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ABSTRACT

In this thesis I present a perturbation method which can model three-dimensional scatter-
ing from an arbitrary elastic-elastic rough interface with great computational efficiency.
Using this method, I examine the changes introduced into the scattered wavefield by
the presence of interface roughness. The matrix method used is appropriate for direct
implementation in existing propagator matrix-based seismogram synthesis programs. It
is derived using a perturbation approach which requires interface height perturbations to
be small relative to the wavelengths of scattered waves, and interface slope perturbations
to be much less than unity. These conditions are numerically investigated by comparison
of frequency-wavenumber domain and time domain perturbation results with those gen-
erated by a second-order finite difference method for several rough interface models with
Gaussian autocorrelation functions. Error is acceptable for RMS height deviations of less
than about 20 percent and RMIS slopes of less than about 0.25. A three-dimensional scat-
tering kernel is introduced which represents the scattered field response to a delta function
interface height function. This must be convolved with an interface height function in
order to produce a scattering coefficient, but by itself illustrates the general scattering
behavior of an interface contrast and source configuration independent of any particular
interface roughness function. These scattering kernels show that waves are maximally
scattered in directions for which the scattered wave particle motion coincides with that of
the incident wave. Scattering kernels also show that the critical angles in rough interface
scattering, i.e., those angles at which amplitude maxima or minima appear, correspond
to the critical angles of the mean planar interface problem with one qualification: since
the spectrum of the interface height function modulates the scattering kernel, an inter-
face whose spectrum does not contain energy at the critical angles will not have these
maxima or minima in its scattering coefficient. By assuming material contrasts across the
interface are small, further approximations, can be made, yielding simple equations for
the scattering coefficients which separate the influence of contrasts in P and S velocities
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and density on the scattered wavefield. From these forms it is seen that the scattered
field wavelet is the time derivative of the source field wavelet. Scattering coefficients and
seismograms for normally incident waves illustrate the relative contributions of the sep-
arate material contrasts on the scattered wavefield. Scattering coefficients for obliquely
incident waves show that the scattered wave amplitudes, excluding the background spec-
ular field, are not necessarily maximum in the direction of specular scattering. Finally, I
present seismic data from a vertical seismic profile experiment which contains evidence
of rough interface scattering. By generating scattering coefficients and seismograms for
several rough interface models, I explore the particular scattering mechanism at work at
this site.

Thesis Supervisor: M. Nafi Toks6z
Title: Professor of Geophysics
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Chapter 1

GENERAL INTRODUCTION

A fundamental component of forward modeling and inversion procedures in elastic wave

propagation problems is the ability to model scattering from sharp contrasts in the elas-

tic properties of the propagation medium. Although scattering from smooth interfaces

is easily modeled and well understood, the roughness inherent in many natural inter-

faces introduces a nonspecular, incoherent component to the scattered field which is

poorly understood. Most current methods for computing the scattered field are limited

to small, two-dimensional models by computational constraints, or apply only to oversim-

plified versions of the real interface. In this thesis I present a perturbation method which

can model three-dimensional scattering from an arbitrary elastic-elastic rough interface

with great computational efficiency. Furthermore, this method allows realistic interface

shapes, and is limited only by the RMS height and slope of the interface height function.

A three-dimensional scattering kernel is introduced which represents the scattered field

response to a delta function interface height function. This must be convolved with an

interface height function in order to produce a scattering coefficient, but by itself illus-

trates the general scattering behavior of an interface contrast and source configuration

independent of any particular interface roughness function. Using these methods, I am

able to examine the changes introduced into the scattered wavefield by the presence of

interface roughness

7
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Scattering is typically formulated in terms of reflection and transmission coefficients

which relate the amplitude and phase of an incident wave in medium one to the am-

plitudes and phases of the waves scattered into media one and two, respectively. Exact

analytical solutions for these coefficients are available in the literature (Pao and Mow,

1973) for interface shapes which are coordinate surfaces of coordinate systems in which

the wave equation is separable, e.g., planar, cylindrical, and spherical interfaces. In

all, there are eleven coordinate systems in which the wave equation is separable (Ben-

Menahem and Singh, 1981). In reality, natural processes do not create interfaces which

can be exactly described by these simple surfaces. Numerical methods, such as the finite

difference (Levander and Hill, 1985; Virieux, 19S6; Bayliss et al., 1986) and boundary

element (DeSanto, 1985; Campillo and Bouchon, 1985; Paul and Campillo, 1988) meth-

ods, are available which can cope with arbitrarily shaped interfaces. In addition to their

flexibility in handling interfaces, such numerical methods provide complete scattered field

solutions, including all diffracted, multiply scattered, and evanescent waves. The appli-

cabilitv of these methods is limited, however, by the large computational memory and

time requirements which limit their usefulness to two-dimensional elastic wave scattering

problems. Furthermore, since the numerical solutions are not expressed in terms of closed

form analytical expressions, they cannot be directly decomposed and analyzed for the

sensitivity of the solution to model parameter variations.

An alternative to the exact methods are the formulations which describe elastic wave

scattering from bosses on a plane. The first of these methods describes elastic wave scat-

tering from rigid or free bosses on a planar interface (Twersky, 1957; Lucas and Twersky,

1984). In this development, the bosses have shapes which are coordinate surfaces of co-

ordinate systems in which the wave equation is separable. Exact analytical solutions for

scattering from a single boss are combined to model multiple scattering, and an image

field on the other side of the interface is used to match the boundary conditions at the

interface. This approach, which is capable of providing an exact solution and has been

successfully tested against experimental data (Chu and Stanton, 1989), allows the contri-

8



butions of successively higher orders of multiple scattering to be studied separately. The

drawbacks are that natural interfaces can only be approximated by such simply shaped

bosses on a planar surface, and that the method requires the interface to be rigid or

free. An extension of this approach, based on work by Biot (1968), allows the scatter-

ing bosses to be elastic (Menke, 1982). This is done by approximating the scattering

from each boss by a single source term. This extension, however, only describes the

low-frequency component of the scattered field.

Many times, an interface can be described as the sum of one of the separable co-

ordinate surfaces and a small perturbation surface. In this case, an analytical solution

for the reflection and transmission coefficients can be developed which expresses the

three-dimensional scattered wave field as the sum of a background field solution for the

separable coordinate surface and a scattered field solution which accounts for the pertur-

bations in this surface needed to describe the interface. Such solutions place restrictions

on the magnitude and shape of the interface perturbations necessary to obtain an accu-

rate solution, but for problems for which they are appropriate, a fully three-dimensional

solution is obtained as a simple, closed form expression which can be efficiently evaluated,

and which is convenient for analytical analysis of the properties of the scattered wave

field. Perturbation approaches are frequently used to evaluate rough interface scatter-

ing in ocean acoustics problems. A two-dimensional formulation based on the T-matrix

method (Dacol and Berman, 1988) and one based on the approach of Kennett (1972)

(Kuperman and Schmidt, 1989) have been used to compare the scattered field response

of a fluid-elastic rough interface with that of a fluid-rigid rough interface. The fluid-rigid

approximation is commonly used to simplify modeling in ocean acoustics problems, but

fluid-elastic models are more realistic. Comparison of the two ocean floor models showed-

that there is a greater loss of energy in the fluid-elastic model due to transmission into

the elastic medium, and that the presence of the elastic medium introduces critical angles

at which there are sharp maxima and minima in the scattering coefficients.

The perturbation approach is the most promising way to compute three-dimensional

9
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seismic wave scattering from rough interfaces given realistic constraints on computer re-

sources. Kennett (1972) applied a perturbation approach to the analysis of surface wave

scattering from two-dimensionally rough interfaces. Our approach was to extend the per-

turbation approach of Kennett (1972) to handle three-dimensional body wave scattering

(Prange and Toks6z, 1989). It differs from that of Kuperman and Schmidt (1989) in that

we evaluate a deterministic scattered field and they work with the coherent component

of a stochastic scattered wave field. A single-scattering approximation is used to replace

the rough interface contribution to the scattered wavefield by a planar distribution of

sources at the mean depth of the rough interface. This source is in the form of a discon-

tinuity in the displacement-stress vector at the source depth, and as such is suitable for

direct insertion into an exact solution algorithm for propagation of elastic waves through

a vertically stratified medium (Kennett, 1983). Integration of the perturbation methods

into stratified media formulations has been demonstrated for two-dimensional models by

Kuperman and Schmidt (1989).

In this thesis we study the scattering from interfaces consisting of small perturbations

about a planar surface bounding two elastic half-spaces. In chapter 2 a perturbation for-

mulation is developed to model three-dimensional scattering from such interfaces, The

method is formulated in terms of simple matrix operators. The range of interface pa-

rameters for which the perturbation method is valid is determined by comparison of

seismograms and scattering coefficients with those generated by a highly accurate finite

difference formulation. The models used in this comparison have Gaussian autocorrela-

tion functions. The concept of a scattering kernel is introduced as a convenient way to

separate influences on the scattered field into two parts: the effects of the interface rough-

ness function and those of the material contrast and the source parameters. Scattering

kernels and scattering coefficients are then used to discuss the properties of converted

waves in the three-dimensional scattering.

In chapter 3 the perturbation method is used to examine the effect of P and S velocity

and density contrasts on the scattered wavefield. In order to separate the effects of these

10



three material contrasts, a small material contrast approximation is made which reduces

the three-dimensional scattered field equations to simple linear forms which decouple

the influences of the three contrasts. From these simple expressions, we discuss the

three-dimensional behavior of the scattered wavefield relative to changes in interface

properties. WMe then present and discuss the influence of obliquely incident P and SV

waves on scattered P, SV, and SH waves.

In chapter 4 we present seismic data from a vertical seismic profilel which contains

evidence of rough interface scattering. Our perturbation formulation is applied to gen-

erate scattering coefficients and seismograms for several rough interface models for this

data set in a effort to explore the particular scattering mechanism at work at this site.

Discussion and conclusions are contained in chapter 5.

References

Bayliss, A., K. Jordan, J. LeMesurier, and E. Turkel, 1986, A fourth-order accurate

finite-difference scheme for the computation of elastic waves, Bull. Seism. Soc. Am.,

76, 1115-1132.

Ben-Menahem, A. and S. Singh, 19S1, Seismic Wlfaves and Sources, Springer-Verlag, New

York, 1108 pp.

Biot, M.A., 1968, Generalized boundary condition for multiple scatter in acoustic reflec-

tion, J. Acoust. Soc. Am.,, 44, 1616-1622.

Campillo, AI. and M. Bouchon, 1985, Synthetic SH seismograms in a laterally varying

medium by the discrete wavenumber method, Geophys J. R. Astr. Soc., 83, 307-317.

Chu, D., and T. K. Stanton, 1989, Application of Twersky's boss scattering theory to

laboratory measurements of sound scattered by a rough surface, submitted to J.

Acoust. Soc. Am.

1A vertical seismic profile (VSP) is a seismic experiment in which a source is located at or near
the surface of the earth and receivers are located in a borehole. For an indepth discussion of the VSP
geometry and the associated interpretational techniques, see Gal'perin (1974) or Balsh e al., (1982).

11



Dacol, D. K., and D. H. Berman, 1988, Sound scattering from a randomly rough fluid-

solid interface, J. Acoust. Soc. Am., 84, 292-302.

DeSanto, J., 1985, Exact spectral formalism from rough-surface scattering, J. Opt. Soc.

Am., 12, 2202-2207.

Kennett, B.L.N., 1972, Seismic wave scattering by obstacles on interfaces, Geophys. J. R.

astr. Soc., 28, 249-266.

Kennett, B.L.N., 1983, Seismic Wave Propagation in Stratified Media, Cambridge Uni-

versity Press, New York, 339.

Kuperman, W., and H. Schmidt, 1989, Self-consistent perturbation approach to rough

surface scattering in stratified elastic media, submitted to J. Acoust. Soc. Am.

Levander, A.R., and N.R. Hill, 1985, P-SV resonances in irregular low-velocity surface

layers, Bull. Seism. Soc. Am., 75, 847-864.

Lucas, R.J., and V. Twersky, 1984, Coherent response to a point source irradiating a

rough plane, J. Acoust. Soc. Am., 76, 1847-1863.

Menke, W., 1982, On extending Biot's theory of multiple scattering at low frequencies

from acoustic to elastic media, Geophys. J. R. astr. Soc., 69, 819-830.

Pao, Y., and C. Miow, 1973, Diffraction of Elastic IWaves and Dynamic Stress Concen-

trations, Crane, Russak, and Company Inc., New York, 694 pp.

Paul, A. and M. Campillo, 1988, Diffraction and conversion of elastic waves at a corru-

gated interface, Geophysics, 53, 1415-1424.

Prange, M., and M. N. Toks6z, 1989, Perturbation approximation of 3-D seismic scat-

tering, submitted to Geophysical Journal.

Twersky, V., 1957, On scattering and reflection of sound by rough surfaces, J. Acoust.

Soc. Am., 29, 209-225.

Virieux, J., 1986, P-SV wave propagation in heterogeneous media: velocity-stress finite-

difference method, Geophysics, 51, 889-901.

12



Chapter 2

PERTURBATION

APPROXIMATION OF 3-D

SEISMIC SCATTERING

2.1 ABSTRACT

A method is presented for computing three-dimensional seismic wave scattering from

a rough interface. The matrix method used is appropriate for direct implementation

in existing propagator matrix-based seismogram synthesis programs. It is derived us-

ing a perturbation approach which requires interface height perturbations to be small

relative to the wavelengths of scattered waves, and interface slope perturbations to be

much less than unity. These validity conditions are based on an order-of-error analysis

of the truncation of the perturbation series. These conditions are numerically investi-

gated by comparison of frequency-wavenumber domain and time domain perturbation

results with those generated by a second-order finite difference method for several rough

interface models with Gaussian autocorrelation functions. In the w-k domain compar-

isons, the perturbation method is accurate for RMS interface height deviations of less

than about 10 percent of the smallest wavelength in the scattered field. This result is

13



independent of RMS interface slope in the tested range of 0.037 to 0.99. Comparisons of

seismograms generated by the two methods show that error does increase with increasing

RMAS slope, but at half the rate of error growth with increasing height. Time domain

error is acceptable for RMS height deviations of less than about 20 percent and RMS

slopes of less than about 0.25. A three-dimensional scattering kernel is defined which

facilitates analysis of two- and three-dimensional scattered field results.

2.2 INTRODUCTION

The presence of a rough interface can strongly affect seismic waves reflected from and

transmitted through that interface, even when the scale of roughness is much less than a

wavelength. These effects include changes in the amplitude, scattering angle, frequency

content, and wave-type conversion of the scattered wave. Available exact solutions take

the form of integral equations (DeSanto and Brown, 1986) or finite difference/finite ele-

ment formulations (Levander and Hill, 1985) that are prohibitively expensive to solve in

three dimensions. In this paper, I present a perturbation approach to the solution of the

three-dimensional elastic wave equation which satisfies welded boundary conditions at a

rough interface. This solution is an extension of two-dimensional surface wave scatter-

ing formulations (Kennett, 1972; Gilbert and Knopoff, 1960). The method requires the

height and slope of interface irregularities to be small with respect to the wavelengths of

the elastic waves present. The accuracy of the perturbation method is then explored for

two-dimensional models by comparing solutions for a series of rough interface models with

those generated by a second-order finite difference method. The scattering results are

first compared in the frequency-wavenumber domain in the form of scattering coefficients.--

The scattered wave fields computed with the perturbation and finite difference methods

are separated into up- and down-going P and SV waves, and these scattering coefficients

are individually compared. Comparisons are also made in the time-space domain using

seismograms. Finally, we discuss the features of the three-dimensional scattered field.

14
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2.3 THREE-DIMENSIONAL SCATTERING

i FORMULATION

A fine-scale blow-up of a three-dimensional rough interface is shown in Figure 2-1. The

iri-jular interface is described by z = h(x,y), and has a downward normal n(x,y).

It separates an upper medium, described by compressional and shear wave velocities

al and /l and density pi, from a lower medium, described by a2, p2, and P2. The

essence of the formulation is to project displacements and stresses on the two sides of the

rough interface onto a planar surface whose depth equals the mean depth of the rough

interface. These projected fields are then expanded in a perturbation series in h about

a background field consisting of the known planar interface solution. This procedure

results in a formulation in which the rough interface scattering problem is replaced by

a planar interface scattering problem with sources along the planar interface generating

the rough interface component of the scattered field.

The general form of the elastic wave equation which is valid for small displacements

in the absence of body forces is

-pw 2ui = Tjij, i,j E {, Y, }, (2.1)

where ui is the ith component of the displacement vector, rji is the i,j component of

the Cauchy stress tensor, the comma denotes differentiation of rji in the j-th coordinate

direction, w is the temporal frequency, and the Einstein summation convention applies.

Throughout this paper, the Fourier transform in x, :, and t uses an implied phase factor

of exp(iksx + ikyy - iwt). For an isotropic solid, stresses are related to displacements by

the constitutive relation

rij = Ak,k ij + (l(i,j + ui,,), (2.2)

where bij is the Kroniker symbol, and A and p are the Lam6 parameters. Equations (2.1)

and (2.2) can be expressed as a 6 x 6 matrix wave equation in the form

15



dr
- = Ar,dz

where r is the displacement-stress vector defined by r = [ux, u, u, u , , ,,

A is defined by

0

0

- A

-p o

-¢ 0 - ,,,,

A+2 Y

0

0

A+2,aY

-,(1 + +-2.

_-XO -

0

_j9 Ixa 0A

0 0 0
o o o

0 0

0

1
A + 2;

-pw2 -a -a,

with = 4#(A + p)/(A + 2p).

Welded boundary conditions at the rough interface require continuity of displacement

and traction at each point on the interface. These tractions are measured with respect

to the local tangent plane at each point on the interface, and are given by Tj = jknk,

where the downward unit normal nk is defined by

n,

ny

nz

1

1 + h2. + h2y

1

(2.5)

A new displacement-stress vector is defined using these tangent plane tractions so that

r is continuous at the rough interface. is defined as

16

i

7

I

i (2.3)

TZr]T and

(2.4)O O O -+2A

o-o .

0

i

ii

I



I

II

i

I
.,

U,

UY

Uz

T/1 + h. + hyVITy l;2 + hy
T /1 h"f f h~

1 0

0 1

0 0

-h A+2

0 0 O 0

00 0 0

1 0 0 0

0 1 0 h.z Ž--" +2,u

O 0 1 h 2,II A+2t-h,:tt9y

-h 2At,y A+2A 3

0 0 O -h,, -h,y 1

Nriting (2.6) in a form which explicitly expresses the h dependence, this transformation

takes the form

(x, y; h) = (I + h, Q., + h,yQ y)r (, y; h) (2.7)

where and r are evaluated along the rough interface, I is the identity matrix, and Q 

and Q, are
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0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

-A+2 0 O O -;

-ilay -Pla o o o o

0 0 0 -1 0 0

0 0 0 O0 0 

0 0 00 0 0 

0 0 0 O0 0 0

0 0 0 0

°0 0 0 A+2A+I2p

0 0 0 O -1 0

The rough interface boundary conditions may then be expressed in the form

()(x y; h) = r (2)(x, y; h) (2.10)

where superscripts indicate the respective media.

