
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shown in Figures 2-6b and 2-6¢c. The largest deviation from the mean planar surface
is 12 m, or 15 percent of the S wavelength in the upper medium. The largest slope is
0.16, while the mean and standard deviation of the slope are zero and 0.059, respectively.
Since the maximum interface height and slope are fairly well approximated by twice their
standard deviations, histograms will not be provided for the remaining rough interfaces
used in this study. A comparison of the reflection and transmission coefficients derived
from the finite difference and perturbation methods is shown in Figure 2-7. Agreement
is very good, with both amplitude and shape predicted well by the perturbation method.
“Ringing” appears to some degree in all finite difference coefficient plots, and is most
apparent on the S wave cocflicient plots. Another check on the accuracy of the reflection
and transmission coefficient results is to plot the coeflicients for the non-physical waves
in the solution: the down-going S in the ;pper medium and the up-going S and P in
the lower medium. Plots of the non-physical coefficients for the finite difference data
are shown in Figure 2-8. In general, the amplitude of the non-physical waves increases
with increasing scattering angle, since the wavenumbers corresponding to these larger
angles are less well represented by the receiver array. The down-going P wave in the
upper medium has unit amplitude at zero angle. It is clear from this figure that the
maximum error is less than 0.1 percent, and that this error is associated with the S wave
in the upper medium. This error is enough to explain the difference between the finite
difference and perturbation results for the reflected S wave coefficient at large scattering

angles.

2.4.2 Accuracy of the Perturbation Method in the w-k Domain

The domain of validity of the perturbation method will be explored by comparing reflec-
tion and transmission coefficients generated using the perturbation method with those
derived from finite difference modeling. Six rough interface models are used in this com-
parison, each having a Gaussian autocorrelation function and a uniform randem phase.

The interface functions are shown in Figures 2-9(a-f) with two times vertical exaggera-
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tion. RMS interface slope ranges from 0.037 to 0.99 and RMS interface height is 0.01 km
for models A-E and 0.015 km for model F. Since the accuracy of the perturbation method
is sensitive to the smallest elastic wavelength in the model, interface height is measured
here in terms of S wavelengths in the upper medium (S;), and thus the relative height of
the irregularities changes as the frequency changes. The bandwidth of the 18 Hz Ricker
wavelet time function used in the finite difference calculation allowed reflection and trans-
mission coeflicients to be computed at three frequencies (9.93, 16.5, and 26.5 11z) in each
of the six models, for a total of 18 comparisons for each cocflicient. In these comparisons,
RAIS interface height ranges from 0.069 to 0.28 S; wavelengths. RMS height, correlation
length, and RMS slope for the models used are listed in Table 2.2. The material param-
cters are a; = 2.50 km/s, #; = 1.44 km/s, p, = 1.00 g/cm?®, o, = 3.00 km/s, 8, = 1.73
km/s, and p; = 1.00 g/cm3, the same as in Figure 2-2. The source is a normally incident
planar P wave in layer one. Plots of these comparisons are shown for the selected mod-
els A, B, D, and E in Figures 2-10(a~d). The reflection and transmission coefficients are
the displacement coefficients 131, 5"1, i’g, and 5'2 are normalized so that 151 =1.

In order to facilitate the comparison of the perturbation and finite difference coeffi-

cients, the curves are compared by finding the L, norm difference defined by

: , 3
, , z —_ 2
1Py — Pralls = 100 x | 2105el8) = Fyra(0)] ‘””] , (2.32)

& Pyy(0,)2d0,

where 0, is the scattering angle and the P coeficient is chosen for illustration. The
differences between method results are plotted for each of the four coefficients in Figures 2-
11(a~d) for a constant RMS interface height of 0.01 km, and in Figures 2-11(e-h) for a
constant RMS interface slope of 0.1. The constant height plots show that the accuracy
of the perturbation solution is not significantly degraded as RMS interface slope varies
within the range tested. This L, norm result is verified in the coefficient comparison
plots in Figures 2-10(a-d). The constant slope plots show that error increases rapidly
with increasing RMS interface height, and in this particular example is acceptable for

values of RMS height less than about 0.1 S; wavelengths.
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2.4.3 Accuracy of the Perturbation Method in the -2 Domain

Error in time domain seismograms generated using the perturbation approximation can-
not be directly estimated from the error results presented for the w-k domain. This
is because each seismogram contains energy from a broad spectrum of frequencies and
wavenumbers. Here the time domain error will be estimated by comparing reflection
scismograms generated by the perturbation method with those generated from the finite
diffcrence method. To generate reflection seismograms using the perturbation method,
the scattering coefficients evaluated using the two-dimensional form of (2.26) are con-
verted to displacement by using (2.22) with k&, = 0. These displacements are then
Fourier transformed in w and k to yield

s

Uy 1 00 . o - FM Fls P
= [ edu / e*=dk . (2.33)
i -0 -00

u, F, F35 5'

o

Fourier transforms are evaluated using the discrete wavenumber method (Bouchon, 1977).
Seismograms generated with (2.33) contain only the scattered field. The background field
can be added if desired. '
Seismograms were generated for each of the interface functions parameterized in Ta-
ble 2.3 using both the perturbation and finite difference methods, and a subset of these
are shown overlain in Figure 2-12. The source and receiver configurations and the mate-
rial parameters are the same as those used in the last section. The source time function is
an 18 Hz Ricker wavelet. These seismograms show that the shapes of the waveforms gen-
crated by the perturbation and finite difference methods agree fairly well for the range of
models considered. Errors in amplitude and traveltime seem to be positively correlated,
both being larger at receivers that are over extrema in the interface height function than
at other receiver locations. This feature will be explored next using an L, norm error
measure. Since the total waveform is composed of the background field added to the

scattered field, total field perturbation method seismograms minus the source waves are
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presented for comparison in Figure 2-13 for models A-I.

The Lz norm was calculated as a measure of error between the perturbation and finite

difference seismograms, using

E(z,At) = ”u,(:c)”‘ "uz(x)fd"?(At)
tmaz t pt ’ i) — fd ’y]2 }
= 100 x [—Lf"'""" d, [u;f (z’tt ta )Jd ul, z(z,t ) ) (2.34)
L’fo dz fz:.:’ dt'uz®(t")

where L is the length of the receiver array and At is the time shift between the two
seismograms. The numerator was efficiently evaluated using the fast Fourier transform
since the seismograms are periodic in space. The denominator is the average power
of the entire array of finite difference scismograms in order to minimize the effect of
low amplitude seismograms on E(At). If E(At) were normalized instead to the current
seismogram, globally small errors could overwhelm such low amplitude seismograms to
produce large values of E(At).

E(At) is used to provide two separate measures of error for each seismogram: travel-
time error, which is defined as the time delay At at which E is minimum; and amplitude
error, which is defined as £ = E(At). A plot of At versus seismogram offset z for
Model A is shown in Figure 2-14. Overlain on this plot is a plot of the one-way, vertical
P wave traveltime associated with the interface function (ﬁl—fl) In the absence of travel-
time error, At would be zero for all the seismograms. The agreement between these two
curves indicates that traveltime from the interface to the receiver in the perturbation
method is referenced to the mean planar interface, and not to the perturbed interface.

The reason for the traveltime error can easily be seen for the case where the interface
perturbation function h(z) is a constant. In this case, the perturbation expansion given

by (2.15) transforms to an exact form in the w-k domain:

CE(wikskyh) = L(L+hA + AP+ .. )0 (w, ks ky; 0) (2.35)
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= eMr(w, ks, ky;0) (2.36)
g_ehA_E_—lZ'. (w, kz, ky3 0). (2.37)

Equation (2.36) is simply the definition of a propagator matrix which transforms the
solution for r at depth zero to the solution at depth h. Equation (2.37) uses a diagonal

factorization of A of the form

-1 (2.38)

(A
=
]

A
where F is defined by (2.23) and is always invertible, and A is a diagonal matrix whose

diagonal elements in the three-dimensional case are Aj; = —Ayqy =iy and Ay = Az =

—Ass = —Age = tv. The exact form of the source term (2.18) valid for constant h is then

s(w ks ky) = (4" = "4 ) (w, ks, ky; 0) (2.39)
= (EWMD M _ pO,AD F@TN (1 k£, 0) (2.40)
~ (ED(AMEN™ - EO(RAPYED ™) (0, by, ky:0) (241)
+ O(R?).

The phase factors of the form "2 in (2.40) are responsible for adjusting the traveltime
to account for the height of the interface. The accuracy of the first order approximation
s — I =~ kA in (2.41) controls the accuracy of the traveltime adjustment and influences
the accuracy of the scattered field amplitude. The accuracy of the first and second order
approximations to e'"4 — I is illustrated in Figure 2-15. This figure shows that at
least a second order approximation is required for accurate representation of phase, and
therefore of traveltime, although both approximations converge to the exact solution as
h — 0. However, the modulus of the first order approximation is more accurate than
that of the second order approximation, but this is a consequence of the non-monotonic
improvement of accuracy as approximation order increases.

RMS amplitude error £ in the comparison of perturbation- and finite difference-

derived seismograms is shown in Figure 2-16. RMS errors of the seismograms of each
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model were averaged, and these mean errors were plotted against RMS height for RMS
slopes of 0.037 and 0.10, and against slope for an RMS height of 0.125 S; wavelengths.
Contrary to the results obtained in the w-k domain, RMS amplitude error clearly increases
with increasing RMS interface slope, as well as with increasing RMS interface height.
Comparison of the rates of error growth for the fixed slope and fixed height error plots
shows that error increases with increasing height nearly twice as fast as it does with
increasing slope.

When the time shift error is removed, amplitude error is sensitive to two factors: the
amplitude scale factor and the waveform character. Waveform character refers to the
general shape of the waveform including the presence and length of the coda. It is fairly
well approximated in all of the nine models considered here. With the exception of small
amplitude arrivals, the shapes of the first arrivals generally agree well with the finite
difference results, even for medels with RMS slopes as high as one, and the complexity
and decay rate of the coda are also well approximated. The amplitude scale factor,
however, is gencrally overestimated by the perturbation method. This is true to the
nature of the Born approximation, which violates conservation of energy by introducing
the rough interface effects via a source term whose energy is added to the energy of the
background field. With these points in mind, the range of validity spans the entire range
of the models tested if the error criterion is based on waveform character. On the other
hand, if the error criterion is based on amplitude scale or the absolute RMS error the
range is limited to RMS slopes of less than about 0.3 and RMS heights of less than about
0.25 of the smallest wavelength present in the scattered field. Notice that the latter
criterion results in a less restrictive range than the RMS error analysis on scattering

coefficients done in the w-& domain.

2.5 FEATURES OF THE 3-D SCATTERED FIELD

Three-dimensional scattering examples will now be presented for the model shown in

Figure 2-17. The material and interface parameters are identical to those of model D
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(sce Table 2.2 and Figure 2-9) with the Gaussian autocorrelation function having identical
correlation lengths in the z and y directions. In general, a Gaussian rough interface whose
major and minor axes coincide with the z and y axes has a‘Gaussian autocorrelation

function of the form

keLlz 2 2
h(kg, by Vo™ (s, k) ~ e~ 20000 (2.42)

where L; and L, are the major- and minor-axis correlation lengths. Equation (2.42)
can be generalized to allow roughness trends at an angle 0 to the z axis by applying a

rotation transformation to get

h(kzy by Vh"(kzy k) ~ e~ §[L2 (ks cos(0)+k, sin(8))?+L}(~ks sin(6)+ky cos(6))?] (2.43)

In the first example, the source is an 18 Hz planar SV wave propagating downward
along the z axis with particle motion in the z direction. The SV wave scatters into
reflected and transmitted P, SV, and SH waves. The three-dimensional P, SV, and SH
transmission coefficients for this model, found using the perturbation method, are given
in Figure 2-18. The z and y scattering angles in these figures, referred to as ¢, and ¢,,
are measured from the downward = axis in the z-z and y-z planes, respectively. They
are defined by ¢, = sin™! (k,v/w) and ¢, = sin™! (k,v/w) where v is the body wave
velocity of the transmitted wave concerned. Scattering in the z-direction, for example,
is given by ¢, = ¢, = 0. The transmission coefficient plots cover scattering angles in the
range —90° < ¢, < 90° and 0° < ¢, < 90°, and are symmetric about the ¢, = 0 axis.
For all three scattered wavetypes, these plots show that scattering is maximal in the
direction that conserves source particle motion: for an SV source with particle motion in
the z-z plane, P and SV are maximally scattered in the z-z plane, and SH is maximally
scattered in the y-z plane. This effect is exaggerated by the use of the single scattering
approximation. A null is present in the plane normal to maximal plane: the y-z plane
for P and SV waves and the z-z plane for SH waves. An alternative display of the three-

dimensional transmission coefficients is a cross-section of the coefficients for all scattering
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angles at a particular azimuth, where azimuth is measured clockwise in the z-y plane
from the positive z-axis, and the scattering angle is defined by ¢ = sin~!(k.v/w). Cross-
sections of the reflection and transmission coefficients for the same model and source
parameters are given for azimuthal angles of 10°, 45°, and 80° in Figure 2-19.

Transmission scattering kernels for the model in Figure 2-17 are given in Figure 2-20.
Comparison with the SV and SH transmission coefficients in Figure 2-18 shows that the
spatially band-limited nature of this particular interface damps out the large amplitude
features present at large scattering angles. The P transmission coefficient exhibits a hint
of the cusps present in the kernel. Consideration of another interface roughness function
requires only a visual superposition of the new interface spectrum with the kernel. For
the same SV source as above and a two-dimensional rough interface with variation in the
r direction, the problem is truly two-dimensional, and waves are scattered into P and SV.
If the interface is rotated 90 degrees so that variation is in the y direction, the problem is
fully three-dimensional, and waves are scattered into P and SH. More general interfaces
whose autocorrelation functions are described by (2.43), or perhaps a von Karman or
exponential function, are handled with the same approach.

The second example is the same as the first, but with the SV source replaced by a
P source. The three-dimensional P and SV transmission coefficients for this model are
given in Figure 2-21. Since the source particle motion and the Gaussian autocorrela-
tion function are azimuthally invariant, the scattering coefficients are also azimuthally
invariant. Deviations of the contours from circular arcs are artifacts of the contouring
program. Reflection and transmission coefficient cross-sections for this model are given
in Figure 2-22. Note that scattered SH waves are not generated in this example. This is
a consequence of the single-scattering approximation. For a normal incidence planar P

wave, a minimum of two bounces are required to generate SH.
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2.6 DISCUSSION AND CONCLUSIONS

A perturbation method has been presented for computing three-dimensional body wave
scattering from a rough interface. Its spced and simplicity are such that many of the
examples in this thesis were generated on a Macintosh SE computer in less than two
minutes. Speed is an important consideration when three-dimensional modeling is nec-
cssary. For example, many of the two-dimensional finite difference computations done
for comparison required 15 Mbytes of core and 23 hours of CPU time on a Vax 8800. In
three dimensions, finite difference solutions for these models are beyond our resources at
present. For the class of irregular interface models with small RMS height deviations,
the perturbation method is a useful alternative.

