
17

Author

Certified by........................

Deparent cean Engineering
jeqember 17, 2004

..................../...........

enrik Schmidt
Professor. Denartmrnt CVean Engineering

hesis Supervisor

Certified by. C.
"huV B. Baggeroer

Professor, Department of Electrical Engineering and Computer Science

Thesis Reader

Accepted by.........

Accepted by

Yr3RARIES

(

D...
Vlichael S. Triantafyllou

Chairm<Depar mental Committee on Graduate Students
Dniatmpnt Qf an Engineering

......
Arthur C. Smith

Chairman, Departmental Committee on Graduate Students
Department of Electrical Engineering and Computer Science

BARKER

Adaptive Rapid Environmental Assessment System

Simulation Framework
by

Ding Wang
B.A. in Automotive Engineering (1997)

and

S.M. in Physics (2000)
Tsinghua University, Beijing, China

Submitted to the Department of Ocean Engineering and the Department of
Electrical Engineering and Computer Science

in partial fulfillment of the requirements for the degrees of

Master of Science in Ocean Engineering

and

Master of Science in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
February 2005

@ Massachusetts Institute of Technology 2]QQ5.-A-LiJghts reserved.

MASSACHUSMS INTWOF TECHNOLOGY

SE P 0 12 00 5

Adaptive Rapid Environmental Assessment System

Simulation Framework

by

Ding Wang

Submitted to the Department of Ocean Engineering
and the Department of Electrical Engineering and Computer Science

on December 17, 2004, in partial fulfillment of the

requirements for the degrees of
Master of Science in Ocean Engineering

and

Master of Science in Electrical Engineering and Computer Science

Abstract

Adaptive Rapid Environmental Assessment (AREA) is a new concept for minimizing

the non model-based sonar performance prediction uncertainty and improving the

model-based sonar performance by adaptive and rapid in situ measurement in the

ocean environment. In this thesis, a possible structure of the AREA system has

been developed; an AREA System Simulation Framework has been constructed using

C++, which can simulate how AREA system will work and be utilized to determine

the optimal or sub-optimal sampling strategies. A user's manual for the simulation

framework, and specifications of all important C++ classes are included.

Thesis Supervisor: Henrik Schmidt

Title: Professor, Department of Ocean Engineering

Thesis Reader: Arthur B. Baggeroer

Title: Professor, Department of Electrical Engineering and Computer Science

2

Acknowledgments

First and foremost I would like to thank my supervisor Prof. Henrik Schmidt for all

of the guidance, ideas and support that he has graciously provided throughout the

course of this thesis. He always gave me courage and confidence when I felt perplexed

and depressed. I want to also thank Prof. Arthur Baggeroer for reading this thesis.

Much of my graduate student's time was spent in my office and interacting with

fellow students, and I would like to acknowledge a few in particular: George Dikos,

a genius, for giving me the very important inspiration; Harish Mukundan, another

genius, for helping me a lot about Adobe Acrobat and Latex; Da Guo, for sharing

his thesis experience with me.

None of this would have been possible without the support and confidence of my

parents. I haven't been back to my home town for almost eight years. I am so grateful

for their understanding. The love and support from my girl friend, Ling Li, has seen

me through all stages of this thesis, from discussions about methodologies of doing

research to biology and artificial intelligence development.

Finally, I would like to thank the Office of Naval Research for providing funding

for this project under the Capturing Uncertainty DRI.

3

Contents

1 Introduction

2 AREA Concept

3 AREA Simulation Framework

4 How To Install And Use AREA Simulation Framework

4.1 Set Up

4.2 Examples

5 Summary

A Classes and Files

A.1 AVUASD.h

A.1.1 Data Members ...

A.1.2 Member Functions &

A.2 AVUSSD.h

A.2.1 Data Members ...

A.2.2 Member Functions &

A.3 AVU-SSDASD.h

A.3.1 Data Members ...

A.3.2 Member Functions &

A.4 Bathymetry.h

A.4.1 Data Members ...

12

17

23

30

30

36

41

42

43

43

44

46

46

47

49

49

50

52

52

Operators

Operators

Operators

4

A.4.2 Member Functions & Operators

A (C adt ol i t Q nerateh b

5

A.5.1 Functions Defined In This File .

A.6 ControlAgent.h

A.6.1 Data Members

A.6.2 Member Functions & Operators .

A.7 DetectionRange.h

A.7.1 Data Members

A.7.2 Member Functions & Operators .

A.8 FixedWaterSensor.h

A.8.1 Data Members

A.8.2 Member Functions & Operators .

A .9 fm at.h

A.9.1 Data Members

A.9.2 Member Functions & Operators .

A.9.3 Functions And Operators Defined

A.10 Greedy-algorithm.h

A.10.1 Functions Defined In This File . .

A.11 MatchedFieldProcessing.h

A.11.1 Data Members

A.11.2 Member Functions & Operators .

A.12 ObjectiveAnalysis.h

A.12.1 Data Members

A.12.2 Member Functions & Operators .

A.13 ObservationDatabase.h

A.13.1 Data Members

A.13.2 Member Functions & Operators .

A.14 OceanPredictor.h

A.14.1 Data Members

A.14.2 Member Functions & Operators .

This File

53

55

55

57

57

58

61

61

62

67

67

68

70

71

71

76

80

80

82

82

83

86

86

87

89

89

90

92

92

93

A. 15 PerfectSeabedDetector.h

A.15.1 Data Members

A.15.2 Member Fun

A.16 ram.h

A.16.1 Public Memb

A.17 Random.h

A.17.1 Data Membe

A.17.2 Member Fun

A.18 Rollout.h

A.18.1 Functions De

A.19 Search.h

A.19.1 Functions De

A.20 SimulatedOcean.h .

A.20.1 Data Membe

A.20.2 Member Fun

A.21 SonarArray.h . . .

A.21.1 Data Membe

A.21.2 Member Fun

A.22 SonarPerformance.h

A.22.1 Data Membe

A.22.2 Member Fun

A.23 SonarSPC.h

A.23.1 Data Membe

A.23.2 Member Fun

A.24 SoundField.h . . .

A.24.1 Data Membe

A.24.2 Member Fun

A.25 SoundSpeedGenerat

A.25.1 Data Membe

ctions & Operators .

er Functions

.

rs

ctions & Operators .

.f.i

fined In This File . .

r............
fined In This File . .

r............

rs

ctions & Operators .

.

rs

ctions & Operators .

.

rs

ctions & Operators .

or............

rs

ctions & Operators .

rs

ctions & Operators .

or.h

rs

A.25.2 Member Functions & Operators

95

96

99

99

101

101

101

103

103

105

105

110

110

111

116

116

116

119

119

120

123

123

124

127

127

128

133

133

. . 134

6

.. 95

A.26 StandardEnvironmentlnfo.h . 135

A.26.1 Data Members . 135

A.26.2 Member Functions & Operators 136

A.27 StandardRamInfo.h . 138

A.27.1 Data Members . 139

A.27.2 Member Functions & Operators 140

A.27.3 Functions And Operators Defined In This File 140

A .28 Surveillance.h . 142

A.28.1 Functions Defined In This File 142

A.29 SyntheticSeabed.h . 145

A.29.1 Data Members . 145

A.29.2 Member Functions & Operators 146

A.30 SyntheticStochasticWater.h . 149

A.30.1 Data Members . 149

A.30.2 Member Functions & Operators 150

A.31 SyntheticWater.h . 154

A.31.1 Data Members . 154

A.31.2 Member Functions & Operators 155

A .32 Total-cost.h . 157

A.32.1 Functions Defined In This File 157

A .33 vec.h . 161

A.33.1 Data Members . 161

A.33.2 Member Functions & Operators 162

A.33.3 Functions And Operators Defined In This File 166

7

List of Figures

1-1 Illustration of how environmental uncertainties influences sonar perfor-

mance. (a) shows an estimated water sound speed profile in shelf break

region. (b) is the corresponding error field. We assume water sound

speed profile is a Gaussian stochastic process. (c) shows non model-

based sonar performance prediction uncertainty, where transmission

loss and detection range are selected as sonar performance metric. In

this case, the receiver is at 10m far from origin and 70m depth; a se-

ries of 50Hz source are at 50m depth and far to 10km; the detectable

threshold is 65 dB. In this figure, strong TL uncertainty and detec-

tion range uncertainty can be observed. (d) shows model-based sonar

performance, where a MFP sonar is used to localize a target at 15km

range and 50m depth. In this case, we assume there is no ambient

noise. In this figure, we can see that MFP localizations are usually

several km away form the true target's location. 14

1-2 Multi-scale environmental assessment. The typical sonar systems per-

formance is dependent on acoustic environment variability over a wide

range of scales. Optimal environmental assessment will therefore be

a compromise between conflicting requirements of coverage and res-

olution. By targeting areas of high sensitivity to the sonar system

through in situ measurements, the deterministic assessment range will

be shifted towards smaller scales. 15

2-1 Illustration of Adaptive Rapid Environmental Assessment System . . 17

8

2-2 Adaptive Rapid Environmental Assessment System wiring diagram . 18

2-3 Sequential diagram of Adaptive Sampling Loop. At each stage, the Ob-

servation Database will be first updated and the Ocean Predictor will

do analysis; then the Control Agent will determine next sampling lo-

cations; following those commands, mobile sensors will do in situ mea-

surements and new measurement results will be obtained, by which the

Observation Database will be updated again. Repeating the Adaptive

Sampling Loop, sampling points locations will be determined sequen-

tially based on all the newest observation. 21

2-4 Sequential diagram of Dynamic Programming. 22

3-1 AREA simulation framework wiring diagram 24

3-2 Flow chart of AREA.cpp . 24

3-3 Ocean Environment Simulator wiring diagram 26

3-4 Wiring diagram of Mobile Sensors Simulator, Fixed Platform Sensors

Simulator, Sonar Array Simulator and Sonar Signal Processing Center 27

3-5 Wiring diagram of modules in control center 28

3-6 Simplified flow chart of Surveillance Module 29

4-1 Example 1. (a) shows the final estimated water sound speed profile

and sampling path. (b) shows the error field and sampling path. . . . 36

4-2 Example 2. (a) shows the final estimated water sound speed profile

and sampling path. (b) shows the error field and sampling path. . . . 37

4-3 Example 3. (a) shows the final estimated water sound speed profile

and sampling path. (b) shows the error field and sampling path. (c)

shows realizations of transmission loss. 38

4-4 Example 4. (a) shows the final estimated water sound speed profile

and sampling path. (b) shows the error field and sampling path. (c)

shows realizations of transmission loss. 39

4-5 Example 5. (a) shows the final estimated water sound speed profile

and sampling path. (b) shows the error field and sampling path. (c)

shows localizations of MFP. 40

A-1 Class diagram of class AUVASD . 43

A-2 Class diagram of class AUVSSD . 46

A-3 Class diagram of class AUVSSD.ASD 49

A-4 Class diagram of class Bathymetry 52

A-5 Flow chart of candidate-points-generate 56

A-6 Class diagram of class ControlAgent 57

A-7 Flow chart of DP-rollout . 60

A-8 Class diagram of class DetectionRange 61

A-9 Flow chart of Run-TL.receiver . 63

A-10 Flow chart of RunTL-source . 65

A-11 Flow chart of RunDR . 66

A-12 Class diagram of class FixedWaterSensor 67

A-13 Class diagram of class Fortran-matrix 70

A-14 Flow chart of greedy-algorithm . 81

A-15 Class diagram of class MatchedFieldProcessing 82

A-16 Flow chart of Searching . 84

A-17 Flow chart of Run . 85

A-18 Class diagram of class ObjectiveAnalysis 86

A-19 Class diagram of class ObservationDatabase 89

A-20 Class diagram of class OceanPredictor 92

A-21 Class diagram of class PerfectSeabedDetector 95

A-22 Class diagram of class Random . 101

A-23 Flow chart of rollout-once . 104

A-24 Flow chart of the ist overload of update 108

A-25 Flow chart of Transformer . 109

A-26 Class diagram of class SimulatedOcean 110

10

A-27 Class diagram of class SonarArray . 116

A-28 Class diagram of class SonarPerformance 119

A-29 Class diagram of class Sonar-SPC . 123

A-30 Class diagram of class SoundField . 127

A-31 Flow chart of the 1st overload of Run 130

A-32 Flow chart of the 4th overload of Run 131

A-33 Flow chart of Output-WholeSoundField 132

A-34 Class diagram of class SoundSpeedGenerator 133

A-35 Class diagram of class StandardEnvironmentInfo 135

A-36 Class diagram of class StandardRamInfo 138

A-37 Partial flow chart of Surveillance - Calculate mismatch displacement 143

A-38 Partial flow chart of Surveillance - Calculate TL-source 144

A-39 Class diagram of class SyntheticSeabed 145

A-40 Class diagram of class SyntheticStochasticWater 149

A-41 Flow chart of the 2nd overload of OutputWater-SoundSpeed 152

A-42 Flow chart of the 2nd overload of OutputAllWaterSoundSpeed . . 153

A-43 Class diagram of class SyntheticWater 154

A-44 Flow chart of total-costTL-receiver 158

A-45 Flow chart of points-filter . 160

A-46 Class diagram of class Vector . 161

11

Chapter 1

Introduction

In coastal regions, wind driven flow, tidal currents, river outflow, internal waves, soli-

tary waves, fronts, eddies, thermal changes etc are usually dominant oceanographic

processes. As a result, coastal ocean environment is often highly variable in time and

space. In water column, the temperature profile, salinity profile, plankton distribu-

tion profile etc can vary in a complex dynamics driven by all oceanographic processes

and their coupling; water depth is usually periodically changed by tides. So, in accor-

dance, sound speed profile in the water also shows a complex variability. On the other

hand, in the seabed, current flow interacts with bottom topography, thus bathymetric

profile varies in time and space too, which in turn makes the dynamics of the water

column extremely complex [1, 2, 3, 4, 5, 63.

Variability in the coastal ocean environment spans on multiple scales [7]. Cur-

rent ocean prediction systems and conventional oceanographic measurement can not

provide us with the ability to synoptically observe and accurately predict those dy-

namically interlocking, patchy and intermittent processes in coastal ocean, especially

for those variabilities on small spatial scales and short temporal scales [8].

From an acoustic viewpoint, due to ocean variabilities especially small scale vari-

abilities of the order of the acoustic wavelength of sonar systems, coastal ocean acous-

tic environment is largely unknown and too many uncertainties in terms of imperfect

12

sound speed profile, geo-acoustic models, reverberation levels, depth of thermocline,

internal solitons etc, critically impacting the performance of acoustic systems [1].

For a non model-based sonar system, sonar performance is dependent on sound

propagation properties in the ocean waveguide, the ocean acoustic environment.

Therefore sonar performance can be viewed as a function of ocean acoustic envi-

ronment,

SP =f(O)

where SP represents a sonar performance metric and 0 represents the ocean acoustic

environment.

For a model-based sonar system such as Matched-Field Processing (MFP), sonar

performance is dependent on both the real ocean acoustic environment and the envi-

ronment model,

SP= f(0, O')

where O' is the environment model.

In the coastal ocean, due to the uncertain acoustic environment we can not even

have high confidence in transmission loss (TL) estimate and consequently, non model-

based sonar performance prediction has a significant uncertainty, i.e. SP must be

treated as a random variable. In fact, a large part of sonar performance prediction

uncertainty is indeed associated with ocean acoustic environmental uncertainties [1].

For model-based sonar, ocean acoustic environmental uncertainties makes environ-

ment model with very low confidence interval in predicting the real situation, thus

sonar performance is often very unsatisfying [5]. (see Figure 1-1)

In such an uncertain or stochastic ocean environment, conventional oceanographic

measurement systems can not capture the environmental uncertainties on short tem-

poral scales and on spatial scales of the order of acoustic wavelengths, which are

13

Estimated Water Sound Speed Profile

(a) Range (km)

Non Model-Based Sonar

1500

1495I1490
1485

1480

1475

(m/s)

5C

10C

15c

20C

25(

30(

35(

40(

(b) Range (km)

Model-Based Sonar

201

40

60

80

6 4 2 0

Range (km)

0 Targers locatIon
+ +4 + MFPIoa~sza8o~

4.
++

4.
+

4.

0

4-
+

+ +4.

lu 18 16 14 12 10

(d) Range (km)

Figure 1-1: Illustration of how environmental uncertainties influences sonar perfor-

mance. (a) shows an estimated water sound speed profile in shelf break region. (b)
is the corresponding error field. We assume water sound speed profile is a Gaussian

stochastic process. (c) shows non model-based sonar performance prediction uncer-

tainty, where transmission loss and detection range are selected as sonar performance

metric. In this case, the receiver is at 10m far from origin and 70m depth; a series of

50Hz source are at 50m depth and far to 10km; the detectable threshold is 65 dB. In

this figure, strong TL uncertainty and detection range uncertainty can be observed.

(d) shows model-based sonar performance, where a MFP sonar is used to localize a

target at 15km range and 50m depth. In this case, we assume there is no ambient

noise. In this figure, we can see that MFP localizations are usually several km away

form the true target's location.

the most important scales to sonar performance, therefore local, high resolution in

situ measurements are needed. Rapid deployable in situ measurement system has long

been recognized as a very important tactical requirement to improve non model-based

sonar performance prediction or improve model-based sonar performance, capturing

14

p10

7

5

4

3

2

(mi/s)

41

50.

70--

80,-

-o

1-

(c)

Error Field

12 10

environmental uncertainties on scales from 10 to 1000 meters [1].(see Figure 1-2)

Sona
Predict

Signific

r
ion
aince

Resolution -1 0 1 2 Coverage
aw ~ 10- 10 0 10 1 10 2 10 3 'm

Small Scale Large

In-situ Measurements

Ocean Modeling and Assimilation
Stochastic Deterministic

Adaptive Rapid Environmental Assessment
Stochastic Deterministic

Figure 1-2: Multi-scale environmental assessment. The typical sonar systems perfor-
mance is dependent on acoustic environment variability over a wide range of scales.
Optimal environmental assessment will therefore be a compromise between conflict-
ing requirements of coverage and resolution. By targeting areas of high sensitivity to
the sonar system through in situ measurements, the deterministic assessment range
will be shifted towards smaller scales.

However, the ocean area of interest is usually fairly large, whereas in situ mea-

surement resources - mobile sensors etc - are very limited due to cost, time and

performance constraints. Thus sampling strategies can make a significant difference

in predicting sonar performance or improving sonar performance, but how to design

them for real-time operation is a major problem. Data are collected over time and

in such a situation adaptive sampling methods often lead to more efficient results

than conventional fixed sampling techniques [9], in which sampling or data allocation

is fixed and predetermined. On the contrary, an adaptive sampling strategy makes

sampling decisions based on accruing data and all acquisition information. Sonar per-

formance prediction uncertainty will be minimized with improved sonar performance

15

as a result.

16

Chapter 2

AREA Concept

Satellite Remote Sensing

Glider

AUV

Seabed Detector

-Control Center

. Local Sound Speed
Sensors and Sonar
Array

Figure 2-1: Illustration of Adaptive Rapid Environmental Assessment System

The Adaptive Rapid Environmental Assessment (AREA) concept has

been proposed to reach that objective, trying to minimize the sonar performance

prediction uncertainty or improve sonar performance by adaptively identifying an

optimal deployment strategy of in situ measurement resources, capturing the un-

certainty of the most critical and uncertain environmental parameters, within the

existing operational constraints [1](see Figure 2-1). Moreover, the AREA system can

17

be used for minimizing oceanographic information uncertainties, biological informa-

tion uncertainties and sound propagation uncertainties. In that regard, AREA is a

multi-purpose adaptive sampling system.

