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Simulated Annealing Type Algorithms for
Multivariate Optimization'

Saul B. Gelfand2 and Sanjoy K. Mitter3

E·....... :: Abstract. We study the convergence of a class of discrete-time continuous-state simulated annealing
type algorithms for multivariate optimization. The general algorithm that we consider is of the form
Xk+ I = Xk - ak(VU(Xk) + ±k) + bkWk. Here U( ) is a smooth function on a compact subset of Rd, {fk}

is a sequence of Rd-valued random variables, { Wk} is a sequence of independent standard d-dimensional
Gaussian random variables, and {ak}, {bk} are sequences of positive numbers which tend to zero. These
algorithms arise by adding decreasing white Gaussian noise to gradient descent, random search, and
stochastic approximation algorithms. We show under suitable conditions on U(.), {,k}, {ak}, and {bk}
that Xk converges in probability to the set of global minima of U(.). A careful treatment of how Xk is
restricted to a compact set and its effect on convergence is given.

Key Words. Simulated annealing, Random search, Stochastic approximation.

1. Introduction. It is desired to select a parameter value x* which minimizes a
smooth function U(x) over x E D, where D is a compact subset of Rd. The stochastic
descent algorithm

(1.1) Zk+ = Zk - ak(VU(Zk) + ~k)

is often used where {~k} is a sequence of Rd-valued random variables and {ak} is a
sequence of positive numbers with ak -- 0 and E ak = oo. An algorithm of this type
might arise in several ways. The sequence {Zk} could correspond to a stochastic
approximation [1], where the sequence {Rk} arises from noisy or imprecise
measurements of VU(.) or U(.). The sequence {Zk} could also correspond to a
random search [2], where the sequence {Rk} arises from randomly selected search
directions. Now since D is compact it is necessary to ensure the trajectories of {Zk}
are bounded; this may be done either by projecting Zk back into D if it ever leaves
D, or by fixing the dynamics in (1.1) so that Zk never leaves D or only leaves D
finitely many times with probability 'l (w.p.1). Let S be the set of local minima of

- -:: U U(.) and let S* be the set of global minima of U( ). Under suitable conditions on
U(.), {4k}, and {ak}, and assuming that {Zk} is bounded, it is well known that
Zk -* S as k -> oo w.p.1. In particular, if U(.) is well behaved, ak = A/k for k large,
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{Rk} are independent with E{l kl2 } = O(a,), and IE{~_k}l = O(a4) where a > -1,
1B > 0, and {Zk} is bounded by a suitable device, then Zk - S as k -* oo w.p.1.
However, if U(.) has a strictly local minima, then in general Zk 7+ S* as k - ooc
w.p.1.

The analysis of the convergence w.p.1 of {Zk} is usually based on the conver-
gence of an associated ordinary differential equation (ODE)

2(t)= -V U(z(t)).

This approach was pioneered by Ljung [3] and further developed by Kushner and
Clark [4], Metivier and Priouret [5], and others. Kushner and Clark also analyzed
the convergence in probability of {Zk} by this method. However, although their
theory yields much useful information about the asymptotic behavior of {Zk}
under very weak assumptions, it fails to obtain Zk - S* as k -- oo in probability
unless S = S* is a singleton: see p. 125 of [4].

Consider a modified stochastic descent algorithm

(1.2) Xk+1 = Xk - ak(VU(Xk) + +k) bkWk,

where { Wk} is a sequence of independent Gaussian random variables with
zero-mean and identity covariance matrix, and {bk} is a sequence of positive
numbers with bk-+0. The bkWk term is added in artificially by Monte Carlo
simulation so that {Xk} can avoid getting trapped in a strictly local minimum of
U(-). In general, Xk j7 S* as k -* oo w.p. 1 (for the same reasons that Zk -/+ S* as
k - oo w.p.1). However, under suitable conditions on U(.), {Rk}, {ak}, and {bk}, and
assuming that {Xk} is bounded, we shall show that Xk -S* as k -- co in
probability. In particular, if U(-) is well behaved, ak = A/k and b2 = B/k log log k
for k large where B/A > Co (a constant which depends on U(.)), {fk} are
independent with E{Ikl 2} = O(a") and IE{Ok}I = O(a4) where a > -1, 3 > 0, and
{Xk} is bounded by a suitable device, then Xk S* as k -- oo in probability.
We actually require a weaker condition than the independence of the {~k}; see
Section 2.

