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Abstract
Our newly developing theory of bidimensional graph problems provides general techniques
for designing efficient fixed-parameter algorithms and approximation algorithms for NP-
hard graph problems in broad classes of graphs. This theory applies to graph problems
that are bidimensional in the sense that (1) the solution value for the k x k grid graph (and
similar graphs) grows with k, typically as Q(k2 ), and (2) the solution value goes down when
contracting edges and optionally when deleting edges. Examples of such problems include
feedback vertex set, vertex cover, minimum maximal matching, face cover, a series of vertex-
removal parameters, dominating set, edge dominating set, r-dominating set, connected
dominating set, connected edge dominating set, connected r-dominating set, and unweighted
TSP tour (a walk in the graph visiting all vertices). Bidimensional problems have many
structural properties; for example, any graph embeddable in a surface of bounded genus
has treewidth bounded above by the square root of the problem's solution value. These
properties lead to efficient-often subexponential-fixed-parameter algorithms, as well as
polynomial-time approximation schemes, for many minor-closed graph classes. One type
of minor-closed graph class of particular relevance has bounded local treewidth, in the
sense that the treewidth of a graph is bounded above in terms of the diameter; indeed, we
show that such a bound is always at most linear. The bidimensionality theory unifies and
improves several previous results. The theory is based on algorithmic and combinatorial
extensions to parts of the Robertson-Seymour Graph Minor Theory, in particular initiating
a parallel theory of graph contractions. The foundation of this work is the topological theory
of drawings of graphs on surfaces and our results regarding the relation (the linearity) of
the size of the largest grid minor in terms of treewidth in bounded-genus graphs and more
generally in graphs excluding a fixed graph H as a minor.

In this thesis, we also develop the algorithmic theory of vertex separators, and its
relation to the embeddings of certain metric spaces. Unlike in the edge case, we show
that embeddings into L1 (and even Euclidean embeddings) are insufficient, but that the
additional structure provided by many embedding theorems does suffice for our purposes.
We obtain an O( lo-gn) approximation for min-ratio vertex cuts in general graphs, based
on a new semidefinite relaxation of the problem, and a tight analysis of the integrality gap
which is shown to be O('Iogn). We also prove various approximate max-flow/min-vertex-
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cut theorems, which in particular give a constant-factor approximation for min-ratio vertex
cuts in any excluded-minor family of graphs. Previously, this was known only for planar
graphs, and for general excluded-minor families the best-known ratio was O(log n). These
results have a number of applications. We exhibit an O(Vlo/g) pseudo-approximation for
finding balanced vertex separators in general graphs. Furthermore, we obtain improved
approximation ratios for treewidth: In any graph of treewidth k, we show how to find a tree
decomposition of width at most O(kx/lg-k), whereas previous algorithms yielded O(k log k).
For graphs excluding a fixed graph as a minor, we give a constant-factor approximation
for the treewidth; this via the bidimensionality theory can be used to obtain the first
polynomial-time approximation schemes for problems like minimum feedback vertex set
and minimum connected dominating set in such graphs.

Thesis Supervisor: Erik D. Demaine
Title: Associate Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction and Overview

The newly developing theory of bidimensional graph problems, developed in a series of

papers [74, 72, 64, 65, 63, 66, 62, 73, 71, 70], provides general techniques for designing

efficient fixed-parameter algorithms and approximation algorithms for NP-hard graph

problems in broad classes of graphs. This theory applies to graph problems that are

bidimensional in the sense that (1) the solution value for the k x k grid graph (and

similar graphs) grows with k, typically as Q(k2), and (2) the solution value goes

down when contracting edges and optionally when deleting edges. Examples of such

problems include feedback vertex set, vertex cover, minimum maximal matching, face

cover, a series of vertex-removal parameters, dominating set, edge dominating set, R-

dominating set, connected dominating set, connected edge dominating set, connected

R-dominating set, and unweighted TSP tour (a walk in the graph visiting all vertices).

Bidimensional problems have many structural properties; for example, any graph

in an appropriate minor-closed class has treewidth bounded above in terms of the

problem's solution value, typically by the square root of that value. These proper-

ties lead to efficient-often subexponential-fixed-parameter algorithms, as well as

polynomial-time approximation schemes, for many minor-closed graph classes. One

type of minor-closed graph class of particular relevance has bounded local treewidth,

in the sense that the treewidth of a graph is bounded above in terms of the diameter;

indeed, such a bound is always at most linear.

The bidimensionality theory unifies and improves several previous results. The
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theory is based on algorithmic and combinatorial extensions to parts of the Robertson-

Seymour Graph Minor Theory, in particular initiating a parallel theory of graph

contractions. The foundation of this work is the topological theory of drawings of

graphs on surfaces.

This chapter is organized as follows. We start with our graph terminology in

Section 1.1. Section 1.2 defines the various graph classes of increasing generality

to which bidimensionality theory applies. Section 1.3 describes several structural

properties of graphs in these classes, in particular from Graph Minor Theory, that

form the basis of bidimensionality. Section 1.4 defines bidimensional parameters and

problems and gives some examples. Section 1.5 describes one of the main structural

properties of bidimensionality, namely, that the treewidth is bounded in terms of the

parameter value. Sections 1.6-1.11 describe several consequences of bidimensionality

theory: separator theorems, bounds on local treewidth, fixed-parameter algorithms,

and polynomial-time approximation schemes. Finally in Section 1.12, we describe the

structure of this thesis.

1.1 Graph Terminology

We assume the reader is familiar with general concepts of graph theory such as graphs,

trees, and planar graphs. The reader is referred to standard references for appropriate

background [40]. For exact definitions of various NP-hard problems in this paper, the

reader is referred to Garey and Johnson's seminal book [99]. Here we review a few

terms used in this thesis; others will be defined in the context of their use.

Throughout this thesis, all graphs are finite, simple, and undirected, unless in-

dicated otherwise. A graph G is represented by G = (V, E), where V (or V(G)) is

the set of vertices and E (or E(G)) is the set of edges; we use n to denote IVI when

G is clear from context. An edge e in a graph G between u and v is denoted by

{u, v} or, equivalently, {v, u}. Here, vertices u and v are called the endpoints of e.

A graph G' = (V', E') is a subgraph of G if V' C V and E' C E, and is an induced

subgraph of G, denoted by G[V'], if in addition E' contains all edges of E that have

14



both endpoints in V'. The (disjoint) union of two disjoint graphs G1 and G2, G1 UG2,

is a graph G formed by merging vertex and edge sets, so that V(G) = V(G 1) U V(G 2)

and E(G) = E(G1) U E(G2).

We define the r-neighborhood of a set S C V(G), denoted by Ne(S), to be the set

of vertices at distance at most r from at least one vertex of S C V(G); if r = 1, we

simply use the notation NG(S) and if S = {v}, we simply use the notation N~(v).

We also define NG[v] = NG(v) - {v}. The diameter of G, denoted by diam(G), is

the maximum over all distances between pairs of vertices of G. An n-clique (Kn)

is an n-vertex graph in which every pair of vertices is connected by an edge. The

vertices of the graph Kn,m can be partitioned into sets V1 and V2 such that IV I = n,

IV21 = m, and the edge set consists of all edges {u, v} such that u E V1 and v E V2.

A graph G = (V, E) is k-connected if for any S C V(G) such that SI < k, G[V - S]

is connected.

1.2 Graph Classes

In this section, we introduce several families of graphs, each playing an important role

in both the Graph Minor Theory and the bidimensionality theory. Refer to Figure

1-1. All of these graph classes are generalizations of planar graphs, which are well-

studied in algorithmic graph theory. Unlike planar graphs and map graphs, every

other class of graphs we consider can include any particular graph G; of course, this

inclusion requires a bound or excluded minor large enough depending on G. This

property distinguishes this line of research from other work considering exclusion of

particular minors, e.g., K3, 3, K5 , or K 6.

1.2.1 Definitions of Graph Classes

The first three classes of graphs relate to embeddings on surfaces. A graph is planar

if it can be drawn in the plane (or the sphere) without crossings. A graph has genus

15



Figure 1-1: Interesting classes of graphs. Arrows point from more specific classes to
more inclusive classes.

at most g if it can be drawn in an orientable surface of genus g without crossings.l A

class of graphs has bounded genus if every graph in the class has genus at most g for

a fixed g.

Given an embedded planar graph and a two-coloring of its faces as either nations

or lakes, the associated map graph has a vertex for each nation and an edge between

two vertices corresponding to nations (faces) that share a vertex. The dual graph is

defined similarly, but with adjacency requiring a shared edge instead of just a shared

vertex. Map graphs were introduced by Chen, Grigni, and Papadimitriou [58] as a

generalization of planar graphs that can have arbitrarily large cliques. Thorup [162]

gave a polynomial-time algorithm for constructing the underlying embedded planar

graph and face two-coloring for a given map graph, or determining that the given

graph is not a map graph.

We view the class of map graphs as a special case of taking fixed powers of a

family of graphs. The kth power Gk of a graph G is the graph on the same vertex set

V(G) with edges connecting two vertices in Gk precisely if the distance between these

vertices in G is at most k. For a bipartite graph G with bipartition V(G) = U U W,

the half-square G2 [U] is the graph on one side U of the partition, with two vertices

adjacent in G2 [U] precisely if the distance between these vertices in G is 2. A graph is

1 This definition also includes graphs that can be drawn in non-orientable surfaces of low genus,
because if a graph has non-orientable genus g, then it has orientable genus at most 2g.
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a map graph if and only if it is the half-square of some planar bipartite graph [58]. In

fact, this translation between map graphs and half-squares is constructive and takes

polynomial time.

The next three classes of graphs relate to excluding minors. Given an edge e =

{v, w} in a graph G, the contraction of e in G is the result of identifying vertices v and

w in G and removing all loops and duplicate edges (the resulting graph is denoted

by G/e). A graph H obtained by a sequence of such edge contractions starting from

G is said to be a contraction of G. A graph H is a minor of G if H is a subgraph of

some contraction of G. We use the notation H < G (resp. H _c G) for H is a minor

(a contraction) of G. A graph class C is minor-closed if any minor of any graph in C

is also a member of C. A minor-closed graph class C is H-minor-free if H , C. More

generally, we use the term "H-minor-free" to refer to any minor-closed graph class

that excludes some fixed graph H.

A single-crossing graph is a minor of a graph that can be drawn in the plane with

at most one pair of edges crossing. Note that a single-crossing graph may not itself

be drawable with at most one crossing pair of edges; see Section 2.1. Such graphs

were first defined by Robertson and Seymour [142]. A minor-closed graph class is

single-crossing-minor-free if it excludes a fixed single-crossing graph.

An apex graph is a graph in which the removal of some vertex leaves a planar

graph. A graph class is apex-minor-free if it excludes some fixed apex graph. Such

graph classes were first considered by Eppstein [85, 87], in connection to the notion

of bounded local treewidth as described in Section 1.7.

The next section describes strong structural properties of the last three classes of

graphs (minor-excluding classes) in terms of the first two classes of graphs (embed-

dable on surfaces) and other ingredients.

1.3 Structural Properties

Graphs from single-crossing-minor-free and H-minor-free graph classes have powerful

structural properties from the Graph Minor Theory. First we need to define treewidth,
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pathwidth, and clique sums.

1.3.1 Background

Treewidth: Many difficult graph problems can be solved efficiently when the input

is restricted to graphs of bounded treewidth (see e.g., Bodlaender's survey [31]). The

notion of treewidth first was introduced by Robertson and Seymour [143]. To define

this notion, first we consider a representation of a graph as a tree, called a tree

decomposition. Precisely, a tree decomposition of a graph G = (V, E) is a pair (T, X)

in which T = (I, F) is a tree and X = {XiI i E I} is a family of subsets of V(G) such

that

1. UiE Xi = v;

2. for each edge e = {u, v} E E, there exists an i E I such that both u and v

belong to Xi; and

3. for all v E V, the set of nodes {i E I I v E Xi} forms a connected subtree of T.

To distinguish between vertices of the original graph G and vertices of T in the tree

decomposition, we call vertices of T nodes and their corresponding Xi's bags. The

width of the tree decomposition is the maximum size of a bag in X minus 1. The

treewidth of a graph G, denoted by tw(G), is the minimum width over all possible

tree decompositions of G. A tree decomposition is called a path decomposition if

T = (I, F) is a path. The pathwidth of a graph G, denoted pw(G), is the minimum

width over all possible path decompositions of G.

A graph of bounded treewidth is a graph of treewidth at most k, for k a constant

independent of the size of the graph. A related notion is that of a k-tree [152], a

graph G such that either G is a k-clique or G has a vertex u of degree k such that

u is adjacent to a k-clique, and the graph obtained by deleting u and all its incident

edges is a k-tree. It has been shown that for any k, the class of graphs of treewidth at

most k is equivalent to the class of partial k-trees, that is, subgraphs of k-trees [127].
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h

G =G 1 G2

Figure 1-2: Example of a 5-sum of two graphs.

Clique sum: The notion of clique sums goes back to characterizations of K3,3-

minor-free and K5-minor-free graphs by Wagner [164] and serves as an important

tool in the Graph Minor Theory. Suppose G1 and G2 are graphs with disjoint vertex

sets and let k > 0 be an integer. For i = 1, 2, let Wi C V(Gi) form a clique of size k

and let G' be obtained from Gi by deleting some (possibly no) edges from the induced

subgraph Gi[Wi] with both endpoints in Wi. Consider a bijection h: W1 -+ W2. We

define a k-sum G of G1 and G2, denoted by G = G1 EDk G2 or simply by G = G1 G2,

to be the graph obtained from the union of G' and G' by identifying w with h(w) for

all w E W1. The images of the vertices of W1 and W2 in G1 Ok G2 form the join set.

Note that each vertex v of G has a corresponding vertex in G1 or G2 or both. It

is also worth mentioning that is not a well-defined operator: it can have a set of

possible results. More specifically, the result of ® will depend on which (if any) edges

are removed from the cliques as well as which bijection is selected, so the operation

o can have a set of possible results, and hence is not well-defined. A series of k-sums

(not necessarily unique) that generate a graph G is called a decomposition of G into

clique-sum operations.

Figure 1-2 demonstrates an example of a 5-sum operation.
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The reader is referred to [77] to see more results on clique-sum classes.

1.3.2 Structure of Single-Crossing-Minor-Free Graphs

The structure of single-crossing-minor-free graphs can be described as follows:

Theorem 1.1 ([142]). For any fixed single-crossing graph H, every H-minor-free

graph can be obtained by a sequence of k-sums, 0 < k < 3, of planar graphs and

graphs of bounded treewidth, where the bound on treewidth depends on H.

This theorem generalizes characterizations of K3,3-minor-free and K5-minor-free

graphs [164]. A graph is K3,3-minor-free if and only if it can be obtained by k-sums,

0 < k < 2, of planar graphs and K 5. A graph is K5-minor-free if and only if it can

be obtained by k-sums, 0 k < 3, of planar graphs and V8 (the length-8 cycle C8

together with eight edges joining diametrically opposite vertices).

This structural property of single-crossing-minor-free graphs has since been strength-

ened to ensure that the summands are minors of the original graph and to provide

algorithms for finding the decomposition:

Theorem 1.2 ([72], see also Chapter 2). For any fixed single-crossing graph H, there

is an O(n4)-time algorithm to compute, given an H-minor-free graph G, a decom-

position of G as a sequence of k-sums, 0 k < 3, of planar graphs and graphs of

bounded treewidth (where the bound on treewidth depends on H), each of which is a

minor of G.

1.3.3 Structure of H-Minor-Free Graphs

The structure of H-minor-free graphs is described by a deep theorem of Robertson

and Seymour [149]. Intuitively, their theorem says that, for every graph H, every

H-minor-free graph can be expressed as a "tree structure" of pieces, where each piece

is a graph that can be drawn in a surface in which H cannot be drawn, except

for a bounded number of "apex" vertices and a bounded number of "local areas of

non-planarity" called vortices. Here the bounds depend only on H.
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Roughly speaking, we say that a graph G is h-almost embeddable in a surface S if

there exists a set X of size at most h of vertices, called apex vertices or apices, such

that G - X can be obtained from a graph Go embedded in S by attaching at most h

graphs of pathwidth at most h to Go within h faces in an orderly way. More precisely,

a graph G is h-almost embeddable in S if there exists a vertex set X of size at most

h (the apices) such that G - X can be written as Go U G1 U .. U Gh, where

1. Go has an embedding in S;

2. the graphs Gi, called vortices, are pairwise disjoint;

3. there are faces F1,..., F of Go in S, and there are pairwise disjoint disks

D1,. . ., Dh in S, such that for i = 1,.. h, Di C Fi and Ui := V(Go)n V(Gi) =

V(Go) n Di; and

4. the graph Gi has a path decomposition (Bu)UEU, of width less than h, such that

u E Bu for all u E Ui. The sets Bu are ordered by the ordering of their indices

u as points along the boundary cycle of face Fi in Go.

An h-almost embeddable graph is apex-free if the set X of apices is empty.

Now, the deep result of Robertson and Seymour is as follows:

Theorem 1.3 ([149]). For every graph H, there exists an integer h > 0 depending

only on V(H)I such that every H-minor-free graph can be obtained by at most h-

sums of graphs that are h-almost-embeddable in some surfaces in which H cannot be

embedded.

In particular, if H is fixed, any surface in which H cannot be embedded has

bounded genus. Thus, the summands in the theorem are h-almost-embeddable in

bounded-genus surfaces.

Another way to view Theorem 1.3 is that every H-minor-free graph G has a

tree decomposition (T, X) such that, for each node i E V(T), the induced subgraph

G[Xi] augmented with additional edges to form a clique on the vertices that overlap

with the parent's bag, and a clique on the vertices that overlap with each child's
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bag, is h-almost-embeddable in a bounded-genus surface. (This augmented graph is

called the torso [Xi] in, e.g., [103, 81].) The intersections between bag Xi and its

parent's bag, and with each child's bag, correspond to the join sets in the clique-sum

decomposition. Our development primarily follows the original clique-sum viewpoint

of Robertson and Seymour, but we will also occasionally view the sums as being

organized into the tree T.

Theorem 1.3 is very general and appeared in print only recently. However already

several nice applications (see e.g. [39, 103, 75]) are known.

As observed by Seymour [154], the constructive proof of Theorem 1.3 in [149] also

establishes the following algorithmic result. (Grohe [103] also shows how to obtain a

similar result using Robertson and Seymour's theorem that every minor-closed class

of graphs has a polynomial-time membership test [149].)

Theorem 1.4. [149, 154] For any graph H, there is an algorithm with running time

n ° (1 ) that either computes a clique-sum decomposition as in Theorem 1.3 for any

given H-minor-free graph G, or outputs that G is not H-minor-free. The exponent

in the running time depends on H.

1.3.4 Structure of Apex-Minor-Free Graphs

Apex-minor-free graph classes are an important subfamily of H-minor-free graph

classes. The general structural theorem for H-minor-free graphs applies in this con-

text as well. However, reductions developed in [66] suggest that the decomposition

can be restricted to a particular form in the apex-minor-free case:

Conjecture 1.5 ([66]). For every graph H, there is an integer h > 0 depending only

on IV(H)I such that every H-minor-free graph can be obtained by at most h-sums of

graphs that are h-almost-embeddable in some surfaces in which H cannot be embedded

and whose apices are connected via edges only to vertices within vortices.
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1.3.5 Grid Minors

The r x r grid is the canonical planar graph of treewidth O(r). In particular, an

important result of Robertson, Seymour, and Thomas [151] is that every planar graph

of treewidth w has an Q(w) x Q(w) grid graph as a minor. Thus every planar graph

of large treewidth has a grid minor certifying that its treewidth is almost as large (up

to constant factors). Recently, this result has been generalized to any H-minor-free

graph class:

Theorem 1.6 ([71], see also Chapter 8). For any fixed graph H, every H-minor-free

graph of treewidth w has an Q(w) x Q(w) grid as a minor.

Thus the r x r grid is the canonical H-minor-free graph of treewidth O(r) for any

fixed graph H. This result is also best possible up to constant factors. Chapter 8

discusses the remaining issue of bounding the constant factor and its dependence

on H.

A similar but weaker bound plays an important role in the Graph Minor Theory

[144]: for any fixed graph H and integer r > 0, there is an integer w > 0 such that

every H-minor-free graph with treewidth at least w has an r x r grid graph as a minor.

This result has been re-proved by Robertson, Seymour, and Thomas [151], Reed [141],

and Diestel, Jensen, Gorbunov, and Thomassen [80]. Among these proofs, the best

known bound on w in terms of r is that every H-minor-free graph of treewidth larger

than 2051V(H)13r has an r x r grid as a minor [151]. Theorem 1.6 therefore offers an

exponential (and best possible) improvement over previous results.

Theorem 1.6 cannot be generalized to arbitrary graphs: Robertson, Seymour, and

Thomas [151] proved that some graphs have treewidth Q(r2 lg r) but have grid minors

only of size O(r) x O(r). The best known relation for general graphs is that having

treewidth more than 202r5 implies the existence of an r x r grid minor [151]. The best

possible bound is believed to be closer to (r 2 Ig r) than 2 (r5), perhaps even equal

to O(r 2 g r) [151]. In fact, we [69] conjecture that the correct bound is O(r3 ).
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1.4 Bidimensional Parameters/Problems

Bidimensionality has been introduced and developed in a series of papers [74, 72, 64,

65, 63, 66, 62, 73, 71, 70]. Although implicitly hinted at in [74, 72, 64, 65], the first

use of the term "bidimensional" was in [63].

First we define "parameters" as an alternative view on optimization problems. A

graph parameter P (or just a parameter P, when it clear in the context) is a function

mapping graphs to nonnegative integers. The decision problem associated with P

asks, for a given graph G and nonnegative integer k, whether P(G) k. Many

optimization problems can be phrased as such a decision problem about a graph

parameter P.

Now we can define bidimensionality. A parameter is g(r)-bidimensional (or just

bidimensional) if it is at least g(r) in an r x r "grid-like graph" and if the parame-

ter does not increase when taking either minors (g(r)-minor-bidimensional) or con-

tractions (g(r)-contraction-bidimensional). The exact definition of "grid-like graph"

depends on the class of graphs allowed and whether we are considering minor- or

contraction-bidimensionality. For minor-bidimensionality and for any H-minor-free

graph class, the notion of a "grid-like graph" is defined to be the r x r grid, i.e., the

planar graph with r2 vertices arranged on a square grid and with edges connecting

horizontally and vertically adjacent vertices. For contraction-bidimensionality, the

notion of a "grid-like graph" is as follows:

1. For planar graphs and single-crossing-minor-free graphs, a "grid-like graph" is

an r x r grid partially triangulated by additional edges that preserve planarity.

2. For bounded-genus graphs, a "grid-like graph" is such a partially triangulated

r x r grid with up to genus(G) additional edges ("handles").

3. For apex-minor-free graphs, a "grid-like graph" is an r x r grid augmented with

additional edges such that each vertex is incident to 0(1) edges to nonboundary

vertices of the grid. (Here 0(1) depends on the excluded apex graph.)

Contraction-bidimensionality is so far undefined for H-minor-free graphs (or general
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graphs).2

Examples of bidimensional parameters include the number of vertices, the diam-

eter, and the size of various structures such as feedback vertex set, vertex cover,

minimum maximal matching, face cover, a series of vertex-removal parameters, dom-

inating set, edge dominating set, R-dominating set, connected dominating set, con-

nected edge dominating set, connected R-dominating set, and unweighted TSP tour

(a walk in the graph visiting all vertices). (See [63, 62] for arguments of either

contraction- or minor-bidimensionality for the above parameters.) We also say that

the corresponding optimization problems based on these parameters, e.g., finding the

minimum-size dominating set, are bidimensional. With the exception of diameter, all

of these bidimensional problems are O(r 2)-bidimensional, which is the most common

case (and in some papers used as the definition of bidimensionality). Diameter is the

main exception, being only O(r)-contraction-bidimensional for planar graphs, single-

crossing-minor-free graphs, and bounded-genus graphs, and only (lg r)-contraction-

bidimensional for apex-minor-free graphs.

1.5 Parameter-Treewidth Bounds

The genesis of bidimensionality was in fact the notion of a parameter-treewidth bound.

A parameter-treewidth bound is an upper bound f(P(G)) on the treewidth of a graph

with parameter P. Given a graph parameter P, we say that a graph family F has

the parameter-treewidth property for P if there is a strictly increasing function f such

that every graph G E F has treewidth at most f(P(G)). In many cases, f(k) can

even be shown to be sublinear in k, often O(vi), where k = P(G) for a graph G.

Parameter-treewidth bounds have been established for many parameters and graph

classes; see, e.g., [2, 116, 93, 6, 50, 123, 107, 64, 72, 74, 62, 66, 63]. Essentially

all of these bounds can be obtained from the theory of bidimensional parameters.

Thus bidimensionality is the most powerful method so far for establishing parameter-

2For the parameters to which we have applied bidimensionality, contraction-bidimensionality does
not seem to extend beyond apex-minor-free graphs, but perhaps a suitably extended definition could
be found in the context of different applications or a "theory of graph contractions".
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treewidth bounds, encompassing all such previous results for H-minor-free graphs.

The central result in bidimensionality that generalizes these bounds is that every

bidimensional parameter has a parameter-treewidth bound, in its corresponding fam-

ily of graphs as defined in Section 1.4. More precisely, we have the following result:

Theorem 1.7 ([71, 62], see also Chapters 8 and 7). If the parameter P is g(r)-

bidimensional, then for every graph G in the family associated with the parameter P,

tw(G) = O(g- 1(P(G))). In particular, if g(r) = O(r2), then the bound becomes

tw(G) =O(PG).

This theorem is based on the grid-minor bound from Theorem 1.6 and the proof of

a weaker parameter-treewidth bound, tw(G) = (g-1(p(G)))(9S-(P(G))), established

in [62] (see also Chapter 7). The stronger bound of tw(G) = O(g- 1 (P(G))) was

obtained first for planar graphs [64](see also Chapter 4), then single-crossing-minor-

free graphs [74, 72](see also Chapters 2 and 3), then bounded-genus graphs [63, 73]

(see also Chapter 5), and finally apex-minor-free graphs for contraction-bidimensional

parameters and H-minor-free graphs for minor-bidimensional parameters [71] (The-

orem 1.7 above).

We can extend the definition of g(r)-minor-bidimensionality to general graphs

by again defining a "grid-like graph" to be the r x r grid. Still we can obtain a

parameter-treewidth bound [151, 68], but the bound is weaker: tw(G) = 2(9-1 ( ))5

1.6 Separator Theorems

If we apply the parameter-treewidth bound of Theorem 1.7 to the parameter of the

number of vertices in the graph, which is minor-bidimensional with g(r) = r2, then we

immediately obtain the following (known) bound on the treewidth of an H-minor-free

graph:

Theorem 1.8 ([9, Proposition 4.5], [103, Corollary 24], [71]). For any fixed graph H,

every H-minor-free graph G has treewidth O( I/V(G)).
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A consequence of this result is that every vertex-weighted H-minor-free graph

G has a vertex separator of size O(v/V(G)I) whose removal splits the graph into

two parts each with weight at most 2/3 of the original weight [9, Theorem 1.2].

This generalization of the classic planar separator theorem has many algorithmic

applications; see e.g. [9, 5]. Also, this result shows that the structural properties

of H-minor-free graphs given by Theorem 1.3 are powerful enough to conclude that

these graphs have small separators, which we expect from such a strong theorem.

Chapter 8 discusses the issue of how tight a lead constant can be obtained in such

a result.

1.7 Local Treewidth

Eppstein [87] introduced the diameter-treewidth property for a class of graphs, which

requires that the treewidth of a graph in the class is upper bounded by a function of

its diameter. He proved that a minor-closed graph family has the diameter-treewidth

property precisely if the graph family excludes some apex graph. In particular, he

proved that any graph in such a family with diameter D has treewidth at most 220().

(A simpler proof of this result was obtained in [65] (see also Chapter 6).)

If we apply the parameter-treewidth bound of Theorem 1.7 to the diameter pa-

rameter, which is contraction-bidimensional with g(r) = O(lg r) [65], then we imme-

diately obtain the following stronger diameter-treewidth bound for apex-minor-free

graphs:

Theorem 1.9 ([71], see also Chapter 8). For any fixed apex graph H, every H-minor-

free graph of diameter D has treewidth 20(D) .

This theorem is not the best possible. In some sense it is necessarily limited be-

cause it still does not exploit the full structure of H-minor-free graphs from Theorem

1.3. The difficulty is that, in a grid-like graph, the 0(1) edges from a vertex to non-

boundary vertices can accumulate to make the diameter small. However, it is possible

to show that, effectively, not too many vertices can have such edges. This fact comes
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from the property that there are a bounded number of apices in the clique sum de-

composition of Theorem 1.3, and in an apex-minor-free graph, each apex cannot have

more than a bounded number of edges to "distant" vertices. Based on this fact, a

complicated proof establishes the following even stronger diameter-treewidth bound

in apex-minor-free graphs:

Theorem 1.10 ([66]). For any fixed apex graph H, every H-minor-free graph of

diameter D has treewidth O(D).

This diameter-treewidth bound is the best possible up to constant factors. Thus

this theorem establishes that, in minor-closed graph families, having any diameter-

treewidth bound is equivalent to having a linear diameter-treewidth bound. As men-

tioned before, no minor-closed graph families beyond apex-minor-free graphs can have

any diameter-treewidth bound. Theorem 1.10 is therefore the ultimate characteriza-

tion of diameter-treewidth bounds in minor-closed graph families (up to constant

factors).

The proof of Theorem 1.10 is the basis for Conjecture 1.5. In fact, Theorem 1.10

would not be hard to prove assuming Conjecture 1.5.

The diameter-treewidth property has been used extensively in a slightly modified

form called the bounded-local-treewidth property, which requires that the treewidth of

any connected subgraph of a graph in the class is upper bounded by a function of its

diameter. For minor-closed graph families, these two properties are identical. Graphs

of bounded local treewidth have many similar properties to both planar graphs and

graphs of bounded treewidth, two classes of graphs on which many problems are

substantially easier. In particular, Baker's approach for polynomial-time approxi-

mation schemes (PTASs) on planar graphs [23] applies to this setting. As a result,

PTASs are known for hereditary maximization problems such as maximum indepen-

dent set, maximum triangle matching, maximum H-matching, and maximum tile

salvage; for minimization problems such as minimum vertex cover, minimum domi-

nating set, minimum edge-dominating set; and for subgraph isomorphism for a fixed

pattern [72, 87, 110]. Graphs of bounded local treewidth also admit several efficient
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fixed-parameter algorithms. In particular, Frick and Grohe [96] give a general frame-

work for deciding any property expressible in first-order logic in graphs of bounded

local treewidth. Theorem 1.10 substantially improves the running time of these algo-

rithms, in particular improving the running time of the PTASs from 2220(1/) n ° (1 ) to

2°(l/e)nO(l), where n is the number of vertices in the graph.

1.8 Subexponential Fixed-Parameter Algorithms

A fixed-parameter algorithm is an algorithm for computing a parameter P(G) of a

graph G whose running time is h(P(G)) no(M) for some function h. The exponent O(1)

must be independent of G; thus the exponentiality of the algorithm is bounded by

the parameter P(G), and the dependence on n is only polynomial. A typical function

h for many fixed-parameter algorithms is h(k) = 20(k). In the last six years, several

researchers have obtained exponential speedups in fixed-parameter algorithms in the

sense that the h function reduces exponentially, e.g., to 2 ° (`). For example, the

first fixed-parameter algorithm for finding a dominating set of size k in planar graphs

[3] has running time 0(8kn); subsequently, a sequence of subexponential algorithms

and improvements have been obtained, starting with running time 0(46¥3n) [2],

then 0(2274n) [116], and finally O(215.'13Jvk + n 3 + k4 ) [93]. Other subexponential

algorithms for other domination and covering problems on planar graphs have also

been obtained [2, 6, 50, 123, 107].

All subexponential fixed-parameter algorithms developed so far are based on show-

ing a sublinear parameter-treewidth bound and then using an algorithm whose run-

ning time is singly exponential in treewidth and polynomial in problem size. As men-

tioned in Section 1.5, essentially all sublinear treewidth-parameter bounds proved so

far can be obtained through bidimensionality. Theorem 1.7 and the techniques of

[62] yield the following general result for designing subexponential fixed-parameter

algorithms:

Theorem 1.11 ([71, 62], see also Chapters 8 and 7). Consider a g(r)-bidimensional

parameter P that can be computed on a graph G in h(w) no() time given a tree
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decomposition of G of width at most w. Then there is an algorithm computing P on

any graph G in P's corresponding graph class, with running time [h(O(g-l(k))) +

2°(9-(k))] n° (1) . In particular, if g(r) = E)(r2 ) and h(w) = 20(w2), then this running

time is subexponential in k.

In particular, this result gives subexponential fixed-parameter algorithms for many

bidimensional parameters, including feedback vertex set, vertex cover, minimum max-

imal matching, a series of vertex-removal parameters, dominating set, edge dominat-

ing set, R-dominating set, clique-transversal set, connected dominating set, connected

edge dominating set, connected R-dominating set, and unweighted TSP tour.

For minor-bidimensional parameters, these algorithms apply to all H-minor-free

graphs. The next section describes to what extent these algorithms can be extended

to general graphs.

For contraction-bidimensional parameters, these algorithms apply to apex-minor-

free graphs. On the other hand, subexponential fixed-parameter algorithms can be

obtained for dominating set, which is contraction-bidimensional, on H-minor-free

graphs [63] (see also Chapter 5), map graphs [64] (see also Chapter 4), and fixed

powers of planar graphs (or even fixed powers of H-minor-free graphs) [64, 63]. These

algorithms are necessarily more complicated than those produced from Theorem 1.11,

because apex-minor-free graphs are precisely the minor-closed graph classes for which

domatinating set has a parameter-treewidth bound [62] (see Chapter 7). An intriguing

open question is whether these techniques can be extended to other contraction-

bidimensional problems than dominating set, for fixed powers of H-minor-free graphs

and/or other classes of graphs.

1.9 Fixed-Parameter Algorithms for General Graphs

As mentioned in Section 1.5, minor-bidimensionality can be defined for general graphs

as well. In this section we show how the bidimensionality theory in this case leads to

a general class of fixed-parameter algorithms.

A major result from the Graph Minor Theory (in particular [147, 150]) is that
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every minor-closed graph property is characterized by a finite set of forbidden minors.

More precisely, for any property P on graphs such that a graph having property P

implies that all its minors have property P, there is a finite set {(H, H2,... , Hh of

graphs such that a graph G has property P if and only if G does not have Hi as a

minor for all i = 1,2,..., h. The algorithmic consequence of this result is that there

exists an O(n3 )-time algorithm to decide any fixed minor-closed graph property, by

finitely many calls to an O(n3 )-time minor test [147]. This consequence has been

used to show the existence of polynomial-time algorithms for several graph problems,

some of which were not previously known to be decidable [91].

However, all of these algorithmic results (except the minor test) are nonconstruc-

tive: we are guaranteed that efficient algorithms exist, but are not told what they

are. The difficulty is that we know that a finite set of forbidden minors exists, but

lack "a means of identifying the elements of the set, the cardinality of the set, or even

the order of the largest graph in the set" [91]. Indeed, there is a mathematical sense

in which any proof of the finite-forbidden-minors theorem must be nonconstructive

[97].

We can apply these graph-minor results to prove the existence of algorithms to

compute parameters, provided the parameters never increase when taking a minor.

For any fixed parameter and any fixed k > 0, there is an O(n3)-time algorithm that

decides whether a graph has parameter value k. Unfortunately, the existence of

these algorithms does not necessarily imply the existence of a single fixed-parameter

algorithm that works for all k > 0, because the algorithms for individual k (in par-

ticular the set of forbidden minors) might be uncomputable. We do not even know

an upper bound on the running time of these algorithms as a function of n and k,

because we do not know the dependence of the size of the forbidden minors on k.

In [68], fixed-parameter algorithms are constructed for nearly all parameters that

never increase when taking a minor, with explicit time bounds in terms of n and k.

Essentially, by assuming a few very common properties of the parameter, we obtain

the generalized form of minor-bidimensionality.

Theorem 1.12 ([68]). Consider a parameter P that is positive on some g x g grid,
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never increases when taking minors, is at least the sum over the connected components

of a disconnected graph, and can be computed in h(w) n o (1 ) time given a width-w tree

decomposition of the graph. Then there is an algorithm that decides whether P is at

most k on a graph with n vertices in [22 °(g )5 + h(20(gV )5)] n0 () time.

As mentioned in [68], a conjecture of Robertson, Seymour, and Thomas [151]

would improve the running time to h(O(k lg k)) n° ( ) , which is 20(klgk)n ° (1) for the

typical case of h(w) = 2°( w). This conjectured time bound almost matches the fastest

known fixed-parameter algorithms for several parameters, e.g., feedback vertex set,

vertex cover, and a general family of vertex-removal problems [91].

1.10 Polynomial-Time Approximation Schemes

Recently, the bidimensionality theory has been extended to obtain polynomial-time

approximation schemes (PTASs) for essentially all bidimensional parameters, includ-

ing those mentioned above [70]. These PTASs are based on techniques that generalize

and in some sense unify the two main previous approaches for designing PTASs in

planar graphs, namely, the Lipton-Tarjan separator approach [132] and the Baker

layerwise decomposition approach [23]. The PTASs apply to H-minor-free graphs

for minor-bidimensional parameters and to apex-minor-free graphs for contraction-

bidimensional parameters. To achieve this level of generality, [70] uses the sublinear

parameter-treewidth bound of Theorem 1.7 as well as an 0(1)-approximation algo-

rithm for treewidth in H-minor-free graphs [90] (see also Chapter 9).

Before we can state the general theorem for constructing PTASs, we need to

define a few straightforward required conditions, which are commonly satisfied by

most bidimensional problems. The theorem considers families of problems in which

we are given a graph and our goal is to find a minimum-size set of vertices and/or

edges satisfying a certain property. Such a problem naturally defines a parameter

and therefore the notion of bidimensionality. A minor-bidimensional problem has the

separation property if it satisfies the following three conditions:
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1. If a graph G has k connected components G1, G2, ... , Gk, then an optimal

solution for G is the union of optimal solutions for each connected component Gi.

2. There is a polynomial-time algorithm that, given any graph G, given any vertex

cut C whose removal disconnects G into connected components G, G2, ... , Gk,

and given an optimal solution Si to each connected component Gi of G - C,

computes a solution S for G such that the number of vertices and/or edges

in S within the induced subgraph G[C U UiEIV(Gi)] consisting of C and some

connected components of G - C is EiEI Sil + O(ICl) for any I C {1, 2,..., k}.

In particular, the total cost of S is at most opt(G - C) + O(ICl).

3. Given any graph G, given any vertex cut C, and given an optimal solution

opt to G, for any union G' of some subset of connected components of G - C,

lopt n G'I = lopt(G')l + O(ICl).

For contraction-bidimensional problems, the exact requirements on the problem

are slightly different but similarly straightforward. The main distinction is that the

connected components are always considered together with the cut C. As a result,

the merging algorithm in Condition 2 must take as input a solution to a generalized

form of the problem that does not count the cost of including all vertices and edges

from the cut C. We refer to [70] for the exact definition of the separation property

in this case.

Theorem 1.13 ([70]). Consider a bidimensional problem satisfying the separation

property. Suppose that the problem can be solved on a graph G with n vertices in

f(n, tw(G)) time. Suppose also that the problem can be approximated within a factor

of a in g(n) time. For contraction-bidimensional problems, suppose further that both

of these algorithms also apply to the generalized form of the problem. Then there is a

(1 + )-approximation algorithm whose running time is O(nf(n, O(a2/e)) + n3g(n))

for the corresponding graph class of the bidimensional problem.

