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Abstract

In this paper we discuss the construction of a narrow frequency-band laser

with optical feedback. We use a distributed Bragg reflector (DBR) laser diode

centered at the cesium D2 transition wavelength, = 852 nm. The linewidth

of this diode is reduced by several orders of magnitude by means of optical

feedback from an external cavity. The system is further stabilized by locking

the path length between diode and cavity to optimize coupling between them.

The absolute frequency of our laser is fixed by means of a delay line lock system

that uses the beat note between our laser and a fixed reference laser to set our

laser's frequency. We present both the theory behind these systems and data
from our own setup. We then finally discuss potential uses of the narrow laser

in atomic physics experiments, including detection of a single atom in an optical

cavity.

1 Introduction

The central objective of this project was to construct a narrow frequency-band laser

whose linewidth is significantly reduced by means of external optical feedback. Such

a laser is useful in conducting high precision atomic physics experiments because it
is highly stable and very precise in frequency.

The primary mechanism for achieving a narrow linewidth of our laser is through

the use of optical feedback from an external cavity. We use a distributed Bragg
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reflector (DBR) laser diode, described in Section 3, operating at A = 852 nm. This

wavelength corresponds to the cesium D2 transition, which is described in detail in

Section 2. A portion of the laser light from our diode is picked off by means of

beamsplitting glass and is sent to the external cavity, while the remainder of the laser

light goes on to an optical isolator to be used in experimental setups.

to polarization to optical isolator

Beam
Splitter
Glass

Laser
Diode

Figure 1: Arrangement of laser and feedback optics.

The light picked off at the BS glass is coupled into a confocal L = 10 cm cavity in

a V-mode (see Figure 1) so that the resonant cavity output from one branch of the

V-mode reflects exactly along the incident path and returns to the laser diode. The

effect of this external feedback is that the linewidth of the diode output is dramatically

narrowed. In a similar setup, Dahmani [2] uses semiconductor laser diodes with

unperturbed linewidths on the order of las " 20- 50 MHz coupled to cavities

with cavity linewidths ranging from rFv = 4- 75 MHz to produce narrowed laser

linewidths of Fnar 20 KHz. Thus this scheme can reduce laser linewidths by factors

of up to 103, even reducing the linewidth below the natural linewidth of our optical

transitions. This allows for use in experiments where precise transitions are required,

as will be discussed further in Section 9.

Optimum feedback is achieved when the path length between the laser diode and

the cavity is equal to an integral number of wavelengths. This is true because this

condition allows for optimum coupling of the cavity to the laser diode, as will be

discussed further in Section 7. To achieve this condition, the second output beam of

the cavity V-mode is sent to a polarization analysis box, and the error signal from

2
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this box is fed back with some gain to a piezo that can be used to optimize the path

length.

Once the path length has been locked, the laser is essentially pulled to a wavelength

that is resonant with the cavity, but because of the thermal expansion of the cavity

and the fact that many wavelengths are resonant with the same cavity length, it

becomes necessary to lock the frequency of the laser to the exact frequency desired

for experimental use. To accomplish this, we pick off a portion of the light beyond the

optical isolator and overlap this light with a reference laser. The beat note from this

overlap is sent to a delay line lock system similar to that proposed by Schunemann

et al [4]. Our scheme for obtaining an error for this system is described in detail in

Section 8, and the error signal from this system is fed back to a piezo on the cavity

to optimize the cavity length.

2 Optical Transitions in Atomic Cesium

The primary motivation for the construction of our narrow laser system is for use

in experiments in which the laser will drive optical transitions in cold cesium atoms.

In particular, we will use the laser to drive the transition between the 62S 11/ 2 and

62P3 / 2 levels, a transition commonly referred to as the cesium D2 transition [3]. This

transition has a wavelength of A 852 nm, with small variations (on the order of

-10- 5 ) for the different hyperfine transitions, and a natural linewidth of F = 27r x 5.22

MHz. Cesium has nuclear spin I = 7/2 so the 62S1/2 level has two hyperfine states,

F = 3, 4, while the 62 P 3 / 2 level has F = 2, 3,4, 5 hyperfine levels. The energy level

diagram of this transition is depicted in Figure 2, and the primary transition line we

want to set our laser to is the F = 3 -+ F = 2 transition at A = 852.336 nm.

From this diagram we can establish several criteria which our laser should satisfy.

Firstly, in order to be able to drive all possible transitions of the D2 line, our laser

should be tunable over several angstroms. Thus we have chosen for our system a

distributed Bragg reflector (DBR) semiconductor laser diode. This DBR, a specialized

type of distributed feedback (DFB) laser diode, gives the desired tunability and is

discussed further in Section 3.

