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ABSTRACT

Adult stem cells are potentially useful in many biomedical applications that can save

lives and increase the quality of a patient's life, such as tissue engineering, cell replacement, and

gene therapy. However, these applications are limited because of the difficulty in isolating and

expanding pure populations of adult stem cells (ASCs). A major barrier to ASC expansion in

vitro is their property of asymmetric cell kinetics. Our lab has developed a method, Suppression

of Asymmetric Cell Kinetics (SACK), to expand ASCs in vitro by shifting their cell kinetics

program from asymmetric to symmetric. We have found that guanine nucleotide precursors can

be used to convert the kinetics of adult stem cells from asymmetric to symmetric, which

promotes their exponential expansion. Previously, we have used the SACK method to derive

hepatic and cholangiocyte stem cell strains from adult rat livers in vitro. These cell strains

provide an assay to evaluate whether growth factors and cytokines previously implicated in

proliferation of progenitor cells act by converting the kinetics of the stem cells in the population

from asymmetric to symmetric, and thus identify new SACK agents. We are evaluating three

agents, Wnt, IGF- 1, and Sonic hedgehog (Shh). Wnt has been found to cause self-renewal and

proliferation of hematopoietic stem cells (HSCs) in vitro. IGF- 1 also plays a role in
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hematopoietic progenitor self-renewal in vivo as well as in tissue maturation. Shh has been

implicated in the proliferation of primitive neural cells as well as in cellular proliferation during

invertebrate development. Thus far, we have found that Wnt peptide shifts the cell kinetics from

asymmetric to symmetric and may reduce the generation time, whereas IGF-1 appears only to

affect generation time. Studies involving Shh are currently underway. We are also currently

investigating whether Wnt acts additively or synergistically with guanine nucleotide precursors

to shift cell kinetic symmetry. Discovering new SACK agents will allow us to obtain purer

populations of ASCs that can be used to study properties unique to stem cells. Furthermore, the

observation that Wnt shifts the kinetics of adult rat hepatic stem cells from asymmetric to

symmetric implicates the involvement of similar cell kinetics symmetry mechanisms in the

proliferation effect of Wnt on murine and human HSCs.

Thesis Supervisor: James L. Sherley

Title: Associate Professor of Biological Engineering
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Chapter 1 - Introduction

In the past several decades, stem cell research has come to the forefront of medical

science internationally. Stem cell research has widespread potential for treating disease and

studying a wide range of biological phenomena. One day, stem cell research could yield

generation of tissues and organs thus alleviating the need for organ donors. Currently, the

availability of organ donors is not increasing at a fast enough rate relative to the high increasing

rate of patients in need of organs (Gridelli and Remuzzi, 2000). Using stem cells for organ and

tissue transplants also overcomes the serious problem of transplant rejection. In addition to the

significant impact that stem cells can have on organ transplants, stem cells are also a means of

gene therapy. For example, hematopoietic stem cells are currently used in gene therapy because

they can differentiate into numerous cell types (Wilson 1993, Brenner 1996). Furthermore, it has

been determined that only a few stem cells are needed to give rise to thousands of differentiated

progeny cells (Socolovsky et al. 1998). Despite the advances that have taken place in stem cell

research, the molecular mechanisms of how stem cells function need to be further elucidated

before the maximum potential of stem cells can be reached.

What are Stem Cells?

There are several criteria that a cell has to meet to be labeled as a stem cell: (1) Be

undifferentiated, in other words lack specific markers characteristic of differentiation; (2) Able to

proliferate; (3) Capable of self-renewal; (4) Able to give rise to many differentiated, functional

progeny; (5) Capable of tissue regeneration following injury (Loeffler and Potten 1997). Cells

that meet all of these criteria in a population are the stem cells. However, there are instances
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where a cell may not meet all of the criteria, for example a stem cell can become quiescent and

thus not proliferate. This cell has the potential to be a stem cell once it re-enters the cell cycle

(Loeffler and Potten 1997).

Embryonic vs. Adult Stem Cells

Stem cells can be classified into two different categories, embryonic stem (ES) cells or

adult stem cells (ASCs), based on the embryonic stage of development the cells are derived

from. Embryonic stem cells, as the name suggests, are derived from an embryo. In humans, the

embryonic stem cells are derived from the inner cell mass of the blastocyst, which develops four

to five days following fertilization. These cells have the ability to give rise to any cells from any

of the three germ layers in the developing embryo - mesoderm, endoderm, or ectoderm - thus,

are called pluripotent.

On the other hand, adult stem cells are derived from adult tissues and are multipotent,

meaning that they can only differentiate into a limited number of cell types. For example,

hematopoietic stem cells (HSCs) can give rise to the various types of blood cells. Current studies

have shown that stem cells from one tissue can be transplanted into a different tissue and give

rise to differentiated cells characteristic of the transplanted tissue (Lagasse et al. 2000). For

example, HSCs from mice have been shown to differentiate into muscle cells (Ferrari et al. 1998)

and hepatocytes (Theise et al. 2000). This suggests that in certain environments adult stem cells

can generate cells different than the cells from their original tissue. However, the adult stem cells

could be producing differentiated cells due to fusion with cells in the transplanted tissue or

because they truly are multipotent. Work done looking at how bone marrow-derived hepatocytes
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repopulate the liver has strongly suggested that cell fusion between the transplanted HSCs and

resident liver cells is what gives rise to hepatocytes derived from bone marrow (Wang et al.

2003, Vassilopoulos et al. 2003). Thus, it is believed that HSCs are only able to differentiate into

blood cells.

Each stem cell category, embryonic and adult, provides certain advantages and

disadvantages in research. There has been a lot of excitement regarding the study of human ES

cells. As previously mentioned, these cells are pluripotent and their location within the

developing embryo is known, making their isolation straightforward. Using well-developed

culture techniques, ES cells can grow and divide indefinitely while remaining in their

undifferentiated, pluripotent state (Draper et al. 2004). However, when ES cells are transplanted

directly into adult tissue, they become tumorigenic (Thomson et al. 1998). Furthermore, the

study of ES cells is no longer given federal funding in the United States due to debates on the

ethical and societal risk of experiments with ES cells. Despite recent initiatives in some states to

provide ES funding (Holden 2005), it is unclear how much progress can be made with ES cells

without federal funds (Smaglik 2000).

