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Abstract
Os(cillons are loca liz(ed solutions of nonlinear fiel(d theories that oscillate without (lissi-
I)ati(on. W' have 1m1herically found a famlily ()f very long-lived ()s(cillons in the sheri(cal
a-nsatz of the SL(2) gauged Higgs model -the standard mnoclel of the weak interac-
tions without electronmagnetism and fermions. In this thesis, we study the stability of
these obje-cts. We dlo this b adding a massless mode to the model and coupling it to
the oscillating fields contained in the Higgs doublet. Such a mode is expected to pro-
vide a decaying mechanism for the oscillons. However, numerical investigation shows
that our oscillons do not decay if the massless mode is sufficiently weakly coupled
and suggests that our oscillons are stable long-lived solutions that could substantially
influence the dynamics of this theory.
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Chapter 1

Introduction

Ill nonlinear classical field theories. one canll set p a local disturbance that would.

generally. disperse away. But, sometimes, the disturbance can result in a localized

solution that oscillates without dissipation. Such solutions are clled scillonus or

breathers.

Often. oscillons are not infinitely long-lived and only live for extremely long times.

But. for p)hysi(cs a)li(cations, the distinc(tion between a infinite ad a very loIl(

lifetime is irrelevant. As long as the object's lifetime is significantly larger than the

nlatural tiniescales of the p)rob)lem. it can hlave significant eff(ects (o the (dynIlaIics ()f

the theory.

We have found an oscillon in the gauged SI((2) Higgs model which is the standard

mno(lel of the weak interac(tions without ele(ctromiagnetism iand fermiions. e worke(d

in the spherical ansatz and numerically evolved the classical equations of motion.

Even after verv long runs. ex(ee(ding times of 30.000 in natural units, we have never

seen this oscillon decay.

In this thesis, we stlldy the stability of the oscillon we found. This object owes its

extre'mIelv log life to its oscillation fre(quenc(y whi('ch is lwer than anly natural imode

of the sstem. In order to test its stability we introduce an additional effectively

imassless mode that provides a possible decay mechanism. We study the effects of

this massless rnlo(de oni the evolution of our oscillon.
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Chapter 2

SU(2) Gauged Higgs Model

We consider lan SlU(2) gauge theory coupled to a doublet Higgs in 3 + 1 dinensions.

which is euivalent to the weak interac(tions sector of the Standardt MIo(el( ignoring

fermnions and electromagnetisml. The Lagrangian density for this theory is

£(x,.t)= -I TrF FP',2
1

+2Tr (L)(L)t L) -

where F,,. = 0,4,-VA[, - iqg[A4t, A,] DD = (01,- i.qA4tL). .4, = -4To/;') and

indices run over one time and three spatial dimensions. WVe have defined the 2 x 2

nmatrix (1) representing the Higos doublet by

t) 2 )
; 1 ,:2

We follow the conventions of [1], except we use the metric ds2 = 2 - dx 2.

The spherical ansatz is given b expressig the gaige field .4 ancid the Higos fieli

D in terms of six real functions a((r, t). al(r. t). ( (r, t), r, t), (r. t) and v(r. ):

(2.2)

1
= -ao(r. t)o fT

2g

= - (1(r. t)co ki +

- - [(r, t) + ,1(r. t)c -
g

(-- (o , - r. xr ) +
I.
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where i is the unit three-vector in the radial direction and are the Pauli matrices.

For the fields of the full theory to be regular at the origin. o,o (. ar-y./r. ,/r and '

must vanish as r - 0. The theory reduced to this spherical ansatz has a residual (1)

gauge invariance consisting of gauge transformations of the form exp[i(r, t)o ;/2]

with Q)(0. ) =0.

