
A SOFTWARE CACHE MANAGEMENT SYSTEM

by

Jeffrey N Eisen

Submitted to the

DEPARTMENT OF ELECTRICAL ENGINEERING
AND COMPUTER SCIENCE

in partial fulfillment of the requirements

FOR THE DEGREES OF

BACHELOR OF SCIENCE

and

MASTER OF SCIENCE

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June, 1985

( Jeffrey N Eisen, 1985

The author hereby grants to MIT permission to reproduce and
to distribute copies of this thesis document in whole or in part.

Signature of Author-
Department of Electrifllingineering and Computer Science, May 9, 1985

Certified by
Dr. Richard Eliot Zipp/ Jfhesis Supervisor

Certified by -
D- War r n, Comally S rvisor

· ~ ~~~~~~ J -J 

Accepted bj

i -_ . I
Arch ives

Dr. Arthur Clarke Smith, Chairman,
Departmental Committee on Graduate Students



A SOFTWARE CACHE MANAGEMENT SYSTEM

by

JEFFREY N EISEN

Submitted to the Department of Electrical Engineering and Computer Science
on May 9, 1985 in partial fulfillment of the requirements for the degrees of

Master of Science and Bachelor of Science in Computer Science

ABSTRACT

Caching of data is a commonly used mechanism for increasing the efficiency of
computer programs. It is often much more efficient to store objects when they are
first computed and reuse the cached objects when they are needed in the future,
than it is to recompute the objects every time they are needed. Existing methods
for caching data are successful in increasing program performance in special cases,
but are not broadly applicable.

The focus of this thesis is SCMS, a Software Cache Management System. SCMS
provides a mechanism designed to improve the performance advantage of using
software caches by exploiting general properties of cached information. The most
important such property to be considered is reconstructibility. SCMS provides a
simple interface that enables the application programmer to specify "cost functions"
and "action functions" that enable SCMS to make knowledgable decisions regarding
the validity and usefulness of caches. This knowledge is used to accomplish two
tasks: ensure the validity of cached information seen by the application program and
improve memory utilization by purging cached objects that are not cost-effective.

Thesis Supervisor: Richard E. Zippel
Title: Assistant Professor, Computer Science and Engineering

Company Supervisor: Craig W. Thompson
Title: Senior Member of Technical Staff, Texas Instruments

2



Acknowledgments

I would like to thank Craig Thompson and Richard Zippel for invaluable guidance,
Texas Instruments for providing facilities and patience, Jack Florey for keeping me
sane and driving me insane, and my family for almost everything else. Special
thanks to Donald Knuth for inventing TX, a miraculous text formatter, without
whose help this might never have been completed.

3



Contents

Abstract

Acknowledgements

Table of Contents

List of Figures

1 Introduction

2 SCMS

2.1 Guidelines for a Software Cache Management System.
2.1.1 Transparency . . . . . .

2.1.2 Safety ...........
2.1.3 Non-Interference . . . . .

2.2 Related Systems .........
2.2.1 Timestamping . . . . . .

2.2.2 Garbage Collection ....
2.2.3 Resources .........

2.2.4 Virtual Memory Paging

2.2.5 Explicit Storage Control
2.3 Pragmatic Approach to the Cache

2.3.1 The Cache ........

2.3.2 The Cache Manager . . .2.3.3 Utility ...........
2.4 Types of Domains ........

2.4.1 Validation Applications .

. . . . . . . . . . . .

. . . . . . . . . . . . .,e....e....e.*

e..,.e........

***eo**e*.*e,*

,,*e.e,.*ele,,

,e,,e,.*,*,*,,

Management Problem:
e.eele.e.e.e..

eeeeeeeeell·e

oe.e.ee.e....e

.ooee..eeee..e

. . . . . . . . . . . .
. . .. . . . . .

. .. . . . . . .

2.4.2 Garbage Collection Applications

4

2

3

4

6

7

10

10

11

13

13

14

14

15

16

17

18

18

21

22

26

28

29

31

. . .

. . .

. . .

. . .

. . .

. .e.

. . .

SCMS
. . .

I. . . .

I. . . ..e.e.®eeee
oeeee

· ·

· ·

· ·



3 Applications

3.1 Clock ..........................
3.2 Functional and Semi-Functional Programming....

3.3 Relational Database Management Systems ......
3.3.1 Secondary Indices . . . . . . . . . . . . . . .

3.3.2 Views ......................
3.3.3 Inter-Query Optimization ...........

3.4 Schema .........................
3.4.1 Bitmaps . ....................
3.4.2 Design Hierarchy ................
3.4.3 Incremental Design Verification ........

4 Conclusions

Bibliography

5

33

33

36

39

39

40

41

42

42

43

44

46

49

. . .

. . .

. . .

.

. . .

. . .

. . .



List of Figures

2.1 Request for Cached Object ...................... 25

2.2 The Scavenge Cycle ........................... 27
2.3 Simple Validation Example ....................... 29

2.4 Validation Application with Scavenging ................ 30

2.5 Garbage Collection Application. .................... .. 32

3.1 Clock Cache Manager .......................... 34

3.2 Functional Programming with GC Cache Manager .......... 38

6



Chapter 1

Introduction

Caching of data is a commonly used mechanism for increasing the efficiency of

computer programs. It is often much more efficient to store objects when they are

first computed and reuse the cached objects when they are needed in the future,

than it is to recompute the objects every time they are needed. Although existing

methods for caching data are successful in increasing program performance, the

level of success is far from optimal. The focus of this thesis is SCMS, a Software

Cache Management System. SCMS provides a mechanism designed to improve the

performance advantage of using cached information by exploiting general properties

of cached information.

In this thesis, a cache is defined to be any sort of information (for example,

data or code) that is saved because it may be reused later, even though it can also

be recomputed if necessary. That is, cached information is never needed; it can

always be recreated because it is redundant.

Though almost all software systems use some form of caching, caching is almost

always done in an ad hoc fashion. There are two primary disadvantages of this ad

hoc approach to caching when compared to a standard caching interface that is

used for all types of applications. First, whenever a new application program re-

7



quires caching for any reason, almost all of the code related to caching needs to be

written. This introduces unnecessary work for the application programmer, which

may result in information not being cached because it is not worth expending the

effort necessary to write the code. The extra code written to do the caching may

obscure the application's algorithm and may introduce "bugs" into the application

program. Second, these ad hoc schemes for caching information often do not take

advantage of general properties of cached data; specifically, they do not take ad-

vantage of the fact that cached data can be recreated if necessary. They provide no

capability to independently specify how and when cached objects are to be created,

modified, destroyed, or otherwise affected.

There are two main tasks of a software cache management system: ensuring

cache validity and managing storage. Although the increase in performance gained

from using cached data is clearly desirable, one must be careful when using cached

information. If some aspect of the environment has changed since the time that

the cache was originally created or last modified, then cached results may no longer

be valid. For example, in a VLSI schematic entry system, where schematics are

repeatedly displayed on a graphics terminal, there might well be a caching mecha-

nism to eliminate the need to recompute the bitmap each time a transistor is drawn.

However, if the function that draws transistors is modified in order to change the

graphical representation of a transistor, then the cached bitmap is no longer valid.

A problem shared by most of the commonly used caching mechanisms is that

there is no way of knowing that there is invalid information present until an at-

tempt is made to use the data. This problem results in the address space being

unnecessarily filled with invalid data, leaving less space available for valid, more

important data. It would be advantageous if, once a cached object becomes in-

valid, the memory that it occupies becomes freed for garbage collection purposes

8



automatically, not just the next time an attempt is made to use the cached data.