This result shows a strong connection between subexponential fixed-parameter

tractability and approximation algorithms for combinatorial optimization problems
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on H-minor-free graphs. In particular, this result yields a PTAS for the following

minor-bidimensional problems in H-minor-free graphs: feedback vertex set, face cover

(defined just for planar graphs), vertex cover, minimum maximal matching, and a

series of vertex-removal problems. Furthermore, the result yields a PTAS for the

following contraction-bidimensional problems in apex-minor-free graphs: dominating

set, edge dominating set, R-dominating set, connected dominating set, connected

edge dominating set, connected R-dominating set, and clique-transversal set.

1.11 Half-Integral versus Fractional Multicommod-

ity Flow

Chekuri, Khanna, and Shephard [54] proved that, for planar graphs, the gap between

the optimal half-integral multicommodity flow and the optimal fractional multicom-

modity flow is at most a polylogarithmic factor. Also, they gave a combinatorial proof

of the result that, for planar graphs, the gap between the maximum flow and the min-

imum cut in product multicommodity flow (and thus uniform multicommodity flow)

instances is at most a constant factor. The latter result was proved before by Klein,

Plotkin, and Rao for H-minor-free graphs using primal-dual methods [120], and has

many applications in embeddings of H-minor-free graphs. As mentioned by Chekuri

et al. [54], our Theorem 1.6 can be used to generalize the half-integral/fractional gap

bound and the combinatorial proof of the max-flow/min-cut gap bound to H-minor-

free graphs.

1.12 Thesis Structure

This thesis is organized as follows. We start by demonstrating structural properties

of single-crossing-minor-free graphs and their consequences in designing polynomial-

time approximation algorithms and subexponential fixed-parameter algorithms for

a wide variety of graph problems in Chapters 2 and 3. In Chapter 4, we design

fixed-parameter algorithms for the (k, r)-center problem, a generalization of the dom-
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inating set problem, on planar graphs and map graphs. At the end of this chapter,

we introduce the concept of bidimensionality for planar graphs. In Chapter 5, we

formally define the concept of bidimensionality for bounded-genus graphs. In ad-

dition, we introduce a general approach for developing algorithms on H-minor-free

graphs, based on the corresponding algorithms on bounded-genus graphs and struc-

tural results about H-minor-free graphs at the heart of Robertson and Seymour's

graph-minors work. Chapters 6 and 7 extend the concept of bidimensionality for

apex-minor-free graphs and H-minor-free graphs. In Chapter 8, we prove the linear-

ity of the size of grid minors in terms of the treewidth, by which we improve several

combinatorial bounds and running times of algorithms in two previous Chapters 6

and 7. In Chapter 9, we develop the algorithmic theory of vertex separators and its

relation to the embeddings of certain metric spaces, by which we improve the approx-

imation factor of treewidth for both general graphs and H-minor-free graphs. We also

mention how these improvements can be coupled with bidimensionality to obtain the

first polynomial-time approximation schemes for problems like minimum connected

dominating set and minimum feedback vertex set in apex-minor-free graphs and H-

minor-free graphs. Finally, in Chapter 10, we demonstrate some major directions for

future research in the theory of bidimensionality.

It is worth mentioning that the journal versions of Chapters 2, 3, 4, 6, and 7

appeared in order in [72, 74, 64, 65, 62] and the conference versions of Chapters 5, 8, 9,

and this chapter appeared in order in [63, 71, 90, 67]. In particular, each chapter is

joint work with the set of collaborators listed in the corresponding references.
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Chapter 2

Approximation Algorithms for

Single-Crossing-Minor-Free Graphs

The development of algorithms for NP-complete problems on restricted classes of

graphs has resulted in structural characterizations of algorithmic utility. For example,

algorithms for graphs of bounded treewidth rely on techniques using separator proper-

ties resulting from tree decompositions. In this chapter we focus on graph classes ob-

tained by excluding a single-crossing graph as a minor. We present a polynomial-time

algorithm that determines a clique-sum decomposition of such a graph, a representa-

tion of the graph as a collection of planar graphs and graphs of small treewidth Our

result generalizes previous decomposition results for graphs excluding special single-

crossing graphs such as K3,3 [20] and K5 [118]. A second structural property is that of

locally bounded treewidth which allows a layer decomposition, enabling us to represent

a graph as a collection of subgraphs, each of bounded treewidth (formal definitions

follow in Section 2.3). In order to take advantage of the bound on treewidth of the

subgraphs, we give a tree decomposition algorithm for this special case, adding to the

toolkit of tree decomposition algorithms for small bounds on treewidth [16, 133, 153]

and r-outerplanar graphs [2] that reduce the prohibitively high constant factors found

in algorithms for more general graphs [125, 35, 32].

Included among the results in this chapter are several applications of our struc-

tural characterizations and algorithms. Using clique-sum decompositions, we ob-
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tain the first constant-factor approximation algorithm for treewidth of nonplanar

graphs. Furthermore, we use properties of layer decompositions to form polynomial-

time approximation schemes for a range of maximization and minimization problems

(Section 2.5), as well as fixed-parameter algorithms for dominating set and related

problems (Section 3.5).

We present decomposition results followed by algorithms for NP-complete prob-

lems. Sections 2.1 through 2.3 present general results from which applications are

derived in Sections 2.4 and 2.5. First, in Section 2.1, we introduce the concepts used

throughout the chapter (though some of them are defined intuitively in Chapter 1).

Next, in Section 2.2, we demonstrate how graphs excluding single-crossing graphs

as minors can be characterized using a clique-sum decomposition. The fact that

such graphs have bounded local treewidth is established in Section 2.3, which also

gives an algorithm for computing the tree decomposition of a local neighborhood in

a graph. The rest of the chapter contains results that follow from these properties:

an approximation algorithm for treewidth (Section 2.4), polynomial-time approxima-

tion schemes for optimization problems (Section 2.5), and summary of our results

and directions for further research (Section 2.6). We defer the applications regarding

fixed-parameter algorithms for dominating set and its variants to Chapter 3.

2.1 Background

2.1.1 Preliminaries

Recall that a graph is planar if it can be drawn in the plane so that its edges intersect

only at their endpoints; such a drawing is called an embedding. An embedding par-

titions the plane into connected regions called faces; the unbounded region is called

the outer face. A graph with all vertices on the outer face is called outerplanar, a

k-outerplanar graph has the property that k successive deletions of the vertices on

the outer face results in the empty graph.

We consider classes of graphs that are associated with single-crossing graphs, as
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Figure 2-1: Examples of single-crossing graphs

defined by Robertson and Seymour [142]. As defined in Chapter 1, a single-crossing

graph is defined as a graph that is a minor of one that can be drawn in the plane with

at most one pair of edges crossing. Note that a single-crossing graph may itself not be

drawable in this fashion. Figure 2-1 shows to the left three examples of single-crossing

graphs; the third one cannot be drawn in the plane with only one crossing, but is

obtainable by edge contraction from the graph to the right, which can be so drawn.

The following lemma is a consequence of closure under minors; in contrast, the

class of graphs that can be drawn in the plane with at most one pair of edges crossing

is not closed under minors, as Figure 2-1 shows.

Lemma 2.1. If single-crossing-minor-free graph G excludes a single-crossing graph

H as a minor, any minor G' of G is also a single-crossing-minor-free graph which

excludes H as a minor.

The following example demonstrates that single-crossing-minor-free graphs can be

considerably more complicated than single-crossing graphs. Form a graph on n = 6k

vertices by taking k copies of K3,3 and adding k - 1 edges to connect them into a

path-like structure. This graph has (n) crossings, but is K5-minor-free. In fact,

any graph can be shown to be a single-crossing-minor-free graph, where the excluded

single-crossing graph is a sufficiently large grid. However, our algorithms are really

only of interest when the excluded graph is small.

2.1.2 Locally Bounded Treewidth

The concept of treewidth can be generalized to that of locally bounded treewidth [87],

in which each local subgraph has treewidth bounded by a function of r.

39



Definition 2.2. The local treewidth of a graph G is the function ltwG N: -- N

that associates with every r E N the maximum treewidth of an r-neighborhood in

G. We set ltwG(r) = maXvev(G){tw(G[NE(v)])}, and we say that a graph class C

has bounded local treewidth (or locally bounded treewidth) when there is a function

f N - N such that for all G E C and r E N, ltwG(r) < f(r). We say a graph class

C of bounded local treewidth has linear local treewidth, if f is linear in r. Finally,

for a function f: N -- N, we define the minor-closed class of graphs of bounded local

treewidth L(f) = {G: VH - G Vr > 0, ltwH(r) < f(r)}.

Well-known examples of minor-closed classes of graphs of bounded local treewidth

are graphs of bounded treewidth, planar graphs, and graphs of bounded genus [87].

Eppstein [87] showed that a minor-closed graph class C has bounded local treewidth

if and only if every graph in C is H-minor-free for some apex graph H (recall that in

any apex graph there exists a vertex whose deletion produces a planar graph). For a

simpler proof of this result, the reader might refer to Chapter 6.

The following lemma proves useful in our results:

Lemma 2.3. For any graph G and subgraph G' of G, ltwG' (k) < ltwG(k), for any

k > 0.

Proof. It is enough to observe that for any v E G' and k > 0, NG,(v) C NG(v). Thus

the removal of vertices of NG (v) \ NG, (v) from bags of a tree decomposition of NG (v)

results in a tree decomposition of NG, (v) with width at most that of G. O

2.2 Clique-sum Decompositions

2.2.1 Relating Clique Sums to Treewidth and Local Treewidth

The following lemma shows how the treewidth changes when we apply a clique-sum

operation, which will play an important role in our approximation algorithms in

Section 2.4.

Lemma 2.4. For any two graphs G and H, tw(G ® H) < max{tw(G),tw(H)}.
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Proof. We begin by observing that we can form a tree decomposition TD(G) of G

of width tw(G) and a tree decomposition TD(H) of H of width tw(H). For W the

set of vertices of G and H identified during the d operation, W is a clique in G and

in H. As vertices in a clique must appear together in a bag in any decomposition

of the graph [37], there exist a node a in TD(G) such that W C X and a node 3

in TD(H) such that W C Xp. Hence, we can form a tree decomposition of width

max{tw(G), tw(H)} of G G H by adding an edge between a in TD(G) and in

TD(H). [

To extend the result to graphs of bounded local treewidth in Lemma 2.9 (Section 2.3),

in Lemma 2.5 we establish treewidth properties for neighborhoods of graphs.

Lemma 2.5. For any graph G, any clique R of G, any v E R, and any k > 0,

tW(G[NG(R)]) < tw(G[NG+l(v)]) .

Proof. We note that all vertices in R-v are at distance 1 from v. Therefore NG1 (R) C

Nkl 1 (v), and the result follows from Lemma 2.3. []

2.2.2 Decomposition Algorithm

The main theorem of this section is a constructive version of the following non-

algorithmic result of Robertson and Seymour, itself used in our algorithm.

Theorem 2.6. [142] For any single-crossing graph H, there is an integer H 4

(depending only on H) such that every H-minor-free graph can be obtained by 0-, 1-,

2- or 3-sums of planar graphs and graphs of treewidth at most cH.

In the remainder of the chapter we will assume that CH is the smallest integer for which

Theorem 1 holds. Although previous algorithms have been developed for decomposing

specific single-crossing-minor-free graphs into series of clique sums (Asano [20] gave an

O(n)-time construction for K3,3-minor-free graphs and Kezdy and McGuinness [118]

gave an O(n2)-time construction for K5-minor-free graphs), ours is the first general

algorithm. For more examples of graph classes that can be characterized by clique-

sum decompositions, see the work of Diestel [77, 78]. Theorem 2.8 below describes
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a constructive algorithm to obtain a clique-sum decomposition of a single-crossing-

minor-free graph G that satisfies the additional property that the smaller graphs

are minors of G. The additional property is crucial for designing approximation

algorithms in Section 2.4.

To form a clique-sum decomposition of graphs that are minors of the original

graph, we consider graphs formed by first removing a set of vertices from the graph

and then reinserting the removed vertices in each resulting connected component.

More formally, we define a subset S C V to be a k-cut if the induced subgraph

G[V- S] is disconnected and IS} = k, and to be a strong k-cut if in addition G[V- S]

either has more than two connected components or each component has more than

one vertex. For S a strong cut that separates G into components G1,.. ., Gh, we form

the augmented components induced by S, denoted Gi U K(S) for 1 < i < h, as the

graphs obtained from graphs G[V(Gi) U S] by adding an edge between each pair of

nonadjacent vertices in S. Each augmented component will contain as a subgraph a

clique on the vertices in S. The influence of strong cuts on augmented components

is fundamental in the proof of our theorem. By introducing a less strict definition of

strong cuts, we obtain a stronger version of an earlier lemma [118].

Lemma 2.7. Let S be a strong 3-cut of a 3-connected graph G = (V, E), and let

G1, G2,. .. , Gh denote the h components of G[V-S]. Then each augmented component

of G induced by S, Gi U K(S), is a minor of G.

Proof. We first consider the case in which h > 3. By symmetry, it will suffice to show

that G1 U K(S) is a minor of G by forming the graph by a series of contractions in G.

Starting with G, we first contract all edges of G2 through Gh to obtain super-vertices

Y2 through Yh (we use the term super-vertices to denote vertices that are the result

of the contraction of all the edges in specific connected subgraphs of G). Because G

is 3-connected, each super-vertex is adjacent to all vertices xl, x2, and 3 in S. We

now contract the edge {x2, Y2} to form a super-vertex x and contract edges between

y3 through Yh and x 3 to form a super-vertex x3. Again since each yi was adjacent to

each xj, we can conclude that x1, x2, and x' form a clique and hence the resulting
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graph is the augmented component G1 U K(S), as needed.

If instead h = 2, then by the definition of a strong cut G1 and G2 each contain at

least two vertices. As in the previous case, it will suffice to show that G1 U K(S) is

a minor of G, as the argument for G2 U K(S) is symmetric. Again, we demonstrate

a series of contractions that results in G1 as well as a clique on the vertices Xl, 2,

and X3 of S. We consider separately the cases in which G2 is a tree and G2 contains

a cycle.

If G2 is a tree, then because G is 3-connected, there is a vertex yl in G2 that

neighbors xl, and similarly a vertex 3 y in G2 that neighbors X3. We contract

edges in G2 until there remain two super-vertices y and y, connected to xl and X3

respectively. Since G2 is connected but acyclic, there will be a single edge between

y: and y. Moreover, since G is 3-connected, there is an edge between x2 and either

yI or y, say y. Finally, again because G is 3-connected, y must be adjacent to a

vertex of S other than X3, that is, either x2 or xl. In either case we can form a clique

on the vertices in S, by contracting edges {Xl, y'} and {X3, y'} if y' is adjacent to x2

or by contracting the edges {x2, y'} and {X3, y)} if y' is adjacent to xl.

Finally suppose that G2 has a cycle C. We claim that there are three vertex-

disjoint paths connecting three vertices of C to three vertices of S in G2. By con-

tracting these paths and then contracting edges of C to form a triangle, we have a

clique on the vertices of S as desired. To prove the claim, we augment the graph

G by adding a vertex vl connected to every vertex in S, and by adding a vertex v2

connected to every vertex in C. Because SI = 3 and ICI > 3, the augmented graph

is still 3-connected. Therefore there exist at least three vertex-disjoint paths from vl

to v2. Each internal vertex on each of these paths must be in G2, and each path must

contain an edge from v to a vertex of S and an edge from a vertex of C to v2. We

obtain the desired paths by removing v and v2 from each path. D

Theorem 2.8. For any graph G excluding a single-crossing graph H as a minor, we

can construct in O(n4 ) time a series of clique-sum operations G = G1 & G2 E... E Gm

where each Gi, 1 < i < m, is a minor of G and is either a planar graph or a graph

of treewidth at most CH. Here each 0 is a 0-, 1-, 2- or 3-sum.
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Proof. The algorithm proceeds by recursively determining connectivity of subgraphs

of the original graph, where different decompositions are used depending on the type

of cut. When considering graph G, we first determine whether it is 1-, 2-, or 3-

connected. If G is disconnected, each of its connected components is considered

separately, and all are joined by O-sums to form G. If G has a 1-cut, 2-cut, or strong

3-cut S, we recursively apply the algorithm on the augmented components induced

by S, applying, respectively, 1-, 2-, or 3-sums. Finally, if G is 3-connected but has no

strong 3-cut, then we claim that it is either planar or has treewidth at most CH.

We first prove the correctness of the outline above, and later fill in the algorithmic

details and analyze the running time. To show that the recursive application of the

algorithm will yield a correct solution, we need to show that each subgraph created is

a minor of G (and hence is H-minor-free by Lemma 2.1). A connected component of a

disconnected graph or an augmented component resulting from a 1-cut is a subgraph

of G, and hence a minor. For an augmented component formed by a 2-cut, the 2-

connectivity of G guarantees that any component must connect to both vertices in the

cut, and hence edges can be contracted to yield the edge added in the augmentation.

Lemma 2.7 handles the case in which there is a strong 3-cut.

Finally, we need to prove that if the graph G is 3-connected but has no strong

3-cut, then either the treewidth of G is at most CH or G is planar. Suppose instead

that neither of these properties hold. Since G is H-minor-free and 3-connected, by

Theorem 2.6, G can be obtained by 3-sums of a sequence of graphs C, where each

graph in C is either planar or of treewidth at most CH > 4. As G has no strong

3-cut, for any join set S in the clique-sum decomposition G - S may contain at most

one component with more than one vertex, and hence at most one graph in C can

have more than four vertices. If every graph in C has at most four vertices and hence

treewidth at most 3 (and hence less than CH), then by Lemma 2.4, G would have

treewidth less than CH, contradicting our assumption. We can thus conclude that

C contains subgraphs of K4 and one planar graph of at least five vertices and of

treewidth greater than CH.

To complete the proof of correctness, we will show that our assumption about C
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yields a contradiction, that is, that G has a strong 3-cut. Since G is not planar but

every graph in C is planar, during the clique-sum operations forming G, there exists a

graph J E C and a 3-sum G" = G' ® J with join set S such that G' is planar but G" is

not planar. It is not possible to form planar embeddings of both J and G' such that S

forms the outer face, since if this were possible, the two embeddings could be joined

to form a planar embedding of G" (e.g. J would be embedded inside the triangle

and G' outside). We can thus conclude that there are at least three components in

G" - S, which implies that S is a strong 3-cut in G" and hence in G, a contradiction.

To analyze the running time of the algorithm, we first recall that any graph G

excluding an r-clique as a minor cannot have more than (0.319+o(1))(r logr) IV(G)I

edges [161]. This implies that for any single-crossing-minor-free graph G, E(G)I =

o(IV(G)I).

To run the algorithm, we apply algorithms to obtain all connected components

and 1-cuts in linear time [158], all 2-cuts [114, 134], and all O(n2) 3-cuts in O(n2)

time [115]. Checking whether a particular 3-cut is strong can be accomplished in O(n)

time using depth-first search. All other operations, including checking if a graph is

planar or has treewidth at most CH, can be performed in linear time [166, 32].

To set up recurrence relations, we make the assumption that for each cut we split

a graph into two 0-, 1-, or 2-connected components or into at most three 3-connected

components at a particular iteration. The running time of one iteration, excluding

recursive calls, is O(n). For T(n) the running time on an input of size n, for a O-sum

involving a component of size nl we obtain the equation:

T(n) = T(nl) + T(n - nl) + O(n), n 2.

The recursive calls for a 1-cut yield the following equation

T(n) = T(nl) + T(n - n + 1) + O(n), nl 2

where nl and n - nl + I are the sizes of the two augmented components. Similarly,
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for recursive calls for a 2-cut, we have

T(n) = T(nl) + T(n - nL1 + 2) + O(n), n 3.

For recursive calls for a strong 3-cut with exactly two components, we have

T(n) = T(nl) + T(n - n + 3) + O(n3), nl > 4.

Finally, if we have recursive calls for a strong 3-cut with at least three components,

we have

T(n) = T(nl)+T(n 2)+T(n-nl-n 2+6)+O(n3 ), 4 < nl,n 2,n-nl-n 2+6 < n-2

where n1, n2, and n - nl - n 2 + 6 are the sizes of the augmented components (the

last being the third and all subsequent components taken together). The additive

terms (+1, +2, +3, +6) are due to the duplication of the vertices of the cut in the

augmented components. Solving this recurrence gives a worst-case running time of

O(n4). 0

Even for excluded graphs H where CH is huge, the value of cH does not contribute

to the asymptotic complexity of the algorithm presented above. However, it does

contribute heavily to the constant hidden in the order notation. In some contexts,

it may make sense to replace Bodlaender's linear-time algorithm for determining

treewidth exactly with an approximation. Amir [11] gives an algorithm running in

time 0(24.38cHn2cH) which either returns a tree-decomposition of width at most 4cH

or answers that the treewidth is more than CH. This can be used to prove a version of

Theorem 2 with CH replaced by 4 cH but whose dependence on CH is more reasonable.

Similar substitutions will be possible in our approximation algorithms, discussed in

Section 2.5.
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2.3 Locally Bounded Treewidth of Single-Crossing-

Minor-Free Graphs

In this section we establish the locally bounded treewidth of single-crossing-minor-

free graphs, which provides the structure on which the approximation schemes of

Section 2.5 are built. First we demonstrate how clique sums and local treewidth are

correlated. Next, we discuss layer decompositions and present a tree decomposition

algorithm for a subgraph induced by a sequence of consecutive layers.

2.3.1 Bounded Local Treewidth

Lemma 2.9. If G1 and G2 are graphs such that ltwGl (r) < f(r) and ltwG2(r) < f(r)

for a function f (r) > 0 for all r E N, and G = G1 k G2, then ltwG(r) < f (r).

Proof. To show ltwG(r) < f(r), we prove that for any v E V(G) and for all r > 0,

tw(G[NE(v)]) < f(r). We use W to denote the join set of G1 Ok G2 and without

loss of generality, we assume v is from G1. As the claim holds trivially for r = 0, in

the remainder of the proof we assume r > 0. Moreover, since if NG(v) contains only

vertices originally from G1, the result follows from the fact that twGl'(r) < f(r), we

assume that NG(v) contains vertices from G2 that are not in W. We consider two

cases, depending on whether v E W.

If v E W, then N (v) C NG1 (v) U N 2(). In addition, since r > 1 and vertices of

W form a clique in Gi for i = 1, 2, W C N ~ (v). Using these two facts, we conclude

that G[N (v)] is a subgraph of Gi[N (v)] ®D G2[N 2(v)] over the join set W. Thus,

by Lemmas 2.3 and 2.4, we know

tw(G[N (v)]) < max{tw(G [Nl (v)]), tw(G2[N2 (V)])} < f(r)

We now consider the case in which v W. Each vertex in NG(v) is either in G1,

and hence is in NG1 (v), or it is in G2, and hence is in N(v) - W. To further describe

the latter set, we consider the distance between v and any vertex u in the set. Since

W is the set of vertices shared by G1 and G2 in G, at least one vertex of W is on
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the shortest path from v to u in G and hence is at distance of at most r - 1 from

v, hence W n N N 1 (v) Z 0. We let p be the minimum distance between v and any

vertex in the set W n N~G (v) and observe that since v in not in W, we can conclude

that 1 < p < r - 1. We further observe that since each vertex u in NE(V) - W is at

distance at most r from v, it must be within distance r - p of some vertex of W, or

u E N2-P(W). Thus N (v) C NG1(v) U NG;P(W).

To complete the proof, we use the characterization of N (v) as a subset of NG1(v)U

NGP(W) to obtain an upper bound on its treewidth. First we show that G1[N 1 (v)] E

G2[N~P(W)] can be formed using the join set W, as W is a subset of each of the

constituent graphs (each vertex of W is at distance at most r from v in G1 since at

least one vertex of W is at distance p < r -1 from v and vertices of W form a clique in

G1). Since N~(v) C NG1 (v)UN~P(W), as shown in the previous paragraph, G[NE(v)]

is a subgraph of G1[N 1l(v)] D G2[NZP(W)], and hence we can apply Lemma 2.4 to

obtain the following result:

tw(G[N(v)]) < max{tw(Gl[N 1 (v)]), tw(G2 [N2P(W)])}. (2.1)

By Lemma 2.3, since p > 1 clearly G2[N~2P(W)] is a subgraph of G2[N2 (W)], and

hence

tw(G 2[N2P(W)]) < tw(G 2[N2 1(W)]) (2.2)

Combining (2.1), (2.2), and the fact that tw(G1[N~(v)]) < f(r) (our assumption

about G1), we obtain

tw(G[Nb(v)]) < max{f(r), tw(G2[N21(W))}- (2.3)

Since W is a clique in G2, by Lemma 2.5,

tw(G2[N21 (W)]) < tw(G2[N (v)]) < f(r). (2.4)

Finally, as a consequence of (2.3) and (2.4), we conclude that tw(G[NE(v)]) < f(r),
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Figure 2-2: The graph Vs.

as needed to complete the proof of the lemma. o

Theorem 2.10 demonstrates our main result on the local treewidth of single-

crossing-minor-free graphs.

Theorem 2.10. For any single-crossing-minor-free graph G excluding a single-crossing

graph H as a minor and for all r > 0, ltwG(r) < 3r + cH.

Proof. By Theorem 2.6, we can assume G = G1 ( G2 & ... D Gm where each Gi,

1 < i < m, is either a planar graph or a graph of treewidth at most cH; we prove

the theorem by induction on m. In the base case, if G1 is a planar graph then

ltwG(r) = twG' (r) = 3r - 1 < 3r + CH, CH > 0, as the treewidth of a r-outerplanar

graph is at most 3r - 1 [2]. If instead G1 has treewidth at most CH, then ltw G(r) =

1tw G ' (r) = CH < 3r + CH, r > 0. To prove the general case, we assume the induction

hypothesis is true for m = h, and we prove the hypothesis for m = h + 1 by setting

G' = G1 G2 e ... D Gh and G" = Gh+1. By the induction hypothesis, ltwG'(r) <

3r + CH and ltwG"(r) < 3r + cH; by applying Lemma 2.9, we conclude that twG =

ltwG'G" (r) < 3r + CH, as needed. I

Using the fact that K5 and K3,3 are single-crossing graphs (Figure 2-1), we observe

that K5-minor-free graphs and K3,3-minor-free graphs are single-crossing-minor-free

graphs. Although generalized by Theorem 2.8 for single-crossing-minor-free graphs,

for more precise results we rely on Wagner's characterizations [164]. He proved that

a graph is K3,3-minor-free if and only if it can be obtained from planar graphs and

K5 by 0-, 1-, and 2-sums and that a graph is K5-minor-free if and only if it can be

obtained from planar graphs and V8 (the graph obtained from a cycle of length 8

by joining each pair of diagonally opposite vertices by an edge, shown in Figure 2-2)
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by 0-, 1-, 2-, and 3-sums. Since both K5 and V8 have treewidth four, the value of

constant CH in the proof of Theorem 2.10 is four, and we have:

Corollary 2.11. If G is a K5-minor-free or K3,3-minor-free graph then ltwG(r) <

3r + 4.

2.3.2 Local Treewidth and Layer Decompositions

To take advantage of the bound on local treewidth, we define a layer decomposition,

prove a bound on the treewidth of a subgraph induced on consecutive layers, and

then provide an algorithm that forms a tree decomposition of such a subgraph. The

concept of the kth outer face in planar graphs can be replaced by the concept of the

kth layer (or level) in graphs of locally bounded treewidth. The kth layer (Lk) of

a graph G consists of all vertices at distance k from an arbitrary fixed vertex of

V(G). We denote consecutive layers from i to j by L[i,j] = Ui<k<j Lk, and call such

a representation a layer decomposition.

Theorem 2.12. For any graph G excluding a single-crossing graph H as a minor,

the treewidth of G[L[i, j]] is bounded above by 3(j - i + 1) + cH.

Proof. By contracting the connected subgraph G[L[O, i-1]] to a vertex v' and applying

Lemma 2.1, we obtain another H-minor-free graph G'. As all vertices at distance d,

i < d < j, from v in G are at distance d', 1 < d' < j-i+1, from v' in G' and all vertices

at distance more than j from v in G are at distance more than j - i + 1 from v' in G',

we have G[L[i, j]] = G'[L[1,j - i + 1]]. Thus tw(G[L[i, j]]) = tw(G'[L[1,j - i + 1]).

Since all vertices of L[1,j - i + 1] in G' are in the j - i + 1-neighborhood of v',

tw(G'[L[1,j - i + 1]]) < tw(G'[NG,i+1 (v')]). By the definition of local treewidth,

tw(G'[NGTi+l(v')]) < ltw G (j- i + 1). Finally by Theorem 2.10, we have ltwG'(j -

i + 1) < 3(j - i + 1) + CH. Using these facts, tw(G[L[i,j]]) < 3(j - i + 1) + cH, as

desired. o

Theorem 2.12 gives an upper bound on the treewidth of consecutive layers from

i to j, but does not provide a constructive algorithm to obtain a tree decomposition

of this width.
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Figure 2-3: The replacement of the part of path P between a and b by edge {a, b}.

Although we can construct a tree decomposition of width 3(j - i) + CH in linear

time using Bodlaender's algorithm [32], again the hidden constant factor will depend

on this entire width. Below we show how to reduce the constant to depend only on

CH, permitting substitution of approximation algorithms as was done at the end of

Section 2.2.

Before stating the main theorem on construction of a tree decomposition of con-

secutive layers, we present a simple lemma.

Lemma 2.13. For G = G1 G2 ' . G,, if there exists a vertex v E V(G) such

that each vertex of G is at distance at most r from v, then in each Gi, 1 < i < m,

there exists a vertex vi such that each vertex of Gi is at distance at most r from vi.

Proof. We use induction on m, the number of Gi's. If m = 1, the basis of induction

is clearly true. We assume the induction hypothesis is true for m < h, and we prove

the hypothesis for m = h + 1. We suppose G = G' · G", with join set W, where

G' = G1 G .2 ED ... E Gh and G" = Gh+1. In order to apply the induction hypothesis

to G' and G", we will need to find vertices v' and v" in G' and G" such that each

vertex of G' is at distance at most r from v' and each vertex of G" is at distance at

most r from v".

In order to apply the induction hypothesis to G' and G", it will suffice to show that

there is a path of length at most r from v to each vertex u in G' such that each vertex

of the path is in G', that is v = v' as defined in the previous paragraph (an analogous

argument can be used to show the existence of a path in G" to any vertex in G").
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Suppose instead that every path of length at most r from v to u passed through at

least one vertex w in V(G") - V(G'), and consider one such path P. Clearly v and u

are not both in W, since otherwise there would exist an edge {v, u} in the clique with

vertex set W. Without loss of generality we assume u E V(G') - V(G"), and observe

that since the path from v to w and the path from w to u must pass through W, we

can define a and b to be the first and last vertices in W on the path in order from v

to u (see Figure 2-3), where possibly v = a or a = b (or both). We can then form a

new path P' consisting of the subpath from v to a, the edge {a, b} if a $ b (which

must exist since the vertices of W form a clique in G'), and the subpath from b to u.

The path P' has length at most the length of P and is entirely in G', contradicting

our assumption and completing the proof. ]

We are ready to present our algorithm for construction of a tree decomposition

for a constant number of consecutive layers.

Theorem 2.14. For any single-crossing-minor-free graph G, we construct a tree

decomposition for G[L[i,j]] of treewidth 3(j - i + 1) + CH in O((j - i + 1)3 n + n4)

time; for a K 3,3-minor-free or Ks5 -minor-free graph G, the running time can be reduced

to O((j - i + 1)3 n) or O((j - i + 1)3 n + n2), respectively.

Proof. As in the proof of Theorem 2.12, we contract the connected subgraph G[L[O, i-

1]] to a vertex v' and obtain another single-crossing-minor-free graph G' such that

G[L[i, j]] = G'[L[1,j - i + 1]]. By Lemma 2.1, the graph G" = G'[L[O, j - i + 1]] is a

single-crossing-minor-free graph excluding the same H and by the definition of layers

each vertex in G" is at distance at most j - i + 1 from v'. By Theorem 2.8, we can

determine a set of clique-sum operations of graph G" in O(n4 ) time (improved to O(n)

for G K3,3-minor-free using the result of Asano [20] and O(n 2 ) for G K5-minor-free

using the result of K6zdy and McGuinness [118]).

After determining a set of clique-sum operations of G" = G1 G2 * ... ED G,, we

construct a tree decomposition for each Gi, 1 < i < m. If Gi is a graph of treewidth

at most CH, we can easily construct a tree decomposition of constant width in linear

time [32] (for the special cases, K 5 or V8, a constant time construction is possible).
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We now consider the case in which Gi is a planar graph. By Lemma 2.13, in each Gi,

there exists a vertex vi such that each vertex in Gi is at distance at most j - i + 1

from vi. It is known that if a planar graph has a rooted spanning tree T in which the

longest path has length d, then a tree decomposition of the graph with width at most

3d can be found in time O(dn) [23, 86]. Since each vertex in Gi is at distance at most

j - i + 1 from vi, by breadth-first search we can construct a spanning tree rooted at

vi with the longest path of length at most j - i + 1. Hence we can construct a tree

decomposition for Gi of treewidth 3(j - i + 1) in time O((j - i + 1) IV(Gi)l).

Having tree decompositions of Gi's, 1 < i < m, in the rest of the algorithm, we

glue together the tree decompositions of Gi's using the construction given in the proof

of Lemma 2.4. To this end, we introduce an array Nodes indexed by all subsets of

V(G") of size at most three. In this array, for each subset whose elements form a

clique, we specify a node of the tree decomposition which contains this subset. We

note that for each clique C in Gi, there exists a node z of TD(G") such that all vertices

of C appear in the bag of z [37]. This array is initialized as part of a preprocessing

stage of the algorithm. Now, for the D operation between G1 D ... () Gh and Gh+l

over the join set W, using array Nodes, we find a node a in the tree decomposition of

G1 O... · Gh whose bag contains W. Since we have the tree decomposition of Gh+l,

and W is a clique of size at most three that must appear in some bag in any tree

decomposition, we can find the node a' of the tree decomposition whose bag contains

W by brute force search over all subsets of bags of size at most three. Simultaneously,

we update array Nodes by subsets of V(G") which form a clique and appear in bags

of the tree decomposition of Gh+l. Then we add an edge between a and a'. As the

number of nodes in a tree decomposition of Gh+1 is O(IV(Gh+l)l) and each bag has

size at most 3(j - i + 1) (and thus there are at most O((j - i + 1)3) choices for a

subset of size at most three), this operation takes O((j - i + 1)3. IV(Gh+l)l) time for

Gh+l -

The claimed running time follows from the time required to determine a set

of clique-sum operations, the time required to construct tree decompositions, the

time needed to glue tree decompositions together and the fact that Eim1 IV(Gi)l =
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O(IV(G")I). Here we note that the only difference between the running times for the

general algorithm and those for K3,3-minor-free or K5-minor-free graphs is the time

required to determine a set of clique-sum operations (O(n) time for the former graphs

and O(n2) time for the latter graphs). The rest of the algorithm requires linear time

for all single-crossing-minor-free graphs.

Finally, we prove that the width of the constructed tree decomposition of G"

is 3(j - i + 1) + CH. We use induction on m, the number of Gi's, where G" =

G1 G2 e ... · Gm. For m = 1, G1 is either a planar graph of treewidth at most

3(j- i+ 1) or a graph of treewidth at most CH. In both cases the basis of the induction

is true. We assume the induction hypothesis is true for m = h, and we prove the

hypothesis for m = h + 1. For G = G1 e G2 (D .. ED Gh, G" = G Gh+l. By the

induction hypothesis, G and Gh+l each have treewidth at most 3(j - i + 1) + CH.

We can then apply Lemma 2.4 to conclude that the treewidth of G" is also at most

3(j - i + 1) + CH, as needed to complete the proof. E[

2.4 Approximating Treewidth

A large amount of effort has been put into determining treewidth, which is NP-

complete even if we restrict the input graph to graphs of bounded degree [38], cocom-

parability graphs [14, 108], bipartite graphs [121], or the complements of bipartite

graphs [14]. However, treewidth can be computed exactly in polynomial time for

chordal graphs, permutation graphs [36], circular-arc graphs [156], circle graphs [121],

distance-hereditary graphs [44], and for graphs of a fixed treewidth [32].

A constant factor approximation algorithm for treewidth of planar graphs is

known. This approximation algorithm is a consequence of the polynomial-time al-

gorithm given by Seymour and Thomas [155] for computing the parameter branch-

width, whose value approximates treewidth within a factor of 1.5. Using the notions

of branchwidth and clique-sum decomposition, we demonstrate a polynomial-time

algorithm that approximates within a constant factor the treewidth of any single-

crossing-minor-free graph. Using a different approach, this result will be generalized
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Figure 2-4: A graph and two branch decompositions of it. The first has width 4
and the second has width 3.

for all H-minor-free graphs, for a fixed H, in Chapter 9.

Analogous to the relationship between treewidth and tree decompositions, the

notion of branchwidth is related to a decomposition based on the edges. A branch

decomposition of a graph G is a pair (T, r), where T is a tree with vertices of degree

1 or 3 and r is a bijection from the set of leaves of T to E(G). The order of an edge

e in T is the number of vertices v E V(G) such that there are leaves t1, t2 in T in

different components of T(V(T), E(T) - e) with T(tl) and r(t2) both containing v as

an endpoint. The width of (T, r) is the maximum order over all edges of T, and the

branchwidth of G, bw(G), is the minimum width over all branch decompositions of

G (if IE(G)I < 1, we define the branchwidth to be 0; if IE(G)I = 0, then G has no

branch decomposition; if IE(G)I = 1, then G has a branch decomposition consisting

of a tree with one vertex and the width of this branch decomposition is considered to

be 0). It is well-known that, if H -< G or H -<c G, then bw(H) < bw(G). Figure 2-4

provides examples of branch decompositions.

The following result of Robertson and Seymour [145] relates branchwidth to

treewidth.

Theorem 2.15 ([145], Section 5). For any connected graph G where E(G)I > 3,

bw(G) < tw(G) + 1 < bw(G).

We make use of an approximation algorithm for computing treewidth of pla-

nar graphs as one of two "base cases" in our algorithm for single-crossing-minor-

free graphs. While it remains an open question whether there exists a polynomial-

time constant-factor approximation algorithm for computing the treewidth of general
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graphs, the branchwidth of a planar graph can be computed in polynomial time.

Theorem 2.16. ([155], Sections 7 and 9) One can construct an algorithm that, given

a planar graph G,

1. computes in O(n2 logn) time the branchwidth of G; and

2. computes in O(n4 ) time a branch decomposition of G with optimal width.

Theorem 2.17. One can construct an algorithm that, given a planar graph G,

1. computes in O(n2 log n) time a value k with tw(G) < k < tw(G); and

2. computes in O(n4 ) time a tree decomposition D of width k of G, where tw(G) <

k< tw(G) + 1.

Proof. The proof is straightforward using O(IE(G)12 ) algorithms of Robertson and

Seymour [145] which convert a branch decomposition of width at most b to a tree

decomposition of width at most b - 1, and convert a tree decomposition of width at

most k to a branch decomposition of width at most k + 1. O

The main theorem of this section relies on Theorem 2.17 as well as clique-sum

decompositions.

Theorem 2.18. For any single-crossing graph H, we can construct an algorithm that,

given an H-minor-free graph as input, outputs in O(n4 ) time a tree decomposition of

G of width k where tw(G) < k < tw(G) + 1.