In the spherical ansatz we obtain the Lagrangian density

4 7- [I~1
£C(r, ) -oI D,,-(t1 -g- r .K ftv + (DI' ) *D , + r ( DIL )*D - 2 -

fJ,2 22 2 2 (2.4).-( \- + -I) o- -Re'(i\*02) , r (|)2 
where the incdices now run over t and r and.(0, = 0,, -ia,.. \ = (k. + i(, - _1), = Il + .

DlA ,, = (),,- ~o,). D,,.O (- a,,)(-). (2.5)

Und(ler the re(lduced (1) g rauge invariance. the omplex scalar fields and have

charges of 1 and 1/2 respectivelyv. a, is the gauge field. j, is the field strenith. and

D[I is the (covarianlit derivative. The indices are raise(l and lowered with the 1 + 1

dimensional metric ds 2 = dt2 - dr 2 .

The equations of motion for the reduced theory are

"(,'(r-f.L) = /; [D.\*\-\ - * ] + .',' [DO(,6o-* o'[6 .]*2

i~~o:' = , ~ 2A 9(,./.)

D)'r2D, + (\ + 1)+2 r
i [l)' 1 () 1 2] (2.6)K' \K-i) -tioK O.

_' F _

These equ(ations can be obtained either by varying the Lagrangian density (2.4) or

b, imposilng the spherical ansatz on the equations of motion of the full theory.

Altlholgh the theory is described b six fields, (10. 1. . . (, ianld , there are

only four indepelndent degrees of freedom consisting of the three l V-bosons and the

massive iggs. The remniaining clegrees of freedom are gauge artifacts. WNe may fix

14



thle o-auge by a timne-dependent gauge transformation followed bv a tinie-indepenldent

gauge transformation which removes the remaining gauge freedom. We choose to first

set (10(r. t) = 0 everywhere, an(l then apply a timle-in(el)end(ellt gauge transformation

to set (r. =) 0) 0 initially. The choice of ao() =() gauge makes the covariant time

dlerivatives eqtual to the regular time derivatives.

As we chose a0o () there are only five fields that evolve in time. To obtain time

evolution., for each of the four fields p a. ct, and -t we must specify the profile at t = 0

as a fn(ctionll of r as well as the time (lerivative of the p)rofile at t = 0 as a function

of r. The time derivative of l(r, t) at t = () is then determined by imposing Gauss's

Law whichl is the first equation in (2.6) with index = 0. In this a-lge. Gauss's Law

is

'2i t(r2 ,al(r. t)) = - [6(r. t)*0,6(r. t) - Ot@(r. t)*(r. t)
1

+- [\(r. t)*.(r. t)- t(r. t)*\ (r. t)]. (2.7)

We evolve these five fields according to the Equations (2.6). Configurations obeying,

Gauss's Law at the initial time will obey it for all times. Thus we have fully specified

the initial value problem by providing initial value data for the four real degrees of

fr'eedom (ontailned(l in /,. v, . and .

15
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Chapter 3

Numerical Setup and Results

III order ( to ((iuritelh imulate the extremely Ong lifetiie of os(illos. we require

highly stalble numerical, techniques. Ne cliscretize the systemn at the level of the

Laglrangin inl E(qulation (2.4). Xe (1OOS a fixedt spatial latti(e sacing Ar, pla(Cing

the scalar fields at the sites of the lattice and the gauge field al on the links. Thus each

of the five scala.r fields A(r. t) is replaced by a set of functions A\{t"' (t). defined at each

lattice )(int. Frther o. we rellace a first-or(ler lttice lge-(ovriant erivattive

by the discrete expression

D,.A(r, t) , A{ +A}(t)ex (xp [- go (t)Ar]- A (t) (3.1)
Ar

where g is the charge of the scalar field A and r = r/Ar labels the lattice point

correspndlding to radilus r.

We vairv the spattially (liscretized Latgranlgian to btain secoi(l-or(der acurate lhit-

tice equat ions of motion. In the limit of continuum time evolution. this system has

.(:act (conservation of eiierg- rln(l exact gauge iivarial(ce. NVe iiollitor these (qualtities

to detect numerical errors and determine whether our time steps are short enough.