On the other hand, ASCs do not face the restriction of federal funding. Furthermore, there

are no ethical problems that arise in studying ASCs and their ability to differentiate into multiple

cells types has a large implication in transplantation and gene therapy. However, certain

limitations exist in studying ASCs. ASCs are multipotent, and thus cannot give rise to any cell

type, unlike ES cells, which are pluripotent. Furthermore, isolating pure populations of ASCs

from their resident tissues has been a major challenge. This challenge exists because ASCs are

very rare in the cell population, for example, it is estimated that only 1 in 10,000 cells in the bone

marrow are HSCs (Boggs et al. 1982, Spangrude et al. 1988), and due to the absence of a unique
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stem cell marker (Hedrick and Daniels 2003). While purified populations of stem cells have been

attained, such as with the hematopoietic system (Civin and Small 1995, Wognum et al. 2003),

isolating and maintaining pure populations of stem cells has thus far eluded investigators. In

most organ systems the physical niche of the ASCs are unknown, with the common exception of

crypts in the small intestine (Potten and Morris 1988, Williams et al. 1992) and the hair follicle

(Tumbar et al. 2004). A major barrier to expanding pure populations of stem cells in vitro is their

trait of asymmetric cell kinetics (Sherley 2002), which is discussed in detail below.

Adult Stem Cell Differentiation

There are several theories that account for how stem cell cells differentiate. The first

theory is the stochastic model (Loeffler and Potten, 1997; Metioli et al. 1970). This model states

that the number of stem cells in the population remains stable and that each stem cell can

undergo one of three types of division at random. The stem cell can divide to produce two stem

cells, a stem cell and a differentiated cell, or two differentiated cells.

The second theory is a relatively recent idea that stem cells differentiate due to

"transdifferentiation." Laboratories have reported that when stem cells are transferred to a

different tissue than from where they were isolated, the stem cells fuse with cells residing in the

tissue, giving rise to differentiated cells (Clarke and Frisen, 2001). The idea of

transdifferentiation suggests that the stem cell itself changes when it is transferred to a different

environment. This theory states that the stem cells differentiate after receiving signals in their

local environment. As previously discussed, there is strong evidence that suggests that cell fusion
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is responsible for the differentiation of adult stem cells into cells different than those found in

their resident tissue.

Another theory regarding stem cell differentiation is that the stem cell itself does not

actually differentiate, rather, the stem cell produces progeny cells, known as transit cells, that

eventually differentiate into specialized cells (Loeffler and Potten 1997). Unlike the stem cell

that it was derived from, these transit cells are not long lived in the tissue. The mechanism that

leads to the formation of the transit cells is a process known as asymmetric cell kinetics, where a

stem cell divides into another stem cell and a transit cell (Cairns 1975; Loeffler and Potten, 1997;

Merok and Sherley, 2001).

Adult Stem Cell Kinetics

In vivo under homeostatic conditions, it has been proposed that ASCs divide with what is

known as asymmetric cell kinetics (ACK) (Cairns 1975, Merok and Sherley 2001) (Fig. 1). In

ACK, an ASC will divide giving rise to a daughter stem cell and a transit cell. As mentioned

above, it is the transit cells that eventually divide into differentiated cells. ACK has been shown

to occur in neural stem cells in vitro by using retroviral markers (Morshead et al. 1998, Wodarz

and Huttner 2003). Also, by analyzing daughter and granddaughter pairs of hematopoietic stem

cells (HSCs) in vitro, only one of the daughters have been found to have multiple differentiation

potential, while the other daughter is differentiated (Ho 2005, Takano et al. 2004), suggesting

that ACK is taking place.
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Figure 1. Cell kinetic symmetry states of adult stem cell strain Lig-8. In vitro, ASCs
divide with asymmetric cell kinetics, resulting in the dilution of the ASC in the population by
differentiated cells. Supplementing the medium with SACK agents, such as xanthosine (Xs),
results in the conversion of the kinetics of the ASCs from asymmetric to symmetric, resulting in
exponential growth of the ASCs. When the SACK agents are removed from the medium, the
kinetics of the ASCs revert back to their asymmetric state.

ACK is an important characteristic of ASCs in vivo. By dividing with ACK in vivo, the

ASCs are able to maintain a constant number, while the transit cells produce a large number of

differentiated cells that repopulate the tissue. However, in vitro, ACK leads to the dilution of the

number of ASCs in the population due to the large number of transit and differentiated cells

produced. Thus, a loss of purity of the ASC population results. By converting the kinetics of the

ASCs from asymmetric to symmetric, where two daughter stem cells are produced, the

production of transit cells will be halted resulting in a more pure stem cell population.

Regulation of Adult Stem Cell Kinetics

Role of p53 in asymmetric cell kinetics

Previous work in our laboratory has shown that asymmetric cell kinetics are regulated by

p53 via the guanine ribonucleotide pathway (Sherley 1991, Sherley et al. 1995, Rambhatla et al.
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2001). Our lab has derived immortalized cell lines that exhibit ACK in response to controlled

expression of the wild-type p53 gene (Sherley et al. 1995). Inducing p53 expression in these

immortalized cell lines results in linear growth kinetics as a result of the accumulation of

quiescent cells. The linear kinetics demonstrate that these cell lines are dividing asymmetrically,

with each dividing cell giving rise to one daughter cell that continues to divide and one that is

terminally differentiated (Sherley et al. 1995).

Our lab has found that p53 inhibits inosine-5'-monophosphate dehydrogenase (IMPDH),

the rate limiting enzyme in guanine ribonucleotide synthesis (Liu et al. 1998). This inhibition by

p53 causes a decrease in the guanine ribonucleotide pool resulting in asymmetric cell kinetics

(Fig. 2). IMPD gene transfer into model cell lines that are p53-inducible prevents p53-dependent

growth suppression (Liu et al. 1998).

