ENGINEERING A CAMPUS-WIDE ACCESSIBLE MUSIC LIBRARY
by
KEITH J. WINSTEIN
Bachelor of Science, Massachusetts Institute of Technology (2004)

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

MASTER OF ENGINEERING IN ELECTRICAL ENGINEERING AND COMPUTER SCIENCE
MASSACHUSETTS lNSTﬁﬁE‘

at the OF TECHNOLOGY
MASSACHUSETTS INSTITUTE OF TECHNOLOGY JuL 18 2005
February 2005

LIBRARIES

Copyright 2005 Keith J. Winstein.

The author hereby grants to M.L.'T. permission to reproduce and distribute publicly
paper and electronic copies of this thesis and to grant others the right to do so. This
work is licensed under the Creative Commons Attribution License. To view a copy
of this license, visit http://creativecommons.org/licenses/by/2.0/ or send a letter to
Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.

Author.....................
Department of Electrical Engineering and Computer Science
January 28, 20056

Certified by..... foo e P R
Harold Abelson
Class of 1922 Professor of Computer Science and Engineering

Thesis Supervisor

Accepted by.
Arthur C. Smith
Chairman, Department Committee on Graduate Theses

BARKER

ENGINEERING A CAMPUS-WIDE ACCESSIBLE MUSIC LIBRARY
by

KEeITH J. WINSTEIN

Submitted to the Department of Electrical Engineering and Computer Science
on January 28, 2005, in partial fulfillment of the
requirements for the degree of
MASTER OF ENGINEERING IN ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

Abstract

The Library Access to Music Project has created a new kind of music library at the Massachusetts
Institute of Technology. The library is always open and available in dormitory rooms and class-
rooms, because it transmits music on demand over the Institute’s cable television system. By using
the analog cable television system, LAMP differs from existing commercial offerings in that essen-
tially any musical recording may be added to the collection — not just recordings where “digital
rights” have been obtained. Additionally, LAMP is orders of magnitude less expensive than existing
commercial offerings, and it is compatible with a much wider range of receiving apparatuses. With
these advantages come unfortunate limitations that spring from LAMP’s technical architecture and
posture under copyright law. Nonetheless, LAMP has been a moderate success since its opening in
October 2004, playing an average of 580 songs per day.

Thesis Supervisor: Harold Abelson
Title: Class of 1922 Professor of Computer Science and Engineering

Prologue

MonNDpAY, October 27, 2003, Josh Mandel and I opened the Library Access to Music Project for the
first time. After two years of work, we were finally finished and flying high: several other universities
had already asked how to start their own LAMP libraries, our system was swamped with listeners,
and thanks to M.I.T.’s able public relations office, our faces and voices were all over the media as
peacemakers in the “digital music wars.” We had figured out how to give free music to college
students, and it looked like we were going to get away with it.

That evening, Josh and I were finishing up a string of television interviews, where I was boasting
to one station after another about how much work we had done to make sure we had all our copyright
ducks in a row. We were heading out to be interviewed on CNN when I received a call on my cell
phone. “Guys, we have a major problem.” It was Ann Hammersla, M.1.T.’s intellectual property
attorney.

In fact, our copyright ducks were not all in a row. Instead of purchasing 3,500 compact discs,
which would have been unwieldy, we had spent $28,000! to purchase two hard drives loaded with
compressed copies of those 3,500 CDs from the Loudeye Corporation. It had taken more than a
year of negotiations between M.I.T.’s and Loudeye’s attorneys before the M.I.T. lawyers had been
comfortable enough with the transaction to sign a contract. That evening, Loudeye called to say
it had made a mistake. Although the company had advertised this service on its Web site and in
press releases, and although our 3,500 CDs were minuscule compared with Loudeye’s sales to major
broadcasters,? Loudeye’s general counsel told us that she had discovered — after a complaint from
the Universal Music Group — that the company was not licensed to sell music files at all. Loudeye
had broken the law. Every one of the 48,000 songs that the company had sent us was an illegitimate,
bootleg copy.

On Tuesday, the Institute’s and Loudeye’s attorneys struggled to come up with a solution to

avoid embarrassment for M.ILT. and legal trouble for Loudeye. This involved Loudeye’s attorney

IM.IT. had not actually sent the check to Loudeye by the time we learned of trouble, so we are able to get our
money back.

2Loudeye sold XM Satellite Radio about 120,000 compact discs’ worth of MPEG audio files. Craig John-
ston, XM Radio’s Music Is Massive, RADIO WORLD NEWSPAPER, http://www.rwonline.com/reference-room/trans-2-
digital /05 _rwf xm_1.shtml (accessed May 26, 2003) (on file with author). The company has also sold music to Sirius
Satellite Radio.

calling the major record labels and asking for retroactive permission for the company’s sale to M.I.T.
Perhaps unsurprisingly, the record labels were furious at Loudeye and none too keen to help LAMP,
which they saw as exploiting a copyright loophole. Universal Music and Sony Music told Loudeye
that it had better find a way to get their music back, or else. Some of the other labels were friendly,
but no more willing to let Loudeye off the hook. The talks went nowhere.

Wednesday, October 29, saw the heavily-promoted launch of Napster 2.0, showing off the record
industry’s new way of doing business. For $10 a month, customers with Microsoft Windows comput-
ers could receive “streaming” access to a library of recordings for which the labels had been able to
get “digital rights” — mostly recent releases, but still a respectable collection of about 500,000 songs.
At the Napster launch party in Los Angeles, the liquor flowed late into the night, and somebody
spoke with Jon Healey, a business reporter with the Los Angeles Times, about LAMP.

By Thursday, it was clear that the record labels would not retroactively grant Loudeye the
permission it had needed to sell us hard drives loaded with music. M.I.T. was not itself breaking the
law — the Institute had all the licenses necessary to transmit music over its cable television system.
And it certainly was not our fault that Loudeye had broken the law. But this was too fine a line for
M.LT.s lawyers to draw, especially now that the Los Angeles Times was preparing an article for
the next day. Somewhere, along the way, the law had been broken. The lawyers concluded that the
only sane course of action was to tell Mr. Healey that we were closing LAMP “temporarily,” until
we could find a legitimate source of music.

That Friday saw the public unraveling of two years of our work. Loudeye, which was privately
apologetic, became publicly bellicose, suggesting that M.I.T. had screwed up its own licensing. It
turned out that no company is licensed to do what Loudeye had done — selling broadcasters copies
of copyrighted songs, aggregated together on a hard drive. We had shut LAMP down with no clear
prospect of return.

As The New York Times put it: “It was hailed as ingenious: a way to listen to music on demand
while avoiding the legal battleground of file sharing. Best of all, the music was fully licensed, so

there would be no legal trouble. But it was not, and there is.”

One year later, in October 2004, a more modest LAMP did eventually return. It has been open
for the last three months, with a library of 1,800 CDs. So far, 811 people have used the library,
playing an average of 580 songs per day. We have spent about $34,000 from the M.I.T.-Microsoft
iCampus partnership on the project — about $15,000 on equipment, and $19,000 on the 1,800 CDs.

To get music into LAMP without the benefit of Loudeye’s hard drives, we had to purchase
physical CDs and somehow make them able to be broadcast on demand. This meant “ripping”

them onto a computer hard drive,® something that is presumptively illegal unless it fits within one

3Physical jukeboxes capable of holding 2,000 CDs are generally gigantic, very expensive (more than $100,000), and
only able to play a few CDs at once.

of the copyright law’s narrow exceptions. Thus the new LAMP has some unfortunate limitations —
in particular, users now request music by selecting approximately six-song chunks, instead of being
able to select individual tracks by themselves.

The new LAMP is now so complicated that probably no other university will make another one.
The future of access to music is clearly moving in a different direction — toward Napster 2.0-like
services that charge universities $2 or $3 per month per student, for unlimited digital on-demand
streaming of 500,000 songs from the “digital rights” collection.

Still, most of our original goals have been fulfilled. Any student or faculty member at M.I.T. can
now listen, on-demand, to any song in the library’s collection at any time, from almost anywhere on
campus. Right now, the library only holds 1,800 CDs, but any CD can be added just by purchasing
it. We own and control the collection. And the whole system comes at no additional recurring cost

to M.I.T. — unlike a $3 per month service, which would cost the Institute $380,000 a year.

Introduction

LAMP was BORN before file-swapping or MP3s were popular. In 1996, our high school library
closed at 7:30 p.m. every night. With the school’s Advanced Computing Association, or ACA, I
tried to make the collection available at all hours of the day by putting it online. (We figured that
if only one person was listening at a time, there should be no problem.) We ripped ten CDs onto a
server named Luxo, and so we called the project the Luxo ACA Music Project, or LAMP.

At M.LT., the Library Access to Music Project’s goal was the same: to create a music library
whose collection was instantly accessible, 24 hours a day. When Josh and I started in November
2001, our original plan was to transmit music over M.I.T.’s computer network. But we quickly
ran into a hurdle. In America, a digital transmission of a recorded song to members of the public
requires the permission of two copyright owners: the songwriter who composed the song, and the
artist who sang the song.

The first group — the songwriters and their publishers — have banded together to create an
easy-to-use system of collective licensing. Since before World War 1I, radio stations, concert halls,
and nightclubs have needed only to deal with three organizations (known as ASCAP, BMI, and
SESAC) in order to receive permission from the songwriters to perform and transmit essentially all
copyrighted songs. This is a godsend, because it would be almost impossible for a radio station or
nightclub to track down each of the hundreds of thousands of songwriters that these organizations
represent.

The second group — the artists and their record labels — does not have such a system. As a
result, unless a digital transmitter can fit within one of the narrow statutory exceptions,? the only
way to transmit songs digitally to members of the public is to negotiate permission one-by-one with
the record label for each song.

For a library of 3,500 CDS or 48,000 songs, this would be almost impossible. Fortunately, radio
stations, concert halls, and nightclubs do not have to do this, because they do not transmit music
digitally. For historical reasons, analog broadcasters are only required to secure permission from the

first group — the songwriters. And in fact, most universities already have licenses from ASCAP,

4For instance, one of these exemptions applies only to XM Satellite Radio and Sirius Satellite Radio, but not to
any new competitors. 17 U.S.C. § 114(d)(2) (2000).

BMI, and SESAC. The fee is about 30 cents per student per year to each of ASCAP and BMI, and
about 10 cents per student per year to SESAC. For M.I.T., this works out to about $7,000 a year
and covers the campus radio station, cable television system, and any performance with a fee for
admission.®

Because it was simply impractical to negotiate all the licenses necessary for a digital music-on-
demand system, we designed LAMP to transmit music over M.I.T.’s analog cable television system.
Users log on to LAMP’s Web site and select music they’d like to play, and the system plays the
music over cable TV. The quality is better than FM radio and not as good as a CD. Only 16 songs
can be playing at a time, but so far we have rarely bumped into this limit. Often users are content
just to listen to what someone else is playing.

LAMP represents a new kind of music library — one that is open all the time and always nearby.
Compared with commercial music-streaming services, LAMP is extremely inexpensive. And yet the
system puts much more control in the hands of its librarian administrators, who can add any CD to
the collection just by purchasing one copy. Whether the LAMP model is of enduring value, however,

remains to be seen.

SFree performances are usually exempt under 17 U.S.C. § 110(4) (2000).

Legal Considerations

THE MOST VEXING PROBLEM facing LAMP has been, “How do we get the music into the system?”
It is easy to purchase compact discs. M.I.T. already has licenses to broadcast any compact disc on
demand.

The difficulty comes in trying to broadcast them automatically. A gigantic jukebox with 4,000
slots and 16 drives is simply impractical. In fact, the largest jukebox we know of (the Plasmon
D2175) only holds about 2,000 CDs and 12 drives and costs about $100,000.

An option with great appeal is simply to copy, or “rip,” compact discs onto a computer hard drive,
and broadcast them from there. Unfortunately, copies are presumptively illegal under the copyright
law. Even though we are licensed to broadcast the song, we are not licensed to reproduce the song.%
So unless we can claim an exception (with more solidity that copyright’s equitable doctrine of “fair
use””), we cannot make the copies.

This problem also arises in the radio industry, where broadcasters frequently would like to pre-
assemble programs containing copyrighted songs. For this reason, in 1976 Congress established a
privilege for “ephemeral recordings.”® FEssentially, the privilege says that if you are licensed to
broadcast a song, then you are also licensed to make a temporary, limited copy of the song for your
own internal transmission purposes. Radio stations use this provision to justify assembling large
collections of “ripped” CDs in order to avoid the inconvenience of dealing with physical discs.

There are two catches, however. The temporary copies must be deleted within six months. And
the statute does not really authorize copying the song. Instead, it allows a broadcaster to make a
“transmission program,” which is in turn defined as, “a body of material that, as an aggregate, has
been produced for the sole purpose of transmission to the public in sequence and as a unit.”?

When CDs are “ripped” the normal way, they are copied song-by-song onto a hard drive. This,
M.1.T.’s lawyers decided, was not the same as making a “transmission program,” because a single

song is not a “body of material” or a “sequence.”'? In response, I proposed ripping CDs in three-song

$In particular, permission to reproduce the song would have to come from both the songwriter and recording artist.
Permission to broadcast the song by analog means is only needed from the songwriter, via ASCAP, BMI, or SESAC.

717 U.S.C. § 107 (2000).

817 U.S.C. § 112(a) (2000).

217 U.S.C. § 101 (2000).

19This meant that most large radio stations in the country are breaking the law.

chunks, so that if a user wanted to play track 4, for instance, she could only find it in a program that
also included two other tracks “in sequence and as a unit.” (For more information, see Appendix B,
which reproduces this proposal.)

This was not quite good enough for M.I.T.’s lawyers, who wanted a case to validate our interpre-
tation of the statute. How long did something have to be to qualify as a “transmission program”?
Was a three-song “sequence” long enough? What about an entire CD? There are no clear answers
to these questions.

Only one published judicial decision has ever interpreted the “ephemeral recordings” provision.!!
In Agee, a federal appeals court construed “transmission program” to include a 30-minute episode
of the television show “Hard Copy.” But it is a stretch to say that the court’s holding means that
a 30-minute string of songs necessarily qualifies as a “transmission program.”

Nonetheless, a compromise was reached between LAMP, M.I.T.’s attorneys, and M.LLT.’s vice
president for research. If 30 minutes was good enough for the Second Circuit Court of Appeals, it
was good enough for LAMP.

M.LT.’s lawyers also expressed a desire that our transmission programs be the result of cre-
ative consideration. In the near future, we plan to allow users the ability to assemble their own

transmission programs, and monitor what they play in order to create new transmission programs.

11 Agee v. Paramount Communications, Inc., 59 F.3d 317 (2d Cir. 1995).

User Interface

LAMP’s INTERFACE combines a Web site, where users act as disc jockeys and select programs to
play, with a set of 16 campus-wide cable television channels, where users act as listeners.

Because of the requirement to transmit programs “in sequence and as a unit,” the interface is
quite limited. Users cannot fast-forward or rewind programs, or skip to the next song. The only
options are to pause and resume, and to give up the user’s claim on the channel entirely.

I. On the Web site, users can search for albums IV. After selecting a particular program, the user
and songs: is allocated a channel and the program starts

ss to music proj

You searched for: Beatles.

339 songs | found.
Play song: Misery

Your song appears in several programs. Please
select one to play.

st tracks | play entire €O |

Please Please Me

The Heatles
ARERECE Program 1 Play
With The Beatles list tracks | play entire CO | I T Tt e o |
A Hard Day's Night Tat tracks | play entre CO | Dot
Ths Reulles Misery T G el
I1. After clicking on the album “Please Please 0347
Me,” the user sees a list of tracks: V. The television screen shows what is playing on

every channel at the same time:

Please Please Me [Play entire CD] b
Please Please Me AR
The Beatles

14 rracks

Tracks on album:

I Saw Her Standing There ~ piay program |

00:02:52

Misery play pragram |

00:01:47

III. Clicking “play program” brings up a list of

30-minute programs that include the track:
bl

library access to music project

Play song: Misery
Your song appears in several programs. Please
select one to play.