Our analysis of the convergence in probability of {Xk} is based on the
convergence of what we call the associated stochastic differential equation (SDE)

(1.3) dx(t) = -VU(x(t)) dt + c(t) dw(t),

where w(-) is a standard d-dimensional Wiener process and c(-) is a positive
function with c(t) -+ 0 as t -+ oo (take tk = C-0 an and bk = akc(tk) to see the
relationship between (1.2) and (1.3)). The simulation of the Markov diffusion x(-)
for the purpose of global optimization has been called continuous simulated
annealing. In this context, U(x) is called the energy of state x and T(t) = c2(t)/2 is
called the temperature at time t. This method was first suggested by Grenender [6]
and Geman and Hwang [7] for image processing applications with continuous
grey levels. We remark that the discrete simulated annealing algorithm for
combinatorial optimization based on simulating a Metropolis-type Markov chain
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[8], and the continuous simulated annealing algorithm for multivariate optimiza-
tion based on simulating the Langevin-type Markov diffusion discussed above
both have a Gibbs invariant distribution oc exp(- U(x)/T) when the temperature
is fixed at T. The invariant distributions concentrate on the global minima of U(-)
as T -* 0. The idea behind simulated annealing is that if T(t) decreases slowly
enough, then the distribution of the annealing process remains close to the Gibbs
distribution oc exp(-U(x)/T(t)) and hence also concentrates on the global
minima of U(.) as t -> co and T(t) -> 0. Now the asymptotic behavior of x(-) has
been studied intensively by a number of researchers [7], [10]-[12]. Our work is
based on the analysis of x(.) developed by Chiang et al. [11] who prove the
following result: if U(-) is well behaved and c2(t)= C/log t for t large where
C > Co (the same Co as above), then x(t) -, S* as t -* co in probability.

The actual implementation of (1.3) on a digital computer requires some type of
discretization or numerical integration, such as (1.2). Aluffi-Pentini et al. [13]
describe some numerical experiments performed with (1.2) for a variety of test
problems. Kushner [12] was the first to analyze (1.2) but for the case of
ak = bk = A/log k, k large. Our work differs from [12] in the following ways. First,
we give a careful treatment of how the trajectories of {Xk} are bounded and its
effect on the convergence analysis. Although bounded trajectories are assumed in
[12], a thorough discussion is not included there. Second, although a detailed
asymptotic description of Xk as k -+ oc is obtained in [12], in general, Xk 74 S* as
k -+ oo in probability unless Ok = 0. The reason for this is intuitively clear: even if
{ k} is bounded, ak5k and akWk can be of the same order and hence can interfere
with each other. On the other hand, we get Xk -+ S* as k -r cc in probability for
~k • 0 and in fact for Sk with E{lIkl2} = O(kY) and y < 1. This has practical
implications when VU(.) is not measured exactly: we give a simple example.
Finally, our method of analysis is different from [12] in that we obtain the
asymptotic behavior of Xk as k -* co from the corresponding behavior of x(t) as
t co.

2. Main Results and Discussion. In the following l - and <(, .) are the Euclidean
norm and inner product, respectively. 1 II1 is the supremum norm.

Our analysis, like Kushner's [12], requires that we bound the trajectories of
{Xk}. We proceed as follows. Take D to be a closed ball in Rd, say D = {x: Ixj < r}.
We modify (1.2), (1.3) in a thin annulus {x: ro < lxl < r} and make suitable
assumptions to ensure that {Xk} and x(.) remain in D. The actual algorithm is

Xk+ 1 = Xk - ak(V U(Xk) + k) + bku(Xk) Wk,

(2.1) ~~(2.1) Xk+ = Xk+ 1l1D(Xk+ l) + XklDc(Xk+ 1),

and the associated SDE is

(2.2) dx(t) = -VU(x(t)) dt + c(t)a(x(t)) dw(t).
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In what follows we make the following assumptions. Let 0 < ro < r1 < r
(typically r - ro < 1).

(Al) U(-) is a twice continuously differentiable function from D to [0, oo) with
min U(x) = 0 and <VU(x), x> > 0 for Ixl > ro.

(A2) a(.) is a Lipshitz continuous function from D to [0, 1] with U(x) = 1 for
lxl < rl, a(x) E (0, 1] for r1 < {xI < r, and a(x) = 0 for Ixl = r.

(A3) ak = A/k, b2 = B/k log log k, k large, where A, B > 0.
(A4) c 2(t) = C/log t, t large, where C > 0.

For k = 0, 1,... let Y k be the a-field generated by

{XO, 40, ... k-, WO, ..., Wk-11).

(A5) E{ I ,kl2 I k} = O(a'), E{,klk} = O(a4) as k -4 oo uniformly w.p.1; ,k = 0
when 1Xkl > r, w.p.1; Wk is independent of ~k for all k.