_
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Figure 2. Guanine ribonucleotide biosynthesis pathway responsible for asymmetric and
symmetric cell kinetics. The well-known tumor suppressor gene, p53, has been found to play a
role in asymmetric kinetics of stem cells via the guanine ribonucleotide pathway. p53 acts by
down-regulating expression of inosine monophosphate dehydrogenase, IMPDH, the rate-limiting
enzyme for guanine nucleotide biosynthesis, resulting in a decrease in the guanine ribonucleotide
(rGNP) pool. Supplementation with guanine nucleotide precursors, such as xanthine (Xn),
xanthosine (Xs), and hypoxanthine (Hx), bypasses or over-rides, respectively, the regulation by
p53, thus increasing the guanine ribonucleotide pools and shifting the kinetics of the ASCs from
asymmetric to symmetric.
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Using the SACK (Suppression of Asymmetric Cell Kinetics) method to derive model

stem cell lines

Previously, our lab has developed a way to reversibly convert the kinetics of ASCs from

asymmetric to symmetric, resulting in exponential expansion of the ASCs (Sherley et al. 1995,

Liu et al. 1998). This method, the Suppression of Asymmetric Cell Kinetics (SACK), involves

manipulation of the guanine nucleotide pathway to shift the kinetics of the cells from asymmetric

to symmetric (Fig. 2). We have shown that compounds that circumvent IMPDH downregulation

by p53, such as the guanine nucleotide precursor xanthosine (Xs), suppresses the p53 dependent

ACK in a reversible manner (Lee et al. 2003).

We have used the SACK method to clonally expand hepatic (Lig-8) and cholangiocyte

(Lig- 13) cell strains from an adult rat liver (Lee et al. 2003). These strains were derived in the

presence of the SACK agent Xs, and were found to be Xs-dependent for their growth. This

dependence on Xs shows that the cell clones did not arise due to a growth-activating mutation,

but rather that the cellular kinetics revert back to ACK when Xs is removed (Lee et al. 2003).

Even though these SACK-derived strains exhibit exponential growth and a shift from

asymmetric to symmetric cell kinetics, the cell culture is still heterogeneous due to a lack of

complete SACK. Some transit cells are still produced, which divide and give rise to terminally

differentiated cells (Lee et al. 2003).
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Potential Role of Wnt, Shh, and IGF-1 in Regulation of ASC Kinetics

In addition to the p53 pathway, other pathways could also be involved in the regulation of

ASC kinetics. Furthermore, other cellular factors could be part of the p53 pathway and addition

of these factors could result in a change in the level of guanine nucleotides, thus changing the

cellular kinetics. Several growth factors and cytokines previously implicated in the proliferation

and expansion of progenitor cells could be acting to expand the population of cells by shifting

the ASC kinetics from asymmetric to symmetric. If these agents do indeed have an effect on cell

kinetics, they could be part of the p53 pathway or behave through a different pathway that plays

a role in regulating cell kinetics.

Wnt has been reported to play a role in the self-renewal and proliferation of progenitor

cells both in vivo and in vitro (Wang and Wynshaw-Boris 2004). In vivo studies have shown Wnt

signaling is required for expansion of the progenitor cell population and the regulation of the

levels of progenitors in the central nervous system of mice (Zechner et al. 2003). Furthermore,

Wnt signaling has been implicated to have a critical role in proliferation and maintenance of

intestinal stem cells in mice (Pinto et al. 2003, van de Wetering et al. 2002). In vitro, Wnt

signaling has been shown to have a role in the proliferation and self-renewal of HSCs (Reya et

al. 2003, Willert et al. 2003). Specifically, purified Wnt3a, the active peptide of fragment of the

full-length Wnt protein, was shown to promote the proliferation and maintenance of HSCs

(Willert et al. 2003). Our hypothesis is that Wnt acts to expand the progenitor pool by converting

the kinetics of the cells from asymmetric to symmetric.
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Sonic hedgehog (Shh), a secreted protein that was first described for its role in cell-fate

determination and body-segment polarity, has also been implicated in expansion of human

epithelial cells and in the proliferation of neural stem cells in the vertebrate nervous system (Fan

and Khavari 1999, Wechsler-Reya and Scott 1999, Ho and Scott 2002). IGF-1, the downstream

signaling molecule of Growth Hormone (GH), is known to play a role in cellular growth and

proliferation throughout embryogenesis and development. For example, IGF- 1 has been

implicated in muscle stem cell proliferation and expansion (Deasy et al. 2002), as well as in the

proliferation of hematopoietic progenitor cells (Tian et al. 1998, Kelley et al. 1996). Perhaps both

Shh and IGF- 1 function to expand progenitor cells by shifting cellular kinetics from asymmetric

to symmetric.

Purpose

Our goal is to determine whether growth factors and cytokines previously implicated in

proliferation of progenitor cells, specifically Shh, IGF- 1, and Wnt3a, shift the cell kinetics from

asymmetric to symmetric. We will use one of the cell strains derived by the SACK method, Lig-

8, as a model to test this hypothesis. Adding these agents to Lig-8 cell media will allow us to

determine what effect the compounds have on shifting the cell kinetics and on cellular

proliferation. Agents that are able to change the cell kinetics from asymmetric to symmetric

would be classified as new SACK compounds. Having more SACK compounds would result in

more efficient exponential expansion of ASCs, and thus in the production of purer stem cell

populations. These populations will allow researchers to study properties that are unique to stem

cells. The SACK compounds could also explain how populations of progenitor cells are
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expanded in vivo. If Shh, IGF- 1, or Wnt3a are found to shift the kinetics of Lig-8 cells from

asymmetric to symmetric, we would hypothesize that they act to expand progenitor cells by

shifting their cell kinetics program.
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Chapter 2 - Methods

Cell Culture

The derivation of the hepatic ASC cell strain Lig-8 has been described in detail

previously (Lee et al. 2003). Lig-8 cells were maintained in DMEM (high glucose, 4500 mg/L)

supplemented with 10% dialyzed fetal bovine serum (DFBS; JRH Biosciences) and 400 jiM

xanthosine (Xs) (Sigma Chemical Co., St. Louis, MO). The cells were maintained in 37°C

humidified incubators with 5% CO 2.

