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Abstract
We introduce MintEra, an automatic testcase generator and verifier. Using an simple,
easy-to-read yet expressive language called AAL, users can specify representation-
invariants and assertions within programs. MintEra uses the representation-invariant
to generate testcases and translates assertions into Java run-time checks, which verify
testcases. The tool then graphically visualize failed testcases to help users debug
their code. MintEra encourages documentation of programs by using specification
to test and verify code. Effectively, the tool checks code and specification against
each other. Thus, MintEra helps users ensure correctness of their programs as well
as their specification. In this thesis, we provide a number of extra features that we
hope would develop MintEra into an effective tool that could be used by the general
software engineering community.
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Chapter 1

Introduction

Testing and debugging are important stages of the software engineering cycle. They

are the means by which a programmer ensures the correctness of a software system.

However, programmers limit or even refrain from testing and debugging since these

techniques are usually intellectually unstimulating, repetitive, and labor-intensive.

Currently, most testing of software systems is done manually. Besides the problem

of being labor-intensive, manual test-generation is usually not comprehensive. Testers

can omit crucial test cases, and thus miss the opportunity to uncover (often serious)

bugs in software.

Another problem that software testing faces is design and software revisions. Test

cases are usually tailored to the software specification. Thus, when these specifications

change due to the natural process of software development, test cases become obsolete

and unuseable. These test cases have to be reviewed and corrected as the software

itself changes, adding more burden on manual test case generation.

Automated test-case generation solves a lot of these problems. It relieves the

programmer from the burden of coming up with test cases, thus making testing much

less labor-intensive and more appealing. If done correctly, automated testing can also

be comprehensive and adaptable to updates in design specification and changes to the

software itself. This thesis presents one such automated test case generator, called

MintEra.
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New
Java Source

Figure 1-1: Architecture of MintEra

1.1 MintEra

MintEra is a tool for automated test-case generation that aims to be adaptable, easy

to use, and comprehensive. The tool uses the Alloy Annotation Language [4] and

the Alloy Analyzer [3,14] as its backbone. MintEra combines two separate tools to

achieve better and easier testing: Minshar and TestEra (hence the combined name:

MintEra)1 . The next few subsections describe these tools at an elementary level.

Please refer to figure 1-1 for the architecture of MintEra.

1.1.1 Alloy Annotation Language(AAL)

MintEra utilizes the Alloy Annotation Language and the Alloy Analyzer to write

specifications as well as generate test cases. AAL is an annotation language that

is designed for Java programs and is based on the Alloy [2, 14] modeling language.

AAL annotations are embedded in Java code and look like comments to the complier.

These assertion, however, can be utilized by MintEra to describe properties of the

software. AAL only uses a subset of the Alloy language to describe these properties.

1 The first tool developed under the automated testing project was TestEra, and it was supposed
to indicate a new "Test Era". The same term meant "saw" in Serbian, which was the native language
of one of the founders of the project. The automated testing project was then named the MulSaw [16]
project and every tool that was developed later on was named saw in the language of the developer.
Minshar means saw in Arabic.
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Alloy is a modeling language that is used to specify complex structural properties

of software. Alloy formulas are expressed using first order logic (including quantifiers

such as V and 3) and relations, making Alloy a powerful and accessible language. The

user can define signatures (which are sets2 ) and relations to describe a model. Users

can also constrain a model by including "facts", which are formulas that are always

true.

Models written in Alloy can be verified using the Alloy Analyzer(AA). AA trans-

lates the Alloy specification into a SAT formula, and uses off-the-shelf SAT solvers

to find counter examples to assertions within the model. The Analyzer can also be

used to come up with examples of the model being analyzed.

1.1.2 TestEra

TestEra [5, 6] is a test-case generator and verifier that is also based on the Alloy

Analyzer. TestEra in its original form uses method pre and post conditions that are

written as Alloy specifications to generate and verify testcases.

From the Java .class file, TestEra builds an Alloy model of the Java class being

analyzed (as well as any supporting classes.) The Alloy-model generator maps classes

and field in Java into signatures and relations in Alloy. TestEra also builds the input

model for the Java class based on the pre-condition of the method being tested. The

tool finally builds an output-module of the Java class that is based on the method's

post condition.

This version of TestEra does testing by utilizing the Alloy Analyzer and the in-

put/output modules. The input module, as well as the Alloy model of the classes,

are used to generate "'examples" in Alloy that fit the method's pre-condition. These

abstract test-cases are then translated into concrete Java test-cases using the Alloy-

to-Java (a2j) translator. The method is then tested on the concrete Java test-cases,

and the state of the program after running the method is translated into Alloy using

the Java-to-Alloy (j2a) translator. The output module is then invoked on the result

2Alloy does not have any distinction between sets and one-tuple relations. Signatures are more
accurately considered to be a one-tuple relation.
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of the translation to verify that the testcase fits the post-condition of the method.

While MintEra uses the test-case generation aspect of TestEra, it does not use the

verification aspect of the tool. MintEra alternatively utilizes an assertion-based veri-

fication that is rooted in the Java method itself. The advantages and disadvantages

of using both of these methods are explained in chapter4.

1.1.3 Minshar

The second element of MintEra is an assertion-translator tool named Minshar [17].

Minshar translates Alloy assertions that are embedded in methods into Java code.

These assertions are simply Alloy boolean formulas that evaluate to true or false.

Minshar thus translates these assertions into Java code that will eventually test a

condition and throws a MinsharAssertionFailedException if the formula evaluates

to false.

Minshar utilizes the Alloy Analyzer to translate assertions. It uses the Alloy An-

alyzer's parser to translate the assertion specifications into an Alloy Abstract Syntax

Tree (AST). Minshar then traverses this AST and translates it into Java. When faced

with a certain grammar production, Minshar translates that production's subexpres-

sions, groups these translations together, and adds production-specific code to gen-

erate the production's translation.

Note that MintEra doesn't require the user to write assertions in Alloy. The

user can simply write these assertions in Java. The only requirement is that these

assertions should throw an exception when they fail so that the tool can recognize a

failed test case from a passing one.

1.2 MintEra Example

To illustrate the main concepts of MintEra, we show an example that we visit through-

out this thesis. Consider the Linked List implementation below, annotated with AAL

specification:

18



public class List {
/*~
repok: some m: this.header.*nextl no n.next

*/

public class Node {
public Node next = null;
public Object element = null;

}
public Node header;

public boolean remove(Object e){
Node n,p = header;
/*Q
assert: some this.header

*/
for (n = header.next; n!=null; n-n.next) {
if(n.element.equals(e)) {
p.next = n.next;
return true;

}
p = n;

}
return false;

The representation-invariant, written as an annotation with repok preceding it,

is that the linked list is acyclic. Upon running MintEra, it generates testcases that

fit the representation-invariant. Also, the tool translates the assertion within the

method remove into a Java run-time check. The assertion specifies that the header

field is not null.

MintEra runs the method on the testcases generated earlier and detects any test-

cases that fail (i.e. ones that throw a run-time exception). In this example, we get

a number of testcases that do not pass the assertion within the remove method. By

looking closely at the implementation, we see that header was not initialized at any

point in time. This common error is detected by MintEra by only providing the

representation-invariant and assertions within code.

1.3 Thesis Outline

This thesis aims to describe MintEra: how it works, what tools it depends on, and

how these tools are combined. The next chapter describes the Minshar tool, and

how it translates Alloy assertions to Java run-time checks. Chapter 3 describes the

19



TestEra tool and how it generates test cases from representation invariants. Chapter

4 talks about combining Minshar and TestEra, and how MintEra is different from

the original TestEra that was developed earlier. Finally, Chapter 5 looks at the

experiences of novice Java programmers using MintEra to come up with test cases.

This chapter also discusses future work and conclusions.

20



Chapter 2

Minshar

Assertions in a program module describe a property of the module in terms of pro-

gram entities, such as local or instance variables. Assertions specify what the module

should do rather than how it should be done. They are often expressed in code as

annotations that are viewed by the compiler as comments. Since these annotations

provide a more precise description of what the program should do, they are used to

improve program documentation and as a design aid. Assertions are also useful as

debugging and partial correctness checking mechanisms by translating these annota-

tions into run-time checks. Programmers use annotations as a safety mechanism to

ensure correctness of reused code; programmers can defend their code from being used

incorrectly by other programmers (e.g., by checking preconditions of a methods). For

more information about assertions and their history, please check the introduction of

Rosenblum [8].

The Alloy Annotation Language (AAL) is one such language that is designed

to be used with Java programs. Our tool, MintEra, uses AAL assertions that are

embedded in Java code to express specifications. However, these assertions need to

be translated to Java in order to check a certain property of the software.

The Minshar tool (which is part of MintEra) translates AAL assertions into Java

run-time checks. In this chapter, we explain the Minshar tool in detail. First, we dis-

cuss the key ideas of Minshar, then we explore how Minshar translates AAL assertions

into run-time checks.
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2.1 Key Ideas of Minshar

Using assertions within code to specify constraints is not a new concept. However,

Minshar provides a number of key ideas that are -for the most part- unique. In this

section we describe some of these key features.

2.1.1 Logical vs. Code Constraints

Assertion languages currently are either expressed logically or in code. Logical asser-

tions are succinct, simple and easy to write. Examples of logical assertions are formal

constraints (written in languages like Z or VDM) and English constraints. Formal

languages are high-level, making them easier to read and write. The problem with

most logical assertions is that they cannot be checked at runtime (e.g because of

quantifiers). They are mainly used for documentation and not for run-time checking.

On the other hand, assertions written in code are executable but are not easy

to write. Code assertions are simple conditionals written in imperative languages

(such as Java). Since code assertions require a long section of low-level instructions

to specify complex constraints, they generally tend to be harder to read. Thus, code

assertions cannot be used for documentation.

There is a need for a more declarative yet verifiable assertion language. In such

a language, assertions can be written and understood easily, yet they can translated

into code and checked at runtime. Minshar provides such a declarative and verifiable

language (AAL) that is designed to be used with Java programs. AAL limits the

annotation language essentially to navigations, and quantifiers over navigations -

which is similar to the first version of Alloy (Alloy 1). This limitation allows users to

write concise annotations that can be translated into code. Thus, AAL has the best

of both logical and code worlds: documentation and verification.

2.1.2 Incentive for Documentation

One important feature that Minshar facilitates is documentation. As explained ear-

lier, AAL is a concise, easy and expressive language, making it ideal for documen-
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tation. Programmers can write AAL annotations to comment on what their code

should be doing (i.e. assertions).

The problem is that programmers usually do not have an incentive to document

their code, even with a powerful language such as AAL. Minshar motivates pro-

grammers to document their code by translating their assertions to run-time checks.

F'rom a user's point of view, documentation using AAL assertions helps them debug

their code (and even test it). Thus, Minshar encourages better software engineering

practices.

2.1.3 Translation into Code

AAL provides an annotation language that can be translated into Code. Minshar

implements this translation algorithm by picking up assertions, which are embedded

within Java, and parsing the Alloy formula. The tool then translates a certain ex-

pression by first translating each of its subexpressions into Java and then combining

the resulting code into one coherent fragment.

After Minshar translates the whole expression, the resulting Java code is inserted

immediately after the assertion. User can determine where their checks are executed

by simply inserting an AAL assertion at that point.

Notice that assertions could be "turned on" or "turned off" by simply translating

the assertions or removing the translation (which is done automatically). The code is

not cluttered with run-time checks that are written in code, yet the user has the ability

to verify these assertions. Since annotations are simply comments, there is a clear

distinction between verification and the program itself. That is, the user does not have

Java run-time checks that do not advance the state of the program. We believe that

this distinction is very helpful for the user, from a software engineering prospective,

in understanding the clear division between implementation and verification.
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2.1.4 Set-based Assertions

Since Alloy is a relational language, its formulas manipulate relations (called expres-

sions) to evaluate a condition. Relational logic is one of the main reasons Alloy

formulas are expressive. Manipulating relations through navigations and quantifiers

over navigations allows users to construct complex relations, and check certain prop-

erties on them.

Since AAL caters to Java, it reduces Alloy's relational logic to a set-based one.

Even though relational logic could be used to express constraints, set logic is sufficient

to express these constraints when dealing with Java. We have thus opted to use set-

based assertions in Minshar. Java objects can be seen as singletons (one-element sets)

and using navigation (including reflexive and transitive closures) users can construct

more sets, which they can then use to build constraints.

Minshar translates Alloy expressions so that they are computed explicitly at run-

time. In the translation algorithm, Minshar uses Java Sets to represent Alloy ex-

pressions. Sets are constructed to wrap starting objects, and through navigation

these sets are used to construct more sets. The translation mirrors AAL's set-based

assertions, making the translation simple.

Notice that evaluating sets could be done in a lazy fashion. That is, the explicit

evaluation of sets could be bundled together. Through this optimization, evaluating

costly Alloy expressions could be done much faster. For more information about this

optimization, check 5.2.1.

2.1.5 Exploiting Reflection

Minshar uses a library of methods to implement complex features such as reflexive

closure. Reflexive closures navigates through a field (or a number of fields) to include

every element reachable from the first element, and so they could run into loops

and/or null pointers. Implementing reflexive closures require keeping a visited list as

well as keeping track of null pointers. Since this code repeats often, it should be in

its own method.
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The problem is that navigation is dependent on the fields of the object itself.

