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Abstract

Oscillons are localized solutions of nonlinear field theories that oscillate without dissi-
pation. We have numerically found a family of very long-lived oscillons in the spherical
ansatz of the SU(2) gauged Higgs model — the standard model of the weak interac-
tions without electromagnetism and fermions. In this thesis. we study the stability of
these objects. We do this by adding a massless mode to the model and coupling it to
the oscillating fields contained in the Higgs doublet. Such a mode is expected to pro-
vide a decaying mechanism for the oscillons. However. numerical investigation shows
that our oscillons do not decay if the massless mode is sufficiently weakly coupled
and suggests that our oscillons are stable long-lived solutions that could substantially
influence the dynamics of this theory.
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Chapter 1

Introduction

In nonlinear classical field theories. one can set up a local disturbance that would.
generally. disperse away. But, sometimes, the disturbance can result in a localized
solution that oscillates without dissipation. Such solutions are called oscillons or
breathers.

Often. oscillons are not infinitely long-lived and only live for extremely long times.
But. for physics applications, the distinction between an infinite and a very long
lifetime is irrelevant. As long as the object’s lifetime is significantly larger than the
natural timescales of the problem. it can have significant effects on the dyvnamics of
the theorv.

We have found an oscillon in the gauged S{/(2) Higgs model which is the standard
model of the weak interactions without electromagnetism and fermions. We worked
in the spherical ansatz and numerically evolved the classical equations of motion.
Even after very long runs. exceeding times of 30.000 in natural nnits, we have never
seen this oscillon decay.

In this thesis, we study the stability of the oscillon we found. This object owes its
extremely long life to its oscillation frequency which is lower than any natural mode
of the system. In order to test its stability we introduce an additional effectively
massless mode that provides a possible decay mechanism. We study the effects of

this massless mode on the evolution of our oscillon.
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Chapter 2

SU (2) Gauged Higgs Model

We consider an SU/(2) gauge theory coupled to a doublet Higgs in 3 + 1 dimensions.
o (=] . lele)
which is equivalent to the weak interactions sector of the Standard Model ignoring

fermions and electromagnetism. The Lagrangian density for this theory is

2

1 1 ; A 5
L{x.t)= —sTrF‘“'F,,,,, + STr (DFR)Y D, — 1 (Tr(I)NI) - 1‘“) :I (2.1)

where I, = 0,4, — 0,4, —iglA,, A D@ = (9, —igd,)®. 4, = Afot/2 and
indices run over one time and three spatial dimensions. We have defined the 2 x 2

matrix ¢ representing the Higgs doublet » by

—
(]
ro

—

We follow the conventions of [1]. except we use the metric ds* = di* — dz>.

The spherical ansatz is given by expressing the gauge field 4, and the Higgs field

® in terms of six real functions ay(r.t). a;(r.t). a(r.t), v(r.t). p(r.t) and v(r.t):

Aol ty = Tao(r.t)aﬁ:.
=g
1 v(r t . ~(rt .
Al t) = 5 aj(r.l)o - Xr; + o )(05 —0-Xr;) + AU )eijk;vjak :
2 - .
1
Ola.t) = E[M(r. L) +iv(r.t)o - &]. (2.3)

13



where & is the unit three-vector in the radial direction and o are the Pauli matrices.
For the fields of the full theory to be regular at the origin. ap. . aj—«/r. v/r and v
must vanish as r — (). The theory reduced to this spherical ansatz has a residual {7(1)
gauge invariance consisting of gauge transformations of the form expliQ(r.t)o - & /2]
with ©(0.¢) = 0.
In the spherical ansatz we obtain the Lagrangian density

47]— 1 RAYJTIZNS L i 1 2
Lty = 5 | =37 e+ (DN D+ 3 (D"0) Dyd = 5 (W= 1)

1, , TP W 5 gR?
o 2 N2 SivEATY) — o= W= 9
2(|\‘| +1)|o]” — Re(ix o) 7 r (](.)| 5 ) (2.4)

where the indices now run over ¢ and r and

fuw = Outy, — Dyay,. \ O =a+i(r—1), O=p+iv

D= (=i Do = (0, =a,)o. (2.5)

Under the reduced UU(1) gauge invariance, the complex scalar fields y and ¢ have
charges of 1 and 1/2 respectively. a,, is the gauge field. f,, is the field strength. and
1

D, is the covariant derivative. The indices are raised and lowered with the 1 4+ 1

dimensional metric ds? = dt* — dr-.