Growth Curve Assay

Lig-8 cells were grown to 1/4 confluency in DMEM + 10% DFBS + 400 jiM Xs, then

had their medium replenished to allow for logarithmic growth. 24 hours later when the flask was

approximately 1/2 confluent, the cells were trypsinized and seeded into 25 cm2 flasks. The

following day, the media was changed to contain varying concentrations of either Xs or

recombinant mouse sonic hedgehog (Shh) (R&D Systems, Minneapolis, MN). The cells were

then cultured for another 48 hours. At the end of the 48-hour period, adherent cells were

removed with trypsin, combined with Coulter counting solution to a total volume of 20.5 ml, and

counted using an electronic cell counter (Coulter Electronics, model Z1).
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Microcolony Progression Analyses

Lig-8 cells growing in logarithmic phase in standard culture medium (DMEM + 10%

DFBS + 400 gtM Xs) were plated at the density of 3560 cells / 8.6 cm2 in 4 ml of medium. After

2 hours for cell attachment, the culture medium was replaced in all slides with control (Xs-free)

medium or medium supplemented with Xs, Shh, recombinant mouse IGF- (R&D Systems,

Minneapolis, MN), or recombinant mouse Wnt3a (R&D Systems). Medium-replenished cells

were cultured for 20 hours, equivalent to the Lig-8 generation time. At the end of the 20-hour

period, 5-Bromo-2'-deoxyuridine (BrdU) (Sigma Chemical Co.) was added to 5 gM by adding

10 p1l of a stock of 1 mM BrdU made up in PBS directly to the slides, and cells were cultured for

either an additional 4 or 24 hours.

Following the BrdU incubation period, cells were fixed in 70% ethanol on ice for 30

minutes and stored at -200 C in a dark, foiled box for no more than one week. Thereafter,

immunofluorescence detection procedures were performed at room temperature. Slides were

washed for one minute in coplin jars with phosphate buffered saline, pH 7.4 (PBS), followed by

denaturation with 2M HCl at room temperature for 10 minutes. Fixed, DNA-denatured cells

were blocked with PBS containing 0.5% bovine serum albumin and 0.05% Tween-20 (=

blocking solution) for 10 minutes. To detect incorporated BrdU, blocked cells were incubated for

2 hours at room temperature with mouse anti-BrdU monoclonal antibody (MAB 3424; Chemicon

International, Temecula, CA) diluted 1:100 in blocking solution. Slides were then washed three

times for five minutes each time in blocking solution. The wash was followed by a 45 minute

incubation with FITC-conjugated rabbit anti-mouse IgG antibody (F0232; Dako, Carpinteria,
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CA) diluted 1:200 in blocking solution. Slides were then washed three times for five minutes

each time in blocking solution, then three times for three minutes each time in PBS. Thereafter,

slides were stained for 10 minutes with 5 gg/ml propidium iodide (PI) in PBS to detect nuclei.

Slides were stored in a dark, foiled box in -200C overnight before image analysis.

A laser scanning cytometer (LSC; CompuCyte Model 090-0017-001, Cambridge, MA)

equipped with a 480 nm Argon-Ion Laser (Cyonics Uniphase 2014A-20SL, San Jose, CA) and

WinCyte software (Cambridge, MA) was used to detect cells with FITC (incorporated BrdU) and

PI (nuclear DNA) fluorescence. Fluorescent images were captured using a Zeiss microscope, a

Zeiss AxioCam CCD camera, and Openlab software (Improvision; Lexington, MA). Quantitative

analyses for cells labeled with BrdU for 4-hours were performed for microcolonies containing at

least one BrdU-labeled cell.
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Chapter 3 - Results and Discussion

Optimization of SACK in Population Growth Kinetics Studies

The adult rat hepatocyte stem cell strain Lig-8 provided an approach for improving the

SACK method. These cells could be used to develop assays for determining the optimal

concentration of known SACK agents (e.g., Xs) and to identify other classes of compounds or

cellular factors with SACK activity. As a first assay, we evaluated population cell kinetics of

Lig-8 cells. Shifts from asymmetric cell kinetics to symmetric cell kinetics can be detected and

quantified by determining the growth rate of cultured cell populations. If there is a shift from

ACK to SCK, a reduction in population doubling time is observed. Population cell kinetics

assays were performed to determine the optimum concentration of Xs for SACK and to evaluate

the SACK activity of the cellular cytokine sonic hedgehog (Shh).

Xs, a SACK agent, was used to derive a hepatic, Lig-8, stem cell strain from an adult rat

liver. This strain retained the ability to divide asymmetrically when Xs was removed (Lee et al.

2003). The concentrations of 200 ktM and 400 tM Xs used to derive the strain were chosen in an

arbitrary manner and were not optimized to obtain the greatest shift of cell kinetics from

asymmetric to symmetric. To determine the concentration of Xs that resulted in the greatest cell

number, we performed a population growth kinetics study. We found that 1 mM Xs maximizes

the exponential growth of Lig-8 cells (Fig. 3A). The change in cell number in the presence of 1

mM Xs cannot be explained by a decrease in generation time, because Xs has been shown to

have no effect on changing the cell cycle time of Lig-8 cells (unpublished data). Thus, we
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conclude that 1 mM Xs acts to maximize the shift from asymmetric to symmetric kinetics.

Increasing the Xs concentration did not appear to change the cell number relative to the 400 gM

that was used to derive the Lig-8 cells (Fig. 3A). At the end of the growth period, almost all of

the cells were adherent, thus very few cells were not counted in the analysis due to the

procedure.
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Figure 3. Cell kinetics analyses of Xs and Shh with adult stem cell strain Lig-8. Cell
cultures were established as described in the Methods section. Twenty-four hours after the cells
were plated, the medium was changed to contain the indicated concentration of Xs (A) or Shh
(B), and the cultures were allowed to grow for another 24 hours. Experiments were performed in
triplicate, and the mean cell numbers at each tested concentration are shown. Error bars represent
the standard deviation of triplicate data.

Using the same assay, we examined the effect of Shh on the growth of Lig-8 cells (Fig.

3B). We looked at two different concentrations of Shh, 0.5 gg/ml and 1.0 gg/ml. It appears that

both concentrations act to increase the number of Lig-8 cells. This result suggests that Shh shifts

the kinetics of the cells from asymmetric to symmetric or decreases the generation time of the

cells. Both scenarios would explain the increase in cellular proliferation observed in the presence

of Shh. Assays that are more specific in detecting changes in cell kinetics need to be performed

to determine what is causing an increase in cellular proliferation.
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Microcolony Progression Analyses

Performing microcolony progression analyses provide data not found by growth kinetic

studies about both the proliferation and kinetics symmetry of Lig-8 cells in the presence of three

growth factors, Wnt3a, IGF-1, and Shh, in addition to 1 mM Xs. Three different forms of the

assay were used to study the behavior of the cells. First, a microcolony cell kinetics assay was

used to infer asymmetric cell kinetics by examining the ratio of 3-cell to 4-cell microcolonies.