Since interface §height deviations in the models presented are small, comparisons of
the perturbation method with the finite difference method were preceded by careful
testing of the finite diffecrence method to show that it is valid for the small deviations
used in these comparisons. It can be shown that in the limit as the finite difference
grid sampling interval goes to zero, and as the numerical precision of the computer
goes to infinity, the finite difference solution converges to the exact solution as O(Az)
(Brown, 1984). However, in order for the grid sampling interval to be small enough
that the finite difference solution is sufficiently close to the exact solution, the number
of grid points describing a fixed model must increase as the size of the interface height
perturbations decreases. Therefore, the core size and speed of a computer are constraints
in the minimum interface height perturbation that can be accurately modeled using a
finite difference method. Of course, a planar boundary is an exception to this limit.
Another lower limit on interface perturbation size is imposed by numerical ptecisioﬁ. As
the size of interface height perturbations decreases, the amplitude of scattered seismic
waves decreases. Since these scattered waves are added to the relatively large planar
interface response, insignificant numerical noise in the planar interface response can be
significant when compared with the scattered field. This is probably the cause of the

“ringing” present in the finite difference-derived scattering coefficients. Comparisons of
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finite difference-derived scattering coefficients for a planar model against an analytical
solution, and for a model with small interface height and slope perturbations against
a perturbation method solution, show that this “ringing” tends to oscillate about the
exact solution. Hence, the smoothed finite difference scattering coefficients are useful for
comparisons.

Numerous two-dimensional model comparisons of finite difference and perturbation
method scattering coefficients were made in order to determine the range of validity of
the perturbation method. The L; norms of the differences were computed for varying
RMS slope and constant RMS height, and for varying RMS height and constant RMS
slope. There are two major trends in the L, norm results. First, error increases strongly
with increasing RMS height, with acceptable levels for RMS heights of less than about
0.1 shear wavelengths. Second, error appears to be roughly constant for increasing RMS
slope for the tested range of 0.037 to 0.99. Smaller trends, such as the apparent increase
in accuracy with increasing RMS slope, are misleading. The L; norm is overly sensitive
to the noise in the finite difference solution being used as the standard for corﬁparison.
This is apparent when the scattering coefficient plots are examined for the trend seen in
the L, norm plots. The L; norm was also calculated to see whether it is less sensitive to
this noise, but the improvements were minimal. Ultimately, all trends must be confirmed
by the scattering coeflicient plots. .

Time domain seismograms generated by the perturbation method were compared
with finite difference seismograms for the same models. The perturbation method was
able.to accurately predict waveform character for the entire range of models considered,
including the shape of the first arrival and the presence, duration, and complexity of the
coda. Using RMS error analysis to determine traveltime error, it was shown that when
first order perturbation theory is used, the traveltime from the interface to the receiver
is referenced to the mean planar interface, and not from the perturbed interface. Hence,
traveltime error increases linearly with the height of the interface. It was shown that a

second order theory is required for traveltime to include the height of the perturbation.
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\Vith this traveltime error removed, the mean RMS error was determined for the pertur-
hation seismograms in each of the models. If this mean RMS error is the criterion for
determining the domain of validity of the perturbation method, it is valid for RMS slopes
of less than about 0.25 and RMS heights of less than about 20 percent of the smallest
wavelength in the scattered field.

Three-dimensional scattering kernels generated for an SV plane wave normally inci-
dent on a rough interface show that waves are maximally scattered in directions for which
the scattered wave particle motion coincides with that of the incident wave. A P wave
in the same geometry induces azimuthally isotropic radiation. In the three-dimensional
scattering example it was shown that there is a null in P and SV scattering in the y
direction, and a null in SH scattering in the z direction. These nulls do not exist in
the time-space domain, where a receiver in any location can detect waves traveling in all -
directions. These scattering kernels also show that scattered wave amplitudes tend to
increase for scattering angles beyond the P wave critical angle (defined with respect to

the planar interface model). This confirms the results of Paul and Campillo (1988).
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Symbol  Definition pauation
aj; Compressional wave speed in layer j (2.23)
B; Shear wave speed in layer j (2.23)
g Density in layer j (2.1)
w Angular frequency (2.1)
u; jth component of displacement (2.1)
T Cauchy stress tensor (2.1)
—/\-j, I; Lamé parameters for layer j (2.2)
r Displacement-stress vector (2.3)
AW Wave equation coefficient matrix for layer j (2.3)
;?:- Partial derivative w.r.t. 7th component (2.4)
i Simplification variable for layer j (24)
T; jth component of traction (2.6)
n(z,y) Unit normal to interface (2.5)
h(z,y) Zero mean interface height function (2.5)
QY), QY Rotation matrices for layer j (2.7)
I Identity matrix (2.7)
e Rotated displacement-stress vector in layer j (2.7)
rd kth order scattered field for layer j (2.14)
ro Displacement-stress vector for mean planar interface (2.14)
s Scattered field source term (2.18)
L Kernel matrix for scattered field source term (2.18)
ke, Ky z and y components of wavenumber (2.18)
K Magnitude of horizontal wavenumber (2.23)
¥ Vertical component of wavenumber for a compressional wave (2.23)
v Vertical component of wavenumber for a shear wave (2.23)
é Dirac delta function (2.20)
b Wave coefficient vector (2.22)
E Layer matrix (2.22)
[ Scattering coeflicient vector (2.25)
£_ Scattering coefficient transformation matrix (2.25).
Ko Maximum bound on source horizontal wavenumber (2.29)
B, Scattering angle (2.32)
A Diagonal eigenvalue matrix for A (2.38)

Table 2.1: Table of symbols used in this paper.
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[ Correlation RMS RMS .Hex ght RMS .H eight RMS -Helght

Model Length RMS Height n mn in

) (km) Slope (km) S; Wavelengths | S; Wavelengths | S; Wavelengths

at 9.93 Hz at 16.5 Hz at 26.5 Hz

A 0.30 0.037 | 0.010 0.069 - 011 0.18

B 0.10 0.10 0.010 0.069 0.11 0.18

C 0.050 0.20 0.010 0.069 0.11 0.18

D 0.033 0.30 0.010 0.069 0.11 0.18

E 0.010 0.99 0.010 0.069 0.11 0.18

F 0.15 0.10 0.015 0.10 0.17 0.28

Table 2.2: Interface parameters for the rough interfaces used in the w-k domain compar-
isons. The interface height functions shown plotted in Figure 2-9.

Correlation RMS RMS 'Height
RMS ) in
Model Length S] Height ;
(km) ope (km) S; Wavelengths
at 18 Hz
A 0.30 0.037 0.010 0.125
B 0.10 0.10 0.010 0.125
C 0.050 0.20 0.010 0.125
D 0.033 0.30 0.010 0.125
E 0.010 0.99 0.010 0.125
F 0.15 0.10 0.015 0.188
G 0.45 0.038 0.015 0.188
H 0.60 0.039 | 0.020 0.25
I 0.20 0.10 0.020 0.25

Table 2.3: Interface parameters for the rough interfaces used in the -z domain compar-

isons.
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h(x,y)
a4, B‘ls P1 X
—_\ YZ Ny ny

0.2,B2,p2

Figure 2-1: Geometry of the rough interface model. The interface is defined by z =
h(z,y), and the downward-pointing unit normal to this surface at each point is de-
noted by n(z,y). The z = 0 plane is defined as the mean planar surface through the
rough interface. ay, £, p1, @2, B2, and p, denote the compressional and shear wave

speeds and density for the materials above and below the interface, respectively.
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Incident Plane Wave

o1=2.50
B1=1.44
pl1=1.00 Y
—— D e L e |
02 =3.00 9 Times Vertical

— Exaggeration
pa=1.73 of the Interface.

p2=1.00

Figure 2-2: Two-dimensional rough interface model. The source is a normally incident,
18 Hz, plane wave. The rough interface has a Gaussian autocorrelation function with
a correlation length of L = 100 m and an rms height deviation of & = 16.7 m. The

interface is periodic with a period of 2.70 km, the width of the model above,
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Figure 2-3: P and S wave transmission scattering kernels for a normally incident P wave
for the model in Figure 2-2. The Fourier transform of the interface, mapped into

scattering angle, is shown superimposed.
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. Vp = 3.00 km/s .
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Figure 2-4: Planar interface model used to compare finite difference derived reflection
and transmission coefficients with analytical solutions. The source is a point explosion
with an 18 Hz Ricker wavelet time function. The sampling parameters, Az = Az =
6.67 m and At = 0.00156 s, result in a maximum phase dispersion error of —1.1
percent at 18 Hz. The source is located 20 grid points above the interface, and the |
receiver arrays are located 10 grid points on either side of the interface. The horizontal
receiver interval is two grid points. All waves within the seismogram time window

are contained within the finite difference grid, eliminating the need for absorbing

sy

boundaries.
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Figure 2-5: Comparison between P and S wave reflection and transmission coefficients
generated by finite difference and analytic methods for a planar interface. The model
is shown in Figure 2-4. The small disagreement present at the larger scattering angles

is “Gibb’s ringing” that results from the finite aperture of the receiver array.
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Figure 2-7: Comparison between P and S wave reflection and transmission coefficients

generated from the finite difference and perturbation methods for the model shown

in Figure 2-2.
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Figure 2-8: Amplitudes of waves incident on the interface corresponding to the scattered
wave amplitudes shown in Figure 2-7. These are provided as a measure of the error
versus angle. The down-going P wave in the upper medium has unit amplitude at

zero angle.
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Figure 2-9: Interface functions used in comparison of reflection and transmission co-
efficients derived from the perturbation method with those derived from the finite
difference method. The interfaces have a Gaussian autocorelation function with RMS
height, correlation length, and RMS slope for each interface listed in Table 2.2. The

functions are displayed in units of kilometers with two times vertical exaggeration.
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Figure 10a: Comparison of reflection and transmission coefficients derived from the per-
turbation and finite difference methods for model A. The parameters of the rough

interface are given in Table 2.2 and the interface function is illustrated in Figure 2-9.
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Figure 2-10b: Comparison of reflection and transmission coefficients derived from the
perturbation and finite difference methods for model B. The parameters of the rough

interface are given in Table 2.2 and the interface function is illustrated in Figure 2-9.

56

[




9.93 Hz 16.5 Hz 26.5 Hz

P Reflection
Coetficient

S Rellection
Coefficient

P Transmission
Coeflicient

0.010

0.005

S Transmission
Coetlicient

0.000 F&r—v—y— ' v
0 30 60
Scattering Angle Scattering Angle Scattering Angle

Figure 2-10c: Comparison of reflection and transmission coefficients derived from the
perturbation and finite difference methods for model D. The parameters of the rough

interface are given in Table 2.2 and the interface function is illustrated in Figure 2-9.
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Figure 2-10d: Comparison of reflection and transmission coefficients derived from the
perturbation and finite difference methods for model E. The parameters of the rough

interface are given in Table 2.2 and the interface function is illustrated in Figure 2-9.
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Figure 2-11: L, norm comparison of finite difference and perturbation method derived
reflection and transmission coefficients. (a-d) RMS interface height is a constant
0.01 km and RMS slope varies from 0.037 to 0.99. RMS interface height for three
frequencies can be expressed as 0.069, 0.11, and 0.18 S, wavelengths. (e-h) RMS

interface slope is a constant 0.1 and with RMS interface height varies from 0.069 to

0.28 S, wavelengths.
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Figure 2-12: Representative scattered field seismograms generated for each of the inter-

face functions parameterized in Table 2.3. The source is a normally incident plane

wave with an 18 Hz Ricker time function. The bold curves are finite difference solu-

tions, and the lighter curves are perturbation solutions. The four vertical component

receivers are 0.0666 km above the mean planar interface at horizontal offsets of 0.0133,

1.35, 2.68, and 4.02 km. All seismograms are plotted at the same scale.
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Figure 2-13: The seismograms of Figure 2-12 that were generated by the perturbation

method are shown here with the background reflected field included in order to show

the total waveform (minus the source wave). Plotted at the same scale as Figure 2-12.

61



Phase Error for Model A
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Figure 2-14: traveltime error At plotted against seismogram offset z for Model A. Shown

overlain is a plot of the one-way, vertical P wave traveltime associated with the -

interface function (%?-)
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Figure 2-15: Comparison of first and second order approximations of A7 —1, which is the
form of the term responsible for phase and amplitude shifts due to interface height.
The first order approximation is e*” — 1 = th~, and the second order approximation

is e — 1 =~ ihy — %(hv)%. (a) Modulus of the approximation. {b) Phase of the

~

approximation in radians.
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Figure 2-16: RMS amplitude error in the comparison of perturbation and finite differ-

ence derived seismograms. RMS amplitude error is measured after each perturbation

method seismogram has been shifted in time relative to the complementary finite dif-
ference siesmogram such that the RMS amplitude error is minimized. The error for
each model is the average of the RMS errors of the seismograms in the model. This
mean error is plotted against RMS height for two values of RMS slope, and against
slope for a fixed RMS height. Interface height is in units of S; wavelengths. The data

points are labeled with their model names.
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U= 18 Hz Normal Incidence Plane Wave s

a=2.50
B=1.44 y
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Figure 2-17: Three-dimensional rough interface scattering model. The auto-correlation
function of the interface is a two-dimensional Gaussian with z and y correlation
lengths of 2.4 S, wavelengths (0.19 km), an RMS height of 0.125 S, wavelengths
(0.010 km), and an RMS slope of 0.30. Contours and axes are labeled in kilometers.
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Figure 2-18: Transmission coefficients for the model in Figure 2-17. The source is an 18

Hz SV plane wave at normal incidence with particle motion in the z-direction.
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Figure 2-19: Cross-sections of the reflection and transmission coefficients in Figure 2-18
along 10°, 45°, and 80°azimuths. PU, SU, and TU and PD, SD, and TD are the up-
and down-going P, SV, and SH scattering coefficients.
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Figure 2-20: Transmission scattering kernels for the model in Figure 2-17.
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Figure 2-21: Transmission coefficients for the model in Figure 2-17. The source is an 18

Hz P plane wave at normal incidence.
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Figure 2-22: Cross-sections of the reflection and transmission coefficients in Figure 2-21
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Azimuth = 10 Degrees

0.02

—a— PD(10)
—e—  SD(10)
..... @ TD(10)

o

(=]
-
A

Transmisslon Coefficient

0 30 60 90
Scattering Angle

Azimuth = 45 Degrees

0.02

"\ ———  PD(45)
——a—  SD(45)
o TD(45)

Transmission Coefficient

0 30 60 90
Scattering Angle

Azimuth = 80 Degrees

PD(80)
SD(80)
TD(80)

Transmission Coefficient

%0

30 60
Scattering Angle

and down-going P, SV, and SH scattering coefficients.
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Chapter 3

PROPERTIES OF THE
SCATTERED FIELD

3.1 ABSTRACT

The characteristics of an elastic wavefield scattered from a rough interface are controlled
by the material contrast at the interface, the autocorrelation function of the interface
height, and the source wave frequency and incidence angle. A perturbation method is
presented here, based on small interface height and slopes and small material contrasts,
which reduces the three-dimensional scattered field equations to simple linear forms which
decouple the influence of contrasts in P and S velocity and density on the scattered
wavefield. From these simple expressions, we discuss the three-dimensional behavior of

the scattered wavefield relative to changes in interface properties.