The linewidth of a standard broad laser is typically on the order of -. 10 MHz,

while the linewidth of the D2 transition is about - 5 MHz. The consequence of this

is that some of the photons in our laser beam will have energies that are not resonant

with the D2 transition. For a narrow laser, however, we can reduce the laser linewidth

3



Michael J. Childress

- 251.00 MHz fI... Rl -" 251.00 MHz

F=5

F=4

F-=3

F=2

/t i......... F-4
4.022 GHz

......... ... 1 . 9 1 GHz

5.171 GHz

..... 1F=3

Figure 2: Atomic energy level diagram for the Cesium D2 transition line. Figure is

simplied version of Figure 2 from Los Alamos data [3].

to Fnarrow 10 kHz. This ensures that all of the photons emitted by our laser will
be resonant with the desired cesium transition.

3 DBR Laser Diode

The laser diode used in this setup is a distributed Bragg reflector (DBR) semicon-

ductor laser diode whose central wavelength is A - 850 nm. The DBR laser diode is

a special subset of a larger class of laser diodes known as distributed feedback (DFB)

laser diodes. DFB laser diodes consist of multiple semiconductor layers of differing in-

dices of refraction ni, with the interface between two of the layers having a corrugated

shape, as depicted in Figure 3. The n2 layer is periodic with physical separation A

between adjacent lattice sites. Light in the laser diode cavity undergoes multiple co-

herent scatterings from the periodic dielectric interface unless its wavelength is equal

to twice the interface spacing. This scattering process in the diode cavity essentially

pulls the laser wavelength to the free space Bragg wavelength Ab, which is related to

6 P3/2

852.347 nm 852.336 nm852.336 rnm

62S 12
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the lattice spacing by:
Ab -2-=2A (1)

neff
where neff is the effective refractive index of the propogating medium. The right hand

side of the previous equation is required to satisfy the Bragg scattering condition,

while the equality is required to maintain a constant laser frequency. This equation

assumes a first order lattice mode, that is a mode in which Ab = 2 neff A. For free

space wavelengths of order 1000nm and real n values of order - 2, this requires

lattice spacing on the order of a few tenths of a micron.

Injection Current

n3 -

n2 

nl'

Figure 3: Physical structure of distributed feedback laser diodes. Figure is adapted

from Ghafouri-Shiraz Figure 2.8 [5].

The DFB laser wavelength is tuned by varying neff using the injection current.

The injection current alters the semiconductor index of refraction by changing the

density of free charge carriers (this is known as the free plasma effect [5]). The

main drawback to standard DFB laser diodes is that the tuning range is often very

small, typically on the order of a few angstroms for laser wavelengths on the order of

1000nm. This is because the injection current cannot be tuned over a very large

range since it also controls the active region.

One scheme for increasing the tunability of DFB diodes involves the introduction

of a phase-controlled region. The current passing through this region is controlled

separately from the injection current sent through the active lasing region. A phase-

controlled region placed between two passive Bragg reflector regions then introduces

new boundary conditions for the light field at each of the interfaces. This then changes

the resonance conditions which in turns changes the wavelength selected by the laser

- A- .i,..

.active layer
L- active layerA///////////////////~~~~/// ////I
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diode. In addition, a phase controlled region following an active region acts as an

extension of the laser diode cavity, allowing a shorter active diode cavity to act as a

longer cavity. It has been demonstrated [5] that the introduction of such a region can

greatly increase the tuning range of DFB laser diodes.

Distributed Bragg reflector (DBR) laser diodes are capable of tuning over much

larger ranges than standard DFBs because they separate the active region from the

Bragg feedback region, as depicted in Figure 4. A typical DBR laser diode consists of

three stages: an active region in which lasing is initiated by the injection current, a

phase-controlled region used for added tunability, and a passive Bragg reflector region

controlled by a tuning current.

injection current phase current tunin current

Phase-c.ontrolled Bragg reflector
region

tactive region u waveguide

Figure 4: Physical structure of a three stage DBR laser diode. Figure is adapted from

Ghafouri-Shiraz Figure 10.21 [5].

The passive DBR region performs the same role as the Bragg lattice of a standard

DFB laser diode, but its separation from the active region allows for a greater range of

possible tuning currents. This therefore gives us a wider range of Bragg wavelengths

that can be passed through the DBR region. Here the phase-controlled region not only

serves to extend the diode cavity, but also controls the coupling of the active region

to the passive Bragg reflector region. The added tunability from the Bragg reflector

region in conjunction with the additional range provided by the phase-controlled

region make the wavelength tuning range of a typical DBR laser diode much great

than that of a standard DFB laser diode. Typical DBR laser diodes can tune over a

range of several nanometers, a full order of magnitude greater than that of standard

DFBs.
A major limitation of DBR laser diodes is that the feedback from the Bragg reflec-

tor region is quite poor, because the Bragg region is not a very high quality optical

structure. The primary role of the Bragg reflector then is wavelength selectivity.