Although this observation does not always hold (sometimes, it is useful to preserve

invalid information for purposes such as debugging), purging invalid information in

order to free memory is an important concern in a number of situations.

It may also be desirable that valid cached objects may be released to be garbage

collected. Such objects are said to be superfluous. Superfluous, in this context,

means that it is determined that the cost (in memory, general overhead, etc.) of

keeping the object cached is greater than the expected performance gain of retaining

the cached object. Cost functions, used to determine superfluousness, associated

with recreation, destruction, and other operations, can be used to tune performance.

In this thesis, a software cache management system, SCMS, is presented which

is responsible for the two tasks described above: ensuring the validity of cached ob-

jects and automatically allocating and deallocating memory for these objects. SCMS

provides a simple interface to application programs that enables the programmer

to better utilize cached information. SCMS is implemented on Lisp Machines (Ex-

plorers, Symbolics, and others); however, the approach used in designing SCMS can

be applied to a wide range of computer architectures.

In Chapter 2, the goals of a software cache management system are described.

The advantages and disadvantages of related mechanisms are presented with respect

to these goals. SCMS is described and generalized example SCMS interfaces are

presented. Chapter 3 presents applications in which SCMS has been installed and

describes additional applications which would benefit from using SCMS. Finally,

Chapter 4 presents conclusions of this research and directions for future research in

this area.

9



Chapter 2

SCMS

This chapter describes SCMS, a system for managing cached information on Lisp

Machines. Section 2.1 presents guidelines that were used in designing SCMS. Sec-

tion 2.2 presents five related systems with emphasis on how these systems accom-

plish the two tasks of a software cache management system described in Chapter 1

with respect to the guidelines presented in Section 2'.1. Section 2.3 describes the

implementation of SCMS. Finally, Section 2.4 presents generalized SCMS interfaces

for the two primary types of domains appropriate for SCMS operation.

2.1 Guidelines for a Software Cache
Management System

A cache management system is defined to be "a tool designed to better utilize cached

information." This definition is general and, in Section 2.2, several mechanisms are

presented that come under the scope of this definition. In designing SCMS, three

more specific properties of a software cache management system were identified:

transparency, safety, and non-interference.

10



2.1.1 Transparency

Ideally, a system that manages cached information should be completely transparent

to the application program. There are two areas where transparency is important.

The first area is in defining the application. Complete "definition transparency"

means that the cache management system would be able to:

1. determine which objects need to be cached,

2. determine the validity of cached objects,

3. determine relative importance of cached objects, and

4. take appropriate actions based on this determination,

all without any application specific assistance. In other words, in a completely

definition transparent system, there would be no need to define a caching interface

for an application. The cache management system would be powerful enough to

"understand" all application specific information without any application specific

assistance.

All four of these steps are difficult problems making complete definition trans-

parency a difficult goal to achieve. Step 1 means that the cache management system,

without any application specific assistance, would be able to decide which objects

are both likely to be used again and costly enough. to create, to be good candi-

dates for caching. Step 2 implies that a general cache manager would be able to

determine cache validity. Step 3 implies that application independent cost functions

could be written to govern relative utility of caches. Step 4 means that the cache

management system would be able to delete invalid or superfluous objects from the

address space, but still be able to reconstruct the objects if they were requested by

the application program.

11



The second area where transparency is important is in the use of the cached

data. Full "use transparency" means that no special care needs to be taken when

cached information is used within an application program and that there is no extra

syntax associated with cached data. For example, if the variable cached-variable

holds cached information, then statements such as

(setq other-variable cached-variable)

and

(setq another-variable (car cached-variable))

could be used freely. These examples bring up both performance and semantic

considerations involving use transparency, such as:

1. Is other-variable bound to cached-variable's current value, or is cached-variable
validated first? That is, is cached-variable checked for validity (and modified
if it is invalid) before other-variable's value is set?

2. Is another-variable bound to the car of cached-variable, or is cached-variable
validated before the car is taken?

3. Does other-variable become a cached variable; that is, in the future, will the
value of other-variable change as the value of cached-variable changes (due to
explicit setqs or due to the implicit actions of the cache management system)?

4. If cached-variable is always validated first, must all calls to setq, car, eq, and
other commonly used functions, pay this performance penalty?

Full use transparency can be achieved by deciding upon a semantics for using cached

objects such as "validate cached objects before each use; do not allow pointers into

the middle of cached objects." However, achieving full use transparency may involve

paying an unacceptably high performance penalty.

12



2.1.2 Safety

SCMS is conceptually similar to a virtual memory paging scheme. However, in a

paging scheme, objects are only swapped out of the real memory when they become

old; in SCMS, they are completely removed from the virtual address space. The

complete removal of cached objects from the virtual address space has the potential

of corrupting the address space with "dangling" or illegal pointers. 1

A basic guideline used in the design of SCMS is that, regardless of whether

or not the application program uses SCMS "properly," there should be no way to

accidentally corrupt the Lisp Machine environment. If the user abides by SCMS

protocols, then correct behavior should be expected. If, on the other hand, the

user does not abide by SCMS protocols, then no guarantees of correct behavior will

be made. However, none of the incorrect behavior will be "dangerous"; incorrect

values may be returned, but no illegal pointers will ever be created. To avoid this

danger, SCMS must ensure that, in the creation and destruction of pointers to a

cached object, no dangling pointers remain after the cached object is purged.

2.1.3 Non-Interference

A final consideration in the design of SCMS was to try to ensure that SCMS does

not interfere with system operations like the garbage collection of objects that would

otherwise be considered garbage. Ideally, garbage collection of an object would not

be prevented if the only pointers to the object are those that SCMS uses to keep

track of the object. This is difficult because of the following contradictions. In order

for SCMS to know about a cache, there must be a pointer to the cache. It does not

suffice just to retain the virtual memory address of the cache because the cache's

1According to the Lisp Machine Manual [10], illegal pointers are "pointers, that are, for one reason
or another, according to storage conventions, not allowed to exist."

13



address may change due to actions of the garbage collector. On the other hand,

in order for an object to be garbage collected, there must not be any pointers to

the object. SCMS is not successful in achieving this goal; however, in Chapter 4, a

possible approach to this problem is briefly described.

2.2 Related Systems

Using the above definition of a cache management system - "a tool designed to

better utilize cached information" - several commonly used mechanisms can be

considered to be special cases of cache management systems including timestamping,

garbage collection, resources, virtual memory paging, and explicit storage control.

Each mechanism addresses part of the cache management problem, but fails to

address the entire problem.

2.2.1 Timestamping

Timestamping is a method that can be used to ensure the validity of cached infor-

mation. Timestamping involves marking the cached data with a timestamp, which

is some notion of the time that it was created, last used, or last determined to be

valid. Then, when the cached information is later needed, a predicate is applied to

the timestamp to determine, in some manner, if the cache is still valid. For example,

timestamping could be used to determine which definitions need to be recompiled

in an editor buffer; a definition has changed if its "edit timestamp" is more recent

than its "compile timestamp."

Timestamping provides satisfactory cache management if the sole concern is

that only valid information is ever seen by the application program. However, this

is often not the only concern when using cached information. When the application

using cached data is memory-intensive, for example, it is important that the memory

14



occupied by the cached data be freed for garbage collection purposes when the cache

is no longer valid.2 When timestamping is used, there is no way of knowing that

there are invalid objects present in the address space until an attempt is made to

use the objects.