Ocean Predictor Dbsta

Adaptive
Sampling

Loop
VirtualControl

"ca rdco Agent 0 M

Observatio

Ocean
Database

I

Data Flow Adaptive Control

Figure 2-2: Adaptive Rapid Environmental Assessment System wiring diagram

As shown in Figure 2-2, an operational AREA system has 5 main components:

1. The real ocean environment: this is the object of observation and measure-

ment, in which sensors can receive all kinds of information including temperature,

salinity, density, attenuation coefficient, acoustic signals and seabed geophysical &

geographic information, etc. Basically, the ocean environment can be divided into 3

sub-components: water column, seabed and acoustic field.

2. Sonar: the sonar component includes hydrophone arrays and signal processing

system. It can receive acoustic signals and process signals, then detect or localize

target. For different sonar, we may have different sonar performance metrics.

18

9____

3. Mobile sensors: a mobile sensor consist of two parts: one or more sensors that

can measure some sort of oceanographic or bathymetric information; a platform that

can carry sensor and move in water or on seabed according to commands. Most likely,

due to its excellent mobility and fast technical progress, Autonomous Underwater Ve-

hicle (AUV) will be the platform for mobile sensor. An AUV can receive and execute

commands, and also it can transmit new measurement results and its own status'

information.

4. Fixed platform sensors: basically these sensors have the same functions as

mobile sensors but with fixed platforms. They could be any oceanographic or bathy-

metric measurement devices such as local XBT, local CDT, satellite or acoustic re-

mote sensing system and seabed detector etc. Fixed platform sensors will give AREA

initial information about the ocean area of interest.

5. Control center: the control center is the heart and brain of AREA. People

or computers can directly operate and control the whole AREA system through the

control center. Basically, it consists of 3 modules: Observation database module,

ocean predictor module and control agent module. Observation database module

is an interface and data storage, which can communicate with all sensors and sonar,

then store received data, and activate ocean predictor module and then transfer data.

Due to very fast progress in underwater communication techniques, we can assume

that the observation database module can communicate well with any other part in

real-time. The ocean predictor module can process received data and predict the

ocean. It provides us with an estimation of the stochastic ocean environment and

corresponding error field. An ocean database may be needed to predict more accu-

rately. Control agent module works as a decision maker, which can generate optimal

commands based on the received data and analysis results. This module is very com-

plicated. Depending on the decision making algorithm, the control agent may be

structured differently. For most sophisticated algorithms, it usually possesses a vir-

19

tual world - a mirror of the whole AREA system - and 'play' all possible controls in

the virtual world, then select the one with optimal virtual consequence as command.

This module is the main object of attention in the AREA project.

Besides the above 5 main objects, an ocean database may be needed, which con-

tains fundamental principles of ocean circulation in ocean area of interest. As men-

tioned before, it can significantly improve ocean prediction and consequently AREA

system may work significantly better. So it could be very important.

In reality, the AREA system starts with initialization - updating observation

database according to the latest ocean database, latest measurements by the fixed

platform sensors, mobile sensors' initial information and sonar configuration infor-

mation etc. After initialization, the control center will run the ocean predictor mod-

ule and generate preliminary environmental predictions. All initial information and

analysis results will then be collected by the control agent module where a sampling

strategy programme will run and work out commands such as next sampling loca-

tions for the mobile sensors . Those commands will be sent to the mobile platforms

through communication channels. Following the commands, the mobile sensors will

approach the next sampling locations and complete the measurements. The new

in situ measurements will be sent back to the control center and the observation

database will be updated again. This is the Adaptive Sampling Loop (see Figure 2-1

and Figure 2-3). As AUV techniques develop, it is very possible that control center

will be decentralized, i.e. it will be distributed in mobile sensors and mobile sensors

will finally become as intelligent sensors.

20

New Observation
Database Final

) Observation

Current Next In situ Time Database

Observation Sampling Measurements
Database Locations

o.Ocean
Predictor

Control
Agent

Figure 2-3: Sequential diagram of Adaptive Sampling Loop. At each stage, the Obser-
vation Database will be first updated and the Ocean Predictor will do analysis; then
the Control Agent will determine next sampling locations; following those commands,
mobile sensors will do in situ measurements and new measurement results will be ob-
tained, by which the Observation Database will be updated again. Repeating the
Adaptive Sampling Loop, sampling points locations will be determined sequentially
based on all the newest observation.

Adaptive sampling problem can be expressed as a typical Dynamic Program-

ming (DP) or Reinforcement Learning (RL) problem with finite horizon [10]

(see Figure 2-4), where in our case, the content of the Observation Database can be

selected as state x; commands from the Control Agent can be selected as control u;

in situ measurements results can be selected as random disturbance w; electric power

used in one Adaptive Sampling Loop or some other factors can be selected as cost per

stage g, which is a function of state, control and disturbance; the final sonar perfor-

mance or sonar performance prediction uncertainty can be selected as terminate stage

cost gN. As shown in Figure 2-4, at stage k we have current state Xk, base on which

a control can be generated from control function Pk; after operating the control, a

random disturbance Wk will happen, whose probability density function (pdf) can be

written as Pk(wk IXk, Uk); then following the state equation:

Xk+1 f k (Xk, Uk, k)k=0,1,2.,N-1

state Xk+1 at stage k + 1 will be reached with a cost. At the end, terminate state XN

21

will be reached and the terminate stage cost 9N(XN) will happen then. The goal in

the DP problem is to find a control function sequence

N-1

{jLO(XO), AI(Xl), P /N-1(XN-1)} s.t. min E jN N(XN) + 1: 9k (Xk,/Jk, Wk)}
k=O

cost per stage : g(XkIu w)

Xk Ik~~4(Xk k Xk+1 Time

x: state u: control j: random disturbance

Figure 2-4: Sequential diagram of Dynamic Programming.

For DP or RL problem, there are a lot of simple or complex methods to find

the optimal or sub-optimal control function sequence. In our case, the state space

and control space could be very huge; the state equation, the disturbance's pdf and

the terminate cost are so complicated that no explicit formula exists; So, to solve

the DP problem, find the optimal or sub-optimal sampling strategies and test their

optimization effects before doing very costly on-site experiments, an Adaptive Rapid

Environmental Assessment Simulation Framework is needed, by which we can also

observe how AREA system will work and test if real-time adaptive sampling is feasi-

ble. The Adaptive Rapid Environmental Assessment Simulation Framework provides

a training and learning tool for control agent.

22

Chapter 3

AREA Simulation Framework

An AREA simulating system has been created using C++ - an object-oriented lan-

guage. Due to the object-oriented feature, every real object can have a corresponding

simulated object in the computer, which can simulate all functions that the real one

has. So, basically each component in the real AREA system has a corresponding

module in the AREA simulation framework. However, the sonar system is divided

into 2 modules: sonar array simulator and sonar signal processing center. The Con-

trol center is directly replaced with the observation database module, ocean predictor

module and control agent module. For the control agent, several different sampling

strategy algorithms have been embedded. In the end, a surveillance module and an

output module were built to monitor the whole system and output results. In this

way, the AREA simulation framework is upgradeable and flexible; and its structure

is simpler and close to a real AREA system.

As shown in Figure 3-1, the structure of AREA simulation framework is like an

integrated circuit board. AREA.cpp is the C++ main file containing the 'main'

function. It works like a human-computer interface where we can input almost all

parameters for each module, select options and start running programme (see Figure

2-2). AREA.cpp provides a working environment to all the other modules like the

main board in PC to peripherals.

23

Data Flow Adaptive Control

Figure 3-1: AREA simulation framework wiring diagram

Star

Include files

Declare global variables

Initialize global variables

Set global-initialization=O
sound speed will be generated

from PRIME database

Declare and initialize
all objects not in control center

Set globalinitialization= I
from now on, sound speed could be

randomly generated.

Declare and initialize
all objects in control center

vate Observation Database

Whole simulation framework isirunnin

Output results

End

Figure 3-2: Flow chart of AREA.cpp

24

The Ocean Environment Simulator module is supposed to provide sensors and

sonar arrays with oceanographic information, bathymetric information and acous-

tic signals. It includes 3 sub-modules: Water Column Simulator, Seabed Simulator,

Acoustic Field Simulator (see Figure 3-2). Water Column Simulator and Seabed

Simulator simulate the ocean environment in water column and seabed respectively.

The Acoustic Field Simulator can generate the acoustic field according to water and

seabed environment and sound source parameters input from AREA.cpp. The cur-

rent acoustic model is RAM. At present since only PRIMER Shelf Break experiment

database is available, the Ocean Environment Simulator can only create a simulated

ocean for that scenario. There are two ways to do this (see Figure 2-3):

1. Through the database, an environment realization can be re-created. In this way,

the Ocean Environment Simulator can only represent a certain ocean environment.

2. Through a replica of Ocean Predictor and some initial information from the

PRIMER Shelf Break experiment database, a mean and a standard deviation of

the ocean environment can be obtained. Thus by assuming the ocean environment

is a Gaussian stochastic process, the Ocean Environment Simulator can provide an

uncertain ocean environment. Details about the two ocean environment simulation

algorithms will be given in Appendix A.20, A.31, A.30.

The Mobile Sensors Simulator module can be called and input controlling pa-

rameters by the Control Agent module. The Mobile Sensors Simulator can simulate

how real mobile sensors move in the ocean and measure in situ by calling the Ocean

Environment Simulator to output information at those measurement locations. By

configuring the sensors and platforms differently, this module can simulate many sort

of mobile sensors such as XBT carried on ship, CTD carried on AUV, hydrophones

carried on AUV, or both of them carried on AUV.

The Fixed Platform Sensors Simulator module can retrieve oceanographic infor-

mation and/or bathymetric information from the Ocean Environment Simulator as

conventional oceanographic sensors do in ocean. The Fixed Platform Sensors Simula-

25

Class SyntheticWater I

Class SyntheticStochasticWater I

Class SimulatedOcean

Class SyntheticSeabed

. . _ Class Bathymetry

- class R

Class Soun

Class SoundSpeedGenerator

--- rClass ObjectiveAnalysis

Figure 3-3: Ocean Environment Simulator wiring diagram

tor may include several different objects, each of them corresponding to one particular

sensor, which could be local CDT, satellite or acoustic remote sensing and a seabed

mapping device. Because of the flexibility, this module can be quickly adapted ac-

cording to requirement.

The Sonar Array Simulator module simulates a hydrophone array, which can call

the Ocean Environment Simulator and retrieve data from the Acoustic Field Simula-

tor. Acoustic signals received by the Sonar Array Simulator and signals received by

the Mobile Sensors Simulator will be processed in the Sonar Signal Processing Cen-

ter. The Sonar Signal Processing Center is a software package containing different

sonar models and acoustic models; however, currently only Matched-Field Processing

(MFP) method and RAM are included.

The Observation Database is the first module in the control center. Its function

is to sequentially call and receive data output from the Ocean Database Simulator,

Sonar Signal Processing Center, Sonar Array Simulator, Fixed Platform Sensors Sim-

ulator, Mobile Sensors Simulator and store the data. In fact, the whole simulation

framework starts from the Observation Database calling and collecting initial infor-

26

AM --

dField

Class AUVSSD

Cxin AIIV Vqn ASn I

Class AUVASD I

Class FixedWaterSensor

Class SimulatedOcean

Cls efctSeabedDetector

Class SonarArray

Class MatchedFieldProcessing

Class SonarSPC

Figure 3-4: Wiring diagram of Mobile Sensors Simulator, Fixed Platform Sensors
Simulator, Sonar Array Simulator and Sonar Signal Processing Center

mation from those modules.

After the Observation Database finishes collecting all necessary initial information,

it will call and activate module Ocean Predictor. This module uses some estimation

algorithms such as an objective analysis technique to predict the ocean acoustic en-

vironment and simultaneously provide the error field.

At the end, the Control Agent will be called and passed those initial information

and analysis results. Based on all information and according to adaptive sampling

algorithm, the Control Agent may create a virtual world for trial purpose and deter-

mine optimal or sub-optimal commands through a complicated procedure. Details

about the decision making procedure are out of the range of this thesis, but a major

AREA research issue.

Once commands are determined, Mobile Sensors Simulator will be called and ex-

27

Class OceanPredictor

Class ObjectiveAnalysis

Class ControlAnent

Class ObservanDbase
-- Class SonarSPC

Class SonarArray

Class FixedWaterSensor

--- Class PerfectSeabedDetector

Class AUVSSD

Class AUVASD

-- Class A UVSSDASD

Figure 3-5: Wiring diagram of modules in control center

ecute those commands to obtain the newest data. After that, Observation Database

will be called and updated. Then, the adaptive sampling loop will be repeated again

until the Mobile Sensors Simulator finishes all in situ measurements.

When all the above modules are running, a very special module - the Surveillance

Module keeps watching all processes and records all interesting intermediate results.

In the end, the Surveillance Module will send all records to Output Module through

which results will be output into a file.

Note:

1. Since we don't have any ocean database for Ocean Predictor, there's currently

no Ocean Database Simulator in the simulation framework. But it is easy to

add in this module later.

2. In this chapter, we simply introduced the structure and functions of the sim-

ulation framework. For more details, please refer to Appendix and original

files.

28

Star

Open file

Output global variables

Output all data stored in
Observation Database Simulator

Construct a mirror of
Ocean Environment Simulator

Examine cost function selection and
output model selection

Realize mis-match displacement
a nmany times

Realize ambiguity function differencel

-- many times

Realize sonar detection range7
many times I

F Realize sonar TL =source_

Realize sonar TL-receiver
many times

Realize sum of sound speed
error in water column many times

Calculate sum of sound speed-- error in water column

Figure 3-6: Simplified flow chart of Surveillance Module

29

Chapter 4

How To Install And Use AREA

Simulation Framework

4.1 Set Up

Running Environment: Red Hat Linux 7.2 (kernel 2.4.7-10)

Installation Method: just copy folder AREA to the destination directory

After installation, we need to first set up all system parameters and options. Basi-

cally, this can be done in file ... /AREA/src/AREADP-RLASv7/src/AREA. cpp. This

file is the main file of the whole simulation system. Global variables are first declared

and assigned, and then global options are selected (see Figure 2-2). In AREA simu-

lation framework, metric unit is adopted unless explicitly specified.

To initialize simulation framework, we need to first set up the following global

variables and options step by step:

1. global-start and global-end

Vector global-start contains latitude and longitude of start point; and global-end

contains those of end point. They determine the ocean area of interest. Cur-

rently due to the limit of our HOPS OAG data file, latitude of the start point

30

should be set around 40.25 degree and latitude of the end point should be set

around 40.0 degree; longitude of both the start and end point should be set

around -71.0 degree. In the current simulation framework we only consider a

2-D problem in the vertical plane defined by the start and end points. In local

coordinates, the origin is the surface point at the start point.

2. global-rmax and global-zmax

These two scalars define the maximum horizontal and vertical computation

range in RAM code.

3. globaliwater-cn, global-waterc-m, global-water-grid-z, global-water-grid-r

Vector global-water-grid-r and global-water-grid-z are the horizontal and verti-

cal axis in ocean water column discretization grid respectively. globaliwater-c-m

and global-water-c-n are their lengths.

4. global-seabed-gridr, global-seabed-speed-z, global-seabed-density-z,

global-seabed-attn-z

In seabed, for sound speed, density and attenuation coefficient, we have dif-

ferent discretization grids. global-seabed-gridir works as the common hori-

zontal axis. global-seabed-speed-z is the vertical axis for sound speed's grid.

globaliseabed-density-z is the vertical axis for density's grid. global seabed-attn-z

is the vertical axis for attenuation coefficient's grid.

5. global-bathyetry-resolution

This item defines the water-seabed interface line resolution.

6. global-frequency, global-source-r, global-source-z

global-frequency is the sound source frequency (assume that there is a CW

source in the ocean). global-source-r, global-source z define source location

with respect to the origin (assume that the source is in the plane defined by the

start and end point). This sound source could be the target to localize.

7. global-fleet-config

This vector has 7 elements. The 1st element stores AUV SSD's quantity.

31

The 2nd element stores AUVSSDASD's quantity. The 3rd element stores

AUVASD's quantity. The 4th element stores PerfectSeabedDetector's quan-

tity. The 5th element stores FixedWaterSensor's quantity. The 6th stores

SonarArray's quantity. For the 7th element, if it's equal to 1 then SonarSPC

will do initialization for MFP; if it's not, then Sonar-SPC will do nothing.

8. globalauvssd_init_1ocationr, globalauvssdinitlocationz

These 2 vectors store initial locations of all AUVSSD objects.

9. global-auv-ssd-asd-init-location-r, global-auv-ssd-asd-init-location-z

These 2 vectors store initial locations of all AUVSSDASD objects.

10. global-auwv-asd-init-location-r, globalauvasdinit_1ocation-z

These 2 vectors store initial locations of all AUV-ASD objects.

11. global-n-f ixed-water-detector, global-f ixed-water-detector-location-r,

global-f ixed-water-detector-locat ion-z

Vector global-nifixed-water-detector contains sensor quantity information in

each FixedWaterSensor object. Vector array global-fixed-water-detectorilocation-r

and global-fixed-water-detector-location _z contain locations of all sensors in

each FixedWaterSensor object.

12. global-n-receivers, global-sonar-array-r, global-sonar-array-z

Vector global-n-receivers contains hydrophone quantity information in each

SonarArray object. Vector array global-sonar-arrayr and global-sonar-array-z

contain locations of all hydrophones in each SonarArray object.

13. global-replica-r, global-replica-z

Vector global-replica-r and global-replicaz are the horizontal and vertical axis

of replica sources grid used in MFP.

14. global-dB-threshold

This scalar defines detection threshold in dB used in Sonar SPC for detection

range estimation.

32

15. globalivirtualireceivers-r, global-virtual-receivers-z

These 2 vectors define the line along which TL-receiver will be calculated (see

item 21).

16. global..target...r, global-targetz

These 2 vectors define the line along which TL-source will be calculated (see

item 21).

17. globallhydrophone-r, globallhydrophone-z

Define a hydrophone's location. This hydrophone is used in calculating TLsource.

18. globalLr, globalLz

These are sound speed correlation lengths in r and z direction in water column.

19. global-sig-c, global-sig-n

These are a priori sound speed standard deviation (m/s) and noise sound speed

standard deviation (m/s) respectively.

20. global-acoustic..model-selection

In the simulation framework, there could be several acoustic models available.

global-acoustic-model-selection indicates which model is selected. Now, we only

have RAM, so global-acoustic-model-selection must be equal to 1.

21. global-cost-function-selection

This option indicates which cost function will be selected to minimize.

global-cost-function-selection=1: summation of sound speed standard de-

viations in water column provided by objective analysis is selected as cost func-

tion.

global-cost-function-selection=2: basically, this selection is very similar

to the selection 1. But in this selection, we will generate many realizations of

sound speed in water column by Monte Carlo simulation and calculate sample

variance for each water column point. Summation of those sample variances is

selected as cost function.