Because of the highly nonlinear gain properties of semiconductor laser diodes, even

6
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the poor selectivity of the Bragg reflector provides enough gain imbalance to pull the

laser wavelength to that of the passive Bragg reflector region. Because of the poor

quality of the Bragg reflector, mode hopping occurs much more frequently in a DBR

laser diode than in a standard laser diode. An additional negative consequence of

the Bragg reflector's poor quality is that the linewidth of a DBR is somewhat broad

(- 10MHz). To achieve a narrower linewidth, we need feedback from a higher finesse

optical filter. It is for this reason that we choose to use external feedback from an

optical cavity.

4 Cavity Dynamics

Our external optical cavity consists of two spherical mirrors separated by a distance

L = 10 cm equal to the mirrors' radius of curvature. This confocal arrangement

has degenerate transverse modes, which is crucial to our setup because this condition

allows for us to create the desired V-mode in our cavity. To provide stronger feedback,

the reflectivity of the back mirror is higher than that of the front mirror, so that most

of the light exiting the cavity does so through the front. Specifically, the mirror power

transmission coefficients are TF = 0.016 for the front mirror and TB = 2 x 10- 5 for

the back mirror.

The cavity then becomes a Fabry-Perot interferometer and can be treated as a

passive optical filter with a frequency gain profile given by:

RBRTF 1
gCV(w) - (1 - R 2)2 1 + (4R 2 )2 sin2(2wL/c) (2)

where RB is the reflectivity of the back mirror, R = V/TFRB is the geometric averaged

mirror reflectivity, and w = 2rc/A is the frequency of the light [7]. The above equation

differs from that given in [7] because in our setup we want to analyze the gain for light

that has traveled four times the length of the cavity, reflected three times internally,

and exited through the front mirror. For a high finesse cavity such as ours, the shape

of the cavity gain profile becomes a narrow Lorentzian centered about the cavity

resonance wC:

const const
9cav = (3(w - wv)2 +C2(1 R2)2 (W - W)2 + )2 (3)

[ 16R2 L2 2

where const is some normalization constant which can be determined by the given

7



Michael J. Childress

parameters. This gives our cavity a natural linewidth of:

c 1 - R2 2 1UVFSRr = 4 L =RF- (4)
4L R F

where F = 7rR/(1 - R2) is the cavity finesse and VFSR = c/(4L) is the cavity free

spectral range. These differ from the standard definitions of these terms for a planar

cavity because the V-mode of our setup requires the laser light to travel twice the

distance as in a standard planar-mirror cavity and reflects twice as many times.

For our cavity, we have a free spectral range of VFSR = 750 MHz. Given the mirror

reflectivities of our cavity, we can estimate an optimal finesse of:

2w 27r
F = r 21 =196 (5)

1rt 2 x 1.6%

where rt is the total round-trip loss, equal to twice the loss at the front mirror. This

gives a nomimal cavity linewidth of Fpt 27r x 3.8 MHz. Our setup proves to be

somewhat lossier than this ideal situation. From analysis of cavity transmission (see

Figure 8 in Section 7), we calculated our cavity finesse to be approximately F : 100,

which gives us a real cavity linewidth of Fca = 27r x 7.5 MHz.

When the resonant light from the cavity is fed back onto the laser diode, the cavity

then becomes an extension of the passive optical feedback region of the laser diode

but with much better selectivity than the Bragg reflector region of the laser diode.

In addition to the cavity, we must also consider the path between the laser diode

and the cavity in this feedback system. Similarly to the way the phase-controlled

region of the DBR laser diode controls the coupling between the active region and

the passive Bragg reflector region, the external path length controls the coupling

between the laser diode and the external cavity. Optimum coupling of the cavity to

the diode is achieved only when the path length is equal to an integrer number of

wavelengths. Our method of achieving this is discussed further in Section 7. When

resonant feedback is achieved, the wavelength of the laser diode is pulled to a resonant

mode of the cavity, so the stability of the cavity's length is of vital importance. Our

method of locking the cavity length is described further in Section 8.

5 Linewidth Reduction via Optical Feedback

In previous sections, we have discussed the gain profiles of both the laser diode

medium and the external optical cavity. The laser diode's gain profile is approxi-

mately Lorentzian, with a width on the order of FL 27r x 10MHz. Our optical

8
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cavity's gain profile (Eq. 2) is also Lorentizian with a linewidth of Fc - 2r x 4MHz.
If we consider the two gain media to produce a single gain profile that is a product of
the two, we find that the product of our two profiles is another Lorentzian with new

linewidth of FN - 2r x 3 MHz. This small reduction in linewidth is significantly less

than linewidth reductions reported from observations [8], so a simple linear model of

optical gain from our cavity is inadequate.

