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ABSTRACT

This thesis focuses on a general problem in statistical modeling, namely model
combination. It proposes a novel feature-based model combination method to improve
model accuracy and reduce model uncertainty. In this method, a set of candidate models are
first decomposed into a group of components or features and then components are selected
and aggregated into a composite model based on data. However, in implementing this new

method, some central challenges have to be addressed, which include candidate model
choice, component selection, data noise modeling, model uncertainty reduction and model
locality. In order to solve these problems, some new methods are put forward. In choosing

candidate models, some criteria are proposed including accuracy, diversity, independence
as well as completeness and then corresponding quantitative measures are designed to

quantify these criteria, and finally an overall preference score is generated for each model
in the pool. Principal component analysis (PCA) and independent component analysis

(ICA) are applied to decompose candidate models into components and multiple linear
regression is employed to aggregate components into a composite model. In order to
reduce model structure uncertainty, a new concept of fuzzy variable selection is introduced
to carry out component selection, which is able to combine the interpretability of classical
variable selection and the stability of shrinkage estimators. In dealing with parameter
estimation uncertainty, exponential power distribution is proposed to model unknown
non-Gaussian noise and parametric weighted least-squares method is devise to estimate
parameters in the context of non-Gaussian noise. These two methods are combined to work
together to reduce model uncertainty, including both model structure uncertainty and
parameter uncertainty. To handle model locality, i.e. candidate models do not work equally

well over different regions, the adaptive fuzzy mixture of local ICA models is developped.

Basically, it splits the entire input space into domains, build local ICA models within each

sub-region and then combine them into a mixture model. Many different experiments are

carried out to demonstrate the performance of this novel method. Our simulation study and
comparison show that this new method meets our goals and outperforms existing methods
in most situations.

Thesis Supervisor: Michael W. Golay

Title: Professor of Nuclear Engineering
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Chapter 1

Introduction

1.1 Problem formulation

In general, models are simplified representations of physical systems, which can be in a

variety of forms such as mathematical formula, computer codes, electronic systems,

physical constructions, and even visual pictures or descriptions. Models are created based

upon some theories and observations, thereby reflecting our knowledge about a real

physical system. They can be used to test the validity of theories. Meanwhile, models can

also predict behaviors of real systems.

Mathematical model is perhaps the most familiar type to most of us. Roughly

speaking, it is a mathematical function mapping from some input x to output y, i.e. f(x):

x--y. Sometimes a model itself includes some tunable parameters, for example, f(x; O:

x---y where the parameter 0 is usually learned from observations. Following Bamber and

van Santen [1985], a model, M, can be formalized as an ordered triple, (P, F, Q), where P

c Rk is the parameter space consisting of all conceivable combinations of k parameter

values of the model, F is the prediction function defined on P such that F(P) 5 Q, and Q

c R n is the n-dimensional response surface in its n-dimensional outcome space.

Since the structure of a model, namely, its mathematical form, is determined by the

theory underlying it, it is proper to say that models are built on two bases, that is, theories

and observations. As for models in a general sense, the main purpose of mathematical

models is to estimate, estimate the states of a system given observations, or predict,

forecast what will occur given some inputs.

From a theoretical point of view, it is advantageous to view models as sets of

probabilistic, or statistical, hypotheses [Forster, 2000], that is, given inputs a statistical

model produces the distribution of outputs Pyix (Y x) . In fact, more generally a model only
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delivers mean values f(x) rather than a distribution function. For example, in physics in

order to interpret models in statistical context error distributions are associated with models.

In other words, in any case a deterministic equation can be regarded as mean values of the

dependent response variables given a set of input variables. In fact, any measurement

involves measurement errors. In this sense, a model can be reduced to a probability

distribution governed by a group of parameters. In addition, the input X, which can be a

vector, are often assumed to be randomly drawn from distribution px(x). Thus, throughout

this thesis, we restrict our attentions to statistical mathematical models, unless stated

otherwise.

It is not surprising that for a specific real physical system, there exist many different

models, which might have different parameters or even have different model structures.

According to pragmatic epistemology [James, 1907], no model can ever hope to capture all

relevant information, and even if such a complete model would exist, it would be too

complicated to use in any practical way. Therefore we must accept the parallel existence of

different models, even though they may seem contradictory. In this situation the model

selection problem arises naturally, that is, which model should be chosen to use? For

example, consider the following scenario: an individual is engaged in evaluating seismic

risk. To this end, he needs first to predict the group motion at a specific site given an

earthquake. There are actually many seismic attenuation models available, some of which

are empirical models based upon historical data and others are created upon some theories

in earth science like geognosy. Which model will make him more confident? The answer

depends on the problems that are to be solved. The basic criterion is that the model should

produce correct (or approximate) predictions (which may be tested) or problem-solutions,

and be as simple as possible. Since a major purpose of models is to predict the future, it is

quite natural to evaluate a model's performance using its predictive accuracy, that is, how

good it can predict the upcoming events.

A model is not a complete expression of the reality, but merely reflects a perspective, an
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aspect of reality that may prove more or less fruitful depending on the circumstances. On

the other hand, although a model does not deliver the whole truth, but it certainly conveys

some information about the truth. This implies every model might be useful. Therefore,

besides selecting an individual model another good solution is to combine multiple

competing models.

In particular, when a new data set is available, one can also build a more accurate model

using the data combination approach [Ting and Low, 1997], that is, put together the new

data set with the old one and learn the model from all the available data. However,

sometimes one might have no access to the old data set. Moreover, in this case we leave the

model structure unchanged, and thus it does not benefit from other competing models. In

contrast, for model combination approach each competing model can make contribution to

the composite model. In this sense, model combination is able to combine both theories and

data.

From the angle of information, one can piece together information in different

competing models as well as new observations and finally come up with a better model,

even without the emergence of new theories. Recent research in machine learning shows

that the performance of the final model can be improved not by choosing the model

structure which is expected to predict the best but by creating a model whose output is the

combination of the output of models having different structures [Ting and Low, 1997].

Therefore, the remain problem is to find out an approach that makes more effecient use of

information one is in possession of currently and thus improves accuracy and precision of

models especially when he has multiple competing models and a new data set at hand.

This chapter is organized as follows. In section 1.2, many model selection and model

combination rrmethods will be first reviewed, and then model selection and model

combination will be compared from several angles to show why model combination should

be favored over model selection. In section 1.3, a new feature-based model combination

method will be proposed. At last, some other important issues about this new method will

13



be discussed in section 1.4.

1.2 Model selection and model combination

As we mentioned, in face of multiple competing models, in order to improve model

accuracy one might select a single best model or combine the group of competing models.

In this section, we will make a survey on methods for both model selection and model

combination.

1.2.1 Model selection

The goal of model selection is to find out the best model among a set of competing models.

A natural criterion for model selection is the predictive accuracy, as the major purpose of

models is prediction. Before putting in practice this criterion, there are still two free factors

we need make sure of, namely, error measure and generalizability estimation method. The

error metrics is used to measure the discrepancy between two models especially a

candidate model and the true model; generalizability estimation method is used to estimate

the generalization or predictive error, in fact the expected generalization error, based upon

finite samples but without knowing the true model.

1.2.1.1 Model distance measurements

In mathematics, lots of different distances arise in all sorts of contexts, and one usually

requires these to be a 'metric', which is a distance function D(, ) that has the following

desirable properties [cf. Dudley, 1989]:

1. positivity: D(a,b) >D(a, a)=O when a~b

2. symmetry: D(a,b) = D(b,a)

3. triangle inequality: D(a,b) < D(a,c)+D(c,b)

where a and b are any two objects like vectors in a Euclidean space.

Suppose there are two distinct models f(x) and g(x). In the following, we will review

some important distance measurements which can be employed to measure the similarity
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between these two functions with or without being tailored.

Minkowski-form distance

The Minkowski-form distance is defined based on Lp norm:

dp (f, g)= (lf(x)-g(x)jPdx)/' P (1.1)

It has the following special case:

(1) Absolute, city block, or Manhattan distance:

,(f , g) = If(x) - g(x)dx (1.2)

(2) Euclidean distance:

t2 (f, g) = ((f(x)- g(x)) d (1.3)

(3) Maximum value distance:

dx (f, g) = sup|f(x) - g(x)f (1.4)
x

The Minkowski-form distance naturally measures how a function approximates

another one.

The Euclidean distance is often called mean squared error. If we assume x is uniformly

distributed, e.g. px(x)=l, then

d2 (f, g) = E((x) - g(x))2 = E(f(x) - g(x) - E(f) + E(g) + E(f) - E(g))2]

= (E(f) - E(g))2 + var(f(x) - g(x)) (1.5)

= bias 2 + varia.nce,

which implies mean-squared error can be decomposed into two parts, namely bias and

variance. This result will have further application in bias-variance tradeoff later on.

Another property of the Euclidean distance is that by virtue of Parseval's theorem the

Euclidean distance between two functions f(x) and g(x), d2(f, g), is equal to the Euclidean

distance between their Fourier transforms.

Non-parametric test statistics

(1) Kolmogorov-Smirnov distance

The Kolmogorov-Smirnov distance is the maximum distance between two functions
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over the input domain,

dKS (f, g) = supf (X) - g (). (1.6)
x

Note that the Kolmogorov-Smirnov distance is equivalent to the Minkowski-form

distance with p--oo.

In statistics, it is often used for Kolmogorov-Smirnov tests.

(2) x2 (chi-square) distance

d 2 (f, g) = (f (x)- g(x))2 dx (1.7)
g(x

Note that X2 -distance is not symmetric, and thus not a metric.

Like Kolmogorov-Smirnov distance, it is often used for goodness-of-fit test, namely, X2

goodness-of-fit test.

Information-theoretic divergence

(1) Kullback-Leibler divergence [Kullback and Leibler, 1951]

In information theory, the entropy is defined as the expected value of log-likelihood, i.e.

Jlog f(x). f(x)dx . The Kullback-Leibler divergence measures the relative entropy between

two probability distributions,

dK ,(f, g)= log -f (x)dx (1.8)

The Kullback-Leibler distance was introduced in statistics as early as in 1951, and its

use in hypothesis testing and model evaluation was propagated strongly by Kullback

[1959].

It measures the degree of approximation or similarity between two probability

distributions. However, in reality it is easy to extend it to general functions by normalizing

them as long as f f(x)dx and g(x)dx exist.

Nevertheless, it is noteworthy that the KL discrepancy is not a metric because it does

not satisfy either symmetry or triangular inequality although a nonnegative distance.
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(2) Jeffrey divergence

The Jeffrey divergence [Jeffreys, 1946] is empirically derived from the K-L divergence

such that it is symmetric, stable and robust with respect to noise. It can be written as

dj(f,g)= fff(x)log 2f(x) + g(x)log 2g(x) 1dx (1.9)

f () + g(x) f (x) + g(x)] (1.9)
It is also known as Jensen-Shannon divergence [Lin, 1991].

Empirical study shows that in spite of difference these various discrepancy

measurements generally give consistent results.

1.2.1.2 Generalizabililty estimation methods

Generalizability is a mean discrepancy between the true model and the best-fitting member

of the model class of interest, averaged across all possible data that could be observed

under the true model. The basic tenet of model selection is that among a set of competing

model classes, one should select the one that optimizes generalizability. However,

generalizability is not directly observable and instead one must estimate the measure from

a data sample by considering the characteristics of the model class under investigation.

Before we turn to generalizability estimation methods, let's first introduce Occam's

razor and model complexity, which are crucial to most model selection criteria.

Occam's razor

Occam's razor, a principle also called principle of parsimony, can be dated back to the

mediaeval philosopher William of Occam. It states that of two theories that describe the

data equally well the simpler one should be preferred. To date, it has been underlying all

scientific modeling and theory building. In any given model, Occam's razor helps us to

"shave off" those concepts, variables or constructs that are not really needed to explain the

phenomenon. By doing that, developing the model will become much easier, and there is

less chance of introducing inconsistencies, ambiguities and redundancies.

For a given set of observations or data, there are always an infinite number of possible

models that might explain those data with the same accuracy. Occam's razor admonishes us
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to select the simplest one among the set of otherwise equivalent competing models. Thus,

Occam's razor is realized such that parsimony or simplicity is somehow balanced against

goodness-of-fit, which refers to how well a model fits the particular data set.

Based upon this principle, many model selection approaches have been proposed and

developed. All these methods, which overlap with one another, provide an implementation

of Occam's razor in one way or another.

According to Occam's razor, simplicity is another desired property besides accuracy.

Thus, defining and measuring model complexity has become an integral part in most model

selection criteria.

Measures of Model complexity

Another basic issue is the complexity of a model. Model complexity is conceptualized

as the capacity of a model to fit any conceivable data set. Alternatively, Myung and Pitt

[1997] define model complexity as "the flexibility inherent in a model that enables it to fit

diverse patterns of data".

In order to measure model complexity, Myung and Pitt [1997] have suggested three

factors that affect a model's complexity, namely, the number of parameters, the parameter

space, and the functional form of a model. First, the degree of freedom quantified by the

number of unknown parameters in a model is a classical measure of model complexity. For

example, in the multiple polynomial regression analysis it is obvious that the more items

included, the more complex a regression model. Second, as for the parameter space, there

is no doubt that the wider the space, the more data patterns a model can fit. It is not hard to

verify this point using the example of polynomial regression. Finally, models with different

functional forms have different ability to fit arbitrary patterns of data. For instance,

generally nonlinear functions are more complex than linear functions. Again in the

multiple regression example, if cosine series instead of polynomial terms are used as

regressors, the regression model's capability of diverse fitting data patterns also varies.

Similarly, Brooks and Tobias [1996] defines the overall complexity of a model as a
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combination of three elements: size (the number of components), connectedness (which

components are related), and calculational complexity (the complexity of the calculations

determines the relationships). Based on their arguments, they also propose a graph theory

measure of model complexity.

From the point view of coding theory, model complexity can be represented by its

description length, which is formulated in Kolmogorov complexity. Kolmogorov

complexity is a modem notion of randomness dealing with the quantity of information in

individual objects; that is, pointwise randomness rather than average randomness as

produced by a random source [Li and Vitanyi, 1997]. It was proposed by A.N. Kolmogorov

in 1965 to quantify the randomness of individual objects in an objective and absolute

manner. Kolmogorov complexity is also known variously as algorithmic complexity,

Turing complexity and others. It is defined as the minimum number of bits into which a

string can be compressed without losing information. The Kolmogorov complexity C(s) of

any arbitrary string se {0,1 }n is defined as the length of the shortest computer program s*

that can produce this string on the Universal Turing Machine (UTM), which is not a real

computer but an imaginary reference machine [Grunwald, 2000]. Generally, Kolmogorov

complexity is not computable because we cannot compute the output of every program.

Since a model can be geometrically represented multidimensional response surface,

another natural way to measure model complexity is to use the roughness of a fitted curve.

It does not distinguish the contribution to the model complexity from different factors like

degree of freedom and functional form. However, it might be able to reflect model

complexity resulting from other factor than those discussed above. On the other hand, this

measure has different values for models with the same model structure but various model

parameters.

Bias-variance tradeoff

How model complexity affects a model's generalizablity can better understand in light

of a well-known bias-variance tradeoff [see e.g. Geman et al., 1992].

19



When a model is too complex for the amount of training data at hand, it learns parts of

the noise as well as the true model structure, resulting in poor generalizability. The model

ends up with being very sensitive to the training samples we use and has a lot of variance

across training samples of a fixed size. This is often called overfitting.

In contrast, when our model is not complex enough, it cannot capture the structure in the

training data. Therefore, no matter how much data we feed there will be always some error

between the true model and our approximating model. In other words, so trained model has

a lot of bias. This is usually called underfitting.

Figure 1.1 illustrates the difference between underfitted and overfitted models in

regression.

Generally, a fitted model starts with underfitting and ends up with overfitting with the

model complexity growing. In the example of multiple linear regression, the prediction

error decreases at first and goes up at last by adding more predictors, which is shown in

Figure 1.2. The balance point between underfitting and overfitting is considered optimal.

To understand this, it is helpful to take a look at the bias-variance tradeoff.

.. 0 a a 

V a

r"~~,
*,0 ** * 

Underfitting Optimal Overfitting

Figure 1.1 Illustration of the difference between underfitted and overfitted models

As we mentioned earlier, the predictive error can be decomposed to bias and variance.

In general, using more complex models can reduce the model bias, the first term, or in other

words achieve better fit, but in the meantime model variance is increased because the

sample size gets smaller relative to the number of model parameters to be estimated. In the

case of underfitting, the bias in parameter estimation is generally substantial while the

variance is underestimated. As for overfitting, the parameter estimation is usually free of

bias but have large variance. Figure 1.2 may give us an intuitive sense of the relationship
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between underfitting and overfitting as well as how the model complexity affects the

generalization error.
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Figure 1.2 Bias-Variance tradeoff

In view of this trade-off, we need to find out a balance point in this tradeoff, which is

considered optimal, thereby minimizing expected predictive squared error in the future.

From another angle, this is also a tradeoff between goodness-of-fit and model complexity.

Generalizability, or predictive accuracy, refers to a model's ability to predict future,

unseen yet, data samples generated from the same underlying process. Mathematically,

generalizability is the mean discrepancy between a candidate model and the true model.

Thus, the purpose of generalizability estimation methods is to estimate the generalization

or prediction error based upon empirical training errors. Since empirical errors are based

upon finite samples, thus integrals in distances formula should be replaced by sum.

To date, many different types of generalizability estimates have been proposed, and in

the following we will briefly review some of them.

(1) Resampling method:

To obtain robust estimators with finite samples, statisticians start to resort to data

resampling methods, such as cross-validation and bootstrap. Basically, resampling

methods mimic the future data by resampling technique to estimate the generalization

error.

Cross-validation
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Cross-validation [see Stone, 1974] is a natural method for estimating generalization

error based on resampling a limited pool of data, and has been widely used for model

selection. There are lots of variants of cross-validation methods, including leave-one-out

cross-validation or jack-knife, generalized cross-validation and K-fold cross-validation.

The basic idea of cross-validation is to test a trained model using samples different from

those for training. In cross-validation, the original data set is split into two parts, namely,

the calibration samples and the validation samples. The model of interest is fitted to the

calibration samples and tested on the validation samples with the estimated parameters.

The test error serves as the generalization error. Some researchers suggest using 2/3 for

training and 1/3 for testing.

In order to improve the efficiency of the use of data, rather than setting aside a separate

validation set, one might leave out part of the original data, train on the rest, measure errors

on the part left out, and then repeat leaving out a different bunch of data. If we break our

data into K equal groups, and cycle through them all, leaving one out at a time, this is

known as K-fold cross-validation. Our final generalization error is equal to the average of

all validation errors.

Moreover, if we leave out only one observation at a time or equivalently make K equal

to the sample size, this leads to leave-one-out (LOO) cross-validation or jack-knife. The

estimation of generalization error is similar to K-fold cross-validation.

In practice, cross-validation can be very time consuming. However, in some special

situations there are some efficient tricks that can save one lots of work over brute-force

retraining on all K possible LOO datasets. In the case of multiple linear regression, that is,

Y=XT/l, there is a simple expression of LOO, that is, the PRESS (PREdiction Sum of

Squares) proposed by Allen [1974], which is defined as

I (1.10)
PRESS = Y -y (1 10)

n t=l
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where yi is the i-th data point and ' ì is the prediction corresponding to yi by the fitted

model with the i-th pair (xi, yi) left out. This is actually the sample mean of prediction errors

for 1-fold cross-validation. Furthermore, one can show that

A - -Yi -, ~(1.11)
1 - hii

where hii denotes the ii-th element of the "hat" matrix H=x(xx)-IxT [Cook and Weisberg,

1982]. Then

PRESS = Yi- i (1.12)
n i=l - hii (1.12)

With the above formula, PRESS can be calculated.without fitting the model n times,

each time deleting one of the n cases. If we replace hii by the average of H's diagonal

I n

entries h = 1- hi, we obtain the error prediction as
n i=1

GCV= 1- i i= = = - , (1.13)
£n i=, n(1-h)2 (n-trace(H))2

which is termed Generalized Cross-Validation (GCV) [see Golub,Heath, and Wahba,

1979].

When we do not have enough data to make separate training and testing sets, another

resampling method which can make efficient use of limited use can be applied instead.

Bootstrapping

The bootstrap method, which can be first dated back to Efron [1979], has been become a

popular and practical tool of inference and gained wide application in estimating standard

errors, confidence intervals, biases, and prediction errors. Roughly speaking, bootstrapping

is a statistical resampling technique based on randomly sampling from the empirical

distribution with replacement. Given an original set of independent and identically

distributed (i.i.cl.) observations xi , i=1 ...,n, the unknown cumulative distribution function

(CDF) Fx(x) that generates the observed data can be first estimated by putting mass 1/n at
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each data points. Then bootstrap samples, denoted xb are repeatedly drawn from the

original sample x according to the empirical distribution, with the number of bootstrap

replications N > n.

The fundament of the bootstrap is the "plug-in" principle [see Efron and Tibshirani,

1993], which allows for the estimation of a statistics according to an empirical distribution,

such as estimation of median values or confidence intervals. For the purpose of model

selection, bootstrapping is used to estimate the generalization error. To this end, Efron

defines the bootstrap estimator of the generalization error (or prediction error) [Efron, 1983

and Efron, 1986] as

egen = epp + W, (1.14)

where ,gen denotes the bootstrap generalization error, eapp is the apparent error and co,

called optimism, is a correction term for the difference between the training error and the

generalization error. eapp is the training error of the model fb(Xi) learned on the original

sample xi, yi, i=1 ...,n , that is,

1ep =- (-i -fb (Xi))2 . (1.15)
The optimism is intended to approximate the difference of errors obtained on the finite

sample x and an unknown infinite ideal sample. It is estimated by bootstrap method. At first,

one draws randomly N samples with replacement from the original dataset. These new

samples form a new learning set with the same size as the original one. The original

training set serves as the validation set. This procedure is called re-sampling. After training

model on the bootstrap replications and testing it using the original dataset, we obtain the

difference between training error and testing error as optimism, denoted as a, a measure of

performance degradation (for the same model) between a learning and a validation set,

1 912
ok - f(Y,- frb(xi))2 - i (Yi - f )) (1.16)

This process is repeated K times with K as large as possible and we obtain the average

optimism as c
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AW K4 E 0k~ % * (1.17)

Note that both the bootstrap learning set and the evaluation set has observations in

common, and thus bootstrap method still subjects to underestimation of the error due to

overfitting.

A particular case of bootstrap method is the .632+ bootstrap method [see Efron and

Tibshirani, 1997], in which the generalization error is estiamted as

'gen = 0.368e,, + 0.632w', (1.18)

where the apparent error rate eapp remains the same as above but the optimism A' is

estimated only on the data that are not selected during the re-sampling. This is a weighted

average of in-sample error and out-of-sample error.

Resampling methods do not take model complexity into account explicitly. A common

drawback of resampling mehtods is their high computational load. In addition to

resampling methods, there are other analytic approaches, which are computationaly more

efficient.

(2) Statistical measurements

In statistics, R 2 is often used to measure the proportion of variance of a given data set

explained by a model. For the purpose of model selection, R2 is adjusted by incorporating a

penalty for additional predictions, attempting to adjust R2 for capitalization on chance in a

sample data and give an estimate of R2 in the population. In mathematics, it is written as

2 SSE/
AdjR2 = 1- =1- (n-D) (1.19)

S 2 S2

where SSE is the sum of squared error, i.e. E- (vy -f(x, ))
2 , n is the sample size, D is the

model dimension, S2 is the sample variance of the response variable y, and 2 is called

unbiased estimation of variance

^) SSE
(1.20)n-D

Mallows' Cp [Mallows, 1973] is concerned with total mean squared error of fitted values,
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which is also closely related to adjusted R2 and Akaike's AIC. Mallows' Cp criterion is to

minimize

C = SSE [n - 2D] (1.21)
Scull

where 2 llis estimated from the model with all the predictor variables and used to

estimate the true variance. If a model is good, Cp-D, while a model with bad fit will have

Cp much bigger than D. In general, Cp is a good indicator for determining when a model is

underfitted.

(3) penalty-based methods

A general form for this class of methods can be expressed as

(generalizability) = (goodness-of-fit) + A (model complexity)

which formalizes the principle of Occam's razor. In other words, they penalized a model's

empirical accuracy by its complexity. Almost all information theoretic criteria can be

included in this class.

As we discussed earlier, Kullback-Leibler divergence is a natural distance to measure

how a model approximate the true model. The goal of Akaike's Information Criterion (AIC)

[Akaike, 1973] is to minimize the expected Kullback-Leibler distance. By penalizing

empirical K-L discrepancy with model complexity, AIC provides an asymptotic estimate of

the mean Kullback-Leibler divergence between a fitted model and the true model. The

mathematical expression of AIC' is quite simple and can be viewed as an extension of

general maximum likelihood with a complexity penalty term

AIC = -2log L(O, I x) + 2k, (1.22)

where logL(Ok I x) is the maximum log-likelihood of a model with k model parameters

based on data x =(xl,...,x,,), that is,

log L(k I x) = l log PXlo(xi O k ), (1.23)

and k is the maximum likelihood estimate of that model. The criterion chooses the
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model with the smallest value of AIC.

Stone [1977] proves that AIC is asymptotically equivalent to LOO cross-validation.

Furthermore, in regression variable selection, AIC is essentially equivalent to Mallow's Cp

[Shibata,1981 ] as well as to cross-validation and generalized cross-validation

asymptotically [Li, 1987].

Several other variations on the AIC exist. In AIC, it is assumed that models are faithful,

i.e. the learning target can be expressed by the model [Murata et al., 1994]. Takeuchi [1976]

extended AIC to be applicable to unfaithful models and proposed TIC (Takeuchi's

Information Criterion ) as a more accurate estimate than AIC, which is expressed as

TIC = --2 logL(t k x)+ 2trace(I(O)J(0 O ) (1.24)

where J and I are the expected values of kxk matrices based, respectively, upon first and

second partial derivatives of log Pxlo (x 0 g) with respect to 0, i.e.,

(
0

)i =E·[ alog Px16 (x (00 ) alog pxlo(x[ o0)J( eo)ij Ep aEi aO ]

a2 log (x where ij 0 ) (1.25)

evaluated at the true model parameter 00 = (00 002 ... 00r) E O,the parameter space, and the

expectations are with respect to the true distribution px(x).

Note that TIC does not assume the true model is in the set of candidate models and in

fact when the true data generating model is a member of the model class under

consideration, a candidate model tends to the true model Px (x)= Pxlo (x I 0) and a =0 0

and then J(0)=- I(O), the Fisher information matrix evaluated at the maximum

likelihood estimate S,. At last, -J(0o)I(0o)-' becomes a kxk identity matrix, whose trace is

exactly -k, and thus TIC simplifies to AIC.

Murata et al. [1994] generalized the loss function of TIC, and proposed the network

information criterion (NIC). In NIC it is assumed that the quasi-optimal estimator

27



minimizing the empirical error, say the maximum likelihood estimator when the log loss is

adopted as the loss function, has been exactly obtained.

To improve the performance of AIC under the small-sample situation, Hurvich and Tsai

[1989] propose a small sample version of AIC, namely AICc. AIC and AICc differ in that

the AICc contains correction for finite sample bias, although both provide asymptotically

unbiased estimates of expected KL distance. Similar to AIC, AICc takes the form

2k(k + 1)
AIC = -2 log L( I x) + 2k + 2k(k ) (1.26)n -k -1

where n is the sample size.

Note that when n is very large relative to k, AICC reduces to AIC. When the number of

free parameters is relatively large compared to sample size, Burnham and Anderson [2002]

strongly recommend AICc.

Since Akaike's seminal paper, some other information criteria were proposed later on,

including Bayesian Information Criterion (BIC) and Minimum Description Length (MDL).

BIC has a similar form to AIC although derived from a very different prospective, a

Bayesian framework. In fact, this is not surprising if we notice the close connection

between information and likelihood [Kullback, 1959]. BIC was first derived by Schwarz in

a Bayesian context with a uniform prior probability on each competing model and priors

with everywhere positive densities on the model parameters Oin each model and choosing

the model dimensionality with the highest posterior probability leads to the BIC criterion

of Schwarz [1978],

BIC = -2 log L(bk I x) + klog n (1.27)

In comparison to AIC, BIC has a different model complexity-based penalty term, which

depends on both model dimensionality, the number of parameters, and sample size.

Later on we will show that BIC can also be derived using Laplace's method of

approximation.

AIC was proven to be inconsistent, e.g. by Shibata [1976] and Woodroofe [1982] for

i.i.d data, while BIC was shown to be consistent by Woodroofe [1982]. However,

inconsistency may not affect the use of AIC for the purpose of prediction, and indeed there
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is some evidence that in certain predictive context AIC is asymptotically optimal [e.g. see

Shibata, 1981 and Geisser and Eddy, 1979].

In the above information-theoretic criteria, the number of parameters (k) and the sample

size (n) are the only relevant factors of complexity. However, they neglected another

important facet of model complexity, namely, the functional form of the model expression

[Myung and Pitt, 1997], which refers to how model parameters are used in the model

formulation. For example, two models, y=ax+b and y=axb, differ in functional form and

thus in model complexity although have the same number of parameters.

Jorma Rissanen specially addresses a model's simplicity develops the idea of

minimizing the generalization error of a model by penalizing it with its description length,

which estimates the Kolmogorov Complexity by replacing algorithmic complexity with

stochastic complexity (the shortest obtainable description x by a model class M) [Rissanen,

1978]. In Minimum Description Length (MDL), both models and data are viewed as codes

that can be compressed, and correspondingly the objective of model selection is to choose

the model that permits the greatest compression of the data in its description.

In MDL, the model complexity is penalized not only according to the number of

parameters but also both parameters and precision, and the MDL takes the familiar form of

a penalized likelihood [Rissanen, 1996]

MDL = -log L(Ok I x) + (k / 2) log(n / 2;') + log f det(I())IdO + o(1), (1.28)

in which 1I() is the determinant of the Fisher information matrix and o(1) becomes

negligible for n large.

Compared to AIC and BIC, the model complexity term, stochastic complexity, in MDL

is

SC =- k In + n det I (6) (1.29)
2 2fr

which is viewed as the combination of complexity due to the number of parameters (k) and

complexity due to the functional form of the model equation reflected through 1(0).

In statistics, the term

29



(0) = C|det(I(O))

is called the Rao measure [Amari, 1985]and the Riemannian volume of the parameter

manifold can be obtained by integrating the Rao measure over the parameter space [see

Myung et al., 1999]

VM = JIdet(I(6))jdO. (1.31)

Therefore, corresponding to the measure of model complexity, this term reflects the

model complexity due to parameter space.

The second term is often difficult or impossible to compute, but a reasonable practical

version views stochastic complexity as a two-stage description of the data, consisting of the

encoding of a model and the encoding of the data using that models [Grunwald, 2000]. This

leads to an approximation of the MDL as

- log L(k I x) + (k / 2) log(n) (1.32)

which is identical to one half of the BIC.

In addition to the above model complexity-based penalties, one can also penalize the

training error by roughness of a fitted curve. In fact, roughness is directly connected to

model complexity, although it does not explicitly consider the number of parameters and

functional form of model equations. Intuitively, the more complex is a model, the rougher

it can be. This idea can be traced back to spline smoothing [e.g. see Reinsch, 1967 and

Silverman, 1985].

The roughness measure can be defined based on local variation, which can be quantified

by the first, second, and so forth derivative. In order to explicate the main ideas the

integrated squared second derivative is most convenient, that is, the roughness penalty

f '(x)2 dx is often used to quantify local variation. Using this measure, define the

generalization error

(Yi -fIf (X))2 + if f" (X) Ax (1.33)

where X denotes a smoothing parameter, specifying the degree of preference of
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smoothness.

In fact, the model complexity ascribed to the functional form is in terms of not only how

parameters are combined but also how the inputs are used in a model. Since the

Riemannian volume is appropriate for measuring the complexity of functional forms as

shown in [Myung et al., 1999], we can use it to measure part of the model complexity in

terms of inputs

V, =J det(d2 f () / dx2)d (1.34)

or

V, =f det((df (x)/dx)2 )dd (1.35)

where df(x)/dx and d2f(x)dx 2 denotes Jacobian vector and Hessian matrix, respectively.

Note that V1 reflects roughness, similar to roughness penalty in equation (1.33).

Following this line of reasoning, a more comprehensive version measure of model

complexity of model fx; ) can be proposed as

k n
SC =-In +V + V + V (1.36)

2 2

In the above, we reviewed many different generalizability estimation methods. Most of

them converge to the true model with the sample size growing, mainly due to the law of

large numbers which forces the statistics of samples to converge with the statistics of the

source. Furthermore, empirical study shows that in spite of difference they usually produce

consistent results, especially in asymptotic cases.

Any model performance evaluation includes two elements, namely, distance function

and generalizability estimation method. By varying discrepancy measurements and

generalization methods, we can construct many different model selection criteria.

Although they are introduced specifically for the purpose of model selection, in fact they

can be employed as general model performance evaluation methods, i.e. estimate the

generalization or prediction error. For example, they can be used to evaluate the

performance of a new composite model.
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1.2.2 Model combination

Besides model selection, another strategy commonly used to arrive at improved model

performance is to combine multiple competing models. As opposed to model selection,

which uses training data merely to select a single best model among a group of competing

models, model combination produces a composite model based on original models. Recent

research in machine learning shows that the performance of the final model can be

improved not by choosing the model structure which is expected to predict the best but by

creating a model whose output is the combination of the output of models having different

structures.

Combining multiple candidate models can be implemented by a variety oftechniques. In

the following we will briefly discuss some popular methods.

Majority voting is a weighting scheme, but unlike the weighted average the one

receiving the maximum votes wins. The basic idea is to improve the probability of making

correct decision by combining decisions from multiple experts. The simple majority voting

counts individual votes supporting each decision, and the one receiving majority votes

ends up as the final decision.

If we take into account the different competences of individual experts, this leads us to

the weighted majority voting in which voting weights are decided according to one's

competence. If we denote as dik the kth expert's decision to supporting the ith decision, then

the total support that the ith decision receives takes the form of

d, = Wk ·dik, ,with dik=O or 1, (1.37)
k

where wk refers to the weights of individual experts.

The final decision is therefore the one that receives the most support

j = arg max di . (1.38)
i= , ... .n

Majority vote is originally an effective strategy in making decision, and recently it has

been introduced to pattern recognition, in particular in combining multiple classifiers or in

other words classifier fusion [e.g. see Kuncheva et al., 2001 ]. Roughly speaking, pattern
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recognition is to represent objects by a finite number of real-valued measurements called

features, and then classify objects of interest into one of a number of categories or classes.

Thus, the classification problem is to assign an input, a feature vector, to one of the given

classes. The gain of accuracy by majority voting in classification can be exemplified by the

following simple example which is given in [Dietterich, 2000].

If we have a dichotomic classification problem and assume n independent classifiers

have the same probability p of being correct, the overall error of the resulting majority

ensemble can be given by the area under the binomial distribution where more than n/2

classifiers are wrong:

error1' i/ KJ~P,(1_P) ~n-' .(1.39)

i=[n / 2] i

Condorcet [1785] is usually credited with first recognizing this fact and the Condorcet

Jury Theorem attributed to him proved that the judgment of a group is superior to those of

individuals provided that the individuals have reasonable competence.

If weighted majority voting is applied, weights of individual classifiers can be

determined according to their training accuracy.

The application of majority voting to the cases where there are a finite number of

different possible discrete outputs is obvious. Actually, one might modify it slightly to

make it suitable for continuous-valued or infinite-value cases. One possible solution is to

choose the center of outputs of multiple models as the combined output, i.e. the point that

has the minimum total distance to all outputs. If we apply the Euclidean distance,

mathematically we have

y, = min||y - yi 11 , (1.40)

where y, is the combined estimate and yi's are individual estimates.

The solution can be easily obtained as

I ,,,
Y, =. i=l Yi (1.41)

where im is the number of competing estimators.
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This is exactly the simple average or unweighted average of all estimates. Averaging is

a classical way to reduce variance. For example, consider two estimators of an unknown

parameter , say 01 and 02, which are unbiased and having the same variance, i.e. E(0 1)=

E(02)= 0 and var(0j )=var(62) =v.

We can build a combined estimator of Busing unweighted average as 0=(01+ 02 )/2 ,

which remains unbiased and has variance

var( O)=v/2+cov(0 , 02)/2. (1.42)

It is easy to see that as long as cov(0,02) < v or equivalently the correlation coefficient p

<1, the composite estimator has a reduced variance. In the case of physical models for the

same system of interest, var(01)=var(02) holds in general and the correlation coefficient pis

also high.

This argument can be easily extended to the case of more than two candidate models.

Simple average method is usually applied where there is no or very few new data is

available and none of the competing models dominates others. However, when we learn

that the performances of models might be significantly different, we have no reason to

assign uniform weights to each model indiscriminatingly; rather, we would like to assign

higher weights to some models and lower to others, which leads to the weighted average.

Mathematically, weighted average is the linear combination of a number of candidate

models with a normalization constraint on weights, i.e.

fc(x)= ZE wjfj(x), subject to wj = 1,w O. 0, = 1,...,m (1.43)

Choosing MSE as the error measurement, we obtain the empirical mean-squared error

of the combined model given observations D= { (x i, y ) }, as

MSE = AZ, (Yi- Zri Wj f (xi )) (1.44)

It becomes a constrained least-squares problem. The above MSE can be minimized under

the linear constraint using the Lagrangian method

L (i, - m wjfj (x )) + w t -), (1.45)
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where X is a Lagrangian multiplier.

Optimum is achieved by equating the gradient with respect to wj's to 0. For convenience,

let's rewrite the above equation in matrix notions

L = (Fw y)T (Fw- y) + (uT W -1), (1.46)

where w= [, ... , wm iT, Y = [yl,.. Yn ] T, = [1,...1]T is an m-dimensional vector of ones,l (-XI ) * * ' Am (Xl )

and F= . ' .

f,(,) - f (x,)
Thus, we have

2FT (Fw - y) +Au = O r FFTF u1w 1I= T 1 (1.47)

U W= 1U T 2 /2 

After some matrix manipulations, we obtain

[212 1 [FTF uf[T O Y ] (1.48)

In fact, it can also be solved using an iterative procedure by taking advantage of

A = 2(y rT - wT FT )Fw and w = (2FT F)- ' (2F y - Au) .

Note that if the individual competing models are unbiased, so is the combined model,

which is the main reason for employing the constraint m w = 1. Meanwhile, this

method produces interpretable composite models.

In practice, the "optimal" weights derived above are not really optimal, because weights

are learned from a limited number of data points. Thus, in reality other weighting strategies

based upon predictive accuracy measurements are applied instead. Consistent with one's

intuition, models of higher predictive accuracy are assigned higher weights. For example,

performance of each model can be evaluated using Akaike's information criterion (AIC)

and assigned different weights based on their AIC value [Burnham and Anderson, 2002],

for instance,
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exp(- 2 AICk )
k 2 (1.49)

Zexp(- AICi )2

which is called Akaike weights.

Certainly, other predictive accuracy measurements like cross-validation, Mallow's Cp,

and MDL can be employed in place of AIC to generate predictive performance-based

weights. Since all weights lie in between 0 and 1, it is obvious that within any certain

sub-region the composite model is at best as good as the best model within that sub-region.

To overcome such weakness, a possible way is to remove the constraints on weights and

make them any real value, that is,

fc(x) = wjfj(x),w e R, j =1,...,m, (1.50)

which is called linear combination of experts or models in some literature. Although

combination of models arrives at improved accuracy compared to weighted average, the

coefficients wj lose their meaning in weighted average scheme, thereby making the

composite model less interpretable.

The coefficients wj can be learned from data using various algorithms, for example,

regressing a data set y on the m competing models fj(x) using ordinary least squares, in

which the training set is made by D = {fi, yi }= where ji, i=1,. ..,n, is an m-dimensional

vector, i.e. fi=[fi(xi),..., fn(Xi)] . However, this simple least-squares approach might not

produce satisfactory results especially when the training sample size n is small, because it

learns from a limited number of data by minimizing squared-error rather than prediction

error, which makes parameters data-specific and thus suffer from high variance and

instability. In order to address these problems, a variety of approaches have been brought

forward up to now, for example, ridge regression [Hoerl and Kennard, 1970 and Tikhonov

and Arsenin, 1977], Bayesian regression [Lindley and Smith, 1972], M-estimate [Huber,

1964], weighted least-squares regression [Carroll and Ruppert, 1988], and so on. We are

not going to review these regression techniques, but instead we will go on introducing
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some general model combination techniques, which, however, can also be employed to

create the combined model in equation (1.50).

Bagging

"Bagging"' is the abbreviation of "Bootstrap Aggregating". The idea behind it is quite

straightforward. It is well known that in the bias-variance tradeoff any reduction in the

prediction variance is usually along with an increase in the expected bias for the future

predictions. Breiman [1996b] introduced bagging to reduce the prediction variance without

increasing the prediction bias. Basically, the bagging procedure is to learn multiple models

from bootstrap samples of the original data set, and combine them with uniform weight.

Individual models are trained on slightly different samples of the available data set, which

are generated by bootstrapping The generalization performance obtained by the "average

model" is usually better than the one that would result from training a single model on the

full data set.

Certainly, bagging method is not restricted to regression models, but suitable to learn

any parametric: model like h(x; 0. Instead of making inference from a single fitted model, a

set of repeated bootstrap replicates are drawn from the original data set with replacement

and then a model h(x; 0) is trained based upon for each bootstrap replication with parameter

O , and finally the predictions are averaged over all of the fitted models to obtain the

bagged prediction,

1 
fBag (t) = E = fk (x;Oj). (1.51)

According to Breiman [1996b], bagging works well for unstable modeling procedures

with respect to the data, i.e., small changes in the data can result in significant change in

model estimation, but it leads to no substantial improvements in linear regression, which is

a stable procedure. Intuitively, bagging uses bootstrap replicates to mimic instability

caused by data and tries to avoid it by averaging. If perturbing the learning set can cause

significant changes in the predictor constructed, then bagging can improve accuracy. On

the other hand it can slightly degrade the performance of stable procedures. There is a
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cross-over point between instability and stability at which bagging stops improving. In

addition, according to his experiments, Breiman [1996b] also suggested the number of

bootstrap replicates m to be about 50.

Note that bagging is intended to combine models learned from different batches of data

using the same learning algorithm and thus result in models with the same model structure

but different parameters. However, it can be easily generalized it for combining a given

class of competing models, by making it work together a model selection procedure, which

is unstable. Model selection procedure is repeated many times on bootstrap replications

and the final model is obtained by averaging over all the selected models. Since in each

model selection procedure the selected model might be different due to instability, the

resultant model is actually a combined model in the form

f, (x) = = Wjfj(x), (1.52)

where the weight wj is proportional to the times that a specific model fj(x) is chosen.

Boosting

Boosting technique, attempting to boost the accuracy of a learning algorithm, was

originally proposed as a multiple prediction and aggregation scheme for classification

problems and it has proven to be effective for reducing bias and variance and improving

misclassification rates [Bauer and Kohavi, 1999]. Recently, this technique has been

extended to regression problems. For example, Freund and Schapire [1997] suggested how

boosting method can be applied to regression using their algorithm AdaBoost (Adaptive

Boost); Drucker [1997] applied an ad hoc modification of AdaBoost to some regression

problems and obtained promising results; Breiman [1997] proposed another Arcing (stands

for Adaptive Resampling and Combining) algorithm as a modification of the original

AdaBoost algorithms to apply boosting in regression. Recently, adaptive boosting

algorithms have been derived from the viewpoint of gradient descent methods [see

Friedman, 1999 and Mason 1999].

To address the special challenges posed by regression problems, some methods are
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often used, for example, converting the problem into a series of binary classification

problems [Freud and Schapire, 1997], scaling each learner's errors based on its maximal

error [Drucker, 1997], and using a threshold to evaluate a response as correct or incorrect

[Avnimelech and Intrator, 1999]. Alternatively, several recent regression boosting methods

adopt a residual-fitting strategy [Karakoulas and Shawe-Taylor, 1999], in which one trains

learners sequentially to produce the residual error ly-f(x)l, instead of target output y, and

finally linear combination will approximate y.

On the whole, boosting is different from re-sampling methods in that it reweights

smoothly. In each boosting iteration a regression model is constructed on different weights

on the dataset.

A typical boosting procedure can be described as follows:

1) Initialize the weights on the dataset uniformly, that is, w) = 1
n

2) For t in 1 to T, construct a regression model f(xi) using the weights,

3) Compute the regression error offt(xi) as Ek = IW ) (Yi f (x)) 2

i max(y- f ())2

4) Let , = which is a measure of confidence in the predictor and

OA = 2 log--- )and update the weights of each observation as = wt 

5) Normalize w('+1) so that they sum to one and then repeat steps 2 through 5.

Finally, it outputs a weighted ensemble predictor

f, W ` ) (1.53)
t=l a,

Note that in each iteration the weights of those observations poorly predicted byf(xi) are

increased and helps speed up the learning procedure. In a typical boosting algorithm,

weighting data works in conjunction with regressor combination to improve a regression

model.
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In the above example, we applied the quadratic loss function, and certainly other loss

functions such as absolute error can also be applied and the procedure is very similar.

Although in the above regression models are used to illustrate the boosting procedure,

extending it to a general model procedure is trivial.

No matter how various and complex these boosting algorithms, the basic idea remains

the same, that is, to establish some weight function on the observations through some

procedure and combine the simple regressors into a composite one. A common problem

inherent in boosting is that it seems be especially susceptible to noise, because it gives

more emphasis to those "difficult" data points, which is more likely to be contaminated by

noise.

As for bagging, the main effect of boosting is to reduce variance. According to

Breiman's work, it seems to do better than bagging. However, the actual performance of

boosting on a particular problem clearly depends on the data and the weak learner. For

example, given insufficient data or overly complex weak learner boosting might fail to

perform well.

Stacking

Stacking [Wolpert, 1992] is not a particular algorithm, but a generic method of

combining a collection of m different models, that could have been obtained by training on

different subsets of data or by using different techniques. The purpose of stacking is to find

out a better way to combine them rather than using simple averaging as in bagging or the

weighted mean in boosting. Stacked regression [Breiman, 1992] combines linearly the

models as

f, (x) = wjhj (x), wj E R,j = ,..., m, (1.54)

where {I hj(x)}, j=l ,.. .,m denotes m different models and wj are their individual weights.

The optimal combining weights are estimated as

w = argmin (y, - ,' wjhi) (xi)), with wj>O (1.55)
14' )
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where h' " (x )is a predicted value by the jth model corresponding to data yi, for example,

thejth model is calibrated with the ith observation deleted. In other words, parameters are

obtained by performing a least-squares regression of the output y on the m inputs h') (xi).