Proof. The algorithm consists of the following four steps:

Step 1: Let G be a graph excluding a single-crossing graph H. By Theorem 2.8, we

can obtain a clique-sum decomposition G = G1 E G2 '... D Gm where each Gi,

1 < i < m, is a minor of G and is either a planar graph or a graph of treewidth

at most CH. According to the same theorem, this step can be executed in O(n4 )

time. Let B be the set of the indices of the bounded treewidth components

and P be the set of planar components: B = {i 1 < i < m, tw(Gi) < cH},

P= {1,...,m}-B.
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Step 2: By Theorem 2.17, we can construct, for any i E P, a tree decomposition

TD(Gi) of Gi with width ki and such that

tw(Gi) ki < tw(Gi) + 1 for all i E P. (2.5)

The construction of each of these tree decompositions takes O(IV(Gi)l4 ) time.

Because m < n and El<i<m IV(Gi) = O(n), (it is simple to prove this by

induction looking at the sizes of the components in the recurrences used in the

proof of Theorem 2.8) the total time for this step is O(n4 ).

Step 3: Using Bodlaender's algorithm [32], for any i E B, we can obtain a tree

decomposition of Gi with minimum width ki in linear time, where the hidden

constant depends only on CH. Combining (2.5) with the fact that tw(Gi) = ki

for each i E B, we obtain

)< i<tw(Gi) k 3 + 1 for all i E 1, m. (2.6)

Step 4: Now that we have tree decompositions TD(Gi) of each Gi, we glue them

together using the construction given in the proof of Lemma 2.4, as detailed in

Theorem 2.14. In this way, we obtain a tree decomposition of G that has size

k = max({k I 1 i < m. Combining this equality with (2.6), we have

max{tw(Gi) i = ,..., m}) k < 3 max{tw(Gi) i = 1 ... , m} 1(2.7)

To see that this step can be executed in O(n4) time, we observe that as described

in Theorem 2.14, for each of the O(IV(G)I) nodes in the tree decomposition,

we execute a brute force search in the array Nodes, indexed by all O(IV(G)I3 )

subsets of V(G) of size at most three.

Finally, we prove that the algorithm is a 1.5-approximation. By Lemma 2.4, we

have tw(G) < max{tw(Gi) I i = 1,..., m. By Theorem 2.8, each Gi is a minor

of G and therefore tw(Gi) < tw(G) (since the class of graphs of treewidth at most
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k is minor-closed). Thus, tw(G) = max{tw(Gi) I i = 1,. .. ,m} and from (2.7) we

conclude that tw(G) k < tw(G) + 1 and the theorem follows. a

Using the same approach as Theorem 2.18, one can prove a potentially stronger

theorem:

Theorem 2.19. If we can compute the treewidth of any planar graph in polynomial

time, then we can compute the treewidth of any single-crossing-minor-free graph in

polynomial time.

Proof. We use the polynomial-time algorithm for computing treewidth of planar

graphs in Step 2 of the algorithm described in the proof of Theorem 2.18. [1

2.5 Polynomial-time Approximation Schemes

2.5.1 General Schemes for Approximation on Special Classes

of Graphs

A polynomial-time approximation scheme for a problem is a family {Ae} of algo-

rithms, where A, is a (1 + ) approximation for the problem that runs in time

polynomial in the length of its input (for fixed ). Inherent in the design of many

polynomial-time approximation schemes for NP-complete graph problems is the re-

striction of inputs to graph classes that guarantee additional structural properties.

Early work in the area demonstrated the possibility of using planarity to obtain ap-

proximation schemes [132], later generalized to graphs without a fixed minor [9].

These approaches are impractical; a performance ratio of two for the independent set

problem is achievable only for planar graphs of at least 22400 vertices [59].

Practical approximation schemes for planar graphs were developed by Baker [23],

who formed a decomposition of G into overlapping k-outerplanar subgraphs. For any

planar embedding, vertices can be put into layers by iteratively removing vertices on

the outer face of the graph: vertices removed at the ith iteration are assigned to layer

i. Since a k-outerplanar graph is decomposed into at most k layers, a k-outerplanar
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subgraph can be formed by removing vertices with layer number congruent to i mod

k. Baker's technique immediately implies (1 + 1/k)-factor approximation algorithms

for many problems that can be solved exactly on k-outerplanar graphs (e.g. maximum

independent set, minimum dominating set, and minimum vertex cover), as it suffices

to solve the problem exactly on each of the k subgraphs (one for each value of i)

and return the best of the k results. Consider an optimal answer in the full graph.

Since the sets of removed vertices partition the graph, one of these sets removes at

most 1/k of the vertices in the answer, and the exact solution on the corresponding

subgraph will be a (1 + 1/k)-approximation to the optimal answer for the full graph.

Chen [56] later generalized Baker's approach to form approximation algorithms of

ratio 1 + 1/log n for problems on K3,3-minor-free graphs and K5-minor-free graphs;

due to the types of layers formed, these results were exclusively for maximization

problems. Eppstein [87] showed that Baker's technique can be extended by replacing

bounded outerplanarity with bounded local treewidth. As with k-outerplanar graphs,

a wide range of NP-complete problems can be solved in linear time on graphs of

bounded local treewidth. The decomposition by deleting every kth face is replaced

by deleting every kth level of a breadth-first tree of G, keeping in mind the fact that

that the treewidth of the resulting graphs is a function of k.

2.5.2 Approximation Schemes for Single-Crossing-Minor-Free

Graphs

In this section we use the bound on local treewidth established in Theorem 2.10 to

obtain polynomial-time approximation schemes. Among NP-optimization problems,

we mainly focus on those problems which are also hereditary, namely, problems which

determine a property that if valid for an input graph is also valid for any induced

subgraph of the input. For a property 7r, the maximum induced subgraph problem

MISP(7r) is finding a maximum induced subgraph with the property; in the weighted

version (WMISP(7r)), the input graph has weights on its vertices and the goal is to

find a maximum weight induced subgraph with the property. For example, we might
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search for an induced subgraph of maximum size that is chordal, acyclic, without

cycles of a specified length, without edges, of maximum degree r > 1, bipartite or a

clique [167]. For exact definitions of various NP-hard problems in this chapter, the

reader is referred to Garey and Johnson's seminal book [99].

Yannakakis has shown that for many natural hereditary properties ir, MISP(7r)

is NP-complete even when restricted to planar graphs [167]. Using the results of

Section 2.3, we obtain approximation algorithms for both maximization and min-

imization problems such as the maximum independent set problem, the minimum

vertex cover problem and the minimum dominating set problem on single-crossing-

minor-free graphs.

Theorem 2.20. For G a non-negative vertex-weighted single-crossing-minor-free graph

excluding H, k > 1 an integer, and Time,r(w, n) the nondecreasing worst-case run-

ning time of WMISP(Tr) over an n-vertex partial w-tree whose tree decomposition

is given, the maximization problem WMISP(7r) for a hereditary property r over G

admits a polynomial-time approximation scheme of ratio 1 + 1/k with worst-case

running time in O(k V14 + k Time,(3(k - 1) + cH, IVI)). The running time

improves to O(k IVI + k Time,(3(k - 1) + 4, IVI)) for G K 3, 3-minor-free and

O(k IV12 + k Time ,(3(k - 1) + 4, IVI)) for G K5 -minor-free.

Proof. Our algorithm proceeds by creating k subgraphs of G, solving the problem on

each of the subgraphs, and returning the best solution for any of the subgraphs as the

solution for all of G. We make use of the locally bounded treewidth of G in order to

specify layers from which the subgraphs are derived and to prove that each subgraph

has bounded treewidth.

Given an assignment of vertices to layers numbered 1, 2,... created by breadth-

first search (layer i is all vertices at depth i), we use Li,j to denote the consecutive

layers numbered (j - 1)k + i through jk + i - 2 for 1 < i < k and j > 0 where for

convenience a layer is defined to be empty when its number is not between zero and

the total number of layers. Furthermore, we let Li = Uj>o Li,j and Gi = G[Li]. As

neither Li,j nor Li,j+1 contains the layer numbered jk + i - 1 and all edges appear

60



between consecutive layers, there are no edges between Li,j and Li,j+l. Moreover, as

no vertices in layer i - 1 appear in Lh for h = i mod k, each vertex appears in exactly

k - 1 of the Li's or Gi's, a fact we will use later in the proof.

We next use the bound on the treewidth of each Gi to obtain Opti, the maximum

weighted solution of WMISP(7r) on each Gi, 1 < i < k. In particular, we construct

a tree decomposition of width 3(k - 1) + CH for each Gi by adding edges between

tree decompositions for each G[Li,j], which in turn can be formed in (n4) time

using Theorem 2.14 (O(n) for K3,3-minor-free graphs or O(n2) time for K5-minor-

free graphs). The fact that the graphs G[Li,j] are disjoint means that the process

of adding edges to form a single tree is straight-forward. As in Lemma 2.4, by the

definition of Time, (w, n) as a nondecreasing function, since I[V(Gi) < IV(G)I, Opti

can be determined in Time,(3(k- 1) +CH, IV(G)I). The running time is Time,(3(k-

1) + 4, IV(G)I) for G K3,3-minor-free or K5-minor-free.

Finally, we take Opt,, the solution with maximum weight among the Opti's, as our

solution for graph G, and prove the ratio bound by showing that weight(Opt) < kWeight(Optm - k1
or k weight(Optm) > (k - 1) weight(Opt), where Opt is the maximum weighted

solution on graph G. By observing that Optm > Opti for each value of i, we show

that k weight(Optm) > E i weight(Opti). Since 7r is hereditary, weight(Opti) >

weight(Opt n Li), and hence Ei=l weight(Opti) > i=l weight(Opt n Li). Finally,

we recall that each vertex appears in exactly k - I of the i's, from which we can

conclude YEk=l weight(Opt n Li) = (k - 1) weight(Opt), as needed to conclude the

proof that k weight(Optm) > (k- 1) weight(Opt).

The claimed running time follows immediately from the time to construct the tree

decomposition, the time to solve WMISP(r) for each Gi, and the number of Gi's. 

Corollary 2.21. For G a non-negative vertex-weighted single-crossing-minor-free

graph excluding H, the maximum independent set problem admits a polynomial-time

approximation scheme of ratio 1 + 1/k with running time O(k 23k n + k n4). The

running time improves to O(k 23k . n) for G K3,3-minor-free and O(k 23k n + k . n2)

for G K5-minor-free.
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Proof. Using dynamic programming on a tree decomposition, this problem can be

solved in 0(2W · n) time, over each n-vertex partial w-tree whose tree decomposition

is given [8]. Thus the result follows from Theorem 2.20 for Timer(w, n)= 0(2w - n).

It is worth mentioning that our result can be applied to NP-minimization prob-

lems, e.g., the minimum vertex cover problem and the minimum dominating set

problem. The main difference between these two results and the previous one is that

the previous construction avoided overlap between the various sets Li,j of consecutive

layers, in the minimization setting we need to enforce overlap in order to achieve the

approximation guarantee. The ideas of the proofs of Theorems 2.22 and 2.23 follow

ideas of Grohe [103] for general graphs of locally bounded treewidth, which are in

fact Baker's ideas for planar graphs. Since there are not too many new ideas in the

proofs of Theorems 2.22 and 2.23 below with respect to the proof of Theorem 2.20,

we omit the proofs and refer the reader to [72] for their detailed proofs.

Theorem 2.22 ([72]). For G a single-crossing-minor-free graph and any integer

k > 1, the minimum weighted vertex cover problem admits a polynomial-time approx-

imation scheme of ratio 1+ 1/k with worst-case running time O(k.23 k.n+k.n 4 ). The

running time improves to O(k 23k . n) for G K3,3-minor-free and O(k . 2 3k n + k. n 2)

for G K5-minor-free.

Theorem 2.23 ([72]). For G a single-crossing-minor-free graph and any integer

k > 1, the minimum weighted dominating set problem admits a polynomial-time ap-

proximation scheme of ratio 1+2/k with worst-case running time O(k. 43k n+k .n4).

The running time improves to O(k.4 3k.n) for G K 3,3-minor-free and O(k.43 k. n+k.n 2 )

for G Ks5-minor-free.

Theorem 2.24. For single-crossing-minor-free graphs, there are polynomial-time ap-

proximation algorithms whose solutions converge toward optimal as n increases for

maximum independent set, minimum vertex cover and minimum dominating set.

Proof. The running time of algorithms introduced in Corollary 2.21 and Theorems 2.22

and 2.23 is O(ckn + n 4) where k is a parameter and c is a constant. Now, by taking
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k = log nl, we obtain polynomial-time approximation algorithms of ratio + 1/(log n)

(or 1 + 2/(logn) for dominating set). As both 1/(logn) and 2/(logn) decrease as n

increases, the solutions converge toward optimal as n increases. l

Finally, it is worth mentioning that our results for single-crossing-minor-free graphs

in this section have been generalized to all apex-minor-free graphs by a result of De-

maine and Hajiaghayi [66] who showed that apex-minor-free graphs have linear local

treewidth, i.e., the concepts of having bounded local treewidth and having linear local

treewidth are equivalent in minor-closed graph families.

2.6 Concluding Remarks

In this chapter, we introduced the class of single-crossing-minor-free graphs, which

contains K3,3-minor-free graphs and K5-minor-free graphs, generalizations of planar

graphs, and demonstrated structural properties which gave rise to new algorithms.

We showed that single-crossing-minor-free graphs have linear local treewidth and

demonstrated how to obtain a tree decomposition of a fixed number of layers. Algo-

rithms obtained using these properties include both approximation algorithms (e.g. a

1.5-approximation algorithm for treewidth and many polynomial-time approximation

schemes) and fixed-parameter algorithms (that we demonstrate in Chapter 3).

Extensions to the structural results could include finding clique-sum characteriza-

tions of graphs such as graphs excluding a double-crossing graph (or a graph with a

bounded number of crossings) as a minor. For each such class, polynomial-time con-

structions of the decompositions could be used for further algorithmic development.

Notice that the algorithm of Theorem 2.8 in Section 2.2.2 can serve as a general

heuristic for the computation or approximation of treewidth in a graph when the

resulting 3-connected components without strong 3-cuts are graphs whose treewidth

can be computed or approximated efficiently. Additional approximation algorithms

might include those which determine graph properties other than treewidth. As a con-

sequence of Theorem 2.16, treewidth is a 1.5-approximation on branchwidth, which

immediately implies the existence of a 2.25-approximation for branchwidth of single-
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crossing-minor-free graphs. It might be possible to use a clique-sum decomposition

to obtain a better approximation or an exact algorithm for branchwidth. We believe

that by using an approach similar to that described by Kezdy and McGuinness [118],

it is possible to obtain a polylogarithmic parallel algorithm that constructs a series

of clique-sum operations as in Theorem 2.8; details remain to be worked out.

We suspect that Baker's approach can be applied to obtain practical polynomial-

time approximation schemes for other problems, such as variations on dominat-

ing sets [2] that have been solved on k-outerplanar graphs or graphs of bounded

treewidth [46, 76, 2]; several results in this direction have been found recently [70].

By considering other NP-complete problems that have good algorithms for planar

graphs and graphs of bounded treewidth, we may be able to extend the range of

problems to which using clique-sum decomposition techniques may be applied; some

results in this direction have already been found [74].

64



Chapter 3

Exponential Speedup of

Fixed-Parameter Algorithms for

Single-Crossing-Minor-Free Graphs

According to a 1998 survey book [112], there are more than 200 published research

papers on solving domination-like problems on graphs. Because this problem is very

hard and NP-complete even for special kinds of graphs such as planar graphs, much

attention has focused on solving this problem on a more restricted class of graphs. It

is well-known that this problem can be solved on trees [60] or even the generalization

of trees, graphs of bounded treewidth [159]. The approximability of the dominating

set problem has received considerable attention, but it is not known and it is not

believed that this problem has constant-factor approximation algorithms on general

graphs [22].

Downey and Fellows [83] introduced the concept of fixed-parameter tractability to

handle NP-hardness. Unfortunately, according to this theory, it is very unlikely that

the k-dominating set problem has an efficient fixed-parameter algorithm for general

graphs. In contrast, this problem is fixed-parameter tractable on planar graphs. Alber

et al. [2] demonstrated a solution to the planar k-dominating set in time 0( 4 6Vi4n).

Indeed, this result was the first nontrivial result for the parameterized version of an

NP-hard problem where the exponent of the exponential term grows sublinearly in
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the parameter. Recently, the running time of this algorithm was further improved to

0(227Vi'n) [116] and O(215 13 k n 3+ n3 k4 ) [93]. One of the aims of this chapter is to

generalize this result to nonplanar classes of graphs.

In this Chapter, similar to the approach of Alber et al., we prove that for a single-

crossing graph H, the treewidth of any H-minor-free graph G having a k-dominating

set is bounded by O(vk). As a result, we generalize current exponential speedup

in fixed-parameter algorithms on planar graphs to other kinds of graphs by showing

how we can solve the k-dominating set problem on any class of graphs excluding a

single-crossing graph as a minor in time 0(49.55vin°(1)). The genesis of our results

lies in a result of Chapter 2 on obtaining the local treewidth of the aforementioned

class of graphs.

Using the solution for the k-dominating set problem on planar graphs, Kloks et

al. [50, 123, 107] and Alber et al. [2, 6] obtained exponential speedup in solving

other problems such as vertex cover, independent set, clique-transversal set, kernels

in digraph and feedback vertex set on planar graphs. In this chapter we also show

how our results can be extended to these problems and many other problems such as

variants of dominating set, edge dominating set, and a collection of vertex-removal

problems.

This chapter is organized as follows. First, we introduce the preliminary definitions

used throughout this chapter in Section 3.1. In Section 3.2, we prove two general

theorems concerning the construction of tree decompositions of width O(V/i) for these

graphs, and finally we consider the design of fast fixed-parameter algorithms for them.

In Section 3.2, we apply our general results to the k-dominating set problem, and in

Section 3.3, we describe how this result can be applied to derive fast fixed-parameter

algorithms for many different parameters. In Section 3.4, we prove some graph-

theoretic results that provide a framework for designing fixed-parameter algorithms

for a collection of vertex-removal problems. In Section 3.5, we give some further

extensions of our results to graphs with linear local treewidth. We end with some

conclusions and open problems in Section 3.6.
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3.1 Background

3.1.1 Preliminaries

For generalizations of algorithms on undirected graphs to directed graphs, we consider

underlying graphs of directed graphs. The underlying graph of a directed graph H

is the undirected graph G in which V(G) = V(H) and {u, v} E E(G) if and only if

(u, v) E E(H) or (v, u) E E(H).

Let s be an integer where 0 < s < 3 and C be a finite set of graphs. We say

that a graph class G is a clique-sum class if any of its graphs can be constructed by a

sequence of i-sums (i < s) applied to planar graphs and graphs in C. We call a graph

clique-sum if it is a member of a clique-sum class. We call the pair (C, s) the defining

pair of g and we call the maximum treewidth of graphs in C the base of 5 and the

base of graphs in S. A series of k-sums (not necessarily unique) which generate a

clique-sum graph G are called a decomposition of G into clique-sum operations.

According to the (nonalgorithmic) result of [142], if g is the class of graphs ex-

cluding a single crossing graph H then g is a clique-sum class with defining pair (C, s)

where the base of g is bounded by a constant CH depending only on H. In particular,

if H = K3,3 , the defining pair is ({K 5}, 2) and CH = 4 [164] and if H = K 5 then the

defining pair is ({V8 }, 3) and CH = 4 [164].

We call a clique-sum graph class G a-recognizable if there exists an algorithm that

for any graph G E 5 outputs in O(na) time a sequence of clique-sums of graphs of

total size O(IV(G)I) that constructs G. We call a graph a-recognizable if it belongs

in some ao-recognizable clique-sum graph class.

One of the ingredients of our results is the following constructive version of the

result in [142], which has been proved in Chapter 2.

Theorem 3.1 ([72]). For any graph G excluding a single-crossing graph H as a

minor, we can construct in O(n4) time a series of clique-sum operations G = G1 

G2 ... ® Gm where each Gi, 1 < i < m, is a minor of G and is either a planar

graph or a graph of treewidth at most CH. Here each · is a 0-, 1-, 2- or 3-sum.

67



In the remainder of the chapter we assume that CH is the smallest integer for which

Theorem 3.1 holds. Notice that, according to the terminology introduced before, any

graph class excluding a single-crossing graph as a minor is a 4-recognizable clique-

sum graph class. As particular cases of Theorem 3.1 we mention that K3,3-minor-free

graphs are 1-recognizable [20] and K5-minor-free graphs are 2-recognizable [118]. For

more examples of graph classes that can be characterized by clique-sum decomposi-

tions, see the work of Diestel [77, 78].

A parameterized graph class (or just graph parameter) is a family F of classes

{(i, i > 0} where Ui>0 .Fi is the set of all graphs and for any i > 0 , i C Fi+. Given

two parameterized graph classes F1 and F2 and a natural number y > 1 we say that

F1 -, F2 if for any i 0 , 1 C 2 i.

In the rest of this chapter, we identify a parameterized problem with the parame-

terized graph class corresponding to its "yes" instances.

Theorem 3.2. Let 5 be an al-recognizable clique-sum graph class with base c and

let F be a parameterized graph class. In addition, we assume that each graph in g

can be constructed using i-sums where i s < 3. Suppose also that there exist two

positive real numbers p1, 32 such that:

(1) For any k > O, planar graphs in Fk have treewidth at most 1 V + P2 and such

a tree decomposition can be found in O(na2) time.

(2) For any k > 0 and any i < s, if G1 EDi G2 E Fk then G1,G2 E Fk

Then, for any k > 0, the graphs in g n ,Fk all have treewidth < max{(/31V + p2, c)}

and such a tree decomposition can be constructed in O(nm ax' a1,a2} + () s n) time.

Proof. Let G E G n Fk and assume that G = G1 D) G2 ' ( Gm where each Gi,

1 i < m, is either a planar graph or a graph of treewidth at most c. We use

induction on m, the number of Gi's. For m = 1, G = G1 is either a planar graph

that from (1) has treewidth at most 31I V + 32 or a graph of treewidth at most c.

Thus the basis of the induction is true for both cases. We assume the induction

hypothesis is true for m = h, and we prove the hypothesis for m = h + 1. Let
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G' = G1 G2 ED ( Gh and G" = Gh+l. Thus G = G'® G". By (2), both G' and G"

belong in Fk. By the induction hypothesis, tw(G') < max{fl3ik + 2, c} and from

(1) tw(G") < max{iv + 32, c}. The proof, for m = h + 1, follows from this fact

and Lemma 2.4.

To construct a tree decomposition of the aforementioned width, first we construct

a tree decomposition of width at most PI Vk + p2 for each planar graph in O(n02)

time. We also note that using Bodlaender's algorithm [32], we can obtain a tree

decomposition of width c for any graph of treewidth at most c in linear time (the

hidden constant only depends on c). Then having tree decompositions of Gi's, 1 <

i < m, in the rest of the algorithm, we glue together the tree decompositions of Gi's

using the construction given in the proof of Lemma 2.4. To this end, we introduce an

array Nodes indexed by all subsets of V(G) of size at most s. In this array, for each

subset whose elements form a clique, we specify a node of the tree decomposition

which contains this subset. We note that for each clique C in Gi, there exists a node

z of TD(G) such that all vertices of C appear in the bag of z [37]. This array is

initialized as part of a preprocessing stage of the algorithm. Now, for the ® operation

between G1E ... Gh and Gh+1 over the join set W, using array Nodes, we find a node

a in the tree decomposition of G1 ... E Gh whose bag contains W. Because we have

the tree decomposition of Gh+l, we can find the node a' of the tree decomposition

whose bag contains W by brute force over all subsets of size at most s of bags.

Simultaneously, we update array Nodes by subsets of V(G) which form a clique and

appear in bags of the tree decomposition of Gh+l. Then we add an edge between a

and a'. As the number of nodes in a tree decomposition of Gh+1 is in O(IV(Gh+l)1)

and each bag has size at most O(Vk) (and thus there are at most 0((vrk)8) choices

for a subset of size at most s), this operation takes O((vk) V(Gh+l)I) time for Gh+l.

The claimed running time follows from the time required to determine a set of

clique-sum operations, the time required to construct tree decompositions, the time

needed for gluing tree decompositions together and the fact that Eim IV(Gi)I =

o(IV(G)I). o

Notice that condition (2) of Theorem 3.2 is not necessary when G excludes a single-
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crossing graph and F is closed under taking of minors. Indeed, from Theorem 3.1,

we have that in the sequence of operations G = G1 Ef G2 d ... d Gm, each Gi is a

minor of G and therefore, if G E Fk then each Gi is also a member of Fk. We resume

this observation to the following.

Theorem 3.3. Let g be the class of graphs excluding some single-crossing graph H

as a minor and let F be any minor-closed parameterized graph class. Suppose that

there exist real numbers o > 4, 1 such that any planar graph in Fk has treewidth

at most max{P3i1 + 30, CH} and such a tree decomposition can be found in O(na).

Then graphs in g n Fk all have treewidth < 1 v/ + o0 and such a tree decomposition

can be constructed in O(nm ax ( "4)}) time.

Theorem 3.4. Let 0 be a graph class and let F be some parameterized graph class.

Suppose also for some positive real numbers c, ul, a2, /1, /2, 6 the following hold:

(1) For any k O0, the graphs in g n Fk all have treewidth < max{c,/3lvk + 32})

and such a tree decomposition can be decided and constructed (if it exists) in

O(na2) time. We also assume testing membership in 5 takes O(nal) time.

(2) Given a tree decomposition of width at most w of a graph, there exists an algo-

rithm deciding whether the graph belongs in Fk in O(6wn) time.

Then there exists an algorithm deciding in O(6max{c)lr+2- +n-m a x { a1 c2}) time whether

an input graph G belongs in g n k.-

Proof. First, we can test membership in g in O(nal) time. Then we can apply the

algorithm from (1) and (assuming success) supply the resulting tree decomposition

to the algorithm from (2). o

3.2 Fixed-Parameter Algorithms for Dominating

Set

In this section, we describe some of the consequences of Theorems 3.2 and 3.4 on

the design of efficient fixed-parameter algorithms for a collection of parameterized
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problems where their inputs are clique-sum graphs.

A dominating set of a graph G is a set of vertices of G such that each of the rest

of vertices has at least one neighbor in the set. We represent the k-dominating set

problem with the parameterized graph class DS where D)Sk contains graphs which

have a dominating set of size < k. Our target is to show how we can solve the k-

dominating set problem on clique-sum graphs, where H is a single-crossing graph,

in time O(cVn 0 (1)) instead of the current algorithms which run in time O(cknO(l))

for some constant c. By this result, we extend the current exponential speedup in

designing algorithms for planar graphs [6] to a more generalized class of graphs. In

fact, planar graphs are both K3,3-minor-free and K5-minor-free graphs, where both

K3,3 and K5 are single-crossing graphs.

According to the result of [116] condition (1) of Theorem 3.2 is satisfied for 1 =

15.6, 32 = 50, and a 2 = 1. Moreover, from [93], condition (1) is also satisfied for

0l = 9.55, 32 = 0 and a 2 = 4.

The next lemma shows that condition (2) of Theorem 3.2 also holds.

Lemma 3.5. If G = G1 em G2 has a k-dominating set, then both G1 and G2 have

dominating sets of size at most k.

Proof. Let the k-dominating set of G be S and W be the join set of G1Gk G2. W.l.o.g.

we show that G1 has a dominating set of size k. If S1 = SnV(G1) is a dominating set

for G1 then the result immediately follows, otherwise there exists vertex w E V(G 1)

which is dominated by a vertex v E V(G 2) - V(G1 ). One can observe that all such

vertices w are in W. Because v E S, but v ' S1, set S = Sl + {w} has at most k

vertices and because W is a clique in G1, S is a dominating set of size at most k in

G1. o

Let g be any a-recognizable clique-sum class. Now by applying Theorem 3.2 for

/1 = 9.55, 2 = 0, a1 = a, and a 2 = 4 we have the following.

Theorem 3.6. If g is an a-recognizable clique-sum class of base c, then any member

G of g with a dominating set of size at most < k has treewidth at most max{c, 9.55 v}

and the corresponding tree decomposition of G can be constructed in O(nm x{a 4}) time.
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From Theorem 3.6, we get that condition (1) of Theorem 3.4 is satisfied for /1 =

9.55, 2 = 0, 2 = maxa, 4}, and a2 = 4. The main result in [8] shows that for

the graph parameter DS condition (2) of Theorem 3.4 is also satisfied for 6 = 4. We

conclude with the following.

Theorem 3.7. There is an algorithm that in 0(4955Vn + nmax(a,4)) time solves the

k-dominating set problem for any a-recognizable clique-sum graph of base c.1

Corollary 3.8. There is an algorithm that solves the k-dominating set problem for

any graph class excluding some single crossing graph as a minor in 0(49554n + n4 )

time.

For the special cases of K5-minor-free graphs and K3,3-minor-free graphs, we may

apply Theorem 3.2 for P1 = 15.6, /32 = 50, and ~a2 = 1 and derive the following.

Corollary 3.9. There is an algorithm that solves the k-dominating set problem for

any Ks5-minor-free graph in 0(4156v+5°n + n2) time and for any K3,3-minor-free

graph in O(415.6vk+50n) time.

3.3 Algorithms for Parameters Bounded by the

Dominating-Set Number

We provide a general methodology for deriving fast fixed-parameter algorithms in this

section. First, we consider the following theorem which is an immediate consequence

of Theorem 3.4.

Theorem 3.10. Let 5 be a graph class and let F1, F2 be two parameterized graph

classes where F1 -< F2 for some natural number y > 1. Suppose also that there exist

positive real numbers al, a2, pi, /32, 6 such that:

(1) For any k > 0, the graphs in g n. k all have treewidth < 3P1 V + /32 and such a

tree decomposition can be decided and constructed (if it exists) in O(nQ2) time.

We also assume testing membership in 5 takes O(n"') time.

1In the rest of this chapter, we assume that constants, e.g. c, are small and they do not appear
in the powers, because they are absorbed into the O notation.
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(2) There exists an algorithm deciding whether a graph of treewidth < w belongs in

fl in O(6Wn) time.

Then

(1) For any k > 0, the graphs in g n .Fk all have treewidth at most /3

such a tree decomposition can be constructed in O(n02) time.

(2) There exists an algorithm deciding in 0(561V5+02 + nmax{a1la2})

an input graph G belongs in g n Fkl.

Proof. Consequence (1) follows immediately from the definition of H.

(2) follows from Theorem 3.4.

VLy+32 and

time whether

Consequence

Eo

The idea of our general technique is given by the following theorem that is a direct

consequence of Theorems 3.6 and 3.10.

Theorem 3.11. Let F be a parameterized graph class satisfying the following two

properties:

(1) It is possible to check membership in Fk of a graph G of treewidth at most w in

0(6wn) time for some positive real number J.

(2) F DS.

Then

(1) Any clique-sum graph G of base c in jFk has treewidth at most max{9.55V/- +

8,c}.

(2) We can check whether an input graph G is in Fk in O(6955vn + nmax{a' 4}) on

an a-recognizable clique-sum graph of base c.

In what follows we explain how Theorem 3.11 applies for a series of graph para-

meters. In particular, we explain why Conditions (1) and (2) are satisfied for each

problem.
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3.3.1 Variants of the Dominating Set Problem

A k-dominating set with property I on an undirected graph G is a k-dominating set

D of G which has the additional property II and the k-dominating set with property

II problem is the task to decide, given a graph G = (V, E), a property II, and a

positive integer k, whether or not there is a k-dominating set with property HI. Some

examples of this type of problems, which are mentioned in [2, 159, 160], are the

k-independent dominating set problem, the k-total dominating set problem, the k-

perfect dominating set problem, the k-perfect independent dominating set problem

also known as k-perfect code and the k-total perfect dominating set problem. For each

HI, we denote the corresponding dominating set problem by DS'.

Another variant is the weighted dominating set problem in which we have a graph

G = (V, E) together with an integer weight function w : V N with w(v) > 0 for

all v E V. The weight of a vertex set D C V is defined as w(D) = EvED w(v).

A k-weighted dominating set D of an undirected graph G is a dominating set D of

G with w(D) < k. The k-weighted dominating set problem is the task of deciding

whether or not there exits a k-weighted dominating set. We use the parameterized

class WDS to denote the k-weighted dominating set problem.

Condition (1) of Theorem 3.11 holds for 6 = 4 because of the following.

Theorem 3.12 ([2]). If a tree decomposition of width w of a graph is known, then a

solution to DSrn or to WDS can be determined in at most 0(4w · n) time.

Clearly, DSn l ) DS and WVDS 1 DS and Condition (2) also holds. Therefore

Theorem 3.11 holds for y = 1 and 6 = 4 for DSnI and WDS.

Another related problem is the Y-domination problem (DSY) introduced in [25].

Definition 3.13. Let Y be a finite set of integers. A Y-domination is an assignment

f : V -- Y such that for each vertex x, f(N[x]) = EveN[x] f(x) 1 where N[x]

stands for the neighborhood of x including x itself. An efficient Y-domination is an

assignment f with f(N[x]) = 1 for all vertices x E V. The value of a Y-domination f

is l{x f(x) > O)}. The weight of a Y-domination is CEv f(x). Two Y-dominations

are equivalent if they have the same closed neighborhood sum at every vertex. The
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Y-domination problem asks whether the input graph G has an efficient Y-domination

of value at most k.

Using the generalized dynamic programming approach, Cai and Kloks [122] presents

an algorithm which runs in time O(IYlwn) to decide whether a graph G of treewidth

at most w has an efficient Y-domination of value at most k. It is worth mentioning

that, according to Bange et al. [25], a graph G has an efficient Y-domination if and

only if all equivalent Y-dominations have the same weight, and thus there is no need

to worry about the actual weight of an efficient Y-domination. Therefore, we have

that Condition (1) of Theorem 3.11 holds for 6 = IYI.

One can easily see that for Y-domination f of a graph G = (V, E), D = {xlf(x) >

O} is a dominating set, because each vertex x has at least one vertex with a positive

number assigned to it in N[x]. Thus if f is a Y-domination of G with value at most

k, then G also has a dominating set of size k. Therefore, DSY ~-1 DS and Condition

(2) holds as well. Theorem 3.11 applies for y = 1 and 6 = IYI.

3.3.2 Vertex Cover

The k-vertex cover problem (VC) asks whether there exists a subset C of at most k

vertices such that every edge of G has at least one endpoint in C. This problem is

one of the most popular problems in combinatorial optimization.

A great number of researchers believe that there is no polynomial time approxi-

mation algorithm achieving an approximation factor strictly smaller than 2 - e, for

a positive constant a, unless P = NP. Currently, the best known lower bound for

this factor is 1.36 [82] and the best upper bound is 2 which can be obtained eas-

ily. The best current fixed-parameter tractable algorithm has time 0(1. 27 1k + kIVI)

[55]. In this section, we present an exponentially faster algorithm for this problem on

clique-sum graphs.

Without loss of generality, we can restrict our attention to graphs with no vertex

of degree zero. One can observe that if a graph G has a vertex cover of size k, then it

has also a k-dominating set. Therefore VC <1 DS and condition (1) of Theorem 3.11
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holds. Moreover, Condition (2) holds because we can solve the vertex cover problem in

time 0(2W) if we know the tree decomposition of width w of a graph G [6]. Therefore,

Theorem 3.11 applies for y = 1 and 6 = 2 for the k-vertex problem.

A simple standard reduction to the problem kernel due to Buss and Goldsmith

[47] is as follows: Each vertex of degree greater than k must be in the vertex cover

of size k, because otherwise, not all edges can be covered. Thus we can obtain a

subgraph G' of G which has at most k2 edges and at most k2 + k vertices and k' is

obtained from k reduced by the number of vertices of degree more than k. Chen et al.

[55] showed that in Buss and Goldsmith's approach one can even obtain a problem

kernel with at most 2k vertices in O(nk + k3) time. Thus, using this result with the

consequence (2) of Theorem 3.11 for VC, we obtain the following result.

Theorem 3.14. There exists an algorithm which decides the k-vertex cover problem

in 0(29'55Vk + kn + k3 + nm{( a'
4}) time on an a-recognizable clique-sum graph.

3.3.3 Edge Dominating Set

Another related problem is the edge dominating set problem £DS that given a graph

G asks for a set E' C E of k or fewer edges such that every edge in E shares at least

one endpoint with some edge in E'. Again without loss of generality we can assume

that graph G has no vertex of degree zero.

One can observe that if a graph G has a k-edge dominating set E', we can obtain a

vertex cover of size 2k by including both end-points of each edge e E E'. This means

that £DS 42 VC. In the previous section we showed that VC 1 DS therefore, the

Condition (2) of Theorem 3.11 holds for £DS when -y = 2. Condition (1) holds

because the edge dominating set problem can be solved in csn [29, 23] (where ceds

is a small constant) on a tree decomposition of width w for a graph G. We conclude

that Theorem 3.11 applies for y = 2 and 6 = ceds.

Theorem 3.15. We can find a k-edge dominating set in O(ced,9'55n + nmax( a 4})

time on an a-recognizable clique-sum graph.
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3.3.4 Clique-Transversal Set

A clique-transversal set of a connected graph G is a subset of vertices intersecting all

the maximal cliques of G [24, 49, 13, 106]. Because the vertex cover problem is NP-

complete even restricted to triangle-free planar graphs [50, 163], the clique-transversal

problem remains NP-complete on clique-sum graphs. The k-clique transversal prob-

lem CT asks whether the input graph has a clique-transversal set of size < k.

If a graph G has a k-clique-transversal, then it has a dominating set of size at

most k, because every vertex of G is contained in at least one maximal clique. This

implies that CT j DS and Condition (2) of Theorem 3.11 holds for = 1. Using

the general dynamic programming technique, we can solve the k-clique-transversal

problem on a graph G of treewidth at most w in O(c-n) for some constant ct. (The

approach is very similar to Chang et al. [50].) Therefore, Theorem 3.11 applies for

y = 1 and = cct,.

Theorem 3.16. We can find a k-clique-transversal set in O(cd955n + nmax{a,4})

time on an a-recognizable clique-sum graph.

3.3.5 Maximal Matching

A matching in a graph G is a set E' of edges without common endpoints. A matching

in G is maximal if there is no other matching in G containing it. The k-maximal

matching problem MM asks whether an input graph G has a maximal matching of

size < k.

Let E' be the edges of a maximal matching of G. Notice that the set of endpoints

of the edges in E' is a dominating set of G. Therefore MM 42 DS and the Condition

(2) of Theorem 3.11 holds. Condition (1) holds because the problem can be solved

in cmn [29] on a tree decomposition of width w for a graph G. Hence Theorem 3.11

gives the following result.

Theorem 3.17.

(1) Any clique-sum graph of base c with a minimum maximal marching of size k has

treewidth < 9.55V' + max{8, c}.
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(2) One can decide whether an a-recognizable clique-sum graph G has a minimum

maximal matching of size at most k in O(c955vn + nmaa,4}) time.

3.3.6 Kernels in Digraphs

A set S of vertices in a digraph D = (V, A) is a kernel if S is independent and every

vertex in V - S has an out-neighbor in S. It has been shown that the problem of

deciding whether a digraph has a kernel is NP-complete [99]. Franenkel [95] showed

that the kernel problem remains NP-complete even for planar digraphs D with in-

degree and outdegree at most 2 and total degree at most 3. The k-kernel problem

1CER asks whether a graph has a kernel of size k. Moreover, we define the co-CER

problem as the one asking whether an n-vertex graph has a kernel of size n - k.