In order to relate the scattered field (the rough interface solution) to the background

field (the mean planar interface solution), the scattered field at -the mean planar interface

r (0) is extrapolated to the rough interface by the power series expansion

18
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r(h) = r () + hr ,(0) + .T r,,.(0) (2.11)
Making use of the wave equation (2.3), (2.11) is reduced to the form

r(h) ( + hA + 2 + ... )r () (2.12)
So far the formulation is exact as long as the series in (2.12) converges. It is easy to

demonstrate convergence for the case of a planar interface. In this case h is constant and

(2.12) can be easily Fourier transformed to the (k,,ky) domain to form the power series

expansion of the exponential function, converging to

r (k, k; h) = eh-r(k, k,; 0). (2.13)

This is the standard form for the propagator matrix (Aki and Richards, 1980, p. 275),

which is an exact extrapolation operator which forms the basis of the propagator matrix

method for formulating wave equation solutions in plane layered media (Kennett, 1983).

After the displacement-stress vectors along the rough interface have been extrapolated

to the mean planar interface, they are expanded in a perturbation series about ro(O),

the displacement-stress vector at the interface of the background planar interface model:

r(j)(0) = r(0) + h ')(0) + hr )(0) + h2r)() + . . . ;, (2.14)

where superscripts indicate the respective media and subscripts indicate the approxima-

tion order of the field. Since ro(O) is the displacement-stress ector for the background

planar interface model, it is continuous across the planar interface and needs no super-

script. The higher order terms reflect the influence of the rough interface. Combining

(2.7), (2.12), and (2.14), each side of the boundary condition expressed in (2.10) can be

written as (omitting the superscripts)
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(h) - (I+ h. + hQ ) (2.15)

2!- +(I + hA + h + ..

(o + hrl + h2r2+...)

(L + hQ + h,-yQ)ro + hAro + hrl (2.16)
+ o(h2) + O(hh,,) + O(hh,v)

where O(-) denotes order of accuracy.

Applying the boundary condition (2.10) to (2.16) results in

h((2) r 1)) x h(A(') - A (2))r o h (Q 1) _ Q ()) (2.17)

+ hy () )- (2)) r O+ - _

which is accurate to second-order in h and its derivatives. The right-hand side of (2.17)

is clearly zero in a planar interface model. The presence of interface roughness results in

discontinuities in the displacement-stress vector. Such discontinuities represent sources

(Aki and Richards, 1980, p. 38). Thus, to first order in h, the effects of a rough interface

can be duplicated by adding sources along the mean planar interface. These sources will

be designated by s = h( (2) - r )). This use of sources to represent material deviations

from a background model is shared with standard Born theoretical developments (Wu

and Aki, 1985). The mapping of heterogeneity into source terms is also used in exact

formulations based on Huygen's principle (Paul and Campillo, 1988).

Fourier transforming (2.17) to the k, ky domain,

kzY) f 4 | h(6 V', lky - k) (,, ky; V, )r o(k-' ,ky) dk' dky (2'18)

where L is defined by
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2.3.1 Definition of the Scattering Kernel

For plane wave sources it is possible to define a factorization of the scattered field into

a product of the wavenumber spectrum of the interface and a function that is called

the scattering kernel. The scattering kernel is independent of the interface roughness
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function, and contains the features of the scattered field related to the material3contrast

and the source frequency and illumination angle. For a plane wave source of the form

r o(k, k ) = 4n72rp(k, k)6(k - , k - k), (2.20)

equation (2.18) reduces to

(k.,, ky) = h(k -kP, k-k) (, ky; , P)r p(kP, k). (2.21)

The scattered field source term in this case is separated into a part associated with a par-

ticular interface roughness function, h(k-kP, ky-kP), and a part associated with the ma-

terial contrast and the source frequency and illumination angle, L (kr, ky; kp, kP)r o(k, kr).

The latter part is designated as the scattering kernel.

Knowledge of the scattering kernel allows one to evaluate the scattering potential of a

model independent of any particular interface. For example, the transmission scattering

kernels for the two-dimensional model in Figure 2-2 are given in Figure 2-3. The source

is a normally incident, planar P wave. The scattering kernels here have been resolved

into down-going P and S wave scattering coefficients using a technique described in the

next section. Superimposed on these plots is the Fourier transform of the interface.

The scattered field is simply the product of the two curves. From these plots it is clear

that an interface with a smaller correlation length, and hence a broader spectrum in the

transform domain, would result in large amplitude cusps for large scattering angles in P

and S. For the transmitted P wave, the scattered wave amplitude increases for scattering

angles larger than the P reflection critical angle. An amplitude boost at large angles may

also be seen in the P and S reflection coefficients as it will be shown later with examples.

Tliis effect has also been demonstrated by Levander and Hill (1985) using finite difference

methods and by by Paul and Campillo (1988) using boundary integral equation methods.
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2.3.2 Describing Reflection and Transmission

The source term given by (2.18) generates P and S waves above and below the interface.

To determine the displacement coefficients of these waves requires a relation between the

displacement-stress vector and the up- and down-going P, SV, and SH wave components,

the form of which is given by

r =Fb, (2.22)

where b = [P. S 'PST_]T, the grave and acute symbols ' and denote down- and up-going

waves, respectively, and P, S, and T are the displacement coefficients of P, SV, and SH

waves, respectively. Using the reflection coefficient sign conventions of Aki and Richards

(19S0), F is given by
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with I k/+k, a = (A+21)/p, /6 = +/i 2Y = -K2 , and u =

/'3 2 .- 2 . To recover scattered field displacements from the source term note that

s = r (2) r () = F(2)b(2) _- F ()b (1) (2.24)

and that s generates no down-going waves in the upper medium and no up-going waves

in the lower medium. Hence,
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I;I

S =

F(2) F(2) F(2) )

21 22 23 - 24 -' 2s - 26

1 F2 F3) -21) -F( ) -F(1)

F1) F(2) F(3) -F(4 ( -(6)

F(2) 5(2) F() -F()41 2 F(3 -24 -6)F(1(2) ~(2) (2) -_F1) (1) F(61

1 L2 6 6 6

j(2)

s(2)

t(2)

T(1)

•(1)

(2.25)

=Fb.

The wave displacement coefficients generated by s are given by

=F s. (2.26)

The inverse of _ exists for all values of (k, k,) except (k,k,) = (0,0). At this

point in the k plane the scattered waves are propagating normal to the mean planar

surface, and SV waves are indistinguishable from SH waves. For example, consider an

S plane wave traveling in the z direction with particle motion in the x direction. If

the wave direction is slightly perturbed in the direction it becomes an SV wave. A

perturbation in the y direction makes it an SH wave. These distinctions are true even

when the perturbations are infinitesimal. Hence, to remove the singularity of F, an

arbitrary naming convention must be adopted for vertically propagating S waves. In this

paper, the . component of such waves is labeled SV, and the y component is labeled SH.

The F matrix for vertical propagation is
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0 1 0 -1 0

O O 1 0 0 -1

I 0 0 1 0 0

o iWP2P/2 0 0 iwp l /l 0

0 0 iwp 2 32 0 0 iwpl1 31

iwp2 a2 0 0 -iw plcrl 0 0

(2.27)

2.4 COMPARISON WITH FINITE DIFFERENCE

The simple form of the scattered field source term (2.18) was made possible by the trun-

cation of (2.15) to yield the second-order perturbation approximation given in (2.16).

The error resulting from the exclusion of higher order terms is difficult to evaluate an-

alytically. It is possible, though, to determine bounds on the domain of validity of this

approximation. Kennett (1972) derived two conditions on the model which must hold in

order for (2.18) to be valid. The first condition constrains the scattered field to be much

weaker than the background field, a requirement for the single scattering approximation

to apply. This condition is expressed by the relation

s (k, ky) << max Ir o(k., ky) (2.28)

where s is the scattered field source term defined by (2.18). Kennett (1972) reduced

this to a simpler, but stricter, form by replacing the convolution integral in (2.18) by an

upper-bound approximation, yielding

KrowL
'2 max h(x)I < 1, max h,(x)I < 1,(2.29)701 "' 
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i112 Max p jpj - y'2P2 ,3 pi - 132p ,
~S;~~ t 1112 = Iriax I P ± " 2p2 1 I p, + 12P2 I J

L is the periodlicity length of the roulgh inte;rface, anrd the wavenumber spectrum of the

incident field is bounded by kl < Ko. The second condition is that the background field

11iiist niot contain wav(.rtiri)ers so close to grazing incidence that shadow zones form.

Shliadow zones will be avoided if the radius of curvature of the interface is much longer

lhanl a wavelfligth. Sulch waves will then propagate as guided waves along the interface.

'Ilis condition is expressed by

;/K~ + kmax Ih,r << 1, (2.30)

%where k, is the vertical wavenumber component associated with the maximum horizontal

component K0 .

These conditions are not satisfactory for practical use. however. Approximations used

in the derivation of (2.29) result in a much stricter bound than is necessary, and the prac-

tical limit imposed by (2.30) needs to be better defined. In order to empirically construct

more realistic constraints on interface roughness, reflection and transmission coefficients

obtained using the perturbation method described above will be compared with those

derived from two-dimensional finite difference solutions. By comparing results for a range

of interface height and slope statistics, the domain of validity of the perturbation method

can be explored.

The finite difference algorithm used here is a two-dimensional, second-order formula-

tion. To summarize, the wave equations (2.1) and (2.2) are solved in the time-space

domain by replacing the time and space derivatives by their second-order centered-

difference approximations. The accuracy is improved b using a staggered mesh formu-

lation which horizontal and vertical displacements are represented on separate grids.

each shifted by half of the grid point spacing in both coordinate directions with respect

to the other. This has the added benefit of increasing the grid-point density by a factor of

two. The formulation differs from that of Virieux (1986) in that we use the second-order
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displacement/stress wave equations instead of the first-order velocity/stress equations.

This modification improves efficiency, since the final solution was desired in terms of

displacement. The stability conditions and grid dispersion relations are identical with

those of Viricux's formulation. A low-order, staggered-mesh scheme was chosen because

it is the most efficient method when dense grid point spacings are necessary, as is the

case in our models where small interface irregularities must be represented. Higher order

schemes, such as those which use fourth-order (Bayliss et al., 1986) or Fourier spatial

derivative operators (Kosloff et al., 1984; Fornberg, 1988), are generally thought to be

more efficient than second-order schemes, but this is not necessarily true. The dense

grid point spacing used in modeling small interface perturbations puts the second-order

derivative operator well within its domain of acceptable accuracy, and the short operator

length makes it the most efficient scheme.

The finite difference method is known to be accurate when the wave fields and the

model are both well discretized. Hence, when models with large interface irregularities

are compared, the finite difference method will be used as the standard. On the other

hand, the perturbation method is accurate for models with small interface height and

slope irregularities and will be used as the standard for such models. The comparison

with finite difference solutions will proceed in two parts. First it is necessary to show that

the range of interface irregularities over which the finite difference method is accurate

extends into the range over which the perturbation method is accurate. This will be

done by showing that the finite difference method results match the perturbation method

results for a model with very small height and slope irregularities. If the finite difference

method works well in this case, results for larger interface irregularities will also be valid

because they will be more accurately represented on the finite difference grid. Finite

difference solutions will then be used a basis for comparison with perturbation solutions

for a series of models with larger height and slope irregularities in order to probe the

limits of validity of the perturbation approximation.
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2.4.1 Accuracy of the Finite Difference Method

All results for scattering from a rough interface in this paper are expressed as reflection

and transmission coefficients. The procedure for deriving these coefficients from the

finite difference solution is similar to that described in Section 2.3.2 for the perturbation

solution. In short, (2.22) is used to convert r into b, and then P and S wave amplitudes

in b are scaled by the source wave amplitude. The displacements and stresses in r are

computed by the finite difference method in the time-space domain along a horizontal

linear array of uniformly spaced receivers that do not intersect the interface at any point.

The receiver array should be located between the source and the interface to allow incident

waves to be separated from reflected waves based on whether they are traveling downward

or upward. r is then Fourier transformed into the w-k domain to yield a form suitable

for use in (2.22). The distance of the receiver array from the interface is accounted for

by the z term in the definition of F in equation (2.23). If the finite difference model

is such that reflections from the top or bottom edges of the grid will arrive within the

seismogram time window, absorbing boundaries must be implemented which attenuate

those reflections to a level much smaller than the reflection and transmission coefficients

to be measured. Periodic boundary conditions were applied on the horizontal boundaries

of the grid in order to duplicate the periodicity of the spatial Fourier transform, and the

length of the array, L, was set to the horizontal dimension of the finite difference grid to

take advantage of this periodicity. For a point source, L controls the range of incidence

and scattering angles that are within the receiver array, and the horizontal grid size

should be large enough to capture the incidence and scattering angles of interest. Since

the range of incident and scattering angles detected is also dependent on the distance

of the source and the receiver array from the interface, it is best to put the source and

the receiver array as close to the interface as possible to minimize the grid size and the

seismogram length. Receiver spacing controls the maximum representable wavenumber

in r, and was set equal to the grid point spacing to avoid aliasing.

The reflection and transmission coefficients obtained from finite difference modeling
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are compared with analytical coefficients (Cerveny et al., 1977) for the case of a planar

interface model. The model is shown in Figure 2-4. The source has an 18 Hz Ricker time

function of the form

R(t)= (1 - .lot2)e-t , (2.31)

where wo is the primary angular frequency of the wavelet. The source is implemented as a

body force representing a point explosion source smoothed by a Gaussian with standard

deviation equal to the grid point spacing. This smoothing is necessary to make the infinite

bandwidth explosion source dipoles representable on the finite bandwith finite difference

grid. This source isotropically radiates pure P waves. It is located 20 grid points above

the interface, and the two arrays of receivers are located 10 grid points above and 10

grid points'below the interface. Reflection and transmission coefficients derived from the

finite difference seismograms for this model are shown in Figure 2-5 along with analytical

coefficients. There is generally good agreement for both pre- and post-critical waves. The

small disagreement present at the larger scattering angles results from the finite aperture

of the receiver array.

The finite difference and perturbation methods will now be compared for a model

with very small height and slope perturbations shown in Figure 2-2. The source is

a downward propagating, planar P wave with an 18 Hz Ricker time function. The

interface roughness has a Gaussian autocorrelation function with a correlation length of

L = 100 m and an RMS height deviation of a = 16.7 m. The interface is periodic with

a period of 2.70 km, the width of the model. The finite difference sampling parameters,

x = 6.67 m, Az = 2.22 m, and At = 0.00156 s, result in a maximum phase dispersion

error of -1.1 percent at 18 Hz. The two receiver arrays are located as close as possible to

the interface without intersection. The Fourier transform of the interface function which

has been discretized for the finite difference grid is shown in Figure 2-6a as a function

of horizontal slowness evaluated at 18 Hz. The zero spectral power at the origin results

from the zero mean interface deviation. Histograms of interface height and slope are
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shown in Figures 2-6b and 2-6c. The largest deviation from the mean planar surface

is 12 m, or 15 percent of the S wavelength in the upper medium. The largest slope is

0.16, while the mean and standard deviation of the slope are zero and 0.059, respectively.

Since the maximum interface height and slope are fairly well approximated by twice their

standard deviations, histograms will not be provided for the remaining rough interfaces

used in this study. A comparison of the reflection and transmission coefficients derived

from the finite difference and perturbation methods is shown in Figure 2-7. Agreement

is very good, with both amplitude and shape predicted well by the perturbation method.

"Ringing" appears to some degree in all finite difference coefficient plots, and is most

apparent on the S wave coefficient plots. Another check on the accuracy of the reflection

and transmission coefficient results is to plot the coefficients for the non-physical waves

in the solution: the down-going S in the upper medium and the up-going S and P in

the lower medium. Plots of the non-physical coefficients for the finite difference data

are shown in Figure 2-8. In general, the amplitude of the non-physical waves increases

with increasing scattering angle, since the wavenumbers corresponding to these larger

angles are less well represented by the receiver array. The down-going P wave in the

upper medium has unit amplitude at zero angle. It is clear from this figure that the

maximum error is less than 0.1 percent, and that this error is associated with the S wave

in the upper medium. This error is enough to explain the difference between the finite

difference and perturbation results for the reflected S wave coefficient at large scattering

angles.

2.4.2 Accuracy of the Perturbation Method in the wo-k Dolllain

The domain of validity of the perturbation method will be explored by comparing reflec-

tion and transmission coefficients generated using the perturbation method with those

derived from finite difference modeling. Six rough interface models are used in this com-

parison, each having a Gaussian autocorrelation function and a uniform random phase.

The interface functions are shown in Figures 2-9(a-f) with two times vertical exaggera-
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tion. RIS interface slope ranges from 0.037 to 0.99 and RMS interface height is 0.01 km

for models A-E end 0.015 km for model F. Since the accuracy of the perturbation method

is sensitive to the smallest elastic wavelength in the model, interface height is measured

here in terms of S wavelengths in the upper medium (S1), and thus the relative height of

the irregularities changes as the frequency changes. The bandwidth of the IS Hz Ricker

wavclet time function used in the finite difference calculation allowed reflection and trans-

mission coefficients to be computed at three frequencies (9.93, 16.5, and 26.5 Iz) in each

of the six models, for a total of 18 comparisons for each coefficient. In these comparisons,

RMS interface height ranges from 0.069 to 0.28 S1 wavelengths. RS height, correlation

length, and RMS slope for the models used are listed in Table 2.2. The material param-

eters are al = 2.50 km/s, 3B1 = 1.44 km/s, pi = 1.00 g/cm3 , 2 = 3.00 km/s, 32 = 1.73

km/s, and P2 = 1.00 g/cm3, the same as in Figure 2-2. The source is a normally incident

planar P wave in layer one. Plots of these comparisons are shown for the selected mod-

els A, B, D, and E in Figures 2-10(a-d). The reflection and transmission coefficients are

the displacement coefficients P1 , S1, P2, and S2 are normalized so that P1 = 1.

In order to facilitate the comparison of the perturbation and finite difference coeffi-

cients, the curves are compared by finding the L2 norm difference defined by

-IP Pi2= [p(3, 16( , (2.32)

where 0, is the scattering angle and the P coefficient is chosen for illustration. The

differences between method results are plotted for each of the four coefficients in Figures 2-

11(a-d) for a constant RMS interface height of 0.01 km, and in Figures 2-11(e-h) for a

constant RMS interface slope of 0.1. The constant height plots show that the accuracy

of the perturbation solution is not significantly degraded as RMS interface slope varies

within the range tested. This L2 norm result is verified in the coefficient comparison

plots in Figures 2-10(a-d). The constant slope plots show that error increases rapidly

with increasing RMS interface height, and in this particular example is acceptable for

values of RMS height less than about 0.1 S wavelengths.
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2.4.3 Accuracy of the Perturbation Method in the t-x Domain

Error in time domain seismograms generated using the perturbation approximation can-

not be directly estimated from the error results presented for the w-k domain. This

is because each seismogram contains energy from a broad spectrum of frequencies and

wavenumbers. Here the time domain error will be estimated by comparing reflection

seismograms generated by the perturbation method with those generated from the finite

difference method. To generate reflection seismograms using the perturbation method,

the scattering coefficients evaluated using the two-dimensional form of (2.26) are con-

verted to displacement by using (2.22) with k, 0. These displacements are then

Fourier transformed in w and k to yield

F34 F3 5 
J= 4~ 2 ~ e . (2.33)

Fourier transforms are evaluated using the discrete wavenumber method (Bouchon, 1977).