Significant theoretical and experimental work has been done to explain and demon-

strate laser linewidth reductions via external feedback [8, 9]. Olesen derives the for-
mula for the the linewidth reduction factor:

A~v 1A1 (6)
Au 0V 1 + X/ +a 2

Here a is a standard laser diode parameter known as the linewidth broadening factor

[10] and is a factor intrinsic to the laser diode itself. The parameter X is known as
the feedback parameter [8] and is determined by external feedback.

The linewidth broadening factor a is defined as:

d[Re{Xe (n)}]/dn (7)

d[Im{Xe(n)}I/dn (7)

where n is the intrinsic carrier density and Xe(n) is the susceptibility as a function

of n [10]. For DFB diodes like our DBR laser diodes, this factor typically is in the
range of a -- 4 - 7.

The feedback parameter X is defined as:

T
~~~~~X = T~~~ ~ (8)

tin

where K2 is the ratio of power reflected from the external cavity relative to the power
reflected from the laser mirror, r is the total time spent in the external cavity, and in

the time spent in the laser diode cavity [8]. We can estimate values of these quantities

for our experimental setup. We can break down the power ratio n2 into the fractional
losses along the path to the cavity:

2 = (I 2 2 
= (-) (pickoff)2(modematching)

2

= (0.05)2(0.5)(0.30)2 (9)

where the amount of light isolated at the pickoff, is estimated to be approximately

5%; the modematching of light into the cavity is estimated to be optimally 30%; and
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the factor of 1/2 comes from the fact that half the laser power is lost in the other arm

of the cavity V-mode. These two terms are squared in the above expression because

the beam must return along the same path to return to the laser diode, so it is subject

to the same losses twice. From the above expression, we determine a value for the

power ratio of - 10-2.

We can also estimate values for T and in. The laser diode cavity is very lossy, so

we can estimate a photon traveling twice the length of the laser diode cavity LLDC

before exiting. Thus we calculate the total time spent in the laser diode cavity to be

given by:
2 LLDc 2 x 10013m

T = x m/s = 6.7 x 10- 3s (10)
c 3 x 108m/s

where we estimate the length of the laser diode cavity LLDC lOOum. For the time

spent outside of the laser diode cavity, we estimate this as the lifetime of a photon in

the external cavity:
1

Tin rv = 1.3 x 10-7s (11)
F cav

Thus we can determine a reasonable estimate of the feedback parameter X for our

experimental setup:
T

X= k- r2 103 (12)
Tin

From the above analysis, we can see that both a and X are much larger than 1,

so our equation for the linewidth reduction (Eq. 6) reduces to:

AV_= 10- 4 (13)
AVO Xa

Thus we see from this analysis that the external feedback from our cavity should

reduce our laser linewidth by four orders of magnitude.

6 Feedback Electronics

In our above discussions, we have already identified the need to electronically control

two parameters: the path length between the laser diode and the external optical

cavity, and the length of the cavity itself. Both control systems take as input a

dispersive error signal, that is a signal with some slope that passes through zero at

resonance. The error signal is then given some gain and fed back to a piezo to fix

the piezo length to a lock point corresponding to zero error signal. The methods

of obtaining the two error signals involve some interesting physics concepts and are

10
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discussed in Sections 7 and 8. The system gain, however, must have the desired

frequency response to effectively eliminate all mechanical noise as well as account for

any mechanical resonances in the system.

The piezo itself has some capacitance, so the piezo in series with the output

resistance of our feedback circuit acts as a frequency dependent voltage divider. This

system, depicted in Figure 5a, has a gain profile given by:

ZcG_ 1/iwCp 1 
Gi(w) ZR + Zc Rout + 1/iwCp 1 + iRotCp (14)

where Rout is the output resistance of our feedback circuit and Cp is the capacitance

of the piezo. The Bode plot for this gain profile is labeled G(w) in Figure 5c. The

piezo system then has a corner frequency of wc = (RoutCp)- 1 at which the system

becomes an integrator. Due to more complicated structures of the piezo, its gain

profile also has a second-order rolloff at a higher corner frequency Wc2, after which

the system behaves like a double-integrator.

(1_ 

(a)

D C,

p) 

0

0-

(b)

(C2 (O

Om c b X

(c) (d)

Figure 5: The two systems whose frequency responses are important are (a) the

output-piezo voltage divider with gain profile G1 (w) and corner frequency w =

(RotCp)- 1 , and (b) the primary gain stage in the feedback circuit with gain profile

G2(w) and corner frequency Wb = (R 2C)-1. The gain plots are logarithmic Bode plots

of (c) the piezo response Gl(w) and programmable electronic response G2 (W); and (d)

the combined frequency response of the system G1(w) x G2(w).

The primary gain stage of our feedback circuit consists of an operational amplifier

with input resistance R1 and feedback impedence set by resistor R2 in series with a

capacitor C, as depicted in Figure 5b. This system has a gain profile described by

G2() = Z2 _ R2 + 1/iwC (15)G2(W) =- = (15)
Z, R1



Michael J. Childress

The Bode plot for this gain profile is labeled G2(w) in Figure 5c, and we can see that

the system has a corner frequency at wb = (R 2C)- 1 . At low frequencies the feedback