Here, we again observe that if a digraph D has a kernel of size at most k, then

its underlying graph G has a dominating set of cardinality at most k. Also for a con-

nected digraph D = (V, A) and kernel K, V - K is a dominating set in the underlying

graph of D. Resuming these two facts we have CEZ <1 O S and co-K8£R <1 DS

and Condition (2) of Theorem 3.11 holds for both problems. We note that a slight

variation of Condition (1) also holds because Gutin et al. [107] gives an 0(3wkn)

time algorithm solving the k-kernel problem on graphs of treewidth at most w us-

ing the general dynamic programming approach. The straightforward adaptation of

Theorem 3.11 to this variation of Condition (1) gives the following.

Theorem 3.18.

(1) Any clique-sum graph of base c that has a kernel of size k or n - k has treewidth

< 9.55vk + max{8, c}.

(2) One can decide whether an a-recognizable clique-sum graph G of base c has a

kernel of size k in 0(3955Vnk + nmax{' 4)}) time.

(3) One can decide whether an a-recognizable clique-sum graph G of base c has a

kernel of size n - k in 0(39.554'n(n - k) + nma{a 4}) time.

78



3.4 Fixed-Parameter Algorithms for Vertex-Removal

Problems

In this section, we present general results allowing the construction of O(can)-time

algorithms for a collection of vertex-removal problems. To this end, we start with

some definitions. For any graph class 5 and any nonnegative integer k the graph class

k-almost(9) contains any graph G = (V, E) where there exists a subset S C V(G) of

size at most k such that G[V - S] E 5. We note that using this notation if 5 contains

all the edgeless graphs or forests then k-almost(g) is the class of graphs with vertex

cover < k or feedback vertex set < k.

We define Tr to be the class of graphs with treewidth < r. It is known that, for

1 < i < 2, T is exactly the class of Ki+2-minor-free graphs (see e.g. [33]). We now

present a series of consequences of Theorem 3.3 for solving a collection of vertex-

removal problems on classes of graphs excluding a single-crossing graph as a minor.

First, we need the following combinatorial lemma.

Lemma 3.19. Planar graphs in k-almost(T2) have treewidth < 9.55xVk. Moreover,

such a tree decomposition can be found in 0(n 4) time.

Proof. Our target is to prove that planar graphs in k-almost(T2) are subgraphs of

planar graphs in D S k and the result will follow from the fact that from [93], condition

(1) of Theorem 3.2 is also satisfied for 1 = 9.55, P2 = 0 and a2 = 4.

Let G be a planar graph and S be a set of < k vertices in G where G[V - S] is

K4-minor-free. Using Lemma 2.4, we can assume that G is a biconnected graph. In

addition, because k-almost(T2) is a minor closed class, we can assume that G does not

have a 2-cut (a cut of size 2). In fact, if G has a 2-cut {u, v}, each of the connected

components of G - {u, v} plus edge {u, v} is a minor of G and thus by induction, we

can assume that they satisfy the conditions of the theorem. Then using Lemma 2.4,

we can glue the corresponding tree-decompositions together and obtain the desired

result for G. All these operations take at most 0(n 3) time.

Therefore, in the rest of the proof we assume that G does not have 1- or 2-
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cuts. A consequence of this is that all the vertices of G have degree at least 3.

Another consequence is that two faces of G can have in common either a vertex or

an edge (otherwise, a 2-cut appears). Consider any planar embedding of G. We call

a face of this embedding exterior if it contains a vertex of S, otherwise we call it

interior. For each exterior face choose a vertex in S and connect it with the rest of its

vertices. We call the resulting graph H and we note that (a) G is a subgraph of H, (b)

H[V - S] = G[V - S], and (c) all the vertices of the exterior faces of H are dominated

by some vertex in S. We claim that S is a dominating set of H. Suppose, towards a

contradiction, that there is a vertex v that is not dominated by S. From (c) we can

assume that all of the faces containing v are interior. Let H' be the graph induced

by the vertices of these faces. As they are all interior, H' should be a subgraph of

H[V - S]. Let (x1, ,... ,q, x1 ) be a cyclic order of the neighbors of v and notice that

q > 3. Let also Fi be the face of H containing the vertices xi, v, nt(i), 1 < i < q,

where next(i) = (i + 1) mod q + 1. We note that all these faces are pairwise distinct

otherwise v will be a 1-cut for H and G. Let Pi be the path connecting xi and Xnt(i)

in H' avoiding v and containing only vertices of Fi. Recall now that two faces of H

have either v or an edge containing v in common. Therefore, it is impossible two

paths Pi, Pj,i $ j, share an internal vertex. This implies that the contraction of

all the edges but one of each of these paths transforms H' to a wheel Wq that, as

q > 3, can be further contracted to a K4 (a weel Wq is the graph constructed taking

a cycle of length q and connecting all its vertices with a new vertex v). As H' is a

subgraph of the graph H[V - S] (b) implies that G[V - S] contains a K4, and this is

a contradiction. As now S is a dominating set for H the treewidth of H is at most

9.55v/. From (a) we have that G is a subgraph of a planar graph in DSk and this

completes the proof of the theorem. o

As mentioned before, k-almost(T 2) is a minor closed graph class. Moreover, if

O C T2, then for any k, k-almost(O) C k-almost(T2). Using now Theorem 3.3 we

conclude the following general result.

Theorem 3.20. Let 0 be any class of graphs with treewidth < 2 and let g the class of
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graphs excluding some single-crossing graph H as a minor. Then the following hold.

(1) For any k > , all graphs in k-almost(CO) that also belong to g have treewidth

< max{9.55v, cH}. Moreover, the corresponding tree decomposition can be

found in O(n4) time.

(2) Suppose also that there exists an O(6Wn) algorithm that decides whether a given

graph belongs in k-almost (0) for graphs of treewidth at most w. Then, one can

decide whether a graph in 9 belongs in k-almost () in 0(6955kn + n4 ) time.

If {O1,...,0, Or} is a finite set of graphs, we denote by minor-excl(O1,..., Or) the

class of graphs that are Oi-minor-free for all i = 1, . .., r.

As examples of problems for which Theorem 3.20 can be applied, we mention the

problems of checking whether a graph, after removing k vertices, is edgeless ( = To),

or has maximum degree < 2 ( = minor-excl(K, 3)), or becomes a a star forest

(9 = minor-excl(K3 , P3)), or a caterpillar ( = minor-excl(K3, subdivision of K1,3)),

or a forest ( = T), or outerplanar ( = minor-excl(K4 , K2,3)), or series-parallel, or

has treewidth < 2 ( = 2)-

We consider the cases where 9 = To and 9 = Tx in the next two subsections.

3.4.1 Feedback Vertex Set

A feedback vertex set (FVS) of a graph G is a set U of vertices such that every cycle

of G passes through at least one vertex of U. The previous known fixed-parameter

algorithms for solving the k-feedback vertex set problem had running time 0((2k +

1)kn2) [83] and alternatively time 0((917k 4)!(n+m)) [30] (m is the number of edges.)

Also there exists a randomized algorithm which needs O(c4kkn) time with probability

at least - (1 - )c4k [27]. The k-feedback vertex set problem (VS) asks whether

an input graph has a feedback vertex set of size < k.

Kloks et al. [123] proved that the feedback vertex set problem on planar graphs

of treewidth at most w can be solved in O(cfsn) time for some constant Cbs. The

complexity of their algorithm is based on the fact that the number of edges of a
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planar graph is bounded by a simple linear function of its vertices (i.e. 3n - 6). As

we have similar bound 3n- 5 for K3,3(K 5)-minor-free graphs [20, 118], one can easily

observe that the algorithm of [123] works also for the more general case. Therefore,

Theorem 3.20 can be applied for g = T1 and = cs and we have the following.

Theorem 3.21. If g is a graph class excluding some single-crossing graph H as a

minor then

(1) If G has a feedback vertex set of size at most k then G has treewidth at most

max{9.55x/k, cH}.

(2) We can check whether some n-vertex graph in 5 has a feedback vertex set of size

< k in O(cf55"'n + n4) time.

Theorem 3.21 generalizes the results of [123] to any class of graphs excluding some

single-crossing graph H as a minor.

3.4.2 Improving Bounds for Vertex Cover

Alber et al. [6] proved that planar graphs in VCk have treewidth at most 4Fvvk-+5 <

6.93.x/ + 5. An easy improvement of this result is the folowing:

Lemma 3.22. If a planar graph has a vertex cover of size < k then its treewidth is

bounded by 5.52xv

Proof. Again using Lemma 2.4, we may assume that G is a biconnected graph. Let

S be a vertex cover in G where ISI < k. Consider a planar embedding of G.

Construct a triangulation H of G as follows: for any face F we add edges connect-

ing only vertices of F n S. This operation constructs a triangulation as there is no

pair of vertices in F - S that are consecutive in F. Moreover, as all the added edges

have endpoints in S, S is a vertex cover of H. We will prove that tw(H) < 5.52./'k

We may assume that H is a triangulation without double edges. To see this,

consider two edges e and e2 connecting vertices x and y and apply Lemma 2.4 on

the graphs Gin and Gex induced by the vertices included in each of the closed disks

bounded by the cycle where the two edges of this cycle are identified.
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Notice now that for each vertex v E V(H) - S, all its neighbors are members of

S. This means that IV(H) - SI < r where r is the number of faces of J = H[S].

As H has not double edges, neither J has and therefore IE(J)I < 31V(J)I - 6. It is

known that r < E(J)I - IV(J)I + 2 and we get that r < 21V(J)I - 4. We conclude

that V(H)I < IV(J)I + 21V(J)I - 4 = 31SI -4 = 3k - 4. From [92], we know

that any n-vertex planar graph has treewidth at most -2Vfi f. This means that

tw(H) < 9 3k- -4 < 2--vx . As G is a subgraph of H and 2-v35 < 5.52, the

result follows. °

Applying Theorem 3.20, we have that Condition (1) of Theorem 3.4 holds if F

is the class of graphs with vertex cover < k and g is any graph class excluding

some single-crossing graph H as a minor when c = CH, al = 4, a2 = 4, /1 = 5.52,

and P2 = 0. Also, as we mentioned in Subsection 3.3.2 it is possible to decide in

0(2wn) time if a graph has a vertex cover of size at most k. Therefore, Condition

(2) holds for a = 2. Concluding, we have the following improvement of the results

of Subsection 3.3.2 for any graph class excluding some single-crossing graph H as a

minor.

Theorem 3.23. If 9 is some graph class excluding some single-crossing graph H as

a minor then the following hold.

(1) If G E has a vertex cover of size at most k then G has treewidth at most

max{5.52 VT, cH}.

(2) There is an algorithm which checks whether some graph G E 9 has a vertex cover

of size < k in 0(2552V"k + kn + k3 + n4) time.

Because E£ZS 2 VC, we can also obtain an O(ceds552Vn + n4)-time algorithm

for the edge dominating set problem on graphs excluding some single-crossing graph

as a minor.
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3.5 Further Extensions

In this section, we obtain fixed-parameter algorithms with exponential speedup for

k-vertex cover and k-edge dominating set on classes of graphs that are not necessarily

classifiable as single-crossing minor-free graphs. Our approach, similar to the Alber

et al.'s approach [6], is a general one that can be applied to other problems.

Here we generalize the concept of layerwise separation, introduced by Alber's et

al. [6] for planar graphs, to general graphs.

Definition 3.24. Let G be a graph layered from a vertex v, and r be the number of lay-

ers. A layerwise separation of width w and size s for G is a sequence (S1, S2 ,. , Sr)

of subsets of V, with property that Si C Uji-'i) Lj; Si separates layers Lil and

Li+; and r=,-1 Sjl < s. Here we let Si = 0 for all i < 1 and i > r.

Now we relate the concept of layerwise separation to parameterized problems.

Definition 3.25. A parameterized problem P has Layerwise Separation Property

(LSP) of width w and size-factor d, if for each instance (G, k) of the problem P,

graph G admits a layerwise separation of width w and size dk.

For example, we can obtain constants w = 2 and d = 2 for the vertex cover

problem. In fact, consider a k-vertex cover C on a graph G and set Si = (LiULi+i)nC.

The Si's form a layerwise separation. Similarly, we can get constants w = 2 and d = 4

for the edge dominating set problem (see Alber et al. [6] for further examples).

Lemma 3.26. Let P be a parameterized problem on instance (G, k) that admits a

problem kernel of size dk. Then the parameterized problem P on the problem kernel

has LSP of width 1 and size-factor d.

Proof. Consider the problem kernel (G', k') for an instance (G, k) and obtain layering

L' for G' from arbitrary vertex v. Then clearly the sequence Si = Li for i = 1,. , r

(r' is the number of layers), is a layerwise separation of width I and size k' < dk for

G'. D
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In fact, using Lemma 3.26 and the problem kernel of size 2k (see Subsection 3.3.2)

for the vertex cover problem, this problem has the LSP of width I and size-factor 2.

Now we are ready to present the main theorem of this section.

Theorem 3.27. Suppose for a graph G from a minor-closed class of graphs, ltw(G) <

cr + c' and a tree decomposition of width ch + c' can be constructed in time f(n, h)

for any h consecutive layers. Also assume G admits a layerwise separation of width

w and size dk. Then we have tw(G) < 2v/-'d + cw + c'. Such a tree decomposition

can be computed in time O(kf(n, Vk-)).

Proof. The proof is very similar to the proof of Theorem 15 of Alber et al.'s work

[6] and for the sake of brevity we only mention the differences and omit the lengthy

details. In the proof, the concept of the kth outer face in planar graphs will be replaced

by the concept of the kth layer (or level) in graphs of locally bounded treewidth. More

precisely, Alber et al. [6] use the fact that treewidth of an h-outerplnar graph is 3h- 1,

but in our proof we use the fact that, for any graph G, treewidth of any h consecutive

layers is at most ch + c' [103, 72]. In addition, as mentioned before, Eppstein [87]

showed that a minor-closed graph class £ has bounded local treewidth if and only if

£ is H-minor-free for some apex graph H. (A simpler proof of this theorem can be

found in [65].) By Thomason [161], we know that any graph G excluding an r-clique

as a minor cannot have more than (0.319 + o(1))(rVlo-g) V(G)I edges. This implies

that for graph G mentioned in the statement of the theorem, E(G)I = O(IV(G)I),

similar to the corresponding relation for planar graphs. This fact is used for analyzing

the running time. El

Corollary 3.28. For any H-minor-free graph G, where H is a single-crossing graph,

that admits a layerwise separation of width w and size dk, we have tw(G) < 2v6 +

3w + cH. Such a tree decomposition can be computed in time O(k5/2n + kn4). Fur-

thermore, for any K3 ,3(K5)-minor-free graph G, that admits a layerwise separation

of width w and size dk, we have tw(G) < 2v/dk+ 3w+4. Such a tree decomposition

can be computed in time O(k5/2n) (O(k5/2n + kn2 )).
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Proof. The proof follows directly from Theorem 3.27 and the fact that for any single-

crossing-minor-free graph G, we can construct a tree decomposition of width 3h + ch

for any h consecutive layers in O(h3 n + n4 ) time; for a K3 ,3-minor-free or K5-

minor-free graph G, the running time can be reduced to O(h3n) or O(h3n + n 2 ),

respectively [109, 72]. (CH = 4 for these graphs.) 0

Finally, we have this general theorem.

Theorem 3.29. Suppose for a graph G from a minor-closed class of graphs, ltw(G) <

cr+c'. Let P be a parameterized problem on G such that P has the LSP of width w and

size-factor d and there exists an 0(6wn)-time algorithm, given a tree decomposition

of width w for G, decides whether problem P has a solution of size k on G.

Then there exists an algorithm which decides whether P has a solution of size k

on G in time 0(2(11/3)(2V/2 -k+cw+c')n3.01 + 63.698(2V/2k++cw')n).

Proof. The proof follows from Theorem 3.27, the fact that for graph G, treewidth of

any h consecutive layers is at most ch+ c' [103, 72], and finally the result of Amir [11],

which says for any graph G of treewidth w, we can construct a tree decomposition of

width at most (11/3)w in time 0(23.6 98 wn 3.01). 0

For example, Theorem 3.29 gives an exponential speed up, i.e., an algorithm with

running time 0(2°(NV)k301 + kn+ k3 + n4 ) (because c = 0(g) [87]), for solving vertex

cover on graphs of bounded genus.

Recently, it was established that all minor-closed classes of graphs with bounded

local treewidth, i.e., all minor-closed graph classes excluding an apex graph, in fact

have linear local treewidth [66]. Therefore Theorem 3.29 applies generally to any such

class of graphs.

3.6 Concluding Remarks

In this chapter, we considered H-minor-free graphs, where H is a single-crossing

graph, and proved that if these graphs have a k-dominating set then their treewidth

is at most c for a small constant c. As a consequence, we obtained exponential
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speedup in designing FPT algorithms for several NP-hard problems on these graphs,

especially K3 ,3-minor-free or K5-minor-free graphs. In fact, our approach is a general

one that can be applied to several problems which can be reduced to the dominating

set problem as discussed in Section 3.3 or to problems that themselves can be solved

exponentially faster on planar graphs [6]. Here, we present several open problems

that are possible extensions of results of this chapter.

One topic of interest is finding other problems to which the technique of this

chapter can be applied. Moreover, it would be interesting to find other classes of

graphs than H-minor-free graphs, where H is a single-crossing graph, on which the

problems can be solved exponentially faster for parameter k. A partial answer to this

question is the class of map graphs (see Chapter 4).

For several problems in this chapter, Kloks et al. [50, 123, 107, 122] introduced a

reduction to the problem kernel on planar graphs. Because graphs excluding a single-

crossing graph are similar to planar graphs, in the sense of having a linear number

of edges and not having a clique of more than a constant size, we believe that one

might obtain similar results for these graphs.

As mentioned before, Theorem 3.20 holds for any class of graphs with treewidth

< 2. It is an open problem whether it is possible to generalize it to apply to any

class of graphs of treewidth < h for arbitrary fixed h. Moreover, there exists no

general method for designing O(6wn)-time algorithms for vertex-removal problems in

graphs with treewidth < w. If this becomes possible, then Theorem 3.23 will have

considerable algorithmic applications.

Finally, as a matter of practical importance, it would be interesting to obtain

a constant coefficient better than 9.55 for the treewidth of planar graphs having a

k-dominating set, which would lead to a direct improvement on our results.
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Chapter 4

Fixed-Parameter Algorithms for

the (k, r)-Center in Planar Graphs

and Map Graphs

Clustering is a key tool for solving a variety of application problems such as data

mining, data compression, pattern recognition and classification, learning, and facility

location. Among the algorithmic problem formulations of clustering are k-means, k-

medians, and k-center. In all of these problems, the goal is to partition n given points

into k clusters so that some objective function is minimized.

In this chapter, we concentrate on the (unweighted) (k, r)-center problem [26], in

which the goal is to choose k centers from the given set of n points so that every

point is within distance r from some center in the graph. In particular, the k-center

problem [102] of minimizing the maximum distance to a center is exactly (k, r)-center

when the goal is to minimize r subject to finding a feasible solution. In addition, the

r-domination problem [26, 100] of choosing the fewest vertices whose r-neighborhoods

cover the whole graph is exactly (k, r)-center when the goal is to minimize k subject

to finding a feasible solution.

A sample application of the (k, r)-center problem in the context of facility location

is the installation of emergency service facilities such as fire stations. Here we suppose

that we can afford to buy k fire stations to cover a city, and we require every building to
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be within r city blocks from the nearest fire station to ensure a reasonable response

time. Given an algorithm for (k, r)-center, we can vary k and r to find the best

bicriterion solution according to the needs of the application. In this scenario, we

can afford high running time (e.g., several weeks of real time) if the resulting solution

builds fewer fire stations (which are extremely expensive) or has faster response time;

thus, we prefer fixed-parameter algorithms over approximation algorithms.

In this application, and many others, the graph is typically planar or nearly so.

Chen, Grigni, and Papadimitriou [58] have introduced a generalized notion of pla-

narity which allows local nonplanarity. In this generalization, two countries of a map

are adjacent if they share at least one point, and the resulting graph of adjacencies is

called a map graph. (See Section 4.1 for a precise definition.) Planar graphs are the

special case of map graphs in which at most three countries intersect at a point.

Previous results. r-domination and k-center are NP-hard even for planar graphs.

For r-domination, the current best approximation (for general graphs) is a (log n+ 1)-

factor by phrasing the problem as an instance of set cover [26]. For k-center, there is a

2-approximation algorithm [102] which applies more generally to the case of weighted

graphs satisfying the triangle inequality. Furthermore, no (2 - )-approximation

algorithm exists for any e > 0 even for unweighted planar graphs of maximum degree 3

[137]. For geometric k-center in which the weights are given by Euclidean distance

in d-dimensional space, there is a PTAS whose running time is exponential in k [1].

Several relations between small r-domination sets for planar graphs and problems

about organizing routing schemes with compact structures is discussed in [100].

The (k, r)-center problem can be considered as a generalization of the well-known

dominating set problem. During the last two years in particular much attention has

been paid to constructing fixed-parameter algorithms with exponential speedup for

this problem. Alber et al. [2] were the first who demonstrated an algorithm checking

whether a planar graph has a dominating set of size < k in time 0(27° V n). This result

was the first non-trivial result for the parameterized version of an NP-hard problem

in which the exponent of the exponential term grows sublinearly in the parameter.

Recently, the running time of this algorithm was further improved to 0(227V'n) [116]
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and 0(21513 vk+n3+k4) [93]. Fixed-parameter algorithms for solving many different

problems such as vertex cover, feedback vertex set, maximal clique transversal, and

edge-dominating set on planar and related graphs such as single-crossing-minor-free

graphs are considered in [74, 123](see also Chapter 3). Most of these problems have

reductions to the dominating set problem. Also, because all these problems are closed

under taking minors or contractions, all classes of graphs considered so far are minor-

closed.

Our results. In this chapter, we focus on applying the tools of parameterized com-

plexity, introduced by Downey and Fellows [83], to the (k, r)-center problem in planar

and map graphs. We view both k and r as parameters to the problem. We introduce

a new proof technique which allows us to extend known results on planar dominating

set in two different aspects.

First, we extend the exponential speed-up for a generalization of dominating set,

namely the (k, r)-center problem, on planar graphs. Specifically, the running time

of our algorithm is 0((2r + 1)6(2r+1)vf+12r+3/2n + n4 ), where n is the number of

vertices. Our proof technique is based on combinatorial bounds (Section 4.2) derived

from the Robertson, Seymour, and Thomas theorem about quickly excluding planar

graphs, and on a complicated dynamic program on graphs of bounded branchwidth

(Section 4.3). Second, we extend our fixed-parameter algorithm to map graphs which

is a class of graphs that is not minor-closed. In particular, the running time of the

corresponding algorithm is 0((2r + 1)6(4r+l)v+24r+3n + n4 ).

Notice that the exponential component of the running times of our algorithms

depends only on the parameters, and is multiplicatively separated from the problem

size n. Moreover, the contribution of k in the exponential part is sublinear. In

particular, our algorithms have polynomial running time if k = O(log2 n) and r =

0(1), or if r = O(log n/ log log n) and k = 0(1). We stress the fact that we design

our dynamic-programming algorithms using branchwidth instead of treewidth because

this provides better running times.

Finally, in Section 4.5, we present several extensions of our results, including a

PTAS for the r-dominating set problem and a generalization to a broad class of graph
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parameters.

4.1 Preliminary Results

In this section, we recall some definitions from Chapter 1 for which we present several

preliminary results in more detail.

(k, r)-center. We say a graph G has a (k, r)-center or interchangeably has an r-

dominating set of size k if there exists a set S of centers (vertices) of size at most k

such that N&(S) = V(G). We denote by yr(G) the smallest k for which there exists

a (k, r)-center in the graph. One can easily observe that for any r the problem of

checking whether an input graph has a (k, r)-center, parameterized by k is W[2]-hard

by a reduction from dominating set. (See Downey and Fellows [83] for the definition

of the W Hierarchy.)

Map graphs. Let , be a sphere. A ,-plane graph G is a planar graph G drawn in

E. To simplify notation, we usually do not distinguish between a vertex of the graph

and the point of E used in the drawing to represent the vertex, or between an edge

and the open line segment representing it. We denote the set of regions (faces) in

the drawing of G by R(G). (Every region is an open set.) An edge e or a vertex v is

incident to a region r if e C f or v C , respectively. ( denotes the closure of r.)

For a E-plane graph G, a map M is a pair (G, q), where : R(G) {0, 1} is a

two-coloring of the regions. A region r E R(G) is called a nation if +(r) = 1 and a

lake otherwise.

Let N(M) be the set of nations of a map M. The graph F is defined on the

vertex set N(M), in which two vertices r1, r2 are adjacent precisely if rl n f2 contains

at least one edge of G. Because F is the subgraph of the dual graph G* of G, it is

planar. Chen, Grigni, and Papadimitriou [58] defined the following generalization of

planar graphs. A map graph GM of a map M is the graph on the vertex set N(M)

in which two vertices r1, r2 are adjacent in GM precisely if rFl n r2 contains at least

one vertex of G.

Recall from Chapter 1 that we denote by Gk the kth power of G, i.e., the graph
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on the vertex set V(G) such that two vertices in Gk are adjacent precisely if the

distance in G between these vertices is at most k. Let G be a bipartite graph with a

bipartition U U W = V(G). The half square G2[U] is the graph on the vertex set U

and two vertices are adjacent in G2 [U] precisely if the distance between these vertices

in G is 2.

Theorem 4.1 ([58]). A graph GM is a map graph if and only if it is the half-square

of some planar bipartite graph H.

Here the graph H is called a witness for GM. Thus the question of finding a

(k, r)-center in a map graph GM is equivalent to finding in a witness H of GM a set

S C V(GM) of size k such that every vertex in V(GM) - S has distance < 2r in H

from some vertex of S.

The proof of Theorem 4.1 is constructive, i.e., given a map graph GM together

with its map M = (G, 0), one can construct a witness H for GM in time O(IV(GM)I+

IE(GM)). One color class V(GM) of the bipartite graph H corresponds to the set

of nations of the map M. Each vertex v of the second color class V(H) - V(GM)

corresponds to an intersection point of boundaries of some nations, and v is adjacent

(in H) to the vertices corresponding to the nations it belongs. What is important for

our proofs are the facts that

1. in such a witness, every vertex of V(H) - V(GM) is adjacent to a vertex of

V(GM), and

2. IV(H)I = O(IV(GM)I + IE(GM)I).

Thorup [162] provided a polynomial-time algorithm for constructing a map of a

given map graph in polynomial time. However, in Thorup's algorithm, the exponent

in the polynomial time bound is about 120 [57]. So from practical point of view there

is a big difference whether we are given a map in addition to the corresponding map

graph. Below we suppose that we are always given the map.

Branchwidth (see Section 2.4 for the definition and its relation to treewidth) is our

main tool in this chapter. All our proofs can be rewritten in terms of the related and
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better-known parameter treewidth, and indeed treewidth would be easier to handle in

our dynamic program. However, branchwidth provides better combinatorial bounds

resulting in faster exponential speed-up of our algorithms.

The following deep result of Robertson, Seymour, and Thomas (Theorems (4.3)

in [145] and (6.3) in [151]) plays an important role in the results of this thesis.

Theorem 4.2 ([151]). Let k > 1 be an integer. Every planar graph with no (k x k)-

grid as a minor has branchwidth < 4k - 3.

4.2 Combinatorial Bounds

Lemma 4.3. Let p, k, r > 1 be integers and G be a planar graph having a (k, r)-center

and with a (p x p)-grid as a minor. Then k > (+1 2)2.

Proof. We set V = {1,...,p} x {1,...,p}. Let

F = (V, {((x, y), (x',y')) I Ix - x' + Iy - y'l = 1})

be a plane (p x p)-grid that is a minor of some plane embedding of G. W.l.o.g. we

assume that the external (infinite) face of this embedding of F is the one that is

incident to the vertices of the set Vext = {(x, y) x = 1 or x = p or y = 1 or y = p},

i.e., the vertices of F with degree < 4. We call the rest of the faces of F internal

faces. We set Vint = {(x, y) r + 1 x p - r, r +1 y < p - r}, i.e., Vnt is the set

of all vertices of F within distance > r from all vertices in Vext. Notice that F[Vint]

is a sub-grid of F and IVnt = (p - 2r)2. Given any pair of vertices (x, y), (x', y') E V

we define 6((x, y), (x', y')) = max{lx - x'l, Y - 'l 

We also define dF((x, y), (x', y')) to be the distance between any pair of vertices

(x, y) and (x', y') in F. Finally we define J to be the graph occurring from F by

adding in it the edges of the following sets:

{((x,y), (x + 1, + 1) I 1 < x - , 1 <y p - 1)}
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((x,y+ ),(x+ 1,y) I 1 x<p-1, 1 <yp-1)}

(In other word we add all edges connecting pairs of non-adjacent vertices incident

to its internal faces). It is easy to verify that V(x, y), (x', y') E V ((x, y), (x', y')) =

d ((x, y), (x', y')). This implies the following.

If R is a subgraph of J, then V(x, y), (x', y') E V 6((x, y), (x', y')) < dR((x, y), (x', y')}4.1)

For any (x, y) E V we define Br((x, y)) = ((a, b) E V I 6((x, y), (a, b)) < r} and we

observe the following:

V(,y)ev IV(B((x,y))) < (2r + 1)2 . (4.2)

Consider now the sequence of edge contractions/removals that transform G to F. If

we apply on G only the contractions of this sequence we end up with a planar graph

H that can obtained by the (p x p)-grid F after adding edges to non-consecutive

vertices of its faces. This makes it possible to partition the additional edges of H

into two sets: a set denoted by E1 whose edges connect non-adjacent vertices of some

square face of F and another set E 2 whose edges connect pairs of vertices in Vext.

We denote by R the graph obtained by F if we add the edges of E1 in F. As R is a

subgraph of J, (4.1) implies that

V(x,y)EV N ((x, y)) C B((x, )) (4.3)

We also claim that

V(X,Y)eV NI((X, y)) C B,((X, y)) U (V - Vint ) (4.4)

To prove (4.4) we notice first that if we replace H by R in it then the resulting relation

follows from (4.3). It remains to prove that the consecutive addition of edges of E2 in

R does not introduce in NR((x, y)) any vertex of Vint. Indeed, this is correct because

any vertex in Vext is in distance > r from any vertex in Vint. Notice now that (4.4)
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implies that V(_,y)ev NT((x, Y)) fn vnt C Br((x,y )) n Vint and using (4.2) we conclude

that

V(X,y)EV N((x,y)) n Vint < (2r + 1)2 (4.5)

Let S be a (k', r)-center in the graph H. Applying (4.5) on S we have that the

r-neighborhood of any vertex in S contains at most (2r + 1)2 vertices from Vit.

Moreover, any vertex in Vi,t should belong to the r-neighborhood of some vertex in

S. Thus k' > IintI/(2r + 1)2 = (p - 2r) 2/(2r + 1)2 and therefore k' > (P-)2

Clearly, the conditions that G has an r-dominating set of size k and H __ G imply

that H has an r-dominating set of size k' < k. (But this is not true for H G.) As

H is a contraction of G and G has a (k, r)-center, we have that k > k' > (P:)2 and

lemma follows. O

We are ready to prove the main combinatorial result of this chapter:

Theorem 4.4. For any planar graph G having a (k,r)-center, bw(G) < 4(2r +

1) + 8r+ 1.

Proof. Suppose that bw(G) > p = 4(2r + 1)k + 8r + - 3 for some , 0 < < 4,

for which p + 3 _ (mod 4). By Theorem 4.2, G contains a (p x p)-grid as a minor

where p = (2r + 1)V/ + 2r + . By Lemma 4.3, k > (:-2r)2 = ((2r+1l)vk+4)2 which

implies that JV > V - + +, a contradiction. O

Notice that the branchwidth of a map graph is unbounded in terms of k and r.

For example, a clique of size n is a map graph and has a (1, 1)-center and branchwidth

> 2/3n.

Theorem 4.5. For any map graph GM having a (k, r)-center and its witness H,

bw(H) < 4(4r + 3)V/ + 16r + 9.

Proof. The question of finding a (k, r)-center in a map graph GM is equivalent to

finding in a witness H of GM a set S C V(GM) of size k such that every vertex

V(GM) - S is at distance < 2r in H from some vertex of S. By the construction
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of the witness graph, every vertex of V(H) - V(GM) is adjacent to some vertex of

V(GM). Thus H has a (k, 2r + 1)-center and by Theorem 4.4 the proof follows. 

4.3 (k,r)-Centers in Graphs of Bounded Branch-

width

In this section, we present a dynamic-programming approach to solve the (k, r)-center

problem on graphs of bounded branchwidth. It is easy to prove that, for a fixed r, the

problem is in MSOL (monadic second-order logic) and thus can be solved in linear

time on graphs of bounded treewidth (branchwidth). However, for r part of the input,

the situation is more difficult. Additionally, we are interested in not just a linear-time

algorithm but in an algorithm with running time f(k, r)n.

It is worth mentioning that our algorithm requires more than a simple extension of

Alber et al.'s algorithm for dominating set in graphs of bounded treewidth [2], which

corresponds to the case r = 1. In fact, finding a (k, r)-center is similar to finding

homomorphic subgraphs, which has been solved only for special classes of graphs and

even then only via complicated dynamic programs [105]. The main difficulty is that

the path v = v, Vl, v2, ... , V<r = c from a vertex v to its assigned center c may

wander up and down the branch decomposition repeatedly, so that c and v may be in

radically different 'cuts' induced by the branch decomposition. All we can guarantee

is that the next vertex v1 along the path from v to c is somewhere in a common 'cut'

with v, and that vertex vl and v2 are in a common 'cut', etc. In this way, we must

propagate information through the vi's about the remote location of c.

Let (T', ) be a branch decomposition of a graph G with m edges and let w':

E(T') 2V(G) be the order function of (T', T). We choose an edge {x, y} in T', put

a new vertex v of degree 2 on this edge, and make v adjacent to a new vertex r.

By choosing r as a root in the new tree T = T' U v, r}, we turn T into a rooted

tree. For every edge of f E E(T)n E(T'), we put w(f) = w'(f). Also we put

w({x, v}) = w({v, y}) = w'({x, y}) and w({r, v}) = 0.
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For an edge f of T we define Ef (Vf) as the set of edges (vertices) that are

"below" f, i.e., the set of all edges (vertices) g such that every path containing g

and v, r} in T contains f. With such a notation, E(T) = Ev,r} and V(T) = V{v,r}.

Every edge f of T that is not incident to a leaf has two children that are the edges

of Ef incident to f. We denote by Gf the subgraph of G induced by the vertices

incident to edges from the following set

{T-l(X) I x E Vf A (x is a leaf of T')).

The subproblems in our dynamic program are defined by a coloring of the vertices

in w(f) for every edge f of T. Each vertex will be assigned one of 2r + 1 colors

{O, T1, 2,...,Tr, 1,12,..., r}.

The meaning of the color of a vertex v is as follows:

* 0 means that the vertex v is a chosen center.

* i means that vertex v has distance exactly i to the closest center c. Moreover,

there is a neighbor u E V(Gf) of v that is at distance exactly i - 1 to the center

c. We say that neighbor u resolves vertex v.

* i means that vertex v has distance exactly i to the closest center c. However,

there is no neighbor of v in V(Gf) resolving v. Thus we are guessing that any

vertex resolving v is somewhere in V(G) - V(Gf).

Intuitively, the vertices colored by i have already been resolved (though the vertex

that resolves it may not itself be resolved), whereas the vertices colored by Ti still

need to be assigned vertices that are closer to the center.

We use the notation i to denote a color of either Ti or i. Also we use 10 = 0.

For an edge f of T, a coloring of the vertices in w(f) is called locally valid if the

following property holds: for any two adjacent vertices v and w in w(f), if v is colored

Ii and w is colored Ij, then i - jl < 1. (If the distance from some vertex v to the
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closest center is i, then for every neighbor u of v the distance from u to the closest

center can not be less than i - 1 or more than i + 1.)

For each locally valid coloring c of w(f), f E E(T), we define Af(c) as the size of

the "minimum (k, r)-center restricted to Gf and coloring c". More precisely, Af(c) is

the minimum cardinality of a set Df(c) C V(Gf) such that

* For every vertex v E w(f),

- c(v) = 0 if and only if v E Df(c), and

- if c(v) =li, i > 1, then v Df(c) and either there is a vertex u E w(f)

colored by Ij, j < i, at distance i -j from v in Gf, or there is a path P of

length i in Gf connecting v with some vertex of Df (c) such that no inner

vertex of P is in w(f).

* Every vertex v E V(Gf) - w(f) whose closest center is at distance i, either is

at distance i in Gf from some center in Df(c), or is at distance j, j < i, in Gf

from a vertex u E w(f) colored I(i - j).

We put Af(c) = +oo if there is no such a set Df(c), or if c is not a locally valid

coloring. Because w({r, v}) = 0 and G{r,v} = G, we have that A{r,v}(c) is the smallest

size of an r-dominating set in G.

We start computations of the functions Af from leaves of T. Let x be a leaf of

T and let f be the edge of T incident with x. Then Gf is the edge {u, v} of G

corresponding to x and either V(Gf) = w(f), or the vertex u = V(Gf) - w(f) is the

vertex of degree 1 in G. If V(Gf) = w(f), we consider all locally valid colorings c of

w(f) such that if a vertex v E w(f) is colored by i for i > 0 then u is colored by

Ii - 1. Let us note that there is always an optimal solution containing no centers

in vertices of degree 1. Thus in the case v = V(Gf) - w(f) we color v in one of the

colors from the set {0, T1, T2, . . ., Tr - 1}. For each such coloring c we define Af(c)

to be the number of vertices colored 0 in w(f). Otherwise, Af(c) is +oo, meaning

that this coloring c is infeasible. The brute-force algorithm takes O(rm) time for this

step.
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Let f be a non-leaf edge of T and let fl, f2 be the children of f. Define X1 = w(f)-

w(f2), X2 = w(f)-W(fi), X 3 = W(f)nw(fi)nw(f 2 ), and X4 = ((fi)UW(f 2 ))-(f).

Notice that

(f) = X1 U X2 U X3 . (4.6)

By the definition of , it is impossible that a vertex belongs to exactly one of

w (f), W(fi), (f 2). Therefore, condition u E X 4 implies that u E w(f1 ) n W(f2) and

we conclude that

w(fi) = X U X3 U X4 , (4.7)

and

W(f 2 ) = X2 U X3 U X4 . (4.8)

We say that a coloring c E {O, T1, T2, ... , Tr, 11, 12,..., r}Iw(f) of w(f) is formed

from a coloring c1 of w(fl) and a coloring c2 of w(f 2) if

1. For every u e X1, c(u) = cl(u);

2. For every u E X2, c(u) = c2(u);

3. For every u E X 3,

(a) If c(u) =Ti, 1 < i < r, then c(u) = cl(u) = 2(u). Intuitively, because

vertex u is unresolved in w(f), this vertex is also unresolved in w(fi) and

in w(f2).

(b) If c(u) = 0 then c(u) = c2(u) = 0.

(c) If c(u) =li, 1 < i < r, then c1(u), c2(u) E {i, i} and cl(u) y~ c2(u). We

avoid the case when both cl and c2 are colored by Li because it is sufficient

to have the vertex u resolved in at least one coloring. This observation

helps to decrease the number of colorings forming a coloring c. (Similar
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arguments using a so-called "monotonicity property" are made by Alber et

al. [2] for computing the minimum dominating set on graphs of bounded

treewidth.)

4. For every u E X4,

(a) either c(u) = C2(U) = 0 (in this case we say that u is formed by 0 colors),

(b) or Cl(u), c2(u) E {(i, Ti} and cl(u) =I c2(u), 1 i < r (in this case we say

that u is formed by (li, Ti} colors).