By using cross-validated predictions, stacked regression actually tries to minimize

prediction error by combining multiple models. Thus, rather than choose a single model,

stacking combines them with estimated optimal weights. As shown by Breiman [1992], the

performance of the stacked regressor improves when the weights are constrained to be

non-negative, but the composite model is less interpretable than the choice of only one of

the m models. In effect, if we restrict the minimization to weight vectors w that have one

unit weight and the rest zero, this reduces to a winner-take-all model selection method

based on the leave-one-out (LOO). As compared to the linear combination of models in

equation (1.50), stacking tries to minimize LOO error rather than empirical error.

As we mentioned, stacking is a general method for combining models and can be

employed together with other methods to improve a learning algorithm, for example, in

Wolpert and Macready [1996] stacking was combined with bagging to obtain better

accuracy and i)rucker [1997] empirically shows that stacking does improve both bagging

and boosting in some situation.

The proof of the utility of these three procedures is that they work well in some certain

circumstances in the real world. In most empirical studies, the improved performance

through the above procedures has often been demonstrated to be impressive. It is worth

noting that they work mainly through two mechanisms, that is, data weighting and

estimator ensemble. It is seen that all the above procedures including, bagging, boosting

and stacking, combine multiple regressors to overcome instability or in other words reduce

variance in parameter estimation.

By the no-free-lunch theorems by Wolpert and Macready [1997], there are similar

no-free-lunch results concerning quadratic error, which means any improve-a-learning

-algorithm procedure, including bagging, stacking, boosting and so on, hurts as often as it
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helps [Wolpert and Macready, 1996]. The only possible way to improve a learning

procedure is to incorporate new information.

Bayesian Model Averaging

Bayesian theory provides us a natural and easy way to integrate the information from

several different sources. It allows us to combine new observations with any prior

information, which can be generic information about the system of interest, previous

experience or expert judgment. In model combination context, we can define model

probability Pr(Mj) for each candidate model and treat the mean model as the optimal

combined model

fBA(X) = ,J= Pr(Mj)hj(x) . (1.56)

Model probability Pr(Mj) can be interpreted in a similar way to that for a random

variable. In the probabilistic world, just like a random variable a true model is assumed to

never appear exactly as it is. If we can define the distance of two models in the model space

somehow, for example, using some kind of norm, the model probability is actually

converted to the probability of random variables. As such, the prior model probability

distribution expresses our prior knowledge about the true model probability distribution in

the model space.

After collecting a new dataset D, the posterior model probability Pr(MjlD) can be

obtained to replace the model probability in the above equation. According to the Bayesian

updating formula the posterior probability Pr(MilD) can be calculated as

Pr(Mj I D)= Pr(D I M1)Pr(Mj) (1.57)
Czjl Pr(D [I Mj)Pr(Mj)

where Pr(Mj) is the prior probability of model Mj and Pr(DMj) is the likelihood of the data

set D given model M. Defining Bayes factor B = Pr(D Mj) / Pr(D I MO) and prior odd

oa= Pr(Mj)l Pr(Mo), equation (1.57 ) can be rewritten as

Pr(M ID)= 'jo (1.58)
EJ=l BO
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This is exactly the basic idea of a recent model combination method, namely, Bayesian

Model Averaging (BMA) [Hoeting et al., 1999] or Bayes factor [Kass and Raftery, 1995]

weighting.

The difficulty of implementing BMA partly consists in the computation of the integral

Pr(D IMj)= Pr(D I ,M ,)Pr(O I M j)dO , (1.59)

where Pr(lfMj) is the prior density and Oy is the vector of parameters of model Mj, because

the probability distribution functions might assume overly complicated high- dimensional

functional forms, thereby making integral analytically intractable.

Fortunately, nowadays with the dramatically growing computational capability of

model computers and especially with the invention of the Markov Chain Monte Carlo

(MCMC) technique [Gilks, Richardson, and Spiegelhalter, 1998] numerical solution of the

integral has become computationally possible. Basically, MCMC methods are sampling

methods for multivariate probability distribution function, which attempt to simulate direct

draws from some complex distribution of interest. MCMC approaches are so-named

because one uses the previous sample values to randomly generate the next sample value,

generating a Markov chain (as the transition probabilities between sample values are only a

function of the most recent sample value). One particular MCMC method, the Gibbs

sampler [Geman and Geman 1984], is very widely applicable to a broad class of Bayesian

problems. At the same time, Monte Carlo integration is a numerical integration method,

which computes complex integrals by expressing them as expectations for some

distribution and then estimate this expectation by drawing samples from that distribution,

that is,J h(x)dx = f (x)p(x)dx = Ep(x)[f(x)] = -i , f(xi) with n very large.

The integral in equation (1.59) can be computed numerically by using Monte Carlo

integration working together with MCMC method.

In regular statistical models, roughly those in which the MLE is consistent and

asymptotically normal, the integral in equation (1.59) can be approximated via the Laplace

method [Tierney and Kadane, 1986], i.e.,
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l e'("'du = (2 ,z)/2 A12 exp{f(u*)} ,

wheref(u) is a real-valued function of d-dimensional vector u, us is the value of u at which

f(u) attains its maximum, A is minus the inverse Hessian off(u) evaluated at u*.

Applying the Laplace approximation to equation (1.59) yields

Pr(D I M ) = (2z)I2I, 12 Pr(D I , M )Pr(j M )O(n-'), (1.61)

where dj is the dimension of Oj, j is the posterior mode of O, and Wj is minus the inverse

Hessian matrix of h(Oj)=log{Pr(DlOj)Pr(OjlMj)} evaluated at j=j .

Meanwhile, let's define

1 ( = I a 2 log h(j) jIR =--
n a jr O.} aj=t~]

1 En a2 logh(Oj,xi)

n aojrjaojs

where D={xiji=l,...,n} and Oj is the MLE of O.

From the law of large numbers, it follows when n tends to infinity,

a2 logh(0j,xi) 

J =a j
9
iJ=OiJ

1 ZRj =-I
n i=1

a2 logh(0j)

ajr a js

Furthermore, if 0 is in a close neighborhood of 0o, i.e. 8 -So < ,

small, we have R -->-Ea2 log '] X

which is very

the well-known Fisher information matrix, whose determinant is bounded. As such, % is

asymptotically equal to n times the inverse of the observed information matrix.

Therefore, when n is large, we have O8j = j and

loglijl = lognR loglnl(8o)l = djlogn+ logjl(0)l = djlogn + o(l). (1.64)

Finally, we obtain

logPr(D I Mi) =loPr(D I i, Mi ) -d log n + o(l), (1.65)

which is exactly the same as the BIC formula derived by Schwarz [1978].

With this approximation of posterior likelihood, we obtain the posterior model
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(1.63)

-E a2 log f(0 , X)0 = I(0),which is

(1.60)



probability as

Pr(Aklie ID ,) (1.67)
Z?=1a, exp(-BIC 1)

which is very similar to AIC-based weighting method except that it allows us to

incorporate prior preference among candidate models via . Kass and Raftery [1995]

discussed the relative merits of AIC and BIC in this context.

Volinsky et al. [1997] shows that Bayesian model averaging produces better models

than selecting a single model.

Bayesian information aggregation

As mentioned earlier, combining candidate models is to integrate information

contained in each model. Meanwhile, Bayesian method is a good way to combine

information. This idea leads to another class of model combination methods, Bayesian

information-aggregation, pioneered by Morris original papers [Morris, 1974, 1977].

Suppose is a continuous quantity to be estimated, and we obtain a group of estimates

XI,...,xK from a class of competing models, say, M1,...,MK, respectively. According to the

Bayesian formula, the posterior distribution of 0is

Pr( 'x""IK'K8 = (1.68)Pros l x x ) = Pr(xl,... XK,) = Pr(x,, XK,.) (1.68)Pr(xl,..., xK) Pr(xl,...,xK,O)dO

The capability of prediction of so constructed models comes from the statistical

dependence between models and the truth. The central idea of these methods lies in

modeling the dependence among models through Pr(xl, ... ,xK, 0). In light of the

convenience of modeling dependence through the covariance matrix, many researchers

assume the normal distribution of estimates xl,...XK, for example, French [1981], Winkler

[1981] and Lindley [1983]. Influence diagram becomes a useful graphical tool in modeling

covariance structure [Burns and Clemen, 1993]. A typical way to evaluate the joint

distribution is to assess marginal and conditional distribution and aggregate by the

Markov's property,
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Pr(x,,...,XK, O)= Pr(xK I XKI,..., X 1, O)... Pr(x 2 I X,O) Pr(x1, 1 ) Pr(O)

Clemen and Winkler [1993] propose to model the dependence based upon the conditional

mean dependence assumption (CMDA), that is,

E(Xi I Xi-1,, X1, ) = i,o + i.,Xl + ... + fi,i-ixi- + aiO (1.70)

where al and fij are coefficients to be evaluated.

By the above equation (1.70), the knowledge about the information sources is

incorporated in aggregation. Thus, if we know the distribution of Xi in advance, such as

Normal, Student T, Logistic, Laplace, Gamma and Beta, we can obtain its conditional

distribution Pr(XilXil,.. .,XI, 6) with the expected value determined by equation (1.70).

Finally, we obtain the posterior distribution of .

Although the above approach permits considerable modeling flexibility by allowing

arbitrary distribution, it does not facilitate the modeling of exchangeability among

information sources. Therefore, later on Jouini and Clemen [1995] propose to apply the

theory of copulas to model dependence among the experts' opinions. A copula is a function

that connects marginals with joints cumulative distribution function (CDF), so it is the

copula that models the dependence among the random variables. For details about copula,

see Dall'Aglio et al. [1991]. According to Sklar's theorem [Sklar, 1959], for any joint

distribution function F(xl, X2) with marginal distribution functions Fx, and F,, there

exists a copula C with

F(x1 , X2) = C(Fx, (x, ), Fx (X2)) (1.71)

for every xi, x2 e R. If Fx, and F are continuous, then C is unique. On the other hand, if

C is a copula and F,I and F are distribution functions, then the function F defined by

equation (1.71) is a joint distribution function with marginals Fx, and Fx.

Therefore, with the copula which represents dependence among expert opinions one can
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construct the joint probability distribution of these opinions from the univariate

distributions of individual expert's assessments. There exist a number of families of

copulas in the literature, but the type of stochastic dependence and the degree of

dependence they are able to capture vary. For a given problem, a crucial issue is to choose a

suitable family of copula to construct the joint distribution. Jouini and Clemen [1995]

recommend the use of Frank's copula

Cn( ,...,u,) = logI 1+ 1) 0 < a<1 (1.72)

where n is the number of experts, ul,...,un represent individual marginals, and a captures

the dependence whose value can be obtained from the Table I in [Jouini and Clemen,

1995].

Mixture of experts (MoE)

In machine learning, there are also some ensemble methods, which combine multiple

simpler learners to improve predictions. The Mixture of Experts (MoE) architecture

proposed by Jacobs et al. [1991] is one of such methods, which is a modular artificial

neural network where each module is called an expert and is a parametric function of the

inputs. As shown in Figure 2.3, the gate is also a parametric function and typically receives

the same inputs as the expert networks. The gate network chooses the weights of each

expert in the output of the mixture and for each input it determines which expert to use. The

Mixture of Experts (MoE) architecture illustrated in Figure 1.3 can be formulated as

follows,

f(x)= 1gi(x,Oi).fi(x,ai), Jgi(x,)=1 withgi(x,) > 0 (1.73)
i i

where f are the experts and gi are the gate functions. Gating functions generate

probabilities, based on which the input space is partitioned "softly". In other words, gating

networks can be thought of as classifiers. Therefore, the major difference between MoE

and ensemble of learner is that it is a nonlinear mixture of learners since the weight

functions or the gate functions also depend on inputs x. In this aspect, it is similar to the
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locally weighted least squares (WLS). Each expert network is local in the sense that they fit

to the data not equally well.

If the gating networks are also generalized liner, then the normalized gating function is a

"softmax" function as

el'x
Ei -, (1.74)

i=l

where vi is a weight vector. Such gating networks can be interpreted as providing a soft split

of the input space.

Figure 1.3 Mixture of experts architecture

In the case where each expert is a linear function and the gate chooses just one expert

for a given input, the MoE constructs a piecewise linear approximation of the learned

mapping.

Learning mixture of experts consists of learning the parameters of individual expert

networks as well as learning the parameters of the gating network. As usual, the objective

of this architecture is specified by defining an error function and then many algorithms can

be applied to optimize the system. In order to encourage localization, Jacobs et al. [1991] a

different error function which gives better performance:

e(xi) = -log gj (xi,, ) exp(- yi - f (xi,j)11 2/22 ) (1.75)

which is simply the negative log probability of generating the desired output vector under a

mixture of Gaussians models of the probability distribution of possible output vectors
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given the current input, since errors for different experts are assumed to be normally

distributed with the same variance and gi can be viewed as the probability of selecting

expert i for a particular case. The output vector of experts specifies the mean of a

multidimensional Gaussian distribution. This objective function is certainly different from

the traditional one for model combination

E= Yi -gj(xiOj)fi(xi,) (1.76)

The error functions can be minimized by performing gradient descent [Jacob et al.,

1991 ]. At the same time, if we assume that errors for different expert networks are normally

distributed with the same variance and thus the output of the whole network is a mixture of

Gaussians, the learning of mixture of expert networks can be treated as a maximum

likelihood problem. Since Expectation-Maximization (EM) algorithm is a general

technique for maximum likelihood estimating especially suitable for mixture of Guassian

problems, Jordan and Jacobs [ 1994] present EM algorithm for learning of the parameters of

the architecture, where the hidden variables are identities of expert networks responsible

for data points (xi, yi), i=1,.., n. In general, EM algorithm includes two steps, namely,

Expectation and Maximization. It is in particular suitable for problems with "incomplete

data". In the case of mixture-of-experts architecture learning, the "missing" or "hidden"

variables are identities of expert networks responsible for a training case.

Empirical studies show the training of mixture of experts is significantly faster than the

back-propagation networks and the EM algorithm is faster than the gradient descent

learning algorithm.

The distribution over experts can be hierarchical, as in a hierarchical mixture model,

giving a Hierarchical Mixture of Experts [Jordan and Jacobs, 1994] as shown in Figure 1.4.

It can be interpreted as providing a nested "soft" partitioning of the input space within the

partitioning providing by the higher-level gating network. The same algorithms can be

applied for learning the hierarchical architecture.
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The MoE method follows the divide-and-conquer principle to the problem of learning

from examples. It can be considered a general method for combining local models learning

from examples in small regions of the input space.

Figure 1.4 Hierarchical mixture of experts

1.2.3 Comparisons

It is central for model combination to improve performance in that it tries to exploit the

information contained in all candidate models, avoiding the loss of information that might

result if a single best model is chosen while the rest discarded. In the context of combining

forecasts, Makridakis and Winkler [1983] conclude that combining forecasts seems to be a

reasonable practical alternative when the true model of the data-generating process cannot

be identified. This statement is equally applicable to combining general models. In this

section, we will discuss why combining models should be preferred to selecting a single

best model.

Heuristically, any model tries to explain a physical system from a certain angle. To this

end, some assumptions and simplifications must be made. In addition, models may be

created based upon distinct theories or calibrated using different observations. Thus,
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although a model can not capture all the properties of a real system, it does deliver lots of

information concerning the modeled system. These distinct competing models are able to

complement each other and come up with a better composite model. Just as in the Bayesian

information-aggregation methods, each model depends on the true model somehow but in

different ways and these dependences can be combined to tell us more information about

the truth.

Moreover, the strategy of combining multiple models can be considered following the

divide-and-conquer principle, that is, simple models try to embody some certain aspects of

a complicated physical system and then they are combined into a more complex composite

model. Alternatively, one might attempt to let a single model to incorporate all the features,

but this perhaps makes the modeling process intractable because the model dimensionality

of the true model is infinite, or even induces theoretical conflict inside a model. Therefore,

an alternative philosophy is to divide the task of a complex system into simpler modeling

processes whose results can be combined relatively easily to yield a satisfactory model.

The hierarchical mixture of experts architecture [Jordan and Jacobs, 1994] is a good

example, in which only the input space is partitioned though. This philosophy has been

proven successful in many areas, for example, fast Fourier transform, multi-scale modeling,

algorithm design and software development.

Evidence from recent research in machine learning also shows that the performance of

the final model can be improved by creating a composite model by combining a group of

competing models having different structures more than by choosing the model structure

which is expected to predict the best [e.g. Abbott, 1999]. In the neural network community,

"ensembles" of neural networks has been proven effective in improving performance, see

for instance [Hansen and Salamon, 1990] and [Perrone and Cooper, 1993].

A single model might work better than all others within a certain domain, but it is hard

for it to outperform others over the whole region. Besides, a composite model is usually

more stable than a single model, i.e. smaller average variance over the data domain. Here is
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a simple example to illustrate the superiority of model combination over model selection.

Supposefb(x) is the best model among a group of competing modelsfi(x), ... ,fN(x), and we

build a composite model as follows

f (x)=Zwifj(x) (1.77)

where f(x) refers to candidate models and correspondingly wj denotes the weight of each

candidate model. wj's can be learned based upon a data set in some manner, for example,

multiple regression method.

Certainly, within some region of x, for instance xe Q2, the best model fb(x) works better

than the composite model f,(x) in terms of some measure of model performance, but it is

not the case across the whole region, just because in some other regions other competing

models might work better. On the whole, the global performance of this composite model

will be better than that of the single best model by choosing appropriate weights; at worst,

the composite model is at least as good as the best model by simply setting the weight of

the best model 1.0 and all others 0.

To compare model selection and model combination in a formal way, we'd better first

define some general modeling method evaluation criteria. In addition to predictive

accuracy, generally there are other important criteria, namely, consistency, stability and

globality, according to which to assess model selection methods. Actually, they are easy to

be extended to model combination approaches.

(1) Predictive accuracy

The goal of both model selection and model combination is to maximize the model

performance measurement. A model can be viewed as combination of two parts, namely

the reasonable part and the error part. The reasonable parts in competing model overlaps

and thus are highly dependent, which the error parts, due to modeler's bias or mistake, are

independent. To improve a model's performance is to improve the reasonable part while

suppressing the error part.

Let's first revisit the generalization error of models or model error in short. Generally, a
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model f(x; 6?) consists of model structure as well as model parameters, i.e. M=(S, ), where

the model structure, or the functional form, is usually based on some theories and

assumptions and parameters are estimated from observations. Model error can be

decomposed into bias and variance, i.e.

MSE E(f (x; ) - g (x)) = (E[f(x; 0)]- g(x))2 + E[f (x; ) - E(f (x; 8))]2 (1.78)

= {bias}2 + {estimation variance}

Bias can be further decomposed

bias 2 = [E(f (x; ))- g(x)]2 = [f(X; 0*)- g(x)]2 + [f(x; 0*) - E(f (x; ))]2

= { model bias } 2 + { estimation bias }2, (1.79)

where g(x) denotes the unknown true model andj(x; *) refers to the pseudo-true model, the

closest model to the true model given a model structuref(x; 0),

O* = inf E[(f(x; )- g(X))2 ] . (1.80)

Model bias results from model structure, namely misspecification bias. In the context

of model selection, it is also known as model selection bias.

Since model structure is based on some beliefs and theories, model bias is due to the

modeler's lack of enough knowledge or bias in knowledge. Because data used for

parameter estimation is randomly collected, this leads to the estimation variance of a model.

If the collection of data is not random, there may exist some bias in data, which contributes

to the estimation bias. Another source of estimation bias comes from estimation methods,

which might result in biased estimators

In the example of linear regression model, the linear assumption and the choice of

regressors constitutes the model structure. Regression coefficients are model parameters,

estimated from data. The sources of bias and variance are clear.

In the following, we will discuss how model selection and model combination affect

bias and variance, respectively.

Zucchini [2000] points out that all model selection criteria suffer from model selection

bias. The more competing models, the more risky model selection. To see how combining
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model having different structures helps reduce model bias, we just take BMA as an

example. Suppose we have a class of competing models hj(x) with different model

structures, each with independent bias bj(x) with E[bj(x)]=O. We construct a composite

model by weighted average

f,(x) = i1 p hj(x). (1.81)

Then, the bias of the combined model is l pjb (x), which tends to E[bi(x)]=O as m

increases.

Another extreme is that the competing models have complete dependent bias, b(x), and

then the bias of the combined models is equal to b(x). However, this is rare the case. A real

case is most likely in between the two extremes. But whatever, combining models

facilitates model bias reduction. This conclusion agrees with Wasserman [2000] that BMA

as a weighted average diminishes the problem of model selection bias due to fact that it is

not a risky kind of winner-takes-all procedure favored by model selection.

In real world, the model bias results from modeler's lack of knowledge or bias in

beliefs. However, different models might be created based upon distinct theories or learned

from different data, and thus modelers have different bias, so it is reasonable to assume that

individual biases are independent.

At the same time, combining multiple models is a variance reduction technique as

shown in the example of simple average method. Suppose there are mn competing unbiased

models, denoted as fj(x), j=l,...,m, having uncorrelated errors of the same

variance, var(fj (x))= v and cov(f, (x),fk (x))=0.

If we again create a weighted average model

f, () = I. p f (x) . (1.82)

Then the variance of the combined model is

var(f, (x)) M 2 .var(ji (x))= vZ" pj (1.83)

If pj < 1/2, then
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(1.84)

Similar assumption to that for bias can be made for model variance, which is more

precisely parameter estimation variance. Since the data used for parameter estimation is

randomly gleaned, models can be considered to be uncorrelated in reality as far as the

random part is concerned.

However, on the other hand, model combination tends to increase variance because

more parameters need to be estimated from the same number of data. Taylor and Siqueira

[1996] discuss in detail about the cost of adding parameters to a model. So the advantages

of model combination come at the expense of perhaps making the predictions more

imprecise. This raises an interesting theoretical question about the overall effect of model

combination on the predictive error. We will give a heuristic answer in the following.

To assess a model, the first thing we are concerned with is its predictive accuracy,

because the goal of models is to predict the future. However, we can never know the true

model or collect an infinite number of samples, and thus the predictive accuracy has to be

estimated based upon a limited number of samples by some model performance evaluation

method discussed earlier. Just as we pointed out earlier, any 2-tuple model assessment

method, i.e. a pair of discrepancy function and generalizablity estimation method, can be

used to assess models, which is also suggested by Browne [2000]. Before comparing a

single best model and a combined model, we also need first to choose a model performance

evaluation method.

Can model combination improve the model performance in terms of a certain model

performance evaluation method? The answer is yes. Let's show this as follows:

Suppose we have a group of competing models, denoted as fj(x). We construct a

composite model as

f.(x) = j wij f(x), (1.85)

where wj are individual coefficients.

Let's designate as MP the model performance evaluation method we choose. Given a
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model f(x), we can obtain its performance by MP(f(x)). Now, the goal of model

combination is to maximize the performance of the composite model or equivalently

minimize its generalization error, that is,

v = arg max MP(Z fI Wj .fj () where w=[wl, ... wm], (1.86)
wv R"'

by whatever optimization algorithms.

A model selection procedure is to find out the a single best mode that has the greatest

model performance,

MPma = max MP(fj(x)), (1.87)
j=l ...m

and the "best" model denoted asfb(x) corresponding to coefficient u=[... 1.. .0].

There is no doubt that

MP( v j fj(x) MP(Z I u fj (x)) = MP. (1.88)
j=1 j= J

which means the performance of the combined model is better than the single best model in

terms of the chosen model assessment criterion, because otherwise v=u.

This completes the proof of our argument. Even if finally it turns out that the

performance of the combined model deteriorate, the problem does not lie in model

combination but stems from the inappropriate choice of generalizability estimation

method.

(2) Consistency

In statistics, an estimator of a parameter 0 is said to be consistent if -- as the

sample size n->oo. Likewise, in model selection a modeling procedure is consistent if the

models it produces gets closer and closer to the true model as the sample size n tends to

infinity. Another simpler and more straightforward concept is dimension consistency. If as

in many cases model complexity is only affected by degree of freedom, model dimension is

defined to be the number of free parameters in a model. A criterion is dimension consistent

if and only if its estimate of the model dimension converges to the correct value as the
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number of data tends to infinity if a true model is among those being considered [see

Woodroofe 1982]. For example, AIC was proven to be inconsistent, e.g. by Shibata [1976]

and Woodroofe [1982] for i.i.d data, while BIC was shown to be consistent by Woodroofe

[1982].

The consistency of unbiased estimators is guaranteed by the law of large numbers.

Although sufficient, this is not necessary, for example, asymptotically unbiased estimators

can also be consistent. However in model selection, the situation is somehow different.

Denote as M the set of all multivariate models and asflx;6 ) a subset of M fully specified by

parameters . A model f(x;6) is correctly specified if the true model fix) fx;t), and

otherwise misspecified. A model g(x;O ) is nested underf(x; O) if g(x; t)cf(x; ). For a model

selection procedure to be consistent, it is required that the model is correctly specified, or at

least asymptotically so. In other words, model bias is required to converge to 0. Therefore,

for any model selection criterion to be consistent, first it is necessary that candidate models

are correctly specified. Otherwise, even with an infinite number of observations, the final

model can only converge to the pseudo-true model f(x; 8), rather than the true model fix).

Model bias is a common caveat for the consistency of all model selection criteria. The

only solution is to reduce or eliminate model bias somehow. As we discussed earlier, model

combination can potentially meet this goal. Intuitively, integrating information in all

distinct candidate models help create a more complete composite model. To illustrate this

point, let's take the linear regression model as an example. Suppose the true model can be

expressed as

f(x)= j=l3 jj (x), (1.89)

where hj(x)'s are regressors and .j's are corresponding coefficients.

We have three competing models f, (x) = , h, (x) + , 12h2 (x), f2 (x) = A22h2 (x) + f 2 3h3 (x)

and f 3(x)= 531/11 (xA) 33 3 3(x), and then combine these three models

) = w 3 W, (x) . (1.90)
.1=1 .
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Note that since each candidate model is biased in structure since they incorporate only

part of the predictors. Whatever the model selection criterion and no matter how many

observations are obtained, the final model is biased. In contrast, the combined model

involves no model bias since

f (x) = w f j (x) = , w' hj (x), (1.91)

which has the same model structure as the true model. Hence, it results in an unbiased

model.

In the case where one of the competing models is correctly specified, if a consistent

model assessment method is chosen, the composite model will converge to the true model

definitely due to the law of large numbers. For example in the linear combination, the

weight of the correctly specified candidate model converges to 1.0 and others 0, which

results in the true model.

(3) Stability

A learning algorithm, including both model selection and model combination, is

unstable if small changes in the training data lead to significantly different models and

relatively large change in accuracy. Typically, instability in learning can be attributed to

high variance. Stability can be tested by perturbation.

The desirability of stability can be seen from some theoretical results that relate the

generalization error to the stability of a modeling procedure. For example, Bousquet and

Elisseeff [2002] show that the generalization error bound decreases exponentially for

algorithms with uniform stability, which implies for models having the same empirical

error the generalization error bound will be significantly tighter for those algorithms with

uniform stability. Recently, Mukherjee et al. [2002] even further pointed out that stability is

sufficient for generalization and necessary and sufficient for consistency of empirical risk

minimization (ERM).

Many researchers found that model selection methods were instable and the predictive

error was remarkably large [e.g. see Miller, 1984 or Breiman, 1996]. In the following, let's
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heuristically analyze what causes instability in model selection.

Model selection is often done based on some data set. The variance of the final model is

composed of model selection variance and parameter estimation variance [e.g. see

Burnham and Anderson, 2002].

Model selection variance also results from the random fluctuation in small sample, just

like the variance of estimators given a small sample. The winner-take-all principle favored

by all model selection criteria make it risky in that a slight different in data might results in

choosing a different competing model. If we incorporate this winner-take-all procedure in a

weighted scheme, the weights are discrete and can only take value either 1 or 0. A natural

way to smooth it is to use continuous weights instead, similar to applying ridge regression

in variable selection problem [Breiman, 1996a]. This idea leads us to model combination.

Thus, model combination does not suffer from model selection variance.

Parameter estimation variance is due to the variance in sampling data. For already

efficient estimators, it is can not be improved without increasing the sample size, because

the minimum variance of unbiased estimator is lower bounded by the reciprocal of the

Fisher information, know as Cramer-Rao bound [Rao, 1945 and Cramdr, 1946]. However,

if the learning algorithm is unstable, combining multiple models is a variance reduction

technique, for example using bagging method [Breiman, 1996b]. More generally, unstable

learning algorithms can improve their accuracy by perturbing (i.e. producing multiple

models by perturbing the training set or learning method) and then combining. Breiman

[1996c] call such techniques P&C methods. For example, the bagging is a P&C technique,

which helps improve the performance of unstable learning algorithms by averaging over

multiple models learned from many bootstrap replications.

Since we have learned that the model selection procedure is unstable, we are able to

design a modeling procedure using bagging, in which model selection procedure is

repeated many'times on bootstrap replications and the final model is obtained by averaging

over all the selected models. Since in each model selection procedure the selected model
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might be different, the resultant model is actually a combined model in the form

f,.(x) = w f (X) .
J=1

(4) Globality/locality

Another important issue in assessing a model is its globality, or uniform consistency

and efficiency across the input domain, because the predictive capability of a calibrated

model relies on the validity of interpolation and extrapolation. The failure of a model to

extrapolate or generalize beyond the range of the observed data arises not only from small

sample fluctuation, but also from the failure of the sample data to properly represent the

domain of prediction. This limitation is shared by all standard model selection method,

because model selection is not supposed to manage this kind of error. This problem is well

identified by Busemeyer and Wang [2000] in the context of time series.

Actually, this phenomenon is quite common in the physical world. Each model has its

own applicable domains, outsides of which its performance might deteriorate steeply. This

might be because the law governing the modeled system changes from an input domain to

another, or because of the poor extrapolatability of empirical models. As we mentioned

earlier, any model is built based on some theories and learned from observations. In

different sub-regions the mechanisms underlying the physical system might be different

and correspondingly models have varied features. A certain theory usually takes into

account one kind of mechanism, which leads to the locality of the models based on it. In

addition, data collected in a certain domain might not represent those in other domains. For

example, the noise variance or even error distribution varies over the input space. Models

learned from such data certainly suffer from localization.

In order to show why model combination might help mitigate such problem, let's look at

a very simple example. Suppose we have two competing models, one of which works

better within a sub-region I and the other has better performance in the other sub-region II.

Obviously, using weighted average method we can create a composite modelf.(x)=wlfJ (x)+

wf 2(x), with wl+ w2=.
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In an extreme case, we can set w1=l in region I and 0 in region II, which is certainly the

optimal composite model we can have. This combined model works better than either of

the candidate models as far as the whole input region is concerned.

In the above extreme case, weights are not constant over the input region. A possible

solution is to partition the input region into two sub-regions. However, even if we use

constant weights, it can be much better than candidate models with the bottom line of as

good as the better one between them.

In the above, we argued that model combination is a better choice than model selection

from many different angles. Although in argument we used weighted averaging or BMA as

an example to show the advantages of model combination over model selection, it is not the

only approach, and usually not the best way, to implement model combination. As

mentioned earlier, the goal of model combination is to build a more accurate and precise

model by integrating information in multiple distinct models and data sets, and so we need

to find out an effective way to realize this goal.

1.3 Feature-based model combination method

Before we propose a new model combination method, let's first discuss how a physical

model is created, what might cause its failure to predict the future, and how they can be

improved with regard to a specific problem. Here, when we speak of the failure of a model

to predict the future, we mean the prediction error is beyond an acceptable level.

Conceptually, a model is a hypothesis about how a system works or responds to

changes in its inputs. Usually, a model is expressed in a form of mathematical formulations.

In practice, each model is built on some scientific or technical assumptions, thereby

significantly simplified. However, with such simplifications and plausible assumptions,

models are just approximations to the truth. Furthermore, these simplifications and

assumptions even turn out to be inappropriate or even erroneous later on, especially for a

model that is built when science is immature and data are lacking for model testing and
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validation.

The model bias and uncertainty may stem from both model structure and model

parameters. For scenarios and phenomena of interest, alternative sets of scientific or

technical assumptions may be available for developing a model, which leads to different

mode structure. Model structure is embodied in the form of the equations used and in the

selection of variables, which serve as model inputs. Meanwhile, it is possible to

parameterize model structures into a higher order model. Both bias and uncertainty in

model structure and parameter estimation may result in the failure of a model to predict the

future, that is, the expected error is unacceptably great. In the following some possible

causes are listed and their remedies are also discussed.

1) Error

In a modeling process, some mistake can be made occasionally or due to one's

misunderstanding or biased belief concerning a real physical system. This might lead to

model misspecification, big bias in model structure.

For this reason, a model must be validated before being used to make prediction. If an

effect is supported by data, it is valid, but otherwise it is most likely to be spurious and

should be removed.

2) Incompleteness

A model may miss some features due to the lack of enough knowledge about the truth.

For example, the significance of these missing features may vary under different conditions

and thus it is not present in the data available to the model creator.

With a class of diverse competing models, this weakness can be improved in some

degree, because in so doing it is possible to aggregate those effects contributed by

individual models, which finally results in a better approximation to the full truth.

3) Bias

Bias includes both biases in model structure and model parameters. Besides errors and

the incompleteness, there are other causes that might result in model bias, for example,
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incorrect assumptions or overly simplification. Model parameter bias refers to bias

resulting from estimating model parameters based on data. A model learned from data,

which may be not collected randomly but discriminatively, will have large bias in

parameter estimation. Consequently, a resultant model may include some specific features

pertaining to certain domain or data pattern and therefore cannot be generalized to the

whole region. In other words, spurious features tend to be included in a model.

4) Uncertainty

Uncertainty refers to both model structural uncertainty and model parameter uncertainty.

Model structural uncertainty results from some random factors that affect the choice of

model structure. Model parameter uncertainty is due to the random fluctuation in finite

sample, which is almost unavoidable. But, as indicated earlier, combining different models

helps reduce uncertainty.

5) Localization

A model, which is validated for a certain input region, may be proven to be completely

inappropriate when extrapolated to other regions. For example, some assumption

underlying a model can only be met in a certain range of inputs. Hence, in other regions this

model may turn out to be invalid.

It is also conceivable that a real-world system may enter a different phase with inputs

varying, and even follows different laws in another phase. This may lead to the variation of

model structures. In such case, it is possible to find out some missing hidden variables to

characterize such phase-switching phenomenon.

Another possible reason may be that effects underlying a system have different

influence over the input range. To address such problem, nonlinear combination may be

helpful.

We may propose a mixture of local model method, in which the whole range of inputs is

divided into several partitions. Instead of using hard partition, we may apply soft partition

by means of defining a weighting function like member function in fuzzy theory. A
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weighted loss function will also be used to calibrate regression models in each partition.

The weighting function also serves as the weights in the step of mixing local models.

From the above analysis, it is possible to mitigate all weaknesses by combining

multiple competing models.

At this point, it is necessary to clarify some concepts, namely "dependence" and

"independence" among competing models. A model can be thought of as composed of two

parts, reasonable part and error part

f (x) = h(x) + c(x) , (1.92)

where the reasonable part h(x) is the valid part that reflects the truth in a correct way, while

the error part E(x) is due to the modeler's bias and some errors. Such decomposition is

similar to Mosleh and Apostolakis [1986]' additive error model of experts. When we say

two competing models are highly dependent, we mean the reasonable part is highly

correlated; when we say two competing models are independent, we mean the error part

does not depend on each other. To better understand this, let's consider a simple example.

Suppose a random variable Y1 is governed by a normal distribution N(ax, 02) and another

random variable Y2 follows a normal distribution N(bx, o2), where a and b are constants, x

is a variable, and o2 is the variance. If at a certain time we know the realization of Y1, say yl,

we can predict Y2 more accurately, which implies the dependence between Y1 and Y2. On

the other hand, knowing the random part in Y1 does not help predict the random part in Y2,

because they are independent.

The basic idea behind model combination is to aggregate all available information

effectively, which, however, may contain errors or noises, and then obtain a new model as

good as possible. In other words, we just integrate the valid information in the reasonable

part h(x) but reduce the effect of the error part £(x). A model combination system acts like

function that maps a group of candidate models and a data set into a new composite model.

The goal of this system is to minimize the generalization error or the expected error. In

some sense, model combination is an optimization problem.
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Betore performing model selection we need first to make certain the model performance

assessment method. As pointed out earlier, a model performance assessment method can be

designed by combining its two elements, distance function and generalizability estimation

method. In fact, the choice of distance function and generalizability estimation method

highly depends on specific problems.

In addition, a good model combination method had better have the following desirable

properties:

(i) It is able to aggregate information in all competing models, thereby improving model

performance.

From the angle of information, the merit of model combination comes from its

capability of integrating information. The more information incorporated, the better.

Therefore, if a method can make use of information in all candidate models and data in a

more efficient way, it can produce a more complete and accurate composite model.

(ii) It should be able to detect errors in competing models in some degree, thereby reducing

model bias;

As mentioned in the beginning of this section, each candidate has a reasonable part and

an error part. The purpose of model combination is to combine the reasonable part but get

rid of the error part at the same time. Otherwise, the errors will contaminate the composite

model.

(iii) It can model dependence among competing models and thus reduce information

redundancy;

A model combination strategy must be able to robustly handle the inherent dependence,

or correlation, among candidate models, otherwise multicollinearity will cause lots of

trouble just as in linear regression.

As pointed out in [Hogarth, 1987], the poor performance of human judges relative to

statistical models stems largely from an inability to recognize and process redundant

information appropriately, which, in part, reflects the importance of reducing information

redundancy. Furthermore, reducing information redundancy helps reduce model
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dimensionality, e.g. the number of factors in a factor model, and thus reduce the variance in

estimating model parameters.

(iv) It is able to combine different kinds of information, including models and data;

Since information about a physical system might come in the forms of theories, data, or

even expert judgments, a good model combination method should be able to incorporate all

these kinds of information.

(v) It has robust performance when having different sets of data;

In the previous section, we argued that stability is an important criterion by which to

assess a modeling procedure. A stable model combination method is robust to changes in

training data set.

(vi) It is objective, involving no subjective judgment.

Ideally, a model selection process should be objective and therefore repeatable.

To achieve the above goals, basically improving both accuracy and precision, we will

propose a new model combination method. It is worth noting that this method is mainly

intended for the situations where there is no well-founded theory and no enough data is

available, because otherwise we may be able to derive a more exact theoretical model.

1.3.1 Model structure analysis

In general, a model consists of model structure, functional form of model formulation, and

model parameters. Model structure is worked out on the basis of some theories or

hypothesis, while model parameters are estimated from observations. Here, let's analyze

model structure from a new prospective.

In practice, object can be efficiently modeled as combination of effects or features, for

instance in pattern recognition. Similarly, a model can also be views as an ensemble of

features arranged in some way. To simplify the problem a lot, we assume features are

linearly mixed in a model, that is,

f (xf, A) 1,1 6ij h., (X), (1.93)

where hi(x) are features, which is nonlinear functions of inputs, and /j are corresponding

feature coefficients. Mathematically, features are function basis, which are not general but

66



specific to problems. For the true model, whose dimensionality is infinite, the number of

features tends to infinity. For a real model, it might only include a finite subset of features.

Distinct competing models might incorporate a different subset of features and have

different feature coefficients.

In fact, the linear assumption is not accidental. At first, mathematically no matter how

complicated a function is, it can always be expanded in some basis functions and finally

expressed as sum of some simpler nonlinear functions. In some sense, features can also be

thought of as basis function, which, however, depends on the specific problem under

investigation. Therefore, a complicated nonlinear model can also be expressed as an

additive model of simpler nonlinear functions, namely features. If some features are

entangled together so tightly, they can be combined into a single feature. For example, in

energy functions mass and velocity have to be so combined as to have energy units.

Another often used technique for approximating a nonlinear system is to divide the

input space into many small regions and in each small region linear approximation gives

satisfactory accuracy according to the Taylor expansion.

Thus, the linear assumption is appropriate in most cases. In such a model framework,

each candidate: model can be written as

f, (x,, ) = ijhi,j (x) + e(x), (1.94)

where. hij(x) are features and fij are corresponding feature coefficients, E&(x) is the additive

error in the candidate model fi(x,/i). Candidate models are approximations of the true

model in the sense that they only incorporate a subset of features of the true model and the

factor loadings are not precise. Distinct models might contain a different subset of features

or have different factor loadings.

Generally, different candidate models might incorporate different subsets of features,

and the composite composed of the union of the subsets of features will produce a better

approximation to the true model. Therefore, the information in multiple competing models

is aggregated.
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In order to aggregate information in all competing models, it is important to model

dependence among multiple competing models and reduce information redundancy. In our

feature-based model structure, competing models depend on each other through common

features as in factor analysis [Everitt, 1984]. Therefore, feature extraction enables us to

model the dependence among a group of competing models.

Another advantage of feature extraction is dimensionality reduction. By summarizing a

physical system in the form of features, we can effectively decrease model dimension with

the minimum loss of information by discarding those trivial features.

In integrating features into a composite model, the data comes into play its role. The

feature coefficients can be estimated based upon observations.

Detecting errors, in candidate models and eliminating them is another important thing in

model combination. In our feature-based scheme, we are able to test the validity of features

using new samples, that is, feature selection. In so doing, spurious features can be removed

from the feature set.

So, this feature-based scheme can meet most of our goals in model combination.

However, as in pattern recognition problems, the features that are needed depend on the

specific problem that one wants to solve, and designing a good set of features is more of an

art than a science.

1.3.2 Identify model features

Unlike general function expansion, features are completely problem-dependent. Since each

candidate model is an approximation to the true model although the feature sets are

incomplete and feature coefficients are imprecise, it is possible to extract features from the

group of competing models. In cases where there are no or very few existing models, we

might use features extracted from models for similar systems based upon an assumption

that similar phenomena have similar features.

There are many statistical methods that can be applied for feature extraction, including

principal component analysis (PCA), factor analysis (FA), independent component
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analysis (ICA) and independent factor analysis (IFA).

In most of these methods, the generative model of data variables Xi is assumed to be

linear mixture of underlying components or factors Sj

Xl = 'm wiJS j +e i, or in matrix notation X=WS+, (1.95)

where the mixing matrix element wij is also termed factor loading in factor analysis and Eis

the noise.

The purpose of feature extraction is to identify unobserved underlying factors S given

some observed data variables X.

(1) Principal component analysis (PCA)

In principle component analysis (PCA), data variables are assumed to be exact linear

mixture of factors that are assumed uncorrelated, that is, eis assumed to be zero. Principal

components turn out to be linear combinations of the observed variables, having the

maximum variation in the smallest number of variables. For instance, the first principal

component can be obtained by maximizing the variance of a combined variable of

observed variables. To ensure uniqueness, all principal components must be orthogonal.

In mathematics, the principal components can be shown to be the eigenvectors of the

covariance matrix of observed variables and the eigenvalues are equal to the variance of

each component. The first component is corresponding to the eigenvector associated with

the largest eigenvalue.

A nonlinear version of PCA is principal curve. Principal curves are smooth curves that

minimize the average squared orthogonal distance to each point in a data set. It can be done

by nonlinear regression with Gaussian noise on both x and y.

Most often, a small number of principal components are enough to explain most of the

variation in the original data, thereby resulting in reduced data dimensionality. Actually,

this analysis is the same as the discrete Karhunen-Loeve expansion, and therefore in the

context of signal processing or pattern recognition, it can be used to perform data

compression, optimal pattern representation and feature extraction.
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(2) Factor analysis (FA)

Factor analysis, which is similar to PCA except that it includes Gaussian noise, , which

is allowed to have an arbitrary diagonal covariance matrix. PCA is actually is a noiseless

version of FA. Thus, values of factors can not be directly computed from observed variable

due to the existence of noise.

In the context of FA, the unobserved sources are called "common factors" and the noise

"unique factors". Both factors and factor loadings are estimated from the data by methods

like maximum likelihood. If we set unique factors equal to zero, FA reduces to PCA.

FA is intended to find out a small number of latent variables to explain the data.

However, unlike principal component analysis which is intended to explain data variables,

FA is used to identify underlying factors that explain the correlations among data variables.

Since noise or unique factors affect the variance of observed variables and correlations

among them due to common factors, in performing FA we first need to estimate corrected

covariance matrix from data and then conduct principal component analysis afterwards.

To aid in interpreting the factors, FA attempts to make factor loadings either very high or

very low. This can be done by rotation techniques, for example, varimax, quartimax or

equimax. In reality, after so doing those unimportant factors can be possibly eliminated,

which helps data reduction.

Principal component analysis is often preferred in data reduction, while factor analysis

is often favored when the purpose of analysis is to detect structures.

(3) Independent component analysis (ICA)

One inadequacy of both PCA and FA stems from the assumption of Gaussian factors,

since they do not require the factors to be mutually independent but merely uncorrelated.

Consequently they only exploit second-order statistics of the observed data.

As in factor analysis, in ICA the data variables are assumed to be linear or non-linear

mixtures of some unknown latent variables, which are assumed non-Gaussian and

mutually independent as compared to uncorrelated and Gaussian components in PCA and
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FA.

In ICA, components are non-Gaussian and therefore it goes beyond second-order

statistics of data for fitting model. In effect, statistical independence is inherently linked to

higher order statistics. For two independent random variable Y and Z, it holds that for two

arbitrary functions f) and g(.) E[YZ]=E[(Y)].E[g(Z)]. In particular, we have

E[YZ]=E[Y] E[Z].

Since in ICA, components are assumed to be non-Gaussian and independent, there are

two directions in implementing ICA, namely maximization of non-Guaussianity measured

by kurtosis or negentropy and minimization of dependence measured by mutual

information. In fact, these two techniques do not conflict with each other and rather

Hyvarinen and Oja [2000] show that they are equivalent. Based upon these objectives,

many efficient algorithms have been proposed to perform ICA.

ICA has been widely used for blind-source separation, imaging and signal processing

and even forecasting.

(5) Independent factor analysis (IFA)

The above methods are closely related to each other and they can be unified in

independent factor analysis (IFA) proposed by Attias [1999].

In the framework of IFA, each factor is modeled as a mixture of Gaussian, therefore it

can learn arbitrary factors, both Gaussian or Non-Gaussian. This constitutes a big

advantage of IFA over ICA. Maximum likelihood is employed to estimate factors as well as

mixture matrix W in a probabilistic context. In particular, an efficient algorithm, namely

Expectation-Maximization (EM), is applied to implement ML estimation.

In addition, it is superior to ordinary ICA in some context because it can deal with noise.

When the source factors become Gaussian, IFA reduces to ordinary FA; when there is no

noise present, IFA is equivalent to ICA in non-Gaussian cases and PCA in Gaussian cases.