33

global-cost-function-selection=3: this is reserved to biological information

prediction uncertainty.

global-cost-function-selection=4: we have a virtual CW sound source and

we calculate TLs along a level line, which is called TL-receiver. Summation of

TL-receiver sample variance at all points is selected as cost function.

global-cost-function-selection=5: we calculate TLs at a hydrophone with

a series of CW sound source located on a level line. This TL curve is called

TL-source and summation of its sample variance at all points is selected as cost

function.

global-cost function-selection=7: based on the TL-source curve and

globaldB..threshold, we can calculate sonar detection range, which is selected

as cost function.

global-cost-function-selection=9: we have a MFP sonar and a virtual CW

sound source. Ocean Predictor can provide us with the newest estimated water

column sound speed profile which can be used as environment model in Sonar

Signal Processing Center and the corresponding error field. Then we can re-

alize the ocean environment including sound field many times by Monte Carlo

simulation and Sonar Signal Processing Center will give us many realizations

of ambiguity function. In addition, we can also use those true ocean environ-

ment realizations as our environment model in MFP and get many so-called real

ambiguity functions. Summation of difference between so-called real ambiguity

function and its corresponding ambiguity function output from Sonar Signal

Processing Center is selected as cost function.

global-cost.funct i ons elect ion=1 1: This selection is very similar to selec-

tion 9. However, now we use summation or average of mis-match displacements

in ambiguity functions output from Sonar Signal Processing Center as cost

function.

22. global-output-model-selection

This option indicates how we would like to generate results and output. if

34

globaLoutput-model-selection= 1, then we will output results without running

Monte Carlo simulation; if global-output-model-selection=3, then we will out-

put results and only run Monte Carlo simulations at the last stage.

23. global-ControlAgent-model-selection

This option indicates which decision maker will be selected. if it's 0, then no

any sampling strategy will be selected and no any in situ measurement will be

done; if it's 1 or 2, then two different predetermined linear sampling strategies

will be selected respectively; if it's 3, then an adaptive sampling strategy driven

by greedy algorithm will be selected; if it's 4, then another adaptive sampling

strategy driven by rollout algorithm based on greedy algorithm will be selected.

24. global-operation-model

This option indicates if the simulated ocean uses certain ocean environment

model or stochastic ocean environment model.

25. global-monitormnrel, globalirollout-nrel, global-total-costmnrel

global monitor-nrel is the times of Monte Carlo simulations realized in output.

global-rolloutnrel is the times of Monte Carlo simulation in rollout algorithm.

global-total-costnrel is the times of Monte Carlo simulation in computing total

cost.

Refer to the file AREA.cpp for more details about how to set up global variables

and options.

After initialization, we can compile and link, and then run the simulation frame-

work:

In directory ... /AREA/src /AREA-DPRL-AS-v7/src type

>> make<Enter>

>> AREA<Enter>

35

4.2 Examples

1. globaLacoustic-modeLselection=1

globaLcostifunction-selection= 1

globaLoutput-modeLselection= 3

globaLControlAgentmodel-selection=2

Estimated Water Sound Speed Profile Error Field
0050 10

1 10 8P1495
150 150 7

200 1490 200 6
250 25C 5

300 30C 4

350 35C 3

40$0 15 10 5 0 1475 40020 15 10 5 0 2

Range (km) (mis) Range (km) (mis)
(a) (b)

Figure 4-1: Example 1. (a) shows the final estimated water sound speed profile and
sampling path. (b) shows the error field and sampling path.

In this example, a predetermined linear sampling strategy is selected and sum-

mation of sound speed standard deviations in water column is selected as cost

function. Figure 4-1 shows a realization in this scenario, in which cost

4746.3(m/s).

2. global-acoustic-modeLselection= 1

globaLcost-function-selection= 1

globaLoutput modeLselection=3

global-ControlAgent-modeLselection=4

In this example, adaptive sampling strategie driven by rollout algorithm base on

greedy algorithm is selected and summation of sound speed standard deviations

36

0 01

50 --- , 1500 50 9

100 140 8
150 150 7

200 1490 200 6

250 1 485 25 0 5

300 300 4

1480
350 350 3

410 15 10 5 0 1 1475 400 15 10 5 0 2

Range (km) (m/s) Range (km) (m/s)
(a) (b)

Figure 4-2: Example 2. (a) shows the final estimated water sound speed profile and
sampling path. (b) shows the error field and sampling path.

in water column is selected as cost function. Figure 4-2 shows a realization in

this scenario, in which cost = 4307.77(m/s).

3. global-acoustic-model-selection= 1

global-cost-function-selection=4

global-output-model-selection=3

globalControlAgent-model-selection=4

In this example, we have a virtual 50Hz CW sound source at 50m depth and

15km range and we have a series of receivers distributed from 0km to 10km

ranges and at 50m depth. Adaptive sampling strategy driven by rollout al-

gorithm base on greedy algorithm is selected and summation of TL-receiver

sample variance at all points is selected as cost function. Figure 4-3 shows a

realization in this scenario, in which cost = 8445.4(dB).

4. global-acoustic-model-selection= 1

global-cost-function-selection=5

global-output-model-selection=3

globalControlAgent-model-selection=4

37

Estimated Water Sound Sp~eed Profile Error Field

0 0 10

50 E50 so 9

S 100 100 a
1495

150 150 7

200 1490 200 a

250 145250 5

300 300 4I1480
350 350 3

40 15 10 5 0 1475 4 50 15 10 5 0 ()

Source location Range (km) Range (km)
Receivers' location

(a) (b)

Transmission Loss Uncertainty

- R)an (k

iic~ 1n CA CD C C3

Range (kmn) (c)

Figure 4-3: Example 3. (a) shows the final estimated water sound speed profile and
sampling path. (b) shows the error field and sampling path. (c) shows realizations of
transmission loss.

In this example, we have a hydrophone at 70m depth and 10m range; and we

have a series of 50Hz CW sources distributed from 0km to 10km ranges and

at 50m depth. Adaptive sampling strategy driven by rollout algorithm base on

greedy algorithm is selected and summation of TL-source sample variance at

all points is selected as cost function. Figure 4-4 shows a realization in this

scenario, in which cost = 265.79(dB).

5. global-acoustic-model-selection= 1

global-cost-function-selection= 11

global-output-model-selection=3

globalControlAgent-model-selection=3

In this example, we have a 50Hz CW sources at 15km range and 50m depth and

38

Estimated Water Sound Speed Profile Error Field

x 10

501500 50 9
100 1D0

1495
150 1507

200 1490 200

250 1485 250

300 300 4
1480

350 350 3

40% 15 10 5 0 1475 4$0 15 10 5 0 2

* Receiver location Range (km) (m/s) Range (km) (m/s)
Sources' location

(a) (b)

Transmission Loss Uncertainty

Range (km) (c)

Figure 4-4: Example 4. (a) shows the final estimated water sound speed profile and
sampling path. (b) shows the error field and sampling path. (c) shows realizations of
transmission loss.

a 7-hydrophone sonar array at 70m range. Adaptive sampling strategy driven

by greedy algorithm is selected and average of mis-match displacements in MFP

is selected as cost function. Figure 4-5 shows a realization in this scenario, in

which cost = 1005.9(m).

39

Estimated Water Sound Sneed Profile Error Field

Estimated Water Sound Sneed Profile

E50

10C

15C

Zu 15 10 5 0

+ Receivers' location Range (km)
o Source location

(a)

Matched Field Processing

+ +.
0 T..0

20

40

60 +

80 + +

20 18
Range (km)

16 14 12 10

(c)

Figure 4-5: Example 5. (a) shows the final estimated water sound speed profile and
sampling path. (b) shows the error field and sampling path. (c) shows localizations
of MFP.

40

1500

1495 n

1490

1485

1480

1475

(m/s)

10

9

8

7

6

5

4

3

2

(mis)
5 0

Range (km)

(b)

Error Field

Chapter 5

Summary

The coastal environment is characterized by variability on small spatial scales and

short temporal scales, which leads to the most significant ocean acoustic environmen-

tal uncertainties with respect to non model-based sonar performance prediction and

model-based sonar performance. The AREA concept was proposed in [1] to capture

those uncertainties by adaptive and rapid in situ measurement. A possible structure

of the AREA system has been introduced and demonstrated in this thesis. Function

of the 5 main components and working sequence were discussed. The central compo-

nent of the AREA system is the Adaptive Sampling Loop, which has been described

in detail. To find the optimal or sub-optimal sampling strategies and test their op-

timization effects before doing very costly on-site experiments, an AREA Simulation

Framework has been constructed in C++. The structure of the simulation frame-

work and its main modules were discussed, and interactions between those modules

were illustrated. In the end, we showed how to set up and initialize the simulation

framework and some examples were given. Moreover, specifications of all important

C++ classes and files were documented in Appendix.

41

Appendix A

Classes and Files

Appendix A includes specifications of all classes and function files created by Ding

Wang. For those inherited from Pierre Elisseeff, only the important classes and files

are selected and described.

42

A.1 AVUASD.h

AUVASD <T>

Figure A-1: Class diagram of class AUVASD

In this header file, class AUVASD is defined, which can simulate an hydrophone carried

on AUV.

A.1.1 Data Members

1. SimulatedOcean<T> * simulated-oceanPtr - private; this is the pointer pointing

to the simulated ocean.

2. T sampling-location-r

sampling point.

private; This is the horizontal coordinates of current

3. T sampling-location-z - private; This is the vertical coordinates of current sam-

pling point.

4. complex<T> sampling-location-acousticsignal - private; this is the acoustical

signal received at current sampling point.

5. int index - private; this is the index of current AUVASD object (we may have

several AUV-carring ASD).

43

6. Vector<T> sampling-location-rH private; this is the history record of sampling-location-r.

7. Vector<T> sampling-location.z-H - private; this is the history record of sampling-location-z.

8. Vector<complex<T> > sampling-location-acoustic-signalH - private; this is

the history record of sampling-location-acoustic-signal.

A.1.2 Member Functions & Operators

1. Name: AUVASD

Overloads:

* AUVASD(void)

Description:

public; Constructor. Nothing is done in construction.

2. Name: Set

Overloads:

" void Set(Simulated~cean<T> * simulated-oceanPtr., const T & init-locationr_,

const T & init-location-z_, const int & index_)

" void Set (SimulatedOcean<T> * simulated-oceanPtr_, const Vector<T>

& sampling-location-r-H-, const Vector<T> & sampling-locationzH_, const

Vector<complex<T> > sampling-location-acoustic-signalH_, const int

& index-)

Description:

public; The first overload can set up AUV-ASD initial status including initial location,

its index number and connecting to the simulated ocean. All the other data members

will be automatically generated. By the second overload, we can set up the above 5

data members manually. This can be used in virtual world.

3. Name: Run

Overloads:

* void Run(const Vector<T> &start-, const Vector<T> &end-, const T &

target-r_, const T & targetz-)

44

* void Run(const T &target-r_, const T &target-z-)

Description:

public; This function simulates how AUVASDs process commands. In the first over-

load, start_ and end_ are dummy, however this is a flexible interface for upgrading.

4. Name: OutputInfo

Overloads:

* void OutputInfo(T & sampling-location-r_, T & sampling-location-z,

complex<T> & sampling-location-acoustic-signal, int & index_, Vector<T>

& sampling-location-r-H_, Vector<T> & samplingilocation-zH_,

Vector<complex<T> > & sampling-location-acoustic-signaliH_)

" void OutputInfo(T & sampling-location-r_, T & sampling-location-z_,

complex<T> & sampling-location-acoustic-signal_, int & index_)

Description:

public; The first overload simulates how AUV_ASD communicates with headquarter

and how to transfer all data it has. The second one is a simple version of the first

one, which could be used in virtual world.

45

A.2 AVUSSD.h

AUVSSD <T>

Figure A-2: Class diagram of class AUVSSD

In this header file, class AUVSSD is defined, which can simulate an sound speed sensor

carried on AUV.

A.2.1 Data Members

1. SimulatedOcean<T> * simulated-oceanPtr - private; this is the pointer pointing

to the simulated ocean.

2. T sampling-location-r

sampling point.

3. T sampling-location-z

private; This is the horizontal coordinates of current

private; This is the vertical coordinates of current sam-

pling point.

4. T sampling-location-sound-speed - private; This is the sound speed value at cur-

rent sampling point.

5. int index private; this is the index of current AUVSSD object (we may have

several AUV-carring SSD).

46

6. Vector<T> sampling-location-r-H- private; this is the history record of sampling-location-r.

7. Vector<T> sampling-location-z-H - private; this is the history record of sampling-location-z.

8. Vector<T> sampling-location..sound-speed-H - private; this is the history record

of sampling-location-sound-speed.

A.2.2 Member Functions & Operators

1. Name: AUVSSD

Overloads:

* AUVSSD(void)

Description:

public; Constructor. Nothing is done in construction.

Name: Set

Overloads:

* void Set(SimulatedOcean<T> * simulated-oceanPtr_, const T & init-location-r_,

const T & init-location-z_, const int & index_)

" void Set(SimulatedOcean<T> * simulated-oceanPtr_, const Vector<T>

& sampling-location-riH, const Vector<T> & sampling-location-ziH-, const

Vector<T> & sampling-location-sound-speedH_, const int & index-)

Description:

public; The first overload can set up AUV-SSD initial status including initial location,

its index number and connecting to the simulated ocean. All the other data members

will be automatically generated. By the second overload, we can set up the above 5

data members manually. This can be used in virtual world.

2. Name: Run

Overloads:

* void Run(const Vector<T> &start_, const Vector<T> &end_, const T &

target-r_, const T & target-z_)

47

* void Run(const T &target-r_, const T &target-z_)

Description:

public; This function simulates how AUVSSDs process commands. In the first over-

load, start_ and end- are dummy, however this is a flexible interface for upgrading.

3. Name: Output-Inf o

Overloads:

" void OutputInfo(T & sampling-location-r., T & sampling-location-z_,

T & sampling-location-sound-speed_, int & index_,

Vector<T> & sampling-location-rH_, Vector<T> & sampling-location-ziH,

Vector<T> & sampling-location-sound-speedH_)

" void OutputInfo(T & sampling-location-r_, T & sampling-location-z_,

T & sampling-location-sound-speed_, int & index-)

Description:

public; The first overload simulates how AUV_SSD communicates with headquarter

and how to transfer all data it has. The second one is a simple version of the first

one, which could be used in virtual world.

48

A.3 AVUSSDASD.h

AUVSSD ASD <T>

Figure A-3: Class diagram of class AUVSSDASD

In this header file, class AUVSSDASD is defined, which can simulate an AUV carrying

a sound speed sensor and a hydrophone.

A.3.1 Data Members

1. Simulated~cean<T> * simulated-oceanPtr private; this is the pointer pointing

to the simulated ocean.

2. T sampling-location-r - private; This is the horizontal coordinates of current

sampling point.

3. T sampling-location-z - private; This is the vertical coordinates of current sam-

pling point.

4. T sampling-location-sound-speed - private; This is the sound speed value at cur-

rent sampling point.

49

5. complex<T> sampling-location-acoustic-signal - private; this is the acoustical

signal received at current sampling point.

6. int index - private; this is the index of current AUV.SSDASD object (we may

have several AUV-carring SSDASD).

7. Vector<T> sampling-location-xH - private; this is the history record of sampling-location-r.

8. Vector<T> sampling-location-z-H - private; this is the history record of sampling-location-z.

9. Vector<T> sampling-location-sound-speedH - private; this is the history record

of sampling-location-sound-speed.

10. Vector<complex<T> > sampling-location-acoustic-signal-H private; this is

the history record of sampling-location-acoustic-signal.

A.3.2 Member Functions & Operators

1. Name: AUVSSD_ASD

Overloads:

* AUVSSDASD(void)

Description:

public; Constructor. Nothing is done in construction.

2. Name: Set

Overloads:

" void Set(Simulated0cean<T> * simulated-oceanPtr_, const T & init-location-r_,

const T & init-location-z_, const int & index_)

* void Set (Simulated0cean<T> * simulated-oceanPtr_, const Vector<T>

& sampling-location-rH_, const Vector<T> & sampling-location-zJH-, const

Vector<T> & sampling-location-sound-speed-H_, const Vector<complex<T>

> & sampling-location-acoustic-signalH_, const int & index_)

Description:

public; The first overload can set up AUVSSDASD initial status including initial

50

location, its index number and connecting to the simulated ocean. All the other data

members will be automatically generated. By the second overload, we can set up the

above 6 data members manually. this can be used in virtual world.

3. Name: Run

Overloads:

" void Run(const Vector<T> &start_, const Vector<T> &end-, const T &

target-r_, const T & target-z_)

* void Run(const T &target-x, const T &target-z_)

Description:

public; This function simulates how AUVSSDASDs process commands. In the

first overload, start_ and end- are dummy, however this is a flexible interface for

upgrading.

4. Name: Output-Info

Overloads:

" void OutputInfo(T & sampling-location-r_, T & sampling-location-z-,

T & sampling-location-sound-speed_,

complex<T> & s ampling-location-acoustic-signal_, int & index-, Vector<T>

& sampling-location-r-H_, Vector<T> & sampling-locationzH_, Vector<T>

& sampling-location-sound-speedH_,

Vector<complex<T> > & sampling-location-acoustic_signalH_)

" void OutputInfo(T & sampling-location-r_, T & sampling-location-z_,

T & sampling-location-sound-speed_,

complex<T> & sampling-location-acoustic-signal_, int & index_)

Description:

public; The first overload simulates how AUVSSDASD communicates with head-

quarter and how to transfer all data it has. The second is a simple version of the first

one, which could be used in virtual world.

51

A.4 Bathymetry.h

Bathvmetrv <T>

Figure A-4: Class diagram of class Bathymetry

This file was created by Pierre Elisseeff. In this file, class Bathymetry is defined, which

enables querying a bathymetry HOPS data file (netcdf format).

A.4.1 Data Members

1. int nlat - protected; not clear.

2. int nlong - protected; not clear.

3. Vector<float> latitude - protected; not clear.

4. Vector<float> longitude - protected; not clear.

5. Vector<float> depth - protected; not clear.

6. Vector<float> zcb - protected; not used.

52

7. Vector<float> zrhob - protected; not used.

8. Vector<f loat> zattn - protected; not used.

9. Fortran-matrix<float> cb - protected; not used.

10. Fortran-matrix<float> rhob - protected; not used.

11. Fortran-matrix<float> attn - protected; not used.

A.4.2 Member Functions & Operators

1. Name: init

Overloads:

* void init(char* grids-file-name)

Description:

protected; grids-file-name is the database file. this function uploads database.

2. Name: extract

Overloads:

" void extract(const Vector<T> &start, const Vector<T> &end, const

T &res, Vector<T> &rb, Vector<T> &zb)

" T extract(const Vector<T> &start, T x, T y)

Description:

The first overload is public, in which we input latitude and longitude of start and end

points, input resolution, the water-seabed interface line will be generated and output

to rb and zb. The second overload is protected, which is an internal function. we can

input start point's latitude and longitude and 2-D horizontal local coordinates, then

depth at that point will be output.

3. Name: Bathymetry

Overloads:

e Bathymetry(void)

53

* Bathymetry(char* g)

Description:

public; Constructor. In the first overload, default data file will be used; in the second

overload, we can input another data file through g.

4. Name: debug

Overloads:

* void debug(char *file)

Description:

protected; This function is for debug.

54

A.5 Candidate-points-generate.h

Function candidate-points-generate is defined in this file, which determines all possible

candidate points for AUV visiting in the next step.

A.5.1 Functions Defined In This File

1. Name: candidate -points-generate

Overloads:

* void candidate-points-generate(

const ObservationDatabase<T> & observation-database-, Vector<T> &

candidate-points-r_, Vector<T> & candidate-points-z_)

Description:

By inputting observation-database and according to water-seabed interface con-

tained in observation database and AUV performance limit, this function will output

candidate points location (see Figure A-5).

55

Star

Input observation database_

Extract AUVSSD's
sampling location history from

observationdatabase_

Localize next sampling point's range
in observationdatabase_'s
PerfectSeabedDetectorrb

Search next sampling point's possible
depth according to

PerfectSeabedDetector zb

4End

Figure A-5: Flow chart of candidate-points-generate

56

A.6 ControlAgent.h

Figure A-6: Class diagram of class ControlAgent

Class ControlAgent is the kernel part of the whole programme. It will determine the

next sampling point location based on all current information. Control Agent is the most

important module in control center.