Program 1 Flay

I'Saw Her Standing There wiewalbum | : ol
00:02:52

Misery view albumn |

00:01:47

10

Technical Considerations

LAMP’S TECHNICAL DESIGN comprises four major elements: the broadcast hardware, the broadcast

software, the Web interface, and the CD-ripping system.

Broadcast Hardware

The broadcast hardware includes a rack-mount 1.8 GHz Pentium 4 computer
with 16 sound outputs and one video output.!? FEach sound output, along with
the common video output, is connected to a Blonder Tongue AMCM-806 rack-
mount NTSC modulator. These all plug into a 16-way combiner and out to
M.LT. Cable’s own combiners and amplifiers.

The transmission programs themselves are stored in MP3 format on an array

of four 500-gigabyte FireWire hard drives.
Winstein and Man-

del with the broad-
cast hardware.

Broadcast Software

The software running on the rack-mount computer includes two custom C++
programs running on GNU/Linux. One is a 16-way single-threaded MP3 decoder,
based on the MAD library. The other uses X to render the video interface, synchronizing with the
VGA vertical retrace by using the inb (0x3da) method. These programs run with real-time priority

and locked memory, and are controlled via an ad hoc protocol over Unix domain sockets. The source

code of the two programs can be found in Appendix C.

Web Interface

A separate Intel PC, running GNU/Linux and the Apache Web server, runs the Web interface,
which is written in PHP and uses the MySQL database. The PHP CGI scripts communicate with
the broadcast software by using a series of “glue” programs written in Perl. These programs take

command-line arguments to construct messages (e.g., “play program 12”) in the ad-hoc Unix domain

12The computer’s VGA video output is converted to NTSC by a Focus TView Gold scan converter, with which we
have been somewhat unhappy. It is very difficult to produce smoothly scrolling text, because there is no way to lock
the VGA output’s vertical retrace to the TView Gold’s internal 59.94 Hz clock. Thus even with the VGA clock set
to as close to 59.94 Hz as we could muster, our text jumps once every 38 seconds.

11

socket protocol in order to communicate with the broadcast software. Packets are carried over an

encrypted SSH tunnel to the broadcast hardware PC.

CD-ripping System

The CD-ripping system includes ten Sony CDP-CX455 400-CD con-
sumer CD changers, which sell for about $210 each, as well as ten
RBX1600 audio hubs, which were donated by Streetfire Sound Labs
and normally sell for $700 each. The RBX1600 is an embedded-Linux
computer with an ARM xScale processor and the ability to control
four of Sony’s CD jukeboxes at a time as well as listen to the output
from any one of them.

When we received a prototype RBX1600 for development, it had

the ability to control jukeboxes, receive their audio (over an S/PDIF
optical digital connection), and route the audio from one of them to The ten CD changers, ten
its S/PDIF and analog coaxial outputs.'®> But the software on the ﬁ%ﬁtﬁﬁéerweb R
RBX1600 did not have access to the bits being received. To remedy

this, I wrote a Linux device driver for the xScale’s I2S sound device to allow us to have access to
the received bits in software. The source code is listed in Appendix C.

In order to access the CDs, I wrote a Web server in C that runs on the RBX1600 and whose
file store is the CD digital audio in the jukebox connected. For instance, if a Web browser requests
the URL http://rbx1600/29/5, the Web server will reply with the digital audio on CD 29, track 5.
The Web browser can also visit a URL such as http://rbx1600/29/trackcount, in order to learn how
many tracks are on CD 29.

Development of the Web server required significant debugging and defensive programming in
order to account for and work around the various corner cases of the Sony jukebox protocol and
implementation. A source code listing is in Appendix C.

The ten RBX1600s send uncompressed CD audio over a 100 Mbps Ethernet to a GNU/Linux
Intel PC, which encodes the ten streams into MP3 in real time using the gogo MP3 encoder, which is
based on LAME. The output of gogo is piped over an SSH connection to the broadcast equipment’s
hard drives — no temporary copy of any substantial length is ever saved before the actual ephemeral
recording.

One of the most work-intensive parts of CD-ripping is opening, cataloging, and loading all of the
CDs. This process is greatly aided by use of a $60 bar-code scanner, but even so, with three people
to open, scan, and load CDs, it still takes about 25 seconds per CD. Loading 1,800 CDs took about

13 hours of elapsed time, or about 40 man-hours.

13 Although the RBX1600 can control four jukeboxes and listen to any one of them, it can only listen to one at a
time. Therefore, ten RBX1600s were necessary to be able to rip from ten CD jukeboxes simultaneously.

12

Conclusions

LAMP re-opened in a beta-test phase on October 25, 2004, and since then it has been a moderate

success. So far 811 people have used the library to play an average of 580 songs per day, or 77

programs per day.

The most popular albums have been:

Number of Users

Album

28
26
25
24
23
22
19
17
17
17
17
17

Masters of Classical Music (Delta)

A Rush of Bloed to the Head (Coldplay)
International Superhits! (Green Day)

Disney’s Princess Collection (Walt Disney)

The Best of 1990-2000 (U2)

The Best of 1980-1990 (U2)

Greatest Hits 1970-2002 (Elton John)
Californication (Red Hot Chili Peppers)

Sgt. Pepper’s Lonely Hearts Club Band (Beatles)
Greatest Hits (Tom Petty and the Heartbreakers)
The Phantom of the Opera (Andrew Lloyd Weber)
Bob Dylan’s Greatest Hits

The fact that anyone can see what anyone else is playing produces a social aspect to the library.

One user recently donated his entire CD collection to LAMP, so that he could share his music with

everybody else at M.I.T.

The library is also an interesting way to find others with similar musical tastes. The following is

an e-mall received by the author after playing Dvorak’s Seventh Symphony on the LAMP prototype

in 2002:

Dear Keith,

I just happened to be up at three in the morning because I’m pathetic

and don’t have a life, and I was flipping through the channels and saw

that you had selected a beautiful symphony piece. Obviously, you’re a

13

man of great taste and intelligence. I’d like to get to know you

better. E-mail me if you’re interested.

Sex depraved freshman.

P.S. Could you send me a photo of yourself?

Clearly, some users may be uncomfortable receiving e-mails like the above as a consequence of
using LAMP. The social etiquette to using a public, campus-wide music library has yet to be worked
out.

It has been an exciting ride, and I have been very proud to bring better access to music to the
M.LT. community. One of the questions I asked in my May 2003 Advanced Undergraduate Project
— “whether users at MIT will actually want to listen to music over their televisions” — can be
answered with a qualified yes.

On the other hand, a realistic assessment will probably conclude that the system is too compli-
cated, resource-hungry (it takes 16 cable TV channels}), and confusing for it to be likely that another
university will implement its own LAMP. Whether the benefits of saving $300,000 a year and having

control over one’s own collection can outweigh these difficulties is not yet clear. We will have to see.

14

Acknowledgments

This work would not have been possible without a large number of people. 1 am very fortunate
to have worked with Josh Mandel (who did not know he was signing up for a three-year project)
on every part of LAMP. Hal Abelson has been a fantastic adviser to both of us, especially when
counseling caution. Randy Winchester and Jon Ward of M.I.'T. Cable have been extremely generous
with their time and resources.

Without the contributions of Caroline Niziolek, Austin Roach, John Hawkinson, Waseem Daher,
and Mary Ross, LAMP would have been much the worse. And without Luis Loya, Caitlin Murray,
and Ken Takusagawa, LAMP would have happened much, much later. Thanks for scanning in all
those CDs, guys.

LAMP probably would have opened much earlier — and closed for good right after — were it
not for Ann Hammersla and Mark Fischer, M.I'T.’s in-house and outside copyright attorneys. Their
incredible patience throughout the last three years is amazing. They’ve never told me what M.I.T.’s
legal bill has been through all this, but I'm pretty sure it’s a lot. It is remarkable that the Institute
was willing to spend so much time and money to indulge two undergraduates’ troublesome project
instead of just saying “no, too risky.” I am also grateful to Professor Kenneth Crews of the Indiana
University School of Law, and to Professors William Fisher and Jonathan Zittrain of Harvard Law
School, all of whom provided invaluable suggestions on the legal front.

Of course, LAMP never would have been possible without the support of M.I.T. iCampus, and in
particular Becky Bisbee, Jessica Strong, Selene Victor, and David Mitchell. I am sincerely grateful
to Microsoft Research, which funds iCampus. I know I rag on you guys a lot, so thank you doubly
to Microsoft for supporting M.I.T. and LAMP.

Without a generous donation of time and equipment from Mark Matossian and Stephen Street
of Streetfire Sound Labs, LAMP would never have been able to re-open. The same is true of the
support we received from Jonathon Weiss, M.I.T. Information Services and Technology, and the
Student Information Processing Board.

Finally, thank you to Bill McCloskey, Drew Massey, Don Schmidt, Matt Wicks, and to my

parents.

15

Appendix A: Engineering an Accessible Music Library:
Technical and Legal Challenges

Keith J. Winstein (keithw@mit.edu)
May 26, 2003

1 Introduction

Digital music has provoked a shift in the way music is sold. Instead of purchasing
a compact disc recording, consumers may now copy one illegally from a stranger
via file-trading networks that are themselves barely legal.! As a result, the
major music distributors have invested millions of dollars in combating illicit
distribution by offering their own services to sell music to consumers digitally
and instantly.?

But digital music has not provoked a change in the way music is tradition-
ally shared, that is, the technology of music libraries and radio stations. This is
partly because it is not clear how libraries and stations can take advantage of the
benefits of digitization under existing copyright law. Public libraries still dis-
tribute physical compact discs, audio cassettes, and vinyl records. With limited
exceptions for material used in music classes, university libraries are in the same
boat. Indeed, the only reason libraries are allowed to share audio recordings at
all is because of a special exemption in the copyright law: the sharing or renting
of audio recordings by for-profit entities is forbidden.? Similarly, the only radio
stations to have taken advantage of new ways of broadcasting made possible by
digital technology, XM Radio and Sirius Radio, were provided with a special
exemption in the Copyright Act that is no longer available to newcomers,* and
even so XM appears to have exposed itself to possible copyright infringement
liability on a massive scale.’

In this paper, I outline a new distribution scheme appropriate for university
and public libraries that provides significant benefits in accessibility of music
to patrons. This system-—a combination of a library, a radio station, and a

IMGM Studios, Inc. v. Grokster, Ltd.,, No. CV-01-8541, 2003 U.S. Dist. LEXIS 6994
(C.D. Cal. April 25, 2003) (“Grokster” and “Fasttrack” services not contributory infringers);
In re Aimster Copyright Litig., No. 01-¢-8933, 2002 U.S. Dist. LEXIS 17054 (N.D. Ill. Sept. 4,
2002) (“Aimster” or “Madster” service found likely contributory and vicarious infringer);
A&M Records v. Napster, Inc., 239 F.3d 1004 {(9th Cir. 2000) (“Napster” service infringes).

2Universal Music and Sony have launched Pressplay, since sold to Roxio, the company that
bought the Napster name. EMI, Bertelsmann, and Warner Music founded a similar service,
MusicNet. And Apple Computer launched the iTunes Music Store earlier this year. Amy
Harmon, Deal May Raise Napster From Online Ashes, N.Y. TIMES, May 19, 2003, at C1.
These services operate under license from the major labels and music publishers and provide
music with varying degrees of software restrictions.

317 U.S.C. § 109(b)(1)(A) (2000). This produces the amusing situation where it is legal
for a business to rent out a book, and legal to rent out a video recording of someone reading
the book, but not legal to rent out an audio recording of someone reading the book.

4Exemption for “preexisting satellite digital audio radio service[s],” 17 U.S.C. § 114(d)(2)
(2000).

5Zee section 4.2 below.

16

jukebox—is made possible by digital music compression and the Internet, but
at the same time rests critically on analog distribution. I discuss the hurdles
implementing this system at the Massachusetts Institute of Technology, where
1 expect to launch our new digital music library, known as the Library Access
to Music Project, by this fall.

The goals for LAMP were to provide on-demand access to a wide range of
music to students at MIT. The system, now in beta testing, allows students and
faculty to “check out” a channel on the MIT cable television system for their
exclusive use for 80 minutes. During that period, they may request, via a Web
site, any CD or individual track from the system’s repository, and it will play
over the TV channel allocated to the user. (Additionally, a simple video display
shows the title of music playing on each of the channels allocated to the project
and the name of the user controlling the channel.®) Anyone may listen to the
music, but only the user controlling the channel may fast-forward, rewind, skip
tracks, or select additional music. With the resources MIT Cable has allocated
for the project, 16 channels may each be individually controlled by a different
user at a time.

A variety of analogies describe the project: a music library with 16 seats,
an array of 16 jukeboxes that anyone may listen to across campus, a pool of
CDs shared among dormitory residents, a music library where you can call up
the librarian and ask to have a CD played into the telephone, a city with 16
radio stations, each taking requests. But the particular architecture chosen for
LAMP was motivated by technical and legal challenges in three areas: playing
the music, responding to requests for music-on-demand, and loading music on
the system. 1 discuss each in turn.

2 Playing Music

2.1 Technical Challenges

The technical requirement for LAMP was to be able to play audio of as high
fidelity as possible over the MIT cable television system on 16 channels at once.
With the assistance of MIT Cable, we purchased a PC-compatible 1.8 GHz
Pentium 4 rackmount server’ with two M Audio Delta 1010 sound cards.® Each
provides eight channels of 24 bit 96 kHz audio output. The outputs from each
sound card feed into 16 Blonder Tongue AMCM-806 rackmount modulators,?
and into a 16-channel combiner’® and finally into amplifiers for the MIT cable
system.

63ee Privacy, below.

7$3,900 total, including the sound cards.

831,000 each at purchase.

98240 each. The modulators support stereo audio input using the FCC-recommended
EIA TVSB No. 5 specification, but do not produce stereo audio from separate channels by
themselves.

16$190.

17

On the software end, we needed to be able to saturate 16 channels at once.
We chose the Ogg Vorbis audio compression system because it is believed to
be unencumbered by patents and is designed by an MIT alumnus and acquain-
tance.l! Using the provided vorbisfile API, I implemented a single-threaded
16-channel stereo decoder that outputs monophonic audio. When all 16 chan-
nels are in use, the system CPU is approximately 80% non-idle (including the
video display, discussed below).

The system’s quality is acceptable but not stellar. We have measured total
signal-to-noise ratio, on a cheap television, at approximately 45 dB, or between
7 and 8 bits of resolution. Bandwidth extends from about 30 Hz to 13 kHz. We
are optimistic that fancier FM-reception hardware, such as in a modern VCR,
will produce better results. We have not yet begun to implement the stereo
standard (including noise reduction), which requires either $200-per-channel
stereo encoders or implementing the EIA specification in software (and using
the 96 kHz capability of the sound cards).

2.2 Legal Challenges

Does playing copyrighted music over the MIT cable television system require
the permission of the copyright owner? To answer this question, we must first
note that there are generally two copyrights in a piece of recorded music. There
is the copyright on the underlying composition, known as a “musical work.”
And there is a separate copyright on the sound recording.

For instance, Jesse Harris won the 2003 Grammy award for song of the year
for writing the song “Don’t Know Why.” Under the federal Copyright Act, he
(or anybody he has assigned the copyright to; in this case Sony/ATV Songs)
owns the copyright on this “musical work” as soon as he writes it. And in
general, the copyright owner’s permission is necessary to perform any of the
so-called “exclusive rights” of the copyright owner, enumerated in 17 U.S.C. §
106 (2000):

Subject to sections 107 through 122, the owner of a copyright under this
title has the exclusive rights to do and to authorize any of the following:

1. to reproduce the copyrighted work in copies or phonorecords;
2. to prepare derivative works based upon the copyrighted work;

3. to distribute copies or phonorecords of the copyrighted work to the
public by sale or other transfer of ownership, or by rental, lease, or
lending;

4. in the case of literary, musical, dramatic, and choreographic works,
pantomimes, and motion pictures and other audiovisual works, to
perform the copyrighted work publicly;

5. in the case of literary, musical, dramatic, and choreographic works,
pantomimes, and and pictorial, graphic, or sculptural works, includ-
ing the individual images of a motion picture or other audiovisual
work, to display the copyrighted work publicly; and

11 Christopher M. Montgomery '94.

18

6. in the case of sound recordings, to perform the copyrighted work
publicly by means of a digital audio transmission.