Second, a microcolony labeling kinetics assay was performed where labeling statistics were used

to determine whether asymmetric or symmetric cell kinetics are taking place. Third, a sister-pair

labeling kinetics analyses was used as direct evidence for asymmetric cell kinetics taking place.

All three forms of the assay allow us to detect both the cycling (BrdU-positive) and non-cycling

(BrdU-negative) cells in the population, as well the size of the colonies present for each

condition. Using the Laser Scanning Cytometer (LSC) we could detect the cells labeled with

BrdU and perform quantitative analyses with the colonies containing at least one labeled cell.

Examples of captured images by the LSC and epifluorescence microscopy are shown in Fig. 4.
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Figure 4. Images of BrdU-labeled microcolonies captured by laser scanning cytometry
(LSC) and fluorescence microscopy. (A-B) 4-hour BrdU-labeling in a microcolony progression
analysis detects BrdU-positive cycling S-phase cells. (A) Images captured by LSC, (B)
Epifluorescence images. FITC: anti-BrdU immunofluorescence. PI: propidium iodide
fluorescence to detect nuclear DNA. Symmetric refers to images indicative of cells dividing with
symmetric cell kinetics, whereas asymmetric refers to images indicative of asymmetric cell
kinetics. (C) Demonstration that after a 24-hour BrdU-labeling period stable non-cycling cells
(unlabeled) are present in microcolonies (LSC images).

In order to determine what the unlabeled cells represent in the 4-hour BrdU-labeling

study, a microcolony labeling kinetics assay was performed. In this assay, BrdU was added for

24 hours, more than a full generation period of Lig-8 cells. By determining the labeling statistics

of Lig-8 colonies, conclusions can be drawn regarding whether cells that are unlabeled after a 4-

hour BrdU labeling period remain unlabeled after a 24-hour BrdU labeling period. Under the

conditions for these experiments, unlabeled cells correspond to the non-cycling sisters of

asymmetric cell divisions. Thus, we can determine if there is asymmetric cell kinetics in the

culture. We found that some of the non-cycling cells, detected as BrdU-negative after the 4-hour

BrdU-labeling period, are stably arrested as can be seen in Fig. 4C. Furthermore, the percentage

of non-dividing cells in colonies with at least one labeled cell was about 9% more for the control,
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no-Xs condition than when cells were grown in the presence of Xs (1 mM). There were about

17% more 3 or 4-cell colonies in the control, no-Xs condition that had at least one unlabeled cell

than in the presence of Xs, suggesting that more asymmetric divisions are taking place in Xs-free

culture. The change in percentage of unlabeled cells is not as striking when looking at colonies

of all sizes with at least one unlabeled cell because once colonies are greater than five cells, they

would have had to arise due to symmetric divisions and thus all of the cells would be labeled

(Table 1).

No Xs I mM1M Xs

No label (Differentiatedi 9.9(CV O

At least one cell

unlabeled (All colonies I 7c s;- 29 .:

:\ least one cell
unhlatled (3 and 4 cell 47 0U';

colon ies I

' BrdrU Positive of Total 32.; 91 .7-i

Table 1. 24-hour BrdU-labeling kinetics analysis demonstrates that non-labeling cells
produced in Lig-8 cell culture are stably arrested cells. Two hours after Lig-8 cells were plated
into slides, as detailed in Methods, the medium was changed to contain the indicated supplement,
and culture continued for 20 hours. Cells were then labeled with BrdU for 24 hours. BrdU-
labeling data were collected for microcolonies with greater than two cells. Cells that remain
BrdU-negative during a 24-hour labeling period (equivalent to one cell generation time) are
stably arrested in a non-S phase of the cell cycle.

Microcolony cell kinetics implicate Wnt3a and Shh as effectors of cell kinetics symmetry

To determine whether supplementation with growth factors or 1 mM Xs affected cellular

proliferation, microcolonies with greater than two cells that had at least one BrdU-positive cell
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were scored for their total of BrdU-positive cell percentage. This percentage reflects the S-phase

fraction, and is an indicator of the cycling cell fraction. As a group, Xs, IGF- 1, Wnt3a, Shh, and

Xs+Wnt3a, show a significant increase in cellular proliferation by this measure (Fig. 5). To

examine whether the increase in the cycling cell fraction was due to a decrease in generation

time or a shift in cell kinetics from asymmetric to symmetric, we performed a microcolony cell

kinetics analysis.

80
70
60

X 50
c 40

30
L 20

10

70 FI=A I-

Xs +
Wnt3a

Condition

Figure 5. Xs and the growth factors confer increased proliferation by Lig-8 cells. Two
hours after cells were plated into slides, as detailed in Methods, the medium was changed to
medium supplemented with the indicated factors, and the cells were cultured for an additional 20
hours. BrdU was then added, and slides were cultured for 4 hours. Colonies with greater than
two cells and at least one BrdU-labeled cell were scored for their percentage of BrdU-positive
cells. The size of scored microcolonies range from 2 cells to 10 cells. Effects of supplementation
with Xs (1 mM), IGF-1 (1 gg/ml), Wnt3a (25 ng/ml), Shh (0.5 gg/ml), and the combination of
Xs (1 mM) and Wnt3a (25 ng/ml) on the percentage of BrdU-positive cells were compared to the
control Xs-free condition. The p value indicates the significance of the increase in cellular
proliferation of the growth factors and Xs as a group compared to the Xs-free control.
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In the microcolony cell kinetics analysis, we compared the frequencies of 3 and 4-cell

microcolonies to that of 2-cell microcolonies for each of the different conditions relative to the

Xs-free control (Fig. 6).