However. they do not tell us whether our spatial grid is fine enough. because even

for very coarse ,grid or systeim conserves eergy Ind obeys Gauss's Law. In ll our

simulations, these invariants hold to aln accuracy of roughly one part in 106, and we

see no numnerical instabilities even after extremely long runs.
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Since we chose to work in a ao(r. t) = () gauge. the covariant time derivative

coincides with the ordinary time derirvative. Thus, the discrete second-order time

(derivativ(' is given 1)xby

D 2A(r. ) A'{j}(t + At) - 2A{tI(t) + {}(t - At) (3.2)
(At)2

Our time evolution is simply inverting this second-order differential. which appears

in the e(lllations of mlotiorn, i order to solve for ,\A{t'}(t + At). Th'lus. we compute ech

new timne step fronm the previous two. This approach is stable for At < Ar so we

(hoose to work with fixed( time step At = Ar/2.

In order to monitor the energy conservation and gauge invariance of the solution.

it is neessary to compute first-order til(e (derivatives. e comu)ite the derivative at

time to by subtracting the result at t o - At front the result at to + zi and dividing

by 2At. rather than comparing adjacent time steps t and t + At. We chose this

(lefinlitionl of the first (derivative b)ecaluse. in the continuumm limit, it is accurate to the

second ordler in At unlike the one using adjacent time steps which is only accurate to

the first crder.

Since -we are considering classical dynamics, the theory is invariant under overall

rescalings of the Lagrangian densitv. As a result. the theory is completely specified

by the choice of the ratio of the Higgs mass 7' 2.A to the IV-boson mass

mw = g'l/2. For generic values of this ratio. we observe localized configurations

that oscillate lbut are spreading out and decaying. However. in a )articullar case

m.Hu = 2n- these oscillations exhibit no observable decay in our simulation. This is

the only ]mnass ratio at which we found stable oscillons in this theory. We chose to

work wNith q = 2 and A = 1 whilch give this milass ratio. Also, we chose to work il

natural units with the vacuum expectation value of the 0 field = 1.

The localized initial configuration we start from is given b

o(r. - 0) I + and (r t = ) -i ( + '/) (3.3)

here d1. . and ' parameterize the initial configration. e set initial time e-
where ctl, d.2. ad tc parameterize the initial configuration. We set initial time deriv-

18



atives eqlual to zero everywhere. Then, we evolve this configuration according to

the equations of motion and observe its evolution. To ensure that we are not see-

ing numllerical trtifacts we monitor auge-invarilant quantities. A (lear coi( e are the

energy and energy density. As described in [1], there are also four gauge-invarialnt

field 1O(r.t)l I(rnt)[. Jl(r,t), and (r.t) = arg[i(r.t)()(r,t)*)2], that completely

determine the state of the sstem.

WVe display results for d =-0.1. d2 =-3.2, and ! = 12 although small changes

inl these p)aralleters give siuilar results. In the left panel of Figure 3-1 we show the

energy- density as a function of t and r. A localized time dependent object is clearly

visible. The right panel shows that the initial configuration sheds about a cquarter of

its (llenry a ui ( ickly settles into the localize(l oscilloll which (h)es not decay visibly.
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Figure 3-1: Energy (denlsity as function of position and time (left). Tlotal energy
and(l energy in the box of size 80 (rilght).

In the upper left panel of Figure 3-2 we show the gauge invariant magnitude of (5

ait the riginl, 1(5(r = 0. t) . lThe field is oscillating aout the vacuum expectation value

at = , 1. By counting the number of oscillations. the frequency of the oscillation

is measured to be 0.2239. As the mass of the Higgs is 9 the lowest frequency of any

propagat;ng miode ()f the Higgs field is 2/2r = 0.22.51 which is above the oscillol

frequency. This is an essential property. Any oscillon owes it long life to a frequency

of oscillation which is belowv any natural mode of the system. Such an object cannot

19
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decav into modes which canl carry energy away.