Thus, it is impossible to implement a standard library depending on Java's inherent

dereferencing. To solve that problem, we have utilized the Java Reflection package.

The reflexive closure method takes in a String array of fields as well as the object to

navigate. The method uses the Reflection package, which accepts the field names as

Strings, to navigate the object and returns the resulting set. Similarly, other complex

operations are implemented as standard libraries by a similar exploiting of Reflection.

2.1.6 Granular Verification

One important feature that Minshar provides is granular verification. Since assertions

can be inserted at any point in code, users can track down location of bugs in their

programs by adding more AAL constraints. When an error occurs, assertions around

the error location will detect that error (if these assertions are written correctly).

This helps users reduce the amount of time they spend on debugging by depending

on Minshar's verification mechanism.

There are other advantages of adding AAL assertions within code. Adding asser-

tions further documents code and makes understanding it easier. On the other hand,

adding extra, code assertions clutters the code and forces the user to either comment

them out or remove them altogether, which wastes the time and effort spent to come

up with these assertions. AAL assertions are simply comments, and thus they can

stay within the code. Thus, programmers can use them at any point in time for

verification.

2.2 Example of an AAL Assertion

In this section, we provide an example of AAL assertions and how they differ from

assertions written in Java. Figure 2-1 contains an implementation of a linked list as

a Java class. The method remove within that class contains the AAL assertion:

all n: this.header.*nextl n !in n.^next
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Figure 2-1: A Linked List Implementation with an Assertion in the remove Method

We have inserted this assertion to ensure that the list is acyclic1 . We need this

check to avoid running into an infinite loop when searching for the element to delete.

The Alloy statement constructs a set of all nodes reachable from the header

(this.header. *next). For every element n in this set, we want to check that n is

not reachable from itself following the next field one or more times n !in n. next.

Now consider implementing the same constraint in Java. Here is a segment of Java

code that implements it:

Node n;
boolean result = true;
HashSet visited = new HashSet();
for(n=header; n!=null; n=n.next) {
if (visited. contains(n)) {
result = false;
break;

}
visited.add(n);

}
if(!result)

throw new Exception();

1 We could used the simpler constraint some n: this.header. nextl no n. next to express acyclicity.
However, we opted to use a more general acyclicity constraint to show the translation algorithm in
more detail.

26

public class List{
Node header = new Node();

public static class Node {
Node next;
Object element;

}

public boolean remove(Object e)(
/*

assert: all n: this.header.*nextln !in n.Anext
*/
Node n, p = header;
for(n = header.next; n!=null; n = n.next)(

if(n.element.equals(e))(
p.next = n.next;
return true;

p = n;

return false;

}



Figure 2-2: Minshar Grammar

The above example enforces our earlier claims about code assertions versus AAL

assertions. Expressing properties in AAL is simpler and easier to read than imple-

menting them in Java. Moreover, we still retain the ability to check these assertions

by translating them through Minshar.

2.3 AAL grammar

As we explained earlier, Alloy depends heavily on relational logic but Java only re-

quires a set-based one. For that reason (and for reasons related to the Java language

itself 2), AAL reduces Alloy's relational logic and operations into set logic and op-

erations. Removing support for relations requires rewriting the Alloy grammar to

conform to AAL. The reduced grammar does not support unused operators or oper-

ators that are hard to implement. Figure 2-2 provides the complete AAL grammar.

2 Supporting any of Alloy's relational operators require access to the Java garbage collector in
order to build the relations. For example, in our linked list implementation, the relation element
has type (Node, Object), which relates a node to its element. We cannot build this relation since
we need the Java garbage collector to retrieve all the (Node, Object) pairs.
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formulabody = formulaseq I formula
formulaseq = {formula... }
formulaseq = expr compop expr intexpr intcompop intexpr

(formula) neg formula I formula logicop formula
formula thenop formula [elseop formula] I formulaseq
quantifier decl,... formulabody I quantifier expr I let letdecl,...formulabody

intexpr = number I #expr I (intexpr) I let letdecl,...l intexpr
I if formula then intexpr else intexpr I intexpr intop intexpr

expr = var I expr [expr] (expr) I none [expr] I {decl [formulabody]}
if formula then expr else expr let letdecl,...l expr
expr + expr I expr - exprI expr & expr I expr.varplus I expr.unop varplus

varplus = var I (var+..)
decl = [qualifier] var,... : expr
letdecl = var=expr
intop = +|-
thenop = => I implies
elseop =, I else
neg = not !
logicop = && I iff I <=>I and or
quantifier = all I no I some I sole one I two
unop = * A

compop = [neg] (: I = in)
intcompop = [neg] (= I =< I >= I > I <)
qualifier = part I disj I exh
var = id



Expressions in AAL denote sets, which can be viewed as relations with one column.

These sets are obtained starting from variables viewed in the current scope of the

program. Through navigation and set operations, new sets are created from the

original sets. Navigation (.) accesses a field in each element of a set of objects.

Reflexive closure (*) continuously navigates a field in an object, until that field is

null, or all objects have been navigated. For example, this.header. *next represents

the set header, header.next, header. next. next,...}. On the other hand, transitive

closure (^) is the same as reflexive closure but without including the object itself. For

example, this. header. ^next represents the set { header. next, header.next.next,...).

2.4 Description of Algorithm

This section describes the algorithm that translates AAL annotation to Java run-

time checks. The algorithm assumes that the input, which is an AAL annotation, is

parsed into an abstract syntax tree. It translates each grammar production into a

pair of strings. The first element of the pair is the name of a variable that holds the

result of the expression, while the second element is the actual Java translation. The

algorithm calls itself recursively on the production's subcomponents. For example,

when translating

formulaseq = exprl compop expr2

the algorithm calls itself for translating exprl. The result of the call is a pair <v,

c> where variable v holds the result of translating expr and c is the actual Java code

for evaluating the expression. The algorithm uses v to evaluate decl, and appends its

own Java code to c.

The reduced Alloy grammar is divided into three main types: formula, intexpr,

and expr. Thus each expression evaluates to a variable of one of these types; formulas

evaluate to boolean variables, intexprs evaluate to integer variables, and expressions

evaluate to set variables.
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As an example of the translation algorithm, consider the production intexpr intop

intexpr. In this production, intop is either an addition or a subtraction. The expres-

sion adds (or subtracts) one intexpr to (from) the other. Here is a portion of the

algorithm that translates this production:

Ti(intexprl intop intexpr2) {
v = freshvariable("int")
<vl,cl> = Ti(intexprl)
<v2,c2> = Ti(intexpr2)
return <v, "cl c2 v=vl intop v2;">

}

Tx represents a translation of a certain type of an expression, which is abbre-

viated by x (i for intexpr, e for expr, d for decl, and f for formula). The function

freshvariable( returns a string representing a unique variable name, and saves the

variable type in order to insert the variable declaration at the top of the translation.

<vl,cl> represent the pair returned by the recursive call to the algorithm, where

vw is the variable returned, and cl is the code associated with this subexpression

translation. The function returns a similar pair.

AAL has support for declaring variables (such as n: this.header. *next). One use

of declared variables is to simplify expression-writing (e.g. using lets). For example,

the expression let elts: header. *next. element <expr> defines elts to be the relation

header. *next. element. The variable elts can be used within the expr following this dec-

laration. Declared variables can also be used within quantifiers and set-comprehension

operations. For example, the formula some n: header. *nextj <formula> declares n

to represent all elements within the set header. *next.

Keeping track of declared variables requires introducing a Variable Symbol Table

(VST) that maps formula variables to Java variables that represent them. This VST

is needed in order to replace any future occurrence of the formula variable (n in the

above example) with the actual Java variable.

Note also that a hierarchy of VST's is needed in case there are nested declarations.

Each VST has a parent VST that is its parent scope. To look up a variable, the search

begins at VST that associated with the current scope. If the variable is not found in

that VST, then the search moves to the parent VST and so on. If the lookup fails, it
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Figure 2-3: AST for the Expression all n:this.header. *next n in n. next

is assumed that the variable in consideration is a Java one, and

not changed.

For the complete algorithm, refer to Appendix A.

the variable name is

2.5 Illustration of Algorithm

To demonstrate how the algorithm works, we show how it translates the linked-list

acyclicity assertion explained earlier. Recall that the assertion was written as:

all n: this.header.*nextl n !in n. next

The Abstract Syntax Tree (AST) representation of the above assertion can be

seen in figure 2-3.

The Algorithm translates the formula from leaves to parents. We will first trans-

late the expression this.header. *next. The algorithm will produce the following code:

v_3=Util. singleton(this);
v_2=new HashSet();
v_2.addAll(Util.dereference(v_3,"header" ) );
v_1=Util.traverseStar(v_2, new String[] "next"));

The function traverseStar makes a breadth first search starting from the header

node, obtaining all elements that follow from it by applying the next relation. Next,
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we translate the whole decl expression n: this. header. *next. This expression translates

to the following code segment, which is appended to the code above:

v_6=v_.iterator();
1_4: while(v_6.hasNext()) {

v_5=Util.singleton(v_6.next());

Notice that the close parenthesis for the while has not been inserted, because we

will be include the translated formula (n in n. ^next) inside the while loop. This while

loop iterates through the elements of he set this.header. *next, testing the formula on

each element.

Next, we translate the expression n. next that occurs at the end of the expression:

v_8=Util.traverseCaret(v_5, new String[] {"next"});

The method traverseCaret includes a breadth first search to obtain all elements

accessible from the header node, following the field next one or more times. The code

for traverse Caret, as well as traverseStar can be found in Appendix A. Finally, the

algorithm translates the formula n in n. ^next to the following Java code:

v_7=!v_8.containsAll(v_5);

To finish the translation of the whole formula (all n: header. *nextl n !in n. ^next),

we combine all the code fragments together, producing the overall run-time check

(notice the declarations at the top):

Iterator v_6;
Set v_l,v_2,v_3,v_5,v_8;
boolean v_O,v_7;
v_O=true;
v_3=Util. singleton(this);
v_2=new HashSet();
v_2.addAll(Util.dereference(v_3, "header"));
v_i=Util.traverseStar(v_2, new String[] {"next"});
v_6=v_.iterator();
1_4: while(v_6.hasNext() {

v_5=Util.singleton(v_6.next());
v_8=Util.traverseCaret(v_5, new String[] {"next"});
v_7=!v_8.containsAll(v_5);
if(!v_7){
v_0=false;
break 1_4;

}

i:f(!v_O)

-throw new MinsharFailedConstraintException();
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As the tool currently stands, the performance of the translated code is relatively

slow. From the translation above, notice how the translated code builds the expres-

sions one at a time. For example, the code inserts the variable this in a singleton,

then navigates this set with the field header to result in another set. Such simple

one-at-a-time evaluation of expressions is slow. As we explain in section 5.2.1, we

plan to optimize set-construction so it is evaluated in a lazy fashion. However, we

doubt that the running time of translated code will be comparable to code assertions

since AAL still requires sets to be built explicitly.

2.6 Related Work

We have already compared AAL to formal specification languages (such as Z [9] and

VDM [11]). To recap, AAL limits the formal annotation languages to navigation

and quantifiers over navigations, enabling these specifications to be executable. Even

though writing assertions in such formal languages might be more succinct, they are

in general not executable.

We have also compared AAL to code constraints. Code assertions are large in size,

and subsequently would make reading them harder. They clutter the program with

code that is not used to advance the state of the program. Assertions written in AAL

are simpler, more succinct and more intuitive than code assertions. Minshar can also

translate AAL assertions into run-time checks that verifies a condition. Thus, AAL

provides users with the right balance between documentation and executability.

AAL is not the only high-level language that support run-time checks. Other

widely-used annotation languages are the Java Modeling Language (JML) [1], Eiffel

[7] and the Object Constraint Language (OCL) [12]. Here, we compare AAL and

Minshar to Eiffel and JML.

Eiffel is an object oriented language that includes design by contract concepts

(i.e. pre- and post-condition agreements) in the language itself. Eiffel allows users

to express assertions within code. Pre-conditions, post-conditions, and assertions are

checked at the beginning, end, and within methods. Eiffel introduces the concept
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of inheriting assertions where assertions from the parent class are inherited into the

the child class. This powerful concept helps users ensure that methods within child-

classes obey the constraints of the parent methods. While Minshar currently does not

include assertion inheritance, it could adopt some of Eiffel's inheritance techniques.

Unlike Minshar, Eiffel does not support any notion of quantifiers. Using quantifiers

within assertions helps users express complex constraints easily. Moreover, Eiffel lacks

support for implicit traversal of objects (transitive and reflexive closures). Minshar

also depends on relational expressions, which are absent from Eiffel. The lack of such

features makes Eiffel's assertions closer to code constraints than logical ones. However

since Eiffel's assertions are closer to code, they run much faster than ones written in

Minshar.

JML is a modeling language that is designed specifically for Java. It extends

the design by contract and inheritance concepts, introduced by Eiffel, by adding a

number of features. JML uses more expressive logical constructs such as quantifiers

within constraints. It also allows users to compare old and new values of variables.