A.6.1 Data Members

1. ObservationDatabase<T> * observation-databasePtr

to the Observation Database in control center.

2. OceanPredictor<T> * ocean-predictorPtr - private;

Ocean Predictor.

- private; this pointer points

this pointer points to the

3. AUV-SSD<T> * AUV-ssdPtr - private; this is the pointer pointing to those AUV-SSDs

that can be controlled by Control Agent.

4. AUVSSDASD<T> * AUV-ssd-asdPtr - private; this is the pointer pointing to those

AUV-SSDASDs that can be controlled by Control Agent.

57

1 -1

5. AUVASD<T> * AUV-asdPtr - private; this is the pointer pointing to those AUV-ASDs

that can be controlled by Control Agent.

A.6.2 Member Functions & Operators

1. Name: ControlAgent

Overloads:

* ControlAgent(void)

Description:

public; Constructor function. Nothing is done in construction.

2. Name: Set

Overloads:

* void Set(ObservationDatabase<T> * observation-databasePtr_, OceanPredictor<T>

* ocean-predictorPtr_)

Description:

public; This function let Control Agent connect to Observation Database and Ocean

Predictor.

3. Name: No-in-situ-measurement

Overloads:

* void No-in-situ-measurement (void)

Description:

public; In this function no in situ measurement will be done and it is mainly for

comparison.

4. Name: Predeterminedi

Overloads:

* void Predeterminedl(void)

Description:

public; This function will produce a predetermined linear route for only 1 AUV SSD.

58

5. Name: Predetermined2

Overloads:

* void Predetermined2(void)

Description:

public; This function will produce another predetermined linear route for only 1

AUV-SSD.

6. Name: Greedy

Overloads:

* void Greedy(void)

Description:

public; This function will produce an adaptive route by selecting the point with

biggest error - greedy algorithm. Now, only one AUVSSD is allowed.

7. Name: DP-rollout

Overloads:

* void DProllout(void)

Description:

public; This function will generate a sub-optimal route for a single AUVSSD by

rollout algorithm based on greedy algorithm.

8. Name: Run

Overloads:

* void Run(void)

Description:

public; This function will call another function from Predetermined1, Predetermined2,

Greedy, DP-rollout based on global-ControlAgent-model-selection. This func-

tion is the interface function that will be called by Ocean Predictor in the programme.

59

Star

Sanity check if only 1 AUVSSD
object exists

Run rolloutonce
Get the next sampling location

Test if the next point is not the last one

not

Send command to AUVSSD

Update Observation Database

yes

Send command to AUVSSD

Change Observation Database's
model so that Control Agent

will not be activated

(End

Figure A-7: Flow chart of DP-rollout

60

Update Observation Database7

A.7 DetectionRange.h

DetectionRane <T>

Figure A-8: Class diagram of class DetectionRange

Class DetectionRange is defined in this file, which can calculate transmission loss or

calculate detection range.

A.7.1 Data Members

1. T f requency - private; this is CW sound source frequency or sonar central frequency.

2. T source-r - private; this is sound source horizontal location.

3. T source-z - private; this is sound source vertical location.

4. T dB-threshold - private; this is the detectable sound strength in dB.

5. Vector<T> sonar-or-auv-arrayllocation-r - private; this is the horizontal loca-

tions of hydrophones used in function RunTLreceiver.

61

6. Vector<T> sonar-or-auv-array-location-z - private; this is the vertical locations

of hydrophones used in function RunTL-receiver.

7. Vector<T> target-r - private; this is the horizontal locations of a series of virtual

CW sound source used in function RunTL-source.

8. Vector<T> target-z - private; this is the vertical locations of a series of virtual

CW sound source used in function RunTL-source.

9. T hydrophone.r - private; this is the receiver's horizontal location used in function

RunTL-source.

10. T hydrophone-z - private; this is the receiver's vertical location used in function

Run-TL-source.

11. StandardEnvironmentInfo<T> standard-environmentinf o -private; This is ocean

acoustic environment, including all information needed for computation.

A.7.2 Member Functions & Operators

1. Name: DetectionRange

Overloads:

* DetectionRange(void)

Description:

public; Constructor function. Nothing is done in construction.

2. Name: Set

Overloads:

* void Set(const T & frequency-, const T & source-r-, const T & source-z-,

const T & dB-threshold_, const Vector<T> & sonar-or-auv-array-location-r-,

const Vector<T> & sonar-or-auv-array-location-z-,

const StandardEnvironmentInfo<T> & StandardEnvironmentInfo_)

Description:

public; Input and setup all data members.

62

3. Name: RunTL-receiver

Overloads:

* void RunTLxreceiver(Vector<T> & TL-)

Description:

public; This function computes TLs at points of

(sonar-or-auv-array-lo cat ion-r, sonar-or-auv-array-lo cat ion-z) with CW sound

source at (global-source-r, global-source-z).

Star

Create a SoundField object:
soundpropagation-model

Set up soundLpropagationmodel

Run soundpropagationmodel
and output signals along a line

Convert them to TL one point
by another one

Etnd

Figure A-9: Flow chart of RunTL-receiver

63

4. Name: RunTL-source

Overloads:

* void RunTL-source(Vector<T> & TL-)

Description:

public; This function computes TLs at (globalihydrophone r, global-hydrophonez)

with CW sound source at points of (global-target-r, global-target-z).

5. Name: RunDR

Overloads:

* void Run.DR(T & detection-range_)

Description:

public; This function computes detection range, based on dB-threshold and output

from RunTL-source.

64

Star

Create a SoundField object:
soundLpropagationmodel

Set up soundpropagation-model

Run soundpropagation-model
and output one signal

Figure A-10: Flow chart of Run-TL-source

65

Select a source location

Convert to TL

Star

Run RunTL source
Get TL

Set detection-range = -1

Test if dB threshold
intercept TL curve
between this point
and the next point

negative

positive

negative

Test if the distance from current

point to receiver is further
than current detection-range

positive

Update detection-range

4End

Figure A-11: Flow chart of Run-DR

66

Select one point in TL

A.8 FixedWaterSensor.h

FixedWaterDetector <T>

Figure A-12: Class diagram of class FixedWaterSensor

Class FixedWaterSensor is defined in this file, which can simulate local water sound

speed sensors (array).

A.8.1 Data Members

1. Simulated~cean<T> * simulated-oceanPtr - private; this is the pointer pointing

to the simulated ocean.

2. Vector<T> sampling-locationir

sensors.

3. Vector<T> sampling-location-z

private; This is the horizontal coordinates of

private; This is the vertical coordinates of sen-

sors.

4. Vector<T> sampling-location-sound-speed private; This is the sound speed

value at sensors.

5. int index - private; this is the index of current FixedWaterSensor object.

67

1 -1

A.8.2 Member Functions & Operators

1. Name: FixedWaterSensor

Overloads:

* FixedWaterSensor(void)

Description:

public; Constructor. Nothing is done in construction.

2. Name: Set

Overloads:

" void Set (SimulatedOcean<T> * simulated-oceanPtr_, const Vector<T>

& sampling-location-r_, const Vector<T> & sampling-location-z_, const

int & index_)

" void Set (SimulatedOcean<T> * simulated-oceanPtr_, const Vector<T>

& sampling-location-r_, const Vector<T> & sampling-location-z_, const

Vector<T> & sampling-location-sound-speed_, const int & index-)

Description:

public; In the first overload we manually set up 4 data members and sensors will

automatically measure sound speeds in the simulated ocean and then output to

sampling-location-sound-speed. In the second overload, we manually set up all

data members.

3. Name: Run

Overloads:

9 Vector<T> Run(void)

Description:

public; This function forces sensors to measure sound speeds and output them.

4. Name: Output-Info

Overloads:

68

" void Output-Info(Vector<T> & sampling-location-r_,

Vector<T> & sampling-location-z_, Vector<T> & sampling-location-sound-speed,

int & index_)

" void OutputInfo(Vector<T> & sampling-location-sound-speed, int & index-)

Description:

public; The first overload outputs all information. The second one is a simple version

of the first overload. Only measurement results and index number will be output.

69

A.9 fmat.h

This header file originates from Template Numerical Toolkit (TNT). It has been added and

changed by Pierre Elisseeff and Ding Wang. In this file, the class Fortran-matrix is defined,

which owns most properties of matrix in Fortran. Moreover, many useful functions and

operators for matrix are constructed. Fortran-matrix is 1-offset.

Fortran matrix <T>

Figure A-13: Class diagram of class Fortran-matrix

70

A.9.1 Data Members

1. T* v- - protected; this is the 0-offset array containing elements of matrix.

2. unsigned long int m_ - protected; this is the number of rows in matrix.

3. unsigned long int n- - protected; this is the number of columns in matrix.

4. T** col- - protected; this is a pointer array which stores pointers pointing to all

the first row elements.

A.9.2 Member Functions & Operators

1. Name: initialize

Overloads:

* void initialize(unsigned long int M, unsigned long int N)

Description:

protected; This is an internal function to create v. and col. 1-offset pointers to the

first row elements are assigned to col_ and col- itself is also adjusted to be 1-offset.

2. Name: copy

Overloads:

* void copy(const T* v)

Description:

protected; This function copy v[to v_[]. Note that this function must be used

after initialize and MxN in function initialize must be equal to the length of v. It

is not so clear about what this function does when TNT-UNROLL is defined, but when

TNT-UNROLL is not defined, it just copies v to v. piece by piece.

3. Name: set

Overloads:

* void set(const T& val)

71

Description:

protected; this function is similar to function copy, but now the input val must be a

scalar. In this function, val is assigned to all elements of v-[] piece by piece.

4. Name: destroy

Overloads:

e void destroy()

Description:

protected; this function destructs v_ and col- and free space.

5. Name: begin

Overloads:

" T* begin()

" const T* begin()

Description:

public; This function returns back the pointer pointing to the first element. In the

second overload it is a constant function and the returned pointer points to a constant

datum.

6. Name: end

Overloads:

* T* end()

" const T* end()

Description:

public; This function returns back the pointer pointing to the last element. In the

second overload it is a constant function and the returned pointer points to a constant

datum.

7. Name: Fortran-matrix

Overloads:

* Fortran-matrix()

72

* Fortran-matrix(const Fortran-matrix<T> &A)

" Fortran-matrix(unsigned long int M, unsigned long int N, const T& value

= T(O))

" Fortranrmatrix(unsigned long int M, unsigned long int N, const T* v)

* Fortrannmatrix(unsigned long int M, unsigned long int N, char *s)

" Fortran-matrix(unsigned long int M, unsigned long int N, const Vector<T>

& x)

Description:

public; This is the constructor function. The 1st overload constructs a null matrix;

the 2nd overload constructs a copy of matrix A; the 3rd overload constructs a MxN

matrix and assign scalar value to each element; the 4th overload constructs a MxN

matrix copy of MxN-element array v; the 5th overload constructs a matrix copy of

N-element string s. the 6th overload constructs a M x N matrix copy of M x N-element

vector x.

8. Name: - Fortran-matrix

Overloads:

o - Fortran-matrix()

Description:

public; This is the destructor function. It deletes the matrix and frees space.

9. Name: =

Overloads:

" Fortran-matrix<T>& operator=(const Fortran-matrix<T> &A)

* Fortran-matrix<T> operator=(const Fortran-coordinate..matrix<T> &A)

" Fortran-matrix<T>& operator=(const T& scalar)

Description:

public; The 1st overload assigns matrix A to the matrix at left of '='; it is not

clear about what the 2nd overload does; Refer to the original file for details; the 3rd

overload assigns a scalar to each element of the matrix at left of '='.

73

10. Name: ()

Overloads:

" inline reference operator()(unsigned long int i, unsigned long int

j)

" inline const-reference operator() (unsigned long int i, unsigned long

int j) const

Description:

public; By this 1-offset sign, an element of matrix can be extracted, e.g. x(i, j) is the

element at i th row and j th column of x. The 2nd overload is a constant operator

and return back a constant reference.

this operator has other 2 overloads:

" Region operator()(const IndexlD &I, const IndexiD &J)

* constRegion operator()(const IndexiD &I, const IndexlD &J) const

However, it is not clear about what these 2 overloads do. Refer to the original file for

more details.

11. Name: FromVector

Overloads:

* Fortran-matrix<T> From-Vector(unsigned long int M, unsigned long int

N, const Vector<T> & x)

Description:

public; This function resizes the matrix and columnwise copy MxN-element vector x

to a MxN matrix.

12. Name: dim

Overloads:

* unsigned long int dim(unsigned long int d) const

9 Vector<int> dim(void)

74

Description:

public; This function outputs matrix's dimension. the 1st overload outputs matrix's

row number or column number: when d=1 this function outputs row number, when

d=2 it outputs column number; the 2nd overload outputs row and column number

together in a vector.

13. Name: num-rows

Overloads:

9 unsigned long int num-rows() const

Description:

public; This function returns back the row number.

14. Name: num-cols

Overloads:

* unsigned long int num-cols() const

Description:

public; This function returns back the column number.

15. Name: newsize

Overloads:

* Fortran-matrix<T>& newsize(unsigned long int M, unsigned long int N)

Description:

public; This function can change the matrix's dimension to be MxN by destroying

and creating. So content of the matrix could be changed. Refer to the file for details.

16. Name: change-size

Overloads:

* Fortran-matrix<T> & change-size (unsigned long int M, unsigned long

int N)

75

Description:

public; This function can also change the matrix's dimension to be MxN. But the

content of vector is kept. Refer to the file for details.

17. Name: col

Overloads:

* Fortran-natrix<T> col (unsigned long int i)

Description:

public; This function can output the whole i th column of the matrix.

18. Name: row

Overloads:

* Fortran-matrix<T> row (unsigned long int i)

Description:

public; This function can output the whole i th row of the matrix.

19. Name: norm

Overloads:

9 T norm ()

Description:

public; This function is only applicable to matrix with 1 column. it outputs the norm

of the column.

A.9.3 Functions And Operators Defined In This File

1. Name: <<

Overloads:

0 ostream& operator<<(ostream &s, const Fortran-matrix<T> &A)

Description:

By this operator, matrix A's dimension information and content can be output by

I/O stream s. E.g. cout<<x<<endl; .

76

2. Name: >>

Overloads:

* istream& operator>>(istream &s, Fortran-matrix<T> &A)

Description:

By this operator, matrix A's dimension information and content can be input from

I/O stream s. E.g. cin>>x;

3. Name: +

Overloads:

* Fortran-matrix<T> operator+(const Fortranmatrix<T> &A,

const Fortran-matrix<T> &B)

Description:

'+' let matrix A be able to plus another matrix B which has the same dimension. It

returns back the summation.

4. Name: -

Overloads:

* Fortran-matrix<T> operator-(const Fortran-matrix<T> &A,

const Fortran-matrix<T> &B)

Description:

'-' let matrix A be able to subtracted by matrix B which has the same dimension. It

returns back the result.

5. Name: mult-element

Overloads:

e Fortran-matrix<T> mult-element (const Fortran-matrix<T> &A,

const Fortran-matrix<T> &B)

Description:

'mult-element' let matrix A be able to elementwise multiply matrix B which has the

same dimension. This is function is the same as '.*' in MATLAB.

77

6. Name: transpose

Overloads:

* Fortran-matrix<T> transpose(const Fortran-matrix<T> &A)

Description:

this function just returns transpose of A.

7. Name: transconj

Overloads:

* Fortranimatrix< complex<T> > transconj (const Fortran-natrix< complex<T>

> &A)

Description:

this function just returns hermitian of A.

8. Name: matmult

Overloads:

" inline Fortran-matrix<T> matmult (const Fortran-matrix<T> &A, const

Fortran-matrix<T> &B)

" inline int matmult(Fortran-matrix<T>& C, const FortranJnatrix<T> &A,

const Fortran-matrix<T> &B)

" Vector<T> matmult(const Fortran-matrix<T> &A, const Vector<T> &x)

Description:

the 1st overload just returns back multiplication of A and B; in the 2nd one, matrix

A times matrix B and store the result in matrix C; in the 3rd one, matrix A times a

vector and generate another vector.

9. Name: *

Overloads:

* inline Fortran-matrix<T> operator*(const Fortran-matrix<T> &A, const

Fortran-matrix<T> &B)

78

" inline Vector<T> operator*(const Fortran-matrix<T> &A, const Vector<T>

&x)

" inline Fortran-matrix<T> operator*(const Fortran-matrix<T> &A, const

TT &x)

Description:

the 1st overload just returns back multiplication of A and B; in the 2nd overload,

matrix A times a vector and generate another vector; in the 3rd one, matrix A times

a scalar x.

10. Name: /

Overloads:

* inline Fortran-matrix<T> operator/(const Fortran..matrix<T> &A, const

TT &x)

Description:

By this operator, matrix A is divided by a scalar x.

79

A.10 Greedy-algorithm.h

Function greedy-algorithm will generate a whole sampling process based on greedy algo-

rithm with respect to sound speed standard deviation.

A.10.1 Functions Defined In This File

1. Name: greedy-algorithm

Overloads:

* void greedy-algorithm(ObservationDatabase<T> & virtual-observation-database,

OceanPredictor<T> & virtual_oceanpredictor, AUVSSD<T> virtualAUVssd[

])

Description:

Through this function, virtualAUV-ssd will finish the sampling path by selecting

the point with biggest sound speed standard deviation as the next sampling point,

and virtual-observation-database will record all measurement results. Note that the 3

inputs must connect to each other and virtual-AUV-ssd must connect to a simulated

ocean. Now, only one single virtualAUV-ssd is allowed.

80

Star

Input virtualobservationdatabase,
virtualocean_predictor and

virtualAUVssd

Test if virtualAUVssd's current
Location is not the last one

yes not

Generate next sampling location's
candidates

Select one candidate K

Localize the candidate in grid

H

Send commands to virtualAUVssd
and update

virtualobservationdatabase

End

Figure A-14: Flow chart of greedy-algorithm

81

Calculate sound speed error at
that candidate point by

linear interpolation

Find the candidate point with the
biggest error and choose it as

the next sampling point

A.11 MatchedFieldProcessing.h

Figure A-15: Class diagram of class MatchedFieldProcessing

In this file, class MatchedFieldProcessing is defined, which can do CW matched field

processing and find main lobe peak and max side lobe peak.

A.11.1 Data Members

1. T frequency - private; this is the central frequency of sonar and sound source.

2. Vector<T> replica-r - private; this is the horizontal axis of replica sources grid.

3. Vector<T> replica-z - private; this is the vertical axis of replica sources grid.

4. Vector<T> sonar-or-auv-array-location-r - private; this is the horizontal coor-

dinates of hydrophones.

5. Vector<T> sonar-or-auv-array-location-z - private; this is the vertical coordi-

nates of hydrophones.

6. Vector<complex<T> > sonar-or-auv-array-signal - private; this is the signals

received by hydrophones.

7. StandardEnvironmentInf o<T> standard-environment-inf o - private; this is the

built-in environment model in sonar system, including all information needed for

computation.

82

A.11.2 Member Functions & Operators

1. Name: Searching

Overloads:

* void Searching (Fortran-matrix<T> & ambiguity-function-,

Vector<int> & main-lobe-peak-index_, Vector<int> & maxs ide-lobe peak-index_)

Description:

private; This function is to find the main lobe peak and max side lobe peak in

ambiguity-function_ and then output indices of them.

