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ABSTRACT

Studies in performance evaluation of automated manufacturing systems, us~
ing simulation or analytical models, have always emphasized steady-state
or equilibrium performance in preference to transient performance. In this
study, we present several situations in manufacturing systems where tran-
sient analysis is very important. Manufacturing systems and models in
which such situations arise include: systems with failure states and dead-
locks, unstable queueing systems, and systems with fluctuating or non-
stationary workloads. Even in systems where equilibrium exists, transient
analysis is important in studying issues such as accumulated performance
rewards over finite intervals, first passage times, sensitivity analysis, set-
tling time computation, and deriving the behavior of queueing models as
they approach equilibrium. In certain systems, convergence to steady-state
is so slow that only transient analysis can throw light on the system perfor-
mance. After presenting several illustrative manufacturing situations where
transient analysis has significance, we discuss two applications: (1) computa-
tion of distribution of time to absorption in Markov models of manufacturing
systems with deadlocks or failures, and (2) computation of distribution of
manufacturing cycle time in a failure-prone manufacturing system operated
over a finite shift period. We also briefly discuss computational aspects of
transient analysis.




1 INTRODUCTION

Studies in performance analysis of discrete manufacturing systems and in
general, discrete event dynamical systems have traditionally emphasized
steady-state or equilibrium performance over transient or time-dependent
performance. This paper is concerned with transient analysis of manu-
facturing systems performance. Transient analysis is very important in
manufacturing system models that do not attain a steady state or equi-
librium. Examples of such systems include, systems with failure states,
unstable queueing systems, and systems with fluctuating or non-stationary
workloads. Even in systems where equilibrium does exist, transient anal-
ysis is important for studying performance over finite intervals, sensitivity
analysis, first passage time computation, settling time computation, and for
deriving the behavior of models as they approach equilibrium.

In this paper, we view a manufacturing system as a discrete event dy-
namical system [1, 2] and consider that the evolution of a manufacturing
system constitutes a discrete state space stochastic process. In particular,
we focus on Markov chain models. Such a model could be generated di-
rectly or using higher level models such as queueing networks, stochastic
Petri nets, or discrete event simulation [2].

1.1 STEADY-STATE ANALYSIS

Steady-state analysis has been the focus of most performance studies in the
area of discrete manufacturing systems. The two recent textbooks in this
area, by Viswanadham and Narahari [2], and by Buzacott and Shantikumar
[3] are concerned mostly with steady-state analysis. There are also many
survey articles that discuss steady-state analysis of manufacturing systems
using simulation modeling [4], Markov chain models [5], queues and queueing
network models [6, 7, 8], and stochastic Petri net models [9, 10].

Steady-state analysis deals mainly with customer average measures or
time average measures. Performance measures such as steady-state wait-
ing time belong to the first category whereas measures such as steady-state
number of jobs in system are time average measures. In the literature, much
of the analysis deals with only mean values of these performance measures.
Higher moments and distributions are only occasionally computed, for spe-
cial classes of systems.

There are three main reasons for the popularity of steady-state analysis:

1. There are computationally efficient and simple methods for steady-



state analysis. For example, the computation of steady-state proba-
bilities in a Markov chain is carried out by solving a system of linear
equations; the computation of performance measures in product form
queueing networks is accomplished through efficient polynomial-time
algorithms; and so on. Availability of a wide variety of efficient linear
equation solvers, including parallelized algorithms, has made possible
the solution of Markov chains with several hundred thousand states.

2. Major results in queueing theory, such as Burke’s result [11], Little’s
law [12], Jackson’s theorem [13], product form of closed queueing net-
works [14], the BCMP formulation [15], and the arrival theorem [16]
are all concerned with steady-state analysis.

3. Developments in aggregation and decomposition methods for solving
large Markov chain models or large queueing models have also focused
on steady-state analysis (see, for example, the paper by Curtois [17]).

Often, manufacturing system models do not have a steady-state or do
not reach a steady-state in the observation period of interest. Transient
analysis becomes important in such situations. In Section 2, we will be
looking at several such situations.

1.2 TRANSIENT ANALYSIS

Let us assume that a manufacturing system evolves in time as a homogeneous
continuous time Markov chain (CTMC) {X(t) : t > 0} with state space
S ={0,1,...} and infinitesimal generator Q. Let 7,5 € § and

pi;(t) = P{X(t) = j|X(0) = i}
H(t) = [pi;(t)]

The forward and backward differential equations that govern the behav-
ior of this CTMC are respectively given by (18, 19, 2],

d ' ,
S(H®) = H)Q (1)

d
Z(H(®) = QH(?) (2)



with initial conditions H(0) = I in both the cases. Note that these are
first order, linear, ordinary differential equations. In terms of the individual
matrix elements, the above equations become

£ i(t)) = qmis(t) + 3 auipin(t) ®)

dt Py

%(Pij(t)) = qupi;(t) + Y qinprj(t) (4)
ey

The forward and backward equations have the same unique solution given
by

H(t) = e (5)
where e?! is the matrix exponential defined by the Taylor series
oo
(Qt)*
edt = kzé i (6)

