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Abstract

The marriage of dance and interactive image has been a persistent dream over the past decades, but reality has fallen far

short of potential for both technical and conceptual reasons. This thesis proposes a new approach to the problem and

lays out the theoretical, technical and aesthetic framework for the innovative art form of digitally augmented human

movement. I will use as example works a series of installations, digital projections and compositions each of which

contains a choreographic component - either through collaboration with a choreographer directly or by the creation

of artworks that automatically organize and understand purely virtual movement. These works lead up to two unprece-

dented collaborations with two of the greatest choreographers working today; new pieces that combine dance and in-

teractive projected light using real-time motion capture live on stage.

The existing field of "dance technology" is one with many problems. This is a domain with many practitioners, few

techniques and almost no theory; a field that is generating "experimental" productions with every passing week, has

literally hundreds of citable pieces and no canonical works; a field that is oddly disconnected from modern dance's his-

tory, pulled between the practical realities of the body and those of computer art, and has no influence on the prevailing 2

digital art paradigms that it consumes.

This thesis will seek to address each of these problems: by providing techniques and a basis for "practical theory"; by

building artworks with resources and people that have never previously been brought together, in theaters and in front

of audiences previously inaccessible to the field; and by proving through demonstration that a profitable and important

dialogue between digital art and the pioneers of modern dance can in fact occur.

The methodological perspective of this thesis is that of biologically inspired, agent-based artificial intelligence, taken to

a high degree of technical depth. The representations, algorithms and techniques behind such agent architectures are

extended and pushed into new territory for both interactive art and artificial intelligence. In particular, this thesis will

focus on the control structures and the rendering of the extended agents' bodies, the tools for creating complex agent-

based artworks in intense collaborative situations, and the creation of agent structures that can span live image and in-

teractive sound production. Each of these parts becomes an element of what it means to "choreograph" an extended

agent for live performance.
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Introduction

The marriage of dance and interactive image has been a persistent dream over

the past decades, but reality has fallen far short of potential for both technical

and conceptual reasons. This thesis proposes a new approach to the problem

and lays out the theoretical, technical and aesthetic framework for the innova- 8

tive art form of digitally augmented human movement. I will use as example

works a series of installations, digital projections and compositions each of

which contains a choreographic component - either through collaboration

with a choreographer directly or by the creation of artworks that automatically

organize and understand purely virtual movement. These works lead up to two

unprecedented collaborations with two of the greatest choreographers working

today; new pieces that combine dance and interactive projected light using real-

time motion capture live on stage.

This thesis will achieve its goals because of its methodological perspective -

that of biologically inspired, agent-based artificial intelligence - and the tech-

nical depth to which this idea is taken. The representations, algorithms and

techniques behind such agents are extended and pushed into territory that is

new for both interactive art and artificial intelligence. In particular, this thesis

will focus on the control structures and the rendering of the these extended



from Loops (inverted)

agents' bodies, the tools for creating complex agent-based artworks in intense

collaborative situations, and the creation of agent structures that can span live

image and interactive sound production - each part an element of what it

means to choreograph" an extended agent for live performance.

In this document I will present five principal artworks developed over a period

of four years. The earliest of these is Loops, an installation work. A "digital por-

trait" of choreographer Merce Cunningham, Loops takes as its point of depar-

ture a "motion-captured" performance of Cunningham performing his 1970s

dance for hands of the same name. Since its premiere in Cambridge in 2001,

this piece has toured extensively - garnering an honorable mention at the Ars

Electronica festival in 2004, installations at the Institute for Contemporary Art

in London, and the AcM SIGGRAPH 2002 conference and, as part of a Cun-

ningham "event" a showing at the Festival d'automne, Paris. The piece was cre-

ated as an interactive work, but is not interactive in its current version. It nev-

ertheless remains a "live" work in the sense that it is computed, that is, made, 9

live. As such, the work never repeats; rather, it is perhaps the first point of con-

tact between Cunningham's "discovery" of the creative potential of chance pro-

cedures and artificial intelligence's deployment of probabilistic techniques. Al-

though Loops was constructed in collaboration over a short one-month period,

it offers many early examples of what I consider to be the creative strengths of

my agent-based practice.