We also show that the gauge invariant quantity fol(r = 10, t) is oscillating with

a frequency of 0.1120 - exactly half of the frequency of oscillations of lo within the

accuracy of the measurement. The gauge boson mass is /2 so the lowest frequency

of these )rop)agating modes is x/22/47 = 0.1125 which i also aove the oscillation

frequency. Similar analysis holds for the other two gauge invariant fields, \(r. t)] and

,(jr, t) where \(r, t)I oscillates with samne frequency as [6(r.t)[ while (r. t) oscillates

with same frelen(y as jo (r, t).

In the lower panels of Figure 3-2 we plot the two fields over a. much longer time

so that their oscillations are not visil)le. However we ( see beats in these profiles.

The beat frequency of both fields is about 4. x 10-1.
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In Figure 3-3 we show the profiles of four gauge invariant fields. {kI(r. t) I [(r. t),

fol (r. t), and (r.t) = arg[iX(r,t)(o(r.,t)*) 2], as a function of time for four different

radii.
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Figure 3-3: I( (r. t)l (top left). Ix(r,t)l (top right), f (r.t) (bottom left). and (r.,t)
(bottom right) as functions of time at different radii. for d =-0.1 and d2 -3.2.

Althoigh a particular initial configuration is displayve(ld, the details of the starting

point are not essential. In the beginning. the initial configuration varies substantially.

It sheds energy andcl finally settles into the stable configuration. From the left panel

of Figure 3-1 one can see energy leaving the snmall region aroun(d the origin dring

the shedding. The fact that our initial configuration spontaneously settles into an

oscillon culdcl mean that oscillons can form from generic initial conditions and are
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not imp)robable solutions.

However, changing the initial conditions does affect the nature of the oscillation.

InI Figure 3-4 we show that the bl)eat freq(ue ncy of tile oscillon (dep)ends (on the initial

configuration. There. parameter d2 is varied until the oscillon becomes unstable.
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Figure 3-4: The dependence of the evolution on the initial configuration. W-e show
energ-v density as a function of position and time obtained with d = -0.1 and six
different alues of the initial parameter d.

We never saw the death of the oscillon shown i Figures 3-1, 3-2 and 3-3. But a

carefull eve canl notice a slight decay in the maximal value that the beats of the fiel(ls

achieve. This effect is displayed in cyan in Figure 3-5 for 161 at the origin. where the

vertical axis is stretched until this decay is clearly visible. This figure also shows that

there is a l)eat in te l)eats of this field.

TThe maximal points of the beats of [( (r. t) at the origin were read off and fitted

with a shifted exponential function of time. ac¢- ' + c where c = 1 is the acuum
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Figure 3-5: The decay of the envelope of 1]0 at the origin as function of time. The
field is displayed i cvan. The maximal points of the beats (blue) are fitted with an
exponential. he l)est fit. with \2= 9.4, is shown in red.

value. The fitted curve and its parameters are shown in Figure 3-5, as well. Although

the decay rate b = (5 ± 2) x 10-5, could not be determined very precisely due to

insufficient d(eta. the ('constant offset. c = 1.094±0.009 is determlilled with relative error

of less than 0.2%c. The fact that this offset does not equal the vacuum expectation

value ' =: 1 suggests that the os(cillol is not (decaying but only settling into a stable

configuration.
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Chapter 4

Stability

In order to study the stability of the oscillon described in Chapter 3 we introduce

t Inatssless scalar field t) coupled to the Higgs doubl)let. This is a good (che(k of the

robustness of our object as an uncoupled oscillon owes its long life to the fact that its

freq(uen(cy of oscillation is lower than alny natural mode of the system, so there are no

modes that can carry its energy away. The addition of a massless field may provide

a decay nlechanismn for the oscillon.