So, for instance, to reproduce “Don’t Know Why” in copies or “phonorecords”
(e.g. compact discs), you need Jesse Harris’ permission. And to “perform the
copyrighted work publicly,” you also need his permission. Would playing “Don’t
Know Why” over the MIT cable television system without his permission in-
fringe this right to perform “publicly”? Although it is not crystal-clear that it
would,!? transmitting a song over MIT Cable probably does constitute a public
performance.

Fortunately, for purposes of licensing public performances in America, vir-
tually all songwriters and composers have delegated the power to license these
performances to one of three organizations: the American Society of Composers,
Authors & Publishers (ASCAP), Broadcast Music, Inc. (BMI), and SESAC,
Inc., formerly the Society of European Stage Authors and Composers. All three
are in New York City within four blocks of Columbus Circle, and all three are
happy to issue blanket licenses to universities. In fact, most universities already
have licenses from all three organizations.*?

MIT now pays 5.25 cents per student per year for blanket cable television
rights from ASCAP and BMI. SESAC includes on-campus cable television rights
in their standard university license. The total price for performance rights paid
by MIT is about $4,000 a year.

But this is not the only copyright to contend with. There is also the separate
copyright in each recording of Jesse Harris’ song. The most popular recording
of this song, by singer Norah Jones, won the 2003 Grammy for best female pop
vocal. The copyright on the recording is owned by Norah Jones or anybody she
has assigned it to: in this case, the Blue Note Records division of EMI Music.

Do we need EMI’s permission to play “Don’t Know Why” over MIT Cable?
Here the critical language is subparagraph 6 of § 106: “in the case of sound
recordings, to perform the copyrighted work publicly by means of a digital audio
transmission” (emphasis added). As long as our transmission (over MIT cable)
is analog (like most television), we do not need Norah Jones’ or EMI’s permission
to play her song, nor do we need their permission to play the song over the radio.
If we were to transmit the music to students digitally instead (e.g., over MIT’s
computer network), we would have to seek permission (which we believe would
be excruciatingly difficult to obtain for most songs, with no acceptable bulk-
licensing procedure available) or try to obtain a “mandatory” license under 17
U.S.C. § 114 (2000), which forbids “interactive” or on-demand services.

This is the critical reason LAMP has a hybrid structure: it is controlled over
the Internet, but the actual audio is played over cable television.

12The question for purposes of the transmit clause is at least partly whether the relation-
ship between MIT and its students is a “commercial, ‘public’ one,” On Command Video
Corp. v. Columbia Pictures Indus., Inc., 764 F. Supp. 1372 (N.D. Cal. 1991).

13Note that university broadcast radio stations receive a special government-set price, cur-
rently $578 per year, in the copyright regulations, at 37 C.F.R. § 253.5. Most performances by
university orchestras and bands do not require a license because of the exception for in-person
free performances by unpaid performers at 17 U.S.C. § 110(4)(A) (2000).

19

3 Music on Demand

Having resolved the question of playing audio over MIT cable, few additional
conceptual challenges are presented by the requirement to play it on demand.
My partner Joshua Mandel implemented, using the PHP Web-programming
language, an online queueing system to schedule music on each of the 16 channels
made available by MIT cable. It communicates (pause, play, stop, skip, etc.)
with the 16-channel Vorbis decoder, discussed above, using an ad hoc protocol
over Unix domain sockets. Students and faculty visit http://lamp.mit.edu,
present their MIT-issued SSL certificates (to prevent outsiders from hogging a
system they wouldn’t be able to listen to anyway, and to keep a one-channel-
per-student rule in place), and are allowed to enqueue songs similar to any MP3

player:

Please note: LAMP
may occur. Befor launch, we will have better audio quality; 16
nd over a thousand CDs. We apprediate your inferest, and
i u to explore the m as It stands. Please emall us at
lamp @mit.edn with any sugg;

Your LAMP channel

Channcl: §3 [cancel play!

As Cool J

move jump d

Channel 7
Channe!
Ch

it .
Meanwhile, the television is displaying a status display listing each of the
channels and what song, album, and user are on each, along with the time
position in the song and the amount of time in the user’s 80-minute allocation.
I implemented the display (also signalled via Unix-domain sockets) in C++ and
raw Xlib.

20

The display is typeset in Computer Modern Sans Serif, part of the standard
TEXsuite of fonts designed by Donald Knuth. We use the Adobe Type 1 version
of the font produced by Blue Sky TeX Systems.

The display scrolls right-to-left for song titles too long to fit in one screen.
(Every line scrolls one revolution in eight seconds. We found this far prefer-
able to a constant speed for each line.) The display is synchronized to the
NTSC vertical retrace, producing smooth motion with no retrace lines, using
two methods.

First, the Xlib client is synchronized to the video card’s retrace using a
nonportable method: reading the raw I/O port corresponding to the monitor’s
retrace. This requires going into a special non-protected access mode under
Linux.

if (realtime) {
myparams.sched_priority = sched_get_priority_max(SCHED_FIFO);

if (sched_setscheduler(0, SCHED_FIFO, &myparams) == -1) {
perror("setscheduler" 3
exit(1);

}

if (mlockall(MCL_CURRENT | MCL_FUTURE) != 0) {
perror("mlockall");

exit(1);
}
rtc = open("/dev/rtc", O_RDONLY);
if (rtc == -1) {

perror("/dev/rtc");
exit (errno);
}
ioctl(rtc, RTC_IRQP_SET, 8192);
ioctl(rtc, RTC_PIE_ON, 0);
if (iopl(3) '=0) {

21

perror("iopl");
exit(1);
}
3

And later, to synchronize with the retrace, we busy-wait on that I/O port
(after sleeping to approximately the right place in time):

if (realtime) {
while(1) {
if((inb(Ox3da) & 8)) break;

}
while(1) {
if(1(inb(0x3da) & 8)) break;
}
}

4 Loading Music

Having resolved the problems inherent in playing music to users and allowing
them to select that music, there remains the significant problem of loading that
music onto our system so as to be playable on demand. It is this problem that
has held up the actual launch of LAMP at MIT since November 2002.

4.1 Technical Challenges

There are two ways to load music onto the LAMP server: by purchasing com-
pact discs and copying their contents, compressed with Ogg Vorbis, onto the
hard disc (“ripping” them), or by purchasing recorded music already “ripped,”
compressed, and aggregated onto a hard drive.

The first method is advantageous because MIT already owns 7,000 CDs in
its music library, and we could rip these for little expense. (With $1,500, we
have constructed a ripping station that can rip and compress 200 CDs with
about 2 hours of work and five days of waiting.)

However, this is much less convenient than sending a list of CDs to a whole-
saler and receiving, the next week, a hard disc containing those CDs already
compressed and ripped. As far as we are aware, there is only one company in
the country, Loudeye Corp. of California, that offers this service. This is the
company that XM Radio used to build a hard disc array containing 120,000
CDs.

A third method, of keeping an actual CD jukebox connected to the LAMP
broadcast equipment with hundreds or thousands of physical CDs in it, we have
concluded is likely not practical for reliability, space, and financial reasons.

There remains the problem of how to decide which CDs to purchase. We ran
a three-week online survey that collected about 2,000 suggested albums from
dormitory residents. We plan to supplement these with the complete works of
various classical and romantic composers.

22

4.2 Legal Challenges

The legal challenges of loading music onto the system are much more difficult.
Method one, ripping, involves making systematic reproductions of thousands of
compact discs. This necessarily implicates the exclusive reproduction right (17
U.S.C. § 106(1) (2000)), and we must look to exemptions.

The only exemption that is clearly applicable is known as the “ephemeral
recording” exemption, 17 U.S.C. § 112 (2000).14 The gist of the exemption
is that a party with permission to perform or broadcast a copyrighted work
(such as a radio station with an ASCAP/BMI/SESAC license) may make a so-
called “ephemeral” recording of the work for the purpose of aiding the licensed
performance or broadcast.

Using this exemption, most commercial radio stations in the country now
use tools such as “Magic,” “AudioVault,” and “Prophet” to rip the CDs they
plan on playing for scheduled broadcast. later.’®> Qur own ripping appears to be
covered under the exemption as well. But under the actual text of the section
112, it is not clear that either we or the radio stations would be following the
law.

In particular, the provision allows licensed broadcasters to make “no more
than one copy or phonorecord of a particular transmission program embodying
the performance.” A “transmission program,” in turn, is “a body of material
that, as an aggregate, has been produced for the sole purpose of transmission
to the public in sequence and as a unit.” 16

Although our song-by-song on-demand copies would be identical under the
law to those made by most commercial radio stations, MIT is not confident
that these constitute copies of an “aggregate” “transmission program.”!” This
appears to be another quirk in the statute: did Congress really intend to make
every radio station be breaking the law by copying songs internally before broad-
casting them? Nonetheless, MIT is not willing to depend on this exemption.

14There are actually two relevant exemptions: the exemption for licensed performances in
subsection (a), and the exemption for nonprofit institutions in subsection (b). Subsection (b)
is more favorable because it would allow us to retain ripped copies for seven years instead
of just six months. But on its terms it does not give permission to copy musical works even
though we have a performance license. We would still have to obey the six-month limitation
when the musical work is in copyright, even though we have licenses to broadcast the musical
work. Was it really Congress's intent to exclude the presence of a performance license as
a qualifying reason for subsection (b), and thus effectively legislate a six-month limit for
universities making ephemeral recordings of non-classical music where the musical work is
still in copyright? This would not be consistent with Congress’ stated intent in the legislative
history for subsection (b), but it does appear to be the law.

15Most radio stations do not appear to follow the six-month limit.

1637 U.S.C. § 101 (2000).

17The legislative history is unclear. See H.R. Rep. No. 105-796 (1998) (accompanying
the Digital Millennium Copyright Act, Pub. L. No. 105-304, 112 Stat. 2860 (1998)), which
says that the purpose of the DMCA’s 112(e) amendment is to allow webcasters “to reproduce
multiple copies of a sound recording,” and that webcasters would need this amendment because
“Under section 112(a), as amended by this bill [the DMCA], a webcaster with a section 114(f)
statutory license is entitled to make only a single copy of the sound recording” (emphasis
added) (no mention of “transmission program”).

23

This leaves only the option of buying the music already in digital format.
There is one company in the country, Loudeye, that we are aware of that pro-
vides this service under license from the music labels.'® Loudeye, however, does
not have permission from the copyright owners in the musical works it sells. It
was until recently Loudeye’s position that the permission of songwriters was not
necessary for them to sell us recordings. Since the songwriters and music pub-
lishers have sued over a very similar situation,'® we were not willing to purchase
recordings from Loudeye until we could receive permission from the songwriters
and music publishers.

Unfortunately, the organizations that represent virtually all of those song-
writers and publishers, the National Music Publishers Association and its li-
censing arm, the Harry Fox Agency, have never before been asked to approve
this kind of transaction.?® Five months after first receiving our request for a
license to buy these CDs (on a hard disc) from Loudeye, the Harry Fox Agency
concluded that no license was necessary. Four hours later, Harry Fox’s “New
Media Coordinator” called me back to say they had changed their mind and
decided Loudeye did need a license from them.

In fact, it appears that when XM Radio hired Loudeye to perform a legally
equivalent service; selling XM 120,000 compact discs on a hard drive array,?!
XM became liable for massive copyright infringement. Neither Loudeye nor XM
received permission from the songwriters to make these copies, according to the
general counsel of Harry Fox, and XM appears to have indemnified Loudeye for
liability for copyright infringement??. Indeed, Harry Fox appears not to have
been aware of this practice until alerted by MIT. In any case, Loudeye and Harry
Fox are now negotiating a license that will likely be approximately 8 cents per
song. When that license agreement is concluded, which we expect to happen by
July 2003, we will be able to purchase compact discs (at Loudeye’s price of $8
per CD) in MP3 format from Loudeye and launch LAMP.

18They have automatic authorization from Universal, EMI and Warner; we will need sup-
plementary authorization from Sony and BMG.

19Rodgers & Hammerstein Org. v. UMG Recordings Inc., No. 00 Civ. 9322, 2001
U.S. Dist. LEXIS 16111, 60 U.S.P.Q.2d (BNA) 1354 (S.D.N.Y. Sept. 25, 2001).

20Remember that ASCAP, BMI, and SESAC represent songwriters and publishers for pur-
poses of performance rights; the Harry Fox Agency deals with reproductions, typically under
the 17 U.S.C. § 155 (2000) “compulsory license” not at issue here.

21Craig Johnston, XM Radio's Music Is Massive, RADIO WORLD NEWSPAPER,
http://www.rwonline.com/reference-roon/trans-2-digital/05 rwf xm_1.shtml (accessed
May 26, 2003) (on file with author)

22Redacted Loudeye-XM Aug. 25, 2000 “Encoding Services and Compact Disc Pur-
chase Agreement” § 8.2, available at http://contracts.corporate.findlaw.com/agreements
/loudeye/xmsat .encode.2000.08.25 html (accessed May 26, 2003) (on file with author)

24

5 Further Work

5.1 Privacy

There are substantial questions as to the appropriate amount of privacy when
using LAMP, especially because anyone may listen to anyone’s channel and,
currently, anyone may see the names of who is controlling each channel. The
following is an e-mail received by the author after playing Dvorak’s Seventh
Symphony on the LAMP prototype:

Dear Keith,

I just happened to be up at three in the morning because I’m pathetic
and don’t have a life, and I was flipping through the channels and saw
that you had selected a beautiful symphony piece. Obviously, you’re a
man of great taste and intelligence. I’d like to get to know you
better. E-mail me if you’re interested.

Sex depraved freshman.
P.S. Could you send me a photo of yourself?

Clearly, many users would be uncomfortable receiving e-mails like the above
as a result of playing music on LAMP. Is seeing the names of other users like
being able to get a record of others’ library use? Or is it like visiting a library
and seeing who is there? There are significant benefits to community by seeing
others’ music preferences, but even so we plan an anonymity option before
launching the service for real.

5.2 Replicating LAMP

I hope LAMP will be replicable at other universities and in some municipalities,
but it remains to be seen whether this will be possible. If the performing rights
organizations are unhappy with our use of licenses for an on-demand service,
they may be less willing to grant cable television performance licenses to other
universities or municipalities. Additionally, our purchase agreement involving
Harry Fox appears to be the first of its kind, ever, even though other organiza-
tions (such as XM) have made purchases that appear to have required such an
agreement. But if Harry Fox and Loudeye sign a general license, there should
be no problem with other universities or municipalities also making purchases
from Loudeye.

A more serious question concerns whether other universities or municipalities
have the resources (and contro! of their own cable systems) to be able to devote
cable channels to a project like this, and whether users at MIT will actually
want to listen to music over their televisions. We will have to see.

25

6 Acknowledgements

LAMP is deeply indebted to the financial support of Microsoft Research via the
MIT-Microsoft iCampus partnership, which has funded LAMP in two rounds
since February 2002. Rebecca Bisbee and Jessica Strong from iCampus have
been tireless supporters. Randy Winchester and Jon Ward of MIT Cable have
provided us with much technical assistance and hotly-contested resources, moti-
vated only by the goal of advancing a collegiate environment with experimental
services available to MIT students, and I am deeply grateful to attend a univer-
sity so supportive (financially and morally) of crazy projects as MIT. Caroline
Niziolek provided the artwork, and Ann Hammersla, MIT’s senior counsel for
intellectual property, and Professor William Fisher of Harvard Law School have
provided invaluable assistance with the legal issues. I also wish to acknowledge
the Illinois Mathematics and Science Academy for supporting the “Luxo ACA
Music Project,” an early ancestor of LAMP, back in 1996 and 1997.

