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ABSTRACT

STATIC STIFFNESS COEFFICIENTS FOR
CIRCULAR FOUNDATIONS EMBEDDED

IN AN ELASTIC MEDIUM

by

FARID ELSABEE

Submitted to the Department of Civil Engineering
on May 9, 1975 in partial fulfillment of the
requirements for the degree of Master of Science
in Civil Engineering.

Approximate empirical relations for the
static stiffness coefficients of circular
foundations embedded in (or resting on) a
viscoelastic homogeneous stratum (or half-
space) are developed. The relations are
obtained from a parametric study using a
finite element technique. Approximate fre-
quency dependent functions for the stiffness
and radiation damping coefficients, and
equivalent constant viscous damping ratios
have been suggested.

The approximations are used to obtain
the response of a rigid cylinder embedded
in an elastic stratum which compares well
with the response obtained using frequency
dependent stiffness functions from a finite
element analysis.

Thesis Supervisor: Robert V. Whitman
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1.- Introduction:

1.1 Statement of the Problem:

Considerable amount of research has been done in recent years

to improve and develop effective solutions for the dynamic

response of foundations embedded in a stratum or an elastic

half-space. This problem is of special interest in the study

of soil-structure interaction as it relates to the seismic

analysis and design of structures.

Soil-structure interaction is often accounted for in analyses

by a set of springs, one for each degree of freedom, rep-

resenting the soil stiffnesses. These springs are derived

from theoretical solutions of the surface footing problem,

for ideally elastic, homogeneous, isotropic half-spaces.

Footings of buildings, however, are usually founded beneath

the surface of the ground. This has in many cases consider-

able effect on the dynamic response of such footings in that

it increases the resonant frequencies and reduces the reso-

nant amplitudes. The solution of the embedded footing problem

is a very difficult one to obtain by rigorous analytical

methods, thus only approximate analytical solutions were

obtained. Finite element and other techniques were then used

to solve the problem for these complicated geometries. A main
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problem encountered in numerical solutions for dynamic cases,

based on finite element or finite difference techniques, is

usage of the proper boundary conditions at the edges of the

finite domain which will not result in undesirable reflection

of waves into the region of interest. This problem was over-

come by Waas (41) for layered media. His solution was then

generalized by Kausel (21) and extended for the analysis of

axisymmetric systems (e.g. nuclear power plants) subjected to

arbitrary non-axisymmetric loads or displacements. A similar

procedure was also followed by Liang (25) for the case of a

strip footing resting on or embedded in a soil stratum.

Two equivalent general approaches can be used to estimate the

dynamic soil-structure interaction effects:

A- The direct (or complete) approach in which the

whole system, soil and structure , is modeled and

analyzed together. The excitation or the earth-

quake motion is specified at some control point in

the free field.

B- The spring(or substructure) method, which consists

of three steps. First, the system with a massless

structure is subjected to the prescribed ground

motion, producing a displacement (acceleration)

vector in the structure. Second, the frequency

dependent subgrade stiffnesses are determined to
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yield the so called "soil springs". Finally the

response of the real structure, supported on the

frequency dependent soil springs, is computed

while the structure is subjected to inertial

forces proportional to the acceleration vector

obtained in the first step.

If certain simplifying assumptions are made, the second ap-

proach is a useful method of solution as it is easily under-

stood by the designer who has to successfully predict the

behavior of the real system. As will be explained in sec.1.3,

in many cases it is possible to omit the first step and, in-

stead, in the third step subject the structure supported by

the soil springs to the control motion applied directly under

the foundation. In such an analysis, the frequency dependent

stiffnesses are needed, and in many cases only the static

ones suffice.

The objective of this study is then to determine a simple

method to obtain the soil springs needed in calculating the

response of the real structure.
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1.2 Available Solutions:

This historical background section will be presented in two

parts. The first will include the studies made for surface

footings, while the second is reserved for embedded footings.

1.2.1 Surface Footings:

The dynamic response of foundations resting on an elastic

half-space and wave propagation theories are summarized in

Richart, Hall and Woods (35). In most of these theories, the

foundation is represented as a rigid circular cylinder and

the soil on which the foundation rests as an elastic half-

space. The elastic half-space representation by Reissner(34),

Sung (37), Bycroft (7) and others, idealizes the soil as a

homogeneous isotropic, elastic, semi-infinite medium. The

rigid foundation has six degrees of freedom: three in trans-

lation and three in rotation. In addition to the studies

discussed in Richart, Hall and Woods (35), many others have

investigated the dynamic response of surface footings, some

of which are listed below.

For the elastic, homogeneous, isotropic half-space case,

Awojobi and Grootenhuis (4) investigated the response of both

rigid circular and very long rectangular bodies for the
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vertical, torsional and rocking modes. Awojobi (3) discussed

the torsional mode for a rigid circular body, while

Grootenhuis (15) discussed the vertical, torsional and

rocking modes for a rigid circular or rectangular body (both

half-space and elastic stratum cases). Luco and Westmann(27)

investigated the vertical, horizontal, torsional, rocking

and coupled (rocking and sliding) modes for a rigid circular

disc. Veletsos and Wei (40) presented numerical results for

flexibility, stiffness and damping coefficients (for various

values of Poisson's ratio) over a wide range of dimensionless

frequencies for the rigid massless disc. Weissmann (43) pre-

sented expressions for the resonant frequency and resonant

amplitude of a rigid circular surface footing for the tor-

sional mode, while taking into effect the hysteretic damping

of the soil.

Experimental studies on the dynamic behavior of surface foun-

dations have been reported by many investigators. The follow-

ing comprises some of these studies for the circular surface

footing. The vertical mode of vibration has been experimen-

tally investigated by Eastwood (12), Fry (14), Chae (8,9),

Drnevich and Hall (11), Grootenhuis and Awojobi (16), Stokoe

(36) and Erden (13). Both the torsional and coupled (rocking

and sliding) modes have been investigated by Fry (14), Stokoe
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(36) and Erden (13).

1.2.2 Embedded Footings:

Most of the above mentioned studies apply to ideally elastic,

homogeneous, isotropic half-spaces, assumptions which do not

apply to many practical cases. Soils are usually non-homoge-

neous and found in layered strata. Also, most structures are

embedded and thus it is necessary to investigate the effect

of the embedment on their response.

Approximate analytical solutions of the embedded rigid circu-

lar footing on an elastic half-space for the vertical, hori-

zontal and rocking modes were presented by Baranov (5), Novak

and Beredugo (32) and Beredugo (6) (he also included embed-

ment in elastic stratum for the vertical mode). Approximate

equations of rocking motion are given in terms of input earth-

quake acceleration, spring constant and damping by Tajimi(38)

for a rigid cylindrical body completely embedded in an elastic

stratum. Frequency independent stiffness and damping param-

eters were approximated by Novak (31) for the vertical, tor-

sional and coupled (rocking and sliding) modes of the rigid

circular footing on an elastic half-space, while the tor-

sional and coupled (torsional, horizontal and rocking) modes

for the same footing are presented by Novak and Sachs (33)
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for both half-spaces and elastic strata.

Finite element solutions were obtained for a rigid circular

footing embedded in an elastic homogeneous half-space by

Kaldjian (19), Kuhlemeyer (24) and Lysmer and Kuhlemeyer(28),

for the vertical mode; Kaldjian (20) for the torsional mode;

Waas (42) for the vertical and torsional modes (he also in-

cluded both homogeneous and layered cases); Urlich and

Kuhlemeyer (39) for rocking and sliding, Johnson and Christi-

ano (18) for all modes, while Kausel (21) presented a model

applicable to all four modes for layered media. Krizek,

Gupta and Parmelee (23) presented the rocking and sliding

modes for an infinitely long, rigid footing embedded in

homogeneous, isotropic and linearly elastic half-space.

Experimental studies on the dynamic behavior of embedded

circular footings were made by Anandakrishnan and Krishna-

swamy (1), Chae (10), and Gupta (17) for the vertical mode of

vibration. Stokoe (36) and Erden (13) presented the vertical,

torsional and coupled (rocking and sliding) modes.

The soil springs for complicated geometries (embedment and

stratum depths) can be obtained more accurately using finite

element techniques, rather than approximate analytical methods.
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But such a solution can amount to high computation costs.

Thus a parametric study, using a finite element technique, of

the embedment and stratum depths for the soil stiffnesses

can be quite advantageous. Such a parametric study is the

objective of this investigation.