Specifically, it uses the \old keyword to refer to variables in the pre-state. JML also

provides a powerful cross-referencing mechanism by referring to specification from

other JML-annotated classes. It uses the specification information to simulate the

method's behavior.

While JML is more expressive than Eiffel, it is still not as expressive as AAL. JML

has a limited support for quantifiers, and does not have any notion of implicit traversal

or relational expressions. Moreover, neither JML nor Eiffel supports fully automatic

compile-time analysis of the specifications. For example, checking at compile time

that the precondition of an overriding method is weaker that the precondition of

the overridden method is impossible in JML or Eiffel. Minshar currently does not

implement cross-referencing or variable state-comparison, but as we explain in 5.2,

we intend to implement these features soon. In fact, we propose a more general

concept of state comparison that compares variables in more than two states. Finally,

assertions written in JML run faster than ones written in AAL. One reason is that

JML specification expressions are a subset of the Java language.
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The Object Constraint Language (OCL) is the constraint language of the Unified

Modeling Language (UML). OCL has a lot of the features AAL does. Currently,

OCL tools can check assertions within code but cannot generate instances based on

certain constraints. On the other hand, the Alloy Analyzer can generate instances,

and subsequently testcases. Since automatic testcase generation is one of the goals

of MintEra, we opted to use AAL as our specification language.
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Chapter 3

TestEra

We introduce TestEra, which is one of the tools that MintEra depends on for testcase

generation. TestEra was developed by Sarfraz Khurshid as part of his Ph.D. thesis [6]

at MIT. We have used Sarfraz's tool and modified it to fit MintEra's framework.

TestEra is a testcase generator and verifier that uses the Alloy language and

the Alloy Analyzer. Since MintEra uses a different mechanism for verification than

TestEra, we need to understand how TestEra was originally developed to evaluate

both approaches of testing. In this chapter, we describe the original TestEra tool as

it was developed by Sarfraz.

TestEra's approach to testing is method-based. It generates testcases for a specific

Java method, runs these testcases on that method and verifies that these testcases

fit a certain criteria. TestEra uses the method's specification for testcase generation

and verification; the tool generates testcases that fit the method's precondition, and

verifies the method by checking the output against the post-condition.

The tool goes through several stages in the process of generating and running

testcases. First, TestEra generates full Alloy models given the Java classes and the

pre/post conditions. The tool then runs the input Alloy model to generate testcases.

Since these testcases are in Alloy format, they need to be translated to Java concrete

objects (done by the Alloy-to-Java translator). Now the Java method is run on these

testcases. Afterwards, the concrete Java objects are converted back to Alloy (using

the Java-to-Alloy translator) where they are verified using the output model generated
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Figure 3-1: TestEra Stages

earlier.

We continue to describe each of these stages in more detail. Figure 3-1 shows the

various stages of TestEra.

3.1 Alloy Model Generator

TestEra depends on the Alloy Analyzer (AA) to generate testcases that fit the Java

class being tested. Given a certain Alloy model, AA can construct "examples" that fit

the model and any additional constraints (or "facts"). After running these testcases

on the Java method, TestEra relies on the AA to verify that these testcases satisfy

the post-condition. The problem remains in constructing Alloy models -given the

Java classes- that the AA can use to construct testcases and verify them.

The tool starts by generating Alloy models that represent the Java classes. TestEra

parses the compiled Java files (i.e. .class files) to get information about the classes,

fields, and methods of the Java program. The tool then constructs an Alloy model

for each class. Classes and fields are represented by Alloy signatures and relations

respectively.

The tool proceeds to make two extra models: an input and output model, which
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use the class models that were just generated. The input model contains the pre-

condition of the method, and is used to generate testcases. On the other hand, the

output model is used to ensure that the testcases satisfy the post-condition after the

method has been run on them.

Note that TestEra has two different states of operation: before running the method

for testcase generation (pre-state), and after running the method for verification (post-

state). There is usually a need to compare the pre-state to the post-state. For

example, after a "pop" operation on a stack, the stack size should have decreased

by one. Since Alloy does not handle state inherently, the models have to include a

State variable that would distinguish the pre-state from the post-state, so that the

user could compare the two.

The user could access the variable in the pre-state by adding a (') at the end of

the variable name. The tool would then add the appropriate suffix to the relation

to indicate that it is evaluated in the pre-state. For example, header' accesses the

header variable in the pre-state. On the other hand, if the user types header without

the (') symbol, the tool would evaluate the relation in the post-state.

3.1.1 Example of Model Generation

We will continue discussion of Alloy model generation through an example. We look

at a linked list implementation with the following Java code:

package util;
public class List {
public class Node {
public Node next = null;
public Object element = null;

}
public Node header = new Node();

public boolean remove(Object e){
Node n,p = header;
for (n = header.next; n!=null; n=n.next) {

if(n.element.equals(e)) {

p.next = n.next;
return true;

}
p = n;

}
return false;
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Figure 3-2: Specification for the method remove in Class List

To run TestEra, the user provides the representation invariant, the pre-condition,

and the post-condition to the tool. For the linked list example above, assume that

the user supplies the specification described in figure 3-2. Here, the representation-

invariant is that the list is acyclic, the pre-condition is that the size of the list is at

lease one, and the post-condition is that the removed element (in this case e) is no

longer in the list.

TestEra uses the . class files generated by the implementation above to construct

two Alloy models: one for the class List, and one for the class List.Node. We describe

the exact Alloy models that are generated in section 3.4. Here, we describe the

signatures and relations that are found in the generated models.

First, TestEra generates the Alloy model associated with the class List.Node. The

only signature within that Alloy model is ListNode, which represents the List.Node

class. Basically, the members of the signature ListNode represent Java Objects that

have the type List.Node. The Node model also defines two relations: next and element

representing the next and element fields respectively. Notice that next is a relation

from ListNode to ListNode, mapping a certain Node to its successor. Similarly, the

element relation is a map from ListNode to Object.

TestEra also generates a model for the List class. Within that model, a signature

called List is defined, which represents the List Java class. There is also a relation

called header (representing the header field), which is a map from List to ListNode.

The input model defines a function called inputConstraint which includes the

pre-condition of the method, as well as the representation invariant. The output

model, on the other hand, defines a function called methodOK which has both the

representation invariant and the method's post-condition. Both models also contain
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some n: this.header.*nextlno n.next

Pre-condition:
#this.header.*next>1

Post-condition:
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Figure 3-3: Alloy Instance

a static signature (i.e. one-element set) called Input. These models also define the

arguments and the return value as relations from Input to the type of these variables.

Finally, the input and output models contain a relation called this_ that is analogous

to the this variable in Java.

3.2 Alloy to Java Translator (a2j)

After generating Alloy models from Java classes and pre/post conditions of the

method being tested, TestEra runs the Alloy Analyzer on these models to automat-

ically generate examples. The input model asks the analyzer to run the inputCon-

straint function. The Analyzer thus constructs examples that fit the input constraint

(including the representation invariant).

The examples that the AA constructs are Alloy instances. These instances are

examples that fit the Alloy model and any other constraints imposed by that model.

Consider our linked list example in section C. An Alloy instance of the input model
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Alloy Signature Java Class
List List

ListNode List.Node
Object java.lang.Object

Table 3.1: Alloy Signature to Java Class Map

is a linked list that fits the model's constraints. For example, Alloy could gener-

ate an instance similar to that of figure 3-3. In this instance, the List signature

would contain one list ListO}, and the ListNode signature would contain 3 objects

{ListNode List_Nodel1 LisistNode_2}, and the Object signature contains 3 ob-

jects: ObjectO0, Objectl, Object_2). Now the relations have to be also filled, so the

next relation would contain the tuples: (ListNodel, ListNodeO), and (ListNodeO,

ListNode_2). The header relation contains one tuple: (ListO, ListNodel), and fi-

nally the element relation would only contain the tuple: (ListNode 2, Object_2)

1

While these Alloy instances are the testcases that we are looking for, they are in

abstract form. The tool needs to convert these examples into Java objects, and fill in

the appropriate fields of these objects depending on the values of the relations. The

Alloy-to-Java (a2j) stage of the tool takes care of this translation.

When TestEra generates the Alloy models, it keeps a table that maps Alloy sig-

natures and relations to Java classes and fields. The tool uses this information for

converting the abstract Alloy instances into concrete Java objects. For example,

given the linked list implementation above, TestEra has a mapping from ListNode

(the Alloy Node signature) to List. Node (the equivalent Java class). The tool also has

a mapping from the Alloy relation next to Java field List.Node.next. TestEra keeps

signature-class and relation-field maps similar to tables 3.1 and 3.2 respectively.

The first step in the a2j translator is to create Java objects. TestEra looks at each

signature and finds the Java class that represents it from the signature-to-class table

mentioned above. The tool then goes through the list of objects of that signature,

1All relations in TestEra have a State variable to indicate what state these relations are evaluated.
We have omitted them from the above relations for simplicity.
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Alloy Relation Java field
header List.header
next List .Node.next

element List.Node.element

Table 3.2: Alloy Relation to Java Field Map

Alloy Object Java Object
ListNode_0 JN_0
ListNodel JN_1
ListNode_2 JN_2

List_0 JL_0
Object_0 JO_0
ObjectI_ JO_1
Object 2 JO_2

Table 3.3: Instance Table

and creates new Java objects with the corresponding Java type. For example, for

every Alloy object that belongs to the signature ListNode, TestEra constructs a new

object of type List.Node.

TestEra also keeps an instance table that maps the Alloy instances to the newly

created Java objects. This is an instance-to-Object map rather than the signature-

class and relation-field map mentioned earlier in this section. For example, if the tool

sees an instance of ListNode (like ListNodel), it constructs a Java Object of type

List.Node (call it JN_1). The tool then adds the pair (ListNode l,JN 1) into the

instance table. The instance table for the example in figure 3-3 looks like table 3.3

One of the main uses of the instance table is to fill field information based on

Alloy relations. For example, assume you have the tuple (ListNodel , ListNode_2)

in the next relation, where ListNodel, List_Node_2 are ListNodes. When TestEra

wants to convert this tuple, it first looks into the instance table and retrieves the

Java objects that map to ListNodel and ListNode_2 (call them JN_1, and JN_2

respectively), then the tool sets the next field of JN_1 to be JN_2. Notice that TestEra

keeps the signature-class, relation-field and the instance maps for use in later stages

(namely the Java to Alloy translator).
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3.3 Java to Alloy translator (j2a)

After TestEra has successfully converted the Alloy abstract instances into concrete

Java objects, we can now run the method on the testcases. The tool finds the Java

object that maps to the this_ relation in Alloy and runs the specified method on it.

Since the testcases have been produced based on the input model, then the testcases

fit the pre-condition of the method and the method should run successfully (unless

there is a problem in the specification).

After running the method on this testcase, the next step would be to verify that

the testcase did not produce any errors. The output model that we generated earlier

is our mechanism for verification. However, this output model is written in Alloy, so

we need to convert the Java objects back to Alloy instances in order for us to run the

output model on them.

The Java-to-Alloy translator (j2a) is similar to the Alloy-to-Java one. It depends

on the tables that were constructed earlier to convert the Java objects back to Alloy.

For every Java class, it finds the corresponding Alloy signature from the signature-

class mapping. It then looks at every Java object and finds the corresponding Alloy

object that maps to it2. Finally, the a2j translator fills in the Alloy relations given

the field information from the Java objects.

TestEra has to take care of two issues. First, if the Java method created an object,

the tool needs to add an object to the corresponding Alloy instance. For example,

given a linked list implementation, an insert method would introduce a new Node to

the list. When converting the list back to Alloy, a new ListNode object is created,

and is mapped to the new Java Node in the instance table.

The second issue that TestEra faces is mutation. A change in the relations that is

due to mutation in Java objects needs to be reflected in Alloy. TestEra thus constructs

these relations based solely on the Java fields and the instance table, without any

consideration to the old relations in the pre-state. For example, in a remove method

of a linked list, the next relation of this list will be affected by the removed node.

2Notice that TestEra uses object equality (i.e. == instead of .equalso) to compare objects.
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Thus, we can not use the next relation that was created before the method ran.

Notice that the instances from the pre-state are kept in the post-state. These

instances are used for comparing the two states together since some specifications

require such a comparison. For example, if we are testing our remove method from

our linked list implementation, then we might want to check that the size of the new

list is, at most, one less than the old list's.

After the j2a translation is complete, we can now run the Alloy Analyzer on the

Alloy instances that were just constructed. The analyzer verifies that this instance

fits the post-condition of the method. TestEra keeps track of the number of tests that

pass versus the number of tests that fail, and gives this summary to the user. Thus,

the tool completes the test-case generation and verification process. Figure 3.4 shows

a number of testcases for our linked list example.

3.4 Example of Alloy Models Generated by TestEra

In this section, we describe the models outputted by TestEra's Alloy model generator.

As explained earlier, TestEra generates a model for each Java class, as well as an input

and output model. We use the linked list implementation of section C as an example.

First, TestEra generates the ListNode model representing the List. Node class in Java.