This property says that every vertex u of w(fi) and w(f 2) that does not appear

in w(f) (and hence does not appear further) should finally either be a center (if

both colors of u in cl and c2 were 0), or should be resolved by some vertex in

V(Gf) (if one of the colors cl(u), c2(u) is i and one Ti). Again, we avoid the

case of Pi in both cl and c2.

Notice that every coloring of w(f) is formed from some colorings of w(fi) and

w(f 2). Moreover, if D (c) is the restriction to Gf of some (k, r)-center and such a re-

striction corresponds to a coloring c of w(f) then Df(c) is the union of the restrictions

Df (cl), Df2 (c2) to Gfh, Gf2 of two (k, r)-centers where these restrictions correspond

to some colorings cl, c2 of w(fi) and w(f2) that form the coloring c.

We compute the values of the corresponding functions in a bottom-up fashion.

The main observation here is that if fi and f2 are the children of f, then the vertex

sets w(fl) w(f2) "separate" subgraphs Gf1 and Gf2, so the value Af(c) can be obtained

from the information on colorings of w(fi) and w(f 2).

More precisely, let c be a coloring of w (f) formed by colorings cl and c2 of fi and

f2. Let #o(X 3, c) be the number of vertices in X 3 colored by color 0 in coloring c and

and let #o(X 4 , c) be the number of vertices in X4 formed by 0 colors. For a coloring

c we assign

Af(c) = min{Af, (cl) + Af2 (c2) - #o(X 3, c1) - #o(X4 , c1) 1, C2 form c}. (4.9)

(Every 0 from X3 and X4 is counted in Af,(cl) + Af 2(c2) twice and X 3 n X 4 = 0.)
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The time to compute the minimum in (4.9) is given by

O(Z {{cic 2 } Ci,C2 form c} )

Let xi = Xi, 1 < i < 4. For a coloring c let z3 be the number of vertices colored

by I colors in X3 . Also we denote by z 4 the number of vertices in X4 formed by

{ti, ti} colors, 1 < i < r. Thus the number of pairs forming c is 2 3+Z4. The number

of colorings of w(f) such that exactly z3 vertices of X3 are colored by colors and

such that exactly 4 vertices of X4 are formed by {l, T } colors is

ZZ4(2r + 1)x1 (2r + 1)X2 (r + 1)3-z3 () ( ) rZ4

Thus the number of operations needed to estimate (4.9) for all possible colorings of

w(f) is

E E 2P+ (2r + 1)x1+x2(r + 1)3(- P ) rP(" )rQ = (2r + 1)1+2+4(3r + 1)X3
p=O q=O

Let e be the branchwidth of G. The sets Xi, 1 < i < 4, are pairwise disjoint and

by (4.6)-(4.8),

xl +X2 +X3 < f

Xl +X3+X4 < e (4.10)

X2+X3+X4 < e.

The maximum value of the linear function log3r+l(2r + 1) (X1 + x2 + x4) + X3

subject to the constraints in (4.10) is 31093r+1(2r+l1)f (This is because the value of the

corresponding LP achieves maximum at X1 = 2 = X4 = 0.5£, x3 = 0.) Thus one can

evaluate (4.9) in time

(2r + 1)zl+z2+4(3r + 1)z 3 < (3r - - ) 3 Og3r+ (2r+l ) (2 1)
(2r + 1)x1+x2+x4(3r + 1)X3 • (3r ± 1) 2 -(2r + 
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It is easy to check that the number of edges in T is O(m) and the time needed to

evaluate A{r,v}(c) is 0((2r + 1)2 m). Moreover, it is easy to modify the algorithm to

obtain an optimal choice of centers by bookkeeping the colorings assigned to each set

w(f).

Summarizing, we obtain the following theorem:

Theorem 4.6. For a graph G on m edges and with a given branch decomposition of

width < , and integers k, r, the existence of a (k, r)-center in G can be checked in

0((2r + 1) 2tm) time and, in case of a positive answer, constructs a (k, r)-center of

G in the same time.

Similar result can be obtained for map graphs.

Theorem 4.7. Let H be a witness of a map graph GM on n vertices and let k, r

be integers. If a branch-decomposition of width < £ of H is given, the existence of a

(k, r)-center in GM can be checked in 0((2r + 1)e n) time and, in case of a positive

answer, constructs a (k, r)-center of G in the same time.

Proof. We give a sketch of the proof here. H is bipartite graph with a bipartition

(V(GM),V(H)- V(GM)). There is a (k,r)-center in GM if and only if H has a

set S C V(GM) of size k such that every vertex V(GM) - S is at distance < 2r in

H from some vertex of S. We check whether such a set S exists in H by applying

arguments similar the proof of Theorem 4.6. The main differences in the proof are

the following. Now we color vertices of the graph H by I i, 0 < i < 2r, where i is

even. Thus we are using 2r + 1 numbers. Because we are not interested whether the

vertices of V(H) - V(GM) are dominated or not, for vertices of V(H) - V(GM) we

keep the same number as for a vertex of V(GM) resolving this vertex. For a vertex

in V(GM) we assign a number i if there is a resolving vertex from V(H) - V(GM)

colored I (i - 2). Also we change the definition of locally valid colorings: for any

two adjacent vertices v and w in w(f), if v is colored i and w is colored j, then

i - il < 2.

Finally, H is planar, so IE(H)J = O(IV(H)I) = O(n). °]
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4.4 Algorithms for the (k, r)-Center Problem

For a planar graph G and integers k, r, we solve (k, r)-center problem on planar graphs

in three steps.

Step 1: We check whether the branchwidth of G is at most 4(2r + 1)vk + 8r + 1.

This step requires O((IV(G)I + IE(G)I)2) time according to the algorithm due to

Seymour & Thomas (algorithm (7.3) of Section 7 of [155] - for an implementation,

see the results of Hicks [113]). If the answer is negative then we report that G has no

any (k, r)-center and stop. (The correctness of this step is verified by Theorem 4.4.)

Otherwise go to the next step.

Step 2: Compute an optimal branch-decomposition of a graph G. This can be done

by the algorithm (9.1) in the Section 9 of [1551 which requires O((IV(G)I + E(G)1)4)

steps.

Step 3: Compute, if it exists, a (k, r)-center of G using the dynamic-programming

algorithm of Section 4.3.

It is crucial that, for practical applications, there are no large hidden constants in

the running time of the algorithms in Steps 1 and 2 above. Because for planar graphs

IE(G)I = O(IV(G)[), we conclude with the following theorem:

Theorem 4.8. There exists an algorithm finding, if it exists, a (k,r)-center of a

planar graph in 0((2r + 1)6(2r+l)vr/+12r+3/2n + n4) time.

Similar arguments can be applied to solve the (k, r)-center problem on map graphs.

Let GM be a map graph. To check whether GM has a (k,r)-center, we compute

optimal branchwidth of its witness H. By Theorem 4.5, if bw(H) > 4(4r + 3)VT +

16r + 9, then GM has no (k, r)-center. If bw(H) < 4(4r + 3)vk + 16r + 9, then by

Theorem 4.7 we obtain the following result:

Theorem 4.9. There exists an algorithm finding, if it exists, a (k, r)-center of a map

graph in 0((2r + 1)6(4r+l)v'k+24r+13.5n + n4) time.
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By a straightforward modification to the dynamic program, we obtain the same

results for the vertex-weighted (k, r)-center problem, in which the vertices have real

weights and the goal is to find a (k, r)-center of minimum total weight.

4.5 Concluding Remarks

In this chapter, we presented fixed-parameter algorithms with exponential speed-up

for the (k, r)-center problem on planar graphs and map graphs. Our methods for

(k, r)-center can also be applied to algorithms on more general graph classes like con-

stant powers of planar graphs, which are not minor-closed family of graphs. Extending

these results to other non-minor-closed families of graphs would be instructive.

Surprisingly, the algorithm described in Section 4.4 does not use special properties

of (k, r)-center problem at all. The only properties the algorithm really needs are the

combinatorial bound used in Step 1 and the fact that the problem can be solved

on graphs of bounded branchwidth (Step 3). The proof of combinatorial bound

(Theorem 4.4) is based on excluded planar graphs theorem of Robertson, Seymour &

Thomas and the following two facts used in the proof of Lemma 4.3.

Fact 1: (k, r)-center problem is closed under edge contraction operation

Fact 2: For any partially triangulated grid (a partially triangulated (p x p)-grid is any

graph obtained by adding non-crossing edges between pairs of nonconsecutive

vertices on a common face of a planar embedding of an (p x p)-grid) having a

(k, r)-center, k is at least (P1:r)2

The above observations, summarized in the next theorem, provide a general and

versatile approach for many parameterized problems.

Theorem 4.10. Let p be a function mapping graphs to non-negative integers such

that the following conditions are satisfied:

(1) There exists an algorithm checking whether p(G) < w in f(bw(G))n 0 (1 ) steps.
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Figure 4-1: A partially triangulated (12 x 12)-grid.

(2) For any k > 0, the class of graphs where p(G) < k is closed under taking of

contractions.

(3) For any partially triangulated (p x p)-grid R, p(R) = (p2).

Then there exists an algorithm checking whether p(G) k on planar graphs in

O(f(v))nO(1) steps.

For a wide source of parameters satisfying condition (1) we refer to the theory of

Courcelle [61] (see also [15]). Apart from (k, r)-center and dominating set, examples

of parameters satisfying conditions (2) and (3) are vertex cover, feedback vertex set,

minimum maximal matching, edge dominating set and many others. For parameters

where f(bw(G)) = 20(bw(G)), this result is a strong generalization of Alber et al.'s

approach which requires that the problem of checking whether p(G) < k should

satisfy the "layerwise separation property" [6]. Moreover, the algorithms involved are

expected to have better constants in their exponential part comparatively to the ones

appearing in [6]. More generally, it seems that our approach should extend other graph

algorithms (not just dominating-set-type problems) to apply to the rth power and/or

half-square of a graph (and hence in particular map graphs). It would be interesting

to explore to which other problems our approach can be applied. Also, obtaining

"fast" algorithms for problems like feedback vertex set or vertex cover on constant
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powers of graphs of bounded branchwidth (treewidth), as we did for dominating set,

would be interesting.

In addition, there are several interesting variations on the (k, r)-center problem.

In multiplicity-m (k, r)-center, the k centers must satisfy the additional constraint

that every vertex is within distance r of at least m centers. In f-fault-tolerant (k, r)-

center [26], every non-center vertex must have f vertex-disjoint paths of length at

most r to centers. (For this problem with r = oo, [26] gives a polynomial-time

O(f log IVI)-approximation algorithm for k.) In L-capacitated (k, r)-center [26], each

of the k centers can satisfy only L "customers", essentially forcing the assignment of

vertices to centers to be load-balanced. (For this problem, [26] gives a polynomial-

time O(log Vl)-approximation algorithm for r.) In connected (k, r)-center [157], the k

chosen centers must form a connected subgraph. In all these problems, the main chal-

lenge is to design the dynamic program on graphs of bounded treewidth/branchwidth.

We believe that our approach can be used as the main guideline in this direction.

Map graphs can be seen as contact graphs of disc homeomorphs. A question is

whether our results can be extended for another geometric classes of graphs. An

interesting candidate is the class of unit-disk graphs. The current best algorithms

for finding a vertex cover or a dominating set of size k on these graphs have nO(1V )

running time [7].

Using our results we can also easily obtain a PTAS for r-dominating set on pla-

nar and map graphs. These results are similar to the approximation algorithms for

independent set on map graphs by Chen [57]. We combine Theorems 4.6 and 4.7

with the approaches of Eppstein [87] and Grohe [103] (which in turn are based on

the classic Baker's approach [23]), and adapt these approaches to branch decompo-

sitions instead of tree decompositions. We obtain a (1 + 2r/p)-approximation algo-

rithm for r-domination in planar graphs with running time O(p(2r + 1)3 (P+2r)m), and

for map graphs we obtain a (1 + 4r/p)-approximation algorithm with running time

O(p(4r + 3)3(p+4r)m).
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Chapter 5

Subexponential Parameterized

Algorithms on Bounded-Genus

Graphs and H-Minor-Free Graphs

Algorithms for H-minor-free graphs for a fixed graph H have been studied extensively;

see e.g. [51, 104, 53, 120, 138]. In particular, it is generally believed that several

algorithms for planar graphs can be generalized to H-minor-free graphs for any fixed

H [104, 120, 138]. H-minor-free graphs are very general. The deep Graph-Minor

Theorem of Robertson and Seymour shows that any graph class that is closed under

minors is characterized by excluding a finite set of minors. In particular, any graph

class that is closed under minors (other than the class of all graphs) excludes at least

one minor H.

In this chapter, we introduce a framework for extending algorithms for planar

graphs to apply to H-minor-free graphs for any fixed H. In particular, we design

subexponential fixed-parameter algorithms for dominating set, vertex cover, and set

cover (viewed as one-sided domination in a bipartite graph) for H-minor-free graphs.

Our framework consists of three components, as described below. We believe that

many of these components can be applied to other problems and conjectures as well

(see e.g., Chapter 8 for another application of this framework).

First we extend the algorithm for planar graphs to bounded-genus graphs. Roughly
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speaking, we study the structure of the solution to the problem in k x k grids, which

form a representative substructure in both planar graphs and bounded-genus graphs,

and capture the main difficulty of the problem for these graphs. Then using Robert-

son and Seymour's graph-minor theory, we repeatedly remove handles to reduce the

bounded-genus graph down to a planar graph, which is essentially a grid.

Second we extend the algorithm to almost-embeddable graphs which can be drawn

in a bounded-genus surface except for a bounded number of "local areas of non-

planarity", called vortices, and for a bounded number of "apex" vertices, which can

have any number of incident edges that are not properly embedded (see Section 1.3

for precise definitions). Because each vortex has bounded pathwidth, the number of

vortices is bounded, and the number of apices is bounded, we are able to extend our

approach to solve almost-embeddable graphs using our solution to bounded-genus

graphs.

Third we apply a deep theorem of Robertson and Seymour which characterizes

H-minor-free graphs as a tree structure of pieces, where each piece is an almost-

embeddable graph. Using dynamic programming on such tree structures, analogous

to algorithms for graphs of bounded treewidth, we are able to combine the pieces

and solve the problem for H-minor-free graphs. Note that the standard bounded-

treewidth methods do not suffice for general H-minor-free graphs, unlike e.g. bounded-

genus graphs, because their treewidth can be arbitrarily large with respect to the

parameter [62] (see Chapter 7). Our contribution is to overcome this barrier algorith-

mically using a two-level dynamic program in a more general tree structure called a

"clique-sum decomposition".

The first step of this procedure, for bounded-genus graphs, applies to a broad

class of problems called "bidimensional problems". Roughly speaking, a parameter-

ized problem is bidimensional if the parameter is large (linear) in a grid and closed

under contractions. Examples of bidimensional problems include vertex cover, feed-

back vertex set, minimum maximal matching, dominating set, edge dominating set,

clique-transversal set, and set cover. We obtain subexponential fixed-parameter al-

gorithms for all of these problems in bounded-genus graphs. As a special case, this
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generalization settles an open problem about dominating set posed by Ellis, Fan,

and Fellows [84]. Along the way, we establish an upper bound on the treewidth

(or branchwidth) of a bounded-genus graph that excludes some planar graph H as

a minor (See Section 2.4 for the exact definition of branchwidth and its relation to

treewidth). This bound depends linearly on the size IV(H)l of the excluded graph H

and the genus g(G) of the graph G, and applies and extends the graph-minors work

of Robertson and Seymour.

This chapter is organized as follows. Section 5.1 is devoted to graphs on surfaces.

We construct a general framework for obtaining subexponential parameterized algo-

rithms on graphs of bounded genus. First we introduce the concept of bidimensional

problem, and then prove that every bidimensional problem has a subexponential pa-

rameterized algorithm on graphs of bounded genus. The proof techniques used in

this section are very indirect and are based on deep theorems from Robertson and

Seymour's Graph Minors XI and XII. As a byproduct of our results we obtain a

generalization of Quickly Excluding a Planar Graph Theorem for graphs of bounded

genus. In Section 5.3 we make a further step by developing subexponential algorithms

for graphs containing no fixed graph H as a minor. The proof of this result is based

on combinatorial bounds from the previous section, a deep structural theorem from

Graph Minors XIV, and complicated dynamic programming. Finally, in Section 5.4,

we present several extensions of our results and some open problems.

5.1 Graphs on Surfaces

5.1.1 Preliminaries

In this subsection we describe some of the machinery developed in the Graph Minors

series that we use in our proofs.

A surface E is a compact 2-manifold without boundary. A line in E is a subset

homeomorphic to [0, 1]. An O-arc is a subset of Z homeomorphic to a circle. A subset

of E is an open disc if it is homeomorphic to {(x, y) x2 + y2 < 1}, and it is a closed
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disc if it is homeomorphic to {(x, y) I x2 + y2 < 1}.

A 2-cell embedding of a graph G in a surface P is a drawing of the vertices as

points in , and the edges as lines in Y such that every region (face) bounded by

edges is an open disc. To simplify notation, we do not distinguish between a vertex of

G and the point of E used in the drawing to represent the vertex, or between an edge

and the line representing it. We also consider G as the union of points corresponding

to its vertices and edges. Also, a subgraph H of G can be seen as a graph H where

H C G. A region of G is a connected component of Y - E(G) - V(G). (Every

region is an open disc.) We use the notation V(G), E(G), and R(G) for the set of

the vertices, edges, and regions of G.

If A C E, then A denotes the closure of A, and the boundary of A is bd(A) =

A N Y - A. A vertex or an edge x is incident to a region r if x C bd(r).

A subset of P meeting the drawing only at vertices of G is called G-normal. If an

O-arc is G-normal, then we call it a noose. The length of a noose is the number of its

vertices. We say that a disc D is bounded by a noose N if N = bd(D). A graph G

2-cell embedded in a connected surface E is 0-representative if every noose of length

less than 0 is contractable (null-homotopic in E).

Tangles were introduced by Robertson and Seymour in [145]. A separation of a

graph G is a pair (A, B) of subgraphs with A U B = G and E(A n B) = 0, and its

order is IV(A n B)I. A tangle of order 0 > 1 is a set T of separations of G, each of

order less than 0, such that

1. for every separation (A, B) of G of order less than 0, T contains one of (A, B)

and (B, A);

2. if (Al, B), (A2 , B2 ), (A3, B3) E T, then Al U A2 U A3 =# G; and

3. if (A, B) E T, then V(A) V(G).

Let G be a graph 2-cell embedded in a connected surface Y. A tangle T of order

0 is respectful if, for every noose N in E of length less than 0, there is a closed disc

A C E with bd(A) = N such that the separation (G n A, G n E - A) E T.
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Our proofs are based on the following results from the Graph Minors series of

papers by Robertson and Seymour.

Theorem 5.1. [145, (4.3)] Let G be a graph with at least one edge. Then there is a

tangle in G of order 0 if and only if G has branchwidth at least 0.

Theorem 5.2. [146, (4.1)] Let ) be a connected surface, not homeomorphic to a

sphere; let 0 > 1; and let G be a -representative graph 2-cell embedded in E. Then

there is a unique respectful tangle in G of order 0.

Our proofs also use the notion of the radial graph. Informally, the radial graph

of a graph G 2-cell embedded in E is the bipartite graph RG obtained by selecting

a point in every region r of G and connecting it via an edge to every vertex of G

incident to that region. However, a region may be incident to the same vertex "more

than once", so we need a more formal definition. Precisely, RG is a radial graph of a

graph G 2-cell embedded in E if

1. E(G) n E(RG) = V(G) C V(RG);

2. each region r E R(G) contains a unique vertex v, E V(RG);

3. RG is bipartite with a bipartition (V(G), {vr: r E R(G)});

4. if e, f are edges of RG with the same ends v E V(G), v, E V(RG), then e U f

does not bound a closed disc in r U {v}; and

5. RG is maximal subject to Conditions 1-4.

5.1.2 Bounding the Representativity

Define the (r x r)-grid to be the graph on r2 vertices {(x, y) I 1 < x, y < r} with edges

between vertices differing by -1 in exactly one coordinate. A partially triangulated

(r x r)-grid is any planar supergraph of the (r x r)-grid.

Lemma 5.3. Let G be a graph 2-cell embedded in a surface E, not homeomorphic to

a sphere, of representativity at least 0. Then G contains as a contraction a partially

triangulated (/4 x /4)-grid.
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Proof. By Theorem 5.2, G has a respectful tangle of order 0. Let A(RG) be the set of

vertices, edges, and regions (collectively, atoms) in the radial graph RG. According to

[146, Section 9] (see also [147]), the existence of a respectful tangle makes it possible

to define a metric d on A(RG) as follows:

1. If a = b, then d(a, b) = 0.

2. If a b, and a and b are interior to a contractible closed walk in the radial graph

of length less than 20, then d(a, b) is half the minimum length of such a walk.

(Here by interior we mean the direction in which the walk can be contracted.)

3. Otherwise, d(a, b) = 0.

Assume for simplicity that 0 is even and that > 4. Let c be any vertex in G.

For 0 i < 0/2, define Z2i to be the union of all atoms of distance at most 2i

from c (where distance is measured according to the metric d). (Notice that, in radial

graphs, all closed walks have even length.) By [146, (8.10)], Z2i is a nonempty simply

connected set, for all i. (A subset of a surface is simply connected if it is connected

and has no noncontractible closed curves.) Thus, the boundary bd(Z2i) of each Z2i

is a closed walk in the radial graph.

We claim that the closed walks bd(Z 2 i) and bd(Z2 i+2) are vertex-disjoint. Con-

sider any atom a on bd(Z 2 i) and an adjacent atom b outside Z2i. The distance

between a and b is 2 because there is a length-2 closed walk connecting them, dou-

bling the edge (a,b). By Theorem 9.1 of [146], the metric d satisfies the triangle

inequality, and hence d(c, b) < d(c, a) + 2 = 2i + 2. In fact, this bound must hold

with equality, because b Z2i. Therefore, every atom a on bd(Z2i) is surrounded on

the exterior of Z2i by atoms at distance exactly 2i + 2 from c, so bd(Z 2i) is strictly

enclosed by bd(Z2 i+2).

Consider the "annulus" A = (Z 2 -2 - Zo) U bd(Z 20_2 ) U bd(Zo), which includes

the boundary bd(A) = bd(Z2- 2) U bd(Zo). We claim that there are at least 0/2

vertex-disjoint paths in the radial graph within A connecting vertices in bd(Ze) to

vertices in bd(Z 2 0_2). By Menger's Theorem, the contrary implies the existence of a
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cut in A of size less than 0/2 separating the two sets, which implies the existence of

a cycle of length less than 0, but such a cycle must be contained in Zo.

Now we form a (/2 x 0/2)-grid in the radial graph. The row lines in the grid are

formed by taking, for each i = 8, 0 + 2, 0 + 4,..., 28 - 2, the unique simple cycle that

encloses c and that is a subset of the closed walk bd(Z 2i), The column lines in the

grid are formed by the /2 vertex-disjoint paths found above. Therefore, we obtain

a subdivision of the (/2 x 0/2)-grid as a subgraph of the radial graph.

Finally, we transform this grid into a (/4 x 0/4)-grid in the original graph G.

Each grid edge in the radial graph corresponds in the original graph to a sequence

of faces surrounding the edge. We replace this grid edge by the upper half of each

face. In this way, each row line in the radial graph maps in the original graph to a

curve above this row line. Two adjacent mapped row lines may touch but cannot

properly cross, so row lines of distance 2 or more in the grid cannot overlap when

mapped to the original graph. Thus, by discarding the odd-numbered row lines,

and similarly for the columns, we obtain a subdivision of the (/4 x /4)-grid in the

original graph. Because each Z2i was simply connected, the grid is embedded in a

simply connected subset of Z, so if we apply contractions without deletions, we obtain

a partially triangulated grid. El

5.2 Bidimensional Parameters and Bounded-Genus

Graphs

In this section, we define a general framework of parameterized problems for which

subexponential algorithms with small constants can be obtained. Our framework

is sufficiently broad that an algorithmic designer needs to check only two simple

properties of any desired parameter to determine the applicability and practicality of

our approach.
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5.2.1 Definitions

Recall from Section 5.1.2 that a partially triangulated (r x r)-grid is any planar graph

obtained by adding edges between pairs of nonconsecutive vertices on a common face

of a planar embedding of an (r x r)-grid.

Definition 5.4. A parameter P is any function mapping graphs to nonnegative inte-

gers. The parameterized problem associated with P asks, for some fixed k, whether

P(G) < k for a given graph G.

Definition 5.5. A parameter P is minor bidimensional with density 6 if

1. contracting or deleting an edge in a graph G cannot increase P(G), and

2. for the (r x r)-grid R, P(R) = (6r)2 + o((6r)2).

A parameter P is called contraction bidimensional with density 6 if

1. contracting an edge in a graph G cannot increase P(G),

2. for any partially triangulated (r x r)-grid R, P(R) > (r) 2 + o((6r)2), and

3. is the smallest real number for which this inequality holds.

In either case, P is called bidimensional. The density of P is the minimum of

the two possible densities (when both definitions are applicable). We call the sublinear

function f(x) = o(x) in the bound on P(R) the residual function of P.

Notice that density assigns a positive real number, typically at most 1, to any

bidimensional parameter. Interestingly, this assignment defines a total order on all

such parameters.

5.2.2 Examples

Many parameters are bidimensional. Here we mention just a few. Examples of minor-

bidimensional parameters are
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Vertex cover. A vertex cover of a graph G is a set C of vertices such that every

edge of G has at least one endpoint in C. The vertex-cover problem is to find a

minimum-size vertex cover in a given graph G. The corresponding parameter,

the size of a minimum vertex cover, is minor bidimensional with density =

1/X/2. (Roughly half the vertices must be in any vertex cover of the grid, and

one color class in a vertex 2-coloring of the grid is a vertex cover.)

Feedback vertex set. A feedback vertex set of a graph G is a set U of vertices such

that every cycle of G passes through at least one vertex of U. The size of a

minimum feedback vertex size is a minor-bidimensional parameter with density

6 E [1/2, 1/X]. (6 > 1/2 because there are r2 /4 + o(r2 ) vertex-disjoint squares

in the (r x r)-grid, each of which must be broken; 6 < 1/v2 because it suffices

to remove one color class in a vertex 2-coloring of the grid.)

Minimum maximal matching. A matching in a graph G is a set E' of edges with-

out common endpoints. A matching in G is maximal if it is contained by no

other matching in G. The size of a minimum maximal matching is a minor-

bidimensional parameter with density 6 E [1/V4, 1/X]. (6 > 1/N/8 because

any maximal matching must include at least one edge interior to any 3 x 4

subgrid, and there are r2 /8 + o(r2) interior-disjoint 3 x 4 subgrids; < 1/vx/

because the number of edges in a matching is at most r2 /2.)

Examples of contraction-bidimensional parameters are

Dominating set. A dominating set of a graph G is a set D of vertices of G such that

each of the vertices of V(G) - D is adjacent to at least one vertex of D. The

size of a minimum dominating set is a contraction-bidimensional parameter with

density = 1/3. (6 > 1/3 because every vertex dominates at most 9 vertices;

6 < 1/3 because there is a triangulation of the (r x r)-grid with dominating set

of size r2/9 + o(r2).)

Edge dominating set. An edge dominating set of a graph G is a set D of edges

of G such that every edge in E(G) - D shares at least one endpoint with
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some edge in D. The size of a minimum edge domainting set is a contraction-

bidimensional parameter with density 6 = 1/vT. (6 > 1/ because every

edge in a triangulated grid dominates at most 14 edges; 6 < 1/vi4 because

size-14 neighborhoods of a diagonal edge can be tiled to form a triangulated

(r x r)-grid requiring r2 /14 + o(r2 ) dominating edges.)

Many of our results can be applied not only to bidimensional parameters but

also to parameters that are bounded by bidimensional parameters. For example, the

clique-transversal number of a graph G is the minimum number of vertices intersecting

every maximal clique of G. This parameter is not contraction-bidimensional because

an edge contraction may create a new maximal clique and cause the clique-transversal

number to increase. On the other hand, it is easy to see that this graph parameter

always exceeds the size of a minimum dominating set. In particular, this fact can be

used to obtain a parameter-treewidth bound for the clique-transversal number.

Finally, it is worth mentioning that the definition of bidimensional parameters

will be further extended for the general class of H-minor-free graphs in Chapter 7.

5.2.3 Subexponential Algorithms and Planar Graphs

Almost all known techniques for obtaining subexponential parameterized algorithms

on planar graphs are based on the following "bounded-treewidth approach" [2, 93,

116]:

(II) Prove that tw(G) < cP(G for some constant c;

(I2) Compute or approximate the treewidth (or branchwidth) of G;

(I3) Decide whether P(G) < k as follows. If the treewidth is more than cvk, then

the answer to the decision problem is NO. If treewidth is at most cvk, then run a

standard dynamic program for graphs of bounded treewidth in 20 (tw(G))nO(l) =

2°(V/)n°(1) time.

All previously known ways of obtaining the most important step (I1) use rather

complicated techniques based on separators. Next we give some hints why bidi-
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mensional parameters are important for the design of subexponential algorithms by

showing how step (Ii) can be performed for planar graphs.

For every bidimensional parameter P and (r x r)-grid R, IV(R)- = O(P(R)), by

Theorem 4.2, we have the following proposition.

Proposition 5.6. Let P be a bidimensional parameter. Then for any planar graph

G, tw(G)= O(P(G)).

The class of bidimensional parameterized problems contains all parameters known

from the literature to have subexponential parameterized algorithms for planar graphs

[3, 2, 6, 50, 123, 107]. Recently, Cai et al. [48] defined a class of parameters, Pla-

nar TMIN1, and proved that, for every planar graph G and parameter P in Pla-

nar TMIN 1, tw(G) = O( (G)). Every problem in Planar TMIN1 can be expressed

as a special type of dominating-set problem on bipartite graphs. (We refer to [48]

for definitions and further properties of Planar TMIN1.) Using Proposition 5.6 it is

possible to prove a similar result, establishing the bound tw(G) = O(P(G) for

most parameters P in Planar TMIN1.

It is tempting to wonder whether every parameter admitting a 2°(V)n(1)-time

algorithm on planar graphs is bidimensional.

5.2.4 Parameter-Treewidth Bound for Bounded-Genus Graphs

To extend Proposition 5.6 to graphs of bounded genus, more work needs to be done.

If P is a bidimensional parameter with density 6 and residual function f, then we

define the normalization factor of P to be the minimum positive number such that

(6r)2 < (6r)2 + f(dr) for any r > 1.

Lemma 5.7. Let P be a contraction (minor) bidimensional parameter with density

6. Then P(G) < ( r)2 implies that G excludes the (r x r)-grid as a minor (and all

partial triangulations of the (r x r)-grid as contractions).

Proof. If P is minor bidimensional and H is the (r x r)-grid and H - G, then P(H) <

P(G). Because P(H) = (6r)2 + f(dr), we have that (r) 2 > P(G) > (6r)2 + f(dr),

which contradicts the definition of 3.
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If P is contraction bidimensional and H is a partial triangulation of the (r x r)-

grid and H < G, then P(H) < P(G). Because P(H) = (6r)2 + f(Sr), we have that

('r) > P(G) > (r) 2 + f(Sr), which contradicts the definition of 3. O

Let G be a graph and let v E V(G) be a vertex. Also suppose we have a partition

7Pv = (N1 , N2) of the set of the neighbors of v. Define the splitting of G with respect

to v and P, to be the graph obtained from G by

1. removing v and its incident edges;

2. introducing two new vertices v1 and v2; and

3. connecting vi with the vertices in Ni, for i = 1, 2.

If H is the result of consecutive application of several such operations to some graph G,

then we say that H is a splitting of G. If in addition the sequence of splittings never

splits a vertex that was the result of a previous splitting, then we say that H is a

fair splitting of G. The vertices v of G involved in the splittings that make up a fair

splitting are called affected vertices.

A parameter P is a-splittable if, for every graph G and for each vertex v E V(G),

the result G' of splitting G with respect to v satisfies P(G') < P(G) + a. Many nat-

ural graph problems are a-splittable for small constants a. Examples of 1-splittable

problems are dominating set, vertex cover, edge dominating set, independent set,

clique-transversal set, and feedback vertex set, among many others.

For the proof of our main result on properties of bidimensional parameters, we

need two technical lemmas used in induction on the genus.

It is convenient to work with Euler genus. The Euler genus eg(E) of a nonori-

entable surface E is equal to the nonorientable genus 9(S) (or the crosscap number).

The Euler genus eg(E) of an orientable surface E is 2g(S), where g(S) is the orientable

genus of E.

The following lemma is very useful in proofs by induction on the genus. The first

part of the lemma follows from [136, Lemma 4.2.4] (corresponding to a nonseparating
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cycle) and the second part follows from [136, Proposition 4.2.1] (corresponding to a

surface-separating cycle).

Lemma 5.8. Let G be a connected graph 2-cell embedded in a surface E not homeo-

morphic to a sphere, and let N be a noncontractible noose on G. Then there is a fair

splitting G' of G affecting the set S = {vl,..., vp} of vertices of G met by N such

that one of the following holds:

1. G' can be 2-cell embedded in a surface with Euler genus strictly smaller than

eg(E); or

2. each connected component Gi of G' can be 2-cell embedded in a surface with

Euler genus strictly smaller than eg(Z) and is a contraction of some graph G*

obtained from G after at most p splittings.

The following lemma is a direct consequence of the definition of branchwidth.

Lemma 5.9. Let G be a graph and let G' be the splitting of a vertex in G. Then

bw(G') < bw(G) + 1.

Theorem 5.10. Suppose that P is an a-splittable contraction bidimensional pa-

rameter (a > 0) with density 6 > 0 and normalization factor > 1. Then,

for any graph G 2-cell embedded in a surface E of Euler genus eg(E), bw(G) <

4 (eg(E) + 1) P(G) + 1 + 8a( (eg(E) + 1))2.

Proof. We induct on the Euler genus of E.

In the base case that eg(E) = 0, Lemma 5.7 implies that, if P(G) < (r) 2, then

G excludes the (r x r)-grid as a minor. This implication is precisely Lemma 5.7 in

the case that P is minor bidimensional. If P is contraction bidimensional, then the

implication follows because, if a planar graph G can be transformed to a graph H

(e.g., the (r x r)-grid) via a sequence of edge contractions and/or removals, then by

applying only the contractions in this sequence, we obtain a partial triangulation of H

as a contraction of G. Now by Theorem 4.2, if P(G) < (r)2, then bw(G) < 4r - 6.

If we set r = JP(G + 1, we have that bw(G) < 4LO P()J - 2. Because

a, 3, > 0, the induction base follows.
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split 

S S1 S2

Figure 5-1: Splitting a noose.

Suppose now that eg(E) > 1 and that the induction hypothesis holds for any

graph 2-cell embedded in a surface with Euler genus less than eg(E). Let G be a

graph embedded in E. We set k = P(G) and claim that the representativity of G

is at most 43lr + lJ. Lemma 5.7 implies that, if k < (r) 2, then G excludes any

triangulation of the (r x r)-grid as a contraction. By the contrapositive of Lemma 5.3,

this implies that the representativity of G is less than 4r. If we set r = L vk +J + 1,

we have that the representativity of G is at most 4L3 v/k + l J. Let N be a minimum

size non-contractible noose N on E meeting p vertices of G where p < 4LO vl+ J.

By Lemma 5.8, there is a fair splitting along the vertices met by N such that either

Condition 1 or Condition 2 holds; see Figure 5-1. Let G' be the resulting graph

and let E' be a surface such that eg(E') < eg(E) - 1 and every component of G'

is 2-cell embedable in E'. We claim that, given either Condition 1 or Condition 2,

bw(G') < 4eg(E)/k + ap + 1 + 8a(3)2(eg())2.

Given Condition 1, we apply the induction hypothesis to G' and get that bw(G') <

40(eg(E') + 1)V/P(G') + 1 + 8ca( -)2(eg(E ') + 1)2. Because G' is obtained from G

after at most p splittings and P is an a-splittable parameter, we have P(G') <

k + ap. Because eg(E') < eg(E) - 1, we obtain bw(G') < 43eg(E)vk + ap + 1 +

8a( )2(eg(E)) 2

Given Condition 2, we apply the induction hypothesis to each of the connected

components of G. Let Gi be such a component. We get that bw(Gi) < 43(eg(E') +

1) /P(G,) + 1 + 8Qa(1)2(eg(E') + 1)2. Because Gi is a contraction of some graph G*

obtained from G after at most p splittings and P is an a-splittable parameter, we get

that P(Gi) < P(Gf) < k+cp. Again because eg(E') < eg(E)-1, we have bw(Gi) <

4- eg(E)/k + op + 1 +8ca( )2(eg(E))2. Because bw(G') = maxi(bw(Gi)), we obtain
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bw(G') < 4eg(E)Vk + p + 1 + 8a(3)2(eg(Z))2.

Because G' is the result of at most p consecutive vertex splittings on G, Lemma 5.9

yields that bw(G) • bw(G') + p. Therefore,

bw(G) < 43eg() k + ap + 1 + 8a( )2(eg(E)) 2 + p

< 4eg(E) k + 8a(,) 2(eg(E)) 2 + 4 k+ 1

= 4 eg(E) / (v+ 12)( + eg()) 2 + 4+ 8)(eg()) + 4

< 4eg() /(/k + 1 ± 4a )(+ ± 1 + 4at) + 8a( )2(eg( ))2 +4 i + 1,
because a, , 36 > 0

= 4eg(E)(Vk 7 1 + 4a) + 8a( )2(eg(E))2 + 4 vk+T

= 4eg(E)vk + 1 + 16a( )2eg(E) + 8a( )2(eg(E))2 + 4vk+ I

= 4@(eg(E) + I)v/ 4+ 1+8a( )2(eg(E) 2 + 2eg(E))

= 43(eg(E) + 1)v'Tk + 1 8a() 2(eg(E) 2 + 2eg(Z) + 1), because a,/3,6 O0

= 43(eg() + l)v k+T1+ 8a((eg(X) + 1))2.

Theorem 5.10 is a general theorem that applies to any a-splittable bidimensional

parameter. It is worth mentioning that the "a-splittablity constraint" in Theo-

rem 5.10 can be removed by changing slightly the definition of (contraction) bidimen-

sional parameters for bounded-genus graphs to match with the definition mentioned

in Section 1.4 (see [73] for the details).

For minor-bidimensional parameters, the bound for branchwidth can be further

improved.

Theorem 5.11. Suppose that P is a minor-bidimensional parameter with density

6 < 1 and normalization factor 3 > 1. Then, for any graph G 2-cell embedded in a

surface E of Euler genus eg(E), bw(G) < 4(eg(E) + 1)vP(G) + 1.

Proof. The proof is similar to the proof of Theorem 5.10. The only difference is that,

instead of a fair splitting along the vertices of a minimum-size non-contractible noose,
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we just remove vertices of the noose from the graph. Because the parameter is minor

bidimensional, the parameter cannot increase by this operation. The rest of the proof

proceeds as before. Let G be a graph 2-cell embedded in a surface E of Euler genus

eg(E), and let k = P(G). We have the following substantially simpler inequality than

the one in Theorem 5.10:

bw(G) < 4eg(E) +I + p < 4eg(E) + 4 = 4 = (eg(E) + 1) k+1

5.2.5 Combinatorial Results and Further Improvements

As a consequence of Theorem 5.11, we establish an upper bound on the treewidth

(or branchwidth) of a bounded-genus graph that excludes some planar graph H as a

minor.

As part of their seminal Graph Minors series, Robertson and Seymour proved the

following:

Theorem 5.12. [144] If G excludes a planar graph H as a minor, then the branch-

width of G is at most bH and the treewidth of G is at most tH, where bH and tH are

constants depending only on H.