Although all the above approaches are feature extraction and data reduction methods,

intuitively independent component or independent factor analysis is a better choice for our
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purpose, because there is no mechanism forcing underlying factors to be Gaussian.

1.3.3 Construct a composite model based upon components

After obtain a set of problem-specific features, the next step is to aggregate them into a

composite model under the guide of data.

Since features result from linear decomposition of candidate models and we assume

candidate models are similar to the true model, it is reasonable to assume that the true

model is also a linear combination of features, i.e.

f (X) = ZL ,j hj (x), (1.96)

where hj(x)'s are features or factors and 8/'s are factor loadings.

Factor loadings can be estimated by various methods, for example, multiple linear

regression, Bayesian regression, bagging or stacking. The choice of estimation method

depends on specific problems. However, one thing worth emphasizing is that the

calibration must be done based on data. For example, if an effect is supported by data, it is

valid, but otherwise it is most likely to be spurious and should be removed.

1.4 Discussion

In this chapter, we first reviewed many different model selection criteria and model

combination method, and then show the advantages of model combination over model

selection by comparing them in terms of several different standards, and at last we

proposed a new feature-based model combination method, in which, rather than combining

multiple competing models directly, candidate models are first mapped into a feature space,

and then features are selected to construct a new composite model.

According to the efficiency in aggregating information and other standards mentioned

in the section 1.2.3, heuristically we think the methods are ordered as follows in preference:

a single model, select the best model, simple average, weighted average (different

weighting strategies including bagging and boosting), linear combination model or
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regression using candidate models (including stacking), and feature-based model

combination. First, we have already argued that model combination is superior to model

selection, which in turn is obviously better than picking up one from a group of competing

models randomly. Second, the preference of linear combination method over weighted

averaging can be seen from the fact that stacking performs a bit better than both bagging

and boosting [see e.g. Zenko et al., 2001], mainly because it removes the constraint that

coefficients sum up to 1. Finally, the superiority of feature-based model combination

method mainly comes from its ability to detect errors and reduce dimensionality.

Among all these approaches, only the new feature-based model combination method

can potentially meet the goals we put forward in the beginning of section 1.3. However, to

implement the feature-based model combination efficiently, there are still some important

issues that we have not touched on until now.

(1) Candidate model choice

By now, we just assume we have a group of competing models at hand, and we never

mention where and how we get them. In fact, the choice of candidate model is also

important. For example, if we pick up a terrible candidate model carelessly, it might result

in misleading features or the big error will ruin the composite model. Therefore, a

candidate model should be at least competitive.

For another example, in order to make the set of features more complete, the more

candidate models, the better. But, does it mean we should include any competitive model

regardless of other properties?

(2) Model assessment criterion

We have already mentioned that a model assessment method can be designed by

combing a distance function and a generalizability estimation method. Whereas, how to

choose distance function and generalizability estimation method for a certain problem is

not clear yet. It also needs further investigation.

(3) Feature selection
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The feature selection serves two purposes: dimensionality reduction and error

elimination. By feature selection we are able to detect spurious features and get rid of them.

Meanwhile, it can reduce model dimensionality with the minimum loss of valid

information. We are not sure which feature selection methods are suitable to our cases.

(4) Feature integration

The composite model is a linear combination of features. Just as in weighted averaging,

there might be many different methods to produce factor loadings. It is desired to be

unbiased, efficient and robust.

(5) Uncertainty analysis

After one creates a new model, another important thing is to specify its precision, or

commit uncertainty analysis. As we know, in model selection it consists of model

uncertainty and parameter uncertainty. In model combination, how should we quantify it?

(6) Model Locality

As mentioned earlier, usually a real model may be suitable for use in a certain domain

but not others due to its locality. It might be beneficial to partition the input space into some

small regions and learn local models in each region individually. However, other problems

arise. For example, usually divide-and-conquer technique tends to increase variance, and

how should local models be combined to reduce this effect?

All the above issues will be discussed in the subsequent chapters.
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Chapter 2

Candidate Model Choice in Feature-based Model Combination

2.1 Introduction

Models are approximations of a real system based upon some assumptions and

simplification. They are widely used for prediction. Usually, for a certain phenomenon

there are many different models available. A natural question arises from such a situation

that how to maximize the model performance as allowed by information at hand. In

practice, there are two different actions, namely model selection or model combination.

Just as in safe-critical industry reliability can be enhanced through redundancy, model

performance can also be improved by combination. The reasons and advantages of

combining models have been discussed in detail in term of accuracy, stability, consistency

as well as globality in the previous chapter.

Feature-based model combination is an indirect mode combination method, which is so

devised as to improve the efficiency in aggregating information from candidate models and

observations. In that method, candidate models are first mapped into a feature space, rather

than combining candidate models directly as in weighted averaging, and then features are

selected to build a new composite model. According to feature-based model combination, a

model can be expressed as a linear combination of features, i.e.

f c (x) = Il "" ljihj(x), (2.1)

where hj(x)'s are features or factors and j's are factor loadings.

In such a scheme, each candidate model can be written as

f (x, ) = Z,, I,h,j(x) + (x), (2.2)

where hij(x) are features and lij are corresponding feature coefficients, (x) is the additive

error in the candidate model fi(x,,i). Candidate models are approximations of the true

model in the sense that they only incorporate a subset of features of the true model and the
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factor loadings are not precise. Distinct models might contain a different subset of features

or have different factor loadings.

Using some feature extraction methods, we are able to extract features from a group of

candidate models and then form a feature set to build a new composite model. However,

before proceeding to perform model combination, the first practical problem one has to

face is where and how to obtain a group of candidate models, which is common to any

model combination method. Candidate models might come from a wide range of sources

including scientific literature, results of manipulative experiments, personal experience,

and scientific debate and so on. Some of them may be theoretical models from different

schools of though, or empirical models learned based upon different data or using different

algorithms. Some model combination methods like bagging and boosting treat the

generation of candidate models as a part of themselves.

In view of rich model sources, it is usually not hard to obtain a number of competing

models. However, another problem arises again, that is, should we include all these

competing models? For example, the previous performance of a model is not satisfactory,

two candidate models are very similar, and two models are created by the same modeler or

learned using the same algorithm. Should we choose them without any discrimination? If

not, how should we preselect candidate models? These questions are absolutely not new,

but have been raised in various contexts in the literature, for example, in combining

forecasts [Clemen and Winkler, 1985], classifier ensembles [Kuncheva and Whitaker, 2003]

and neural network ensembles [Opitz and Shavlik, 1996].

In this chapter, we will discuss in detail how to choose candidate models for model

combination and some criteria will be proposed.

This chapter is arranged as follows. In section 2.2, four criteria for choosing candidate

models are presented. In section 2.3, bootstrap method is applied to estimate generalization

error based on testing error, which is combined with expert judgment by Bayesian theorem.

In section 2.4, both subjective judgment of model diversity and objective measure of
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diversity will be presented and at last combined with a utility function. In section 2.5 and

2.6, we will discuss how to test model independence based on data and how to make sure of

completeness by finding the saturated number of candidate models. Finally, a stepwise

forward candidate model choice procedure is put forward in section 2.7. A summary in

section 2.8 concludes this chapter.

2.2 Choosing candidate models

Model combination is an effective way to improve model performance. However, how

good a composite model can be depends on the choice of candidate models, because

obviously how much information is contained in models and how they complement each

other affect the efficiency of information extraction and information aggregation. In order

to facilitate improving model performance, it is of great help to follow some criteria in

choosing candidate models, which include competence, diversity, independence and

completeness.

2.2.1 Competence

By competence we mean that each candidate model should be competent compared to their

peers in term of model performance, rather than its absolute predictive accuracy. If a

terribly inaccurate candidate model gets involved accidentally, it might make negative

contribution and result in misleading features. At worst, the big error will ruin the

composite model. As a simple example, let's consider the unweighted averaging

fc (x)= y'=f f (x) (2.3)

Clearly, if one of the candidate models has big error, the expected error of the combined

model will be much bigger than the average error of the rest candidate models.

If a candidate model has big errors, it is more likely because it contains spurious features.

Although in feature-based model selection feature selection helps detect and remove errors,

it might fail to do so due to small sample of data.
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Therefore, if a model is rather weak compared to others, it should not be chosen as a

candidate model. In order to ensure competence, one first needs to assess all potential

models. This can be done based upon their historical performance, their relationship as

well as testing. We will discuss model assessment in detail later on.

2.2.2 Diversity

Besides competence, diversity is another important criterion we need to take into account

during preselecting candidate models. The role of model diversity in model combination is

just like what diversity has in natural evolution.

If we view models as composed of two parts, reasonable part and error part

A (x) = gi(x)+ £i(X) , (2.4)

where the reasonable part gi(x) is the valid part that reflects the truth in a correct way, while

the error part (x) is due to the modeler's bias and some errors. By diversity, we

specifically refer to different valid model structure, gi(x). According to diversity criterion,

we should choose candidate models as different as possible as long as they have good

competence.

Just as in safe-critical industry where diversity plays an essential role in improving

reliability, diversity in model combination is also central. As we know, the gain of accuracy

in model combination comes from the fact multiple candidate models complement each

other. It is clear that combining models is only useful if they disagree on some inputs.

Obviously there is no more information to be gained from a million identical models than

from just one of them.

Diversity can ensure that candidate models do not all fail in a certain situation. To see

how this is advantageous, let's look at an example. Suppose we have two candidate models,

one of which works badly within a sub-region I and the other deteriorates in the other

sub-region II. Using weighted average method produces a composite modelf,.(x)=wlj (x)+

wf 2(x), with w+ w 2 =l, such thatf(x)'s performance in both sub-regions will be not so
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bad. In an extreme case, we can set wl=O in region I and 1 in region II, which is certainly

the optimal composite model we can have. This combined model works better than either

of the candidate models as far as the whole input region is concerned. In this extreme case,

weights are not constant over the input region. A possible solution is to partition the input

region into two sub-regions.

In regression problems, mean squared error is generally used to measure accuracy, and

variance is utilized to measure diversity. In the context of neural network, Krogh and

Vedelsby [1995] show that the generalization error, egen ,can be expressed as egen = e - d

where e and d are the average squared error and diversity of the ensemble, respectively.

According to this result, it is obvious that increasing the diversity while maintaining the

average error of a group of candidate models leads to a decrease in the generalization error

of the final composite model.

Diversity also helps reduce the problem of multicollinearity in direct model

combination methods where

f (X)= l Wj f j (x), (2.5)

in which wj are individual coefficients, becausefj(x)'s become less linearly dependent.

From the angle of features, diverse candidate models might have different subsets of

features. By combining these feature subsets, it is possible to come up with a more

complete subset of features, which enables us to make a better approximation to the true

model.

Thus, heterogeneity among candidate models is highly desirable. To ensure model

diversity, one should try to collect candidate models from various resources, for example

models built upon different theories, learned from different data or using different

algorithms, or created by different modelers. The measure of diversity will be presented in

detail in the coming sections.
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2.2.3 Independence

By independence, we specifically mean each candidate model makes independent error. In

other words, (x) in equation (2.2) is independent of each other. In the literature, error

independence is often included in model diversity. However, it is worth distinguishing

diverse model structure and independent error, since we explicitly divide a model into two

parts, namely reasonable part and error part. Throughout this chapter, model independence

specifically refers to independent errors, unless stated otherwise.

As pointed out by Clemen and Winkler [1985], the reduction in variance or gain in

precision by combining multiple dependent models will be significantly less than could be

obtained if the models were independent. Hansen and Salamon [1990] and Krogh and

Vedelsby [1995] also showed the model combination works best when the candidate

models are fairly accurate but fairly independent in the errors they make. Therefore, error

independence plays an important role in reducing both bias and variance. This point can be

easily caught from some simple examples.

To see how combining model having different structures helps reduce model bias, we

just take Bayesian Model Averaging (BMA) as an example. Suppose we have a class of

competing models fj(x) with different model structures, each with independent bias bj(x)

with E[bj(x)]=O. We construct a composite model by weighted average

f, (x = j fJ () (x). (2.6)

Then, the bias of the combined model is ,m pjb, (x), which tends to E[bi(x)]=O as m

increases.

However, if the competing models have complete dependent bias, b(x), and then the

bias of the combined models is equal to b(x), which does not reduce to 0 as m increases.

To illustrate the role of error independence in variance reduction, let's suppose there are

m competing unbiased models, denoted as fi(x), j=l,...,m, having correlated errors of the

same variance, var(fj (x))= v and cov(f, (x), fk (x))=c.
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Again we create a weighted average model as in equation (2.6). Then the variance of the

combined model is

var(f. (x)) = i l P v + i P (2.7)

Clearly, if pj < 1/2 and c=O, then

var(f, (x))< v/2. (2.8)

Furthermore, if c<O, the variance of the combined model will be even smaller. On the

other hand, if c>O, the variance off,(x) can be either greater or smaller than v. Thus, it is

important to ensure that candidate models make independent errors, or even negatively

correlated errors.

2.2.4 Completeness

As implied by its name, completeness means we should choose as many diverse candidate

models as possible. Again let's see from examples how bias reduction and variance

reduction can benefit from completeness.

Suppose we have a class of competing models fj(x) with different model structures,

each with independent bias b(x) with E[bj(x)]=O. We construct a composite model by

unweighted average

f,.(x)= fj (x) (2.9)

Then, the bias of the combined model isb(x)=1 m bj(x), which tends to E[bi(x)]=O

as m increases by the law of large number. According to the Markov's inequality, the larger

the number of candidate models m, the closer b(x) is to 0 in probability.

To illustrate how the number of candidate models variance reduction, let's suppose

there are m competing unbiased models, denoted as fj(x), j=l,...,m, having uncorrelated

errors of the same variance, var(f (x))= v and cov(fj (x), f k (x))=0.

Once again we create an unweighted average model as in the above equation (2.7), and

then the variance of the combined model is
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var(f,.(x))= -. (2.10)
in

Clearly, the larger the number of candidate models mn, the smaller the variance of the

composite model.

From the angle of feature extraction, in order to make the set of features more complete,

the more candidate models the better, because the union of more feature subsets can

approximate the complete feature set better.

However, does it mean we should include all competitive models regardless of other

properties? For example, in direct model combination example where

f (X) = i=1wj .f(x) (2.11)

according to the bias-variance tradeoff, although the model bias can be reduced by

including more candidate models, the variance of estimated parameters wj will rise because

more parameters need to be estimated from the same data.

Therefore, given model diversity, there might be a saturated number of candidate

models. In the context of aggregating multiple experts, Makridakis and Winkler [1983] and

Clemen and Winkler [1985] demonstrate the diminishing marginal returns associated with

large numbers of experts, which is further supported by Ferrell [1985] who suggests using

three to five experts. This will be discussed in more detail.

2.3 Model assessment

Certainly, in order to keep competence of candidate models, first we should know how to

assess a model, that is, to tell how good a model is. Naturally, the predictive accuracy or

equivalently generalization error is a good criterion to evaluate the performance of a model.

However, if we are in possession of only small sample, this can be incorrect and instable.

Furthermore, unlike the usual case where the generalization error is estimated somehow

based upon in-sample error or training error, here we have got to estimate it from small

sample testing error, and therefore the problem is somewhat different and the usual
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methods can not be applied directly.

The possible solution to make model assessment correct and stable is to incorporate

some prior information as well as employ some stabilization procedure. In this section, we

will propose a method to combine subjective judgment with some empirical objective

evaluation in model assessment. In fact, the concepts of objectivity and subjectivity have

always coexisted uneasily in scientific disciplines. Although many scientists and engineers

would argue that subjective judgment has no place in objective scientific endeavors, the

reality is that some measure of subjective judgment is inevitable because appropriate

empirical data are simply not always available to characterize everything quantitatively.

For example, in model assessment objective quantification fails to incorporate a model's

theoretical foundation. In the past several decades, numerous technical disciplines have

recognized the role that expert judgment, in particular, plays in their fields and have

engaged in formal studies of its use, for example, medical decision making, weather

forecasting, climate change analysis, safety and reliability analyses for nuclear power

plants, stock price forecasting, to name just a few.

2.3.1 Subjective judgment

As we argued, subjective judgment plays an important part in assessing models, because it

helps incorporate some information that can not be characterized by empirical data and

make model assessment robust to random small sample. Especially in some cases where it

is too expensive or even impossible to collect observations, subjective judgment may be

the only way to assess a model.

Usually, subjective judgments are expert opinions from domain experts. Such expert

opinions can be made in terms of the following information:

(1) Theoretical foundation

Obviously, if a model is built on sound theoretical foundations, people tend to feel more

confident in it.

(2) Interpretable structure
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Without surprise, one would favor a model that has interpretable structure, because if

one can understand it he will feel more assured. That is part of the reasons why theoretical

models are often preferred over empirical models.

(3) Validation

If a model is well tested after calibration, the chance of large errors gets lower. Certainly,

a validated model is more likely to have good performance.

(4) Past performance

The past performance of a model is another good information source based on which

for an expert to judge a model. Record about a model's past performance can come from

one's personal experience as well as public data set.

(5) The history of a model

The development history of a model can be helpful. Just for example, a newer model is

likely to be better than older ones. This is because if there is no new information worth

being incorporated, it is not necessary to create a new model. Furthermore, sometimes a

new model is explicitly intended to replace old ones.

Subjective judgment can be made in the form of a point estimate of its generalization

error. Alternatively, experts often provide these judgments in the form of probability

density function of the expected error. In some other cases, expert opinions concerning the

performance of a model can be summarized in a score.

2.3.2 Model error evaluation

Objectively the only way to evaluate the performance of a model is to compare it against

observations, so the objective evaluation of model performance is to estimate the

generalization error based on empirical validation errors. It is worth noting that in the

present case the estimation process is different from the usual model selection procedure

that occurs together with model training. This is because in the real world, models are

already ready to use and their parameters are not tunable. It is almost always the case that

the new test data set is different from the training data set, and therefore what we have is a
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problem of out-of-sample model testing. In the literature, sometimes this is called

post-sample forecasting error or post-sample model validation [see e.g. Ashley, 1997].

Besides the above difference, there are another two challenges, namely small sample

setting and noisy data or even the presence of outliers. The small sample of noisy data

poses at least two problems. First, the test data set is not sampled evenly across the input

space, and since each candidate model does not work uniformly well over the input space,

consequently the comparative performance of models might vary with different test sets.

Second, due to the random fluctuation in sampling noisy data the rank of models in terms

of performance can be quite different from sample to sample, especially in small sample

settings. Due to the limited amount of data, the testing error might depart from the expected

error. In both cases, the new data set might not be representative sample of the cases that we

want to generalize to and therefore the testing error will be biased, that is, deviate from the

expected error.

A classical way to estimate generalization error is to penalize in-sample calibration

errors by model complexity in terms of Occam's razor, for example Akaike's Information

Criterion (AIC) [Akaike, 1973]. When estimating generalization error from testing error,

likewise we can apply the principal of parsimony, but the measure of model complexity is

different because the number of parameter cannot represent model complexity anymore.

Rather, the functional form or functional roughness as in regularization can be utilized

instead. In such a framework, the generalization error can be expressed as

[generalization error] = [testing error] + A . [model complexity], (2.12)

where A is a constant which specifies the weight of model complexity.

In this method, for models with the same testing error, the smoother a model, the

smaller its generalization error. However, in practice it is quite hard to figure out what

value A, which indicates the importance of smoothness, should take,. Therefore, we would

rather favor another simpler method.

An alternative possible way to improve small-sample accuracy and stability is to apply
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the method of bootstrap, which is a resampling technique specifically suitable for small

sample situations. In this method, bootstrap replications are repeatedly sampled from the

original data set with replacement according to its empirical distribution function.

Bootstrap is an effective way to stabilize instable procedures [Breiman, 1996] by

mimicking the random fluctuations in real testing data set. In addition, inference and

estimates obtained using the bootstrap replications are often more accurate in small

samples, in some cases dramatically so. [e.g. Freedman and Peters, 1984].

As for outliers, a useful approach to make estimate robust is to employ different loss

functions just as in M-estimator [Huber, 1964], which reduces the influence of outliers. For

example, in the presence of outliers we may prefer the absolute error to the squared error.

To apply the bootstrap method is pretty simple. Suppose the original data set is { (xi, Yi) },

i=l,...,n. Bootstrap samples, denoted { (xbi, Ybi)}, are repeatedly drawn from the original

samples by putting mass 1/n at each original data point, with the number of bootstrap

replications equal to the original size n. Then, the testing error of the bootstrap data set can

be evaluated as

ej = I (fj (X (Xbi bi )2 (2.13)

The above procedure is repeated for 50 times and we equate the generalization error of

modelfi(x) to the average testing error.

2.3.3 Combining subjective judgment and objective evaluation

Bayesian updating is a natural way to aggregate information from different sources and

thus improve estimate. It is often applied in combining multiple experts as well as

empirical evidence, for example, see [Clemen and Lichtendahl, 2002], [Clemen and

Winkler, 1999] and [Morris, 1977].

In Bayesian framework, both prior information and likelihood function are expressed in

the form of probabilistic density function. According to the Bayesian updating formula, the

posterior probability density function is obtained as
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PxID (x d)= PX (X)PDIX(d x) (2.14)
I Px (X) PDIX (d x)dx

where px(x) denotes the prior distribution of a random variable x, PDIx(dlx) refers to the

likelihood of data d given x, and PxD(xld) is the posterior probability density function of x.

Therefore, the posterior distribution incorporates all the information we have, both prior

information and empirical evidence, and thus Bayesian estimates can be made based on it.

This method can be directly applied to our case, combining subjective expert judgment and

objective evaluation. To illustrate how to use it, consider an example. Suppose a random

variable x follows normal distribution N(u, a2 ) , where y is the parameter to be estimated

from samples d=(xl,...,xn). Furthermore, we know in advance ,u is also normally

distributed as

p D ) exp -' (2.15)

Applying the Bayesian formula yields the posterior distribution x I D - N(i, at'2 ),

2

X r + acx
with ,u= n

2
x + 2

n

Based on the posterior distribution, the Bayesian point estimate of the location

parameter ,u is equal toi . Note that it is actually a weighted average of the prior mean /

and the sample mean x

/ = W117 + W2 X, (2.16)

where

var(x) var(u)WIe= var\ ' , and W 2 .X -(2.17)
var(,u)+ var(.V) var(,u)+ var(x)

In this example, both prior distribution and likelihood function are assumed to be

Gaussian. In fact, generally it is also true that the posterior mean is a linear combination of

87



the prior mean and maximum likelihood estimate. In this sense, Bayes estimate is a

shrinkage estimator with the difference that the Bayes estimate shrinks towards the prior

mean while in other shrinkage estimators like James-Stein type estimators towards zero.

A difficulty in applying Bayesian method is that we have to specify prior density and

likelihood function in the form of probability density function, which is sometimes

impossible without enough information. For example, it is usually hard to know the

distribution of an expert judgment. In reality, experts often provide their judgments in the

form of quantiles of the distribution (e.g., 5th, 50th, and 95th percentiles). In addition, we

can not always know the error distribution, either. In fact, there is an easier method closely

related to the Bayesian approach, which is called Bayesian Method of Moments (BMOM)

[Zellner, 1994 and 1997]. It is specifically introduced to compute post-data densities for

parameters when not enough information is available to formulate a likelihood function

and a prior density, for which it is impossible to use Bayes' theorem. BMOM differs from

traditional Bayesian analyses in that it is based on two weak assumptions about moment

conditions of data without specifying the prior density and the likelihood function. In the

BMOM approach, post-data moments of parameters given a data set are first calculated,

and then, the maximum entropy approach is applied to choose a proper posterior density

that maximizes entropy under the constraints of given moments. As derived in [Zellner,

1994], the posterior mean is equal to the sample mean under assumptions, where no prior

information is incorporated.

To overcome these disadvantages, we would propose a more flexible method by

extending the case with both normal prior and likelihood function to general ones. A

generalized Bayesian estimate of the generalization error is constructed as a weighted

average of prior mean eu, from expert judgment and mean sampling error e

GE = wle + w2 e, (2.18)

where variances are utilized to construct weights, i.e.
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var(e) var(u,e )
W: = var(u, ) + var(e) and w var(u,e ) + var(e) (2.19)

Heuristically, it is easy to understand the meaning of weights. As we know, the variance

reflects confidence. The smaller is the variance, the smaller the expected error of an

unbiased estimator. Likewise for experts, the smaller is the uncertainty in their judgments,

the higher the confidence. Intuitively, an estimator with more confidence deserves higher

weight. Furthermore, we can check some extreme cases. If there is no evidence but only

subjective judgment, clearly the best guess of the expected model error is the expert

opinion. On the other hand, if we have infinite number of samples, which is only an ideal

case though, generalization error can be evaluated exactly only with data and expert

opinion will be of no use.

Therefore, it does make sense to use confidence to control weights in generalized

Bayesian estimate. Its biggest advantage lies in that it only requires the first and second

moments without the necessity of specifying prior distribution and likelihood function,

thereby making the problem much easier.

2.4 Model diversity measurement

It is essential to maintain diversity in combining multiple models. Model diversity can be

analyzed both qualitatively and quantitatively depending on from which angle to assess it.

Correspondingly, both subjective judgment and objective measures are necessary.

2.4.1 Subjective judgment concerning model diversity

Model diversity stems from many aspects. Some of them can not be directly characterized

by real values. However, based on this information, a subjective judgment concerning

model diversity can be made. In assessing model diversity, the following factors should be

taken into account. Based on one's qualitative analysis, diversity scores denoted as ds(f,fj)

can be assigned to models. Subjective diversity scores range from 0 to 1, with 0 meaning all
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the same.

2.4.1.1 Model source

By model source, we mean how models are created. Models built upon different theories,

learned from different data or using different algorithms, or created by different modelers.

First, models having different underlying theories can be expected to fail in different

situations. For example, in atomic physics atom models build on classical mechanics and

quantum mechanics tend to have quite different behaviors.

Second, data and learning algorithms play an essential role in creating models,

especially empirical or semi-empirical models. As we know, it is very likely that randomly

collected data convey different patterns, which in turn result in varied models. For example,

data sets from different small regions in the input space will lead to different local models.

Similarly for learning algorithms, since they differ in their capabilities and properties of

learning, they usually produce various kinds of models. For example, multiple linear

regression using polynomials and nonlinear artificial neural network tend to spot different

patterns in the same samples and the resultant models will have different behaviors.

Third, the importance of modelers in modeling is unassailable. Experts who are very

similar (in modeling style, philosophy, access to data, etc.) tend to provide redundant

information in modeling.

Therefore, model source is an important factor in assessing model diversity.

2.4.1.2 Model structure

Compared to model source, diversity in model structure seems more obvious. Model

structure here refers to both functional form and parameter vector. If two models take on

different function forms, for example multiplicative or exponential, clearly they will

behave differently. Meanwhile, if two models have different parameter vector, they will

have different model dimensionality in terms of the number of independent parameters and

thus have different freedom in modeling.

Thus, in analyzing model diversity, it is central to consider model structures.
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2.4.1.3 Error distribution

Model diversity can be also seen from error patterns. Usually, model error is only

expressed in the form of mean squared error. However, two models with the same mean

squared error can be pretty different in terms of error patterns in the form of empirical

probability density function of error or exceedence probability of error.

The empirical probability density function of error is histogram of testing errors with

mass 1/n on each sample point. One of its examples is shown in

Figure 2.1

Error
Figure 2.1 Typical empirical probability density function of error

The error distribution shows us how the errors are distributed and it helps identify the

effect of outliers. Comparing the empirical probability density function of testing errors of

two models, it is easy to see the difference in error patterns.

2.4.1.4 Localization

As argued in section 2.2.2, diversity in localization is also desired in model combination.

Locality can be expressed in the change of the predictive error over the input space.

Usually, the generalization error is defined as

GE = E(fi(x) f(x))2px ()dx= (gi(x) f(x))2 Px (x)dx+f E ( 2)px (x)dx, (2.20)

where fi(x)=gi(x)+e(x) is a candidate model and flx) is the true model. To analyze the

localization, we will apply an idea similar to moving averaging of errors with regard to

inputs x with the difference that all data points will be used and locally weighted average

will be utilized to make the moving average smoother because only a small testing data set
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is available. In particular, a radial function, which is a function of the difference between

data points, is used as the weighting function. At last, a localized error with regard to x is

defined as

Ixk -Xi1 2

e(xk)= Wki (f (xi)-f (Xi))2 ,with weights Wki = I (2.21)
Zi=l Xk -xil

A typical example of such localized errors is shown in Figure 2.2.

x

Figure 2.2 Localized average errors

Localized errors helps evaluate model performance over different regions, which in

turn helps determine the property of localization of each model. With the aid of the graph of

localized errors, it is easy to see how diverse models are in terms of localization.

2.4.2 Objective measure of model diversity

Besides subjective judgment regarding model diversity from aspects that can not be

expressed explicitly in numbers, it can also be evaluated by some objective measures, for

example discrepancy between two models. There are many different kinds of distance

measures that quantify the dissimilarity between models, among which mean squared error

(MSE) is the most widely used and also the simplest one. However, mean squared error

only considers the mean distance and omits other information, thereby making it not

sufficient for evaluating model diversity. For example, model A has the same MSE distance

from two models B and C. However, suppose there is only a constant difference between

model A and B while the difference between A and C is a complex function of x. Therefore,

the similarity between model A and B and that between A and C is actually quite different.
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The problem of MSE distance is that it does not take into account the difference in trends

over x.

The dissimilarity in trends can be accounted for in at least two ways. One is the

correlation between two models. Similar to covariance between two random variables, let's

first define variance and covariance of functions. Suppose there are two models j(x) and

j(x) defined on x [a, b]. We define the function variance as the sample variance with

infinite number of samples

var(fi (x)):= im I (f (Xk) - E(fi (xk )))2 = lim ( (f (Xk ) ) (E(fi ()))2

Nk= N--a). N f, .Ck=1 2 ix

I f,2(x)dx

b-a

(2.22)
(b -a f 2(x)dxf(b f (x)dx J

(b-a)2

where the expectation is in turn defined as

N I N 9 f (x)dx

E(fi (x)) = lim -Zfi (Xk ) - lim -1 f(xk )x =
N k N Nx b-a

(2.23)

Likewise, we can define the function covariance between two models

Cov(fi (x), f (x)) =

fi (x). fj (x)dx
b-a

imI Ef i (X )f(xk ) -E(fi(x)). E(f , (x))

bi(x)dx' f (x)dx (b-a) fi(b )db- f(x)dx. fj(x)dx

(b-a)2 (b-a)2

If cov(f (x)fjx))=O, f(x) and f(x)are uncorrelated.

At last, the function correlation between two models can be defined as

corr(f i (x), fj (x)) = cova(fi var(X) f (x))

(2.24)

(2.25)

which takes values from -1 to 1.

It is clear that iffi(x) =fj(x) + C with C a constant, corr(ff(x),fj(x))=l, in which f(x) and

Jj(x) have exactly the same trend.
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Another way to take into account the difference in trends is by the variance of error

between two models, that is, cov(fi(x)-fj(x)). Obviously, if fi(x) = fj(x) + C with C constant,

cov(fi(x)-fj(x))=0.

In fact, these two methods are closely related except in different scales, because

changing the geometric average to arithmetic average and division to subtraction in the

definition of the correlation yields

corr2(f, f ) = cov(f i, f) - (var(f) + var(f))
(2.26)

= (cov(, - f , f,) - cov(f - fj, f,))= var(i - f)

However, since the error variance has the same scale as the mean squared error, it is easy

to play with. Therefore, at last we can define the dissimilarity betweenfi(x) andfj(x) as

d(fI f ) ((x)-f(x))2 I+vaf (x)-f (x)), (2.27)

which is positive and symmetric, similar to the bias-variance decomposition except that the

first term is the mean squared error rather than the square of the mean error.

Earlier we defined the diversity as the difference between the reasonable part g(x) of two

models, rather than between outputs of two models. However, here we define diversity

directly on outputs of two models. Actually it does matter in most situations, because if we

suppose fi(x) = gj(x)+ ±i(x), then

E(fi (x)- fj (x))2 = E(g i (x) -g j (x))2 + E(i (x) -j(x)) 2 (2.28)

where the second term is unknown but can be assumed to be constant.

In the above, we defined the dissimilarity between two models, or pair-wise diversity,

which incorporates both mean distance and dispersion of distance. In practice, we care

more about the diversity of a model ensemble, or group-wise diversity. Based on the

pair-wise diversity, it is easy to define the group-wise diversity as the average diversity

between any two models

D N(N )E d(f,,f), (2.29)
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where N is the total number of models in an ensemble.

2.4.3 Combine subjective and objective diversity measures

Now we have both subjective diversity score denoted as dsfi, f) and objective diversity

measure denoted as d(fi,fi)ready and just like in evaluating model error we need to integrate

subjective and objective information together. However, unlike in that case diversity score

and objective diversity measure at the present are in different scales and Bayesian method

is not suitable. This problem can be addressed by a utility function if we view it as a

multi-attribute decision problem. Let's define final diversity as

div(fi, fj ) = exp(ds(fi, f j )) d(fi, f j ), (2.30)

which is nonnegative and symmetric, monotonic with regard to both diversity score and

diversity measure. In terms of so defined diversity, when two models are the same, div(fi,fi)

is equal to zero, and div(f,fi) can tend to infinity.

2.5 Test error independence

From the arguments and examples in section 2.2.3, it is seen that independence plays a

similar essential role to that of diversity in model combination. Once again, here

independence specifically refers to independence among total errors of models compared

to the true model, that is, ei(x)=fJ(x)-f(x). Although the true model is unknown, we have data

sampled from it. Therefore, the error independence can be tested by sample covariance.

The smaller the covariance, the better.

Another problem is that data might be noisy, but this does not matter since we are not

interested in absolute values of covariance, but rather in their difference, for example, the

difference between cov(ei(x), ej(x)) and cov(ei(x), ek(x)). Suppose the data contains additive

noise (x), and we have data y=f(x) + E(x). Then, if we assume (x) is independent off(x),

we obtain

cove (x), e (x))= cov(fi (x)- f (x), f (x)- f (x))+ var(E(x), (2.31)
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where the LHS can be estimated from samples directly and the second term on the RHS

does not depend on models. Therefore,

cov(fi (x) - f(x), fj (x) - f(x))= cov(ei (x), e j (x))- var(E(x)) . (2.32)

Thus, the existence of noise in data does not affect the difference between covariance.

According to results in section 2.2.2.3, the covariance is desired to be close to 0 or even

betterto be negative. If cov(ei(x),ej(x))< var(£(x)), then cov(fi(x)- f(x), f(x)-f(x))<O,

which means uncorrelated or negatively correlated errors. In fact, like in regression model

the noise level var(6(x)) can be estimated in the model combination procedure.

Sometimes, we want to know the covariance between a model and a group of models. It

can be defined as the average covariance between that model and every member in the

group of models.

2.6 Saturated number of candidate models

In model combination, the model accuracy is improved through redundancy. The reason

reduction works in improving model performance is because diversity and independence

are also introduced at the same time. It is clear that without model diversity and

independence redundancy alone can only worsen model performance. We suspect given

the level of diversity, there exist a saturated number of candidate models, beyond which

adding more candidate models does more harm than good. This suspension is supported by

our empirical studies. There is also some evidence for this from the literature. For example,

in the context of aggregating multiple experts, Makridakis and Winkler [1983] and Clemen

and Winkler [1985] demonstrate the diminishing marginal benefits associated with large

numbers of experts. Moreover, Ferrell [1985] suggests using three to five experts.

The existence of a saturated number can be explained heuristically by a tradeoff

between redundancy and diversity. Generally, the more redundancy information a group

candidate models contain, the worse in combining models; in the mean while the higher the
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level of diversity and independence, the better. Adding more candidate models tends to

increase information redundancy as well as model diversity and independence. Beyond

some point, the influence of redundancy increase dominates that of increase in diversity

and independence, and thus adding more candidate models does more harm than good.

In fact, this redundancy-diversity tradeoff is equivalent to the well-known

bias-variance tradeoff in that the more diversity, the smaller the bias of the resultant

composite model because more valid features are included, while at the same time the more

redundancy is introduced by adding more candidate models the higher the variance

because more parameters need to be estimated.

According to both redundancy-diversity and bias-variance tradeoff, there is an optimal

balance point. Currently, we are not able to provide some theoretical results concerning

how to find the saturated number. However, it can be done by empirical test easily. In

reality we can test if the generalization error decreases when adding one more candidate

model to determine the saturation number. This test might tell us if it is worth adding one

candidate model to the pool or not.

2.7 Candidate model choice procedure

In the above sections, we have already discussed some important criteria we'd better

follow in choosing candidate models and how to quantify these criteria. Now we are ready

to come up with a complete candidate model choice procedure. This procedure is a

stepwise forward procedure beginning with an empty candidate model pool. Before

describing it in detail, let's first propose an overall preference score of models

incorporating model accuracy, diversity and independence. The definition of preference

score is also in the form of a utility function as in multi-attribute decision making problems

PS(f (x)) = -a GE(f i (x)) + b .div( fi (x), F) - c cov(fi (x), F), (2.33)

where coefficients a, b and c are all nonnegative, which specify the individual importance

of accuracy, diversity and independence, div(f(x),F) and cov(fj(x),F) refer to average
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diversity and covariance, respectively, between a model fi(x) and the current candidate

model pool F. This choice of additive utility function is because the measures of

generalization error, diversity and independence have the same unit. It helps resolve

conflicts among model accuracy, diversity and independence when choosing the next

model.

Basically, the stepwise forward candidate model choice procedure follows the steps:

(1) Choose the model with the smallest generalization error GE(f(x)) and add it to the

empty pool of candidate models, F.

(2) Pick the model having the largest preference score PS(fi(x)) among the rest models.

(3) Combine models in the pool and evaluate the generalization error of the resulting

composite model;

(4) If the generalization error gets larger than that of the previous composite model, then

eliminate the newly added model and go to (5); otherwise, go to step (2);

(5) Combine models in the pool and return an optimal composite model.

It is seen from the above procedure that the testing of completeness is actually

integrated with the model combination procedure.

2.8 Summary

Combining multiple models is a productive way to improve model performance. However,

its efficiency highly depends on the choice of candidate models. In this chapter, we

proposed some desirable properties a group of candidate models should possess, which

include accuracy, diversity, independence as well as completeness. To facilitate the choice

with the use of these criteria, some quantitative measures are put forward. Meanwhile,

Bayesian method and utility function are employed to aggregate information. Finally, a

stepwise forward candidate model choice procedure is proposed to realize all these criteria

in a procedure.
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Chapter 3

Data-guided Model Combination by Decomposition and Aggregation

3.1 Introduction

A model, which is usually in a mathematical form, is a proposed explanation of a particular

phenomenon. This proposed explanation is also used to predict future events. As more

evidence is gathered by observing later on, that model can be validated against data. If the

prediction error, i.e. difference between the prediction and the observation, is not tolerable,

the model has be to calibrated or modified in model structure by incorporating new

observed data. This cycle is then repeated again and again with more observations

available until the model provides a satisfactory explanation of all events, which can be

observed. Scientific progress requires that scientific models be updated as new

observations show their deficiencies. As we see, both models and data play crucial roles in

this progress.

Most often scientists bring up various models to explain a certain phenomenon from

different angles, based upon varied theories, or due to the use of different sets of data. For

example, in thermal hydraulics many different models were put forward to describe the

behavior of two-phase flows and predict their pressure drops through a flow passage.

Another example can be the probabilistic seismic hazard analysis, where many ground

motion attenuation models were developed independently to predict the ground shaking

given an earthquake. In such a situation, we are facing a thorny problem, namely, choosing

the best model to predict the future events. In general, we may also have some, but often

sparse, data at hand, and thus we can test the models against those data to select an optimal

one. Several model selection methods and procedures have been developed to achieve this

goal.

However, selecting a single best model is not so desirable as it does not make efficient
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use of those information at hand, e.g. a class of competing models and a set of new data.

Therefore, alternatively model combination is proposed to further improve model

performance. The benefits of model combination concerning augmenting model accuracy

and reducing model uncertainty has been pointed out a lot of literatures [cf. Madign and

Raftery, 1994 and Clemen, 1986]. As we know, model uncertainty, categorized into

"epistemic uncertainty", stems from incomplete or imprecise knowledge and can be

lowered by improvements in data measurements and model formulation. It is not surprising

to see that combining different information sources including candidate models and data

could result in a better model. Up to date several model combination methods have been

proposed, for example equally-weighted combination and Bayesian Model Averaging

(BMA) [Hoeting, 1999] or Bayes factor [Kass and Raftery, 1995] weighting method.

The basis idea behind model combination is to efficiently aggregate all available

information, which, however, may contain errors or noises, and then build a new model

somehow as good as possible. A good model combination method should have the

following desirable properties:

(i) It is able to aggregate information in all competing models and therefore reduce model

bias and uncertainty.

(ii) It should be able to detect errors in competing models in some degree, thereby reducing

model bias.

(iii) It can model dependence among competing models and thus reduce information

redundancy.

As pointed out by Hogarth[1987], the poor performance of human judges relative to

statistical models stems largely from an inability to recognize and process redundant

information appropriately. Furthermore, reducing information redundancy helps reduce

model dimensionality, e.g. the number of factors in a factor model, and thus reduce model

uncertainty.

(iv) It is able to combine different kinds of information, including models and data;

(v) It has robust performance when having different sets of data;
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(vi) It is objective, involving no subjective judgment.

Ideally, a model selection process should be objective and therefore repeatable.

To achieve the above goals, basically improving both accuracy and precision, we will

propose a new model combination method by means of decomposition and aggregation

based upon data. This method is mainly suitable to the situations where there is no

well-founded theory and only sparse data is available, because otherwise we may be able to

derive a more exact theoretical model.

The paper is organized as follows. In section 3.2, a brief review about related work will

be given. In section 3.3, dependence among candidate models will be analyzed using

influence diagram and factor model will be proposed to model such dependence. In section

3.4, we will continue to talk about how to decompose a class of candidate models to factors.

After that, section 3.5 will present a regression method to aggregate factors based upon

data. Finally, a numerical example will be given in section 3.6 to show how this model

combination method works.

3.2 Related work

Closely relevant problems to this chapter include model evaluation, model selection and

model combination. Up to date lots of efforts have been devoted to these problems. In this

section, we will briefly review some of them.

A model can be evaluated based upon how well the resulting prediction agrees with

future observations [Dawid, 1984]. In the case where the same group of data is used for

both model calibration and validation, model selection method or its variants are widely

applied.

By now a variety of model selection methods have been developed, including classical

hypothesis testing, penalized maximum likelihood, Bayes methods, information criteria

and cross-validation. All these methods, which overlap with one another, provide an

implementation of Occam's razor [Madign and Raftery, 1994] in one way or another, in
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which parsimony or simplicity is somehow balanced against goodness-of-fit.

Among those model selection methods, information criteria are considered to be novel

and promising, and thus draw much attention. The name, i.e., information criterion, arise

from its close connection to the information theory. This class of model evaluation and

selection methods was pioneered by Akaike's Information Criterion (AIC) [Akaike, 1973 ],

and afterwards many other similar information criteria were derived from different

perspectives, for example, Bayesian Information Criterion (BIC) [Schwarz, 1978],

Takeuchi's Information Criterion (TIC) [Takeuchi, 1976], Minimum Description Length

(MDL) [Rissanen, 1978], Hannan and Quinn criterion (HQ)[Hannan and Quinn, 1979] and

so on. Basically, all these criteria can be expressed as

IC = -2log(Maximum likelihood) + penalty(k,n) (3.1)

where maximum likelihood is the likelihood f(O,x) evaluated at the maximum likelihood

estimate 0, and penalty term is a function of the model dimension k, the number of model

parameters, and the sample size n. From equation (3.1), it is easily seen that this class of

methods can be viewed as modified maximum likelihood or penalized maximum

likelihood methods.

All these approaches select the model that minimizes this quantity based on available

data. The only difference between them lies in the second term, that is, different evaluation

methods use different penalty terms as correction.

As we mentioned, in addition to model selection another class of approaches is model

combination, which includes, for instance, equally weighted combinations, combinations

based on information criteria evaluation, Bayesian model averaging.

Equally weighted combination is the simplest one in this class, because each model is

assigned the same weight. This approach does not involve new data, and thus is usually

applied in cases where there is no data available and all competing models have the same

preference. When some data is gathered, this approach is ready to extended to a weighted

combination. For example, each model can be evaluated using Akaike's information
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criterion (AIC) and assigned different weights based on their AIC value [Burnham and

Anderson, 2002], for example

1
exp(-- AIC )

Kw =ICK 2 (3.2)

exp(-- AICj)
j=l 2

A recently developed model combination method is Bayesian Model Averaging (BMA)

[Hoeting, 1999] or Bayes factor [Robert, 1995] weighting, which became computationally

possible since the invention of the Markov Chain Monte Carlo algorithm [Gilks,

Richardson, and Spiegelhalter, 1998]. The basic idea of BMA is very straightforward, that

is, to calibrate the probabilities of competing models using Bayesian updating method.

After obtaining the posterior model probability, the composite model can be expressed as

f(y I D) = -' fD (y) Pr(M i D) , (3.3)

where D is the observed data, K is the number of competing models, f(y) is the ith model,

and according to the Bayesian formula the posterior probability Pr(MilD) can be calculated

as

Pr(Mi I D)= Pr(D M)Pr(Mi) (3.4)
El,' Pr(D Mi) Pr(Mi)

where Pr(Mi) is the prior probability of model Mi. The difficulty of implementing BMA

partly consists in the computation of the integral

Pr(D M) = Pr(D I,, Mi) Pr( I Mi)d, (3.5)

where Pr(O,1Mi) is the prior density and /i is the vector of parameters of model Mi.

Another class of methods of model combination is Bayesian information- aggregation,

which is also based upon the Bayesian method [Morris, 1977 and Clemen and Winkler,

1993 ]. Suppose 0 is a continuous quantity to be estimated, and we obtain a group of

estimates x,...,XK from a class of competing models, say, M...,MK, respectively.

According to the Bayesian formula, the posterior distribution of Ois
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Pr(01x1 ,...,x)z Pr(x,..., XK O) Pr(xl,.,XKO) (3.6)

Pr(xi,..., XK) | Pr(xl. , XK , )dO

where according to the Markov's property

Pr(xl,..., xK,O)= Pr(xK I K_,..., Xl,) ... Pr(X2 I x,O)Pr(x, I 0) Pr() . (3.7)

The central idea of these method lies in modeling the dependence among models,

which is termed the conditional mean dependence assumption (CMDA) in [Clemen and

Winkler, 1993], that is,

E(Xi I Xi- ,11,Xl,) = i,o + i,lXI + + i,i-lXi- + ai, (3.8)

By the above equation (3.8), the knowledge about the information sources is

incorporated in aggregration. Thus, if we know the distribution of Xi in advance, such as

Normal, Student T, Logistic, Laplace, Gamma and Beta, we can obtain its conditional

distribution Pr(XilXil,...,XI, ) with the expected value determined by equation (3.8).