3.2 INTRODUCTION

The complex behavior of three-dimensional waves scattered from a rough interface can be
accurately modeled using approximate methods ((Kuperman and Schmidt, 1989; Prange
and Toksoz, 1989)). Although these methods provide fast ways to generate scattering

coefficients and seismograms, the 6 x 6 matrix operations necessary to obtain the solution
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hide the underlying features of the equations which control the sensitivity of the scattered
wave field to material contrasts and source wavelet. In this chapter we further simplify
the perturbation equations by making a small material contrast approximation. In these
new equations, the scattered wave field is composed of a sum of three terms corresponding
to the contributions of 9‘,—"', —A/-3P~, and %ﬂ to the scattered wave field. These equations allow

us to isclate the effects of the three material contrast parameters.

3.3 FIRST ORDER ANALYSIS

In this section we derive simple formulae relating the P, SV, and SH scattering kernels
to the interface material contrast. From these simple formulae, the dependence of scat-
tered field phase and radiation patterns on the interface material contrast can be shown.
The complete formulae for the perturbation approximation to the scattered field were
presented in chapter 2. These will be summarized, and then reduced to a more compact
and more ea;sily interpreted form by using a first order analysis which assumes a small

scattering angle and small material contrast at the interface.

3.3.1 The Perturbation Equations

A brief review is presented here of the perturbation equations in chapter 2 that are
relevant to the first order analysis to be performed. Using the methods of propagator -
matrix theory (Kennett, 1983), a three-dimensional elastic wave field can be described
by a six-element displacement-stress vector r whose members are the three components
of displacement and the three Cauchy stresses which are continuous across a welded

horizontal planar interface:

r= [ut uy Uz Trz Tyz Tzz]T’ (3-1)

where a superscript T' denotes a matrix transpose, and where the interface is normal to

the z-axis. Another way to represent an elastic wave field is by a six-element scattering
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coefficient vector b whose members are the amplitude coefficients of the down- and up-

going P, SV, and SH waves:

b=[PSTPESITI. (3.2)

b is related to r in the frequency-wavenumber domain by the formula

-1

b=EF""r, (3.3)
where
{ T
Mz 5123 p?(lﬁ__,"ﬂ —tkz —tky =5
aw aw 20yw 20y pw 2aypw 20pw
kzB(2—K?)  kyB(2-K?) —Kp —ik, —iky iK
2vwh 2vwk w 2R Bow 2R Bpw  2Bvpw
-k, k. ik —ik
— =z —+
-1 2K 2K 0 2KB%vp 2KB%vp 0
E= (3.4)
k.82 kyB? =B%(v2~K?) ikz iky —i
aw ow 20yw 20ypw 2aypw 2apw
k:rﬁ("z"‘l\-i) ﬂﬂ(yi’_l\’?l _]f_ﬁ_ iko iky 1K
2vwK 2vwK w 2K Bpw 2K Bpw 2Bvpw
-k, k ~tk ik
—_— I ___+ - _.g__ -
| 2K 2K 0 2KB%vp 2R PB%vp 0 i

The Fourier transform convention used here is given by

feakyw) = [ [7 [ f(z,y, )Rkt dnaydr (39
1 i t(kzz —w
ewt) = g [ [ [ 1k, k) Dk dido @36)

In the perturbation approximation to scattering from a rough interface, a zero-mean
rough interface height perturbation h(z,y) is defined relative to a planar interface. The
total field is then expressed as the sum of a background field ro and the scattered field

Ts, where 1 is the solution for the planar interface model and rs is the perturbation to
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ro which accounts for the interface roughness. This scattered field is expressed as the
field resulting from an equivalent source g at the mean depth of the rough interface. This

source has the form (2.18; Chapter 2)

s(hoky) = oo [ bk = Kby = KL (ke ys Ko, Kmo(K, ) AR B, (3.7)
(33)

= Ls2—Lss

where L (kz, ky; ki, k;) is defined by (2.19; Chapter 2), and r,, and r,, are the values
of the displacement-stress vectors in media 1 and 2 at the depth of the mean planar
interface. s is dependent on the interface roughness function, the material contrast at
the interface, and the source which illuminates the interface.
To study reflection and transmission coefficients we require a ‘plane-wave source.
Hence, the background field r o has the form
ro(k,, k}) = 4n*Eo(k2, KQ)S(K, ~ K, K, — kD), (3.9)
where 7 ¢ is the plane-wave background field displacement-stréss vector, 472 scales the

wave to have unit amplitude in the space domain, and the frequency dependence is
implied. Substituting (3.9) into (3.7) yields an equivalent source of the form

. 5 (koo ky) = h(ky — k2, ky — k)L (Ko, by K2, k) oKD, 7). (3.10)
From (3.10) we see that the equivalent source in this case can be factored into two terms:
one which is the interface roughness function %, and the other dependent only on the
material contrast and the source. The latter term is called the scattering kernel (Prange

and Toksoz, 1989), and is denoted by -

D (ko) ky; K, kD) = L (Kz, ky; K2, KD)E o KT, KD (3.11)
In our discussions of rough interface transmission and reflection coefficients, scattering

kernels will be used to separate interface roughness effects from source and material
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contrast effects,

3.3.2 First Order Analysis

In order to evaluate reflection coefficients, we will consider two infinite half-spaces joined
at a welded rough interface whose average depth is taken to be z = 0, and whose height
function is specified by k(z,y). A plane wave source is in medium one, the upper medium.
The P and S wave velocities and densities of the two media are given by a;, 8;, p1 and
a2, B2, p2. The material contrast between the two media is small, and is expressed in
terms of the perturbation parameters Aa = a; — a;, AB = B; — £, and Ap = p, — py,
which apply to the average parameters a, /3, and p. Substituting these perturbations

into the definition of L, (2.19; Chapter 2), and keeping only first order terms,

_ Aa AB Ap
é—‘-;'éa'f'—ﬂ—éﬁ'*"‘;'ép (3.12)
where L, L 5, and L, are defined by
0 0000 0
0 0000 0
~4ik.% 0000 %
Lo = (3.13)
~8kk.p% 0 0 0 0 4ik, 55
~8k,kip% 0 0 0 0 4ikS;
0 0000 O
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' 0 0 0 2 0 0
0 0 00 % 0
4kl 0 0 0 0 0
Ls = (3.14)
—8k k. pS(a? —26%) —2k,k.pB2 0 0 O —dik,5
Ak K pS (467 —a?) 2k KpB2 0 0 0 —dik,
_ 0 0. 0 0 0 0
- 0 0 0 &% 0 o .
0 0 0 0 L o0
0 0 0 0 0 X
L, = (3.15)
Wp— 4k ki pS(a® - B —kkps2 0 0 0 0
~2k,keplr(a? —287) WPp—kKpB2 O O 0 O
i 0 0 Wwip 0 0 O ]
Substituting this decomposition of L into (3.10) yields
shoky) = hho =Kk —B2La+ Lo+ SELEG  (316)
= h(ky =Kk, — x.-g)[%"-g ot %ﬂ-g-p + —;'-’i__,,] ) (3.17)

where the analog of (3.11) was used to define the a, 3, and p components of the scattering
kernel ® as @ (4 5} = L {a.8.5}L 0
Since this first-order approximation of L contains no zero-order terms, a first-order

approximation of s = hLr, requires only a zero-order approximation of 7o. To zero
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order, the background field £¢ is approximated by the incident field in the absence of

scattering, yielding

bo (3.18)

™~

R

o:

where F uses the average material parameters (a zero-order approximation) and by, the
wave coefficient vector defined in (3.2), is [1 0 0 0 0 0] for a P source, [0 1 0 0 0 0} for
an SV source, and [0 0 1 0 0 0)7 for an SH source. Results for P and SV sources will be
presented in two separate sections.

The equivalent source (3.16) will be converted into scattering coefficients using (3.8)

and (3.3). This is done by solving the equation

S = Lyo—ra=F2b~Fib, (3.19)
~ E(b:—b1) (3-20)
(1 00 0 0 0]
010 0 0 O
001 0 O0 O0};
= 3.21
£ 000-1 0 O b ( )
000 0-1 0
(000 0 0-1
= Fb (3.22)

where the radiation conditions require that ; = [00 0 £, S, Ty)and b, = [P, &, 7.000],
and b = [P2 ST P S, Tl] contains the non-zero wave coeflicients of ; and b,. The step
from (3.19) to (3.20) approximates the radiation from a source ai: an interface of small
material contrast- by the radiation from a source in an unbounded medium of average
material properties. This is done to reduce the inverse operator to a known simple form
of £~! given in (3.4). Using (3.17) and (3.22), b can be expressed as

b(kerby) = h(ke =12 by = )2k + 0o+ 223, (323)
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where Zza, b g, and b o are defined in terms of the scattering kernels ®,, ®5, and &, by

P Source

(S 1
)
i

E
by = £7'0
&p = g—l.‘?i.

L
G

R

i)

©

(3.24)

If the background field 74 in (3.18) is associated with a planar P wave source, then when

it is substituted into (3.16), the scattering kernels are

22
[

P P __
ﬁ’gp -

0
{32 2 2
Lo (0"~ 3k2%)

-4Pﬁ2 krw
[«

—40f%kyw
o

0

2im°l k2
w

0

4ig2k02
[« {7

462k p[2k9% (B2 - 0?)+0?]

ow

462 ky p[K2° (282 —a?) +w?]

aw

0

E

L

(3.25)

24 o:'y"l k2
w

0

82 (92 -k9%)
aw

eRol? — 455, 12(a? — 7))

=282k2%ky p(a® -26%)

ow

oYy pw ]

For a normal incidence planar P wave source, the scattering coefficients b%, b%, and

7P
b,

are given by

78



[ T [ A [' )
iw? ~2i32K? -t if2 (L -K?
oTy 5 e 4 TLoKD
0 ~2ipK iKw _ iK8
@ 206v a
e 0 0 0
.Ilap’.b.;l;akf = ’ ’ (3.26)
iw? ~2ig?K? fw  i02(2-K?)
;T:(- a’—y 2a 2oy
-2ipBK . —tKw iK,
0 a 280 —52
0 0 0
L P L d L p

where the superscript P indicates a P wave source. When the scattering angles are

3

real, it is valid to make substitutions into (3.26) of v = %cosfp, v = Fcosfs, and

K = 2sinfp = -“ﬁisin 0, where 0p and 05 are the P or S scattering angles. This yields

. T r 1 r -
1 - B%sin® fw 2 .
ac::e)p "2“"255?&;%;:) Saeasty [1 ~cosfp — 227 sin?(0p)]
0 —2uiweinls ;—‘;— [tan 65 ~ 2£ sin 6]
iP LP P o 0 0
bP,BE .57 = , )
w B2 sin? i 2
cosiy "2“"%‘;":&% Saeeapll +cosfp —~ 24 sin®(6p)]
0 ~2iwinls ;—%[— tan fs — 22 sin 5]
0 0 0
(3.27)

Three features of the scattered wave field are immediately obvious from (3.27)‘. Firstly,
a normally incident P wave scatters into P and SV waves, but not into SH waves. More
precisely, a contrast in a generates only P waves, whereas contrasts in 3 or p generate
both P and SV waves. Secondly, the scattering coefficients are azimuthally isotropic,

i.e., the wavenumber spectrum is completely described by R’, with no reference to k.
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or k,. Azimuthal variation, however, will result when the spectrum of the interface
roughness function h(k,, k,) varies azimuthally. Thirdly, the shape of the scattered field
wavelet in the time domain for a single scattered plane wave is proportional to the time
derivative of the incident field wavelet. Such changes to the wavelet are determined by
the frequency dependence of the terms in (3.27), and this is simply described by the factor
iw which is present in all of the terms. A factor of iw in the frequency domain denotes
a time derivative in the time domain. Since the time-domain scattered field response
is actually a summation over all scattered field plane waves, the final seismogram will
be a summation of such derivative wavelets scattered from the entire interface, partially
obscuring the derivative nature of the wavelets.

Example seismograms for Model A in Figure 3-1 by the 8 three-component seismo-
grams shown in Figure 3-2. Model A has material parameters a = 1 km/s, 8 = 1/v/3
km/s, p = 1 g/cm®, Aa/a = 0.1 km/s, AB/B = 0.1 km/s, and Ap/p = 0.1 g/cm®
The source is a normally incident, planar P wave in medium one. The rough interface
h(z,y) has a Gaussian autocorrelation function with correlation lengths of 0.563 km in
the z-direction and 1.0 km in the y-direction, and an RMS height of 0.113 km. The RMS
slope for this interface is 0.2 and the RMS height is 20 percent of the shortest wavelength
in the model. Hence, from the results of Chapter 2, the perturbation method is valid
for this model. The seismograms were generated by inserting the source term (3.7) into
a propagator matrix-based formulation such as that described by Kennett (1983), and
then Fourier transforming these frequency-wavenumber domain results to the time-space
domain using the discrete wavenumber method (Bouchon, 1977).

The accuracy of the simple formulae in (3.27) is examined in Figures 3-3, 3-4, and
3-5 by plotting the components of é P é E ,and b f against scattering results generated
directly from (3.11) for the three models Model B, Model C, and Model D. Note that
these scattering coefficients are derived from the scattering kernel and do not include
the influence of a specific interface roughness function. These three models have the

same average parameters as Model A, but only a is perturbed in Model B, only § is
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perturbed in Model C, and only p is perturbed in Model D. The overall agreement is
quite good, with the simple expressions of (3.27) giving smooth approximations to the
results generated from (3.11). For all curves the agreement is good when the scattering
angle is less than about 45 degrees. In several cases the agreement is good for the entire
range of angles tested. In regions where the scattering coefficient changes rapidly, the

coefficient is smoothly approximated.