The current best estimate of these constants is the exponential upper bound tH <

20 2(21V(H)I+4lE(H)f)5 [151]. However, it is known that planar graphs can be excluded

"quickly" from planar graphs. More precisely, the following result says that, for

planar graphs, the constants depend only linearly on the size of H:

Theorem 5.13. [151] If G is planar and excludes a planar graph H as a minor, then

the branchwidth of G is at most 4(21V(H)i + 41E(H)) - 3.

Essentially the same proofs of Theorems 5.10 and 5.11 yield the following gener-

alization of Theorem 4.2 for graphs of bounded genus. In fact, though, we can prove

the following result directly from Theorem 5.11.
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Theorem 5.14. If G is a graph of Euler genus eg(G) with branchwidth more than

4r(eg(G) + 1), then G has the (r x r)-grid as a minor.

Proof. Consider the parameter (G) = max{r2 I G has an (r x r)-grid as a minor}.

This parameter never increases when taking minors, and has value r2 on the (r x

r)-grid, so is minor bidimensional with density 1 and normalization factor 1. If

G excludes the (r x r)-grid as a minor, then (G) < r2 , so (G) < r2 - 1. By

Theorem 5.11, we have that bw(G) < 4(eg(G) + 1) (G) < 4(eg(G) + 1)r,

proving the contrapositive of the theorem. D

Following the proofs of Theorems 5.10 and 5.11 we are also able to quickly ex-

clude any planar graph from bounded-genus graphs. In other words, we generalize

Theorem 5.13 as follows:

Theorem 5.15. If G is a graph of Euler genus eg(G) that excludes a planar graph

H as a minor, then its branchwidth is at most 4(21V(H)I + 4JE(H))(eg(G) + 1).

5.2.6 Algorithmic Consequences

As we already discussed, the combinatorial upper bounds for branchwidth/treewidth

are used for constructing subexponential parameterized algorithms as follows. Let

G be a graph and P be a parameterized problem we need to solve on G. First one

constructs a branch/tree decomposition of G that is optimal or "almost" optimal.

A (, y, A)-approximation scheme for branchwidth/treewidth consists of, for every

w, an 0(27wnA)-time algorithm that, given a graph G, either reports that G has

branchwidth/treewidth at least w or produces a branch/tree decomposition of G with

width at most Ow. For example, the current best schemes are a (3 + 2/3, 3.698, 3 + e)-

approximation scheme for treewidth [11] and a (3, lg 27, 2)-approximation scheme for

branchwidth [148].

If the branchwidth/treewidth of a graph is "large", then combinatorial upper

bounds come into play and we conclude that P has no solution on G. Otherwise we

run a dynamic program on graphs of bounded branchwidth/treewidth and compute

P(G).
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Thus we conclude with the main algorithmic result of this section:

Theorem 5.16. Let P be a bidimensional parameter with density 6 and normalization

factor f. Suppose P is either minor bidimensional, in which case we set PI = O, or P is

contraction bidimensional and a-splittable, in which case we set iL = 2. Suppose that

there is an algorithm for the associated parameterized problem that runs in 0(2awnb)

time given a tree/branch decomposition of the graph G with width w. Suppose also

that we have a (, y, A)-approximation scheme for treewidth/branchwidth. Set T = 1 in

the case of branchwidth and T = 1.5 in the case of treewidth. Then the parameterized

problem asking whether P(G) < k can be solved in
o(2maxa0,}y)4 (g(G)+1)(\JkT+((G)+ ))nmax{b,} ) time.

The existence of an 0(2"anb)-time algorithm for treewidth/branchwidth w holds

for many examples of bidimensional parameters with small values of a and b; see

[2, 6, 50, 74, 93, 123, 94]. Observe that the correctness of our algorithms is simply

based on Theorems 5.10 and 5.11, despite their nonalgorithmic natures, and (, y, A)-

approximation scheme for branch/tree decomposition. We note that the time bounds

we provide do not contain any hidden constants, and the constants are reasonably low

for a broad collection of problems covering all the problems for which 2°(V)n°()-time

algorithms already exist.

5.3 H-Minor-Free Graphs

In this section we demonstrate how the results on graphs of bounded genus can be

generalized on graphs with excluded minors. More precisely we show that, given

the tree decompositions guaranteed by Theorems 1.3 and 1.4, we can obtain efficient

algorithms for problems on H-minor-free graphs. Although our main development

is in terms of dominating set, our approach can be viewed as a guideline for solving

other problems on H-minor-free graphs. Some further results in this direction are

described in Section 5.4.
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5.3.1 Almost-Embeddable Graphs and r-Dominating Set

In order to treat each term separately in the clique-sum decomposition of an H-

minor-free graph, we need to solve a more general problem than dominating set. This

r-dominating set problem, which also arises in facility location, is also contraction-

bidimensional. This property enables us to obtain a parameter-treewidth bound for

this problem as well.

Definition 5.17. Let G be a graph. A subset D C V(G) of vertices r-dominates

another subset S C V(G) of vertices if each vertex in S is at distance at most r from

a vertex in D. We say that D is an r-dominating set if it r-dominates V(G).

We need the following result proved in [64].

Lemma 5.18. ([64], see also Chapter 4) Let p, k, r > 1 be integers and G be a planar

graph having an r-dominating set of size k and containing a (p x p)-grid as a minor.

Then k > (e)2

In other words, Lemma 5.18 says that, for any fixed r, r-dominating set is a bidi-

mensional parameter. It is also easy to see that it is 1-splittable. Thus Theorem 5.10

yields the following lemma.

Lemma 5.19. For any constant r, if a graph G of genus g has an r-dominating set

of size at most k, then the treewidth of G is O(gxV + g2).

Now we extend this result to apex-free h-almost-embeddable graphs. Before ex-

pressing this result, we need the following slight modification of [103, Lemma 2].

Lemma 5.20. Let G = Go UG1 U -UGh be an apex-free h-almost-embeddable graph.

For 1 < i < h, let (u)uEu be the path decomposition of vortex Gi of width at most h.

Suppose that, for each 1 < i < h, the vertices Ui = ful, u . . u m form a path in

Go. Then tw(G) < (h2 + 1)(tw(Go) + 1) - 1.

Proof. Let B be a bag of a tree decomposition of Go of minimum width tw(Go). For

each index 1 < i < h, and for each vertex u E B n Ui, we add to B the corresponding
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bag Bu of the path decomposition of Gi. The size of each Bu is at most h, and the

original size of B is also at most tw(Go) + 1. Thus such additions increase the size

of B by at most h2(tw(Go) + 1). Performing these additions for all bags B of a tree

decomposition increases the maximum bag size from tw(Go)+ 1 to (h2 + 1)(tw(Go) +

1). It can be easily seen that the resulting set of bags B form a tree decomposition

of G, because each Ui forms a path in Go. O

Lemma 5.21. Let r be a constant and let G = Go U G1 U ... U Gh be an apex-

free h-almost-embeddable graph on a surface E of genus g. Let k be the size of a

set D C V(G) that r-dominates V(Go). Then tw(G) = O(h2(gv/k'T+h + g2 )). In

particular, for fixed g and h, tw(G) = O( ).

Proof. For each 1 i h, let (Bu)Ueui be the path decomposition of vortex Gi,

where Ui = {u , u?,... , ui. Let Go be the graph obtained from Go by adding new

vertices C = ({c, C2, · Ch} and edges (Ci, uj ) and (u, u+l) (where j + 1 is treated

modulo mi) for all 1 i < h and 1 j < mi. Because Go is embeddable in A,

Go is also embeddable in . G has an r-dominating set of size at most k + h,

namely, (D n V(Go)) U C. By Lemma 5.19, tw(G') = O(gvfFkVI + g2). Also, in

Go, the vertices Ui, 1 i h, form a path. By Lemma 5.20, the treewidth of

G' = G U G1 U ... U Gh is O(h2(g v~kT + g2)). Finally, because G is a subgraph of

G', tw(G) < tw(G'). °

5.3.2 H-Minor-Free Graphs and Dominating Set

Now that we have an understanding of r-dominating set in apex-free almost-embeddable

graphs, we return to the original problem of dominating set in the more general set-

ting of H-minor-free graphs. For this section we use the notation G* for the entire

H-minor-free graph so that the primary object of interest, an almost-embeddable

piece of G*, can be referred to as G. The main result of this section is the following

algorithmic result.

Theorem 5.22. One can test whether an H-minor-free graph G* has a dominating

set of size at most k in time 20(V~)n0(1), where the constants in the exponents depends
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on H.

Before mentioning the proof of the above theorem, we need some definitions and

lemmas.

Definition 5.23. Consider a clique-sum decomposition of an H-minor-free graph

G* according to Theorem 1.3, organized into a tree structure (T, X) as described in

Section 1.3.3. Let G be one term in the clique-sum decomposition of G* that is an

h-almost embeddable on a surface of genus g, with apex set X. If we remove from

T the node of T corresponding to term G, we obtain a forest T' of p subtrees; let

G1, G2, . . , Gp denote the clique-sums of the terms corresponding to the nodes in each

connected component of T'. We say that G is clique-summed with each Gi, I i < p,

with join set Wi = V(G) n V(Gi). Because the clique-sums are at most h-sums,

[Wil < h. A clique Wi is called fully dominated by a subset S C V(G) of vertices in

G if V(Gi) - X C NG.(S); otherwise, clique Wi is called partially dominated by S.

A vertex v of G is fully dominated by a set S if NG* [(G)-X] [V] C NG* (S).

Note that the only edges that can appear in G but not in G* are the edges among

vertices of Wi, 1 < i < p.

Theorem 5.24. Let G be an h-almost embeddable on a surface of genus g in a clique-

sum decomposition of a graph G*. Suppose G is clique-summed with graphs G1, .., Gp

via join sets W1,..., Wp, where IWi < h, 1 i < p. Suppose G* has a dominating set

of size at most k. Then there is a subset S C V(G) of size at most h such that, if we

form the graph G by removing all fully dominated vertices that are not included in any

partially dominated clique Wi from G, then tw(G) = O(h2gviT + 92) = 0( ).

Proof. Suppose X is the set of apices in G, so that G - X is an apex-free h-almost

embeddable graph. Let D be a dominating set of size k of G* and let S = X n D. We

claim that S is our desired set. The rest of the proof is as follows: we construct a set

D of size at most k for G - X which 2-dominates every vertex v of G - X which is

not included in any vortex. Then since G - X is an apex-free h-almost-embeddable

on a surface of genus g with a 2-dominating-type set of size at most k desired by
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Lemma 5.21, it has treewidth at most O(h 2 gvfk + g2). Then we can add vertices

of X to all bags and still have a tree decomposition of width O(h 2gx/ T-+h + g2),

as desired. We construct D from D as follows. First, we set D = D n V(G). For

each 1 i < p, if D n (V(Gi)- Wi) - 0 and Wi g X, we add an arbitrary vertex

w E Wi - X to D. Here we say a vertex v of D is mapped to a vertex w of D if v = w

or if v E D n (V(Gi) - Wi) and vertex w E Wi - X is the one that we have added

to D. One can easily observe that since each new vertex in D is in fact accounted

by a unique vertex in D, bi1 < k. It only remains to show that D is a 2-dominating

set for G - X. If a vertex v E V(G) - X is not fully-dominated, then there exists a

vertex w E NG[V] which is not dominated by S and thus not dominated by X (since

S = D n X). It means v is 2-dominated by a vertex u of G - X which dominates w

(we note that u can be originally a vertex u' in (V(Gi) - Wi) n D which is mapped

to u in D). Also, we note that for each clique Wi in which there is a mapped vertex

of D, this vertex dominates all vertices of Wi - X in G - X and thus we keep the

whole clique Wi - X in G. It only remains to show that every vertex of a partially

dominated clique Wi is 2-dominated by a vertex of G - X. We consider two cases: if

WinS = 0, since V(Gi)-Wi 0, there must exists a (mapped) vertex of D in Wi-X

and we are done. Now assume Wi n s # 0. If Wi c X then Wi n (V(G) - X) = 0

and we are done (since there is no clique in G - X at all.) Otherwise, there exists

a vertex Wi - X. If (V(Gi) - Wi) C NG(S) 730, then V(Gi) n D 0. Thus there

exists a mapped vertex w E Wi - X and we have 1-dominated vertices of Wi - X. As

mentioned before if D n (Wi - X) 0, vertices Wi - X are 1-dominated and we are

done. The only remaining case is the case in which there exists a vertex w E Wi - X

which is dominated by a vertex x E V(G) and by assumption w V NG (S) (we note

that in this case, there is no dominating vertex in V(Gi) - Wi for any i for which

w E Wi.) It means vertex x is not fully dominated and thus it remains in G. In

addition, vertex x 2-dominates all vertices of Wi - X, since Wi is a clique in G and

thus all vertices of Wi - X are 2-dominated. This completes the proof of the theorem.

Now, we are ready to prove Theorem 5.22.
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Proof of Theorem 5.22. First, we use the n°()-time algorithm of Theorem 1.4 to

obtain the clique-sum decomposition of graph G*. As mentioned before, this clique-

sum decomposition can be considered as a generalized tree decomposition of G*.

More precisely, we consider the clique-sum decomposition as a rooted tree. We

try to find a dominating set of size at most k in this graph using a two-level dynamic

program. Suppose a graph G is an h-almost-embeddable graph on a surface of genus

g in a clique-sum decomposition of a graph G*. Assume G is clique-summed with

graphs Go0 G1, .... , Gp via join sets Wo, W, . .., Wp, where Wil < h, O < i < p. Also

assume that Go is considered as the parent of G and G1,..., Gp are considered as

children of G.

Colorings. The subproblems in our first-level dynamic program are defined by a

coloring of the vertices in Wi. Each vertex will be assigned one of 3 colors, labelled 0,

T 1, and l 1. The meaning of the coloring of a vertex v is as follows. Color 0 represents

that vertex v belongs to the chosen dominating set. Colors 1 and T 1 represent

that the vertex v is not in the chosen dominating set. Such a vertex v must have

a neighbor w in the dominating set (i.e., colored 0); we say that vertex w resolves

vertex v. Color 1 for vertex v represents that the dominating vertex w is in the

subtree of the clique-sum decomposition rooted at the current graph G, whereas T 1

represents that the dominating vertex w is elsewhere in the clique-sum decomposition.

Intuitively, the vertices colored 1 have already been resolved, whereas the vertices

colored T1 still need to be assigned to a dominating vertex.

Locally valid colorings. A coloring of the vertices of Wi is called locally valid with

respect to sets S1, S2 C V(G) if the following properties hold:

* for any two adjacent vertices v and w in Wi, if v is colored 0, w is colored 11;

and

* if v E S1 n Wi, then v is colored 0; and

* if v E S 2 n Wi, then v is not colored 0.
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Our colorings are similar to that of previous work (e.g., [2]), but we use them

in a new dynamic-programming framework that acts over clique-sum decompositions

instead of tree decompositions.

Dynamic program subproblems. Our first-level dynamic program has one sub-

problem for each graph G in the clique-sum decomposition and for each coloring

c of the vertices in W0. Because each join set has at most h vertices, the num-

ber of subproblems is O(n 3h). We define D(G, c) to be the size of the minimum

"semi"-dominating set of the vertices in subtree rooted at G subject to the following

restrictions:

1. Vertices colored 1 are adjacent to at least one vertex in the dominating set.

(Vertices colored 1 are dominated "for free".)

2. Vertices colored 0 are precisely the vertices in the dominating set.

3. Vertices in Wo are colored according to c.

If we solve every such subproblem, then in particular, we solve the subproblems

involving the root node of the clique-sum decomposition and in which every vertex

is colored 0 or 1. The final dominating set of size k is given by the best solution to

these subproblems.

Induction step. Suppose for each coloring c of Wi, 1 < i < p, we know D(Gi, c). If

the graph G is of size at most h, then we can try all colorings in O(3 h h2) = 0(1) time

(where the factor of h2 is for checking validity). Thus, we focus on almost-embeddable

graphs G. First, we guess a subset X of size at most h. Then for each subset S of X,

we put the vertices of S in the dominating set and forbid vertices of X - S from being

in the dominating set. Now we remove from G all fully dominated vertices of G - X

that are not included in any partially dominated clique Wi. Call the resulting graph

G. By Theorem 5.24, tw(G) = O(Vx/). We can obtain such a tree decomposition of

width 3+2/3 times optimum, in 2°(v')n3+e time by a result of Amir [11]. All vertices

absent from this tree decomposition are fully dominated and thus, in any minimum
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dominating set that includes S, they will not appear except the following case. It

is possible that up to IX - SI = O(h) vertices, which are either fully dominated or

belong to V(Gi) - Wi where Wi is fully dominated, appear in the dominating set to

dominate vertices of X - S. Call the set of such vertices S'. We can guess this set

S' by choosing at most h vertices among the discarded vertices that have at least

one neighbor in X - S, and then add S' to the dominating set. On the other hand,

for any partially dominated clique Wi, we know that all of its vertices are present

in the tree decomposition; because they form a clique, there is a bag ai in any tree

decomposition that contains all vertices of Wi. We find ai in our tree decomposition

and map Wi and Gi to this bag. We also assume W0o is contained in all bags, because

its size is at most h. Now, for each coloring c of W0o, we run the dynamic program

of Alber et al. [2] on the tree decomposition, with the restriction that the colorings

of the bags are locally valid with respect to S1 := S U S' and S2 := X - S, and are

consistent with the coloring c of W0. For each bag ai to which we mapped Gi, we

add to the cost of the bag the value D(Gi, c') for the current coloring c' of Wi. Using

this dynamic program, we can obtain D(G, c) for each coloring c of W0.

Running time. The running time for each coloring c of W0 and each choice of S

is 2°(V)n according to [2]. We have 3 h choices for c, O(nh+ l) choices for X, 0( 2 h)

choices for S, and O(nh+l ) choices for S'. Thus the running time for this inductive

step is 6hn2h+2 2 0("V) . There are O(n) graphs in the clique-sum decomposition of G.

Therefore, the total running time of the algorithm is 0( 6hn2h+3 2 °(V )) + n°(1) (the

latter term for creating the clique-sum decomposition), which is 2°(V)n°(1) as desired.

5.4 Concluding Remarks

We have shown how to obtain subexponential fixed-parameter algorithms for the

broad class of bidimensional problems on bounded-genus graphs, and for dominating

set on general H-minor-free graphs for any fixed H. Our approach can also be used
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to obtain subexponential algorithms for other problems on H-minor-free graphs. We

now demonstrate some examples of such problems.

The first example is vertex cover, where we use the following reduction. For

a graph G, let G' be the graph obtained from G by adding a path of length two

between any pair of adjacent vertices. The following lemma is obvious.

Lemma 5.25. For any Kh-minor-free graph G, h > 4, and integer k > 1,

* G' is Kh-minor-free, and

* G has a vertex cover of size < k if and only if G' has a dominating set of size

< k.

Combining Lemma 5.25 with Theorem 5.22, we conclude that parameterized ver-

tex cover can be solved in subexponential time on graphs with an excluded minor.

Another example is the set-cover problem. Given a collection C = {(C, C2, · · , Cm}

of subsets of a finite set S = {(s, s2,..., sn), a set cover is a subcollection C' C C

such that UcIEc' Ci = S. The minimum set cover problem is to find a cover of min-

imum size. For an instance (C, S) of minimum set cover, its graph Gs is a bipartite

graph with bipartition (C, S). Vertices si and Cj are adjacent in Gs if and only if

si E Cj. Theorem 5.22 can be used to prove that minimum set cover can be solved in

subexponential time when Gs is H-minor free for some fixed graph H. Specifically,

for a given graph Gs, we construct an auxiliary graph As by adding new vertices

v, u, w and making v adjacent to {u, w, C1, C2 ,.. ., Cm}. Then

* (C, S) has a set cover of size < k if and only if As has a dominating set of size

< k + 1, and

* if Gs is Kh-minor-free, then As is Kh+l-minor-free.

It is reasonable to believe that Theorem 5.22 generalizes to obtain a subexponen-

tial fixed-parameter algorithm for the (k, r)-center problem on H-minor-free graphs

Recall that the (k, r)-center problem is a generalization of the dominating-set prob-

lem in which the goal is to determine whether an input graph G has at most k
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vertices (called centers) such that every vertex of G is within distance at most r

from some center. In Chapter 4, we considered this problem for planar graphs and

map graphs, and presented a generalization of dynamic programming mentioned in

the proof of Theorem 5.22 to solve the (k, r)-center problem for graphs of bounded

treewidth/branchwidth. This dynamic program and Theorem 5.24 can be generalized

to establish the desired result for H-minor-free graphs. A consequence is that we can

solve the dominating-set problem in constant powers of H-minor-free graphs, which

is the most general class of graphs so far for which one can obtain the exponential

speedup.

It is an open and tempting question whether our technique can be generalized

to solve in subexponential time on H-minor-free graphs every problem that can be

solved in subexponential time on bounded-genus graphs. Recent positive progress

on this question has been made [71] (see Chapter 4). Based on our results, one

can obtain subexponential algorithms for any minor-bidimensional problem on H-

minor-free graphs, and for any contraction-bidimensional problem on apex-minor-

free graphs. Note that these results, while general, cannot be applied directly to

dominating set on H-minor-free graphs. In particular, it remains open to extend the

algorithmic approaches of Section 5.3 for H-minor-free graphs to all bidimensional

parameters.

We also suspect that there is a strong connection between bidimensional para-

meters and the existence of linear-size kernels for the corresponding parameterized

problems in bounded-genus graphs. Such a linear kernel has recently been obtained

for dominating set [94].
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Chapter 6

Diameter and Treewidth in

Minor-Closed Graph Families

Eppstein [87] introduced the diameter-treewidth property for a class of graphs, which

requires that the treewidth of a graph in the class is upper bounded by a function

of its diameter. This notion has been used extensively in a slightly modified form

called the bounded-local-treewidth property, which requires that the treewidth of any

connected subgraph of a graph in the class is upper bounded by a function of its

diameter. For minor-closed graph families, which is the focus of most work in this

context, these properties are identical.

The reason for introducing graphs of bounded local treewidth is that they have

many similar properties to both planar graphs and graphs of bounded treewidth,

two classes of graphs on which many problems are substantially easier. In particu-

lar, Baker's approach for polynomial-time approximation schemes (PTASs) on pla-

nar graphs [23] applies to this setting. As a result, PTASs are known for hereditary

maximization problems such as maximum independent set, maximum triangle match-

ing, maximum H-matching, maximum tile salvage, minimum vertex cover, minimum

dominating set, minimum edge-dominating set, and subgraph isomorphism for a fixed

pattern [72, 87, 110]. Graphs of bounded local treewidth also admit several efficient

fixed-parameter algorithms. In particular, Frick and Grohe [96] give a general frame-

work for deciding any property expressible in first-order logic in graphs of bounded
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local treewidth.

The foundation of these results is the following characterization by Eppstein [87]

of minor-closed families with the diameter-treewidth property. Recall from Chapter 1

that an apex graph is a graph in which the removal of some vertex leaves a planar

graph.

Theorem 6.1. Let . be a minor-closed family of graphs. Then . has the diameter-

treewidth property if and only if Y does not contain all apex graphs, i.e., excludes

some apex graph.

In this Chapter, we reprove this theorem with a much simpler proof. Similar

to Eppstein's proof, we use the following theorems from Graph Minor Theory. The

m x m grid is the planar graph with m2 vertices arranged on a square grid and with

edges connecting horizontally and vertically adjacent vertices.

Theorem 6.2 ([80]). For integers r and m, let G be a graph of treewidth at least

m4 r 2(m+2). Then G contains either the complete graph Kr or the m x m grid as a

minor.

It is worth mentioning that we improve the bound in the theorem above in Chap-

ter 8.

Theorem 6.3 ([151]). Every planar graph H can be obtained as a minor of the r x r

grid H, where r = 141V(H)I - 24.

As we show in Chapter 7, the results of this chapter makes the foundation of the

bidimensionality theory in apex-minor-free graphs.

Before presenting the proof of Theorem 6.1, first we present a property of apex-

minor-free graphs. The vertices (i,j) of the m x m grid with i E {1, m} or j E

{1, m} are called boundary vertices, and the rest of the vertices in the grid are called

nonboundary vertices.

Lemma 6.4. Let G be an H-minor-free graph for an apex graph H, let k = 141V(H)l-

22, and let m > 2k be the largest integer such that tw(G) > m41V(H)12
(m+2). Then
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G can be contracted into an augmented grid R, i.e., a (m - 2k) x (m - 2k) grid

augmented with additional edges (and no additional vertices) such that each vertex

v E V(R) is adjacent to less than (k + 1)6 nonboundary vertices of the grid.

Proof By Theorem 6.2, G contains an m x m grid M as a minor. Thus there exists

a sequence of edge contractions and edge/vertex deletions reducing G to M. We

apply to G the edge contractions from this sequence; we ignore the edge deletions;

and instead of deletion of a vertex v, we only contract v into one of its neighbors.

Call the new graph G', which has the m x m grid M as a subgraph and in addition

V(G') = V(M).

We claim that each vertex v E V(G') is adjacent to at most k4 vertices in the

central (m - 2k) x (m - 2k) subgrid M' of M. In other words, let N be the set of

neighbors of any vertex v E V(G') that are in M'. We claim that INI < k4. Suppose

for contradiction that INI > k4.

Let n. denote the number of distinct x coordinates of the vertices in N, and let ny

denote the number of distinct y coordinates of the vertices in N. Thus, INI < n, n .

Assume by symmetry that ny > n=, and therefore ny > (NI > k2.

We define the subset N' of N by removing all but one (arbitrary chosen) vertex

that share a common y coordinate, for each y coordinate. Thus, all y coordinates of

the vertices in N' are distinct, and IN'[ = ny > k2. We discard all but k2 (arbitrarily

chosen) vertices in N' to form a slightly smaller set N". We divide these k2 vertices

into k groups each of exactly k consecutive vertices according to the order of their

y coordinates. Now we construct the minor k x k grid K as shown in Figure 6-1.

Because each y coordinate is unique, we can draw long horizontal segments through

every point. The k columns on the left-hand and right-hand sides of M allow us to

connect these horizontal segments together into k vertex-disjoint paths, each passing

through exactly k vertices of N". These paths can be connected by vertical segments

within each group. This arrangement of paths has the desired k x k grid K as a

minor, where the vertices of the grid correspond to the vertices in N".

Now, if v has been used in the contraction of a vertex v' in K, we proceed as

shown in Figure 6-2. First we "lift" v' from the grid-not removing it from the graph
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Figure 6-1: Construction of the minor k x k grid K.
per se, but marking it as "outside the grid." Then we contract the remainder of v"s

column and the two adjacent columns (if they exist) into a single column. Similarly we

contract the remainder of v"s row with the adjacent rows. Thus we obtain as a minor

of K a (k - 2) x (k - 2) grid K' such that vertex v' is outside this grid and adjacent

to all vertices of the grid. Now, by Theorem 6.3, because k- 2 > 141V(H)I - 24, we

can consider v' as the apex of H and obtain the planar part of H as a minor of K'.

Hence the original graph G is not H-minor-free, a contradiction. This concludes the

proof of the claim that NI < k4.

(a) (b) (c) (d)

Figure 6-2: In the k x k grid K, we (a) lift the vertex v', (b) contract the adjacent
columns, and (c) contract the adjacent rows, to form a (k - 2) x (k - 2) grid K'.
Vertex v' is adjacent to all vertices in the grid, though the figure just shows four
neighbors for visibility.

Finally, form a new graph R by taking graph G' and contracting all 2k boundary

rows and 2k boundary columns into two boundary rows and two boundary columns

(one on each side). The number of neighbors of each vertex of R that are not on the

boundary is at most (k + 1)2k4. The factor (k + 1)2 is for the boundary vertices each

of which is obtained by contraction of at most (k + 1)2 vertices. 0

Now we are ready to prove Theorem 6.1.
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of Theorem 6.1. One direction is easy. The apex graphs Ai, i = 1, 2,..., obtained

from the i x i grid by connecting a new vertex v to all vertices of the grid have diameter

two and treewidth i+ 1, because the treewidth of the i x i grid is i (see e.g. [79]). Thus

a minor-closed family of graphs with the diameter-treewidth property cannot contain

all apex graphs. Next consider the other direction. Let G be a graph from a minor-

closed family F of graphs excluding an apex graph H. We show that the treewidth of

G is bounded above by a function of IV(H)I and its diameter d. Let m be the largest

integer such that tw(G) > m41V(H)1 2(m+2), and let k = 141V(H)I - 22. Let R be the

(m-2k) x (m-2k) augmented grid obtained from G by contraction, using Lemma 6.4.

Because diameter does not increase by contraction, the diameter of R is at most d. In

addition, one can easily observe that the number of vertices of distance at most i from

any vertex in R is at most 4r+4r(k+1) 6+4r(k+1) 1 2 +. ..+4r(k+1) 6i < 4r(k+1)6(i+l),

where r = m - 2k. Because the diameter is at most d, we have 4r(k + 1)6(d+ l ) > r 2

i.e., m < 2k + 4(k + 1)6(d+1). Thus the treewidth of G is at most (4(k + 1)6(d+1) +

2k + 1)41V(H)12(4(k+1)6(d+l)+2k+3) = O(IV(H) 6(d+l))O(IV(H)16d+8 ) = 2 0(dlV(H)16d+s1gV(H)I),

as desired. O
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Chapter 7

Bidimensional Parameters and

Local Treewidth

As mentioned in previous chapters, the majority of results for designing FPT algo-

rithms to solve problems such as k-vertex cover or k-dominating set in a sparse graph

class F are based on the following lemma: every graph G in F where the value of the

graph parameter is at most k has treewidth bounded by t(k), where t is a strictly in-

creasing function depending only on F. With some work (sometimes very technical),

a tree decomposition of width t(k) is constructed and standard dynamic-programming

techniques on graphs of bounded treewidth are implemented. Of course this method

can not be applied for any graph class F. For instance, the n-vertex complete graph

K, has a dominating set of size one and treewidth equal to n - 1. So the emerging

question is:

For which (larger) graph classes and for which graph parameters can the

"bounding treewidth method" be applied?

In this chapter we give a complete characterization of minor-closed graph families

for which the aforementioned "bounding treewidth method" can be applied for a

wide family of graph parameters. More precisly, we show that for a large family

of contraction-bidimensional graph parameters, a minor-closed graph family F has

the parameter-treewidth property if F has bounded local treewidth. Moreover, we
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show that the inverse is also correct if some simple condition is satisfied by P. In

addition we show that, for a slightly smaller family of minor-bidimensional graph

parameters, every minor-closed graph family F excluding some fixed graph has the

parameter-treewidth property.

The proof of the main result uses the characterization of Eppstein for minor-

closed families of bounded local treewidth [87] (or its simplification in Chapter 6)

and Diestel et al.'s modification of the Robertson & Seymour excluded-grid-minor

theorem [80]. In addition, the proof is constructive and can be used for constructing

fixed-parameter algorithms to decide bidimensional graph parameters on minor-closed

families of bounded local treewidth. These algorithms parallel the general fixed-

parameter algorithm of Frick and Grohe [96] for properties definable in first-order

logic in graph families of bounded local treewidth; our results apply e.g. to minor-

bidimensional parameters definable in monadic second-order logic in nontrivial minor-

closed graph families. See Section 7.4 for details.

This chapter is organized as follows. Section 7.1 contains the formal definitions of

the concepts used in the chapter. Section 7.2 presents two combinatorial results which

support the main result of the chapter, proved in Section 7.3. Finally, in Section 7.4

we present the algorithmic consequences of our results and we conclude with some

open problems.

7.1 Definitions and Preliminary Results

We first need the following facts about treewidth. The first fact is trivial.

* For any complete graph Kn on n vertices, tw(Kn) = n - 1.

The second fact is well known but its proof is not trivial. (See e.g., [79].)

* The treewidth of the m x m grid is m.

The next fact we need is a theorem on excluded grid minors due to Diestel et

al. [80]. (See also the textbook [79].)
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Theorem 7.1 ([80]). Let r, m be integers, and let G be a graph of treewidth at least

m4r2 (m +2). Then G contains either Kr or the m x m grid as a minor.

Recall that a graph parameter P is a function mapping graphs to nonnegative

integers. The parameterized problem associated with P asks, for a fixed k, whether

P(G) < k for a given graph G. Given a graph parameter P, we say that a graph

family F has the parameter-treewidth property for P if there is a strictly increasing

function t such that every graph G E F has treewidth at most t(P(G)).

Definition 7.2. Let g: N - N be a strictly increasing function. We say that a graph

parameter P is g-minor-bidimensional if

* Contracting an edge, deleting an edge, or deleting a vertex in a graph G cannot

increase P(G).

* For the r x r grid R, P(R) > g(r).

Similarly, a graph parameter P is g-contraction-bidimensional if

* Contracting an edge in a graph G cannot increase P(G).

* For any r x r augmented grid R of constant span, P(R) > g(r).

In the above definition, an r x r augmented grid of span s is an r x r grid with

some extra edges such that each vertex is attached to at most s non-boundary vertices

of the grid (see an example in Figure 7-1). Intuitively, bidimensional parameters are

required to be "large" in two-dimensional grids.

We note that a g-minor-bidimensional parameter is also a g-contraction-bidimensional

parameter. One can easily observe that many graph parameters such as minimum

sizes of dominating set, q-dominating set (distance q-dominating set for a fixed q),

vertex cover, feedback vertex set, and edge-dominating set (see exact definitions of

the corresponding graph parameters in [74]) are O(r2)-minor- or O(r 2)-contraction-

bidimensional parameters.

1Closely related notions of bidimensional parameters are introduced by the authors in [63].
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Figure 7-1: An augmented 12 x 12 grid with span 8.

Here, we present a theorem for minor-bidimensional parameters on general minor-

closed classes of graphs excluding some fixed graphs, which plays an important role

in the main result of this chapter.

Theorem 7.3. If a g-minor-bidimensional parameter P on an H-minor-free graph

G has value at most k, then tw(G) < 2
41v(H) 2(9-l(k)+2)log(g- (k)) = 20(g- (k) log( -(k)))

Proof. Notice that KIV(H)l contains as a minor any graph on IV(H)I vertices. There-

fore we may assume that G is KIV(H)I-minor-free. If the claimed upper bound for the

treewidth of G is not correct, then Theorem 7.1 implies that G contains a m x m grid R

as a minor for m > g-l(k). Because P is g-minor-bidimensional, P(R) > g(m). The

bidimensionality of P along with the fact that R is a minor of G yield P(G) > g(m).

Therefore, k > g(m), a contradiction. oE

Theorem 7.3 can be applied for minor-bidimensional parameters such as vertex

cover or feedback vertex set.

7.2 Combinatorial Lemmas

In this section we prove two combinatorial lemmas regarding grids and graphs of

bounded local treewidth. The proof of the following lemma uses the ideas in the

proof of Lemma 6.1.
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Figure 7-2: Left: The grid H, the points in S", and their grouping. Here = 6.
Right: Construction of the minor x grid R passing through the points in S".

Lemma 7.4. Suppose we have an m x m grid H and a subset S of vertices in the

central (m - 2e) x (m - 2£) subgrid H', where s = ISI and £ = L[-J. Then H has as

a minor the x grid R such that each vertex in R is a contraction of at least one

vertex in S and other vertices in H.

Proof. Let sx denote the number of distinct x coordinates of the vertices in S, and let

sy denote the number of distinct y coordinates of the vertices in S. Thus, s < sx . sy.

Assume by symmetry that sy > s, and therefore sy > V/.

We define the subset S' of S by removing all but one point that share a common

y coordinate, for each y coordinate. Thus, all y coordinates of the vertices in S'

are distinct, and IS' = sy. We discard all but £2 vertices in S' to form a slightly

smaller set S", because S' = s > S > (L,fJ) 2
= 2. We divide these £2 vertices

into e groups each of exactly e consecutive vertices according to the order of their y

coordinates. Now we have the situation shown on the left of Figure 7-2.

We construct the minor grid R as shown on the right of Figure 7-2. Because

each y coordinate is unique, we can draw long horizontal segments through every

point. The columns on the left-hand and right-hand sides of H allow us to connect

these horizontal segments together into vertex-disjoint paths, each passing through

exactly vertices of S". These paths can be connected by vertical segments within

each group. By contracting each horizontal segment into a single vertex, and some

further contraction, we can obtain the desired x grid R as a minor. Each vertex
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of this grid R is a contraction of at least one vertex in S" (and hence in S) and other

vertices in H. o

Lemma 7.5. Let G E L(f) be a graph containing the m x m grid H as a subgraph,

m > 2, where f = f(2) + 1. Then the central (m - 2e) x (m - 2e) subgrid H' has the

property that every vertex v E V(G) is adjacent to less than £4 vertices in H'.

Proof. Suppose for contradiction that there is a vertex v E V(G) such that S =

NG(v) n V(H) has size s = ISI >_ 4. By Lemma 7.4, H' has as a minor a e x grid

R such that each vertex in R is a contraction of at least one vertex in S and other

vertices in H'. If we perform these contractions and deletions in G, then v is adjacent

to all vertices in R. Define R + v to be the grid R plus the vertex v (if v is not already

in R) and the star of connections between v and all vertices in R. Then R + v is a

minor of G, but has diameter 2 and treewidth > f(2) + 1, a contradiction. O

7.3 Main Theorem

Now we are ready to present the main result of this chapter.

Theorem 7.6. Let P be a contraction-bidimensional parameter. A minor-closed

graph class F has the parameter-treewidth property for P if F is of bounded local

treewidth. In particular, for any g-contraction-bidimensional parameter P, function

f: N - N and any graph G E (f) on which P has value at most k, we have

tw(G) 2 0(9g- (k)logg - (k)). (The constant in the 0 notation depends on f(1) and

f(2).)

Proof. Let r = f(1)+ 1 and f = f(2)+1. Let G E £(f) be a graph on which the graph

parameter P has value k. Let m be the largest integer such that tw(G) > m4r 2 (m+2).

Without loss of generality, we assume G is connected, and m > 2 (otherwise, tw(G)

is a constant because both r and e are constants.) Then G has no complete graph Kr

as a minor. By Theorem 7.1, G contains an m x m grid H as a minor. Thus there

exists a sequence of edge contractions and edge/vertex deletions reducing G to H.

We apply to G the edge contractions from this sequence, we ignore the edge deletions,
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and instead of deletion of a vertex v, we only contract v into one of its neighbors.

Call the new graph G', which has the m x m grid H as a subgraph and in addition

V(G') = V(H). Because graph parameter P is contraction-bidimensional, its value

on G' will not increase. By Lemma 7.5, we know that the central (m - 2f) x (m - 2f)

subgrid H' of H has the property that every vertex v E V(G') is adjacent to less than

£4 vertices in H'.

Now, suppose in graph G', we further contract all 2f boundary rows and 2f bound-

ary columns into two boundary rows and two boundary columns (one on each side)

and call the new graph G". Note that here G" and H' have the same set of vertices.

The degree of each vertex of G" to the vertices that are not on the boundary is at

most (f + 1)2 f 4, which is a constant because f is a constant. Here the factor (+ 1)2 is

for the boundary vertices each of which is obtained by contraction of at most (f + 1)2

vertices. Again because graph parameter P is contraction-bidimensional, its value on

G" does not increase and thus it is at most p. On the other hand, because the graph

parameter is g-contraction-bidimensional, its value on graph G" is at least g(m - 2f).

Thus g-1 (k) > m - 2, so m = O(g-'(k)). By Theorem 7.3, the treewidth of the

original graph G is at most 2 0(9-l(k)logg9-(k)) as desired. [

The apex graphs Ai, i = 1, 2, 3,..., are obtained from the i x i grid by adding a

vertex v adjacent to all vertices of the grid. It is interesting to see that, for a wide

range of graph parameters, the inverse of Theorem 7.6 also holds.