Seismograms generated with (2.33) contain only the scattered field. The background field

can be added if desired.

Seismograms were generated for each of the interface functions parameterized in Ta-

ble 2.3 using both the perturbation and finite difference methods, and a subset of these

are shown overlain in Figure 2-12. The source and receiver configurations and the mate-

rial parameters are the same as those used in the last section. The source time function is

an 18 Hz Ricker wavelet. These seismograms show that the shapes of the waveforms gen-

erated by the perturbation and finite difference methods agree fairly well for the range of

models considered. Errors in amplitude and traveltime seem to be positively correlated,

both being larger at receivers that are over extrema in the interface height function than

at other receiver locations. This feature will be explored next using an L2 norm error

measure. Since the total waveform is composed of the background field added to the

scattered field, total field perturbation method seismograms minus the source waves are
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presented for comparison in Figure 2-13 for models A-I.

The L2 norm was calculated as a measure of error between the perturbation and finite

difference seismograms, using

E(x, At) = IIu,(x)P' -ULz(X)fdll2(At)

= 100 x [Jftmn dt'[uPt(x, t' + At) - uf (2, t')]21
100 z; fj d J'n' dtld(tI)2 J (2.34)

min

where L is the length of the receiver array and At is the time shift between the two

seismograms. The numerator was efficiently evaluated using the fast Fourier transform

since the seismograms are periodic in space. The denominator is the average power

of the entire array of finite difference seismograms in order to minimize the effect of

low amplitude seismograms on E(At). If E(At) were normalized instead to the current

seismogram, globally small errors could overwhelm such low amplitude seismograms to

produce large values of E(At).

E(At) is used to provide two separate measures of error for each seismogram: travel-

time error, which is defined as the time delay At at which E is minimum; and amplitude

error, which is defined as E = E(At). A plot of At versus seismogram offset x for

Model A is shown in Figure 2-14. Overlain on this plot is a plot of the one-way, vertical

P wave traveltime associated with the interface function (2g)T. In the absence of travel-

time error, At would be zero for all the seismograms. The agreement between these two

curves indicates that traveltime from the interface to the receiver in the perturbation

method is referenced to the mean planar interface, and not to the perturbed interface.

The reason for the traveltime error can easily be seen for the case where the interface

perturbation function h(x) is a constant. In this case, the perturbation expansion given

by (2.15) transforms to an exact form in the w-k domain:

(w,k , y; h) = (1 + ha + A 2 + ... )r (w, , k ; 0) (2.35)
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- eh -r (w, k, k,; ) (2.36)

= FehAF-'r (w, , k,; 0). (2.37)

Equation (2.36) is simply the definition of a propagator matrix which transforms the

solution for r at depth zero to the solution at depth h. Equation (2.37) uses a diagonal

factorization of A of the form

A =FAF-' (2.38)

where F is defined by (2.23) and is always invertible, and A is a diagonal matrix whose

diagonal elements in the three-dimensional case are A11 = -A 4 4 = i and A22 = -A =

-A5 5 = -A 66 = i. The exact form of the source term (2.18) valid for constant h is then

s(w,k,ky) = (ea ' -eg)r(w, k, k; 0) (2.39)

- (F ()ehA(l)F (1) - _ F ()ehA (2)F(2)-l)r(w,, ky; 0) (2.40)

(F (1)(hA (')F (1) -F (2)(hA (2))F (2 -l )r (w, k ,;0) (2-.41)

+ O(h2).

The phase factors of the form eh= in (2.40) are responsible for adjusting the traveltime

to account for the height of the interface. The accuracy of the first order approximation

eh - hA in (2.41) controls the accuracy of the traveltime adjustment and influences

the accuracy of the scattered field amplitude. The accuracy of the first and second order

approximations to eih= -- is illustrated in Figure 2-15. This figure shows that at

least a second order approximation is required for accurate representation of phase, and

therefore of traveltime, although both approximations converge to the exact solution as

h --, 0. However, the modulus of the first order approximation is more accurate than

that of the second order approximation, but this is a consequence of the non-monotonic

improvement of accuracy as approximation order increases.

RMS amplitude error E in the comparison of perturbation- and finite difference-

derived seismograms is shown in Figure 2-16. RMS errors of the seismograms of each
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model were averaged, and these mean errors were plotted against RMS height for RMS

slopes of 0.037 and 0.10, and against slope for an RMS height of 0.125 S1 wavelengths.

Contrary to the results obtained in the w-k domain, RMS amplitude error clearly increases

with increasing RMS interface slope, as well as with increasing RMS interface height.

Comparison of the rates of error growth for the fixed slope and fixed height error plots

shows that error increases with increasing height nearly twice as fast as it does with

increasing slope.

WXlhen the time shift error is removed, amplitude error is sensitive to two factors: the

amplitude scale factor and the waveform character. \Waveform character refers to the

general shape of the waveform including the presence and length of the coda. It is fairly

well approximated in all of the nine models considered here. With the exception of small

amplitude arrivals, the shapes of the first arrivals generally agree well with the finite

difference results, even for models with RIMS slopes as high as one, and the complexity

and decay rate of the coda are also well approximated. The amplitude scale factor,

however, is generally overestimated by the perturbation method. This is true to the

nature of the Born approximation, which violates conservation of energy by introducing

the rough interface effects via a source term whose energy is added to the energy of the

background field. With these points in mind, the range of validity spans the entire range

of the models tested if the error criterion is based on waveform character. On the other

hand, if the error criterion is based on amplitude scale or the absolute RMS error the

range is limited to RMAS slopes of less than about 0.3 and RAIS heights of less than about

0.2.5 of the smallest wavelength present in the scattered field. Notice that the latter

criterion results in a less restrictive range than the RAMS error analysis on scattering

coefficients done in the w-k domain.

2.5 FEATURES OF THE 3-D SCATTERED FIELD

Three-dimensional scattering examples will now be presented for the model shown in

Figure 2-17. The material and interface parameters are identical to those of model D
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(see Table 2.2 and Figure 2-9) with the Gaussian autocorrelation function having identical

correlation lengths in the x and y directions. In general, a Gaussian rough interface whose

major and minor axes coincide with the x and y axes has aGaussian autocorrelation

function of the form

h(k,,, k)h'(k, k) e - (2.42)

where L, and L are the major- and minor-axis correlation lengths. Equation (2.42)

can be generalized to allow roughness trends at an angle 0 to the x axis by applying a

rotation transformation to get

/h(k, k3 )h'( k , kv) -e [L 2(k_ cos(O)+k, sin(O))2 +L2(-k. sin(O)+ky coS())2 (2.43)

In the first example, the source is an 18 z planar SV wave propagating downward

along the z axis with particle motion in the x direction. The SV wave scatters into

reflected and transmitted P, SV, and SIH waves. The three-dimensional P, SV, and SH

transmission coefficients for this model, found using the perturbation method, are given

in Figure 2-18S. The x and y scattering angles in these figures, referred to as qs and 4y,

are measured from the downward z axis in the x-z and y-z planes, respectively. They

are defined by i = sin-' (kv/w) and 4 = sin-' (kvlw) where v is the body wave

velocity of the transmitted wave concerned. Scattering in the z-direction, for example,

is given by , = y = 0. The transmission coefficient plots cover scattering angles in the

range - 90
° < o, 90° and 0° < y 90°, and are symmetric about the y = 0 axis.

For all three scattered wavetypes, these plots show that scattering is maximal in the

direction that conserves source particle motion: for an SV source with particle motion in

the x-z plane, P and SV are maximally scattered in the x-z plane, and SH is maximally

scattered in the y-z plane. This effect is exaggerated by the use of the single scattering

approximation. A null is present in the plane normal to maximal plane: the y-z plane

for P and SV waves and the x-z plane for SH waves. An alternative display of the three-

dimensional transmission coefficients is a cross-section of the coefficients for all scattering
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angles at a particular azimuth, where azimuth is measured clockwise in the x-y plane

from the positive x-axis, and the scattering angle is defined by ?1 = sin l'(k zv/w). Cross-

sections of the reflection and transmission coefficients for the same model and source

parameters are given for azimuthal angles of 10', 450, and 800 in Figure 2-19.

Transmission scattering kernels for the model in Figure 2-17 are given in Figure 2-20.

Comparison with the SV and S transmission coefficients in Figure 2-18 shows that the

spatially band-limited nature of this particular interface damps out the large amplitude

features present at large scattering angles. The P transmission coefficient exhibits a hint

of the cusps present in the kernel. Consideration of another interface roughness function

requires only a visual superposition of the new interface spectrum with the kernel. For

the same SV source as above and a two-dimensional rough interface with variation in the

z direction, the problem is truly two-dimensional, and waves are scattered into P and SV.

If the interface is rotated 90 degrees so that variation is in the y direction, the problem is

fully three-dimensional, and waves are scattered into P and SH. More general interfaces

whose autocorrelation functions are described by (2.43), or perhaps a von Karman or

exponential function, are handled with the same approach.

The second example is the same as the first, but with the SV source replaced by a

P source. The three-dimensional P and SV transmission coefficients for this model are

given in Figure 2-21. Since the source particle motion and the Gaussian autocorrela-

tion function are azimuthaily invariant, the scattering coefficients are also azimuthally

invariant. Deviations of the contours from circular arcs are artifacts of the contouring

program. Reflection and transmission coefficient cross-sections for this model are given

in Figure 2-22. Note that scattered SH waves are not generated in this example. This is

a consequence of the single-scattering approximation. For a normal incidence planar P

wave, a minimum of two bounces are required to generate SH.
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2.6 DISCUSSION AND CONCLUSIONS

A perturbation method has been presented for computing three-dimensional body wave

scattering from a rough interface. Its speed and simplicity are such that many of the

examples in this thesis were generated on a Macintosh SE computer in less than two

minutes. Speed is an important consideration when three-dimensional modeling is nec-

essary. For example, many of the two-dimensional finite difference computations done

for comparison required 15 MIbytes of core and 23 hours of CPU time on a Vax 8800. In

three dimensions, finite difference solutions for these models are beyond our resources at

present. For the class of irregular interface models with small RMIS height deviations,

the perturbation method is a useful alternative.

Since interface height deviations in the models presented are small, comparisons of

the perturbation method with the finite difference method were preceded by careful

testing of the finite difference method to show that it is valid for the small deviations

used in these comparisons. It can be shown that in the limit as the finite difference

grid sampling interval goes to zero, and as the numerical precision of the computer

goes to infinity, the finite difference solution converges to the exact solution as O(AX)

(Brown, 1984). However, in order for the grid sampling interval to be small enough

that the finite difference solution is sufficiently close to the exact solution, the number

of grid points describing a fixed model must increase as the size of the interface height

perturbations decreases. Therefore, the core size and speed of a computer are constraints

in the minimum interface height perturbation that can be accurately modeled using a

finite difference method. Of course, a planar boundary is an exception to this limit.

Another lower limit on interface perturbation size is imposed by numerical precision. As

the size of interface height perturbations decreases, the amplitude of scattered seismic

waves decreases. Since these scattered waves are added to the relatively large planar

interface response, insignificant numerical noise in the planar interface response can be

significant when compared with the scattered field. This is probably the cause of the

"ringing" present in the finite difference-derived scattering coefficients. Comparisons of
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finite difference-derived scattering coefficients for a planar model against an analytical

solution, and for a model with small interface height and slope perturbations against

a perturbation method solution, show that this "ringing" tends to oscillate about the

exact solution. Hence, the smoothed finite difference scattering coefficients are useful for

comparisons.

Numerous two-dimensional model comparisons of finite difference and perturbation

method scattering coefficients were made in order to determine the range of validity of

the perturbation method. The L2 norms of the differences were computed for varying

RIMS slope and constant RMS height, and for varying RMS height and constant RMS

slope. There are two major trends in the L2 norm results. First, error increases strongly

with increasing RAMS height, with acceptable levels for RMIS heights of less than about

0.1 shear wavelengths. Second, error appears to be roughly constant for increasing RMS

slope for the tested range of 0.037 to 0.99. Smaller trends, such as the apparent increase

in accuracy with increasing RRMS slope, are misleading. The L2 norm is overly sensitive

to the noise in the finite difference solution being used as the standard for comparison.

This is apparent when the scattering coefficient plots are examined for the trend seen in

the L2 norm plots. The L1 norm was also calculated to see whether it is less sensitive to

this noise, but the improvements were minimal. Ultimately, all trends must be confirmed

b1) the scattering coefficient plots.

Time domain seismograms generated by the perturbation method were compared

with finite difference seismograms for the same models. The perturbation method was

able-to accurately predict waveform character for the entire range of models considered,

including the shape of the first arrival and the presence, duration, and complexity of the

coda. Using RMS error analysis to determine traveltime error, it was shown that when

first order perturbation theory is used, the traveltime from the interface to the receiver

is referenced to the mean planar interface, and not from the perturbed interface. Hence,

traveltime error increases linearly with the height of the interface. It was shown that a

second order theory is required for traveltime to include the height of the perturbation.
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\\With this traveltime error removed, the mean RMS error was determined for the pertur-

bation seismograms in each of the models. If this mean RMS error is the criterion for

determining the domain of validity of the perturbation method, it is valid for RMS slopes

of less than about 0.25 and RMS heights of less than about 20 percent of the smallest

wavelength in the scattered field.

Three-dimensional scattering kernels generated for an SV plane wave normally inci-

dent oil a rough interface show that waves are maximally scattered in directions for which

the scattered wave particle motion coincides with that of the incident wave. A P wave

in the same geometry induces azimuthally isotropic radiation. In the three-dimensional

scattering example it was shown that there is a null in P and SV scattering in the y

direction, and a null in SH scattering in the x direction. These nulls do not exist in

the time-space domain, where a receiver in any location can detect waves traveling in all

directions. These scattering kernels also show that scattered wave amplitudes tend to

increase for scattering angles beyond the P wave critical angle (defined with respect to

the planar interface model). This confirms the results of Paul and Campillo (1988).
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.. ____-- Equation
Symbol Definition ntoIntroduced
*j Compressional wave speed in layer j (2.23)

/3j Shear wave speed in layer j (2.23)
p1j Density in layer j (2.1)
w Angular frequency (2.1)
Uq jth component of displacement (2.1)
r Cauchy stress tensor (2.1)
Aj, And Lame parameters for layer j (2.2)
r Displacement-stress vector (2.3)
A (j) Wave equation coefficient matrix for layer j (2.3)

Aj ~Partial derivative w.r.t. jth component (2.4)
ij ~Simplification variable for layer j (2.4)

Tj jth component of traction (2.6)
7 (x,y) Unit normal to interface (2.5)
h (x,y) Zero mean interface height function (2.5)
Q (i), Q U) Rotation matrices for layer j (2.7)
I Identity matrix (2.7)
r(j) Rotated displacement-stress vector in layer j (2.7)

r( ) kth order scattered field for layer j (2.14)
ro Displacement-stress vector for mean planar interface (2.14)
s Scattered field source term (2.18)
L Kernel matrix for scattered field source term (2.18)
kX, y x and y components of wavenumber (2.18)
K' Magnitude of horizontal wavenumber (2.23)
7Yj Vertical component of wavenumber for a compressional wave (2.23)

aj ~Vertical component of wavenumber for a shear wave (2.23)
~6 Dirac delta function (2.20)

b Wave coefficient vector (2.22)
F Layer matrix (2.22)
b Scattering coefficient vector (2.25)
F Scattering coefficient transformation matrix (2.25).
~0 Maximum bound on source horizontal wavenumber (2.29)
0s Scattering angle (2.32)
A Diagonal eigenvalue matrix for A (2.38)

- Table 2.1: Table of symbols used in this paper.
i
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Correlation RMS Height RMS Height RAIS Height
Correlation R MS in in in

Model Length Height
odl Lnt Slop SI Wavelengths Sl Wavelengths S1 Wavelengths
(AiI) OP (kin) 'at 9.93 Hz at 16.5 Hz at 26.5 Hz

A 0.30 0.037 0.010 0.069 0.11 0.18

B 0.10 0.10 0.010 0.069 0.11 0.18

C 0.050 0.20 0.010 0.069 0.11 0.18

D 0.033 0.30 0.010 0.069 0.11 0.18

E 0.010 0.99 0.010 0.069 0.11 0.18

F 0.15 0.10 0.015 0.10 0.17 0.28

Table 2.2: Interface parameters for the rough interfaces used in the w-k domain compar-
isons. The interface height functions shown plotted in Figure 2-9.