SV Source

Substituting the background field for an SV plane wave source (3.18) into (3.16), the
scattering kernels in (3.17) are defined by

o wmery || 0" -2
0 0 0
ssases_ | = | | W -
0 —8;»1331:,12:;(«:’—19’) 8217 — 453 (a? — B2)k.A2)
0 —4pﬁ3kyk3:§;(az—252) _2pﬂ3kykg;"£7(a2 —2p%)
_ 0 ] : 0 i —pBuwkd

(3.28)
For a normal incidence planar SV wave source, the scattering coefficients _IAg s, @ g ,and

i,s

b, are given by
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" 1 [ b 3 h
{Gk 13
0 2 B~
ks (12— K?) ik
0 : ';K E‘,—\F;(u’ - -";11/ - K?)
—tkyw tkyw(w—Pv
isis s 0 K6 S :
.éa’.b.ﬂv-b-p = 9 L] (3‘29)
—2ik, {
0 =2%eb ~kz(+ 2
ke (V2K . .
0 ke (v - K7) . K* —fke (V2 + 2v — K?)
ik ikyw(w+pr)
i 0 i | 7\%2 i L 2Kp3%y i

Since (3.29) refers to k. and k, independently of K these scattering coeflicients vary with
azimuth. Expressing the scattering coefficients in terms of 8p, s, and the azimuthal
angle 1, we make the substitutions v = £cosfp, v = ‘-“’;cos s, K = %sinfp = %sin fs,

k; = £sinfp costp = %sin 0s cosy, and ky, = £sinfpsiny = % sin Ossin, to get

T 7 [
'- 0 " 2"6“’ 252 sin Op cos P %;"" tan 0p cos Y(a — 28 cos Op)

0 iwc;si&sso:ostll —uu COS‘(,b(l _ C::s?aess)
£S5 bS 35— 0 ¢siny Teesys SN P(1 — cos bs)
..a’-ﬁ,—p L] ’

0 —2’13—“’- sin@p cos 9 '—2‘;"%'— tan 6p cos ¥(a + 28 cos Op)

0 -iwzo:;ﬂoiscosgk —:w =W oo '(1’(1 + cos296;s)

0 J l;;—;’-sinz,/) Tz sin (1 + cos bs) J

(3.30)

From (3 30) we see that a normally incident SV wave is associated with P, SV, and SH
scattering. To first order such scattering is not influenced by Aa. Scattered P and SV

waves have a cosine-shaped azimuthal variation with a maximum in the direction of the
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incident SV particle motion, and scattered SH waves vary sinusoidally with azimuth with
a maximum in the direction normal to the incident SV particle motion. Cross-sections
of b 3 and 45 for the azimuth of maximum amplitude are shown in Figures 3-6 and 3-7
along with the more complete solutions derived from (3.11) for comparison. The solution
of (3.11) for b$ is not shown since it is three orders of magnitude below lzzgl and léf .
As with the P wave source, the results are good for scattering angles of less than about

45 degrees.

3.4 EXAMPLES FOR A GAUSSIAN ROUGH INTERFACE

The scattering kernel describes the variation in the scattered field that is due to the
source and the material contrast at the interface. The influence of a particular rough
interface function must be included using (3.23) to obtain the actual scattered field. A
random rough interface is typically described by its autocorrelation function. There are
three classes of autocorrelation functions that are generally considered in the geophysical
literature: Gaussian, exponential, and von Karman (Frankel and Clayton, 1986). These

functions are given in the following table.

Type R(z,y)

Gaussian exp[_(;_z:)z —( ;y;)z]

Exponential | exp[—, /(;’:)2 + (;V;)?]
von Karman | Ko(,/(Z)* + (£

To generate one realization of a random interface from these autocorrelation functions

it is necessary to specify two correlation lengths, a, and a,, and an RMS height deviation,
and to have a random number generator capable of generating uniform random numbers

within a real interval. Since the autocorrelation function is defined as the power spectrum
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of the interface function, i.e., R(k;, ky) = h(ks, ky)h*(kz, k,), the modulus of the interface
function is given by |h| = /R, with the value at k, = k, = 0 being zero in order
to obtain a zero-mean interface. The phase is a random quantity specified by exp(i¢),
where ¢ is a uniform random number between 0 and 27. The discrete interface function so
constructed, h(k., k), is then normalized so that the RMS height of k(z, y) is equal to the
desired value. This method for generating a random interface function in the wavenumber
domain is equivalent to a space domain method where a discrete field of uniform random
numbers is convolved with the square root of the autocorrelation function and then

normalized to the specified RMS value.

3.4.1 Normalization of the Interface Spectrum

Our example uses the Gaussian autocorrelation function to produce the rough interface
shown in Figure 3-1. In order to have closed-form expressions for scattering coeficients
for an arbitrary interface with a Gaussian autocorrelation function, we must derive an
expression for the normalization factor which scales the interface height function to have
a desired RMS value. The same procedure can be used to derive analogous expressions
for exponential and von Karman autocorrelation functions.

Consider an interface which is periodic of period 2L, in the z-direction and 2L, in

the y-direction. The Fourier series representation of this interface is

M N I
h’(‘ra y) = Z E hmne'k't zetkyv (3.31)
m=-~Mn=~-N

where k7' = =, k=32, and
]

1 Ly (Ls N
= — —ikPzr -1 9
hmn 4L.L, /—-L, ./CL, h(z,y)e e”"v¥dr dy (3.32)
The autocorrelation of h(z,y) is defined by

1
L.

| - Ly fLs ) ’ N1
@)= [ [ M+ 2y )y, (3.33)
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which yields the expected expression

Fom = b B ' (3.34)

when h(z,y) is defined by (3.31). The Fourier transform of the Gaussian autocorrelation

function
r(z,y) = GG (3.35)
is given by
o = T (G- (3:36)
-y

tk™a, tkya,

L,
° Re{erf(;— + T)} Re{erf(%- + T)},
d v

where erf() is the error function defined by

erf(z) = —%/; et de. (3.37)

For 2t > 3 it is safe to approximate (3.36) by
s S, )

In this regime, the unbounded growth of tiie error functions in (3.36) for large £ is held in
check by the damping provided by the Gaussian exponential term. The error resulting for
such an approximation is illustrated by a contour plot in Figure 3-8a. Figures 3-8b and
3-8c show comparisons of the exact and approximate expressions evaluated at 2L/a = 2
and 2L/a = 3. As expected, the error behaves like a sinc functio;l.

It remains to relate the RMS height deviation o in the space domain to h(k,, k).

The zero-mean RMS height deviation is given by
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2 l Ly Ls _ -
7 T I.I, /-L, /.L,["(”’y) h}'dz dy (3.39)
_ 1 Ly rLs 2 -
T 4L L, .[-L, /-L, k¥ z,y)dzdy — h (3.40)

where % is the mean of k(z,y). The first term in (3.40), by (3.33), is simply r(0,0), the
spatial autocorrelation function evaluated at the origin. The second term, by (3.32) and
(3.34), is 7o, the Fourier transform of the autocorrelation function (3.38) evaluated at

the origin. Substituting these values into (3.40) yields

o?=1- f—zi’lljl. (3.41)
Ty

Hence the form of h,,, which is normalized to yield an RMS height deviation of gy is

d:dzf

2

mo ka

nn = /o = [or_—ﬂ—— ,!,e-(*‘r)’-%—")’] . (3.42)
4Lz Ly

3.4.2 Normally Incident P Source

Three-dimensional radiation patterns which include the effects of interface roughness are
shown in Figures 3-9 and 3-10. Tne source is a normally incident planar P wave in
medium 1 and the rough interface model is shown in Model A of Figure 3-1. Figure 3-9
shows the nine P, SV, and SH up-going components of '%ghéf , —Aﬁ—ah_&” , and -‘-‘p—”—hzr_f in
the upper medium, and Figure 3-10 shows the nine down-going components in the lower
medium. The plots are independently scaled to fill the plot frame, and a maximum
amplitude for each plot is indicated for comparisoﬁ.

All of the plots show that scattering occurs over a broader range of angles in the
z-direction than in the y-direction. This results directly from the smaller autocorrelation
length in the z-direction (0.563 km) than in the y-direction (1.00 km), and agrees with

the intuitive result that azimuths of greater RMS interface slope are associated with

more diffuse scattering. If a, and a, were the same length, the scattering scattering
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cocflicients would be azimuthally isotropic. From the plots in Figure 3-9 it is clear that,
for up-going waves, Aa and Ap contribute most to reflected P wave scattering, and result
in equal amounts of backscattering at 8p = 0. For non-zero 0p, however, a contrast in P
wave velocity generates more backscattered energy than a contrast in density. Scattering
into SV waves is influenced nearly equally by A and Ap. The results for down-going
waves (Figure 3-10) equal those for up-going waves for contrasts in the P and S wave
velocities, but differ greatly for contrasts in density. Density contrasts produce significant
backscattering into the source medium, but almost no forward scattering.

Wu and Aki (1985) examined the effect of material contrast on the relative dominance
of forward or backward scattering from volume scatterers. Applying the Born approxi-
mation in the low-frequency range (Rayleigh scattering), they found that the scattered
field can be decomposed into an impedance-type and a velocity-type scattered field.
Impedance-type scattering is seen in its purest form when there is zero velocity contrast
at the scatterer, and is associated with a predominant backscattered lobe. Impedance-
type scattering is illustrated by the Ap components of scattering in Figures 3-9 and
3-10. Velocity-type scattering is seen in its purest form when there is zero impedance
contrast at the scatterer, and is associated with a predominant forward scattered lobe.

The conditions for zero impedance contrast are

P10y — paay = 0 (343)
o Ba_ A (3.44)

a p

and

prh—p2B2 = 0 . (3.45)

A Ap
—_— = 3.46
- B p (3.46)

Under these conditions the back-scattered lobes in (3.27) largely cancel, permitting the

forward-scattered lobes to dominate.
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The time-domain representation of the scattering results presented in Figures 3-9
and 3-10 is given by the three-component seismograms in Figures 3-11, 3-12, and 3-13.
Figure 3-11 shows the scattered field measured by a linear array of 8 three-component
receivers in each medium. In both arrays, the receivers are evenly spaced along the
z = 0 line between y = 0 and y = 5.6 km (inclusive), and are at a distance of 2 km
from the mean planar interface. Figures 3-12 and 3-13 display a decomposition of the
Figure 3-11 seismograms into their Aa, AB, and Ap components. The Aa component
was generated from Model B, the A component from Model C, and the Ap component
from Model D. The maximum amplitudes of these seismograms are much larger than
the maximum amplitudes of the related scattering coefficients because the seismograms
represent the summation of scattered waves over all scattering angles.

The areal distribution of downward scattcred and upward scattered wave amplitudes is
illustrated by contour maps in Figures 3-14, 3-15, and 3-16. These maps were generated
from two horizontal two-dimensional arrays of three-component receivers which were
placed 2 km above and 2 km below the interface. The maximum amplitude (measured as
an absolute value) on each component of each receiver was then contoured. Comparison
of these contour maps with the interface height contour map provides an indication of
the sensitivity of the seismogram amplitudes to interface height. In Figure 3-9 we can
see that the z components in the upper and lower media primarily represent P waves
scattered from contrasts in P wave velocity and density. Since the direction of maximum
scattering is vertical in this case, a map of maximum arhplitudes is quite similar to the
interface height contour map. The = and y components are dominated by obliquely
scattered P and SV waves, resulting in the lack of correspondence of these maps with

the interface height contour map.

3.4.2 Normally Incident SV Source

We will now provide the same analysis for a normally incident SV wave as we did above for

the P wave source. In interpreting the following plots, keep in mind that the incident SV
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particle motion is in the z direction. Three-dimensional radiation patterns which include
the effects of interface roughness are shown in Figures 3-17 and 3-18. The azimuth
of maximum scattering in the P and SV kernels coincides with the smallest correlation
length of the interface, emphasizing scattering in the z direction. For up-going waves, the
scattered field in the normal direction is composed of equal amounts of SV and SH waves.
This scattering is equally sensitive to the contrast in S wave velocity and the contrast in
density, while to first order the contrast in P wave velocity produces no scattered waves.
As the scattering angle increases, P waves become increasingly prominent with respect
to the S waves, dominating the scattered ficld at scattering angles greater than about 45
degrees.

The time-domain representation of these scattering results is given in the three-
component seismograms in Figures 3-19, 3-20, and 3-21. The receiver arrays aré config-
ured as they were for the P source analysis in the preceding section. As we saw in the
scattering coefficient plots, there is an abundance of energy in the z component which
includes normally scattered SV waves and obliquely scattered P waves. The y component
contains primarily SH waves. Although the maximum ampiitude of the SH scattering
coefficient equals that of the SV scattering coefficient, the total energy scattered into SH,
measured as the volume enclosed by the scattering coefficient surface, is smaller than
that of the SV wave. Thus the y components display smaller amplitudes than the z com-
ponents. Contributions to the £ components by obliquely scattering P waves increase
the discrepancy in magnitude between these two components.

The areal distribution of forward- and backward-scattered wave amplitudes is illus-
trated by contour maps in Figures 3-22, 3-23, and 3-24. The similarity between the’
contours of the £ components and the interface height contours indicates that this coinf
ponent of the scattered field is dominated by nor;na,] scattering from the surface, which
Figures 3-17 and 3-18 show us must be SV waves. If obliquely scattered P waves were
dominant in the z-component, the correspondance could not be nearly as good. Fur-

~ thermore, the maps show that the scattered field is contributed to equally by A8 and
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Ap.

3.4.4 Obliquely Incident P Source

Scattering coefficients were generated for planar P waves incident on model A in Figure 3-
1 at angles of 0, 20, 40, and 60 degrees. These coefficients were generated directly from
(3.7), with no further approximations. Three-dimensional plots of the coefficients for the
up- and down-going waves are shown in Figures 3-25 and 3-26. The propagation direction
of the incident wave in these xﬁodels is in the z-z plane. Comparisons of relative shapes
and amplitudes of these coeficients is facilitated by cross-sectional plots of the three-
dimensional ccefficients, where the cross-section is taken in the z-z plane for P and SV
coefficients, and in the y-z plane for SH coefficients. Cross-sectional plots for Figures 3-25
and 3-26 are shown in Figures 3-27 and 3-28.