1.3 Scope of this Work:

Traditionally, the earthquake motion in the interaction

analysis using the spring method has been specified directly

under the foundation using the half-space soil springs. A

more careful consideration (22) shows, however, that at least

three steps are necessary for a rigorous solution of embedded

foundations. These steps are (the spring method, see fig 1.1):

A- First, the motion that would occur at the mass-

less foundation is determined. This step is

eliminated for surface footings when the motion

is specified at the free surface of the soil,

and when one dimensional theory (only vertically

propagating waves are assumed) is used. In the

case of embedded footings, this step is theore-

tically necessary and both horizontal motion

and rocking are expected to occur at the massless

foundation.

B- Frequency dependent stiffnesses ("springs") are
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then determined to model the soil media. A great

amount of research has been devoted to this step.

In numerical solutions, the mathematical model

of the soil is based on finite elements or finite

difference schemes. The system is then analyzed

in the frequency domain.

C- Finally, the dynamic analysis of the structure

is performed, using the stiffness functions com-

puted in B- to reproduce the soil, and the motion

derived in A- as input. This analysis can be

performed either in the time or frequency domain.

The latter is theoretically necessary due to the

frequency dependence of the soil stiffnesses.

If the analysis was to be done in the time

domain, certain approximations would have to be

K I KXP
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used to account for the frequency dependence of

the subgrade stiffnesses (soil springs).

However, the frequency solution is limited to linear problems

since it is based on the applicability of the principle of

superposition. The non-linear soil behavior must then be

simulated using an approximate method which introduces an

iterative analysis where modulus and damping are adjusted

in each cycle according to the measure of strain resulting

from the previous cycle.

The first step becomes quite important for the embedded

foundation case. The problem requires the use of finite ele-

ments or finite difference techniques, but the structural

degrees of freedom are neglected and only an embedded

massless rigid footing is considered.

Since only three degrees of freedom are needed to describe

the motion of a rigid footing (in a plane), the structural

displacements in the first step can be expressed directly in

terms of these motion components. As shown in ref. (22), the

third step can then be performed subjecting the base of the

structure to a prescribed translation (rotation) equal to

that of the massless rigid foundation instead of applying the
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inertial forces to the structure. It is beleived that conser-

vative results can be obtained if the motion obtained from

the first step is approximated by the control motion, and the

rotational component is neglected. Since the main purpose of

this study is to compare true and approximate static stiff-

nesses, this procedure will be used throughout.

After obtaining the components of motion of the massless

foundation, the frequency dependent soil stiffnesses are

computed in the second step. The procedure is to subject the

base of the foundation, which is assumed to be infinitely

rigid and massless, to unit steady state harmonic displace-

ment and rotation, and calculate the corresponding reactions.

The following approximations to this step are listed in

probable order of decreasing accuracy (22):

- Determine the static stiffnesses of the embedded

foundation by finite elements and assume the same

frequency variation as for a surface footing on

the actual layered medium.

- Apply a scaling factor to the frequency dependent

stiffnesses of the surface footing on the layered

medium, to account for embedment.

- Apply the static stiffnesses of the actual condi-

tions to the frequency variation of an elastic half-

space.
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- Use frequency independent stiffness functions

obtained by finite elements.

- Use frequency independent stiffness functions

obtained by applying the derived scaling factors.

- Use the frequency dependent stiffness functions of

the surface footing on an elastic half-space.

- Use the frequency independent stiffnesses of the

surface footing on an elastic half-space.

It was suggested in E. Kausel's doctoral dissertation (21),

that for an embedded footing the static values are approxi-

mately linearly dependent on the embedment and stratum depths.

Thus, once these relations are determined, they can be used

with some frequency variation obtained from previous studies,

resulting in considerable savings in computation costs.

This study aims in determining approximate simple rules (the

scaling factors), for the static stiffness coefficients of

embedded rigid circular footings in a stratum of soil resting

on a rigid half-space. The sidewall is also taken as rigid

as the footing. These assumptions apply mostly to the reactor

containment structure of nuclear power plants. These struc-

tures are usually resting on a rigid circular plate embedded

in a stratum which lies on a rigid half-space, i.e. rock. The
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sidewalls of the containment, which is embedded, are also

considered rigid. The soil is considered homogeneous, isotro-

pic and linearly elastic with hysteretic damping. For simpli-

city the stratum is considered homogeneous throughout the

whole domain. The effect of layering as well as flexibility

of the walls will also be discussed later. A computer program

written by E. Kausel, hereon referred to as "TRIAX", based

on his finite element solution (21) (using the special energy

absorbing boundary described in 1.4), will be used in the

determination of the simple rules.

The parametric study of embedment and stratum depths is

presented in chapter 2. Two typical values for Poisson's

ratio will be used ( =1/3 60.45). The simple rules for the

static stiffness coefficients will be determined graphically.

Further study of the effect of weaker backfill, soil layering

and flexible sidewalls is also included.

In chapter 3, a comparison of the model used with those of

other studies is presented. Comparison of results, of a

dynamic analysis of a rigid structure, using the simple rules

and the exact stiffnesses obtained from the finite element

program for the exact conditions, is included in chapter 4.

The comparisons will be in terms of the floor (amplified
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Fr4.12: DESCRIPTION Or THE MODEL

acceleration) response spectra and transfer functions at the

bottom and top of the structure. Conclusions and recommen-

dations are finally presented in chapter 5.

1.4 Description of the Model:

In the finite element formulation, the geometry of the soil

is idealized by two regions. The finite irregular region

around the footing is connected to the semi-infinite far

field as shown in fig 1.2.

Radiation propagates both vertically and laterally. The boun-

dary condition of the irregular region to be used is dictated
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by the fact that the radiation of waves away from that region

into the far field causes a loss of energy. This boundary

condition can be modelled exactly (41,21) when a stratum of

soil is resting on a material with higher stiffness proper-

ties(e.g.rock), which is the actual case in most practical

problems. In such cases, the vertical radiation into the half-

space is a small fraction of the lateral radiation in the

stratum which occurs only above the fundamental frequency of

the stratum. Thus the proper boundary conditions should be

of major concern above this fundamental frequency. It is also

known that very elongated elements in the horizontal direc-

tion will automatically enforce a one dimensional shear type

behavior and they will eliminate any lateral radiation.

Such a boundary, representing the actual condition of the

finite element columns extending to infinity, has been

developed by Waas & Lysmer (30,41) for the two dimensional

plane-strain case and the torsional or vertical vibrations

of a circular footing. This boundary has the great advantage

that it can be located directly at the edge of the footing,

with excellent results, leading to an economical and more

accurate solution than previous ones by Lysmer and Kuhlemeyer

(28,29) or Ang and Newmark ( 2) who developed viscous type

boundaries based on a perfect absorption for specific types

of waves and incidence angles.
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Kausel (21) has recently generalized Waas and Lysmer's

boundary to the case of arbitrary Fourier number and expansion

order in the finite elements. He has represented the irregu-

lar region by means of toroidal finite elements of arbitrary

expansion order having three degrees of freedom per nodal

ring. In the following study, linear expansions (with four

nodes) will be used to minimize computer costs without

significant loss of accuracy. The far field is represented

by the semi-analytic energy absorbing boundary based on the

exact displacement functions in the horizontal direction

and expansion in the vertical direction consistent with that

used for the finite elements.
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2.- Parametric Study of Static Stiffness Coefficients:

The effects of embedment on a rigid circular plate welded

to a soil stratum, with rigid sidewalls also welded to the

lateral soil, subjected to a static displacement and rotation

are studied. Approximate correction factors, to account for

the embedment effect, are derived and applied to the static

stiffnesses of a surface footing resting on a viscoelastic

stratum on top of a rigid rock base, or on an elastic half-

space. The effects of weaker backfill, soil layering and

flexible sidewalls are also briefly investigated.

2.1 Method of Solution:

The stiffnesses for the two planesymmetric displacement modes,

rocking and swaying, are discussed. The rigid circular plate

and sidewalls are idealized by massless finite elements with

very high rigidity (10% times greater than that of the soil)

and the lateral soil is assumed homogeneous throughout the

stratum, unless otherwise stated.

The plate is subjected to a unit displacement (or rotation)

at the plate-soil interface, and the force (or moment)

necessary for equilibrium which by definition is the stiffness,
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is computed using TRIAX. The forced horizontal displacement

case will be referred to as the swaying mode, while the forced

rotation about a horizontal axis as the rocking mode.

The accuracy of the results derived by a finite element

analysis is very dependent on the refinement of the mesh used.