Correlation RMS RIS HeightR·IS in
Model Length Slope Height avelengths

(km) (km) at 18 Hz

A 0.30 0.037 0.010 0.125

B 0.10 0.10 0.010 0.125

C 0.050 0.20 0.010 0.125

D 0.033 0.30 0.010 0.125

E 0.010 0.99 0.010 0.125

F 0.15 0.10 0.015 0.188

G 0.45 0.038 0.015 0.188

H 0.60 0.039 0.020 0.25

I 0.20 0.10 0.020 0.25

Table 2.3: Interface parameters for the rough interfaces used in the t-x domain compar-
isons.
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Figure 2-1: Geometry of the rough interface model. The interface is defined by z =

h(x, y), and the downward-pointing unit normal to this surface at each point is de-

noted by n (x, y). The z = 0 plane is defined as the mean planar surface through the

rough interface. al, l, pl, a 2, 32, and P2 denote the compressional and shear wave

speeds and density for the materials above and below the interface, respectively.
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Incident Plane Wave

al = 2.50

1i = 1.44
pl= 1.00 1

9 Times Vertical
Exaggeration

of the Interface.
j32=

p2=

3.00

1.73

1.00

Figure 2-2: Two-dimensional rough interface model. The source is a normally incident,

18 Hz, plane wave. The rough interface has a Gaussian autocorrelation function with
a correlation length of L = 100 m and an rms height deviation of = 16.7 m. The
interface is periodic with a period of 2.70 km, the width of the model above.
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Figure 2-3: P and S wave transmission scattering kernels for a normally incident P wave

for the model in Figure 2-2. The Fourier transform of the interface, mapped into

scattering angle, is shown superimposed.
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Figure 2-4: Planar interface model used to compare finite difference derived reflection

and transmission coefficients with analytical solutions. The source is a point explosion

with an 18 Hz Ricker wavelet time function. The sampling parameters, Ax = Az =

6.67 m and At = 0.00156 s, result in a maximum phase dispersion error of -1.1

percent at 18 Hz. The source is located 20 grid points above the interface, and the

receiver arrays are located 10 grid points on either side of the interface. The horizontal

receiver interval is two grid points. All waves within the seismogram time window

are contained within the finite difference grid, eliminating the need for absorbing

boundaries.
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Figure 2-5: Comparison between P and S wave reflection and transmission coefficients

generated by finite difference and analytic methods for a planar interface. The model

is shown in Figure 2-4. The small disagreement present at the larger scattering angles

is "Gibb's ringing" that results from the finite aperture of the receiver array.
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Interface Spectrum
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Figure 2-6: Properties of of the interface shown in Figure 2-2: (a) Fourier transform,

where the horizontal slowness is evaluated for 18 Hz, and histograms of (b) interface

height and (c) interface slope.
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Figure 2-7: Comparison between P and S wave reflection and transmission coefficients

generated from the finite difference and perturbation methods for the model shown

in Figure 2-2.
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Figure 2-8: Amplitudes of waves incident on the interface corresponding to the scattered

wave amplitudes shown in Figure 2-7. These are provided as a measure of the error

versus angle. The down-going P wave in the upper medium has unit amplitude at

zero angle.
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Figure 2-9: Interface functions used in comparison of reflection and transmission co-

efficients derived from the perturbation method with those derived from the finite

difference method. The interfaces have a Gaussian autocorelation function with RMS

height, correlation length, and RMS slope for each interface listed in Table 2.2. The

functions are displayed in units of kilometers with two times vertical exaggeration.
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Figure 10a: Comparison of reflection and transmission coefficients derived from the per-

turbation and finite difference methods for model A. The parameters of the rough

interface are given in Table 2.2 and the interface function is illustrated in Figure 2-9.
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Figure 2-10b: Comparison of reflection and transmission coefficients derived from the

perturbation and finite difference methods for model B. The parameters of the rough

interface are given in Table 2.2 and the interface function is illustrated in Figure 2-9.
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Figure 2-10c: Comparison of reflection and transmission coefficients derived from the

perturbation and finite difference methods for model D. The parameters of the rough

interface are given in Table 2.2 and the interface function is illustrated in Figure 2-9.
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Figure 2-10d: Comparison of reflection and transmission coefficients derived from the

perturbation and finite difference methods for model E. The parameters of the rough

interface are given in Table 2.2 and the interface function is illustrated in Figure 2-9.
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Figure 2-11: L2 norm comparison of finite difference and perturbation method derived

reflection and transmission coefficients. (a-d) RMS interface height is a constant

0.01 km and RMS slope varies from 0.037 to 0.99. RMS interface height for three

frequencies can be expressed as 0.069, 0.11, and 0.18 S1 wavelengths. (e-h) RMS

interface slope is a constant 0.1 and with RMS interface height varies from 0.069 to

0.28 S wavelengths.
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Model A: RMS(h) . 0.010. RMS(dh/dx) . 0.037

26km

3.9 m -

Model B: RMS(h) - 0.010. RMS(dh/dx) . 0.10

~d'~,~ .
- . _ -

Model C: RMS(h). -0.010. RMS(dhdx) * 0.20

......

Model D: RMS(h) - 0.010. RMS(dhtdx) . 0.30

OOkm ,

13 km 

26km

3.9 km

Model G: RMS(h) . 0.015. RMS(dhldx) - 0.038

Model E: RMS(h) - 0.010. RMS(dh/dx) . 0.99 Model F: RMS(h) - 0.O15. RMS(dhx) * 0.10

Model H: RMS(h) .0.020. RMS(dh/dx) . 0.039 Model I: RMS(h) . 0.020. RMS(dh/dx) . 0.10

OOkm

1 3km

26 km

3.9 km

0.4 0.5 0.6 0.7
Time (seands)
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rTa (secods)

Figure 2-12: Representative scattered field seismograms generated for each of the inter-

face functions parameterized in Table 2.3. The source is a normally incident plane

wave with an 18 Hz Ricker time function. The bold curves are finite difference solu-

tions, and the lighter curves are perturbation solutions. The four vertical component

receivers are 0.0666 km above the mean planar interface at horizontal offsets of 0.0133,

1.35, 2.68, and 4.02 km. All seismograms are plotted at the same scale.
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Figure 2-13: The seismograms of Figure 2-12 that were generated by the perturbation

method are shown here with the background reflected field included in order to show

the total waveform (minus the source wave). Plotted at the same scale as Figure 2-12.
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Phase Error for Model A
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-0.01
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Receiver Offset (knm)

Figure 2-14: traveltime error At plotted against seismogram offset x for Model A. Shown

overlain is a plot of the one-way, vertical P wave traveltime associated with the

interface function (o,).
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Accuracy of Modulus
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Figure 2-15: Comparison of first and second order approximations of eiht -1, which is the

form of the term responsible for phase and amplitude shifts due to interface height.

The first order approximation is eihy - 1 t ihy, and the second order approximation

is eih' - 1 ihy - (h) 2. (a) Modulus of the approximation. (b) Phase of the

approximation in radians.
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Error for Fixed Slope and Varying Height
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Figure 2-16: RMS amplitude error in the comparison of perturbation and finite differ-

ence derived seismograms. RMS amplitude error is measured after each perturbation

method seismogram has been shifted in time relative to the complementary finite dif-

ference siesmogram such that the RMS amplitude error is minimized. The error for

each model is the average of the RMS errors of the seismograms in the model. This

mean error is plotted against RMS height for two values of RMS slope, and against

slope for a fixed RMS height. Interface height is in units of Si wavelengths. The data

points are labeled with their model names.
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_-a- 18 Hz Normal Incidence Plane Wave 

a = 2.50
p3- 1.44 y

Z
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n00
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Figure 2-17: Three-dimensional rough interface scattering model. The auto-correlation

function of the interface is a two-dimensional Gaussian with and y correlation

lengths of 2.4 S1 wavelengths (0.19 km), an RMS height of 0.125 S1 wavelengths

(0.010 km), and an RMS slope of 0.30. Contours and axes are labeled in kilometers.
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Figure 2-18: Transmission coefficients for the model in Figure 2-17. The source is an 18

Hz SV plane wave at normal incidence with particle motion in the x-direction.
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Figure 2-19: Cross-sections of the reflection and transmission coefficients in Figure 2-18

along 100, 450, and 80°azimuths. PU, SU, and TU and PD, SD, and TD are the up-

and down-going P, SV, and SH scattering coefficients.
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Figure 2-20: Transmission scattering kernels for the model in Figure 2-17.
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Figure 2-21: Transmission coefficients for the model in Figure 2-17. The source is an 18

Hz P plane wave at normal incidence.
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Figure 2-22: Cross-sections of the reflection and transmission coefficients in Figure 2-21

along 100, 450, and 80°azimuths. PU, SU, and TU and PD, SD, and TD are the up-

and down-going P, SV, and SH scattering coefficients.
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Chapter 3

PROPERTIES OF THE

SCATTERED FIELD

3.1 ABSTRACT

The characteristics of an elastic wavefield scattered from a rough interface are controlled

by the material contrast at the interface, the autocorrelation function of the interface

height, and the source wave frequency and incidence angle. A perturbation method is

presented here, based on small interface height and slopes and small material contrasts,

which reduces the three-dimensional scattered field equations to simple linear forms which

decouple the influence of contrasts in P and S velocity and density on the scattered

wavefield. From these simple expressions, we discuss the three-dimensional behavior of

the scattered wavefield relative to changes in interface properties.

3.2 INTRODUCTION

The complex behavior of three-dimensional waves scattered from a rough interface can be

accurately modeled using approximate methods ((Kuperman and Schmidt, 19S9; Prange

and Toksoz, 1989)). Although these methods provide fast ways to generate scattering

coefficients and seismograms, the 6 x 6 matrix operations necessary to obtain the solution
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hide the underlying features of the equations which control the sensitivity of the scattered

wave field to material contrasts and source wavelet. In this chapter we further simplify

the perturbation equations by making a small material contrast approximation. In these

new equations, the scattered wave field is composed of a sum of three terms corresponding

to the contributions of a, -aa, and aP to the scattered wave field. These equations allow

us to isolate the effects of the three material contrast parameters.

3.3 FIRST ORDER ANALYSIS

In this section we derive simple formulae relating the P, SV, and SH scattering kernels

to the interface material contrast. From these simple formulae, the dependence of scat-

tered field phase and radiation patterns on the interface material contrast can be shown.

The complete formulae for the perturbation approximation to the scattered field were

presented in chapter 2. These will be summarized, and then reduced to a more compact

and more easily interpreted form by using a first order analysis which assumes a small

scattering angle and small material contrast at the interface.

3.3.1 The Perturbation Equations

A brief review is presented here of the perturbation equations in chapter 2 that are

relevant to the first order analysis to be performed. Using the methods of propagator

matrix theory (Kennett, 1983), a three-dimensional elastic wave field can be described

by a six-element displacement-stress vector r whose members are the three components

of displacement and the three Cauchy stresses which are continuous across a welded

horizontal planar interface:

r = [ur Uj ZU T j y TZZ,,]T, (3.1)

where a superscript T denotes a matrix transpose, and where the interface is normal to

the z-axis. Another way to represent an elastic wave field is by a six-element scattering
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coefficient vector b whose members are the amplitude coefficients of the down- and up-

going P, SV, and SH waves:

b =[PATj T] .
h is related to r in the frequency-wavenumber domain by the formula

b =F-'r

(3.2)

(3.3)

where

kp(Lv_
2

-K
2

)

2vshwK

-kx
2K

ctw

ks(v 2 _h-2)
2vwK

2K

2

k,G(,2 -K 2)2Lw

2K

kyB,(v2-K 2 )

2vwhK

2K
2vwK

'2-K 2)

w

0

_ 2 (vZ2 J- 2)
2ayw

w

'1'IEL _iky_-ik, _-iky2axypw 2arypw

-iks -iky
2KIh3pw 2Kh3pw

ik -ik
2f,32vp 2 t p

ik. iky
2oaypw 2a ypw

ik iky 
2K"pw 2Kfpw

ik
2h-~P Svp

2apw

iK
20vpw

0

-i
2apw

iK
2,3vpw

0

(3.4)

The Fourier transform convention used here is given by

f(k,, ky,w)

f(,yt)
= I if f (X, y, Z)ei(-k- ky+w)dxdydt

1J 0, )e
(2) 3 | //°o I f( k, k)ei(~.+ky,- "' t)dk dk dw

(3.5)

(3.6)

In the perturbation approximation to scattering from a rough interface, a zero-mean

rough interface height perturbation h(x, y) is defined relative to a planar interface. The

total field is then expressed as the sum of a background field ro and the scattered field

r,, where r is the solution for the planar interface model and r is the perturbation to
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ro which accounts for the interface roughness. This scattered field is expressed as the

field resulting from an equivalent source _ at the mean depth of the rough interface. This

source has the form (2.18; Chapter 2)

s (k ) 2 h (k --k', kv-V) (k, ky; k' , k)r(k , k,) dk' dk (3.7)

= r,2-rt,, (3.8)

where L (kr, k; k, k) is defined by (2.19; Chapter 2), and rt, and r2 are the values

of the displacement-stress vectors in media 1 and 2 at the depth of the mean planar

interface. s is dependent on the interface roughness function, the material contrast at

the interface, and the source which illuminates the interface.

To study reflection and transmission coefficients we require a plane-wave source.

Hence, the background field ro has the form

r O(, y) = 4r2(k, k)6(k - k, k - k), (3.9)

where fo is the plane-wave background field displacement-stress vector, 4r 2 scales the

wave to have unit amplitude in the space domain, and the frequency dependence is

implied. Substituting (3.9) into (3.7) yields an equivalent source of the form

.(,, k) = h(k -k, ky - k°) (kz, ky; k, ko) o(k k°). (3.10)

From (3.10) we see that the equivalent source in this case can be factored into two terms:

one which is the interface roughness function h, and the other dependent only on the

material contrast and the source. The latter term is called the scattering kernel (Prange

and Toksaz, 1989), and is denoted by

(k, ky; kP, kP) -L(k- , ky; kP, kP)fo(kP, k) (3.11)

In our discussions of rough interface transmission and reflection coefficients, scattering

kernels will be used to separate interface roughness effects from source and material

74

F7_1,
�n�a�

I



contrast effects.

3.3.2 First Order Analysis

In order to evaluate reflection coefficients, we will consider two infinite half-spaces joined

at a welded rough interface whose average depth is taken to be z = 0, and whose height

function is specified by h(x, y). A plane wave source is in medium one, the upper medium.

The P and S wave velocities and densities of the two media are given by al, /81, pi and

ca2, 32, P2. The material contrast between the two media is small, and is expressed in

terms of the perturbation parameters Aa = a 2 - a1, A3 = 2 - /1, and Ap = P2 - P,

which apply to the average parameters a, f/, and p. Substituting these perturbations

into the definition of L, (2.19; Chapter 2), and keeping only first order terms,

LAa A+ APLL=- .+ peT#+ , (3.12)
where L,, Lp, and L a are defined by

L =

o 0 000 0

0-4i 0 0 0 0 0

-8k:kp 0 0 0 0 4ik,

-8 kIp O O 0 0 4iky2

0 0 000 0

(3.13)
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K -J
0

0

4ik' -

-skzk'p2(a2 - 2'2)

4kykp(4/2 -_ 2)

0

0 o0 0 0

0 O 0 2 0

0 0 0 0

-2k, k' pp2

-2kk' pp2

0 0

0 0

0 -4ik:z

0 -4ik y

0 O00 0 0

0

0

0

W2p - 4kXkp2(a2 - P2)

-2k yIp(2 22)

O

0

0

0

-k k p/ 2

w2p - kxkpp 2

0

O 1
=P1 0 0

, ,32 0

o o o

0 0 0 0

W2p 0 O O

Substituting this decomposition of L into (3.10) yields

- h(k- k- ko)[ Aa +

= h(k - k,, - k)[-Aa +a~

p
+ p, 0_,]

P

(3.16)

(3.17)

where the analog of (3.11) was used to define the ca, /, and p components of the scattering

kernel 4Q as {,,,p} -{ L ,prZ o.

Since this first-order approximation of L contains no zero-order terms, a first-order

approximation of s = hro requires only a zero-order approximation of ro. To zero

76

(3.14)

(3.15)



order, the background field fo is approximated by the incident field in the absence of

scattering, yielding

to = Ebo (3.18)

where E uses the average material parameters (a zero-order approximation) and ho, the

wave coefficient vector defined in (3.2), is [1 0 0 0 0 0 ]T for a P source, [0 1 0 0 0 0 ]T for

an SV source, and [0 0 1 0 0 O]T for an SH source. Results for P and SV sources will be

presented in two separate sections.

The equivalent source (3.16) will be converted into scattering coefficients using (3.8)

and (3.3). This is done by solving the equation

S = s2 -s = 2b2 -F (3.19)

(b2- b-l) (3.20)

10 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0 
F b (3.21)

0 0 0 - 0 0

0 0 0 0-1 0
0 0 0 0 0-1

_ _b (3.22)

where the radiation conditions require that b - [0 0 P0 S1 T1] and b2 = [ 2 S2 T2 0 0 0],

and b = [P2 S2 PI S1 T1] contains the non-zero wave coefficients of bI and b 2. The step

from (3.19) to (3.20) approximates the radiation from a source at an interface of small

material contrast- by the radiation from a source in an unbounded medium of average

material properties. This is done to reduce the inverse operator to a known simple form

of F-' given in (3.4). Using (3.17) and (3.22), k can be expressed as'b(kV, =a =Bh)-+(- kb -(3.23)
Y· Ce P P

77



j

where , bp, and kbp are defined in terms of the scattering kernels q,, p, and ,p by

bc = _-' _

b = P (3.24)

b = =-lp

P Source

If the background field Fo in (3.18) is associated with a planar P wave source, then when

it is substituted into (3.16), the scattering kernels are

P" (P,3 ,P =

0

0

crw pp°-3k

_4p/3
2

kIw
ot

-4,fl 2 kytw

2irj4k2

0

4 02 kO 2
wO

4,132k pt2k02 (12 _a2 )+w21
aw

OfW
402kpfk 2(22a2)+w

0

2i cryk4

i062 (V2-k2),2(2 k..2)

.Ck[2 4(2 p( 2) ]

-2pI32k2k p(a2_232)

a&-ypw

For a normal incidence planar P wave source, the scattering coefficients bP, b', and

b P are given by
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iW
2

0

0

iw2

a-v

0

0

-2ip2 h'
-

-2i3K
O

-2i3 2 K 2

-2i,3K
a

-Iw + i#2(&2_42
2a 2a' -

Kw _ iK
a

iW+ i 2(V2_ - K 2

2a 20°-71

-iKw _ i
23v oa

OK

(3.26)

where the superscript P indicates a P wave source. When the scattering angles are

real, it is valid to make substitutions into (3.26) of 7 = cosOp, v = cos0s, and

K = sin p = sin O!, where Op and s are the P or S scattering angles. This yields

of 0~~~2

P , -P --a'-,_.bp --

a cosp

O

O

iW0

0acos p
O

O

-2i 2 sin2 (p)

-2iw si" es

-2iw 02 sin (Op)

-2i Si"..

2acp [1 - cos Op - 2q sin2(Op)]2a cc's ~ a

p [tan Os - 26 sin Os]

0

2acosp [1 + COS p - 22 sin 2 (0p)J

[ -- tanOs - 2 sin Os]

0

(3.27)

Three features of the scattered wave field are immediately obvious from (3.27). Firstly,

a normally incident P wave scatters into P and SV waves, but not into SH waves. More

precisely, a contrast in a generates only P waves, whereas contrasts in or p generate

both P and SV waves. Secondly, the scattering coefficients are azimuthally isotropic,

i.e., the wavenumber spectrum is completely described by A, with no reference to k:
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or k. Azimuthal variation, however, will result when the spectrum of the interface

roughness function h(kz, ky) varies azimuthally. Thirdly, the shape of the scattered field

wavelet in the time domain for a single scattered plane wave is proportional to the time

derivative of the incident field wavelet. Such changes to the wavelet are determined by

the frequency dependence of the terms in (3.27), and this is simply described by the factor

iw which is present in all of the terms. A factor of iw in the frequency domain denotes

a time derivative in the time domain. Since the time-domain scattered field response

is actually a summation over all scattered field plane waves, the final seismogram will

be a summation of such derivative wavelets scattered from the entire interface, partially

obscuring the derivative nature of the wavelets.

Example seismograms for Model A in Figure 3-1 by the 8 three-component seislno-

grams shown in Figure 3-2. Model A has material parameters ac = 1 km/s, f/= /v3_

km/s, p = 1 g/cm3, Ara/a = 0.1 km/s, A/,/,3 = 0.1 km/s, and Ap/p = 0.1 g/cm3 .

The source is a normally incident, planar P wave in medium one. The rough interface

h(x, y) has a Gaussian autocorrelation function with correlation lengths of 0.563 km in

the x-direction and 1.0 km in the y-direction, and an RMS height of 0.113 km. The RMS

slope for this interface is 0.2 and the RMIS height is 20 percent of the shortest wavelength

in the model. Hence, from the results of Chapter 2, the perturbation method is valid

for this model. The seismograms were generated by inserting the source term (3.7) into

a propagator matrix-based formulation such as that described by Kennett (1983), and

then Fourier transforming these frequency-wavenumber domain results to the time-space

domain using the discrete wavenumber method (Bouchon, 1977).