Several major features of these plots bear mentioning. The amplitudes of the primary
(smooth) lobe of scattered P and SH waves decrease with increasing incidence angle,
while the primary lobe of the scattered SV wave increases in amplitude with increasing
incidence angle. This is true for both up- and downgoing waves. Scattered SH waves
have maximum amplitude near the vertical for upgoing waves, while for downgoing waves
the direction of maximum scattering is more sensitive to the source incidence angle.
The up-going P and SV wave coefficients have cusps at the P to P and S to S critical
angles of sin~ 1(a; /a;) = sin™ 1(B;/B2) =~ 65 degrees, and the SV wave coefficients have
additional cusps at the P to S and S to P critical angles of sin™'(81/a;) = sin™}(82/ 1) =
314 degrees. These cusps are invariant with incidence angle. They are present in the
scattering kernel and thus are independent of any particular interface function. Similar
peaks were observed by Paul and Campillo (1988) , who used a boundary integral equation
method to compute the exact solution for two-dimensional elastic wave scattering from
a rough interface. They observed that the P to S wave backscattering coefficient has a -
dramatic increase as the scattering angle increases past the -P to P critical angle.

When P waves are scattered, the angle of maximum scattering coincides with the inci-

¢
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dence angle only in the case of normal incidence. This can be understood by considering
the scattering coefficient as a product of the interface spectrum with the scattering kernel,
where the interface spectrum is sh.ifted so that the zero wavenumber value coincides with
the specular angle (see equation 3.7). Although the maximum of the interface spectrum
is at the specular angle, the scattering kernel generally will not have any extrema at the
specular angle. Hence, the product will generally not have any extrema at the specular
angle. In all cases, of course, specular scattering will dominate when the background

field is included.

3.4.5 Obliquely Incident SV Source

Scattering coefficients were generated for planar SV waves incident on model A in Fig-
ure 3-1 at angles of 0, 20, 40, and 60 degrees. As for a P wave source, these coefficients
were generated directly from (3.7), with no further approximations. Three-dimensional
plots of these coefficients for the up- and down-going waves are shown in Figures 3-29
and 3-30, and cross-sections of these plots are shown in Figures 3-31 and 3-32. The
propagation direction and particle motion of the incident SV wave in these models is
in the z-z plane. Cusps appear at the same scattering angles that as found in the case
of the obliquely incident P wave. This confirms our observation that the cusps are as-
sociated with the critical angles (the material contrast), and not with the source wave
type. Beyond these critical angles the scattering coefficients tend to increase, with larger

incidence angles associated with larger increases.

3.5 SUMMARY AND CONCLUSIONS -

The perturba‘tion equations developed in chapter 2 allow one to quickly generate scat-
tering coefficients and seismograms for a three-dimensional rough interface model for
which the RMS interface height and RMS slope is sufficiently small. In this chapter

these equations are further simplified by use of a small material contrast approximation
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in order to isolate and study the influence of contrasts in a, 3, and p on scattered P,
SV, and SH waves. In these equations it was possible to entirely factor out the material
contrast terms 8a, %é, and -A;ﬂ from the scattering coefficients, expressing the scattered
field coefficients as a weighted sum of Aa, AB, and Ap contributions. For the case of
a normally incident plane wave source, these coefficients have an even more compact
form than planar interface scattering cocfficients. The degradation of solution accuracy
due to the small material contrast approximation was tested by comparing these simple
solutions with those derived from the equations of chapter 2 for a rough interface model
with a 10 percent velocity contrast. It was found that the small scattering angle approx-
imation implicit in the small material contrast approximation is accurate to suprisingly
large angles, with the accuracy dependent on the particular scattered wave type being
compared. Aki and Richards (1980, p. 153} came to very similar conclusions in their
discussion of the accuracy of small material contrast approximations to reflection and
transmission coefficients for a planar interface. The simplified scattering coefficients for
normally incident waves also give insight into the shape of the scattered field wavelet.
The form of these coefficients makes it clear that the scattcred field wavelet is propor-
tional to the time derivative of the incident field wavelet. This observation was verified
in synthesized seismograms.

Modeling of obliquely incident P and SV waves on an interface with a Gaussian
autocorrelation function show that the scattered wave amplitudes are not necessarily
maximum in the direction of specular scattering. Furthermore, there are cusps in the
scattering coefficient at scattering angles equal to the critical angles for P and S wave
scattering on a planar interface. Such phenomenon has also been reported for exact-solu-
tions of rough interface scattering models which were based generated by finite difference

and boundary integral equation methods (Levander and Hill, 1985; Paul and Campillo,
1988). ~
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Figure 3-1: Contour map of the interface height function. The rough interface k(z,y)
has a Gaussian autocorrelation function with correlation lengths of 0.563 km in the
z-direction and 1.0 km in the y-direction, and an RMS height of 0.113 km. - The
RMS slope for this interfac: is 0.2 and the RMS height is 20 percent of the shortest
wavelength in the model. The source is a normally incident 1 Hz plane wave with a -
Ricker wavelet time function of the form R(t) = [1 — (wot)?/2] exp(—(wot)?/4), where
wp = 2m. The source is 2 units above the mean planar interface. The materials in

this interface model are varied to yield the models given in the table below.

Model a B p | Aaja | AB/B | Aplp
Model A {1.00 [1./4/3|1.00| 0.10 | 0.10 | 0.10
Model B | 1.00 | 1.//3 | 1.00| 0.10 | 0.00 | 0.00
Model C | 1.00 | 1./v/3 | 1.00| 0.00 | 0.10 | 0.00
Model D | 1.00 | 1./v/3 | 1.00| 0.00 | 0.00 | 0.10
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Figure 3-2: Representative three-component scattered field seismograms for Model A.
The three components are plotted at the same scale. The 8 receivers, labeled A-H,
are located along the z-axis from z = 0 to £ = 5.6, and are 2 units above the mean

planar interface. The source wavelet is shown for comparison.
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Figure 3-3: Comparison of the components of 423P generated by (3.27) and by the

a =a

direct solution of (3.11). The SV and SH components in this case are exactly zéro.

The curves are a cross-section of the azimuthally symmetric pattern. The model

parameters are taken from Model B in Figure 3-1, where Aa/a = 0.10 and AB/B =

Ap/p = 0. The source is a normally incident 1 Hz planar P wave. These curves do

not include the influence of a specific interface roughness function.

96



Kemel Amplitude Kerne! Amplitude

Kernel Amplitude

Kernel for Contrast in
S Wave Velocity

Upgoing P Downgoing P
5
~ Reference
s
3
2
1
O LA
Upgoing SV Downgoing SV
5 oy
4- -
3~ -
2 — -
R pa e e D e S ML L
Upgoing SH Downgoing SH
5
4— -
3 .
24 -
1 - j
° T ( T ' L] l L L] l LI " L] ' L
-80 -40 o 40 80 -80 -40 0 40 80
Scattering Angle Scattering Angle

Figure 3-4: Comparison of the components of -%qég generated by (3.27) and by the direct
solution of (3.11). The SH component in this case is exactly zero. The curves are a
cross-section of the azimuthally symmetric pattern. The model parameters are taken
from Model C in Figure 3-1, where AB/S = 0.10 and Aa/a = Ap/p = 0. The source

is a normally incident 1 Hz planar P wave.
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Figure 3-5: Comparison of the components of %—@ P generated by (3.27) and by the direct
solution of (3.11). The SH component in this case is exactly zero. The curves are a
cross-section of the azimuthally symmetric pattern. The model parameters. are taken

from Model D in Figure 3-1, where Ap/p = 0.10 and Aa/a = AB/B =0.
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Figure 3-6: Comparison of the P, SV and SH wave components of %Qfgg generated by
(3.30) and by the direct solution of (3.11). The curves are cross-sections of the
azimuthally anisotropic patterns in the azimuthal direction of maximum scattering:
for P and SV waves this is in the direction of the incident SV particle motion, and
for SH waves it is normal to this direction. The model parameters are taken from
Model C in Figure 3-1, where AB/B = 0.10 and Aa/a = Ap/p =0. The souréétis a

normally incident, 1 Hz planar SV wave.
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Figure 3-7: Comparison of the F, SV and SH wave components of :sz generated by

?
(3.30) and by the direct solution of (3.11). The curves are cross-sections of the
azimuthally anisotropic patterns in the azimuthal direction of maximum scattering:
l for P and SV waves this is in the direction of the incident SV particle motion, and
for SH waves it is normal to this direction. The model parameters are taken from
Model D in Figure 3-1, where Ap/p = 0.10 and Aa/a = AB/B = 0. The source is a

normally incident, 1 Hz planar SV wave.
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Figure 3-8: (a) Contour plot of |e=¢* — e~¢* Re{erf (% + 2£) }| with contours at intervals
of 0.01 between 0.0 and 0.1. It illustrates that (3.38) is a valid approximation of
(3.36) when 2L/a > 3. (b) and (c) are comparisons of e~¢* and e~¢* Re{erf(% + i£)}

evaluated at 2L/a = 2 and 2L/a = 3, respectively.
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Figure 3-9: Three-dimensional plots of the up-going P, SV, and SH components of the
scattered field for the rough interface model of Figure 3-1 and a normally incident
planar P wave source. The leftmost column corresponds with Model B, the center
column with Model C, and the rightmost column with Model D. The maximum
amplitude is shown above each plot. Summing across a row produces the P, SV, or

SH component of scattering in Model A.
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Figure 3-10: Three-dimensional plots of the down-going P, SV, and SH components of
the scattered field for the rough interface model of Figure 3-1 and a normally incident
planar P wave source. The leftmost column corresponds with Model B, the certer
column with Model C, and the rightmost column with Model D. The maximum

amplitude is shown above each plot. Summing across a row produces the P, SV, or

SH component of scattering in Model A.
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Figure 3-11: Representative seismograms for the scattered field of Model A. The source
is a normally incident planar P wave. The up-going field is measured by 8 three-
component receivers, labeled A~H, evenly spaced along the z = 0 line between y = 0
and y = 5.6 km (inclusive) and at an elevation above the mean planar interface of 2
km. The down—goin.g field is measured by an identical array, labeled I-P, displaced
2 km below the mean planar interface. The seismograms are all plotted at the same

scale, and the maximum amplitude is indicated on each plot.
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Figure 3-12: Representative three-component seismograms for the up-going scattered

field in Figure 3-11 decomposed into its Aa, AB, and Ap components. The Aa

component was generated from Model B, the A3 component from Model C, and the

Ap component from Model D. The scale is the same as that in Figure 3-11.
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Figure 3-13: Representative three-component seismograms for the down-going scattered
field in Figure 3-11 decomposed into its Aa, AS, and Ap components. The Aa
component was generated from Model B, the A3 component from Model C, and the

Ap component from Model D. The scale is the same as that in Figure 3-11.
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P Source - Scattered Field Components
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) Max. = 0.1

Figure 3-14: The areal distribution of forward scattered and backward scattered waves
amplitudes measurzd at 2 km above and 2 k:n below the mean planar interface.
The maximum :wmplitude (measured as an absoiute value) on each component of
each receiver is shown contoured. The scuizce is a normally incident planar P wave
traveling in Model A. The contour intervali i', 0.01, where the incident wave has unit

amplitude.
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P Source - Decomposition in Upper Medium
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Figure 3-15: The areal distribution of backward scattered wave amplitudes measured at
2 km above the mean planar interface. The maximum amplitude (measured as an
absolute value) on each component of each receiver is shown contoured. The source
is a normally incident planar P wave traveling in Models B, C, and D to produce the
Aa, AB, and Ap compenents, respectively. The maximum amplitude is indicated for

each contour map. The contour interval is 0.005, where the incident wave has unit

amplitude.
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P Source - Decomposition in Lower Medium
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Figure 3-16: The areal distribution of forward scattered wave amplitudes measured at
2 km below the mean planar interface. The maximum amplitude (measured as an
absolute value) on each component of each receiver is shown contoured. The source
is a normally incident planar P wave traveling in Models B, C, and D to produce the
Aa, AB, and Ap components, respectively. The maxinmum amplitude is indicated for
each contour map. The contour interval is 0.005, where the incident wave has unit

amplitude.
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Figure 3-17: Three-dimensional plots of the up-going P, SV, and SH components of the
scattered field for the rough interface model of Figure 3-1 and a normally incident
planar SV wave with particle motion in the z direction. The leftmost column corre-
sponds with Model B, the center column with Model C, and the rightmost column
with Model D. The maximum amplitude is shown above each plot. Summing across

a row produces the P, SV, or SH component of scattering in Model A.
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Figure 3-18: Three-dimensional plots of the down-going P, SV, and SH components

Max. = 0.0261

of the scattered field for the rough interface model of Figure 3-1 and a normally
incident planar SV wave with particle motion in the z direction. The leftmost column
corresponds with Model B, the center column with Model C, and the rightmost column
with Model D. The maximum amplitude is shown above each plot. Summing across

a row produces the P, SV, or SH component of scattering in Model A.
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Figure 3-19: Representative seismograms for the scattered field of Model A. The source
is a normally incident planar SV wave with particle motion in the z direction. The

receiver locations and seismogram scale factors are the same as those in Figure 3-11.
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S Source - Upgoing Waves
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Figure 3-20: Representative three-component seismograms for the up-going scattered
field in Figure 3-19 decomposed into its Aa, AB, and Ap components. The Ac
component was generated from Model B, the AS component from Model C, and the

Ap component from Model D. The scale is the same as that in Figure 3-19.
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Figure 3-21: Representative three-component seismograms for the down-going scattered
field in Figure 3-19 decomposed into its Aa, AB3, and Ap components. The A«
component was generated from Model B, the A3 component from Model C, and the

Ap component from Model D. The scale is the same as that in Figure 3-19.
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Figure 3-22: The areal distribution of forward scattered and backward scattered waves
amplitudes measured at 2 km above and 2 km below the mean planar interface.
The maximum amplitude (measured as an absolute value) on each component of
each receiver is shown contoured. The source is a normally incident planar SV wave
traveling in Model A with particle motion in the z-direction. The contour interval is

0.01, where the incident wave has unit amplitude.
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S Source - Decomposition in Upper Medium
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Figure 3-23: The areal distribution of backward scattéred wave amplitudes measured at
2 km above the mean planar interface. The maximum amplitude (measured as an
absolute value) on each component of each receiver is shown contoured. The source
is a normally incident planar SV wave traveling in Models B, C. and D to produce
the Aa. AJ3. and Ap components, respectively. The source particle motion is in the
r-direction. The maximum amplitude is indicated for each contour map. The contour

interval is 0.005. where the incident wave has unit amplitude.
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S Source - Decomposition in Lower Medium
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Figure 3-24: The areal distribution of forward scattered wave amplitudes measured at
2 km below the mean planar interface. The maximum amplitude (measured as an
absolute value) on each component of each receiver is shown contoured. The source
is a normally incident planar SV wave traveling in Models B, C, and D to produce
the Aa, AB, and Ap components, respectively. The source particle motion is in the
:c—direétion. The maximum amplitude is indicated for each contour map. The contour

interval is 0.005, where the incident wave has unit amplitude.
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Figure 3-25: Up-going wave scattering coefficients for planar P waves incident in the z-z
plane in model A at incidence angles of 0, 20, 40, and 60 degrees. The maximum

amplitude of each coefficient is indicated.
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Figure 3-26: Down-going wave scattering coefficients for planar P waves incident in the

z-z plane in model A at incidence angles of 0, 20, 40, 2nd 60 degrees. The maximum

amplitude of each coefficient is indicated.
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Figure 3-27: Cross-sectional plots for the three-dimensional scattering coefficients shown
in Figure 3-25. P and SV cross-sections were taken in the z-z plane, and SH cross-
sections were taken in the y-z plane. All plots have the same scale. Positive scattering

angles indicate forward scattering.
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Figure 3-28: Cross-sectional plots for the three-dimensional scattering coefficients shown
in Figure 3-26. P and SV cross-sections were taken in the z-z plane, and SH cross-
sections were taken in the y-z plane. All plots have the same scale. Positive scattering

angles indicate forward scattering.