If we are interested in the state probabilities

1(t) = [po(t), pa(2)s - - ]

where p;(t) = P{X(t) = j},j € §, then we need to solve the differential
equation

d
S(I(9) = I(1)Q (7)

The solution of the above is given by
II(t) = I1(0)e?* (8)

1.2.1 An Example

To get a feel for the equations above, let us consider a simple example [19, 2].
Consider a manufacturing system comprising a single machine that fails with
failure time exponentially distributed with rate A and gets repaired, once
failed, with repair time exponentially distributed with rate u. Assuming
that the failure and repair times are independent, the system can be formu-
lated as a CTMC with state space § = {0,1} where state 0 indicates, say,
"machine in the up condition” and state 1 denotes "machine undergoing
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Figure 1: Markov chain model of a single machine system

repair.” Figure 1 depicts the state diagram of this Markov chain. For this
example, we have

p1o(t) pui(t)

o=[3 3]

The forward equations (1) in this case are given by -

H(t) = [Poo(t) po1(t) ]

-}t(poo(t)) = poo(t)go0 + Po1(t)q10

%(p(n(t)) = p(n(t)q*ll +P00(t)QO1
%(pm(t)) = p1o(t)go0 + P11(t)q10

gz(f’“(t)) = pu1(t)q11 + pro(t)gor

The backward equations are given by
d
E(Poo(t)) = gooPoo(t) + go1P10(?)
d
32(1’01“)) = go1P11(t) + qooPo1(t)
d
E(Plo(t)) = q10Poo(t) + q11P10(t)

gi(pn(t)) = qupu(t) + ‘hOPOl(t)
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Figure 2: Evolution of transition probabilities -

The solution of the coupled differential equations ahove is straightfor-
ward and it can be shown that the transition probabilities are given by

Polt) = T + () O ©)
po1(t) = X i p - (/\ i ‘u)e—(H“)t (10)
Pu(t) = 5 i == (5 ﬁ “)e—(xmt (11)
pu(t) = ta + ()\ z #)e—(H‘")t (12)

Figure 2 illustrates the evolution of these state probabilities. Note that
. L _op
Jm poo(t) = lim pro(t) = 3~ —
A

tlgglopn(t) = tlilgpm(t) “Ytgn



The above limiting probabilities are precisely the steady-state probabilities
mo and 7y of the states 0 and 1, respectively. For j = 0,1, the state proba-
bilities p;(t) are given by '

p;(t) = poj(t)po(0) + p1;(t)p1(0) (13)

1.2.2 Relevant Literature

Literature on transient analysis of Markov chain models is vast and is scat-
tered across several inter-disciplinary areas. We shall only mention here
some papers that are of direct interest.

Grassman’s aticle [20] is an authentic survey on transient analysis whereas
the paper by Stewart [21] discusses numerical techniques for transient anal-
ysis. More recently, Reibman and Trivedi [22, 23] have surveyed the numer-
ical techniques while Marie et al [24] have discussed the transient analysis
of acyclic Markov chains. Bobbio and Trivedi [25, 26] have discussed an
aggregation method for transient analysis of Markov chains.

Reliability and availabilty modeling has been a major motivating factor
for conducting transient analysis. For example, see the papers by Reibman
et al [27], Bavuso et al [28], and de Souza de Silva and Gail [29, 30].
Analysis of fault-tolerant computer systems and performability modeling
have also spurred several research efforts in transient analysis. For example,
see the works by de Souza de Silva and Gail [30], Gerber [31], Meyer [32],
and Trivedi et al [33].

Transient analysis of queueing models arising in computer and commu-
nication systems is the subject of the works by Baiocchi et al [34], Kotiah
(35], Konstantopoulis and Baccelli [36], Tripathi and Duda [37], Upton and
Tripathi [38], Massey [39], Weiss and Mitra [40], and Kobayashi [41].

In the manufacturing context, some work on transient analysis has been
reported in the works of Ram [42], Manjunath [43], Viswanadham and Nara-
hari [2], Viswanadham et al [44], and Malhame and Boukas [45]. Malhame
and Boukas look at the statistical evolution of a manufacturing system pro-
ducing a single product, under hedging point control policies. They formu-
late partial differential equations that describe this evolution and show that
transient analysis is very important here since the convergence to steady
state is very slow.

The aim of this paper is to spell out clearly the need for transient analysis
of manufacturing system models and to explore the major issues of relevance.



1.3 Organization of the Paper

In this section, we have introduced the transient analysis problem in per-
formance modeling. In the next section, we discuss several situations in
manufacturing systems analysis where transient analysis is relevant. We
discuss these under four categories:

1. Systems where steady state does not exist.

2. Models with absorbing states.

3. Performance computation over finite time durations.
4. Other important transient phenomena.

In Section 3, we present two illustative examples. The first is concerned
with the computation of time to absorption in Markov models with absorb-
ing states. This analysis can be used to study manufacturing systems with
deadlocks and systems with total failure states. The second example ad-
dresses the important problem of computing, over finite intervals of time,
the distribution of maenufacturing cycle time in a failure-prone manufactur-
ing system.

in Section 4, we briefly touch upon important computational issues in
transient analysis. In Section 5, we provide a summary of the paper.