Proceeding chronologically, the next principal artwork is The Music Creatures -

a series of interactive, multi-screen installations. This thesis will focus on the

most recent of the series, the 2003 installation commissioned by the Ars Elec-

tronica festival. These creatures offer small, "animal-level", musical intelligences;

inspired by, but not based directly upon, the acoustic abilities of birds. The

creatures come in four varieties, but each creature makes sound solely by ma-

nipulating its virtual body, and the growth and appearance of that body is gov-

erned by the creature's learnt understanding of its acoustic environment. While



network from The Music Creatures

this work does not include human motion, The Music Creatures, with their long

and multiply versioned development, are the work that is perhaps most respon-

sible for refining my agent-based aesthetics. Further, the creatures in this work

utilize a range of Al techniques to maintain a position of "dynamic disequilib-

rium" with the gallery space and each other, conveying a sense of effort, inten-

tion and ultimately transience and instability. This fragmentary and accumula-

tive techniques and aesthetics is fundamental to my approach to interactive

imagery in general and human motion in particular.

I revisited the Loops installation last year, 2004, with Loops Score, a purely musi-

cal work to accompany Loops. While Loops began with Cunningham's perform-

ance of his solo for hands, Loops Score begins with a narration by Cunningham

- reading from his diary, concerning his first visit to New York in 1937. The

sound of this narration is recast by a battery of interacting agent processes onto

a set of extended prepared pianos, using a high-resolution sample library pro-

vided by the John Cage Foundation. While The Music Creatures presented an 10

extremely minimal, indeed visual, approach to music, Loops Score finds itself

closer to the mainstream concerns of computer music. However, Loops Score

retains the indirection of The Music Creatures, deferring the creation of new live

music to an autonomous agent. This piece shares with Loops a technical focus

on the strategies available to "score" such open works, and similar to The Music

Creatures, Loops Score produces music that is at some times startlingly coupled

to its source, and at others propelled and sustained by its own oddly inevitable

logic. Loops Score premiered in 2004 at the Ars Electronica festival.

The final artworks I present in this thesis are my most recent involving choreog-

raphy, two works entitled 22 and how long does the subject linger on the edge of the

volume ... The first, 22, was created in collaboration with choreographer / per-

former Bill T.Jones, the second, how long..., in collaboration with choreographer

Trisha Brown. There are several technical accomplishments in these works, for

they are live visual imagery for motion-captured dance performance; while



Loops in 2001 used a carefully recorded, painstakingly hand-cleaned recon-

struction of Cunningham's hands, these works in 2005 capture an entire pro-

scenium stage in real-time. These works are some of the first to use this tech-

nology in front of an audience, and, to my knowledge, the first to do so on such

a scale. Further, while the involvement of Cunningham began and ended with

the capturing of his motion, these works were created truly in collaboration

with the choreographers. I believe a number of technical and conceptual contri-

butions in this thesis have are the consequence of the need both to keep pace

with Brown and Jones in workshop and to meet the challenges of their choreo-

graphic practices. These works received their premiere in Arizona in April 2005;

how long.., showed the very next week live at the Lincoln Center for Performing

Arts in New York, and the imagery has since received an award of distinction at

Ars Electronica. The non-live "touring" version of 22 showed at the opening of

door from 22 the Walker Performing Arts Center in Minneapolis in June. Both are currently

on tour.
11

Along the way there have been other works that will appear less frequently in

this thesis. Of most interest is probably the most recent of all my works, Im-

ageryforJeux Deux - the live visual imagery made to accompany Tod Ma-

chover's concerto for "hyperpiano',jeux Deux. I will use this work to provide a

number of example implementations, and it will often serve to demonstrate the

applicability of my techniques to domains outside dance. Other works include

Lifelike - live, but non-interactive imagery for the Merce Cunningham Dance

Company commissioned and premiered by the Barbican Centre, London -

and Weatherfor an interactive window, a small work for Joe Paradiso and the

MIT Media Lab Responsive Environments Group's "tapper window" - a

sensing piece of architectural glass. These too will appear in order to make ar-

guments for experience, breadth, or applicability. This thesis will also make

extensive use, especially in the early chapters, of two collaborative pieces by the

MIT Media Lab's Synthetic Characters Group directed by Bruce Blumberg, of

om how long.., which I was a member: Dobie - an interactive, trainable dog; and alpha Wolftriangle fr



mirror from ImageryforJeux Deux

- a multi-participant interactive simulation of wolf social behavior. Dobie is of

considerable interest because he represents the high-water mark of the Syn-

thetic Characters development of trainable characters in the toolkit that forms

the basis for my subsequent work; alphaWolf because it represents the large,

complex, multi-programmer collaboration at around the same time.