Finally, LAMP would not be possible without the tireless work of my partner
in the project, Joshua Mandel, and the string-pulling, mature supervision, and
continual patronage of our advisors, David Mitchell of Microsoft and Professor
Hal Abelson of MIT.

26

Appendix B: LAMP Proposal to Allow Creation of Indivisible Three-Song Ephemeral Recordings
Keith J. Winstein (keithw @ mit.edu)
February 23, 2004

Introduction

Since November 2001, Joshua Mandel and I have worked with a $60,000 MIT-Microsoft iCam-
pus grant to build a better music library at MIT. In pursuit of this goal, MIT has acquired cable
television transmission licenses to substantially all songs copyrighted in the United States, and we
have built a system to allow students and faculty to reserve cable TV channels and act as disc
jockeys to play recordings from the Library Access to Music Project collection. The only remain-
ing difficulty has been in acquiring recordings that are technically feasible to broadcast. Physical
compact discs themselves are very unwieldy to manage in large numbers, and so our efforts have
focused on acquiring hard-drive files to store on LAMP’s broadcast equipment.

In this document, I propose a new method of obtaining these files that will accomplish LAMP’s
goals in a practical manner, satisfy the law, and present acceptable risk exposure to the Institute.
In particular, I propose the following solution: LAMP will purchase physical CDs. Using the
Copyright Act’s exemption for “ephemeral recordings,”! we will make copies of songs onto the
hard drive of LAMP’s broadcast equipment. Each ephemeral recording will be a single MP3 file
embodying a “transmission program” consisting of three tracks from a particular CD.

LAMP’s users, who act as the system’s disc jockeys, will only be able to play entire transmis-
sion programs — that is, entire three-song chunks — “in sequence and as a unit,” the language of
the law’s definition of “transmission program.”? No fast-forwarding, rewinding, or skipping will
be permitted. After six months, we will repeat the process of copying three-song chunks, with a
new and distinct set of “transmission programs.”

I additionally propose that we ask the Harry Fox Agency for permission to reproduce its pub-
lishers” musical works in “server copies.” If they grant permission, we will be able to make use
of the more generous ephemeral recording exemption for educational users of sound recordings
only,> meaning we will be able to keep our ephemeral recordings for seven years, instead of just
six months. (Even if the Harry Fox Agency does not grant permission, we will be able to use
the more generous seven-year provision in section 112(b) on classical music where the underlying
composition is uncopyrighted.)

LAMP’s previous attempts to acquire recordings

From September 2002 through October 2003, MIT’s attorneys and I negotiated to buy MP3s
from the Loudeye Corporation, which represented and warranted that it was licensed to sell them.
We eventually purchased $30,000 worth of MP3s from the company. Unfortunately, on the day
LAMP opened and began letting students and faculty broadcast music over MIT cable, Loudeye’s
general counsel called to say the company had made a huge mistake — contrary to its contractual
representations, it did not have permission to make the copies it had sold us. As a result, we closed

117 U.S.C. § 112(a)(1) (2000).
217 U.S.C. § 101 (2000).
317 U.S.C. § 112(b) (2000).

27

LAMP in November 2003 until we could find another economical means of acquiring music.
Since early November, we have attempted to negotiate temporary licenses with the five major
record labels for them either to bless our Loudeye copies or to provide us with hard-drive record-
ings of their own. So far, these negotiations have not been successful. Even if we did successfully
receive hard-drive recordings from one record label in order to launch a pilot entertainment ser-
vice, this would not satisfy our goal of providing a broad library of music much more than the MIT
libraries would be satisfied if their collection could only include books from Random House.

Comparison with academic Napster service

When we started the MIT LAMP project in 2001, record labels had no licensing programs or
services for interactive digital transmissions to the public. But since 2001, several services have
arisen with licenses from the record labels, among them Roxio’s Napster 2.0 and Apple’s iTunes
Music Store.

Why not, then, abandon MIT cable television, and reconfigure LAMP under one of these
newly-offered digital transmission licensing regimes? There are several reasons why the new dig-
ital transmission licenses and services, while more permissive than what was previously available,
are still unhelpful for our goal: to open an academic music library 24 hours a day, accessible across
the MIT campus in dormitory rooms, lecture halls, and faculty offices.

Too expensive. Pennsylvania State University and the University of Rochester have negotiated
agreements with Napster 2.0 to provide their students access to streaming songs through the ser-
vice.* I understand from discussions with the record labels that the price paid by the universities
for these services is about $2 per student per month. If this service were offered to MIT undergrad-
uates for nine months out of the year, it would cost the Institute about $75,000 per year. If offered
to all MIT students for nine months a year, it would cost about $200,000 a year. By comparison,
the total “cable television” fee MIT pays to ASCAP, BMI, and SESAC is less then 15 cents per
dormitory resident per year, for a total of less than $600 a year.

Collection too limited. The collection of recordings that the record labels and recording artists
have made available to Napster and iTunes is not suitable for an academic library. The available
recordings are heavily biased toward recent, heavily promoted releases. Classical and jazz record-
ings, or even pop recordings made before the 1980s, are scarce. The collection available to LAMP
by purchasing physical CDs at a record store (also, the collection archived by Loudeye) 1s much,
much larger, especially in this area.

Technology is a close call. 1t is not clear that the Internet streaming services are in fact more
convenient than closed-circuit television transmission. The streaming services, such as Napster
2.0, are only available on Microsoft Windows. LAMP, by contrast, is only available on devices
that can receive television audio (principally TVs, VCRs, and stereo receivers).

A search of the “mit.edu” name service zone on Feb. 18, 2004 revealed 11,000 computers
registered as running Microsoft Windows, 4,000 computers registered as Apple Macintoshes, and
about 4,000 computers registered as running some form of Unix or GNU/Linux.

4 Amy Harmon, Penn State Will Pay To Allow Students To Download Music, N.Y. TIMES, Nov. 7, 2003, at Al; N.Y.
College Offers Students Napster Deal, Associated Press, Feb. 5, 2004, LEXIS, News Wires File.

28

In student dormitory rooms, Microsoft Windows is probably more prevalent than television-
audio receivers, but not by much. In student lounges, the opposite is true. In classrooms, televisions
are far more prevalent than Microsoft Windows computers. In faculty offices, Windows is probably
more common than television-audio receivers.

A receiver for LAMP’s signal costs about $60 for students who do not have one; a Microsoft
Windows computer is far more expensive for students who do not have one. It’s a close call
which situation is preferable: requiring students without Microsoft Windows, of which there are a
substantial number, who want to access LAMP’s music library to find access to such a computer,
or requiring students without a television-audio receiver to pay about $60 for one.

Considering that a bulk subscription to a digital transmission service (such as Napster 2.0)
would every year cost MIT more than the entire total cost of LAMP, would be accessible only
on computers with Microsoft Windows, and would have a less suitable collection for an academic
library, it appears to us that the LAMP model, involving analog closed-circuit cable television
transmissions, is still a useful one to pursue.

The ephemeral recording exception in section 112

Our goal is to make 3,000 CDs available to MIT students and faculty in their rooms and offices.
Unfortunately, technical constraints generally require that for a library of this size to be practical,
someone must copy the contents of physical CDs into computer files. The copying party can be
the record label itself, us, or a third party (e.g., Loudeye), but without hard-drive copies, the large
robot arms necessary to host a 3,000-CD library are impractical, and cost hundreds of thousands
of dollars upfront and more to maintain.

In the radio industry, it is very common to manage a large library of CDs by copying them all
onto hard drives.’ A legal difficulty arises with these copies, because transmitting organizations
licensed to broadcast a song are rarely licensed to reproduce the song. To deal with this problem,
in 1976 Congress granted transmitting organizations an “ephemeral recording” privilege:

Notwithstanding the provisions of section 106, and except in the case of a motion
picture or other audiovisual work, it is not an infringement of copyright for a transmit-
ting organization entitled to transmit to the public a performance or display of a work,
under a license, including a statutory license under section 114(f), or transfer of the
copyright or under the limitations on exclusive rights in sound recordings specified by
section 114(a), or for a transmitting organization that is a broadcast radio or television
station licensed as such by the Federal Communications Commission and that makes
a broadcast transmission of a performance of a sound recording in a digital format on
a nonsubscription basis, to make no more than one copy or phonorecord of a particular
transmission program embodying the performance or display, if —

SEngineers I talked to at WEZS, WMIX, WROR, WKLD, WBOS, WDKK, and WODS all told me that “digital
storage systems” are extremely common in the radio industry, and many stations now routinely copy all CDs onto a
commercial Audiovault, Mediatouch, or Prophet hard-drive system before broadcasting.

29

(A) the copy or phonorecord is retained and used solely by the transmit-
ting organization that made it, and no further copies or phonorecords are
reproduced from it; and

(B) the copy or phonorecord is used solely for the transmitting organi-
zation’s own transmissions within its local service area, or for purposes of
archival preservation or security; and

(C) unless preserved exclusively for archival purposes, the copy or phonorecord
is destroyed within six months from the date the transmission program was
first transmitted to the public.®

A “transmission program,” in turn, is defined as “a body of material that, as an aggregate, has
been produced for the sole purpose of transmission to the public in sequence and as a unit.”’ Note
also that “The term ‘copies’ includes the material object, other than a phonorecord, in which the
work is first fixed.”® That is, “to make no more than one copy or phonorecord of a particular
transmission program,” means to assemble the one and only copy of the transmission program
from its source material.

As the legislative history explains:

This is the problem of what are commonly called “ephemeral recordings”: copies or
phonorecords of a work made for purposes of later transmission by a broadcasting or-
ganization legally entitled to transmit the work. In other words, where a broadcaster
has the privilege of performing or displaying a work either because he is licensed or be-
cause the performance or display is exempted under the statute, the question is whether
he should be given the additional privilege of recording the performance or display to
facilitate its transmission....Subsection (a) permits the transmitting organization to
make ‘“no more than one copy or phonorecord of a particular transmission program
embodying the performance or display.” A “transmission program” is defined in sec-
tion 101 as a body of material produced for the sole purpose of transmission as a unit.
Thus, under section 112(a), a transmitter could make only one copy or phonorecord of
a particular “transmission program” containing a copyrighted work, but would not be
limited as to the number of times the work itself could be duplicated as part of other
“transmission programs.”®

How is this proposal different?

MIT’s attorneys have previously decided, generally, that it would be too risky for LAMP to
rest on the proposition that the ephemeral recording exceptions permit LAMP to make hard-drive
copies of each song individually on a CD, allowing disc jockeys to select individual songs and
fast-forward, pause, and rewind them.

617 U.S.C. § 112(a)(1) (2000).

717 U.S.C. § 101 (2000).

¥1d.

“H.R. REP. NO. 94-1476 (reprinted in 17 U.S.C. app. (2000)).

30

In particular, they believe it is not well-settled whether copying a single song (that is, a single
copyrighted work) from a CD to a hard drive can constitute making a copy of a “transmission
program” — that is, “a body of material that, as an aggregate, has been produced for the sole
purpose of transmission to the public in sequence and as a unit”*°

The critical modifications in the instant proposal are: (a) the transmission programs that we
record onto hard disks will consist of three songs each, making them a “body of material,” an
“aggregate,” and a “sequence,” and (b) disc jockeys will not be allowed to fast-forward, rewind, or
skip within transmission programs, enforcing a restriction that they be transmitted through MIT’s
cable TV system “in sequence and as a unit.” These changes make our proposed activities much
closer to the examples contemplated when section 112 was enacted.

Are three songs, indivisible, a transmission program?

In preparing this proposal, I reviewed every case published in West’s Federal Supplement and
Federal Reporter, and the United States Reports, as well as every Federal Register since 1980 and
Congressional Record since 1985, every section in the United States Code Service and Code of
Federal Regulations, and every law review article indexed by Lexis-Nexis, that mentioned trans-
mission programs, ephemeral recordings, or ephemeral copies. I also consulted registration records
of the Copyright Office.

To summarize, there is no slam-dunk answer to the question, “Are three songs, indivisible,
a transmission program?”’ Nonetheless, the statutory requirements for a “transmission program”
have been interpreted broadly, and our proposed indivisible three-song transmission programs re-
flect an abundance of caution in bending over backwards to be assured of satisfying the text of
the statute. Finally, the balance of equities tilts in favor of including our proposed indivisible
three-song programs within the definition of “transmission programs.”

The statutory requirements for a “transmission program” have been interpreted broadly. In an
ephemeral recording context, the Second Circuit has construed “transmission program” to include
a single 30-minute episode of the television show Hard Copy. “Because the TV stations had the
right to broadcast Agee’s reproduced or altered sound recording ‘under the limitations on exclusive
rights in sound recordings specified by section 114(a),’ the stations are protected by the ephemeral
recording exemption.”!!

Cases about what constitutes a “transmission program’ also arise in the context of copyright
registration and deposit, because the Copyright Office’s regulations exempt “Motion pictures that
consist of television transmission programs” from the deposit requirements.!? In this context, a
federal district court construed “transmission program” to apply to a single 90-minute television
news broadcast produced by a television station:

Congress has defined “transmission program” as “a body of material that, as an aggre-
gate, has been produced for the sole purpose of transmission to the public in sequence

1017 U.S.C. § 101 (2000) (emphasis added).
" Agee v. Paramount Communications, Inc., 59 F.3d 317, 326-7 (2d Cir. 1995).
1237 C.F.R. § 202.19(c)(12) (2003).

31

and as a unit.” The legislative history shows that this definition encompasses non-
syndicated radio and television programs. Live television news broadcasts clearly fall
into the category of unpublished transmission programs.!?

Additionally, the Copyright Office’s regulations discuss “transmission programs” as including
“a regularly scheduled newscast or on-the-spot coverage of news events.”!*

I should note that the two most famous cases to discuss “server copies” of recorded music —
the closest technical analog to what we propose here — did not deal with transmission programs
or with the ephemeral recording exemption, because they involved interactive digital transmission
situations where the exemption was inapplicable on the text of the statute.'

In contrast to the facts of MP3.com and Rodgers & Hammerstein, we are dealing with ana-
log transmissions initiated to listeners of MIT’s closed-circuit cable television system by a limited
number of disc jockeys (who, in our service, are students using Web browsers). The ephemeral
recording privilege that was inapplicable to MP3.com’s and UMG Recordings’ “server copies,” be-
cause those entities made interactive digital transmissions that implicated section 114, is applicable
to our analog transmissions.

The proposed indivisible three-song transmission programs reflect an abundance of caution in
satisfying the statute’s requirements. The privilege in section 112(a) is “to make no more than
one copy or phonorecord of a particular transmission program embodying the performance.” We
propose to make exactly one copy of each indivisible three-song program that will be available
for disc jockeys to broadcast. After six months, we will delete the copy and, out of an abundance
of caution, never make it again. We will not “re-rip” the transmission program after deleting it.
Rather, we will make one copy each of a different set of transmission programs, each including a
different sequence of songs.

We also must contend with the definitional language of section 101, which gives “transmission
program” as “a body of material that, as an aggregate, has been produced for the sole purpose
of transmission to the public in sequence and as a unit.” Unlike our previous proposal, to create
single-song “transmission programs” that would be divisible (e.g., disc jockeys would have been
able to fast-forward, rewind, and skip), this proposal is much more cautious.

In particular, we satisfy explicitly all of the statutory constraints:

“body of material”? Yes. Each transmission program will contain three distinct
works, i.e., musical works and sound recordings.

“aggregate”? Yes. The songs of the program will be inseparable.

BPac. and S. Co. v. Duncan, 572 F. Supp. 1186, 1197-8 (N.D. Ga. 1983), aff'd in part, rev'd in part, 744 F.2d 1490
(11th Cir. 1984) (citations omitted).