As one uses finer elements, the theoretical solution is ap-

proached. It was concluded from Kausel's dissertation(21),that

the rate of convergence of the static stiffness coefficients

(for the swaying and rocking modes) to the continuum solution

is approximately a linear one. When finite elements with

linear expansions are used: "...the relative error in the

displacements should be proportional to the square of the

typical element size. Stresses and forces are given with less

degree of accuracy: as they depend on the partial derivatives

of the displacements, the error for them should be approxi-

mately linear. The spring constants are determined as reaction

forces, and therefore, should converge at an approximate

linear rate towards the continuum solution as the mesh is

refined." This result suggested a useful linear extrapolation

procedure to determine static continuum stiffnesses with the

aid of a coarse and a fine mesh. This procedure will be used

throughout this study.
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The swaying and rocking stiffness functions can be written in

the following form (21):

Ka= Ko (kl+ iaoc, ) (1 + 2i4, ) for swaying (2-1)

K= Kf (kx+ iac) (1 + 2i##) for rocking (2-2)

where:

- K and K are the real parts of the static

stiffnesses, thus called static spring constants.

- a is a dimensionless frequency and is defined

JLR
by a -C

- R is the radius of the footing

- Cs is the shear wave velocity

- k, , k, c,, Ca are the stiffness and radiation

damping coefficients, and are functions of the

dimensionless frequency a.

The hysteretic damping coefficent4A is identical to the

material damping coefficentf in the soil when the latter is

constant throughout the homogeneous stratum. This internal

damping in the soil, which is irrelevant for static problems,

is assumed to be constant with a value of five percent of

critical.

For dynamic problems, it was suggested in (21) that the finite

element mesh for swaying, near the plate, should be smaller

than 1/6 to 1/8 the shortest shear wave length of interest,

and smaller than 1/3 to 1/4 the shortest shear wave length
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throughout the finite element region. Because only the static

stiffness coefficients are of interest in this parametric

study, this rule does not apply. However the meshes will be

chosen such that the elements are square with no less than

four rows of elements below the footing to insure adequate

representation of the subgrade in the region with high strain

gradients. Also a correction (as described below) will be

applied to account for the discretization error.

2.2 Effect of Stratum and Embedment Depths on the Static

Stiffness Constants:

Stratum and embedment depths will influence the stiffness

functions over the whole frequency range. They are known to

increase the static values of the half-space stiffness

functions, and affect their frequency dependence. The half-

space functions were calculated by Veletsos and Wei (40).

Kausel (21) presented the following approximate empirical

relations for the static stiffness constants (for a surface

footing), which correct the half-space values for the

homogeneous stratum depth:

Z K(H)- 2-9 ) (2-3)

+ 6 3(R (8G 6 (2-4)
~~b~ H 3( ,o) 
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where: -KXo and Kao are the half-space static stiffnesses

-H is the stratum depth as defined in fig 1.2

-G is the shear modulus of the soil and is defined

by G = 

- is the mass density of the soil

One can define a point at a distance h above the plate footing

(for either a surface or embedded plate), referred to which

the cross coupling term of the stiffnesses is zero. This

point is denoted as the center of stiffness and is given by

h = K / K.,,, where K is the static coupling term. For

surface footings, h is small and results in a small value

for the coupling term and thus is usually neglected.

Parametric studies are performed for the following nine cases:

H/R = 2. and E/R = .5, 1., 1.5

H/R = 3. and E/R = .5, 1., 1.5 where E is the

H/R = 4. and E/R = .5, 1., 1.5 embedment depth

For all models used R, C and P are set to unity. The struc-

tural properties used are: 10' for weight density, 10' for

shear wave velocity, and 0.167 for Poisson's ratio (9).

First, the extrapolation procedure is tested for H/R = 2.

and E/R =0.5. Three meshes are tested and the static stiffnes-

ses plotted vs. the inverse of the total number of layers

(fig 2.1). Thus we see that the extrapolation procedure appears
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valid for the coupling term as well as for swaying and rocking.

This procedure, using a fine and a coarse mesh is used in all

other eight cases. Tables 2.1 and 2.2 summarize the results

for the two sets of runs: = 1/3 and 9= 0.45. The values for

E/R = 0 (surface footing) are obtained from equations 2-3 and

2-4, where the effect of embedment was not considered but

accounting for stratum depth.

2.2.1 Swaying and Rocking:

As was mentioned previously, the aim of the parametric study

is to determine approximate coefficients, to be applied to

equations 2-3 and 2-4 to include the effect of embedment on

the static spring constants. These coefficients are determined

by evaluating:

KxO (2-) and 3 Kp (I-')

8GR(i+l B) 8gJ3 (1+6)

from the static continuum values for all cases(see Table 2.3).

For swaying, we see that for all practical purposes, the

values of the coefficients for = 1/3 and 9 = 0.45 are the

same. Therefore we can conclude that for a homogeneous stratum

the coefficients are independent of the soil properties. For

rocking, on the other hand, we see a maximum difference of 10%

between the two sets of coefficients. This difference can be

traced back to two origins:
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1) The extrapolation procedure, even though is

theoretically correct, can result in small

inacurracies.

2) Even though equations 2-3 and 2-4 are assumed

correct for this study, during the derivation

of the coefficient (1+1/6 R/H) for the effect

of stratum depth (21), the author showed that

in the rocking mode the coefficient was not

completely independent of Poisson's ratio.

However, this dependence was neglegible and

the coeffecient was derived for the case

9 = 1/3.

This small difference, between = 1/3 and = 0.45, can be

neglected again as it is a small and negligible one, and the

case = 1/3 will be used. Figs 2.2 and 2.3 show the dependence

of these coefficients on the stratum depth ratio R/H.

From figs 2.2 and 2.3, we see that the relationship is a

linear one up to approximately E/H = 1/2 . A non-linear

relation then exists after that point. It is possible that

this limit is larger than 1/2, but this is not evident from

the figures. Eventually, when the embedment and the stratum

depths are equal, the stiffnesses will reach approximately

the half-space solution taking G and ) as the properties of
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the rock (see fig 2.4). Actually, the lateral soil will still

exist, but will not noticeably affect the stiffnesses.

Therefore, the relationships which are to be derived will

apply only when E/H 1/2. The majority of containment struc-

tures for nuclear power plants fall within this range.

The relations of interest proposed here are of the following

I ·

K.- r 0
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forms (see figs 2.2 and 2.3):

K, =8R (,+ ^I R 84Rf(1 R)( \ ( 2-5)

Kc=O 8- (+ -R )(C = 8G (i &6 H)+ R) (2-6)

Kand C are the slopes of the straight lines, and K and 

are the intercepts of the straight lines. Notice that all

four parameters are functions of E/R. Calculating ,, 9and

and plotting them as functions of E/R we obtain the results

tabulated in table 2.4 and plotted in figs 2.5 and 2.6.

Table 2.4: Y,/(, 3 and C/ as functions of E/R

swaying rocking

E/R ( I /_I C c /
0. 1. 0. 0. 1. 0. 0.

.5 1.45 1.05 .72 1.9 .6 .31

1. 1.7 2.2 1.29 3.1 2.2 .71

1.5 2. 3.6 1.8 5. 5.2 1.04

Figs 2.5 and 2.6 exhibit a linear dependence of r, or and C/1

on E/R. However, ( is linear only up to E/R = 1., beyond

that point divergence from linearity seems to exist. This

divergence from linearity can be neglected, for practical

purposes, and will be approximated as a straight line. It

follows then, that the static springs can be obtained from
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the approximate empirical relations:

KX= R E (l+ E for E/H41/2 (2-7)

K0= i+o 6 )(1+Z )(l+O.71 ) for E/H-1/2 (2-8)

where Ko and K are the half-space static spring constants

for surface footings:

K~to ' nR and K(O 8GR
K - ;arid) 3Q-'( 

It is believed that for very shallow strata, the flexibility

of the base rock should be included in the analysis. This

may be of particular importance for deeply embedded footings

in shallow strata and is demonstrated using a study by Luco

(26). He presented a rigorous mathematical solution for a

surface footing sitting on two layered media. The first is a

soil stratum while the second is a stiffer half-space

representing the rock medium. He presented stiffness functions

for three different ratios of GRoC /GSoIL .Table 2.5 lists the

properties for the three cases and the ratios of the static

stiffnesses to the half-space values (derived from his study

for a = 0.). These ratios are plotted in fig 2.7.