-

. S Source - Upgoing
P sV SH

Max. = 0.0108 Max. = 0.0498 Max. = 0.0497

09

20°

40°

60°

Figure 3-29: Up-going wave scattering coefficients for planar SV waves incident in the
z-z plane in model A at incidence angles of 0, 20, 40, and 60 degrees. The maximum

amplitude of each coefficient is indicated.
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Figure 3-30: Down-going wave scattering coefficients for planar SV waves incident in the
z-z plane in model A at incidence angles of 0, 20, 40, and 60 degrees. The maximum

amplitude of each coefficient is indicated.
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Figure 3-31: Cross-sectional plots for the three-dimensional scattering coefficients shown
in Figure 3-29. P and SV cross-sections were taken in the z-z plane, and SH cross-
sections were taken in the y-z plane. All plots have the same scale. Positive scattering

angles indicate forward scattering.
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Figure 3-32: Cross-sectional plots for the three-dimensional scattering coefficients shown

30. P and SV cross-sections were taken in the z-z plane, and SH cross-

sections were taken in the y-z plane. All plots have the same scale. Positive scattering

angles indicate forward scattering.
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Chapter 4

APPLICATION TO VSP DATA

4.1 INTRODUCTION

An SH wave vertical seismic profile! (VSP) was obtained in 1989 as part of an overall ex-
periment to obtain a full nine-component (three-component source and three-component
receiver) seismic data set which could be used to study anisotropy and scattering effects
at an MIT experimental borehole site (MIT/Birch 1-20A) in Manistee County, Michigan.
In an SH wave vertical seismic profile, the source is a traction applied at the surface of
the Earth in direction normal to the sagittal plane. Within the sagittal plane of a model
composed of horizontal, planar interfaces, such a source would propagate only as SH
waves, with particle motions in the tangential direction only. The observed seismograms
for this experiment contained significant energy in the vertical and radial components.
Two plausible explanations for this anomalous energy are dipping planar interfaces and
scattering. We apply the perturbation method of chapter 2 to show that the scattering

produced by a rough interface can satisfactorily explain much of the observed anomalous

energy.

1A vertical seismic profile (VSP) is a seismic experiment in which a source is located at or near
the surface of the earth and receivers are located in a borehole. For an indepth discussion of the VSP
geometry and the associated interpretational techniques, see Gal’perin (1974) or Balsh et al., (1982).



4.2 SITE DESCRIPTION

The borchole site location is indicated in Figure 4-1. This site is in the northeastern
part of the Michigan basin. The regional dip of this basin is less than 1°. A lithologic
cross-section of the strata picrced by the borchole is given in Figure 4-2, with velocities
and densities indicated for the region of interest. The top three layers are composed
of glacial till, and their P wave velocities were dctermined from a seismic refraction
survey performed by Marathon Oil Company (Caravana, et al., 1987). The slow topmost
layer, as described in drillers’ logs, is composed of sand, gravel, and clay. These logs,
kept while drilling numerous shallow (< 45 m deep) boreholes in the region, record the
drillers’ observations of changes in sediment color and texture noted as the hole is bored.
Both the refraction survey and the driller’s logs indicated that the interfaces in and at

the base of the glacial till are rough on a vertical scale of several meters.

4.3 EXPERIMENT DESCRIPTION

The experimental configuration is illustrated in Figure 4-3. In our terminology, the radial
direction is defined as the vector contained in the sagittal plane which is perpendicular to
the vertical direction, and the tangential direction is defined by the vector which is normal
to the sagittal plane. The orientation of the VSP three-component receivers is determined
by an on-board gyroscopic compass, allowing the seismograms to be accurately rotated
into the vertical, radial, tangential coordinate system. For the data presented in this
study, the down-hole receivers were spaced every 9.16 m between the depths of 9.16 m
and 201.6 m.

An SH source is synthesized in a two step process using a 45° inclined force provided
by an OmniPulse truck from Bolt Technology Inc (Figure 4-4). The truck first applies
an impulsive force at 45° to the positive tangential direction with a hydraulic piston
(the right source). The resulting waves are recorded by two three-component receivers,

the VSP receciver and a fixed-position monitor phone. Without moving the receiver,
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the piston is rotated by 90° and the force is ai)pliC(i at 45° to the ncgative tangential
direction (the left source). The resulting “left” VSP scismogram is adjusted so that its
first P wave arrival occurs at the same time, and has the same amplitude, as that in
the “right” VSP scismograiii to compensate for variations in the source. After every
left-right source pair, the VSP recciver is moved. The VSP scismograms from all depths
arc normalized to a common time and amplitude scale using the time and amplitude
deviations of the first arrival of the P wave observed at the fixed monitor phone. Since
the corrected left-right seismogram pairs are generated by equal vertical tractions and
opposite tangential tractions, they can be subtracted to yield seismograms resulting from
an cquivalent tangential traction of twice the original strength.

This approach depends on the validity of using the P wave for zero-time and amplituds
correction. Corrections in amplitude and zero-time should be made with respect to tne
least contaminated wave in the scismograms, namely first P wave arrival. Zero-time
adjustments for this arrival are also valid for S-wave arrivals because the source-receiver
distance doesn’t change between the left and right shots for a given VSP receiver depth,or
between the source and the fixed monitor phone. The amplitude correction scems based
on the assumption that source P wave amplitude is representative of source S wave
amplitude, i.e., since P waves result primarily from the vertical component of traction,
and SH waves in the sagittal plane result from the tangential component of traction, it
appears that we assume in scaling the seismograms by their P-wave amplitudes that the
rotation of the source from the left to the right position changes the vertical and tangential
components of traction by the same factor. However. this scaling is applied in large part
to allow removal of the vertical component of traction, producing the effect of a purely
tangential source. The amplitude of the first P wave arrival is completely controlled by
the vertical component of traction, so subtraction of the seismograms resulting from the
left and right sources after they have been scaled by P-wave amplitude will effectively
eliminate this component of traction. If the tangential component of traction varies with

source rotation by a slightly different factor, it will simply change the effective amplitude



of the tangential traction for the subtracted scismograms, not the vector direction of the
J

traction.

4.4 FEATURES OF THE DATA

The vertical, radial, and tangential components of the subtracted VSP data between the
depths of 9.1 m and 201.6 m are shown in Figures 4-5a,b,c. The significant features of
the tangential component are a refracted SH wave which appears as the first arrival at
receivers above 46 m, a strong reverberation in the upper layer, and a clearly defined
downgoing SH wave propagating to the base of the till layer at 165 m. The SH reflection
from the base of the till is weak. The vertical and radial components show excellent
cancellation of the direct P wave arrival. Below 46 m, a clearly defined downgoing SV
wave is apparent in the radial component, along with its strong reflection from the base
of the till. In comparison with the vertical and tangential components, this component
has the greatest complexity. The vertical component also shows the downgoing SV wave,
but there is no obvious reflection from the base of the till.

Phase identification in this VSP is facilitated by comparing the data with synthetic
V5P seismograms computed for a planar interface model with a point tangential traction
source (Figure 4-6). These seismograms were generated by a discrete wavenumber for-
mulation of the propagator matrix method, and present a complete solution of the wave
equation including all body wave multiple reflections and interface waves (Mandal, 1986;
Prange, 1985; Kennett, 1983). These seismograms are intended to provide a reference for
understanding arrival times and amplitudes in the VSP experiment, and a simple 25 Hz
Ricker wavelet is used. Downgoing SH wave travel times from the synthetic seismograms
agree well with the experimental data. However, the strong reflection from the base of
the glacial till present in the synthetic data is not visible in the experimental data. Since
this interface is known from well logs to mark an abrupt change in material properties,
the diminished amplitude of the observed reflected SH wave suggests that this interface is

rough enough to attenuate the reflected wave. In the time window between the direct SH
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and this reflected arrival, only one multiply reflected arrival appears in the synthesized
data, while the experimental data contains numerous arrivals, some of which appear to
be multiply reflected. Because they do not match the arrival times of any phases in our
planar interface model of the site, we attribute these arrivals to scattering. The down-
going SH wave in the transverse component of the VSP data is significantly broader in
time than the corresponding wave in the radial or vertical components, or in the synthetic
scismograms. This effect could be explained by the influence of a rough interface of the
scattered wavefield. Pulse broadening can occur when the field scattered from the rough
interface, which has been advanced or delayed in time due the height variations in the
interface, is added to the planar interface background field.

In the rest of this study we will focus on the wave field in the layer of glacial till
between the depths of 45.8 m and 165 m. The wave velocitics in this region are relatively
well known, as was verified by the travel time comparison between the data and synthetic
seismograms. Waves in this region do not appear to be contaminated by the reverber-
ations apparent in the shallower layers. Represcentative seismograms for this region (at
depth intervals of 18.3 m) are shown in detail in Figures 4-7a,b,c,d,e,f. Each of these
figures displays three views of the data from a given depth: (1) the three pairs of unsub-
tracted vertical, radial, and tangential component seismograms, with each pair overlain
in order to illustrate the cffectiveness of the P wave cancellation; (2) the three compo-
nents after subtraction; and (3) hodograms? for the vertical-radial and tangential-radial
planes within a time window around the first S wave arrival. Comparison of first arrival
amplitudes shows that the vertical component amplitudes are approximately 60 percent
of radial component amplitudes, and radial component amplitudes are are approximately
50 percent of tangential component amplitudes.

Hodograms are especially important since particle motion is critical for accurat= phase
identification. For waves propagating in the sagittal plane, SH waves will appear as

particle motion in the tangential direction of the radial-tangential plane, and P and

2A hodogram is a two-dimensional graph of particle motion in a specified plane.
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SV w wes will appear in the radial-vertical plane, with P wave particle motion in the
direction of PP wave propagation and SV waves perpendicular to the direction of SV wave
propagation. llodograms produced from our data, as displayed in Figures 4-7a,b.c,de.f,
show the SH wave to be the dominant component. The SII wave particle motion is linear
in the tangential direction for receivers above about 46 m, but is rotated by 5°-7° from
purely tangential motion for reccivers below this depth. This effect is attributed to the
interaction of the SH waves with a shallow interface in the glacial till.

Onc or more SV waves arrive within the time window about the SH wave arrival, as
can be deduced from the presence of energy in the radial-vertical plane. These SV arrivals
have one-half to one-third the amplitude of the SH arrivals. The presence of a single SV
arrival could be explained by the transmission of the incident SH wave through a planar
interface with an out-of-plane dip. resulting in a single S arrival with components in
both radial-tangential and radial-vertical planes. Clo (1989) used three-dimensional ray
tracing to investigate the effect of an interface with out-of-plane dip on the conversion of
SH waves into SV and P waves. His model. a simplified version of our model, is shown
in Figure 4-8. The results at three receivers for an interface with a 5° dip are plotted in
Figure 4-9. Here an SH source wave with a free-space radiation pattern — i.e., no free
surface effects — transmits through a dipping interface and devclops energy in the radial
and vertical components. Four effects are observed in this ray-theoretical modeling: (1)
the magnitude of energy in the vertical component is always larger than that in the
radial component, with this difference growing smaller with increasing receiver depth;
(2) the energy in the cross-components increases with increasing receiver depth: (3) at a
given receiver depth. energy in the cross-components is largest when the azimuth angle
is large: and (4) converted P wave amplitudes are less than 1.5 percent of transmitted S
amplitudes. Only the fourth of these eflects is observed in the experimental data. There
are several other characteristics of the data which are inconsistent with a simple out-of-
plane dip hypothesis. Firstly. the incidence angles of the SV arrivals vary unpredictably

from receiver to receiver. whereas changes in particle motion due to out-of-plane dip
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would have angles casily predictable using Sncll’s law, and would vary smoothly from
receiver to recciver. Also, the observed broadening of the direct SH wavelet relative to
the corresponding SV wavelet, and the complexity of the radial component arrivals in
a large time window following the direct SV arrival, cannot be a result of out-of-plane
dip. A scattering mechanism is clearly indicated by the data. Of course, there could be
some out-of-plane dip of the mean planar interface associated with the rough interface

scattering.

4.5 OBSERVATIONS FROM MODELING

In order to test whether the observed scattered field can be attributed to rough interface
scattering, the perturbation method of chapter 2 was used to gencrate synthetic seismo-
grams which model the features of an SH wave transmitted through a rough interface. To
facilitate the modeling, some simplifying assumptions were made. First of all, although
scattering cocflicients may be generated with source waves with any incidence angle,
synthetic seismograms were only produced for a normally incident source wave. This
is a limitation of the theory when applied to plane wave sources, and will not exist in
future point source implementations. Since we find by applying Snell’s law to the planar
interface model in Figure 4-2 that the incidence angle for an S wave would be near 20°
from the vertical for receivers in the range of interest, we cannot expect to exactly model
rough interface scattering in the experimental geometry with a normally incident source
wave. \We can, however, provide insight into the expected coupling of incident SH waves
into SV and P waves for the material contrasts and frequency used in the experiment.
Secondly, the model was simplified to include just a single interface at a depth of 46 m.
The velocity model is illustrated in Figure 4-8. Hence, multiple reflections will not be
included in the synthetic seismograms. These multiples form an insignificant part of
the seismograms, as can be seen from the discrete wavenumber synthetic seismograms
presented in Figure 4-6.

The interface height functions used in the modeling were constrained to have Gaussian
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autocorrelation functions with RMS height deviations of 1.53 m. This RMS height is 22
percent of the wavelength of an SH wave in the upper medium, which is the upper
limit for accurate solutions from the perturbation modeling method. Different interface
height functions were then gencrated by vurying the x and y autocorrelation lengths
between 4.58 m and 18.33 m. The lower bound on an acceptable autocorrclation length
is controlled by the maximum permissible RMS slope for accurate solutions from the
perturbation modeling method. Another set of interface height functions was prepared
by simply rotating the above set of height functions by 45° in azimuth. Representative
interface height functions illustrating these two sets of functions are shown in Figure 4-10.