impedence is dominated by the capacitor so the system acts like an integrator with

gain that goes like 1/(wRC), while at high frequencies the resistor dominates the

feedback impedence so that the system has constant gain equal to R 2/R 1 .

The total gain of the system is the product of the two gain profiles and the Bode

plot, which is merely the sum of the previous two, is depicted in Figure 5d. From

these plots we see that we can adjust the corner frequency of our feedback electronics

by changing the value of R2, and we can change the overall gain by changing R1.

We would like to increase the gain as much as possible to minimize excursions from

the lock point arising from mechanical vibrations or thermal drift. However, we are

limited by the requirement that the unity gain point cannot fall in a region where

the system acts as a double integrator. This is because the double integrator has a

phase of r (due to the (iw)- 2 factor), which means that the system will amplify any

frequency with unity gain in a double integrator region. Thus we must adjust the

gain carefully to ensure our system is stable.

7 Feedback Optimization: Path Length Lock

Optimum feedback from the cavity is achieved when the path length from the laser

diode to the cavity is equal to an integer number of wavelengths of laser light. To

monitor this path length, we must monitor the interference of the beam from the laser

with the resonant cavity output. This is achieved by monitoring the second output

beam of the cavity (the beam labeled (2) in Figure 6). This beam is an overlap of

one of the resonant cavity output beams and a reflection of the incident beam from

the laser diode. This achieves the interference we are seeking, but determining phase

differences by monitoring the beat note of this beam is somewhat cumbersome.

Brewster
Plate from

Llaser

\ /__, (2) t PAB

Figure 6: The two output beams from the cavity V-mode go to (1) the laser diode

along the entry path and (2) to the polarization analysis box (PAB).

To acquire a more easily analyzable interference signal, we make use of a Brewster

12
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plate within the cavity. The Brewster plate takes advantage of the differenct refiectiv-

ities for light polarized parallel or perpendicular to the plane of incidence (see Figure

7). For glass with index of refraction n = 1.5, the Brewster angle is 9p = 56.1°. At

this angle, the transmission coefficient for light polarized perpendicular to the plane

of incidence is - 1, while the transmission coefficient for light polarized parallel to

the plane of incidence is T - 0.86. This means that every time the light passes

through the Brewster plate, its component in the perpendicular direction experiences

14% loss. Our cavity has finesse of F - 100, so light traverses the cavity about 100

times before exiting, which means that light in the perpendicular direction is nearly

completely eliminated.

0.2

0.18

0.16

0.14

0.12

cc 0.1

0.08

0.06

0.04

0.02

n
v0 10 20 30 40 50 60 70 80 90

0

Reflection coefficients for light passing

(solid) and parallel incidence (dashed'

through n=1.5 glass at perpendicular

We demonstrated this effect quantitatively by monitoring the cavity transmission

for light polarized in each of the two primary directions. The solid curve in Figure

8 represents the cavity transmission for light oriented along the preferred axis of
the Brewster plate, while the dotted curve is the cavity transmission for light with
polarization perpendicular to the preferred axis of the Brewster plate. Both curves

are plotted with the same scale, so it can clearly be seen that the transmission is

Figure 7:

incidence
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dramatically reduced in the dotted curve. This has the additional effect of reducing

the effective finesse of the cavity to F ~ 2.

0..

0.35

> 0.3
c-

.- ) 0.25

a)
'o
.° 0.2
0
0
13 0.15

0.1

-0.01 0 0.01 0.02 0.03 0.04 0.05 0.06

Cavity Length (au)
0.07

Figure 8: Cavity transmission for polarized light passing through the cavity with

polarization direction parallel (solid curve) and perpendicular (dotted curve) to the

maximum-transmission orientation of the Brewster plate.

Our method of locking the path length follows a clever scheme proposed by Hansch

and Couillaud [1]. The beam incident to our polarization analysis box is a combination

of the resonant cavity output, whose polarization has been pulled to that of the

Brewster plate, and the laser diode light reflected off the surface of the front mirror

of the cavity (see Figure 9a). When the path length is equal to an integral number of

wavelengths, the two beams are in phase and their sum is simply a linear polarized

wave whose polarization is a sum of the polarization of the two beams. If the path

length is off resonance, however, the reflected beam acquires a phase shift associated

with the phase offset of the path length. This results in an element of elliptical

polarization in the beam going to the polarization analysis box. It is the presence of

this elliptically polarized light that we want to detect with out polarization analysis

box.

The PAB consists of a quarter-wave plate followed by a polarizing beams splitter

4

14

"T . . . . . .

n AR
f I I
illl~



Narrow Frequency-Band Laser with Optical Feedback

(a) X/4 (b)

Plate
Reflected BP polarized Plate PBS Cube

LDoutput A cavity outputLD output 
(i) (ii)

Phoo