u 1.2
A
o 1

> ' 0.8

b. O0

u),u 0.4
W n0.2

1 n

IL Control Xs

*2-cell microcolonies
" 3-cell microcolonies
24-cell microcolonies

Condition

Figure 6. Growth factors significantly change the relative frequencies of 2-cell, 3-cell,
and 4-cell microcolonies of Lig-8 cells in microcolony cell kinetics analyses. Two hours after
cells were plated into slides, as detailed in Methods, the medium was changed to contain the
indicated compounds, and cells were cultured for an additional 20 hours. Cells were then
incubated with BrdU for 4 hours. The graph depicts the relative frequencies of 2-cell, 3-cell and
4-cell microcolonies produced for the compared medium supplementations. For each respective
medium supplementation, tallied microcolony numbers were normalized to the 2-cell
microcolony number. The different supplementations were Xs (1 mM), IGF-1 (1 gg/ml), Wnt3a
(25 ng/ml), Shh (0.5 gg/ml), and the combination of Xs (1 mM) and Wnt3a (25 ng/ml). p values
are reported for cases of statistically significant (p < 0.05) changes in the pattern of microcolony
frequencies compared to the control pattern based on Fisher's exact test.
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Quantification of cell kinetics symmetry effects of Xs, Wnt3a, and Shh by microcolony

labeling kinetics analyses

We used microcolony labeling kinetics analyses to examine the labeling patterns of 3 and

4-cell microcolonies to give us a better understanding as to how each agent is affecting the

proliferation and kinetics of Lig-8 cells. In this assay, the cells were labeled with BrdU for 4-

hours and the labeling statistics of 3 and 4-cell microcolonies were evaluated. Analysis of BrdU-

labeling in these microcolonies can provide information as to whether the microcolonies arose by

ACK or SCK, and whether the growth factors had an effect on the cell kinetics symmetry.

First, we looked at 3-cell microcolonies, which can be made by either ACK or SCK (Fig.

7). The most likely way to obtain a 3-cell microcolony with only one BrdU-positive cell is by

ACK. In ACK microcolonies, only one cell is cycling. When this cell is in S-phase during the 4-

hour BrdU-labeling period, after two previous divisions, a single labeled cell with two unlabeled

cells results (Fig. 7A). For SCK microcolonies, the 3-cell stage is infrequent because of the

synchronous cell cycle transit of sister cells. In order to detect a 3-cell SCK microcolony with

one cell labeled, the cell cycle composition must be two cells in Gi phase and one cell in late

S/G2/M (Fig. 7A). This cell cycle composition will be highly transient. Thus, 3-cell SCK

microcolonies with one BrdU-positive cell are predicted to be infrequent.
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Figure 7. BrdU-labeling kinetics modeling for 3-cell microcolonies generated by
asymmetric cell kinetics (ACK) and symmetric cell kinetics (SCK) after 4 hours of BrdU-
labeling. Three-cell microcolonies obtained in the microcolony progression analyses can be
generated by either ACK or SCK. Models are shown for how 3-cell microcolonies with (A) 1
BrdU-labeled cell, (B) 2 BrdU-labeled cells, and (C) 3 BrdU-labeled cells can be produced by
ACK or SCK. At the time of inspection, BrdU-labeled cells are either in S phase or have arisen
from a cell that was in late S-phase during the BrdU-labeling period. The latter case yields two
BrdUJ-labeled daughter cells in G1. For each model, the types of cells in the microcolony and the
place of each cell in the cell cycle, before and after the 4-hour BrdU-labeling period, are
depicted. Circles, cycling adult stem cells; squares, cell cycle-arrested differentiating progeny
cells; filled symbols, BrdU-positive.

Three-cell microcolonies with two BrdU-positive cells are also predicted to occur more

frequently as a result of ACK. For ACK, this occurs when, after a first division, a cycling cell is

in late S-phase when BrdU was added. Its second division before analysis will yield two labeled

cells and one unlabeled cell (Fig. 7B). This event will be significantly less frequent than

detecting a single cycling cell in 3-cell ACK microcolonies. For SCK, during a 4-hour labeling
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period, it is unlikely that one newly divided sister will label in late S-phase and divide, before its

sister, to produce two labeled cells and one unlabeled cell (Fig. 7B). Similarly, it is unlikely that

the two progeny of one divided sister will both be in S-phase before the other undivided sister.

For all of the cells in the 3-cell colony to be BrdU-positive, SCK must be responsible,

because all of the cells retain the ability to cycle (Fig. 7C). In contrast, in the case of ACK at

least two of the cells produced are non-cycling differentiating cells. Thus, 3-cell colonies with

one or two cells labeled indicate primarily ACK, but are not exclusive of SCK; and 3-cell

microcolonies with 3 BrdU-positive cells are a specific indicator of SCK.

Analysis of labeled 3-cell microcolonies for the number of BrdU-labeled cells showed

that all supplements, except Xs+Wnt3a, showed a significant increase in the fraction of 3-cell

microcolonies with three labeled cells compared to the fraction with one or two labeled cells

(Fig. 8). Supplementations were 1 mM Xs, 1 gg/ml IGF-1, 25 ng/ml Wnt3a, 0.5 jig/ml Shh, and

1 mM Xs + 25 ng/ml Wnt3a. The largest increase was observed in the presence of Wnt3a and

Shh. This shift in representation is consistent with a shift from ACK to SCK. However, it might

also be due in part to a decrease in the cell cycle time of SCK or ACK microcolonies.

Interestingly, Xs appeared to antagonize the effect of Wnt3a.
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Figure 8. BrdU-labeling kinetics of 3-cell microcolonies indicate factor-induced shifts by
Lig-8 adult stem cells from asymmetric cell kinetics to symmetric cell kinetics. Two hours after
cells were plated into culture slides, the medium was changed to contain the indicated
supplement, and culture was continued for 20 hours. Cells were then labeled with BrdU for 4
hours. BrdU-labeled 3-cell microcolonies were evaluated for the number of labeled cells. Three-
cell microcolonies with 1 or 2 BrdU-labeled cells, indicating ACK, were compared to 3-cell
microcolonies with 3-cells labeled, which represents SCK (explained in Figure 7 and text). The
different supplementations were Xs (1 mM), IGF-1 (1 gg/ml), Wnt3a (25 ng/ml), Shh (0.5
gg/ml), and the combination of Xs (1 mM) and Wnt3a (25 ng/ml). The average number of
microcolonies examined for each supplementation conditions was 33 (range from 25 to 53).