A method similar to timestamping involves marking the primitive data (from

which the cache is derived) as modified. Then, when the cache is needed, a check

is made to determine if the primitive information has been modified. If it has, then

the cache must be invalidated. "Invalidation" is the process of marking something

as invalid or "not valid"; data can be invalid, but not yet be invalidated. This

approach has the same drawback as timestamping in that it provides no mechanism

to automatically remove invalid objects from the virtual memory.

2.2.2 Garbage Collection

A cache management system is similar to the garbage collector used in Lisp Ma-

chines in that one of its goals is to eliminate "garbage" from the virtual address

space. There are, however, some significant differences.

Conventional garbage collection uses a simple notion of what is garbage; an

object is garbage if, starting from a system "root," the object cannot be reached

by following pointers. A cache management system takes the notion of garbage one

step further, allowing invalid or superfluous cached objects to be released to the

garbage collector. Garbage now is viewed in a broader sense, denoting information

that is not needed anymore, not just data that cannot be reached by following

pointers (although, clearly, the latter is a subset of the former).

Some garbage collection schemes (such as Lieberman and Hewitt's [6] and

Moon's [9]) take advantage of dynamic information, including how long an object

2 H.re, it is assumed that if the cache is invalid, then it is no longer useful. Later, this assumption
s. axed ald a more general concept of usefulness is presented.

15



has been around, as an indicator of how long the object will be around in the future.

This only improves the performance of the garbage collector; it does not affect what

is considered to be garbage. A cache management system can take advantage of

this as well as other indicators to determine what is garbage in the broader sense.

2.2.3 Resources

Resources [10] are a mechanism designed to give the programmer more control over

memory allocation and deallocation than is normally used, in order to improve

memory utilization. Normally, in a Lisp Machine environment, the programmer

need not be concerned with memory management because whatever is no longer

accessible (by following pointers from the system root) is automatically garbage

collected. Resources are appropriate when either very large objects are used and

discarded at a moderately high rate, or when moderately large objects are used and

discarded at a very high rate. ,

A resource is a set of related cached objects that are intended to be reused

instead of recreated whenever a similar object is needed. For example, there are

resources for the various types of windows and menus commonly used by the system.

Whenever a "system menu" is needed, instead of always creating a new one,

(using-resource (x system-menu)

is executed. If there is a free system menu in the resource, it is fetched and bound

to (within the body of the using-resource); otherwise, a new system menu is

constructed using the constructor function, one of the parameters supplied when

defining the resource. It is transparent to the application program whether a new

system menu was created or an old cached one was used.

This is almost what is desired for a software cache management system. Re-

16



sources can check validity, one of the goals of SCMS, by using functions supplied

when the resource is defined. However, resources still need to be explicitly purged;

there is no implicit mechanism that purges superfluous objects in resources. Re-

sources suffer from the same drawback as timestamps - invalid and superfluous

objects are not purged until the next attempt is made to use them.

2.2.4 Virtual Memory Paging

In virtual memory architectures, paging mechanisms are used to control which sec-

tions or pages of virtual memory are present in main memory. Paging mechanisms

address the same two tasks that a software cache management system must address:

validity and storage management.

This domain is special in that both definition transparency and use trans-

parency are achievable. This is possible because paging mechanisms only attempt

to address the two tasks in a limited sense. The validity of a page is generally deter-

mined by a "dirty bit," indicating whether the page has been modified since being

brought into main memory. This determination of validity is application indepen-

dent - it does not matter what kind of information resides on the page. However,

paging mechanisms do not address the issue of validity in the broader sense; that

is, whether or not an object is valid with respect to application specific indicators.

Storage management is also easier in this domain than in the general case because

objects never have to be recreated; they are always available, intact, in secondary

memory. As with SCMS, paging mechanisms need to be able to determine whether

an object (page) is superfluous. In the case of paging mechanisms, superfluousness

normally depends on whether the page is valid (which affects whether or not the

page will have to be copied to secondary memory) and how recently the page has

been used.

17



2.2.5 Explicit Storage Control

In some object management systems (such as CORLL [12]), there is a notion that

it may be too expensive to keep some data readily available. However, in these

systems, it is either the case that overly expensive (superfluous) objects must still

be explicitly deleted or that the only effect of an object being superfluous is that the

object is more likely to be paged out of main memory, not out of virtual memory.

Timestamping, the first system presented, addresses the problem of ensuring

that invalid cached information is actually invalidated and not accidentally used,

but fails to address the memory management problem. Garbage collection addresses

the memory management problem to a limited degree, but has a restricted notion

of what memory can be reclaimed. The resources mechanism addresses both the

validation problem and the memory management problem, but freeing memory re-

quires explicit action by the application program. Virtual memory paging addresses

both problems successfully, but in a limited domain. Finally, explicit storage control

fails in both respects: it does not help to solve the validation problem and memory

management is accomplished explicitly as with resources rather than implicitly.

2.3 Pragmatic Approach to the Cache
Management Problem: SCMS

This section describes SCMS, a software cache management system which ad-

dresses both the validity and memory management problems. In designing SCMS,

a pragmatic approach was taken toward both definition transparency and use trans-

parency.

Instead of complete definition transparency, the programmer must define an

interface to SCMS that enables SCMS to make the decisions and perform the ac-

!3



tions described in Section 2.1.1. The programmer provides cost functions, which

can be defaulted, to enable SCMS to decide the relative value of cached data and

determine the validity of the data. Additionally, in the interface, action" functions

are provided that enable SCMS to remove cached objects from virtual memory and

recreate them when necessary.

A compromise was also made with use transparency. Special syntax must be

used whenever the application program wants to use cached information. This

approach incurs a small performance penalty whenever cached information is used,

but incurs no such penalty when "normal" information is used.

There are three basic pieces comprising SCMS: caches, handles, and cache

managers. Caches are used to retain information about individual cached objects;

handles are used by the application program to keep pointers to the individual

caches; and cache managers (CMs) are used to keep track of all of the caches.

Finally, a list is maintained to keep track of all of the CMs. There can be many

handles assigned to a specific cache (although there is normally only one), many

caches assigned to a specific CM, and many CMs coexisting for use by a specific

application program. Each handle is assigned to exactly one cache and each cache

is assigned to exactly one CM, where each CM is created in order to track related

cached objects.

There are no explicit pointers (that the application program can access) linking

handles to caches. Instead, all of the links from handles to caches are contained in

the CM. This means that, given a handle, the CM is needed in order to determine

the handle's associated cache. This approach is taken primarily to ensure that the

CM can always determine which caches are in use by the application program and

to simplify the use of SCMS in distributed systems.

The handle to cache mapping scheme is similar to a hash table mechanism,

19



where an applications has no direct pointers between keys and values; rather, to

determine the value associated with a key, a lookup must be performed in the hash

table. In fact, one of the implementations chosen for CMs is hash tables, where

the keys are handles and the values are caches. Other implementations include

association lists and property lists.