2. Name: MatchedFieldProcessing

Overloads:

* MatchedFieldProcessing(void)

Description:

public; Constructor. Nothing is done in construction.

3. Name: Set

Overloads:

9 void Set(const T & frequency-, const Vector<T> & replica-r-, const

Vector<T> & replica-z_, const Vector<T> & sonar-or-auv-array-location-r_,

const Vector<T> & sonar-or-auv-array-location-z_, const Vector< complex<T>

> & sonar-or-auv-array-signal_, const StandardEnvironmentInfo<T> &

Standard-Environment-Inf o-)

Description:

public; By this function, we can input and set up all data members.

4. Name: Run

Overloads:

* void Run(Fortran-natrix<T> & ambiguity-function-,

Vector<int> & main-lobe-peak-index-, Vector<int> & max-side-lobe-peak-index_)

83

Star

Input ambiguity-function_ and
make a copy

Set ambiguity-function-copy=O
at this point

positive negative

Test if this point is not
on the boundary and at least
one point around it is higher

Sequentially select one point from
ambiguity-functionscopy

Set this point as
maximum side lobe peak

End

Figure A-16: Flow chart of Searching

84

Sequentially select one point from
ambiguity-function_

main lobe peak
in lobe peak as
e lobe peak

than current main lobe peak value
no yes

Tes1 tf thsp t 1s h1gher1! Set this point as

than current maximum Set previous ma

side lobe peak value maximum sid

yes

Description:

public; This function will run matched field processing and output ambiguity function,

index of main lobe peak and index of max side lobe peak.

Star

Create a SoundField object:
sound-propagation-model

Select one replica sound source K
Set up sound-propagationwmodel

Run sound-propagation-model
Generate replica-signal

normalize and calculate correlation

Search main lobe peak and
maximum side lobe peak

End

Figure A-17: Flow chart of Run

85

A.12 ObjectiveAnalysis.h

ObjectiveAnalysis <T>

Figure A-18: Class diagram of class ObjectiveAnalysis

This file was created by Pierre Elisseeff and adapted by Ding Wang. In this file, class

ObjectiveAnalysis is defined, which can objectively analyzes a set of raw data points on a

vertical plane (2D analysis).

A.12.1 Data Members

1. Correlation<T> G - private; this is the correlation function used in this class,

which describes horizontal and vertical correlation in water sound speed profile.

2. T sigma-m - private; this is a priori sound speed field standard deviation.

3. T sigma-n - private; this is a priori sound speed noise standard deviation.

4. Vector<T> ri - private; this is the horizontal axis of a grid.

5. Vector<T> zi - private; this is the vertical axis of a grid.

6. int M - private; M is the length of vector zi.

86

7. int N - private; N is the length of vector ri.

8. Vector<T> val - public; this is the mean field of sound speed profile. this data

member is for output.

9. Vector<T> err - public; this is the standard deviation field of sound speed profile.

this data member is for output.

A.12.2 Member Functions & Operators

1. Name: ObjectiveAnalysis

Overloads:

9 ObjectiveAnalysis(void)

Description:

public; Constructor. Nothing is done in construction.

2. Name: Set

Overloads:

* void Set(const Correlation<T> &G, const T &sigma-m_, const T &sigman_,

const Vector<T> &ri_, const Vector<T> &zi)

Description:

public; Through this function, all private data members will be set up.

3. Name: analyze

Overloads:

" Vector<T> analyze(const Vector<T> &rd, const Vector<T> &zd, const

Vector<T> &cd, const Fortran-matrix<T> &R, const Fortran-matrix<T>

&E, const T &rl, const T &zl)

" Vector<T> analyze(const Vector<T> &rd, const Vector<T> &zd, const

Vector<T> &cd)

" void analyze(const Vector<T> &rd, const Vector<T> &zd, const Vector<T>

&cd, Fortran-matrix<T> & val-matrix_, Fortran-atrix<T> & err-matrix_)

87

Description:

The first overload is private, in which rd and zd are measurement locations' coordi-

nates and cd is the corresponding sound speeds, R is a priori noise covariance matrix,

E is observation matrix. This overload computes field estimate for one grid point

along with associated error. Assumes the data is zero-mean. Refer to the original file

for more details.

The second overload is public, in which rd, zd and cd are the same as in the first

overload. This overload can compute field estimate along with associated error for

the whole output grid using the raw data.

The third overload is public, in which rd, zd and cd are the same as before. valrMatrix

and err-matrix_ are mean and error field of sound speed profile. They are the same

as data members val and err respectively, but in matrix format. Through this over-

load, we can do the same thing as in the second overload and moreover, we can

directly output val and err in matrix format.

88

A.13 ObservationDatabase.h

ObservationDatabase <T>

Figure A-19: Class diagram of class ObservationDatabase

Class ObservationDatabase is the communication part of control center, which is used

to communicate with external world and store observation data from ocean water column

and seabed. Observation Database is an important module in control center.

A.13.1 Data Members

1. OceanPredictor<T> * ocean-predictorPtr - private; this pointer points to the

ocean predictor.

2. AUVSSD<T> * AUV-ssdPtr - private; this is the pointer pointing to the first AUVSSD

object.

3. AUV-SSD-ASD<T> * AUV-ssd-asdPtr

first AUV-SSDASD object.

private; this is the pointer pointing to the

89

1 -1

4. AUV-ASD<T> * AUV-asdPtr - private; this is the pointer pointing to the first AUVASD

object.

5. Perf ectSeabedDetector<T> * Perf ect-SeabedDetectorPtr - private; this is the

pointer pointing to the first PerfectSeabedDetector object.

6. FixedWaterSensor<T> * FixedWaterSensorPtr - private; this is the pointer

pointer pointing to the first FixedWaterSensor object.

7. SonarArray<T> * SonarArrayPtr - private; this is the pointer pointing to the

first SonarArray object.

8. Sonar-SPC<T> * sonar-spcPtr - private; this is the pointer pointing to the Sonar-SPC

object.

9. Vector<int> Config - private; this is to contain global-fleet-conf ig.

10. In this class, it has a lot of data members pointing to data members of AUV-SSD,

AUVSSD-ASD, AUV-ASD, PerfectSeabedDetector, FixedWaterSensor, SonarArray

and SonarSPC. Since there are too many such data members, it is not suitable to

introduce them one by one here. Please refer to the original file for more details.

A.13.2 Member Functions & Operators

1. Name: ObservationDatabase

Overloads:

* ObservationDatabase(void)

Description:

public; Constructor function. Nothing is done in construction.

2. Name: Set

Overloads:

* void Set(OceanPredictor<T> * ocean-predictorPtr-, AUVSSD<T> * AUV-ssdPtr_,

AUVSSDASD<T> * AUV-ssd-asdPtr_, AUV-ASD<T> * AUV-asdPtr_,

PerfectSeabedDetector<T> * Perfect-Seabed-DetectorPtr_, FixedWaterSensor<T>

90

* FixedWater-SensorPtr_, SonarArray<T> * SonarArrayPtr_, SonarSPC<T>

* sonar-spcPtr_, const Vector<int> & Config-)

Description:

public; Through this initialization function, ObservationDatabase connects to all ex-

ternal sensors, sonar system and OceanPredictor in control center.

3. Name: Start

Overloads:

* void Start(void)

Description:

public; This function starts the whole simulation framework. By this function, Ob-

servationDatabase communicates with all external sensors, sonar system and collects

all useful information from them, and then activate Ocean Predictor.

4. Name: Update

Overloads:

* void Update(void)

Description:

public; By this function, ObservationDatabase can update all information related to

mobile sensors, and then activate Ocean Predictor.

91

A.14 OceanPredictor.h

OceanPredictor <T>

Figure A-20: Class diagram of class OceanPredictor

In this file, class OceanPredictor is defined, which is used to analyze the raw data, esti-

mate ocean acoustic environment, output mean and standard deviation. It should include

two parts, one for water column and one for seabed. Now, the seabed is supposed to be

known exactly, so only water column part exists. Ocean Predictor is an important module

in control center.

A.14.1 Data Members

1. Observat ionDatabase<T> * observation-databasePtr - private; this pointer points

to the Observation Database.

2. ControlAgent<T> * controliagentPtr - private; this pointer points to the Con-

trol Agent.

3. ObjectiveAnalysis<T> oa - private; By this object member, we can objectively

analyze raw measurement data in water column.

92

I

4. StandardEnvironmentInfo<T> StandardEnvironnmentInfo - private; Currently

it is useless, but it will be used in upgrading.

5. Fortran-matrix<T> val - private; Analysis result: mean value of water Sound

Speed Profile.

6. Fortran-matrix<T> err - private; Analysis result: standard deviation of water

Sound Speed Profile.

7. Vector<T> valH - private; history record of val. Note that from val to val-H,

it's columnwise.

8. Vector<T> errH - private; history record of err. Note that from err to err-H,

it's columnwise.

9. int operation-model - private; this is an internal indicator. 0: Ocean Predictor

will call Control Agent, this is for running in real world; 1: Ocean Predictor will not

call Control Agent, this is for running in virtual world.

A.14.2 Member Functions & Operators

1. Name: OceanPredictor

Overloads:

* OceanPredictor(void)

Description:

public; Constructor function. Nothing is done in construction.

2. Name: Set

Overloads:

" void Set(ObservationDatabase<T> * observation-databasePtr-, ControlAgent<T>

* control-agent_-Ptr_, const Correlation<T> & G-, const T & sig-c., const

T & sig-n-, const Vector<T> & water-grid-r_, const Vector<T> & water-gridz)

" void Set (ObservationDatabase<T> * observation-databasePtr_,

const Correlation<T> & G_, const T & sig-c_, const T & sig-n-, const

Vector<T> & water-grid-r_, const Vector<T> & water-grid-z-)

93

* void Set (ObservationDatabase<T> * observation-databasePtr_)

Description:

public; The first overload can build up all connections, set up oa and set operationmmodel=O.

this is used in real world.

The second overload can build up all necessary connections and set up oa and set

operation-model=l. this is used in virtual world.

The third overload can connect Observation Database and set operation-model=l.

this is used in virtual world.

3. Name: Operation-model-set

Overloads:

* void Operation-model-set(const int operation-model-)

Description:

public; By this function, we can set operation-model to be 0 or 1.

4. Name: Run

Overloads:

" void Run(void)

* void Run(Fortran-matrix<T> & val-, Fortran-matrix<T> & err-)

Description:

public; The first overload will run objective analysis and activate Control Agent if

operation-model=0. The second overload will run objective analysis and output

mean and standard deviation of water Sound Speed Profile.

94

A.15 PerfectSeabedDetector.h

PerfectSeabedDetector <T>

Figure A-21: Class diagram of class PerfectSeabedDetector

In this file, class PerfectSeabedDetector is defined, which can simulate an ideal seabed

detector and output all informations about seabed.

A.15.1 Data Members

1. SimulatedOcean<T> * simulated-oceanPtr - private; this is the pointer pointing

to the simulated ocean.

2. Vector<T> start - private; It's 2-element vector containing latitude and longitude

coordinates of start point.

3. Vector<T> end - private; It's 2-element vector containing latitude and longitude

coordinates of end point.

95

1 -1

4. T resolution - private; this is the resolution for the water-seabed interface line.

5. Vector<T> seabed-grid-r - private; this is the common horizontal axis in seabed.

6. Vector<T> seabed-speed-grid-z - private; this is vertical axis for sound speed in

seabed.

7. Fortran-matrix<T> seabed-c - private; this is the 2-D sound speed profile in

seabed.

8. Vector<T> seabed-densitygrid.z - private; this is the vertical axis for density

in seabed.

9. Fortran-matrix<T> seabed-density - private; this is the 2-D density profile in

seabed.

10. Vector<T> seabed-attn-grid-z - private; this is the vertical axis for density in

seabed.

11. Fortran-matrix<T> seabed-attn - private; this is the 2-D attenuation coefficients

profile in seabed.

12. Vector<T> rb - private; this is the horizontal coordinates of grid points on the

water-seabed interface line.

13. Vector<T> zb - private; this is the vertical coordinates of grid points on the water-

seabed interface line.

14. int index - private; this is the index number of current PerfectSeabedDetector

object.

A.15.2 Member Functions & Operators

1. Name: PerfectSeabedDetector

Overloads:

* PerfectSeabedDetector(void)

Description:

public; Constructor. Nothing is done in construction.

96

2. Name: Set

Overloads:

" void Set(SimulatedOcean<T> * simulated-oceanPtr_, const Vector<T>

& start_, const Vector<T> & end_, const T & resolution_, const int

& index-)

" void Set(SimulatedOcean<T> * simulated-oceanPtr_, const Vector<T>

& start-, const Vector<T> & end-, const T &resolution_, const Vector<T>

& rb_, const Vector<T> & zb_, const Vector<T> & seabed-grid-r_, const

Vector<T> & seabed-speed-z_, const Fortran-matrix<T> & seabed-c_, const

Vector<T> & seabed-densityz_, const Fortran-matrix<T> & seabed-density-,

const Vector<T> & seabedattn-z_, const Fortran-matrix<T> & seabed-attn_,

const int & index_)

Description:

public; The first overload can set up fundamental data members and then automati-

cally measure all seabed environmental parameters. By the second, we can manually

set up all data members including all seabed environmental parameters.

3. Name: Run

Overloads:

* void Run(void)

Description:

public; Suppose we have known all fundamental data members, this function forces

detector to do measurement.

4. Name: OutputInfo

Overloads:

* void Output-Info(Vector<T> & start-, Vector<T> & end_, T & resolution-,

Vector<T> & rb-, Vector<T> & zb-, Vector<T> & seabed-grid-r_, Vector<T>

&seabed-speed.z-, Fortran-matrix<T> &seabed-c-, Vector<T> &seabed-density-z-,

Fortran-matrix<T> &seabed-density_, Vector<T> &seabed-attn-z_,

Fortran-matrix<T> &seabedattn_, int & index_)

97

o void OutputInfo(Vector<T> & rb_, Vector<T> & zb-, Vector<T> & seabed-grid-r_,

Vector<T> &seabed-speed-z-, Fortran-matrix<T> &seabed-c-, Vector<T>

&seabed-density-z-, Fortran-matrix<T> &seabed-density_,

Vector<T> &seabed-attn-z-, Fortran-matrix<T> &seabed-attn_, int & index-)

Description:

public; The first overload outputs information about location of detector and all

seabed environmental parameters. The second overload is a simple version of the

first overload, it only outputs all seabed environmental parameters.

98

A.16 ram.h

This file was created by Pierre Elisseeff and adapted by Ding Wang. Class Ram is defined in

this file, by which underwater sound field can be calculated by parabolic equation method.

Since this file is pretty big and has too many data members, we will only introduce public

member functions here. Refer to the original file and class StandardRamInfo for more de-

tails.

A.16.1 Public Member Functions

1. Name: Ram

Overloads:

" Ram(void)

" Ram(const Ram<T> &ram)

" Ram(const T &freq., const T &zr_, const T &zs., const T &rmax_, const

T &dr_, const int &ndr_, const T &zmax-, const T &dz-, const int &ndz-,

const T &zmplt_, const T &cO_, const int &np-, const int &ns_, const

T &rs-, const Vector<T> &rb-input_, const Vector<T> &zb-input_, const

Vector<T> &zcwinput_, const Fortran-matrix<T> &cw.input_, const Vector<T>

&zcb-input_, const Fortran-matrix<T> &cb-input_, const Vector<T> &zrhob-input-,

const Fortran-matrix<T> &rhob-input_, const Vector<T> &zattn-input_,

const Fortran-matrix<T> &attn-input_, const Vector<T> &rp-input_)

Description:

public; Constructors. The first constructor does nothing. The second constructor

makes a copy of ram, which is another object of class Ram. In the third one, we can

input and set up all necessary data members. Refer to class StandardRamInfo for

details about input parameters.

2. Name: set

Overloads:

99

" void Set(const T &freq_, const T &zr_, const T &zs_, const T &rmax-,

const T &dr_, const int &ndr_, const T &zmax_, const T &dz-, const int

&ndz_, const T &zmplt., const T &cO_, const int &np_, const int &ns.,

const T &rs_, const Vector<T> &rb-input-, const Vector<T> &zb-input-,

const Vector<T> &zcw-input_, const Fortran-matrix<T> &cw-input-, const

Vector<T> &zcb-input_, const Fortran-matrix<T> &cb-input_, const Vector<T>

&zrhob-input-, const Fortran-matrix<T> &rhob-input_, const Vector<T>

&zattn-input-, const Fortran-matrix<T> &attn-input_, const Vector<T>

&rp-input_)

" void Set(const StandardRamInfo<T> & Standard-RamInfo_)

Description:

public; By the first overload, we can input and set up all necessary data members. The

second overload actually does the same thing as the first one, but now all necessary

data members are packed in StandardRam-Info. Refer to class StandardRamInfo

for details about input parameters.

3. Name: run

Overloads:

* Fortran-matrix< complex<T> > run(int option)

Description:

public; This function returns back the whole sound field. if option=1, then verbose

output mode is selected; if option=O, non-verbose output mode is selected.

100

A.17 Random.h

Random

Figure A-22: Class diagram of class Random

The original file was constructed by Pierre Elisseeff or someone else and adapted by

Ding Wang. In this file, class Random is defined, which can generate realizations of a gaus-

sian random variable with zero mean, unit variance, or generate realizations of a random

variable uniformly distributed in (0, 1). This file has been changed significantly, please refer

to the original file for details.

A.17.1 Data Members

1. static long seed - protected; this is the seed for random number generation.

A.17.2 Member Functions & Operators

1. Name: rani

Overloads:

* float ranl(long &idum)

Description:

protected; This is an internal function to generate a uniformly distributed random

number. idum is used to pass seed.

2. Name: gasdev

Overloads:

101

I I

* float gasdev(long &idum)

Description:

protected; This is an internal function to generate a gaussian random number. idum

is used to pass seed.

3. Name: Random

Overloads:

* Random(void)

Description:

public; Constructor.

4. Name: gauss

Overloads:

* float gauss(void)

Description:

public; This is an interface function to output a gaussian random number with zero

mean, unit variance.

5. Name: unif

Overloads:

e float unif(void)

Description:

public; This is an interface function to output a random number uniformly distributed

in (0, 1).

102

A.18 Rollout.h

Function rollout-once is defined in this file. This function will rollout heuristic algorithm

such as greedy algorithm once and generate the suboptimal next sampling location.

A.18.1 Functions Defined In This File

1. Name: rollout-once

Overloads:

* void rollout-once(const ObservationDatabase<T> * const observation-databasePtr-,

const OceanPredictor<T> * const ocean-predictorPtr_, T & next-r_, T

& next-z-)

Description:

observation-databasePtr- and ocean-predictorPtr_ point to Observation Database

and Ocean Predictor. From them a virtual ocean world will be constructed and at

present rollout algorithm based on greedy algorithm will be run once. The next

sampling location will be output through next-r. and next-z.

103

Star

Input observationdatabasePtr_
and ocean-predictorPtr-

Generate candidates
for next sampling location

Sequentially select one candidate

yes no
Test if we have run the heuristics enough times

After finishing the loop for
all candidates

Select the candidate corresponding to
smallest average total cost as

next sampling point

Create virtual-simulated-ocean

I
Create virtualAUVXssd which

is a mirror of the real one

Create virtualAUV ssd-asd which
is a mirror of the real one

Create virtualAUV asd which
is a mirror of the real one

Create virtual PerfectSeabed Detector
which is a mirror of the real one

Create virtualFixedWaterDetector
which is a mirror of the real one

Create virtualSonar Array
which is a mirror of the real one

Create virtualsonar_spc
which is a mirror of the real one

Set up virtual-simulatedocean
so that it's a mirror of the real one

Create virtual observation database
and virtual-ocean-predictor

and then connect them with other
virtual objects

Let virtuaLAUVasd go to
the selected candidate of

next sampling location and
do in situ measurement

Jpdate virtuaL observationdatabasi

Finish the left part of sampling path
by heuristics

Calculate total cost

:End

Figure A-23: Flow chart of rollout-once

104

A.19 Search.h

This file contains several functions used frequently.