For e > 0 let

drt(x) = z exp 2Ux) dx, Z = exp 2U(x)) dx.

(A6) 7rr has a unique weak limit 7r as e -+0.

We remark that n concentrates on S*, the global minima of U(.). The existence
of 7r and a simple characterization in terms of the Hessian of U(.) is discussed in
[14]. We also remark that under the above assumptions, it is clear that x(t) always
stays in D, and it can be shown (see the remark following Proposition 1) that Xk

eventually stays in D.
For a process u(.) and function f(.), let E,~,,{f(u(t))} denote conditional

expectation given u(t1 ) = u1 and let Et ,u,;t�, 2 {f(u(t))} denote conditional expecta-
tion given u(t1 ) = u1 and u(t2 ) = u2 (more precisely, these are suitable fixed
versions of conditional expectations). Also for a measure (. ) and a function f( )
let /(f) = f du.

By a modification of the main result of [11] there exists constants Co, C1 such
that for Co < C < C1 and any continuous function f(-) on D

(2.3) lim E, x{f (x(t))} = i(ff)

uniformly for x e D (this modification follows easily from Lemma 3 below). The
modification is needed here because [11] deals with a nondegenerate diffusion
(a(x)= 1 for all x in (2.2)) while we are concerned with a degenerate diffusion
,(a(x) -O0 as Ixl r in (2.2)). The constant Co depends only on U(x) for Ixl < ro and
is defined in [11] in terms of the action functional for the dynamical system
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i(t) = -VU(z(t)). The constant C1 depends only on U(x) for Ixl 2 ro and is given
by

C1 = inf U(x)- sup U(x)).
Ixl=ri x I=ro

In [11] only C > Co and not C < C1 is required; however, U(x) and VU(x) must
satisfy certain growth conditions as jxj - oo. Note that a penalty function can be
added to U(-) so that C, is as large as desired. Here is our theorem on the
convergence of {Xk}.

THEOREM. Let c > -1, P > 0, and Co < B/A < C1. Then for any continuous
function f(. ) on D

(2.4) lim Eo,x{f(Xk)}= r(f)
k-*oo

uniformly for x E D.

Since it concentrates on S*, (2.3) and (2.4) imply x(t) S* as t o-, o and Xk -S
as k -* co in probability, respectively.

The proof of the theorem requires the following three lemmas. Let {tk} andB( (-)
be defined by

k-1

tk- E an, k = 0,1,...,
n=0

i(s) log s du = S2/3 S > 1.

s log u s>

It is easy to check that Bf(s) is well defined by this expression and in fact satisfies
s + S2 /3 < /f(s) < s + 2S2 / 3 .

LEMMA 1. Let a > - 1, / > 0, and B/A = C. Then there exists y > 1 such thatfor
any continuous function f(.) on D

lim sup (Eo,x;n,y{f(Xk)} - E,,,y{f(X(tk))}) = 0
n- oo k: t <tk<yt

uniformly for x, y E D.

LEMMA 2. Let T > O. Then for any continuous function f(.) on D

lim sup (Et,,y{f(x(f(s + T)))} - E,,y{f(x(I3(s + T)))})= 0
n-nro s:tn<s<tn+i

uniformly for y E D.
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LEMMA 3. Let Co < C < C1. Then there exists T > 0 such thatfor any continuous
function f(. ) on D

lim (Es, {f(x(l(s + T)))} - c(s+ T )(f)) = 0
S-> 0o

uniformly for y E D.

The proofs of Lemmas 1 and 2 are given in Section 3 and Lemma 3 is proved in
Section 4. Note that the lemmas are concerned with approximations on intervals of
increasing length (t - t, -t co as n - co, fB(s) - s - co as s - co). Lemma 3 is a
modification of results obtain in [1 1] for a nondegenerate diffusion (r(x) = 1 for all
x in (2.2)).

We now show how the lemmas may be combined to prove the theorem.