1437 C.FR. § 202.22(e)(2) (2003).

I53UMG Recordings, Inc. v. MP3.com, Inc., 92 F. Supp. 2d 349 (S.D.N.Y. 2001); Rodgers & Hammerstein
Org. v. UMG Recordings Inc., No. 00 Civ. 9322, 2001 U.S. Dist. LEXIS 16111, 60 U.S.P.Q.2d (BNA) 1354
(SD.NY. Sept. 25, 2001). Two subsequent decisions in the MP3.com case describe the prohibited reproductions
explicitly as “server copies.” See Copyright.net Music Publ’g LLC v. MP3.com, 256 F. Supp. 2d 214 (S.D.N.Y. 2003);
Country Rd. Music, Inc. v. MP3.com, Inc., 279 F. Supp. 2d 325 (S.D.N.Y. 2003).

32

“produced for the sole purpose of transmission to the public in sequence and as a
unit”? Yes. The system’s disc jockeys will not be able to play individual songs from
within a particular transmission program, re-order the songs within a transmission
program, fast-forward or rewind sections of a transmission program, or skip about
within a transmission program. They will only be able to commence a three-song
program, and must wait for it to play in its entirety before another begins.

Additionally, our usage is similar to what we envision to have been the primary legislative in-
tent in drafting section 112: radio stations who wished to pre-record programs (several songs in
a row, sometimes with spoken announcements in-between) for disc jockeys to more easily broad-
cast to listeners. What we propose is similar. LAMP’s disc jockeys could walk to the library’s
physical location, physically choose from the several thousand CDs we plan to buy, and load them
into physical CD drives. To make it easier, we propose to pre-record indivisible three-song “trans-
mission programs” and allow the disc jockeys to queue the programs up for broadcasting from
consoles on their own computers. To listeners, the experience is identical — except that, unlike
with physical CDs present, listeners will only hear indivisible three-song programs and will not be
able to successfully request that disc jockeys fast-forward, rewind, or skip immediately to another
song.

The balance of equities tips in our favor. MIT has purchased the rights to broadcast the songs
we want to broadcast. LAMP is willing to pay anybody who can legitimately sell us recordings
in hard-drive (e.g., MP3) format, so that we do not need to make ephemeral recordings in order to
broadcast the songs.

With this proposition to buy hard-drive-format music for analog broadcasts, we have approached
Loudeye Corp. (who represented they did have this permission, sold us $30,000 of recordings,
and then disclosed they did not have permission to sell them to us), Apple’s iTunes Music Store,
Roxio’s Napster 2.0, FullAudio’s MusicNow, and the five major record labels. After three months,
we have not been able to make a successful deal to purchase hard-drive recordings from anybody.

If we pursue this proposal to construct indivisible three-song ephemeral recordings, in the end
we will own and have paid for 3,000 CDs. We will have purchased licenses from the musical work
copyright owners to broadcast those CDs. And “the practical exigencies of broadcasting,”!® (as
evidenced by the near-universal practice of commercial radio stations) dictate that we somehow
turn those physical CDs into ephemeral recordings: “copies or phonorecords of a work made
for purposes of later transmission by a broadcasting organization legally entitled to transmit the
work .17

Requesting permission from the Harry Fox Agency

The Harry Fox Agency, the licensing arm of the National Music Publishers Association, has
indicated a willingness to consider a special request for permission for MIT to make server copies
of musical works it licenses. For works where the musical work is not copyrighted (e.g., most
classical music) or where we have permission to make a “server copy,” LAMP can benefit from

1 R. REP. NO. 94-1476.
171d.

33

the seven-year ephemeral-recording privilege in section 112(b), instead of the six-month privilege
of section 112(a).

Section 112(b) applies to “nonprofit organization entitled to transmit a performance or display
of a work, under section 110(2) or under the limitations on exclusive rights in sound recordings
specified by section 114(a).” Because we do not appear to qualify for section 110(2) (a distance-
learing exemption), section 112(b) therefore only applies to us insofar as we are entitled to trans-
mit performances “under the limitations on exclusive rights in sound recordings specified by sec-
tion 114(a),” that is, the lack of an analog-performance right for sound recordings.

I recommend that we pursue a proposal with Harry Fox to allow us to make a single server copy
of works they license. The Harry Fox general counsel, Jacqueline Charlesworth, has indicated to
me that approval from almost all music publishers is likely, and the price will probably be the
statutory “mechanical license” rate (in section 115), now 8.5 cents per song.

Of the 3,000 CDs that we plan to purchase, probably more than 2,000 will include some copy-
righted musical works. Estimating 15 tracks per CD, times 2,000 CDs, times 8.5 cents per track,
works out to a total price of $2,550. This is well within our budget and, in return, we will be able
to retain transmission programs including only licensed musical works for seven years instead of
only six months.

Conclusion

LAMP aims to build a better library of music at MIT. Unlike traditional libraries, we want
LAMP to be open 24 hours a day, and we want its collection to be accessible at many physical
locations across campus. To accomplish our goals, we must be able to acquire a broad collection
able to be practically searched and broadcast across campus. We recognize that we are in uncharted
territory, and from the start our goal has been absolute and assured compliance with the law:

I want to stress, then, that I am only interested in doing this proposal if MIT is confident
it would not end in a huge lawsuit. As I see it, this is an opportunity for good PR from
all sides, including the media industries, to show the positive effects of collaboration
and applying technology to the educational process and media distribution, and this
would be the only spirit under which I think it is advisable to pursue this.!?

Based on our experiences so far, the only method that appears both clearly legal and practical
is the purchase of physical CDs and the construction of ephemeral recordings. By making each
“transmission program” an indivisible sequence of three songs, we will reflect an abundance of
caution to be assured of compliance with the statutory requirements and equities. Coupled with
a proposal to the Harry Fox Agency, this method will result in the creation of a never-closing,
always-close-by music library at MIT.

18K eith Winstein, Online Music & Movie Library for MIT, Nov. 12, 2001, at http://web.mit.edu/keithw/music (orig-
inal iICampus proposal for LAMP; approved in 2001 funding cycle, renewed in 2002 funding cycle).

34

Appendix C: Source Code Listings
LAMP Display

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <time.h>
#include <sys/time.h>
#include <sched.h>
#include <math.h>
#include <malloc.h>

#include <sys/io.h>

#include <sys/ioctl.h>
#include <linux/rtc.h>

#include <sys/types.h>
#include <sys/stat.h>
#include <sys/socket.h>
#include <sys/un.h>

#include <sys/poll.h>
#include <sys/mman.h>

extern "C" {
#include <ppm.h>
}

#include "display.h”

const int WIDTH = 640;
const int HEIGHT = 480;

void draw_demotext{ LampDisplay *mydisplay);
void recode(char *string);

pixel **lampback array;
FILE *lampback;

int image_rows, image_cols;
pixval maxval;

void reread(void)
{
if ((lampback = fopen{ "lampback.ppm", "r")) == NULL) {
perror("fopen");
exit(1);
}

lampback_array = ppm_readppm{ lampback, &image_cols, &image_rows, &maxval);
fclose(lampback);
if ((image.cols != WIDTH) || (image_rows != HEIGHT)) {
fprintf(stderr, "Bad image size.\n");
exit(1);
}
}

int main(int argc, char *argv[])

{

35

LampDisplay *mydisplay;
ppm_init(&argc, argv);

if ((lampback_array = ppm_allocarray(WIDTH, HEIGHT)) == NULL) {
perror("ppm_allocarray");
exit(1);

}

reread();

mydisplay = new LampDisplay(WIDTH, HEIGHT);

/* check depth */

printf("Bits per pixel: %i\n", mydisplay->bits_per_pixel);

if (mydisplay->bits_per_pixel != 16) {
fprintf(stderr, "Sorry, we don’t support that bit depth.\n");
exit(1);

}

mydisplay->ppm_import(lampback_array, 1.0);
mydisplay->update();

draw_demotext(mydisplay);
ppn_freearray(lampback_array, HEIGHT);

if (fclose(lampback)) {
perror("fclose");
exit(1);
¥
}

void draw_demotext(LampDisplay *mydisplay)
{
Font newfont, bigfont;
XFontStruct *newfontstruct, *bigfontstruct;
int rtc;
struct timeval thetime, lasttime;
struct timezone useless;

struct sched_param myparams;

int realtime = atoi(getenv("REALTIME"));

int mysocket = socket(PF_UNIX, SOCK_DGRAM, O);
struct pollfd ufds(2];

struct sockaddr_un mysockaddr;

mysockaddr.sun_family = AF_UNIX;
strcpy(mysockaddr.sun_path, "/tmp/lamp-display-socket®);

unlink("/tmp/lamp-display-socket");

umask{ 0);

if (bind(mysocket, (struct sockaddr *) (&mysockaddr), sizeof(mysockaddr)) t=0) {
perror("bind");
exit(1);

}

if (realtime) {

myparams.sched_priority = sched_get_priority max(SCHED_FIFO);
if (sched_setscheduler(O, SCHED_FIFQ, &myparams == -1) {

36

perror{ "setscheduler");
exit{ 1),
}

if (mlockall(MCL_CURRENT | MCL_FUTURE) != 0) {
perror("mlockall");
exit(1);

}

rtc = open{ "/dev/rtc", O_RDONLY);
if (rte == -1) {
perror("/dev/rtec");
exit(errno);

}

icctl{rtc, RTC_IRQP_SET, 8192);
ioctl(rte, RTC_PIE_ON, 0);

if (iop2(3) '=0) {
perror("iopl");
exit(1);
}
}

char skyline[1024] = "";

char chan_strings[16][1024];
char save_strings([16][1024];
char username [16] [1024];

char chan_info[16] [1024];
char save_username[16] [1024];
char timing{16][1024];

char save_timing[16][1024);
float opacity[16];

int fade[16];

time_t timeout[16];

for (int j = 0; j <
opacityl j 1 = 1.0;
fadel j 1 = 0;
timeout{ j 1 = 0;
strncpy(chan_strings{ j], "", 1024);
strncpy{(save_usernamel j }, "", 1024);
stroncpy(chan_infol j], "", 1024);
strncpy(usernamel j 1, "', 1024);
strncpy{ save_username[j], "", 1024);
strncpy(timing{ j 1, "", 1024);
strncpy(save_timing{ j 1, "", 1024);

}

int string_lengths[16];

int save_lengths[16];

int info_lengths[16];

int timing_lengths[16];

int save_timing_lengths([16];

int margin = 85;
char demostring[200];
Pixmap mypixmap, virgin_screen, demo2pixmap, myrealpixmap;

int demowidth;
int i = 0;

37

XGCValues myvalues;
myvalues.background = ((205 << 8) & 63488) | ((219 << 3) & 2016)
b (240 >> 3);
XChangeGC(mydisplay->mydisplay, mydisplay->mygc, GCBackground, &myvalues);

newfont = XLoadFont(mydisplay->mydisplay,
"-bluesky-cmssi7-medium-r-normal~-0-200-0-0-p-O-adobe-fontspecific”);
newfontstruct = XQueryFont(mydisplay->mydisplay, newfont);

bigfont = XLoadFont({ mydisplay->mydisplay,
"-bluesky-cmssi7-medium~r-normal--0-400-0-0-p-0~adobe-fontspecific");
bigfontstruct = XQueryFont(mydisplay->mydisplay, bigfont);

int skylinewidth = 0;
float skylineopacity = 1.0;
char skylinefade = 0;

XSetFont(mydisplay->mydisplay, mydisplay->mygc, newfont);
snprintf (demostring, 200, "63:%c", 160);
demowidth = XTextWidth(newfontstruct, demostring, strlen(demostring));

mypixmap = XCreatePixmap(mydisplay->mydisplay, mydisplay->mywindow, mydisplay->width,
subheight, 16);

myrealpixmap = XCreatePixmap(mydisplay->mydisplay, mydisplay->mywindow, mydisplay->width,
subheight, 16);

demo2pixmap = XCreatePixmap(mydisplay->mydisplay, mydisplay->mywindow,
mydisplay~>width - demowidth - margin, subheight, 16);

virgin_screen = XCreatePixmap(mydisplay->mydisplay, mydisplay->mywindow, mydisplay->width,
subheight, 16);

myvalues.foreground = myvalues.background;

XChangeGC(mydisplay->mydisplay, mydisplay->mygc, GCForeground, &myvalues);

XFillRectangle(mydisplay->mydisplay, mydisplay->mywindow, mydisplay->mygc, O, mydisplay->height - subheight,
mydisplay->width, subheight);

XCopyArea(mydisplay->mydisplay, mydisplay->mywindow, virgin_screen, mydisplay->mygc, O,
mydisplay->height - subheight, mydisplay->width, subheight, 0, 0);

XCopyArea(mydisplay->mydisplay, virgin_screen, myrealpixmap, mydisplay->mygc, 0, O,
mydisplay->width, subheight, 0, O);

XCopyArea(mydisplay->mydisplay, virgin_screen, mypixmap, mydisplay->mygc, 0, O,
mydisplay->width, subheight, 0, 0);

XCopyArea(mydisplay->mydisplay, virgin_screen, demo2pixmap, mydisplay->mygc, O, 0,
mydisplay->width - demowidth - margin, subheight, 0, 0);

ufds[0].fd = mysocket;
if (realtime) {
ufds[1 }.£fd = rtc;
} else {
ufds[1 1.fd = STDIN_FILEND;
}

for (int k = 0; k < 16; k++) {
string_lengths{ k]} = XTextWidth(newfontstruct, chan_strings[k], strlen(chan_strings[k
save_lengths[k] = XTextWidth(newfontstruct, save_strings[k], strlen(save_strings[k]
info_lengths{ k] = XTextWidth(newfontstruct, chan_infol k], strlen{ chan_infol k J));
timing_lengths[k] = XTextWidth(newfontstruct, timingl k], strlen(timing[X]));
save_timing_lengths[k] = XTextWidth(newfontstruct, save_timing[k], strlen(save_timingl[k J) J;
}

1))
))

myvalues.foreground = 0;

38

XChangeGC(mydisplay->mydisplay, mydisplay->mygc, GCForeground, &myvalues);

for (int j = 63; j <= 77; j++) {
snprintf(demostring, 200, "“Jd:%c", j, 160);
XDravwImageString(mydisplay->mydisplay, mypixmap, mydisplay->mygc,
50, 18 * (j - 62), demostring, strlen(demostring));
}

gettimeofday(&lasttime, &useless);

while(1) {
time_t the_time = time(NULL);
i-—

myvalues.foreground = myvalues.background;

XChangeGC(mydisplay->mydisplay, mydisplay->mygc, GCForeground, &myvalues);

XFillRectangle(mydisplay->mydisplay, demo2pixmap, mydisplay->mygc, O, O,
mydisplay~>width - demowidth - margin, subheight };

if (skylinefade == -1) {
if (skylineopacity > 0.0) {
mydisplay->ppm_import(lampback_array, skylineopacity);
mydisplay->update();

} else {
XSetFont (mydisplay->mydisplay, mydisplay->mygc, bigfont);
float tmpopac = -skylineopacity;

if (tmpopac > 1.0) {
tmpopac = 1.0;
}
myvalues.foreground = color(0, 0, 0, tmpopac);
XChangeGC(mydisplay->mydisplay, mydisplay->mygc, GCForeground, &myvalues);
XDrawString(mydisplay->mydisplay, mydisplay->mywindow, mydisplay->mygc,
320 - skylinewidth/2, 100,
skyline, strlen(skyline));
XSetFont (mydisplay->mydisplay, mydisplay~>mygc, newfont);
¥
skylineopacity ~= 0.03;
if (skylineopacity < -8.0) {
skylineopacity = -8.0;
skylinefade = 1;
}
} else if (skylinefade == 1) {
if (skylineopacity > 0.0) {
mydisplay->ppm_import (lampback_array, skylineopacity);
mydisplay->update();

} else {
XSetFont(mydisplay->mydisplay, mydisplay->mygc, bigfont);
float tmpopac = -skylineopacity;

if (tmpopac > 1.0) {
tmpopac = 1.0;

myvalues.foreground = color(0, 0, 0, tmpopac);
XChangeGC({ mydisplay->mydisplay, mydisplay->mygc, GCForeground, &myvalues);
XDrawString(mydisplay->mydisplay, mydisplay->mywindow, mydisplay->mygc,
320 ~ skylinewidth/2, 100,
skyline, strlen(skyline));
XSetFont(mydisplay->mydisplay, mydisplay->mygc, newfont);
}
skylineopacity += 0.03;
if (skylineopacity > 1.0) {
skylineopacity = 1.0;
skylinefade = 0;
}
}