It is:

module util/List_Node

open testera/mutation/State
open java/lang/Object

sig ListNode {
next: util/List_Node/List_Node ?-> testera/mutation/State/State,
element: java/lang/Object/Object ?-> testera/mutation/State/State

}

The first line in this model is used for naming it. This model is called ListNode

and it is under the "package" util. The next two lines are for importing other Alloy

files to use them in this model. The model then defines a signature (i.e. a set of

objects) called ListNode which maps to the class List.Node. There are two relations

defined: next and element. The next relation has the type: (ListNode, ListNode,
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State). It maps a Node to its successor as defined in one state (i.e. either the pre-state

or the post-state). For example, let N1, N2 be Nodes and S1 be a State; if the tuple

(N1, N2, S1) belongs to the next relation, it indicates that N2 is the successor of N1 in

the State S1. Similarly, the element relation has the type (ListNode, Object, State).

Notice that the next and element relations map to the fields of the class List.Node.

TestEra also produces an Alloy model for List:

module util/List

open testera/mutation/State
open util/List_Node

sig List {
header: util/List_Node/List_Node ?-> testera/mutation/State/State

}

This model uses the ListNode model defined earlier. It defines a signature called

List and a relation called header, which map to the class List and the field header

respectively.

Once TestEra has built the models for each class, it proceeds to build the input

and output models that it uses to generate and verify testcases respectively. The tool

expects the pre- and post-condition, the signature of the method being tested, the

representation invariant, the number of tests, and the bound on input/output size

in the command line. From this information, TestEra builds the input and output

models.

We want to test the method remove from our linked list example. If the pre-

condition of the method is that there is at least one element in the list and we

make the representation invariant that the list is acyclic, then the tools generates the

following input model:

module util/List/removeinput

open testera/mutation/State
open java/lang/Object
open util/ListNode
open util/List

static part sig Pre extends testera/mutation/State/State {}

static sig Input {
e: option java/lang/Object/Object,
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this_: util/I.ist/List
}

fun util/List/List::repOk() {
some n: this_.header::Pre.*next::Prel no n.next::Pre

}

fun inputConstraint() {
Input::this_..repOk()
#Input::this_.header::Pre.*next: :Pre>1

}

run inputConstraint for 3 but 1 testera/mutation/State/State, 1 Input

This model defines a static signature called Pre that extends the signature State.

This means that Pre is just a one-element set that has the type State. The model also

defines two relations: e (which is the input to the method remove) and this_ (which

maps to the this variable in Java). The ::Pre suffix in the repOk and inputConstraint

functions tells the analyzer to evaluate any relation in the Pre state. This suffix is

automatically generated by the tool. The user simply writes the repOk as (some

n:this.header. *next no n. next). Notice also that the pre-condition from figure 3-2

is in the method inputConstraint. The inputConstraint function is used to generate

examples that fit the model above.

Finally, the tool generates an output model. If the post condition of the method

is that e is no longer in the list, TestEra would generate the following output model:

module util/List/remove_output

open std/ord
open testera/mutation/State
open java/lang/Object
open util/List_Node
open java/primitive/boolean
open util/List

static part sig Pre, Post extends testera/mutation/State/State {}
fact { Post = OrdNext(Pre) }

static sig Input {
e: option java/lang/Object/Object,
this_: util/List/List,
result_: java/primitive/boolean/boolean

fun util/List/List::repOk() {
some n: this_.header::Post.*next::Postl no n.next::Post

I

fun method0k() {:
Input: :this_.. repOk()
Input::e !in Input::this_.header::Post.*next::Post.element::Post

I
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run methodOk for 3 but 2 testera/mutation/State/State, 1 Input, 2 boolean

Notice that the function methodOk contains the representation-invariant from

our linked list example. It also contains a call to the repOk function (i.e. the

representation-invariant). After the Java method has run, the methodOk function

verifies the testcases, which are translated back to Alloy instances.
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Figure 3-4: Instances Generated by TestEra
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Chapter 4

MintEra: Combining Minshar and

TestEra

In the last two chapters, we have explained in detail Minshar and TestEra. As we

have also mentioned, MintEra depends on these tools. In this chapter, we describe

how we combined Minshar and TestEra, what changes we made in TestEra and how

MintEra is different from the original TestEra. We also describe additional features

that exist in MintEra.

When we designed MintEra, we decided to use a Java parser to read the input

Java file and extract meaningful annotations, as well as information about the code

itself. Minshar's parsing utility was very primitive, and TestEra used a class parser

to extract information about classes and fields. The Java parser presents a better

way of getting information about the Java input and its annotations.

We have also made a number of changes to TestEra. MintEra uses TestEra as a

testcase generation tool, but not as a verification tool. Thus, we have removed all

the Alloy models that were used for verification, and removed state information from

the automatically generated input model. We have also eliminated later stages of the

tool (specifically the Java-to-Alloy and the output verification phases).

The last feature that was added to MintEra was the ability to visualize testcases.

After the tool runs all testcases, the tool shows the user a visual image of the failed

testcases to assist the user in tracking down the error.
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Figure 4-1: Stages of MintEra

4.1 Overview of MintEra

After explaining the various components of MintEra in the last few chapters, here we

talk about combining these components together to form the MintEra tool. We will

go through the stages of testing a Java file from parsing the Java code to visualizing

the testcases. Figure 4-1 shows each of these stages.

The user invokes the MintEra tool by providing an annotated Java program and

the signature of the method to test. The first task of the tool is to parse the Java

program to pick up these annotations. There are two types of annotations: repre-

sentation invariants and assertions. MintEra hands assertions to Minshar and the

representation invariant to TestEra.

The Alloy assertions that MintEra gets from the Java parser are translated to

Java code by Minshar (as prescribed by 2.4). The Java code is then inserted with

the Alloy assertion in the Abstract Syntax Tree (AST) of the parsed Java file. After

translating all the assertions, MintEra prints the AST into a new Java file that is

used for testing. We back up the old Java file so that it replaces the modified Java

file after MintEra finishes testing.
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MintEra uses the representation-invariant to produce testcases. The tool does

not depend on pre-conditions to generate testcases anymore, but rather utilizes the

representation-invariant for that purpose. Using the representation-invariant instead

of pre-conditions makes it easier for programmers to generate testcases. Users only

need to specify one constraint in AAL, the representation-invariant, and would be

able to generate testcases that are suited for that Java class. However, there is a

case for allowing users to use pre-conditions to narrow down the scope of testcases.

We are still considering the possibility of adding that feature.

TestEra still uses its bytecode parser to collect information about the classes and

fields. After building the input models given the class names, fields and the represen-

tation invariant, TestEra then generates Alloy instances. These Alloy instances are

represented as boolean arrays that could be saved in a file so that they could be used

later.

When both TestEra and Minshar complete their work, the user compiles the

newly generated Java class and then MintEra runs the method on the testcases.

MintEra goes through the boolean arrays one by one and translates them (using the

a2j translator) into Java concrete instances. The tool finally invokes the Java method

on these testcases and catches any exception that is thrown. MintEra saves the failed

testcases (represented as boolean arrays) and the exceptions thrown.

After MintEra runs all the testcases, the visualizer displays the failed ones. The

visualizer shows a graphical form of the testcase as well as the exception that was

thrown with that testcase. The visualizer aids the user in identifying the problem in

their code. MintEra uses the visualizer from the Alloy Analyzer along with the saved

boolean arrays to display these failed testcases.

In the next few sections, we describe the newly added (or changed) stages of

MintEra.

1Note that assertions could be written in Java. So essentially users can limit their Alloy specifi-
cation to only the representation-invariant
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4.2 Java Parsing

Since there is a need to extract information from the Java source code (such as class

information and AAL annotations), we have opted to implement a parser for Java

programs in MintEra. Minshar uses a scripting language to extract assertions and

inserts Java code in its place. On the other hand, TestEra uses a bytecode parser to

read class and field information from compiled . class files. TestEra also required

the user to type in the representation invariant, the pre- and post-conditions, the

method signature, and other information as arguments to the program. Entering

all this information in the command line would be hectic. Thus, parsing the Java

input file (that is annotated with pre/post conditions, rep-invariant, and assertions)

provides a more durable and easier solution.

The Java grammar was written for a compiler compiler called SableCC [18]. We

had modified a Java grammar -written by the Sablecc authors- to distinguish AAL

annotations from normal Java comments. The original grammar simply discarded all

comments, so we had to change the grammar to recognize AAL annotations, which

begin with a (/*@) sign.

Given a grammar, the SableCC compiler generates a parser written in Java. The

parser takes in an input Java file and generates a Abstract Syntax Tree (AST).

SableCC also provides an AST visitor which crawls the tree and enables the pro-

grammer to collect information about the parsed Java file.

We implemented a visitor that extracts the information we needed from the Java

file. The visitor first finds the representation invariant and keeps a record of it. The

representation invariant has the following format:

/*
repok: <Alloy assertion>

*/

The visitor then crawls through the AST and finds AAL assertions that are em-

bedded within the Java methods. These assertions have the following format:
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assert: <Alloy assertion>
*/

The parser picks up the Alloy assertion, and passes it to Minshar. After the

assertion is translated into Java, the result code is appended to the comment. After

all assertions have been translated, the AST is printed into a new Java file that

contains the translated assertions. This file is the one used by TestEra for testing.

In this release of MintEra, we have decided not to get the class and field infor-

mation from the Java parser and instead relied on the bytecode parser provided by

TestEra. However, we hope to collect all class and variable information (including

local variables within methods) from the parser in future MintEra releases.

4.3 TestEra Modifications

The main role of TestEra within MintEra is testcase generation. TestEra generates

the input models from the Java specification and the representation invariant. After

generating examples of these models in Alloy, these Alloy instances are converted into

Java objects. MintEra does not use TestEra for verifying testcases.

MintEra's verification method is based on assertions that are rooted in the Java

code. Subsequently, MintEra uses a different verification method than TestEra, which

uses post-condition verification in Alloy to ensure correctness. Since MintEra still

depends on TestEra for testcase generation, we have changed TestEra to remove any

parts that did not deal with testcase generation. Specifically, we have made two

major changes: we have eliminated any stages in the TestEra tool that deal with

post-condition verification, and removed state information from generated models.

The first change made to TestEra is eliminating the Java-to-Alloy translation and

the Alloy verification stages. Since assertion based verification is done in Java (i.e. we

test correctness within the Java code), we do not need to translate the Java instance

to Alloy anymore. So we can eliminate the j2a stage as well as running the output

model in Alloy. We also do not need to generate an output model based on the

post-condition.
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Another modification we have made to TestEra is removing state information from

the automatically generated Alloy models. In the original version of TestEra, there

were two states where the Alloy Analyzer operated: the pre- and post-state. These

are the states of the Java objects before and after running the method. However, we

only run the AA in the pre-state (testcase generation) of MintEra. Since we have one

state now, we do not need to annotate the relations with their state anymore. Thus,

we have decided to eliminate all state information from our Alloy models, making the

analysis simpler.

4.4 Visualizer

To aid the user in understanding the faults that the testcases have revealed, MintEra

includes a visualizer that graphically shows the failed testcases. The nodes of the

visualized graph are the objects of the testcase, and the edges represent the fields of

these objects. Figure 4-2 shows an example of a visualized testcase of a linked list.

After the Alloy input models are analyzed by the Alloy Analyzer (section 3.2), it

produces examples that are in the form of boolean arrays 2. MintEra uses these arrays

in the Java-to-Alloy translation to produce concrete Java testcases. If the testcase

fails when MintEra runs it on the Java method (i.e. if the method throws an exception

that is caught by MintEra), the tool saves the boolean representation of the testcase

so it can display it later. The tool thus accumulates all the failed testcases and saves

the type of exception that was thrown when running them.

MintEra relies on the AA to visualize the failed testcases. The AA has a feature of

displaying an Alloy instance given the Alloy model and the boolean representation.

Our tool takes the boolean representation of the failed testcases, along with the

analyzed model, and asks the Analyzer to display the testcase. The user can then

cycle through the testcases, which are annotated with their exceptions. The AA

visualizer allows the user to customize the graph and remove certain relations or

provide a better view of the instance. For more information about the visualizer,

2 These boolean arrays are the solution to the SAT formula representing the Alloy input model
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Figure 4-2: An Example of a Visualized Testcase

please check the Alloy website [14].

4.5 Comparing MintEra and TestEra

In our implementation of MintEra, we have changed the way we verify testcases from

the original TestEra tool. While TestEra measures the output of the the method (state

and returned value) against the post-condition, MintEra uses run-time assertions in

code for verification. In this section we describe the key features of both tools, and

we compare both methods of testing, discussing the pros and cons of each.

4.5.1 Testing

Of course, the most important feature that both tools provide is automatic testcase

generation. Both TestEra and MintEra generate a testsuite from specifications that

are written in a simple and effective language, alleviating the burden of manual test-
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case generation. Both tools are adaptable to design changes, since they generate Alloy

models based on field and class information (which are detected automatically). The

testcases are also comprehensive given a certain bound on the input; TestEra and

MintEra will generate all possible input cases up to a certain size.