For example, to demonstrate the role of handles, caches, and cache managers,

consider the VLSI schematic bitmap application discussed in Chapter 1. First, an

interface must be defined with the defeachemanager macro. This involves designing

a small number of parameters that provide SCMS application specific information

about bitmaps. A fragment of the interface appears as follows:

(defcachemanager bitmap (circuit-part)
: constructor create-bitmap

:validity-checker bitmap-validity-checker

Executing the above code creates a CM named bitmap with a single input param-

eter, circuit-part. The parameters to the CM (in this case, only circuit-part) are

arguments to the constructor function (create-bitmap). Then, to create a cached

bitmap of a capacitor, for example,

(setq capacitor-handle (allocate-handle bitmap :capacitor))

is executed. The call to allocate-handle returns a handle to the cached bitmap of

the capacitor (to which capacitor-handle then is bound) and creates a cache for the

bitmap of a capacitor by calling the constructor function. Then, to use the cached

bitmap (to draw it on the screen, for example), the using-cache special form is used:

(using-cache (x capacitor-handle)

(draw-bitmap-on-screen x))

Within the body of the using-cache special form, the variable x is bound to the

20



"value" of the cache, that is, the actual bitmap array.3 The application must be

careful not to keep "permament" pointers to the cached object, that is, pointers

that remain after using-cache is exited. This would circumvent the ability of SCMS

to control the use of cached objects by possibly creating multiple, different copies

of a cached object.

Notice that the application program never has direct access to the cache; using-

cache allows the application program access to the "value" of the cache, when given

a handle. The value of the cache (also referred to as the object associated with the

cache) is different than the cache; this distinction will be clarified in Section 2.3.1.

2.3.1 The Cache

SCMS is implemented in Flavors, the Lisp Machine's object-oriented programming

paradigm. Each cached object is represented by an instance of a flavor, where a

flavor is a hierarchical data type.

In this thesis, the term OBJECT refers to the cached object (what the appli-

cation program sees) and the term CACHE refers to the entire flavor instance that

is used to keep track of OBJECT. That is, the OBJECT is part of the CACHE.

Although different cache flavors can have different associated "instance variables"

(parts), there are six instance variables essential for SCMS operation:

Object is the actual cached object. When the "value" of the cache is requested,
object is returned.

State Block is additional information available for use by the CM's functions. This
is auxiliary information specific to an individual cache, used internally only.
That is, the state block is not returned by the CM when the value of the
cache is requested. For example, for the VLSI bitmap example presented in

3 There is an alternate syntax of the using-cache special form that both allocates a handle and
allows use of the cached value. The simpler form is presented here to demonstrate the differences
between a handle and a cache more clearly.

21



Chapter 1 and later presented in more detail in Section 3.4.1, the state block
might contain the symbol :transistor in order to distinguish this cache from
the one for resistors, while object would be the actual bitmap.

Use Timestamp is the time that this cache was last used. This is primarily in case
the utility of the cache depends on how recently it has been used. It is updated
every time the application program requests the cached object.

Scavenge Timestamp is the time that this cache was last scavenged. A detailed
explanation of what scavenging a cache means is presented in Section 2.3.2.

Locks keep track of "who" (which handle or handles) is currently using this cache,
that is, who has the cache "locked." This information is necessary for the
operation of the CM, in order to determine whether it is safe to modify the
cache.

Status indicates the validity of object. There are four legal values for status:
VALID, INVALID, ABSENT, and DESTROYED. The meaning of each of
these four values for status is presented in Section 2.3.2.

2.3.2 The Cache Manager

A CM is defined by an interface, which is a set of parameters, to the application

program. The parameters include:

constructor: A function - f(CACHE, P1, P2,...,Pn) - that creates the cached
object, where P1, P2 ,..., P,, are parameters supplied as arguments to allocate-
handle.

destroyer: A function - f(CACHE, OBJECT) - that "destroys" the object.

destruction cost: A function - f(CACHE, OBJECT) - that returns an estimate
of how expensive it is to destroy the object (execute the destroyer function).

maintenance cost: A function - f(CACHE, OBJECT) - that returns an esti-
mate of how expensive it is to maintain the object.

recreator: A function - f(CACHE, OBJECT) - that "recreates" the object,
that is the recreator is input the destroyed object and returns a recreated,
valid object.

recreation cost: A function - f(CACHE, OBJECT) - that returns an estimate
of how expensive it is to recreate the object (execute the recreator function).

22



recreate immediately-p: Either t or nil. Determines whether or not caches are recre-
ated immediately after they are destroyed.

validity checker: A predicate functio-. -n- f(CACHE, OBJECT) -4 {t, nil} - that
indicates the validity of OBJECT.

expected payoff: A function - f(CACHE, OBJECT) - that returns an estimate
of the probability that OBJECT will be needed again.

initial status: The initial status of newly constructed caches. Normally, it is VALID,
but this parameter can override this default value by setting status to IN-
VALID or DESTROYED.

manager flavor: Determines the flavor used for the CM implementation. This af-
fects several things including the type of object table used to track the cached
objects (hash table, association list, tree, etc.) and any special information
the CM must track (such as least recently used indicators). The default type
of cache manager is a simple hash table cache manager.

cache flavor: Determines the flavor used for the cache implementation. Different
cache flavors can have different default behavior and different associated meth-
ods (functions) that are used for the cost and "action" (constructor, destroyer,
and recreator) functions.

scavenge-p: Either t or nil. Determines whether or not the cache manager operates
with a scavenger.

The parameters of a cache manager can be modified by reexecuting the defcache-

manager macro with the same name specified, but with different parameters. For

each of the parameters for the application, where a function is called for, either a

form or a symbol is acceptable. If a form is used, a function with the form as the

body is created and used; otherwise, the symbol is interpreted as a function name

to be used.

To allow maximum flexibility, there are four possible values for the status of a

cache. When a cache is first constructed, status = ABSENT. This value indicates

that the object instance variable of the cache is meaningless, that is, it has not yet

been initialized. After object is initialized, the value of status cycles among the three

other values: VALID, INVALID, and DESTROYED. The constructor function first

23



creates the object and status is set to VALID. The condition status = VALID

indicates that the cached object was determined to be valid the last time a check

was made.

When the cached object is determined to be invalid, status is changed to IN-

VALID, but object is not changed. The condition status = INVALID indicates that

the cached object was determined to be invalid the last time a check was made, but

that object has not yet been affected.

Finally, object is set to destroyer(object) and status is set to DESTROYED.

This approach is taken (instead of simply setting object to nil) because even though

a cached object is no longer valid, it is not necessarily useless. For example, if

large arrays are being cached, an array may become invalid if a single element

is no longer correct. It would be wasteful to completely delete the array and then

recreate it because of one invalid element. Instead, in this example, the "destroyed"

object could be the same as the invalid object. When the cache is later recreated,

the recreator function corrects the one invalid element of the array and status is

reset to VALID. This is how the "modify" operation can be simulated with SCMS.

The statuses INVALID and DESTROYED are distinguished because modification

is not always appropriate; sometimes the object should be set to nil in order to

better utilize available memory.

Figure 2.1 illustrates what happens when an application requests a cached

object. Normally, when a cache is first created and initialized (with the allocate-

handle command), the status is set to VALID and the object is constructed; however,

the initial status parameter can be used to override this default setting of VALID.

When a cached object is requested (with the using-cache command), first a

check is made to see if status = VALID. If they are not equal, then status must be

either INVALID or DESTROYED. If it is the former, then object must be destroyed

24



Figure 2.1: Request for Cached Object

before it is recreated. Otherwise, it is simply recreated (and then asserted to be

valid). The cycle is: VALID, INVALID, DESTROYED, then back to VALID. The

only time that the status can be ABSENT is when the cache is first created before

it is fully initialized.