The corresponding approximate ratios for the surface footing

are obtained from equations 2-7 and 2-8 by setting E = 0.

We obtain:

Kxo 1+ ' R and Ks + R (2.9)X0 k'P 0~ E



Ln LC

o 00 

o; 00 

iL) occ co o

o o C0
CO 00 C

V _

C. QIN Q ; 3·
(.; Q.:

(N

o N·

Ln Ln
N m

o r"

CqN c0

O 

0r
t;v N1-

0!~

H

0

EO04Ja)

'H

0
u

U)
En

0
0

0
-p
UI

.,,a4

U0

.i

U)

n o o
I o ,N o I

I cq .O
I 0 (N 1)

~ T I . . It I

I

:-T
T- I

I

LO
r- (N

- I 
I 1 

co L) No I I * o
'- I I -

00 00 0
o I r- (N

I I

C L() C? N
, - C(N m

o I- T-

44

U2

-H

0
0
t)

0

U)

Oa0 rd

0 O-I(d mJ- -0

U)
w1

U)
rd

0 Q)

Ln

(N

Eq

U)

(d

N

U)
U)
rd
U

U
0

En

N

0

Cd

C-

U

V

'In

U0
En

0

0N

(a

0UI)CdU

{/}
U)
0

U)
)

-H

)

0
ia-

-H

05.-
U4

-H

.,

>1
rd
U)
U)

I iiirl

-

-
-

I
iII

__

- II I I i li I

I--,

I

I

I

T



case 2

case!

R ocKINQ

I / .r

z

C

S wn qr/j
I

10 2.0

FG.2- 7: S-rT4qrC

I

3.0 4.0

RATIOS DERIV£D FROM

Luco's 3rUDY

45

( 6

5.o k/H

j

KdT



46

These ratios are also included in fig 2.7. For the rocking

mode the approximate ratio agrees well with Luco's values for

all three cases in the region R/H4 1. On the other hand, the

approximate ratio for the swaying mode, agrees perfectly with

Luco's case 3 (rigid rock). This comparison demonstrates that

the rock flexibility cannot be disregarded for very shallow

strata, say H/R 1.

2.2.2 Coupling Term:

When a plate, whether at the surface or embedded, is rotated

at the base, a certain amount of horizontal force will

develop. Thus a coupling term will always exist. For an

embedded footing it is more pronounced than for a surface

footing. Table 2.2 lists the coupling terms obtained from

TRIAX for the coarse and fine meshes. The extrapolation

procedure is also used to obtain the continuum values. The

height of center of stiffness (h= Ko0 /K ) is then calculated

and listed in table 2.6. Fig 2.8 shows the relationship

between h/R and E/R. We see that the static coupling term

is also linear (with respect to E/R) in the region where

E/H 1/2. Again when E/R = H/R, we reach approximately the

case of a surface footing on a half-space (rock). For such

condition h is very small, thus we expect h/R to decrease

as E/R approaches H/R (see fig 2.9).
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It is also evident that h/R is dependent on , H/R and E/R.

The dependence on the first two parameters is relatively

small and could not accurately be determined. For practical

purposes, it is possible to approximate h/R as independent

of and H/R, as follows (heavy line in fig 2.8):

h/R =0.4 E/R - 0.03 for E/H! 41/2

Thus we can approximate the coupling term as:

K = h Ko

= (0.4 E - 0.03 R) K for E/H1/2 (2-11)
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2.3 Effect of Weaker Backfill:

One of the assumptions made in the derivation of equations

2-7, 2-8 and 2-11 was that the soil next to the embedded

footing has the same properties as beneath it. However,

in realty, after the footing and the sidewalls of an embedded

structure are poured in place the rest of the excavation is

filled in, thus leaving disturbed lateral soil, producing

a weaker backfill than the soil beneath the footing. In

addition, soils are layered and their stiffness increases

with depth.

A new model for the case H/R = 2., E/R = 1. was developed.

The ratio of the thickness of the backfill to the radius of

the footing was taken as 0.1, while the shear modulus of the

backfill was taken as 0.81 times the shear modulus of the

undisturbed soil. The structural properties were unchanged

from the previous models. The static stiffnesses were then

calculated using TRIAX for the case = 1/3. The above ratios

were used because they represent actual values found in many

containment structures. Table 2.7 shows the results, where the

continuum values were obtained from the same extrapolation

procedure previously used.
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Table 2.7: Effect of weaker backfill for H/R=2., E/R=1., =1/3

Note: G is the shear modulus of the underlying soil

mode coarse fine continuum no backfill

KXO/G'R 16.876 16.750 16.62 16.84

Kt0/GR' 18.502 18.167 17.83 18.30

Kq)Io/CTR2 1 W 5.536 5.582 5.63 5.79

It is evident from the table that the static stiffnesses are

slightly decreased when the weaker backfill is considered.

However, due to the uncertainties of the soil properties, it

is possible for all practical purposes, to disregard this

slight decrease of the stiffnesses.

2.4 Effect of Flexible Sidewalls:

In the parametric study, the sidewall was assumed to be as

rigid as the embedded footing with a ratio of 106 for the

shear modulus of the footing to that of the soil, an assump-

tion needed to compute the soil "springs" in the second step

of the spring method discussed in section 1.3. This assump-

tion is not realistic, thus the effect of a flexible sidewall

must be evaluated. This effect is known to decrease the

subgrade stiffnesses, and it becomes necessary to determine

the extent of this decrease for most practical situations.
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Table 2.8: Effect of flexible sidewalls for E/R =1.; 9=1/3

Mode H/R

s
w 2.
a Ko
Y 3.
i GR
n 4.

g

r
o 2.

k X 3.

n 4.

g

c
o 2.

u vqo3.
1 GR'
i 4.

n
g

Flexible Sidewall
coarse fine cont.

16.874 16.295 15.72

13.754 13.334 12.91

12.607 12.248 11.89

18.009 16.334 14.66

15.784 14.330 12.88

15.187 13.807 12.43

5.238 4.572 3.91

4.187 3.651 3.12

3.744 3.265 2.79

Riaid Sidewall
cont.

16.84

13.75

12.60

18.30

16.12

15.51

5.79

4.64

4.16
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Three cases are considered: H/R = 2., 3., 4., with E/R = 1.

The soil and structural properties used are the same as in

section 2.2, except that the shear modulus of the sidewall is

reduced by giving it a value 80 times greater than that of the

soil, a factor commonly encountered in practice. The meshes

used, coarse and fine, are the same as the previous ones (used

in sec. 2.2). Table 2.8 lists the results.

Upon examination of Table 2.8, one notices that the rocking

and coupling terms are more sensitive to the sidewall flexibi-

lity than the swaying term. Two hypothetical extremes can be

considered to explain this effect (see fig 2.10). In one

extreme, the foundation has no sidewalls (or infinitely

flexible sidewalls), while in (b) the wall is infinitewly

rigid. The actual foundation wall corresponds to an inter-

mediate case between these two extremes. If a unit horizontal

displacement is imposed on these two foundation systems, the

force required to produce this displacement will not change

f/i

/ t /,I/ // 11
(a): NoSIDEWALL (b): IJTELY R1D

SIDEWALL

cn. 2.10: Two HYPOTHETICAL EXTREmrS
FoR SIDEWRSLL FLEXZSI.LT7r

7/~
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substantially, since only small tensile/compressive reaction

forces act on the rigid sidewall in case (b). Most of the

resisting force is offered by shearing stresses below the

plate. Rocking, on the other hand, is very sensitive to

changes in the stiffnesses of the lateral walls. This results

from the fact that the shearing stresses along the sidewalls,

which contribute to the rocking stiffness and are magnified

by the moment arm, decrease with increasing flexibility of

the sidewall. This decrease in the static stiffness coeffi-

cients is obviously a function of the extent of the sidewall

flexibility assumed. Further analytical and experimental

investigations are required to approximate the appropriate

decrease to be used.