Scattering coeflicients for source waves with 0° and 20° incidence angles show the
angular distribution of scattered P, SV, and SH waves for an SH plane wave source
(Figure 4-11). Coeflicients were calculated for each of these angles of incidence on a
model with z and y autocorrelation lengths of 9.16 m, and for 20°-incident waves on
an interface with autocorrelations lengths of 9.16 m in the z direction and 18.32 m in
the y direction. Comparing scattering cocflicients derived for normal incidence with
those for a 20° incidence angle provides insight into differences between the experimental
and synthesized seismograms. In the normal incidence case, the SV and SH scattering
coefficients are tightly focused in the direction normal to the interface, and are nearly
equal in maximum amplitude. The P wave scattering cocfficient is 77 percent smaller
in maximum amplitude than scattered SV and SH waves. This maximum occurs in the
direction parallel the interface, making the vertical component of its propagation velocity
less than that of scattered S waves. The combined eflects of small amplitude and late
arrival matches the observed absence of P waves in the experimental data (Figure 4-
5a,b,c). Non-normal incidence angle acts to increase the the magnitude of the scattering
coefficients over that of the normal-incidence scattering coefficient for the corresponding
normal incidence model. Hence, the synthetic seismograms will tend to underestimate
the scattered wave amplitudes. The SH scattering coefficient, however, has a value of 0.13

at the zero scattering angle, which is similar to the normally incident source case. The
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maxim.am amplitude of the SI scattering coefficient relative to that of the SV scattering
cocfficient has increased dramatically over the normal incidence case, but if the scattering
cocfficients are compared within the domain of scattering angles less than 45°in order
to isolate scattercd waves which will arrive within the time window of the synthetic
scismograms, the maximum amplitude of the SH scattering coeflicient is reduced to 0.6.
Scattering cocflicients for the two interface height functions have similar shapes, with the
coefficients for smoother interface being of lower amplitude in general, and more compact
in the y direction.

Synthetic seismograms for a SH wave normally incident on nine different interface
models are presented in Figures 4-12a,b,c. The complexity and amplitude of the verti-
cal component seismograms increases with decreasing y autocorrelation length, and is
relatively insensitive to changes in the z autocorrclation length. This behavior is ex-
pected from the shape of the scattering coefficients shown in Figure 4-11. There it can
be seen that P wave scattering is relatively small in comparison with SV scattering, and
SV waves gencrate significant energy on the vertical component only for large scatter-
ing angles. The SV scattering coefficient shows that these large scattering angleés are
only possible for scattering azimuths in the vicinity of the y direction, resulting in the
insensitivity of the vertical component to changes in the = autocorrelation length. Since
changing the source wave incidence angle to 20° shifts the scattering coefficients in the
direction, seismograms for a source incident at 20° should show greater sensitivity of the
vertical component to the z autocorrelation length. The radial component seismograms
are sensitive to changes in both the z and y autocorrelation lengths. This also follows
from the scattering coefficients. The amount of SV wave energy displayed on the radial
component is dependent on the azimuth of the scattered SV wave, and is maximum for
small scattering angles. ‘Small changes in the x autocorrelation length can extend the
azimuthal reach of the scattering coefficient in the & direction in the neighborhood of
the zero scattering angle, allowing SV waves to scatter more efficiently into the radial

component. Again, changing the source wave incidence angle to 20° will increase the
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cnergy in the radial component. The tangential components increase in complexity and
decrease in amplitude as the y autocorrelation length is decreased.

The above relationships between amplitude and autocorrelation length, determined
from normal incidence synthetic scismograms, are quantified by the contour plots in
Figure 4-13a,b. The first column in Figure 4-13a contains three plots, each presenting
the average maximum absolute amplitude of one component of the synthetic seismograms
versus 7 and y autocorrelation length. The maximum amplitude of each seismogram is
found within an S wave time window beginning at the first arrival of the S wave and
ending at the end of the scismogram. The average of these maxima is then taken over an
8 by 8 array of receivers at a depth of 61.1 m beneath the mean depth of the interface.
The second column contains similar plots using the same source and receiver locations,
but the interface height function is rotated in azimuth by 45°. Figure 4-13b displays
the results for a P wave time window beginning a the start of the seismograms and
ending at the first arrival of the S wave. The amplitudes observed in the VSP data
do not match the amplitudes in the synthetic data for any of the models. Data from
the VSP experiment has more cnergy in the radial and vertical components relative to
the tangential component than was observed in the synthetic data. Better agreement
in this respect could be obtained by increasing the RMS interface height. Increased
RMS height, however, does not reduce the discrepancy in the energies of the vertical
and radial components of the observed and synthetic data. In the synthetic data, the
vertical components consistently have more energy than the radial components, whereas
in the experimental data the radial and vertical components have nearly equal energy.
To resolve some of these discrepancies we will have to calculate rough interface synthetic
seismograms for oblique incidence angles that more accurately model the experimental

field geometry.
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4.6 DISCUSSION

We offcred two plausible explanations for the energy appearing on the vertical and ra-
dial components in our SII VSP experiment: a near-surface interface which is dipping or
roagh. The complexity of the observed waveforms cannot be satisfactorily explained by
a dipping interface model. Such an interface would split the SII source wavelet into SV
and SII waves, but these would have the same complexity as the source wavelet. Syn-
thetic seismograms generated for rough interface models using the perturbation method
presented in chapter 2 successfully modeled the observed waveform complexity. Interface
roughness, however, failed to explain the amplitudes observed in the vertical and radial
components relative to the tangential components. In the experimental data, vertical
component amplitudes were approximately 60 percent of the corresponding radial com-
ponent amplitudes, whercas in the synthetic seismograms the vertical component was
consistently larger in amplitude than the radial component, even for interface models
which were rotated 45° in azimuth from the incident SH particle motion. The ratio of
the radial component amplitude to the tangential component amplitude in the synthetic
seismograms is smaller by a factor of 4 than the observed ratio. Since current limitations
in the modeling mecthod limit the source wave to normal incidence, it is important to
consider how the synthetic seismograms would change if the source incidence angle were
changed tc a more realistic incidence angle of 20°. This can be done by examining the
scattering coefficients for a 20° incidence angle. The SV scattering coefficient in this
case indicates that the SV scattering wave field will increase in magnitude relative to the
normal incidence case, and will also contribute more to the radial component relative the
the vertical component. However, since the scattered wave amplitudes from these scat-
tering coeflicients must be summmed over all scattering angles to produce a seismogram,
a more precise statement about the expected amplitudes on each component for a 20°
incidence angle cannot be made until synthetic seismograms can be produced for this
case. If radial component amplitudes are still small relative to vertical and tangential

component amplitudes, the introduction of out-of-plane dip to the mean planar interface
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can be used to adjust the relative amplitudes, while keeping the waveform complexity

intact.
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Figure 4-1: Map showing the site of the MIT/Birch 1-20A borehole.
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Figure 4-2: Lithological cross-section and velocity/density model of the borehole site.
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Figure 4-3: Geometry of the VSP experiment. The source is used to generate tangential
tractions. The three-component monitor phone is fixed in place for the duration of the
experiment. The orientation of the three-component geophone is precisely determined

with an onboard gyroscope.
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Figure 4-4: Geometry of the force vectors for the left and right sources as viewed from

the borehole.
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Figure 4-5a Vertical component of data (after subtraction) from the VSP experiment
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Figure 4-5b: Radial component of data (after subtraction) from the SH VSP experiment

between the depths of 9.1 m and 201.6 m. Displayed at the same scale as Figure 4-5a.
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Figure 4-5c: Tangential component of data (after subtraction) from the SH VSP exper-
iment between the depths of 9.1 m and 201.6 m.” Displayed at one half the scale of
Figures 4-5a,b.
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Figure 4-6: Tangential component of synthetic seismograms generated from the model in
Figure 4-2. For this model the vertical and radial components are exactly zero. The
seismograms were generated by a discrete wavenumber formulation of the propagator
matrix method, and present a complete solution of the wave equation including all
body wave multiple reflections and interface waves. The vertical scale was adjusted
to match as closely as possible that of Figure 4-5¢ for the first SH arrival on receivers

below 55 m. -
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the subtracted data, and the two hodograms are in the radial-vertical and radial-

tangential planes.
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Figure 4-7b: VSP data for the receiver at depth 82.5 m. The top three seismograms
are the overlain raw data for the left and right sources, the middle seismograms are
the subtracted data, and the two hodograms are in the radial-vertical and radial-

tangential planes.
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Figure 4-7c: VSP data for the receiver at depth 100.8 m. The top three seismograms
are the overlain raw data for the left and right sources, the middle seismograms are
the subtracted data, and the two hodograms are in the radial-vertical and radial-

tangential planes.
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Right/Left Source (gram #13, 119.1 m)
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Figure 4-7d: VSP data for the receiver at depth 119.1 m. The top three seismograms
are the overlain raw data for the left and right sources, the middle seismograms are
the subtracted data, and the two hodograms are in the radial-vertical and radial-

tangential planes.
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Right/Left Source (gram #15, 137.5 m)
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Figure 4-Te: VSP data for the receiver at depth 137.5 m. The top three seismograms

are the overlain raw data for the left and right sources, the middle seismograms are

the subtracted data, and the two hodograms are in the radial-vertical and radial-

tangential planes.
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Right/Left Source (gram #17, 155.8 m)
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Figure 4-7f: VSP data for the receiver at depth 155.8 m. The top three seismograms
are the overlain raw data for the left and right sources, the middle seismograms are
the subtracted data, and the two hodograms are in the radial-vertical and radial-

tangential planes.
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Figure 4-8: Simplified model for wave propagation through a dipping glacial till interface.
The upper figure defines the geometry of the model, and the lower figure defines the

simplified velocity model.
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Figure 4-9: The effect of an interface with a 5° dip out-of-plane dip and several dip
azimuths on the conversion of SH waves into SV waves for a simplified version of our
model shown in Figure 4-8(Clo, 1989). Radial and vertical component amplitudes are

normalized to the tangential component amplitude at each of three receiver depths:
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Figure 4-10: Contour plots of representative interface height functions. The indicated z

and y autocorrelation lengths refer to the height function before azimuthal rotation.
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Figure 4-11: Transmitted P, SV, and SH wave scattering coefficients for an SH plane wave
with an incidence angle of 20 degrees. The maximum amplitude of carn scattering

coefficient is indicated.

155




Vertical Component

Lxe15,Lyw18 Max. = 0.18 Lxwi5,ly « 0 Max. « 0.17 E-\ﬁ.l:!:m Mu.:opg
A ——mmme ANAAANANAAAA~ ——MW»M A NS\ it s
B NS~
c #\/\,—v
) N
E e AN\ e NS NS Nt B it T s e
F——-—.‘wa\NV\MoM ———eANANNA- AN~
T R e~
H __—MW—- B i et

Lx=30.Ly =15 Max =021 Lx=30, Ly =30 Max « 021 Lx=30.Ly-60 Max «0.11
A ——W«/\Nww e e e h e e e
-] B e
[+ —J\I\N
D A/~
E -—ﬂ\#‘—‘\l\l“w\/\f\/\m A e AL N NN O o
F ”~wm*‘
G
H O tnnad A
Lx=60,Ly=15 Max =021 LX=80.Ly-30 _ Max = 0.10 Lx=60.Ly =60 _Max =009
A —AAANN S — e oA A e e
B A
c !'\I\,\.'-—————-—-
o}
E — AN\ A e A e A e A S ——
: St St e
G A A W
H ——_—‘INW\'%M A
000 008 016 024 00 008 018 026 000 008 016 = 024
Time (sec) Time (sec) Time (sec)

Figure 4-12a: Vertical component of representative synthetic seismograms for nine rough
interface models. The source is a normally incident SH wave incident on the 45 m
interface of the model in Figure 4-2. The source wavelet is a 40 Hz Ricker wavelet. The
RMS interface height is 1.53 m and the z and y autocorrelation lengths are indicated.
The receivers are 61 m beneath the mean interface depth. The seismograms are all

plotted at the same scale. The maximum amplitude in each panel is indicated.
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Figure 4-12b: Radial component of the synthetic seismograms shown in Figure 4-12a

(plotted at the same scale).
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Tangential Component
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Figure 4-12c: Tangential component of the synthetic seismograms shown in Figure 4-
12a (seismogram amplitudes are reduced in size by a factor of 8 relative to those in

Figures 4-12a,b).
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Figure4-13a: Contour plots of the average maximum absolute amplitude of each com-
ponent versus r and y autocorrelation length, measured in an S wave time window
beginning at the first arrival of the S wave and ending at the end of the seismogram.
The average is taken over an 8 by 8 array of receivers at a depth of 61.1 m beneath
the mean depth of the interface. In the second column, the interface height function
is rotatad in azimuth 45° relative to the first column. Contours were derived from the

synthetic data points marked by triangles.
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Figure 4-13b: Contour plots of the average maximum absolute amplitude of each com-
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beginning at the first arrival of the P wave and ending at the first arrival of the S

wave. Contours were derived from the synthetic data points marked by triangles.
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Chapter 5

GENERAL DISCUSSION AND
CONCLUSIONS

We have presented a perturbation method for modeling three-dimensional elastic wave
scattering from rough interfaces. The primary advantages of this approximate formula-
tion over exact formulations are its great computational speed, the ease with which the
rough interface scattering solutions can be integrated into standard programs for exact
wave propagation in stratified media, and the simple analytical form of the solution.
The computational speed is sufficient to remove dimensional limitations, allowing fully
three-dimensional scattering problems to be studied. The easy integration of this pertur-
bation method into standard exact stratified media formulations provides a convenient
mechanism for increasing model complexity of a standard one-dimensional model. The
simple analytical form of the perturbation formulation allows the scattered wavefield
to be analyzed in terms of scattering kernels, scattering coefficients, and scattered field
seismograms.

Constraints on the domain of validity of the method were determined by comparison
of scattering coefficients and seismograms generated by the perturbation formulation
with those generated by a finite difference formulation for a suite of models with a

20 percent contrast on P and S wave velocity across rough interfaces with RMS heights
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ranging from 0.069 to 0.28 S wavelengths and RMS slopes fanging from 0.037 to 0.99.
In the scattering coefficient comparisons, the perturbation method is accurate for RMS
interface height deviations of less than about 10 percent of the smallest wavelength in
the scattered field. This result is independent of RMS interface slope within the tested
range. Comparisons of seismograms generated by the two methods show that error does
increase with increasing RMS slope, but at half the rate of error growth with increasing
height. From these tests we determinea that the perturbation solvtion amplitudes are
reliable for RMS heights of less than about 0.20 S wavelengths and RMS slopes of less
than about 0.25. The perturbation formulation reliably predicts waveform shapes for a
larger domain including the entire range of interface models tested.