Finally, we obtain the posterior distribution of .

Unfortunately, none of the above methods can give us a satisfactory solution to the problem

mentioned earlier. For example, the model selection methods of information criterion can

only choose a single best model, the BMA method cannot model the dependence in model

structure among candidate models, and Bayesian information-aggregation methods cannot

incorporate information in new data. These weaknesses are part of reasons that motivated

the research of this chapter.

3.3 Model structure analysis

To proceed, it is time to further clarify our problem. Suppose we have a set of competing

models, denoted as M,...,MK, which can be expressed in mathematical forms as

fi(x),.. .fK(X), and gather a new set of data, i.e. {(xi,Yi): i=l,...,n}, where xi and y can be

vectors of input variables and response variables, respectively. Now our question is
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Question: Given a class of competing models and a set of sparse data, how can we

construct a more accurate composite model with smaller uncertainty as well?

Note that here we evaluate a model using both accuracy and uncertainty, which is certainly

consistent with the goals mentioned in section 1.

Generally, it is convenient and beneficial to deal with modeling in a statistical way. In a

statistical scheme, (xi,yi) can be interpreted to be generated by random variables, say, (X, Y),

which can be carried out in two different angles. First, the input variable X can be viewed as

a random variable with the probability distribution function (pdf), fx(x), which is the

same as its sampling density. Usually,fx(x) can be assumed to be a uniform distribution, i.e.

U[a, b]. Correspondingly, if Y=h(X), the pdf of Y,fy(y), is given by [Papoulis,1991]

fy (Y) = Jx (xI) + .+ + .· (3.9)

where xl,...,xn ,... are the real roots of the equation y=h(x).

Second, besides randomness in X, Y might have other sources of uncertainty, for

example, Y is mapped from X by a random rather than deterministic function or Yincludes

random error or noise.

Therefore, a data set { (xi,yi): i=l,...,n } can be viewed as realization of a random process,

and the same for models. Consequently, this model combination problem can be dealt with

in a statistical framework.

In this section, we will first make two arguments, namely, (i) candidate models are

dependent on each other and (ii) such dependence can be modeled using common factors,

and then we will propose a model structure formula, base upon which an ideal model is

obtained.

3.3.1 Model dependence

Intuitively, the dependence among competing models is obvious. First, each model is built

on the basis of some theories and data, which may be available to all modelers. This means

the competing models share the common, at least partly if not the whole, knowledge base.
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Second, all candidate models have the same purpose, i.e. describe the same phenomena and

predict the same future events. It is not surprising that different models produce very

similar results, as every model is trying its best to approximate the same truth.

As we know, good approximating models, each representing a scientific hypothesis, in

conjunction with a good set of relevant data can provide insight into the underlying truth.

To explain information source and the dependence among competing models, it is useful to

introduce influence diagram [Howard and Matheson 1984, Schachter 1986,1988], which

offers a convenient graphical tool to model the dependence among different information

sources. Figure 3.1 shows a typical example, where each circle or oval represents nodes,

which can be the truth or the full reality, a theory, a set of data or a model, and each directed

arc refer to conditional dependence between a chance node and a decision node, which

conveys information from a node to another and implies causality. In this example, Model

1 is created based upon Theory 1 and Data 1; Model 2 is build upon Theory 1 and Data 2;

and Model 3 is produced in view of Theory 2 and Data 2. The purpose of models is to

approximate the truth and predict the future. In such a framework, the overlapping

information source, including theory and data, serves as a vehicle for representing

dependence among the models. Note that here we use theory to denote any set of

statements or principles devised to explain a group of facts or phenomena, while model

refers to mathematical models in particular. Furthermore, different theories are brought up

to explain the same phenomena, termed as truth in Figure 3.1, and different sets of data are

generated by the same true model, so in fact there also exists dependence even among

different theories and different sets of data. Therefore, influence diagram gives us a clear

idea where the information sources for modelers come from.

Such influence diagrams were also called "knowledge maps" by Howard [1989], when

they are used to describe a modeler's knowledge about a particular system.

If we introduce the concept of "information", the purpose of a model is to express all the

information we have in a more compact and understandable form. A set of data contains
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only a finite fixed amount of information. In addition, most often data include noise as well

as information. In practice the part that cannot be explained is considered to be noise,

which actually may contain useful information.

In reality, such dependence is quite common. For example, the correlation coefficients

among economic forecasters are usually around 0.9 [Clemen and Winkler 1986, Figlewski

and Urich 1983].

Figure 3.1 Influence diagram

3.3.2 Factor model

In the previous subsection, we have analyzed the dependence among candidate models,

and now we will apply latent factors model to model such dependence. Our key argument

is that the propagation of information beginning at the truth and ending up with models is

just through latent factors, or components, and the dependence among candidate models is

due to their sharing of common factors. This factor model is absolutely not a new idea,

which has been applied in many areas. For example, factor analysis is widely used in such

areas as psychology, chemistry and economics.

It is easy to slightly modify the above influence diagram into a factor diagram as in

Figure 3.2. Note that in this factor diagram, information is characterized by factors and

correspondingly each directed arc is associated with a set of pairs of factor and weight, i.e.

Qij={I (fj, wij) }. In such a scheme, information is propagated from the node of truth to the
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nodes of model in the form of factors, but it is obvious that the sets of factor received by

candidate models are not necessary to be the same. The loss of information and

misspecification can also be described in terms of factor.

Figure 3.2 Factor diagram

3.3.3 Model structure

Now that we analyzed how the truth is reflected in data and theory and how the data and

theory are incorporated into models by means of influence diagram and factor diagram, we

are ready to analyze model structures of candidate models.

First, let's define the full truth or the true model. The observed data arise from the full

truth, or in other words, generated by the "true model". In terms of factors, the true model

can be expressed as

MT (x)= ,= wi(x)f(x), (3.10)

where fi(x) E F, the factor set, and wi(x) is its corresponding weight, intensity, or factor

loading as in factor analysis [See Bartholomew,1999], N is the number of total factors, x is

an input variable. In a linear case, wi(x) is constant, independent of x. Actually, in a

nonlinear case we can divide the range of input variables and approximate each subrange

with a linear model. Therefore, in this chapter we will assume the true model is linear with

respect to factors.
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We believe that usually "truth" or full reality has essentially infinite dimension, i.e. N

tends to infinity, and therefore it cannot be revealed with only finite samples of data and a

limited set of candidate models. At best, we can only building a model providing a good

approximation to the data available. Thus, a candidate model, an approximate

representation of the system, can be expressed in a similar way, for example the kth

candidate model

Mkl)= E ix i( ) (3.11)

with Nk<N, wherefi(x) E Fk.

As we pointed out, a model is only a simplification or approximation of the reality and

hence certainly will reflect the full truth in some degree. Whether a model is good or not

depends on the quality of the data and the theoretical foundation that went into the

modeling. In the factor model framework, the disagreement between a candidate model

and the true model can be caused by the following:

(i) The set of factors contained in a certain candidate model is incomplete;

(ii) The factor loadings are imprecise, i.e. wki• wi for the same factor;

(iii) A candidate model incorporates an erroneous or spurious factor, i.e. fkis F.

3.3.4 Construct an optimal composite model

With the above model structure in mind, our question now is how we can construct an

optimal composite model to overcome or mitigate the problems in candidate models,

thereby meeting the goals to the extent permitted by the amount of information available.

Before we begin to construct such a composite model, let's have another look at the set

of factors captured by a certain candidate model. As we mentioned earlier, on one hand

candidate models depend on each other through factors and on the other hand the sets of

factors may be different, which can be easily seen with the aid of the following Venn

diagram as in Figure 3.3.

109



Factor space

Figure 3.3 Factor space diagram

In light of this, it is convenient to divide a set of factors into two parts, i.e. common

factors, which are shared by all the candidate models, and unique factors. Actually, unique

factors are so called only in the sense that they are not shared by all the candidate models.

This differentiation can be easily understood intuitively because candidate models are

created based on common knowledge and individual intelligence. Therefore, every

competing model can potentially contribute to the composite model. It is obvious that the

union of Fl,...,FK give us a better approximation to F than any single subset.

Meanwhile, as we pointed out a while ago, each candidate model may contain erroneous

or spurious factors. For example, the unique factors may be attributed to personal bias and

incorrect. Such bias or error is also what we must try to rule out in combination. At this

point, data come to play their crucial role just as in a general modeling process data are

used to calibrate and validate a model. The detection of erroneous factors is together with

composite model construction.

Once a set of factors is ready, we can construct an optimal composite model by

aggregating factors, i.e.

M (x) = + N Wif (X). (3.12)

In the above equation (3.12), the factor weights and constant acan be determined based

upon data. In the course of aggregating factors, whether a factor is valid or not is

determined by its agreement with the data.

With these manipulations, the incompleteness, imprecision and error mentioned in the

previous subsection can be reduced, and at last we can obtain an optimal composite model,
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which is closer to the true model than any other candidate model individually. But, we still

have not solved two difficult key issues, namely,

(1) How can we extract factors from a class of candidate models? and

(2) How should we integrate factors and detect erroneous ones?

In the coming sections, we will propose some methods to attack these two obstacles.

3.4 Model Decomposition

Aggre

Decomp

Figure 3.4 Model decomposition and aggregation

The process of model decomposition and aggregation can be described reversing the

factor diagram in Figure 3.2. In Figure 3.2, the dashed lines means the pointed arc is under

the guide of data.

In the above figure, it is clear that this method consists of two stages. In this section, we

will propose different approaches to commit model decomposition and factor aggregation.

3.4.1 Model factor extraction

In section 3.3.3, we model the dependence among candidate models by means of common

factors, and thus factors can be extracted from candidate models by taking advantage of

this relationship. Before introducing factor extraction method, let's further clarify model

structure and also assume some simplification to make it mathematically tractable.
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If we fuse all unique factors of the kth candidate model into a single one, say, fk ,(x), we

obtain a simpler model structure as

Mk (x) Z, N Wk. (x)f, (x) + fk,, (x), (3.13)

where fci(x)'s are common factors and fku(x) is the single unique factor of kth candidate

model, and N, is the number of common factors extracted, and k=1,...,K. If we rewrite the

above equation (3.13) in a matrix notation, we have

M = Wf,. + f , (3.14)

where candidate model vector M=[MI,...,MK]T, common factor vector f,= L1,.. N]T, the

unique factor fu=[ul,...fuK]T, and the factor loading matrix W=[wl,...,WK]T with

Wk=[Wkl,.. .,WkN]. In particular, the equation (3.14) reduces to a linear transformation from

common factors to candidate models when assuming no unique factors.

To further simplify, we might assume the unique factors follow the same probability

distribution and independent just as in factor analysis, and then treat the average of the

unique factors as another common factor and rewriting the equation (3.14) we obtain

M = Wf, (3.15)

which is much simpler linear transformation. If W is invertible, we obtain

f, =W-'M. (3.16)

By doing this, we significantly simplify the problem of factor extraction, although

compromising some generality.

Actually, up to now we have not precisely defined dependence yet. In the following, we

will define dependence in two different cases and propose a second-moment as well as a

higher-order statistical method to perform factor extraction.

3.4.2 Principal Component Analysis (PCA)

As we know, if a variable X has a normal or Gaussian distribution, its distribution is

completely determined by its mean value and variance. Furthermore, if X is vector of
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Gaussian random variables, their joint distribution is also completely determined by the

covariance matrix. Under this classical assumption of Gaussianity, being uncorrelated is

equivalent to being independent statistically. Thus, dependence can be modeled only

through pairwise correlation.

Principal Component Analysis (PCA) [Jolliffe, 1986 and Christensen, 2001] is the most

commonly used subspace-related techniques for dimensionality reduction, filtering, data

modeling. The basic idea of PCA is to find the components that can explain the maximum

amount of variance of original variables, e.g. M1,...,MK in the current case. PCA can be

defined in a recursive way as described below. The direction of the first principal

component (PC) is so defined that the variance of the projection on that direction is

maximized, i.e.

w = arg max Var(w T M) = arg max(wTM )2 -E[wTM 2} (3.17)
IwI=l Ilwll=l

where w is a vector of same dimension as M, and it is normalized. In this sense, PCA

method is also termed Varimax rotation method. Then, the first principal component is

given by fi =wlTM. After this, it finds the orthogonal direction with the second largest

variation, or equivalently the principal component of the residual:

w, = arg max Var(wT (M -wwTM)) . (3.18)
IIwII=l

Or in general, after determining the first k-1 principal components, the kth component can

be determined similarly as:

Wk = arg max Var(wT (M Zki1lwiwi TM)). (3.19)

This continues until the dimension in the space is used up. The PCA is thus a rotation to

new coordinates and a sorting with respect to the variance.

In practice, the computation of the wi can be simply accomplished by the singular value

decomposition of the (sample) covariance matrix of M, i.e. YIM= E[(M-E(M))(M-E(M))T].

EM can be decomposed as:

Y-A=W AW (3.20)

where A is a diagonal matrix made of eigenvalues and W is made of eigenvectors, which
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correspond to w1 ,...,wk found by equation (3.17-19). Finally, principal components, or

factors, are obtained as f=WTM. It is easy to check that the covariance matrix of f is

diagonal, which means factors are uncorrelated.

PCA can at least serve two purposes in our case. First, it helps reduce model dimension

and reduce information redundancy, since the first several components, having the largest

variance, contain most information. Second, noise or error may be reduced by removing

the principal components ranking in the tail, which are more likely due to error or bias.

3.4.3 Independent Component Analysis (ICA)

For non-Gaussian variables, independence is not the same as uncorrelatedness; rather,

uncorrelated variables are only partially independent. In probability or statistics, two

random variables are considered to be independent if and only if their joint distribution is

equal to the product of their marginal distributions. For example, E(XY)=E(X)E(Y) if X and

Y are uncorrelated; while E(gl(X)g 2(Y))= E(gl(X))E(g 2(Y)) holds for any arbitrary

functions gl() and g2(') if X and Y are statistically independent. Therefore, in the case of

non-Gaussian random variables, much more sophisticated techniques have to be devised,

which can incorporate the information of higher-order moments. Independent Component

Analysis (ICA) is developed to meet this purpose.

Nowadays, lots of different ICA methods have been developed. In spite of such diversity,

the basic idea of ICA remains the same, that is, components or factors f = W-1M are so

determined that f,.i is independent of fcj for i. The diversity of ICA methods is due to

different independence measures and various optimization algorithms used to maximize

these independence measures. Two widely applied independence measures are

nongaussianity and mutual information [Hyviirinen, 1999]. Mutual information is a natural

measure of the dependence between random variance, which is defined as

I(Y,X)=H(Y)-H(YIX)=H(X)+H(Y)-H(XY), (3.21)

where X and Y are two random variables, and the entropy H(-) is defined as
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H(X) = flog fx (x). fx (x)dx

H(XY) = log fx (x, y) f(x, y)dxdy . (3.22)

H(Y I X) = log fyix (y Ix) fyix (y I x)dy

Obviously, I(YX)=0 only when X and Y are independent.

The independence measure of nongaussianity is based upon the argument that

nongaussian is independent. This is based upon the fact that a component will be

uninteresting if it is random and a Gaussian random is the most random according to one

standard measure of randomness, entropy [see Diaconis and Friedman, 1984]. The

nongaussianity can be measured by differential entropy or negentropy, which is defined as

J(Y) = H(Y )- H(Y), (3.23)

where Y is a non-Gaussian random variable and YG is a Gaussian random variable of the

same variance as Y. A fundamental result of information theory is that a Gaussian variable

has the largest entropy among all random variables of the same variance. Thus, the

negentropy J(Y) in equation (3.23) is always positive and is zero only when Y is Gaussian.

In fact, [Hyvirinen and Oja, 2000] shows that the above two measures are equivalent.

In practice, because of the difficulty of calculating it directly some approximation

methods are applied to estimate the negentropy. A classical method approximating

negentropy is to use higher-order moments [Jones and Sibson, 1987], for example,

J(Y) =iE[Y32 +I Kurt(Y)2, (3.24)
12 48

where the kurtosis of Y is defined by

Kurt(Y) = E[ 4 ]- 3(E[y2 (3.25)

Later on, [Hyvirinen, 1998] proposed a new approximation of negentropy as

J (Y) -- = I ki (E[G, (Y)] - E[G (YG )])2, (3.26)

where ki are some positive constants, both Y and YG are of zero mean and unit variance, and

the functions Gi(.) are some nonquadratic functions. If we use only one nonquadratic

function G, the above approximation becomes
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J (Y) (E[G(Y)] - E[G(YG )])2. (3.27)

By choosing G wisely, equation (3.27) can give us better approximations than equation

(3.24). [Hyvirinen and Oja, 2000] suggested two nonquadratic functions:

1u 2

G1(u) = -logcosha,u, G2(u) = -exp(--), (3.28)
a 1 2

where l<a 1<2 is some suitable constant.

Before applying any ICA algorithm, it is useful to do some preprocessing, which mainly

includes centering and whitening. This preprocessing is actually very simple. Centering M,

i.e. subtracting its mean vector E[M], is to make M a zero-mean variable. Whitening M is to

transform M to a new vector M' such that its components are uncorrelated and their

variance equal unity. This can be accomplished by means of eigenvalue decomposition

(EVD) of the covariance matrix M=WT/AW, just as in PCA.

Based upon the above discussions, maximizing the nongaussianity of wTM gives us one

of the independent components. To accomplish this optimization, a FastICA algorithm is

developed in [Hyvirinen and Oja, 2000]. The FastICA tries to find a direction, i.e. a unit

vector w, such that the projection w M maximizes nongaussianity measured by equation

(3.27), in a fixed-point iteration scheme [Hyvairinen and Oja, 1997]. The basic steps of the

FastICA algorithm is as follows:

1. Randomly choose an initial weight vector w;

2. Let w+ = E[Mg(wTM)J- E[g'(wTM)]w;

3. Normalize w+ as w = w+ I/w+l;

4. If not converged, go back to step 2.

Note that g is the derivatives of the nonquadratic functions G, defined as in equation

(3.28),

gl(u) = tanh(a,u) (3.29)

g2() = U exp(-u 2 / 2)
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where 1<aj<2 is some constant, often taken as al=l.

In the above convergence means that the old and new valued of w point in the same

direction, i.e. their dot-product get close enough to 1.

The above algorithm is only for one unit, which can estimate one of the independent

components. The algorithm for several units is very similar but needs some extra steps. To

prevent different vectors from converging to the same maxima we decorrelation the outputs

w M,..., w,T M after every iteration in a deflation scheme based on a Gram-Schmidt-like

decorrelation, i.e., when we run the one-unit FastICA algorithm for wp+, after estimatingp

independent components, orp directions wl,...,wp, we subtract from wp+l the "projections"

wp+wj wj, j=1,...,p and then renormalize wp+1:

1. Wp+ 1 = Wp+I j=l I p+lWjWj,

2. wp+l =wp+1 / WT, p+l p+1l.

The above two steps are accomplished after every iteration step in one-unit FastICA

algorithm.

In so doing, we can estimate all the independent components one by one. However,

sometimes it may be desired to use a symmetric decorrelation [Karhunen, 1997]. This can

be done by the classical method using matrix square root,

W = (WWT ) - ' 2W (3.30)

where W is the matrix (wl,...,WK) T and the inverse square root (WWT) - 1/2 is obtained from

the eigenvalue decomposition of WWT=UAU T as (WWT)-'/2=UA-'U/2T.

With this decorrleation, the several-unit FastICA algorithm, fixed-point for equations,

is obtained by replacing vector w in one-unit FastICA algorithm with a matrix W, thereby

giving us all the dependent components in one time. In this chapter, we use g2(u) and a

deflation method for decorrelation.

ICA is often considered a tool for explanatory data analysis. This is not surprising

because cause can be defined in terms of conditional probability or dependence in some
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circumstance [see e.g. Ellery,1991 and Forster, 1984]. ICA is also efficient for redundancy

reduction as each components (features) are independent from each other, i.e. they provide

no information to predict one variable using another one [Deco and Obradovic, 1995].

Another wide application of ICA is in noise reduction. Such denoising capability of ICA

was particularly noted in blind source separation [Jutten and Herault, 1991]. With these

desirable properties, ICA can serve as a good tool for us to extract factors from candidate

models.

3.5 Factor selection and aggregation

Applying the methods proposed earlier, we can extract factors from a class of candidate

models. With factors ready, the next step is to select a subset of factors and integrate them

based upon available data.

The factors will be aggregated in a linear form as shown in equation (3.3), in the same

manner the candidate models are decomposed. The popular regression method will be used

to estimate factor loadings. The basic idea of factor selection is to check if a factor is

supported by the empirical data or not. In other words, if inclusion of a factor makes the

resultant composite model worse, it is likely to be an erroneous one and should be ruled out.

Some criterion will be introduced to accomplish factor selection.

As mentioned earlier, factor selection is not a separate activity that precedes the model

calibration; rather it is a critical and integral part of model building. In the context of

multiple regression analysis, it is specially known as variable selection.

3.5.1 Sorting factors

In factor selection and assembly, the importance rank of factors becomes an important

issue, especially when the pool of factors is quite big. For example, suppose we have N

factors, then the total number of subset of factors is equal to 2N , which means we will have

to compare 2 N possible composite models to choose the optimal one. However, if factors
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are ranked, a stepwise factor selection can be applied, which makes the procedure of factor

selection and aggregation substantially easier and accordingly save computing costs

dramatically, i.e. we, for example, have only N possible composite models. Besides, in so

doing we are able to construct a sequence of subsets of factors, which are nested, and

therefore some statistical model selection method can be applied.

The principal components are naturally sorted by their capability of explaining variance

of original variables, or equivalently the variance of components. Typically, the variance of

components, or the eigenvalues of the covariance matrix in equation (3.20), drops very fast.

This implies a principal component contains more information about a system and

therefore more important than those ranked behind it.

As pointed out by some authors [cf. Hyvdirinen, 1999 and Cheung and Xu, 2001], one of

the drawbacks of ICA is that components resulting from ICA are not sorted, all of which

have the mean value zero and unit variance. Here we will propose two simple methods to

order independent components (ICs) based on their contribution to reconstruction of

original data, which is similar to the ordering of principal components.

The first method is based on the mixing matrix W as in equation (3.15). An assumption

behind this method is that the candidate models are close to the true model and thus factors

make similar contributions to both the true model and the candidate models. Meanwhile,

we can expect that the larger the absolute value of an entry Wji in the mixing matrix W, the

greater the contribution the ith factor makes to thejth candidate model, because all the ICs

have the mean value zero and unit variance. Therefore, we define as a component

importance measure (CIM) the average coefficients of an IC in reconstructing the

candidate models,

CMi I=- , Wj (3.31)

where· stands for the absolute value.

The second method is based on the sample correlation between a factor and the

observed data. As we will see later on, the contribution of an IC to the composite model is
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determined by how it is supported by the data. Thus, it is reasonable to rank ICs based on

their agreement with data. In this method, the CIM is defined as

CIM = 1(x ) - ) ( - (3.32)

where -l = , (xj) and y = =l y ,and (xj, yj), j= 1,...,n are observed data.

The ordering of the importance of independent components can be verified using a little

more complicated method. The rank checking can be accomplished both forwards and

backwards. The forward method starts with an empty queue and ranks components based

on their squared error reduction worth (ERW) AL 2 , that is, how much squared error defined

in equation (3.37) is reduced by adding a certain component to a set of factors. Obviously,

the larger the error reduction worth is, the more important a factor. In contrast, the

backward method begins with a full queue and ranks factors based on their squared error

achievement worth (EAW) AL 2+, i.e., how much squared error is increased by deleting a

certain factor from a set of factors. Once again, the larger the error achievement worth is,

the more important a factor. In our empirical study, it shows that the above methods give

out consistent results.

However, we have to point out that the ranking of ICs is far from so simple. As we will

note afterwards in our numerical study, the ordering of the non-dominant ICs according to

the methods introduced above is quite subtle and even changes with regard to data,

although the ordering of the dominant ICs is in good agreement with that resulting from the

above component importance measures. Here, we define dominant ICs as those whose

ICMs are significantly larger than that of others. Therefore, ICs can only be partially

ranked in advance.

Another important issue is that unlike PCs ICs cannot be determined uniquely, as

demonstrated in FastICA algorithm [Hyvirinen and Oja, 2000]. Applying different

nonlinearity function g leads to a different group of ICs, and furthermore even with the

same function g, different initial guess of w in iteration will also lead to varied optimum

although those dominant ICs will remain very similar. Thus, it is beneficial to repeat ICA
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many times so as to choose a group of ICs which include as many dominant ICs as

possible.

3.5.2 Model calibration

As in equation (3.3), a composite model of factors can be expressed as

M,(x)=or+ E_ w= f (x) = w f(x), (3.33)

where w=[wl,.. . ,WN] andf(x)=[f (x),.. ., fN(x)]T.

In the above equation, fi(x) is a function of input variable x, and so is the composite

model. Furthermore, fi(x), i=l,..,K, forms a set of orthogonal base functions. The factor

loadings wi are assumed to be constant over the range of input variable x. Now the task of

model calibration is to estimate factor weights, i.e. wi, given a data set {(xi,yi): i=l,...,n }. In

the face of such a problem, a general solution is first to define a loss function and then

design an algorithm to search for parameters such that minimize the loss function. The

most widely used loss function is the mean squared error loss function, i.e.

L2 -- I (Y,- M( (xi ))2 = n Y ( i - wTf(x,)) . (3.4)

Thus, the estimated factor weights are

wi = arg min L2 = arg min 1 n (i - w T f(xi))2 . (3.35)
ws w n

The above equation can be solved analytically, and we obtain

w = (FT F)-'F T y, (3.36)

where F=[fl,.. .f,] with fi=[f(xl),..., f (xn)]T and Y=[yl,...,yn]T.This is exactly the

well-known Ordinary Least Squares (OLS) method.

With factor weights estimated, we are able to calculate the estimated mean squared loss

as

L2 == I E, (Yi- Tf (Xi))f (3 37)L 1
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If we denote a subset of factors as F, then we designate L2 (F) as the estimated squared

loss of the composite model using all factors in F, whose factor weights are estimated by

equation (5.6). It is easy to see that

L2 (F) > L2 (Q), for V2 D F. (3.38)

This means adding more factors will definitely reduce the estimated loss using the

same data set as for calibration, but the capability of predicting the future data is not

necessarily improved, or likely deteriorated. This phenomenon is called overfitting in

statistical literature [Burnham and Anderson, 2002]. Literally, a selected model is said to be

overfitted if it involves more factors than the true model or spurious factors. The danger of

overfitting is that it tends to identify spurious features unique to a single data set and so

calibrated model cannot be generalized. In contrast to overfitting, an underfitted model

fails to identify effects or factor that are actually supported by the data set. Generally, a

fitted model starts with underfitting and end up with overfitting with the number of

variables increasing. Quantitatively, the prediction error decreases at first and goes up at

last by adding more predictors. The balance point between underfitting and overfitting is

considered optimal. To understand this, it is helpful to take a look at the bias-variance

tradeoff.

Let's first define the expected prediction error at x as E[(y-Mc(x))2 ], which can be

decomposed as follows:

E[(y(x) - M,. (x))2]= E[(y(x) - E(M, (x)) + E(M, (x))- M (x))2 ]

= (y(x) - E(M, (x)))2 + E[(E(M,(x))- M,.(X))2] , (3.39)

= {Bias(M, (x))}2 + Variance(M, (x))

where E[M,.(x)] is the expected composite model given a certain subset of factors and given

the sample size. The expectation and variance of M,.(x) is with respect to observed data,

because the composite changes from data set to data set.
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Figure 3.5 Models fitted to a set of data

In general, adding more factors can reduce the model bias, the first term, or in other

words achieve better fit, but in the meantime model variance is increased because the

sample size gets smaller relative to the number of model parameters to be estimated. In the

case of underfitting, the bias in parameter estimation is generally substantial while the

variance is underestimated. As for overfitting, the parameter estimation is usually free of

bias but have large variance. In view of this trade-off, we need to find out a balance point in

this tradeoff, which is considered optimal, thereby minimizing expected predictive squared

error in the future. Figure 3.5 may give us an intuitive sense of the relationship between

underfillting and overfitting.

3.5.3 Factor selection

Here factor selection is actually the same as variable selection in regression. However,

since the factors have been already ranked in terms of their importance, the factor selection

process gets much simpler. We will design a stepwise factor selection procedure to

complete this.

Before designing factor selection procedure, let's first work out how to evaluate a

composite model. To this end, we would apply some statistical model selection method or

criterion. The first criterion we would use is Schwarz's Bayesian Information Criterion

(BIC) [Schwarz, 1978], which is simple in computation and was proven to be consistent

[Woodroofe, 1982]. Similar to a general information criterion as in equation (3.1), BIC is

expressed as

BIC = -2 log L(t x) + k log(n), (3.40)
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where logL(6 I x) is the maximum log-likelihood of a model with k model parameters

based on data x =(xl,...,x,,), that is,

log L( I x) = E _ log f(x, l 0), (3.41)

and where f(. I[ ) is a conditional pdf and 0 is the maximum likelihood estimate of that

model. In the current case, 6-(wl,...,wk). In the case of linear regression model, under the

assumption of Gaussian error the BIC can be derived as follows:

The likelihood

L(X, Y,)= i 2 /ex2 exp -1 

log(L(X, Y,6))= - log(27T&2) - - log(2r6t2) RS (3.42)
2 2&2 2

~n 2 RSS
where residual sum of squared error is defined as RSS = (yj - j)2 , and 2 = 

j=1 n

Thus, we obtain the BIC as

BIC = -2 log(L(X, Y,O )) + k log n = -n[log(n / 2r) - log RSS - 1] + k log n (3.43)

In our case, the model dimension is equal to the number of factors plus 2 (one constant a

and 02 are also estimated). According to this criterion, a model having a smaller BIC value

is thought of as better than others with larger BIC values.

Another by far the most natural model evaluation method is Cross-Validation (CV).

Cross-Validation can be used to estimate the generalization error or expected prediction

error. In a simple version of cross-validation, the data set is divided into two parts: one

part for model calibration, training set, and another part for model validation, test set. That

is,
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! L i=

where yi are data points in the test set and L is the size of test set, and is estimated using

training data set.

As rule of a thumb, one-third of the data should be used for the purpose of validation.

Although simple, this version requires that the data set be large. In a more complicated

L-fold cross-validation scheme, the data set is randomly broken into L partitions, and then

train on all the points not in the l-th partition with the l-th partition serving as test set, and at

last find the test-set sum of errors. In L-fold cross-validation, the procedure of model

calibration and cross-validation test should be repeated L times. In this version, the

estimated generalization error is

'2 1 ==-Li J l (Yl 1 -Tf(Xlj))2 (3.45)

where L is the total number of data partitions and J is the partition size, (xlj , yj) are data

points in the l-th partition, the model parameters w', are estimated using the L-1 partitions

of data excluding the l-th partition.

In the current situation of sparse data, L-fold cross-validation is more data-efficient, and

thus a better choice. In this chapter, we set L as 5.

With model evaluation approach ready, now let's start to design factor selection

procedure with supposing the factorfl,...,fK have already been ordered. The stepwise factor

selection procedure starts with an empty subset of factors and let k=O, and then goes

through the following steps:

(1) Add factorfk+l to the subset and estimate a composite model Mc-k+l by OLS;

(2) Evaluate the newly created model Mrk+ by BIC or cross-validation;

In the case of ICs, each unused IC can be a candidate forfk+, and therefore we have to

try several different Mk+l correspondingly and then choose the best one among them.

(3) f according to the above assessment, M,k+I is worse than M.k, then stop; otherwise go to

step (1).
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(4) fl,..., fk are selected as good factors and correspondingly Mck is considered to be the

optimal composite model.

If we apply cross-validation, the above step (4) is slightly different. That is, after an

optimal subset of factors is determined, we will use the whole data set, instead of L-

partitions, to fit a composite model, Mc.k.

By such a procedure, we can avoid exhaustive combination of factors and thus save

computation cost. In such a stepwise factor selection, those factors ranked in the tail have

much slighter chance to be included in the optimal subset of factors, which seems

reasonable. Because those factors assigned smaller importance have smaller contribution

to explain the observed data and are more likely to be corrupted by noise or error.

3.6 Numerical results

By now we have already developed the data-guided model combination method by

decomposition and aggregation, and in this section we will demonstrate its performance

with both artificial and real examples.

3.6.1 An artificial example

In the following we will first use an artificial example to illustrate the model combination

method and also show how it works. Based on Monte Carlo simulation results, some

general conclusions will be drawn. For the purpose of demonstration, we would like to use

an artificial example, where the true model is supposed to be known.

Suppose for some certain system the true model is already known and a set of

observations are also obtained somehow. Let's assume the true model can be expressed in

mathematics as

y(x) = 150-150exp(-2x) + x2-O.1x3 + 4x + (3.46)

30exp(-x/3 ) sin (x) + 15 sin ( 1.5x)-201n(x + 1 )

where the real number x [0,10].

Correspondingly, its realistic data generative model can be written as

126



y = y(x) + ,

where eis supposed to assume a normal distribution, i.e. N(O, o2), where o2 is set as 64 in

the current example. From this generative model, we gathered a set of data with the sample

size n=20, i.e. (xi, yi), where xi is evenly distributed within [0,10]

ZUU
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Figure 3.6 Artificial candidate models

Meanwhile, suppose we also collected a class of competing models, all of which can

predict the system behavior to a similar degree.

y, (x) = 150-150exp(-2x) + 4x + 15 sin( 1.5x)-20 log(x + 1);

y2 (x) = 150-150exp(-2x) + x2 -0.lx3;

y3 (x) = 150-150exp(-2x) + x2-0.lx3 + 30 exp(-x/3) sin (x);

y4 (x) = 150-150exp(-2x) + 6x + 30exp(-x/3). sin (x)-20. log(x + 1 );

y5(x) = 150-150exp(-2x) + x2-0.1x3 + 15 sin( 1.5x);

y6(x) = 150-150exp(-2x) + 15cos( 2x)-15 + 0.004x 2;
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Note that each candidate model is either incomplete or erroneous, or both. Now we will

apply our model combination method to derive a composite model, which will give us

better prediction of future data.

If we plot both the truth and the candidate models in a single figure as in Figure 6.1, it is

seen that each candidate model does approximate the true model in some degree.

Next we will apply both PCA and ICA to extract orthogonal factors from the class of

candidate models. The mixing matrices obtained in PCA and ICA are as follows:

0.3572 -0.2513 0.6192 -0.2198 -0.1678 -0.5911

0.4335 -0.0932 -0.42 0.5593 0.3426 -0.4436

0.4119 -0.2443 -0.4771 -0.1913 -0.701 0.123

0.3888 - 0.0061 - 0.1883 - 0.6863 0.5695 0.1339

0.4326 -0.3134 0.3968 0.3563 0.1096 0.6468

0.4202 0.8776 0.1403 0.0656 -0.1636 0.0497

and

-0.1349 -0.2476 0.1194 -0.0169 0.2302 0.0390

-0.0977 -0.0689 -0.0261 0.0319 0.1082 0.0056

-0.1817 -0.1311 0.0182 0.1508 0.1524 -0.0279

-0.0720 0.1390 -0.3287 0.2578 0.0731 -0.0681

-0.2512 -0.1761 0.0450 0.0580 0.2294 0.0673

-0.3456 -0.1843 0.0539 0.0397 0.3815 0.0039

respectively, and corresponding separating matrices are the inverse of mixing matrices and

thus factorsf=W' M.

The resultant principal components and independent components are shown in Figure

3.7and Figure 3.8, respectively.

As for independent components, before proceeding we'd better rank them first. Based

upon the mixing matrix WI, the ICs can be ordered as IC2, ICI, IC4, IC3, IC5 and IC6

according to the labels in Figure 3.8. This is consistent with the result from the backward

approach shown in Table 3.1. According to this ordering, IC6 is the least important one, but

as we mentioned earlier, the ordering of those non-dominant ICs, such as IC3, IC5, and IC6,

is in fact rather subtle.
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Table 3.1 Residual sum of squared errors of composite models

Models -IC2* - ICI - IC4 - IC3 - IC5 - IC6

RSS 19838 3665 1278.7 717.2 679 671.3

* Sign minus means that IC is excluded.

Alternatively, if we regress on data using all the six factors, we obtain:

y = 143.97+12.0926 IC1- 24.4966 IC2-0.6979 IC3+ 5.6838 IC4-1.5551. IC5+ 0.3299 IC6

Therefore, the ordering of the estimated factor loading is the same as the result implied

by Table 3.1, but this provides us a simpler way.

After factor ordering, we are ready to construct a composite model by aggregating

factors. The result is shown in Table 3.2

Table 3.2 Evaluation of composite models

Note that the IC models listed in the above table are the best ones among those having

the same number of factors.
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PC models 1 PC 2 PCs 3 PCs 4 PCs 5 PCs 6 PCs

RSS 2418.8 1585.4 955.2 671 670.2 669.5

k 3 4 5 6 7 8

BIC 161.7 156 149 145 148 151

CV 108.8 58.9 49.9 23.8 22.4 22.6

GMSE 107.8 67.9 40.9 17.7 17.1 18.3

IC models 1 IC 2 ICs 3 ICs 4 ICs 5 ICs 6 ICs

RSS 4289.2 1354.8 728.9 681.4 671.3 669.5

k 3 4 5 6 7 8

BIC 173.1 153 143.6 145.3 148 151

CV 179.4 21.48 12.2 16.2 18.8 22.5

GMSE 204.5 35 16.1 16.6 19 18.3



Table 3.2 also shows the evaluation of composite models using both BIC and

Cross-Validation together with global mean squared error (GMSE), which is computed

against the true model as

GMSE = (( ) - M ())2, (3.49)

where m is so large as to give us a satisfactory approximation.

Based upon this information, an optimal composite model can be determined for both

cases. As for the PC models, 4 PCs should be selected in terms of BIC and 5 PCs should be

chosen in terms of CV to be optimal; while for the IC models, both BIC and CV suggest

that 3 dominant ICs form the optimal subset. Since the true model is supposed to be known,

and thus we can compare our composite models directly with the truth, which tells us that

the optimal numbers of factors are 5 and 3 for PC model and IC model, respectively.

Therefore, both model evaluation methods, say BIC and CV, are acceptable, except that

BIC chooses the second best option in the case of PC models.

In addition, the optimal IC model has better performance, or smaller GMSE, than the

optimal PC model, this may tell us that ICA is potentially more efficient in factor extraction.

What is more, the optimal number of ICs is 2 less than the optimal number of PCs, which

means ICA is more efficient in information redundancy reduction.

Finally, let's compare the performance of the two composite models with any single

model. Before comparison, let's suppose a candidate model can also be calibrated based

upon data in the following way:

MA'(x) = a + bM (x ) (3.50)

After such calibration, we found that the best calibrated model had GMSE 40.4, which is

much greater than the two composite models. This means combination does improve the

model performance.

In the above, we demonstrated the performance of this new method by an example, but

usually in statistics a single specific case might not be so meaningful. Thus, in order to get

a general result the above procedure is repeated a great number of times with different
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training data sets by the means of Monte Carlo simulation. The average errors of resultant

composite models are listed in Table 3.3, for two different factor extraction methods and

with different sample sizes.

Table 3.3 Monte Carlo simulation results of average errors

From the above table, we can draw some conclusions. First, the new model combination

method outperforms the simple linear combination of all models. Second, ICA leads to

better composite models than PCA. Third, the smaller the sample size, the more effective

the new method is and also the more advantageous ICA is relative to PCA.

3.6.2 Real example

In the above subsection, we demonstrated our method using some toy data. Now let's apply

to a real example and see if it works.

The real example we use here is the attenuation models in seismology. In this example,

the purpose is to build a more accurate composite model which is applicable to south

California in the United States. A sample data set of size 102 is obtained from the literature

[Steidl and Lee, 2000]. Correspondingly, the candidate attenuation models include the

attenuation relations by Boore et al. [1997], Sadigh et al. [1997], Abrahamson and Silva

[1997], Campbell and Bozorgnia [1997], Spudich et al. [1997] and Idriss [1995]. All of

these attenuation relations may be found in Seismological Research Letters, Volume 68,

Number 1, January/February, 1997. All these attenuation relationships were developed for

shallow crustal earthquakes in active tectonic regions, and thus they should be applicable to

southern California.

132



U

-0.5

-1

-1.5

-2

r -2.5

-3

-3.5

-4

-4.5

_A

0 1 2 3 4 5

In(Distance)

Figure 3.9 Candidate attenuation models and data

Both the candidate models and the sample data are plot in the same Figure 3.9. From

Figure 3.9, it is easy to note that all the models are close to be a straight line, which means

unlike the artificial example the dependence among candidate models are mostly linear.

Table 3.4 Comparison of models

Once candidate models and sample data are ready, we apply the same procedure as in

the artificial example to combine candidate models under the guide of sample data, namely

decomposing candidate models, selecting factors and aggregate factors into a composite

model by multiple linear regression method. In order to evaluate the resultant composite
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model combination of with PCA with ICA
all models

Test error 0.1935 1.63 0.146 0.140
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model, the cross-validation is applied, in which two-thirds of the data set is used for model

calibration and the rest one third is used to test the model. The results are shown in

Table 3.4, where the test error is the mean squared error.

In this example, the same conclusion can be drawn that this new method outperforms

both selecting a single best model and simple linear combination of all models. Meanwhile,

ICA seems work better than PCA again. However, it is noteworthy that since the

non-uniqueness of FastICA, ICA is committed several times and the best one is chosen.

Compared to the artificial example, the advantage of ICA over PCA is not so significant in

the current case. In fact, this observation is in agreement with our expectation. In general,

the advantage of ICA compared to PCA is to incorporate higher order nonlinear

dependence, but in the current case the models look like straight lines and there is only very

little if not without at all nonlinear dependence. As a result, ICA simply reduces to PCA.

Therefore, in cases where more nonlinear dependence is involved, the strength of ICA will

be more significant.

Meanwhile, in the case of ICA, three independent factors are chosen while with PCA

four uncorrelated factors are used. This once again verifies our expectation that ICA is

more efficient in information compression, which leads to less valid factors.

3.7 Conclusions and discussion

In this chapter we developed a model combination method by taking advantage of the

factor extraction, denoising and information redundancy reduction capability of both PCA

and ICA. By some numerical results, we also show that this method works. But, some

problems still remain unsolved, which include

(1) Nonlinear factor loadings, which depend on input variables x. For example, factors play

different roles over the range of input variables. In our current method, we only suppose the

linear assumption is valid based upon our assumption that the candidate models are similar
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to the true model in some degree. To taking into account this nonlinear possibility, a design

of mixture of composite local model will be helpful [Jacobs, 1991 and Jordan, 1994].

(2) Unique factors issue. In our current method, we reduce the general model structure to a

linear transformation by treating equally weighted unique factors as another common

factor, but obviously in so doing we may loss some useful information. To address this

problem, a hierarchical model structure may help, which is similar to hierarchical factor

analysis [Schrnid and Leiman, 1957 and Ghahramani and Hinton, 1997].

(3) Explanation of factors. In our above discussion, although we extracted some factors

from a class of candidate models, we have no idea what these factors are physically, or

what effects they proxy for. Although explanation of factor entails knowledge about a

specific system, it will help us interpret factors and further refine a composite model, for

instance factor selection.

(4) Factor selection. Factor selection is always a tough job just as in general model

selection. Although our numerical study both BIC and CV seem satisfactory, we need a

more robust factor selection method, thereby helping reduce model uncertainty.

(5) Composite model uncertainty. Model uncertainty is key to the performance of a model.

How to reduce such model uncertainty is a current active research problem.

Solving these problems can further refine this method or extend it to more general cases.

These remaining issues serve as our works in the following chapters
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Chapter 4

Shrinkage-based Fuzzy Regression Variable Selection Strategy

4.1 Introduction

In science, it is a central task to develop models to explain the observed data and predict

future events. Usually, a model, which includes some free parameters, is first proposed to

be true and then is fit to a set of data. When there exist multiple competing models, the

problem of model selection arises naturally, that is, which model is the best for the future

use. In the case of multiple linear regression models, the purpose of model selection is

specially to select an optimal subset of predictor variables or regressors such that construct

a model with the smallest expected prediction error.

Up to now, a variety of model selection criteria or strategies have been developed,

which include classical hypothesis testing, penalized maximum likelihood, Bayes methods,

information criteria and cross-validation. All these methods, which overlap with one

another, somehow provide an implementation of Occam's razor [Madign and Raftery,

1994], in which parsimony or simplicity is somehow balanced against goodness-of-fit.

Basically, the goal of model selection is to minimize the expected predictive error. To

this end, an alternative way is to apply shrinkage estimator, which is to balance the

well-known tradeoff between Bias and Variance, thereby minimizing the overall prediction

error. Such shrinkage estimators include ridge regression [Hoerl and Kennard, 1970 and

Tikhonov and Arsenin, 1977], LASSO [Tibshirani, 1996] and negative garotte [Breiman,

1995], all of which add some kind of constraints on regression coefficients to the Ordinary

Least Square (OLS) method.

As pointed out by many authors, for example, see [Miller, 1984] and [Breiman, 1996a],

in linear regression the predictive error for subset selection is considerably larger than that

for ridge regression, or put in other words, subset selection is unstable, while such
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shrinkage estimator as ridge regression is stable. Here, a procedure is considered unstable

if a small change in the data can cause large changes in a calibrated regression model. It is

also well known that regression models resulting from subset selection procedure suffer

from selection bias [Miller, 1984].

On the other hand, model selection delivers a more interpretable framework than

shrinkage estimators, especially when the predictor variables have certain corresponding

physical meanings.

To combine the individual advantages of the above two classes of methods in a linear

regression context, we will propose a shrinkage-based fuzzy model selection strategy,

which is intended to reduce predictive error and provide an interpretable final model as

well.

This chapter is organized as follows. In section 4.2, a fuzzy variable selection scheme

will be proposed by generalizing the classical model selection method. Section 4.3 will

define an effective model dimensionality for the fuzzy case. In section 4.4, a method of

generalized shrinkage will be given to estimate coefficients in a fuzzy regression model.

Right after that, a numerical optimization algorithm will be introduced to estimate

individual shrinkage parameters numerically in section 4.5. Section 4.6 will present some

numerical simulation study results. Finally, a brief summary will be given in section 4.7.