2.5 Effect of Variable Shear Wave Velocity:

Up to this point, the stratum was taken to be homogeneous in

all directions. However, in real problems, the soil exists in

layers with the shear wave velocity, and thus also the shear

modulus, increasing with depth. If one chooses homogeneous

properties as existing at the foundation level, the static

stiffnesses will be over-estimated. Table 2.9 shows the

results obtained for the case E/R = 1., H/R = 2., = 1/3,

with the shear wave velocity varying from 0.5 at the surface
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Table 2.9: Effect of variable shear wave velocity for

E/R = 1., H/R = 2., ' = 1/3

Note: G is the shear modulus at the level
of the footing

to 1. at the foundation level and 1.1 at rock. These values

are chosen as they are frequently encountered in nuclear

power plants. When the soil shear modulus above the foundation

level is decreased, the effect noticed in the previous two

cases apply. The sensitivity of the rocking and coupling

terms is again evident. Further analytical and experimental

studies are needed to determine the approximate reduction

of the static stiffnesses.

mode constant C variable C5

KO/iR 1 6. 84 15.52

Ko,./&R 1' 18.30 15.4 6

K,~oo/Rl 5 v79 3.97
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3.- Comparison of Model Used with Other Studies:

In this section, comparisons of the approximate relations

derived in sections 2.2.1 and 2.2.2 with results by Urlich

and Kuhlemeyer (39) for the influence of embedment in a

half-space, and by Johnson and Christiano (18) for the com-

bined effects of embedment and stratum depths are presented.

Since the approximate relations provide a good fit to results

obtained from TRIAX, this section essentially provides

comparisons between the finite element model with the trans-

mitting boundary, used in this study, and other more "con-

ventional" finite element models. As was shown in section

2.2.1, the approximate relations are in good agreement with

Luco's theoretical results for surface footings on an

elastic stratum underlaid by a rigid base (case 3), and thus

provide reasonable validation for the empirical rules derived

in this study. Therefore this section will give insight into

the magnitude of the errors resulting from standard modeling.

3.1 Embedment in a Half-space:

Urlich and Kuhlemeyer (39) presented a numerical model which

was used to solve the problem of steady state coupled rocking

and lateral vibrations of footings embedded in an elastic
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half-space. They used an analytical model similar to that

described by Lysmer and Kuhlemeyer (28) for the steady state

vertical vibration of a footing embedded in an elastic half-

space. Three dashpots were used oriented perpendicular to

each other and located at each boundary nodal point with

one being normal to the boundary and two tangential to the

boundary. They expressed the coupled rocking and sliding

solution for the steady state displacement, u, and rotation,

V, of a surface or embedded rigid, weightless footing of

radius R as:

u F, F1 F e (3-1a)

RFs , RM el e

where Fj = f + igj is the dimensionless complex displace-

ment function, (fj and g are referred to as flexibility

coefficients), t is time,wis the circular frequency, i is

the imaginary unit, F and M are the excitation force and

moment amplitudes, respectively, and K,o and K are the

static spring constants for surface footings determined

from:

KX, =8GR and KO = GR (3-1b)
2-9 3(1-0)

However, for the static case, which is of interest in this

study, the above solution becomes:
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U1= FF, F: [;/KI;1 (3-2)

yR] sr 2RM

Taking the inverse of the flexibility to obtain the stiffness

matrix K, one obtains:

Kf2 f2 Ko -fz K. Ri (3-3)

D , ,f, K/R f 

where D = f,, fz - f~, f, ,and Fj have been replaced by fj

as g are zero for the static case. From Eq.3-3 we see that

the static stiffness coefficients have been expressed as:

Kxo = f2 Kx*o/D ; K = f,, K. /D (3-4)

K= ' -f, R. /D ; K,-f£l ko /RD (3-5)

Urlich and Kuhlemeyer showed that a relation exists between

fez and f :

f2 R Kf , /K o

Thus the expressions in Eq.3-5 become, as expected:

Key= K =-f3 iX? /RD

or the height of center of stiffness h (as defined in section

2.2.2) is given by:

_h = Ko = fro K = -(2-V)fl (3-6)

R? RK.O R 24 Ego 3O-J)

For the static solution, Urlich and Kuhlemeyer used boundary

conditions such that vertical and base boundaries of the mesh

were fixed from moving normally and free to move tangentially.

The dynamic dashpots were not used for the static solution as
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they are properly defined only for the dynamic case. Therefore

their static solution models more closely a footing in a

finite stratum (specifically H/R= 6.). They also used a

value of 9=1/3 for Poisson's ratio and five values for the

parameter E/R. Table 3.1 lists the static flexibility

coefficients (fLj ) which were obtained from plots of their

results. Eqs 3-4 and 3-6 are then used to obtain the static

stiffness coefficients K /K? , Ko /Ko and h/R which are

also plotted in figs 3.1, 3.2, and 3.3, respectively. The

corresponding approximate relations for K, /K.o and K /Ko

are obtained from Eqs 2-8 and 2-7 by setting 1/H = O.(for

half-space):

Ko/K o = 1 + 2E/R and KO /Ko = 1 + 2E/3R (3-7)

while h/R is obtained from fig 2.8 for = 1/3 and H/R =4.

Table 3.1: Static flexibility and stiffness coefficients

derived from Urlich and Kuhlemeyer's study.

E/R f f2z. fl, K.. /K ,K /K. h/R

0.0 0.91 0.92 0.08 1.11 1.09 -0.07

0.1 0.77 0.79 0.03 1.31 1.27 -0.03

0.25 0.65 0.64 -.01 1.53 1.55 0.02

0.50 0.55 0.47 -.06 1.80 2.12 0.11

1.00 0.45 0.28 -.11 2.05 3.33 0.33
. ,,l 
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These are also plotted in figs 3.1, 3.2 and 3.3 for comparison

along with the corresponding values for H/R = 6. Fig 2.8

is used, for h/R, rather than Eq. 2-11 due to its greater

accuracy, while H/R = 4. is the closest available value

to the half-space condition.

From figs 3.1 and 3.2 one sees that Kuhlemeyer's results

compare well with the approximate relations (Eqs 2.8). It is

apparent that their swaying and rocking solutions for surface

circular footings on an elastic half-space do not prefectly
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agree with rigorous analytical solutions, i.e. K = 8GR/3(1-9)

and K,,= 8GR/(2-9). These discrepancies do not occur in Eq. 3-7

due to the extrapolation procedure used for the correction

of mesh size. Other sources of error in Kuhlemeyer's solution

are the boundary conditions and the position of the

boundaries relative to the footing used for the half-space

representation. These boundary conditions, as mentioned

earlier, model more closely an H/R = 6. stratum rather than

a half-space. The swaying term seems to be more sensitive

to such modeling errors than both the rocking and the off-

diagonal coupling terms. On the other hand, if we apply the

approximate relations for H/R = 6. to account for the fact

that Kuhlemeyer's solution does not model the half-space

condition, then the agreement improves significantly. The

remaining differences are due to Kuhlemeyer's discretization

error and his lateral boundary conditions. This shows that

great care must be exercised for an accurate determination

of the static stiffnesses.

3.2 Combined Embedment and Stratum Depths:

Johnson and Christiano (18) dealt with the static load-

displacement behavior of circular and strip footings embedded

in an elastic stratum which is underlaid by a rigid base.
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They reported the results of static finite element analyses

of all modes describing the behavior of embedded footings.

Their finite element model consists of triangular elements,

base boundaries which prevent vertical and horizontal

displacements and vertical boundaries which prevent vertical

displacements alone. The methods for formulating the governing

stiffness equations follow the work of Wilson (45) for axi-

symmetric systems. They considered a rigid footing with full

continuity between the footing and the soil, so that possi-

bility of slip or cleavage, as in Kausel's model used for

determining the approximate relations, was precluded. Linear

isotropic soil was assumed throughout the stratum with a

Poisson's ratio 9= 1/4. Their results are presented as a

set of plots showing the ratios of the static stiffness

coefficients to the corresponding elastic half-space solutions

for surface footings (Eq 3-1b).

They concluded that the influence of embedment on the rocking

static stiffnesses is greater than for the swaying mode,

an effect which can also be predicted from the approximate

relations proposed in this study. They also concluded that

the inflence of the proximity of bedrock is greater for the

swaying mode than for the rocking one. Again, this effect

is also predicted by the approximate relations.
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Figs 3.4 and 3.5 present Johnson and Christiano's static

stiffness coefficients for circular footings embedded in an

elastic stratum for the rocking and the swaying modes

respectively. The corresponding values obtained from the

approximate relations (Eqs 2-8 and 2-7) are also included

for comparison.

Johnson and Christiano's static stiffness coefficients

compare well with the approximate relations. Their values

are always larger than those from the approximate relations,

and the difference between them appear to be approximately

constant for a specific embedment ratio. In the case of the

surface footing (E/R = 0.0) their values do not tend to the

half-space analytical solutions as H/R -- while the

approximate relations do. However, the general effects of

the embedment and stratum depths, evident from their study,

seem to agree well with those from the approximate relations.