The equations of motion for the reduced theory are

M fu) = DY = Dux] % 2 [D,6" 6 — 0D,
) - 2\ . gl
no* = |Dtr* DI,-&- (N +1)+=5r? (’(‘)|“—g; >} o.
J Z
i , , - .
i - [l)-+—,)<|xl-—1>+;lél-} . (2.6)
K4 r= =

These equations can be obtained either by varyving the Lagrangian density (2.4) or

by imposing the spherical ansatz on the equations of motion of the full theory.
Althongh the theory is described by six fields, ag, ay, p. v, «, and ~. there are

only four independent degrees of freedom consisting of the three 11 -bosons and the

massive Higgs. The remaining degrees of freedom are gauge artifacts. We may fix
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the gauge by a time-dependent gauge transformation followed by a time-independent
gauge transformation which removes the remaining gauge freedom. We choose to first
set ag(r.t) = 0 evervwhere, and then apply a time-independent gauge transformation
to set ay(r.t = 0) = 0 initially. The choice of ay = ) gauge makes the covariant time
derivatives equal to the regular time derivatives.

As we chose ag = 0 there are only five fields that evolve in time. To obtain time
evolution. for each of the four fields p. v. «. and v we must specifv the profile at t = 0
as a function of r as well as the time derivative of the profile at ¢+ = 0 as a function
of r. The time derivative of @ (r.t) at ¢ = 0 is then determined by imposing Gauss’s
Law whicl is the first equation in (2.6) with index v = 0. In this gauge. Gauss's Law
is

O (ridai(r.t)) = -';— [G(r ) 0,0(r. 1) — Ded(r ) (r.1)]

1

+7 N OO (r t) — O (r )" (r. )] . (2.7)

We evolve these five fields according to the Equations (2.6). Configurations obeving
Gauss’s Law at the initial time will obeyv it for all times. Thus we have fully specified
the initial value problem by providing initial value data for the four real degrees of

freedom contained in p. v, . and ~.
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Chapter 3

Numerical Setup and Results

In order to accurately simulate the extremely long lifetimes of oscillons, we require
highly stable numerical techniques. We discretize the system at the level of the
Lagrangian in Equation (2.4). We choose a fixed spatial lattice spacing Ar. placing
the scalar fields at the sites of the lattice and the gauge field «; on the links. Thus each
of the five scalar fields A(r.t) is replaced by a set of functions A7} (¢). defined at each
lattice peint. Further on. we replace a first-order lattice gauge-covariant derivative

by the discrete expression

/\{”'1'1}('15) (‘xp[—/‘ga{ﬁ_%}(”Ar} - /\{nr}(f/)
Ar

DA t) — (3.1)

where g is the charge of the scalar field \ and n = r/Ar labels the lattice point
corresponding to radius r.

We vary the spatially discretized Lagrangian to obtain second-order accurate lat-
tice equarions of motion. In the limit of continuum time evolution. this system has
exact conservation of energy and exact gauge invariance. We monitor these quantities
to detect numerical errors and determine whether our time steps are short enough.
However. they do not tell us whether our spatial grid is fine enough. because even
for a very coarse grid our svstem conserves energy and obeys Gauss's Law. In all our
simulations. these invariants hold to an accuracy of roughly one part in 10°, and we

see no numerical instabilities even after extremely long runs.
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Since we chose to work in a ag(r.t) = 0 gauge. the covariant time derivative
coincides with the ordinarv time derivative. Thus. the discrete second-order time

derivative is given by

) M+ AL = 20 (1) + M — At
Dirp) — 2 A (At)(__,) ( ) (3.2)

Our time evolution is simply inverting this second-order differential. which appears
in the equations of motion. in order to solve for M (# 4+ Af). Thus. we compute cach
new time step from the previous two. This approach is stable for At < Ar so we
choose to work with a fixed time step At = Ar/2.

In order to monitor the energv conservation and gauge invariance of the solution.
it is necessary to compute first-order time derivatives. We compute the derivative at
time {3 by subtracting the result at {p — Al from the result at ¢, + At and dividing
by 2At. rather than comparing adjacent time steps t, and ¢, + At. We chose this
definition of the first derivative because. in the continuum limit, it is accurate to the
second order in At unlike the one using adjacent time steps which is only accurate to
the first order.