2 WHY TRANSIENT ANALYSIS ?

The aim of this section is to provide various situations in manufacturing
system analysis where transient analysis assumes much significance.

2.1 SYSTEMS WITH NO STEADY STATE

It is only in special classes of Markov chain models, such as ergodic Markov
chains, that a unique steady state or equilibrium exists. We now give some
examples where a steady state does not exist.

Example 1: An Unstable Queue.

Consider an M/M/1 queue with arrival rate A and service rate p. The queue
is stable if and only if A < p and steady-state performance measures will be
meaningful only in this case. When A = p, it is known that the underlying
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Figure 3: Open central server queueing network model

Markov chain states are all transient [46] and the number of customers in
the systemn grows to infinity in the long term. If A > p, all the states are
null recurrent and the system is again unstable. Similar arguments hold for
any single or multiple server queueing system.

Example 2: An Unstable Queueing Network.

Consider the open central server queueing network model shown in F"igure 3.
This is a very popular model of flexible manufacturing systems [47, 7, 3, 2].
This network is a special class of a Jackson network [13]. If A is the external
arrival rate of jobs and u;(¢ = 0,1,...,m) are the service rates (see Figure
3), it is known that the above network is stable if and only if p; < 1 for all
j=0,1,...,m, where \

po= qoHo

Ag; )
p; = =1,....,m
3 ok J gy
If even one of these conditions is not satisfied, the network is unstable and

steady-state analysis loses significance.

Example 3: A Kanban Cell with Non-Stationary Demands.

Mitra and Mitrani (48] have studied the performance of a linear network of
Kanban cells, subjected to stochastic demands. Figure 4 depicts a single
Kanban cell subjected to external demands. The input to the machines is
modulated by the arrival processes of demands and raw parts. Mitra and
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Figure 4: A Kanban cell subjected to external demands

Mitrani [48] assume that the demands for finished parts arrive according to
a Poisson process. However, in the real-world context, the demands arrive
in very complex fashion and the workload to the system is highly non-
stationary . For example, during rush hours, the demands arrive rapidly
and during other times, their arrival follows some stochastic pattern. The
underlying queueing system belongs to the realm of non-stationary queues
and the system here may be unstable or stable depending on the maximum
rate of arrivals of demands and raw parts. There is a rich body of literature
in the area of non-stationary queueing systems [49], where the issue of sta-
bility has been resolved for a very limited class of models.

Example 4 : Re-Entrant Lines.

Re-entrant lines [50] constitute a class of manufacturing systems models
where the flows are non-acyclic since the parts visit the same machines
several times. These are characteristic of semiconductor and thin film man-
ufacturing. Scheduling is an important problem in these systems and several
distributed policies based on buffer priorities and due dates have been for-
mulated for these systems (see, for example, the papers by Kumar [50] and
by Lu and Kumar [51]. Stability is an important issue in evaluating these
scheduling policies. Not all the policies suggested in the above papers are

10



Figure 5: Markov chain model for failure-repair behavior

stable [50, 51] and performance analysis of re-entrant lines under such un-
stable policies can only be carried out via transient analysis.

2.2 MODELS WITH ABSORBING STATES ]

Markov models with absorbing states have a trivial steady-state, namely
that the chain ends up in some absorbing state, remaining there forever;
therefore, transient analysis alone throws some light on the system perfor-
mance. We consider two examples below.

Example 5 : Reliability Analysis.

Manufacturing systems with no or limited repair of failed elements will lead
to models with absorbing states. In such systems, reliability is an impor-
tant performance index. Consider, for instance, a manufacturing system
with m identical machines and an automated guided vehicle (AGV). Both
the machines and the AGV are failure-prone and let us assume that repair
is not possible. If the failure times are all independent exponential random
variables, then the model that describes the failure-repair behavior of this
system is a Markov chain. It is reasonable to assume that the system is
operational only when the AGV is "up” and at least one machine is "up”
(this is because the AGV is involved in the successful completion of pro-
cessing of every job). In such a case, the Markov chain model has state
space S = {0,1,...,m}, where state 0 corresponds to the failed state (all
machines are down or AGV is down or both) and state: (i = 1,...,m ) in-
dicates AGV "up” and exactly ¢ machines ”"up.” Figure 5 shows this Markov

11
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Figure 6: A robotic cell to illustrate deadlock

chain model, assuming A4 as the AGV failure rate and ) as the failure rate
of each machine. This same model is discussed in depth in [44]. State 0 is an
absorbing state and the reliability of this system at time ¢t is the probability
that the system is not in state 0 at time ¢, given some initial condition. The
reliability in this case can only be computed through transient analysis.

Example 6 : A Manufacturing System with Deadlocks.