The sources of discrepancies are again attributable to the

mesh size used by Johnson and Christiano and the location

of the lateral boundary in their finite element mesh.



66

3.3 Concluding Remarks:

The emirical relations. derived in this study provide a good

approximation for the homogeneous stratum condition and are

preferred to a static finite element solution when correction

for mesh size is excluded.

However, if accurate values for the static stiffnesses in

a layered medium are desired, then the approximate relations

should be corrected for this condition, or finite element

analyses accounting for mesh size correction be used instead.

The correction in this latter alternative is necessary,

because the discretization error can be of the same order

of magnitude than the effect of layering (see tables 2.1

and 2.9).
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4.- Soil-Structure Interaction:

As explained in section 1.1, two general approaches can be

used to estimate the dynamic soil-structure interaction

effects: the direct (or complete) approach in which the whole

system, soil and structure, is modeled and analyzed together;

and the spring (or substructure) method which consists of

the three steps discussed in section 1.3. Even though numer-

ical methods, such as the finite element method used in the

direct approach, are ideally suited for the analysis of

complex problems, they result in considerable increases in

the cost of computation. In many cases, this cost increase

will restrain the analyst from covering a wide range of

design parameters to ensure adequate protection against the

uncertainties inherent to the nature of soils, thus making

the second approach more attractive for many cases.

In performing the seismic analysis of a structure, the

stiffness functions given by equations 4-1 and 4-2 are

needed to represent the soil under the structure.

K = K (k + iac ) (1 + 2 i) (4-1)

K = K+ (kz+ ia~q) l + 2Pi) (4-2)

The static stiffnesses, Ko and K, , can be approximated by

the relations derived in section 2.2. However, the problem
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of approximating the frequency dependent coefficients k, ,k,

cf, and c still remains. In this chapter two methods will

be presented to approximate these coefficients, and a seis-

mic analysis is performed for a structure using these ap-

proximations. The analysis is also performed using the

stiffness functions obtained from TRIAX for the specific

case to be studied.

For earthquake loadings, the controversial question as to

where the control motion should be specified is often intro-

duced. This question, however, should be resolved in the

first step of the spring method. Since our main aim is to

test the validity of approximate subgrade stiffness func-

tions, the controversy can be avoided, arbitrarily specifying

the horizontal control motion under the foundation as input

to the springs. Also, for the same reason it suffices to

model the structure as a rigid cylinder embedded in an

elastic stratum which is underlain by a rigid base. However,

the mass properties and geometry used for the cylinder, and

the soil properties of the stratum are typical values for

nuclear containment structures. The assumed structural prop-

erties are:

Radius (R) = 67.5 ft.

Embedment (E) = 55.0 ft.
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Height of centroid = 64.7 ft.

Total Mass (M) = 3662. Kslugs

Moment of inertia about base (I) = 2.98x10 kip-sec-ft

while the stratum (115 ft. deep) consists of layered linear

isotropic soil with the properties indicated in table 4.1,

and 8% linear hysteretic (material) damping throughout the

soil stratum.

Table 4.1: Soils properties of layered stratum

used in model.

Note: layer 1 is just below grade level

layer layer weight Poisson's shear wave
thickness density ratio velocity

(ft) (Kcf) (ft/sec)

1 5 0.12 0.3 428.
2 5 0.12 0.3 512.
3 5 0.12 0.3 590.
4 5 0.12 0.3 645.
5 5 0.12 0.3 691.
6 7.5 0.12 0.3 738.
7 7.5 0.12 0.3 777.
8 7.5 0.12 0.3 808.
9 7.5 0.12 0.3 848.
10 7.5 0.12 0.3 877.
11 7.5 0.12 0.3 894.
12 10.0 0.13 0.48 880.
13 10.0 0.13 0.48 903.
14 12.5 0.13 0.48 926.
15 12.5 0.13 0.48 934.

In the determination of the approximate stiffness functions,

the stratum will be assumed to be homogeneous throughout
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the domain with properties equal to those of the layer just

below the footing:

Cs = 877. ft/sec

G = 2866. K/ft

9= 0.3

Using equations 2-7 and 2-8, the approximate static

stiffnesses are:

K = 2.90x10 K/ft

K,.= 1.30x10 K-ft/rad

and the height of center of stiffness (eq. 2-11) is:

h = 19.98 ft or K Xo= 57.94x10 K/rad

The finite element analysis using TRIAX with the soil

properties in table 4.1 resulted in the following static

stiffness values:

Ke = 2.8x10 K/ft

K,,= 1.2x10 K-ft/rad

Kt.= 37.3x10 K/rad

The swaying and rocking static stiffnesses agree very well

with the approximate values. The coupling term K has an

error of 55%; however as will be seen from the results, this

discrepancy will not introduce great errors, because the

response is not very sensitive to the coupling term if the

center of mass of the structure is well above the center of

stiffness. It should be noted that the extrapolation proce-

dure is not used in obtaining the finite element static
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stiffnesses and also the effect of soil layering is not

included in the approximate values. As was discussed in

section 2.5 ("Effect of variable shear wave velocity"), the

approximate static stiffnesses will be decreased when the

effect of soil layering (layer properties in table 4.1) is

considered. In addition, the finite element static swaying

and rocking stiffnesses should be reduced by applying the

extrapolation procedure (see section 2.2). Since the two

effects could decrease the stiffnesses by a comparable

amount, these corrections are neglected in this study.

Due to the excellent agreement of the finite element static

stiffnesses with the approximate ones, the remainder of the

chapter will mainly deal with an evaluation of the importance

of the frequency dependence of the stiffness and damping

coefficients k, k, ct and c, on the structural response.

The following resonant swaying and rocking frequencies will

be referred to in the sections to follow:

SAX = ? j a= CR a fox· t (4-3)

a,, 35WFlra.,_ i f n(4-4)
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4.1 Approximation of the Frequency Dependent Coefficients:

In the following, a method to account in an approximate

manner for the frequency dependence of the coefficients will

be analyzed. The discussion will be based on results presen-

ted in ref.(21), and the suggested procedures will be

evaluated for the rigid cylinder model of a nuclear contain-

ment structure described earlier.

4.1.1 Stiffness Coefficients kiand kz:

The first interesting feature in the frequency dependence

of the stiffness functions is that the real part behaves

markedly different for rocking and swaying (see fig. 4.1).

The former is a relatively smooth curve, for which the depth

of the layer exercises little influence and approaches quite

closely the analytical half-space solution for a surface

footing after Veletsos and Wei (40). Swaying, however, shows

a wavy pattern in which valleys occur close to the natural

shear beam frequencies of the soil, an effect which is more

pronounced for shallow strata. However, as the stratum depth

increases, the amplitudes of the peaks and valleys decrease

rapidly, and for H/R = 8 k already approaches Veletsos

and Wei's half-space solution.
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The preceeding comparison is done for a hysteretic damping

value of 5%. For more typical values of the hysteretic

damping ratio (5%-<9/15%) the agreement of the stiffness

coefficients with those of the half-space improve even

further (ref. 21). A similar effect can be observed by

varying Poisson's ratio. On the other hand, embedment does

not substantially alter the shape of the stiffness coeffi-

cients as was pointed out in said reference.

To better assess the relative importance of the frequency

variation of the stiffness coefficients, consider the

response of a 1-DOF system supported with a frequency

dependent "spring". Its impedance function can be defined as:

Z = K ( k + 2 )

where =p() is the equivalent viscous damping given by:

2-= aoc, and W is some reference frequency. For

the case at hand, this frequency corresponds to the undamped

natural resonant frequency of the system computed with the

static value of the subgrade stiffness (Eq. 4-3 or 4-4).

In the very low frequency range, (L<<W), the stiffness

term k dominates the response. At intermediate frequencies,

(-l/w i), the amplitude of motion is very sensitive to the

equivalent viscous damping coefficient , while in the

high frequency range (->> ) the response is totally
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controlled by the inertia of the system, and thus the shape

of the stiffness function is irrelevant. Therefore, the

stiffness coefficients are of major concern only in the

low frequency range.

If one limits the depth of the stratum to be greater than

the diameter of the foundation (H/R>2), the half-space

solution for k and k can be adapted (with reasonable

accuracy) to the actual finite depth stratum as a good

agreement in the low frequency range, where these coefficients

influence the response the most, exists between the two

conditions. The relatively moderate differences between

the half-space stiffness coefficients and the actual ones

will result in slight shifts in the resonant frequencies

of the impedance (and thus the transfer) functions. However,

since these shifts depend on the square root of the error,

they will be smalll in magnitude.