Three-dimensional scattering kernels were generated for P and SV waves normally
incident on a rough interface. Scattering kernels represent the scattered field response
to a delta function interface height function. They must be convolved with an interface
height function in order to produce scattering coefficients, but by themselves illustrate
the general scattering behavior of an interface contrast and source configuration indepen-
dent of any particular interface roughness function. The kernels we generated show that
waves are maximally scattered in directions for which the scattered wave particle motion
coincides with that of the incident wawz An incident SV wave with particle motion in
the z direction scatters P and SV waves maximally in the = direction and SH waves max-
imally in the y direction. A P wave in the same geometry induces azimuthally: isotropic
radiation because it hias no preferred azimuthal orientation. Similarly, for incident SV
waves there is a null in P and SV scattering in the y direction, and a null in SH scattering
in the z direction. These nulls do not appear in seismograms because a receiver in any
location can detect waves traveling in all directions, scattering from many points on the
interface. Scattering kernels also show that the critical angles in rough interface scat-
tering, i.e., those angles at which amplitude maxima or minima appear, correspond to
the critical angles of the mean planar interface problem with one qualification: since the

spectrum of the interface height function modulates the scattering kernel, an interface

162



whose spectrum does not contain energy at the critical angles will not have these max-
ima or minima in its scattering coecflicient. Furthermore, unlike scattering from planar
interfaces, interface roughness produces non-specular scattering, and waves incident from
any angle can scatter in the direction of the critical angle.

By assuming material contrasts across the interface are small, further approximations
can be made, yielding simple equations for the scattering coefficients in which -A;‘-’-, %2,
and Qp—" appear as scaling factors for three new kernels which describe the scattering
contributions of each of the material contrasts. When the source is a normally incident
plane wave, these coeflicients have an even more compact form than planar interface
scattering cocfficients. From these simple forms it is seen that the scattered field wavelet is
the time derivative of the source field wavelet. Scattering coefficients and seismograms for
normally incident waves were used to illustrate the relative contributions of the separate
material contrasts on the scattered wavefield. Scattering coefficients for obliquely incident
waves show that the scattered wave amplitudes, excluding the background specular field,
are not necessarily maximum in the direction of specular scattering.

In the final chapter, I presented seismic data from an SH wave vertical seismic profile
experiment which contains evidence of rough interface scattering. The experiment was
conducted at a site in the Michigan Basin generally thought to have a horizontally strat-
ified velocity structure. If this were so, waves would only be detected on the tangential
component of the gyroscopically oriented receivers. However, the observed seismograms
contain SV as well as SH arrivals. and the complexity of these arrivals requires a scat-
tering mechanism which we model as scattering from a rough interface. By generating
scattering coefficients and seismograms for several rough interface models. we explored
the particular scattering mechanism at work at this site. We found that synthetic seismo-
grams generated for the rough interface scattering mechanism underestimated scattering
of the incident SH wave into SV waves, but . ~cessfully modeled waveform complexity.
However, since synthetic seismograms in this investigation were limited to normally in-

cident source waves, synthetic seismograms were primarily useful for comparisons with
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waveform complexity in the observed scismograms. Amplitudes could only be estimated
from scattering coeflicients gencrated for the correct incidence angle.

We have demonstrated the value of our perturbation formulation for modeling elastic
wave scattering in rough interface problems. Current implementation considers only
plane wave sources. Future work includes the extension of the synthetic scismogram
computer program to handle point sources and multilayered models with acoustic and
elastic layers. This will allow us to continue with testing of the method for more realistic
models. Experimental data with which to compare the results of this theory must be
obtained. Water tank models with fluid-elastic rough interfaces provide a controlled
environment for such testing. This work has already begun. From such testing, the
range over which RMS height and slope, incidence angles, and material contrasts can
vary while maintaining acceptable solution accuracy can be experimentally determined
for thrce-dimensional models. Such physical model experiments will also be useful for

testing other promising approximate modeling techniques such as the ray-born method.
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Appendix A
Finite-Difference Modeling

A.1 Introduction

The purpose of this appendix is to present an accurate and efficient implementation of
the finite difference method for modeling elastic wave scattering from rough interfaces.
The finite difference (FD) method is a useful tool for generating seismograms where
approximate or simple solutions are not applicable. It involves replacing the space and
time derivatives in the continuum elastic wave equation by their FD approximations. The
resulting wave equation relates displacement values at grid points in space to displacement
values at previous discrete time points. This time stepping scheme is initialized by
specifying the source wave field for two consecutive time steps.

Traditional FD formulations (Alterman and Karal, 1968; Alford et al., 1974; Kelly et
al., 1976) are accurate to second order in space and time, where order of accuracy refers
to the asymptotic form of the error term in the approximation of derivatives. Higher-
order FD formulations, such as those which use fourth-order (Vidale et al.. 1985; Bayliss
et al., 1986) or Fourier spatial derivative operators (Gazdag, 1981; Kosloff et al., 1984;
Fornberg, 1987), permit the wavefield to be sampled more sparsely than the second ofder
schemes but require more machine calculations per derivative evaluation. The optimum

order of accuracy must strike a balance between model size and number of calculations
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per derivative evaluation, while providing an acceptable level of accuracy. For serial
computers this balance generally favors order four schemes. However, the small inter-
face perturbations of our model require an unusually dense grid point spacing, putting
the second-order derivative operator well within its domain of acceptable accuracy, and
its short operator length makes it the most cfficient scheme. Accuracy and grid point
density are further improved by using a staggered mesh formulation in which horizontal
and vertical displacements are represented on separate grids, each shifted by half of the
grid point spacing in both coordinate directions with respect to the other (Figure A-1).
The formulation is similar to the scheme of Virieux (1986), but differs from it in that
we use second-order displacement-stress equations instead of first-order velocity-stres:
equations. This modification improves efliciency, since the final solution is desired in

terms of displacement.

A.2 The Finite Difference Scheme

The wave equations for a linearly elastic, isotropic, heterogeneous medium are

pOuu = O [(A+ 2p)0:u+ Ad.w] + 0.[u(0u + O, w)] (A.1)
pOyw = O:[(A+ 2¢)0:w + A\du] + O [u(:u + O,w)).

u(z, z,t) and w(z, z,t) are the horizontal and vertical components of displacement, and
A, . and p are the Lamé parameters and density. The equations throughout this paper
are given in their two-dimensional forms for compatibility with the numerical examples.
The formal extension to three dimensions is straightforward.

To obtain an FD formulation of (A.1). each of the derivatives is replaced by a formula
which depends only on the field values at grid pcints. Since the values of these are
only known at discrete points, the derivative operation consists of the assumption of
an interpolation function, followed by the exact differentiation of this function. FD

derivatives arc traditionally computed using Lagrange interpolation, in which the field
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about a grid point is expanded in terms of a truncated Taylor series. The resulting
formula is a weighted sum of néighboring grid values.

When a staggered mesh is used, derivatives are always evaluated at the midpoints of
grid intervals. D3, and Dj , the staggered mesh derivative operators of FD order 2p with

respect to z and z, have the form

Dif(@) = 2= Aplfle+(v-1)A7) — flz—(v-D)A7)]  (A2)

v=1

)4
Dif(:) = 2= 3 Alf(e+ (v = 3)A2) — fe ~ (v~ H)A2).  (A3)

v=1

For second order spatial derivatives,

Ay =1. (A.4)

The numerical derivative coefficients A, , for p > 1 can be obtained from the differentiated
Lagrange interpolation function (c.f. Abramowitz and Stegun (1972) 25.2.6). The time
derivative terms 3;,u and 9w in (A.1) are approximated by second order finite differences,

regardless of the spatial order of the formulation. The second order formula is

DEf(1) = (7;—,;;[1'(: + At) = 2f(t) + f(¢ — AD)]. (A5

This formula may be derived from (A.2) and (A.4) by replacing z and Az by t and At,
and applying the resulting derivative formula twice to get the second derivative. Note
that, although the formula for first derivatives involves field values between grid points,
when it is applied twice only values on grid points are needed.

Substituting FD derivative operators into (A.1) and isolati;lg the term representing

the value at t + At yields
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u(t + At) = 2u(t) —u(t — At) ' (A.6)
(At)2 X T z 2z 2z xz
+ == { DRI + 20 D5u(t) + AD5(t)] + D, [u(D3u(t) + Dyu(t))]}
w(t+ At) = 2w(t) —w(t - At)

+

(Apt)2 {D3,I(X + 20) D3,w(1) + ADZ,u(t)] + D3, [u(D3u(t) + Dguw())]}

where the half-order p is a value between 1 and co. In the limit as p — oo, these equations
describe the Fourier, or pseudospectral method. In this limit, however, the summations
are actually evaluated using an algorithm based on the fast Fourier transform.
Addition or multiplication of terms in (A.6) requires that they lie on the same point
in space. This might appear to be a problem in a method in which the two components,
u and w, are specified on separate grids, and which results in or requires values at the
midpoints of grid intervals in forming derivatives. However, it was noted in deriving
the form of the time derivative term that in spite of the use of grid midpoint values in
the computation of first derivatives, a second derivative uses only values on grid points,
and does not require the values at the midpoints of the grid intervals. Similarly, on a
staggered mesh, when the spatial derivative in the z direction of a field on one grid is
followed by a spatial derivative in the x direction, the results of the derivative calculation
are found on points aligned with the other grid. Because the wave equation contains only

pairs of spatial derivatives, it is ideally suited for the staggered mesh method.

A.3 Numerical Dispersion

Such properties of solutions to the discrete wave equation (A.6) as stability and con-
vergence are characterized by its dispersion equation (Trefethen, 1982). The need to
limit the effects of numerical dispersion constitutes the primary constraint on time and
space grid step sizes. Hence, the efficiency of a scheme is controlled in large part by its

dispersion equation. In this section, the dispersion equation for (A.6) in a homogeneous
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medium is derived. This result is useful in defining optimum At and Az for homogeneous
media, and these can be used as a guide in the case of heterogeneous media.

The dispersion equation is derived by transforming (A.6) to the Fourier domain and
reducing the wave equation to an eigenvalue problem relating wavenumber and frequency.
Since the medium parameters are assumed constant here, the Fourier transform is per-
formed by replacing the derivative operators in (A.6) by their transforms. This can be
done by substituting a phase factor of the form eik=+7z=wt) jnto (A.2), (A.3), and (A.5),

the transformed derivative operators are

) P 3 . .
D3 et = 4 {—?—- 3 Apusin( l/LALL‘)} e** = ik, e (A.7)
Az 3 ]
z _ivz . 2 & s II’YAZ vz . vz
D3, e = i {Z\vz- ,,{:, Ay sin( 5 )} e =ily,e™” (A.8)
. 2 . wAt? . .
D;ze'w‘ - {z_i Sln(%—-)-} et = —(92)261‘"‘. (Ag)

The terms in braces, labeled K, I'yp and Q,, are identified as FD approximations of the
spatial and temporal frequencies k, 9, and w, respectively. The Taylor series expansions
of Ky, and I'y, equal k and « te order 2p. Replacing D3,, D3,, and D¥ in (A.6) by iK,,,
il'2p, and —(;)?, the FD elastic wave equation in the Fourier domain for a homogeneous

medjum is

u a®(K2,)? + B*(T3,)?  (0? - B2)Ka, T2, u .
(22,)° = (A.10)

w (0'2 - 62)’C2pr2p 02(F2p)2 + :32(’(:2:»)2 w

where a = /(A +2u)/p and B = \/u/p are the compressional and shear wave speeds.

This is an ~igenvalue problem where the eigenvalues, (,)?, are given by

0'2 ’\12;,2 Fz 2
o] ) T A

B*((K2p)? + (T'p)?).
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Compressional and shear waves are clearly decoupled in a homogeneous medium. Solving

for w,

o= sin™ [0+ (T (A12)

where v € {a,(}. Substitution of (A.12) into the phase velocity equation C(k,vy) =
w/ kT ¥ 72 gives the phase velocity dispersion equation, and the group velocity: disper-
sion equation is U(k,v) = dw/d\/k* +4%. When Az = Az, phase and group velocities
are greatest for waves propagating 45 degrecs to the grid axes (k = v). The dispersion

equations for this case are

Co(k) = eﬁ 13 OZA,,,,sm(VkAx)] (A.13)
v=1
v P, vA,, cos(XAZ)

Up (k) = v=12%, 2 . (A.14)
i V1= 20770, A, sin(#52)]2

where O = vAt/Axz.
Stability of the FD formulation (A.6) is guaranteed when the argument of arcsine in
(A.12) is less than or equal to one. Otherwise, w is complex, resulting in the exponential

growth of the solution with time. For Az = Az, the stability condition is

1
0 <05, = min [ TIY ] . (A.15)
b S i | A, (2

The stability condition and dispersion equations for a second order finite difference for-

mulation are

V2u so o kAT
Jg = e————— - 2 Al
C, Y 1 | V20 sin( 5 ) (A.16)
kAx
Uy = vcos(73%) (A.17)
\/1-29251 ?(432)
1
0 = —. A.lS
2 \/5 ( )
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Graphical representations of velocity error due to the phase and group dispersion relations
derived above are given in Figure A-2. The numerical velocity error € is defined by
v = vo(1 + €), where vy is the numerically dispersed velocity and vg is the undispersed

velocity.

A.4 Interface Boundary Conditions

The FD wave equation (A.6) was derived with the tacit assumption that the model pa-

rameters vary smoothly within the grid. This assumption is necessary because sharp -

changes in medium parameters result in infinite spatial frequency components that the
FD spatial derivatives cannot resolve. It is possible to explicitly include boundary con-
ditions in the FD formulation at each interface (Kelly et al., 1976), but this would
require changes in the computer program for each rough interface model. The alterna-
tive that we employ represents interfaces by using the smooth parameter formulation
(A.6), in which velocities change abruptly between the adjacent grid points across an
interface. Brown (1984) has shown that the reflection and transmission coefficient errors
of a smooth parameter formulation are order (1/PPW), regardleéé« of p, where PPW
is points per wavelength. Since second-order formulations require a larger number of
PPW for a given dispersion error than higher-order formulations, the error in reflection
and transmission coefficients is correspondingly smaller. This conclusion was verified by

numerical modeling experiments.
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Figure A-1: Illustration of the staggered mesh on which the finite difference formulation

is based.
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Figure A-2: Percent bhase and group velocity dispersion plotted against grid points per
wavelength (PPW) and © = vAt/Axz.
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