This example is taken from [2]. Consider the robotic cell shown in Figure 6,
where there is a single machine that produces parts, with processing time
exponentially distributed with rate u. Raw parts arrive on to an input
conveyor according to a Poisson process having rate A. A robot picks up
a raw part from the input conveyor and loads it on to the machine if the
machine is free or to its buffer if the machine is busy. The rohot picks up the
finished part and puts it on the output conveyor. Assume that arrival of raw
parts into the system is inhibited whenever the machine is busy, the buffer
is full, and the robot is holding a raw part. Hence, if the buffer capacity is
n, the maximum number of jobs inside the system is n + 2. Let us assume
that the robot takes negligible time to load and unload parts. A

12



Figure 7: Markov chain model of the robotic cell

First, consider the case where there is no huffer. Here, the states of the
system are 0,1, 2,3, with the following interpretation:

¢ 0: no raw parts; machine idle.
¢ 1: machine processing a part, no raw parts waiting.
e 2: machine processing a part, robot holding a raw part. °

¢ 3: machine waiting for the robot to transfer the finished part and the
robot waiting for the machine to release the finished part.

The CTMC model of the above system is shown in Figure 7. In state
3, the waiting is indefinite if we assume that the robot controller and the
machine controller are not programmed to react to such mutual or circular
waiting. Such a state is called a deadlock , which stalls further activity and
production in the system. In this simple example, it is easy to see how
the deadlock may be prevented, but in a real-world manufacturing system
having a large number of resources and concurrent interactions, deadlocks
can occur commonly.

State 3 is an absorbing state in Figure 7. If we need to compute the
distribution of time before the deadlock is reached or the number of parts
produced before deadlock, transient analysis becomes important.

In the above example, if there is a buffer in front of the machine, the
number of states will increase; in fact, if the buffer capacity is n, there will
be exactly n + 4 states in the model and state n + 3 will be the absorbing
state.

2.3 PERFORMANCE IN FINITE INTERVALS

In a manufacturing system, we would often be interested in computing the
cumulative performance in a finite duration of time, for example in a shift
period. It is not realistic to expect the system to reach a steady state during
this finite observation period. We consider three examples below.

13



Example 7: A Wafer Fabrication Line.

In a typical semiconductor wafer fabrication line [52, 53], each lot of wafers
goes through a large number of operations and spends several days, inside
clean rooms, repeatedly visiting many workcenters. The typical cycle time
and queueing time of a lot of wafers is much larger compared to a shift du-
ration. Therefore, if we are interested in the production or congestion levels
at the end of a shift duration, we cannot rely on steady-state performance
estimates. Furthermore, some scheduling policies in such re-entrant lines
are known to be unstable (see Example 4) and transient analysis becomes
even more important.

Example 8: Interval Dependability Measures.

Fault-tolerance and flexibility are the prime attributes of advanced manu-
facturing systems. The degree of fault-toleance of a manufacturing system
is characterized by dependability measures such as reliability and availabil-
ity. To define these measures, we partition the system states into operational
states (states in which the system produces useful output) and failed states.
Given an interval [0, t], the reliability of the system is the probability that
the system never reaches a failed state during that interval. The point avail-
ability at time u € [0,¢] is the probability that, at time u, the system is in
an operational state. The interval availability is the fraction of time during
[0,¢], the system is in operational states. To compute these measures, one
needs to do transient analysis.

As an illustative example, we consider a manufacturing system compris-
ing two machines M, and M, (this example is taken from [44]). Let the
failure times of M; (i = 1,2) be exponentially distributed with rate a; and
be independent. When a machine fails, assume that repair starts immedi-
ately, with repair time for machine M; being an exponential random variable
having rate 3;. The failure-repair behavior of this system is a Markov chain
with four states given by

§ = {(11),(10),(01), (00)}

where each state is a pair (21, 2;), with z; = 1 when M; is "up” and z; = 0
when M; is "down.” Figure 8 shows this Markov chain. Obviously, the set
of operational states is given by

So = {(11),(10), (01)}

14



Figure 8: Failure-repair model of a two-machine system

and the set of failed states is given by

Sy = {(00)}

Let {Z(u) : u > 0} be this Markov chain. Given an interval [0,t], the
reliability R(t) is given by )

R(t) = P{Z(u) € S,Yu € [0,t]}
The point availability is given by
PA(u) = P{Z(u) € So}

The interval availability is given by

TA(t) = % /0 ‘PLz(w) € S5}

The above failure-repair process is often referred to as the structure state
process [44].

Example 9: Performability Measures.
Performabhility is a generic; composite measure of performance and depend-
ability. There is a vast literature on performability of computer and commu-
nication systems [30]. More recently, performability has been investigated
in the manufacturing systems context also [44].

We shall give a simple example, based on the system in Example 8.
Assume that raw parts are always available and that parts undergo exactly

15



one operation, either on M7 or on M,, and leave the system. Also, assume
that machine M; processes parts at rate p;. Then in state (11), the total
production rate is p; + pz. The production rates in states (10), (01), (00) are
respectively, ui, 2, and zero. During the interval [0, ¢], let 711, T10, To1, Too be
the total times spent the corresponding states. Note that these are random
variables. The total accumulated production in the interval is then given by

Y(t) = ma(pa + p2) + Tot1 + Tor 42

Y (t) is called the throughput-related performability. In general, performa-
bility could be with respect to any performance measure such as throughput,
lead time, queueing time, etc. To compute the distribution of Y (¢), one needs
to do transient analysis.