4.2 Fuzzy variable selection

In a typical regression situation, we have a set of predictor variables Xl,...,Xp and a

response variable Y, and also gather a group of data, say (xi,yi), where xi=(xil,..., xip). A

multiple linear regression model is usually in the form

Y = a + ZE lX i . (4.1)

If we further assume that Xi's are orthonormal, that is, E(Xi)=O and the cov(Xi,Xj)=O for

i-j and I for i=j, the above equation (4.1) reduces to

Y = la X X' , (4.2)
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where , =(81 ,...., Tk) and X=(X},..., Xk)T

In fact, assuming the orthonormality does not lead to the loss of generality, because we

can always make them orthonormal by applying Principal Component Analysis (PCA) or

Singular Value Decomposition (SVD) and scaling if for any i j cov(Xi,Xj)Il holds, that is,

X=U.Z, where Z=(Z 1,..., Zk)T is not orthonormal and U is a rotation matrix. Therefore, in

this chapter we will focus on orthonormal regressors.

If we apply the quadratic loss function, correspondingly we can define the empirical

Sum of Squared Error (SSE) as

SSE = ',lV, -xfl 2 , (4.3)

where xi-=(xil,Xi2,. ,Xik)

Likewise, we can define the expected squared Prediction Error (PE) as

PE = E(Y- XTfl)2 ]. (4.4)

The regression coefficients, i.e. f, in equation (4.2) is usually estimated by the Ordinary

Least Square (OLS) method, which minimize SSE as in equation (4.3). According to OLS,

it is easy to obtain that

AOLS = (x)-lx y, (4.5)

where x is a nxk matrix, i.e. x=(xl,...,xn)T , and y is a column vector y=(yl,...yn) T

It is easy seen that the SSE is monotonically decreasing with adding more regressors, but

our final purpose is to minimize the expected Prediction Error, which can be decomposed

as

PE = E[(Y - X T3)2 j= EkY - X E(/)) 22 ]+ Var(X X ), (4.6)

where the first term is due to bias and the second is due to variance of estimated regression

coefficients. In general, adding more regressors can reduce the model bias, the first term, or

in other words achieve better fit, but in the meantime model variance is increased because

the sample size gets smaller relative to the number of model parameters to be estimated.

This is what is termed bias-variance tradeoff in the literature.

In view of this tradeoff, the task of model selection is to find out an optimal subset of

predictor variables to reach a balance point. Because of this, we treat model selection and

variable selection as interchangeable in the case of linear regression. In classical model
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selection, or variable selection in a linear regression case, there are total 2 possible subset

choices, which can be represented by a vector y = (yl,..., p/), where y= 1 means the i-th

regressor is chosen while yj=0 means it is not.

With this notation, a regression model can be generally expressed as

Y = i= yilBXX, with =1 or0, (4.7)

where , 's are specially estimated by OLS given y.

In any classical model selection strategy, a yis selected based upon some criterion such

that the expected Prediction Error is expected to be minimized. If we denote the full set of

predictor variables as U and likewise the selected subset of predictor variable as U,,t, then

each regressor Xi, i= 1,...,p, in U is either included in or excluded by Up,,. That is, Uop, is a

crisp set. In this sense, we refer all the classical model selection methods as crisp model

selection.

The ycan be also interpreted as follows: if i=1, the i-th regressor, i.e. Xi, makes its full

contribution to the explanation of the response variable Y; in contrast, if r=O, Xi makes no

contribution to explaining the response variable Y. In other words, ycontrols the

contribution of all predictor variables. Therefore, ycan be termed contribution factor.

As mentioned earlier, many researchers found that such crisp model selection methods

were instable and the predictive error was remarkably large [see Miller, 1984 or Breiman,

1996a]. Such instability can be easily observed in Monte Carlo simulation, where

different data sets result in different optimal subsets of predictor variables. To overcome

the instability of model selection and improve its accuracy, Breinman [1996b] proposed to

stabilize model selection using Bagging [Breiman, 1996a], which is an example of general

P&C technique [Breiman, 1996c]. In this chapter, we explain the instability from another

angle and propose a new variable selection method.

Heuristically, it is quite understandable that the instability of classical crisp model

selection method is partly due to drastic change of Jy between 0 and 1. Moreover, we may

doubt that the contribution factor of a certain regressor changes from 1 to 0 just because a

small change in the observed data. Even intuitively, that a regression has either full or no

contribution should not always be the case and it is pretty reasonable that some regressor
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may have partial explanational capability. Thus, in practice we want a continuous factor to

control contribution of regressors.

Following this line of thought, we propose a fuzzy variable selection strategy, which is

quite different from those crisp variable selection methods in that it chooses a fuzzy subset

of predictor variables instead of a crisp one. The elements of this fuzzy subset are the same

as those of the full set of predictor variables, i.e. U, but with an associated membership

function u : X --> [0,1], which is in the current case discrete and maps each regressor to a

membership grade, or degree of belonging. Let's denote a membership grade as mi, which

is continuous in [0,1]. In practice, for convenience we remove a certain regressor from the

fuzzy set if its membership grade is small enough.

Like the yin a crisp case, we use the membership grade mi to control the contributions of

regressors as in

Y = imio Xi, with mi [0,1], (4.8)

where each mi functions as a continuous shrinkage factor since it is less than 1. It is clear

that the crisp model selection is actually a special case of this general fuzzy framework

with mi either 0 or 1. We term this general model as a fuzzy model.

As we mentioned earlier, the ultimate performance measure of a model is its expected

Prediction Error, and thus we need to find

rh=arg min E(Y - PI miX)2= arg min E(y I ,iX J ,
m ?

subject to i < A ,where 0 < mi < 1 . (4.9)

where the constraint 0< mi <1 simply follows the definition of mi.

In reality, the expectation E[ ] is unknown, therefore we have to estimate those

parameters m in other practical ways, such as model evaluation methods that will be

discussed later on.

In above discussion, we learned that the expectation E[ · ] can be minimized at some

balance point in the Bias-Variance tradeoff. Therefore, the problem is actually how to find

out such a balance point. Generally, the bias can be controlled by shrinking the size of the

regression model space somehow. Corresponding to the two key elements determining the

regression model space, namely predictor variables and regression coefficients, two
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different existing techniques can meet this goal. One is the crisp variable selection that has

been already mentioned. Another popular technique is shrinkage estimate or regularization,

which imposes constraints on the regression coefficients in some form. This technique

works very well in practice. To illustrate this, it is well-known that shrunken regression

estimator can have smaller future prediction error [Copas, 1983]. In fact, in the case of

crisp model selection it is obvious that l mi < p, which can also be interpreted as some

kind of shrinkage. Therefore, in order to parameters m, it is plausible to add another

constraint to least square method, that is, to minimize

SSE = (yi - E /3x·IP (4.10)

under some additional constraints. For example, the crisp model selection can be viewed as

adding a certain constraint, i.e. y=0 or 1 for i=l,...,p, under which the equation (4.10) is

minimized. Some other different kinds of constraints can be found in the literature, some of

which is imposed directly on m, for example, E" mi t where mi20 as in Breiman's

non-negative garotte [Breiman, 1995], and others are imposed directly on r, for instance,

P J=1 2 < t as in standard ridge regression [Copas, 1983 ] and ZPl [l < t as in

Tibshirani's LASSO [Tibshirani, 1995]. Seemingly, our fuzzy model is closest to

Breiman's non-negative garotte with an additional constraints 1lmi0O among all existing

methods. In following, let's see how our fuzzy variable selection is related to these existing

methods.

aC1 /? 62 t
(a)F A1 + 1ai21 < t (b)ren ti o2 f (C) i < t

Figure 4.1 Graphical representations of three different shrinkage methods
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In fact, the model ln,,ni'X with constraint ,m <t is equivalent to the model

ZP flXi with constraint P i <_ t. To illustrate graphically the relationship as well
=AOLSi

as difference between these three different constraints, let's consider a very case with p=2.
The Figure 4.1 shows the parameter optimization pictures of these three methods, where
the hatched regions stand for constraint region.

In the case of non-negative garotte, the sign of each Bi is retained and therefore fis

restricted in the quadrant where , is. Furthermore, eachi is scaled by a factor of the

reciprocal of the corresponding , .

Subject to these different constraints, minimizing equation (4.10) results in different

regression coefficients, such as

/JL4SSO = sign(,, )(0/i |I- (4.11)

PfRRi = 1 (4.12)
1+,4

and

NNG (i2 )/ii (4.13)

for LASSO, standard Ridge Regression and non-negative garotte, respectively [cf.

Tibshirani, 1996]. In the above equations (4.11-4.13), A is determined by t and the

superscript + indicates the positive part of the expression, i.e. f:=max(f, 0). Note that the

above results are derived only for our orthonormal design case.

Consequently, we obtain corresponding membership grades as

LASSO (4.14)

RR 1
m, - (4.15)

1+,4
and

NNG (4.16)
ni = - (4.16)
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by LASSO, ridge regression and non-negative garotte, respectively. For each case, we have

A > 0 and therefore it is easy to check that all of these solutions satisfy 0 < m, < 1 and

P l mi < t < p. However, in above solutions all mi's are controlled by a single parameter,

namely A, which does not meet our requirement each regressor can determine its own

membership grade independently. Therefore, we would like to extend the above solutions

to generalized and flexible ones by replacing A with Ai, i=l,...,p that is,

mLASSO I |i (4.17)

RR 1m i 1 (4.18)

and

in, = 1- ,2 (4.19)

where Ai can be tuned independently.

(a) fi,|,I+± 2 2 j lt (b) 82+ A2f2 < t (c) Mefl 2+ < t

Figure 4.2 Graphical representations of different generalized shrinkage methods

In order to gain some insight into this modification, let's take p=2 as an example to

compare a generalized case to its corresponding standard case. The graphical

representations of these generalizations are shown in Figure 4.2. Note that in Figure 4.2,

square and circle are stretched to be diamond and ellipse, respectively.
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Meanwhile, if we further restrict that Ai be less than [fii, which is true most time

according to our simulation and other authors [Copas, 1983], we can rewrite the above

solutions as

m'ASS = l-p, (4.20)

RR 1
mi - 1 1- i (4.21)

1+A4 1+

and

mG 2, =j -P (4.22)

With this transformation, now it is clear that in a generalized case all of the above

methods will converge to the same solution, that is, the optimization procedure will reach

the same value of p,. It is easy to see that in all cases 0<po<1 and thus 0<m<l, therefore all

these methods will lead to the same result as our fuzzy model.

Furthermore, note that membership grades obtained from LASSO and non-negative

garotte depend on ,i, which in turn depends on the given data set, while the membership

grades estimated by generalized ridge regression does not. In addition, although we assume

that Xi's are orthonormal, in practice the sample variances are usually not exactly zero, in

which case the calculation of LASSO and non-negative garotte turns out to be more

complicated, while generalized ridge regression is still able to deal with it easily. In view of

these facts, in this study we would apply the generalized ridge regression [Tikhonov, 1963],

or local ridge regression as another name [Orr, 1995].

By now, we have discussed how to estimate both membership grade and coefficients of

regressors. The practical calculation of solutions is actually a global parameter

optimization problem with linear inequality constraints, and we will further discuss it later

on.

In our fuzzy variable selection scheme, a slight variation in data set may lead to the

change of membership grade of some regressors, but not dramatically from I to 0 or vice
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versa as in crisp model selection methods. Thus, it can be expected such fuzzy variable

selection method will give us much more stable results.

Except for what we mentioned about the relationship between crisp variable subset

selection methods and fuzzy variable selection scheme, there is actually a closer, and

sometimes more useful, connection. This connection can be realized by taking advantage

of the concept of a-cut. As we know, give any number aE [0,1] the a-cut of a fuzzy set U is

a crisp set, which is defined as

aU = {X uu (X) >a}. (4.23)

Suppose we have already estimated the membership grades m=(ml,...,mp), and if we set

an appropriate small cut level a such as 0.1 , we obtain a crisp set of predictor variable,

which is consistent with a result produced directly by a crisp model selection method.

However, the great advantage of this indirect method lies in that it eliminates the need of

comparing all possible linear regression models, and therefore significantly save

computation cost especially when p is very large.

Furthermore, if the true model can be expressed by some y, the optimized membership

function m will converge to y.

4.3 Membership grade and effective model dimensionality

In the case of classical model selection, the model dimensionality is defined as the number

of free parameters, that is,

D = P, yi · (4.24)

Likewise, we can define the effective model dimensionality in our fuzzy case as

Def = EPI mi. (4.25)

As discussed in section 4.2, these membership grades can be estimated by adding some

form of constraint. The local ridge regression [Tikhonov, 1963], which is different from the

standard ridge regression in that it applies different individual shrinkage parameter to each

regressor, minimizes
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- (Y - ,li) subject to j , < It, (4.26)

which is equivalent to add a Lagrangian penalty term to the sum of squared error as

AlP w fj8 with A depends on t [see Gill, 1986].

Now to solve penalized least squares problem, that is, to estimate / is to minimize

penalized sum of squared errorJ= PSSE = d,! 1 (AX -,j~l Ajxiy )2 + AZJ=I SJ(4.27)

= Z 1 (Y - j=,l jXij + =1 jJ

Like OLS, by setting the first derivative of PSSE with respect to each j, finally we can

obtain

, = (XTX + A)-' XT = (XTX + A)' XTXIOLS = MIOLS, (4.28)

where A is a diagonal matrix, i.e. A=diag(Al,..., 2p) and M = (xrx + A)-' xTx Thus, in an

orthonormal design case we have

1
M = diag (ml, m2,...,m ), where mi = (4.29)

Then, according to our definition of the effective model dimensionality, we obtain

Def =Z mi = 1 (4.30)

which is equal to trace((x T x+A)-'xTx). Therefore, in a general case, without the

orthonormal assumption, the effective model dimensionality can be defined as

Dell = trace((xT x + A)-lxTx), (4.31)

which is in agreement with definitions of the effective dimensions of linear smoothers in

[Hastie and Tiibshirani, 1990], the effective number of parameters in nonlinear learning

systems in [Moody, 1992], and the number of good parameter measurements in Bayesian

context as in [MacKay, 1992]. In the case of OLS, A=O and therefore
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Def = trace((x T x)-'x T x) = p = D

As we know, in some sense the task of model selection is to estimate the true

dimensionality based upon data [Schwarz, 1978], and the most classical model selection

methods heavily depend on the definition of model dimensionality. Since we argued that

the classical model selection is just a special case of the fuzzy model selection scheme, it is

quite important to define appropriate model dimensions to keep the fuzzy model selection

strategy consistent with classical ones. In terms of our definition in equation (4.30) or

(4.31), in any crisp model selection scheme, where mi is either 0 or 1, or equivalently Ai is

either very large or 0, the effective model dimensionality Deff amounts to the number of free

parameters, i.e. the model dimension in a classical variable selection method. Therefore,

our definition of the effective model dimensionality is consistent.

4.4 Model evaluation

Any model selection method is based upon its own model performance evaluation criterion,

and so is our fuzzy model selection strategy. Only if we can evaluate a fuzzy model, we will

be able to estimate an optimal membership function such that maximizes a model's

performance.

As we mentioned in section 4.2, a model should be evaluated in terms of its future

performance, instead of goodness of fitting. However, except for a limited number of

observations we have no idea what the future data would be, and thus a model's future

performance certainly cannot be known exactly. In practice, a model's performance can be

estimated based on available information by applying some principles, for example the

principle of parsimony or Occam's razaor [Madign and Raftery, 1994] and preference of

smoothness [O'Sullivan, 1986 and Eilers, 1991], which turns out to be effective.

Under the guide of these principles, a variety of classical model selection methods have

been developed. Besides the quadratic loss function as in section 4.2, many other metrics

were also applied to measure a model's performance, which include absolute prediction
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error, expected likelihood, information deviance, for instance, Kullback-Leibler

distance[Kullback, 1959].

In statistics, R2 is often used to measure the proportion of variance of a given data set

explained by a set of regressors. For the purpose of model selection, R2 is adjusted by

incorporating a penalty for additional predictions, attempting to adjust R2 for capitalization

on chance in a sample data and give an estimate of R2 in the population. In mathematics, it

is written as

2 SSEI
AdjR2 =1- =1 1 (nD) (4.33)s2 s2

Y Y

where SSE is the sum of squared error as in equation (4.3), n is the sample size, D is the

model dimension, S2 is the sample variance of the response variable, and 2 is called

unbiased estimation of variance

. SSE
2 = SSE (4.34)n-D

Mallows' Cp is concerned with total mean squared error of fitted values, which is also

closely related to adjusted R2 and Akaike's AIC [Mallows, 1973]. Mallows' Cp criterion is

to minimize

SSE
CP = n - 2D] (4.35)

'full

where d 2u6 is estimated from the model with all the predictor variables and used to

estimate the true variance. If a model is good, Cp,-D, while a model with bad fit will have

Cp much bigger than D. In general, Cp is a good indicator for determining when a model is

underfitted

Another class of model selection criteria is information criteria, which are so-called due

to their close connection to information theories. Most of them can be expressed in a

uniform form as

IC = -2 log(Maximum likelihood) + penalty(D, n) , (4.36)
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where the first term is from a Maximum Likelihood Estimate (MLE) and the second term is

a function of model dimension and sample size. In some sense, it can be considered to be an

extension of the general maximum likelihood principle. Among them, Akaike's AIC and

Schwarz's BIC are two widely applied criteria, for which the penalty term is equal to 2-D

and D-log(n), respectively.

Cross-Validation is a natural way to estimate a model's future performance. Its basic

idea is quite straightforward, that is, to evaluate a model using a test data set other than the

training set used in model calibration based upon the assumption that the test data can

respect future data. A widely used version is K-fold cross-validation, in which the entire

data set is broken into K partitions. In each time, one partition is left out as a test set and

others are used to calibrate a model, and then the resultant model is tested against the test

set. This procedure is repeated K times for each partition and finally the cross-validation

generalization error is obtained as the average test error. Leave-One-Out (LOO)

cross-validation is a special case of general K-fold cross-validation when K is equal to the

sample size.

In the case of multiple linear regression, there is a simple expression of LOO, that is, the

PRESS (prediction sum of squares) proposed by Allen [1974], which is defined as

1 n

PRESS (y - 51)2 (4.37)
n i=1

where yi is the i-th data point and ji-' is the prediction corresponding to yi by the fitted

model with the i-th pair (xi, yi) left out. This is actually the sample mean prediction error for

1-fold cross-validation. Furthermore, one can show that

Yi I- i (4.38)
1- hii

where hii denotes the ii-th element of the "hat" matrix H=x(xTx)-lxT [Cook and Weisberg,

1982]. Then

PRESS = ' (4.39)

With the above formula, PRESS can be calculated without fitting the model n times,
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each time deleting one of the n cases. If we replace hii by the average of H's diagonal

- I n
entries h- -= hi , we obtain the error prediction as

n i=l]

7 1 -h I F, n( - - )2 (n - trace(H)) 2 'GCV =-( i --I - 2' (4.40)
which is termed Generalized Cross-Validation (GCV) [see Golub,Heath, and Wahba,

1979]. Since the trace of the product of a sequence of matrixes is unaffected by their orders,

for example, trace(Anxm Bmx,)=trace(Bmxn Anxm), therefore

trace(H) = trace((x Tx) - l XTX) = D. (4.41)

As we notice, most of model selection criteria are functions of the model dimension.

With the aid of the definition of the effective model dimensionality given in the previous

section, it is easy to extend all these model evaluation criteria to the fuzzy model selection,

which is realized by simply replacing the model dimension by the effective model

dimension, Deff. For example, GCV becomes

GCVFuzy = (4.42)
(n - Deff )2

and by some manipulation we obtain an equivalent BIC in multiple linear regression case

as

BIC Fuzzy = -n log SSE + Dejf logn. (4.43)

SSE
We can see that maximize the adj-R 2 in (4.33) is equivalent to minimizing

n - Def

because the sample variance of the response variable Sy2 is fixed given a data set. Thus, in a

fuzzy case, GCV is equivalent to adj-R2 method.

Meanwhile, if we assume the noise variance y2is already know, not necessary to be

estimated by 62, as in (4.35), then it is easy to derive that AIC can be expressed as

SSE
AICF,::- 2 + 2D, (4.44)AICrzzy 2 e
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which is actually, as we pointed out a little earlier, the same as Mallow's Cp criterion. Since

the use of an estimate of o2 in place of its true value will not lead to significant difference,

we will consider these two criteria to be the same in the current study.

In view of the above equivalences in our linear case with Gaussian noises, in this

chapter we will exclude adj-R2 and Mallow's Cp in the empirical study.

Finally, each model evaluation method can be expressed in a unified form

MEV = f (SSE, Df,,fn), (4.45)

where MEV stands for model evaluation value, SSE is the sum of squared error, Deff is the

effective model dimension, n is the sample size andf(.) is a function. The MEV, which is

depending on the choice of regularization parameters through SSE and Deff, serves as our

objective function, i.e. the smaller it is, the better a fuzzy model.

It is worth mentioning that like any crisp model selection method, its performance

significantly depends on the choice of model evaluation method.

Although different objective functions in the current case produce similar results, they

do have varied properties in terms of rate of convergence of optimization algorithms,

stability and probability of outperforming corresponding classical methods, as we will see

later on. It is possible to employ hybrid objective functions to combine advantages of

individual objective functions, for example, employ two objective functions in a certain

order or alternatively during GA simulation or utilize one to search and another one to pick

the best, which is somewhat like the cross-validation method in data manipulation. In our

simulations, for the purpose of illustration BIC is applied to global search and 10-CV is

subsequently utilized for local searching in view of their different individual advantages.

4.5 Individual shrinkage parameter estimation

By now, we have already developed a fuzzy regression model as

Y = lmi/OLSX =,'i/ ,6iXi with mic [0,1], (4.46)

where coefficients loisi's can be estimated given membership grades mi's or equivalently
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individual shrinkage parameters i's by local ridge regression method, i.e.

/ = argmn{,l (yi -Zj'x=lfxe; x +n= Ai} =(xrt +A)xy, (4.47)

where A=diag(A 1,... ,4) and Ai's are tunable. To build an optimal fuzzy regression model,

its regularization parameters, namely mi's or equivalently Ai's, should be optimized so as to

maximize its future model performance measured by model evaluation methods discussed

in the last section. That is,

A = arg min MEV(A), with Ai0O, i=1,. .. p, (4.48)

where the model evaluation method can be any one described earlier.

Therefore, our variable selection problem now turns to be a multidimensional global

optimization problem. Although it is also possible to optimize midirectly, using i imparts

some advantages. First, it has fewer constraints and thus simplifies the optimization

problem. Another advantage of using Ai is that it can help handle situations where predictor

variables are not orthonormal.

For this nonlinear optimization, the classical gradient-based methods fail to apply, as it

is hard to solve the nonlinear multivariate functions of Ai's, especially when K-fold

cross-validation is utilized. To attack this difficulty, Orr [1995] proposed to optimize each

parameter by itself one by one with others fixed and repeat doing this until they converge.

Nevertheless, as pointed out by the author [Orr, 1996], that algorithm tends to get stuck in

local minima, which depend on the initial guess. To see this characteristic of multiple local

minima, let's take the BIC as the model evaluation method and analyze the objective

function. In this case, the optimization problem becomes

A - arg min MEV() = arg min- n log SSE +Deff logn
(4.49)

arg min- n log l (Yi - (xTX + A)xTyx ) 2 + trace((x T x + A) - ' xTx) log n

To make explicit the dependence of the objective function on {A }P let

A =A -i + A, (4.50)

where A-' = diag(,., _ Al,,, Ai+,,..., Ap ) and A = diag(0,....0, Ai,0,...,0). Therefore,

it gives
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= XT xx y + Aix ry + AJxr y (4.51)

Substituting equation (4.51) into (4.49) and taking into account the fact that x x=I, we

obtain the objective function

-n log E, i - lXi) + logn , IA (4.52)Ai

where among all elements in 8/ only Ak = [xTXXT y + A- y]k + [T y]k depends on Ak.

Note that [a]k refers to the element with index k in the vector a.Equating as zero the first

derivative of equation (4.52) with regard to 2 k gives

[xTY (i -EC,=ij) -Xik 1 0gnk[X y] (i Jx)k log n 1 0 (4.53)
(Yi P~ij)22n ( + Ak)2

With fixed Ai, ik, equation (4.53) turns out to be a cubic equation of Ak, which in

general has three roots. However, according the relationships between roots and

coefficients, equation (4.53) can have at most two positive solutions. If we substitute mi

into above equation, this becomes clearer. But at the same time, we have to be careful that

the boundaries 0 or +oo can be other local minima if the derivatives at them are positive or

negative, respectively. Because one can derive an equation for k from 1 through p, then

number of local minima will almost surely be greater than 1.

In light of the existence of multiple local minima, in this chapter we will propose a

hybrid optimization algorithm, which combines a global as well as a local searching

algorithm. The basic idea is that the outputs of the global optimization algorithm sever as

the inputs or initial settings of the local optimization method. In so doing, we will gain both

global and local optimization capability and save computation cost at the same time.

It is well known that the Genetic Algorithm (GA) has great global searching capability,

and it does not require the objective function to be differentiable [Goldberg, 1989].

However, its local optimization is relatively poor and time-consuming. To overcome its

drawbacks, we will design a simple adaptive derivative-free local searching algorithm to

combine with GA.
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4.5.1 Global optimization

Basically, GA is a numerical version of natural selection, which is believed to be the

ultimate optimizer based upon the idea of Darwin's revolutionary writing Origin of Species.

According to Darwin, the power of evolution lies in the continuing struggle for survival

and some "variation", such as mutation of genes, of an organism increases its chances for

survival. Therefore, key to such evolution is the concept of larger numbers, i.e. large

population and many generations, and randomness, such as the probabilistic selection,

mixing, and mutation. Likewise, GA first generates a large set of random parameters as a

generation, and then randomly select parameters in terms of their fitness to reproduce a

new generation of parameters by means of random crossover and mutation. In GA, the

fitness-based selection will ensure the consistent direction of evolution, or guarantee the

increase of the average fitness of a generation. Meanwhile, crossover and especially

mutation enables the GA to avoid being stuck at a local minimum and search for the global

optimum.

Usually, a chromosome in GA is represented by a binary string consisting of Os and Is,

but in the current case each parameter to be optimized is a positive floating point number,

and therefore floating-point coding or double-precision representation will be used rather

than binary coding. This is because as pointed out by some research, binary coding is less

suited for numerical optimization problems [Garcia, 1999], although a floating-point

number can also be expressed in a binary form somehow. Therefore, each chromosome is a

vector of floating-point parameters.

The first crucial issue of GA is the fitness function, which tells how good or bad a

candidate solution is. It is this fitness function that determines the goal of optimization. As

we discussed, the goal of model selection is to minimize the objective function, i.e.

prediction error, but GA works by maximizing the fitness. Such conflict can be resolved by

a simple transformation

fitnessi = Max(MEV) - MEV , (4.54)
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where Max(MEV) stands for the maximum MEV in a population and MEVi refers to the

MEV of the i-th individual.

The definition of fitness significantly influences the behavior of convergence. For

example, in the early stage few "super individuals" tend to dominate the selection process

leading to premature, whereas later when the population is less diverse, the simulation

tends to lose focus [Goldberg, 1989]. Therefore, in practice we would like to apply a more

general and flexible fitness function by scaling and shifting, i.e.

F, = b + a (MEV,,x - MEV ), (4.55)

where the scaling factors a and shifting factor b are so adjusted adaptively during

simulation as to avoid premature convergence early on and encourage convergence in later

stages.

As for selection, we utilize the fitness-weighted roulette wheel method, which is

conceptually equivalent to giving each individual a slice of a roulette wheel equal in area to

the individual's fitness. The wheel is spun and the ball comes to rest on the wedge shaped

slice, and the corresponding individual is selected. Therefore, the probability for a

chromosome to be chosen is proportional to its fitness. A pair of "parents" is selected by

spinning the wheel two times to reproduce a pair of "children" by recombination and

mutation.

As we know, the GA success is also sensitive to the two operators, namely,

recombination operator and mutation operator. For example, it is found that the general,

fixed, problem-independent recombination operators often break partial solutions and slow

down convergence. Thus, in view of the fact that each parameter falls in the interval [0, oo),

we will design a recombination and mutation operator suited to our case.

The recombination strategy we applied is the one-point arithmetic crossover. Let the

parents be Pl=[P1 ,.. .,PIL] and P 2=[P21 ,.. .,P2L], respectively. Then, the two children are

Cp + i<t, (4.56)
'1- .a-Pi+(1-a) Pl, i>t
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and

C2 b I + (1 - b).P2, i>t' (4.57)

where t is a random integer number among 1,2,...,L, and a and b are two random

floating-point numbers between [0,1].

The crossover rate, i.e. the probability that crossover happens, is generally around 0.5,

and in this chapter we set it as 0.6.

Mutation operator is defined as multiplication of a log-normal distributed factor with

median value 1, i.e. D' = D exp(£), where Di is an original parameter and D' is the

mutated one, is a Gaussian random number, i.e. N(0,2), where C2 is tunable.

The mutation operator is so defined that all the resultant parameter stays in the interval

[0, oo), and can be larger or smaller than the original one. For practical purpose, we set the

range of parameters as [l,u], where I is very small, say 10-6, while u is very large such as 107.

In fact, searching for parameters out of that range is meaningless and impractical. In

practice, if some A is greater than u, the corresponding predictor variable will be removed

from the regression model.

Hessner and Manner [1991] suggested that the optimal mutation rate, i.e. the probability

that mutation occurs for a single gene in a chromosome, is approximately (M-L"m2 )'l, where

M is the population size and L is the length of the chromosome. In this chapter, we will

follow this "rule of thumb".

If there is no crossover and mutation, a chromosome is simply copied to the next

generation. For the above operators, we see that regularization parameters evolve almost

independently except for selection operator.

The stopping rule for the current case is relatively simple, as our purpose is to search for

promising initial inputs for a local optimization algorithm. Thus, when we observe that the

convergence of GA becomes very slow, it will be the time to stop it. However, it is should
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be met that the MEV of the best solution be at least lower than that of the corresponding

crisp one.

Finally, the main steps of GA are follows:

(1) Build an initial population of M chromosomes randomly;

(2) Calculate the fitness of each chromosome;

(3) Select chromosomes from the parent generation to reproduce a child generation:

(i) Select two parent chromosomes,

(ii) Generate a random number between [0,1]. If it is smaller than the crossover rate,

recombine them by one-point arithmetic crossover; otherwise, enter the next step;

(iii) Generate a random number between [0,1]. If it is smaller than the mutation rate,

perform mutation on a gene in a chromosome. Repeat this for each gene in both

chromosomes.

(iv) Add the two resulting chromosome to the next generation.

Repeat the above (i) through (iv) steps until M new chromosomes are reproduced.

(4) If the stopping criterion is met, then exit; otherwise, return to step (2).

4.5.2 Local optimum search

By GA optimization, we obtain a set of global good initial guesses of the best vector of

parameters, namely the last generation out of GA. In practice, it is also useful to keep tract

of the "best" chromosome throughout the whole GA simulation history. The next task is

to search for the optima around these good initial guesses.

In this stage, for some model evaluation methods classical gradient-based methods can

be applied directly. For example, the equation of local minima has been derived for BIC in

equation (4.43). Likewise, we can derive it for AIC and GCV, respectively, as follows:

[T Y]kl 1(Yi - 'j=ljXij) Xik 1 1= (4.58)
f,- (Yi A, ,jxij) 2 n (1 + k )2

and
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(4.59)". i= + A( I, (Yi X , ,) ( + Ak)2
However, it is still not easy to analytically solve the above equations for k with others

fixed by expressing the coefficients explicitly, but this difficulty can be overcome by an

ordinary iterative method for equation like x=f(x). To this end, the above equations should

be rewritten as

log n, (y iZ=I xij)2
A k = 2 [x i, 1, (4.60)

2n[xrYT I;, (Yi - ip , ). Xik

2k = ln[xr YA, z(Y - j, I x ) xi 1 (4.61)

and

1n1 (y i _ Ip l AXii)2
k 1P I [X - ,ik-1. (4.62)

ai Ai [xTy],in,(yi- Z ,Xij)Xik

In order to optimize the Ai's jointly, a similar iterative scheme can be applied for solving

equations of multivariate, that is, letting (k+I)=g(A(k)) where A is a vector though.

Nonetheless, this approach cannot always work. For example, if k-fold cross-validation

is used to assess a model, the objective function will be quite complicated and thus it is

hard to apply classical gradient-based methods. However, it can be solved numerically by

some derivative-free approach, for example, hill climbing. What we will propose here is

similar to that in [Orr, 1995] in that both of us try to optimize parameters individually one

by one with others fixed. However, since each parameter is not independent of each other,

the overall optimization has to be done in an iterative way. Furthermore, the step size is also

tuned adaptively. Our algorithm described below is simple, self-adaptive and fast.

The whole process consists of multiple cycles, in each of which the individual

parameters are optimized one at a time. Suppose we are optimizing Ai and let its current
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value as Ai(0 ) and the current model evaluation value as MEV®. Let k=l and i(k)= i(k-l) .q k,

where q is slightly bigger than 1, and keep the other p- shrinkage parameters unchanged,

and then recalculate the model evaluation value as MEV(k). If MEV ( ') > MEV( ), that is, the

fuzzy model gets worse, then return to Ai(O) and k=land replace q by q; otherwise,

continue to search in the same direction within the interval [,u] until MEV(k+l)> MEV(k).

The final Ai®(k) is taken as the optimal value in the current loop. After Ai is optimized, we turn

to the next parameter Ai+ . Each loop starts with Ao and ends up with Ap. Once a loop is done,

another one will be started depending on the stopping criterion.

At the beginning of each loop, we calculate the resultant model's MEV, and the same

for the end of each loop. If the difference between these two values is small enough, for

example,

IMEV " -MEV M (' I
< 6, (4.63)

where dis very small, say 10-5, we would say that the minimum has been reached and

therefore stop the local searching process.

In view of the facts that (i) There exists a lower bound for MEV(k), although unknown,

and (ii) the sequence of MEVk) is non-increasing, the convergence is guaranteed according

to the Cauchy convergence criterion.

After accomplishing both global and local optimization procedure, a group of good

candidate solutions are obtained, from which the solution with the smallest MEV can be

easily chosen as the optimal one. Finally, an optimal fuzzy regression model can be

created.

4.6 Numerical simulation study

In the above sections, we have already completely developed a fuzzy model selection

method, and now we will assess its performance by means of numerical simulation. For the

purpose of demonstration, we apply cosine series to fit some data set generated by an even
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function plus Gaussian noise, and we also test the fuzzy model selection performance by

varying noise variances as well as sample size.

Fourier series, made up of both sine and cosine components, is widely applied to

approximate periodic functions. Supposef(t) is a periodic function of t with period r, and

then we have

f (t) -= oa cos(27r- it /r) + 1bi sin(2ir. it /r). (4.64)

Furthermore, iff(t) is an even function in [-L, L], then the sine terms will vanish and we

obtain

f(t) = 7_ ai xcos(r -it / L) . (4.65)

In the above equation (4.65), cosine terms can be viewed as predictor variables. It is easy

to check that Xicos(T it / L) are orthonormal.

After gathering a set of data generated byf(t)+e, where £-N(O, 2), the coefficients a ' s

in equation (4.64) can be estimated using some approach, for example, OLS, ridge

regression, and the fuzzy model selection.

Because of the symmetry of cosine functions, in sampling data, special attention should

be made to ensure that the rank of the design matrix x is not smaller than the number of

predictor variables p, and otherwise x 5c will be singular. Therefore, in this study we simply

restrict the total number of regressors p to be not greater than n/2-1, where n is the number

of data points, that is,

f(t) = oa.Vi J cos(Tr it I/ L) , with p < n/2-1. (4.66)

Since in the current simulation study we assume the true model is already known,

therefore we can define a global mean prediction error to measure the performance of a

model selection method. Conceptually, the global mean prediction error is defined as

GMPE = - -(f(t) -(t))dt, (4.67)
Lwhere (t) is the estimated model, but in practice, it can be approximated by

where )(t) is the estimated model, but in practice, it can be approximated by
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GMPE 1-, (f(t,)- (t)) (4.68)

where ti is typically evenly distributed in [-L, L] and m is large enough.
Besides evaluating the performance of the fuzzy model selection method using GMPE,

we will also compare it to that of a corresponding crisp model selection using the same

model evaluation method. To this end, we define a C/F ratio of GMPEs, i.e.

GMPEri
RcIF = GMPE (4.69)

The average C/F ratio is defined as its geometric mean

RCF = exp 1 1 log(Rc/F)i , (4.70)

where N is total number of simulations. The average C/F ratio is so defined that it can

reduce the influence of some unusual cases.

Table 4.1 Comparison results for a smooth function with sample size 20

Model o=0.2 and n=20 o'=0.05 and n=20

Evaluation AGMPEc(' ) AGMPE(2) RC/3 ) AGMPEc AGMPEF Rc/F

Method

AIC 0.018 0.014 1.34 1.18E-3 8.86E-4 1.39

BIC 0.015 0.011 1.47 1.14E-3 8.51E-4 1.39

10-CV 0.018 0.014 1.31 1.28E-3 9.91E-4 1.28

GCV 0.018 0.015 1.22 1.25E-3 9.88E-4 1.28

Hybrid 0.016 0.011 1.52 1.08E-3 7.38E-4 1.5

(1)Average GMPE of Crisp Model Selection Methods

(2)Average GMPE of Fuzzy Model Selection Methods

(3) Average C/F Ratio of Prediction Errors

The first function we used isfi(x)=sinc(3x)=sin(3x)/(3x), x E [-1,1]. In our simulation,

two different noise variances, i.e. c-0.2 and 0.05, and two different sample sizes, i.e. n=20

and 50 , are used. For each case, the simulation was repeated for 500 times to obtain an

average value. The results are shown in Table 4.1 and Table 4.2.
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Also note that in our simulation when a shrinkage parameter was over 107, the

corresponding regressor was removed from the fuzzy set for the practical purpose.

From the simulation results, it is seen that on average the fuzzy model selection scheme

outperforms crisp model selection methods by a factor of around 1.4.

Table 4.2 Comparison results for a smooth function with sample size 50

If we define the signal-noise ratio as the ratio of response variable variance to the noise

variance, we can see the influence of the signal-noise ratio on the increased performance of

the fuzzy model selection compared to the corresponding crisp model selection in some

situations.

The second function we used is

1, if x e [-0.5,0.5]
f 2 (X) =- 1, otherwise (4.71)

which is called potential well function.

Once again, two different noise variances and two different sample sizes are used.

After repeating the simulation 500 times for each case, the results were obtained as shown

in Table 4.3 and Table 4.4.
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Model =-0.2 and n=50 =-0.05 and n=50

Evaluation
AGMPEC AGMPEF RC/F AGMPEc AGMPEF RC/F

Method

AIC 1.40E-2 8.56E-3 1.65 1.04E-3 6.77E-4 1.6

BIC 1.52E-2 7.86E-3 1.94 7.41E-4 5.70E-4 1.29

10-CV 1.25E-2 8.83E-3 1.37 8.96E-4 6.17E-4 1.51

GCV 1.54E-2 9.46E-3 1.65 1.13E-3 7.2E-4 1.64

Hybrid 1.03E-2 6.99E-3 1.43 8.03E-4 5.44E-4 1.48



Table 4.3 Comparison results for a non-smooth function with sample size 20

Model o-00.2 and n=20 o -- 0.05 and n=20

Evaluation
AGMPEc AGMPEF RC/F AGMPEc AGMPEF RC/F

Method

AIC 0.116 0.09 1.3 0.104 0.066 1.61

BIC 0.115 0.092 1.23 0.104 0.063 1.66

10-CV 0.114 0.085 1.34 0.105 0.058 1.8

GCV 0.118 0.086 1.39 0.104 0.06 1.74

Hybrid 0.11 0.082 1.32 0.104 0.06 1.73

Table 4.4 Comparison results for a non-smooth function with sample size 50

Model -o~=0.2 and n=50 o0.05 and n=50

Evaluation
AGMPEc AGMPEF RC/F AGMPEc AGMPEF RC/F

Method

AIC 3.75E-2 3.35E-2 1.12 1.66E-2 1.64E-2 1.01

BIC 4.26E-2 3.37E-2 1.26 1.74E-2 1.71E-2 1.014

10-CV 3.94E-2 3.71E-2 1.07 1.72E-2 1.66E-2 1.035

GCV 3.61E-2 3.16E-2 1.146 1.65E-2 1.61E-2 1.03

Hybrid 4.12E-2 3.38E-2 1.22 1.72E-2 1.69E-2 1.013

From the above two tables, we can see that for non-smooth functions, the fuzzy

variable selection method still significantly outperform corresponding crisp variable

selection, especially when the sample size is relatively small.

Furthermore, the performance of the fuzzy method also depends on what kind of model

evaluation method it applies. In our first example, BIC works the best among all model

evaluation methods, while in the second example cross-validation seems perform a little

better than others. Meanwhile, most often the hybrid objective function outperforms that of
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BIC method alone.

To further test its performance, we also compared fuzzy variable selection with bagged

variable selection [Breiman, 1996b]. In the context of regression models, there are two

different ways to generate bootstrap samples. One is to directly bootstrap the data pairs (xi,

yi) and another one is to bootstrap the residual errors i and finally produce (xi, xi + ebi). In

light of the nonrobustness of the second bootstrap method, Efron and Gong [1983] seem to

prefer the first one. In this study, we will apply the former method. The Monte Carlo

simulations are only done for the case with the sample size of 50 and noise level of 0.2, and

for both the smooth and non-smooth function. The results are shown in Table 4.5.

Table 4.5 Comparing fuzzy variable selection and bagged variable selection

Table 4.5 shows that in our simulations fuzzy variable selection significantly

outperforms classical variable selection, while bagged variable selection deteriorates the

performance a little.

Comparing the two functions we used in our simulation, it was also found that for the

first function, which is smooth, the optimal solution in the last generation always outruns

the optimal one in the whole history of optimization, while for the second function, for

which usually more predictor variables are selected in the crisp model selection procedures,

the optimal solution over whole history of optimization always outruns the optimal one in

the last generation. This gives us some insight concerning how to select the best one among

those candidate vectors of shrinkage parameters.
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Model Smooth function Non-smooth function

Evaluation -
a4 GMPEc AGMPEB AGMPEF AGMPEc AGMPEB AGMPEF

Method

AIC 3.75E-2 4.19E-2 3.35E-2 1.66E-2 1.60E-2 1.64E-2

BIC 4.26E-2 4.73E-2 3.37E-2 1.74E-2 1.77E-2 1.71E-2

GCV 3..61E-2 3.82E-2 3.16E-2 1.65E-2 1.66E-2 1.61E-2



In our simulation, we also found a close relation between fuzzy and crisp model

selection methods. If we set some a, say a=O. 1, then the a-cut of the fuzzy variable set is

the same as the variable subset selected by the corresponding crisp model selection method.

Particularly in cases of overfitting, the best subset, which can be found by the true model, is

nested in the optimal subset, which is determined by a crisp variable selection method, and

both can be regarded as -cut of the fuzzy variable set with some or. This property enables

us perform crisp model selection by taking advantage of the fuzzy method, while avoiding

combinatorial explosion especially when the full predictor variable set is large.

4.7 Conclusion

In this chapter, we developed a fuzzy variable selection scheme for multiple linear

regression models by generalizing classical crisp model selection methods. Besides

producing interpretable models, this method also incorporates the favorable stability of

shrinkage estimators. With the definition of the effective model dimension, each classical

model evaluation criterion can be easily extended to the fuzzy case. Based upon these

model evaluation methods, the coefficients in a fuzzy model can be optimized by a hybrid

optimization algorithm having both global and local searching capability, which is realized

by combining together a global and a local optimization algorithm. The numerical study

further shows that this fuzzy model selection strategy significantly improves the accuracy

as well as precision of a predictive model.
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Chapter 5

Dealing with Non-normality, Outliers and Heteroscedasticity in Partly

Linear Regression

5.1 Introduction

Multiple linear regression is widely used for modeling and prediction. Usually, a linear

regression model is expressed in the following form

y = xfl + , (5.1)

where y is nxl vector of observations on a dependent response variable, x is a nxp matrix of

observed regressors, ,fis the pxl vector of regression parameters to be estimated, and Eis

the nxl noise vector, which is usually assumed to be E - N(O, 2 ) . Furthermore, without

loss of generality it is convenient for us to assume X=[X1,...,X,] comprises an orthogonal

set of regressors, which is easy to be done by some transformation.

Ordinary Least Squares (OLS) is certainly the most widely applied method for

estimating fin multiple linear regression. The regression coefficients are estimated so as to

minimize the sum of squared errors (SSE), i.e.

(5.2)J)oLS = arg min SSE = arg min Z'1(yi - x) 2 .
/3 /3

It is easy to derive that

(5.3)AOL = (XTX)-lXT y.

An estimator 8/ of flis considered to be the Best Linear Unbiased Estimator (BLUE),

if

i) It is a linear function of the random variables, x and y;

ii) E(/) = r,, that is, it is unbiased; and

iii) Var,(/) < Var(*) for any other ,*that is linear and unbiased, i.e. /, is the most
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efficient.

According to the Gauss-Markov theorem, the OLS estimators of are BLUE if the

following Gauss-Markov (GM) assumptions are satisfied:

Al) i is Gaussian with E(£ I xi) = 0,

A2) i is independent, i.e. Cov(Ei,£j) = 0 V ij,

A3) ei is homoscedastic, i.e. Var(i I xi)=o 2 V i,

A4) Cov(ci, Xi)=O, and

A5) The regression model is properly specified.

With all the above GM assumptions holding, OLS is regarded as BLUE and naturally

any other method cannot outperform OLS in terms of generalization error. However, as

matter of fact this cannot always be the case. For example, in the presence of

heteroscedasticity, the GM assumption A3 is violated, and therefore the OLS estimators are

not BLUE anymore, although they remain unbiased.

In reality both model and data problems may lead to the failure of the Gauss-Markov

assumptions. In this chapter we will mainly focus our attention on some of them, including

model misspecification, non-normal errors, outliers and heteroscedasticity. To describe

these problems, let's first introduce a more general generating model

Y(t) = X,8 + g(t)+ u (5.4)

where Y is a response variable depending on a variate t, X is a row vector of predictor

variables, fis the vector of parameters of the regression model, u is an error term, and g(t)

denotes the overall effect of predictor variables excluded from X and therefore serves as the

bias term. Furthermore, g(t) might be non-linear, and thus such a model is partially linear.

The ideal conditions about both model specification and error distribution may not be

fulfilled, and here we will consider these potential problems and their corresponding

effects on the modeling one by one.

(l)Non-normal error distributions
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Usually, the error u in the generating model in equation (5.4) is assumed to be normally

distributed, but in fact there is no reason for us to stick to such an assumption. Therefore,

we will extend the normality assumption to any arbitrary symmetric error distribution, for

example, some heavy-tailed distribution like the Cauchy distribution.