Providing an adaptable, comprehensive, automatic testcase generator will help

users test their programs in an easier fashion. These tools allow the programmer

to concentrate on the design and implementation phases of the software cycle, while

discovering hidden bugs in their code 3

4.5.2 Documentation

An important feature that both tools provide is better documentation. The user has

to write specifications to generate and verify testcases. TestEra requires the user to

specify the pre- and post-conditions of methods, forcing the user to better document

their method. On the other hand, MintEra requires the user to specify the repre-

sentation invariant and embed their program with assertions, which document the

code itself. From the user's prospective, writing specification now has an immediate

reward; if the user writes well-documented code, then they do not have to worry

about testing or extensive debugging. Thus, these tools encourage better software

engineering practices.

4.5.3 Granular Testing

One essential difference between these two methods of testing is that MintEra allows

a more granular method of verification. TestEra checks the correctness of a testcase

by checking that testcase against the post-condition of a method. While checking the

post-condition of the method is enough to check correctness, it does not allow the

user to locate the cause of the error. The user now has to examine the code carefully

to find the bug. This is especially hard when dealing with large methods.

3 While using MintEra on a linked list implementation, we were able to discover inadequate
handling of a null pointers that we were not aware of. MintEra generated testcases that threw a
NullPointerException which we did not anticipate.
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MintEra allows the user to insert assertions at any point in the code, which helps

the user pinpoint the bug. By adding more assertions, the testcase fails in the code

fragment around which the problem occurs and the the user can identify the location

of the error with more ease. Notice that by adding more assertions, the user would

be documenting their code better, which is an added advantage.

4.5.4 State Handling

Another essential difference between MintEra and TestEra is handling state. As

explained in 3.1, TestEra introduced a state relation that differentiates between the

pre- and post-states of the instances. MintEra eliminated this relation since it does

not use the Alloy Analyzer for verification. We have made that choice because we

wanted to rely on the inherent state machine that exists in Java instead of emulating

it in Alloy. Depending on the inherent Java state has two main advantages: smaller

models and ability to include more states.

By eliminating state, Alloy models are now much simpler to produce and analyze.

Since Alloy depends on an SAT solver to produce examples, having a bigger model

exponentially increases the time it takes to evaluate. Thus it would be desirable to

have smaller models to avoid long running times. The user can also opt to increase

the size of their input, having more testcases for the same amount of running time.

For example, instead of generating linked lists that have at most 3 nodes, the user

can now generate lists with a maximum of 4 or 5 nodes, adding more confidence in

the correctness of the method.

Depending on the inherent Java state also allows the user to evaluate assertions

in more than one state. TestEra allows the user to compare at most two states: the

pre-state and the post-state. On the other hand, in MintEra the user can utilize

more than two states, since each assertion could be viewed as a snapshot of the

current state. Thus, referring to a variable in any previous assertion (by using special

symbols) is referring to an earlier state. Since there is no limit on the number of

assertions the user can define, the number of states is also not limited.
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4.5.5 Locality of Error Detection

A more serious problem that might occur while using TestEra is testing nested calls to

methods. When testing a certain method, a bug might be caused by a call to another

method. TestEra will not be able to identify the method where the bug occurred. On

the other hand, MintEra would fail either in the method being called or around the

method call.

Consider the following scenario as an example. Assume there are two methods

within a Java class -call them methods A and B- where method A calls method B.

Naturally one would test method B for correctness before method A. Now imagine

that method B has a bug that escapes the TestEra and MintEra testing for some

reason (bad pre-condition, tests were incomprehensive, input too small...etc). The

user is confident of method B's operation and turns to the A method for testing.

However, while running a certain testcase on method A, the bug in B manifests itself.

When using TestEra, the bug will not be detected until the post-condition of

method A. Since the user is confident that method B is correct, he/she will try to

debug the A method to find the problem, wasting a lot of time. On the other hand,

MintEra will fail exactly where it is supposed to fail: in an assertion within method

B. The user now is directed to look at method B instead of method A, which reduces

the amount of debugging time.

4.5.6 Run-time Checks

An additional advantage of using assertions for verification is that they can be used

in software releases. These assertions can be used as safety check when the program

is actually used. The programmer can ensure that, during run-time, the state of the

program is not faulty. Thus, the software can detect errors before they actually cause

some serious harm to the program or -even worse- permanent data.

On the other hand, TestEra does not implement run-time checks. It is hard and

computationally expensive to use TestEra's method of verification (i.e. the Alloy

Analyzer) for run-time checks. There is quite a bit of work to be done in order to
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use the Alloy Analyzer (generating models, j2a translation...etc). Even if that work

is done, it is costly -in terms of performance- to do so. MintEra allows the user to

utilize the Alloy language for run-time checks while having a more acceptable running

time.

Notice also that AAL assertions are essentially comments, so they are not no-

ticeable by the compiler. However, the programmer can opt to "turn them on" by

translating these Alloy assertions into Java. The user can also "turn them off" by

removing the translated code (which is done automatically). Thus, the programmer

has the option of using these assertions at run-time or not.
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Chapter 5

Discussion and Conclusions

In the last few chapters, we have described in detail how MintEra was developed, and

how it compares with TestEra. In this chapter, we evaluate the tool itself. We first

observe the tool from the user's point of view. Then we look at ways to improve the

usability of the tool by suggesting a number of features that we would like to add.

Through this evaluation, we hope to understand where the tool stands currently, and

where it would stand after implementing the features we suggest.

5.1 User Experience

Since MintEra is intended to be used by software engineers from various level of

coding expertise, we need to measure how useful and effective the tool is. We have

tested the tool ourselves and asked a number of students to try MintEra to help us

evaluate it.

5.1.1 Personal Experience

'We have used MintEra to test several Java programs, including a linked list and a

red-black tree implementation. Our goal was to asses its usability and effectiveness in

detecting bugs. While using the tool, we reached several conclusions about the tool

(some of them were even unanticipated). Here, we describe some of these conclusions.
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Finding Bugs in Software

The main goal of the tool is to detect bugs in software, and we were able to do just

that. The tool has presented us with testcases, some of which had failed. Along the

way of finding the source of these bugs, we developed some interesting techniques for

debugging. One of these techniques was "commenting out" a part of the assertion to

identify what section of the assertion failed with what testcases. Using the visualized

testcase with the knowledge of the failed section of the assertion, we were able to find

the bug in software that caused the error, correct it and test it again to make sure we

have fixed it. We then proceeded to incrementally uncomment the assertion formula

by formula until we managed to fix all bugs.

The technique we developed is similar to some debugging strategies that are cur-

rently used. Debuggers usually test one constraint at a time while printing the state of

the program into standard output. MintEra allows users to utilize the same technique

without cluttering the program with unnecessary debugging code.

Visualization was quite helpful in presenting the state of the testcase. The visual-

ized testcase allowed us to trace the code on that instance and understand the cause

of the error. However, as we explain later on, extra visualizing features would have

helped us debug better.

Documentation Correction

In the previous chapter, we have mentioned that MintEra encouraged documentation

of software by requiring the user to write specification. However, while using MintEra

for testing, the tool provided another (unexpected) feature: specification checking.

While testing a program, some of the testcases failed due to errors in specifications

rather than errors in the code. For example, the representation invariant might not

have been strong enough, making MintEra generate testcases that can not produced

by the code itself (e.g. red-black trees that cannot be generated by calling the add

method repeatedly). By identifying that the problem is in specification, the user then

can correct them, allowing the user to have better documentation.
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The user could also have errors in assertions within the program. The fault could

be caused by a check that should not exist. For example, while testing the remove

method in our linked list implementation, we inserted an assertion checking that the

element removed is not part of the list anymore. However, we discovered that this

was a wrong check; the element could exist more than once within the linked list, and

our remove method is supposed to only remove the first occurrence of the element.

At first, having testcases fail because of specification errors might seem like a

problem in our approach of testing. However, this problem is analogous to including

bad testcases in manual testcase generation, or anticipating wrong outputs from the

method (like feeding negative numbers to a square root method, or checking that the

square root of 9 should be 4). MintEra gives the user the opportunity to interactively

correct their specification. In effect, the code is checked against specification, and

specification is checked against code.

Bugs in Tool

While testing a number of our programs, a set of tests have failed because of bugs in

the MintEra itself. Specifically, our translations of Alloy expressions were problem-

atic. MintEra generated tests that managed to highlight these translation bugs. For

example, while testing Java's LinkedList class, we found that we inserted null objects

to various sets. Thus causing the condition no o when o is null to fail where it should

not.

Of course, translated assertion should not include any bugs. However, the ability

of detecting problems within MintEra by using the tool itself is a welcomed side-effect

for the developers of the tool.

Additional Features

While using MintEra for testing, we have observed the lack of some extra features

that would make the tool easier and more effective. We explain a few features that

we personally thought were needed. We have a more detailed discussion of future

work in section 5.2.
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One observation we made while using MintEra is the frequent use of representation

invariants as assertions. A common assertion at the end of every method is checking

that the representation invariant still holds. Currently, we simply copied the text of

the representation invariant into an assertion. However, a call to the representation

invariant as a function call is a better alternative. In fact, defining functions and

calling them in general is a feature that we would like to add to MintEra.

Another absent feature was post-state visualization. While we were trying to

debug the errors we found when using the tool, we wanted to to observe the testcase

visually after running the method. A visualization of the testcase after an exception

was thrown would help the user see why this testcase failed. A comparison between

the pre- and post-state is definitely a desirable feature.

Highlighting the failed portion of an assertion is another important -yet absent-

feature. When a testcase causes an error, it would be very helpful to the user to

see what formula in the assertion has failed. The user can then observe the testcase

visually and understand what the problem is. We have tried to emulate that by our

method of "commenting out" parts of the assertion, as explained earlier. However,

highlighting the formulas is an easy addition that would be very helpful for the user.

5.1.2 Novice Java Programmers

We have asked three MIT undergraduates, who had just completed their Software

Engineering class, to use the MintEra tool. Through this evaluation, we can judge

how easy to use MintEra is. The users ran our tool on Java programs that they wrote

during the Software Engineering Laboratory.

Learning AAL

One important measure of the success of the MintEra tool is evaluating how easily

can new users learn AAL and write constraints in it. We have explained the language

and provided a manual similar to Appendix B. Within a short period of time, the

users were able to write constraints -including complex ones- in AAL for their own

64



programs, indicating that AAL in fact is an effective language that is easy to learn

and use.

Lack of Features

Users of MintEra complained about lack of features. A common problem among users

was the absence of cross-referencing. Since users depend heavily on the Java Collec-

tions package, writing constraints involving HashMaps or LinkedLists is difficult. The

problem arises because AAL does not support calling Java methods, and users can-

not cross-reference specifications already written for these classes (like JML). Thus, it

was difficult for users to write representation-invariants that involve any of the Java

Collection classes.

The other problem that users faced was lack of support for arrays. Even though

TestEra has support for arrays, MintEra has not ported this feature yet. Users who

had arrays in their programs were not able to use them in writing representation-

invariants. We intend to fix these problems in future MintEra releases.

Note that since assertions could be written in Java (as long as they throw excep-

tions when the assertion fails), users can utilize arrays and Java Collection classes

with no problem. These issues are problematic only in representation invariants.

5.2 Future Work

Even though MintEra has some useful features, it still needs considerable amount

of work to develop into be a standard tool. We have some ideas on what work is

needed to help make the tool even more useful. In this section, we describe what

extra features we would like to implement.

5.2.1 Minshar

In this section, we describe a number of additions and modification to Minshar that

we would like to include. Notice that some of these features are relevant to other

parts of MintEra.
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Function Calls

There are some of Alloy formulas that are repeated throughout assertions. One

example of such repeated assertions is checking the representation invariant after the

method has completed. Currently, Minshar does not support functions, so the user

has to copy these formulas from one assertion to another. The Alloy language has

support for defining and calling functions. However, we need to a way to port Alloy

functions to Minshar itself.

Implementing functions within Minshar is relatively straightforward. One way to

implement support for Alloy functions is to translate them into Java methods. Since

Minshar has the ability to translate any Alloy formula, then translating the body of

the function is simple. The input/output variables of these functions are Set, boolean

and integer variables.

The issue, however, is attempting to call Java methods within Alloy functions

and vice versa. Since all expressions within Minshar are Sets, then using them as

arguments (to other Java methods), or calling methods on them (i.e. dynamic dis-

patching) makes it difficult to call Java functions from within Alloy. The semantics of

such method calling is not obvious. For example, what does it mean to call a method

on a set of objects? Is it calling that method on all elements of that set? Do you

include sets as arguments, and let the Java method deal with that set, or do you

call every permutation possible? A study of such semantics is another area of future

research.

On the other hand, calling translated Alloy functions from within Java methods

is simpler. The arguments/output of the Alloy functions are only Set, boolean and

integer variables that are well-defined. If we can constraint the calls from within Java

methods to use variables that are of that type, then such an interface is possible.

Minshar Optimization

The current running time of Minshar is good enough to use within MintEra. However,

if we intend to provide Minshar as a translation tool, then we need to optimize the
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running time of the translated code. Here we provide a list of possible optimizations

that could help in producing faster code.