There are two different operating modes for SCMS: with scavenging and without

scavenging.4 The mode is specified by the scavenge-p parameter in the SCMS

interface. The scavenger operates analogously to the scavenger of the Lisp Machine's

garbage collector, as an asynchronous background task which continually searches

for superfluous and invalid cached information. The scavenger operates as a low

priority process so that it does not interfere with other processes. It takes the

appropriate action on each cached object it "scavenges," where the appropriate

action is determined by the CM interface to SCMS.

4 Scction 2.4 presents examples of the situations and types of applications where the scavenger is
used and where it is not used.

25



Note that when the CM is operating without the scavenger, the status is nor-

mally always VALID whenever a request is made. This is because a request always

leaves the object in a valid state and nothing causes this condition to change. The

only times that the initial test for status = VALID fails are when the application

program asserts that the cache is no longer valid or when the initial status param-

eter is used. Asserting that a cache is not valid can be done with the assert-status

command to eliminate the need for the CM to make the check for validity or if the

programmer wishes to explicitly free memory.

The sequence that is followed when a request is made for cached data and the

CM is operating with a scavenger is identical to the sequence for when the CM is

operating without a scavenger. However, when there is a scavenger, it is possible

for status to be INVALID or DESTROYED without an assertion being made from

the application program because the CM's scavenger can modify the state of the

cache.

Figure 2.2 illustrates the sequence taken when a cached object is "scavenged."

First, a check is made to see if status = VALID. If they are equal, then the cache

was determined to be valid the last time a check was made and it must be verified

that the cache is still valid. If the cache is no longer valid, then status is set to

INVALID. Next, if the cache has not been destroyed, then it needs to be determined

whether the cache is cost-effective. If it is not, then the cache is destroyed. Finally,

if recreate immediately-p is t, then the cache is recreated.

2.3.3 Utility

SCMS' scavenger makes decisions based on concepts of utility and cost-effectiveness;

a cache is cost-effective if its utility (U) is greater than the threshold value, CET.

(The default value for CET is 0.) There are four parameters that contribute to U:

26



Figure 2.2: The Scavenge Cycle

expected payoff (E), recreation cost (R), destruction cost (D), and maintenance

cost (M). U is determined by the following formula:

U=ER+D-M.

The four parameters, E, R, D, and M are interpreted as follows. E is a metric

for how useful object will be in the future in its current form; that is, if object is

valid, then E measures the expected future need for object. Likewise, if object is

invalid, then E measures the expected future need of the invalid version of object.

E is the probability that object will be used again (O < E < 1).5 R is a metric

5This range of values for E is not enforced by SCMS; however, the derivation of the formula for U

27



for how expensive it is to recreate object updating status from DESTROYED to

VALID. D is a metric for how expensive it is to destroy object, that is, change

the status of object from VALID or INVALID to DESTROYED. Finally, M is a

metric for how expensive it is to maintain object in its current form. For the three

parameters, R, D, and M, the measure of expense is in "utils," an arbitrary unit

of utility borrowed from economics; the metric E is unitless.

The above formula (U = ER + D - M) is derived from the following boundary

conditions:
D D-M, if E = 0;

R+D-M, if E=1.
If the cache will definitely not be used again (E = 0), then the cache is cost-effective

if it is more expensive to destroy than.it is to maintain. Alternately, if the cache

will definitely be used again (E = 1), then the cost of recreating the cache, R, must

be added to the value because the cache will need to be recreated if it is destroyed.

Combining the two boundary conditions and making the non-boundary conditions

linear yields the formula for U.

Since the cost functions can use global variables in their calculations to deter-

mine total value, global optimizations can be performed over either all or a subset

of the cache managers. This makes it possible, for example, to determine the least

recently used cache over a set of cache managers.

2.4 Types of Domains

Although SCMS can be used for several different purposes, there are two primary

reasons for using SCMS. Applications for SCMS tend to fall under one of both of

these categories: validation and garbage collection.

is based on viewing E as a probability.

28



(defun make-object-function (CACHE OBJECT)

(setf (state-block) global-phase)

(object-from-phase global-phase))

(defcachemanager simple-validation-example ()

:constructor make-object-function

:validity-checker (= (state-block) global-phase)

:recreator make-object-function

:scavenge-p nil)

Figure 2.3: Simple Validation Example

2.4.1 Validation Applications

In validation applications, the primary reason that SCMS is being used is to ensure

that only valid cached information is ever seen by the application program. This

is useful if the cached objects are not very large and therefore garbage collection of

them is not a real concern. In validation applications, there is generally no need

to run SCMS with the scavenger because it is not very important to eliminate the

invalid objects at the time they becomes invalid; it is only important that the invalid

objects are not retrieved when the objects are needed.

A sample validation application example is shown in Figure 2.3. In this exam-

ple, the cached object is a function of global-phase. When the object is retrieved,

if the global-phase has changed, then the cached object is no longer valid and must

therefore be recreated. The state block contains the global-phase at the time the

object was created. It is retained in order to determine if it has changed over time.

The advantage of operating without the scavenger is that there is no unneces-

sary overhead associated with this cache manager due to resources required for the

scavenger process' operation. There are situations, however, where it is advanta-

geous to operate a validation application cache manager with a scavenger. Consider

29



(defcachemanager expensive-destroy-validation-example ()
:constructor (progn (setf (state-block) global-phase))

(object-from-phase global-phase))

:validity-checker (= (state-block) global-phase)

:recreator (progn (setf (state-block) global-phase)

(object-from-phase global-phase))

:destroyer (save-object-to-file object)

:destruction-cost -1

:recreation-cost 2

:maintenance-cost 0

:expected-payoff (if (send object :valid-p)

1. ;;one if still valid

0))) ;;zero otherwise

Figure 2.4: Validation Application with Scavenging

the case where the destroy operation is time-consuming (perhaps because the object

must be saved to a file) and where it is not acceptable to have to wait for the destroy

operation every time an invalid object is demanded. Once the object is no longer

valid, it should be saved to the file as soon as the Lisp Machine is idle so that it is

not necessary to wait for this saving to be performed when the object is requested

the next time. That is, it is desired that, whenever possible, the saving take place

in the background, rather than in the foreground.

This effect can be achieved in several ways, one of which is by assigning the

cache a negative destruction cost to make the total value, ER + D - M, negative

when the cached object is no longer valid. The parallel application to the previous

one is shown in Figure 2.4.

Notice that in this example, the cache manager is run with a scavenger. An

analysis of the cost functions reveals that if the object is valid, then

30



U = ER+D-M
= (1)*(2)+(-1)-0
= 1
> 0.

The object will therefore not be reclaimed if it is valid. Once it is no longer valid,

however, then

U = ER+D-M
= (0) * (2)+ (-1)-0

= -1

and the object will be destroyed (saved to file). Since recreate immediately-p is nil,

the object will not be recreated until it is once again demanded. Changing this

parameter to t would have the effect of immediately recreating the object after the

destroy operation.

2.4.2 Garbage Collection Applications

In garbage collection (GC) applications, the primary reason that the SCMS is being

used is to keep overly expensive objects out of the address space to make room for

more important objects. GC applications always need to be run with a scavenger.

The scavenger determines whether or not a cached object is worth maintaining. In

this type of application, it is possible for a cached object to be purged even though

it is still valid. This happens when the cache is determined not to be cost-effective.

Using the formula for utility (assuming CET is 0), a cached object is reclaimed

when

U=ER + D - M 0.

Rearranging, an object is reclaimed when

M > ER+D.