Without the assumption of normal error holding, the OLS estimate is not efficient any

more, but maximum likelihood estimates can be applied instead just as for Generalized

Linear Models (GLM) [see Nelder and Wedderburn, 1972]. However, another problem is

that the type of error distribution may be unknown.

(2) Outliers

To explicitly distinguish outliers from observations resulting from heavy-tailed error

distribution, outliers here specially refer to bad data points due to some unusual error, or

something like surprises of stock return in a financial market. In this case, the normal error

can be considered to be contaminated by some unknown distribution as follows

e = + s, (5.5)

where edenotes the normal error and s refers to the contaminating error generated by some

unspecified distribution.

Since outliers have undeserved heavy influence on the estimation of regression

coefficients when using ordinary least squares, it is important to detect outliers and assign

them appropriately smaller importance, and even rule them out. In reducing or eliminating

the influence of outliers, some robust regression methods like M-estimators [Huber, 1964]

turn out to be effective. Although we model outliers explicitly differently from

heavy-tailed error distributions, in practice heavy-tailed error distributions can also be used

to accommodate outliers.

(3) Heteroscedasticity

Heteroscedasticity is another central issue in regression analysis, which has captured

lots of attention among statisticians. The presence of inconstant variance of the assumed

normal error distribution violates the GM assumption A3.

A usual way to deal with heteroscedasticity is to estimate the covariance matrix of errors
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as in generalized least squares (GLS) [see Carroll, Wu and Ruppert, 1988], or alternatively

model the variance deterministically if one is in possession of some knowledge about the

variance or randomly when there is less information. For example, assuming that the oi are

random, Hooper [1993] showed that empirical Bayes estimators improves the Fuller and

Rao weighted least squares estimator (WLSE) [Fuller and Rao, 1978] provided that we can

correctly specify the distribution type of the random . Verbyla [1993] modeled the

variance component as log-linearly dependent on explanatory variables. In both cases,

the overall error distribution is non-normal, although still symmetric.

In reality, we can also find some examples. A Gaussian variable whose variance

fluctuates over time in general generates a super-Gaussian distribution and real signals

such as oscillations have sub-Gaussian distributions. [see e.g. Parra et al., 2001]. In

addition, Beale and Mallows [1959] show that mixture of symmetric distributions, or

equivalently varying the variance of a symmetric distribution, always leads to increasing

kurtosis, i.e. super-Gaussian.

In the cases where the variance is modeled as a discrete random variable, the overall

error can follow an arbitrary distribution according to the theory of mixture of Gaussian

[see McLachlan and Peel, 2000].

(4) Incomplete set of predictor variables

Compared to the model in equation (5.4), the model in equation (5.1) is partly linear in

that g(t) is actually omitted, thereby representing part of model misspecification. If we

assume X is orthogonal to g(t), X can be considered to be uncorrelated with g(t) statistically.

Accordingly, the error term in the model in equation (5.1) is in fact equal to

= g(t) + u. (5.6)

If we assume t is uniformly sampled in a range, some functions g(t) may generate a

distribution close to normality, and consequently so does . However, in most cases the

distribution of g(t) will deviate from normality. Thus, in the presence of incomplete

predictor variables even if u is normally distributed, eis not statistically normal any more.

170



Besides the methods mentioned earlier, there is another possible way to solve the

problem of non-normality, heteroscedasticity, outlier and removable non-additivity, which

is pioneered by Box and Cox [1964]. They proposed a parametric family of

transformations of variables, which were intended to provide homogeneity of variance,

additive model and normality of the errors. Such transformation methodology has been

proven quite successful in some contexts, but it has some limitations, for example, the

physical meaning of predictor variables may get lost and variables have to be positive.

In summary, all the problems listed above can result in breakdown of some of GM

assumptions, and some existing techniques might help handle some situations, but none of

them are able to deal with all these problems. Furthermore, in practice it is generally hard to

tell what causes the violation of GM assumptions and apply corresponding effective

technique. Hence, it is of practical interest to come up a uniform framework to deal with all

these problems simultaneously, which is possible if we note that all of them lead to

non-normal overall error.

With the GM assumptions violated, the usual OLS estimator of f, is in general biased

and inconsistent. However, Schick [1996] shows that in the partly linear regression model

with heteroscedastic errors an appropriately constructed weighted least squares (WLS)

estimator can be consistent and more efficient than OLS estimators. Following a similar

idea, we will generalize the usual weighted least squares, where weights are given, to

parameterized weighted least squares (PWLS) and then estimate an optimal weighting

function before performing WLS analysis, which will produce a better regression model

than OLS.

To present and demonstrate the PWLS method, this chapter will be organized as follows.

In section 5.2, the method of PWLS will be proposed as a uniform framework to handle the

data and model problems mentioned above. Two methods, that is, maximum likelihood

estimate and residual maximum likelihood estimation, will be applied to estimation the

hyperparameter in the proposed family of error distributions in section 5.3. In section 5.4, a

likelihood ratio test is applied to perform a significance test. Section 5.5 reports Monte
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Carlo experiments results. The last section concludes this chapter.

5.2 Parameterized weighted Least-Squares

To define parameterized weighted least squares (PWLS), it is helpful to begin with usual

weighted least squares.

In OLS, all the observations of data are treated equally without discrimination, or in

other words, a flat weight function is assigned over the data. Assigning different weights to

different data points gives rise to the weighted least squares (WLS), which is to minimize

the weighted squared error

RSSw = =lw,1 = = w,(yi -xi,) , (5.7)

where the weights associated with each data point are incorporated into the fitting criterion.

The size of the weight indicates the precision of the information contained in the associated

observation.

By a transformation on the variables, i.e. y' = F/Yi and x = w x i, with the aid of

the solution of OLS it is easy to derive that

A8WLS = (X Wx)' x Wy, (5.8)

where W is a diagonal weight matrix that takes the weights as its diagonal entries.

WLS can be applied to diminish the effects of outliers and therefore gives a robust

regression model.

In general, the weights are empirically chosen. Usually, empirical weights are a function

of the residual error, which is in turn a function of the estimated coefficients that depends

on the weights. In such a circumstance, an iterative method known as iteratively

reweighted least squares (IRLS) can be utilized to estimate regression coefficients [for

example, see Green, 1984 or Chen and Shao, 1993]. Basically, it works as follows:

1. Select initial weights w(, such as uniform weights, i.e. wi=1.
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2. At each iteration t, solve for the WLS estimates of ,as

AWS := (XTW(t)X) -1 XTW (t)

3. Calculate the residuals ei(t) and associated weights Wi(t+l)= w[ei( )] for the next

iteration.

4. Step 2 and 3 are repeated until the estimated coefficients converge.

In the above, the iteration starts with an OLS estimate as in Chen and Shao [1993], and

as many authors noted it can result in different accuracy and efficiency when starting with

different initial estimates [for example, Carroll, Wu and Ruppert, 1988], for instance, a

feasible GLS estimate (FGLS) suggested by Inoue [1999] or more generally a WLS

estimate proposed by Inoue [2003].

In the above procedure, w[-] refers to a weight function. For example, w(e)=1/1e is

often used to deal with heteroscedasticity [Fuller and Rao,1978] so that the weights are

inversely proportional to the magnitude of the residuals. In this case, after convergence the

weighted residual sum of squares is

RSS = Z- 1 wIe,1 = Z'=ly, - x,'j, (5.9)

which is exactly the sum of absolute deviations. That is, if w(e)=lel-', the WLS reduces to

Least Absolute Error method.

Note that in the above W or Z is assumed to be a diagonal matrix with all the

off-diagonal elements zero, which implies errors are independent across observations.

Often, however, this may be an unreasonable assumption (e.g. in time series, or in clustered

data). We can relax this assumption and thus extend our results to a non-diagonal weight

matrix, which corresponds to the case where the covariance matrix of noise Z is not

diagonal. we will obtain a similar generalized least squares (GLS) estimator

,'GLS = (X WX) x Wy . (5.10)

Aitken [1934] has shown that in general the generalized least squares estimate is the BLUE

of when W =: -', i.e. its variance achieves the lower bound ( orl, TX, x )- .
j=. I, I-
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However, in practice we rarely possess exact knowledge of Z, and therefore GLS is

not operable, but an estimated or feasible generalized least squares (FGLS) should be

employed instead, which is suggested by Inoue [1999]. FGLS estimators are often

implemented in multiple steps: (1) an OLS analysis to yield estimated ei; (2) estimate Z

from the analysis of the i as , for example, regressing 2 on xi or squares of xi, which

is based on the assumption that ^2 depends on xi; and finally, (3) computing the FGLS

estimator with the estimated Z, i.e. 1/FGLS = (xr -1 x) - xT -1 y. It can be shown that if

the heteroscedastic regression is correctly specified, FGLS is asymptotically equivalent to

GLS, i.e. nJ(/3GLS -FGLS)- 0 in probability [e.g. see Davidson and MacKinnon,

1993].

To estimate the covariance matrix, it is beneficial to model it as a tunable function of

the residual errors. That is, we can extend the usual weights in IRLS, i.e. w(e)=1l/lel , to a

parametric family of weights

w,(e) = ela . (5.11)

Such a weighting function finally makes the weighted sum of squared residual error in

IRLS procedure converge to

RSSW = Ewai e 2 = E nIYi xi +a = Yi -xi i (5.12)

which is often called Lfitting.

Although there exist various weighting strategies, all of them generally fall into two

categories, no matter how complicated

(i) decrease the weights of those data points having large residual error, e.g. perhaps

outliers, as in some robust regression methods like M-estimation [Huber, 1964 ]

(ii) increase the weights of those observations hard to learn as in boosting [see Drucker,

1997 and Avnimelech and Intrator, 1999]

If we set the range of ain (5.12) as from -1 to 1, we can achieve both classes in a unified
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weighting function, that is,

(i) if <O, the larger the residual error, the smaller the weight, while

(ii) if o>O, the larger the residual error, the greater the weight.

Therefore, the advantage of such a weighting function as in (5.12) is that it enables us to

realize both classes of weighting strategies through a single tunable hyperparameter.

Such a parametric family of weight functions can be also justified from another angle. It

is well known that MLE is efficient if an efficient estimator exist, and further it is at least

asymptotically efficient. In addition, as shown by Bradley [1973], in the presence of a noise

with any distribution in an exponential family the MLE of fl,'s can be estimated by

weighted least. squares. In order to estimate the optimal weights, we have to know the error

distribution in advance. However, usually we have no precise information about either the

error distribution or the variance component, and therefore what we can do is to estimate

them from observations.

Without knowledge about the form of the error distribution, a possible way to estimate

the error is to utilize a parametric family of error distributions, whose parameters can be

estimated based upon data. A good candidate for such parametric family is the exponential

power distribution (EPD) [Albers, 1998], because of its simplicity, close connection to

WLS and other desirable properties.

EPD has probability density function

f(el y,u, a)= Y F[l exp _ , (5.13)

where yis the shape parameter, ,u is the location parameter and ais the scale parameter.

This family of distributions has the following statistical properties:

(1) It includes Gaussian ( 2 ), Laplace (yl1), and uniform distributions (->oo) as

special cases;

(2) It is symmetric about ,u but the scale parameter uis not equal to the standard

deviation;
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(3) In view of the fact that (t) = e-"uldu, it is easy to obtain

E(le k a), = k r( k+ 1)/Y/] where k>1 (5.14)
T[ly

If we define kurtosis as

E((e - )4

Kurtosis = Ee (5.15)

the kurtosis for EPD as a function of y is computed as

Kurtosisy= r(5/ Y)F(1 y) (5.16)
F(3/ )2

From the above equation (5.16), it is easy to see that when is greater than 2, EPD is

more peaked than the normal distribution, while when yis smaller than 2, EPD is flatter

than the normal distribution. Thus, comparing to the usual normal family and double

exponential family, apart from location and scale parameters EPD has an extra kurtosis

parameter, which can controls the distribution's deviation from normality and affects the

tail of the distribution. By varying y, it is possible to describe Gaussian, platykurtic and

leptokurtic distributions (kurtosis larger than 3). The smaller is , the heavier the tails.

EPD provides us a wide class of statistical distribution to model both sub-Gaussian and

super-Gaussian densities. It also enables us to approximate non-Gaussian error distribution

by choosing appropriate values of 

Figure 5.1 shows a class of EPD density functions with u zero, aunit and yranging from

1 to positive infinity.

Now let's suppose the error £in the equation (5.1) follows an EPD distribution with a

given y Then the log-likelihood of an observation (xi, yi) is

LL(y,,xi fl,, 2/ ) log Y Y2F[1/ / i (5.17)

By maximizing the log-likelihood of the observations
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LL(y,x x l,y, a)= , - LL(y,x i B, y,2)

= n log2u r.F[l/ry11 j Y -/ 

the maximum likelihood estimate of regression coefficients can be obtained as

/ = argmin E ly i - x iI,,
/7

(5.18)

(5.19)

which is exactly equivalent to Lyfitting in the equation (5.12).

Ca
4-

-6 -4 -2 0 2 4
e

----- y=2.0 ........................=3.0

6

. -y--oo 3

Figure 5.1 A class of EPD density functions

Therefore, with the shape parameter yalready known, it is easy to construct a regression

model by WLS. However, this is rarely the case as we have very little information

regarding the error distribution except for observations. Thus, we have to estimate the

shape parameter y somehow before performing WLS analysis.
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5.3 Estimating optimal weight functions

As we mentioned earlier, we need to first estimate the error distribution and then estimate

regression coefficients. To estimate the error distribution, we propose to apply the

exponential power distribution with tunable parameters to approximate the error

distribution. A classical way to do so is to follow the maximum entropy principle, which

states that when an inference is made on the basis of incomplete information, it should be

drawn from the probability distribution that maximizes the entropy, subject to constraints

on the distributionTo maximize entropy is equivalent to minimizing the Kullback-Leibler

(KL) divergence [Kullback, 1959] between the true distribution and the approximating

distribution, which is defined as

I(g,f)= E r log = log g(y)dy= (5.20)
{g(Y) fg(Y)

where g refers to the true distribution andf denotes the statistical model.

The KL divergence has the following properties:

(i) I(g,J) 20,

(ii) I(g)=O 4= g(y)=f(y).

Note that

I(g,f)= Ey{logg(Y)-logf(Y)J= logg(yg(y)dy- ogf(y g(y)dy

=Const. - log f(y) .g(y)dy (5.21)

where logg(y) g(y)dy =: H(Y), which is constant although unknown.

Hence, in order to minimize the KL divergence, we need to maximize the empirical

likelihood of the observations, which is 1 log f (y) .

In the current case, if we suppose the true error distribution is g(YjX,'), then we
obtain

I(g(Y IX,fl),f(Y /,, X,y,u)) = Ey g(Y IX, )}- _ log.f(y ,x,y,c )g(y Ix,)dy
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n -

Finally, we obtain the estimates as

(, 3) = arg max y log f(y i , xi,x, ,o)
rfl

arg max n log/ r ) j E i - il (5.23)

vP 2r.?[ I] =I

which is exactly the maximum likelihood estimate of parameters. So even if the true error

distribution is not in the parametric family, asymptotically the one closest to the truth with

the family will be found out.

5.3.1 Maximum likelihood estimation

The MLEs in equation (5.23) can be analytically obtained by setting each first partial

derivative to zero, that is

al(y) a y) yC~sign(v1- ~ ~h1x .V xi =0, forj=,...p (5.24)Oflj - ?Z-' , sign(yi x Yi -I Ixij|lJ . x o=,forj=, ... ,p

d- - + a ZI|Yi--Zj=xij ,j4 ='0, (5.25)

and

al(y) n _ -xi,(1Y -y'=,
__= _ n (log F(I / _)) - En 1 _l i /log y ~ -i 0 = . (5.26)

These equations are hard to solve simultaneously for y, a, and /, j= ,..., p, due to their

complex forms. However, the difficulty can be circumvented by some kind of iterative

procedures, in which we

(1) first set some initial value for y,

(2) solve the equation (5.24) for/ , j=l,..., p, given y,

(3) solve the equation (5.25) for a, given yand ,lj, and finally

(4) solve the equation (5.26) for ygiven /j and a.

(5) repeat the above steps (2)-(4) until convergence.

Even with such an iterative procedure, the equations (5.24) and (5.25) are still not easy
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to solve analytically, and thus some numerical methods have to be applied.

Note that equation (5.24) is actually equivalent to equation (5.19), an Lp norm

optimization problem, and therefore it can be solved by iterative re-weighted least squares

(IRLS), with the weights set as w,(e)= elr-2 in each iteration.

Meanwhile, since equation (5.26) involves the power function and the derivative of the

Gamma function, another numerical iterative method has to be utilized to solve it for y. To

do so, we can rewrite it as

(! =(log r(1/y(k)) +_ En logi I Yi il (5.27)
Y n0

where k is the number of iteration. Furthermore, the derivative of the gamma function can

be computed numerically, i.e.,

F'(z) = -F(Z) + + (5.28)

where A is the Euler-Mascheroni constant, approximated by 0.5772.

In practice, the exact value of ymay be not so important as long as we can know whether

yis greater or smaller than 2, for some reasons that will be discussed in more detail later on

in section 5.3.3. Therefore, simple numerical grid search procedure can be applied in place

of the one above. The procedure can be described as follows.

(1) Generate a grid of values of yevenly distributed between [1,3].

For each ysolve the equation (5.24) for /,, j=l,..., p, using IRLS, that is

, = arg min Ei' ly - xi/l. (5.29)

(2) Estimate aas

f =j iu I yi x- xiB. (5.30)

Compute the maximum likelihood for each yas

02a . (5.31)
l(y) n1log 2if T.[1/2' T rr531
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The y corresponding to maximum l(y) will be taken as the MLE of y.

5.3.2 Residual maximum likelihood estimation (REML)

In the above section, we described an MLE procedure to estimate both the error

distribution and the regression model. However, it is well known that usually MLE does

not produce unbiased estimators because it does not take into account the loss of degrees of

freedom that results from estimating other parameters [Harville, 1977]. For example, the

ML estimate of the variance for a normal distribution is SjLE = whereas
n

the unbiased estimate of variance is S = i - .The estimator in this example is
n - 1

biased because it ignores the loss of one degree of freedom due to the estimation of the

sample mean. This disadvantage of the MLE can be overcome by the Restricted Maximum

Likelihood (REML) technique, which was proposed by Patterson and Thompson [1971] to

estimate the variance components in a linear mixed-effects model. Since then, REML has

become the method of choice for estimation of the variance components in a linear mixed

model. For derivation of REML, refer to Patterson and Thompson [1971] and Harville

[1974]. In this chapter, we will extend the REML method in the current case to estimate y-

To review a little about REML, let's first present an explicit definition of linear

mixed-effects models, or simpler linear mixed model. A general form is

y = x + zb + , (5.32)

where y is the n-dimensional response vector, z is an nxp model matrix for the fixed-effect

and z is an nxq model matrix for the random-effect, 5is a vector of fixed effect coefficients,

b and E are vectors of random variables with mean 0, assumed Gaussian usually and

uncorrelated with each other.

Let's suppose b-N(O, 2I) and e-N(0, o2I), and cov(b, )=0. If we let v=zb+e, then

v- N(O, o2(zzT+I)) and y- N(xfl, C(zfzT+I)). Knowing this, it is easy to find out the
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MLE of flby generalized least squares.

For example, we further let F=AI as in Patterson and Thompson [1971]. Hartley and

Rao [1967] estimate A1, A and o2 by maximum likelihood, while Patterson and Thompson

[1971] propose to use REML, which separates the estimation of , from that of A and o2.

REML differs from ML in that the likelihood of the data is maximized only for the

random effects, thus REML is a restricted solution. Rather than using y directly, REML is

based on linear combinations of y, say, Sy, where S is an nxn matrix. S is chosen in such a

way that Sy does not depend on the mean value of y, in other words, independent of ,l no

matter what their value is, i.e. Sy=S(x/,+v)=Sv. If we suppose the log-likelihood of a data

vector y is LL(y), the log-likelihood of Sy is

LL(Sy) = LL(y) + log det(S), (5.33)

where S is independent of ,8 and thus independent of the data y. Therefore, maximizing

LL(y) with regard to A amounts to maximizing LL(Sy) with regard to A. In so doing, the

estimation of other hyperparameters like A in the current case can be separated from the

estimation of f.

S can be chosen by finding an S such that

(i) var(Sy) is positive definite.

(ii) E(Sy)=O , i.e. Sx=O.

(iii) Rank(S)=n-p, that is, S has n-p linearly independent rows.

A suitable matrix S was suggested by Patterson and Thompson [1971] as

S = I - x(x T x)- XT. (5.34)

It is easy to verify that Sx=O holds. From Sx=O, we know that S is orthogonal to the

column space of x, whose rank is equal to p, therefore S lies in the (n-p)-dimensional

orthogonal complement of the column space of x, i.e. rank(S)=n-p.

With such an S, Sy turns out to be equivalent to the residuals obtained by fitting the data

using OLS. Therefore, the basic idea of REML is to perform maximum likelihood on the

predicted residual, which is calculated by OLS method. This is why REML is also called
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residual maximum likelihood. A good thing is that our estimator is invariant to the choice

of Sy except for a constant, provided that we satisfy the three conditions above.

Now the REML equations can be directly derived from the ML equations in (5.17) by

making suitable replacements, i.e. y by Sy and x by Sx. Following a similar idea, we can

separate the estimation of the error distribution from the estimation of regression

coefficients, because

Sy = S(x + ) = SC, (5.35)

where £ follows an exponential power distribution and thus it is easy to obtain the

likelihood function for Sy.

Finally, we obtain

LLREML (Y,, X I r, , ) = log 2 F[I / l] , (5.36)

where ei is calculated after fitting using OLS, i.e. e = [I- x(x r x )- xxT]y.

Similar to MLE, maximizing the above LLREML with regard to both yand 0produces the

REML estimator of y Since the REML estimator of y is obtained by maximizing the

marginal log-likelihood, ,l is not involved in it. After estimating y, the next step is to

estimate the linear regression model given the error distribution, which can be done by an

IRLS procedure.

Once again, maximizing LLREML involves differentiating the gamma function as well as

calculating the root of a complex function, and it is helpful to apply a simple numerical line

search method instead, which can be listed as follows:

(1) Generate a set of values of y evenly distributed between [1,3].

(2) Estimate cT as

C =m Y m u iei l (5.37)

(3) Compute maximum likelihood for each as
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IREML (y) log F[1y] -r e (5.38)

The ycorresponding to maximum IREML(Y) will be taken as the REML estimate of y.

Under mild conditions, the REML and maximum likelihood estimators are

asymptotically equivalent [see Cressi and Lahiri, 1993, Richardson and Welsh, 1994].

However, it is easy to note that this method based on the residuals is simpler than the ML

method as it performs IRLS only once. In addition, it separates the estimation of error

distribution, i.e. y, and regression coefficient, namely f, thereby simplifying the problem a

lot.

Our simulation study shows that when the sample size is relatively small, ML method is

a little more stable, while when the sample size is large, REML performs better.

5.3.3 Shrinking weight functions

A weakness of WLS observed by many researchers, for example, Hooper [1993], is that

sometimes the error of some data points tend to be underestimated and therefore are

assigned overly great weights. For example, if the estimated error of an observation

happens to be near 0, its corresponding weight will be markedly high. This is part of the

reason why the WLS estimator may not be better than OLS estimator when the group size

is no greater than 2 as indicated by Chen and Shao [1993]. To address this problem, Hooper

[1993] proposed to apply empirical Bayesian estimator and based upon his study he

recommended shrinking large weights towards 0 by, for example, adding a positive

constant to each residual error estimate. If we extend this idea, we can construct a shrunk

weight function as

wa(e) = IA + ela (5.39)

where X is an appropriately chosen positive constant, for example, the estimated scale

parameter.

If we plug the above weights into the equation (5.12), we obtain
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RSS,, = , = , l/ y +' I = E=,p(e,,)ly, -x,l, (5.40)

where when cz<0, p(ei,A)<l and increases monotonically with e increasing, and on the

other hand when ccO, p(ei,2)>1 and decreases with e. The above equation (5.40) can be

viewed as weighted maximum likelihood estimate. Therefore, the final effect is equivalent

to shrink y towards 2, i.e. the normal distribution. As a matter of fact, if we apply

Bayesian approaches and assume a probability density function for A with mean value 2,

we will end up with a similar result, i.e. shrinking ytowards prior mean 2.

In fact, in our simulation study the hyperparameter y tends to be overestimated

especially with maximum likelihood estimate (MLE). This may be due to the inefficiency

of MLE under some situations. By shrinking ytowards 2 under mild deviation of the error

distribution from normality, better performance of PWLS can be achieved.

In fact, the shrinkage of the hyperparameter ydepends on the log-likelihood difference

that will be introduced in the next section. If difference is significant and we would say that

one hypothesis is dominating the other, and in such a case the shrinkage is not necessary.

5.4 Significance test

In the last section, we applied Maximum Likelihood method to estimate the approximate

error distribution or equivalently the hyperparameter yin parametric WLS. However, this

class of ML methods can not guarantee us that so estimated PWLS regression model will

certainly outperform OLS estimate at least for two reasons:

(1) The GM assumptions do hold and the deviation from normality is just attributed to

statistical fluctuation especially resulting from small sample size;

(2) Adding more parameters to the model increases the variance of estimation of

parameters, which might finally lead to larger overall mean squared error.

Taylor and Siqueira [1996] discusses in detail about the cost of adding parameters to a

model, which is also applicable to our case.
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According to statistics text, we may define this kind of error as Type I error or false

alarm. One way to avoid such error and increase our confidence is to perform significance

test. A test of choice is the likelihood ratio test as it is a powerful, very general

likelihood-based method of testing model assumptions. In the current case, we will test the

null hypothesis that the error distribution is best represented by a normal distribution

against a composite alternative hypothesis that the error distribution is not normal.

Equivalently, the hypothesis of interest is H o : y = 2 and H.: y ¢ 2.

In Likelihood Ratio Tests (LRT), an important assumption can be restated as a reduction

or restriction on the number of parameters used to formulate the likelihood function of the

data. In all these cases, there is a simple and very useful way to test whether the assumption

is consistent with the data. If we define L1 be the maximum value of the likelihood of the

data without the additional assumption and also let Lo be the maximum value of the

likelihood when the parameters are restricted (and reduced in number) based on the

assumption Ho. Assume k parameters were lost by adding restrictions (i.e., Lo has k less

parameters than L 1). According to the Wilks theory [Wilks, 1963], 2 times the log

maximum likelihood ratio approximately follows a Chi-square distribution with k degrees

of freedom as n tends to infinity, i.e.

LR = -2 logA = 2(logL_ -logL0 ) D ) 2 (k), (5.41)

where A= L, which is always between 0 and 1, and D > means converges in

distribution. The above approximation in (5.41) is usually good, even for small sample

sizes.

The null hypothesis, Ho, will be rejected if LR is larger than a Chi-Square percentile with

k degrees of freedom, where the percentile corresponds to the confidence level chosen by

the analyst such as 95%.

In the present case, for ML method we define
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log L : LL(y, x S ,a2) LL(y,, x WS 

=7l logf 26.Fr/I - Z " -XJPWLS| (5.42)= logti~j~T~T) " Yi - Xil8wLs

and

log Lo = LL(y, x /oLs , 2 ) = i 1 LL(yi, xi I oLs, &2)

n log I _En (Yi XiOLS ) 2(5.43)

where ,6., ?, 6 denote maximum likelihood estimates under respective hypotheses.

Since the lost degrees of freedom k by setting y as 2 is just 1, we have approximately

LR = 2 log LL(y, x ) - X2(1). (5.44)
LL(y, x I OLS ,2)

If we choose 95% as the confidence level, then we obtain the decision rule, i.e. if

LR > X295 (1) = 3.841, (5.45)

the assumption that the error distribution is normal will be rejected with a confidence of

95% and the parametric WLS method rather than OLS should be applied instead. If we

choose 90% as confidence level, the criterion becomes LR>2.706.

In fact, if we reject the normal assumption if LR > 2, this decision rule is equivalent to

Akaike's Information Criterion (AIC) [Akaike, 1973].

As for RMEL, we developed corresponding residual maximum likelihood ratio test, in

which Lo and L1 are defined as follows

logL = LL(e ) n log 2 r[1/]) - l -I ' (5.46)

and

logL )= LL(y,xfltOLs,, )==log(- 2) i2 (5.47)
2 2 L'=' 22'

where ei's are equivalent to residuals resulting from OLS.

Similar to the significance test for MLE, if
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LRRE L = 2(logL, -logLO) > 9 5 () = 3.841,

the assumption that the error distribution is normal will be rejected at a confidence level of

95%.

With this significance test, our procedure will adaptively pick PWLS if the error

distribution severely deviates from normality, or select OLS if the departure is just mild.

5.5 Monte Carlo simulation study

In the above sections, we developed a uniform framework, i.e. parametric weighted

least-squares (PWLS), to handle the departure of error distribution from normality caused

by non-Gaussian error, outliers, heteroscedasticity or incomplete predictor variables. In

this section, we will show how this method works in practice by means of Monte Carlo

simulations.

To provide a general example, we will use cosine series as predictor variables to fit a

data set generated by a smooth function plus some disturbance, i.e.

y = f(x) + , (5.48)

where e can be any arbitrary but symmetric distribution.

The set of predictor variables we utilized in our simulations is { cos(ar) ,cos(2;c),

cos(3x), cos(4nx), cos(5nx) }, and the smooth function is

f(x)=sinc(3x)=sin(3x)/(3x), xe [-1,1] (5.49)

which can be well approximated by the chosen cosine series and therefore the set of

predictor variables can be deemed as complete.

Since in the current simulation study we assume the true model is already known,

therefore we can define a global mean prediction error to measure how good an estimated

regression model is. Conceptually, the global mean prediction error is defined as

GMPE =-: ( (t) - (t))2dt (s.o)
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where (t) is the estimated model, but in practice, it can be approximated by

I IIGAIPE -= (f(t)- y(ti))2 , (5.51)

where ti is typically evenly distributed in [-L, L] and m is large enough.
To evaluate the performance of PWLS method, we used OLS as a benchmark, and

compared their performance by defining a ratio as

RLPWLS GMPEOL (5.52)
GMPE PWLS

The average ratio is defined as its geometric mean

ROLS/PWLS = ex 1 ROLSPWLS )i (553)

where N is total number of simulations. The average ratio is so defined that it helps reduce

the influence of some unusual cases.

To see how this uniform method can handle all these problems, we designed four

different experiments.

The first one is intended to test its performance in face of non-Gaussian error

distribution. To this end, we generated errors of Laplace or double exponential distribution.

Secondly, to test its ability to detect outliers and reduce their influence, we let the

contaminant distribution as

f (s) = (1 - 2p)8(s) + p8 (s - c) + pS(s + c), (5.54)

where p=O. and c=0.3.

The third one is to show how this method handles heterogeneity of variance. To do this,

the variance component is modeled as log-normal and mixture of Gaussian (MoG) with

median value &, that is, e - N(0, oa), where ln(-e) N(0,1)

and

fe(e) = p N(, 2 ) + (1-p) N(, 22 . (5.55)

The last experiment is to show the influence of omission of predictor variables and how

PWLS is also able to deal with it. In this experiment, to simulate the effect of omitted
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predictor variables another function is chosen asfl(x) in (5.48),

l, if x [-0.5,0.5]
f(x) = ,i (5.56)

- 1, otherwise

which can not be approximated by the included predictor variables so well. f(x) is so

chosen that the distribution of g(t) in the equation (5.6) departs from normality.

The results for this experiment show that PWLS can improve OLS very little if those

omitted predictor variables are not so significant. In this experiment, yis shrunken to 0.5 or

-0.5.

The shrinkage of the hyperparameter y is implemented by shrinking yby 0.2 towards 0

in all these experiments.

The simulation results of all these experiments are shown in Table 5.1 and Table 5.2 for

both ML and REML, respectively. From these results, ML and REML are easy to be

compared as well.

Table 5.1 Monte Carlo simulation results for ML

ML
Noises

AGMPEoLs( O ) AGMPEpWLS (2 ) ROLS/pWLS( 3 )

Non-normal 1.64E-03 1.41E-03 1.18

Outliers 4.58E-03 4.23E-03 1.12

Log-
Hetero-sked 1.19E-02 2.36E-03 3.61

normal
asticity

MOG 7.25E-03 6.24E-03 1.2

Partly linear 7.79E-02 7.49E-02 1.04

Ideal 1.60E-03 1.64E-03 0.98

(I)Average GMPE of OLS Method

(2)Average GMPE of PWLS Method

(3) Average C/F Ratio of Prediction Errors

The last interesting question is that what the PWLS would do if the errors do follow the
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normal distribution. This is to test the probability of making wrong decision on the error

distribution. For this purpose, simulations with ideal normal errors were also performed,

whose results are shown in Table 5.1 and Table 5.2. The results show that when it is applied

to the normal regression, it amounts to the OLS.

Table 5.2 Monte Carlo simulation results for REML

In all the above experiments, we first collect a group of sample data points from the

generating model and fit a multiple regression model to the data set using different methods.

The sample size is set to be 40 and each experiment is repeated many times to obtain an

average performance evaluation.

From these Monte Carlo simulations, we can see some facts.

First of all, the PWLS estimate using both ML and REML performs better than OLS

estimate in all the four kinds of contexts where the overall distribution deviates from

normality. In the presence of heteroskedasticity, the improvement of PWLS over OLS is

the most remarkable.

Secondly, under the assumption of ideal normal errors the PWLS method is almost

equivalent to OLS. In other words, if we define the error that PWLS decides that errors are

not normal while in fact they are as type I or false alarm error, the probability of such error
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REML
Noises

A GMPEOLs A GMPEWLL s ROLS/PWLS

Non-normal 1.64E-03 1.52E-03 1.1

Outliers 4.58E-03 4.46E-03 1.044

Log-
fetero-sked 1.18E-02 2.86E-03 3.21

normal
asticity

MOG 7.25E-03 6.90E-03 1.07

Partly linear 7.79E-02 7.48E-02 1.04

Ideal 1.60E-03 1.61E-03 0.999



is very low, which means PWLS succeeds in avoiding the downside.

Finally, in most situations ML is on average a little bit better than REML, but REML has

a slightly lower probability of type I error.

As expected based upon our derivation, it was also observed in our numerical

experiment that the improvement of PWLS over OLS depends on how severely the error

distribution departs from normality, that is, the more severe the deviation, the greater the

improvement. In the case of mild deviation, the PWLS may not help or even get worse

because the more parameters to estimate, the higher the variance of the estimate.

5.6 Conclusion

To remedy some data problems or predictor variable problems, such as non-normal error,

outliers, heteroskedasticity as well as incomplete predictor variables, a parametric

weighted least squared method is proposed, which is built on weighted least squares with

estimated optimal weights or equivalently approximates the error distribution with

exponential power distribution. Two methods, namely ML and REML, are also suggested

to estimate the hyper-parameter yin the family of exponential power distribution or ain the

weight function. Finally, Monte Carlo simulations study is conducted to test the

performance of the PWLS method. Based upon the comparison of PWLS and OLS, we can

conclude that in those contexts described in this chapter PWLS does outperform OLS.

From the simulation results, we also obtain some insight about where PWLS can be of

great help.
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Chapter 6

Regression Model Uncertainty Reduction by Constrained Parametric

Weighted Least Squares

6.1 Introduction

A model typically in a mathematical form is a simplified representation of a system of

interest intended to help understand and predict the behavior of the system. Generally, a

model consists of two parts, i.e. model specification or model structure, which reflects

important structural assumptions about the system under consideration, and model

parameters, which are usually estimated based upon some data.

Therefore, intuitively a model formulates how a response variable is related to inputs,

but it cannot predict the response variable precisely given inputs x. This is how model

uncertainty arises. Corresponding to the constituents of a model, model uncertainty comes

from two sources, i.e. model structural uncertainty and model parameter uncertainty. The

uncertainty in the choice of link function and error distribution in a generalized linear

model [Nelder and Wedderburn, 1972] serves as an example of model structural

uncertainty and the uncertainty in regression coefficients exemplifies model parameter

uncertainty.

As many authors pointed out, for example, Draper [1995] and Burnham and Anderson

[2002], it is common in statistics to acknowledge model parameter given a specific

assumed model structure, while it is less common to admit model structure uncertainty.

Consequently, the model structure uncertainty fails to be incorporated into model

uncertainty analysis, thereby leading to the underestimate of predictive uncertainty about

the response variable and therefore overconfident decisions. Draper [1995] illustrates the

consequences of unacknowledged structural uncertainty with some examples.

Model uncertainty is one kind of epistemic uncertainty, which is attributed to lack of
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knowledge. Since the cause of model uncertainty is lack of knowledge, increasing the

knowledge base might reduce such uncertainty. Again take the generalized linear model as

an example. If we understand the system much better and thus we can specify the link

function and error distribution more appropriately, the model structural uncertainty can be

reduced significantly; likewise, if we can collect more data or extract more useful

information out of data, we can estimate the regression parameter more precisely as well.

It is worth noting that besides model uncertainty, another important component of

prediction error of a model is model bias. However, in most cases bias is dominated by

variance, although generally both model bias and uncertainty contribute to the predictive

error of a model. As such, model bias is not of our concern in this chapter and we will

primarily focus our attention on model uncertainty. Therefore, throughout this chapter, we

will treat the prediction error and model uncertainty equivalently.

Following this line of thought, the prediction error of a multiple regression model has

two parts, namely model structure and model parameter. Besides the assumption of

linearity, model structure in a multiple regression model also includes the choice of a set of

predictor variables and the specification of the error distribution. The model parameter

refers obviously to regression coefficients, which are usually estimated from data.

There are some existing techniques that help reduce the model structural uncertainty,

such as model selection and shrinkage estimator. For this reason, model structural

uncertainty is sometimes called model selection uncertainty, for example see Burnham and

Anderson [2002]. Since variable subset selection methods are instable and the predictive

error is remarkably large [see Miller, 1984 or Breiman, 1996], although they can reduce

model structural uncertainty, shrinkage methods, for example, ridge regression [Hoerl and

Kennard, 1970 and Tikhonov and Arsenin, 1977], LASSO [Tibshirani, 1996] and negative

garotte [Breiman, 1995], are usually preferred, because shrinkage is a generalized

smoothing method and helps reduce the instability of regression coefficient estimation. In

order to combine the advantages of these two classes of methods, chapter 4 puts forward a
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new shrinkage-based fuzzy variable selection strategy, which is proven to outperform

classical model selection methods by numerical simulations. Such a framework

incorporates both model selection and constrained regression method and model structure

is simply represented by a vector of membership grade.

The other source of model uncertainty, namely parameter uncertainty, results from

parameter estimation, which can be expressed as a function of the variance of estimated

regression coefficients. Under Guassian-Markov (GM) assumptions, the ordinary

least-suqares (OLS) estimator has been proven the best linear unbiased estimator (BLUE)

and statistically we can do nothing more to improve its efficiency. However, in reality GM

assumptions cannot always be met, and thus the OLS estimator is not BLUE any more, for

example, non--normal error, outliers, inconstant variance as well as incomplete set of

predictor variables. There exist some techniques, such as generalized linear models [see

Nelder and Wedderburn, 1972], robust regression like M-estimator [Huber, 1964],

transformation of response variables [Box and Cox, 1964] and generalized least-squares,

that may help handle some of the above problems, but cannot handle them all at a time. For

this reason, chapter 5 proposed a new method, called parametric weighted least-squares, as

a uniform framework to deal with all those problems, thereby reducing the parametric

uncertainty.

In order to reduce the overall prediction error, we need to reduce both its two

components, that is, model selection uncertainty and parameter estimation uncertainty. To

this end, combining a stable model selection method with a more efficient regression

method might be a feasible way, for example, combining such constrained least squares as

Ridge Regression, LASSO or Non-negative garotee with weighted least squares.

Unfortunately, up to now this so called constrained weighted least squares has been rarely

utilized directly in multiple linear regression analysis, although we do witness some

application in maximum likelihood estimation with constraints. For example, Tibshirani

[1997] suggested using lasso for variable selection in the Cox model, which is finally
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realized by a constrained weighted least squares procedure.

In this chapter, we will make the fuzzy variable selection method and parametric

weighted least-squares work together to reduce both components of model uncertainty.

This chapter is organized as follows. In section 6.2, the newly developed fuzzy variable

selection and parametric weighted least-squares (PWLS) will be briefly reviewed. Section

6.3 will generalize the fuzzy variable selection method to the case of PWLS and present a

two-stage optimization algorithm to implement the new method in practice. In section 6.4,

an approach is proposed to evaluate the model uncertainty, which takes into account both

model structure uncertainty and parameter uncertainty. In section 6.5, the results of a

numerical study will be presented. Finally, section 6.6 concludes this chapter.

6.2 Constrained parametric weighted least squares (CPWLS)

In section, we will first review something about fuzzy variable selection and parametric

weighted least squares and then generalize them, and finally come up with a two-stage

iterative procedure, which incorporates both methods.

6.2.1 Fuzzy variable selection

A multiple linear regression model is usually written as

Y = EI, ,P Xi + E (6.1)

where Y refers to the response variable, Xi's are predictor variable, Ai's are regression

coefficients to be estimated, and E denotes the error term.

Variable selection is an essential part of regression analysis. The purpose of variable

selection is to choose an optimal subset of predictor variables such that the prediction error

of the resultant regression model is minimized. To achieve goal, a variety of statistical

model selection methods have been developed, for example, classical hypothesis testing,

penalized maximum likelihood, Bayes methods, information criteria like Akaike's

Information Criterion (AIC) [Akaike, 1973] and Schwarz's Bayesian Information Criterion
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(BIC) [Schwarz., 1978], and cross-validation. Most of these methods follow the principle of

parsimony, in which model simplicity is somehow balanced against goodness-of-fit.

If we use C.-={c 1, c 2, ... , cp} to denote the full set of potential predictor variables in the

case of linear regression, there are total 2P possible subset choices. Simply, we may

characterize classical variable selection with a model selection vector m = (m,,..., mp),

where ni is either 1 or 0 for i=1,...,p. if mi=1, it means that the i-th regressor is chosen;

while if mi=O, it is not.

In both statistical theory and practice, it is shown that an appropriate variable selection

method can improve the efficiency of a model and reduce its prediction error significantly.

Further more, classical model selection produces an interpretable framework, that is, each

predictor is either chosen or not, especially when the predictor variables have certain

corresponding physical meanings. However, as we mentioned earlier, subset selection is

instable mainly because it only select a single best model, and may have considerably large

prediction error compared to some other shrinkage estimator such as ridge regression and

other constrained least squares. In order to combine the advantages of classical model

selection and shrinkage estimator methods, chapter 4 generalized the conventional model

selection by introducing the concept of fuzzy model selection. Again, we can characterize

classical variable selection with a vector of membership grade, i.e. m = (m ,..., mp ), where

mi can be any value between 0 and 1 rather than restricted to 0 or 1 as in classical variable

selection. In the fuzzy model selection scheme, mi specifies in which degree the

corresponding predictor variable belongs to the best subset, and thus it can be used to

control a regressor's contribution to the model.

Similar to the crisp model selection, we can construct a selected regression model as

Y = PI mi,X,,with mic [0,1]. (6.2)

where each mi functions as a continuous shrinkage factor since it is less than 1. So, it is easy

to note that P1= m, < p, and therefore this model is a shrunken model and shares some

desirable properties with shrinkage estimators.
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The model selection factor and regression coefficients can be estimated based upon data

as follows

(i, ,B) = arg min E[(Y - P i )2 m= arg min E(Y - P ,, X)2 

subject to ~Pl mi < t ,where 0 < mi < 1 (6.3)

Meanwhile, the generalized ridge regression can be expressed as

/RR = arg min EkY - flX )2 ], subject to iPZiA82 < t. (6.4)

The solution of the generalized ridge regression given regularization factors is simply

fRR = (XTX + A)- XT y, (6.5)

where x is a nxk matrix, i.e. x=(xl,... ,x) T where each xi represents n realization of Xi, i.e.

Xi=(Xil,Xi2,. . ,Xik)T, y is a column vector y=(yl,...,yn), and A=diag(X 1,..., Xp).

In view of the simplicity of the generalized ridge regression, we can convert a fuzzy

model selection problem into a problem of generalized ridge regression

(, ) = arg min El ('j - l ,x ) 2 subject to ', lAi,82 < t (6.6)
A,/

by the following transformation

mi = 1 (6.7)
1+Ai'

where satisfies 0 < mi < 1 since Xi>O.

Minimizing the empirical prediction error over both shrinkage factors and regression

coefficients under the quadratic constrains is actually a multi-dimensional global

optimization problem. Thus, the Genetic Algorithm with floating-point coding can be

applied to search for the optimal solution. To construct the fitness for a candidate solution,

chapter 4 defines an effective model dimensionality for shrunken regression models, which

then allows extending classical model selection methods like cross-validation and

information criterions to evaluate a shrunken regression model.

6.2.2 Parametric weighted least squares

The classical way to estimate regression coefficients in a multiple linear regression model
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is the ordinary least squares (OLS), and in fact it is also the most widely used method.

Under the Gauss-Markov (GM) assumptions, namely,

(i) is Gaussian independent of X and with E(IX)=O.

(ii) The covariance off is constant.

(iii) The regression model is properly specified.

OLS estimator of regression coefficients has been proven to be the best linear unbiased

estimator (BLUE). In other words, with these assumptions holding, we can do nothing to

improve its efficiency.

However, in reality GM assumptions cannot always be met. For example, non-Gaussian

error, outliers, heteroscedasticiy and incomplete set of predictor variable might result in the

break-down of these ideal assumptions. Although some existing techniques mentioned

earlier might be useful in face of some of the above problems, but none of them can handle

all these problems. Meanwhile, since these problems have the same consequence, that is,

non-Gaussian effective error, it is usual difficult to distinguish them from each other only

based upon observations and apply appropriate technique. Therefore, chapter 5 proposes a

new method, namely, parametric weighted least-squares (PWLS), as a uniform framework

to remedy these problems and to obtain a more efficient regression model.

A model method for estimating regression coefficients is weighted least squares, which

minimizes the weighted sum of squared error

WLS, = arg min WSSE = arg min E wi (yi - xi,) 2 , (6.8)

where usually wi =1ei y- j = Yi - x,J I-'. In PWLS, the weight function is extended to be

wi =I ei Ia=l i xij a , (6.9)

where a is between [-1, 1]. Although such a weigh function is simple, involving only a

single hyperparameter, but it can realize two classes of weighting strategies by varying cc,

that is

(i)Decrease the weights of data points having large residual error, or
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(ii)Increase the weights of those observations hard to learn.

Noting that asymptotically WSSE = I, we converges toE leI2+ = leiI , it

is learned that the corresponding estimation of ,is equivalent to the maximum likelihood

estimation (MLE) if we assume the error distribution ase (e u exp-e- (6.10)
2o- l/y]

which is termed exponential power distribution (EPD). This parametric exponential power

distribution can model a wide class of distributions including uniform, Gaussian, Laplace

and other sub- and super-Gaussian densities.