The new Larangitm we choose is

LC(x.t) = [-TrF"F,~, + ))'i/ + Tr (D"i' ) ( D)

-- (A - c1t) -( 2 2) (TrttT - (4.1)
4 

which reduces to the Latgrtangian in equation (2.1) when O(x, t) = 0 everywhere.

In the spherical ansatz this Lagrtangian is

47,~ ~~~ ~ ~~~~~~~~~~~~~ .22 £(r, t) 4 '2 (Dt\)*DI\ +[r (Dl,/)* .(2 r-.l , + ( D~'\)*D y,-i+ r'2(Db16)*Do+ g aOa'.ti)
1i ~ ()l2 _ 2 (I 2 + 1) 1,.32 - *2)

2r2 ]22,~~~~~~~~~~~~~~~~~~. ,. 

g2- (A (,I- ) -C2) ( - ) (4.)

~ith the indexes running over t a1nd r and all the fields 4lepending onlv on r ad( t.

with the indexes running over t and r and all the fields depending only on r and t.
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as define( i Chapter 2. The regularity of this theory at r = implies that. O90/'r,

a,(, ca. a, - a/r, o /r and must vanish as r 0.

The equations of motion for this spherical Lagrangian are

O"(r2f.,.) = i[vy\*\ - \*),\] r2 [D,)(*6 - O*D] 
22

i\*= [DO'rDpL - ( \| + 1) -+ .,I (\ -(-2tL) -92)
---o ~ DI -- t o 24A- c1\ - c1) :d 2 \

_'12 =.2 I 11 _12
[L2 

0'L( r° 2 -) = (- + 22c.) 1(-1-- (4.3)
-2r'2 2,0 g-u-

Again. we will fix the gaullge by first setting a((r,t) = 0 everywhere, and then

a)pplving a time-ind(lel)enldent (auge tranlsfoirmation to set (l (r, t 0) = 0 initially.

To obtain time evolution, for each of the five real fields f, P. v . a, nd 1) we must

specify the profile at t = 0 as a function of r as well as the time derivative of the

l)rofile at t = as a function of r. Time tilme (lerivative of oI (r, t) at = 0 is then

determined by iposing Gauss's Law, the first eqluation in (4.3) with index = 0,

which in this gauge read(s:

0,(r Otal(r. t)) = [(r. t)*&to (r, t) - (to(r. t)*o(r, t)]
2

+ [dr' )*9f( I)-d9t\(T t) \i(r t). (44)

We evolve the five fields according to equations (4.3) and the configurations obey-

ing Gauss's Law at the initial time then obey it for all timles. Thus we have fully

specified the iitial value problem by providing initial value data for the five real

clegrees of freedom contained in tl, v. c, . and 0. corresponding to the five degrees

of freed(lonm of this theory.

In order to see how the newlv introduced field influences the stability of our

os(illonIls we (choose the samile initial configuration fr t, , a(, and as the one that

gave rise to an oscillon. We arbitrarily choose the oscillon with (1 = -().1 and

. =-3.2 as the essential properties of the oscillons did not clependc onil the initial
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configuration. Also. we choose a static initial configuration for the new field given by

0(r) = O. 90(r)/Ut = 0. From the last equation in (4.3) we see that if cl 4 0 this

static Zero field configuIation will evolve and move away fom zero.

We are interested in knowing if the new field 0 carries energy away from the

oscillon. Because the system now has a natural mode lower than the frequency of

oscillation of the oscillon we think that energy will be transferring from the oscillon

to the massless field. As a massless mode cannot keep the energy confined. we expect

to see the energy dissip)atilng out of the snmall region near the origin.