diodes X Error
Sig Out

Figure 9: (a) Beam incident to polarization analysis box is combination of (i) laser

diode light reflected off the front mirror surface and (ii) resonant output from the

cavity whose polarization is pulled to that of the Brewster plate. (b) Light incident

to polarization analysis box is sent through a A/4 plate, and split onto two photodiode

by a polarizing beam splitter (PBS) cube. The error signal is the difference of the

two photodiode signals.

(PBS) cube, which splits light onto two photodiodes, and the difference between the

two photodiodes is our error signal (see Figure 9b). Linear polarized light becomes

circularly polarized by the A/4 plate, so the light is split evenly by the PBS onto the

two photodiodes and does not contribute to the error signal. Elliptically polarized

light, however, is transformed into linearly polarized light by the A/4 plate, so this

light can be split unevely by the PBS cube and therefore generate an error signal. It

is this error signal that is fed back to our locking electronics to adjust the path piezo

so that the path length becomes an integer number of wavelengths long.

To determine the functional form of our error signal, let us again think of the

path length between diode and cavity as another cavity by which the diode couples

to the main cavity. If we call the total path length phase 6, then the signal from
this cavity should be proportional to 1/(1 + A sin2 16), where A = 4R/(1 - R)2 is

analogous to that from Eq. 2 but this time describes the refiectivities of the front face

of the main cavity and the front face of the laser diode. The form of this coefficient

is different as well because we consider the path length to act as a planar rather

than spherical cavity. We also know that the error signal should be proportional to

the path length difference from an integral number of wavelengths, so we can also

say that the error signal should be proportional to sin J. Thus we can establish an

approximate functional form of our expected error signal:

sin 6Err(b) = 1+sin 6 (16)
Err(61 + A sin 2 16

15
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Note that this equation differs from the equation given by Hansch and Couillaud [1].

We chose not to use the functional given by Hansch because it gives infinite error

signal values at a = 0, and so we felt did not accurately approximate what a real

error signal would look like.

A graphical illustration of this theoretical model is depicted in Figure 10 with

chosen R ~ 0.50. Real data was taken from our cavity setup by sweeping the path

piezo and recording the error signal. The data for this is depicted in Figure 11. It is

evident from our data that our error signal has a dispersive region to which we can

lock the path length.
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Figure 10: Theoretical path length error signal for R ~ 0.50.

8 Frequency Stabilization: Delay Line Lock

Once the feedback from the external optical cavity has been optimized, the laser's

frequency is essentially locked to a resonant mode of the cavity, but this does not

set the absolute frequency of the laser. The laser's frequency then is subject to the

thermal drift of the cavity as well as mechanical noise, so an additional stage of
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Figure 11: Real path length error signal from our cavity setup. Piezo displacement

is estimated from conversion of piezo voltage using the piezo rating of dL/dV 60
nm/V.

active feedback is necessary to maintain the laser at the desired frequency. This is

done using a clever scheme devised by Schunemann et al [4] in which the beat note

from the overlap of two lasers is used in conjunction with a delay cable to lock the

difference frequency of the two lasers to some desired value. Our setup in fairly similar

to that of Schunemann, and is depicted graphically in Figure 12.

The first stage of our locking system is the laser overlap section. Our narrow laser

is overlapped with a reference laser whose frequency is locked to the 852.336 nm D-line

of cesium. The wavelength of the narrow laser is monitored with a wavemeter and is
brought to within a few picometers of the D-line wavelength. At this wavelength, the

beat frequency fb is related to the wavelength difference AA by:

fbA 400MHz/pm (17)
AA

The typical bandwidth of standard commercial photodiodes is on the order of tens of
kilohertz, so a special fast photodiode with bandwith of 20 GHz is needed to detect

the laser beat note. A further concern with this setup is that the overlapped lasers
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)_" _L,

Figure 12: The beat note from the two lasers is detected on a fast photodiode then

sent to a frequency mixer where it is mixed with a local oscillator (LO). This difference

frequency is then split and send to a phase detector, where the phase introduced by

the delay line acts as an error signal.

will produce a high frequency field as well. This field, whose frequency is the sum of

the two laser frequencies, is too fast (at optical frequencies on the order of -- 1014 Hz)

to be resolved by the photodiode. We therefore wish to isolate the AC signal from our

photodiode, which correspondes to the beat note signal from the laser overlap. This

is achieved by using a bias tee, which is depicted in Figure 13. The DC signal we do

not want is removed along the inductor path while the desired AC signal containing