Now it is clear that estimating the optimal weight function within this parametric family

is equivalent to approximating the error distribution using the parametric EPD family. To

this end, in chapter 5 two methods are suggested to accomplish this, that is, maximum

likelihood estimator (MLE) and alternatively residual maximum likelihood estimator

(REMLE). The idea of ML method is somewhat straightforward, but because the score

functions corresponding to each parameter cannot be solved simultaneously, an iterative

procedure should be applied to estimate (y, a, as follows

(1) first set some initial value for y,

(2) solve for j, j=1,...,p, given y,

(3) solve for a, given yand 8j, and finally

(4) solve for ygiven ,j and a.

(5) repeat the above (2)-(4) steps until the solution converges.

Because the ML method is a little complex and ML estimator is usually biased, REML is

proposed as an alternative. Residual Maximum Likelihood (REML) is very similar to ML

except that it applies ML method after transforming the original data by some properly

chosen matrix S, i.e. Sy. The likelihood function for the transformed data is obtained simply

by replace x and y by Sx and Sy in the likelihood function for the original data,
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(Sy I y, ,) = H2 r[ ex/y p (Sy), - (Sx),i ) (6.11)
20.F[1/7]

where S can be so chosen that satisfies the following conditions

(i) Var(Sy) is positive definite.

(ii) E(Sy)=O ,i.e. Sx=O.

(iii) Rank(S)=n-p, that is, S has n-p linearly independent rows.

A suitable matrix S was suggested by Patterson and Thompson [1971] as

S = I -x(x Tx )-l x T . (6.12)

The rest procedure is similar to that of ML method. With REML, the estimation of is

separated fromr that of y, therefore simplifying the problem a lot.

In order to avoid the downside of the performance of PWLS and reduce the probability

of error when GM assumptions hold, a likelihood ratio test is also designed to conduct

significance test. With this test, PWLS will be applied in the situations where the overall

error distribution significantly departs from normality; otherwise, we should stick to the

normal assumption and employ OLS method.

6.2.3 Generalized fuzzy model selection scheme

As we note, PWLS differs from OLS in that PWLS extends the error distribution from

Gaussian to a parametric family of exponential power distributions and the hyperparameter

has to be estimated from observations. Meanwhile, fuzzy variable selection is basically

based upon constrained least squares. Therefore, in order to combine the procedures of

fuzzy model selection and parametric weighted least squares, we actually need to extend

fuzzy model selection to regression models where the error might not be normal and is not

known with certainty.

Before we proceed, let's first consider a simpler case, where the error is not Guassian

but its type has been already known. In such a case, the Maximum Likelihood Estimator is

not equal to OLS estimator and accordingly the fuzzy variable selection method in chapter
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4 can be applied directly, but it is not hard to generalize the fuzzy model selection scheme

to situations with non-normal error if we notice the following facts.

First, as we've already pointed out, fuzzy model selection actually solves a problem of

constrained least-squares with constrains on parameters as in equation (6.3). It is natural to

extend this idea to maximum likelihood estimation, that is,

= arg max l(,) s.t. c(8) 0O, (6.13)

where 1(f,) is the likelihood or log-likelihood function given a data set

1(13) = _ log f(yixi,0(/,)). (6.14)

In the literature, this estimator is sometimes called constrained maximum likelihood.

However, usually the likelihood function does not have a simple form like least squares,

and thus we still have difficulty solving this constrained optimization problem and also

defining effective model dimensionality as in fuzzy model selection method. Fortunately,

this maximum likelihood estimation can be converted into an iteratively reweighted least

squares (IRLS) procedure. For example, in case of the linear regression with independent

observations

f, = arg max l(,) = arg max EIf log f(yi,xij,0())

argmin 1 (c-log f (yi, xi,0()))

= arg min (C - log f (yi, xi, ())) (6.15)

= argmin lwi (Yi -Xi 1 ,)2

where = (c -log f(y, , ())) and c is so chosen as to make sure that w i is positive.
(Yi -xi fl)2

Therefore, if we let

i,+~) _ (c- log f(y, x,,('(')))) (6.6)
(Yi -xiT f(')) -
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ML estimation can be implemented via an IRLS procedure, but the rate of convergence

might not be satisfactory.

For general maximum likelihood estimation, the likelihood function can be maximized

by zeroing its first derivatives with regard to , i.e.,

() =0, (6.17)
ap

which can be solved for,8 by applying the iterative Newton-Raphson algorithm as follows

lt + = , - [V21(,l, )'Vl(, ), (6.18)

where V 21(,,) is the Hessian matrix and Vl(f,3) is Jacobian vector evaluated at the

previous value of .

In practice, a popular approximation of the Newton-Raphson algorithm is the Fisher's

scoring algorithm, which may be easier to apply in some cases. With Fisher's scoring

technique and. some other approximations, Green [1984] shows how an iterative

reweighted least squares algorithm can be employed to implement the Newton-Raphson

method for an iterative solution to the likelihood equations (6.17). Its applications can be

found in generalized linear models [McCullagh and Nelder, 1983] and generalized additive

models [Hastie and Tibshirani, 1990].

With this conversion, the constrained maximum likelihood in the equation (6.17) can be

easily solved by a constrained iteratively reweighted least squares procedure. In each step,

given weights and shrinkage factors a constrained weighted least squares problem needs to

be solved, i.e.

ACWLS = argminE= Wj(Yi - P, ixj,)2, subject to EPlAii 2 <t, (6.19)

which looks very similar to the constrained least squares in the equation (6.4) except for

weights wj. Following straightforward Lagrange multiplier approach, a constrained

weighted least squares problem can be easily converted to a penalized weighted least

squares problem. By some transformation on the variables, i.e. y = w y and
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x = w xi, with the aid of the solution of the generalized ridge regression it is easy to

derive that

/CWLS = (xTWx + A)-' xWy, (6.20)

which incorporates both model selection and data influence controlling information.

Now, generalized fuzzy model selection scheme is actually represented by a

constrained iteratively reweighted least squares procedure. If we note that

/CWLS = (xTWx + A)-' XWy = (x r Wx + A)- (xTWx)(xTWx) xTWy = MwLS, (6.21)

where M = (xTWx + A) - ' xTWx and f/WLS = (xTWx)-' xTWy. Just as chapter 4, let's define

the generalized effective model dimensionality as

Deff = Trace(M) = Trace[(xrWx + A)-' xrWx], (6.22)

which is similar to what was suggested by Tibshirani [1997].

It is easy to see that in constrained least squares W=I and thus

Deff = Trace[(x T x + A)-' xx], (6.23)

which is the same as in chapter 4.

Another modification we need to make to generalize fuzzy variable selection method is

concerning the empirical likelihood, since the error distribution is not assumed to be

normal. However, it should be easy to replace normal distribution with other distributions

and obtain corresponding maximum likelihood. With model likelihood and effective model

dimensionality ready, a model can be assessed using most classical model selection

methods.

With all the above modifications, now we are able to extend fuzzy variable selection to

any regression model with non-Gaussian error. Once the generalized fuzzy variable

selection is ready, it seems trivial to apply it to PWLS.

6.2.4 PWLS with a fuzzy set of predictor variables

PWLS in chapter 5 is developed assuming that the predictor variables are totally valid, or

204



equivalently supposing m=[1,...,1], although perhaps incomplete, and therefore each

predictor variable makes its full contribution. In this section, we will generalize PWLS to

the cases where the set of predictor variables is a fuzzy set. For this purpose, several

modifications have to be made to the PWLS.

Just as in chapter 5, here we also assume the model structure has already been known,

although in fact not, or in other words a fixed m vector is already given. In order to take

advantage of iterative reweighted generalized ridge regression, it is convenient to convert

membership grade matrix M=diag(ml,...,mp) in the equation (6.4) to individual

regularization parameters matrix A = (M-' -I)xWx , or even express the model

structure in terms of A directly.

If we assume the error follows an exponential power distribution in the equation (6.10),

without constraints the ML estimation is easy to be obtained by a procedure of iterative

reweighted least squares with setting wi = lei -2 .When the model structure is specified in

the form of a membership grade vector m or equivalently an individual regularization

parameter vector X, we are facing a problem of constrained maximum likelihood

estimation, which, as we discussed earlier, can be also solved by a constrained iterative

reweighted least squares procedure with weights w = eily- 2 , i.e.

JCWLS = (x Wx + A) xWy. (6.24)

It is straightforward that in order to generalize PWLS using ML to the cases with a fuzzy

set of predictor variables the only modification is to replace WLS = (xTWX)- XTWy in the

step (2) in the iterative (y, o, p)-estimating procedure by CWLS in the above equation.

When we want to apply REML in estimating y in the generalized PWLS, some problems

arise. Although S = I - x(xrx)-' x r still meets the requirements for S in the section 6.2.2,

it does not reflect the change of model structure, which seems inappropriate. As we know,

the major purpose of REML in PWLS is to decouple the estimation of yand fiby choosing

such an appropriate matrix that S does not depend on data y and Sx=O. Unfortunately, for
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the current case, i.e. constrained weighted least squares, it is not easy to find such S.

Therefore, only maximum likelihood method will be used for the current case.

6.2.5 Two-stage optimization algorithm

By now, we have already generalized fuzzy variable selection and parametric weighted

least squares and at this point we are ready to combine these two methods.

Before we proceed, let's define our problem explicitly. Suppose we have a multiple

regression model

Yr = Z"P Xi + 6, (6.25)

where Y is the response variable, Xi's are predictor variables, and /,i's are regression

coefficients to be estimated, and £ is the error term, whose distribution is symmetric but

unknown.

Furthermore, a group of data, (xi, yi) for i=1,...,n, is collected, based upon which we

want to estimate a regression model with as smaller mean prediction error as possible. For

this purpose, we need to reduce both model structural uncertainty by model selection and

model parameter uncertainty by iteratively weighted least squares, as we discussed earlier.

Combining fuzzy model selection and parametric weighted least squares might serve this

purpose. The fuzzy model selection procedure will deliver us the model structure in the

form of a membership grade vector m or equivalently a vector of regularization parameters

i, while the parametric weighted least squares procedure produces the estimation of error

in term of yas well as regression coefficients A. Thus, the overall problem can be regarded

as an optimization problem with regard to m, yand , i.e.

(i, ,,B) = arg min E(Y - P I mi,IXi)21, (6.26)
in IL y

where the optimizations of m, yand are coupled together. In reality, with finite samples

we have no idea of the expected prediction error given a regression model and thus some

empirical model evaluation methods, for example those in chapter 4, should be utilized

instead.
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In fact, in order to combine fuzzy model selection and parametric weighted least squares,

we may have two different ways to do so.

One is to plug the PWLS procedure into the fuzzy variable selection procedure, that is,

each time when evaluating fitness for a candidate solution in the Genetic Algorithm, first

perform PWLS given a vector of regularization parameters as in the generalized PWLS to

estimate yand then calculate maximum likelihood or cross-validation mean squared errors.

Thus, on the whole we need to go through only one optimization procedure and we may

call this method one-stage optimization procedure.

An alternative way is to optimize model selection and error distribution estimation

separately and alternately. The overall iterative procedure actually includes two stages,

fuzzy variable selection given error structure and parametric weighted least squares given

model structure. The two steps alternate until reaching convergence. We might call this

method two-stage optimization procedure.

Comparatively, the one-stage method is more computationally expensive, because in

searching for an optimal model structure using Genetic Algorithm, the one-stage method

needs to conduct PWLS for each candidate solution in every generation, while the

two-stage method needs only to do weighted least squares. In addition, we suspect that the

two-stage optimization is more robust and converges faster. This is because for the

one-stage method the estimated error distributions, or , for each candidate solution may be

quite different, which probably slows down the convergence. It seems good to fix the error

structure during variable selection.

Accordingly, in this chapter we will favor the two-stage optimization procedure, and

let's formulate it clearly in the following.

(1) Assume the error is Gaussian, i.e. 2y=2.

(2) Given the error distribution in terms of y, conduct the generalized fuzzy variable

selection, which delivers a vector of regularization parameters, A.
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(3) Given the model structure in terms of A, perform the generalized parametric weighted

least squares, which produces a new estimation of the error distribution.

(4) Repeat the above steps (2)-(3) until convergence.

6.3 Uncertainty evaluation

In the above sections, we were concentrating on working out some method that helps

reducing both model structural uncertainty and parameter uncertainty. For this purpose,

fuzzy variable selection is combined together with parametric weighted least squares.

From now on, we will turn to the quantification of model uncertainty and extend point

estimate to interval estimate.

The expected generalization error or prediction error

ED [(y - ) 2 ] = ED [(y - E D () + ED( )- i)2]
(6.27)

= (y - ED ())2 + E[( - ED ()) (6.27)

where ED(.) is evaluated with regard to observations. The bias term (y - ED (5))2 is usually

dominated by variance ED[(5 - ED(S)) 2], and thus, in this chapter we will consider to

be unbiased, that is,

ED[(y - )2] ED[() - ED (Y)) 2 ]. (6.28)

As we mentioned earlier, in effect a model is made up of two parts, i.e. model structure

and model parameter. Following the notations in Draper [1995], we formulate a model as

M=(S, ). In this chapter, both model structure S and model parameter 0 are estimated

based upon the same data set D. Thus, different data set D results in different model

estimation M=(S, ). In other words, random fluctuation in data leads to uncertainty in both

model structure selection and parameter estimation. ED() is in fact equivalent to Es6(),

which is computed with regard to all possible model structures S and model parameters 0,

i.e. ED()=-E( ).

By iterated expectation, we further obtain
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ED[(- Eo ())2] = Es E[( - Els ( I S) + E ( I S)- Eso ()) IS]}

= Es { Eels [( - El s ( I S)) 2 I ] (E0Es ( I 8) - Eso ()))2 .29)

= Es {Eels[( - Eels | S)) 2 I S]} + Es {(Eels | S) - Eso())}

= Es [Var(5 I S)] + Vars [E 1ls () I S)]

where the first term represents the mean variance given model structure and the second

terms refers to the variance between model structures. By now, it is clear that the overall

uncertainty consists of two components, model structural uncertainty and model parameter

uncertainty, corresponding to the two terms in the RHS of the above equation. It is

noteworthy that the uncertainty obtained in equation (6.29) is the uncertainty of a model

construction procedure or a learning algorithm, rather than that of a specific model.

Usually, we just take into account Var(5 I S) and on the other side ignore the model

structural uncertainty, thereby overstating the precision of an estimated model. Draper

[1995] tries to attack this problem in a Bayesian framework, where the predictive

distribution is formed by using as weights the posterior model probability p(MID), that is,

P(Y I D) = (y I D,M)p(M I D)dM = J p(y D,S,O)p(S,O | D)dSdO
(6.30)

= p(y D, S, O)p(O ID, S)p(S D)dSdO,

which is the same as Bayesian Model Averaging (BMA) [Hoeting, 1999].

Here, model probability p(M) can be interpreted in a similar way to that for a random

variable. In the probabilistic world, just like a random variable a true model is assumed to

never appear exactly as it is. If we can define the distance of two models in the model space

somehow, for example, using some kind of norm, the model probability is actually

converted to the probability of random variables. As such, the prior model probability

distribution expresses our prior knowledge about the true model probability distribution in

the model space.

However, usually the space of all models is "too big", and at the same time a single

structural choice S* may be too small to be well calibrated, and thus Draper [1995]
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proposed an intermediate position based on model expansion [e.g. see Box, 1980], i.e.

beginning with a single structural choice S* and then expanding it in some directions

suggested by the data analytic search that resulted in S .

Then, Draper [1995] further utilized discrete model expansion to approximate a

continuous expansion. If we suppose the set of alternative structures as {SI, ... , Si}, then

equation (6.30) can be rewritten as

P(y I D) = f' =p(yI D, S,O)p(O I D, Si)p(S I D)dO = Z' p(y I D, Si)p(S I D) (6.31)

Regarding the choice of alternative structures {Si, ... , Sm}, Draper [1995] also makes

some general comment on it, such as

(i) the set of alternative structures should not be small,

(ii) Si should have high posterior probability p(Si[D), and

(ii) the predictive consequence p(ylD,Si)had better to be substantially different from that of

the single structural choice S*.

Applying the Laplace approximation [e.g. see Tierney and Kadane, 1986], Draper [1995]

obtained

In p(D IS) = In I p(D IS,O)p(O S)dO

I1() 1 (6.32)
- k ln(2) -1 k In(n) + In p(D I S,t) + 0(1),
2 2

where k=dim(6), n is the sample size, and is the mode of the posterior probability

p(gD,S). The above approximation actually forms the basis of the Bayesian Information

Criterion (BIC) for model selection [see Schwarz, 1978 and Chow, 1981].

Supposing p(ylD,Si) has mean ,ui and variance &a and also the posterior probability

p(Si[D)=n,, Draper [1995] derived

Var(y I D) = Es[Var(y I D,S)] + Vars[E(y ID, S)]
AZe1j)T'o7 + i"' 7ZjJU )2. (6.33)
i= l-, J,- + i=1Z(A -/).

In fact, noting that in the derivation of Draper [1995], if we assume n>>27or k is equal

for all S, then we obtain
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In p(S ID) In p(D IS,)--k ln(n) + C = -- BIC + C, (6.34)
2 2

where C is a constant and BIC is exactly the same as defined in Schwarz [1978], i.e.

BIC = -2 In p(D S, 6) + k ln(n). (6.35)

In view of the constraint that i1Zir = 1, we have

exp(-BIC i /2) (6.36)

E-I exp(-BICj /2)

which is very simple and directly related to what we have done in fuzzy model selection.

As we noticed, Draper [1995] incorporates model structural uncertainty

straightforwardly within Bayesian Model Averaging (BMA). Buckland, Burnham and

Augustin [1997] think BMA suffers from the sensitivity to the choice of priors and two

many possible models, and they seek to average models using some weights

5 = = wiy,, (6.37)

where i is the estimate of y under model Mi=(Si, O') and wi are respective weights.

Thus,

Var(5) = wiVar(yi) + ZwwiwCov(5, 5P ) < i w FVar(,i)), (6.38)
i ji

where the equality holds if we conservatively assume that alternative models are perfectly

correlated. Actually, it should be true that the covariance among alternative models is high

since each model is fitted to the same data set.

If the independence of estimators is realized somehow, for example, by Bootstrap or

Cross-Validation, the variance of the weighted model is

Var( ) W 2 Var( ) . (6.39)

In the above derivations, the weights wi are assumed to be known, whereas in practice

they have to be estimated as well. Buckland, Burnham and Augustin [1997] prefer to use

information criteria of the form,

I = -2 In(L) + q, (6.40)
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where L is the likelihood function, evaluated by plugging in maximum likelihood estimate

of parameters, and q is a penalty term which is usually a function of the number of

parameters. Such information criteria include Akaike's Information Criterion (AIC)

[Akaike, 1973] and Schwarz's BIC.

Finally, Buckland, Burnham and Augustin [1997] proposes a plausible choice for

weight wi as

exp(-l / 2)

Em exp(-Ij/2)
If we use BIC in place of I in the above equation, what we obtain is exactly the same as

equation (6.36).

Both above methods have their own strengths and weaknesses. For example, the good

thing about the second method is to apply weights, which renders the problem simple, but

the assumptions of both perfect correlation and independence are not satisfactory. In this

chapter, we will propose a new method intended to combine the favorable advantages of

these two approaches. This new method is supposed to have the following merits

(i) Using Weighted Model Averaging rather than Bayesian Model Averaging, but the

weights are not restricted to constructing using information criteria but a wider class

(ii) Interpreting normalized weights as probability and thus the formula (6.29) can be

applied to evaluate model uncertainty.

(iii) Furthermore, the variance conditional on model structure in equation (6.29) will be

replaced by expected prediction error, which may includes bias and in practice estimated

via Cross-Validation.

In the following, we will describe the method fitted into our situation in detail.

As we know, evaluation of model selection uncertainty must be based upon multiple

alternative models. So, the first thing we need to do is to choose an appropriate set of

alternative structures {Si, ... , S}, neither too big nor too small. In the current case, model

structure is represented by a membership grade vector m or a shrinkage parameter vector i,

and thus we can express the model space in RP, which is a continuous p-dimensional

Euclidean vector space. This model space seems too big to be operable, and following

Draper [ 1995] we might apply discrete approximation. Actually, we have a good candidate

at hand, if we note that in the optimization procedure of Genetic Algorithm a group of
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candidate model structures are generated. This group of candidate solutions generally has

high posterior probability since they fit to the data not badly and remain diverse at the same

time, thereby meeting the comment by Draper [ 1995] on the choice of alternative structures.

Another advantage of choosing this group of alternative structures is that uncertainty

evaluation adds very little extra work, which will become clear later on.

In chapter 4, four methods are used to conduct model evaluation, namely, AIC, BIC,

10-fold Cross--Validation as well as Generalized Cross-Validation (GCV). For AIC and

BIC, formula (6.41) can be directly applied to construct weights. For Cross-Validation

method, we want to find a function, which map Cross-Validation errors (CVE) to weights,

such that the weights are nonnegative and the larger the Cross-Validation error the smaller

the weight. Meanwhile, to avoid dominance of some model, which happens to have very

small CVE, we apply the softmax weights based on generalization errors

wi = exp(-CVE). (6.42)

As we already mentioned, the Var(5 I S) in equation (6.29) is replaced by expected

prediction error, which is estimated by Cross-Validation in practice, and thus

Var(J I S) = CVE. (6.43)

Finally, we define posterior model probability as

7T = p(S, I D)= w (6.44)

Consequently, equation (6.29) becomes

ED[( - ED (5)) 2] = Es [Var( I S)]+ Vars [Eos ( I S)]

ir.CVE M (6.45)
= -~l rli CVE + 1 7i (Eols(VSi)- Jl;r Es(YlSj))(6

If the sample size is equal to n, an average value over samples should be used to estimate

the model uncertainty. Again it is worth pointing out that the variance in equation (6.45)

refers to the uncertainty our constrained parametric weighted least square method rather

than that of an individual model. However, it does represent the uncertainty of the model

produced by this model construction procedure. If we want to estimate the uncertainty of a

specific model, we can simply replace the first term in equation (6.45) with individual

predictive error like CVEi.
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Alternatively, we might want to evaluate the variance between alternative model

structures, i.e. the second term in the RHS of equation (6.45) using some other resampling

methods by the mechanism of perturbation, such as Cross-Validation and Bootstrap. For

example, Burnham and Anderson [2002] explored Bootstrap to evaluate model selection

probability. However, in the current case, since the original data set is not too big

resampling with replacement is not effective in general.

6.4 Numerical simulation study

In the above, we have developed a new variable selection method for PWLS as well as a

model uncertainty quantification method. In this section, we will demonstrate how they

work in the context of PWLS by numerical study.

In order to show the performance of the new fuzzy variable selection approach, we will

first compare it with classical or crisp variable selection methods in PWLS by simulation.

In this numerical study, the standard Fourier series fitting is used, where cosine series

are applied as predictor variables to fit a data set generated by a smooth function plus some

disturbance, i.e.

y = f(x) + , (6.46)

where can be any arbitrary but symmetric distribution.

The set of predictor variables we utilized in our simulations is {cos(kirx): k < n}, and the

smooth function is

f(x)=sinc(3x)=sin(3x)/(3x), xE [-1,1]. (6.47)

Because in PWLS all the problems lead to the same consequences, that is, non-normal

overall error and PWLS has shown effective under all situations, in the current study we

only need to test its performance in face of non-Gaussian errors. To this end, we generated

errors of Laplace or double exponential distribution.
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Since in the current simulation study we assume the true model is already known,

therefore we can define a global mean prediction error to measure how good an estimated

regression model is. Conceptually, the global mean prediction error is defined as

GMPE = (f (t)- :(t))2dt, (6.48)2L J-L

where (t) is the estimated model, but in practice, it can be approximated by

GMPE= 1 -,= (f(ti)- 5(ti)) , (6.49)
m

where ti is typically evenly distributed in [-L, L] and m is large enough.

To evaluate the performance of new variable selection method, we used crisp model

selection as a benchmark, and compared their performance by defining a ratio as

RC/F GMPEC (6.50)
GMPEF

The average ratio is defined as its geometric mean

RC/F =exp N - 1 log(RcIF) , (6.51)

where N is total number of simulations. The average ratio is so defined that it helps reduce

the influence of some unusual cases.

In order to compare the performance of the new method with that of classical crisp

variable selection under the various situations with non-Gaussian noise, three classes of

experiments were carried out, including heteroskedastic Gaussian noise, double

exponential noise, and Gaussian noises with outliers. For the heteroskedastic Gaussian

noises, the variance is modeled in two different ways, namely log-normal distribution and

binomial distribution. In the case of outliers, two extremely large errors are added to the

normal noises with probability 0.1, respectively.

In all the experiments, a sinc function is used as the target function and the sample size

is assumed to be 20. The simulations are repeated for 100 times and the average results are

shown in the following Table 6. 1.
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Table 6.1 Simulation results for model selection under unknown error distribution

As expected, from the simulation results we note that in all these contents the mean

generalization error of fuzzy variable selection is significantly smaller than that of classical

variable selection, especially with the presence of outliers. This means compared to the

classical approaches our new method is more robust under various situations.

6.5 Conclusion

In this chapter, we intend to solve two problems, namely variable selection in the context of

parametric weighted least-squares and model uncertainty evaluation. A new method called

constrained parametric weighted least-squares is developed by generalizing the newly

developed fuzzy variable selection method. Another new approach is also proposed to

evaluated model uncertainty, which is able to consider both model structure and parameter

uncertainty, thereby avoiding underestimating the model uncertainty. Our analysis and

simulation results show that the new method is superior to the classical crisp variable

selection methods in the presence of non-normal errors and outliers.
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MoG 0.054 0.047 1.19

Double Exponential 0.103 0.072 1.50
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Chapter 7

Adaptive Fuzzy Mixture of Local ICA Models

7.1 Introduction

Models are very useful in explaining systems and predicting their future behaviors. Usually,

for a certain system there are many different competing models. In such a situation, a

question arises naturally, that is, how to improve model performance with all the available

information. One strategy is to select a single best model among the group of competing

models and an alternative way is to combine multiple competing models. In both

theoretical and empirical researches, it is shown that model combination can lead to better

models than model selection. However, how to aggregate information contained in

candidate models and new observations in an efficient way is still an open research

problem. To this end, we proposed a feature-based model combination method, which first

extracts statistically independent features from a group of candidate models by Principal

Component Analysis (PCA) or Independent Component Analysis (ICA) and then

aggregate features into a new composite model based on data through regression. Our

simulation studies show that this method outperforms model selection and other existing

model combination methods.

However, there are some weaknesses inherent in this approach that limit its application.

Two major weaknesses among them are the employment of a single global linear model

and the application of global linear PCA or ICA.

In the above feature-based model combination method, a global linear model is used to

describe the system. However, in reality for a complicated system its true model will be

nonlinear and highly complex. In addition, in real physical systems phase transition is a

ubiquitous phenomenon. This is because the mechanisms underlying a system vary from a

small region to another resulting in different local features and as a consequence a single
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global model is far from enough to capture them. Therefore, it is far from justified to use a

single global linear model to describe a complex system over the entire domain. In many

cases, it is more appropriate to use local models based upon operating regimes.

Furthermore, the global linear model directly results from the application of the global

linear ICA for feature extraction. Although the global linear ICA has been applied to many

areas successfully, certainly its efficiency is restricted by its inherent weaknesses. The

limitations of standard ICA have been investigated by Karunen and Malaroiu [1999] and

other authors, and at least two of them are relevant to the present case.

First, the standard PCA and ICA assume that the data x are linear superposition of

independent components s, i.e.

x(t)=Ws(t) (7.1)

where x(t)=[ xl(t),..., xn(t)]T , s(t)=[sl(t),... ,Sm(t)]T , and W is the mixing matrix.

However, it is not natural to assume this linearity, even though in many cases linear ICA

delivers meaningful results. For general nonlinear data structures, it can provide only a

crude approximation and cannot describe nonlinear characteristics adequately. In view of

this drawback, during the recent years researchers attempt to generalize linear ICA to

nonlinear ICA,

x(t)=f(s(t)), (7.2)

where f(): Rm'--Rn can be an arbitrary nonlinear mixing function.

Unfortunately, nonlinear ICA is much more difficult than linear ICA because the

solution of nonlinear ICA problem is usually highly non-unique [see e.g. Hyvirinen and

Pajunen, 1999] fundamentally because any functions of independent components remain

independent and solving a nonlinear ICA problem is computationally rather demanding

[Karunen and Malaroiu, 1999b]. Thus, by now only limited success of nonlinear ICA has

been seen.

Second, the standard ICA tries to describe all the data using a single group of

independent component called global features. This means the mixing matrix W in

equation (7.1) and the corresponding separating matrix are assumed to be the same over the
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entire region. However, usually real systems have varying characteristics and thus varying

mixing matrices in qualitatively different domains of the entire region, which calls for

using different local features in each domain for efficient representation.

In this chapter, we will propose mixture of local PCA or ICA models, which helps to

overcome the above drawbacks. Local models are built to approximate the complex system

within operating regimes and then are combined by smooth interpolation into a complete

global model. The split of the input space enable us to characterize the nonlinearity of the

system although in a somewhat coarse manner and local component analysis produces

different sets of local features, which lead to different local models.

The outline of this chapter is as follows: in section 7.2, at first the idea of mixture of

local models is proposed and justified from different angles; an adaptive fuzzy parametric

clustering algorithm is presented to split the entire input space into sub-domains; and then

local ICA is put forward to extract local features, which constitute local models; finally, a

method will be proposed to piece local models together into a mixture model. In section 7.3,

a three-stage optimization algorithm will be applied to implement the procedure. Both an

artificial example and a real case study will be presented in section 7.4 to demonstrate the

performance of this new approach. The last section will summarize this chapter.

7.2 Combining local models

7.2.1 Mixture of local models

In this section, we will introduce a mixture of local models as the generative model, the

underlying process that generates the observations. Local models only valid in different

operating regimes are built to approximate the complex system locally and then are

combined by smooth interpolation into a complete global model. In the following, we will

argue why local models can help overcome the problems the previous method fails to solve,

namely nonlinearity and phase transition.
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7.2.1.1 Local models

In general, it is usually preferred to build a single global model to describe a system over its

entire input space. However, in reality a model might not be able to cover the full range of

the input space with limited complexity because of the need to describe the interactions

between a large number of phenomena that appear globally, and rather a well-defined

model is only appropriate over a certain prescribed subspace, namely its operating regime.

For example, a model, which is fitted quite well to the data in a region, may end up with

poor performance when extrapolated to other regions, which is perhaps, for instance,

because some assumption underlying a model can only be met in a certain range of inputs.

It is a usual case that for a complicated system the true model is nonlinear and highly

complex and a global linear model is far from adequate.

It is also conceivable that with parameters varying a real-world system may undergo

different phases, which are governed by different underlying laws. This phenomenon is

regarded as phase transition. Meanwhile, from the angle of features, the system is governed

by different sets of features over different domains or the same set of features but with

non-constant influences. Both cases result in varied local patterns. Correspondingly, it

leads to the variation of model structures, that is, different models over different regions.

Thus, in the presence of phase transition, it is difficult to incorporate the properties of

distinct phases in a single global model.

Therefore, a single global linear model cannot describe a nonlinear system adequately

or capture all the local features. To deal with this nonlinearity and locality, it might be

possible to find out some missing hidden variables to characterize nonlinearity or phase

transition phenomenon and come up with a comprehensive complex global model. Such

variables are called Arrhenius-type terms by Johansen and Foss [1997]. However, it is

usually hard to find such extra hidden variables, not only because it requires increase

knowledge concerning the system under investigation, but also because even if we do, we

may end up with an overly complicated global or even intractable model. Following the
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philosophy of divide-and-conquer, an alternative simpler way to capture the locality is to

divide the whole input space into several small regions and perform local analysis in each

local region, for example, classification and regression tree (CART) and hierarchical

mixture of experts (HME). Local analysis leads to simple local models, which try to

characterize a complicated physical system over a certain regime called operating regime,

and then local models are combined into a global composite model. In contrast to a global

model that is valid in the full range of the input space, a local model is valid only in a

predefined operating region smaller than the input space. Then, local models, which,

Compared to global modeling, this local modeling can be considerably simpler because

there may be a smaller number of phenomena are relevant and their interactions are simpler

[Johansen and Foss, 1997]. Therefore, this divide-and-conquer principle simplifies the

modeling problem by transforming the task of modeling a complex system into simpler

modeling processes whose results can be finally combined relatively easily to yield a

satisfactory model.

As usual, in local learning local models are constructed as linear functions of local

features. Once local models are ready, they are pieced together somehow to form a global

linear mixture model [McLachlan and Basford, 1988]. Although simpler, this mixture

model improves the model accuracy because it reduces the model bias by specifying model

more properly. By examining bias/variance tradeoff for local and global learning,

Murray-Smith and Johansen [1995] show that local learning can be viewed as a simple

form of regularization and produce models with higher accuracy and greater robustness

than global learning methods.

However, as noted by Jordan and Jacobs [1994], divide-and-conquer tends to increae

the variance with hard partition, and a remedy to it is to employ soft split of the input space.

A simple version of soft partition is to overlap the operating regimes of local models

somehow, which helps smoothen the switching of local models and thereby reduce

variance.
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It is noteworthy that local models here are different from those in local modeling [Fan,

1995] where a parametric function is fitted to the neighborhood around a query point x,

locally weighted regression [Cleveland et al., 1988] where the weights in weighted least

squared (WLS) depend on the distance from a data point to the query point x, and mixtures

of local experts [Jacobs et al, 1991] where local experts are fitted to all data but not equally

well in some local regions. A common drawback of these local learning methods is the

complete lack of interpretability of the resultant models.

7.2.1.2 Phase transition

Usually, local models are combined into a global model by smooth superposition. The

main motivation for this is that the system usually has some smoothness properties, i.e.

with the operating point changing the phenomena or behavior change smoothly. However,

one may occasionally come across processes that are non-smooth, in the sense that they

exhibit abrupt changes in dynamics, for example phase transition or flow pattern changes

[Soderman et al., 1993]. Below a mixture of phases model will be introduce to characterize

phase transition, which lead to mixture of local models with overlapping.

In general, phase transition means a system undergoes discontinuous changes in its

behaviors as a result of continuously changing parameters, transforming from one phase to

another. For example, a liquid flow changes from layered flow to turbulent flow with the

Ronald number increasing. In the current case, by phase transition we mean a system

undergoes a change in its underlying local features, thereby leading to different local

models.

According to the modern classification scheme, phase transitions fall into two broad

categories, namely the first-order phase transitions and the second-order phase transitions.

Under this scheme, phase transitions were labeled by the lowest derivatives of the free

energy that is discontinuous at the transition. First-order transitions exhibit a discontinuity

in the first derivative of the free energy, or the value of the response variable, with a

thermodynamic variable. In contrast, second-order transitions are continuous in the value
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of the response variable but might be not in the second derivative of the free energy.

In this scheme, first-order transitions are associated with "mixed-phase regimes", in

which some parts of the system have completed the transition and others have not. A

typical example of this class of transitions is water boiling, in which with temperature

increasing the water does not instantly turn into gas but forms a turbulent mixture of water

and water vapor. Mixed-phase systems are instable and difficult to study, because their

dynamics are violent and hard to control. However, many important phase transitions fall

in this category, including the solid/liquid/gas transitions.

Similar to soft partition, in the present case we would adopt soft phase boundaries,

where there coexist multiple phases. This is consistent with overlapping operating regimes

mentioned earlier. During the coexistence region, the system can be considered to be a

random mixture of multiple phases governed by different local models. This stochastic

mixture model of phase transitions helps explain instability during the transitional regime,

because inside this coexistence region the system behaves like one of the distinct phases

with certain probabilities and distinct phases are quite different in behaviors. Therefore, the

expected behavior of the system is simply a weigthed average of those of distinct phases.

At the sametime, outside the coexitence regime the system is dominated by a single phase

and thus a local model can be applied deterministically. This statistical mixture model of

phase transition is not short of evidence from the real world. For example, Harrington et al.

[1997] reported that in liquid-liquid phase transition they found the coexistence of two

different phases inside an unstable region.

In addition, generally we have no idea in advance where and how wide the transitonal

regions are and thus they have to be estiamted based on data. Conveniently, each

transitional region can be represented by two parameters, the outset and the end-point of a

phase transition. In fact, this parametric model is able to characterize both categories of

phase transitions, namely first-order or second-order transition. If the width of the

coexistence regime turns out to be 0, it is a first-order phase transition; otherwise, it is a
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second-order phase transition.

Based on the above argument, the framework of mixture of local models is able to

model the phase transition phenomenon with the addition of dynamic identification of

operating regimes.

7.2.2 Adaptive fuzzy parametric clustering

In our local model scheme, the input space is split into partitions, which overlap somehow

because of coexistence region. Each partition corresponds to a distinct operating regime, in

which the system can be described by a local model. In implementing this scheme, the first

and a key problem is how to split the input space, which is actually a problem of clustering.

Clustering can be considered the most important unsupervised learning problem, which

is intended to organized objects into groups whose members are similar in some way.

Clustering involves the task of dividing data points into homogeneous classes or clusters so

that items in the same class are as similar as possible and items in different classes are as

dissimilar as possible. Thus, the goal of clustering is to find common patterns or similarity.

The measure of similarity plays an essential role in clustering algorithms. Usually,

distance is employed as the similarity criterion. However, it seems inappropriate for the

current situation. In our scheme, if two points in the input space belong to the same phase,

they are thought of behaving similarly and hence as in the same cluster. From the

perspective of local features, points in the same cluster have the same underlying local

features. Furthermore, since currently local features are extracted from candidate models

through ICA, similarity in local features is equivalent to similarity in the separating matrix

W. Therefore, it is more reasonable to cluster data based on the similarity of the mixing

matrix W.

To meet different needs, many clustering algorithms have been proposed, which can be

roughly grouped into two classes, namely hard clustering and soft clustering.

Hard clustering assumes exclusive assignment of each datum to clusters, which means

that a certain datum belonging to a definite cluster could not be included in another cluster
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simultaneously. So hard clustering results in crisp clusters, where each data point belongs

to exactly one cluster. An example of this class is the K-means clustering algorithm. Its

application is mainly in pure local piecewise models such as CART [Breiman et al., 1984].

A special case of hard clustering algorithms is hierarchical clustering [Johnson, 1967].

In hierarchical clustering the data are not partitioned into a particular cluster in a single step.

Instead, a series of partitions takes place, which may run from a single cluster containing

all objects to n clusters each containing a single object. The clusters in each step can be

organized in a hierarchical tree.

On the contrary the soft clustering, also called overlapping clustering, allows each point

to belong to two or more clusters simultaneously. Corresponding to the two existing

uncertain reasoning techniques, fuzzy set theory and probability theory, this class of

clustering algorithms can be further divided into fuzzy clustering and probabilistic

clustering. In fuzzy clustering, fuzzy clusters are identified and the data points can belong

to more than one cluster associated with membership grades, which indicate the degree to

which the data points belong to the different clusters. The fuzzy c-means algorithm is one

of the most widely used fuzzy clustering algorithms, which is developed by Dunn [1973]

and improved by Bezdek [1981].

Similar to the fuzzy clustering, in probabilistic clustering each data point has certain

probability of belonging to a particular cluster. This probabilistic reasoning is implied by

restricted amount of evidence. A most used probabilistic clustering algorithm is the mixture

of Gaussians, where the well-known Expectation-Maximization algorithm is applied to

estimate parameters.

As pointed out in [Jordan and Jocob, 1994], divide-and-conquer technique tends to

increase the variance and a simple remedy to this problem is to apply soft partition. This is

also applicable to the current case and thus we favor soft clustering. Another fact making

soft clustering appealing is that many systems change behaviors smoothly as a function of

inputs and soft transition between regimes introduced by the fuzzy set representation
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characterize this feature in an elegant fashion. However, both fuzzy clustering and

probabilistic clustering cannot be applied directly, because fundamentally they measure the

similarity based on distance and are separated from the modeling process, which is

inappropriate in our case. Meanwhile, in comparison to probabilistic algorithms, fuzzy

clustering is more natural and flexible in the current case. Therefore, we will propose a new

adaptive fuzzy clustering algorithm below to identify different phases over the entire input

space. The characteristics of the new fuzzy clustering algorithm are described in detail in

the following.

(1) Fuzzy clustering

A natural way to interpret overlapping operating regimes is to apply fuzzy set, because

an operating point falls in two or more operating regime simultaneously. According to our

scheme, in the overlapping regions multiple local models might be relevant while outside

the coexistence regions only one local model, which is called dominant local model, is

valid. The simple trapezoid fuzzy membership function is specifically suitable to

characterize such operating regimes. Furthermore, the choice of trapezoid shape

membership function produces more interpretable local models than other functions like

Gaussians [see e.g. Honda et al., 2000]. It is also worth noting that other kinds of fuzzy

membership functions can also be employed so as to make the global model in possession

of some meaningful characteristics. This will be discussed later on.

1.0

a b c d x

Figure 7.1 Fuzzy clustering

In order to be consistent with the concept of mixture model and superposition, a

constraint on the fuzzy membership functions is imposed, which requires that at any point x,
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t M] U,,, (x) 1. This results in smooth transition between operating regimes.

Clusters or operating regimes are represented by fuzzy sets. A typical fuzzy clustering

with three overlapping operating regimes is depicted in Figure 7.1. Any point in the input

space might belong to multiple clusters with memberships simultaneously. From another

practical angle, the membership can be interpreted as how possible an observation was

possibly generated by a certain local model.

(2) Parametric

In our fuzzy clustering scheme, the fuzzy membership functions are parameterized by

the number of clusters and the locations of splitting points.

As usual, the main task of fuzzy clustering is to identify fuzzy sets characterized by

parametric fuzzy membership functions. For each cluster, the parameters include the

location of boundaries and their widths. The importance of the locations of boundaries is

obvious. They can be chosen such that the similarity within a cluster is maximized while

'the patterns of different clusters should be as dissimilar as possible. Only so, in each cluster

the system can be better represented by a local model and the bias will be decreased.

The overlap or the width of coexistence region plays a major role in smoothening the

transition between local models. Murray-Smith and Johansen [1995] further argue that

overlap has a regularizing effect in the ill conditioning in a learning problem and the level

of overlap determines the amount of regularization. High level of overlap leads to high

level of correlation between neighboring local models and decreased transparency of the

local models, i.e. compatibility with the understanding of a system [Johansen and Foss,

1997], but on the other hand low level of overlap results in non-smooth transition between

models. Hence, the optimal degree of overlap and softness depends on the modeling

problem through the objective function.

This algorithm is called adaptive in the sense that in addition to the separators the

number of regions is determined based on data. If the number of clusters is not large

enough, the nonlinearity of the system cannot be caught adequately. On the other hand, an
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increasing number of operating regimes increase the model complexity. The overall effect

of an increasing number of local models depends on where the decrease in bias is more

significant than the increase in variance.

Thus, the number, location and overlap of the operating regimes should be so tuned

dynamically as to reach optimal values, which is determined by objective functions. In so

doing, it can be ensured that there are adequate amount of data within each operating

regime to get a good local model.

(3) Objective function

The goal of modeling processes is to minimize the predictive error. Likewise, local

modeling also aims to minimize the generalization error across the entire input space. Both

the splitting of the input space and the building of local models should be determined by

this overall goal. Nevertheless, in most previous work such as local PCA [Kambhatla and

Leen, 1997] or local ICA [Karhunen and Malaroiu, 1999], local models [McLachlan and

Basford, 1988], clustering is treated as a separate optimization problem from local learning

and global mixture, which thus causes sub-optimality. In this chapter, we will optimize

both problems jointly by incorporating them in a single objective function, which reflects

the overall goal of minimizing the global generalization error. This goal can be realized by

two steps, namely estimation of clustering parameters given the number of clusters and

estimation of the number of clusters. For the first step, it can be done by minimizing the

empirical error.

Until now, we have not discussed how to create local models and the global mixture

model. For the time being, let's suppose the global mixture model as fg(x, a, f), where a

denotes the clustering parameters and Prefers to other local model parameters. Therefore,

the partial objective can be expressed as

arg min min E , (y,- f (xi, a,fl)) , (7.3)

where the squared loss is applied.
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If the normal distribution of the data is assumed, minimizing the sum of squared error is

equivalent to maximizing the likelihood. So, equivalently all parameters can be estimated

by MLE. This will turn out to be very useful later on.

From the partial objective function in equation (7.3), it is seen that the input space is so

split as to minimize the empirical error. In this sense, this clustering algorithm is

data-driven.

Therefore, through a same objective function fuzzy clustering is closely bound up with

modeling process. This is exactly in agreement with Johansen and Foss [1997] that the

creation of local models should not be separated from the choice of operating regimes. In

this aspect, it is similar to MoE, where probabilistic clustering is mixed with learning.

Nevertheless, the partial objective function in equation (7.3) does not involve the

number of clusters, which is in fact another important part of our fuzzy clustering. This is

because a different number of operating regimes lead to varied model structures, which

cannot be reflected in the empirical error. Following the principle of parsimony in model

selection, we will bring forward a complete objective function, which incorporates the

effect of the number of clusters.

The divide-and-conquer principle reduces the model bias by specifying the model

structure more properly, but the variance will be increased at the same time, because with

an increasing number of local models (increasing model structure) more parameters need

to be estimated, which leads to larger variance on the parameter estimate. This

phenomenon is well known in the literature of statistics as bias/variance tradeoff [see e.g.

Geman et al., 1992]. On one hand, if the input space is split into too many regions,

overfitting will occur; on the other hand, too few regions might not capture the structure in

enough detail and thus leads to underfitting. The task here is to find out the optimal balance

point within the bias/variance tradeoff given a finite number of samples. To this end,

generally two different strategies can be employed, namely model selection or

regularization. In the present case, our purpose is to choose the optimal number of
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operating regimes, and thus model selection seems more appropriate.

As mentioned earlier, with an increasing number of operating regimes local models can

fit the data much better, but the model complexity is also increased, which usually leads to

deteriorating generalization. Generally, the higher the model complexity is, the smaller the

bias but the larger the variance. Most model selection criteria realizes Occam's razor by

penalizing the goodness-of-fit with model complexity, thereby minimizing the

generalization error. Among all model selection methods, the information theoretical

criteria like AIC [Akaike, 1973] or BIC [Schwarz, 1978] have a close connection to the

maximum likelihood method, which seems to many statisticians an advantage. As a result,

these information criteria can be easily applied in many circumstances without any

additional computation. In addition, some of these information criteria including AIC and

Bayesian Information criterion (BIC) can be justified under a Bayesian framework, which

is also viewed by many statisticians as another big advantage [see Akaike, 1978 and

Schwarz, 1978]. Therefore, in this chapter, we will only utilize the BIC for the purpose of

demonstration.