Figure 4-1 shows the evolution of for c1 = ().06 and c = 0.1. The initial static

zero field evolves and pulses with the frequency of the beats in the other fields. The

amplitude and freq(uency of these plses is not (lhalging in te. This shows that

althouoh there is some energy stored in the new field, contrary to our expectations

this ainolnt is not increasing in time. The ener-v is not (contiimnousl transferring friomi

the massive fields to the massless field. After the oscillon has stabilized, the energy

in the box of size 80 is 61.6 in this case while it was 61.8 before ) was introduced.
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Fignre 4-1: lime evolution of the new field. 0, for (' = 0.06 and c = 0.1. 0 as a
func(tion o)f r ad(l t (left) and 0) as a function of t for (lifferent rad(lii (right). The field
is oscillating with the beat frequency and the amplitude of these oscillations is not
increasing,.

In order to see how the ew evolving massless mode effects the evolution of the

other fields we compare the gauge invariant variables without the new field (or, equiv-
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alentlv, with cl = 0 and c = 0) and with present. as illustrated in Figure 4-2. The

right column is the difference of the results obtained with cl = 0.06, C2 = 0.1 and

those with no while the left olumn comp)ares the results obtained with c' = 0.06

and c., =-0.2 to those with no . Row by row. from top to bottom, we show the

change of 6c(r,t)}. y(r.t), foi(r.t) and (r.t). bWe see that the change in the fields

is quasi-periodic and does not grow in time. The 'period' of this (quasi-periodic evo-

lution of fo(rt) and (rt) is twice that for 16(rt)j and {\(r,t)j. We also see that

the period' is longer for c.2 = -0.2 than c.2 = 0.1.

The dependence on the coupling constant c1 is shown in Figure 4-3. where we

plot the difference of each of the four gauge invariant fields obtained with different

(couliling ( onstaIlt c'l and the salne (c.. Spec('ifically. Nve used (c = -0.2 and ci = 0.06

for one rn while c = 0.08 for the other, and plotted the difference between the gautge

invariant fields l)etweenl these two runs. We see that the difference b)etweell the fields

is, on average. not growing in timne. but is periodic and oscillates around zero. The

period of this oscillation for 1(5(rt)l and \(r, t) I is the same nd very nearly equals

half of that for fol ( r. t) tand (r, t).

Figure 4-2 shows that the changes in the fields due to introducing d with the two

different values of c are very similar. Results obtained with c = 0.1 and c2 = -0.2

(both having (l = 0.06) are directly compared in Figure 4-4. where we plot the

difference of each of the four gauge invariant fields obtained with different coupling

constant (,. e see that the amount by which ) (r, t) I and \(r', ) (liffer for c = 0.1

and c -0.2 is growing at first and then decreasing after a time of about 15000

suggesting that it actually oscillates with period of about 30000. On the other hand.

aTimounts i) which . / l(rt, ) and ,(r, t) differ is rowing over the time of the run of

200)00. but the properties noticed above suggest that they are actually cquasi-periodic

with p)eriod of about 60000. A longer run is necessary to further test the (ldependence

on the coupling constant .
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Chapter 5

Conclusions

Ill this Thesis we studied the stability of an oscillon in thle SU(2) gauged Higgs model

bv introclducing a mnassless field coupled to the oscillating Higgs doublet. Contrary to

our exp)ectations we found that a sufficiently weaklv coupled inassless field (does not

destabilize the oscillon. We saw that onlv a small amount of energy is transfered to

the new field and that this amount dloes not grow in time. We also saw that the new

field does not introdluce an increasing change in the gauge invarianIt fields describ)ilng

the state of the system. This suggests that our oscillon is a stable long-livecl solutions

which (ll sulbstalitially influence the dynamics of this theory.

The next natural question is: how does this finding depend on the strength of

the coupling? How strong must the coupling be for the oscillon to become unstable?

t\ (l, did not pursue this issue as our numerical simulation )becomes unstable for larger

couplings the results stop obeying Gauss's Law and conserving energy. Further

investigation is needled to find the source of this numIerical instabl)ility. Then, the

robustness of the oscillon could be tested for a strongly coupled massless field.
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