The first such optimization is evaluating expressions in a lazy fashion. Instead of

evaluating expressions sequentially, we could bundle more than one expressions navi-

gation together to reduce running time. For example, the current method of evaluat-

ing the expression this.header. *next. element is to evaluate this, then this. header, then

this.header. *next and finally this.header. *next. element. Instead of such slow evalua-

tion we could evaluate the whole expression at once by running the reflexive closure

method on this.header and following the field next. element.

Another optimizing that we are hoping to implement is to use Java inherent deref-

erencing mechanism instead of using the Reflection API. We currently use reflection

for dereferencing because we do not have access to variable types. Since the Java

program is being parsed to extract AAL annotations, we can collect type information

about these variables that would allow us to use inherent Java dereferencing (through

casting). This problem could also be solved by using Java's new Generics [13] feature,

which is supposed to be released soon.

Supporting Java Arrays

A feature that was implemented in TestEra but was not ported into MintEra is

supporting Java arrays. We have not implemented arrays in MintEra because integer

variables are handled differently between Minshar and Java. As explained later,

we hope to develop a unified model of integer variables, which would enable us to

implement an array model based on this integer model. Notice that Alloy uses the

symbols ([]) as a weaker dereferencing symbol. So it is possible to use these symbols

exclusively for supporting arrays in MintEra.

Highlighting Failed Alloy Formula within Assertions

A useful feature that we would like to add to the MintEra tool is indicating to the user

what portion of the assertion has failed. Since a lot of assertions are multi-formulas,

where these formulas are anded together, we can detect which of these formulas have
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evaluated to false. Separate formulas are separated by carriage returns (which are

read as && symbols). Each formula evaluates to a boolean variable, and a sequential

check of each formula identifies which one had evaluated to false. Thus, exceptions

can be thrown with the text of the formula as the exception's message, indicating the

failed section of the assertion.

Implementing State

As we have indicated in section 4.5.4, we have eliminated state from TestEra models

citing Java inherent state machine as the reason behind this elimination. However,

we have not supported referring to earlier states of Java variables in Minshar.

By appending one (or more) (') symbols to Java variables, the user can refer to

these variables in the state they were one (or more) assertions back. The tool thus

saves the variable value (from the old state) in another variable, and uses this saved

variable in the current assertion. The only issue is detecting what variables need to

be saved. Users could indicate these variable by including them in a save field within

an assertion. Another approach would be for the tool to automatically detect what

variables it needs to save by having two passes through the assertions.

5.2.2 TestEra

In this section, we describe future work that we hope to implement within the TestEra

tool specifically. Note that some of these features also include changes to Minshar.

We have included them here because we felt that most of the work will be done within

the TestEra section of MintEra.

Migrating to Alloy 3

While developing MintEra, the developers of Alloy have designed a new version of

the Alloy language. The new version of Alloy (named Alloy 3 [14]) has a different

grammar which is not backward-compatible but includes a lot of new and improved

features -such as atomization and subtypes [15]. Migrating the MintEra tool to Alloy
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3 will enable us to utilize these new features.

A few changes will be done to MintEra. First, we need to change the automatically

generated Alloy models to be Alloy3-compatible. We also need to modify the classes

within MintEra that deals with the Alloy Analyzer directly. And finally, the grammar

of MintEra has to be slightly modified to reflect the new Alloy 3 grammar.

Cross-Referencing

MintEra currently has no way of utilizing models generated earlier to specify fields

that have the type of library classes. For example, if a certain field has a type

of Java's LinkedList, there is no way of using the methods of that class in writing

specification for the program at hand. JML uses the method's specifications from

other classes to emulate behavior of that method. We hope to develop a mechanism

for cross-referencing that is similar in principal to JML.

Handling Integers

A problem that both Minshar and TestEra face is handling integer variables. Cur-

rently, TestEra has a different mechanism of handling integer variables from Minshar

simply because these two tools have been developed independently. Alloy 2 did not

have any models for handling integers, and thus each tool has to develop its own

mechanism of dealing with integers.

Both methods of handling integers have their drawbacks. While Minshar requires

its users to cast all integer variables, TestEra has a separate model for integers and

requires its users to call various functions when using these variables. However, we will

use the model Alloy 3 proposes for handling integers as a starting point for designing

an integer framework for MintEra.

5.2.3 Graphical User Interface

Currently, the only Graphical User Interface (GUI) that exists within MintEra is

the testcase visualizer. However, we plan to extend the GUI features of MintEra to
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include a number of extra features, which are described here.

Visualization of Testcases in Post-State

One important feature that was needed while using MintEra is visualizing the testcase

after it has failed. The visualized testcase in the post-state allows the user to detect

the problem in their code (or specification) in an easier manner.

Implementing such a feature is quite straightforward. TestEra had already a Java-

to-Alloy translator that could translate Java instances to Alloy. After translating the

instance to Alloy, we can now visualize the testcase by utilizing the visualization

section of MintEra.

Eliminating Unreachable Objects

In the current version of MintEra, the Alloy instances could include Objects that are

not reachable by starting from the Input variable in the input model. These objects

serve no purpose since they are not part of the testcase (as defined by reachabilty

from the this_ variable) or the arguments. Subsequently, the visualized testcase tends

to be cluttered with unnecessary information. Elimination of such objects makes the

visualized testcase easier to read.

We have attempted to remove these objects, by constraining the input model.

Our method depended on constraining the signatures to be exactly the objects that

are reachable from the Input variable. However, that attempt failed.

The solution to this problem exists within Alloy 3. Because of the new subtype

system [15] in Alloy 3, defining such a constraint is much easier. Once MintEra

becomes Alloy 3-compatible, we can then produce visualized testcases that are simpler

to view.

MintEra GUI

One goal of the developers of MintEra is producing a GUI for the tool that acts as a

testing environment. The GUI would enable the user to view and edit the Java file

being tested. It would also present the user with drop-down menus that would set
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options (such as input size, method tested...etc) and run various commands. The user

would also receive better error reporting whether it is compiling errors from MintEra

or reporting erroneous testcases.

The Alloy Analyzer has a GUI that has all these features, but for Alloy models.

Modifying the existing GUI to produce a specialized MintEra GUI should be relatively

straightforward.

5.3 Conclusions

In this thesis, we have presented the MintEra testing framework. Through combining

two tools, namely Minshar and TestEra, we have managed to create a comprehensive,

adaptable, automatic testcase generator and verifier. While MintEra is easy to use

as a tool, it needs some additional features that could make it appealing for software

engineers.

Users of MintEra annotate their code with representation invariants and asser-

tions. Representation invariants are used to generate testcases up to a certain bound

(which is set by the user). The method being tested is then run on these testcases and

Alloy assertions (which are translated to Java) check the correctness of the method,

and throw exceptions otherwise. Testcases that cause exceptions to be thrown are

collected and displayed to the user in a visualized form, which help the user identify

errors within. their code.

Besides testing, MintEra offers users a number of key features that are helpful for

software engineers. AAL is a simple and effective language that could be used to write

specification in a concise and easy-to-read manner. These annotations document the

program being tested, helping enforce good software engineering practices. Through

testing, specifications are measured against code and vice-versa. Thus, the user can

test correctness of their code, as well as correctness of their specifications. Assertions

within code provide granular testing that help the user pinpoint the location of errors.

MintEra could be extended in a number of ways to improve its usability. We have

presented a list of additions that we would like to make to the tool. These changes
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range from visualizing the testcases in the post-state to making the tool Alloy 3

compatible.

Our hope, by implementing MintEra, is that using such tools become a standard

practice within the software engineering world. We believe that through the use of

MintEra and other similar tools, users can rid their programs from bugs, helping

them reach better quality of software.
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Appendix A

Minshar Algorithm and Helper

Functions

A.1 Minshar Algorithm

In This section we present the Minshar Translation algorithm. The algorithm takes

every grammar production and translates it into a pair of Strings. The first String

is the result variable of the translation (int variable for int expressions, Set for expr,

and boolean for formulas.) The second String is the Java code that is the actual

translation of the grammar production. Refer to figure 2-2 for AAL Grammar.

A.1.1 int expressions

Ti(number) = {
v = freshvariable("int")
return <v,"v = number;">

}

Ti(#expr) = {
v = freshvariable("int")
<ve,ce> = Te(expr)
return <v, "ce v = ve.size();">

}

Ti( (intexpr)) (
return Ti(intexpr)

Ti( if formula then intexprl else intexpr2) {
Iv = freshvariable("int")
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<vf,cf> = Tf(formula)
<vil, cil> = Ti(intexprl)
<vi2, ci2> = Ti(intexpr2)
return <v, "cf if (vf) { cil v=vil;} else {ci2 v=vi2;}">

}

Ti(intexprl intop intexpr2) {
v = freshvariable("int")
<vl,cl> = Ti(intexprl)
<v2,c2> = Ti(intexpr2)
return <v,"cl c2 v=vl intop v2;">

}

A.1.2 Formulas

Tf(exprl [neg] : expr2) {

v = freshvariable("boolean")
<vel,cel> = Te(exprl)
<ve2,ce2> = Te(expr2)
if(neg)
return <v,"cel ce2 v = (ve.size!=l)? false:!ce2.containsAll(cei);">

else
return <v,"cel ce2 v = (ve.size!=l)? false:ce2.containsAll(cei);">

Tf(exprl [neg] = exprl) {
v = freshvariable("boolean")
<vel,cel> = Te(exprl)
<ve2,ce2> = Te(expr2)
if(neg)
return <v,"cel ce2 v=!vel.equals(ve2)">

else
return <v,"cel ce2 v=vel.equals(ve2)">

}

Tf(exprl [neg] in expr2) {
v = freshvariable("boolean")
<vel,cel> = Te(exprl)
<ve2,ce2> = Te(expr2)
if(neg)
return <v,"cel ce2 v=!ve2.containsAll(vei)">

else
return <v,"cel ce2 v=ve2.containsAll(ve1)">

Tf(intexprl intcompop intexprl) {
v = freshvariable("boolean")
<vil,cil> = Te(intexprl)
<vi2,ci2> = Te(intexpr2)
if(compop=="=<")
conpop="<="

if(neg)
return <v,"cil ci2 v=!(vil compop vi2);">

else
return <v,"cil ci2 v=vil compop vi2;">

Tf((formula)) {
return Tf(formula)

}

Tf(neg formula) {
v = freshvariable("boolean");
<vf,cf> = Tf(formula)
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return <v,"cf v=!vf;">
}

Tf(formulal && formula2)1(formulal and formula 2) {
v = freshvariable("boolean")

<vfl, cfl> = Tf(formulal)
<vf2, cf2> = Tf(formula2)
return <v,"cfl cf2 v=vfl&&vf2;">

}

Tf(formulal 11 formula2) (formulal or formula 2) {
v = freshvariable("boolean")
<vfl, cfl> = Tf(formulal)
<vf2, cf2> = Tf(formula2)
return <v,"cfl cf2 v=vflllvf2;">

}

Tf(formulal <=> formula2)1(formulal iff formula 2) {
v = freshvariable("boolean")
<vfl, cfl> = Tf(formulal)
<vf2, cf2> = Tf(formula2)
return <v,"cfl cf2 v=(vfl==vf2);">

}

Tf(formulal thenop formula2) {
v = freshvariable("boolean")
<vfl, cfl> = Tf(formulal)
<vf2, cf2> = Tf(formula2)
return <v,"cfl cf2 v=!vflllvf2;">

}

Tf(formulal thenop formula2 elseop formula3) {
v = freshvariable("boolean")

<vfl, cfl> = Tf(formulal)
<vf2, cf2> = Tf(formula2)
<vf3, cf3> = Tf(formula3)
return <v,"cfl cf2 cf3 v=(vfl ? vf2 : vf3);">

}

Tf(formulaseq) {
return Tfs(formulaseq)

}

Tf(all declplus formulabody) {
<i,vf,l,c> = header(declplus,formulabody)
va = freshvar:iable("boolean")
sl = "va=true; c if(!vf) {va=false; break 1;}"
s2 = footer(i)

return <va, "s:l s2">
}

Tf(no declplus formulabody) {
<i,vf,l,c> = header(declplus,formulabody)
va = freshvariable("boolean")
sl = "va=true; c if(vf) {va=false; break 1;}"
s2 = footer(i)

return <va,"s:L s2">

Tf(some declplus formulabody) {
<i,vf,l,c> = header(declplus,formulabody)
va = freshvariable("boolean")
sl = "va=false; c if(vf) {va=true; break 1;}"
:32 = footer(i)

return <va,"sl s2">

Tf(sole declplus formulabody) {
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<i,vf,l,c> = header(declplus,formulabody)
va = freshvariable("boolean")
vb = freshvariable("boolean")
sl = "va=true; vb=false; c"
sl = "sl if(vf) {

if(vb) {va=false; break 1;}
else vb=true;

s2 = footer(i)

return <va,"sl s2">

Tf(one declplus formulabody) {
<i,vf,l,c> = header(declplus,formulabody)
va = freshvariable("boolean")
sl = "va=false; c"

sl 
=

"sl if(vf) {

if(va) {va=false; break;}
else va=true;

s2 = footer(i)

return <va,"sl s2">

Tf(no expr) {
v = freshvariable("boolean")
<ve,ce> = Tf(expr)
return <v, "ce v = ve.isEmpty()">