PROOF OF THE THEOREM. Choose T as in Lemma 3. Note that fl(s) is a strictly
increasing function and s + s2/3 < fl(s) < s + 2s2/ 3 for s large enough. Hence for k
large enough we can choose s such that tk = fl(s + T). Clearly, s < tk and s -* co as
k -a co. Furthermore, for k and hence s large enough we can choose n such that
tn < tk < ytn and t, < s < t,+ 1. Clearly, n < k and n T co as k - oo. We can write

(2.5) Eox{f(Xk} - (f) = J Po,x{Xn e dy}(Eo,x;n,y{f(Xk)} - (f))
D

Now

(2.6) Eo,x;n,y{f(Xk)} - Tc(f)= E,x;,,,y{f(Xk)} - EtnrYff(X(tk))}

+ Et,, f f(x(fl(s + T)))} - ES,y{f(x((f(s + T)))}
+ E,y {f(x(]3(s + T)))} - rc(s+ T)(Jf)

+ C(S+ T)(.f)_ - (f) -- 0 as k -+ co

uniformly for x, y e D by Lemmas 1-3 and (A6). Combining (2.5) and (2.6)
completes the proof. [

As an illustration of our theorem, we examine the random directions version of
(1.2) that was implemented in [13]. If we could make noiseless measurements of
VU(Xk), then we could use the algorithgm

(2.7) Xk + = Xk - akVU(Xk) + bkWk

(modified as in (2.1)). Suppose that VU(Xk) is not available but we can make
noiseless measurements of U(-). If we replace VU(Xk) in (2.7) by a forward finite
difference aproximation of VU(Xk), then d + 1 evaluations of U(.) would be
required at each iteration. As an alternative, suppose that at each iteration a
direction Dk is chosen at random and we replace VU(Xk) in (2.7) by a finite
difference approximation of the directional derivative <VU(Xk), Dk>Dk in the
direction Dk, which only requires two evaluations of U(-). Conceivably, fewer
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evalutions of U(.) would be required by such a random directions algorithm to
converge. Now assume that the {Dk} are random vectors each distributed
uniformly over the surface of the (d - 1)-dimensional sphere and that Dk is
independent of X 0, WO,..., Wk_l, Do, ... , Dk_ 1. By analysis similar to that on
pp. 58-60 of [4] it can be shown that such a random directions algorithm can be
written in the form of(1.2) with E{c[klFk} = O(hk) and ~k = 0(1) where {hk} are the
finite difference intervals (hk - 0). Hence the conditions of the theorem will be
satisfied and convergence will be obtained provided hk = 0(k-Y) for some y > 0.4

Our theorem, like Kushner's [12], requires that the trajectories of {Xk} be
bounded. However, there is a version of Lemma 3 in [11] which applies with
D = ad assuming certain growth conditions on U(-). We are currently trying to
obtain versions of Lemmas 1 and 2 which also hold for D = Rd. On the other hand,
we have found that bounding the trajectories of {Xk} seems useful and even
necessary in practice. The reason is that even with the specified growth conditions
IXk tends occasionally to very large values which leads to numerical problems in
the simulation.

3. Proofs of Lemmas I and 2. Throughout this section it is convenient to make
the following assumption in place of (A4):

(A4') C2 (tk) = C/log log k, k large, where C > 0, and c 2 (.) is a piecewise linear
interpolation of {c2 (tk)}.

Note that under (A4') c2 (t) - C/log t as t -- oo, and if B/A = C, then bk = /akc(tk)
for k large enough. The results are unchanged whether we assume (A4) or (A4'). We
also assume that ak, bk, and c(t) are all bounded above by 1. In the following c1,
c2,..., denote positive constants whose value may change from proof to proof.

We start with several propositions.

PROPOSITION 1.

PlXk+ DIO¢ rD k} = 0(ak ) as k - co,

uniformly w.p.1.

PROOF. We shall show that for k large enough (and w.p.1)

(3.1) P{X l¢ D, IWkI k ik} < clak 

(3.2) P{Xkk+ ¢ D, I WkI < < c2ak , Xkl < rx,

(3.3) P{gk+ l ¢ D, I Wkl < /k k} O= 0, Xkl > r1.

Combining (3.1)-(3.3) gives the proposition.

4Note that we are assuming that VU(.) is known exactly (and points outward) in a thin annulus near
the boundary of D so that assumptions (Al) and (AS) are satisfied; this could be accomplished by using
a penalty function in a straightforward manner.
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Using a standard estimate for the tail probability of a Gaussian random variable
we have

P{Xk+l D, lWkl > lk} < d exp -- < cak2 +a w.p.1

and (3.1) is proved.
Assume IXkl < r1. Let 0 < e < r - r1. Using the fact that /kbk -O and also the

Chebyshev inequality we have for k large enough

P{Xk+ ¢ D,I Wkl < • l k}

< P{ l-ak(VU(Xk) + ~k) + bkWkf > r - r, WkI < /kJlk}

< P{akl~kl > r - r1 -- elk} • < )2 C2 a w.p.1

and (3.2) is proved.
Assume IXkl > r1. By assumption <VU(Xk), Xk> > c 3 > 0 and 5k = 0. Let