2.4 OTHER TRANSIENT PHENOMENA

There are many other aspects of manufacturing system performance that
can be effectively addressed only by transient analysis.

Performance under Real-Time Control Policies

When real-time control decisions are taken, for example, in the dynamic
scheduling of manufacturing system operations, it is of intrinsic interest to
look at the transient performance, especially if the evolution is such that it
takes a long time before a steady state is reached. For instance, Malhame
and Boukas [45] have considered the operation of a failure-prone, single-
product manufacturing system under dynamic hedging point control poli-
cies. They characterize the transient performance using a system of coupled
partial differential equations.

Settling Time of Queueing Systems

The settling time of a queueing system with a given initial number of cus-
tomers in the system is the total time until the number in the system is zero.
There have been a few efforts at computing the distribution of settling time
of multiserver queues and open queueing networks [54, 55, 56].

The notion of settling time is analogous to the makespan of a manufac-
turing network, which is the total amount of time required to complete the
processing of a given number of workpieces. Makespan computation is quite
important in stochastic manufacturing systems.

16



Sensitivity Analysis

It is often required to determine the performance or reliability bottleneck
of a system. In this context, it is necessary to evaluate the derivative of
the desired performance measure with respect to important system param-
eters. The parameter with the largest derivative deserves the attention of
the designers to improve the characteristics of the designed system. Such
derivatives can also be used in a system optimization effort based on gradi-
ent search techniques. Sensitivity analysis often relies on transient analysis
of performance.

Cut-Off Phenomenon

An interesting quantity to study in the evolution of a stochastic manufactur-
ing system is the rate at which the steady state is approached. This depends
on the time constants (eigen values) of the system [40]. There is a class of
Markov chain models and queueing systems (for example, see the articles
by Konstantopoulos and Baccelli [36] and Anantharam [57] ) which exhibit
a cut-off phenomenon namely, the existence of a time such that before this
time, the system is far from steady state, while, after this time, the system
is very close to steady state. The existence of cut-off phenomenon is a good
indicator to whether a transient or a steady-state analysis is appropriate’in
a given setting.

3 DETAILED EXAMPLES

In this section, we illustrate transient analysis of manufacturing systems
using two examples. In the first, we show the computation of distribution of
time to absorption in a Markov model with absorbing states. In the second,
we show how transient analysis may be carried out to compute distribution
of cumulative measures of performance such as manufacturing cycle time in
a failure-prone manufacturing system.

3.1 TIME TO ABSORPTION

We have observed in Section 2.2 that absorbing states occur in manufac-
turing system models that capure non-repairable behavior and phenomena
such as deadlocks. An important quantity of interest in such systems is the
time until an absorbing state is reached. Let {X(u): u > 0} be the Markov

17



Figure 9: A Markov chain with an absorbing state

chain under consideration. Let the state space be finite and given by
S ={0,1,...,mym+1,...,m+n}

where m > 0, n > 0, the first (n + 1) states are transient states, and the
rest of the states are absorbing states. Let 0 be the initial state and T, the
time to reach any absorbing state. Define

pij(t) = P{X(t) = ]IX(O) = 2}

Then, we have, for any ¢t > 0,

P{T >t} = P{X(t) ¢ {m+1,...,m+ n}}

In other words, we have

P{T>t}=1- En:Po,mﬂ'(t)
=1

Hence the cumulative distribution function of T is given by

Fr(t) = 3 pomss(t) (14)
=1

J=

The individual probabilities po,m+;(t) have to be computed by solving the
differential equations shown in equation (1) or equation (2).

We now show the computation of the distribution of time to absorption
for a simple Markov chain. consider the Markov chain of Figure 9. There are
two possible interpretations for the above model. In the first interpretation,
we have a single machine system which is in state 0 when there is no part
being processed, in state 1 when there is a part being processed, and in state
2 when there is a deadlock. The arrival rate of parts is A and the service
rate of each part is u. This interpretation is similar to Example 6. The time
to absorption here is the time elapsed before a deadlock is reached.

18



In the second interpretation, we consider a two-machine system with
exponential failures and repairs. In state 0, both machines are "up” but only
one of them is chosen to process parts. When this chosen machine fails, the
system reaches state 1, in which the non-failed machine starts processing
parts and the repair of the failed machine is in progress. If the non-failed
machine now fails before completion of repair of the already failed machine,
we reach state 2 and we abandon any further repair. On the other hand, if
the failed machine in state 1 is repaired before the non-failed machine fails,
we return to state 0. State 2 corresponds to a total failure state and the
time to absorption corresponds to the time to total failure.

We know in this case that Fr(t) = po2(t). To compute pgz(t), we first
write down the infinitesimal generator @) of this Markov chain:

-2 A 0
Q=1 —-(A+p) A
0 0 0

First consider the backward equation (4) for po2(t):

d
Et‘(Poz(t)) = goopoz(t) + go1P12(t) + go2p22(t)

Since qo2 = 0, the above becomes

%(m(t)) = —Apoz(t) + Ap1a(t)

The backward equation for py5(t) is given by

d
E(Plz(t)) = q1oPoz2(t) + q11P12(t) + q12P22(2)
Since pj;(t) = 1, the above becomes
d
53 (P12(t)) = ppoz(t) = (A + p)pra(t) + A
We shall solve for poa(t) by the Laplace transform method. Let P;;(s) denote

the Laplace transform of p;;(t). Taking the transform on either side of the
equations above, we get

8P02(8) = -—-A.Pog(s) + /\Plz(s) (15)

3P12(3) = HPoz(s) bt (/\ + M)Plz(S) + '2‘ (16)
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Simplifying using (15) and (16), we get

A2 -

Poa(s) = 3(s2 4+ 3(2A + p) + A?