BIC was first derived by Schwarz in a Bayesian context with a uniform prior probability

on each competing model and priors with everywhere positive densities on the model

parameters Oin each model. Choosing the model dimensionality with the highest posterior

probability leads to the BIC criterion of Schwarz [1978],

BIC = -2 log L(O I x) + k log n, (7.4)

where L(O Ix) is likelihood function of data x and maximum likelihood estimate 0, k is

the number of parameters or model dimension, and n is the sample size. Note that the first

term on the RHS comes directly from the general maximum likelihood and the second term

is a complexity penalty term.

Assuming that the errors in data are Gaussian, we can obtain the BIC formula after some

mathematical manipulations

BIC = -n [log(n / 27r) - log RSS - 1] + k log n, (7.5)
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where RSS is sum of empirical squared error, i.e. RSS = =i- (Yi - f (xi, a, l)) 2 .

In the current situation where the Gaussian errors are not homogeneous, the likelihood

function can be written as

L(0 I y,x)= 1 nj- L ( l yij, x )" , (7.6)

and thus the log likelihood becomes

I(x, y) = logL(O I y,x) = -l J=luji logLi( yj,xj), (7.7)

where parameters , including and a, are estimated by MLE.

Because the log likelihood for a local model can be expressed as

li(x, y) = J= I/ji log L (OI yj,xj)

= In - 'Uji log 2 -ji log ai -
222a

,

and therefore

fi = arg mrin I. lj (yj -iTXj)2

and the variance for the ith local model

2 _ i -jl ( yj - a x j )
2

2J=] 1 ji

_ WRSSi

zj= 1 ji

(7.8)

(7.9)

(7.10)

where WRSS i := 'n=,1 ji (Yj - iTXj ) 2.

At last, we will have a slightly different formula

BIC = n E i n' t jli log(2) + yj/tji (log i + 1)J+

Finally, we obtain the complete objective function as

arg min min min [ (log(2) + log o + 1)- ji
M Ix a o

k(M)logn,

I+k(M)logn,

where M refers to the number of operating regimes and the model dimensionality k(M) is a

function of it.

Usually, the penalty term is equal to the number of free parameters that need to be

estimated based on data. In the current case model parameters include clustering
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parameters and local model parameters. Therefore, the model complexity can be evaluated

by

k(M) = 2(M - 2) + l m
n= P,, (7.13)

where the first term refers to the number of clustering parameters specifying the boundary

positions and the pi denotes the model dimensionality of each local model. However, in fact

the parameters in local models are not free, because once the operating regimes and

regression methods are specified, the local model parameters are already determined,

which means the local models cannot be tuned independent of clustering parameters, but

fully determined by operating regimes separation and regression methods. Therefore, in

choosing the number of clusters the appropriate model complexity can be expressed as

k(M) = 2(M - 2) (7.14)

In a special case where the width of the coexistence region is zero, we just count the

number of parameters as 1.5 rather than 2 as implied by the above equation (7.14).

Note from the above that model selection is only for choosing the optimal number of

operating regimes, because the penalty term only depends on the number of free

parameters rather than their values.

By the complete objective function, not only will this algorithm determine the regime

location, size and overlap, but it will also determine the number of regimes. The number of

clusters depends on the sample size. Its upper bound should be such that in each cluster the

number of data points having non-zero membership should be greater than the number of

features. Note that such an objective function favors parsimonious models rather than

under or over-parameterized model structures by optimizing the number of local models.

7.2.3 Local analysis

7.2.3.1 Local component analysis

ICA is a successful technique in reducing statistical dependence, and hence redundancy,

between the candidate models. Dimension reduction is also achieved by eliminating a
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subset of independent components without significant loss of information.

PCA [see Hotelling, 1933 and Jolliffe, 1986] is another popular dimension reduction

technique, which only relies on second order statistics and helps remove linear dependency.

As a result, the principal components, although uncorrelated, can be highly statistically

dependent. In contrast, ICA takes into account higher order statistics and is able to

eliminate non-linear dependency. Therefore, ICA can produce a more compact

representation of the data and outperforms PCA in statistical redundancy as well as

dimension reduction. However, PCA is much easier than ICA and in some cases where no

significant nonlinear dependence is involved, PCA can produce satisfactory results. Thus,

although in the following we will mainly focus on local ICA, it is also directly applicable to

local PCA.

However, ICA still has some limitations as we pointed out earlier, namely its linearity

and globality. To overcome the limitation of global linearity, recently researchers propose

nonlinear ICA as in equation (7.2). However, the difficulty of nonlinear ICA consists in the

fact that the solution of nonlinear ICA problem is usually highly non-unique [see e.g.

Hyvarinen and Pajunen, 1999] and is computationally rather demanding [Karunen and

Malaroiu, 1999b]. In order to develop non-linear extensions of ICA, we propose to use a

local linear ICA, in which the data space is first partitioned into disjoint regions somehow

and then ICA is performed within each cluster.

Local linear ICA can provide an approximation of nonlinear ICA because based on

Taylor expansion the nonlinear mixing function f in equation (7.2) can be approximated

locally at any point by linear functions. By choosing the number of regions adaptively, the

nonlinear characteristic can be represented adequately in the sense of accuracy given

limited observations. At the same time, linear ICA is utilized to extract local features within

each more homogeneous domain. Thus, multiple sets of local features rather than global

features are produced.

Therefore, local ICA can overcome some weaknesses of linear ICA while avoiding the
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problems associated with general nonlinear ICA. Local ICA usually works in conjunction

with a suitable clustering algorithm, which is responsible for partitioning the data space

into clusters. For example, Karhunen and Malaroiu [1999] proposed to use k-means

clustering algorithm, and Honda et al. [2000] suggested using fuzzy c-varieties clustering

[see Bezdek, 1981], which partition the data space based on the similarity of the mixing

matrix.

In this chapter, based on our overall model a different adaptive fuzzy clustering is

proposed, which is described in a previous section. After clustering, Fast ICA algorithm

[Hyvarinen, 1999] is applied in each cluster to extract local independent components. It

seems more appropriate to employ weighted ICA based on fuzzy memberships, because

even intuitively the points having smaller fuzzy memberships, in coexistence region for

example, should have smaller influence on feature extraction. However, since the

coexistence regions are not so wide, for simplicity we apply the standard ICA in each

cluster.

7.2.3.2 Local models

Once local features are extracted, we can proceed to construct local models, each

pertaining to a different, somehow overlapping though, operating regimes of the input

space. Since each local model is only relevant to one cluster, it is reasonable to train local

models using data points belonging to that cluster. Thus, before building local models, all

observations need to be first assigned to the fuzzy clusters, which constitutes a fuzzy

multi-category classification problem. Because from the step clustering we know the

membership functions uj(x) of all fuzzy clusters, the classification task is simply to

evaluate the membership of each data point in all clusters, that is,

Ai =t (xi ), (7.15)

which specifies the influence of each data point in building local models pertaining to all

operating regimes.

Just as in the global version of model combination method by decomposition and
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aggregation (MCDA) in chapter 3, local models are created by multiple linear regression

models,

fm () = 1 ihmj (x), (7.16)

where hmj(x)'s refer to local independent features in the m-th fuzzy operating regime.

Taking into account varied influence of data points, the parameters in local models can

be estimated by weighted least squares

lm = arg min ", u (y i - fm (X)) 2 , (7.17)

which further encourages the locality of local models.

Local feature, selection is an integral part of building local models. The purpose of

feature selection is to eliminate non-informative features and noise and remove redundant

information, thereby reducing model dimensionality. Since multiple linear regression

method is used in constructing local linear models, feature selection is actually a variable

selection problem. Feature selection results in parsimonious models, which are known to

yield improved generalization.

From the above, it is easy to see that the building of local models are separated from

each other expect for somewhat overlapping. Thus, local feature selections can be also

performed separately in each operating regime. As a result, the local feature selection only

depends on empirical errors of each observations falling in a certain cluster.

Up to date, there are a variety of variable selection methods. In order to keep the

interpretability of variable selection while improve its stability, the newly developed fuzzy

variable selection in Chapter 4 is applied.

7.2.4 Combine local ICA models

Once local models are built for all clusters, they can be combined into a global mixture

model, or so-called operating based model according to Murray-Smith and Johansen

[1997], based on our phase transition model.

Based on the fuzzy membership functions, the final global mixture model can easily be
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formulated as a fuzzy weighted average model

f,(x) = E- =/.,,u(x) f,(X), (7.18)

where fuzzy membership function U,,,(x) characterizes the operating regime of the m-th

local model fm(x). Each local ICA model can be expressed as

fm (x) = jP =l ljhm (x) ,(7.19)

where hmj(x) denotes j-th local independent component for m-th cluster and /,j is its

corresponding regression coefficient.

In the present case simple trapezoid membership function is applied to represent fuzzy

operating regimes and for any point x a constraint is imposed such that Im=lJUm (X) = 1,so

the mixture of local models turns out to be simple. If for given point x, which is outside

unstable phase transition regions, some u(x)=l, the m-th local model fr(x) is dominant

and thus fg(x)= fm(x); otherwise, if x is inside a transition region, two different phases

characterized by two different local models coexist. Based on our stochastic modeling of

phase transition, the mixture model fg(x) can be constructed by a weighted linear

superposition of local models with nonzero membership by their degrees of membership,

fg (x) = Ii (x) f (x) +Uj (x)fj (x). (7.20)

An example with two operating regimes is shown in Figure 7.2.

f(x) f x

Region I I I Region II Region I I i Region II

a! |b , a! . h
X X

(a) Local models (b) Global mixture model

Figure 7.2 An example with two operating regimes

From the above example, it can be seen that the global mixture model is continuous. In

fact, it is true as long as the width of the coexistence region is not zero, because, for
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example.

f, (X ,) = 1(X)f(X,)+1 2 (X)f 2 (X,) = f (X ) (7.21)

where ,u (x,)=1 and /2(xa)=O.

Nevertheless, in general the first derivates are not continuous. This is because with

trapezoid membership functions we have

f' (X ) =: 1U'(X, )fi(X, ) + (xa )fi'(X ) + U2'(X,,)f2 (X,, ) + 2 (X, )f2'(X) (722)
= C(f (X, )- f2 (X, ))+ fi'(X )

where 1,u'(Xa)=-c and u2'(xa)=c.

Certainly, if' we want the global mixture model is smooth in the sense of first derivatives,

we should choose other membership functions than linear ones in the coexistence region

such that ul'(x,,)=,u2'(xa)=O. A candidate of such membership functions can be

/l (x) = + CosX 2 +cCost x - X,)forx [x ,xb]. (7.23)
2 X b - Xa 2 Xb - Xa

Following this strategy, global model with even higher orders of smoothness can be

produced.

7.3 Three-stage optimization algorithm

In the problem under investigation, we need to jointly optimize the number of operating

regimes, the locations of boundaries as well as parameters in local models. Seemingly, it is

somehow analogous to adaptive regression splines with free knots [cf. Jupp, 1978 and

Friedman, 1991]. Splines are piecewise polynomial functions that are constrained to join

smoothly at points called knots. In particular, a free-knot spline is a spline where the knot

locations are considered parameters to be estimated from the data. Freeing the knots greatly

improves the spline's approximating power [Burchard, 1974]. However, it poses a very

difficult problem, that is, estimating the optimal number of knots and their locations, which

is similar to the problem we are facing.
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Nonetheless, their differences are also obvious. First, our model is more flexible

without smoothness constraints, which, on the other hand, leads to more free parameters.

Second, in our model the regressors nonlinearly depend on the boundary locations while

for splines regressors are fixed as polynomials. Therefore, it is expected that the current

optimization problem is even more difficult than that of free-knot splines.

The difficulty lies in some undesirable characteristics of the complete objective function

in equation (7.12). To help analyze its properties, let's substitutefg(x, a, ) in equation (7.5)

and rewrite it as

(
arg min min m in n log 1 i - Zm= u (,, a))"' ,8jhj (X, a) + k(M) logn. (7.24)

M a c = m= m

First, it is a nonlinear function of boundary locations, because the membership

functions and the local independent components nonlinearly depend on aand they appear

inside the square. This makes it a complex system.

Second, it is non-differentiable partly because of the non-differentiable membership

function. Furthermore, the explicit dependence of the local independent components, or

equivalently the separating matrices, on the fuzzy clustering parameters a can be never

known. Because of this non-differentiability, all gradient-based optimization algorithms

such as steepest descent, Newton-Raphson method and conjugate gradients will certainly

fail. This excludes the application of most gradient-based method, but some numerical

searching algorithms are still possible.

Finally, the objective function is not strictly convex or concave but has many local

optima. This can be seen by applying the "lethargy" theorem introduced by Jupp [1978].

Similar to free-knot splines [Jupp, 1978], the existence of multiple optima is the objective

surface is related to the symmetry introduced by the exchangeability of the boundary

parameters. For example, in a simple case with two clusters the objective surface is

symmetric along any normal to the line defined by two equal parameters. Consequently, the

derivative along the normal at the intersection to the equal-parameter line is zero. This

property, called "lethargy" by Jupp [1978], results in many stationary points and ridges

along lines or planes in the parameter space where two or more parameters coincide.

238



This property will result in the failure of all local optimization algorithms like

gradient-based methods, line search and hill climbing. Local optimization algorithms

easily get stuck at local optima and with different initialization they will converge to varied

local optima.

In order to overcome this problem, global optimization algorithms like simulated

annealing and genetic algorithms should be applied instead.

The above are some interrelated reasons that make it so difficult to find out the global

optimum. Since there are many local optima in the objective surface, good starting

parameter values are essential for finding the global optimum. Unfortunately, it is usually

difficult to construct good starting values that will converge to the global optimum. One

possible way is to construct starting values based on data. First, we sort the inputs x and

split the input range to segments s through s. Clearly, every parameter a. can be within

each one of the: segments. Then, the entire parameter space of the vector a will be divided

into (n-1)2M-2 pieces of subspaces. If we pick an initial value for awithin each subspace, we

will end up with a local optimum within that subspace. Comparing all these local optima

will give us an approximate global optimum. However, because we cannot make sure there

is only one local optimum within each subspace, the global optimum is not guaranteed.

Furthermore, it is computationally very expensive because there are O(nn/k) possible initial

values in total.

Originally developed by Holland [1975], genetic algorithm (GA) is a global stochastic

search algorithm, which is less susceptible to getting 'stuck' at local optima than gradient

search methods. But on the other hand they tend to be computationally expensive. In

practice, genetic algorithms work very well on mixed (continuous and discrete),

combinatorial problems. For example, Pittman [1999] suggests using GAs to optimize the

knot locations in adaptive splines.

Here we will propose a similar hybrid genetic algorithm, which combines global

optimization together with local search. It is different from that in [Pittman, 1999] in that a

distinct genetic chromosome representation and correspondingly different genetic

operators are defined. Furthermore, in this scheme GAs are only used to find out good
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starting values for the local search rather than the global optimum, which significantly cut

down the computational time because of the slow convergence of GAs.

Following a strategy of problem splitting, the optimization problem can be solved

through three stages.

First, let's optimize local model parameters given fuzzy clusters. In order to encourage

competition and locality of local models, we might approximate the original objective

function with a slightly different one

3= arg mrnm C1 (yi- fg(Xi, a,,))2 argmin~m El/ i (y1 - f ,(X, , ))2 . (7.25)

The only difference between the two objective functions is in the coexistence regions.

For convenience, let's denote E(Oi) = Z =luim Oi , and then we have

2Em=l u(Yi- fm (x, ,8,)) 2 = E(Yi- f,, (Xi, , a))2

= (yi - E(fm (xi, /, a)))2 + E(fm (xi, , a) - E(fm (xi, /, a)))2 (7.26)

=(yi - fg(x1,j , a))2 +m It/im(fim(Xi,, c)- fg(x,, a))2

where the second term is usually small within the coexistence regions.

In fact, another important thing is that this change makes the optimization problem

much easier, because the membership function is moved out of the square. Moreover,

another good thing about it is that local models can be built independently from each other,

which is consistent with section 7.2.3.2.

In this stage, local model parameters 3 ican be optimized as functions of a, which can

be easily done by WLS as described in section 7.2.3.

Second, we need to find out the best fuzzy clustering given the number of clusters,

which is actually the toughest stage. Here, we can rewrite the sub-optimization problem as

& arg min I- (yi - Ym (Xi, a)f (Xi, /(a), a) = arg min F(a), (7.27)

where ac(al,..., Ca2M-2) with Xmin<al< a2<...< c2M-3--<a2M-4< Xmax.

Note that under the assumption of Gaussian errors the fuzzy clustering parameters are

actually estimated by Maximum Likelihood. Nevertheless, a well-known problem with
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MLE is the danger of overfitting. For a simple example, suppose we have two operating

regimes and the number of data points falling in the first regime is equal to the number of

candidate models and all others fall in the other regime. In this case, the data can be fitted

perfectly in the first regime and a little better in the other regime than in the single regime

case. Therefore, as a result the maximum likelihood is increase dramatically, but the

resultant model most likely becomes worse.

In order to overcome this pitfall, we apply the cross-validation approach, that is, using

testing likelihood in place of maximum likelihood. Correspondingly, the sub-optimization

problem can be expressed as

a = arg m in '=(y,i - m (Xti, a)fm(Xti, /(a), ) = arg min F,(a) (7.28)a tn= a

where the subscribe t denote the out-of-sample test.

The sub-objective function Ft(a) in equation (7.28) is in possession of all the unpleasing

properties mentioned earlier. To address this challenge, we will propose a hybrid

optimization algorithm combining genetic algorithms with multi-dimensional hill climbing,

which will be describe in detail a while later.

After accomplishing both global and local optimization procedure, a group of good

candidate solutions are obtained, from which the solution with the smallest F,(a) can be

easily chosen as the optimal one.

The last stage is to choose the optimal number of local models, which is treated as a

model selection problem. Since we restrict that in each operating regime the number of

data points must be greater than the number of local independent components, therefore

there exists an upper bound M,, much smaller than the sample size n. Thus, this

optimization problem can be expressed as

M = arg min n log E,(y - f (x,, , ))y +k(M)logn, =arg min G(M) (7.29)
1MM,,, I1<M<M

To determine the optimal number of clusters, we simply repeat the second stage for M

ranging from 1 to Mm, and finally choose as the optimal the one corresponding to the

minimal model selection criterion value in equation (7.29). In practice, a forward stepwise
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process can be utilized, which increases M from 1 and stops until the model selection

criterion value increases.

7.3.1 Real-coded genetic algorithm (GA)

Basically, GAs are stochastic global search and optimization methods that mimic the

metaphor of natural biological evolution, which are believed to be the ultimate optimizers

based upon the idea of Darwin's revolutionary writing Origin of Species. According to

Darwin, the power of evolution lies in the continuing struggle for survival and some

"variation", such as mutation of genes, of an organism increases its chances for survival.

Therefore, key to such evolution is the concept of larger numbers, i.e. large population and

many generations, and randomness, such as the probabilistic selection, mixing, and

mutation. Likewise, GA first generates a large set of random parameters as a generation,

and then randomly select parameters in terms of their fitness to reproduce a new generation

of parameters by means of random crossover and mutation. In GA, the fitness-based

selection will ensure the consistent direction of evolution, or guarantee the increase of the

average fitness of a generation. Meanwhile, crossover and especially mutation enables the

GA to avoid being stuck in a local minimum and search for the global optimum.

Usually, a chromosome in GA is represented by a binary string consisting of Os and 1s,

but in the current case each parameter to be optimized is a floating point number, and

therefore floating-point coding or double-precision representation seems more appropriate

than binary coding. As pointed out by some research, binary coding is less suited for

numerical optimization problems [Garcia, 1999], although a floating-point number can

also be expressed in a binary form somehow, for example in Pittman [1999]. Therefore,

each chromosome directly represents a vector of floating point parameters.

The first crucial issue of GA is to define a proper fitness function, which tells how good

or bad a candidate solution is. It is this fitness function that determines the goal of

optimization. Usually, GA works by maximize the fitness, but we intend to minimize the

objective function or equivalently maximize the likelihood. Therefore, the fitness function
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can be constructed from the objective function as

fitnzess(a(k)) = Max(F, (aj )) -F, (c()), (7.30)
where F,(ao) is the objective function in equation (7.30), Max(F,(ofP))) stands for the

maximum Ft(a) in a population and fitness(ak)) refers to the fitness of the k-th individual

chromosome.

The definition of fitness significantly influences the behavior of convergence. For

example, in the early stage few "super individuals" tend to dominate the selection process

leading to premature, whereas later when the population is less diverse, the simulation

tends to lose focus [Goldberg, 1989]. Therefore, in practice we would like to apply a more

general and flexible fitness function by scaling and shifting, i.e.

fitness(a(k)) = b + a(Max( F (() )) - Ft (a(k) )) (7.31)

where the scaling factors a and shifting factor b are so adjusted adaptively during

simulation as to avoid premature convergence early on and encourage convergence in later

stages.

As for selection, we utilize the fitness-weighted roulette wheel method, which is

conceptually equivalent to giving each individual a slice of a roulette wheel equal in area to

the individual's fitness. The wheel is spun and the ball comes to rest on the wedge shaped

slice, and the corresponding individual is selected. Therefore, the probability for a

chromosome to be chosen is proportional to its fitness. A pair of "parents" is selected by

spinning the wheel two times to reproduce a pair of "children" by recombination and

mutation.

As we know, the GA success is also sensitive to the two operators, namely,

recombination operator and mutation operator. For example, it is found that the general,

fixed, problem-independent recombination operators often break partial solutions and slow

down convergence. In order to avoid such a pitfall, we design problem-specific crossover

and mutation operators.

The recombination strategy we applied is the one-point arithmetic crossover. Let the
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parents be PI=[P1 ,...,PIL] and P2 =[P2 1, . ,P2L], respectively. Then, the two offspring are

,i<t
, , + (P2i - P ) i > t ' (7.32)

Xmax 2t

and

P2i i<t
2t + max 2t- P ji p(7.33)

max I- Pt

where t is a random integer number among 1,2,...,L.

This crossover operator is so designed that it guarantee the resulting children are still

ordered sequenced of real numbers within a valid range, the number of clusters is

maintained and good patterns in parents can be kept as well. In fact, it is especially suitable

for chromosome representations of ordered sequences of real numbers.

The crossover rate, i.e. the probability that crossover happens, is generally around 0.5,

and in this chapter we set it as 0.6.

Mutation operator is defined as addition of a normally distributed factor with mean

value 0, i.e. D = D + £, where Diis an original parameter and Di'is the mutated one, Eis

a Gaussian random number, i.e. N(O, 2 ), where o2 is tunable. splays a similar role of the

step size in line search. In this study, we choose

x -x(
= Xmax - x n (7.34)

3n

where n denotes the sample size.

Hessner and Manner [1991] suggested that the optimal mutation rate, i.e. the

probability that mutation occurs for a single gene in a chromosome, is approximately

(S .L/2) -l, where S is the population size and L is the length of the chromosome. In this

chapter, we will follow this "rule of thumb".

Since the current optimization problem is constrained by Xmin<alI< 0a2<...< a2M-3 <

a62M-4< Xmax, besides selection, crossover and mutation operator, we need another check

operator before a new valid child chromosome is really created.
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A valid chromosome has to meet some constraint. First, a chromosome must be an

order sequence of real numbers. Second, each element must lie in between Xmin and Xmax.

Finally, another constraint is that the number of data points falling into each cluster must be

greater than the number of local independent components.

If there is no crossover and mutation, a chromosome is simply copied to the next

generation.

The stopping rule for the current case is relatively simple, as our purpose is to search

for promising initial inputs for a local optimization algorithm. Thus, when we observe that

the convergence of GA becomes very slow, it will be the time to stop it.

Finally, the main steps of GA are follows:

(1) Build an initial population of S chromosomes randomly between xr, and Xm,,,;

(2) Calculate the fitness of each chromosome;

(3) Select chromosomes from the parent generation to reproduce a child generation:

(i) Select two parent chromosomes,

(ii) Generate a random number between [0,1 ]. If it is smaller than the crossover rate,

recombine them by one-point arithmetic crossover; otherwise, enter the next step;

(iii) Generate a random number between [0,1 I]. If it is smaller than the mutation rate,

perform mutation on a gene in a chromosome. Repeat this for each gene in both

chromosomes.

(iv) Add the two resulting chromosome to the next generation.

Repeat the above (i) through (iv) steps until S new chromosomes are reproduced.

(4) If the stopping criterion is met, then exit; otherwise, return to step (2).

7.3.2 Adaptive multi-dimensional hill climbing

By GA optimization, we obtain a set of global good initial guesses of the best vector of

fuzzy clustering parameters, namely the last generation out of GA. In practice, it is also

useful to keep tract of the "best" chromosome throughout the whole GA simulation
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history.The next task is to search for the optima around these good initial guesses.

As we noticed, our objective functions are quite complicated and thus it is hard to apply

classical gradient-based methods. However, it can be solved numerically by some

derivative-free approach, for instance, hill climbing. We will propose a derivative-free

method to optimize the parameters one by one while keeping other fixed. Furthermore, the

step size is adaptively tuned. However, since each parameter is not independent of each

other, the overall optimization has to be done in an iterative way. Our algorithm described

below is actually a multi-dimensional version of adaptive hill climbing, which is simple,

self-adaptive and fast.

The whole process consists of multiple loops, in each of which the individual

parameters are optimized one at a time. Suppose we are optimizing o and let its current

value as (O) and the current model evaluation value as Ft(a)(0). Let k=l and (k)=

oi(k~-)+kd, where d is small positive number, and keep the otherp-1 parameters unchanged,

and then recalculate the model evaluation value as Ft() (k). If F(a) (') > Ft(a) (0), that is, the

fuzzy model gets worse, then return to o(°) and let k= land replace d by -d; otherwise,

continue to search in the same direction within the interval [Xmin, Xmax] until F,(a) (k+) )>

Ft(a) (k). The final Co(k) is taken as the optimal value in the current loop. After 6 is

optimized, we turn to the next parameter o+. Each loop starts with %o and ends up with

02M-2. Once a loop is done, another one will be started depending on the stopping criterion.

At the beginning of each loop, we calculate the resultant model's Ft(a), and the same

for the end of each loop. If the difference between these two values is small enough, for

example,

IF (R) - (() <(735)
<S, (7.35)

F, (a )('+)

where dis very small, say 10-5, we would say that the minimum has been reached and

therefore stop the local searching process.

In view of the facts that (i) There exists a lower bound for Ft(a) (k), although unknown,

and (ii) the sequence of F,(a)(k) is non-increasing, the convergence is guaranteed according
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to the Cauchy convergence criterion.

7.3.3 Mixture of local ICA models procedure

Up to now, we almost complete the development of a new method of mixture of local ICA

models, from model structure to parameter estimation. Basically, the input space of the

system is first decomposed into fuzzy subspaces by adaptive fuzzy clustering algorithm

and then in each subspace the system is approximated by a local linear ICA model. This is

somewhat analogous to what is called Takagi-Sugeno fuzzy model [Takagi and Sugeno,

1985] in the context of predictive control.

The entire modeling procedure can be summarized as follows.

(1) Set M=1

(2) Optimize the fuzzy clustering with hybrid GA given the number of fuzzy clusters

(a) Build an initial population of S chromosomes randomly;

(b) Calculate the fitness of each chromosome;

(i)Classify data points into each fuzzy cluster

(ii)Perform local ICA within each fuzzy cluster

(iii)Create local ICA models based on data by multiple regression method with

fuzzy variable selection

(iv) Mixing local ICA models

(v) Calculate the weighted residual sum of squared error

(c) Generate the next generation by selection, crossover and mutation

(d) If stop criterion is met, then go to (e); otherwise go to (b)

(e) Treat the last generation of GA as starting parameter values and find out local

minima around them

(3) Choose the best local optimum as the global optimum and then assess the resulting

optimal model by G(M) in equation (7.29) . If G(M) < G(M-1) for M>2, go to step (4);

otherwise, go to step (5)

(4) Set M=M+ and go to (2)
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(5) Return the final optimal mixture model including the optimal fuzzy clustering

7.4 Numerical simulation study

In this section, we will present some results in our numerical simulation studies. This

method will be first applied to an artificial example, where the true model is supposed to be

known, to demonstrate how it works and its advantage over global models. And then, it is

will be used in a real case. From our numerical simulation, we also intent to justify our

argument that mixture of local models is suitable to situations where severe nonlinearity is

involved, because the linear local models are supposed to catch its nonlinear

characteristics.

7.4.1 Artificial example

In this example, artificial models and data will be used to demonstrate the effectiveness of

the new method. Let's assume the true model is expressed in mathematics as

y(x) = 150-150exp(-2x) + x2-0.1x3 + 4x +

30exp(-x/3). sin (x) + 15 sin( 1.5x)-20 In (x + 1 )

where real number xe [0,10]. From the expression, it is easy to note that it involves

complex nonlinearity.

Correspondingly, its realistic data generative model can be written as

y = y(x) + , (7.37)

where Eis supposed to assume a normal distribution, i.e. N(O, 2) where 02 is set as 64 in the

current example. From this generative model, we gathered a set of data with n=50, i.e. (xi,

yi), where xi is evenly distributed between [0,10].

Meanwhile, suppose we also collected a class of candidate models as follows:

f, (x) = 150-150 exp(-2x)+ 4x + 15 sin ( 1.5x)-20 log(x + 1);

f 2 (x) = 150-150 exp (-2x)+ x2-0.1x3;

f3 (x) = 150-150 exp(-2x)+ x2 -0.1x3 + 30exp(-x/3 ). sin (x);
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f 4 (x) = 150-l50exp(-2x)+ 6x + 30exp(-x/3 ) sin(x)-20. log(x +1);

f5 (x) = 150-150exp(-2x)+ x2-0.1x3 + l5sin( 1.5x); (7.38)

f6 (x) = 150-150exp(-2x)+ 15cos(2x)-15 + 0.004x2;
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Figure 7.3 Artificial candidate models and data

Note that each candidate model is either incomplete or erroneous, or both. All these

models are shown in Figure 7.3 together with a set of sample data.

Once the candidate models are formulized and data are collected, we are ready to

employ our new approach to find out local domains by fuzzy clustering, build local models

within each fuzzy cluster and finally mix local models into a global model. The results are

shown in Table 7.1.

Table 7.1 Simulation results of the artificial example
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Number of domains Domains BIC Test error

A single best model [0, 10] N/A 104.67

1 [0, 10] 57.83 18.02

2 [0, 0.57, 4.865, 10] 55.15 11.68
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Figure 7.4 Membership functions
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Figure 7.5 Local models and the mixture

The fuzzy membership functions and resultant mixture models are plot in Figure 7.4 and

Figure 7.5, respectively. From the results in Table 7.1, we see that the new method does

work pretty well as expected. This is quite understandable, because in this example highly
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non-linear dependence among candidate models and severe nonlinearity are involved,

which are exactly the two primary problems that our new approach is supposed to deal

with.

7.4.2 Real case study

In the above subsection, we demonstrated the effectiveness of our method using some toy

data. Certainly, that is not enough without showing real applications. Now let's turn o a real

example and see if it works.
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Figure 7.6 Candidate attenuation models and data

The real example we use here is the attenuation models in seismology. In this example,

the purpose is to build a more accurate composite model, which is applicable to south

California in the United States. A sample data set of size 102 is obtained from the literature

[Steidl and Lee, 2000], whose logarithms are assumed to include Gaussian noise.

Correspondingly, the candidate attenuation models include the attenuation relations by
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Boore et al. [1997], Sadigh et al. [1997], Abrahamson and Silva [1997], Campbell and

Bozorgnia [1997], Spudich et al. [1997] and Idriss [1995]. All of these attenuation relations

may be found in Seismological Research Letters, Volume 68, Number 1, January/February,

1997. All these attenuation relationships were developed for shallow crustal earthquakes in

active tectonic regions, and thus they should be applicable to southern California.

The candidate models are plot together with the sample data in Figure 7.6. From Figure

7.6, it is easy to note that all the models are close to be a straight line, which means unlike

the artificial example the dependence among candidate models are mostly linear.
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Figure 7.7 Local models and mixture model

As in the artificial example, we apply the new method to optimize fuzzy domains, create

local models and finally come up with a mixture model. The simulation results are shown

in Table 7.2 and the mixture model is plotted in Figure 7.7 together with the data.
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Table 7.2 Simulation results of real case study

From the above results, we see that the test error of the mixture model with two

operating regimes is smaller than that of the global model by about 12%. Besides, the

models plotted in Figure 7.7 do make sense. First of all, the peak ground acceleration (PGA)

goes down with the distance from the epicenter increasing. Meanwhile, it also shows that in

two regions, namely near the epicenter and far from the epicenter, the attenuation model

with regard to the distance are somewhat different. One of the possible reasons is the effect

of the depth of the seismic source. Likewise, a possible explanation of the turning point

around 23km is that for shallow crustal earthquakes the average depth of ruptures is about

25km [Campbell, 1997].

In this case study, once again we observed the significant influence that the choice of

candidate models might have on the performance of the resultant mixture model. The

choice of candidate models has been already fully discussed in chapter 2. Following the

procedure proposed in chapter 2, we are able to come up with an optimal choice.

7.5 Summary

In this chapter, we propose a mixture model of local ICA models to overcome the weakness

of global models in dealing with nonlinearity and locality. Basically, this method consists

of three components: clustering, local ICA and model combination. Adaptive fuzzy

parametric clustering algorithm is put forward to divide the whole input space into

operating regimes, local ICA analysis are carried out and the feature-based model

combination method is applied to create local ICA models in each individual region, and
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Number of domains Domains BIC Test error

Best single model [0,120] N/A 0.1935

1 [0, 120] -66.72 0.1567

2 [0, 23, 23.9, 120] -69.37 0.1303



finally the local ICA models are combined into a mixture model. Correspondingly, a

three-stage optimization procedure is designed to optimize the complete objective function,

which is actually a hybrid GA algorithm.

In the end, to demonstrate its effectiveness this new method was applied to both an

artificial example and a real case in seismic study. Our simulation results show that the

adaptive fuzzy mixture of local ICA models turns out to be superior to global models.
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Chapter 8

Summary and Contributions

This thesis mainly focuses on statistical modeling problems. The basic problem it is

intended to solve can be expressed as follows:

Question: Given a class of competing models and without enough data, how can we

construct a more accurate and precise composite model?

By competing, it is meant that none of the models is significantly superior to others. In

fact, this is a very general problem in both science and engineering. This thesis is motivated

by a project in seismic risk analysis, in which multiple different attenuation functions are

available and people are not sure which one should be used or how to build a better one in

terms of accuracy and uncertainty.

In general, there are two different ways to attack this problem, namely model selection

and model combination. Clearly, model combination should be a better choice as it can

incorporate more information. However, in order to combine multiple models, there are

some challenges one has to face, which include

(1) Candidate model choice

There might be many different models for a certain system or phenomenon. They can

be built at different times, by different people, in different disciplines, or on the basis of

different theories and observations. This diversity can be greatly useful, but if we include

every model without discrimination most likely we cannot succeed. Therefore, the first

challenge is how to choose a group of candidate models to combine into a composite

model.

(2) Model combination method

.In order to create a better model, more information or more efficient use of existing
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information is necessary. The second challenge is how to aggregate information contained

in candidate models to reduce model bias and uncertainty. Moreover, different kinds of

information are involved, namely candidate models and data, which poses another

difficulty.

(3) Model performance evaluation

Model performance evaluation sits in the core of model selection. It is also a central

issue in model combination. Without model performance evaluation criteria, one cannot

tell if a composite model has better future performance than those candidate models and

which composite model is better. There are some existing methods, which, however, do not

work equally well in different situations. So, it is important to apply an appropriate model

assessment method to compare model performances.

(4) Model redundancy and uncertainty reduction

It can be good to take advantage of model diversity to improve model performance.

However, at the same time information redundancy is also introduced because of

dependence among candidate models, which might lead to high model uncertainty and

overconfidence. In integrating information, how to detect errors in candidate models

constitutes another major concern.

(5) Data uncertainty

Usually, data are contaminated by noises, with unknown probability distributions. If

they are not treated properly, the results can be misleading and lead to poor generalized

model performance. Therefore, another problem is how to model the noises in data

appropriately and thus reduce model bias and uncertainty.

(6) Model locality

Generally, each candidate model has its own operating domain, within which it can

work very well but outside of which it may work poorly. For example, some attenuation

function in seismology can only be used within some region in terms of the distance from

the epicenter. It might be helpful to combine candidate models having different favorite
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regimes. But, the challenge is how to identify their operating regimes and how to combine

them in a consistent way.

(7) Objectivity

Usually, in model combination subjective judgments like expert opinions are involved,

which makes the procedure of modeling subject to personal bias and unrepeatable. As

pointed out by many authors, experts tend to be overconfident. To overcome this weakness,

some objective methods should be preferred. But, the question is how to do that.

By now, lots of work has been done in model selection and model combination. As

mentioned earlier, model selection tends to select a single best candidate model, without

incorporating the contributions from other peer models. In contrast, model combination is

able to somehow integrate information in all candidate models as well as new observations.

Therefore, the model combination is preferred. There are many model combination

methods, but none of them can address all of the challenges listed above satisfactorily and

have their own limitations in terms of accuracy, stability and locality. For example,

(1) Equally weighted average

In this method, all the candidate models make equal contribution to the composite

model. Some big errors in candidate models will ruin the composite model. Meanwhile, it

can not take advantage of newly collected data.

(2) Weighted average

Because of the dependence among candidate models, a direct weighted average of

candidate models based on data suffers from information redundancy, high model

dimensionality and large model uncertainty.

(3) Bagging (Bootstrap aggregation), Boosting and Stacking

Bagging fits the same parametric model to bootstrap replicates, thereby stabilizing the

model procedure and reducing model uncertainty. It is unable to combine different

calibrated models. Similarly, boosting is another machine learning algorithm, which

combines poor learners into a better one.
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Stacking can be viewed as a modified version of weighted average, whose weights are

based on leave-one-out cross-validation. Therefore, it shares the weaknesses with other

method.

(4) Bayesian Model Averaging

BMA is a Bayesian method applied in the model space. The first problem in BMA is to

assign prior probabilities to candidate models, which is usually done arbitrarily. Another

problem of BMA is that it does not take into the dependence among candidate models. A

practical difficulty of BMA is that it is hard to implement and computationally expensive.

(5) Bayesian information aggregation

This class of methods also applies Bayesian approach. They try to model the

dependence based upon the conditional mean dependence assumption (CMDA), which is

not always the case in reality. Besides, they do not incorporate new observations either.

(6) Mixture of Experts (MoE)

MoE follows the philosophy of divide-and-conquer. It trains local models for

individual sub-regions and finally mix them. It cannot be directly applied to combine

multiple candidate models.

In order to address the challenges mentioned earlier and overcome those limitations of

existing approaches, a new feature-based model combination method is proposed. This

new approach has (1) higher predictive accuracy, (2) stability, (3) consistency and (4)

ability to deal with locality. Basically, it has the following advantages over the others

(i) It is able to aggregate information in all competing models, thereby improving model

performance.

(ii) It is able to detect errors in competing models to a degree, thereby reducing model bias;

(iii) It can model dependence among competing models and thus reduce information

redundancy;

(iv) It is able to combine different kinds of information, including models and data;

(v) It has robust performance when having different sets of data;

(vi) It is objective, involving no subjective judgment.
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In order to overcome those challenges, in this thesis the following new methods are put

forward

(1) A candidate model assess procedure is proposed to choose an appropriate group of

candidate model for combination;

(2) Principal component analysis and independent component analysis are used to extract

features from candidate models and then features are aggregated into a composite

model using linear regression;

(3) Fuzzy variable selection method is put forward to perform feature selection and thus

reduce information redundancy and help get rid of errors as well;

(4) Exponential power distribution is applied to model noises contained in data as well as

deal with non-normality, outliers and heteroscedasticity in partly linear regression;

(5) A new method called Constrained Parametric Weighted Least Squares is proposed to

reduce both model structural uncertainty and parameter uncertainty;

(6) An adaptive fuzzy mixture of local models is proposed to combine models in the

presence of model locality.

Besides, three kinds of examples are used in this thesis for numerical simulations.

(i)To demonstrate the effectiveness of this method, an artificial example is used to illustrate

the model combination procedure.

(ii)Fourier series are used for standard testing of performance of the new method;

(iii)A real case study in seismic risk analysis is carried out to show its application in reality.

Certainly, this approach can have applications in wider areas, for example, in finance.

Let's summarize what have been done in the proceeding chapter and also the

contributions we made in each of them.

In chapter 1, at the beginning the thesis problem is formulated and two different kinds of

solutions, namely model selection and model combination, are discussed. After reviewing

many model performance evaluation methods, either statistical or information-theoretic,

most of which follow the principle of parsimony, a generalized flexible framework for
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designing model performance evaluation approach is brought forward. Then, many

existing model combination methods are also briefly reviewed and their individual

strengths and weaknesses are pointed out. By comparing model selection and model

combination from several perspectives, a conclusion is drawn that model combination is a

more effective way to improve model performance than simple model selection. Some

objectives of model combination are put forward and a novel feature-based model

combination method is proposed to meet these goals. However, to implement this new

approach, several important issues have to be addressed. And each issue will constitute the

topic of the following chapters.

In chapter 2, the first central problem, that is, the candidate model choice, is solved.

Through our analysis, we first conclude that the efficiency of model combination highly

depends on the choice of candidate models. Some desirable properties are then proposed to

assess a group of candidate models, which include accuracy, diversity, independence as

well as completeness. To facilitate the choice with the use of these criteria, some

quantitative measures are put forward. Meanwhile, Bayesian method and utility function

are employed to aggregate information to obtain an overall evaluation of models. Finally, a

stepwise forward candidate model choice procedure is proposed to realize all these criteria

in a procedure, which chooses a group of candidate models out of a model pool.

In chapter 3, a new data-guided model combination method by decomposition and

aggregation is described in detail. With the aid of influence diagram, we will analyze the

dependence among candidate models and apply latent factors to characterize such

dependence. After analyzing model structures in this framework, we derive an optimal

composite model. Two widely used data analysis tools, namely, Principal Component

Analysis (PCA) and Independent Component Analysis (ICA) are applied to commit factor

extraction from the class of candidate models. Once factors are ready, they are sorted and

aggregated to produce composite models. During the course of factor aggregation, another
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important issue, namely factor selection, is also touched on. Finally, a numerical study is

given to show how this method works.

Chapter 4 is dedicated to solving the problem of component selection in this new method.

The classical model selection such as variable selection in multiple linear regression

delivers interpretable models, but its instability is also well known. Meanwhile, some

shrinkage estimators enjoy the property of stability. To combine these two strengths, we

generalize the conventional variable selection by introducing the concept of fuzzy variable

selection. After constructing a fuzzy model, we will show that the optimal membership

function can be estimated by taking advantage of the generalized ridge regression. By

defining the effective model dimensionality, almost all the classical model selection

method can be easily extended to our fuzzy scheme. To make the multiple dimensional

optimization problem tractable, we also propose a hybrid optimization process, which

occupies both the global and local searching capability. Finally, our numerical study shows

its advantages over classical method selection methods.

In chapter 5, we deal with another issue of data uncertainty, especially those data

contaminated by noises with unknown distributions. It is well known that under

Gauss-Markov (GM) assumptions, Ordinary Least Squares (OLS) OLS estimators of

regression coefficients are BLUE. But those assumptions cannot always be met in reality.

For example, non-Gaussian error, outliers, heteroscedasticiy and incomplete predictor

variables can result in the failure of these ideal assumptions. Since these problems lead to

the same consequences, that is, non-normal overall error, it is usually difficult to

distinguish them from each other only based upon the data. Therefore, a parametric

weighted least squares (PWLS) method is proposed as a uniform framework in this chapter

to remedy these problems and to obtain a better estimated regression model. Basically, we

model the underlying error distribution that departs from normality with a continuously

defined parametric exponential power distribution, which includes uniform, Gaussian,

Laplace and other sub- and super-Gaussian densities. It is actually unusual to know the
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error distribution and therefore we have to estimate it from the data, i.e. mainly estimate the

shape parameter in the current case. To this end, maximum likelihood estimator (MLE) and

alternatively the residual maximum likelihood estimator (REMLE) are put forward. After

estimating the error distribution, the maximum likelihood is applied to estimate regression

coefficients by a weighted least squares procedure. Furthermore, a significance test based

upon the likelihood ratio test is designed to avoid the downside of the performance of this

method compared to OLS. Finally, Monte Carlo simulation results show that PWLS

outperforms OLS in some cases of interest.

In the proceeding two chapters, we deal with model structure uncertainty resulting from

variable selection and parameter and data uncertainty separately. In chapter 6, these two

methods are put together to reduce overall model uncertainty, or in other words, apply

fuzzy variable selection to the situation where the noise distribution is unknown. A model

generally consists of two parts, i.e. model structure and model parameters.

Correspondingly, model uncertainty includes both model structural uncertainty and model

parametric uncertainty. In order to reduce the overall prediction error, we need to reduce

both components of model uncertainty. Therefore, in multiple linear regression models,

combining a stable model selection method with a more efficient regression method might

be a feasible way to improve precision. In this chapter the fuzzy model selection method

and the parametric weighted least squares are both generalized to work together to deal

with both model structure and data problems simultaneously. A two-stage optimization

procedure is designed to ease the numerical realization of the combination. In addition,

given an estimate from a model it is usually important to know its associated uncertainty.

As pointed out by some authors, model structural uncertainties are sometimes ignored in

model uncertainty evaluation, thereby resulting in overstating the precision of a model. In

view of Pros and Cons of some existing methods such as Draper [1995] and Buckland

[1997], we come up with a new model uncertainty evaluation method, which fits into our

situation.
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In chapter 7, another important issue in model combination, that is, model locality, is

addressed. Since usually a global linear model is unable to catch nonlinearity and

characterize local features especially in a complex system, we propose a mixture model of

local ICA models to overcome these weaknesses. The basic idea is to split the entire input

space into operating domains and the model combination method developed in chapter 3 is

applied to build local models for each region. To realize this idea, three steps are required,

which include clustering, local modeling and model combination. Some new approaches

are developed or existing methods are applied to carry out these steps. Adaptive fuzzy

parametric clustering algorithm is put forward to divide the whole input space into

operating regimes, local ICA analysis are carried out and the feature-based model

combination method is applied to create local ICA models in each individual region, and

finally the local ICA models are combined into a mixture model. Correspondingly, a

three-stage optimization procedure is designed to optimize the complete objective function,

which is actually a hybrid GA algorithm. Our simulation results show that the adaptive

fuzzy mixture of local ICA models turns out to be superior to global models.
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