A.19.1 Functions Defined In This File

1. Name: sum

Overloads:

" T Sum(const Vector<T> & v_)

" T Sum(const Fortran-matrix<T> & matrix.)

Description:

The 2 overloads can calculate summation of all elements in a vector or a matrix

respectively.

2. Name: SearchMax

Overloads:

" void SearchMax(const Vector<T> v_, int & position-)

" void Search.Max(const int total-n_, Vector<T> v., Vector<int> & position_)

Description:

In the first overload, this function can find the maximum element in vector v- and

return back the corresponding position. In the second overload, this function can find

the total-n_ biggest elements and return back the corresponding positions.

3. Name: SearchMin

Overloads:

9 void SearchMin(const Vector<T> v-, int & position-)

Description:

This function find the minimum element in vector v_ and return back the correspond-

ing index.

105

4. Name: min

Overloads:

* T min(const Vector<T> & x)

Description:

This function returns back the minimum element in vector x.

5. Name: SearchIndex

Overloads:

" void SearchIndex(const T & source-r_, const Vector<T> & candidate-vector-,

int & upper-index_, int & lower-index_)

* void SearchIndex(const T & source-r-, const Vector<T> & candidate-vector_,

int & upper-index_, int & lower-index_, T & ratio-to-lower-index-)

Description:

This function will localize source-r- in candidate vector_ which is an ascending or

descending vector and output the nearest two elements' indices. In addition, in the

second overload,

ratio: source-r--candidate-vectore(lower-index_) will be output too. Ifcandidate_vect or_-(upper -index-) -candidate -vector_(lower -index-)

source-r- is just equal to an element, then upper-index-=lower-index- and

rat io-to-lower-index_=O.

6. Name: LinearInterpolation

Overloads:

* T LinearInterpolation(const int & r-upper-index_, const int & r-lower-index_,

const T & r-ratio-to-lower-index-, const int & z-upper-index-, const int

& z-lower-index_, const T & z-ratio-to-lower-index_, const Fortran.matrix<T>

& water-c-temp-)

* complex<T> LinearInterpolation(const int & r-upper-index-, const int

& r-lower-index_, const T & r-ratio-to-lower index_, const int & z-upper-index-,

const int & z-lower-index_, const T & zjratio-to-lower-index_,

const Fortran-matrix<complex<T> > & sound-field_)

106

Description:

This function is to do 2-D linear interpolation. r-upper-index_, r-lower-index_,

r-ratio-to-lower-index-, z-upper-index_ define 4 adjacent points in matrix water-c-temp.

r-ratio-to-lower-index_ and z-ratio-to-lower-index- are local coordinates of the

interpolation point. The second overload is specially for complex number.

7. Name: Update

Overloads:

" void Update(const Vector<T> & original_, Vector<T> & updated_, const

int & upper-index-, const int & lower-index_, const T & ratio-to-lower-index_)

" void Update(const Fortran-matrix<T> & original_, Fortran-matrix<T>

& updated_, const int & upper-index-, const int & lower-index_, const

T & ratio-to-lower-index_)

Description:

In the first overload, we input vector original_ and a point positioned by upper-index_,

lowerindex_, rat io-to-lower-index_. Then we construct a new vector which is a

truncation of original- from the first element to that point but in reverse order. In

the second overload, we do the same thing to a Fortran-matrix original- by trun-

cating it at a vertical line whose horizontal position is determined by upper-index_,

lowerindex_, ratio-to-lower-index_.

8. Name: Transformer

Overloads:

* void Transformer(const T & frequency-, const T & source-r-, const T

& source-z_, const StandardEnvironmentInfo<T> & standard-environment-info-,

const int & select-option-, StandardRamInfo<T> & Standard-RamInfo_)

Description:

frequency-, source-r-, sourcez_ and standard-environment-info_ include all in-

formations needed to calculate sound filed. However, usually acoustic codes always

assume that source is at origin. So, this function will do coordinates transformation

to standard-environment-info_ such that the new origin will be just at the source

107

Input original_, upperindex_
lowerindex_, ratiotolowerindex_

Sanity check

no

Test iff upper-index_= lower index_

yes

Let updated_ be
upperjindex_ -element long

Let updated_ be
upper-index_ -element long

According to original_, upperindex_
lowerindex_, ratiotolowerindex_
calculate the 1 st element in updated_

Truncate original_ from Is' to
(upperjindex- 1) th element,

reverse the sequence and attach it to
updated-

Figure A-24: Flow chart of the 1st overload of update

and then pack all informations into Standard.Ram-Inf o.. select-option- is used to

double check if RAM is selected, so it has to be 1.

108

Truncate original_ from 1st to
upper index_ th element,

reverse the sequence and assign it to
updated_

Input frequency_, sourcer_, source z_,
standardenvironmentinfo_,

selectoption_

Sanity check

Localize source r in water-gridr

Localize source_r_ in watergridr

Update rp, cw, cb, rhob, attn

Localize source r_ in rb

Update rb and recalculate it
w.r.p the new origin

Figure A-25:

[

End

Set StandardRam Info_

Recalculate rp w.r.p the new origin

Set up parameters for RAM

1= Update zb

Flow chart of Transformer

109

30

A.20 SimulatedOcean.h

SimulatedOcean <T>

Figure A-26: Class diagram of class SimulatedOcean

Class SimulatedOcean can simulate the real ocean environment including water column,

seabed and acoustic sound field. Model for water column could be certain or uncertain.

A.20.1 Data Members

1. SyntheticWater<T> Synthetic-Water

model for water column.

private; this object provides a certain

2. SyntheticStochasticWater <T> SyntheticStochasticWater- private; this ob-

ject provides an uncertain model for water column.

110

3. SyntheticSeabed<T> SyntheticSeabed - private; This object provides a seabed

environment model.

4. StandardEnvironmentInfo<T> OceanEnvironmentInfo - private; This object

can store all water column and seabed informations. It's needed to build up SoundField.

5. SoundField<T> Sound-Field - private; This object can calculate acoustic sound

field.

6. Vector<T> sampling-location-r..H - public; this is used to store every measure-

ment's horizontal location.

7. Vector<T> sampling-location-z-H - public; this is used to store every measure-

ment's vertical location.

8. Vector<T> sampling-location-sound-speedH - public; this is used to store every

sound speed measurement's result.

9. Vector<int> model - public; this is used to select certain or uncertain water col-

umn model.

A.20.2 Member Functions & Operators

1. Name: Simulated0cean

Overloads:

" Simulated0cean(void)

" Simulated0cean(char* oag, char* grid)

Description:

public; Constructors. In the first overload, we use default data files; in the second

one, other data files can be input. oag is the data file for water column. grid is the

data file for seabed.

2. Name: Set

Overloads:

e void Set(void)

111

* void Set(const Vector<int> model-)

* void Set(const Vector<T> & sampling-location-r-, const Vector<T> &

sampling-location-z-, const Vector<T> & sampling-location-sound-speed_,

const Vector<int> model_)

Description:

public; Those are initialization functions. The first overload can only be used after

data member 'model' has been assigned value. It does initialization according to

model selection. By the second overload, we can assign a value to model and then do

initialization. By the third overload, we can replicate a measurement history, select

a model and run initialization. This overload is usually used to construct a virtual

ocean world which is a mirror of the simulated ocean.

3. Name: OutputWater-SoundSpeed

Overloads:

" T OutputWaterSoundSpeed(const Vector<T> &start_, const Vector<T>

&end_, const T &r, const T &z_)

" T OutputWaterSoundSpeed(const T &target-r_, const T &targetz-)

" Vector<T> Output-WaterSoundSpeed(const Vector<T> &target-r-, const

Vector<T> &target-z_)

Description:

public; r_ and z_ are location coordinates of sampling point(s). This function outputs

corresponding sound speeds. In the 1st overload, we need to input start point's and

end point's latitude and longitude and it only applies to a single sampling point

situation. In the 2nd and 3rd overloads the default start point and end point will

be used. The 2nd overload only applies to a single sampling point. The 3rd one can

output several points together.

4. Name: OutputAll-Water-SoundSpeed

Overloads:

* Fortran-matrix<T> Output-AllWaterSoundSpeed(const Vector<T> &start,

const Vector<T> &end, const Vector<T> &ri, const Vector<T> &zi)

112

* Fortran-matrix<T> OutputAllWaterSoundSpeed(const Vector<T> &ri,

const Vector<T> &zi)

Description:

public; This function can output water sound speed at all points of the grid defined

by vector ri and zi. In the first overload , we need to input start point's and end

point's latitude and longitude. In the second overload, the default start point and

end point will be used.

5. Name: Hold-on-SyntheticStochasticWater

Overloads:

o void Hold-onSyntheticStochasticWater(void)

Description:

public; This function let Synthetic-StochasticWater hold on.

6. Name: Hold-of f -SyntheticStochasticWater

Overloads:

o void Hold-offSyntheticStochasticWater(void)

Description:

public; This function let Synthetic-StochasticWater hold off.

7. Name: OutputAllSeabedInfo

Overloads:

o void Output-All-Seabed-Inf o(const Vector<T> & start-location-, const

Vector<T> & end-location_, const T & bathymetry-resolution-, Vector<T>

& seabed-grid-r_, Vector<T> &seabed-speed-grid-z_, Fortran-matrix<T>

&seabed-c-, Vector<T> &seabed-density-gridz..,

Fortran-matrix<T> &seabed-density_, Vector<T> &seabed-attn-grid-z_,

Fortran-matrix<T> &seabed-attn-, Vector<T> & rb-, Vector<T> & zb-)

o void Output-AllSeabed-Info(Vector<T> & seabed-grid-r_,

Vector<T> &seabed-speed-grid-z-, Fortran-matrix<T> &seabed-c_, Vector<T>

113

&seabed-density-grid-z-, Fortran-matrix<T> &seabed-density_, Vector<T>

&seabed-attn-grid.z_, Fortran-matrix<T> &seabed-attn_, Vector<T> &

rb_, Vector<T> & zb_)

Description:

public; In the first overload, we need to input start point's and end point's coordinates

and bathymetry resolution, the function can output all seabed information in the

vertical plane defined by start point and end point. In the second overload, default

start, end points and bathymetry resolution will be used.

8. Name: Output _Ac oust icInf o

Overloads:

" void OutputAcoustic-Info(const Vector<T> & sonar-or-auv-array-location-r_,

const Vector<T> & sonar-or-auv-array-location-z_, Vector< complex<T>

> & sonar-or-auv-array-signal_)

" void Output Acoustic-Info(const T & sonar-or-auv-array-location-r-, const

T & s onar-or-auv-array- o cat ion-z_, complex<T> & sonar-or-auv-array-signal_)

Description:

public; sonar-or-auv-array-location-r_ and sonar-or-auv-array-location-z- are

hydrophone's location. In the first overload, we can input several hydrophones' loca-

tions simultaneously and output acoustic signals at those hydrophones. In the second

overload, we can only do that for a single hydrophone. Note that sound source's

properties are defined in AREA.cpp.

9. Name: Output -WholeSoundField

Overloads:

o void OutputWholeSoundField(const Vector<T> & gridr_, const Vector<T>

& grid-z_, Fortranamatrix<complex<T> > & Whole-Sound-Field-const-)

Description:

public; vector grid-r_ and grid-z_ define a grid. This function outputs the whole

sound field with respect to the grid. Note that sound source's properties are defined

in AREA.cpp.

114

10. Name: OutputAllEnvironmentInfo

Overloads:

* void SimulatedOcean<T>: :Output-AllEnvironmentjInfo(StandardEnvironmentInfo<T>

& StandardEnvirornmentInf o-)

Description:

public; This function packs all information about water column and seabed and out-

put it. Refer to the original file for more details.

115

A.21 SonarArray.h

SonarArray <T>

Figure A-27: Class diagram of class SonarArray

In this file, class SonarArray is defined, which can simulate position-fixed sonar array

- receive sound signals and output them.

A.21.1 Data Members

1. SimulatedOcean<T> * simulated-oceanPtr - private; this is the pointer pointing

to the simulated ocean, by which handle can be passed.

2. int index - private; this is the index number of current SonarArray object.

3. Vector<T> SonarArray-r - public; horizontal coordinates of all sensors.

4. Vector<T> SonarArray-z - public; vertical coordinates of all sensors.

5. Vector<complex<T> > sampling-location-acoustic-signa1 - public; acousti-

cal signals received at all sensors.

A.21.2 Member Functions & Operators

1. Name: SonarArray

Overloads:

116

e SonarArray(void)

Description:

public; Constructor. Nothing is done in construction.

2. Name: Set

Overloads:

* void Set (SimulatedOcean<T> *simulated-oceanPtr_,

const Vector<T> &SonarArray..r_, const Vector<T> &Sonar-Arrayz_, const

int & index_)

" void Set (SimulatedOcean<T> *simulated-oceanPtr_,

const Vector<T> &SonarArrayr_, const Vector<T> &SonarArray-z_,

const Vector<complex<T> > & sampling-location-acoustic-signal-, const

int & index-)

Description:

public; In the first overload, we can setup all data members except

sampling-location-acoustic-signal_ which will be automatically obtained from

simulated ocean. In the second overload, all data members can be set up manually.

It could be used in virtual ocean world.

3. Name: Run

Overloads:

* Vector<complex <T> > Run(void)

Description:

public; This function forces sonar array receive acoustic signals again and output

them.

4. Name: OutputInfo

Overloads:

* void Output-Info(Vector<T> & SonarArray-r_, Vector<T> & Sonar-Array-z_,

Vector<complex<T> > & sampling-location-acoustic-signal-, int & index_)

117

" void OutputInfo(Vector<complex<T> > & sampling-location-acoustic-signal-,

int & index_)

" void Dutput-Info(Vector<T> & SonarArray-r_, Vector<T> & Sonar-Array-z_,

int & index-)

Description:

public; The first overload outputs all information of SonarArray. The second one

only outputs acoustic signals and index number. The third one only outputs location

information and index number.

118

A.22 Sonar Performance.h

SonarPerformance <T>

Figure A-28: Class diagram of class Sonar-Performance

In this file, class Sonar-Performance is defined. This class can analyze or predict sonar

performance according to the selection of sonar performance metric.

A.22.1 Data Members

1. Simulated0cean<T> * simulated-oceanPtr - private; this is the pointer pointing

to the simulated ocean. simulated-oceanPtr is needed for extracting true simulated

ocean environment. By this pointer handle can be passed.

2. SonarSPC<T> * sonar-spcPtr - private; this is the pointer pointing to the sonar

signal processing center. sonar-spcPtr is needed for extracting sonar output. By

this pointer handle can be passed.

3. StandardEnvironmentInf o<T> RealEnvironment _Model - private; this is to store

the true environment information of simulated ocean or our estimation.

4. MatchedFieldProcessing<T> matched-field-processing - private; By this ob-

ject member, we can do matched field processing.

119

I , _1

5. DetectionRange<T> DR-orTL - private; By this object member, we can calculate

detection range or transmission loss.

A.22.2 Member Functions & Operators

1. Name: SonarPerformance

Overloads:

* SonarPerformance (void)

Description:

public; Constructor. Nothing is done in construction.

2. Name: Set

Overloads:

9 void Set (SimulatedOcean<T> * simulated-oceanPtr_, SonarSPC<T> * sonar-spcPtr_)

Description:

public; Through this function, we can setup simulated-oceanPtr and sonar.spcPtr.

This function is used for analyzing sonar performance.

3. Name: Set-forEstimate

Overloads:

e Set-forEstimate(Sonar-SPC<T> * sonar-spcPtr_, const StandardEnvironmentInfo<T>

& EstimatedOcean.Environment_)

Description:

public; Through this function, we can setup sonar-spcPtr and input our estimation

of the simulated ocean environment to Real-EnvironmentModel. This function is

for predicting sonar performance.

4. Name: MismatchDisplacement

Overloads:

* void Mismatch-Displacement(Vector<T> & main-lobe-peak-, Vector<T> &

max-side-lobe-peak_, Vector<T> & source-real-location-)

120

Description:

public; If in sonar signal processing center Matched-Filed processing is used, this

function can output locations of main lobe peak and max side lobe peak. The real

location of sound source will be output too.

5. Name: AmFnCompare

Overloads:

* void AmFnCompare (Fortran-matrix<T> & ambiguity-function_, Fortran-matrix<T>

& real-ambiguity-function-)

Description:

public; ambiguity-function_ is the ambiguity function output from sonar. In this

function another ambiguity function based on the true environment information of

simulated ocean or our estimation is calculated, which is output as real-ambiguity-function_

6. Name: DetectionRange

Overloads:

* void Detection-Range(const T & dB-threshold_, T & detection-range_)

Description:

public; In this function,transmission loss along a line which is defined in AREA.cpp

will be calculated and according to dB-threshold_, detection range will be found and

output.

7. Name: TL-source

Overloads:

* void TL-source(Vector<T> & TL-)

Description:

public; In this function, TL-source will be calculated and output. Refer to class De-

tectionRange for explanation for TL-source.

121

8. Name: TL-receiver

Overloads:

* void TL-receiver(Vector<T> & TL-)

Description:

public; In this function, TL-receiver will be calculated and output. Refer to class

DetectionRange for explanation for TLreceiver.

122

A.23 SonarSPC.h

SonarSPC <T>

Figure A-29: Class diagram of class SonarSPC

In this file, class SonarSPC is defined. SonarSPC means sonar signal processing center,

which is a part of sonar system. SonarSPC processes acoustic signals received by SonarAr-

ray. Now, our sonar system is a MFP sonar, in SonarSPC it does matched field processing

by calling an object of class MatchedFieldProcessing.

A.23.1 Data Members

1. SonarArray<T> * sonar.arrayPtr - private; this is the pointer pointing to an

object of class SonarArray. By this pointer handle can be passed.

2. AUVASD<T> * auv-asdPtr private; this is the pointer pointing to an object of

123

I I

class AUVASD. By this pointer handle can be passed.

3. AUVSSDASD<T> * auv-ssd-asdPtr - private; this is the pointer pointing to an

object of class AUV-SSDASD.

4. StandardEnvironmentInf o<T> Environment-Model - private; This data member

stores the ocean acoustic environment model used in sonar system.

5. MatchedFieldProcessing<T> matched-f ield-processing - private; By this ob-

ject member, we can run Matched-Field Processing.

6. T frequency- private; This is the central frequency of sonar system.

7. Vector<T> replica&r - private; horizontal axis of the grid for replica source loca-

tions.

8. Vector<T> replica-z - private; vertical axis of the grid for replica source loca-

tions.

9. Vector<complex<T> > sensor-acoustic-signal - private; acoustic signals re-

ceived by all sensors.

10. Fortran-matrix<T> ambiguity-function - private; this matrix stores ambiguity

function values at all replica source locations.

11. Vector<int> main-lobe-peak - private; This vector stores horizontal index and

vertical index of main lobe peak.

12. Vector<int> max-side-lobe-peak - private; This vector stores horizontal index

and vertical index of the biggest side lobe peak.

A.23.2 Member Functions & Operators

1. Name: SonarSPC

Overloads:

* SonarSPC(void)

Description:

public; Constructor. Nothing is done in construction.