Xk = Xk + bka(Xk) Wk IWk <,Ik}. Since a( ) is Lipshitz, a(x) > 0 for Ixl < r, and
a(x) = 0 for IxI = r, we have a(x) < c4 infiyl=rlx - yI. Hence IXk - Xkf < c4,/kbk

inflyl=rlXk- yl, and since lk/bk -0 as k -+ c, we get Xk - Xk 0O as k-- oo
and also XkeD for k large enough. Now Xk - Xk -0 as k -- oo implies
<VU(Xk), Xk> > cs > 0 for k large enough. Hence Xk e D for k large implies
Xk - akVU(Xk) E D for k large. Hence for k large enough

P{Xk+ 1 B D, I Wkl < x/k I k} < P{Xk - akVU(Xk) ¢ D Ik} = 0 w.p.1

and (3.3) is proved. [I

REMARK. By Proposition 1 and the Borel-Cantelli lemma P U, k>,n{Xk e D} = 1
when c > -1.

PROPOSITION 2. For each n let {Un,,}k,n be a sequence of nonnegative numbers such
that

u,,k+l < (1 + Mak)unl, + Ma', k > n,
Un,,n < Man,

where 6 > 1, e > 0, and M > O. Then there exists a y > 1 such that

lim sup u,,k = 0.
n- oo k:tnrtk ytn
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PROOF. We may set M = 1 since ak = A/k for k large and the proof is for
arbitrary A > 0. Now

k-1 k-1 k-i

Un,k < n, n -I (1 +a)+ a a+ m H (1 + al)
I=n m=n = m+ 

k-1 · e x k)a--< Un, n + -ai ae )

since 1 + x < ex. Also Y'- am < A(log(k/n) + 1/n) and k- a m _
A(1/(6 - 1)n -1 + l/na), and if tk < ytn, then k < c1 nY. Choose y such that 1 <
y < 1 + min{d - 1, e}/A. It follows that

sup Un,k < C2 ( + 1 n(Y- )A - 0 as n - oo. [
k: t, < tk < Ytn \ n n

REMARK. Proposition 2 is used to make the long time comparisons in the proofs
of Lemmas 1 and 2. Proposition 2 does not hold if we take ak = A/k" for P < 1.

Define ~(, .) by

x(t) = x() - (t - s)(VU(x(s)) + (s, t)) + c(s)(x(s))(w(t) - w(s))

for t > s > 0.

PROPOSITION 3.

E{l,(t, t + h)12 Ix(t)} = 0(1),

E{(4t, t + h)lx(t)} = 0(h1 /2)

as h - 0, uniformly for a.e. x(t) e D and t > 0.

PROOF. We use some elementary facts about stochastic integrals and martingales
(see [15]). First write

(3.4) hi(t, t + h) = (VU(x(u)) - VU(x(t))) du
t

-- (c(u)a(x(u)) - c(t)a(x(t))) dw(u).

Now a standard result is that

Et, x{ Ix(t + h)- x(t)l 2} = O(h)

as h - 0, uniformly for x e D and t in a finite interval. In fact, under our
assumptions the estimate is uniform here for x E D and all t > 0. Let K 1, K 2 be
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Lipshitz constants for VU(.), a(.), respectively. Also note that c(.) is piecewise
continuously differentiable with bounded derivative (where it exists) and hence is
also Lipshitz continuous, say with constant K 3. Hence

(3.5) Etx{ + (VU(x(u)) - VU(x(t))) du }

< K2Et x{ {x(u) - x(t)idu)}

t+ h

< 2KUhJ E t, {x(u) x(t) 2} du = O(h3)

and

(3.6) Et x{ (c(u)a(x(u)) - c(t)(x(t)(x())) dw(u) }

- J Et x{ lc(u)a(x(u)) - c(t)a(x(t))l2} du

< 3K2 { E,,{Ix(u) - x(t)l 2} du + 3K 2 (u - t)2 du = O(h 2 )
2 t 

as h - 0, uniformly for x e D and all t > 0.. The proposition follows easily from
(3.4)-(3.6) and the fact that the second (stochastic) integral in (3.4) defines a
martingale as h varies. V]

Now in Lemma 1 we compare the distributions of Xk and x(tk). This is done most
easily by comparing Xk and x(tk) to Yk and Yk (defined below), respectively, which
are equal in distribution.

Let

Yk+ = Yk- akVU(Yk) + bka(Y,)Wk,,

Yk+ 1 = Yk+llD(Yk+1) + YklDC(Yk+1).