Lemma 7.7. Let P be any contraction-bidimensional parameter where P(Ai) = 0(1)

for any i > 1. A minor-closed graph class F has the parameter-treewidth property for

P only if F is of bounded local treewidth.

Proof. The proof follows from Theorem 6.1. The apex graph Ai, has diameter < 2 and

treewidth > i. So a minor-closed family of graphs with the parameter-treewidth prop-

erty for P cannot contain all apex graphs and hence it is of bounded local treewidth.

Typical examples of graph parameters satisfying Theorem 7.6 and Lemma 7.7

are dominating set and its generalization q-dominating set, for a fixed constant q (in
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which each vertex can dominate its q-neighborhood). These graph parameters are

O(r2 )-contraction-bidimensional and their value is I for any apex graph Ai, i > 1.

We can strengthen the "if and only if" result provided by Theorem 7.6 and

Lemma 7.7 with the following lemma. We just need to use the fact that if the

value of P is less than the value of P' then the parameter-treewidth property for P

implies the parameter-treewidth property for P' as well.

Lemma 7.8. Let P be a graph parameter whose value is lower bounded by some

contraction-bidimensional parameter and let P(Ai) = 0(1) for any i > 1. Then a

minor-closed graph class F has the parameter-treewidth property for P if and only if

F is of bounded local treewidth.

Proof. The "only if" direction is the same as in Lemma 7.7. Suppose now that P'

is a contraction-bidimensional parameter where, for any graph G, P'(G) < P(G).

Applying Theorem 7.6 to P' we obtain that, if F is of bounded local treewidth,

then F has the parameter-treewidth property for P', which means that there exists

a strictly increasing function t such that, for any graph G E F, tw(G) < t(P'(G)).

As P'(G) < P(G), we have that tw(G) < t(P(G)) and thus F has the parameter-

treewidth property for P. o

Lemma 7.8 can be used not only for contraction-bidimensional graph parameters.

As an example we mention the clique-transversal number of a graph, i.e., the minimum

number of vertices meeting all the maximal cliques of a graph. (The clique-transversal

number is not contraction-bidimensional because an edge contraction may create a

new maximal clique and the value of the clique-transversal number may increase.) It

is easy to see that this graph parameter always exceeds the domination number (the

size of a minimum dominating set) and that any graph in Ai has a clique-transversal

set of size 1.

Another application is the H-domination number, i.e., the minimum cardinality of

a vertex set that is a dominating set of G and satisfies some property H in G. If this

property is satisfied for any one-element subset of V(G) then we call it regular. Ex-

amples of known variants of the parameterized dominating-set problem corresponding
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to the I-domination number for some regular property H are the following parame-

terized problems: the independent dominating set problem, the total dominating set

problem, the perfect dominating set problem, and the perfect independent dominating

set problem (see the exact definitions in [2]).

We summarize the previous observations with the following:

Corollary 7.9. Let P be any of the following graph parameters: the minimum car-

dinality of a dominating set, the minimum cardinality of a q-dominating set (for any

fixed q), the minimum cardinality of a clique-transversal set, or the minimum cardi-

nality of a dominating set with some regular property I. A minor-closed family of

graphs F has the parameter-treewidth property for P if and only if F is of bounded

local treewidth. The function t(k) in the parameter-treewidth property is 20(Alogk).

7.4 Algorithmic Consequences and Concluding Re-

marks

Courcelle [61] proved a meta-theorem on graphs of bounded treewidth; he showed

that, if X is a property of graphs that is definable in monadic second-order logic, then

0 can be decided in linear time on graphs of bounded treewidth. Frick and Grohe [96]

partially extended this result to graphs of bounded local treewidth; they showed that,

for any property 0 that is definable in first-order logic and for any class of graphs

of bounded local treewidth, there is an O(nl+E)-time algorithm deciding whether a

given graph has property A, for any > 0. The constant in the O notation depends

on 1/E, , and the local treewidth bound. However, the running time of Frick and

Grohe's algorithm remains unanalyzed in terms of 0: their algorithm transforms 

into so-called "Gaifman normal form" [98] and the complexity of this transformation

is unknown.

Using Theorems 7.3 and 7.6, we obtain a result along similar lines of Frick and

Grohe. Specifically, consider any property that is solvable in polynomial time on

graphs of bounded treewidth, e.g., properties definable in monadic second-order logic.
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If the property is minor-bidimensional, we obtain a fixed-parameter algorithm on

general minor-closed graph families excluding some fixed graphs; and if the property

is contraction-bidimensional, we obtain a fixed-parameter algorithm on minor-closed

graph families of bounded local treewidth. The differences between our result and

Frick and Grohe's result are that our properties must be bidimensional but need not

be definable in first-order logic, and our graph families must be minor-closed but

need not have bounded local treewidth (for minor-bidimensional properties). Also,

in contrast to the work of Frick and Grohe, the running time of our algorithm has an

explicit bound.

Theorem 7.10. Let P be a graph parameter such that, given a tree decomposition of

width at most w for a graph G, the graph parameter can be computed in h(w)n °( l)

time. Now, if P is a g-minor-bidimensional parameter and G belongs to a minor-

closed graph family excluding some fixed graphs, or P is a g-contraction-bidimensional

parameter and G belongs to a minor-closed family of graphs of bounded local treewidth,

then we can compute P on G in h( 2 0(9g- (k) 1ogg-l(k)))nO(1)220(9-l(k) logg-l(k))n3+e time,

for any E > 0.

Proof. The algorithm is as follows. First we check whether tw(G) is in 2 0(9g- (k)log g (k))

By Theorems 7.3 and 7.6, if it is not, graph parameter P has value more than k on

graph G. This step can be performed by Amir's algorithm [11], which for a given

graph G and integer w, either reports that the treewidth of G is at least w, or pro-

duces a tree decomposition of width at most (3 + 2)w in time 0(2 3 69&n 3 w3 log4 n).

Thus by using Amir's algorithm we can either compute a tree decomposition of G of

size 2 0(g- (k)lgg' - (k)) in time 2 2°(9 -(k)logg- (k))n3+e or conclude that the treewidth of

G is not in 20(g-l(k)logg-l(k))

Now if we find a tree decomposition of the aforementioned width, we can compute

P on G in time h(20(g-l(k)logg -(k)))n() time. The running time of this algorithm is

the one mentioned in the statement of the theorem. l

For example, let G be a graph from a minor-closed family F of bounded local

treewidth. Because the dominating set of a graph with a given tree decomposition
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of width at most w can be computed in time 0(2 2wn) [2], Theorem 7.10 gives an

algorithm which either computes a dominating set of size at most k, or concludes

that there is no such a dominating set in 220(V'logk()n( time. The same result holds

also for computing the minimum size of a q-dominating set. Indeed, Theorem 7.10

can be applied because the q-dominating set of a graph with a given tree decompo-

sition of width at most w can be computed in time O(qo(w)n) [64]. Also, algorithms

on graphs of bounded treewidth for clique-transversal set, and H-domination set ap-

peared in [50] and [2] respectively. Using these algorithms, and the fact that all these

graph parameters are lower bounded by the domination number, the methodology of

the proof of Theorem 7.10 can give algorithmic results for clique-transversal set and

Il-domination set with the same running times as in the case of dominating set (i.e.,

22(/k- log k) nO ) )

Finally, it is known that the dominating set problem admits a linear size kernel on

planar graphs [4]. Recently, this result was extended to graphs of bounded genus [94].

It is tempting to ask whether such a kernel exists for any minor-closed graph class

of bounded local treewidth, i.e., any minor-closed graph class with the parameter-

treewidth property for dominating set. The same question can be asked for other

bidimensional parameters. In particular, we wonder whether there is any link between

linear kernels and bidimensionality.
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Chapter 8

Graphs Excluding a Fixed Minor

have Grids Almost as Large as

Treewidth

The r x r grid graphis the canonical planar graph of treewidth e(r). In particular,

an important result of Robertson, Seymour, and Thomas [151] is that every planar

graph of treewidth w has an Q(w) x Q(w) grid graph as a minor. Thus every planar

graph of large treewidth has a grid minor certifying that its treewidth is almost as

large (up to constant factors).

In their Graph Minor Theory, Robertson and Seymour [144] have generalized this

result in some sense to any graph excluding a fixed minor: for every graph H and

integer r > 0, there is an integer w > 0 such that every H-minor-free graph with

treewidth at least w has an r x r grid graph as a minor. This result has been re-

proved by Robertson, Seymour, and Thomas [151], Reed [141], and Diestel, Jensen,

Gorbunov, and Thomassen [80]. The best known bound on w in terms of r is as

follows:

Theorem 8.1. [151, Theorem 5.8] Every H-minor-free graph of treewidth larger than

2 051v(H)13r has an r x r grid as a minor.

While the existence of such a relationship between treewidth and grid minors is
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interesting, this bound of w = 20(r) is much weaker than the bound of w = 0(r)

attainable for the special case of planar graphs. In particular, the grid they obtain

from this theorem can have treewidth logarithmic in the treewidth of the original

graph, which does not serve as much of a certificate of large treewidth as we have for

planar graphs. The main result of this chapter is the following much tighter bound:

Theorem 8.2. For any fixed graph H, every H-minor-free graph of treewidth w has

an Q(w) x Q(w) grid as a minor.

Thus the r x r grid is the canonical H-minor-free graph of treewidth E)(r) for

any fixed graph H. This result is best possible up to constant factors. Chapter

10 discusses the dependence of the constant factor in the Q notation on the fixed

graph H.

Our result cannot be generalized to arbitrary graphs: Robertson, Seymour, and

Thomas [151] proved that some graphs have treewidth Q(r2 lg r) but have grid minors

only of size O(r) x O(r). The best known relation for general graphs is that having

treewidth more than 202r5 implies the existence of an r x r grid minor [151]. The best

possible bound is believed to be closer to e(r 2 g r) than 2 (r5), perhaps even equal

to O(r 2 lgr) [151].

Our approach in the proof of Theorem 8.2 can be viewed more generally as a

framework for extending combinatorial results on planar graphs to hold on H-minor-

free graphs for any fixed H. The framework follows three main steps: extension from

planar graphs to bounded-genus graphs, further extension to "almost-embeddable

graphs", and further extension to clique sums of almost-embeddable graphs. Recall

that almost-embeddable graphs are bounded-genus graphs except for a bounded num-

ber of "local areas of non-planarity", called vortices, and for a bounded number of

"apex" vertices, which can have any number of incident edges that are not properly

embedded. The underpinnings of this framework is the structural characterization of

H-minor-free graphs in the Robertson-Seymour Graph Minor Theory [149]. Recently

this framework has been used to generalize many efficient algorithms from planar

graphs to H-minor-free graphs [63, 103] (see also Chapter 5). Our work shows how
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the framework can be applied to combinatorial results.

In addition to giving a tight bound on this basic combinatorial problem relat-

ing treewidth and grids, our result has many combinatorial consequences, each with

several algorithmic consequences. For instance, one of the main consequences of our

result gives the tightest possible parameter-treewidth bound for all bidimensional

parameters in all possible H-minor-free graphs:

Theorem 8.3. For any minor-bidimensional parameter P which is at least g(r) in

the r x r grid, every H-minor-free graph G has treewidth tw(G) = O(g-l(P(G))).

For any contraction-bidimensional parameter P which is at least g(r) in an augmented

r x r grid, every apex-minor-free graph G has treewidth tw(G) = O(g-1(P(G))). In

particular, if g(r) = e(r2 ), then these bounds become tw(G) = O(P(G).

The proof of this theorem is identical to the proofs of Theorems 7.3 (for minor-

bidimensional parameters) and 7.6 (for contraction-bidimensional parameters) except

that we substitute the application of Theorem 8.1 with Theorem 8.2.

The reader is referred to Sections 1.6-1.11 to see other concequences of Theo-

rems 8.2 and 8.3 in the bidimensionality theory.

8.1 Overview of Proof of Main Theorem

The proof of our main theorem (Theorem 8.2) is based on a series of reductions. Each

reduction converts a given graph into a "simpler" graph whose treewidth is Q(tw(G)).

The first reduction applies Theorem 1.3 to the original graph G, decomposing it

into a clique sum of almost-embeddable graphs. By Lemma 2.4, at least one summand

in this clique sum has treewidth at least tw(G). Therefore we can focus on this single

summand of large treewidth. However, we note that this summand may not be a

minor of G, and therefore it is not enough to prove that the summand has a large

grid as a minor; we must deal with this issue later in the proof.

The second, trivial reduction is to remove the apices from the almost-embeddable

graph. This reduction changes the treewidth by at most an additive constant. Now

our almost-embeddable graph is apex-free.
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The third reduction effectively removes the vortices from the apex-free almost-

embeddable graph. This reduction uses that vortices have small pathwidth to con-

clude that the treewidth remains roughly the same. At this point the graph has

bounded genus, because we have removed both apices and vortices.

Because the graph has bounded genus, it has a large grid as a minor. However,

this grid is not useful: the graph is not necessarily a minor of the original graph G

because, during the clique-sum decomposition, we may have introduced extra edges

when the join set was completed into a clique. We call such edges virtual edges, and all

other edges actual edges. One difficulty of Theorem 1.3 is that it does not guarantee

that the virtual edges can be obtained by taking a minor of the original graph G,

and therefore the pieces may not be minors of G. The fourth reduction overcomes

this difficulty by obtaining some virtual edges by taking minors of the original graph

G, and removes other virtual edges which cannot be obtained, while still preserving

the treewidth up to constant factors. We call the resulting graph an approximation

graph.

The approximation graph is both a minor of G and has bounded genus. Now we

use the fact that a bounded-genus graph with treewidth w has an Q(w) x Q(w) grid

as a minor. Therefore both the approximation graph and G have such a grid as a

minor.

8.2 Proof of Main Theorem

In this section we prove Theorem 8.2.

First, we will need the following property about how treewidth changes during

small operations to faces of a graph:

Lemma 8.4. Consider any graph G embedded in some surface of genus g, with

tw(G) = (g2). If G' is the result of contracting a face of G to a point, then

tw(G') < tw(G) and tw(G') = Q(tw(G)/(g + 1)).

Proof. Let f denote the face of G contracted to form G'. Because G' is a minor of G,

tw(G') tw(G). Consider the graph G" formed from graph G by adding a new
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vertex v in the middle of face f and adding an edge connecting v to every vertex

of f. This graph G" is embedded in the same genus-g surface as G. The treewidth

of G" is at most 1 larger than the treewidth of G, by adding v to all bags of a tree

decomposition of G. By [73, Theorem 2], there is a sequence of contractions that

brings G" to a graph R that is a (planar) partially triangulated r x r grid augmented

with at most g additional edges, where r = Q(tw(G")/(g + 1)) = Q(tw(G)/(g + 1)).

Every vertex in R can be labeled by the set of vertices in G" that were contracted to

form it. Let R denote the vertex in R whose label includes v. For every neighbor

w of v in G, the vertex WR in R whose label includes w has distance at most 1 from

vR in R, because contractions only decrease distances. We modify the augmented

partially triangulated grid R as follows. For every neighbor w of v in G for which

WR VR, we delete all edges incident to WR except (vR, WR}, and then we contract

the edge {VR, WR}. The resulting graph R' is a minor of R and thus of G". If we

re-order the sequence of contractions and deletions that bring G" to R' to start with

the contractions of the edges between v and the vertices of face f (which is equivalent

to contracting the face f in the original graph G), then the succeeding sequence

of contractions and deletions brings G' to R'. Therefore R' is a minor of G'. By

ignoring every row or column of the grid in which an edge was deleted, we obtain an

(r - g -4) x (r - g - 4) grid minor of G'. (There may be g such rows (resp., columns)

from the g additional edges, 2 from the neighborhood of v, and 2 from the boundary

of the grid.) Therefore tw(G') > r - g - 5 = Q(tw(G)/(g + 1)). l

Now we apply Theorem 1.3 to the original graph G, decomposing it into a clique

sum of almost-embeddable graphs.

Lemma 8.5. At least one summand in the clique sum has treewidth at least tw(G).

Proof. Immediate by Lemma 2.4. l

Let G' denote a summand in the clique sum with tw(G') > tw(G). For every

vertex v in G', there is a corresponding vertex f(v) in G by following the definition

of clique sum. Each edge {u, v} in G' may or may not have a corresponding edge

159



(f(u), f(v)} in G. If the edge {f(u), f(v)} exists in G, we say that {u, v} is an actual

edge in G'; otherwise, it is a virtual edge in G'. Virtual edges arise from removing

edges from the join set during a clique sum.

Because G' is h-almost-embeddable in some bounded-genus surface, it consists of

a bounded-genus graph augmented by at most h vortices and at most h apices. We

remove all apices from G' to produce an apex-free h-almost-embeddable graph G".

Because adding a vertex and any collection of incident edges to a graph can increase

the treewidth by at most 1, we have the following relation between the treewidths of

G' and G":

Lemma 8.6. tw(G") > tw(G')- h.

Next we remove all vortices from G". Let G' denote the bounded-genus part of

the apex-free h-almost-embeddable graph G", and let Ui denote the set of vertices at

which vortex i is attached to Go (as in definition of h-almost embeddable graphs).

Define G"' = Go - U1 -U2 - Uh, i.e., G"' is the result of removing all vertices

from vortices in G".

Lemma 8.7. tw(G"') = O(tw(G")) for h = 0(1).

Proof. Suppose G" decomposes into Gg U G'L U G2' U ... U G where each G' i > 1,

is a vortex as in definition of h-almost embeddable graphs. Define an intermediate

graph G as follows. Let U = {ul, u,.. ., u}mi} be the cyclically ordered vertices of Go

at which vortex GI' is attached. We obtain G by starting from G' and adding edges(~C, WI1~11 VIC~C i i ,

{u, u2+l} where they do not already exist, and where j +1 is treated modulo mi, for

each 1 < i < h and each 1 < j < mi. Because we only added a planar graph within

the face corresponding to Ui, G is embeddable in the same bounded-genus surface

as G.

We claim that tw(G") < (h + 1)2 (tw(G) + 1). Consider some minimum-width

tree decomposition of , and consider each bag B of that tree decomposition. For

each u that occurs in bag B, we add to B the corresponding bag 13a from the path

decomposition of vortex G'. The resulting bags form a tree decomposition of G"

because u l , ui,.. . , umi are connected in a path in G. By charging the < h + 1
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added vertices to the occurrence of uJ that triggered the addition, each bag increases

in size by a factor at most h + 1 for each of the h vortices. Thus the width of this

tree decomposition of G" is at most (h(h-+ 1)) (tw(G) + 1)- 1, which is stronger than

the desired claim.

Let G be the graph resulting from G by contracting the face {u, u,..., u )

in G into a single vertex, for each i. Applying Lemma 8.4, h times, we obtain

tw(G) = Q(tw(G)) because h and the genus of the surface in which G is embedded

are 0(1). Therefore tw(G") = O(tw(G)).

Finally we delete each contracted vertex in G, which results in G"'. Thus tw(G"') >

tw(G) - h, so tw(G") = O(tw(G"')) as desired. [

At this point the graph has bounded genus, because we have removed both apices

and vortices. In the next step we deal with virtual edges. Intuitively, for each sum-

mand G' in the clique-sum decomposition of the original graph G, we construct a

graph G which is a minor of G and "approximately" preserves the virtual edges within

G'. For this step we need an additional property of the clique-sum decomposition ob-

tained in the proof of Theorem 1.3: each clique sum involves at most three vertices

from each summand other than apices and vertices in vortices of that summand. This

stronger form of Theorem 1.3 follows from exactly the same proof from [149]. At a

high level, the proof of Theorem 1.3 ([149, Theorem 1.3]) consists of two components,

[149, Theorem 2.3] and [149, Theorem 3.1]. The first part uses clique sums that in-

volve only apices and vertices in vortices, while the second part uses clique sums that

involve only three vertices in each summand (from the 3-separations). When these

clique sums are combined, we may obtain clique sums involving apices, vertices in

vortices, and up to three additional vertices in each summand. This fact has been

confirmed independently by Seymour [154].

Definition 8.8. Let GC' be an h-almost-embeddable graph in a clique-sum decom-

position of a graph G arising from Theorem 1.3. The approximation graph of G',

denoted by G, is obtained by starting from G"', removing the virtual edges, and replac-

ing some of them as follows. In the clique-sum decomposition of G, for each clique

161



sum involving G' with the property that the join set W has IW n V(G"')I > 1, we do

the following:

1. If IW n V(G"')I = 2, we add an edge between these two vertices.

2. If IW n V(G"')J = 3 and there is more than one clique sum that contains W n

V(G"') in its join set, we add all edges between pairs of vertices in W n V(G"').

3. If W n V(G')I = 3 and there is only one clique sum that contains W n V(G"')

in its join set, we add a new vertex v inside the triangle of W n V(G"') on the

surface and then add an edge connecting v to each vertex of W n V(G"').

Lemma 8.9. Let G' be an h-almost-embeddable graph in a clique-sum decomposition

of a graph G arising from Theorem 1.3. The approximation graph G of G' is a minor

of G and can be embedded in the same surface as the bounded-genus part of G'.

Proof. First, G'" with all virtual edges removed is a minor of G, because the former

graph can be constructed from G by deleting all vertices not in the summand G' and

deleting all apices and vertices in vortices in G'. All that remains to show is that

the edges added in Cases 1-3 of Definition 8.8 can also be formed as a minor of G.

We use the (trivial) additional property of the clique-sum decomposition arising from

Theorem 1.3 that each summand in the clique sum is connected even after removal

of the join set. (If a summand were not connected after the removal of the join set,

we could rewrite the initial clique-sum decomposition by splitting the summand into

a clique sum of these pieces.) Now, for each clique sum between G' and F with the

property that the join set W has W n V(G')I > 1, we contract F down to a single

vertex v adjacent to all vertices in the join set. In Case 3, this vertex v is precisely

the desired vertex v inside the triangle W n V(G"'). This triangle is guaranteed to

be empty in the bounded-genus part of G' in the clique-sum decomposition arising

from Theorem 1.3; if this were not the case, again we could rewrite the clique-sum

decomposition by splitting G' into a clique sum of two pieces. Thus the resulting

graph can be embedded in the same surface as the bounded-genus part of G'. In the

other two cases, we contract v into a vertex of W n V(G"')-in Case 2, we contract
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two different v's into two different vertices of W n V(G"')-and obtain the additional

edges added to G. Finally, we delete the apices and vertices in vortices in G', and

delete any other summands that had IW nV(G"')I < 1. In the end we have contracted

and deleted edges in G to obtain precisely G. D

Lemma 8.10. tw(G) > (tw(G"') + 1)-1.

Proof. To prove that tw(G"') < 3(tw(G) + 1) - 1, we start from a minimum-width

tree decomposition of 0 and convert it into a tree decomposition of G"'. We need only

consider Case 3 in Definition 8.8 because otherwise G is identical to G"'. For each

occurrence of an added vertex v from Case 3 in a bag B in the tree decomposition of

G, we replace v in B with all three vertices from W n V(G"'). The result is a tree

decomposition of G"' where each bag has increased in size by at most a factor of 3.

By Lemma 8.9, the approximation graph G is both a minor of G and has bounded

genus. By [63, Theorem 3.5] (see also Theorem 5.14), every bounded-genus graph

with treewidth Q(r) has an r x r grid as a minor. By Lemmas 8.5, 8.6, 8.7, and 8.10,

tw(G) = Q(tw(G)). Therefore G and thus G have an Q(tw(G)) x Q(tw(G)) grid as

a minor. This concludes the proof of Theorem 8.2.
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Chapter 9

Improved Approximation

Algorithms for Minimum-Weight

Vertex Separators and Treewidth

Given a graph G = (V, E), one is often interested in finding a small "separator" whose

removal from the graph leaves two sets of vertices of roughly equal size (say, of size at

most 21VI/3), with no edges connecting these two sets. The separator itself may be

a set of edges, in which case it is called a balanced edge separator, or a set of vertices,

in which case it is called a balanced vertex separator. In the present work, we focus

on vertex separators.

Balanced separators of small size are important in several contexts. They are

often the bottlenecks in communication networks (when the graph represents such a

network), and can be used in order to provide lower bounds on communication tasks

(see e.g. [130, 128, 28]). Perhaps more importantly, finding balanced separators of

small size is a major primitive for many graph algorithms, and in particular, for those

that are based on the divide and conquer paradigm [132, 28, 129].

Certain families of graphs always have small vertex separators. For example,

trees always have a vertex separator containing a single vertex. The well known

planar separator theorem of Lipton and Tarjan [132] shows that every n-vertex planar

graph has a balanced vertex separator of size O(vJn), and moreover, that such a
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separator can be found in polynomial time. This was later extended to show that

more general families of graphs (any family of graphs that excludes some minor, and

certain geometric graphs) have small separators [101, 10, 135]. However, there are

families of graphs (for example, expander graphs and the complete graph) in which

the smallest separator is of size Q(n).

Finding the smallest separator is an NP-hard problem (see, e.g. [45]). In this

chapter, we study approximation algorithms that find vertex separators whose size is

not much larger than the optimal separator of the input graph. These algorithms can

be useful in detecting small separators in graphs that happen to have small separators,

as well as in demonstrating that an input graph does not have any small vertex

separator (and hence, for example, does not have serious bottlenecks for routing).

Much of the previous work on approximating vertex separators piggy-backed on

work for approximating edge separators. For graphs of bounded degree, the sizes of

the minimum edge and vertex separators are the same up to a constant multiplica-

tive factor, leading to a corresponding similarity in terms of approximation ratios.

However, for general graphs (with no bound on the degree), the situation is different.

For example, every edge separator for the star graph has Q(n) edges, whereas the

minimum vertex separator has just one vertex. There are simple reductions from

the problem of approximating edge separators to the the problem of approximating

vertex separators. (For example, replace every vertex v by clique Cv on n3 vertices,

and every original edge e = (u, v) by a vertex ve connected to all vertices of Cu and

Cv.) As to the reverse direction, it is only known how to reduce the problem of

approximating vertex separators to the problem of approximating edge separators in

directed graphs (a notion that will not be discussed in this chapter).

The previous best approximation ratio for vertex separators is based on the work

of Leighton and Rao [129]. They presented an algorithm based on linear program-

ming that approximates the minimum edge separator within a ratio of O(log n). They

observed that their algorithm can be extended to work on directed graphs, and hence

gives an approximation ratio of O(logn) also for vertex separators, using the algo-

rithm for (directed) edge separators as a black box. More recently, Arora, Rao and
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Vazirani [19] presented an improved algorithm based on semidefinite programming

that approximates the minimum edge separator within a ratio of O(Vlo/-n). Their

remarkable techniques, which are a principal component in our algorithm for vertex

separators, are discussed more in the following section.

In the present work, we formulate new linear and semidefinite program relaxations

for the vertex separator problem, and then develop rounding algorithms for these

programs. The rounding algorithms are based on techniques that were developed in

the context of edge separators, but we exploit new properties of these techniques and

adapt and enhance them to the case of vertex separators. Using this approach, we

improve the best approximation ratio for vertex separators to O( log/n). In fact,

one can obtain an O(V/logopt) approximation, where opt is the size of an optimal

separator (see [90]). (An O(log opt) approximation can be derived from the techniques

of [129].) In addition, we derive and extend some previously known results in a unified

way, such as a constant factor approximation for vertex separators in planar graphs

(a result originally proved in [12]), which we extend to any family of graphs excluding

a fixed minor.

Before delving into more details, let us mention two aspects in which edge and

vertex separators differ. One is the notion of a minimum ratio cut, which is an

important notion used in our analysis. For edge cuts, all "natural" definitions of such

a notion are essentially equivalent. For vertex separators, this is not the case. One

consequence of this is that our algorithms provide a good approximation for vertex

expansion in bounded degree graphs, but not in general graphs. This issue will be

discussed in Section 9.3. Another aspect where there is a distinction between edge

and vertex separators is that of the role of embeddings into L1 (a term that will be

discussed later). For edge separators, if the linear or semidefinite program relaxations

happen to provide such an embedding (i.e. if the solution is an L1 metric), then they in

fact yield an optimal edge separator. For vertex separators, embeddings into L1 seem

to be insufficient, and we give a number of examples that demonstrate this deficiency.

Our rounding techniques for the vertex separator case are based on embeddings with

small average distortion into a line, a concept that was first systematically studied
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by Rabinovich [139].

As mentioned above, finding small vertex separators is a basic primitive that is

used in many graph algorithms. Consequently, our improved approximation algo-

rithm for minimum vertex separators can be plugged into many of these algorithms,

improving either the quality of the solution that they produce, or their running time.

Rather than attempting to provide in this chapter a survey of all potential applica-

tions, we shall present one major application, that of improving the approximation

ratio for treewidth, and discuss some of its consequences.

9.1 Related Work

An important concept that we shall use is the ratio of a vertex separator (A, B, S).

Given a weight function r : V - R+ on vertices, and a set S C V which separates G

into two disconnected pieces A and B, we can define the sparsity of the separator by

7r(S)

min{7r(A), r(B)} + r(S)'

Indeed, most of our effort will focus on finding separators (A, B, S) for which the

sparsity is close to minimal among all vertex separators in G.

In the case of edge separators, there are intimate connections between approxi-

mation algorithms for minimum ratio cuts and the theory of metric embeddings. In

particular, Aumann and Rabani [21] and Linial, London, and Rabinovich [131] show

that one can use L1 embeddings to round the solution to a linear relaxation of the

problem. For the case of vertex cuts, we will show that L1 embeddings (and even

Euclidean embeddings) are insufficient, but that the additional structure provided by

many embedding theorems does suffice. This structure corresponds to the fact that

many embeddings are of Frchet-type, i.e. their basic component takes a metric space

X and a subset A C X and maps every point x E X to its distance to A. This

includes, for instance, the classical theorem of Bourgain [43].

The seminal work of Leighton and Rao [129] showed that, in both the edge and
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vertex case, one can achieve an O(log n) approximation algorithm for minimum-ratio

cuts, based on a linear relaxation of the problem. Their solution also yields the first

approximate max-flow/min-cut theorems in a model with uniform demands. The

papers [131, 21] extend their techniques for the edge case to non-uniform demands.

Their main tool is Bourgain's theorem [43], which states that every n-point metric

space embeds into L1 with O(log n) distortion.

Recently, Arora, Rao, and Vazirani [19] exhibit an O(Vl/ogn) approximation for

finding minimum-ratio edge cuts, based on a known semi-definite relaxation of the

problem, and a fundamentally new technique for exploiting the global structure of the

solution. This approach, combined with the embedding technique of Krauthgamer,

Lee, Mendel, and Naor [124], has been extended further to obtain approximation

algorithms for minimum-ratio edge cuts with non-uniform demands. In particular,

by combining [19], [124], and the quantitative improvements of Lee [126], Chawla,

Gupta, and Racke [52] exhibit an O(logn) 3 / 4 approximation. More recently, Arora,

Lee, and Naor [18] have improved this bound almost to that of the uniform case,

yielding an approximation ratio of O(V/ogn log log n).

On the other hand, progress on the vertex case has been significantly slower. In

the sections that follow, we attempt to close this gap by providing new techniques for

finding approximately optimal vertex separators.

9.2 Results and Techniques

In Section 9.3, we introduce a new semi-definite relaxation for the problem of find-

ing minimum-ratio vertex cuts in a general graph. In preparation for applying the

techniques of [19], the relaxation includes so-called "triangle inequality" constraints

on the variables. The program contains strictly more than one variable per vertex of

the graph, but the SDP is constructed carefully to lead to a single metric of negative

type1 on the vertices which contains all the information necessary to perform the

1A metric space (X,d) is said to be of negative type if d(x,y) = [If(x) - f(y)112 for some map
f :X - L2.
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rounding.

In Section 9.4, we exhibit a general technique for rounding the solution to opti-

mization problems involving "fractional" vertex cuts. These are based on the ability

to find line embeddings with small average distortion, as defined by Rabinovich [139]

(though we extend his definition to allow for arbitrary weights in the average). In

[139], it is proved that one can obtain constant factor average distortion embeddings

into the line for metrics supported on planar graphs. This is observed only as an in-

teresting structural fact, without additional algorithmic consequences over the known

average distortion embeddings into all of L1 [140, 120]. For the vertex case, we will

see that this additional structure is crucial.

Using the seminal results of [19], which can be viewed as a line embedding, we

then show that the solution of the semi-definite relaxation can be rounded to a vertex

separator whose ratio is within O(v/Ign) of the optimal separator. In the standard

SDP for minimum-ratio edge cuts (employed in the algorithms of [19]), no lower bound

is known on the integrality gap. Very recent work of Khot and Vishnoi [119] shows

that in the non-uniform demand case, the gap must tend to infinity with the size of the

instance. In contrast, we show that our analysis is tight by exhibiting an Q(/lo-in)

integrality gap for the SDP in Section 9.6. Interestingly, this gap is achieved by an

L1 metric. This shows that L1 metrics are not as intimately connected to vertex cuts

as they are to edge cuts, and that the use of the structural theorems discussed in the

previous paragraph is crucial to obtaining an improved bound.

We exhibit an O(log k)-approximate max-flow/min-vertex-cut theorems for gen-

eral instances with k commodities. The best previous bound of O(log3 k) is due to

[88] (they actually show this bound for directed instances with symmetric demands,

but this implies the vertex case). This is proved in Section 9.5. A well-known reduc-

tion shows that this theorem implies the edge version of [131, 21] as a special case.

Again, our rounding makes use of the general tools developed in Section 9.4 based

on average-distortion line embeddings. In Section 9.5.2 we show that any approach

based on L1 embeddings and Euclidean embeddings, respectively, must fail since the

integrality gap can be very large even for such metric spaces. Using the improved line
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embeddings for metrics on graphs which exclude a fixed minor [139] (based on [120]

and [140]), we also achieve a constant-factor approximation for finding minimum ratio

vertex cuts in these families. This answers an open problem asked in [71].

By improving the approximation ratios for balanced vertex separators in general

graphs and graphs excluding a fixed minor, we improve the approximation factors for

a number of problems relating to graph-theoretic decompositions such as treewidth,

branchwidth, and pathwidth. For instance, we show that in any graph of treewidth

k, we can find a tree decomposition of width at most O(kl/`-k). If the input graph

excludes some fixed minor, we give an algorithm that finds a decomposition of width

O(k). A discussion of these problems, along with the salient definitions, appears in

Section 9.7. See Theorem 9.16 and Corollary 9.17 for a list of the problems to which

our techniques apply.

Improving the approximation factor for treewidth in general graphs and graphs

excluding a fixed minor to O(V/ogni) and O(1), respectively, answers an open problem

of [71], and leads to an improvement in the running time of approximation schemes

and sub-exponential fixed-parameter algorithms for several NP-hard problems on

graphs excluding a fixed minor. For instance, we obtain the first polynomial-time

approximation schemes (PTAS) for problems like minimum feedback vertex set and

connected dominating set in such graphs (see Theorem 9.18 for a full list). Finally, our

techniques yield an O(g)-approximation algorithm for the vertex separator problem

in graphs of genus at most g. It is known that such graphs have balanced separators

of size O(V/g-) [101], and that these separators can be found efficiently [117] (ear-

lier, [10] gave a more general algorithm which, in particular, finds separators of size

0( 3 / 2n)). Our approximation algorithms thus finds separators of size O( g/n),

but when the graph at hand has a smaller separator, our algorithms perform much

better than the worst-case bounds of [101, 10, 117].
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9.3 A Vector Program for Minimum-Ratio Vertex

Cuts

Let G = (V, E) be a graph with non-negative vertex weights 7r: V -- [0, oo). For a

subset U C V, we write r(U) = EuEU 7r(u). A vertex separator partitions the graph

into three parts, S (the set of vertices in the separator), A and B (the two parts that

are separated). We use the convention that 7r(A) > r(B). We are interested in finding

separators that minimize the ratio of the "cost" of the separator to its "benefit." Here,

the cost of a separator is simply 7r(S). As to the benefit of a separator, it turns out

that there is more than one natural way in which one can define it. The distinction

between the various definitions is relatively unimportant whenever r(S) < r(B), but

it becomes significant when 7r(S) > 7r(B). We elaborate on this below.

In analogy to the case of edge separators, one may wish to take the benefit to be

r(B). Then we would like to find a separator that minimizes the ratio r(S)/(B).

However, there is evidence that no polynomial time algorithm can achieve an approx-

imation ratio of O(1V16 ) for this problem (for some 6 > 0). See [90] for details.

For the use of separators in divide and conquer algorithms, the benefit is in the

reduction in size of the parts that remain. This reduction is ir(B) + ir(S) rather than

just Ir(B), and the quality of a separator is defined to be

r(S)
7r(B) + 7r(S)

This definition is used in the introduction of this Chapter, and in some other earlier

work (e.g. [12]).

As a matter of convenience, we use a slightly different definition. We shall define

the sparsity of a separator to be

ca(A, B, S)= 7r(S
777(A U S) 7r(B U S)

Under our convention that r(A) > 7r(B), we have that 7r(V)/2 < 7r(AUS) < 7r(V),

and the two definitions differ by a factor of E(7r(V)).
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We define ar(G) to be the minimum over all vertex separators (A, B, S) of a,(A, B, S).

The problem of computing a,(G) is NP-hard (see [45]). Our goal is to give algo-

rithms for finding separators (A, B, S) for which ar(A, B, S) O(,l\/&) aa,(G),

where k = supp(r)l is the number of vertices with non-zero weight in G.

Before we move onto the main algorithm, let us define

a (A, B, S) = 7r(S)/[w(A)- r(B U S)].

Note that ar(A, B, S) and oa(A, B, S) are equivalent up to a factor of 2 whenever

7r(A) > 7(S). Hence in this case it will suffice to find a separator (A, B, S) with

, (A, B, S) < O(/og k) d, (G). Allowing ourselves to compare a,7 (A, B, S) to d&(G)

rather than a 7 (G) eases the formulation of the semi-definite relaxations that follow.

When 7(S) > 7r(A), & no longer provides a good approximation to a. (Moreover, it

is hard to approximate &(G) in this case, as shown in [90].) However, in this case

the trivial separator (0, 0, V) has sparsity at most a constant factor larger than a(G),

making the approximation of a(G) trivial.

9.3.1 The Quadratic Program

We present a quadratic program for the problem of finding min-ratio vertex cuts.

All constraints in this program involve only terms that are quadratic (products of

two variables). Our goal is for the value of the quadratic program to be equal to

&7,(G). Let G = (V, E) be a vertex-weighted graph, and let (A*, B*, S*) be an optimal

separator according to &,(.), i.e. such that d,(G) = -,(A*, B*, S*).

With every vertex i E V, we associate three indicator 0/1 variables, xi, yi and si.

It is our intention that for every vertex exactly one indicator variable will have the

value 1, and that the other two will have value 0. Specifically, xi = 1 if i E A*, Yi = 1

if i E B*, and si = 1 if i E S*. To enforce this, we formulate the following two sets

of constraints.

Exclusion constraints. These force at least two of the indicator variables to be 0.

173



xi ' yi = O, xi si = O, yi si = 0, for every i E V.

Choice constraints. These force the non-zero indicator variable to have value 1.

x2 2 1, for all i E V.

The combination of exclusion and choice constraints imply the following integrality

constraints, which we formulate here for completeness, even though they are not

explicitly included as part of the quadratic program: xi E {0, 1}, E 0, 1}, s E

{0, 1}, for all i E V.

Edge constraints. This set of 2 jIE constraints express the fact that there are no edges

connecting A and B.

xi yj = 0 and xj yi = 0, for all (i,j) E E.