Chapter i will contextualize this thesis, locating it between the three areas it is

in contact with - choreography, artificial intelligence and computer graphics

- and will outline the main arguments both technical and conceptual that will

appear in the remainder of the document. The next chapter will lay the

groundwork for our agent framework, and survey the particular starting point

for the agents constructed for this thesis. It will indicate how the agent-based

might fit into an art practice, and what kinds of work AI architectures need to

meet the requirements of a practicing artist. Following this chapter will come an

overview of my first artwork concerning human motion - Loops - that criti-

cally develops a response to what I believe to be artificial life's "anti- 12

methodologies" of emergence. Proceeding chronologically, I then present the

sound-image installation The Music Creatures. This installation, while not

drawing upon human movement, helps define several aspects of my agent-based

aesthetics and sharpen some of the strategies that it offers in dealing with the

uncertainties of interaction. I then pause in chapter 5 to discuss two general

frameworks for constructing the perception systems for agents in complex

worlds, that will be of specific use in the dance theater works. It is this chapter

that contains the most focused technical rebuke of"mapping', a term in wide-

spread use in interactive art. Chapter 6 introduces Loops Score, and more im-

portantly collects the extensions to the agent framework, based on the lessons

learnt in making The Music Creatures and Loops, into a new agent toolkit: the

Diagram framework. These framework is designed to offer new forms of

authorial involvement in the creation and maintenance of agents. Chapter 7

presents how long.., and 22, both pieces for interactive dance theater. 22 provides

my most focused attempt to reform computer graphics'"non-photoreal" with



new rendering techniques, while how long.. ? represents my most sustained effort

to create a collaboration between digital visual imagery and choreography in a

live setting. Chapter 8 concludes the main body of this thesis with a description

of a parallel thread - the custom graphical environment that allowed my

agent-based approach to meet the realities of collaboration, rehearsal and im-

provisatory choreographic practice. A section summarizing the technical and

aesthetic contributions of this thesis, and indicating the possibilities for future

work, follows.

13



CHRONOLOGY OF WORKS AND SYSTEMS

summer 2001 - summer 2002

The Music Creatures

Three screen interactive
sound-image installation

(version with exchange and
listen agents).

Loops
With Paul Kaiser and

Shelley Eshkar

A "digital portrait" of
choreographer Merce
Cunningham.

February 20021

Lifelike
With Paul Kaiser and

Shelley Eshkar

Projections for Merce
Cunningham Dance
Company's Fluid Canvas.

- I ______________________________________________________________
I I V I ~

July 2002

alpha Wolf
Synthetic Characters Group

Multi-participant interactive
installation with virtual wolf
social behavior.

Asgust 2001
August 2001 1October

I alpha Wolf - Premieres
I "Emerging Technologies" Los
1 Angeles, SIGGRAPH 2001

| The Music Creatures - 2-
I Premieres "Art Gallery" Los
I Angeles, SIGGRAPH 2001

2001 December 2001

Loops - Premieres at the Id/
I Entity show in Cambridge MA.

Travels to The Kitchen, New
York soon after.

Dobie
Synthetic Characters Group

Interactive, trainable dog in
new "C43" agent toolkit.

July 2002

Dobie - Shown as part of
SIGGRAPH 2002 paper I

presentation, San Antonio. I

Loops (& Process) - Shown I
as part of the "Art Gallery", I

SIGGRAPH 2002, San Antonio. I

Experiments in Intelligent I
Form - Shown as part of the I

"Art Gallery", SIGGRAPH 2002, I
San Antonio. I

Weather for an interactive
window - Shown as part of

"Emerging Technologies",
SIGGRAPH 2002, San Antonio.

a4 agnPoli_5 gn oli

March 2001

a

Ic5 agent toolkitc43 agent toolkit



summer 2002 - winter 2004

Lifelike (continued)

- I

August 2002 1 September 2002

Loops - Shows as part of
Merce Cunningham Dance

i Company "Event" in Palais
IRoyal as part of Festival
d'Automne, Paris.

motion-e - ongoing
residency at Arizona State

University's Institute for

Studies in the Arts

November 2002

r

The Music Creatures

Multi-screen interactive
sound-image installation.
Final four screen installation
- exchange, line, network,
listen, tile agents.

Loops Score
With Paul Kaiser and

Shelley Eshkar

Live music for Loops based
on spoken narrative by

Cunningham.

i T

I ________
e 2003 September 20031 jansary

February 2003 Jun

Lifelike - US version,
I premieres Zellerbach
Hall, Berkeley, CA.

The Music Creatures - final

version premieres at Ars
Electronica Festival.

alphaWolf- shows as part

of"Future Cinema"

exhibition ZKM, Germany.