31



(defcachemanager GC-example (seed)
:constructor (progn (setf (state-block) seed)

(expensive-to-maintain-array-from-seed seed))

:recreator (expensive-to-maintain-array-from-seed (state-block))

:destruction-cost 0

:recreation-cost 

:maintenance-cost*

(* (array-element-size object) ;; bits per element

(array-dimension-n 1 object) ;; number of columns

(array-dimension-n 2 object)) ;; number of rows

:expected-payoff (some-indicator-of-future-use cache))

Figure 2.5: Garbage Collection Application

Figure 2.5 shows a sample GC application. In this example, objects are always

valid and hence invalidity is not a reason for reclamation. The validity checker

option is not present because it defaults to t (the object is always valid). Notice

that the parameter :maintenance-cost* is used instead of :maintenance-cost. This is

specified in order to cache the results of evaluating the maintenance cost function.

It is evaluated only once and then cached because M does not change for a given

cached object and M is relatively expensive to calculate repeatedly. M is not

reevaluated unless the object is recreated.

32



Chapter 3

Applications

The chapter presents four applications areas for SCMS: a clock display, functional

and semi-functional programming, relational database management systems, and

Schema.

3.1 Clock

A simple application, presented to demonstrate the interaction of the various pa-

rameters of the CM, is a clock display. Consider a clock where the displayed time

needs to be updated every minute. Figure 3.1 shows the cache manager definition

for this application. In this application, there is one parameter to the CM: window.

This is the window where the clock is to be displayed. When the cache is first

constructed, the window is put in the state block in order to keep track of this

information. Also, the current date and time is displayed on this window (with the

call to print-current-time) after the window is first cleared. Finally, the constructor

function returns minute, an integer representing the current minute. If the time is

3:48 P.M., for example, then minute is 48. The CM sets object to 48, the value

returned by the constructor function.

Every time that this cache is scavenged, a check is made to see if the cache is

33



(defcachemanager clock (window)

:constructor (multiple-value-bind (ignore minute)

(get-time)

(setf (state-block) window)

(send window :clear-window)

(print-current-time window)

minute)

:validity-checker (multiple-value-bind (ignore minute)

(get-time)

(= minute object))

:recreation-cost 

:recreate-immediately-p t

:recreator (multiple-value-bind (ignore minute)

(get-time)

(send (state-block) :clear-window)

(print-current-time (state-block))

minute))

Figure 3.1: Clock Cache Manager

still valid. The cache will remain valid until 3:49 P.M., when the check

(= minute object)

will return nil indicating that the cached minute, 48, is invalid. At this time, the

object will be destroyed. Since no destruction function is specified, a default function

is used that simply returns nil. At this point, the status is DESTROYED and the

object is nil. Since recreate immediately-p is t, the cached minute is immediately

recreated. The recreation function is identical to the construction function except

that the window is extracted from the state block instead of from input parameters.

Hence, the time is displayed and object is updated to 49, the new current minute.

Also, status is updated to VALID once again.

Notice that object does is not destroyed simply because the old object is no

longer valid; the cause for destruction and recreation can be seen by analyzing

34



ER + D - M, the utility function. While object is valid, the expected payoff is 

(the default); R is 1; both the destruction and maintenance costs are 0 (the default):

U = ER+D-M
- (1) * (1)-+0-0
= 1
> 0.

Since the utility is positive, the cache is not changed. Once object is no longer valid

(the minute changes), then the expected payoff changes to 0:

U = ER+D-M
= ()*(1)+o-o
- 0

O0.

Now the utility is no longer positive and the cache is destroyed, and then recreated

because recreate immediately-p is t. due to the negative recreation cost.

The clock application is an unusual example for SCMS because the "value" of

the cache is never needed by the application program. A clock is instantiated by

creating a cache, that is,

(allocate-handle clock *a-window*)

is executed. However, using-cache is not needed because the value of the current

minute is not important except to the CM's scavenger. After the cache is created,

the clock remains active and is updated asynchronously every minute by the CM's

scavenger without any additional intervention by the application program. Several

clocks can operate simultaneously simply by creating several handles.

35



3.2 Functional and Semi-Functional
Programming

In functional programming languages, such as Backus' FP [2,3] and McCarthy's

"pure" Lisp 1.5 [7], a function always returns the same results when given the same

inputs. This is because functions have no side-effects and there is no global state.

Consider an arbitrary function, fp-function, in a functional language. For sim-

plicitly, it is assumed in the discussion that follows that fp-function takes one argu-

ment and returns one value. The example can easily be extended to multi-argument

functions that return more than one value. If fp-function is a relatively complex

function to compute, then it may be advantageous to cache fp-function's opera-

tion by saving the results of calls to fp-function and using these cached results if

fp-function is called later with the same input. If fp-function is rarely called with

the identical input twice, then caching is most likely not appropriate for this func-

tion. However, if fp-function is frequently called with a limited number of inputs,

then caching fp-function's results may prove advantageous. If fp-function is being

cached, then when fp-function is called with an argument , first a check is made

to see if the value fp-function(x) is already cached. If it is, then the cached result

is returned, eliminating the need to recompute it. If fp-function(x) is not already

cached, then fp-function is called and the result is computed and then cached for

future use before it is returned.

This behavior is easily achieved, with or without using SCMS as the caching

interface. Abelson and Sussman [1, p. 218], for example, present a programming

technique, "memoization," whereby results of previous function calls are saved in a

table in case they are later needed. They use fib as an example, a function that cal-

culates Fibonacci numbers. This effect is also achieved in Prolog, as demonstrated

by O'Keefe [11], where a cache predicate unifies with previously computed results

36



and returns the cached result.

There are two slight modifications to this scenario for which SCMS becomes

very helpful: when the cached results are expensive to maintain and when fp-

function is only "semi-functional." These two modifications parallel the two primary

domains for SCMS: garbage collection and validation applications.

If the cached results of fp-function are expensive to maintain, for example, if

they are memory-intensive, then it is not practical to keep cached all of the results of

the different calls to fp-function, even though there may only be a limited number.

SCMS can be used to determine which cached results of calls to fp-function are

cost-effective and which are not.

For this application, cache handles are not needed; rather, a simpler CM lookup

mechanism is needed to determine if fp-function, applied to a given input, is present

in the cache. The CM's lookup mechanism keys off of the possible inputs to fp-

function. In order to determine which cached results are cost-effective, the CM

uses a least recently used (LRU) algorithm 1 to determine which caches are likely

to be used again. Whenever a cache is used, the CM updates the LRU ordering of

the caches. A CM with these two special characteristics - no handles and LRU

tracking - is obtained with the manager flavor parameter in the CM interface which

is set to LRU-no-handle-cache-manager.

Figure 3.2 presents a CM interface for this example. The CM reclaims objects

when U is no longer positive, which occurs when E < 10.2 LRU-position is a

function that determines E based on how recently the cache has been used. In this

example, for the five most recently used caches, E = 20; for the sixth most recently

'In the LRU algorithm used, whenever a cache is requested, it is moved to the head of a list (the
LR U-list) of the ordering of cache usage. The least recently used cache then propogates to the
tail of the list.

2 The range of 0 < E < 20 is used in this example rather than 0 < E < 1 for performance reasons;
it is more efficient to multiply integers than it is to multiply floating point numbers.

37



(defun LRU-position (cache number-of-highest highest step)

(declare (special LRU-list))

(let ((position (find-position-in-list cache LRU-list)))

(cond ((< position number-of-ones) highest)

(t (max 0 (- highest

(* step (- position number-of-ones -1))))))))

(defcachemanager fp-function-CM (input)
:constructor (progn (setf (state-block input))

(fp-function input))

:recreator (fp-function (state-block))

:maintenance-cost 10.