Since we are considering classical dvnamics. the theorv is invariant under overall
rescalings of the Lagrangian densitv. As a result. the theory is completely specified
by the choice of the ratio of the Higgs mass my = vv2A to the 11-boson mass
my- = gv/2. For generic values of this ratio. we observe localized configurations
that oscillate but are spreading out and decaying. However. in a particular case
my = 2myy these oscillations exhibit no observable decay in our simulation. This is
the only mass ratio at which we found stable oscillons in this theorv. We chose to
work with ¢ = V2 and A\ = 1 which give this mass ratio. Also. we chose to work in
natural units with the vacuum expectation value of the ¢ field v = 1.

The localized initial configuration we start fromn is given by

gr

olr.t =0) = ﬁ (1 + dle’_r:/"'g) and  y(r.t=0)=—i (1 + z'dge_":/"'2> (3.3)

where d;. d>. and w parameterize the initial configuration. We set initial time deriv-
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atives equal to zero everywhere. Then. we evolve this configuration according to
the equations of niotion and observe its evolution. To ensure that we are not see-
ing numerical artifacts we monitor gauge-invariant quantities. A clear choice are the
energv and energy density. As described in [1]. there are also four gauge-invariant
field |&(r. 1) [\ (r.t)]. fou(r.t). and &(r.t) = arg [ix(r.t)(o(r.t)*)?]. that completely
determine the state of the svstem.

We display results for d; = —0.1. d» = —3.2, and w = 12 although small changes
in these paramecters give similar results. In the left panel of Figure 3-1 we show the
energy density as a function of ¢ and r. A localized time dependent object is clearly
visible. The right panel shows that the initial configuration sheds about a quarter of

its energy and quickly settles into the localized oscillon which does not decay visibly.

85
80
total energy
energy in the box of size 80
75
70
65 k
60
0 10000 20000 30000
t
P

Figure 3-1: Energv density as a function of position and time (left). Total energv
and energy in the box of size 80 (right).

In the upper left panel of Figure 3-2 we show the gauge invariant magnitude of o

at the origin, [o(r = 0.1)]. The field is oscillating about the vacuum expectation value
at © = v = 1. By counting the number of oscillations. the frequency of the oscillation
is measured to be 0.2239. As the mass of the Higgs is v/2 the lowest frequency of any
propagating mode of the Higgs ficld is v2/27 = 0.2251 which is above the oscillon
frequency. This is an essential property. Any oscillon owes it long life to a frequency

of oscillation which is below any natural mode of the system. Such an object cannot
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decay into modes which can carry energy away.

We also show that the gauge invariant quantity fo;(r = 10,¢) is oscillating with
a frequency of 0.1120 - exactly half of the frequency of oscillations of |¢| within the
accuracy of the measurement. The gauge boson mass is v/2/2 so the lowest frequency
of these propagating modes is \/5/—17( = 0.1125 which is also above the oscillation
frequency. Similar analysis holds for the other two gauge invariant fields. |\ (r. )| and
&(r.t) where |\ (r.t)| oscillates with same frequency as [o(r.t)| while &(r.t) oscillates
with same frequency as for(r,f).

In the lower panels of Figure 3-2 we plot the two fields over a much longer time
50 that their oscillations are not visible. However we do see beats in these profiles.

The beat frequency of both fields is about 4.8 x 107!,

0.06
115
0.04
1.1 q
Py / A I . f [
TR Lo
= \v!m\f,r‘.w,vﬂ(mw\:\H’»’M i S
g L R T
= AR AT AR AN 1 i “‘IJ' =
20.95!!1"w]"ﬂH‘:!1[\,’"“l{‘{\HHMW\W;““.J[ 5
HIR T IRRIRIRIR IR I -0.
o TR
-0.04‘
0.85r
0.8 v -0.06 v "
6000 6020 6040 6060 6080 6100 0 5000 10000 15000 20000 25000
t t
1.15

=10, t)

[¢(r=0, )|

fo,(r

. . . .06 . L
0 £000 10000 15000 20000 25000 30000 5000 10000 15000 20000 25000 30000
t

Figure 3-2: Evolution of gauge invariant variables |[o(r = 0.t)|. and foi(r = 10.¢)
obtained with parameters d, = —0.1 and dy, = —=3.2.
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In Figure 3-3 we show the profiles of four gauge invariant fields. [&(r. )] [\ (r.)].
for(rot). and &(r.t) = arg [ix(r. t)(o(r.t)*)?]. as a function of time for four different

radii.