124

2. Name: Set

Overloads:

" void Set(SonarArrayT> * sonar-arrayPtr_, AUV-ASD<T> * auv-asdPtr-,

AUVSSD-ASD<T> * auv-ssd-asdPtr., const StandardEnvironmentInfo<T>

& Environment-Model-, const T & frequency-, const Vector<T> & replica-r-,

const Vector<T> & replica-z-, const Vector<int> & Config_)

" void Set (SonarArray<T> * sonar-arrayPtr-, AUV-ASD<T> * auv-asdPtr-,

AUVSSD-ASD<T> * auv-ssdasdPtr_, const StandardEnvironmentInfo<T>

& EnvironmentModel_, const T & frequency_, const Vector<T> & replica-r-,

const Vector<T> & replica-z-, const Vector<int> & Config_, const Vector<T>

& sensor-location-r_, const Vector<T> & sensor-location-z_,

const Vector<complex<T> > & sensor-acoustic-signal_)

Description:

public; In the first overload, we will input 8 data members. All the other data

members will be automatically extracted and generated. In the second overload, we

will input and setup all data members.

3. Name: Run

Overloads:

* void Run (Fortran-matrix<T> & ambiguity-function_,

Vector<int> & main-lobe-peak-, Vector<int> & max-side-lobe-peak_)

" void Run(void)

Description:

public; In the first overload, this function will do matched-field processing and output

all results. In the second overload, this function will do matched-field processing and

store all results in data members.

4. Name: DutputInf o

Overloads:

* void Dutput-Info(StandardEnvironmentInfo<T> & Environment-Model_, T

& frequency-, Vector<T> & replica-r_, Vector<T> & replica-z_, Vector<int>

125

& Config_, Vector<T> & sensor-location-r_, Vector<T> & sensor-location-z-,

Vector<complex<T> > & sensor-acoustic-signal_, Fortran-matrix<T> &

ambiguity-function_, Vector<int> & main-lobe-peak-,

Vector<int> & max-side-lobe-peak_)

" void OutputInfo(Fortran-matrix<T> & ambiguity-function_, Vector<int>

& main-lobe-peak-, Vector<int> & max-side-lobe-peak-)

" void OutputInfo(StandardEnvironmentInfo<T> & Environmentj-odel-, T

& frequency_, Vector<T> & replica-r_, Vector<T> & replica-z-, Vector<int>

& Config-, Vector<T> & sensor-location-r_, Vector<T> & sensor-location-z_,

Vector<complex<T> > & sensor-acoustic-signal_)

Description:

public; In the first overload, all information will be output. In the second overload,

results from Matched-Filed processing will be output. In the third one, all information

except Matched-Field processing results will be output.

126

A.24 SoundField.h

SoundField <T>

Figure A-30: Class diagram of class SoundField

Class SoundField is defined in this file, which can generate the whole sound pressure

field according to request. RAM and SEALAB could be used in this class.

A.24.1 Data Members

1. T frequency - private; sound frequency.

2. T source-r - private; this is source horizontal coordinates.

3. T source-z - private; this is source vertical coordinates.

4. Vector<T> receiver-location.r - private; These are receivers' horizontal loca-

tions.

127

I

5. Vector<T> receiver-location-z - private; These are receivers' vertical locations.

6. StandardEnvironmentInfo<T> standard-environment-info - private; this ob-

ject stores all water column and seabed environmental parameters.

7. int select-option - private; if 1, select RAM; if 2, select SEALAB.

8. int data-member-change-indicator - private; this variable indicates if data mem-

bers get changed or not. If 1, then some data members has been changed; if 0, no

data member has been changed. If data members get changed, then some codes will

be run again.

9. Ram<T> ram - private; This object may be used to calculate sound field.

10. StandardRamInfo<T> StandardRamInf o - private; this object stores all inputs

needed by class Ram.

11. T source-r-copy - private; this is a copy of source-r.

12. Fortran-matrix< complex<T> > Sound-Pressure-Field - private; this matrix

will store sound pressure field.

A.24.2 Member Functions & Operators

1. Name: SoundField

Overloads:

* SoundField(void)

Description:

public; Constructor.

2. Name: Set

Overloads:

* void Set(const T & frequency_, const T & source-r_, const T & source-z-,

const StandardEnvironmentInfo<T> & standard-environment-info_, const

int & select-option_)

128

* void Set(const T & frequency_, const T & source-r_, const T & source-z-,

const Vector<T> & receiver-location-r_, const Vector<T> & receiver-location z_,

const StandardEnvironmentInfo<T> & standard-environment-info_, const

int & select-option-)

* void Set(const Vector<T> & receiver-location-r_, const Vector<T> &

receiver-location-z_)

Description:

public; In the first overload, we set up source's parameters and environmental pa-

rameters and model selection. In the second overload, we set up source's parameters,

receiver's parameters and environmental parameters and model selection. In the third

overload, we only set up receivers' location.

3. Name: Run

Overloads:

" void Run(void)

" void Run(const Vector<T> & receiver-location-r-, const Vector<T> &

receiver.location-z_, Vector<complex<T> > & signal-at-receiver-)

" void Run(const T & receiver-location-r-, const T & receiver-location-z_,

complex<T> & signal-at-receiver-)

" void Run(Vector< complex<T> > & signal-at-receiver_)

Description:

The first overload is private, which is an internal function which will call ram or

sealab and generate sound pressure field. Other overloads are public. In the second

one, we can input several receivers' coordinates and get back corresponding acoustic

signals. The third one is almost the same as the second one, but only applies to a

single receiver. In the fourth one, we suppose receiver(s)' location has been input; all

corresponding acoustic signal(s) will be output.

4. Name: OutputWhole-Sound-Field

Overloads:

129

Star

no
Test iff RAM is selected

yes

-- Test if current source's range
is different from previous one no

or environment data members

get updated

yes

Run Transformer again and update Simply update StandardRam_Info
source-r-copy and

data-member-change-indicator

Calculate sound field

Figure A-31: Flow chart of the 1st overload of Run

e void OutputWholeSoundField(const Vector<T> & grid-r_, const Vector<T>

& grid-z_, Fortran-matrix<complex<T> > & WholeSoundField_)

Description:

public; vector grid-r_ and grid-z_ define a grid. This function output the whole

sound field with respect to the grid.

130

Star

Call Run(void) to calculate
the whole sound filed

Select one receiver H-
Sanity check

Localize the receiver in the grid
used in RAM

Calculate signal at the receiver by _
linear interpolation

End

Figure A-32: Flow chart of the 4th overload of Run

131

Star

Input gridjr , grid z_

Create temp-storagejr, temp-storage-z
and temp-storage-signal with length

equal to grid points number on
the grid defined by grid-r_ and grid-z_

Store all grid points' coordinates into
temp-storagesr and temp-storage-z

Convert temp-storage-signal to matrix
and output

End

Figure A-33: Flow chart of OutputWhole-Sound Yield

132

Run(tempstorage~j, temp-storage-z,
temp-storage-signal)

A.25 SoundSpeedGenerator.h

SoundSpeedGenerator <T>

Figure A-34: Class diagram of class SoundSpeedGenerator

This file was created by Pierre Elisseeff. Ding Wang made some adaption. By inputting

mean and error field of sound speed profile, a grid and correlation function, class Sound-

SpeedGenerator can output a realization of the whole sound speed profile according to

Gaussian distribution.

A.25.1 Data Members

1. Vector<T> mc - private; this is the mean field of sound speed profile.

2. Vector<T> sc - private; this is the error field of sound speed profile.

3. Vector<T> ri - private; this is horizontal axis of a grid.

4. Vector<T> zi - private; this is vertical axis of a grid.

5. Correlation<T> G - private; This is the correlation function which describes hor-

izontal and vertical correlation in sound speed profile.

6. Random gen - private; this is a random number generator.

133

A.25.2 Member Functions & Operators

1. Name: SoundSpeedGenerator

Overloads:

" SoundSpeedGenerator(void)

" SoundSpeedGenerator(const Fortran-matrix<T> &mc-, const Fortran-matrix<T>

&sc_, const Vector<T> &ri_, const Vector<T> &zi_, const Correlation<T>

&G-)

" SoundSpeedGenerator(const Vector<T> &mc_, const Vector<T> &sc_, const

Vector<T> &ri_, const Vector<T> &zi_, const Correlation<T> &G.)

Description:

public; Constructor. The first overload is dummy, which will return back warning

information. In programme, the first overload can't be used. In the second and third

overload, we will input and set up all data members. In the second one, mean and

error are in matrix format; however in the third one, they are in vector format. Refer

to the original file for more details.

2. Name: realization

Overloads:

" Fortran-matrix<T> realization (void)

" T realization (const T & r_, const T & z-)

* Vector<T> realization (const Vector<T> & r-, const Vector<T> & z_)

Description:

public; The first overload will generate the whole field and output them all. In the

second and third overloads, a realization of the whole field will be generated, but only

one or some points will be output respectively. r- and z- are coordinates of point(s)

for output.

134

A.26 StandardEnvironmentInfo.h

StandardEnvironmentInfo <T>

Figure A-35: Class diagram of class StandardEnvironmentlnfo

Class StandardEnvironmentInfo is used to store water column's and seabed's physical

parameters.

A.26.1 Data Members

1. Vector<T> water-gridr - public; this is the horizontal axis in water column.

2. Vector<T> seabed-grid-r - public; this is the common horizontal axis in seabed.

3. Vector<T> water-grid-z - public; this is the vertical axis for water sound speed

profile.

4. Fortran-matrix<T> waterc - public; this is 2-D water sound speed profile.

5. Vector<T> seabed-speed-grid-z - public; this is the vertical axis for seabed sound

speed profile.

135

6. Fortran-matrix<T> seabed-c - public; this is the seabed sound speed profile.

7. Vector<T> seabed.density-grid-z - public; this is the vertical axis for seabed

density profile.

8. Fortran-matrix<T> seabed-density - public; this is the seabed density profile.

9. Vector<T> seabed-attn-grid-z - public; this is the vertical axis for seabed atten-

uation profile.

10. Fortran-matrix<T> seabed-attn - public; this is the seabed attenuation profile.

A.26.2 Member Functions & Operators

1. Name: StandardEnvironmentInfo

Overloads:

* StandardEnvironmentInfo()

Description:

public; Constructor. Nothing is done in construction.

2. Name: set

Overloads:

* void Set(const Vector<T> & water-grid-r-, const Vector<T> & seabed.grid-r_,

const Vector<T> &water-grid-z_, const Fortran-matrix<T> &water-c.,

const Vector<T> &seabed-speed-grid-z-, const Fortran-matrix<T> &seabed-c,

const Vector<T> &seabed-density-grid-z_,

const Fortran-matrix<T> &seabed-density-, const Vector<T> &seabed-attn-grid-z_,

const Fortran-natrix<T> &seabed-attn-, const Vector<T> &rb_, const

Vector<T> &zb_)

Description:

public; By this function we can set up all data members.

3. Name: <<

Overloads:

136

* ostream& operator<<(ostream &s, const StandardEnvironmentInfo<T>

& StandardlnvironmentInf o_)

Description:

public; Through this operator we can output all data members by one command.

137

A.27 StandardRamlnfo.h

StandardRamInfo <T>

Figure A-36: Class diagram of class StandardRamInfo

Class StandardRamInfo is used to store all parameters needed by class Ram.

138

A.27.1 Data Members

1. T f req - public; sound frequency (Hz).

2. T zr - public; receiver depth, which is dummy but needed by Ram.

3. T zs - public; source depth (m).

4. T rmax - public; maximum range of computation grid (in).

5. T dr - public; horizontal step size.

6. int ndr - public; range axis decimation factor for output purposes.

7. T zmax - public; maximum depth of computation grid (m).

8. T dz - public; vertical step size.

9. int ndz - public; depth axis decimation factor for output purposes.

10. T zmplt - public; maximum depth of output grid (m).

11. T cO - reference sound speed (m/s).

12. int np - number of Pade coefficients.

13. int ns - number of constraints.

14. T rs - stability range (m).

15. Vector<T> rb - bathymetry range axis (in).

16. Vector<T> zb - bathymetry depth axis (m).

17. Vector<T> zcw - water sound speed field depth axis (m).

18. Fortran-matrix<T> cw - water sound speed field (m/s).

19. Vector<T> zcb - bottom sound speed field depth axis (m).

20. Fortran-matrix<T> cb - bottom sound speed field (m/s).

21. Vector<T> zrhob - bottom density field depth axis (in).

22. Fortran-matrix<T> rhob - bottom density field (g/cm3).

139

23. Vector<T> zattn - bottom attenuation field depth axis (m).

24. Fortran-matrix<T> attn - bottom attenuation field (dB/lambda).

25. Vector<T> rp - range axis common to cw, cb, rhob and attn (i).

A.27.2 Member Functions & Operators

1. Name: StandardRamInf o

Overloads:

9 StandardRamInfo(void)

Description:

public; Constructor. Nothing is done in construction.

2. Name: set

Overloads:

* void Set(const T & freq_, const T & zr_, const T & zs-, const T & rmax-,

const T & dr_, const int & ndr_, const T & zmax_, const T & dz-, const

int & ndz_, const T & zmplt_, const T & c0-, const int & np_, const

int & ns-, const T & rs_, const Vector<T> & rb_, const Vector<T> &

zb_, const Vector<T> & zcw-, const Fortran-matrix<T> & cw-, const Vector<T>

& zcb_, const Fortran-matrix<T> & cb_, const Vector<T> & zrhob_, const

Fortran-matrix<T> & rhob_, const Vector<T> & zattn_, const Fortran-matrix<T>

& attn-, const Vector<T> & rp-)

Description:

public; By this function we can input and set up all data members.

A.27.3 Functions And Operators Defined In This File

1. Name: <<

Overloads:

* ostream& operator<<(ostream &s, const StandardRamInfo<T> & Standard-RamInfo_)

140

Description:

public; Through this operator we can output all data members by one command.

141

A.28 Surveillance.h

See Figure 2-6.

Function Surveillant is defined in this file, by which we can extract history records from

some objects and generate all results that we need.

A.28.1 Functions Defined In This File

1. Name: Surveillance

Overloads:

* void Surveillance(const int sonar-model-selection-,

const int output-model-selection_,

const ObservationDatabase<T> & ObservationDatabase-,

const OceanPredictor<T> & OceanPredictor-)

Description:

This function is usually used in the end of the whole programme. History records in

ObservationDatabase- and OceanPredictor_ will be extracted and output. Ac-

cording to sonar-model-selection- and output-modeL-selection-, different sonar

performance metric will be selected and Monte Carlo simulations will be run in dif-

ferent manner. The result of sonar performance metric realizations will be output.

In addition, some global variables will be output too. Refer to the original code for

more details.

142

Test if cost-function-selection_=11 and
output-Model-selection_=3

Extract sonar-spcEnvironmentModel
from ObservationDatabase_

Update environment model
used in sonar spc

yesTest if we have run enough times :

output no

Run simulated -ocean-for-cost once to
realize standard environmentinfo and sonar_

sound field once-

Calculate mismatch distance
and store it

Run
performance forcost.MismatchDisplacement

Create and set up
sonar-performance for cost

sonar spcfor-cost

Figure A-37: Partial flow chart of Surveillance - Calculate mismatch displacement

143

Create and set up
AUV-ssdasdforcost

AUVasdforcost
SonarArray-forcost

Test if cost-function-selection_=5 and
output-model selection_=3

yes est if we have run enough times :

output no

Run simulatedoceanforcost once to
realize standardenvironmentinfo

Create and set up
sonar -performance-for-cost

sonar-spc-for-cost

Run
sonar-performanceforcost.TLsource

Attach TLsource to
TLsource history

Figure A-38: Partial flow chart of Surveillance - Calculate TL source

144

A.29 SyntheticSeabed.h

SyntheticSeabed <T>

Figure A-39: Class diagram of class SyntheticSeabed

In this file, class SyntheticSeabed is defined, which can simulate the whole seabed acous-

tic environment and output environmental parameters according to requirements.

A.29.1 Data Members

1. Vector<T> start-location

longitude of start point.

2. Vector<T> end-location -

private; this vector has 2 elements - latitude and

private; this vector has 2 elements - latitude and Ion-

gitude of end point.

3. T bathymetry-resolut ion - private; this is the resolution of water-seabed interface

line.

145

4. Bathymetry<T> BathymetryInf o - private; this object can query a bathymetry

HOPS data file (netcdf format), and output the water-seabed interface line.

5. Vector<T> seabed-gridr - private; this is common horizontal axis in seabed.

6. Vector<T> seabed-speed-grid-z - private; this is vertical axis for sound speed in

seabed.

7. Fortran-matrix<T> seabed-c - private; this is the 2-D sound speed profile in

seabed.

8. Vector<T> seabed-density-grid-z - private; this is the vertical axis for density

in seabed.

9. Fortran-matrix<T> seabed-density

seabed.

10. Vector<T> seabed-attn-grid-z - p

seabed.

- private; this is the 2-D density profile in

rivate; this is the vertical axis for density in

11. Fortran-matrix<T> seabed-attn - private; this is the 2-D attenuation coefficients

profile in seabed.

12. Vector<T> rb - private; this is the horizontal coordinates of points on the water-

seabed interface line.

13. Vector<T> zb - private; this is the vertical coordinates of points on the water-

seabed interface line.

A.29.2 Member Functions & Operators

1. Name: SyntheticSeabed

Overloads:

" SyntheticSeabed(void)

" SyntheticSeabed(char * grid)

146

Description:

public; this is the constructor function. the 1st overload uses default seabed database;

the 2nd overload uses the database - 'grid'.

2. Name: Set

Overloads:

" void Set(const Vector<T> & seabed-grid-r-,

const Vector<T> & seabed-speed-grid-z_, const Fortran-matrix<T> & seabed-c_,

const Vector<T> & seabed-density-grid-z_,

const Fortran-matrix<T> & seabed-density_,

const Vector<T> & seabed-attn-grid-z-, const Fortran-matrix<T> & seabed-attn_,

const Vector<T> & rb_, const Vector<T> & zb-)

" void Set(const Vector<T> & seabed-grid-r_,

const Vector<T> & seabed-speed-grid-z_,

const Vector<T> & seabed-density-grid-z-,

const Vector<T> & seabed-attn-grid-z_)

" void Set(const Vector<T> & start-location-, const Vector<T> & end-location_,

const T & bathymetry-resolution, const Vector<T> & seabed-grid-r,

const Vector<T> & seabed-speed-grid-z_,

const Vector<T> & seabed-density-grid-z-,

const Vector<T> & seabed-attn-grid-z_)

Description:

public; Through the 1st overload, all seabed environmental parameters will be input

and set up; in the 2nd overload, only the 4 grids are needed, corresponding sound

speed profile, density profile, attenuation coefficient profile will be generated by built-

in algorithm; in the 3rd overload, the 4 grids, start and end points' location and

water-seabed interface line resolution are needed, sound speed profile, density profile,

attenuation coefficient profile will be generated by built-in algorithm and water-seabed

interface line will be extracted from database.