:recreation-cost 1.

:destruction-cost 0.

:expected-payoff (LRU-position CACHE 5. 20. 1.)

:manager-flavor LRU-no-handle-cache-manager)

Figure 3.2: Functional Programming with GC Cache Manager

used cache, E = 19; for the seventh, E = 18; and so on until for the twenty-fifth

and all older caches, E = 0. Clearly, more complex cost functions could be used if

different cached results occupied significantly different amounts of memory, or if, for

example, the complexity of calculating fp-function was dependent on the magnitude

of the input. Then, when a call to fp-function is made with input ,

(using-cache-no-handle (fp-function-CM x)
. . .)

is implicitly executed in order to obtain fp-function at x. using-cache-no-handle

is the same as using-cache except that the CM used must be explicitly specified

.s an argument to using-cache-no-handle because there is no handle available to

determine the correct CM.

Notice that in this example, no validity checker is necessary. This is because, in

ntional language, there is no state to affect the validity of the cached results.

38



In a non-functional language (such as Zetalisp), many functions are nevertheless

functional, that is, the value or values returned are only dependent on the input.

Examples include plus, car, setq, cond, and factorial. There are also functions that

are "semi-functional," that is, the output is dependent on the inputs and a limited,

known, part of the state.

For both of these cases - semi-functional functions and functional functions

within a non-functional language - there could be a declaration to advise the

compiler that a function has a CM associated with it. For example, in Zetalisp,

fp-function could be defined as follows:

(defun fp-function (input)

(declare (functional fp-function-CM))

Then, the fp-function-CM cache manager would be associated with fp-function.

The difference when fp-function is only semi-functional is that there would need to

be a validity checker parameter for the CM interface to determine if the state has

changed sufficiently to make the cache invalid.

3.3 Relational Database Management Systems

Relational database management systems offer three opportunities to use SCMS:

secondary indices, view materializations, and inter-query optimization.

3.3.1 Secondary Indices

In a relational database, secondary indices give ready access to those tuples of a

relation that are associated with values of the indexed attributes. The sole purpose

of secondary indices is to increase efficiency of queries involving indexed fields. Thus,

if an employee relation is indexed on AGE, all employees over 40 can be located

39



using the AGE index without searching the entire table. Such indices are otherwise

redundant. When a retrieval is performed into the database, if these secondary or

cached indices are present, then they can be used to speed up the retrieval. If they

are not present, then the retrieval can still be performed, only more slowly.

SCMS can be used to maintain indices and destroy them when available mem-

ory is running low or when maintenance costs become high, as when lots of updates

occur to the relations that the indices cover. In this way, a somewhat self-organizing

storage implementation level can be maintained by dynamically changing the fields

that are indexed to those that will have the biggest impact on performance.

3.3.2 Views

In relational databases, a view definition is a named, stored, database query, and

a view materialization is the result of applying a view definition to the current

database. Few or no commercial database management systems implement views

as materializations. Using SCMS, view materializations could be used to cache re-

trievals from the database; a materialization of a view definition might be employed

several times in one or more queries as long as the base tables that define the view

have not been changed.

SCMS can be used to determine both validity and superfluousness of cached

view materializations. When the base tables of the database are modified, then a

view materialization becomes invalid and it becomes necessary to obtain a new ma-

terialization for a view definition. If a view materialization is invalid or has not been

used recently, then SCMS can delete the materialization in order to reclaim mem-

ory. This allows inter-query optimization by retaining view materializations from

one query to the next, without the overhead cost of retaining all materializations.

For example, if a relational database contains the relations "baseball lovers"

40



and "football lovers," then executing the query "Find people who are baseball

lovers or football lovers" would cause a view to be materialized. If a new person

is added to the tabase, then the materialized view would have to be invalidated

only if that person loves baseball or football. Also, if there are no queries related

to football for a "long" time, as determined by cost functions, then SCMS would

purge materializations that are based on the football lovers relation. This is just

a special case of the functional programming application presented in Section 3.2,

where SCMS is used to maintain a cache of previously computed results of function

calls.

3.3.3 Inter-Query Optimization

Texas Instruments' NLMenu system [5,13] is an example of a menu-based relational

database interface that encourages a user to specify queries incrementally. A user

may ask "Find ships in the Pacific within 100 miles of Hawaii," execute this query,

and then incrementally add the qualification "and whose maximum cruising speed

is greater than 30 knots," or modify the original query to specify 200 miles instead

of 100, and execute this new query. This way of formulating a query is natural since

query formulation is a negotiation process between the user, his problem, and the

state of the database. It also makes inter-query optimization potentially profitable

because consecutive queries tend to be similar, containing common subqueries.

SCMS can be used to cache the parse tree for a query. Since a user's query

normally only changes a piece of the parse tree, the whole tree need not be re-

executed. Cached subqueries are matched against subqueries of the query being

executed. those in common do not have to be reexecuted. When the tables in the

database are modified, then cached subqueries need to be invalidated. Like views,

this is also a special case of using SCMS to maintain a cache of function calls.

41



3.4 Schema

Schema [15,16], a VLSI design workstation currently under development for the

Lisp Machine, is a particularly appropriate application for SCMS operation because

there are several areas of Schema's operation in which SCMS can be installed.

Section 3.4.1 presents an interface for caching bitmaps in Schema. Section 3.4.2

presents ideas for using SCMS to control the design hierarchy in Schema. Finally,

Section 3.4.3 presents ideas for implementing incremental design verification with

SCMS.

3.4.1 Bitmaps

Schema uses an ad hoc caching mechanism to cache bitmaps of schematic icons

in order to eliminate the need to recompute the bitmaps every time an icon is

displayed. When an icon of a resistor needs to be displayed, for example, the icon

is sent a :display message which finds a bitmap to display from one of three places,

in order:

1. this particular instance of a resistor icon;

2. a cache for resistors containing bitmaps in all the sizes and orientations that
have been needed so far;

3. a bitmap is created, placed in the cache for future use, and returned.

This approach is reasonable for a production quality system; however, it is not

flexible enough for a development system. If the function that draws resistors is

modified in order to change the graphical representation of resistors, then there is

no easy way to ensure that the old, cached bitmaps are no longer used. Deleting the

cache is not practical if the function is changed several times or if some other aspect

of the icon display mechanism, such as scaling icons, is being modified. It might

42



be desirable to completely turn off caching while some part of the system is being

developed. Currently, in Schema, this is possible by setting a flag that inhibits

all icon caching. However, this does not purge all the caches, it only prevents

the creation of new caches. Invalid cached information may still accidentally be

retrieved when this flag is set to turn caching back on. Also, it is not possible to

only cache some kinds of icons and not others.

With SCMS, it is possible to improve the control of which cached bitmaps

are retrieved and which are considered to be invalid and need to be recreated.

Reexecuting the defcachemanager macro with a different validity checker parameter

allows the conditions for cache validity to change over time. When the system is

finally production quality, then the validity checker is modified to always return t,

indicating that all cached bitmaps are valid.

3.4.2 Design Hierarchy

In Schema, VLSI designs are specified and internally stored hierarchically. Within

a designer's portfolio, there can be several projects; each project can have both sub-

projects and modules; and each module can have icons, topologies, schematics, and

layouts. reduce the amount of design information that resides in virtual memory,

Schema operates on a demand loading basis. That is, a piece of the hierarchy is

not loaded from file until it is needed. Demand loading reduces virtual memory

requirements for a design significantly; however, as designs grow larger, it is still

possible to exhaust available memory.