A more important point in this adaptation is a proper

representation of the damping coefficients, as they control

the amplitude of the response at resonance. This point is

addressed in detail in the following section.
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4.1.2 Radiation Damping Coefficients cand c:

The imaginary part of the stiffness functions, which can be

interpreted as an equivalent viscous damping ratio due to

radiation of energy away from the footing, is a critical

parameter to which the response of the structure is very

sensitive.

Referring to fig. 4.2 it can be seen that there are negli-

gible differences of the radiation damping coefficient with

respect to the half-space solution for rocking, and except

for the wavy nature in shallow strata, the agreement is also

remarkably close for swaying. There exists one important

difference, however, between the strata and the half-space

solutions; namely the former has little radiation damping

in the low frequency range, and then rises abruptly at

certain critical frequencies. These critical frequencies

correspond to the first horizontal natural frequency of the

stratum, for swaying, and the first vertical natural

frequency of the stratum, for rocking. In the following,

these frequencies will be abreviated by HNFS and VNFS

respectively. For a homogeneous stratum, they are given by:

HNFS = _ (4-5)

or for dimensionless frequency: R
VHH

VNFS=12) HNFS (4-6)
1-29
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Thus below the stratum natural frequencies, the radiation

damping is very low, but it is not zero if there is material

damping in the soil. Above the stratum frequencies, the

radiation damping is essentially similar to Veletsos and

Wei's half-space solution. At first, one would attempt to

approximate these coefficients by using zero damping below

the stratum natural frequencies (which can be obtained for

the actual layered medium) and the half-space solution above

them. However, it is quite possible, and it is the case for

the rigid cylinder considered here, that the fundamental

rocking-swaying frequency of the structure falls below one

of the stratum natural frequencies. In such cases the

response obtained using the above mentioned approximation

for the radiation damping coefficients, would be over-

conservative, as one would be using zero radiation damping

at the resonant frequency. Thus it is essential to find a

better approximation of the radiation damping below the

HNFS for swaying and VNFS for rocking.

Kausel (21) presented the following alternate definition of

the stiffness functions (Eqs. 4-1 and 4-2), when hysteretic

damping is included in the analysis:

Kx = Ko (k+ i(a.o +2A) ) (4-7)

and K~ = Kfo (k2 + i(a0 c~+2
3 ) ) (4-8)
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Examination of figs. 32 through 35 in ref. (21) reveals

that cl and are essentially zero below the HNFS and VNFS

respectively for all hysteretic damping ratios considered

(1%, 10%, 20%). This observation may be used to evaluate

cj and c by the following steps. Since:

(k + iac,) (1 + 2i/3) = (I+ i(ao .+2%) )

(k + iac)(1 + 2iPh) = (ke+ i(a,c5+2a) )

it follows that

ca= c + (1 - k)

c,= c,+ l (1 - k,)
a,

or if L and co are zero:

c,= 4 (1 - k,) if L ~ HNFS (4-9)

cz= A (1 - k) if A- L VNFS (4-10)

However, above the fundamental stratum frequencies, the

half-space coefficients are a better approximation to the

actual coefficients than to the coefficients evaluated

using Kausel's and Fc. Thus, c and c are only used

to approximate c and c below the stratum natural fre-

quencies.

In order to evaluate Eqs. 4-9 and 4-10, approximate expres-

sions for k, kz are needed. Limiting H/R >2 and 9 0.45,

it is possible to satisfactorily approximate the stiffness

coefficients k, k in the low frequency range by parabolas.
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For strata shallower than one plate diameter and/or having

a higher Poisson's ratio, the VNFS will be large, and the

effect of rock flexibility and radiation into the half-

space will be important. Therefore, rock flexibility should

be accounted for in such a case (this also applies to the

"true" finite element solution).

While the parabolas needed are closely related to the

concepts of "effective mass of soil", they will be approxi-

mated on the basis of the results presented by Kausel,

without consideration of inertia effects in the subgrade.

The following sections discuss approximate expressions for

kl and k to be used in the evaluation of (4-9) and (4-10)

below the stratum frequencies.

a) Swaying, c :

Due to the limitation H/R 2 the frequency range of interest,

below HNFS, becomes f'0.125. Fig. 4.3 shows the stiffness

coefficient k for different stratum depths in this frequency

range; the HNFS for each case is also shown. It is obvious

that we do not intend to match the half-space curve, since

HNFS is zero for this condition and Veletsos and Wei's

damping coefficients can be used for the approximation in the

entire frequency domain. From fig. 4.3 we see that the
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curve for H/R = 2 can approximate the others in the fre-

quencies below the HNFS for each condition. This approxima-

tion should improve substantially for larger fractions of

material damping (h>0.05). On the other hand, the HNFS is

independent of Poisson's ratio, while the portion of k,

plotted in fig. 4.3 is also essentially independent of

Poisson's ratio (ref. 21).

For the rigid cylinder case considered in this study, H/R

is close to 2. Approximating k by a parabola to best fit

this stratum depth (for low frequencies) in fig. 4.3,

one obtains:

k = 1 - 1/2 a) (4-11)
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This approximation can also be obtained from a consideration

of an effective mass, to be added to the structure, equiva-

lent to a hemisphere of soil below the footing.

Further studies for the usage of Eq. 4-11, or an equivalent

expression, for deeper strata are needed. However, an effect

to keep in mind is that as the stratum depth increases, the

HNFS will decrease. For such cases, the fundamental frequency

of most structures will be greater than the HNFS, and the

half-space solution will provide a good approximation to the

damping coefficients.

Upon substitution of (4-11) into (4-9) one obtains for the

swaying damping coefficient:

"I
I
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o.Z

0.o
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ci = 2Tfo. for f HNFS (4-12)

= v, ao

This expression for c approximates, with reasonable

accuracy, the swaying damping coefficients, in the low

frequency range, for various hysteretic dampings presented

in ref. (21) and fig. 4.4.

b) Rocking, c:

The rocking damping coefficient presents a more delicate

situation, because as we can see from Eq. 4-6 the VNFS is

a function of both Poisson's ratio and H/R. Considering the

limits H/R >2 and 9 0.45, the frequency range of interest

0oo-

o.o0

V:' 3 o.qr

k& I I -
4

-t-/ ~o-45

/I z r

U.o 0.2 O :V Jo

-) H/R.-2. ; S4 b) H/R=4.; /4=5

Fi. 4.5: RocKrfN 5TIFFNESS COEFFICENTS

Fo SRurCE c Foort4LjS.
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becomes f 0.41. Fig. 4.5a shows the rocking stiffness

coefficient, k, for H/R = 2. One notices that k is almost

independent of Poisson's ratio for f less than VNFS for

9 = 1/3, while in the region between VNFS for = 1/3 and

VNFS for 9= 0.45, k is more sensitive to this parameter.

As the stratum becomes deeper the VNFS will become smaller

and the rocking stiffness coefficient will not depend a

great deal on Poisson's ratio in the whole region of interest

(see fig. 4.5b for H/R = 4 where the range of interest

becomes f0.21).

Thus approximating the kz curve for H/R = 2, shallow stratum,

by a parabola to best fit the low frequency range of the

high Poisson's ratio curve, one obtains:

k2 = 1 - 6fZ (4-13)

This relation is also plotted in fig. 4.5, and one can see

that it approximates the actual curves reasonably well in

the regions of interest. Again, this approximation for kz

can also be obtained from a consideration of an effective

soil mass, to be added to the structure, equivalent to

0.4pRr of soil below the footing. This value of the equiva-

lent mass was also presented by Whitman (44). Substituting

(4-13) into (4-10), the resulting approximation of the

rocking damping coefficient, below the VNFS, is:
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Fic. j.6: ROCK(IN DnMPrN CoErFEIJNr
FoR SVRACE OO /oC; ,

H/IR-2.; -= 1/3

c, = 1.93pf.o for f i_ VNFS (4-14)

= 0.3 ao

This relation for c approximates reasonably well the rocking

damping coefficients below the VNFS over a range of hysteretic

damping values (see fig. 4.6). For very shallow strata, and

particularly if Poisson's ratio is large, the rock flexibility

and the radiation damping into the half-space should be

taken into account both in the approximate and the finite

element analyses.

4.1.3 Summary of the Procedure:

In the above a method is presented to approximate the

frequency dependent coefficients of the stiffness functions.