T T 16 T T
1| ——1=10] ~—=20]  r=30) ——r=40] ! [——r=0] ——r=10] —r=20]  =30] ——r=40]'
15¢

-

=
ks

0, 1)}

1

[p(r=

o
4=3
s}

0.8 — - . 09 ' - -
0 5000 10000 15000 20000 0 5000 10000 15000 20000
t t

0.15 T T T 1 T T :
| |

O.BiL 1

| \

0.6 1

B/ / /Sf LS LA

g(r, t)

-0.4]
-08} .
-0.15 \ %
-0.8+ : 1
0 - 0] 0] r=d0) =40 0] - oet0] o w20]  r=30] -~ —r=0]
02 : : -1 : : ;
0 5000 10000 15000 20000 0 5000 10000 15000 20000

t t

Figure 3-3: |o(r.t)] (top left). [\ (r.t)| (top right). fyi(r.t) (bottom left). and &(r.t)
(bottom right) as functions of time at different radii. for d, = —0.1 and d, = —3.2.

Althongh a particular initial configuration is displayed, the details of the starting
point are not essential. In the beginning. the initial configuration varies substantially.
It sheds energy and finally settles into the stable configuration. From the left panel
of Figure 3-1 one can see energyv leaving the small region around the origin during
the shedding. The fact that our initial configuration spontaneously settles into an

oscillon could mean that oscillons can form from generic initial conditions and are
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not improbable solutions.
However, changing the initial conditions does affect the nature of the oscillation.
In Figure 3-4 we show that the beat frequency of the oscillon depends on the initial

configuration. There. parameter d, is varied until the oscillon becomes unstable.

d2=2.6 d2=2.8 d2=3.2

1000
2000
3000
4000
5000

6000
0

d2=3.6

0 20 40 60 80

Figure 3-4: The dependence of the evolution on the initial configuration. We show
energy density as a function of position and time obtained with d; = —0.1 and six
different values of the initial parameter d,.

We never saw the death of the oscillon shown in Figures 3-1, 3-2 and 3-3. But. a
careful eve can notice a slight decay in the maximal value that the beats of the fields
achieve. This effect is displayed in cyan in Figure 3-5 for |¢| at the origin. where the
vertical axis is stretched until this decay is clearly visible. This figure also shows that
there is a beat in the beats of this field.

The maximal points of the beats of |&(r.t)| at the origin were read off and fitted

—ht

with a shifted exponential function of time. ae™ + ¢. where ¢ = 1 is the vacuum

[\
[\



1.106

\{ data =94
1104k . — fitted curve |
N y=a'exp(-b t)+c
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\ -—
= 1.102} AN a=0.016 £ 0.001
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= 117 . -
T 0=1004+0002
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Figure 3-5: The decay of the envelope of |¢| at the origin as a function of time. The
field is displaved in cvan. The maximal points of the beats (blue) are fitted with an

t

. ra i . 2 . .
exponential. The best fit. with y* = 9.4, is shown in red.

value. The fitted curve and its parameters are shown in Figure 3-5. as well. Although
the decay rate. b = (5 £ 2) x 107>, could not be determined very precisely due to
insufficient data. the constant offset. ¢ = 1.094+0.002 is determined with relative error
of less than 0.2%. The fact that this offset does not equal the vacuum expectation

value ¢ = 1 suggests that the oscillon is not decaying but only settling into a stable

configuration.






Chapter 4

Stability

In order fo study the stability of the oscillon described in Chapter 3 we introduce
a massless scalar field 1) coupled to the Higgs doublet. This is a good check of the
robustness of our object as an uncoupled oscillon owes its long life to the fact that its
frequency of oscillation is lower than any natural mode of the system, so there are no
modes that can carry its energy away. The addition of a massless field may provide
a decay mechanism for the oscillon.

The new Lagrangian we choose is

1 1 1 )
L(x.l) = {—gTrF’“’ o 50000 + STe (D'R)' D,

fi (/\ — ) — o 1)2) (TI'@‘I’ - "'2)2} 4

which recluces to the Lagrangian in equation (2.1) when v(x.t) = 0 evervwhere.