SCMS could help to solve this problem by complementing demand paging with

"automatic purging." When a component of the hierarchy remains inactive, SCMS

could remove the component from virtual memory, freeing up memory for new

components of the hierarchy to be demand loaded. Without SCMS, in Schema,

43



all components of the hierarchy that have been loaded since a Schema session has

begun remain indefinitely, unless they are explicitly deleted from the design.

In a typical Schema session, one section of the design is developed for awhile,

set aside, and then another section is developed. SCMS could take advantage of

this behavior by purging the first section, on a least recently used basis. This

mechanism could be implemented by defining a "project" cache manager and a

"module" cache manager, or possibly only a "component" cache manager, if there

is no need to treat projects and modules separately. The destruction cost function

could be based partially on whether the section to be purged has been modified;

modified sections are more expensive to purge because they first have to be saved

to a file.

3.4.3 Incremental Design Verification

In circuit design, design verification is a time-consuming task which involves check-

ing that the design meets its specifications and the design rules for the VLSI tech-

nology used. It is wasteful to verify a complete design that has already been verified,

simply because a slight modification has been made to the design. SCMS could be

used to implement an incremental design verification mechanism by keeping track of

which parts of the design have been modified since the last verification, and which

design rules and specifications need to be rechecked.

For some types of design constraints, such as timing constraints for critical

paths, it is not necessary to ensure that the constraint is satisfied all of the time. It

is acceptable to check these constraints periodically to see if any constraints have

been violated. SCMS could assist with this process by asynchronously performing

incremental design verification. This means, for example, that while the Lisp Ma-

chine is idle, incremental design verification for critical paths could be performed.

44



Then, when it is necessary to have the constraints completely satisfied, much less

additional work is required.

45



Chapter 4

Conclusions

SCMS successfully demonstrates that there are properties common to cached data

across a wide variety of applications, and that it is possible to use a canonical

caching mechanism to exploit these properties in order to improve the performance

advantage of using cached data. To install SCMS in an application, a caching in-

terface is defined detailing application dependent information related to caching.

SCMS uses a relatively simple formula to determine the utility of cached informa-

tion, U = ER + D - M; however, many different kinds of behavior were found to

be obtainable using this formula. SCMS is flexible in that different applications

can easily use different formulas to determine utility. However, none of the applica-

tions required a different formula because the default formula was able to properly

express the desired behavior.

It would not be sensible to evaluate the concept of a software cache management

system based on performance results of SCMS; to obtain the performance gains that

are possible, microcode support is really needed. Microcode support could permit a

fully use transparent system, a major drawback of SCMS. It would still be necessary

to exhibit special care when using cached information, but special syntax would not

be necessary. The scavengers used by the cache managers could also be operated

46



with an even lower overhead.

A respect in which SCMS currently fails is non-interference; it is possible for

SCMS to prevent garbage collection of cached data that would otherwise be garbage

collected. This occurs when the only pointers to the cached data are the ones used

by SCMS to keep track of the data. In the current Lisp Machine garbage collection

implementation, this is unavoidable. "Soft pointers" are needed to solve this prob-

lem - pointers that are like normal pointers in all respects, except that they do

not prevent the garbage collector from reclaiming objects. If an object is pointed

to only by soft pointers, then the object can be reclaimed by the garbage collec-

tor. Without soft pointers, it is difficult to evaluate SCMS' success in controlling

memory usage.

A direction for future research in this area is definition transparency. A better

classification scheme for types of applications needs to be developed in order to im-

prove transparency. It is possible, for example, for all cached data in an application

to always remain valid. Functional programming, presented in Section 3.2, is an

example of such an application. However, it is not possible in general to determine

object validity or object utility. There are application independent heuristics, such

as using how recently an object has been used to indicate how likely it is be needed

again. Better application independent heuristics for both validity and utility need

to be developed to reduce or possibly eliminate the need to define a caching interface

when using a management system such as SCMS.

A second direction for research is expanding on the idea briefly presented in

Section 3.3.1 of using SCMS to implement self-organizing storage implementations.

Multiple representations are used in applications such as relational databases and

MACSYMA [8], a programming system for performing symbolic as well as numerical

mathematical manipulations. It needs to be seen how effective a system such as

47



SCMS would be for maintaining several representations consistently and choosing

appropriate representations dynamically, as opposed to only maintaining a primitive

represenation and a single cached representation.

Finally, possibilities of using parallel processing in this domain need to be

examined. Parallel processing could be used for purposes such as maintaining mul-

tiple representations and determining more effectively relative utility among caches

within a cache manager.

48



Bibliography

. [1] Abelson, Harold and Gerald Jay Sussman. Structure and Interpretation of
Computer Programs. Cambridge: The MIT Press, 1985.

[2] Backus, J. "Can Programming be Liberated from the von Neumann Style?"
Communications of the ACM, 21 (1978), 613-641.

[3] Backus, J. "The Algebra of Functional Programs: Function Level Reasoning,
Linear Equations, and Extended Definitions." Proceedings of Symposium on
Functional Languages and Computer Architectures, Gothenberg, 1981.

[4] Corey, Stephen M. and M. Rajinikanth. "The Explorer Relational Table Man-
agement System: RTMS." Proceedings of TI-MIX, Texas Instruments Users
Group Meeting, 1985.

[5] Kolts, John. "NLMenu (Natural Language Menu) on the Explorer." Proceed-
ings of TI-MIX, Texas Instruments Users Group Meeting, 1985.

[6] Lieberman, Henry and Carl Hewitt. "A Real-Time Garbage Collector Based
on the Lifetimes of Objects." Communications of the ACM, 26 (1983), 419-
429.

[7] McCarthy, John. "Recursive Functions of Symbolic Expressions and Their
Computation by Machine, Part I." Communications of the ACM, 3, 1960,
184-195.

[8] Mathlab Group, MACSYMA Reference Manual, Version 10. Laboratory for
Computer Science, MIT, 1983.

[9] Moon, David. "Garbage Collection in a Large Lisp System." Proceedings of
ACM Symposium on Lisp and Functional Programming, Austin, Texas, 1984,
235-246.

[10] Moon, David, Richard M. Stallman, and Daniel Weinreb. Lisp Machine Man-
ual. Cambridge: MIT, June 1984.

[11] O'Keefe, Richard. "Caching Results." PROLOG Tige: ', No. 1, 1985.

49



[12] Smith, David E. "CORLL Manual: A Storage and File Management System
for Knowledge Bases." Memo HPP-80-8. Heuristic Programming Project.
(Working Paper). Department of Computer Science, Stanford University,
November, 1980.

[13] Thompson, Craig W. "Using Menu-Based Natural Language Understanding
to Avoid Problems Associated with Traditional Natural Language Interfaces
to Databases." Ph.D. Dissertation, University of Texas at Austin, 1984.

[14] Thompson,
M. Saenz.
Databases."
Data Bases,

Craig W., Kenneth M. Ross, Harry R. Tennant, and Richard
"Building Usable Menu-Based Natural Language Interfaces to
Proceedings of Ninth International Conference on Very Large

Florence, Italy, 1983.

[15] Zippel, Richard. "An Expert System for VLSI Design." Proceedings of Inter-
national Symposium on Computers and Systems, Newport Beach, CA, 1983.

[16] Zippel, Richard. "Schema - An Architecture for Knowledge Based CAD."
Submitted to International Conference on Computer Aided Design, 1985.

50