39

for (int j = 0; j < 16; j++) {
int length = timing _lengths[j] + string lengths[j 1 + info_lengths[j 1;

if (fadel j 3 ==1) {
opacity[j] += 0.03;
if (opacityl j] > 1.0) {
opacityl j 1 = 1.0;
fade{ j 1 = 0;
}
} else if (fadel

= -1){
opacityf{ j 1 - H

il
0.03
if (opacityl j 1 < 0.0) {
opacityl j] = 0.0;
fadel j 1 = 1;
strepy(chan_strings[j], save_strings[j 1);
strepy(timingl j 1, save_timingl[j 1);
string_lengths[j] = save_lengths{ j J;
timing_lengths[j] = save_timing_ lengths{ j 1;
strepy(username[j], save_username[j]);
if (strcmp(username[j 1, "")} ==0) {

strcpy(chan_info{ j 1, " ");
¥ else {
sprintf(chan_infol j 1, “(%s, OOm) ", usernamel j]);
}
recode(chan_infol j]);
info_lengths[j 1 = XTextWidth(newfontstruct,

chan_infol j 1,
strlen(chan_infol j]));

}
}
time_t diff = timeout[j) - the_time;
if (diff < 0) { diff = 0; }
diff += 59;
diff /= 60;
if (fadel[j 1 t=-1) {
if (stremp(usernamel j], "") == 0) {
strcpy(chan_infol j 1, " ");

} else {

sprintf(chan_infol j }, "(¥%s, %dm) ", username{ j 1, (int)diff);
}
recode(chan_infol j 1);

}

if (length > mydisplay->width - demowidth - margin) {
double speedbump = length / (1.5%479.52);
myvalues.foreground = color(160, 32, 54, opacity[j 1);
XChangeGC(mydisplay->mydisplay, mydisplay->mygc, GCForeground, &myvalues);

XDrawString(mydisplay->mydisplay, demo2pixmap, mydisplay->mygc,
int (i*speedbump) % length, 18 * (j + 1),
timing{ j 1, strlen(timingl j 1));

XDrawString(mydisplay->mydisplay, demo2pixmap, mydisplay->mygc,
(int (i*speedbump) % length) + length, 18 * (j + 1),
timing[j], strlen(timingl j 1));

if (j%2){
myvalues.foreground = color(0, 0, 0, opacityl j]);
} else {
myvalues.foreground = color(0x20, 0x20, 0x90, opacityl j 1);
}
XChangeGC(mydisplay->mydisplay, mydisplay->mygc, GCForeground, &myvalues);

40

XDrawString(mydisplay->mydisplay, demo2pixmap, mydisplay->mygc,
(int (i*speedbump) % length) + timing_lengths[j], 18 *» (j + 1),
chan_strings[j], strlen(chan_strings{ j 1));

XDrawString(mydisplay->mydisplay, demo2pixmap, mydisplay->mygc,
((int (i*speedbump) % length) + length) + timing lengths[j], 18 = (j + 1),
chan_strings[j], strlen(chan_strings[j J));

myvalues.foreground = color(96, 96, 96, opacityl j 1);
XChangeGC(mydisplay->mydisplay, mydisplay->mygc, GCForeground, &myvalues);

XDrawString(mydisplay->mydisplay, demo2pixmap, mydisplay->mygc,
(int (i*speedbump) % length) + timing_lengths[j 1+ string lengths([j 1, 18 % (j + 1),
chan_info[j J, strlen(chan_infol j 1));

XDrawString(mydisplay->mydisplay, demoZpixmap, mydisplay->mygc,
(int (i*speedbump) % length) + length + timing lengths{ j 1 + string_lengths{ j 1, 18 * (j + 1},
chan_info[j 1, strlen(chan_infol j 1));

} else {
myvalues.foreground = color{ 160, 32, 54, opacityl j] };
XChangeGC(mydisplay->mydisplay, mydisplay->mygc, GCForeground, &myvalues);

XDrawString(mydisplay->mydisplay, demo2pixmap, mydisplay->mygc,
0, 18 * (j + 1),
timingl[j 1, strlen(timingl j 1));

if (jJ%R2){
myvalues.foreground = color(0, 0, 0, opacityl j 1);
¥} else {
myvalues.foreground = color(0x20, 0x20, 0x90, opacityl j] J);
}
XChangeGC(mydisplay->mydisplay, mydisplay->mygc, GCForeground, &myvalues);

XDrawString(mydisplay->mydisplay, demo2pixmap, mydisplay->mygc,
timing_lengths{ j J, 18 * (j + 1),
chan_strings{ j J, strlen(chan_strings[j]));
myvalues.foreground = color(96, 96, 96, opacity[j 1 J;
XChangeGC(mydisplay->mydisplay, mydisplay->mygc, GCForeground, &myvalues);

XDrawString(mydisplay->mydisplay, demo2pixmap, mydisplay->mygc,
timing_lengths[j] + string_lengths(j], 18 = (j + 1),
chan_infol j], strlen(chan_infol j 1));

}
>

XCopyArea(mydisplay->mydisplay, demo2pixmap, mypixmap, mydisplay->mygc, O, O,
mydisplay->width - demowidth - margin, subheight, 50 + demowidth, 0);

unsigned long data;

while(1) {
unsigned long difference;
char packet[1024 1;

ufds[0].events
ufds[1].events

POLLIN;
POLLIN;

poll(ufds, 2, 10);

if (ufds[O].revents & POLLIN) {
memset (packet, 0, 1024);
read(mysocket, packet, 1024);

if (packet[0 1 == 0) { /* song update */

int chan = packet[1 1;
if ((chan < 63) {1 (chan > 78)) {

41

-

"

fprintf(stderr, "Bad chan %d\n", chan);
exit(1);
}

memset{ save_strings[chan - 63], 0, 1024);
strncpy(save_strings[chan - 63], packet + 2, 1022);
recode(save_strings{ chan - 63]);
save_lengths[chan ~ 63] = XTextWidth(newfontstruct,
save_strings{ chan - 63],
strlen(save_strings[chan - 63]));

if (strcmp(save_strings[chan - 63], chan_strings{ chan ~ 631) != 0) {
fade[chan - 63] = -1;

}

else if (packet [0] == 1) { /* timing update */

int chan = packet[1];

if ((chan < 63) || (chan > 78)) {
fprintf(stderr, "Bad chan %d\n", chan);

exit(1);
}
if (fade[chan - 63] != -1) {

memset(timing{ chan - 63 1, 0, 1024);

strncpy(timing(chan - 63], packet + 2, 1022);

recode(timingl chan - 63 1);

strcpy(save_timing{ chan - 63], timing(chan - 63 1 };

save_timing_lengths[chan - 63] = timing lengths[chan - 63]

= XTextWidth(newfontstruct,
timing[chan - 63],
strlen{ timing{ chan - 63 }));

} else {

memset(save_timing[chan - 63], 0, 1024);

strncpy(save_timing[chan - 63], packet + 2, 1022);

recode(save_timing[chan - 63 1});

save_timing lengths[chan - 63] = XTextWidth(newfontstruct,

save_timing(chan - 63],
strlen{ save_timing[chan - 63]));

}
else if (packet [0 F == 2) { /+ info update */

int chan = packet[1];

if ((chan < 63) |} (chan > 78)) {
fprintf(stderr, "Bad chan %d\n", chan);
exit(1);

}

memset(save_username(chan - 63 1, 0, 1024);
strncpy(save_username(chan — 63], packet + 2, 1022);
recode(save_usernamel[chan - 63]);

if (strcmp(save_username[chan - 63], usernamel chan ~ 631) t=0) {
fade[chan - 63] = -1;

¥

else if (packet [01 == 3) { /* timeout update */

int chan = packet[1 J];

if ((chan < 63) || (chan > 78)) {
fprintf(stderr, "Bad chan %d\n", chan);
exit(1);

}

memcpy(&(timeout[chan - 63 1), &(packet[2 1), sizeof(time_t));
else if (packet[0] == 4) { /* skyline */

memset(skyline, 0, 1024);

strncpy(skyline, packet + 1, 1023);

recode(skyline);

skylinewidth = XTextWidth(bigfontstruct, skyline, strlen(skyline));
skylinefade = -1;

42

skylineopacity = 1.0;

} else if (packet[0] == 5) { /* reread */
reread();

} else {
fprintf(stderr, "Bad packet type /d\n", packet{ 0]);
exit(1)

}

}

if (realtime) {
if (ufds[1].revents & POLLIN) {
read(rtc, &data, sizeof(unsigned long));
}
}

gettimeofday(&thetime, &useless);
difference = 1000000 * (thetime.tv_sec -~ lasttime.tv_sec) +
(thetime.tv_usec - lasttime.tv_usec);

if (difference > 16500) {
break;
}
}

if (realtime) {
while(1) {
if((inb(Ox3da) & 8)) break;

}
while(1) {
if(! (inb(O0x3da) & 8)) break;
}
}

gettimeofday(&lasttime, &useless);

XCopyArea(mydisplay->mydisplay, mypixmap, mydisplay->mywindow, mydisplay->mygc, O,
mydisplay->width, subheight, O, mydisplay->height - subheight);
XFlush(mydisplay->mydisplay);

if (i % 1000) {
XEvent ev;
while(XPending(mydisplay->mydisplay)) XNextEvent(mydisplay->mydisplay, &ev);
}
}

int x, y, 2;
mydisplay->getclick(&x, &y, &z);

XFreePixmap(mydisplay->mydisplay, mypixmap);

}
void recode(char *string)
{
char *ptr;
while ((ptr = strchr(string, ’> *))) {
*ptr = 160;
}
while ((ptr = strchr(string, ’_’ J))) {
*ptr = 160;
}

}

43

LAMP MP3 Decoder

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <malloc.h>
#include <sys/ioctl.h>
#include <unistd.h>
#include <fcntl.h>
#include <sys/soundcard.h>
#include <string.h>
#include <sys/types.h>
#include <sys/un.h>
#include <sys/poll.h>
#include <sys/socket.h>
#include <sys/stat.h>
#include <mad.h>
#include <sched.h>
#include <sys/mman.h>

#define SAMPLE unsigned short
const int BUFFSIZE = 352800;
#define NUM_CHANNELS 13

struct pollfd ufds[NUM_CHANNELS + 1 J;
int frag;

int card_bufsize;

int dispsocket;

int format, stereo;

char zeros[BUFFSIZE];

char packet{ 1024];

static inline
signed int scale(mad_fixed_t sample)
{
/* round */
sample += (1L << (MAD_F_FRACBITS - 16));

/* clip */

if (sample >= MAD_F_ONE)
sample = MAD_F_ONE - 1;

else if (sample < -MAD_F_ONE)
sample = -MAD_F_ONE;

/* quantize */
return sample >> (MAD_F_FRACBITS + 1 - 18);
¥

class Channel {
public:
int index;
int audio_fd;
char *buffer;
int length;
int position;
int desired_position;
char timing_stringl 256 J;
char save_timing_stringl 256];
char playing;
char need_audio;
char end_of_stream;
char length_found;
char present;
int decodeindex;
int playindex;

44

int file_fd;

size_t file_length;

size_t file_begin;

const unsigned char *mp3data;
char play_packet{ 1024 };
char filenamel 1024 1;

char username[1024 J;

char song_title[1024]1;
unsigned int timeout;

int percent;

struct mad_stream Stream;
struct mad_frame Frame;
struct mad_synth Synth;
mad_timer_t Timer;

Channel(int i) {
index = i;
char device_name[1024];
int num = 1 < 8 7 i : i + 16;
snprintf(device_name, 1024, "/dev/dsp%d", num);

decodeindex = 0;

playindex = O;

if ((audio_fd = open(device_name, O_WRONLY, 0)) == -1) {
perror(device_name);

exit(1);

}

if (ioctl(audio_fd, SNDCTL_DSP_SETFMT, &format) != 0) {
perror ("SNDCTL_DSP_SETFMT");
exit(1);

}

if (ioctl(audio_fd, SNDCTL_DSP_STEREQ, &stereo) !'= 0) {
perror ("SNDCTL_DSP_STEREQ" };
exit(1 };

}

if (fentl(audio_fd, F_SETFL, O_NONBLOCK) 1= 0) {
perror{ "fentl");
exit(1);

}

ufds[i].fd = audio_f£fd;
ufds[i }.events = POLLOUT;

/* set up buffer */
buffer = (char *) malloc(BUFFSIZE);
if (buffer == NULL) {

perror("malloc");

exit(1);

}

memset { buffer, 0, BUFFSIZE);

playing = 0;

present = 0;

strepy(save_timing_string, "');
}

void play(void) {
memcpy(play_packet, packet, 1024);

45

if ((present == Q) || (playing == 0} || (end_of_stream == 0)) {
memset(buffer, 0, BUFFSIZE);
decodeindex = 0;
playindex = 0O;

}

stop();
char *stringp = play_packet + 12;

char delim[2];
delim(0] = ~-1;
delimf1] = O;

strcpy(filename, strsep(&stringp, delim));
strcpy(username, strsep(&stringp, delim));
strepy(song_title, strsep(&stringp, delim));

file_fd = open(filename, O_RDONLY);

if (file_fd == -1) {
fprintf(stderr, "Can’t open %s\n", filename);
perror("open" };
return;

}

struct stat my_stat;

if (stat(filename, &my_stat)} < 0) {
fprintf(stderr, "stat(/s) gives error.\n", filename);
perror("stat");
exit(1);

}

file_length = my_stat.st_size;

mp3data = (const unsigned char *) mmap(NULL, file_length, PROT_READ, MAP_SHARED, file_fd, 0);
if (mp3data < 0) {

perror("mmap");

exit(1);
}

// search for frame sync. assume byte-aligned
for (unsigned int i = 0; i < file_ length; i++) {
if (mp3datal i] == Oxff) {
file_begin = i;
break;
}
}

length_found = 0;

mad_stream_init(&Stream);
mad_timer_reset (&Timer);

mad_stream_buffer(&Stream, mp3data + file_begin,
file_length - file_begin);

present = 1;
need_audio = 1;

}

void length_tick (veoid) {
if (length_found) {
fprintf(stderr, "length_tick called but length already found.\n");
exit(1);

46

int tries = 0;

while (tries < 200) {
struct mad_header Header;
mad_header_decode (§Header, &Stream);
mad_timer_add(&Timer, Header.duration);

tries++;
if (Stream.error == MAD_ERROR_BUFLEN) {
break;
}
}

if (Stream.error == MAD_ERROR_BUFLEN) {
length_found = 1;

length = Timer.seconds * 44100;
int *packet_i = (int *)play_packet;
char sendpacket{ 1024 J;

timeout = packet_if[1];
percent = packet_il 2];

mad_stream_finish(&Stream);
mad_stream_init(&Stream);
mad_frame_init (&Frame);
mad_synth_init (&Synth);
mad_timer_reset(&Timer);

mad_stream_buffer(&Stream, mp3data + file_begin,
file_length - file_begin);

desired_position = (length / 100) * percent;

int play_margin = decodeindex - playindex;
while (play_margin < 0) {

play_margin += BUFFSIZE;
}

position = desired_position - (play_margin/2);
int chan = index + 63;

memset (sendpacket, 0, 1024);

sendpacket[0 1 = 0;

sendpacket{ 1] = chan;

strcat(song_title, " ");

memcpy (&(sendpacket[2 1), &song_title, strlen{ song_title));
write(dispsocket, sendpacket, 1024);

memset(sendpacket, 0, 1024);

sendpacket[0] = 2;

sendpacket[1] = chan;

memcpy{ &(sendpacket[2 1), &username, strlen(username));
write(dispsocket, sendpacket, 1024);

memset(sendpacket, 0, 1024);

sendpacket{ 0] = 3;

sendpacket[1] = chan;

memcpy(&(sendpacket{ 2]), &timeout, sizeof(unsigned int));
write(dispsocket, sendpacket, 1024);