LEMMA 1.1. There exists y > 1 such thatfor any continuousfunction f(.) on D

lim sup (Eo,x;,,y{f(Xk)} En,y{f(Yk}) 0
n-co k:tn<tk<ytn

uniformly for x, y e D.

PROOF. Assume all quantities are conditioned on Xo = x and X, = Y, = y, with
x, y e D. Let Ak = Xk - Yk. Write

(3.7) E(IAk+ 1l 2} = E(IAk + I 21{k+ lD)UYk+'D)}

+ E IAk+l 1 21l{k+ leD} n {k+ IED}}
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We estimate the first term in (3.7) as follows. We have by Proposition 1 that

(3.8) E{IAk+ll 1f{k+D,0D}u{k+lD} < C1(P{£k+1 D} + P{Yk+l DD})
< C2ak , k > n.

We estimate the second term in (3.7) as follows. If k + 1 E D and Yk+ 1 e D, then

Ak+ = Ak - ak(VU(Yk + Ak) - VU(Yk)) + bk(a(Yk + Ak)- r(Yk))Wk - ak~k.

Hence

(3.9) E{lAk+ 1 21{_k+ l ED}n{k+l D}}

< E{Ak, - ak(VU(Yk + Ak) - VU(Yk))

+ bk(U(Yk + Ak)- a(Yk))Wk - ak4k 2 }

< E{iAk 2 } + akE{IVU(Yk + Ak)- VU(Yk) 2 }

+ akE{I(a(Yk + Ak) - a(Yk))Wk 2}

+ a2,E{Ik 1 2}

+ 2ak I E{<Ak, VU(Yk + Ak) - VU(Yk)>} I
+ 2L/2 IE{Kak, (f(Yk + Ak) - a(Yk))Wk>}

+ 2akIE{<Ak, k>} I

+ 2a,k lIE{VU(Yk + Ak)- VU(Yk), (c(Yk + Ak)- o(Yk))Wk>}f

+ 2akI E{VU(Yk + Ak) - VU(Yk), 4k>} I

+ 2a, 2 IE{<(0((Yk + Ak) - 0(k))Wk, k>}1I, k > n.

Let K 1, K 2 be Lipshitz constants for VU(-), o(.), respectively. Using the fact that
Xk, Yk and hence Ak are 'fk measurable, Wk is independent of Fk, E{Wk} 0, and

E{ IkI 2 lk} < c3as, IE{iklIk}l <• c 3af w.p. 

we have

E{IVU(Yk + Ak)- VU(Yk)12} < K2E{IAklI},

E{l(a(Yk + Ak)- a(Yk))Wkl 2} < K2dE{jAk12},

E{IklI 2} < C3a,k
IE{<Ak, VU(Yk + Ak) - VU(Yk)>}I < KlE{IAkl 2 },

IE{<Ak, (0(Yk + Ak) - a(yk))Wk>}l = 0,

IE{<Ak, k>}1 < c 3aIE{IAkl},
IE{<VU(Yk + Ak) - VU(Yk), (o(Yk + Ak) - r(Yk))Wk>}I = 0,

IE{<VU(Yk + Ak) - VU(Yk), ~k>}I < Klc3a4E{IAkl},

tE{<(((Yk + Ak) - U(Yk))Wk, 5k>} I< K 2 d/C 3aa 2gE{lAkl}
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for k > n. Substituting these expressions into (3.9) gives (after some simplification)

(3.10) E{ Ak+ 1 121{k+D) }n {k+ I ED}}

(1 + c4ak)E{lAk 12 + c4ak E{IAkI} + c3ak2 

< (1 + c4 ak)E{Ak12 } + c4akE{Ak 12}1/ 2 + C3ak

< (1 + C5ak)E{IAk 2 } + c 5a 2, k 2> n,

where 6, = min{1 + f, (3 + c)/2}>) and 52 = min{61, 2 + c} > 1 since > -1
and ,f > 0.

Now combine (3.7), (3.8), and (3.10) to get

E{lAk+l12 } < (1 + c 6ak)E{IAk2 } + c6 ak2, k > n,

E(IAnl2 } = 0

for n large enough. Applying Proposition 2 there exists y > 1 such that

(3.11) lim sup E{IAkl2} = 0.
n- oo k: t, tk < ytn

Finally, let f(.) be a continuous function on D. Since f(.) is uniformly
continuous on D, given E > 0 there exists 6 > 0 such that If(u)- f(v)l < 8
whenever lu - vl < 6 and u, v E D. Hence