The accuracy of the simple formulae in (3.27) is examined in Figures 3-3, 3-4, and

3-5 by plotting the components of bP, hb, and bp against scattering results generated

directly from (3.11) for the three models Model B, Model C, and Model D. Note that

these scattering coefficients are derived from the scattering kernel and do not include

the influence of a specific interface roughness function. These three models have the

same average parameters as Model A, but only ca is perturbed in Model B, only , is
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perturbed in Model C, and only p is perturbed in Model D. The overall agreement is

quite good, with the simple expressions of (3.27) giving smooth approximations to the

results generated from (3.11). For all curves the agreement is good when the scattering

angle is less than about 45 degrees. In several cases the agreement is good for the entire

range of angles tested. In regions where the scattering coefficient changes rapidly, the

coefficient is smoothly approximated.

SV Source

Substituting the background field for an SV plane wave source (3.18) into (3.16), the

scattering kernels in (3.17) are defined by

S S=, 'D "Dp

O

0O

-Sik° v°
o

0

0

0OO
O

-8j

-4p

For a normal incidence planar SV

:i/ (O2 _ko 2 )

0

4 ikoy s

WOa

0

i (02 _ kO2)

0

-[Wu - 4$(2 -i1)3k0 £

-2p/33 k 21(a 2 - 232)

-p wko

(3.28)

wave source, the scattering coefficients b9, by, and

s are given by
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bS bs -s,Since (3.29) refers to

Since (3.29) refers to

0

0

0

0

0

0wO

O

O

O

O

k, and k,

2i3ks
a

ik,(v2-K 2)
IfK

-ik 

-2iksI3
a

-ik,(,2h-K 2 )
vhK

ik.w
hjfi

independently of

k (/3) - L)

__(t2 -, Kvf 2)

ik (V2 _ ·Y-K2)ikyw(w-,lv,2K3 v
_ i (3 + w )

_ ik (2 + -v - K2)

ik- w(w+#L)
2K, v

(3.29)

K these scattering coefficients vary with

azimuth. Expressing the scattering coefficients in terms of Op, Os, and the azimuthal

angle %b, we make the substitutions = cos Op, v = cos Os, K = > sin Op = sin Os,
k~- = sin Op cos = sin Os cos 1b, and k = sin Op sin i = sin Os sin 0b, to getof ·1Vt "'Y ' O a 0 · 1Y/ V ~

S, iS bS =--or -13-p -

0

0O

O

0O

0

F
2iw sin Op cos ,

iw cos 2 0 s cos 4k
p cos Os

t-i sin 

- 2iBw
02 sin Op cos /

-iw cos 2s cosV 
' cs Os

iW sin ,
T I

tan Op cos ip(a - 2/ cos Op)

-iW cos b(1 - 20s

2i3cosBS sin (1 - cos Os)

r tan Op cos (a + 2, cos Op)

2tW cos (1 + c s )ig- Cos 0

2, cos s sin (1l + cos Os)
(3.30)

From (3.30) we see that a normally incident SV wave is associated with P, SV, and SH

scattering. To first order such scattering is not influenced by Aa. Scattered P and SV

waves have a cosine-shaped azimuthal variation with a maximum in the direction of the
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incident SV particle motion, and scattered SIt waves vary sinusoidally with azimuth with

a maximum in the direction normal to the incident SV particle motion. Cross-sections

of bs and S for the azimuth of maximum amplitude are shown in Figures 3-6 and 3-7

along with the more complete solutions derived from (3.11) for comparison. The solution

of (3.11) for BS is not shown since it is three orders of magnitude below Ikb and ISI.

As with the P wave source, the results are good for scattering angles of less than about

45 degrees.

3.4 EXAMPLES FOR A GAUSSIAN ROUGH INTERFACE

The scattering kernel describes the variation in the scattered field that is due to the

source and the material contrast at the interface. The influence of a particular rough

interface function must be included using (3.23) to obtain the actual scattered field. A

random rough interface is typically described by its autocorrelation function. There are

three classes of autocorrelation functions that are generally considered in the geophysical

literature: Gaussian, exponential, and von Karman (Frankel and Clayton, 19S6). These

functions are given in the following table.

To generate one realization of a random interface from these autocorrelation functions

it is necessary to specify two correlation lengths, a, and ay, and an RMIS height deviation,

and to have a random number generator capable of generating uniform random numbers

within a real interval. Since the autocorrelation function is defined as the power spectrum
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of the interface function, i.e., R(k, ky) = h(k, kv)h'(k,, k.), the modulus of the interface

function is given by h = VR, with the value at k = k = 0 being zero in order

to obtain a zero-mean interface. The phase is a random quantity specified by exp(io),

where 0 is a uniform random number between 0 and 2ir. The discrete interface function so

constructed, h(k., k,), is then normalized so that the RAMS height of h(x, y) is equal to the

desired value. This method for generating a random interface function in the wavenumber

domain is equivalent to a space domain method where a discrete field of uniform random

numbers is convolved with the square root of the autocorrelation function and then

normalized to the specified RMS value.

3.4.1 Normalization of the Interface Spectrum

Our example uses the Gaussian autocorrelation function to produce the rough interface

shown in Figure 3-1. In order to have closed-form expressions for scattering coefficients

for an arbitrary interface with a Gaussian autocorrelation function, we must derive an

expression for the normalization factor which scales the interface height function to have

a desired RIS value. The same procedure can be used to derive analogous expressions

for exponential and von Karman autocorrelation functions.

Consider an interface which is periodic of period 2L, in the x-direction and 2L in

the y-direction. The Fourier series representation of this interface is

M N
h(x, y)- = hmne k" (3.31)

m=-M n=-N
where km = = k m - m and

1 /:, L, 
4LzL I I h(x, y)ee-k e dika dy (3.32)4LLY L-,L.J -

The autocorrelation of h(x,y) is defined by

r(x, y) = J JIL h(x', y')h(x + x', y + y')dz'ay', (3.33)

84

_e . '_r



which yields the expected expression

rmn = h,hmn,. (3.34)

when h(x, y) is defined by (3.31). The Fourier transform of the Gaussian autocorrelation

function

r(x,y) = -()(.j) (3.35)

is given by

rmn = LaLr (3.36)- 4LL

o Re{erf( a + 2 )} Re{erf( L + 2)}1a, 2 ay 2

where erf() is the error function defined by

erf(z) = 2 e2 d,. (3.37)

For 2L- > 3 it is safe to approximate (3.36) by

rmn =2 , ,(.)2 (3.38)
4L,.LY

In this regime, the unbounded growth of tihe error functions in (3.36) for large k is held in

check by the damping provided by the Gaussian exponential term. The error resulting for

such an approximation is illustrated by a contour plot in Figure 3-Sa. Figures 3-Sb and

3-Sc show comparisons of the exact and approximate expressions evaluated at 2L/a = 2

and 2L/a = 3. As expected, the error behaves like a sinc function.

It remains to relate the RMS height deviation a in the space domain to h(k,, ky).

The zero-mean ROMS height deviation is given by
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a2 = 4 [h(x, Y) - h] 2dxdy (3.39)4L:Ly , L ,

L1 L L h2 (x, y)dx dy - h2 (3.40)

where h is the mean of h(x, y). The first term in (3.40), by (3.33), is simply r(O, 0), the

spatial autocorrelation function evaluated at the origin. The second term, by (3.32) and

(3.34), is r0,0, the Fourier transform of the autocorrelation function (3.38) evaluated at

the origin. Substituting these values into (3.40) yields

2 = 1 - aa (3.41)
4LL,'

Hence the form of h,, which is normalized to yield an RMS height deviation of a is

hm. = a.F.,= a1 4r,1 2 (3.42)
4LxL 

3.4.2 Normally Incident P Source

Three-dimensional radiation patterns which include the effects of interface roughness are

shown in Figures 3-9 and 3-10. The source is a normally incident planar P wave in

medium 1 and the rough interface model is shown in Model A of Figure 3-1. Figure 3-9

shows the nine P, SV, and SH up-going components of ahbP "ahbp, and zehbP in

the upper medium, and Figure 3-10 shows the nine down-going components in the lower

medium. The plots are independently scaled to fill the plot frame, and a maximum

amplitude for each plot is indicated for comparison.

All of the plots show that scattering occurs over a broader range of angles in the

x-direction than in the y-direction. This results directly from the smaller autocorrelation

length in the x-direction (0.563 km) than in the y-direction (1.00 km), and agrees with

the intuitive result that azimuths of greater RMS interface slope are associated with

more diffuse scattering. If a and a were the same length, the scattering scattering
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coefficients would be azimuthally isotropic. From the plots in Figure 3-9 it is clear that,

for up-going waves, Aa and Ap contribute most to reflected P wave scattering, and result

in equal amounts of backscattering at Op O. For non-zero Op, however, a contrast in P

wave velocity generates more backscattered energy than a contrast in density. Scattering

into SV waves is influenced nearly equally by A8 and Ap. The results for down-going

waves (Figure 3-10) equal those for up-going waves for contrasts in the P and S wave

velocities, but differ greatly for contrasts in density. Density contrasts produce significant

backscattering into the source medium, but almost no forward scattering.

Wu and Aki (1985) examined the effect of material contrast on the relative dominance

of forward or backward scattering from volume scatterers. Applying the Born approxi-

mation in the low-frequency range (Rayleigh scattering), they found that the scattered

field can be decomposed into an impedance-type and a velocity-type scattered field.

Impedance-type scattering is seen in its purest form when there is zero velocity contrast

at the scatterer, and is associated with a predominant backscattered lobe. Impedance-

type scattering is illustrated by the Ap components of scattering in Figures 3-9 and

3-10. Velocity-type scattering is seen in its purest form when there is zero impedance

contrast at the scatterer, and is associated with a predominant forward scattered lobe.

The conditions for zero impedance contrast are

pla 1-P2a2 = 0 (3.43)
Ac = Ap

(3.44)a P
and

PI9 - P2P2 = 0 (3.45)
=- ---. (3.46)

13 P

Under these conditions the back-scattered lobes in (3.27) largely cancel, permitting the

forward-scattered lobes to dominate.
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The time-domain representation of the scattering results presented in Figures 3-9

and 3-10 is given by the three-component seismograms in Figures 3-11, 3-12, and 3-13.

Figure 3-11 shows the scattered field measured by a linear array of 8 three-component

receivers in each medium. In both arrays, the receivers are evenly spaced along the

x = 0 line between y = 0 and y = 5.6 km (inclusive), and are at a distance of 2 km

from the mean planar interface. Figures 3-12 and 3-13 display a decomposition of the

Figure 3-11 seismograms into their Aa, A/, and Ap components. The Aa component

was generated from Model B, the A3 component from Model C, and the Ap component

from Model D. The maximum amplitudes of these seismograms are much larger than

the maximum amplitudes of the related scattering coefficients because the seismograms

represent the summation of scattered waves over all scattering angles.

The areal distribution of downward scattered and upward scattered wave amplitudes is

illustrated by contour maps in Figures 3-14, 3-15, and 3-16. These maps were generated

from two horizontal two-dimensional arrays of three-component, receivers which were

placed 2 km above and 2 km below the interface. The maximum amplitude (measured as

an absolute value) on each component of each receiver was then contoured. Comparison

of these contour maps with the interface height contour map provides an indication of

the sensitivity of the seismogram amplitudes to interface height. In Figure 3-9 we can

see that the z components in the upper and lower media primarily represent P waves

scattered from contrasts in P wave velocity and density. Since the direction of maximum

scattering is vertical in this case, a map of maximum amplitudes is quite similar to the

interface height contour map. The x and y components are dominated by obliquely

scattered P and SV waves, resulting in the lack of correspondence of these maps with

the interface height contour map.

3.4.3 Normally Incident SV Source

We will now provide the same analysis for a normally incident SV wave as we did above for

the P wave source. In interpreting the following plots, keep in mind that the incident SV
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particle motion is in the x direction. Three-dimensional radiation patterns which include

the effects of interface roughness are shown in Figures 3-17 and 3-18. The azimuth

of maximum scattering in the P and SV kernels coincides with the smallest correlation

length of the interface, emphasizing scattering in the x direction. For up-going waves, the

scattered field in the normal direction is composed of equal amounts of SV and SH waves.

This scattering is equally sensitive to the contrast in S wave velocity and the contrast in

density, while to first order the contrast in P wave velocity produces no scattered waves.

As the scattering angle increases, P waves become increasingly prominent with respect

to the S waves, dominating the scattered field at scattering angles greater than about 45

degrees.

The time-domain representation of these scattering results is given in the three-

component seismograms in Figures 3-19, 3-20, and 3-21. The receiver arrays are config-

ured as they were for the P source analysis in the preceding section. As we saw in the

scattering coefficient plots, there is an abundance of energy in the x component which

includes normally scattered SV waves and obliquely scattered P waves. The y component

contains primarily SH waves. Although the maximum amplitude of the SH scattering

coefficient equals that of the SV scattering coefficient, the total energy scattered into SH,

measured as the volume enclosed by the scattering coefficient surface, is smaller than

that of the SV wave. Thus the y components display smaller amplitudes than the x com-

ponents. Contributions to the x components by obliquely scattering P waves increase

the discrepancy in magnitude between these two components.

The areal distribution of forward- and backward-scattered wave amplitudes is illus-

trated by contour maps in Figures 3-22, 3-23, and 3-24. The similarity between the'

contours of the x components and the interface height contours indicates that this com-

ponent of the scattered field is dominated by normal scattering from the surface, which

Figures 3-17 and 3-18 show us must be SV waves. If obliquely scattered P waves were

dominant in the x-component, the correspondance could not be nearly as good. Fur-

thermore, the maps show that the scattered field is contributed to equally by A,/ and
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Ap.

3.4.4 Obliquely Incident P Source

Scattering coefficients were generated for planar P waves incident on model A in Figure 3-

1 at angles of 0, 20, 40, and 60 degrees. These coefficients were generated directly from

(3.7), with no further approximations. Three-dimensional plots of the coefficients for the

up- and down-going waves are shown in Figures 3-25 and 3-26. The propagation direction

of the incident wave in these models is in the x-z plane. Comparisons of relative shapes

and amplitudes of these coefficients is facilitated by cross-sectional plots of the three-

dimensional coefficients, where the cross-section is taken in the x-z plane for P and SV

coefficients, and in the y-z plane for SI coefficients. Cross-sectional plots for Figures 3-25

and 3-26 are shown in Figures 3-27 and 3-28.

Several major features of these plots bear mentioning. The amplitudes of the primary

(smooth) lobe of scattered P and S waves decrease with increasing incidence angle,

while the primary lobe of the scattered SV wave increases in amplitude with increasing

incidence angle. This is true for both up- and downgoing waves. Scattered SH waves

have maximum amplitude near the vertical for upgoing waves, while for downgoing waves

the direction of maximum scattering is more sensitive to the source incidence angle.

The up-going P and SV wave coefficients have cusps at the P to P and S to S critical

angles of sin- l(a/a 2) = sin- 1(/ 1/J 2) t 65 degrees, and the SV wave coefficients have

additional cusps at the P to S and S to P critical angles of sin-'(3 1 /a 2) = sin-'(,2/al) .:

34 degrees. These cusps are invariant with incidence angle. They are present in the

scattering kernel and thus are independent of any particular interface function. Similar

peaks were observed by Paul and Campillo (1988) , who used a boundary integral equation

method to compute the exact solution for two-dimensional elastic wave scattering from

a rough interface. They observed that the P to S wave backscattering coefficient has a

dramatic increase as the scattering angle increases past the P to P critical angle.

When P waves are scattered, the angle of maximum scattering coincides with the inci-
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Li-2

dence angle only in the case of normal incidence. This can be understood by considering

the scattering coefficient as a product of the interface spectrum with the scattering kernel,

where the interface spectrum is shifted so that the zero wavenumber value coincides with

the specular angle (see equation 3.7). Although the maximum of the interface spectrum

is at the specular angle, the scattering kernel generally will not have any extrema at the

specular angle. Hence, the product will generally not have any extrema at the specular

angle. In all cases, of course, specular scattering will dominate when the background

field is included.

3.4.5 Obliquely Incident SV Source

Scattering coefficients were generated for planar SV waves incident on model A in Fig-

ure 3-1 at angles of 0, 20, 40, and 60 degrees. As for a P wave source, these coefficients

were generated directly from (3.7), with no further approximations. Three-dimensional

plots of these coefficients for the up- and down-going waves are shown in Figures 3-29

and 3-30, and cross-sections of these plots are shown in Figures 3-31 and 3-32. The

propagation direction and particle motion of the incident SV wave in these models is

in the x-z plane. Cusps appear at the same scattering angles that as found in the case

of the obliquely incident P wave. This confirms our observation that the cusps are as-

sociated with the critical angles (the material contrast), and not with the source wave

type. Beyond these critical angles the scattering coefficients tend to increase, with larger

incidence angles associated with larger increases.

3.5 SUMMARY AND CONCLUSIONS

The perturbation equations developed in chapter 2 allow one to quickly generate scat-

tering coefficients and seismograms for a three-dimensional rough interface model for

which the RMS interface height and RMS slope is sufficiently small. In this chapter

these equations are further simplified by use of a small material contrast approximation
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in order to isolate and study the influence of contrasts in a, , and p on scattered P,

SV, and SI1 waves. In these equations it was possible to entirely factor out the material

contrast terms -l, -- , and a from the scattering coefficients, expressing the scattered

field coefficients as a weighted sum of Aa, A/#, and Ap contributions. For the case of

a normally incident plane wave source, these coefficients have an even more compact

form than planar interface scattering coefficients. The degradation of solution accuracy

due to the small material contrast approximation was tested by comparing these simple

solutions with those derived from the equations of chapter 2 for a rough interface model

with a 10 percent velocity contrast. It was found that the small scattering angle approx-

imation implicit in the small material contrast approximation is accurate to suprisingly

large angles, with the accuracy dependent on the particular scattered wave type being

compared. Aki and Richards (19S0, p. 153} came to very similar conclusions in their

discussion of the accuracy of small material contrast approximations to reflection and

transmission coefficients for a planar interface. The simplified scattering coefficients for

normally incident waves also give insight into the shape of the scattered field wavelet.

The form of these coefficients makes it clear that the scattered field wavelet is propor-

tional to the time derivative of the incident field wavelet. This observation was vrified

in synthesized seismograms.

Modeling of obliquely incident P and SV waves on an interface with a Gaussian

autocorrelation function show that the scattered wave amplitudes are not necessarily

maximum in the direction of specular scattering. Furthermore, there are cusps in the

scattering coefficient at scattering angles equal to the critical angles for P and S wave

scattering on a planar interface. Such phenomenon has also been reported for exact solu-

tions of rough interface scattering models which were based generated by finite difference

and boundary integral equation methods (Levander and Hill, 1985; Paul and Campillo,

1988).
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Figure 3-1: Contour map of the interface height function. The rough interface h(z,y)

has a Gaussian autocorrelation function with correlation lengths of 0.563 km in the

x-direction and 1.0 km in the y-direction, and an RIS height of 0.113 km. The

RMS slope for this interface is 0.2 and the RMS height is 20 percent of the shortest

wavelength in the model. The source is a normally incident 1 Hz plane wave with a

Ricker wavelet time function of the form R(t) = [1 - (wot)2/2] exp(-(wot) 2/4), where

w = 2r. The source is 2 units above the mean planar interface. The materials in

this interface model are varied to yield the models given in the table below.
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1 Hz RIcker Wavelet
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Figure 3-2: Representative three-component scattered field seismograms for Model A.