47

char save_playing = playing;
playing = 1;
end_of_stream = 0; /* KJW Sept. 3, 2004 %/

send._timing();
playing = save_playing;
¥
}

void stop(void) {
if (present) {
mad_synth_finish(&Synth);
mad_frame_finish(&Frame);
mad_stream_finish(&Stream);
munmap((void*)mp3data, file_length);
close(file_fd J;
}
playing = 0;
present = O;
end_of_stream = 1;
/* KJW changed Sept. 3, 2004 */
}

void pause(void) {
if (present) {
playing = 0;
}
}

void resume(void) {
if (present)} {
playing = 1;
}
}

void play.tick(void) {
audio_buf_info info;

if (ioctl(audio_fd, SNDCTL_DSP_GETOSPACE, &info) < 0) {
perror{ "ioctl SNDCTL_DSP_GETOSPACE");
1

for (int i = 0; i < info.fragments; i++) {
play_frag();
}

send_timing();

}

void tick(void) {

int decode_margin = playindex - decodeindex;

while (decode_margin < BUFFSIZE) {
decode_margin += BUFFSIZE;

}

if (end_of_stream || ((decode_margin > 0) && (decode_margin < 9000))) {
need_audio = 0;
return;

} else {
need_audio = 1;

Y

int tries = 0;

while ((Timer.seconds * 44100 < desired_position) && (tries < 200)) {
struct mad_header Header;
mad_header_decode(&Header, &Stream);

48

mad_timer_add(&Timer, Header.duration };
tries++;

}

if (Timer.seconds * 44100 < desired_position) {
return;

}

mad_frame_decode(&Frame, &Stream);
mad_timer_add(&Timer, Frame.header.duration);

mad_synth_frame(&Synth, &Frame);

for (int i = 0; i < Synth.pcm.length; i++)} {
int LeftSample, RightSample;

LeftSample = scale(Synth.pcm.samples[0]{il);
RightSample = scale(Synth.pcm.samples[1}[il);

SAMPLE the_sample = int((LeftSample + RightSample) * 0.4);

buffer[decodeindex 1]

buffer[decodeindex +

decodeindex += 2;

if (decodeindex >= BUFFSIZE) {
decodeindex -= BUFFSIZE;

}

the_sample & Oxff;
]

1] = the_sample >> 8;

}

if (Stream.error == MAD_ERROR_BUFLEN) {
need_audio = 0;
end_of_stream = 1;
char tmp(1024];
snprintf(tmp, 1024, "/usr/local/bin/lamp-endofsong %d &", index + 63);
system(tmp);
}

decode_margin = playindex - decodeindex;

while (decode_margin < BUFFSIZE) {
decode_margin += BUFFSIZE;

}

if ((decode_margin > 0) && (decode_margin < 9000)) {
need_audio = 0;
return;

} else {
need_audio = 1;

}

}

void play_frag(veid) {
if (‘playing) {
write(audio_fd, zeros, frag);
return;
}
int play _margin = decodeindex - playindex;
while (play_margin < 0) {
play_margin += BUFFSIZE;
}
if (play_margin < frag - 1) {
write(audio_fd, zeros, frag);
return;
}
char scratch{ BUFFSIZE 1;
for (int i = 0; i < frag; i++) {
scratch{ i] = buffer[(playindex + i) % BUFFSIZE];

49

}

playindex += frag;

while (playindex > BUFFSIZE) {
playindex -= BUFFSIZE;

}

write(audio_fd, scratch, frag);

position += (frag / sizeof(SAMPLE));

int decode_margin = playindex - decodeindex;
while (decode_margin < 0) {
decode_margin += BUFFSIZE;
}
if ((decode_margin > 0) && (decode_margin < 9000)) {
need_aundio = 0;
return;
} else {
need_audio = 1;
¥
}

void send_timing(void) {
if (end_of_stream) {
return;

}

int my_position = position;
if (position < 0) my_position = 0;

soprintf(timing_string, 256, "([ld:%.2d/%d:%.2d] ,
(my_position / 44100) / 60,
(my_position / 44100) % 60,
(length / 44100} / 60,
(length / 44100) % 60);

/*
int play_margin = decodeindex - playindex;
while (play_margin < 0) {
play_margin += BUFFSIZE;
}

int buffered_bytes;
ioctl(audio_fd, SNDCTL_DSP_GETODELAY, &buffered_bytes);

snprintf (timing_string, 256, "[%d/%d] ", play_margin, buffered_bytes
.74

if (strcmp(timing_string, save_timing_string) !'= 0) {
strcpy(save_timing_string, timing string);
char spacket[1024 1;
memset (spacket, 0, 1024);
spacket[0] = 1;
spacket[1] = index + 63;
memcpy(&(spacket[2]), &(save_timing_string),
strlen({ save_timing_string)});
write(dispsocket, spacket, 1024);

}
};

int main(void);
int max(int a, int b);

int max(int a, int b)

{

return (a > b) 7 a : b;

50

¥

int main(void)

{

Channe
int my
dispso
struct

format
stereo

for (

1 *channel[NUM_CHANNELS J;

socket = socket(PF_UNIX, SOCK_DGRAM, 0);
cket = socket(PF_UNIX, SOCK_DGRAM, 0);
sockaddr_un mysockaddr;

AFMT_S16_LE;
0;

int i = 0; i < NUM_CHANNELS; i++) {

channel[i] = new Channel(i);

}

/* get

if (ioctl(chamnnel{ O]->audio_fd, SNDCTL_DSP_GETBLKSIZE, &frag) != 0) {

perr
exit

¥
fprint

/* set
mysock
strepy
unlink
umask (

if (bind(mysocket, (struct sockaddr *) (&mysockaddr), sizeof(mysockaddr)

perr
exit

}

strepy

fragment size */

or{ "SNDCTL_DSP_GETBLKSIZE");
(1)

f(stderr, "fragment size: %d\n", frag);

up sockets */

addr .sun_family = AF_UNIX;

(mysockaddr.sun_path, "/tmp/lamp-play-socket”);
("/tmp/lamp-play-socket");

0

or{ "bind");
(1),

(mysockaddr.sun_path, "/tmp/lamp-display-socket");

)

t=0) {

if (comnect(dispsocket, (struct sockaddr *) (&mysockaddr), sizeof(mysockaddr))

perr

}

memset

ufds [
ufds[

while(
poll

if (

or(“connect");

(zeros, 0, BUFFSIZE);

NUM_CHANNELS].fd = mysocket;
NUM_CHANNELS].events = POLLIN;

1) {
(ufds, NUM_CHANNELS + 1, -1);

ufds [NUM_CHANNELS] .revents & POLLIN) { // socket

memset{ packet, 0, 1024);

re

if

ad(mysocket, packet, 1024);

(packet[0] == 0) { /* play song */

int chan = packet[1];

if ((chan < 63) || (chan > 63 + NUM_CHANNELS)) {
fprintf(stderr, "Bad chan %d\n", chan);
exit(1);

¥

int index = chan - 63;

channel[index]->play();

else if (packet[0] == 1) { /* stop */

int chan = packet[1];

if ((chan < 63) || (chan > 63 + NUM_CHANNELS)) {
fprintf(stderr, "Bad chan %d\n", chan);
exit(1);

}

51

=0 {

int index = chan - 63;
channel{ index J->stop();
} else if (packet[0] == 2) { /* pause */

int chan = packet[1];

if ((chan < 63) || (chan > 63 + NUM_CHANNELS)) {
fprintf(stderr, "Bad chan %d\n", chan);
exit(1);

}

int index = chan - 63;
channel[index]->pause();
} else if (packet[01 == 3) { /* resume */

int chan = packet[1];

if ((chan < 63) || (chan > 63 + NUM_CHANNELS)) {
fprintf(stderr, "Bad chan Jd\n", chan);
exit(1);

}

int index = chan - 63;
channel[index l->resume();
} else {
exit(1);
X
}

for (int i = 0; i < NUM_CHANNELS; i++) {
if (channel[i J->present && (channel[i]->length_found == 0)) {
channel[i]->length_tick();
}
+

for (int i = 0; i < NUM_CHANNELS; i++) {
if (channell i]->playing && chamnnell i]->need_audio && channell i]->length_found) {
channel[i J~>tick();
}
}

for { int i = 0; i < NUM_CHANNELS; i++) { // audio devices
if (ufds[i]J.revents & POLLOUT) {
channell i J->play_tick();
}
}
}

return 0;

}

92

I2S PXA255 Linux Device Driver

/*
* I25 Audio Imput for the RBX1600

* By Josh Mandel and Keith Winstein.
*/

#include <linux/module.h>
#include <linux/init.h>
#include <linux/types.h>
#include <linux/fs.h>
#include <linux/delay.h>
#include <linux/pm.h>
#include <linux/errno.h>
#include <linux/slab.h>
#include <linux/sound.h>
#include <linux/soundcard.h>
#include <linux/kmod.h>
#include <linux/proc_fs.h>

#include <asm/semaphore.h>
#include <asm/uaccess.h>
#include <asm/hardware.h>
#include <asm/dma.h>

#include <asm/irq.h>
#include "../rbx1600/dac.h"

int read_frag;

int write_frag;

int write_ptr;

unsigned long volatile last_interrupt_jiffies;
char *audio_buffer;

char fifo_emptied;

#define FRAG_SIZE 588 /* must be divisible by 4 */
#define NUM_FRAGS 4 /* one frame total */
#define BUFFER_SIZE (FRAG_SIZE * NUM_FRAGS)

DECLARE_WAIT_QUEUE_HEAD(wait);

static void rbx1600_irq(int ch, void *dev_id, struct pt_regs *regs)
{

u32 sasrO_val, rfifos;

u32 sadr_val;

int write_position;

char new_frag = 0;

last_interrupt_jiffies = jiffies;
SAIMR = 0; /* disable receive-FIF0 interrupts */

/* debug */
sasrO_val = SASRO;
rfifos = (sasrO_val & 0xf000) >> 12;
if (rfifos == 0) {
rfifos = 16;
}

if (rfifos < 6) { // Leaving this code out causes interrupt lockup!
udelay(120); // 5.3 samples @ 44.1 kHz
SAIMR = 16;
// printk(KERN_INFO "rfifos is %d; why an interrupt?\n", rfifos);

33

return;

}

if (fifo_emptied && (rfifos > 12)) {
printk(KERN_INFO "Warning: receive FIFO entries = %d/16\n", rfifos);
}

while (1)
sasr(Q_val SASRO;
rfifos = (sasrO_val & Oxf000) >> 12;
if (rfifos == 0) {
rfifos = 16;
}

{

if (rfifos ==
fifo_emptied
break;

}

[
-
.

sadr_val = SADR;

vrite_position = (FRAG_SIZE * write_frag) + write_ptr;

"

audio_buffer[write_position]

audio_buffer[write_position + 1]
audio_buffer[write_position + 2]
audio_buffer{ write_position + 3]

(sadr_val & Oxff£000000) >> 24;
(sadr_val & Ox00££0000) >> 16;
(sadr_val & Ox0000f£00) >> 8;
(sadr_val & 0x000000ff);

i

[}

write_ptr += 4;

if (write_ptr == FRAG_.SIZE) {
write_ptr = 0;
write_frag = (write_frag + 1) % NUM_FRAGS;
nev_frag = 1;
}
}

SAIMR = 16; /* enable receive-FIF0 interrupts */

if (new_frag) {
wake_up_interruptible_sync{ &wait);
}
}

int rbx1600_audio_open(struct inode *inode, struct file *file)
{

MOD_INC_USE_COUNT;

read_frag = 0;

write_frag = 0;

write_ptr = 0;

fifo_emptied = O;

last_interrupt_jiffies = jiffies;

audio_buffer = (char *) kmalloc(BUFFER_SIZE, GFP_KERNEL);

if (audio_buffer == NULL) {
printk(KERN_INFO "I2S: Couldn’t allocate audio buffer.\n");
MOD_DEC_USE_COUNT;
return -ENOMEM;

}

if (request_irq(IRQ_I2S, rbx1600_irq, SA_INTERRUPT, "I2S", NULL)) {
printk(KERN_INFO "I2S: Couldn’t allocate IRQ.\n");
kfree(audio_buffer);
MOD_DEC_USE_COUNT;
return ~EBUSY;

54

return 0;

¥

int rbx1600_audio_release(struct inode *inode, struct file *file)
{

free_irq(IRQ_I2S, NULL);

kfree(audio_buffer);

audio_buffer = 0;

MOD_DEC_USE_COUNT;

return O;

}

ssize_t rbx1600_audio_read(struct file *filp, char *buff,
size_t count, loff_t *offp)
{
if (count < FRAG_SIZE) {
return -EFAULT;
}

// wait_event_interruptible(wait, (write_frag != read_frag));
interruptible_sleep_on_timeout(&wait, 3);

if (write_frag == read_frag) {
printk(KERN_INFO "write_frag == read_frag (1x)\n");
interruptible_sleep_on_timeout(&wait, 3);

¥

if ((write_frag == read_frag)
I} ((last_interrupt_jiffies - jiffies > 3)
%& (last_interrupt_jiffies -~ jiffies < 259200000))) {
/* a month */
if (write_frag == read_frag)
printk(KERN_INFO "write_frag == read_frag (2x)\mn");

printk(KERN_INFO "Resetting I2S device (no interrupts for %d jiffies).\n",
last_interrupt_jiffies - jiffies);

set_GPI0_mode (GPI028_BITCLK_I2S_MD);
set_GPI0_mode(GPI029_SDATA_IN_I2S_MD);
set_GPI0_mode (GPI030_SDATA_OUT_I2S_MD);
set_GPID_mode(GPIN31_SYNC_I2S_MD);
set_GPIO_mode (GPI032_SDATA_IN1_AC97_MD);

CKEN |= CKEN8_I2S;

SACRO = SACRO_RST;

mdelay(1);

SACRO = SACRO_ENB | SACRO_RFTH(8) | SACRO_TFTH(S);

SAIMR = 16; /* enable receive-FIF0 interrupts */
SACR1 = 0Q; /+ 128 operation */

return -EINTR;
}

copy_to_user(buff, audio_buffer + (read_frag * FRAG_SIZE), FRAG_SIZE);
read_frag = (read_frag + 1) J, NUM_FRAGS;

return FRAG_SIZE;
}

static struct file_operations rbx1600_audio_fops = {
open: rbx1600_audio_open,

55

read: rbx1600_audio_read,
release: rbx1600_audio_release,
owner: THIS_MODULE

};

static int audio_dev_id;

static int __init rbx1600_module_init(void)
{
set_GPI0_mode (GPI028_BITCLK_I2S_MD);
set_GPIO_mode (GPTO29_SDATA_IN_I2S_MD);
set_GPI0_mode (GPIO30_SDATA_QUT_I2S_MD);
set_GPI0_mode (GPI031_SYNC_I2S_MD);
set_GPI0_mode (GPI032_SDATA_IN1_AC97_MD);

CKEN |= CKENB_I125;

SACRO = SACRO_RST;

mdelay(1);

SACRO = SACRO_ENB | SACRO_RFTH(6) | SACRO_TFTH(S);

SAIMR = 16; /* enable receive-FIF0 interrupts */
SACRL = 0; /* I2S operatiomn */

L}

audio_dev_id = register_sound_dsp(&rbx1600_audio_fops,

audio_buffer = 0;
return O;
}
static void __exit rbx1600_module_exit(void)
{
unregister_sound_dsp{(audio_dev_id);
SAIMR = O;
SACRO = SACRO_RST;
mdelay(1);
SACRO = 0;
}

module_init(rbx1600_module_init);
module_exit (rbx1600_module_exit);

MODULE_AUTHOR(”Josh Mandel and Keith Winstein");
MODULE_LICENSE("GPL") ;
MODULE_DESCRIPTION("I2S Audio Driver for the RBX1600");

EXPORT_NO_SYMBOLS;

56

-1);

Sony CD Jukebox Web Server

#include <stdlib.h>
#include <stdio.h>
#include <sys/ioctl.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#include <string.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <signal.h>