IE{f(Xk)} - E{f(Yk)}I < eP{lAkl < } + 211f IIP{lAkl 2> }

8 + 2lfl E{fAk12 },

and by (3.11)

lim sup IE{f(Xk)} - E{f(Yk)}I < e,
n- oo k:tn<tk<Ytn

and letting E -,0 completes the proof. []

Let

Wk = (W(tk+l) - W(tk))/a

and

Yk+ = Yk - akVU(Yk) + bka(Yk)Wk,

Yk+1 = Yk+llD(Yk+l) + YklDC(Yk+l).
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LEMMA 1.2. There exists y > 1 such that for any continuous function f(.) on D

lim sup (Et,,y{f(x(tk))} - En,y{f(Yk)}) = 0
n- oo k:tn <tk < ytn

uniformly for y e D.

PROOF. Define { k} by

X(tk+ ) = X(tk) - ak(VU(x(tk)) + k) + bka(X(tk))WVk

Let k. be the a-field generated by {x(0), o0, ... , k-1, 0, ..., lvk 1}. It can be
shown that 'k is conditionally independent of 9k given x(tk). Hence by Proposition
3

(3.12) E{l kl2 1k} < c1, IE{Ekl&k}l < C1ak/2 w.p.1.

Henceforth assume all quantities are conditioned on x(tn) = Yn = y, y D. Let
Ak = x(tk) - Yk. Using (3.12) and proceeding similarly to the proof of Lemma 1.1
we can show with 5 = 3/2 that

E{IAk+ 1 12 } < (1 + c2ak)E{IAk 2} + c2a', k > n,

E{ I A12} = 0.

Applying Proposition 2 there exists a y > 1 such that

lim sup E{ Akf 2 } = 0.
n- oo k:tnk< ytn

The lemma follows from this. -

PROOF OF LEMMA 1. Follows immediately from Lemmas 1.1 and 1.2. D1

PROOF OF LEMMA 2. Let x(.; s, y) denote the process x(. ) emitted from y at time s.
Fix yE D, n, and sE [tn, t+ 1), and let x 1() = x(.; t,, y) and x 2(.) = x(; s, y).

Now recall that

Et, x Ix(t + h)- x(t)12} = O(h) as h 0

uniformly for x e D and all t > 0 (this is a standard result except for the uniformity
for all t which was remarked on in Proposition 3). Hence

E{ Xl(s) - X2 (s)12 } < C(S - tn) < clan.

Let Ak = Xl(tk) - x2(tk) for k > n. Similarly to the proofs of Lemmas 1.1 and 1.2 we
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can show with ( = that

E{IAk+ 1 2} < (1 + c 2ak)E{IAk2 } + c 2ab, k > n + 1,

E{lAn+1l2 } < (1 + C2(tn+1 - s))E{ Ix(s) - X2 (s)f2} + C2 (tn+l -S) (

< (1 + c2an)clan + c2an < C3 an+1

and the same inequalities hold if we take suprema over s e[t n, tn+,). Applying
Proposition 2 there exists y > 1 such that

(3.13) lim sup sup E{IAk[ 2 } 0.
n-- oo k:tn, + <tk< ytn s:tn < S<tn+ l

Note that B3(s) is a strictly increasisng function of s and s + s213 • /(s) <

s + 2s2/3 for s large enough. Hence for n large enough we can choose s such
that tn < s < tn+1 and m such that tm < P(s) < tin+ 1 and tn+l < t, < yt. Now

(3.14) E{lx1(I(s))- X2(1(s))l2 } < (1 + C2(f(S)- tm))E I {lAm 2} + c2am

< c4 sup E{lAkl2 } + c2an.
k:tn+ I <tk-

<
Ytn

Combining (3.13) and (3.14) gives

lim sup E{ I x(B(s)) - x 2(/(s))l2 = 0.
n-*ro S:tnl<S<tn+ 

The lemma follows from this. D

4. Proof of Lemma 3. The idea behind the proof of Lemma 3 is roughly as
follows. Recall that D = {x: {xI < r} and ro < r1 < r. First, we show that no matter
where x(s) is (I x(s)l < r), there exists T > 0 such that Ix(s + T)l < ro with large
probability for s large. Then we show that Ix(t)l < rl for all t e [s + T, /(s + T)]

with large probability for s large. This allows us to make use of results from [11]
which hold for a nondegenerate diffusion (o(x) = 1 for all x in (2.2)).

LEMMA 3.1. Given 6( > 0 there exists T > 0 such that

lim P.,y{lx(s + T)f < ro + c} = 1
S- c

uniformly for y < r.