Now we wish to express the fact that we are minimizing d&(A, B, S) over all vertex

separators (A, B, S). To simplify our presentation, it will be convenient to assume

that we know the value K = r(A*) · 7r(B* U S*). This assumption can be made

without loss of generality because it suffices to know the value of K up to a constant

multiplicative factor, and there are at most polynomially many values to choose from

(e.g., guess the heaviest vertex v in A*, and guess which value of 1 i < log n makes

2i7r(v) the closest estimate for 7r(A*)). Alternatively, the assumption can be dropped

at the expense of a more complicated relaxation.

Spreading constraint. The following constraint expresses our guess for the value of K.

E (i)r(j)(xi - xj)2 = K.
i,jEV

Notice that (xi - j)2 = 1 if and only if {xi, xj} = {0, 1}.

174



The objective function. Finally, we write down the objective we are trying to minimize:

1
minimize K E 7r(i)s.

iEV

The above quadratic program computes exactly the value of & (G), and hence is

NP-hard to solve.

9.3.2 The Vector Relaxation

We relax the quadratic program of Section 9.3.1 to a "vector" program that can be

solved up to arbitrary precision in polynomial time. The relaxation involves two

aspects.

Interpretation of variables. All variables are allowed to be arbitrary vectors in

Rd, rather than in R. The dimension d is not constrained, and might be as large as

the number of variables (i.e., 3n).

Interpretation of products. The original quadratic program involved products

over pairs of variables. Every such product is interpreted as an inner product between

the respective vector variables. The exclusion constraints merely force vectors to be

orthogonal (rather than forcing one of them to be 0), and the integrality constraints

are no longer implied by the exclusion and choice constraints. The choice constraints

imply (among other things) that no vector has norm greater than 1, and the edge

constraints imply that whenever (i, j) E E, the corresponding vectors xi and yj are

orthogonal.

9.3.3 Adding Valid Constraints

We now strengthen the vector program by adding more valid constraints. This should

be done in a way that will not violate feasibility (in cases where the original quadratic

program was feasible), and moreover, that preserves polynomial time solvability (up

to arbitrary precision) of the resulting vector program. It is known that this last

condition is satisfied if we only add constraints that are linear over inner products of

175



pairs of vectors, and this is indeed what we shall do. The reader is encouraged to

check that every constraint that we add is indeed satisfied by feasible 0/1 solutions

to the original quadratic program.

The 1-vector. We add additional variable v to the vector program. It is our intention

that variables whose value is 1 in the quadratic program will have value equal to

that of v in the vector program. Hence v is a unit vector, and we add the constraint

v 2 = 1.

Sphere constraints. For every vector variable z we add the constraint z2 = vz. Geo-

metrically, this forces all vectors to lie on the surface of a sphere of radius 2 centered

at v because the constraint is equivalent to (z _ )2 _ 12 2

Triangle constraints. For every three variables z1, z2, z3 we add the constraint

(Z1 - Z2)
2 + (z2 - 3)2 (z 1 -

This implies that every three variables (which are points on the sphere S(v, )) form

a triangle whose angles are all at most 7r/2.

Removing the si vectors. In the upcoming sections we shall describe and analyze a

rounding procedure for our vector program. It turns out that our rounding procedure

does not use the vectors si, only the values s = 1- xi- y2. Hence we can modify

the choice constraints to

a2 + y2 <1x2

and remove all explicit mention of the si vectors, without affecting our analysis for

the rounding procedure. Similarly, it suffices to include in the vector program only

those triangle constraints in which all three vectors are x vectors. The full vector

program follows.
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In the following section, we will show how to round this to a solution which is within

an O(Vi-g) factor of optimal. In Section 9.6, we show that this analysis is tight,

even for a family of stronger (i.e. more constrained) vector programs.

9.4 Algorithmic Framework for Rounding

In this section, we develop a general algorithmic framework for rounding solutions to

optimization problems on vertex cuts. We begin with a classical theorem.

Theorem 9.1 (Menger's theorem). A graph G = (V, E) contains at least k vertex-

disjoint paths between two non-adjacent vertices u, v E V if and only if every vertex

cut that separates u from v has size at least k.

It is well-known that a smallest vertex cut separating u from v can be found in

polynomial time (in the size of G) by deriving Menger's Theorem from the Max-Flow-

Min-Cut Theorem (see e.g. [165]).

Suppose that, in addition to a graph G = (V, E), we have a set of non-negative

vertex capacities {cv}VEv C N. (For simplicity, we are assuming here that capacities

177

minimize iEv r(i)(1 - x - )

subject to xi, yi, v E 2, i E V

zx + y2 <1, iEv

Xi Yi = O, i E V

Xi yj = Xj Yi = 0, (i,j) E E

v2 = 1

V-· Xi =X, V ·Yi - , i E V

2 -i,jeV r(i)r(j)(xi -Xj) 2 = K
(Xi - Xj) 2 < (X i-x h )2 + ( X- j)2, h,i,j E V.



are integer, but the following discussion can also be extended to the case of arbitrary

nonnegative capacities.) For a subset S C V, we define cap(S) = ves C. We have

the following immediate corollary whose proof is deferred.

Corollary 9.2. Let G = (V, E) be a graph with vertex capacities. Then for any two

non-adjacent vertices u, v E V, the following two statements are equivalent.

1. Every vertex cut S C V that separates u from v has cap(S) > k.

2. There exist u-v paths P1,P2, ... ,Pk C V such that for every w E V,

#{1 < i < k: w E pi} < c.

Furthermore, a vertex cut S of minimal capacity can be found in polynomial time.

Proof. The proof is by a simple reduction. From G = (V, E) and the capacities

{cV}~EV, we create a new uncapacitated instance G' = (V',E') and then apply

Menger's theorem to G'.

To arrive at G', we replace every vertex v E V with a collection of representatives

v1, v2 ,..., v (if c = 0, then this corresponds to deleting v from the graph). Now

for every edge (u, v) E E, we add edges {(ui, vj) : 1 < i < c, 1 < j < c}. It is not

hard to see that every minimal vertex cut either takes all representatives of a vertex

or none, giving a one-to-one correspondence between minimal vertex cuts in G and

G'. o

Furthermore, given such a capacitated instance G = (V, E), {cV}VEv along with

u, v E V, it is possible to find, in polynomial time, a vertex cut S C V of minimal

capacity which separates u from v.

Suppose additionally that we have a demand function w : V x V -- R+ which

is symmetric, i.e. w(u, v) = w(v, u). In this case, we define the sparsity of (A, B, S)

with respect to w by

caP,w(A, B, S) = capus(
178AUS ZvEBUS W(U, v)V
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We define the sparsity of G by aCaPW(G) = min{aCaP'W(A, B, S)} where the minimum

is taken over all vertex separators. Note that a,(A, B, S) = aP,w(A, B, S) when

Cv = r(v) and w(u, v) = 7r(u) r(v) for all u, v E V.

9.4.1 Line Embeddings and Vertex Separators

Let G = (V, E) be a graph with vertex capacities {cv}v, and a demand function

w : V x V - 1R+. Furthermore, suppose that we have a map f : V R. We give the

following algorithm which computes a vertex cut (A, B, S) in G.

Algorithm FINDCUT(G, f)

1. Sort the vertices v E V according to the value of f(v): {y, Y2,... , Yn}

2. For each 1 < i < n,

3. Create the augmented graph Gi = (V U {s, t}, Ei) with

Ei = EU (s, yj), (k, t)': 1 < j < i, i < k < n}.

4. Find the minimum capacity s-t separator Si in Gi.

5. Let A U {s} be the component of G[V U {s, t} \ Si] containing s,

let Bi = V \ (Ai U Si).

6. Output the vertex separator (Ai, Bi, Si) for which aCaP'W(Ai, Bi, Si) is minimal.

The analysis. Suppose that we have a cost function cost : V --* R+. We say that

the map f V - I is path-compatible with the cost function cost if, for any path

= V1, V2,...,vk in G,
k

cost(vi) > If(vl) - f(vk)I. (9.1)
i=l

We now move onto the main lemma of this section.

Lemma 9.3 (Charging lemma). Let G = (V, E) be any capacitated graph with demand

function w : V x V -- IR+. Suppose additionally that we have a cost function cost :

V - IR+ and a path-compatible map f : V R. If ao is the sparsity of the minimum
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ratio vertex cut output by FINDCUT(G, f), then

Zcv cost(v) > E w(u, v)f(u)- f(v).
vEV ,vEV

Proof. Recall that we have sorted the vertices v according to the value of f(v):

{Y1, Y2,... ,Yn}. Let Ci = {yl,. .. ,yi} and i = f(Yi+l) - f(Yi). First we have the

following lemma which relates the size of the separators found to the average distance

under f, according to w.

Lemma 9.4. n-1

Ei cap(Si) > ao E w(u, v)lf(u) - f(v)l.
i=l '1 u,vEV

Proof. Using the fact that ao is the minimum sparsity of all cuts found by FINDCUT(G, f),

cap(Si) ao E E w(u,v)
uEAiUS vEBiUSi

> ao E S W(UV).
uEC i vEV\Ci

Multiplying both sides of the previous inequality by ei and summing over i E {1, 2,..., n-

1} proves the lemma. O

Now we come to the heart of the charging argument which relates the cost function

to the capacity of the cuts occurring in the algorithm.

Lemma 9.5 (Charging against balls).

n-l
Cv .cost(v) _> 2 Ei cap(Si).

vEV i=1

Proof. We show how to charge every "unit" of Ei= 1 Ei cap(Si) against vertices v e V

so that no vertex is charged more than 2 cv' cost(v). This is done as follows. For every

vertex v E V, we surround f(v) E Il by a closed ball of radius cost(v). This ball has

width 2 cost(v) on the line. We will be charging various amounts to segments of this

width, never charging a segment of v's ball more than c,.
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Fix some 1 i < n - 1. Since Si is a minimum capacity s-t separator, applying

Menger's theorem yields a family of m = ISil s-t paths l,. .. ,Pm which use no vertex

v E V more than cv times. Since these paths cross from Ci to V \ Ci, there must exist

subpaths q1,..., qm for which each initial vertex is in Ci and each final vertex is in

V \ Ci.

For each path qj, we will charge Ei against vEV cv C.cost(v). Let qj = Ul, u 2,.. . Ur.

First, we note that since f is path-compatible with cost, the balls {B(ui, cost(ui))} 1l

must cover the entire interval [f(ul), f(ur)]. Furthermore, we have f (u,)- f(ul) > Ei

by construction.

To charge Ei to the balls belonging to points in the path qj, we proceed as fol-

lows. Every point z of the interval [f(Ul), f(ur)] is contained in at least one ball

B(ui, cost(ui)). We will charge this point against the corresponding ball, in fact we

charge it to z E B(ui, cost(ui)). (It may be the case that many of the balls contain

z. We can just charge all of them.) Clearly this charges all of ei.

We are only left to see that every vertex is charged at most 2 c, · cost(v). But

this is easy; note that a point z E B(v, cost(v)) can only be charged in the round

corresponding to the segment of distance si in which z is contained. Secondly, notice

that in this round it can only be charged c times since v occurs in at most c, of the

paths ql,.. ., qj. This completes the proof of Lemma 9.5. 0

Combining Lemmas 9.4 and 9.5 finishes the proof of Lemma 9.3. 0

9.4.2 Line Embeddings and Distortion

Let (X, d) be a metric space. A map f : X -- R is called 1-Lipschitz if, for all

x,y E X,

If(x) -f (y) I d(x, y)

Given a 1-Lipschitz map f and a demand function w X x X -t R+, we define its

average distortion under w by

avd,,(f) = Ex(X,y > f(x y ) - f(x y)
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We say that a weight function w is a product weight if it can be written as w(x, y) =

7r(x)ir(y) for all x, y E X, for some 7r: X -- I R+. We now state three theorems which

give line embeddings of small average distortion in various settings. The proofs of

these theorems are described in [90].

Theorem 9.6 (Bourgain, [43]). If (X, d) is an n-point metric space, then for every

weight function w : X x X -- R+, there exists an efficiently computable map f : X

R with avd,(f) = O(log n).

Theorem 9.7 (Rabinovich, [139]). If (X, d) is any metric space supported on a graph

which excludes a Kr-minor, then for every product weight wo : X x X -- R+, there

exists an efficiently computable map f X --+ R with avd,,o(f) = O(r2).

Theorem 9.8 (Arora, Rao, Vazirani, [19]). If (X, d) is an n-point metric of negative

type, then for every product weight wo : X x X - R+, there exists an efficiently

computable map f X -- IR with avd, O(f) = O(;ogn).

We also recall the following classical result.

Lemma 9.9. Let (Y, d) be any metric space and X C Y. Given a 1-Lipschitz map

f : X R, there exists a 1-Lipschitz extension f : Y R, i.e. such that f (x) = f(x)

for all x E X.

Proof. One defines

f (y) = sup [f(x) - d(x, y)]
xEX

for all y E Y. El

9.4.3 Analysis of the Vector Program

We now continue our analysis of the vector program from Section 9.3.3. Recall that

ir(i)(1 - x - y2) is the contribution of vertex i to the objective function. For every

i E V, define cost(i) = 4(1 - x - y). We will consider the metric space (V, d) given

by d(i,j) = (xi - j) 2 (note that this is a metric space precisely because every valid

solution to the SDP must satisfy the triangle inequality constraints). The following

182



key proposition allows us to apply the techniques of Sections 9.4.1 and 9.4.2 to the

solution of the vector program.

Proposition 9.10. For every edge (i,j) E E, cost(i) + cost(j) > 2(xi - xj)2 .

Proof. Since (i, j) E E, we have xi yj = xj yi = 0, and recall that xi yi = xj yj = 0.

It follows that

(xi - Xj)2 < 2[(xi + Yi - V)2 + (j + Yi - v) 2] < 2[(1 -X2 _ ) + (1 -X2 _ i)

(The first inequality follows from the fact that (xi-xj) 2 = ((xi+yi-v)- (xj+y-v))2,

and from the fact that (x + y) 2 > 0, implying x 2 + y2 > 2xy and (x- y)2 < 2(x2 + y2).

Substitute x = xi + yi - v and y = xj + yi - v.)

Putting yj instead of yi in the above equation gives (xi - xj)2 < 2[(1 -2 _ y2) +

(1 - xj - y)]. Summing these two inequalities yields

2(x - xj)2 4[(1 - 2 - y2) + (1 -2 _ yj2)] < cost(i) + cost(j).

Now, let U = supp(7r) = {i E V: 7r(i) 0}, and put k = UI. Finally, let

f : (U, d) - R be any 1-Lipschitz map, and let f: V - R be the 1-Lipschitz

extension guaranteed by Lemma 9.9.

Then for any path vl, ... , v, in G, we have

m-1

If(vl)- f(m) < d(vl, Vm) < E d(vi, i+l)
i=1

where the third inequality is from Proposition

compatible with cost.

m

= (xvi -xvi+)
i=1

m1 rn
< (cost(vi) + cost(vi+l))
--2

i=1
m

< E cost(Vi).
i=1

9.10. We conclude that f is path-
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Defining a product demand by w(i, j) = r(i)r(j) for every i, j E V and capacities

ci = 7r(i), we now apply FINDCUT(G, f). If the best separator found has sparsity ao,

then by Lemma 9.3,

1 02 )
K 7(i)(1 -X y2) 4K L ci. cost(i) > 8K (i,j) 1f(i) -f(i)

iEV 4 iEV 8i,jEV

8Ko E (i,j) If(i)- f()I
i,jEU

o i,,EU('iJ) If(i)- f(i)I
- 4 EZi,jEu (i, j) d(i, j)

ao
4. avd(f)'

It follows that &cr(G) > ao/(4. avd, (f)). Since the metric (V, d) is of negative type

and w(., ) is a product weight, we can achieve avd,(f) = O(v/FgWk) using Theorem

9.8. Using this f, it follows that FINDCUT(G, f) returns a separator (A, B, S) such

that c,(A, B, S) < O(x/J-ok) d&(G), completing the analysis.

Theorem 9.11. Given a graph G = (V, E) and vertex weights 7r : V -- R+, there

exists a polynomial-time algorithm which computes a vertex separator (A, B, S) for

which

a,(A, B,S) < O( log) c,(G),

where k = Isupp(ir).

We extend this theorem to more general weights in Section 9.7.1. This is necessary

for some of the applications in Section 9.7.

9.5 Approximate Max-Flow/Min-Vertex-Cut The-

orems

Let G = (V, E) be a graph with capacities {c v}vEV on vertices and a demand function

w : V x V --. R+. The maximum concurrent vertex flow of this instance is the

maximum constant e E [0, 1] such that one can simultaneously route an e fraction of
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each u-v demand w(u, v) without violating the capacity constraints.

Let Puv be the set of all u-v paths in G, and for each p E Puv, let pUV denote the

amount of the u-v commodity that is sent from u to v along p. We now write a linear

program that computes the maximum concurrent vertex flow.

6

S puv>E 6.(u, v)
PEPuv

E E pUV ,,
u,vEV pEPuv:wEp
puV > 0

u,v E V

wEV

u, v E V, p E Pu,,

We now write the dual of this LP with variables {SV}VEV and {tUv}U,veV.

minimize 5 CvSv

vEV

subject to E sw > ev p Euv,Vu, v E V
wEp

E w(uv)euv > 1
u,vEV

eV >o, Sv o0 u, vE V.

Finally, define

dist(u, v) = min : Sw.
pE~ 'uv

wEp

By setting u = dist(u, v), we see that the above dual LP is equivalent to the following.

minimize 5 CvSv
vEV

subject to (u, v) dist(u, v) > 1.
u,v

Remark. The dual LP above is derived by defining the length of a path p = l,, , k
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to be El<i<k Svi. However, a "cleaner" definition would take only half of the con-

tribution of the endpoints of the path, giving it length s 1/2 + E2<i<k-1 Svi + Svk/2.

Under this second definition, each edge (u, v) has length (su + sv)/2, and the length

of a path is the sum of the lengths of its respective edges. In terms of approximating

vertex cuts, the two definitions differ by a factor of at most two, which makes little

difference for us. We choose to work with the first definition because it simplifies some

of the notation. However, in Section 9.5.3 we shall switch to the second definition.

9.5.1 Rounding to Vertex Separators

Observe that any vertex separator (A, B, S) yields an upper bound on the maximum

concurrent flow in G. The upper bound is of the form

acapw(A, B ) = cap(S), 
uEAUS EVEBUS w(U, V) 

The numerator is the capacity of the separator, while the denominator is the amount

of demand that must be sent through it. To see how tight this upper bound is in

general, we can take the dual of the max-concurrent-flow LP from the previous section

and round it to a vertex separator while increasing the cost by at most some factor.

We will write a = CaP,, if the capacity and demands are clear from context. We

note that the dual LP is a relaxation of a(G), since every vertex separator (A, B, S)

gives a feasible solution, where s, = 1/A if v E S and s, = 0 otherwise. In this

case dist(u,v) > 1/A if u E A U S and v E B U S or visa-versa, so that setting

A = ZuEAUS,EBUS W(U, v) yields a feasible solution.

9.5.2 The Rounding

Before presenting our approach for rounding the LP, let us recall a typical rounding

approach for the case of edge-capacitated flows. In the edge context [131, 21], one

observes that the dual LP is essentially integral when dist(-, ) forms an L1 metric.

To round in the case when dist(-, ) does not form an L1 metric, one uses Bourgain's

theorem [43] to embed (V, dist) into L1 (with O(log n) distortion, that translates to
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a similar loss in the approximation ratio), and then rounds the resulting L1 metric

(where rounding the L1 metric does not incur a loss in the approximation ratio). This

approach is not as effective in the case of vertex separators, because rounding an L1

metric does incur a loss in the approximation ratio (as the example below shows), and

hence there is not much point in embedding (V, dist) into L1 and paying the distortion

factor.

The discrete cube. Let G = (V, E) be the d-dimensional discrete hypercube {0, 1}d.

We put c, = 1 for every v E V, and w(u,v) = 1 for every pair u,v E V. It is

well-known that accaP,'(G) = (1/(2d.V)) [111]. On the other hand, consider the

fractional separator (i.e. dual solution) given by s = 10 · -. Note that dist(u, v) is

proportional to the shortest-path metric on the standard cube, hence Euv dist(u, v) >

1, yielding a feasible solution which is a factor O(i) away from a(G).

It follows that even when (V, dist) is an L1 metric, the integrality gap of the dual

LP might be as large as (/logn).

Rounding with line embeddings. The rounding is done as follows. Let {sV}VEv

be an optimal solution to the dual LP, and let dist(., ) be the corresponding metric

on V. Suppose that the demand function w: V x V -R+ is supported on a set S,

i.e. w(u, v) > 0 only if u, v E S, and that ISI = k. Let f: (S, dist) -* R be the map

guaranteed by Theorem 9.6 with avd,(f) = O(log k), and let f: (V, dist) -1 R be the

1-Lipschitz extension from Lemma 9.9.

For v E V, define cost(v) = s. Then since f is 1-Lipschitz, for a path v1, v2, ... , Vm

in G, we have
m

cost(v) > dist(vl, vm) > If(vl)- f(Vm) ,
i=l

hence f is path-compatible with cost.

We now apply FINDCUT(G, f). If the best separator found has sparsity o, then
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by Lemma 9.3,

Ecvsv E cv. cost(v) > oao E w(u, v)lf(u)- f(v)I
v v u,vEV

= ao E w(u,v) If(u)- f(v)I
u,vES

> Q logk w(u, v) dist(u, v) > Q ogk
u,vEV

Theorem 9.12. For an arbitrary vertex-capacitated flow instance, where the demand

is supported on a set of size k, there is an O(log k)-approximate max-flow/min-vertex-

cut theorem. In particular, this holds if there are only k commodities.

9.5.3 Excluded Minor Families

Here we shall switch to the "cleaner" definition for path lengths that is presented

in the remark following the description of the dual LP. This allows us to view path

lengths as being induced by edge lengths. A consequence of this is that if the graph

G excludes some fixed graph H as a minor, then the metric arising from the LP dual

is an H-excluded metric. It follows that applying Theorem 9.7, yields a better result

when G excludes a minor and when we have a product demand function w(u, v).

Theorem 9.13. When G is an H-minor-free graph, there is an O(IV(H)1 2 )-approximate

max-flow/min-vertex-cut theorem with product demands. Additionally, there exists an

O(IV(H)12) approximation algorithm for finding min-quotient vertex cuts in G.

9.6 An Integrality Gap for the Vector Program

Consider the hypercube graph. Namely, the n vertices of the graph (where n is a power

of 2) can be viewed as all vectors in {+1}l ° gn , and edges connect two vertices that

differ in exactly one coordinate. Every vertex separator (A, B, S) has a(A, B, S) >

1/O(n log/n). This follows from standard vertex isoperimetry on the cube [111]. We

show a solution to the vector program with value of O(n/ log n), proving an integrality
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ratio of Q(l-og r) for the vector program, and implying that our rounding technique

achieves the best possible approximation ratio (relative to the vector program), up

to constant multiplicative factors.

In the solution to the vector program, we describe for every vertex i the associated

vectors xi and yi. The vectors si will not be described explicitly, but are implicit,

using the relation si v - xi - Yi. Each vector will be described as a vector in

1 + n log n + 2(n - 1) dimensions (even though n dimensions certainly suffice). Our

redundant representation in terms of number of dimensions helps clarify the structure

of the solution.

To describe the vector solution, we introduce two parameters, a and b. Their

exact value will be determined later, and will turn out to be a = 1/2 - E(1/log n),

b = O(1/n logn). We partition the coordinates into three groups of coordinates.

G1. Group 1, containing one coordinate. This coordinate corresponds to the direc-

tion of vector v (which has value 1 in this coordinate and 0 elsewhere). All xi

and yi vectors have value a on this coordinate.

G2. Group 2, containing n identical blocks of logn coordinates. The coordinates

within a block exactly correspond to the structure of the hypercube. Within

a block, each xi is a vector in {b}l °g n derived by scaling the hypercube label

of vertex i (which is a vector in {+1}l ° gn) by a factor of b. Vector yi is the

negation of vector xi on the coordinates of Group 2.

G3. Group 3, containing 2 identical blocks of n - 1 coordinates. The coordinates

within a block arrange all the xi vectors as vertices of a simplex. This is done

in the following way. Let Hn be the n by n Hadamard matrix with entries +1,

obtained by taking the (log n)-fold tensor product of the 2 by 2 the matrix H2

that has rows (1, 1) and (1, -1). The inner product of any two rows of Hn is 0,

the first column is all 1, and the sum of entries in any other column is 0. Remove

the first column to obtain the matrix Hn. Within a block, let vector xi be the

ith row of H, scaled by a factor of b. Hence within a block, ix i = b2(n - 1),
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and xixj = -b 2 for i f j. Vector yi is identical to xi on the coordinates of

Group 3.

We now show that the triangle constraints are satisfied by our vector solution.

Recall (see Section 9.3) that there is some flexibility in the choice of which triangle

constraints to include in the vector program (and likewise for many other constraints

that are valid for 0/1 solutions but are not used in our analysis). We shall address

here a subset of the triangle constraints that is larger than that actually used in the

analysis of our rounding algorithm.

There are five sets of vectors from which we can take the three vectors that

participate in a triangle constraint: X (the xi vectors), Y (the yi vectors), S (the

si vectors), v and 0. In our analysis we used only triangle constraints over vectors

from X. Here we show that all the triangle constraints that involve only vectors from

X U Y are satisfied. All vectors in X U Y have the identical value a in their first

coordinate, and in every other coordinate they take only values from ±tb. Hence per

coordinate, every quadratic constraint that holds for all ±1 vectors (including, but

not limited to, the triangle constraints) is satisfied for all xi and yi vectors.

We let K = Ei,jEv(xi - xj)2 = e(n3 b2 log n). The value of the parameters a and

b is governed by the following three constraints.

1. The exclusion constraints imply that

a2 - nb2 logn + 2b2(n- 1) = O

2. The edge constraints (and the fact that edges connect vertices of Hamming

distance 1) imply that

a2 - nb2 (log n- 2) - 2b2 = 0

3. The sphere constraints imply that

a = a2 + nb2 log n + 2b2(n - 1)
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Hence we have a system of three equalities in two unknowns (a and b). This

system is consistent, because the first two equalities are in fact identical (due to our

careful choice of number of blocks in each group). They both give:

a2 + (-n log n + 2n- 2)b2 = 0

By setting b = a/ n log n- 2n 2 the first two equalities are satisfied. The third

equality now reads a = a2 (2 + e) for some E = O(1/ log n). This equality is satisfied

by taking a roughly equal to 1/2 - E/4, which is 1/2 - E(1/ log n).

It follows that in the vector solution all s = 1- - yi is 0(1/log n) for every

i E V. Hence our vector solution has value

1 2 1

K i Zi E(n log n)

Finally we note that rather than have only one coordinate in Group 1, we can

have (a/b)2 = n log n - 2n + 2 coordinates, and give the x and y vectors values b in

these coordinates. Then all x and y vectors become vertices of a 2n log n-dimensional

hypercube (of side length b). We see that even in this special case, the integrality gap

remains Q(VIo-g).

9.7 Balanced Vertex Separators and Applications

9.7.1 More General Weights

An important generalization of the min-ratio vertex cut introduced in Section 9.3 is

when a pair of weight functions rl, r2 : V - IR+ is given and one wants to find the

vertex separator (A, B, S) which minimizes

rw1 2 (A, B, S) _
T2 (A U S) . 7 2 (B U S)'

We can also give an O(/-oi ) approximation in this case, where again k = Isupp(ir2).
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Let

&,rl,wn2(A, B, S) = ri(S)/[7r2(A) 7r2(B U S)],

where r2(A) > 7r2(B). Also define c°,, 2(G) and &, 2(G) as before. Note that by

changing the vector program to minimize K Eie 7rl(i)(1 - x? - y2), it becomes a

relaxation for , 2 (G). Similarly, the rounding analysis goes through unchanged to

yield a separator (A, B, S) with

Cr1,,,2 (A, B, S) < O( l/ogk) &o 1,, 2(G).

The only difficulty is that if (A*, B*, S*) is the optimal separator, the relation

between the two notions, ,,,,, 2(A*, B*, S*) and ,r,, 2(A*, B*, S*), is no longer as

clear. If they are not within a factor of 2, then it must hold that r2(A* U S*) >

27r2 (A*), i.e. r 2 (S*) > 7r2(A*). (Where we assume that 7r2 (A*) > 7r2 (B*).)

In this case,

r2(S*)2 < 4 (G).

Hence it suffices to find an approximation for a different problem, that of finding a

subset S C V which minimizes the ratio rl(S)/ir 2(S)2. This problem can be solved

in polynomial time (see e.g. [90]).

Theorem 9.14. Given a graph G = (V, E) and vertex weights 7r, r2 V -, R+, there

exists a polynomial-time algorithm which computes a vertex separator (A, B, S) for

which

a l 72(A, B, S) • ( log k) a-,,- 2(G),

where k = Isupp(r 2)l.

We also note that Theorem 9.14 with general weights rt, i 2 is useful for certain

hypergraph partitioning problems [129].
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9.7.2 Reduction from Min-Ratio Cuts to Balanced Separa-

tors

In this section, we sketch a pseudo-approximation for finding balanced vertex sepa-

rators in a graph G = (V, E). Let W C V be an arbitrary subset of V. For E (0, 1),

we say that a subset X C V is a 6-vertex-separator (with respect to W) if every con-

nected component C of G[V \ X] has IC n W I < IWl. Our goal in this section is to

show that we can find a 3-vertex-separator X C V whose size is within an O(O) factor

of the optimal -vertex-separator of G, whenever we can find approximate min-ratio

cuts in G within factor /3. This technique is standard (see [129]).

The algorithm. Let m = IWI, and for any subset U C V, define UIw = IU n WI.

Let 7rl(v) = 1 for every v E V, and 7r2(v) = 1 if v E W and 7r2(v) = 0 otherwise.

These are the weights for the numerator and denominator, respectively, i.e. we assume

that we have a P-approximation for a,, 7 2(-). We maintain a vertex separator S C V.

Initially, S = 0. As long as there exists some connected component U C V in G[V\S]

with UIw > 2W[, we use our/3-approximation to find a minimum-ratio vertex cut

S' in G[U] which is within : of optimal. We then set S - S U S' and continue.

The analysis. Let S be the final vertex separator. By construction, it is a -vertex

separator since every connected component U of G[V \ S] has IUIw < IW. Let

T C V be an optimal -vertex separator.

Claim 9.15. ISI < O(/)ITI.

Proof. We know that T separates G into two pieces, call them AT, BT C V such that

IAT U TIw, IBT U TIw > 1lWI. Suppose we are at a step where IU w > 2 Wl. Let

(A', B', S') be the vertex separator in G[U] that we find by running our min-quotient

cut algorithm with ratio 3, and suppose that IA'Iw > IB'Iw. We know that

IS'l <TI 12TI

IA' Sw B' S- I(AT U T) n Ulw. (BT U T) n UIw - m2
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where the final inequality follows because IUlw > 2. It follows that

120IT(IB'lw + IS'Il)

To see that ISI < O(3)ITI, it suffices to see that when we sum IB'I, + IS'I, over all

iterations, the value is at most O(m). But since we throw away the vertices of B' US'

in every iteration (and recurse only on A'), the sum is clearly at most m.

[O

9.7.3 Approximating Treewidth

The notion of treewidth has numerous practical applications (see e.g. [33]) and thus a

large amount of effort has been put into determining treewidth, which is NP-complete

even when the input graph is severely restricted (see the discussion in Section 2.4 for

a brief history).

From the approximation viewpoint, Bodlaender et al. [34] gave an O(log n) approx-

imation algorithm for treewidth on general graphs. Amir [11] improved the approxi-

mation factor to O(log opt) where opt is the actual treewidth of the graph. Constant-

factor approximations for treewidth were obtained on AT-free graphs [42, 41] and

on planar graphs [155]. The approximation for planar graphs is a consequence of

the polynomial-time algorithm given by [155] for computing the parameter branch-

width, whose value approximates treewidth within a factor of 1.5. Recently, [12]

obtained a new approximation algorithm for treewidth in planar graphs with a con-

stant factor slightly worse than 1.5, and the authors of [72] (see also Chapter 2)

derived a polynomial-time algorithm for approximating treewidth within a factor of

1.5 for single-crossing-minor-free graphs, generalizations of planar graphs. A well-

known open problem is whether treewidth can be approximated within a constant

factor. We show that this is indeed the case for every family of graphs that excludes

H as a minor, for an arbitrary fixed graph H. For general graphs we improve the

approximation factor to 0(logopit) where opt is the actual treewidth of the graph.

These improvements have several implications, including better approximation
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algorithms for several other problems like pathwidth, minimum front size, and mini-

mum height elimination tree. They also improve the running time of approximation

schemes and fixed-parameter algorithms for several NP-complete problems on graphs

of bounded genus, or more generally, graphs excluding a fixed graph as a minor.

Now we are ready to state our approximation result for treewidth.

Theorem 9.16. There exists a polynomial time algorithm that find a tree decom-

position of width at most O(V/logtw(G) tw(G)) for a general graph G and at most

O(IV(H)12 tw(G)) for an H-minor-free graph G.

Proof. The proof is a straightforward modification of the proof of Amir [11]. One

recursively uses a balanced vertex-cut algorithm and then proves the aforementioned

width bound by induction. In [11] one uses a polynomial-time algorithm that, given

a graph G = (V, E) and a set W C V, finds a 3-vertex separator S C V of W in G

of size O(log WI k), where k is the minimum size of a 1-vertex separator of W in G.

Now using Theorems 9.14 and 9.13 and the results of Subsection 9.7.2, we can replace

O(log WI k) with O(v/log WI k) for general graphs and O(r2k) for Kr-minor-free

graphs, and thus we obtain the desired result. [1

By using the result of [34] instead of [11] in the proof of Theorem 9.16, we can

obtain a tree decomposition of "logarithmic depth" (in terms of IV(G) ) with width

at most O(V/ 1gn tw(G)) for a general graph G and at most O(IV(H) 2 tw(G)) for

an H-minor-free graph G.

Improving the approximation factor of treewidth improves the approximation fac-

tor for several other problems as follows.

Corollary 9.17. There exist O(Vlogopt) (resp., O(IV(H)1 2 )) approximation algo-

rithms for branchwidth, minimum front size and minimum size of a clique in a

chordal supergraph of a general (resp., H-minor-free) graph G. Additionally, there

are O(/logoptlogn) (resp., O(IV(H)12 logn)) approximation algorithms for path-

width, minimum height elimination order tree, and search number in a general (resp.,

H-minor-free) graph G.
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The reader is referred to Bodlaender et al. [34] and Leighton and Rao [129] to see

the corresponding exact definitions, references, and the proofs of Corollary 9.17 (the

proofs follow almost identical to those of Theorems 17 and 18 of [34] and the fact that

treewidth and branchwidth are within a factor 1.5 of each other (see Theorem 2.15).

Improving the approximation factor for treewidth has a direct improvement on

the running time of approximation schemes and subexponential fixed-parameter algo-

rithms for several NP-hard problems on graphs families which exclude a fixed minor.

In such algorithms finding the tree decomposition of almost minimum width, on which

we can run dynamic programming, plays a very important role. More precisely, as

mentioned in Chapter 8, Demaine and Hajiaghayi [70, 71] show how one can obtain

PTASs for almost all bidimensional parameters on planar graphs, single-crossing-

minor-free graphs and bounded-genus graphs. In fact, their approach can be extended

to work on apex-minor-free graphs for contraction-bidimensional parameters and on

H-minor-free graphs, where H is a fixed graph, for minor-bidimensional parameters.

However currently they obtained quasi-polynomial-time approximation schemes for

these general settings. The only barrier to obtain PTASs for these general settings is

obtaining a constant-factor polynomial-time approximation algorithm for treewidth

of an H-minor-free graph for a fixed H (this is posed as an open problem in [70]).

Using Theorem 9.16, we overcome this barrier and obtain PTASs for contraction-

bidimensional parameters in apex-minor-free graphs and for minor-bidimensional pa-

rameters in H-minor-free graphs for a fixed H. As an immediate consequence, we

obtain the following theorem (see [70, 71] for the exact definitions of the problems

mentioned below).

Theorem 9.18. There are PTASs for feedback vertex set, vertex cover, minimum

maximal matching, and a series of vertex-removal problems in H-minor-free graphs

for a fixed H. Also, there are PTASs for dominating set, edge dominating set, r-

dominating set, connected dominating set, connected edge dominating set, connected

r-dominating set, and clique-transversal set in apex-minor-free graphs.

Among the problems mentioned above, PTASs for vertex cover and dominating
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set (but not its other variants) using a different approach were known before (see

e.g. [103]).

197



198



Chapter 10

Open Problems Regarding

Bidimensionality

In this thesis, we introduced the theory of bidimensionality and its applications in

algorithmic graph theory. However, still several combinatorial and algorithmic open

problems remain in the theory of bidimensionality and related concepts. These prob-

lems are usually more general than those mentioned in the end of some previous

chapters.

One interesting direction is to generalize bidimensionality to handle general graphs,

not just H-minor-free graph classes. As mentioned in Section 1.5, the natural gener-

alization of minor-bidimensionality still yields a parameter-treewidth bound, but it is

very large. This direction essentially asks for the size of the largest grid minor guar-

anteed to exist in any graph of treewidth w. Robertson, Seymour, and Thomas [151]

proved that every graph of treewidth larger than 202r5 has an r x r grid as a minor,

but that some graphs of treewidth Q(r2 lg r) have no grid larger than O(r) x O(r),

conjecturing that the right requirement on treewidth for an r x r grid is closer to

the (r2 lgr) lower bound. If this conjecture is correct, we would obtain nearly

as good parameter-treewidth bounds for minor-bidimensional parameters as in the

H-minor-free case. A similar generalization of parameter-treewidth bounds beyond

apex-minor-free graphs is not possible for all contraction-bidimensional parameters,

e.g., dominating set [62], but it would still be quite interesting to explore an analogous
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"theory of graph contractions" paralleling the Graph Minor Theory. Such a theory

would be an interesting and powerful tool for handling problems that are closed under

contractions but not minors, and therefore deserves more focus.

Another interesting direction is to obtain the best constant factors in terms of the

fixed excluded minor H. These constants are particularly important in the context

of the exponent in the running time of a fixed-parameter algorithm. At the heart of

all such constant factors is the lead constant in Theorem 1.6. This factor must be

Q(v IV(H)lg I[V(H)I), because otherwise such a bound would contradict the lower

bound for general graphs. An upper bound near this lower bound (in particular,

polynomial in IV(H) ) is not out of the question: the bound on the size of separators

in [9] has a lead factor of IV(H)13 /2. In fact, Alon, Seymour, and Thomas [9] suspect

that the correct factor for separators is (IV(H)I), which holds e.g. in bounded-genus

graphs. We also suspect that the same bound holds for the factor in Theorem 1.6,

which would imply the corresponding bound for separators.

A third interesting direction is to generalize the polynomial-time approximation

schemes that come out of bidimensionality to more general algorithmic problems that

do not correspond directly to bidimensional parameters. One general family of such

problems arises when adding weights to vertices and/or edges, and the goal is e.g. to

find the minimum-weight dominating set. It is difficult to define bidimensionality of

the corresponding weighted parameter because its value is no longer well-defined on

an r x r grid: the parameter value now depends on the weights of vertices in such

a grid. Another family of such problems arises when placing constraints (e.g., on

coverage or domination) only on subsets of vertices and/or edges. Examples of such

problems include Steiner tree [17] and subset feedback vertex set [89]. Again it is

difficult to define bidimensionality in such cases because the value of the parameter

on a grid depends on which vertices and/or edges of the grid are in the subset.
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