}

Tf(some expr) {
v = freshvariable("boolean")

<ve,ce> = Tf(expr)
return <v, "ce v = !ve.isEmpty()">

}

Tf(sole expr) {
v = freshvariable("boolean")
<ve,ce> = Tf(expr)
return <v, "ce v = (ve.size()<=1)">

}

Tf(one expr) {
v = freshvariable("boolean")
<ve,ce> = Tf(expr)
return <v, "ce v = (ve.size()==1)">

}

Tf(two expr) {
v = freshvariable("boolean")
<ve,ce> = Tf(expr)
return <v, "ce v = (ve.size()==2)">

}

Tfb(Iformula) {

return Tf(formula);
}

Tfb(formulaseq) {

return Tfs(formulaseq)
}

Tfs({formulastar}) {

v = freshvariable("boolean")

if(formulastar.size()==0)
return <v,"v=true;">
sl=" "
s2 = " v ="
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for(i=O;i<formulastar.size()-l;i++) {
<vf,cf> = Tf(formulastar[i]);
sl = "sl Cf"
s2 = "s2 vf &&"

}
<vf,cf> = Tf(formulastar[i]);
sl = "sl cf"

s2 = "s2 vf;"
return <v,"sl s2">

A.1.3 Declarations

Tdp(declplus) {
s = II

i = 0;
while(declplus.hasNext()) {
<v,c> = Td(declplus.next())
s = "s c"
i = i+v

}
return <i,s>

}
Td([qualifier] varplus: expr) {
<ve,ce> = Te(expr)
i = varplus.size()
s = "ce"

while(varplus.hasNext()) {
v = freshvariable()
e = freshvariable()
s = "s Iterator e = ve.iterator();

while(e.hasNext()) {
v = singelton(e.next());"
a = varplus.next()
VST.add(a,v)

}
return <i,s>

A.1.4 expressions

'rTe(var) 
v = vst.get(var)
if(v==null) {

v = freshvariable("Set")
return <v,"v = singleton(var);">

}
else {

return <v, "">

Te((expr)) {
return Te(expr)

}
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Te(exprl [expr2]) {
return Te (expr2.exprl)

}

Te( if formula then exprl else expr2) {
v = freshvariable("Set")
<vf,cf> = Tf(formula)
<vel, cel> = Ti(exprl)
<ve2, ce2> = Ti(expr2)
return <v, "cf if (vf) { cel v=vel;} else {ce2 v=ve2;}">

}

Te(none [expr]) {
v = freshvariable("Set")
return <v,"v=new HashSet();">

}

Te(expr.varplus) 
v = freshvariable("Set")
<ve,ce> = Te(expr)
s = "ce v = new HashSet();"

for(i=O;i<varplus.length;i++) {
s = "s v.addAll(dereference(ve,varplus[i]));"

}
return <v, s>

Te(expr.*(varplus)) {
v = freshvariable("Set")
<ve,ce> = Te(expr)

s = "ce v = traverseStar(ve, new String[] {"

//varplus is an array of strings
for(i=O; i<varplus length-l, i++)
s = "s \"varplus[i]\","
s = "s \"varplus[i]\"});"

return <v, s>

Te(expr.^(varplus)) {
v = freshvariable("Set")
<ve,ce> = Te(expr)

s = "ce v = traverseCaret(ve, new String[] {"

//varplus is an array of strings
for(i=0; i<varplus. length-l, i++)
s = "s \"varplus[i]\","
s = "s \"varplus[i]\"});"

return <v, s>

Te(exprl+expr2) {
<vel,cel> = Te(exprl)
<ve2,ce2> = Te(expr2)
return <vel,"cel cel vel.addAll(ve2);">

}

Te(exprl-expr2) {
<vel,cel> = Te(exprl)
<ve2,ce2> = Te(expr2)
return <vel,"cel cel vel.removeAll(ve2);">

}

Te(exprl&expr2) {
<vel,cel> = Te(exprl)
<ve2,ce2> = Te(expr2)
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return <vel,"cel cel v=vel.retainAll(ve2);">
}

A.1.5 Helper Functions

header(declplus,formulabody) {
1 = freshlabel()

temp = new VST();
temp.parent = vst;

vst = temp;

<i,cd> = Tdp(decplus) //returns
<vf,cf> = Tfb(formulabody)
vst = temp.parent;
return <i,l,vf,"cf l:cd">

}

footer(i) {
for(j=O;j<i;j++) {

S = "S }"

}
}

number of whiles

//closing the parens

A.2 Helper Java Functions

static Set singleton(Object o) {
Set result = new HashSet();
result.add(o);
return result;

}

static Set traverseStar(Set s, String[] f)
Set result = new HashSet();
LinkedList workList = new LinkedList(s);
Set visited = new HashSet();
while (!workL:ist.isEmpty()) {
Object o = workList.removeFirst();
if (!visited.contains(o)) {
result.add(o);
visited.add(o);
for (int i = O; i < f.length; i++)
optionallyAdd(workList, o, f[i]);

}
}
return result;

}

{

static boolean optionallyAdd(LinkedList 1, Object o, String n) {
Object d = null;
try {
d = dereference(o, n);
1.add(d);
return true;

} catch (Exception e) {
return false;

static Set traverseCarett(Set s, String[] f) {

79



Set result = new HashSet();
LinkedList workList = new LinkedList();
for (Iterator i = s.iterator(); i.hasNext(); ) {

Object o = i.next();

for (int j = O; j < f.length; j++)

optionallyAdd(workList, o, f[j]);

}
Set visited = new HashSet();
while (!workList.isEmpty()) {

Object o = workList.removeFirst();

if (!visited.contains(o)) {

result.add(o);
visited.add(o);
for (int i = O; i < f.length; i++)

optionallyAdd(workList, o, f[i]);

}
}
return result;

static Object dereference(Object o, String n)
throws Exception {
Class c = o.getClass();
Field f = c.getField(n);

return f.get(o);
}

static Set dereference(Set s, String n) {
Iterator i = s.iterator();
Set res = new HashSet();
while(i.hasNext()) {

res.add(dereference(i.next(),n));
}
return res;
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Appendix B

Alloy Language Specification

In this chapter, we explain in detail the Alloy language specification. MintEra uses a

subset of Alloy as the language for writing assertions and representation invariants.

Alloy is a powerful and accessible language. Thus, writing specifications in Alloy is

easy and concise.

MintEra assertions and representation invariants are Alloy formulas, which are

boolean expression in nature. While Alloy models have multi-arity relations, MintEra

formulas consist only of one and two-arity relations. This restriction stems from the

nature of the Java language. Representing Java objects and primitives only requires

one-arity relation (i.e. a set of objects), whereas two-arity relations is sufficient to

represent fields. In other words, a field is simply a relation between two objects.

Alloy has operators and quantifiers that allow the construction of more complex

expressions, formulas, and integer expressions. By understanding how these operators

work, the user can write Alloy formulas that express a condition on the code (either

an assertion or representation invariant).

Expressions in Alloy can be divided into three types: boolean, set and integer

expressions. The rest of this chapter is divided into 3 sections based on this type

division. First we look at expressions that result in sets, then we look at boolean

formulas, and last we look at integer expressions.
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Op Description Example Result
dereferencing r.left {r.left}

reflexsive transive closure r.*left {r, r.left, r.left.left,....
transitive closure r.^left {r.left, r.left.left,...}

+ set union (U) r+r.left {r, r.left}
+ field union r.(left+right) {r.left, r.right}
- set difference (\) r.*left-r {r.left,r.left.left, ... }
& set intersection (n) r.*left&r {r}
{} set comprehemsion {all x:rl no r.right} {r} if r has no right child

none[] empty set () none[r] {}

Table B.1: AAL's Set Operators

B.1 Alloy Set Operators

In this section, we describe AAL set operators that are used in MintEra. They are

summarized in table B.1.

B.1.1 Dereferencing (.)

Dereferencing is the essential operation in Alloy. The dereferencing operator in AAL

carries the same semantics as in Java. To set up an example that will be used in

the rest of this chapter, assume we have a Tree implementation that is given by the

following Java code:

class Tree {
Node r;

class Node {
Node right;
Node left;
Object element;

Now, the expression r. element simply dereferences the root node with the "ele-

ment" field.

Notice that dereferencing in AAL, unlike in Java, is set based. In a dereferencing

operation, Alloy dereferences every element of the original set to construct a new set.
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For example, the expression (r+r.right).left (where + is the union operator) results

in the set {r. left, r. right. left}1 .

B.1.2 Union (+)

Alloy provides an operation to take the union of two sets. This carries the exact

semantic meaning as the mathematical concept U. There are two ways of using the

union operator: set union and field union.

Set union is the simple operation of combining two sets. The result of this oper-

ation is a new set that includes all the elements of both original sets. For example,

the alloy expression r.left+r results in the set: {r.left, r}.

On the other hand, the field union operator provides a more powerful way of ex-

pressing unions. The operator is used when dereferencing at the same time as taking a

union. For example, given the above tree implementation, one can write: r. left+r. right

to express the set {r.left, r.right}. However, using the field union operator, one can

write: r. (left+right) to mean exactly the same expression2 . The effectiveness of field

union will become more clear later on in this chapter when talking about reflexive

and transitive closures.

B.1.3 Difference (-)

The difference operator in Java is also a set operator. It has the same meaning as the

mathematical set difference. The result of this operation is another set that represents

-the difference between them. For example, the result of the alloy expression: r. left-

r.right is either the singleton set r.left} (if r.left r.right) or the empty set (if

r. Ieft=r. right:).

1The Alloy language, in fact, provides a more powerful notion of dereferencing based on relations.
This relational dereferencing is more general and includes the simple dereferencing mechanism that
exists in Java. For more information about Alloy's dereferencing, please check [2]

2Note that in Alloy, the operators mentioned above are exactly the same, since they express
relation union. The expression left+right takes the union of the two relations. The expression
r.(left+right) is just dereferencing r with the relation left+right. The distinction has been been
made to simplify explanation of these operators in familiar Java terms
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B.1.4 Intersection (&)

Another set operator that is implemented in Alloy is the intersection operator ().

The result of intersecting two sets is another set whose members belong to both

original sets. For example, the alloy expression r&(r+r.left) produces the set {r}.

B.1.5 Reflexive Transitive Closure (*) and Transitive Clo-

sure (^)

One of the most useful operators in Alloy is transitive closure. This operator allows for

implicit traversal of data structures in Alloy. It provides an effective way of traversing

that helps alleviate some of the problems that users face when doing explicit traversal

(like cyclicity and null pointer detection.)

The first such operator is the reflexive transitive closure (*), which is the process

of continuously navigating a field in an object, until that field is null, or all objects

have been navigated. For example, given the Tree model described above, take the

Alloy expression r. *left. This expression is simply traversing the left field zero or

more times, resulting in the set {r, r. left, r. left. left,...}.

The second operator is the transitive closure (^). It is similar to the reflexive

transitive closure except that a field is traversed one or more times rather than zero

or more times. For example, the alloy expression r. ^next results in the set {r. left,

r. left. left,...).

Combining any of these operators with the field union operator(+) provides a

more effective way of traversal. For example, given the operators that we have men-

tioned, there is no way to construct the set of all nodes in our Tree example, since the

expression r. *left+r. *right only constructs the right-most and the left-most branches

of the Tree. However, using the field union, we can construct the set of all the nodes

in the tree by using the expression r.*(left+right). The resulting set is {r, r. left,

r. right, r. left. right, r. left. left, r. right. left, r. right. right,... }. Of course we can substi-

tute transitive closure in place of reflexive transitive closure in the above example to

produce the set r. left, r.right, r. left.right, r. left. left, r.right. left, r.right.right,...}.
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B.1.6 Set Comprehension ({})

Set comprehension is another useful operations in Alloy. It allows the user to construct

sets that are constrained by a certain formula. In our above Tree implementation, if

we wanted to construct the set of elements that do not have a right child, we would

simply write:: { all x:r. *(right+left) I no x. right}. This statement can be read as: of all

the elements x in the set r. *(right+left), include only x's that have no right element.

(Please check section B.2.6 for more information about quantifiers such as all).

The power of the set comprehension operation stems from the fact that one can

construct any arbitrary set based on a condition. This is done implicitly, without

need for an explicit traversal. Of course, any arbitrary formula, or set of formulas,

can be used to constraint the set.

,B.1.7 if-then-else Condition for Expression

'The if-then-else operation chooses between two sets based on a condition. The formula

following the if is tested, and if it is true, then the expression following the then

keyword is chosen, otherwise the expression following the else is chosen as the result

of this expression. For example, consider the statement if (r in r. *left) then r else

r. *left. Since the formula r in r. *left is true, the first expression (i.e. r) is chosen.

If the formula instead was r in r. ^left (which is false if the tree is acyclic), then the

second expression r. *left would be chosen.