PROOF. Let

i(t) = -VU(z(t)),

where z(s) = y, IYI < r. Then there exists T > 0 (where T does not depend on s
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or y) such that

(4.1) z(s + T) < r.

This follows from the fact that

Iz(t)I 2 -Iz(s)12 = -2 <VU(z(u)), z(u)> du

and <VU(z(t)), z(t)> > cl > 0 when jz(t)l > ro.
Now for z(s) = x(s) = y, IYI < r,

x(t)- z(t)l < (VU(x(u))- VU(z(u))) du + c(u)a(x(u)) dw(u)

< K Ix(u) - z(u) I du + c(u)a(x(u)) dw(u) ,

where K is a Lipshitz constant for VU(.). Hence by Gronwall's inequality

Ix(t)- z(t)I < exp(K(t- s)) sup c(u)a(x(u)) dw(u)

Hence by the Martingale inequality

(4.2) Ps, y{x(s + T)- z(s + T)l > 6}

< Ps y sup c(u)a(x(u)) dw(u) > be - KT}
s<v<s+T

< 2- lEs,y c(u)u(x(u)) dw(u)

e2KT rs+ T

=-2 JEs y( Ic(u)a(x(u))X2 } du

e2KT

< 62 Tc 2 (s) ->0 as s - o.

Combining (4.1) and (4.2) gives the lemma. O

LEMMA 3.2. Let

z = inf{t: Ix(t)l > r1}.
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Let Co < C < C 1. Then there exists 5 > 0 such that

lim Ps,y {z > /f(s)} = 1

uniformly for Yl < ro + -5.

PROOF. Let U(.) be a twice continuously differentiable function from Rd to Rd
such that for some R > r and K > 0

(x){ = U(x), Ix < r,

U(x)_ 12, Ix[ > R,

and VU(x) # 0 for r < Ixl < R (in view of (A1) such a U(.) exists). For E > 0 let

dxE(t)= -V (E(t)) dt + e dw(t)

and

T' = inf{t: ILx(t)i > r1}.

For 0 < 5 < r1 - ro let

C 2(6)= inf U(x)- sup U(x).
Ixl=rl Ixl=ro+b

On p. 750 of [11] it is shown that for any r > 0 and 5 > 0

P 0 o{,ye > exp (C 2 (5)- 1)) - 1 as e - 0,

uniformly for IYI < ro + (. Since C 2(5) -2 2C1 as 5 - 0, it follows that for any r > 0
there exists 5 > 0 such that

(4.3) Po,y{ *> exp( (2-C1 --) - 1 as --,0

uniformly for lYI < ro + .
Next let

dx(t) = -VU(x(t)) dt + c(t) dw(t)

and

z = inf{t: IZ(t)l > r1}.
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On p. 745 of [11] it is shown that

(4.4) P, yr > >/(s)} - Po,y{C(s) > S2 / 3 } - 0 as s oo

uniformly for IYl < r.
Now choose r > 0 such that

1( C1 ) > 2

and choose 3 > 0 such that (4.3) is satisfied. Hence using (4.3) and (4.4)

P,y{Y > f(s)} = Ps,y{e > 1(s)}

= Po ,y{fC(S > s 2)/3 ± (P,{ > 2 / 3 } + (P{ > (S)} - Po,yc() > 2/3})

> po,y{c<(s) > exP(2s) ( C 1 - ))+ o(1)

--->1 as s -coo

uniformly for IyI < ro + 3. l

PROOF OF LEMMA 3. Let x(. ) be defined as in the proof of Lemma 3.2. In Lemmas
1-3 of [11] it is shown that

(4.5) E,,y{f((fl(s)))} - °c(s)(f) - 0 as s -+ oo

uniformly for IYI < r. By Lemma 3.2 there exists 5 > 0 such that

(4.6) IE,y{{f(x(fl(s)))} - E,,y{f((fl(s)))}l

< IEs,y{f(x(f(s))) - f( (/3(s))), z > fl(s)}I + 2IIf IIP,y{I• < f(s)}

-0 as s-, oo

uniformly for lyl < ro + 3. Hence combining (4.5) and (4.6) and using Lemma 3.1
there exists T > 0 such that

Es,,,{f(x(,l(s + T)))} - c(s+ T )(f)]

= IES,Y{E+T,(s+ T){f(x(fl(s + T))) - c(s + T)(f) I

< s, yE,(E.+T,x(s+ T){f(X(P( S +- T))) - Ic(s+ T)(f)} 1{ix(s+ T) ro+a} I

+ 2 11 f 11 Ps, x(s + T)l > ro + 3}
-*0 as s -, oo

uniformly for IyI < r. Cl
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