Similar analysis was peformed with 4-cell microcolonies, which can also alrise by ACK

or SCK (Fig. 9). 4-cell microcolonies with only one BrdU-positive cell are most likely to be due

to ACK. Such ACK microcolonies are composed of the products of 3 asymmetric divisions, 3

non-cycling cells and one cycling stem cell in S phase during the labeling period (Fig. 9A). It is

also possible for such 4-cell microcolonies with a single labeled cell to be produced by SCK.

However, this requires that only one of the four cycling products of two successive symmetric
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cell divisions be in S phase during the 4 hour labeling period (Fig. 9A). This degree of

symmetric sister asynchrony is unlikely. Thus, 4-cell microcolonies with only one labeled cell

are highly indicative of ACK.
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Figure 9. BrdU-labeling kinetics modeling for 4-cell microcolonies generated by
asymmetric cell kinetics (A CK) and symmetric cell kinetics (SCK) after 4 hours of BrdU-
labeling. Four-cell microcolonies obtained in the microcolony progression analyses can be
generated by either ACK or SCK. Models are shown for how 4-cell microcolonies with (A) 1
BrdU-labeled cell, (B) 2 BrdU-labeled cells, (C) 3 BrdU-labeled cells, and (D) 4 BrdU-labeled
cells. At the time of inspection, BrdU-labeled cells are either in S phase or have arisen from a
cell that was in late S-phase during the BrdU-labeling period. The latter case yields two BrdU-
labeled daughter cells in G 1. For each model, the types of cells in the microcolony and the place
of each cell in the cell cycle, before and after the 4-hour BrdU-labeling period, are depicted.
Circles, cycling adult stem cells; squares, cell cycle-arrested differentiating progeny cells; filled
symbols, BrdU-positive.

4-cell microcolonies with two BrdU-positive cells can be explained by either ACK or

SCK. For ACK, this occurs when, after a second division, a cycling cell is in late S phase when

BrdU was added. This cycling cell will divide before analysis and will yield two labeled cells,

one that will continue to cycle and one that arrests, resulting in a 4-cell microcolony with two

labeled and two unlabeled cells (Fig. 9B). For SCK, obtaining a 4-cell microcolony with two

BrdU-positive cells occurs when, after a second division, one of the two sister pairs has reached

S phase while the other pair is still in G1 (Fig. 9B). With a 4-hour labeling period this occurrence

is minimized, but not completely avoided. Thus, this 4-cell microcolonies with only 2 cells

labeled are not informative for distinguishing cell kinetics symmetry.

4-cell microcolonies with either three or four BrdU-positive cells can only arise by SCK.

To observe three BrdU-positive cells in a 4-cell SCK microcolony, following two successive

symmetric divisions, three out of the four cells must enter S phase, while the fourth cell is still in

G-1 (Fig. 9C). This event is predicted to be infrequent because of the synchronous cell cycle

transit of symmetric sister cells, but it will occur occasionally. Four BrdU-positive cells will arise

frequently when all four sisters of two successive symmetric cell divisions are simultaneously in

S phase or when two sisters in late S phase both divide during the labeling period (Fig. 9D). In

contrast, in all scenarios for ACK, at least two of the cells in the 4-cell microcolony must have
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been stably arrested during the labeling period. Therefore, three labeled cells or four labeled cells

are not possible for 4-cell ACK microcolonies. Thus, 4-cell microcolonies with three or four

BrdU-positive cells are specific indicators of SCK.

Labeled 4-cell microcolonies for each of the indicated conditions were evaluated for the

number of BrdU-positive cells. The average number of microcolonies examined for each

condition was 43. Supplementations were the same as for 3-cell microcolonies. With the

exception of IGF- 1, all supplements showed a significant increase in the fraction of 4-cell

microcolonies with three or four cells labeled, and a corresponding decrease in the fraction with

a single labeled cell (Fig. 10). This shift is consistent with a shift from ACK to SCK. Although

IGF- 1 caused a decrease in the fraction of 4-cell microcolonies with a single labeled cell, it did

not significantly increase the fraction with three or four labeled cells. This difference is

consistent with IGF- 1 having a primary effect of decreasing generation time. It is noteworthy

that Xs and Wnt3a together showed evidence of synergy in this assay.
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0.7

Figure 10. BrdU-labeling kinetics of 4-cell microcolonies indicate factor-induced shifts
by Lig-8 adult stem cells from asymmetric cell kinetics to symmetric cell kinetics. Two hours
after cells were plated into culture slides, the medium was changed to contain the indicated
supplement, and culture was continued for 20 hours. Cells were then labeled with BrdU for 4
hours. BrdU-labeled 4-cell microcolonies were evaluated for the number of labeled cells. Four-
cell microcolonies with 1 labeled cell, indicating ACK, were compared to 4-cell microcolonies
with 3 or 4 labeled cells, indicating SCK (explained in Figure 9 and text). The different
supplementations were Xs (1 mM), IGF-1 (1 gg/ml), Wnt3a (25 ng/ml), Shh (0.5 gg/ml), and the
combination of Xs (1 mM) and Wnt3a (25 ng/ml). Four-cell microcolonies with 2 BrdU-labeled
cells are not shown, because 2 labeled cells could be obtained by either SCK or ACK and thus do
not provide a basis for kinetics symmetry discrimination. The average number of microcolonies
evaluated was 43 (range 23 to 63) for each supplementation condition.

Direct evidence that Wnt3a is a potent SACK agent

The most specific measure for looking at ACK versus SCK is a sister-pair labeling

kinetics assay. This assay provides direct evidence of asymmetric cell kinetics taking place in the

culture. We found the number of double-positive sister-pairs, which represent primarily SACK,
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as well as the number of single-positive sister-pairs, which indicate primarily ACK for each

condition following a 4-hour BrdU labeling period. We then determined the ratio of double-

positive to single-positive sister pairs for each condition (Fig. 11). An increase in the ratio of

double-positive to single-positive sister pairs is indicative of a shift of cells from ACK to SCK,

i.e., suppression of asymmetric cell kinetics (SACK). We find that Wnt3a or Xs+Wnt3a induced

significant SACK. Under the conditions of this experiment, Xs+Wnt3a appear to act additively.