(17)

Now, poz(t) can be obtained from equation(17) by inverse Laplace transfor-
mation. It is a simple matter to show that

po2(t) = A+ Be % 4+ Ce%

where the constants are given by

a__2/\+;t+\/,u2+4z\u. b_2>\+;t—\/p,2+4/\p
h 2 ' B 2

_ A _ Mb—2a), _ A
T ab’ B—ab(b—a)’ C—b(b—a)

In the above case, we were able to give a closed form expression for the
cumulative distribution function of time to absorption, only because of the
small number of states and simple structure. In general, this computation is
a formidable task and in fact, is the subject of several research efforts. The
problem is identical to computation of first passage times in Markov chains
[58]. Marie, Reibman, and Trivedi have given a general way of obtaining
such distributions efficiently for acyclic Markov chains [24]. There are several
software tools that have been developed in this context and we will be briefly
covering those in Section 4.

A

3.2 MANUFACTURING CYCLE TIME

Here, we study the performability of a two machine system. This example
is adapted from the paper by Reibman [59]. The system comprises two
identical machines operated as an M/M/2 queueing system with an FCFS
discipline. Raw parts arrive according to a Poisson process with rate A and
the service time of each part is exponentially distributed with rate p. The
time to failure of each machine is exponentially distributed with rate a. A
failed machine is repaired, the repair time being exponentially distributed
with rate 8.

Our aim here is to find the distribution of the manufacturing lead time
(MLT) or manufacturing cycle time of a typical part. The MLT of a part
is the total time elapsed between the arrival of the part into the system
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Figure 10: Failure-repair model of a two machine system

20

s

Figure 11: Simplified structure state model

and its eventual departure after finishing service. Note that an arriving
raw part may find both machines "up”, or exactly one machine ™up”, or
both machines "down.” Assuming that there is only one repair facility, the
Markov chain model of the failure-repair behavior is shown in Figure 10.
State 7 (¢ = 0,1,2) corresponds to the number of operational machines.
Assuming a to be much less than 3, the probability of having both machines
down is extremely small. To simplify the example, we shall ignore state 0
and henceforth consider the structure state model shown in Figure 11. Let
state 2 be the initial state and let p;(t) denote the probability of being in
state ¢ at time ¢ > 0. Similar to the example in Section 1.2.1, we can write
down the differential equations for computing the state probabilities. The
following expressions can be easily obtained:

__B 20 _(2a+p)t
) =3 75 2018 (18)

2a+8 2a+8

In the limit ¢ — oo, the time-dependent probabilities p,(¢) and p;(¢) con-
verge to the steady-state probabilities Zoﬁ—ﬁ and 2;‘:3_{3, respectively. The
approach to steady state is governed by the time constant, which in this
case is (2a + 3).

From the above expressions, we can obtain the cumulative occupancy

times in the two states, i.e., the total times during [0,¢] the Markov chain
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stays in states 1 and 2. These are obtained as

Bt 2a

La(9) = /o Po(u)du = 2a+ 8 * (2a + ﬂ)z(l — e~ (2400 (20)
Ll(t) = /;t pl(U)du — 2jcf|_tﬂ _ (2a2:ﬁ)2(1 _ e-(za‘*'ﬁ)t) (21)

The two expressions above suin to ¢ as can be easily verified. The state
probabilities p;(t) and p,(t), and the cumulative occupancy times L;(t) and
Ly(t), computed above, tell us about the transient characteristics of the
failure-repair model.

Let us now compute the manufacturing lead time. Let T be the MLT
of a typical part in the above system, when the system is operated over an
interval [0,t]. Let T and T; be the MLT random variables in states 1 and
2, respectively. Then,

T = p1(t)T1 + p2(t)T2 (22)

To compute Ty and T, in (22), we proceed as follows. In state 2, the system
exhibits the same performance as an M/M/2 queue with parameters A and
i, whereas, in state 1, the performance corresponds to that of an M/M/1
queue with the same parameters. If we assume that the system reaches a
steady state during each visit to state 1 and state 2, then T} can be taken as
the steady-state waiting time in system in a stable M/M/1 queue, whereas,
T, corresponds to the steady-state waiting time in a stable M/M/2 queue.
Of course, for this to happen, a necessary condition is that A be less than p.
It is a standard result [18, 46] that T} is exponentially distributed with rate
¢ — A, while T, has been shown to have the following density function [59:

2u— A ( A?
Qe+ A)p-2A)2u-2A

Thus we can use (22) to obtain the distribution of manufacturing cycle time
over a finite interval [0, t].