3. Name: Output _AlLSeabed-Inf o

Overloads:

147

" void Output-AllSeabedInfo(Vector<T> & seabed-grid-r_, Vector<T> &

seabed-speed-grid-z_, Fortran-matrix<T> & seabed-c_,

Vector<T> & seabed-density-grid-z_, Fortran-matrix<T> & seabed-density-,

Vector<T> & seabed-attn-grid-z_, Fortran-matrix<T> & seabed-attn-,

Vector<T> & rb-, Vector<T> & zb_)

" void Output.AllSeabedInfo(const Vector<T> & start-location_, const

Vector<T> & end-location-, const T & bathymetry-resolution-, Vector<T>

& seabed-grid-r-, Vector<T> & seabed-speed-grid-z_, Fortran-matrix<T>

& seabedc-, Vector<T> & seabed-density-grid-z_, Fortran-matrix<T>

& seabed-density-, Vector<T> & seabed-attn-grid-z_, Fortran-matrix<T>

& seabed-attn_, Vector<T> & rb_, Vector<T> & zb-)

Description:

public; By this function, we can output all seabed environmental parameters. In the

1st overload, the interface line is between start and end point that were input from

function Set; this overload can not follow the 2nd Set overload. In the 2nd overload,

we can input new start and end point; the interface line is between the new points.

Refer to the original file for more details.

148

A.30 SyntheticStochasticWater.h

SyntheticStochasticWater <T>

Figure A-40: Class diagram of class SyntheticStochasticWater

In this file, class SyntheticStochasticWater is defined, which simulates a stochastic ocean

water acoustic environment by using ObjectiveAnalysis and SoundSpeedGenerator.

A.30.1 Data Members

1. ObjectiveAnalysis<T> oa - private; this object works as an sound speed profile

estimator.

2. Vector<T> * sampling-location-rPtr - private; this is a pointer pointing to a

vector containing sampling locations' horizontal coordinates.

3. Vector<T> * sampling-location-zPtr - private; this is a pointer pointing to a

vector containing sampling locations' vertical coordinates.

149

4. Vector<T> * sampling-location-sound-speedPtr - private; this is a pointer point-

ing to a vector containing sound speed values at sampling locations.

5. Fortran-matrix<T> latest-water-c - private; this matrix contains the latest

sound speed profile estimation.

6. Correlation<T> G - private; this is the correlation function.

7. T sig-c - private; a priori sound speed profile standard deviation.

8. T sig-n - private; a priori noise sound speed profile standard deviation.

9. Vector<T> water-grid-r - private; horizontal axis in water column.

10. Vector<T> water-grid-z - private; vertical axis in water column.

11. bool hold-on - private; if it's equal to 1, latest-water-c can't be refreshed; if it's

equal to 0, latest-water-c can be refreshed.

A.30.2 Member Functions & Operators

1. Name: SyntheticStochasticWater

Overloads:

* SyntheticStochasticWater(void)

Description:

public; This is the constructor function. It sets hold-on=0.

2. Name: Set

Overloads:

* void Set(Vector<T> * sampling-location-rPtr_,

Vector<T> * sampling-location-zPtr-,

Vector<T> * sampling-location-sound-speedPtr_, const Correlation<T>

& G, const T & sig-c_, const T & sig-n-, const Vector<T> & water-grid-r-,

const Vector<T> & water-grid-z-)

Description:

public; Through this function, all private data members will be input and set up.

150

3. Name: Hold-on

Overloads:

* void Hold-on(void)

Description:

public; This function sets hold-on=1.

4. Name: Hold-off

Overloads:

* void Hold-off (void)

Description:

public; This function sets hold-on=O.

5. Name: OutputWater.SoundSpeed

Overloads:

" T OutputWaterSoundSpeed(const T &target-r_, const T &targetz.)

" Vector<T> Output-Water-SoundSpeed(const Vector<T> &target-r-, const

Vector<T> &target-z-)

Description:

public; By inputting location coordinates of sampling points, this function outputs

corresponding sound speeds. The 1st overload only applies to a single sampling point.

6. Name: OutputAllWater-SoundSpeed

Overloads:

" Fortran-matrix<T> OutputAllWater-SoundSpeed(const Vector<T> &start-,

const Vector<T> &end-, const Vector<T> &ri_, const Vector<T> &zi-)

" Fortran-matrix<T> OutputAllWater-SoundSpeed(const Vector<T> &ri-,

const Vector<T> &zi-)

151

Star

Sanity check

Test if hold off
no

yes

Do objective analysis again and
realize sound speed profile once

Select one receiver

Localize the receiver in water column

grid

Calculate sound speed at the receiver by _
linear interpolation

Output

Figure A-41: Flow chart of the 2nd overload of OutputWater-SoundSpeed

Description:

public; This is a dummy function, the only objective is to make code in Simulate-

dOcean.h simple and consistent. Since in stochastic model, we can not know exactly

the whole sound speed profile but mean and variance, so actually this function only

returns back a realization of the whole sound speed profile with respect to horizontal

axis ri- an vertical axis zi_. In the 1st overload, global latitude and longitude of start

152

and end points are dummy, but they are needed to make code in SimulatedOcean.h

simple and consistent.

Star

no
Test if hold on

yes

Sanity check

Do objective analysis again and
realize sound speed profile once

If pass

Output

End

Figure A-42: Flow chart of the 2nd overload of Output_-All-Water-SoundSpeed

153

A.31 SyntheticWater.h

SyntheticWater <T>

Figure A-43: Class diagram of class SyntheticWater

Class SyntheticWater was created by Pierre Elisseeff and adapted by Ding Wang. This

class can simulate the real ocean water column using a HOPS OAG data file (netcdf format).

A.31.1 Data Members

1. int nt - protected; this is the length of vector time.

2. int nz - protected; this is the length of vector depth.

3. int niat - protected; this is the length of vector latitude.

4. int niong - protected; this is the length of vector longitude.

5. Vector<float> time - protected; this vector stores time axis.

6. Vector<float> depth - protected; this vector stores depth axis.

154

7. Vector<float> latitude - protected; this vector stores latitude axis.

8. Vector<float> longitude - protected; this vector stores longitude axis.

9. Vector<float> soundspeed - protected; this vector stores sound speed values at

all grid points in the 4-D space defined by the above 4 axes.

A.31.2 Member Functions & Operators

1. Name: init

Overloads:

* void init(char* oag-file-name)

Description:

protected; This is an internal initialization helper function, which will setup all data

members. It will open the data file: oag-filename; upload the 4 axes and tem-

perature and salinity information; and then compute sound speed values for the 4-D

grid.

2. Name: sound-speed

Overloads:

* T sound-speed(T s, T t, T d)

Description:

protected; This function returns back the sound speed (m/sec) given values of salinity

(ppt), temperature (deg C) and depth (in) using the formula of Mackenzie.

3. Name: measure

Overloads:

e T measure(const Vector<T> &start, T x, T y, T z)

Description:

protected; In this function, 2-D vector start is input as the new origin; x, y, z are

local coordinates.

155

4. Name: SyntheticWater

Overloads:

" SyntheticWater(void)

" SyntheticWater(char* o)

Description:

public; The first constructor uses default file: oag-AAcoustic-R.nc as data file; In the

second constructor we can input another data file.

5. Name: OutputAllWaterSoundSpeed

Overloads:

* Fortran-matrix<T> Output-All-WaterS oundSpeed (const Vector<T> &start,

const Vector<T> &end, const Vector<T> &ri, const Vector<T> &zi)

Description:

public; 2-D vector start and end are global coordinates of start and end points re-

spectively. They define a vertical plane. Vector ri and zi define a grid on that plane.

This function returns back sound speeds at all points on the grid.

6. Name: OutputWaterSoundSpeed

Overloads:

* Vector<T> Output.WaterSoundSpeed(const Vector<T> &start, const Vector<T>

&end, const Vector<T> &r, const Vector<T> &z)

Description:

public; 2-D Vector start and end are global coordinates of start and end points re-

spectively. They define a vertical plane. Vector ri and zi define a series of points.

This function returns back sound speeds at those points.

156

A.32 Totalicost.h

This file contains several different cost calculating functions, by which we can obtain differ-

ent total cost according to cost function selection.

A.32.1 Functions Defined In This File

1. Name: total-costTL-receiver

Overloads:

e void total-costTL-receiver(Simulatedcean<T> * virtual-simulated-oceanPtr_,

SonarSPC<T> * virtualsonar-spcPtr-, T & total-cost-)

Description:

In this function, a simulated ocean and a sonar signal processing center are input.

Based on them, sum of variance of TLbreceiver will be calculated by Monte Carlo

simulation and returned back as total cost. Refer to class DetectionRange for expla-

nation for TL-receiver.

2. Name: total-costTL-source

Overloads:

* void total-costTL-source (SimulatedOcean<T> * virtual-simulated-oceanPtr_,

Sonar-SPC<T> * virtual_sonar-spcPtr_, T & total-cost_)

Description:

In this function, a simulated ocean and a sonar signal processing center are input.

Based on them, sum of variance of TL-source will be calculated by Monte Carlo simu-

lation and returned back as total cost. Refer to class DetectionRange for explanation

for TL-source.

3. Name: total-cost -oceanography

Overloads:

* void total-cost-oceanography(Simulatedcean<T> * virtual_simulated-oceanPtr_,

T & total-cost_)

157

Input virtualsimulatedoceanPtr_ and
virtualsonar-spcPtr_

Test if we have run enough times

no yes

Run virtualsimulatedocean once and
generate a new standardenvironmentinfo

Create virtualsonar-performance,
calculate TLreceiver

and attach it to TLhistory

Convert TLhistory to a matrix

Calculate sample variance for each point
and output summation of sample variances

End

Figure A-44: Flow chart of tot alcost TL -receiver

158

Description:

In this function, a simulated ocean is input. Based on it, sum of variance of sound

speed in water column will be calculated by Monte Carlo simulations and returned

back as total cost.

4. Name: total-costc-std

Overloads:

e void total-cost-c-std(Simulatedcean<T> * virtual-simulated-oceanPtr-,

const Fortran-matrix<T> & err-, T & total-cost-)

Description:

This function is similar to function tot alcost-oceanography; but here we directly

input err_ - standard deviations of sound speed in water column provided by Ob-

jectiveAnalysis, to calculate total cost.

5. Name: points-filter

Overloads:

9 void points-filter(

const StandardEnvironmentInfo<T> & standard-environment-info-, const

Fortran-natrix<T> & water-c-matrix_, Vector<T> & water-c-history-vector_)

Description:

According to water-seabed interface information contained in standard-environmentinf o_,

this function picks out points that are really in water column from water-c-matrix_

and store those points in water-c-history-vector-.

159

Input standardenvironmentinfo_ and
water_c_matrix_

Select one point from watergridjr

Localize this point in rb

Calculate water depth
at this point

Select one point from water-grid-z<

Test if this point is higher no

than local depth

Tyes

Attach this point to
water_c_history-vector_

End

Figure A-45: Flow chart of points-filter

160

A.33 vec.h

Vector <T>

Figure A-46: Class diagram of class Vector

This header file originates from Template Numerical Toolkit (TNT). It has been added

and changed by Pierre Elisseeff and Ding Wang. In this file, the class Vector is defined,

which owns most properties of vector in mathematics. Moreover, many useful functions and

operators for vector are constructed. Unlike the array data type in C++ which is 0-offset,

vector is 1-offset.

A.33.1 Data Members

1. T* v. - protected; this is the 0-offset array containing elements of vector.

2. T* vml- - protected; this is the 1-offset array containing elements of vector.

161

3. unsigned long int n_ - protected; this is the length of the vector.

A.33.2 Member Functions & Operators

1. Name: initialize

Overloads:

* void initialize(unsigned long int N)

Description:

protected; This is an internal function to create v_ with length N and then initialize

vml- and n.

2. Name: copy

Overloads:

* void copy(const T* v)

Description:

protected; This function is to copy array v to v. Note that this function must be

used after initialize and the N in initialize must be equal to the length of v.

3. Name: set

Overloads:

* void set(const T& val)

Description:

protected; This function is to copy scalar val to each element in the vector.

4. Name: destroy

Overloads:

* void destroy()

Description:

protected; This function destructs the vector and free space.

5. Name: begin

Overloads:

162

" iterator begin() - iterator is an alias of T*.

" const iterator begin() const - iterator is an alias of T*.

Description:

public; This function returns back the pointer pointing to the first element. In the

second overload it is a constant function and the returned pointer points to a constant

datum.

6. Name: end

Overloads:

" iterator end() iterator is an alias of T*.

" const iterator end() const - iterator is an alias of T*.

Description:

public; This function returns back the pointer pointing to the last element. In the

second overload it is a constant function and the returned pointer points to a constant

datum.

7. Name: Vector

Overloads:

" Vector()

" Vector(const Vector<T> &A)

" Vector(size-type N, const T& value = T(0)) -size-type is an alias ofun-

signed long int.

" Vector(size-type N, const T* v) - size-type is an alias of unsigned long

int.

" Vector(size-type N, char *s) - size-type is an alias of unsigned long int.

Description:

public; This is the constructor function. The 1st overload constructs a null vector; the

2nd overload constructs a copy of vector A; the 3rd overload constructs a vector with

length N and assign scalar value to each element; the 4th overload constructs a vector

163

copy of N-element array v; the 5th overload constructs a vector copy of N-element

string s.

8. Name: - Vector

Overloads:

* ~ Vector()

Description:

public; This is the destructor function. It deletes the vector and frees space.

9. Name: =

Overloads:

" Vector<T> & operator=(const Vector<T> &A)

" Vector<T> & operator=(const T& scalar)

Description:

public; The 1st overload assigns vector A to the vector at left of '='; the 2nd overload

assigns a scalar to each element of the vector at left of '='.

10. Name: dim

Overloads:

o unsigned long int dim() const

Description:

public; The function returns back the length of the vector.

11. Name: size

Overloads:

* unsigned long int size() const

Description:

public; The function returns back the length of the vector.

12. Name: ()

Overloads:

164

" inline ref erence operator() (unsigned long int i) - reference is an alias

of T&

" inline const-reference operator() (unsigned long int i) const -

const-reference is an alias of const T&

Description:

public; By this 1-offset sign, an element of vector can be extracted, e.g. x(i) is the i

th element of x. The 2nd overload is a constant operator and return back a constant

reference.

13. Name: []

Overloads:

" inline ref erence operator[](unsigned long int i) - reference is an alias

of T&

" inline const-reference operator[] (unsigned long int i) const -

constLreference is an alias of const T&

Description:

public; By this 0-offset sign, an element of vector can be extracted, e.g. x[i] is the

i+1th element of x. The 2nd overload is a constant operator and return back a

constant reference.

14. Name: newsize

Overloads:

9 Vector<T>& newsize(unsigned long int N)

Description:

public; By this function, vector can be resized to N but its content may get lost. It

returns back the new vector.

15. Name: change-size

Overloads:

* Vector<T>& change-size(unsigned long int N)

165

Description:

public; By this function, vector can be resized to N and its content will be kept as

much as possible. It returns back the new vector.

16. Name: Append

Overloads:

" Vector<T>& Append(const Fortran-matrix<T> & mat-)

" Vector<T>& Append(const Vector<T> & vec-)

Description:

public; This function can attach another vector vec_ to the original vector or colum-

nwise attach a matrix mat_ to the original vector. It returns back the new vector.

A.33.3 Functions And Operators Defined In This File

1. Name: <<

Overloads:

* ostream& operator<<(ostream &s, const Vector<T> &A)

Description:

By this operator, vector A's length information and content can be output by I/O

stream s. E.g. cout<<x<<end;

2. Name: >>

Overloads:

* istream& operator>><T>(istream &s, Vector<T> &A)

Description:

By this operator, vector A's length information and content can be input from I/O

stream s. E.g. cin>>x;

3. Name: +

Overloads

* Vector<T> operator+(const Vector<T> &A, const Vector<T> &B)

166

" Vector<T> operator+(const Vector<T> &A, const T &b)

" Vector<T> operator+(const T &b, const Vector<T> &A)

Description:

'+' let vector A be able to plus another vector B or a scalar b. It returns back the

summation.

4. Name: -

Overloads:

* Vector<T> operator-(const Vector<T> &A, const Vector<T> &B)

" Vector<T> operator-(const Vector<T> &A, const T &b)

" Vector<T> operator-(const Vector<T> &A, const T &b)

Description:

'-' let vector A be able to minus another vector B or a scalar b. Note that the 3rd

overload has the same function as the 2nd overload. Result will be returned back.

5. Name: *

Overloads:

" Vector<T> operator*(const Vector<T> &A, const Vector<T> &B)

" Vector<T> operator*(const T &a, const Vector<T> &B)

" Vector<T> operator*(const Vector<T> &B, const T &a)

Description:

'*' let vector A be able to elementwise times another vector B or a scalar a. Result

will be returned back.

6. Name: ==

Overloads:

& bool operator==(const Vector<T> &A, const Vector<T> &B)

Description:

'==' compares two vectors, if A and B are identical, returns 1; otherwise, returns 0.

167

7. Name: dot-prod

Overloads:

" T dot-prod(const Vector<T> &A, const Vector<T> &B)

" complex<T> dotprod(const Vector< complex<T>> &A, const Vector<

complex<T>> &B)

Description:

This function provides dot product of two vectors A and B, which can be real or

complex. Dot product result will be returned back.

8. Name: norm

Overloads:

" T norm(const Vector<T> &v)

" T norm(const Vector< complex<T>> &v)

Description:

This function returns back the norm of a real or complex vector v.

9. Name: conj

Overloads:

* Vector< complex<T>> conj(const Vector< complex<T>> &v)

Description:

This function returns back the conjugate of a complex vector v.

10. Name: Append

Overloads:

" Vector<T> Append(const Vector<T> &A, const T &b)

" Vector<T> Append(const Vector<T> &A, const Vector<T> &B)

" Vector<complex<T>> Append(const Vector<complex<T>> &A,

const Vector<complex<T>> &B)

" Vector<T> Append(const Vector<T> &A, const Fortran-matrix<T> &C)

168

* Vector<complex<T>> Append(const Vector<complex<T>> &A,

const Fortran-matrix<complex<T>> &C)

Description:

This function can attach a scalar b to a vector A or attach the right vector B to the

left vector A or columnwise attach a matrix C to the left vector A. It returns back the

new vector.

169

Bibliography

[1] H. Schmidt. Area: Adaptive rapid environmental assessment. In Pace and Jensen

[11], pages 587-594.

[2] E. Coelho. Mesoscale - small scale oceanic variability effects on underwater

acoustic signal propagation. In Pace and Jensen [11], pages 49-54.

[3] T. Evans S. Finette and C. Shen. Sub-mesoscale modeling of environmental

variability in a shelf-slope region and the effect on acoustic fluctuations. In Pace

and Jensen [11], pages 401-408.

[4] T. F. Duda. Relative influences of various environmental factors on 50-1000 Hz

sound propagatioin shelf and slope areas. In Pace and Jensen [11], pages 393-400.

[5] S. Jesus A. Tolstoy and 0. Rodriguez. Tidal effects on MFP via the intimate96

test. In Pace and Jensen [11], pages 457-464.

[6] T Akal. Effects of environmental variability on acoustic propagation loss in

shallow water. In Pace and Jensen [11], pages 229-236.

[7] P.F.J. Lermusiaux A.R. Robinson, P. Abbot and L. Dillman. Transfer of un-

certainties through physical-acoustical-sonar end-to-end systems: A conceptual

basis. In Pace and Jensen [11], pages 603-610.

[8] N. M. Patrikalakis. Proposal to the National Science Fundationfor I-ADAPT,

2004.

170

[9] W.F. Rosenberger N. Flournoy and W.K.Wong, editors. New Developments and

Applications in Experimental Design, volume 34 of Lecture Notes - Monograph

Series. Institute of Math. Stat., 1998.

[10] D. P. Bertsekas. Dynamic Programming and Optimal Control, volume 1. Athena

Scientific, 2nd edition, 2001.

[11] N. G. Pace and F. B. Jensen, editors. Impact of Littoral Environmental Vari-

ability on Acoustic Predictions and Sonar Performance. Kluwer Academic Pub-

lishers, 2002.

171