The dynamic stiffness functions given by:

Kg= K (kl+ ia.c A) (1 + 2i)

Ky= K (kz+ iac 2) (1 + 2i&)

will be approximated in the following manner:
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sfo= +Z H/4+` 3R'\- 3 (1M - --O ) (4-16)2-) H

kl and k are obtained from Veletsos and Wei's (40) half-

space coefficients. And

t2 /fo S a,, for fHNFSt

C ! LVeletsos 6 Wei's coeffs. for f>HNFS

12.9 Af,= 0 3 ,ao for foeVNFSfor f0QVNFS)

Veletsos & Wei's coeffs. for f VNFS

This method will be referred to, from here on, as the

"modified half-space" method. The procedure is certainly

not rigorous, particularly so for the damping coefficients

in the low frequency range. However it constitutes a good

engineering approximation to simplify the analysis, as will

be demonstrated later with the results of the rigid cylinder

case referred to earlier. Figs 4.7 and 4.8 show a comparison

of the stiffness and damping coefficients obtained from

the modified half-space method to those from a finite

element analysis.

In what follows a second method is presented where the

coefficients are considered constant over the frequency

domain.
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4.2 Approximate Constant Stiffnesses:

In many cases, it is desirable to choose frequency indepen-

dent stiffnesses to represent the soil in the seismic

analysis. If one can obtain such stiffnesses, a preliminary

analysis could be performed in the conventional time domain.

Due to the low costs of such a method, the effect of many

variables could be tested for the structure on hand. The

procedure described in this section shall be referred to as

the modified constant stiffness method.

As in the modified half-space method, the static value of

the stiffness function is evaluated first, using the

approximate relations (Eqs. 4-15 and 4-16). Then, the

stiffness coefficients, k and k, in Eqs. 4-1 and 4-2 could

be either approximated to unity, or evaluated with the half-

space curves at the resonant swaying and rocking frequencies

respectively and taken independent of the frequency- (or f).

On the other hand, the equivalent viscous damping ratios

Ou, p may follow from an evaluation of the radiation damping

coefficients c, c at the resonant swaying and rocking

frequencies respectively. The relationship between the

damping ratios and the damping coefficients is:
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C or 3 C_ 1

C2 y or /3 Cz2

where the reference frequencies are:

In general A, and A are functions of the driving frequency

. To estimate these damping ratios, the following procedure

based on the modified half-space method can be used:

- If the resonant frequency is below the stratum frequency,

then the damping ratio can be evaluated using the

approximations derived in section 4.1.2 for c and c,

and evaluated at the resonant frequency Wxor Wf. The

result is:

= (1/2) ( a if f 4 HNFS

= 2 0 fo~ where p4 is the hysteretic

damping ratio

also, I = 0.15fh aoq if f VNFS

6 & ft

- If the resonant frequency is above the stratum frequency,

then the damping ratio is evaluated using the half-space

values for c and c, at the resonant frequency.

Frequently, the half-space solution is not available, or

it is desired to get a closed form expression without

using tabulated half-space values. In such cases, the
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following expressions suggested by Richart et al (35)

give excellent approximations:

A = o.288 ax if f 2 HNFS

/3t . s af f 2 VNFS

!+(a,/p

The damping coefficients c and c corresponding to these

approximations are:

c = 0.576

c= 0 3

If these expressions are plotted as a function of

frequency, one will notice an excellent agreement with

Veletsos and Wei's half-space solution.

4.3 Solution of the Rigid Cylinder Case:

The rigid cylinder, described previously, is now analyzed

using the "true" finite element solution, the modified

half-space method and the modified constant stiffness method.

In the latter method, the coefficients k, kz were equated

to unity, while the equivalent viscous damping ratios above

the stratum frequencies were evaluated using Richart's

approximations.
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A preliminary estimation of how close the approximate

methods will come to the finite element solution, can be

obtained plotting the absolute value of the impedance

function as a function of frequency. The impedance is given

by: (k + ia0 c)-(j) , which is the reciprocal of the

transfer function for a pure (uncoupled) mode. The functions,

using the three methods described, are plotted in fig. 4.9

for the rocking mode of the rigid cylinder. This mode is

chosen, since it is the critical one for the case under

consideration. From the given properties one calculates

the following frequencies:

VNFS = 3.57 cps

HNFS = 1.91 cps

using the modified constant stiffness functions, the

uncoupled natural frequencies of the system are:

Rocking: 3.25 cps

Swaying: 4.48 cps

and the coupled rocking-swaying frequencies are:

First mode: 2.97 cps

Second mode: 5.7 cps

Thus we see that the fundamental natural frequency is below

the VNFS. Fig 4.9 shows a good agreement between the three

methods, except for a small shift of the resonant frequency

according to the constant stiffness method as compared to

the other methods. This shift could be eliminated to a
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great extent, if one would evaluate k at the resonant

frequency rather than assigning to it the constant value 1.

Fig. 4.10 shows the time history of the 0.125g peak accel-

eration artificial earthquake used for the horizontal

excitation.

Fig. 4.11 contains the absolute value of the transfer

functions at the base of the cylinder using the true

stiffness functions and the two approximate methods. While

the three transfer functions follow similar trends, the

frequency shift of the modified constant stiffness method,

noticed in the absolute value of the rocking impedance

(fig. 4.9), is again apparent in the transfer function.

It is also evident that the approximate methods result in

some unconservative values (25% at 2 cps) close to the

first peak in the low frequency range (1.5 to 2.5 cps).

This is due to a combination of effects, some of which are:

the static coupling term K,o was overestimated by the

approximate relation; also the swaying damping coefficients

were overestimated in this low frequency range while the

rocking damping coefficients were overestimated after the

VNFS. On the other hand, this discrepancy does not result

in large differences in the acceleration response spectra

plots (15% at T=0.45 sec in figs 4.12 and 4.13). In the
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intermediate range (2.5 to 7. cps) the approximate methods

result in slightly conservative values in the transfer

function. This conservatism however is not reflected in

the response spectra plots, keeping the approximate methods

accurate in the low period range (figs 4.12 and 4.13).

At the top of the cylinder, on the other hand, the transfer

functions and the response spectra obtained from the

approximate methods agree much better with the ones obtained

from the "true" frequency dependent stiffnesses (figs 4.14

to 4.16). The frequency shift of the modified constant

stiffness method is again evident in both the transfer

function and the response spectrum (figs 4.14 and 4.16).

As previously stated, this shift stems from assuming k= 1

throughout the frequency range.

It should be noted that the rigid cylinder case chosen for

this study is testing a very critical limiting situation

since it falls slightly below the range for which the

approximations in this study were derived. For the rigid

cylinder: E/H = 0.478; H/R = 1.704e2 which is considered

a very shallow stratum. While the fundamental frequency

is below the VNFS, the approximate methods resulted in

good agreements with the true frequency dependent

stiffnesses. For deeper strata the approximations are

expected to give even better results.
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5.- Summary and Conclusions:

Approximate empirical relations for the static stiffness

coefficients of circular foundations embedded in (or resting

on) an elastic homogeneous medium have been developed.

Approximate frequency dependent functions for the stiffness

and radiation damping coefficients and equivalent constant

viscous damping ratios have been suggested. The approximate

solutions were used to compute the response of a rigid

cylinder embedded in a layered stratum and compared to the

response obtained from a finite element analysis of the

soil. The approximate static stiffnesses proved to be quite

accurate for the rigid cylinder case, while the approximate

stiffness and damping coefficients resulted in a good

agreement in the response of the cylinder with that obtained

using the finite element coefficients. It was found that

the modified constant stiffness method gave results which

agree well with those using the actual frequency dependent

stiffnesses. Thus, such a method can be used to lower

the computation costs of a preliminary analysis in the

time domain.

During the derivation of the empirical relations and

approximate methods, the following restrictions were

imposed on the parameters:
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E/H < 1/2

H/R 2

3)< 0. 45

If a problem falls outside these ranges, a finite element

analysis should be undertaken where the flexibility of the

base rock should be taken into account.

Further studies are needed to investigate the effects of

soil layering and the flexibility of the sidewall in greater

detail, as they could change the results to some extent.

Given all the uncertainties inherent in the determination

of the subgrade properties and soil behavior, it is felt

that the relations proposed are in excellent agreement

with more involved finite element studies. As an engi-

neering tool, approximate methods may prove to be of

considerable value, avoiding the use of unnecessarily

costly studies, while giving reliable results.
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