fr(t) =1+ e et

4 COMPUTATIONAL ISSUES

In transient analysis, we are interested in computing the transition probabil-
ities p;;(t) or state probabilities p;(t) or cumulative performance measures
over finite time intervals. To obtain the transition probabilities, we need to
solve equations (1) or (2), and to obtain state probabilities, we need to solve
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equations given by (3). These are coupled, linear, first order, ordinary dif-
ferential equations. The computation of cumulative measures also involves
solving linear differential equations [23]. There are three basic ways in which
the above differential equations may be solved:

1. Obtain a general solution by deriving and symbolically inverting Laplace
transforms. Analytic Laplace transform inversion requires that the
eigen values of the infinitesimal generator of the Markov model be ac-
curately determined. If the size of the state space is N, this would
have a worst-case computational complexity of O(N?®).

2. Evaluate the matrix exponential series (6) directly. This approach is
however beset with numerical instabilities, such as severe round off
errors [22].

3. Numerically solve the differential equations using well developed tech-
niques such as the fourth fifth order Runge-Kutta method, or the TR-
BDF2 method (Trapezoid Rule- Second order Backward Difference)
[22].

The above methods are not always tractable and other numerical meth-
ods have been proposed for transient analysis. Among these, Uniformization
or randomization [60] has assumed prominence as an excellent numerical
tool. There are also approximate techniques based on, for example, aggrega-
tion and decomposition {25, 26] and diffusion approximations [41]. In some
special cases, exact closed form expressions can be obtained for transient
measures, such as in acyclic Markov chains [24].

There are excellent review articles dealing with computational aspects
of transient analysis. The papers by Grassman [20] and Stewart [21] are
two of the earliest ones. More recently, Reibman and Trivedi [22, 23] have
done a neat survey of numerical transient analysis techniques for transition
probabilities, state probabilities, and cumulative measures. The article by
Johnson and Malek [61] is a detailed survey on software packages for relia-
bility and availability evaluation; many of these packages, in fact, carry out
transient analysis. Much of the following discussion is based on these survey
articles.

4.1 COMPUTATIONAL DIFFICULTIES

There are mainly three problems that one is confronted with in transient
analysis: largeness , stiffness , and ill-conditioning [22].
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State Space Explosion

Markov models of real-world manufacturing systems will have a large num-
ber of states, often exceeding tens of thousands. So, even an algorithm of
low polynomial complexity can become intractable. Also, this will call for
a large amount of storage, though, often the matrices are sparse. If the
algorithms preserve the sparsity of the matrices involved, savings in storage
can be obtained.

Stiffness

In a manufacturing system, the activities fall into different time scales. For
example, operation times are typically much smaller compared to mean time
to failure or mean time to repair. Set-up times, depending on the specific
system, may be much larger or much smaller than other activity durations.
The result is, the transition rates in the Markov chain model will exhibit
several orders of magnitude difference. This causes the problem of stiffness.
In general, we say a system of differential equations is stiff on the interval
[0,t] if there exists a solution component that has variation on that interval
that is large compared to 1 [22]. A component with large variation changes
rapidly relative to the length of the interval.

Ill-Conditioning

Manufacturing system models often lead to transition rate matrices that are
ill-conditioned. That is, small changes in the matrix elements can produce
large changes in the solution. This will lead to inaccurate estimation of
transient performance.

4.2 COMPUTATIONAL METHODS

We shall discuss the computational methods under various heads.

Analysis of Special Classes

Acyclic Markov chains arise frequently in reliability and performability mod-
eling. Marie, Reibman, and Trivedi [24] have proposed a method for auto-
matically deriving transient solutions that are symbolic in the time duration
t, for acyclic chains. Their method is applicable to cumulative measures of
performance and sensitivity analysis of the transient solution. Donatiello
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and Iyer [62] have proposed a double transform-based procedure for com-
puting performability distributions of systems whose failure-repair behavior
is described by acyclic Markov chains. Goyal and Tantawi [63] have proposed
a different numerical method for the same problem. In all these cases, the
acyclic structure of the Markov model plays a crucial role in the solution
procedure.

Laplace Transform Inversion

This technique was illustrated in Section 3.1. This method is good for hand
computation on small or special case models. It has a worst-case computa-
tional complexity of O(NN®) where N is the number of states and requires
that the eigen values of the transition rate matrix be accurately determined.
For acyclic Markov chains, this technique is adequate, as shown in [24, 62].
Laplace transform inversion using Fourier series [64] is a promising technique
but both analytic and numerical Laplace transform inversions are unstable,
in general.

Computation of Matrix Exponential

For small values of ¢, the matrix exponential method gives accurate and
efficient solutions for transient analysis. For large values of t, the exponential
series has poor numerical properties even for small problems. Round-off
error is a common problem with these computations [20]. There are many
alternative ways of evaluating the matrix exponential [65, 66], but they are
not efficient for large sized problems and for large values of ¢.

Numerical Solution of Differential Equations

The classical techniques for numerical solution of the differential equations
(1),(2), or (6), first find the eigen values and the eigen vectors of the tran-
sition rate matrix Q. The solution is then obtained using the Lagrange-
Sylvester formula [67]. This method has complexity of O(N*) when all the
eigen values are distinct and O(N°®) otherwise. Thus this approach is im-
practical for solving large models. Furthermore, for large matrices, it is
difficult to accurately generate the entire eigen system.