#define MINVAL(x, y) ({(x) < (y) ? (x) : (y))

#define DSP_NAME "/dev/dsp"

#define SLINK_NAME "/proc/driver/slink/slcOa"

#define BLOCK_SIZE 588

#define OUTPUT_BLOCK_SIZE 2048

#define SLINK_SIZE 64

#define PORT 80

#define BACKLOG 3

#define QFRAME_MARGIN (4+75%5) /* let playback go 5 seconds over TOC time before cutting it off
#define BUFF_SIZE (4096+BLOCK_SIZE)

void write_slink(int fd, char *slink_buffer)

{
sleep(1);
if (write(fd, slink_buffer, strlen(slink_buffer)) < 0) {
perror(“write s/link");
}
}

int serve_request(int disc, int track, FILE *filestar, int fd,
int dsp_device, int slink read, int slink_write,
char query_trackcount, char *output_buffer);

void http_error(FILE *filestar, char *error)

{
fprintf(filestar, "HTTP/1.1 404 Not Found\n");
fprintf(filestar, "Content-Type: text/plain\n\n");
fprintf(filestar, "%s\n", error);
fflush{ filestar);

}

int sigpipe_received;

void pipe_handler(int signal)

{
fprintf(stderr, “SIGPIPE received.\n");
sigpipe_received = 1;

int buffer_contents(int input_i, int output_i)
{
int contents = input_i - output_i;
while (contents < 0) {
contents += BUFF_SIZE;
}

return contents;

}

int main(int argc, char **argv)

{

o7

int disc, track;

int dsp_device, slink_read, slink_write;
int listener, remote;

struct sockaddr_in my_sockaddr;
socklen_t my_sockaddr_len;

FILE *remote_filestar;

struct sigaction pipe_action;

char trackcount_wanted;

char slink_buffer{ SLINK_SIZE J;

char *output_buffer;

output_buffer = (char *) malloc{ BUFF_SIZE);

if (output_buffer == NULL) {
fprintf(stderr, "Could not allocate %d bytes of memory\n", BUFF_SIZE);
return 1;

}

system("echo 1 > /proc/driver/dac/enable" };
system{ "echo 0 > /proc/driver/dac/channel");
system{ "echo 0 > /proc/driver/dac/mute" };

/* don’t die on SIGPIPE */

pipe_action.sa_handler = pipe_handler;
sigemptyset(&pipe_action.sa_mask);
pipe_action.sa_flags = 0;

if (sigaction(SIGPIPE, &pipe_action, NULL) < 0) {
perror(“"sigaction");
exit(1);

}

if ((dsp_device = open(DSP_NAME, O_RDONLY)) < 0) {
perror(“open DSP" };
exit(1);

}

/* slink driver has 32-item read FIFD */

if ((slink_read = open(SLINK_NAME, O_RDONLY | O_NONBLOCK)) < 0) {
perror("open s/link (read)");
exit(1);

}

if ((slink_write = open(SLINK_NAME, O_WRONLY)) < 0) {
perror("open s/link (write)");
exit(1);

}

listener = socket{ PF_INET, SOCK_STREAM, 0);
if (listener < 0) {

perror{ "socket");

exit(1);
}

my_sockaddr.sin_family = AF_INET;
my_sockaddr.sin_addr.s_addr = INADDR_ANY;
my_sockaddr.sin_port = htons(PORT);

if (bind(listener,
(struct sockaddr *)&my_sockaddr, sizeof(my_sockaddr)) < 0) {
perror("bind");
exit(1);
}

while (1) {

o8

if (listen(listener, BACKLOG) < 0) {
perror(“"listen");
exit(1);

}

my_sockaddr_len = sizeof(my.sockaddr);

remote = accept(listener, (struct sockaddr *)&my._sockaddr,
&my_sockaddr_len);
if (remote < 0) {
perror(“accept");
close(remote);
continue;

}
sigpipe_received = 0;
remote_filestar = fdopen(remote, "r+");

if (remote_filestar == NULL) {
perror("fdopen");

exit(1);
}
disc = O;
track = 0;

trackcount_wanted = 0;

while(1) {
char line_buffer[2048];

if (sigpipe_received) {
break;
}

if (fgets(line_buffer, 2048, remote_filestar) == NULL) {
break;
}

if ((strcmp(line buffer, "\r\n") == 0)
|l (stremp(line_buffer, "\r") == 0)
}! (stremp(line_buffer, "\n") == 0)) {

break;

}

if (strstr(line_buffer, “trackcount”) != NULL) {
trackcount_wanted = 1;

}

if (strncmp(line_buffer, "GET ", 4) == 0) {
strtok(line_buffer, "/");
disc = atoi(strtok(NULL, "/"));
track = atoi(strtok(NULL, "/"));
}
}

if (!sigpipe_received) {
serve_request{ disc, track, remote_filestar, remote,
dsp_device, slink_read, slink_write, trackcount_wanted,
output_buffer };

}
fclose(remote_filestar);
/* stop */

snprintf{ slink_buffer, SLINK_SIZE, "109001i\n");

59

write_slink(slink_write, slink_buffer);
3

fprintf(stderr, "Quitting.\n");
return 1;

}

int serve_request(int disc, int track, FILE *filestar, int fd,
int dsp_device, int slink_read, int slink_write,
char query_trackcount, char *output_buffer)

int bytes_read, bytes_written_this_time;
int cur_disc, cur_track;

int control_b, disc_a, disc_b;

char buffer[BLOCK_SIZE];

char slink_buffer[SLINK_SIZE 1;

char hit = 0;

int total_quarter_frames = 0O;

int read_quarter_frames = O;
int input_i = 0, output_i = 0;

char input_eof = 0, buffer_full = 0, buffer_empty = 1;

if ((disc < 1) |l (disc > 400)) {
http_error(filestar, "Only 400 discs are supported.”);
return 1;

¥

if ((track < 1) || (track > 99)) {
http_error(filestar, "Only 99 tracks are supported.”);
return 1;

}

cur_disc = 0;
cur_track = 0;

fentl(fd, F_SETFL, O_NONBLOCK);

/* power on */

snprintf(slink_buffer, SLINK_SIZE, "10902e\n");
write_slink(slink_write, slink_buffer);

if (sigpipe_received) { return 1; }

/* lock front panel */

snprintf(slink_buffer, SLINK_SIZE, "109020\n");
write_slink(slink_write, slink_buffer);

if (sigpipe_received) { return 1; }

/* stop */

snprintf(slink_buffer, SLINK_SIZE, "109001\n");
write_slink(slink_write, slink_buffer);

if (sigpipe_received) { return 1; }

/* flush s/link buffer */
sleep(1);
while(1) {
if (sigpipe_received) { return 1; }
if (read(slink_read, slink_buffer, SLINK_SIZE) < 0) {
break;
}
}

if (sigpipe_received) { return 1; }

/* cue track 1 */
if (disc <= 99) {

60

control_b = 0;
disc_a = disc / 10;
disc_b = disc % 10;

} else if (disc <= 200) {
control_b = 0;
disc_a = ((disc+54) & 0xf0) >> 4;
disc_b = (disc+54) & OxO0f;

} else {
control_b = 3;
disc_a = ((disc-200) & 0xf0) >> 4;
disc_b = (disc-200) & OxOf;

}

snprintf(slink buffer, SLINK_SIZE, "309%1d51%x%x01\n",
control_b, disc_a, disc_b);

// fprintf(stderr, "Sending: %s", slink_buffer);

write_slink(slink_write, slink_buffer);

/* wait for ready */
while(1) {
if (sigpipe_received) {
return 1;

}

memset(slink_buffer, 0, SLINK_SIZE);
if (read(slink_read, slink_buffer, SLINK_SIZE) > 0) {
// fprintf(stderr, "Got: %s", slink_buffer);

/* check for play event */
if (memcmp(slink_buffer + 4, "50", 2) == 0) {
int cur_control_b, cur_disc_a, cur_disc_b;
int cur_track_a, cur_track_b;
sscanf(slink_buffer + 3, "%1x", &cur_control_b);
sscanf (slink_buffer + 6, "Alx%ixiidiid",
&cur_disc_a, &cur_disc_b, &cur_track_a, &cur_track_b);

if (cur_control_b != control b + 8) {
http_error(filestar, "Unrecognized control code." };
return 1;

}

if (cur_control_b == 11) {
cur_disc = cur_disc_a * 16 + cur_disc_b + 200;
} else if (cur_control_b == 8) {
if (cur_disc_a > 9) {
cur_disc = 16 #* cur_disc_a + cur_disc_b - 54;
} else {
cur_disc = 10 * cur_disc_a + cur_disc_b;

}
} else {
http_error(filestar, "Unrecognized control code.”);
return 1;
}
cur_track = cur_track_a * 10 + cur_track_b;
if ((cur_disc != disc) || (cur_track != 1)) {
http_error(filestar, "No such disc.");
return 1;
}
break;
}
if (memcmp(slink_buffer + 4, "53", 2) == 0) {
http_error(filestar, "No such disc.");
return 1;

61

}
if (memcmp(slink_buffer + 4, "05", 2) == 0) {
http_error(filestar, "No such disc.”);
return 1;
}
}
3

/* stop */

snprintf(slink_buffer, SLINK_SIZE, "10900i\n");
write_slink(slink_write, slink_buffer);

if (sigpipe_received) { return 1; }

/* query disc info */

snprintf(slink_buffer, SLINK_SIZE, "109%1d44\n", control_b);
write_slink(slink write, slink_buffer);

if (sigpipe_received) { return 1; }

/* get track count */
while(1) {
if (sigpipe_received) {
return 1;

}

memset (slink_buffer, O, SLINK_SIZE);
if (read(slink_read, slink_buffer, SLINK_SIZE) > 0) {
// fprintf{ stderr, "Got: %s", slink_buffer);

/* check for Oxi4 */
if (memcmp(slink_buffer + 4, "14", 2) == 0) {
http_error(filestar, "Disc not loaded.");
return 1;
¥
/* check for 0x60 */
if (mememp(slink_buffer + 4, "60", 2) == 0) {
int tracks_a, tracks_b;
sscanf(slink_buffer + 10, "%1d%1d", &tracks_a, &tracks_b);

int total_tracks = tracks_a * 10 + tracks_b;

if (query_trackcount) {
fprintf(filestar, "HTTP/1.1 200 OK\n");
fprintf(filestar, "Content-Type: text/plain\n\n");
fprintf(filestar, "Disc %d has %d tracks.\n", disc, total_tracks);

fflush(filestar);
return 1;

}

if (track > total_tracks) {
http_error{ filestar, "No such track.”);
return 1;

}

break;

¥
}
}

if (sigpipe_received) {
return 1;

}

/* request track */
snprintf(slink_buffer, SLINK_SIZE, "309%1d50%1x%1x%d%d\n",
control_b, disc_a, disc_b, (track / 10), (track % 10));

62

// fprintf(stderr, "Sending: %s", slink_buffer);
write_slink(slink_write, slink_buffer);

while(1) {
if (sigpipe_received) {
return 1;

}

memset(slink_buffer, O, SLINK_SIZE);
if (read(slink_read, slink_buffer, SLINK_SIZE) > 0) {
// fprintf(stderr, "Got: %s", slink_buffer);

if (memcmp(slink_buffer + 4, "53", 2) == 0) {
http_error{ filestar, "No such disc.");
return 1;

}

if (memcmp(slink_buffer + 4, "05", 2) == 0) {
http_error{ filestar, "No such disc.");
return 1;

}
/* check for stop event */
if (memcmp(slink_buffer + 4, "01", 2 =0) {
it (hit) {
input_eof = 1;
} else {
http_error(filestar, "Stopped.");
return 1;
}
}

/* check for play event */

if (memecmp(slink_buffer + 4, "50", 2) == 0) {
int cur_control_b, cur_disc_a, cur_disc_b;
int cur_track_a, cur_track_b;
int track _min, track_sec;

sscanf(slink_buffer + 3, "%1x", &cur_control_b);
sscanf(slink_buffer + 6, "4iixXix%td)id",

&cur_disc_a, &cur_disc_b, &cur_track_a, &cur_track_ b);
sscanf(slink_buffer + 10, "%2d%24",

&track_min, &track_sec);

if (cur_control_b t= control b + 8) {
http_error(filestar, "Unrecognized control code.");
return 1;

}

if (cur_control_b == 11) {
cur_disc = cur_disc_a * 16 + cur_disc_b + 200;
} else if (cur_control_b == 8) {
if (cur_disc_a > 9) {
cur_disc = 16 * cur_disc_a + cur_disc_b - 54;
} else {
cur_disc = 10 * cur_disc_a + cur_disc_b;
}
} else {
http_error(filestar, "Unrecognized control code.");
return 1;
}

cur_track = cur_track_a * 10 + cur_track_b;

if ((cur_disc == disc) && (cur_track == track)) {
hit = 1;

63

total_quarter_frames = track_sec * 75 * 4 + track_min * 60 * 75 * 4;
read_quarter_frames = 0;

fprintf(filestar, "HTTP/1.1 200 OK\n");
fprintf(filestar, "X-Track-Length: %d minutes, %d seconds\n", track_min, track_sec);
fprintf(filestar, "X-Track-Quarter~-Frames: }d\n", total_quarter_frames);
fprintf(stderr, "Playing disc %d, track %d (%d minutes, %d seconds).\n", disc, track,
track_min, track_sec);
// fprintf(filestar, "Content-Length: %d\n", (total_quarter_frames + (QFRAME_MARGIN) * BLOCK_SIZE);
// Do not send almost-correct content length or client will retry!
fprintf(filestar, "Content-Type: audio/x-16bit-be-signed-stereo\n\n");
fflush(filestar);
} else {
/* stop playback */
snprintf(slink_buffer, SLINK_SIZE, "10900i\n");
write_slink(slink_write, slink_buffer);

if (hit) {
input_eof = 1;

} else {
http_error(filestar, "No such track.");
return 1;

}

3
¥
}

if (hit) {
if (sigpipe_received) { return 1; }

if (buffer_contents(input_i, output_i) == 0) {
buffer_empty = 1;

} else {
buffer_empty = 0;

}

if (buffer_contents{(input_i, output_i) > BUFF_SIZE - 2+«BLOCK.SIZE) {
buffer_full = 1;
fprintf(stderr, "Buffer full.\n");

} else {
buffer_full = 0;

}

if (buffer_empty &% input_eof) {
return 0;

}

bytes_read = read(dsp_device, buffer, BLOCK_SIZE);
if (bytes_read <= 0) {
bytes_read = read(dsp_device, buffer, BLOCK_SIZE };
if (bytes_read <= 0) {
perror("read DSP (x2)");
return 1;
}
}

read_quarter_frames++;
if (read_quarter_frames > total_quarter_frames + QFRAME_MARGIN } {
fprintf(stderr, "Time expired on disc %d, track %d. (read: J%d, TOC: %d)\n", disc, track,
read_quarter_frames, total_quarter_frames);
input_eof = 1;

}

if (linput_eof) {
if (BUFF_SIZE - input_i >= bytes_read) {

64

memcpy(output_buffer + input_i, buffer, bytes_read);
input_i += bytes_read;
} else {
memcpy(output_buffer + input_i, buffer, (BUFF_SIZE - input_i));
memcpy{ output_buffer, buffer + (BUFF_SIZE - input_i), bytes_read - (BUFF_SIZE - input_i));
input_i += bytes_read;

¥

while (input_i >= BUFF_SIZE) {
input_i -= BUFF_SIZE;
}
}

if (sigpipe_received) { return 1; }

if (! buffer_empty) {
bytes_written_this_time = write(fd, output_buffer + output_i,
MINVAL(MINVAL(OUTPUT_BLOCK_SIZE, BUFF_SIZE - output_i),
buffer_contents(input_i, output_i)));

if (bytes_written_this_time > 0) {
output_i += bytes_written_ this_time;

}

if (output_i > BUFF_SIZE) {
fprintf(stderr, "Qutput overflow.\n");
exit(1);

}

if (output_i == BUFF_SIZE) {
output_i = 0;

65