:B.1.8 Empty Set (none[])

Alloy provides an operation to create an empty set. By using the expression: none/expr],

where expr is any well-formed expression, you can get an empty set that has the same

type as expr. For example, the expression none[rj gives an empty set of type Node.
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Op Description Example Result
checking subset(C) r. ̂ left:r.*left true

in checking containment (E) r in r.*left true
- checking set equality(=) r.*left=r+r. left true
= equals(=) 1=2 false
> greater than(>) 1>2 false

>= greater than or equal(>) 1>=2 false
less than(<) 1<2 true

=< less than or equal(<) 1=<2 true
&& and 1=1&&2=1 false
l or 1=1 12=1 true

<=> equivilant( = ) 1=3<=>2=1 true
=>, if-then-else (=~) 1=3 => 1=1, 1=2 false

Table B.2: AAL's Boolean Operators

B.2 Alloy Boolean Expressions

In this section, we discuss Alloy boolean operators. All Alloy assertions and rep-

resentation invariants have to be boolean formulas (they cannot be set or integer

expressions.) Please check table B.2 for a comprehensive list of these operations.

B.2.1 Set Equality (=)

The (=) operator tests for equality between two sets. Two sets are equal if they have

exactly the same elements. For example, the following formula is true: r. *left=r+r. ^left.

However, the formula r. *left=r. ^left is false if the tree is acyclic.

Notice that you can test set inequality by putting the ! operator before the =

operator. For example, the following formula: r. *left!=r. left is true if the sets r. *left

and r. ̂ left are unequal.

B.2.2 Subset Checking (:)

Alloy provides an operator that checks whether a set is a subset of another set or

not, which is the mathematical operator (C). The resulting expression is a boolean

formula. For example, the alloy expression r. "left:r. *left would return true since
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r. *left includes all the elements in r. left. However, the mirror expression r. *left:r. ̂ left

would return. false since r. *left includes r but r. ̂ left doesn't (again, only of the tree

is acyclic.)

Similar to set equality, you can add the ! operator before: to indicate the negative

of this operation. The following formula: r. *left !: r. ^left, for example, asserts that

the set r. *left is not a subset of r. left.

B.2.3 Element Containment (in)

'This operator is Alloy's implementation of the mathematical element containment

operator(C). The Alloy operator takes two sets and checks that the left operand is

contained in the right operand, with the condition that the left operand has to be

a singleton (i.e. the set has one element only.) Note that this expression is also a

boolean formula. For example, the Alloy expression r in r. *left would be true, but r

in r. ^left would be false.

By prepending the operator to the in operator, you can assert that an element

is not contained within a set. For example, the formula: r !in r. ^left checks to make

sure that r. left does not contain the element r.

B.2.4 Integer comparison

Alloy provides simple integer comparison operations that result in boolean formulas.

The usual operator (=, >, <, >=, =<) are provided. For example, the formula 1=1

is true. On the other hand, the formula 1>1 is false.

Like in set comparison, one can use the ! operator before any of these integer

operators to negate the formula. Thus, The operator !=< reads "not less than or

equal", and the operator != is "not equal" and so on.

-B.2.5 Logical Operations (&&/II/<=>/ => ,)

Alloy has support for logical operators that compare formulas. These operators carry

the same meaning in Alloy as they do in Mathematical Logic. The && operator is the
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logical "and" and the II operator is the simple logical "or". The <=> operator is the

equivalence operator (i.e. both formulas are true, or both are false). For example, the

formula (1=1 && 2>1) is true. However, the formula (r in r.*left <=> r in r. ̂ left)

is false.

The last logical operator in Alloy is the then-else operator (formulal=> formula2,

formula3). This operation works by looking at formulal and based on it, one of the

next two formulas is chosen. If formulal is true, then the result of the whole operation

is based on the result of the formula2 (following the "=>" operator.) Otherwise, the

result of the operation depends on the result of the formula3 (following the comma

"," ). For example, consider the formula: (1=1 => 2< 1, 2>1 ). Since the first formula

1=1, is true, the result of the whole expression is the result of the formula 2< 1. Since

this last formula is false, the whole expression becomes false.

Note that the else section of if-then-else is optional. A user can write: formulal

=> formula2. If formulal is true, then the result of the whole formula depends on

the result of formula2. However, if formulal is false, then the whole formula is false.

B.2.6 Quantified Formulas

Quantifiers are considered one of Alloy's most useful expressions for two reasons.

First, they allow implicit formula checking on all elements of a set without need for

an explicit traversal. Second, these operations are intuitive to use since they rely on

familiar notations such as V and 3.

The first form of quantified formulas is (quantifier var:set I formula). In this form,

quantifier is one of the following keywords: all, some, no, sole, one, and two. Please

refer to table B.3 for an explanation of each of these quantifiers and the equivalent

mathematical formula. The var in this form is the variable that spans the elements of

the set. The formula is the condition being tested on each member of the set, usually

involving the variable var.

We continue with an example of quantified expressions to make them clearer.

Consider the formula all x:r. *(left+right) x. right = x. left. This formula is equivalent

to the question: in every node of the tree, are the left and right children of this node
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Quantifier Description Example Mathematical Expression
all V all n:r.^nextln!=r Vn E {r.next, ...}: n r
no no n:r.^nextln!=r ~n E {r.next, ...}: n r

some some n:r.^next n!=r 3n E {r.next,...}: n y r
one exists exactly once one n:r.^nextln!=r 31n E {r.next, ...): n f r
two exists exactly twice two n:r.^nextln!=r 32n E {r.next, ...}: n r
sole exists 0 or 1 times sole n:r.^nextln!=r

Table B.3: AAL's Quantifiers

equivalent? If there is one node in the tree that has a left child that is different

from the right one, then this whole formula is false. One the other hand, the formula

some x:r. *(left+right) x. right = x. left asks the question: are there any nodes that

have a right child that is equivalent to the left child? If there is such a node, then

this formula is true. However, if all nodes of the tree have distinctive right and left

children, then this formula is false.

Another type of quantified formulas is directly related to the cardinality of sets. It

has the form: quantifier set, where the quantifiers are the same as the other form. For

example, consider the formula: no r. *(left+right). This formula asks the question: is

the tree empty? That is: is it true that there are no elements in the set r. *(left+right)?

Similarly, the formula one r. *(left+right) ensures that there is exactly one node in

the tree.

B.3 Alloy Integer Expressions

There is a limited support for integers in the current MintEra release, but further

work is expected to be done to have better integer operations. Here, we describe the

integer operators that currently exist in Alloy.

B.3.1 Element Count (#)

The element count operator simply finds the number of elements in a given set. Take

for example the expression #r in the above tree implementation. Since there is only
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one root element, the result of that expression is 1. On the other hand, the expression

#(r. *(left+right)) returns the total number of nodes in the tree.

B.3.2 integer arithmetic(+/-)

Alloy provides integer arithmetic operations to manipulate integers. Addition and

subtraction are the only operations provided. The output of this operation is an

integer which is the result of the addition or subtraction: 1+1 is 2, #r-1 is 0, and so

on.

B.3.3 Java int Variables

Since Alloy treats all variables as expressions (i.e. sets), there is a need to distinguish

integer variables that exist in Java. If the user is writing assertions in Alloy, then

they should include a casting operator (int) before using that variable. MintEra will

treat that variable as an integer. For example, the statement (int x)> 1 tests whether

the integer variable x is greater than 1. If the statement was written as x > 1 it would

result in an error. The user can uses normal numbers (such as 1,2..etc) with such

variables.

If the user is writing representation invariants using integer variables, they will

be considered as signatures in Alloy. Thus, there is no need to cast them with an

(int) operator. However, when trying to compare an integer variable and a normal

number (such as 1,2,...etc), then the user should use the function equals to convert

normal numbers to a type similar to the Java variable. They user should also always

use the functions LE, GE, LT, GT for =<, >=, <, >. For example, to check if the

Java variable x is greater than one, we write GT(x, equals(1))3 .

3 The reason behind this discrepancy between assertions and representation invariants is that
the Minshar and TestEra tools have been implemented separately. Each tool has used a different
mechanism for dealing with integer variables that better suites its purposes. We hope to alleviate
this discrepancy by having a better model for integers in MintEra
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B.3.4 if-then-else Condition for integers

Similar to the if-then-else expression for expressions, the if-then-else condition for

integers allows choosing an integer expression based on a condition. For example, in

the expression if (r in r. *left) then #r else 2, the formula r in r. *left is true, so the

result of the whole expression is the integer #r, or just 1.
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Appendix C

MintEra Example

We provide a complete example of how MintEra generates and verifies testcases from

an annotated Java file -a complete linked list implementation. Notice the represen-

tation invariant and assertions embedded within the following program:

import java.util.*;
public class List {

public Node header = new Node();
public Node end = header;
int size = 1;
/*Q
repok: some m: this.header.*nextl no m.next
no this.end.next
some this.end
some this.header
this.end in this.header.*next

*/
public static class Node {
public Node next;
public Object element;

}
public boolean add (Object o) {

/*Q
assert: no this.end.next

*/
Node n = new Node();
end.next = n;
n.next = null;
n.element = o;
end = n;

/*Q
assert: some m: this.header.*nextl no m.next
some o => o in this.header.*next.element
no this.end.next
this.end in this.header.*next

*/
size++;
return true;

}
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public boolean remove (Object o) {
Node p, n = header;
p=n;
/*Q
assert: some m: this.header.*next Ino m.next

*/
for(; n!=null; n = n.next){
if(n.element==null&& o==null)
break;

if(n.element.equals(o))
break;

p = n;

}
if(n==null) {

/*Q
assert: some o=> o !in this.header.*next.element
some m: this.header.*nextl no m.next
no this.end.next
some this.header
this.end in this.header.*next

*/
return false;

}
p.next = n.next;
if(end==n)

end = p;

/*Q
assert: some m: this.header.*nextl no m.next
no this.end.next
some this.header
this.end in this.header.*next

*/
return true;

}

public boolean contains(Object o) {
/*Q
assert: some m: this.header.*next I no m.next

*/

Node n;
for (n = header; n!=null; n = n.next) {

if(n.element == o) {

/*Q
assert: o in this.header.*next.element
some m: this.header.*nextl no m.next
no this.end.next
some this.header
this.end in this.header.*next

*/
return true;

}

/* e
assert: o !in this.header.*next.element
some m: this.header.*nextl no m.next
no this.end.next
some this.header
this.end in this.header.*next

*/
return false;

public Object get(int index) {
if(index>size-1)
return null;
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assert: some m: this.header.*next I no m.next
(int index) < #(header.*next)+l

*/
Node n;

int i;

for (n = header,i=l; n!=null&&i<index; n = n.next,i++);
/*Q
assert: some n
some m: this.header.*nextl no m.next
no this.end.next
some this.header
this.end in this.header.*next

*/
return n.element;

To run MintEra, the user provides the method to be tested, as well as the location

of the above Java file. Assume the user wants to test the remove method. Note that

MintEra translates all the assertions in the file, since remove might call another

method where an error might occur.

From the Java class and the representation-invariant, the tool generates three

Alloy files. The first model is the ListNode one representing the List.Node class:

module ListNode

open java/lang/Object

sig ListNode {
next: option List_Node/List_Node,
element: option java/lang/Object/Object

}

MintEra also generates the List model representing the List class:

module List

open java/primitive/integer
open List_Node

sig List {
header: option List_Node/ListNode,
end: option List_Node/List_Node,
size: option java/primitive/integer/integer

}

Finally, the tool generates the removeinput model, used to generate testcases:

module List/remove_input

open java/lang/'Object
open List
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open java/primitive/integer
open List_Node
open java/primitive/boolean

static sig Input {
o: option java/lang/Object/Object,
this_: List/List

}

fun List/List::repOk() {
some m: this.header.*nextl no m.next
no this.end.next
some this.end
some this.header
this.end in this.header.*next

}

fun inputConstraint() {
Input::this_..repOk()
}

run inputConstraint for 3 but Input, 2 boolean

Notice that the state information no longer exists in the input model. These Alloy

files are hidden from the user, who does not have to worry about understanding them.

However, MintEra uses these files to generate examples in the form of binary arrays.

It then stores them in a file called List-remove.sol. The tool then loops through the

testcases one by one, converting them into Java concrete instances. MintEra runs

the remove method on each one of these testcases and catches any thrown excep-

tions. It stores these exception, along with the binary array representing the testcase,

for visualization purposes. AAL assertions throw an exception called MinsharFailed-

ConstraintException. Seeing such an exception means that an assertion has been

violated.

While running the above example, the tool has passed 71 testcases, and failed 29

(out of 100). The tool visualizes the testcases that have failed and informs the user

of the exception message. Figure C-1 shows some of the visualized testcases that the

remove method had not passed. These testcases failed because of a NullPointerEx-

ception that is thrown within the method remove, in the line:

if(n.element.equals(o))

After careful inspection of the remove method, along with the visualized testcases,

we notice that in the code section:
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if(n.element==null&& o=null)
break;

if(n.element.equals(o))

the user checks n. element being null in the previous line. However, it is checked

with another condition: that o is not null. Looking at the testcases, we notice that

all of them include a non-null o, but at least one element in the list is null. We can

fix the problem by changing the above segment to:

if(n.element==null && o==null)
break;

if(n.element!=null && n.element.equals(o))

After running MintEra again, the method passes all testcases, suggesting that we

might have fixed the problem. Having a bigger scope, or different testcases could

surface the same problem, or perhaps discover other problems.
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