Numerical differential equation solvers fall into two classes: explicit
methods and implicit methods. Explicit methods require only function eval-
uations, whereas implicit methods require the solution of a linear algebraic
system at each time step [27]. The Runge-Kutta method [68] is the most
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popular explicit method for solving differential equations. This method is
widely available and is satisfactory for nonstiff problems with normal ac-
curacy requirements. It is however not suitable for the solution of stiff
equations. Popular implicit methods include, the Backwards Euler and the
Trapezoid Rule [69]. These methods are very good for handling stiffness,
however they are less accurate and incur substantial performance penalties
on nonstiff problems.

Uniformization

Uniformization or randomization [60] is probably the most popular numeri-
cal method for transient analysis. In this method, a continuous time Markov
chain is reduced to a discrete time Markov chain subordinated to a Poisson
process [20, 60]. Uniformization first transforms the transition rate matrix
Q) to the matrix Q* given by

=241
q

where q is the largest magnitude of a diagonal element of Q. The solution is
then given in the form of an infinite series. The series can be truncated at a
desired stage and the error bounds are immediately known. Uniformization
is not subject to the round-off errors encountered while directly evaluating
the matrix exponential series. It is quite accurate and efficient, and allows
accurate error control. It is however not very good for stiff problems.

Uniformization has now emerged as a method of choice for many typi-
cal problems in transient analysis. It is extensively used in performability
evaluation [29, 30] and sensitivity analysis [70]. It has been implemented in
several software packages [61, 27, 71].

Aggregation Methods

These methods are approximate and are intended to transform a stiff Markov
chain into a nonstiff chain having a smaller state space. Bobbio and Trivedi
[25, 26] have proposed an aggregation technique that exploits the stiffness
of the chain. In thier method, the states are classified into fast and slow
states. Fast states are further classified into fast recurrent subsets and a
fast transient subset. A separate analysis of each of these fast subsets is
done and each fast recurrent subset is replaced by a single slow state while
the fast transient subset is replaced by a probabilistic switch. The resulting
smaller and nonstiff chain is then analyzed using any suitable method.
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Other Methods

Other methods for transient analysis include, using diffusion approximations
[41], fluid approximations [40], and approximate techniques for transform
inversion (35).

4.3 SOFTWARE PACKAGES

Johnson and Malek [61] have surveyed several software packages for evalu-
ating reliability, availability, and serviceability. Several of these are useful
for transient analysis.

CARE( Computer Aided Reliability Estimator program) [72] is a gen-
eral purpose reliability estimation tool for large, highly reliable digital fault-
tolerant avionic systems. For transient analysis, this package uses the method
of convolution integral.

HARP (Hybrid Automated Reliability Predictor) [28] provides a hybrid
model for evaluation of reliability and availability of large complex systems.
This uses an extended stochastic Petri net model for specifying fault han-
dling and employs the Runge-Kutta method for solving the differential equa-
tions.

METASAN (Michigan Evaluation Tool for the Analysis of Stochastic
Activity Networks) [73] evaluates performability for non-repairable and re-
pairable systems, over finite intervals of time, by analyzing or simulating a
stochastic activity network model, which is an extension of stochastic Petri
nets.

7 SHARPE (Symbolic Hierarchical Reliability and Performance Evaluator)

[74] provides a hierarchical modeling framework for evaluating reliability
and availability of non-repairable and repairable systems. This uses the
technique of Laplace transform inversion for transient analysis.

SAVE (System Availability Estimator) [75] computes reliability and avail-
ability of all classes of systems, by doing a transient analysis using the tech-
nique of uniformization.

Marie, Reibman, and Trivedi [24] describe an algorithm called ACE
(Acyclic Markov chain Evaluator) for evaluating the transition probabili-
ties in symbolic form, for acyclic chains. Reibman, Trivedi, Sanjayakumar,
and Ciardo [27] describe a software package for the specification and solution
of stiff Markov chains, using the technique proposed by Bobbio and Trivedi
[25, 26]. The package ESP (Evaluation Package for Stochastic Petri Nets)
[76] is a stochastic Petri net-based package for transient and steady-state
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analysis. The tool SPNP [71] is a powerful package, developed by Ciardo,
Trivedi, and Muppala, that uses stochastic Petri nets as a specification lan-
guage and carries out both transient and steady-state analyses.

5 SUMMARY

In this article, we have made a case for enhancing research efforts in analyz-
ing the transient performance of discrete manufacturing systems. There are
available several computational methods and software tools for conducting
transient analysis of Markov models. Application of these methods and tools
can facilitate a better understanding of the manufacturing system dynamics
and an improved methodology for design. In addition to the issues discussed
in this paper, there are certain others that deserve attention of researchers
in this area:

¢ Performance optimization studies using transient analysis.

¢ Transient analysis of semi-Markov models, M/G/1 type of models, and
renewal processes.

e Improved algorithms and numerical techniques for transient analysis,
including methods based on aggregation.
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