The three components are plotted at the same scale. The 8 receivers, labeled A-H,

are located along the x-axis from x = 0 to x = 5.6, and are 2 units above the mean

planar interface. The source wavelet is shown for comparison.
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Kernel for Contrast In
P Wave Velocity

Upgolng P

I ' I' I *' II I

Upgolng SV

Upgolng SH

I . I . I I
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Scattering Angle
-80

Downgolng P ,

- I - I * I * I

Downgolng SV

Downgolng SH

Downgoing SH

_ I . ' -
.40 0 40 80

Scattering Angle

Figure 3-3: Comparison of the components of a-bP generated by (3:27) and by the

direct solution of (3.11). The SV and SH components in this case are exactly zero.

The curves are a cross-section of the azimuthally symmetric pattern. The model

parameters are taken from Model B in Figure 3-1, where Aa/a = 0.10 and AL/,3B =

Ap/p = 0. The source is a normally incident 1 Hz planar P wave. These curves do

not include the influence of a specific interface roughness function.

96

5-

4 4-

3

2-

* 1-E.I 

- Reference
- - Approximate 
I I,~~~~~~ ri II

I a
I ~~~~~~~I

5

4

3

2

1

0

8a

A

a4
E

be15
J

4-

3

2-

-80
-80

___
I I IIII.....

I 

Il

i .IC- - -- 

�pl

v

C

L-

I

11 I6

I

I



Kernel for Contrast In
S Wave Velocity
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Figure 3-4: Comparison of the components of 31b generated by (3.27) and by the direct

solution of (3.11). The SH component in this case is exactly zero. The curves are a

cross-section of the azimuthally symmetric pattern. The model parameters are taken

from Model C in Figure 3-1, where A// = 0.10 and Aa/a Ap/p = 0. The source

is a normally incident 1 Hz planar P wave.
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Figure 3-5: Comparison of the components of Pb P generated by (3.27) and by the direct

solution of (3.11). The SH component in this case is exactly zero. The curves are a

cross-section of the azimuthally symmetric pattern. The model parameters. are taken

from Model D in Figure 3-1, where iAp/p = 0.10 and Aca/a = AP3// = 0.
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Figure 3-6: Comparison of the P, SV and SH wave components of '~b' generated by

(3.30) and by the direct solution of (3.11). The curves are cross-sections of the

azimuthally anisotropic patterns in the azimuthal direction of maximum scattering:

for P and SV waves this is in the direction of the incident SV particle motion, and

for SH waves it is normal to this direction. The model parameters are taken from

Model C in Figure 3-1, where A/,/,3 = 0.10 and Aa/a = ŽApp = 0. The source-is a

normally incident, 1 Hz planar SV wave.
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Figure 3-7: Comparison of the F, SV and SH wave components of p s generated by

(3.30) and by the direct solution of (3.11). The curves are cross-sections of the

azimuthally anisotropic patterns in the azimuthal direction of maximum scattering:

for P and SV waves this is in the direction of the incident SV particle motion, and

for SH waves it is normal to this direction. The model parameters are taken from

Model D in Figure 3-1, where Ap/p = 0.10 and Ac/ca = A.3/3 = 0. The source is a

normally incident, 1 Hz planar SV wave.
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Figure 3-8: (a) Contour plot of le- 2 - e-42 Re{erf(L + i)}l with contours at intervals

of 0.01 between 0.0 and 0.1. It illustrates that (3.38) is a valid approximation of

(3.36) when 2L/a > 3. (b) and (c) are comparisons of e- 42 and e- C2 Re{erf(L + i)}

evaluated at 2L/a = 2 and 2L/a = 3, respectively.
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P Source- Upgoing 

AD3

Max. = 0.0151 Max. = 0.00558 Max. = 0.0151

P

SV

SH

Max. = 0.00571

Figure 3-9: Three-dimensional plots of the up-going P, SV, and SH components of the

scattered field for the rough interface model of Figure 3-1 and a normally incident

planar P wave source. The leftmost column corresponds with Model B, the center

column with Model C, and the rightmost column with Model D. The maximum

amplitude is shown above each plot. Summing across a row produces the P, SV, or

SH component of scattering in Model A.
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P Source. Downgoing

Max. = 0.0151 Max. = 0.00558 Max. = 0.000213

P

SV

SH

Max. = 0.000314

Figure 3-10: Three-dimensional plots of the down-going P, SV, and SH components of

the scattered field for the rough interface model of Figure 3-1 and a normally incident

planar P wave source. The leftmost column corresponds with Model B, the center

column with Model C, and the rightmost column with Model D. The maximum

amplitude is shown above each plot. Summing across a row produces the P, SV, or

SH component of scattering in Model A.

103

a Ap

4r.-



Li' 

P Source

Upgoing

A\ ~Max. = 0.13

A
B
C

D
E
F -

G
H 

0 2 4 6 8

A
B
C
D
E

F --
G
H

0 2 4 6 8

Max. - 0.052

A - -
B
C 

Y ED

G
H

0 2 4 6 8
Time (sec)

Ma;. . 0.094

J J \ -
K

M=L

P i

0 2 4 6 8
Max. = 0.046

I --- --
K 

M N
O 
P i

0 2 4 6 8
Max. T 0(026

J

L 

P -

Time (sec)

Figure 3-11: Representative seismograms for the scattered field of Model A. The source

is a normally incident planar P wave. The up-going field is measured by 8 three-

component receivers, labeled A-H, evenly spaced along the x = 0 line between y = 0

and y = 5.6 km (inclusive) and at an elevation above the mean planar interface of 2

km. The down-going field is measured by an identical array, labeled I-P, displaced

2 km below the mean planar interface. The seismograms are all plotted at the same

scale, and the maximum amplitude is indicated on each plot.
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P Source - Upgolng Waves
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Figure 3-12: Representative three-component seismograms for the up-going scattered

field in Figure 3-11 decomposed into its Aca, A, and p components. The Aa

component was generated from Model B, the A3 component from Model C, and the

Ap component from Miodel D. The scale is the same as that in Figure 3-11.
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Figure 3-13: Representative three-component seismograms for the down-going scattered

field in Figure 3-11 decomposed into its Aa, A, and Ap components. The Act

component was generated from Model B, the A3 component from Model C, and the

Ap component from Model D. The scale is the same as that in Figure 3-11.

106

__

_ ~ ~ 

l - - -

| . .. , ... .. , .. ., , . ., . .. , . .. . , . ;,

. __

_I
I

I

IL

lll

- - - -



P Source - Scattered Field Components

Upper Medium

Max. = 0.427

Lower Medium

Max. = 0.172

Figure 3-14: The areal distribution of forward scattered and backward scattered waves

amplitudes measured at 2 km above and 2 kn below the mean planar interface.

The maximum :nplitude (measured as an absoiute value) on each component of

each receiver is shown contoured. The sorce is a normally incident planar P wave

traveling in Model A. The contour interval i, .01, where the incident wave has unit

amplitude,
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P Source- Decomposition in Upper Medium

I AP AP

Max. = 0.228

Figure 3-15: The areal distribution of backward scattered wave amplitudes measured at

2 km above the mean planar interface. The maximum amplitude (measured as an

absolute value) on each component of each receiver is shown contoured. The source

is a normally incident planar P wave traveling in Models B, C, and D to produce the

Ac, A/3, and Ap components, respectively. The maximum amplitude is indicated for

each contour map. The contour interval is 0.005, where the incident wave has unit

amplitude.
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P Source - Decomposition in Lower Medium

Max. = 0.193

z

Y

Max. = 0.00250

Max. = 0.00260

Max. = 0.00230

Figure 3-16: The areal distribution of forward scattered wave amplitudes measured at

2 km below the mean planar interface. The maximum amplitude (measured as an

absolute value) on each component of each receiver is shown contoured. The source

is a normally incident planar P wave traveling in Models B, C, and D to produce the

Aa, A3, and Ap components, respectively. The maximum amplitude is indicated for

each contour map. The contour interval is 0.005, where the incident wave has unit

amplitude.
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S Source - Upgoing

AA3

Max. = 0.00596 Max. = 0.00683

Max. = 0.0261

Max. = 0.0261

Figure 3-17: Three-dimensional plots of the up-going P, SV, and SH components of the

scattered field for the rough interface model of Figure 3-1 and a normally incident

planar SV wave with particle motion in the x direction. The leftmost column corre-

sponds with Model B, the center column with Model C, and the rightmost column

with Model D. The maximum amplitude is shown above each plot. Summing across

a row produces the P, SV, or SH component of scattering in Model A.
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S Source - Downgoing

AP

Max. = 0.00596 Max. = 0.00257

Max. = 0.00170

Max. = 0.000189

Figure 3-18: Three-dimensional plots of the down-going P, SV, and SH components

of the scattered field for the rough interface model of Figure 3-1 and a normally

incident planar SV wave with particle motion in the x. direction. The leftmost column

corresponds with Model B, the center column with Model C, and the rightmost column

with MIodel D. The maximum amplitude is shown above each plot. Summing across

a row produces the P, SV, or SH component of scattering in Model A.
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Figure 3-19: Representative seismograms for the scattered field of Model A. The source

is a normally incident planar SV wave with particle motion in the x direction. The

receiver locations and seismogram scale factors are the same as those in Figure 3-11.
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Figure 3-20: Representative three-component seismograms for the up-going scattered

field in Figure 3-19 decomposed into its AIa, A/3, and Ap components. The Aa

component was generated from Model B, the A/3 component from Model C, and the

Ap component from Model D. The scale is the same as that in Figure 3-19.
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S Source - Downgoing Waves
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Figure 3-21: Representative three-component seismograms for the down-going scattered

field in Figure 3-19 decomposed into its Act, A,3, and Ap components. The Act

component was generated from Model B, the Af3 component from Model C, and the

Ap component from Model D. The scale is the same as that in Figure 3-19.
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S Source - Scattered Field Components

Upper Medium Lower Medium

Figure 3-22: The areal distribution of forward scattered and backward scattered waves

amplitudes measured at 2 km above and 2 km below the mean planar interface.

The maximum amplitude (measured as an absolute value) on each component of

each receiver is shown contoured. The source is a normally incident planar SV wave

traveling in Model A with particle motion in the x-direction. The contour interval is

0.01, where the incident wave has unit amplitude.
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S Source - Decomposition in Upper Medium

X N3 Ap

Max. = 0.000

I I

i~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~I

Max. = 0.000
t i

!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~! I~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~I

I~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
l~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

i

Max. = 0.0101

_ _I~~~~~~~~
i

II~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

i~~~ I

Max. = 0.0129

i

0 -iI~0 o a 1

) . D I

Figure 3-23: The areal distribution of backward scattered wave amplitudes measured at

2 km above the mean planar interface. The maximum amplitude (measured as an

absolute value) on each component of each receiver is shown contoured. The source

is a normally incident planar SV wave traveling in Models B, C. and D to produce

the Aa. A3. and Ap components. respectively. The source particle motion is in the

:-direction. The maximum amplitude is indicated for each contour map. The contour

interval is 0.005. where the incident wave has unit amplitude.
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S Source - Decomposition n L6wer Medium
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Figure 3-24: The areal distribution of forward scattered wave amplitudes measured at

2 km below the mean planar interface. The maximum amplitude (measured as an

absolute value) on each component of each receiver is shown contoured. The source

is a normally incident plana SV wave traveling in Models B, C, and D to produce

the An, AL, and Ap components, respectively. The source particle motion is in the

x-direction. The maximum amplitude is indicated for each contour map. The contour

interval is 0.005, where the incident wave has unit amplitude.
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P Source- Upgoing
SV
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Figure 3-25: Up-going wave scattering coefficients for planar P waves incident in the x-z

plane in model A at incidence angles of 0, 20, 40, and 60 degrees. The maximum

amplitude of each coefficient is indicated.
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P sv
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Figure 3-26: Down-going wave scattering coefficients for planar P waves incident in the

x-z plane in model A at incidence angles of 0, 20, 40, and 60 degrees. The maximum

amplitude of each coefficient is indicated.
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P Source
Amplitude versus Angle
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Figure 3-27: Cross-sectional plots for the three-dimensional scattering coefficients shown

in Figure 3-25. P and SV cross-sections were taken in the x-z plane, and SH cross-

sections were taken in the y-z plane. All plots have the same scale. Positive scattering

angles indicate forward scattering.
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P Source
Amplitude versus Angle
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Figure 3-28: Cross-sectional plots for the three-dimensional scattering coefficients shown

in Figure 3-26. P and SV cross-sections were taken in the x-z plane, and SH cross-

sections were taken in the y-z plane. All plots have the same scale. Positive scattering

angles indicate forward scattering.

121

- - - J ~ _ _ _

-- -

, ,.- I.~ .[- 

-

- _

-

._mlulrZllulullDlw

,,,Ir |l.r,,.p..

. . .



P

Max. = 0.0108

00

200

400

60°

Max. = 0.0348

Max. = 0.0376

S Source - Upgoing
SV

Max. = 0.0498

Max. = 0.0296

Max. = 0.0627

SH

Max. = 0.0497

Max. = 0.0232

Max. = 0.00881

Figure 3-29: Up-going wave scattering coefficients for planar SV waves incident in the

x-z plane in model A at incidence angles of 0, 20, 40, and 60 degrees. The maximum

amplitude of each coefficient is indicated.
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Figure 3-30: Down-going wave scattering coefficients for planar SV waves incident in the

x-z plane in model A at incidence angles of 0, 20, 40, and 60 degrees. The maximum

amplitude of each coefficient is indicated.
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S Source
Amplitude versus Angle

Upgoing P (00) Upgolng SV (00) Upgoing SH (90 °)
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,ure 3-31: Cross-sectional plots for the three-dimensional scattering coefficients shown

in Figure 3-29. P and SV cross-sections were taken in the x-z plane, and SH cross-

sections were taken in the y-z plane. All plots have the same scale. Positive scattering

angles indicate forward scattering.
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Figure 3-32: Cross-sectional plots for the three-dimensional scattering coefficients shown

in Figure 3-30. P and SV cross-sections were taken in the x-z plane, and SH cross-

sections were taken in the y-z plane. All plots have the same scale. Positive scattering

angles indicate forward scattering.
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Chapter 4

APPLICATION TO VSP DATA

4.1 INTRODUCTION

An S wave vertical seismic profile' (VSP) was obtained in 1989 as part of an overall ex-

periment to obtain a full nine-component (three-component source and three-component

receiver) seismic data set which could be used to study anisotropy and scattering effects

at an MIT experimental borehole site (MIT/Birch 1-20A) in Manistee County, Michigan.

In an SH wave vertical seismic profile, the source is a traction applied at the surface of

the Earth in direction normal to the sagittal plane. Within the sagittal plane of a model

composed of horizontal, planar interfaces, such a source would propagate only as SH

waves, with particle motions in the tangential direction only. The observed seismograms

for this experiment contained significant energy in the vertical and radial components.

Two plausible explanations for this anomalous energy are dipping planar interfaces and

scattering. We apply the perturbation method of chapter 2 to show that the scattering

produced by a rough interface can satisfactorily explain much of the observed anomalous

energy.

'A vertical seismic profile (VSP) is a seismic experiment in which a source is located at or near
the surface of the earth and receivers are located in a borehole. For an indepth discussion of the VSP
geometry and the associated interpretational techniques, see Gal'perin (1974) or Balsh et al., (1982).
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4.2 SITE DESCRIPTION

The borehole site location is indicated in Figure 4-1. This site is in the northeastern

part of the Michigan basin. The regional dip of this basin is less than 1I. A lithologic

cross-section of the strata pierced by the borehole is given in Figure 4-2, with velocities

and densities indicated for the region of interest. The top three layers are composed

of glacial till, and their P wave velocities were determined from a seismic refraction

survey performed by Marathon Oil Company (Caravana, e al., 1987). The slow topmost

layer, as described in drillers' logs, is composed of sand, gravel, and clay. These logs,

kept while drilling numerous shallow (< 45 m deep) boreholes in the region, record the

drillers' observations of changes in sediment color and texture noted as the hole is bored.

Both the refraction survey and the driller's logs indicated that the interfaces in and at

the base of the glacial till are rough on a vertical scale of several meters.

4.3 EXPERIMENT DESCRIPTION

The experimental configuration is illustrated in Figure 4-3. In our terminology, the radial

direction is defined as the vector contained in the sagittal plane which is perpendicular to

the vertical direction, and the tangential direction is defined by the vector which is normal

to the sagittal plane. The orientation of the V\SP three-component receivers is determined

by an on-board gyroscopic compass, allowing the seismograms to be accurately rotated

into the vertical, radial, tangential coordinate system. For the data presented in this

study, the down-hole receivers were spaced every 9.16 m between the depths of 9.16 m

and 201.6 m.

An SH source is synthesized in a two step process using a 45° inclined force provided

by an OmniPulse truck from Bolt Technology Inc (Figure 4-4). The truck first applies

an impulsive force at 450 to the positive tangential direction with a hydraulic piston

(the right source). The resulting waves are recorded by two three-component receivers,

the VSP receiver and a fixed-position monitor phone. Without moving the receiver,
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the piston is rotated by 900 and the force is applied at 45' to the negative tangential

direction (the left source). The resulting "left" VSP seismogram is adjusted so that its

first P wave arrival occurs at the same time, and has the same amplitude, as that in

the "right" VSP seismogram. to compensate for variations in the source. After every

left-right source pair, the VSP receiver is moved. The VSP seismograms from all depths

are normalized to a common time and amplitude scale using the time and amplitude

deviations of the first arrival of the P wave observed at the fixed monitor phone. Since

the corrected left-right seismogram pairs are generated by equal vertical tractions and

opposite tangential tractions, they can be subtracted to yield seismograms resulting from

an equivalent tangential traction of twice the original strength.

This approach depends on the validity of using the P wave for zero-time and amplitude

correction. Corrections in amplitude and zero-time should be made with respect to the

least contaminated wave in the seismograms, namely first P wave arrival. Zero-time

adjustments for this arrival are also valid for S-wave arrivals because the source-receiver

distance doesn't change between the left and right shots for a given XVSP receiver depth,or

between the source and the fixed monitor phone. The amplitude correction seems based

on the assumption that source P ave amplitude is representative of sourc S wave

amplitude, i.e., since P waves result primarily from the vertical component of traction,

and SH waves in the sagittal plane result from the tangential component of traction, it

appears that we assume in scaling the seismograms by their P-wave amplitudes that the

rotation of the source from the left to the right position changes the vertical and tangential

components of traction by the same factor. IHowever. this scaling is applied in large part

to allow removal of the vertical component of traction, producing the effect of a purely

tangential source. The amplitude of the first P wave arrival is completely controlled by

the vertical component of traction, so subtraction of the seismograms resulting from the

left and right sources after they have been scaled by P-wave amplitude vill effectively

eliminate this component of traction. If the tangential component of traction varies with

source rotation by a slightly different factor, it will simply change the effective amplitude
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of the tangential traction for the subtracted sismograms, not the vector direction of theof tile tangential traction for tile subtracted seismograms, not te vector direction of the

traction.