This result contrasts the apparent antagonistic effect of Xs on Wnt3a in 3-cell microcolony

labeling kinetics analyses (see Fig.8) and synergistic effect in 4-cell microcolony labeling

kinetics analyses (see Fig. 10). In this sister-pair labeling kinetics analysis, Xs and Shh exhibit

mild SACK effects. However, consistent with a primary effect on generation time, IGF- 1 showed

the smallest effect on the double-positive to single-positive sister pair ratio. Therefore, the effect

of IGF- 1 to increase the labeled 3-cell and 4-cell microcolonies (see Fig. 8 and Fig. 10) may be

due to its induction of more rapidly cycling ACK and/or SCK microcolonies.
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Figure 11. Wnt3a shows significant shifts from asymmetric cell kinetics to symmetric cell
kinetics in sister-pair BrdU-labeling kinetics analyses. Two hours after Lig-8 cells were plated
into slides, as detailed in Methods, the medium was changed to contain the indicated supplement,
and culture continued for 20 hours. Cells were then labeled with BrdU for 4 hours. The different
supplementations were Xs (1 mM), IGF-1 (1 gg/ml), Wnt3a (25 ng/ml), Shh (0.5 gg/ml), and the
combination of Xs (1 mM) and Wnt3a (25 ng/ml). Shown is the ratio of double-positive (both
sister cells BrdU-labeled) to single-positive (only one sister cell BrdU-labeled) sister pairs for
each supplementation condition. Sister-pairs that are both BrdU-labeled result from symmetric
cell kinetics, whereas sister-pairs with only one BrdU-labeled sister cell signify asymmetric cell
kinetics. p values are reported for cases in which the double-positive to single-positive ratio was
increased significantly (p < 0.05) compare to control ratio by Fischer's exact test.

Conclusions

We use microcolony progression analyses to determine whether growth factors and

cytokines previously implicated in proliferation of progenitor cells behave by converting cell

kinetics from asymmetric to symmetric. Using this analysis, we conclude that 1 mM Xs, Wnt3a,

Shh, and IGF- 1 increase the cellular proliferation of Lig-8 adult rat hepatic stem cells. It appears

that Wnt3a increases proliferation primarily by shifting cell kinetics from asymmetric to

symmetric, thus implicating Wnt3a as a new SACK agent. The combination of Xs and Wnt3a

suggests interactive effects on the kinetics symmetry of 3-cell and 4-cell microcolonies, based on

microcolony cell kinetics and labeling kinetics analyses, but not on 2-cell microcolonies, based

on the sister-pair labeling kinetics analyses. The significance of this observation is currently

under investigation. IGF- 1 does not appear to affect cell kinetics symmetry. The data is more

consistent with increasing generation time. Both 1 mM Xs and Shh have a moderate effect on

shifting the cell kinetics symmetry from asymmetric to symmetric. Previous experiments with

earlier passage Lig-8 cultures showed a significant shift in cell kinetics symmetry induced by Xs

(Lee et al., 2003). The lack of complete concordance between conclusions with microcolony cell

kinetics analyses and microcolony labeling kinetics analyses may arise from ambiguities
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regarding the kinetics symmetry designations of larger microcolonies and/or intercellular effects

in microcolonies.

We hypothesize that an interaction, either direct or indirect, may occur between Wnt and

p53 to result in either ACK or SCK. Sadot et al. have found that activated p53 results in the

down-regulation of -catenin, the downstream signaling molecule of Wnt. They also suggest that

an autoregulatory loop exists, where an excess of -catenin induces p53 activation, which in turn

results in the down-regulation of [5-catenin levels. 5-catenin in the Lig-8 cell strain may be

unresponsive to p53 inhibition and thus if an up-regulation of [-catenin results in SCK, a shift in

cell kinetics symmetry may occur. p53 expression results in ACK by decreasing the pool of

guanine nucleotide precursors (GNPs) by inhibiting the rate limiting enzyme in this pathway,

IMPDH. Thus, if Wnt acts directly to increase IMPDH activity or increase GNPs by a different

mechanism, the cell kinetics would shift from asymmetric to symmetric. Further studies will

have to be done to elucidate what the relationship is, if any, between p53 and Wnt.
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Chapter 4 - Future Implications

Finding new SACK agents, such as Wnt3a, will allow us to obtain purer ASC populations

to be used in studying properties unique to ASCs. The microcolony progression assay that was

developed can be used to determine whether asymmetric cell kinetics is taking place in different

populations of adult stem cells, such as adult liver cells and pancreatic cells. Using this assay we

can determine what effect Wnt3a, or other agents, have on the kinetics of various cell types, and

find new SACK agents.

Wnt signaling has been implicated in the self-renewal and proliferation of numerous

types of adult stem cells (Reya and Clevers 2005). For example, Wnt3a has been found to

promote self-renewal of murine and human HSCs in vitro (Reya et al. 2003). Wnt signaling has

also been found to result in the increased cycling and expansion of neural progenitor cells

(Chenn and Walsh 2002).

Inappropriate regulation of Wnt signaling has been found in many cancerous tissues.

Mutations in this pathway in stem cells and progenitor cells is believed to result in constituitive

renewal and expansion of the stem cell and progenitor pool, resulting in cancerous growth. For

example, in the colon, inactivation of the APC gene results in the inappropriate stabilization of

[--catenin, resulting in cancerous growth (Rubinfeld et al. 1996). This suggests that constituitive

activation of the Wnt pathway results in uncontrollable growth and proliferation of mutated cells.

Furthermore, oncogenic growth in leukemias have been found to contain activated Wnt signaling

(Jamieson et al. 2004).

We suggest that the observation that Wnt3a shifts the kinetics of the adult rat hepatic

stem cell strain Lig-8 supports the hypothesis that Wnt functions to expand HSCs and other stem

cell populations by similar cell kinetics symmetry mechanisms. We also suggest that
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overexpression of Wnt signaling results in symmetric cell kinetics leading to the unregulated

exponential expansion that is observed in cancerous tissues. Furthermore, we hypothesize that an

inhibition of Wnt signaling exists in some stem cell populations, such as bulge stem cells in the

hair follicle, because these stem cells undergo self-maintenance via asymmetric cell kinetics.
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