In the spherical ansatz this Lagrangian is

4 1., N ’ ’ 22

Lir1) = -q{—:{_lrzj‘“’fﬂ,,%—(D”\;)*Dp\+r“(D“c))*DNo+—g; DV,
) 1 B 2 1 9 ) R S ow Y i
—53 (NP = 1)7 = 5 + DIOF = Re(iv'e?)

r’ ) — )2 2 o ’ :
;; (/\ *(ll)—(.;zl) ) ('(,7' — —2—) J (4:2)

with the indexes running over ¢ and r and all the fields depending only on r and t.
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as defined in Chapter 2. The regularity of this theory at r = 0 implies that 9v/dr.

ag. . a; —a/r. ~/r and v must vanish as r — 0.
The equations of motion for this spherical Lagrangian are

(')N(r'zf‘”/) = iD=\ D,,\] ;7“2 [D,0" 0~ 0" D,o)] .

2

5 (,\ — ) — (*Ql)z) <|(f>{2 - g)} o,

ot = [D”r Du+ (W?+1)
272

. . 1 i)»'
PR U VRS O §
(R = 2 (1 4 200 (\o| —%> . (4.3)
/ s

Again. we will fix the gauge by first setting ay(r.t) = 0 evervwhere, and then
applving a time-independent gauge transformation to set ay(r.f = 0) = 0 initially.
To obtain time evolution. for each of the five real fields j. v. o v. and ¥ we must
specify the profile at ¢ = 0 as a function of r as well as the time derivative of the
profile at f = 0 as a function of r. The time derivative of a,(r.f) at { = 0 is then
determined by imposing Gauss's Law. the first equation in (4.3) with index v = 0.

which in this gauge reads:

[

(0 (r.0) = = [6(r. ) do(r.t) = Golr.1) o(r.1)]

1 .
+7 I O (r ) — Dex (r )\ ()] (4.4)

We evolve the five fields according to equations (4.3) and the configurations obey-
ing Gauss's Law at the initial timne then obeyv it for all times. Thus we have fully
specified the initial value problem by providing initial value data for the five real
degrees of freedom contained in p. v. a. v. and . corresponding to the five degrees

of freedom of this theory.

In order to see how the newly introduced field v influences the stability of our
oscillons we choose the same initial configuration for g, v, «, and v as the one that
gave rise to an oscillon. We arbitrarilv choose the oscillon with d; = —0.1 and

dy = —3.2 as the essential properties of the oscillons did not depend on the initial
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configuration. Also. we choose a static initial configuration for the new field given by
J(r) = 0. d9(r)/ot = 0. From the last equation in (4.3) we see that if ¢; # 0 this
static zero field configuration will evolve and move away from zero.

We are interested in knowing if the new field v carries energy away from the
oscillon. Because the svstem now has a natural mode lower than the frequency of
oscillation of the oscillon we think that energy will be transferring from the oscillon
to the massless field. As a massless mode cannot keep the energy confined. we expect
to see the energy dissipating out of the small region near the origin.

Figure 4-1 shows the evolution of ¥ for ¢; = 0.06 and ¢, = 0.1. The initial static
zero field evolves and pulses with the frequency of the beats in the other fields. The
amplitude and frequency of these pulses is not changing in time. This shows that
although there is some energy stored in the new field. contrary to our expectations
this amount is not increasing in time. The energy is not continuously transferring from
the massive fields to the massless field. After the oscillon has stabilized. the energy

in the box of size 80 is 61.6 in this case while it was 61.8 before ) was introduced.

0.04

T 1
J— 0] —r=t0] —=20] =30 —r40]]

0.03
0.03

0.025

MM,

M VAVAVAVAVAVAV

0.0I

Hr, 1)

NV ANV AN WANI e

0.005 A\V/\/\/\_/W\./'\_/\/\/
1

0 -
0 5000 10000 15000 20000
t

Figure 4-1: Time evolution of the new field, J. for ¢; = 0.06 and ¢ = 0.1. ¢ as a
function of r and t (left) and o as a function of ¢ for different radii (right). The field
is oscillating with the beat frequency and the amplitude of these oscillations is not
increasing.