4.4 FEATURES OF THE DATA

The vertical, radial, and tangential components of the subtracted VSP data between the

depths of 9.1 m and 201.6 m are shown in Figures 4-5a,b,c. The significant features of

the tangential component are a refracted SII wave which appears as the first arrival at

receivers above 46 m, a strong reverbleration in the upper layer, and a clearly defined

downgoing SIt wave propagating to the base of the till layer at 165 m. The SI! reflection

from the base of the till is weak. The vertical and radial components show excellent

cancellation of the direct P wave arrival. Below 46 m, a clearly defined downgoing SV

wave is apparent in the radial component, along with its strong reflection from the base

of the till. In comparison with the vertical and tangential components, this component

has the greatest complexity. The vertical component also shows the downgoing SV wave,

but there is no obvious reflection from the base of the till.

Phase identification in this VSP is facilitated by comparing the data with synthetic

VSP seismograms computed for a planar interface model with a point tangential traction

source (Figure 4-6). These seismograms were generated by a discrete wavenumber for-

mulation of the propagator matrix method, and present a complete solution of the wave

equation including all body wave multiple reflections and interface waves (Mandal, 19S6;

Prange, 1985; Kennett, 1983). These seismograms are intended to provide a reference for

understanding arrival times and amplitudes in the VSP experiment, and a simple 25 Hz

Ricker wavelet is used. Downgoing SH wave travel times from the synthetic seismograms

agree well with the experimental data. However, the strong reflection from the base of

the glacial till present in the synthetic data is not visible in the experimental data. Since

this interface is known from well logs to mark an abrupt change in material properties,

the diminished amplitude of the observed reflected SH wave suggests that this interface is

rough enough to attenuate the reflected wave. In the time window between the direct S1I

129

-1, --i~slt+~,b ~L·lr

J-c_ _



and this reflected arrival, only one multiply reflected arrival appears in thie synthesized

data, while the experimental data contains numerous arrivals, some of which appear to

be multiply reflected. Because they do not match the arrival times of any phases in our

planar interface model of the site, we attribute these arrivals to scattering. The down-

going SIt wave in the transverse component of the VSP data is significantly broader in

time than the corresponding wave in the radial or vertical components, or in the synthetic

seismograms. This effect could be cxplained by the influence of a rough interface of the

scattered wavefield. Pulse broadening call occur when the field scattered from the rough

interface, which has been advanced or delayec in time due the height variations in the

interface, is added to the planar interface background field.

In the rest of this study we will focus on the wave field in the layer of glacial till

between the depths of 45.8 m and 165 m. The wave velocities in this region are relatively

well known, as was verified by the travel time comparison between the data and synthetic

seismograms. Waves in this region do not appear to be contaminated by the reverber-

ations apparent in the shallower layers. Representative seismograms for this region (at

depth intervals of 1S.3 m) are shown in detail in Figures 4-7a,b,c,d,e,f. Each of these

figures displays three views of the data from a given depth: (1) the three pairs of unsub-

tracted vertical, radial, and tangential component seismograms, with each pair overlain

in order to illustrate the effectiveness of the P wave cancellation; (2) the three compo-

nents after subtraction; and (3) hodograms2 for the vertical-radial and tangential-radial

planes within a time window around the first S wave arrival. Comparison of first arrival

amplitudes shows that the vertical component amplitudes are approximately 60 percent

of radial component amplitudes, and radial component amplitudes are are approximately

50 percent of tangential component amplitudes.

Hodograms are especially important since particle motion is critical for accurate phase

identification. For waves propagating in the sagittal plane, SH waves will appear as

particle motion in the tangential direction of the radial-tangential plane, and P and

2A hodogram is a two-dimensional graph of particle motion in a specified plane.
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SV w wes will appear in the radial-vertical plance, with P wa've particle motion in the

direction of J1 wave propagation and SV waves perpendicular to the direction of SV wave

propagation. 11odograris produced from our data, as displayed in Figures 4-7a,b,c,d,c,f,

showv thce SI! wave to be the dominant component. The SII wave particle motion is linear

ill the tangential direction for receivers al)ove about 46 m, but is rotated by 50-7 ° from

purely tangential motion for rceivers below this depth. This effect is attributed to the

interaction of the S waves with a shallow interface in the glacial till.

One or more S\'V waveas arrive wit hin the time window about the SIt wave arrival, as

can bc dceduced from the presence of energy in the radial-vecrtical plane. These SV arrivals

have one-half to one-third the amplitude of the SIt arrivals. The presence of a single SV

arrival could be explained by the transmission of the incident SI wave through a planar

interface with an out-of-plane dip. resulting in a single S arrival with components in

both radial-tangential and radial-vertical planes. Clo (1989) used hrt-dimensional ray

tracing to investigate the effect of an interface with out-of-plane dip on the conversion of

S11 waves into SV and P vaves. Ilis model. a simplified version of our model, is shown

in Figure 4-8. The results at three receivers for an interface with a 5° (lip are plotted in

Figure -1-9. Hcre an SII source wave with a free-space radiation pattern - i.e., no free

surface effects - transmits through a clipping interface and develops energy in the radial

and vertical components. Four effects are observed in this ray-theoretical modeling: (1)

the magnitude of energy in the vertical component is always larger than that in the

radial component, with this difference growing smaller with increasing receiver depth;

(2) the energy in the cross-components increases with increasing recei-er depth: (3) at a

given receiver depth. energy in the cross-components is largest when the azimuth angle

is large: and (4) converted P wave amplitudes are less than 1.5 percent of transmitted S

amplitudes. Only the fourth of these effects is observed in the experimental data. There

are several other characteristics of the data which are inconsistent with a simple out-of-

plane dip hypothesis. Firstly. the incidence angles of the SV arrivals vary unpredictably

from receiver to receiver. whereas changes in particle motion due to out-of-plane dip
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would have angles easily predictable using Snell's law, and would vary smoothly from

receiver to receiver. Also, the observed broadening of the direct SII wavelet relative to

the corresponding SV wavelet, and the complexity of the radial component arrivals in

a large time window following the direct SV arrival, cannot be a result of out-of-plane

dip. A scattering mechanism is clearly indicated by the data. Of course, there could be

some out-of-plane dip of the mean planar interface associated with the rough interface

scattering.

4.5 OBSERVATIONS FROM MODELING

In order to test whether the observed scattered field can be attributed to rough interface

scattering, the perturbation method of chapter 2 was used to generate synthetic seismo-

grams which model the features of an SH wave transmitted through a rough interface. To

facilitate the modeling, some simplifying assumptions wcre made. First of all, although

scattering coefficients may be generated with source waves with any incidence angle,

synthetic seismograms were only produced for a normally incident source wave. This

is a limitation of the theory when applied to plane wave sources, and will not exist in

future point source implementations. Since we find by applying Snell's law to the planar

interface model in Figure 4-2 that the incidence angle for an S wave would be near 200

from the vertical for receivers in the range of interest, we cannot expect to exactly model

rough interface scattering in the experimental geometry with a normally incident source

wave. We can, however, provide insight into the expected coupling of incident SH waves

into SV and P waves for the material contrasts and frequency used in the experiment.

Secondly, the model was simplified to include just a single interface at a depth of 46 m.

The velocity model is illustrated in Figure 4-S. IIence, multiple reflections will not be

included in the synthetic seismograms. These multiples form an insignificant part of

the seismograms, as can be seen from the discrete wavenumber synthetic seismograms

presented in Figure 4-6.

The interface height functions used in the modeling were constrained to have Gaussian
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autocorrelation functions with RMS height deviations of 1.53 m. T lhis RAIS height is 22

percent of the wavelength of an SH wave in the upper medium, which is the upper

limit for accurate solutions from the perturbation modeling method. Different interface

height functions were then generated by vrying the x and y autocorrelation lengths

between 4.58 m and 18.33 m. The lower bound on an acceptable autocorrclation length

is controlled by the maximum permissible RMS slope for accurate solutions from the

perturbation modeling method. Another set of interface height functions was prepared

by simply rotating the above set of height functions by 45° in azimuth. Representative

interface height functions illustrating these two sets of functions are shown in Figure 4-10.

Scattering coefficients for source waves with 0 and 20° incidence angles show the

angular distribution of scattered P, SV, and SII waves for an SII plane wave source

(Figure 4-11). Coefficients were calculated for each of these angles of incidence on a

model with and y autocorrelation lengths of 9.16 m, and for 200-incident waves on

an interface with autocorrelations lengths of 9.16 111 in the .T direction and 18.32 m in

the y direction. Comparing scattering coefficients derived for normal incidence with

those for a 200 incidence angle provides insight into differences between the experimental

and synthesized seismograms. In the normal incidence case, the SV and S scattering

coefficients are tightly focused in the direction normal to the interface, and are nearly

equal in maximum amplitude. The P wave scattering coefficient is 77 percent smaller

in maximum amplitude than scattered SV and SH waves. This maximum occurs in the

direction parallel the interface, making the vertical component of its propagation velocity

less than that of scattered S waves. The combined effects of small amplitude and late

arrival matches the observed absence of P waves in the experimental data (Figure 4-

5a,b,c). Non-normal incidence angle acts to increase the the magnitude of the scattering

coefficients over that of the normal-incidence scattering coefficient for the corresponding

normal incidence model. Hence, the synthetic seismograms will tend to underestimate

the scattered wave amplitudes. The SH scattering coefficient, however, has a value of 0.13

at the zero scattering angle, which is similar to the normally incident source case. The
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maximlim amplitude of the SII scattering coefficient relative to that of thile SV scattering

coefficient has increased dramatically over the normal incidence case, but if the scattering

coefficients are compared within the domain of scattering angles less than 450in order

to isolate scattered waves which will arrive within the time window of the synthetic

seismograms, the maximum amplitude of the SI scattering coefficient is reduced to 0.6.

Scattering coefficients for the two interface height functions have similar shapes, with the

coefficients for smoother interface being of lower amplitude in general, and more compact

in the y direction.

Synthetic seismograms for a SIl wave normally incident on nine different interface

models are presented in Figures 4-12a,b,c. The complexity and amplitude of the verti-

cal component seismograms increases with decreasing y autocorrelation length, and is

relatively insensitive to changes in the x autocorrclation length. This behavior is ex-

pected from the shape of the scattering coefficients shown in Figure 4-11. There it can

be seen that P wave scattering is relatively small in comparison with SV scattering, and

SV waves generate significant energy on the vertical component only for large scatter-

ing angles. The SV scattering coefficient shows that these large scattering angles are

only possible for scattering azimuths in the vicinity of the y direction, resulting in the

insensitivity of the vertical component to changes in the x autocorrelation length. Since

changing the source wave incidence angle to 200 shifts the scattering coefficients in the x

direction, seismograms for a source incident at 200 should show greater sensitivity of the

vertical ,component to the x autocorrelation length. The radial component seismograms

are sensitive to changes in both the x and y autocorrelation lengths. This also follows

from the scattering coefficients. The amount of SV wave energy displayed on the radial

component is dependent on the azimuth of the scattered SV wave, and is maximum for

small scattering angles. Small changes in the x autocorrelation length can extend the

azimuthal reach of the scattering coefficient in the x direction in the neighborhood of

the zero scattering angle, allowing SV waves to scatter more efficiently into the radial

component. Again, changing the source wave incidence angle to 200 will increase the
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energy in the radial component. The tangential components increase in complexity and

decrease in amplitude as the y autocorrelation length is decreased.

The above relationships between amplitude and autocorrelation length, determined

from normal incidence synthetic seismograms, are quantified by the contour plots in

Figure -13a,b. The first column in Figure 4-13a contains three plots, each presenting

the average maximum absolute amplitude of one component of the synthetic seismograms

versus x and y autocorrelation length. The maximum amplitude of each seismogram is

found within an S wave time window beginning at the first arrival of the S wave and

ending at the end of the seismogram. The average of these maxima is then taken over an

S by S array of receivers at a depth of 61.1 m beneath the mean depth of the interface.

The second column contains similar plots using the same source and receiver locations,

but the interface height function is rotated in azimuth by 4 °' . Figure 4-13b displays

the results for a P ave time window beginning a the start of the seismograms and

ending at the first arrival of the S wave. The amplitudes observed in the VSP data

do not match the amplitudes in the synthetic data for any of the models. Data from

the VSP experiment has more energy in the radial and vertical components relative to

the tangential component than was observed in the synthetic data. Better agreement

in this respect could be obtained by increasing the RMIS interface height. Increased

RMS height, however, does not reduce the discrepancy in the energies of the vertical

and radial components of the observed and synthetic data. In the synthetic data, the

vertical components consistently have more energy than the radial components, whereas

in the experimental data the radial and vertical components have nearly equal energy.

To resolve some of these discrepancies we will have to calculate rough interface synthetic

seismograms for oblique incidence angles that more accurately model the experimental

field geometry.
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4.6 DISCUSSION

We offered two plausible explanations for the energy appearing on the vertical and ra-

dial components in our SII VSP experiment: a near-surface interface which is dipping or

ro,gh. The complexity of the observed waveforms cannot be satisfactorily explained by

a dipping interface model. Such an interface would split the SII source wavelet into SV

and SII waves, but these would have the same complexity as the source wavelet. Syn-

thetic seismograms generated for rough interface models using the perturbation method

presented in chapter 2 successfully modeled the observed waveform complexity. Interface

roughness, however, failed to explain the amplitudes observed in the vertical and radial

components relative to the tangential components. In the experimental data, vertical

component amplitudes were approximately 60 percent of the corresponding radial com-

ponent amplitudes, whereas in the synthetic seismograms the vertical component was

consistently larger in amplitude than the radial component, even for interface models

\which were rotated 450 in azimuth from the incident SH particle motion. The ratio of

the radial component amplitude to the tangential component amplitude in the synthetic

seismograms is smaller by a factor of 4 than the observed ratio. Since current limitations

in the modeling method limit the source wave to normal incidence, it is important to

consider how the synthetic seismograms would change if the source incidence angle were

changed to a more realistic incidence angle of 20° . This can be done by examining the

scattering coefficients for a 20° incidence angle. The SV scattering coefficient in this

case indicates that the SV scattering wave field will increase in magnitude relative to the

normal incidence case, and will also contribute more to the radial component relative the

the vertical component. Howevefr, since the scattered wave amplitudes from these scat-

tering coefficients must be summed over all scattering angles to produce a seismogram,

a more precise statement about the expected amplitudes on each component for a 200

incidence angle cannot be made until synthetic seismograms can be produced for this

case. If radial component amplitudes are still small relative to vertical and tangential

component amplitudes, the introduction of out-of-plane dip to the mean planar interface
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can be used to adjust the relative amplitudes, while keeping the waveform complexity

intact.
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Figure 4-1: Map showing the site of the MIT/Birch 1-20A borehole.
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Figure 4-2: Lithological cross-section and velocity/density model of the borehole site.
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Figure 4-3: Geometry of the VSP experiment. The source is used to generate tangential'

tractions. The three-component monitor phone is fixed in place for the duration of the

experiment. The orientation of the three-component geophone is precisely determined

with an onboard gyroscope.
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Figure 4-4: Geometry of the force vectors for the left and right sources as viewed from

the borehole.
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Figure 4-5a Vertical component of data (after subtraction) from the VSP experiment

between the depths of 9.1 m and 201.6 m.
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Figure 4-5b: Radial component of data (after subtraction) from the SH VSP experiment

between the depths of 9.1 m and 201.6 m. Displayed at the same scale as Figure 4-5a.
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Figure 4-5c: Tangential component of data (after subtraction) from the SH VSP exper-

iment between the depths of 9.1 m and 201.6 m. Displayed at one half the scale of

Figures 4-5a,b.
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Tangential Component
(synthetic data)
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Figure 4-6: Tangential component of synthetic seismograms generated from the model in

Figure 4-2. For this model the vertical and radial components are exactly zero. The

seismograms were generated by a discrete wavenumber formulation of the propagator

matrix method, and present a complete solution of the wave equation including all

body wave multiple reflections and interface waves. The vertical scale was adjusted

to match as closely as possible that of Figure 4-5c for the first SH arrival on receivers

below 55 m.
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RightLeft Source (gram #7, 64.2 m)
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Figure 4-7a: VSP data for the receiver at depth 64.2 m. The top three seismograms

are the overlain raw data for the left and right sources, the middle seismograms are

the subtracted data, and the two hodograms are in the radial-vertical and radial-

tangential planes.
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Right/Left Source (gram #9, 82.5 m)
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;ure 4-7b: VSP data for the receiver at depth 82.5 m. The top three seismograms

are the overlain raw data for the left and right sources, the middle seismograms are

the subtracted data, and the two hodograms are in the radial-vertical and radial-

tangential planes.

147

2C

*2C

-20

] 2C

150

100

50

-50

-100

-150

Fig

- - - - - . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..

'. .I I ,
1. -

__4 "u; -r __

i . . . . . .. . .. $I.....

a, _ v _ _



Right/Left Source (gram #11, 100.8 m)
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re 4-7c: VSP data for the receiver at depth 100.8 m. The top three seismograms

re the overlain raw data for the left and right sources, the middle seismograms are

te subtracted data, and the two hodograms are in the radial-vertical and radial-

.ngential planes.

148

2.200 I I I I I I I I I . I I ~ . I T I I I V I , . . .

-Ran WOO

I P I I I .7 . I . I I I I I I . . . . . . I I I .· T . I . . . I



RlghVLeft Source (gram #13, 119.1 m)
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Figure 4-7d: VSP data for the receiver at depth 119.1 m. The top three seismograms

are the overlain raw data for the left and right sources, the middle seismograms are

the subtracted data, and the two hodograms are in the radial-vertical and radial-

tangential planes.
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Right/Left Source (gram #15, 137.5 m)
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Figure 4-7e: VSP data for the receiver at depth 137.5 m. The top three seismograms

are the overlain raw data for the left and right sources, the middle seismograms are

the subtracted data, and the two hodograms are in the radial-vertical and radial-

tangential planes.
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Right/Left Source (gram #17, 155.8 m)
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Figure 4-7f: VSP data for the receiver at dept
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Figure 4-7f: VSP data for the receiver at depth 155.8 m. The top three seismograms

are the overlain raw data for the left and right sources, the middle seismograms are

the subtracted data, and the two hodograms are in the radial-vertical and radial-

tangential planes.
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Figure 4-8: Simplified model for wave propagation through a dipping glacial till interface.

The upper figure defines the geometry of the model, and the lower figure defines the

-simplified velocity model.
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Li

Amplitude versus Azimuth of Dipping Interface

I - I 1 I I
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Figure 4-9: The effect of an interface with a 5 dip out-of-plane dip and several dip

azimuths on the conversion of SH waves into SV waves for a simplified version of our

model shown in Figure 4-S(Clo, 1989). Radial and vertical component amplitudes are

normalized to the tangential component amplitude at each of three receiver depths.
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Figure 4-10: Contour plots of representative interface height functions. The indicated x

and y autocorrelation lengths refer to the height function before azimuthal rotation.
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Incidence = 0 degrees
Corr. X = 30, Corr. Y = 30

Incidence = 20 degrees
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Figure 4-11: Transmitted P, SV, and SH wave scattering coefficients for an SH plane wave

with an incidence angle of 20 degrees. The maximum amplitude of .v n scattering

coefficient is indicated.
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Figure 4-12a: Vertical component of representative synthetic seismograms for nine rough

interface models. The source is a normally incident SH wave incident on the 45 m

interface of the model in Figure 4-2. The source wavelet is a 40 Hz Ricker wavelet. The

RMS interface height is 1.53 m and the z and y autocorrelation lengths are indicated.