the beat note is coupled out via the capacitor path and sent on to the next stage of

the delay line lock.

DC Current 
V bias

to
next
stage

Bias Tee

Figure 13: The DC signal is removed along the inductor path and monitored by

measuring the voltage across the external resistor. The AC signal contains the desired

beat note and is coupled out via the capacitor and then sent to the next stage of the

delay line lock.

After isolating our optical beat note, we may wish to introduce some large fre-

quency offset using a local oscillator (LO). This stage is not used in our current setup,

but can be easily implemented. One particular reason this is useful is for driving tran-
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sitions from specific hyperfine states, namely the F = 4 state which is separated from

the F = 3 state by fHF = 9.192 GHz [3]. This is particularly useful when driving

Raman scattering processes between these two metastable ground states.. To add this

offset stage to our setup, we combine the optical beat note with the local oscillator
in a frequency mixer. The resultant output is the product of the two signals:

1 1
cos(Wb). cos(WLOt) = - cos(wb + WLO)t + - cos(b - WLO)t (18)

2 2

We then send this signal through a low pass filter, which has the effect of removing

the high frequency component (i.e. the cos(wb + WLo)t term. We are then left with
a purely sinusoidal signal whose frequecy we can label as the difference frequency

Wd = Wb - WLO-.

After mixing our beat note with a local oscillator, we send the pure difference

signal Xd(t) = cos(wdt) to a signal splitter. One arm of the signal is sent along a delay

line (i.e. a BNC cable about 1 m long) to a frequency mixer where it is mixed with
the second arm of the signal which has no delay. The first signal acquires a phase 0
along the delay line given by:

0 = WdL/vs (19)

where wd is the difference frequency, L is the length of the delay line, and v is the

velocity at which the signal propagates along the BNC cable. The output of the

frequency mixer then is the product of the original signal and the same signal with

the delay line phase:

1 1
cos(wd). cos(wdt + ) - CosO = - cos(2Wd(0) + (20)

2 2

Passing this signal through a low pass filter isolates the term that is propotional to
cos 0. The frequency mixer followed by the low pass filter acts as a phase detector, as

depicted in Figure 12, yielding an error signal to which we can lock the frequency of
our laser. Since 0 is proportional to the difference frequency Wd, we expect the error

signal to be sinusoidal:

Err(w) = cos(wdL/v) (21)

Data was taken for the error signal of our system at various beat note frequencies.

The beat note frequency was determined by monitoring the photodiode output on

a spectrum analyzer, while the error signal was monitored at the error output of
our feedback circuit. The frequency of our laser was varied by changing the cavity
length after locking the laser's frequency to the resonant cavity mode. Data for these

measurements is presented in Figure 14.
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Figure 14: Error signal values for various beat note difference frequencies are plotted

above. X-marks indicate "positive" difference frequencies while cirlce-marks indicate

"negative" difference frequencies.

Note that data is plotted for difference frequencies that are "positive" (indicated

by x-marks) and "negative" (indicated by circles). By "positive" and "negative" we

mean that to go between these two regimes we decrease the difference frequency until

it passes through zero and then increases with constant direction of piezo tuning. One

clearly visible result is that our data is consistent on both sides of the error signal

zero, and that the error signal does seem to be sinusoidal with maximum magnitude

near zero.

Another visible consequence of our data is that we cannot lock to zero offset

frequency. As stated in Section 6, we need an error signal that has some slope and

passes through zero. We therefore lock our beat note to an offset frequency of about

300-400 MHz, with locked error signal magnitude limited to Errl < 20 mV. Using

the sinusoidal model of Eq. 21 with amplitude A : 3 V and period -r 300 MHz,

we can calculate that our laser frequency is stable to within Af I <300 kHz.
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8.1 Thermal Expansion

An issue of major concern in this system is the thermal expansion of the cavity.

Fixing the laser's frequency by locking the cavity length is impossible if the cavity

expands beyond the range of tunability of the piezo. The typical piezo expansion for

our system is dL/dV = 2.1 nm/V, with a total voltage range of about 280 V, giving a

total piezo tuning range of ALmax = 588 nm. Tuning the cavity length by A/4 = 213

nm is equivalent to sweeping one free spectral range, so the cavity range in terms of

free spectral range tunability is Afcav/VFSR = 2.76.

An earlier version of this apparatus used a copper cavity, which has a thermal

expansion coefficient of ac, = 19 x 10-6 K-1 . For the cavity to expand beyond the

piezo tunability range, this translates into a temperature change of AT = 0.31 K.

Since we want to account for temperature drifts in the lab of up to - 5 K, this cavity

was highly unstable.

To correct this problem, we specially ordered a custom-manufactured tube of

Ultra-Low-Expansion (ULE) glass, whose expansion coefficient is nominally au -
0.1 x 10-6 K-1 at 25°C. The piezo in the cavity has an expansion coefficient of