In order to see how the new evolving massless mode effects the evolution of the

other fields we compare the gauge invariant variables without the new field (or, equiv-

[\]
-~



alently, with ¢; = 0 and ¢y = 0) and with ¥ present. as illustrated in Figure 4-2. The
right column is the difference of the results obtained with ¢, = 0.06. ¢, = 0.1 and
those with no ¥ while the left column compares the results obtained with ¢, = 0.06
and ¢» = —0.2 to those with no v/. Row by row. from top to bottom, we show the
change of [o(r. t)|. [\ (r,t)]. for(r.t) and &(r.t). We see that the change in the fields
is quasi-periodic and does not grow in time. The ‘period’ of this quasi-periodic evo-
lution of fy(r.t) and &(r.t) is twice that for [o(r.t)| and |\ (r.t)]. We also see that
the ‘period’ is longer for ¢ = —0.2 than ¢, = 0.1.

The dependence on the coupling constant ¢; is shown in Figure 4-3. where we
plot the difference of each of the four gauge invariant fields obtained with different
coupling constant ¢; and the same 5. Specificallv. we used ¢ = —0.2 and ¢; = 0.06
for one run while ¢, = 0.08 for the other, and plotted the difference between the gauge
invariant fields between these two runs. We see that the difference between the fields
is. on average. not growing in time. but is periodic and oscillates around zero. The
period of this oscillation for |¢(r.t)| and [\ (r.t)] is the same and very nearly equals
half of that for fo;(r.t) and E(r.1).

Figure 4-2 shows that the changes in the fields due to introducing ¥ with the two

different values of ¢, are very similar. Results obtained with ¢, = 0.1 and ¢, = —0.2
(both having ¢; = 0.06) are directly compared in Figure 4-4. where we plot the

difference of each of the four gauge invariant fields obtained with different coupling
constant ¢o. We see that the amount by which [o(r, #)] and [\ (r. )] differ for ¢, = 0.1
and ¢ = —0.2 is growing at first and then decreasing after a time of about 15000
suggesting that it actually oscillates with period of about 30000. On the other hand.
amounts by which fo;(r.t) and &(r, 1) differ is growing over the time of the run of
20000. but the properties noticed above suggest that they are actually quasi-periodic
with period of about 60000. A longer run is necessary to further test the dependence

on the coupling constant c».
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Figure 4-2: The change of gauge invariant fields from the values theyv had before the
new field was introduced for ¢; = 0.06 with ¢; = 0.1 (left) and ¢, = 0.2 (right). We
show. from the top down, |¢(r. £)], [\ (r, 8)]. for(r,#) and £(r.t) as a function of time

for different raclii.
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Figure 4-3: Influence of a change in coupling constant ¢;. The difference of each of
the gauge invariant fields obtained with ¢; = 0.06 and ¢; = —0.2 and those obtained
with ¢; = 0.08 and c; = —0.2. showing |o(r.t)| top left. |x(r.t)| top right. fo,(r.t)
bottom left and &(r.t) bottom right as functions of time at different radii.
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Figure 4-4: Influence of a change in coupling constant ¢,. The difference of each of
the gauge invariant fields obtained with ¢; = 0.06 and ¢ = 0.1 and those obtained
with ¢; = 0.06 and ¢ = —0.2. showing |o(r.t)] top left. |\ (r.t)| top right. for(r.t)
bottom left and &(r.t) bottom right as functions of time at different radii.
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Chapter 5

Conclusions

In this Thesis we studied the stabilitv of an oscillon in the ST7(2) gauged Higgs model
bv introducing a massless field coupled to the oscillating Higgs doublet. Contrary to
our expectations we found that a sufficiently weakly coupled massless ficld does not
destabilize the oscillon. We saw that only a small amount of energy is transfered to
the new field and that this amount does not grow in time. We also saw that the new
field does not introduce an increasing change in the gauge invariant fields describing
the state of the svstem. This suggests that our oscillon is a stable long-lived solutions
which can substantially influence the dynamics of this theory.

The next natural question is: how does this finding depend on the strength of
the coupling? How strong must the coupling be for the oscillon to become unstable?
We did not pursue this issue as our numerical simulation becomes unstable for larger
couplings — the results stop obeving Gauss's Law and conserving energy. Further
investigation is needed to find the source of this numerical instabilitv. Then, the

robustness of the oscillon could be tested for a strongly coupled massless field.
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