The receivers are 61 m beneath the mean interface depth. The seismograms are all

plotted at the same scale. The maximum amplitude in each panel is indicated.

156

L ,- 15.LY. 60 -

._ -?A -_ I_-%/ 

i;

i

I - i

I - I

i
i

,I � I i

, I i
I I- , ~~~~~~-'~·



L _

Radial Component

Lx -15. L. 1-5 Max. . 0.062

A 

C -·" v/ "
C
0 _
E
F __------ -- v.--.-
G
H-

-- · * _ . i i

Lx - 30 Ly- 15 Max. .0.053

A 

B- --

C -

E_
F -
G
H

Lx . 60. Ly - 15 Max. 0.025

C 

E ---
F -
G_
H ---
0.00 0.08 0.16 024

Tk (c)

Lx- 15, Ly. 30 Max. 0.046

_

* _,/_____

-- .

Lx - 30, Ly -. 30 Max. 0.038

_ .M _ _

Lx- 60L.30 Max.- 0.019

0.00 0.08 o0.1 024
Timk (c)

Lx. 15. Lv- 60 Max. 0.023

Lx - 30. L - 60 Max. 0.021

_--- ---

Lx-60, Ly-60 Max.. 0.014

0.00 0.08 0.16 024
Time (sec)

Figure 4-12b: Radial component of the synthetic seismograms shown in Figure 4-12a

(plotted at the same scale).
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Figure 4-12c: Tangential component of the synthetic seismograms shown in Figure 4-

12a (seismogram amplitudes are reduced in size by a factor of 8 relative to those in

Figures 4-12a,b).
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Figure4-13a: Contour plots of the average maximum absolute amplitude of each com-

ponent versus and y autocorrelation length, measured in an S wave time window

beginning at the first arrival of the S wave and ending at the end of the seismogram.

The average is taken over an 8 by 8 array of receivers at a depth of 61.1 m beneath

the mean depth of the interface. In the second column, the interface height function

is rotated in azimuth 45° relative to the first column. Contours were derived from the

synthetic data points marked by triangles.

159

I
I )



LJ
1.53 M RMS HEIGHT - PV WINDOW

J8 12 1S
X AUTOCORRELATION LENGTH (ft)

1.53 M RIS HEIGHT - PR WINDOW

18

16

14

12

10

8

6

T
9

zXa

2

8 12 16
X AUTOCORRELATION LENGTH (ft)

1.53 M RMS HEIGHT - PT WINDOW

:aa

8 12 15
X AUTOCORRELATION LENGTH (ft)

ODOW

a 12 16
X AUTOCORRELATION LENGTH (M)

1.53 M RS HEIGHT (45 deg) - PR WINDOW

8 12 16
X AUTOCORRELATION LENGTH ()

1.53 M RMS HEIGHT (45 deg) - PT WINDOW

T
C,
X

a

2

8 12 16
X AUTOCORRETION LENGTH ()

Figure 4-13b: Contour plots of the average maximum absolute amplitude of each com-

ponent versus x and y autocorrelation length, measured in a P wave time window

beginning at the first arrival of the P wave and ending at the first arrival of the S

wave. Contours were derived from the synthetic data points marked by triangles.
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Chapter 5

GENERAL DISCUSSION AND

CONCLUSIONS

Ve have presented a perturbation method for modeling three-dimensional elastic wave

scattering from rough interfaces. The primary advantages of this approximate formula-

tion over exact formulations are its great computational speed, the ease with which the

rough interface scattering solutions can be integrated into standard programs for exact

wave propagation in stratified media, and the simple analytical form of the solution.

The computational speed is sufficient to remove dimensional limitations, allowing fully

three-dimensional scattering problems to be studied. The easy integration of this pertur-

bation method into standard exact stratified media formulations provides a convenient

mechanism for increasing model complexity of a standard one-dimensional model. The

simple analytical form of the perturbation formulation allows the scattered wavefield

to be analyzed in terms of scattering kernels, scattering coefficients, and scattered field

seismograms.

Constraints on the domain of validity of the method were determined by comparison

of scattering coefficents and seismograms generated by the perturbation formulation

with those generated by a finite difference formulation for a suite of models with a

20 percent contrast on P and S wave velocity across rough interfaces with RMAS heights
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ranging from 0.069 to 0.28 S wavelengths and RMS slopes ranging from 0.037 to 0.99.

In the scattering coefficient comparisons, the perturbation method is accurate for RMS

interface height deviations of less than about 10 percent of the smallest wavelength in

the scattered field. This result is independent of RMS interface slope within the tested

range. Comparisons of seismograms generated by the two methods show that error does

increase with increasing RMS slope, but at half the rate of error growth with increasing

height. From these tests we determined that the perturbation solution amplitudes are

reliable for RMIS heights of less than about 0.20 S wavelengths and RMS slopes of less

than about 0.25. The perturbation formulation reliably predicts waveform shapes for a

larger domain including the entire range of interface models tested.

Three-dimensional scattering kernels were generated for P and SV waves normally

incident on a rough interface. Scattering kernels represent the scattered field response

to a delta function interface height function. They must be convolved with an interface

height function in order to produce scattering coefficients, but by themselves illustrate

the general scattering behavior of an interface contrast and source configuration indepen-

dent of any particular interface roughness function. The kernels we generated show that

waves are maximally scattered in directions for which the scattered wave particle motion

coincides with that of the incidert wave An incident SV wave with particle motion in

the x direction scatters P and ~N¥V waves maximally in the x direction and SH waves max-

imally in the y direction. A P wave in the same geometry induces azimuthally isotropic

radiation because it has no preferred azimuthal orientation. Similarly, for incident SV

waves there is a null in P and SV scattering in the y direction, and a null in SH scattering

in the x direction. These nulls do not appear in seismograms because a receiver in any

location can detect waves traveling in all directions, scattering from many points on the

interface. Scattering kernels also show that the critical angles in rough interface scat-

tering, i.e., those angles at which amplitude maxima or minima appear, correspond to

the critical angles of the mean planar interface problem with one qualification: since the

spectrum of the interface height function modulates the scattering kernel, an interface
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whose spectrum does not contain energy at the critical angles will not have these max-

ima or minima in its scattering coefficient. Furthermore, unlike scattering from planar

interfaces, interface roughness produces non-specular scattering, and waves incident from

any angle can scatter in the direction of the critical angle.

By assuming material contrasts across the interface are small, further approximations

can be made, yielding simple equations for the scattering coefficients in which _, I,

and AP appear as scaling factors for three new kernels which describe the scattering

contributions of each of the material contrasts. When the source is a normally incident

plane wave, these coefficients have an even more compact form than planar interface

scattering coefficients. From these simple forms it is seen that the scattered field wavelet is

the time derivative of the source field wavelet. Scattering coefficients and seismograms for

normally incident waves were used to illustrate the relative contributions of the separate

material contrasts on the scattered wavefield. Scattering coefficients for obliquely incident

waves show that the scattered wave amplitudes, excluding the background specular field,

are not necessarily maximum in the direction of specular scattering.

In the final chapter, I presented seismic data from an SH wave vertical seismic profile

experiment which contains evidence of rough interface scattering. The experiment was

conducted at a site in the Michigan Basin generally thought to have a horizontally strat-

ified velocity structure. If this were so, waves would only be detected on the tangential

component of the gyroscopically oriented receivers. However, the observed seismograms

contain SV as well as SH arrivals, and the complexity of these arrivals requires a scat-

tering mechanism which we model as scattering from a rough interface. By generating

scattering coefficients and seismograms for several rough interface models. we explored

the particular scattering mechanism at work at this site. \e found that synthetic seismo-

grams generated for the rough interface scattering mechanism underestimated scattering

of the incident SH wave into SV waves, but sl; .cessfully modeled waveform complexity.

However, since synthetic seismograms in this investigation were limited to normally in-

cident source waves. synthetic seismograms were primarily useful for comparisons with
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waveform complexity in the observed seismograms. Amplitudes could only be estimated

from scattering coefficients generated for the correct incidence angle.

We have demonstrated the value of our perturbation formulation for modeling elastic

wave scattering in rough interface problems. Current implementation considers only

plane wave sources. Future work includes the extension of the synthetic seismogram

computer program to handle point sources and multilayered models with acoustic and

elastic layers. This will allow us to continue with testing of the method for more realistic

models. Experimental data with which to compare the results of this theory must be

obtained. WN ater tank models with fluid-elastic rough interfaces provide a controlled

environment for such testing. This work has already begun. From such testing, the

range over which RMIS height and slope, incidence angles, and material contrasts can

vary while maintaining acceptable solution accuracy can be experimentally determined

for three-dimensional models. Such physical model experiments will also be useful for

testing other promising approximate modeling techniques such as the ray-born method.
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Appendix A

Finite-Difference Modeling

A.1 Introduction

The purpose of this appendix is to present an accurate and efficient implementation of

the finite difference method for modeling elastic wave scattering from rough interfaces.

The finite difference (FD) method is a. useful tool for generating seismograms where

approximate or simple solutions are not applicable. It involves replacing the space and

time derivatives in the continuum elastic \wave equation by their FD approximations. The

resulting wave equation relates displacement values at grid points in space to displacement

values at previous discrete time points. This time stepping scheme is initialized by

specifying the source wave field for two consecutive time steps.

Traditionai FD formulations (Alterman and Karal, 1968; Alford et al., 1974; Kelly et

al., 1976) are accurate to second order in space and time, where order of accuracy refers

to the asymptotic form of the error term in the approximation of derivatives. Higher-

order FD formulations, such as those which use fourth-order (Vidale et al.. 1985; Bayliss

et al., 1986) or Fourier spatial derivative operators (Gazdag, 1981; Kosloff et al., 1984;

Fornberg, 1987), permit the wavefield to be sampled more sparsely than the second order

schemes but require more machine calculations per derivative evaluation. The optimum

order of accuracy must strike a balance betweel model size and number of calculations
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per derivative evaluation, while providing an acceptable level of accuracy. For serial

computers this balance generally favors order four schemes. However, the small inter-

face perturbations of our model require an unusually dense grid point spacing, putting

the second-order derivative operator well within its domain of acceptable accuracy, and

its short operator length makes it the most efficient scheme. Accuracy and grid point

density are further improved by using a staggered mesh formulation in which horizontal

and vertical displacements are represented on separate grids, each shifted by half of the

grid point spacing in both coordinate directions with respect to the other (Figure A-i).

The formulation is similar to the scheme of Virieux (1986), but differs from it in that

we use second-order displacement-stress equations instead of first-order velocity-stres:

equations. This modification improves efficiency, since the final solution is desired in

terms of displacement.

A.2 The Finite Difference Scheme

The wave equations for a linearly elastic, isotropic, heterogeneous medium are

patt = ,[(A + 2/i)6u + Ad- + tt ,I(o]U + [, + )] (A.1)

patttw = 4[(A + 2)Oz + AMu] + d[ll(0u + aw)].

u(x, t, i) and w(x, z, t) are the horizontal and vertical components of displacement, and

A, ,t. and p are the Lame parameters and density. The equations throughout this paper

are given in their two-dimensional forms for compatibility with the numerical examples.

The formal extension to three dimensions is straightforward.

To obtain an FD formulation of (A.1). each of the derivatives is replaced by a formula

which depends only on the field values at grid pints. Since the values of these are

only known at discrete points, the dcrivative operation consists of the assumption of

an interpolation function, followed by the exact differentiation of this function. FD

derivatives are traditionally computed using Lagrange interpolation, in which the field
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about a grid point is expanded in terms of a truncated Taylor series. The resulting

formula is a weighted sum of neighboring grid values.

When a staggered mesh is used, derivatives are always evaluated at the midpoints of

grid intervals. Dp and D' , the staggered mesh derivative operators of FD order 2p with

respect to x and z, have the form

D' f(x) 1 ApX[f( + ( - 2)aa) - f(: - ( - ) (A.2)

D'f(z) = AP,A[f(z + ( - )a) - f(x - ( - )a)] (A.3)

For second order spatial derivatives,

A1,l = 1. (A.4)

The numerical derivative coefficients A,,,, for p > 1 can be obtained from the differentiated

Lagrange interpolation function (c.f. Abramowitz and Stegun (1972) 25.2.6). The time

derivative terms gtu and attWt in (A.1) are approximated by second order finite differences,

regardless of the spatial order of the formulation. The second order formula is

D tf(t) = (It) 2[f(t + At) - 2f(t) + f(t - At)]. (A.5)

This formula may be derived from (A.2) and (A.4) by replacing x and Ax by t and At,

and applying the resulting derivative formula twice to get the second derivative. Note

that, although the formula for first derivatives involves field values between grid points,

when it is applied twice only values on grid points are needed.

Substituting FD derivative operators into (A.1) and isolating the term representing

the value at t + At yields
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u(t + At) = 2u(t) - u(t - At) (A.6)
+ (At))2 {D[(A + 2P)D pu(t) + AD'pw(t)] + Dp[/L(D2u(t) + D2Pw(t))]}

2p 2p 2p 2p 2p 2p/r\ I +#

w(t + At) = 2t(t) - w(t - At)

+ ( t)2 {D[(A + 2iz)D'w(t) + AD'u(t)] + D [#i(Du(t) + DPw(t))]},
P

where the half-order p is a value between 1 and oo. In the limit as p -- oo, these equations

describe the Fourier, or pseudospectral method. In this limit, however, the summations

are actually evaluated using an algorithm based on the fast Fourier transform.

Addition or multiplication of terms in (A.6) requires that they lie on the same point

in space. This might appear to be a problem in a method in which the two components,

u and w, are specified on separate grids, and which results in or requires values at the

midpoints of grid intervals in forming derivatives. However, it was noted in deriving

the form of the time derivative term that in spite of the use of grid midpoint values in

the computation of first derivatives, a second derivative uses only values on grid points,

and does not require the values at the midpoints of the grid intervals. Similarly, on a

staggered mesh, when the spatial derivative in the z direction of a field on one grid is

followed by a spatial derivative in the x direction, the results of the derivative calculation

are found on points aligned with the other grid. Because the wave equation contains only

pairs of spatial derivatives, it is ideally suited for the staggered mesh method.

A.3 Numerical Dispersion

Such properties of solutions to the discrete wave equation (A.6) as stability and con-

vergence are characterized by its dispersion equation (Trefethen, 1982). The need to

limit the effects of numerical dispersion constitutes the primary constraint on time and

space grid step sizes. Hence, the efficiency of a scheme is controlled in large part by its

dispersion equation. In this section, the dispersion equation for (A.6) in a homogeneous
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medium is derived. This result is useful in defining optimum At and Ax for homogeneous

media, and these can be used as a guide in the case of heterogeneous media.

The dispersion equation is derived by transforming (A.6) to the Fourier domain and

reducing the wave equation to an eigenvalue problem relating wavenumber and frequency.

Since the medium parameters are assumed constant here, the Fourier transform is per-

formed by replacing the derivative operators in (A.6) by their transforms. This can be
done by substituting a phase factor of the form ei(k+'yz-wt) into (A.2), (A.3), and (A.5),

the transformed derivative operators are

D2Peik = i 2{ Ap sin( k )} eik = i 2peik (.7)

2vP' Az { Apvsin(v2eiy ' = ir2pe' z (A.s)

i = - sin( t)} etiw = -(2) 2 ewt. (A.9)

The terms in braces, labeled C2p, r2p and 2, are identified as FD approximations of the

spatial and temporal frequencies k, , and w, respectively. The Taylor series expansions

of A22p and F2p equal k and y to order 2p. Replacing D2p, D2p, and D in (A.6) by i 2 p,

ir2p, and -(f2)2, the FD elastic wave equation in the Fourier domain for a homogeneous

medium is

()2 TI (2(2p) 2 + 32(r2p)2 (a2 - 2)o2pr2 p 1lw j (a2 - i2)2r2pI 2(r2p)2 + 2(2p)2 L(AwO

where a = V-(A + 2)/p and , = IV/ are the compressional and shear wave speeds.

This is an igenvalue problem where the eigenvalues. (2) 2, are given by

a2 ((C2p)2 + (r2) 2)
(f 2)2 = (A.11)

p32((2p,)2 + (r2p)2).
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Compressional and shear waves are clearly decoupled in a homogeneous medium. Solving

for w,

At sin- [ 21(rP2 )2 + (2p) (A.12)

where v {a,,8}. Substitution of (A.12) into the phase velocity equation C(k, y)

w/ '/T7-y gives the phase velocity dispersion equation, and the group velocity disper-

sion equation is U(k, y) = dw/d/;+ 7T. When Ax = Az, phase and group velocities

are greatest for waves propagating 45 degrees to the grid axes (k = ). The dispersion

equations for this case are

v 2sin-' ? 1 A vksn( 
C2p(k) -O sin- 2 )] (A.13)

u- E--, Ap,cos( -~)U2p(k) -i -- 2 - (A.14)

where 0 = vAt/Ax.
Stability of the FD formulation (A.6) is guaranteed when the argument of arcsine in

(A.12) is less than or equal to one. Otherwise, w is complex, resulting in the exponential

growth of the solution with time. For Ax = Az, the stability condition is

O <0 min = A], sin("k j (A.15)

The stability condition and dispersion equations for a second order finite difference for-

mulation are

= (A.1S)
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Graphical representations of velocity error due to the phase and group dispersion relations

derived above are given in Figure A-2. The numerical velocity error is defined by

Vd = vo(1 + e), where Vd is the numerically dispersed velocity and vo is the undispersed

velocity.

A.4 Interface Boundary Conditions

The FD wave equation (A.6) was derived with the tacit assumption that the model pa-

rameters vary smoothly within the grid. This assumption is necessary because sharp

changes in medium parameters result in infinite spatial frequency components that the

FD spatial derivatives cannot resolve. It is possible to explicitly include boundary con-

ditions in the FD formulation at each interface (Kelly et al., 1976), but this would

require changes in the computer program for each rough interface model. The alterna-

tive that we employ represents interfaces by using the smooth parameter formulation

(A.6), in which velocities change abruptly between the adjacent grid points across an

interface. Brown (1984) has shown that the reflection and transmission coefficient errors

of a smooth parameter formulation are order (1/PPW), regardless of p, where PPW

is points per wavelength. Since second-order formulations require a larger number of

PPW for a given dispersion error than higher-order formulations, the error in reflection

and transmission coefficients is correspondingly smaller. This conclusion was verified by

numerical modeling experiments.
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Figure A-1: Illustration of the staggered mesh on which the finite difference formulation

is based.
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Figure A-2: Percent phase and group velocity dispersion plotted against grid points per

wavelength (PPW) and O _e vt/Atx.
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