ep = 3.7 x 10-6 K-1 and a length of Lp = 1.25 cm. Combined with the ULE tube
of length Lu = 8.75 cm this gives the entire cavity an ideal expansion coefficient of

acav = 0.55 x 10-6 K-1 , making the limiting temperature range for stability AT 11
K, which is well within the range of temperature drifts in the lab.

In the real cavity the thermal expansion matched closely to the theoretical calcu-

lations. We heated and cooled the cavity while monitoring the cavity transmission.

To obtain the most accurate measurements, we held the cavity at a high temperature

and allowed it to thermally equilibrate, then allowed it to cool and held it at a low

temperature. After multiple iterations of this procedure, it was discovered that the

cavity drifted by one free spectral range over a temperature change of ~ 4K. This

means the experimental range of temperatures over which we can stabilize the laser
frequency has a magnitude of AT - 11K, which again is well within experimental

control.

9 Applications of the Narrow Laser

Now that we have developed a basic understanding of cavity dynamics and have
demonstrated the construction of a narrow frequency-band laser, we can discuss po-
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tential applications of this technology.

9.1 Single Atom Detection in an Optical Cavity

Let us consider a single stationary cesium atom of diameter d in an optical cavity of

length L, as depicted in Figure 15. Suppose we are passing light through the cavity

such that the light is resonant with the atom and slightly off resonant with the cavity.

This resonant laser light is affected by the presence of the atom because the atom has

a different index of refraction than the vacuum, and let us call the atom's refractive

index na.

L L.
d

diameter d,

index na

Figure 15: An atom of diameter d with refractive index na in a cavity of length L

changes the effective length of the cavity.

This has the effect of altering the effective optical length of the cavity:

Leff = L + (na- 1)d = L + AL (22)

and this in turn shifts the cavity resonance. If we recall Eq. 2, we see that we can

solve for the new cavity resonance by keeping constant the term:

wL = (w + Aw) (L + AL) wAL + LAw (23)

Combining this result with our expression for the cavity length shift given in Eq. 22

we see the shift in the cavity resonance is:

Aw =-w(na- 1)d/L (24)

For optical frequencies of order w - 10 5Hz, atomic lengths of order d - 10-1°m and

index of refraction shifts of order (na - 1) - 1 we see that the cavity resonance shifts

by only a few hundred kilohertz. This value is much smaller than the linewidth of our
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optical cavity or the linewidth of a broad frequency-band laser. From this order-of-
magnitude calculation alone we can see the necessity of having a narrow frequency-
band laser for such detection experiments, because the presence of an atom would
not cause a cavity shift noticeable with a broad band laser.

Let us now consider how we might use a narrow frequency band laser to detect
an atom in an optical cavity. If we again consider light that is resonant with the
optical cavity of length L, but this time with a narrow laser with linewidth of order
FL 10kHz. The spectrum of the cavity output then is a product of the frequency
distribution of the laser, which we assume is Lorentizian about some center frequency
WL with linewidth FL, and the cavity gain function given in Eq. 2. Since the laser
linewidth is several orders of magnitude smaller than the linewidth of the optical
cavity, we can treat the laser distribution effectively as a delta function in frequency
space. The cavity output then will be the value of the cavity gain at the laser
frequency WL.

Now let us recall the situation described above, where an atom in an optical cavity
changes the effective length of the cavity. Since the variable quantity here is the cavity
length, it is useful to rewrite the cavity gain profile as a function of the length L and
approximate it as a Lorentzian centered about resonant cavity length L0:

a2 a (1 - R 2)c (25)
G(L) = a2+ (L- Lo)2 ; a 4Ro (25)

We now want to place an atom in our optical cavity and measure the change in
the cavity output due to the presence of the atom. To maximize the signal change,
we choose to set our initial cavity length L such that the cavity output is half its
maximum value, G(Li) = 1/2, which also yields the condition Li -Lo = a. We can
evaluate the slope of the gain profile at this point by Taylor expanding to first order:

aG(L) = -2a 2(L - L) -2(L - Lo) G2(L) (26)
L (a2 + (L- Lo)2 ) 2 a2

Thus for a small length change /AL about the initial length Li we can find the first
order output shift AG by substituting G(Li) = 1/2 and Li - L = a to obtain:

9G(L) I AL 4;rrR
AG= aL =-2a= A 1-R 2 (27)

We can then evaluate this quantity for a cavity with reflection coefficients equal
to those of our above cavity, laser light of wavelength A = 852 nm, and cavity length
shift AL d 10-1°m. We obtain a first order correction of AG = -0.046. Such
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a large fractional signal change should be detectable on a photodiode placed at the

cavity output, so long as the noise level is significantly smaller than this signal change.

Thus we have illustrated how a narrow laser allows for atom detection that would not

be possible with a standard broad laser.
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