Lifelike - Premieres at
I Bite*02 Festival, Barbican

Center, London.

alphaWolf - Shows at Ars
I Electronica Festival, Linz,

Austria. Receives
"honorable mention".

I Loops - shows at ICA

gallery London.

15

Max
Synthetic Characters Group

Interactive, non-photorealistic,
emotional rat.

new lightweight graphics system basic

I I I I

I I I
I I I I.-.. -

Diagram version 1 uagram vetoton z
ram version sr

Fluid project starts
w pDiagram ve

new pose-graph motor system

January 2004e 2003

rsion 2Diag



winter 2004 - fall 2005

22 & how long does the subject
linger on the edge of the volume...?

With Paul Kaiser and
Shelley Eshkar

Projections for real-time motion

captured dance theater. 22 - with Bill T.

Jones. How long...? with Trisha Brown.

motion-e - ongoing residency

22 &How long...? -
premiere at Galvin

Playhouse, Tempe, AZ.

How long...? - New York
premiere at Lincoln Center

as part of Great Performers
Series. I

How long...? (imagery) -
shows at Ars Electronica

Festival. Receives "award of
distinction".

Loops Score (continued)

April 2005 June 2005 September 2005

ISeptember 2004 1

Loops & Loops Score -
I premieres at Ars
Electronica Festival.
Receives "honorable
mention".

Imagery for 'eux Deux"
With Tod Machover

Live projections for hyper-piano
concerto.

Imagery for 'eux Deux" -
I premieres at Boston
I Symphony Hall, as part of
the Boston Pops Festival.

22 - "touring version"
I premieres at the opening of
the Walker Performing
Arts Center, MN. Now
part of Bill T. Jones Solo

I Show.

how long...?- "touring
version" premieres at
Sadler's Wells, London. In
repertory.

April 2005 1 1 June 2005 September 2005



This thesis touches upon many areas of work, many intellectual

and artistic fields of endeavor. This chapter reviews some of the

previous work in these areas, and sets the stage for the argu-

ments that follow. It concludes with an overview of the remain-

der of this document.

Chapter 1 - Context

The works presented in this thesis border on three broad subjects - contem-

porary choreography, both with and without the involvement of computers,

artificial intelligence and computer graphics. Parts of its presentation will also

touch upon computer music and user-interface design. These are fields with

long traditions and many practitioners, so the work that I present and the ar- 17

guments I develop in this thesis must be contextualized with respect to each of

these areas. During this contextualization the central themes behind my art-

works will emerge. We will see a new model, a new metaphor, for interactive art-

making brought out of artificial intelligence and demonstrated in the context of

dance theater; we will see how this model differs from the prevalent synthetic

and analytic techniques of interactive art and dance technology; and we will

begin to see what fruits this maneuver might have for both artificial intelligence,

computer music and computer graphics.

1._ _On computation and dance

Many of the works presented in my thesis are collaborations involving choreog-

raphers. Three are live projections for dance theater - Lifelike, 22 and how

long... - two of which - 22 and the central work how long... - are projections



for interactive dance theater. These projections are generated in real time, the

computers "seeing" the positions and motions of the dancers using state-of-the-

art motion capture technology. All three pieces are difficult and expensive, and

both this difficulty and expense come directly from the presence of these com-

puters and the equipment required for them to sense the stage so that they can

be a live part of the performance.

There is an existing field, positioned between the academy and the arts, of dance

technology, a field of artists digitally and electronically augmenting dance. This

work would seem to fit inside its domain. However, I choose not to draw much

grounding context from this field, and I will postpone the contextualization of it

until later in this chapter - if my work fits into this tradition, it does so uneas-

ily. Rather I shall look at the recent history of modern dance in the absence of

digital "augmentation. The recent line of "interactive" works for dance and com-

puter have failed to make much lasting impact on the dance world or the

broader digital arts community. But there remains an uneasy but strong alloy of 18

visual art, dance performance and computation that can be made. I believe the

works presented in this thesis do just this, and point toward original ways of

continuing this fusion in the future.

I will argue as follows: firstly, that there is surprising common ground between

recent choreographic practice and computer graphics (as well as computer sci-

ence), so much, in fact, that one can identify a"computational sensibility" in the

work of many prominent choreographers in the last half century; secondly, that

choreographic practice is one where such algorithmic concerns meet the reali-

ties, constraints, and meanings of the human body and the eyes of the audience,

and as such offers a foil for the worst tendencies of technologically mediated art

and a concrete platform for the best tendencies of computer science; and lastly

that such a union between digital art and dance is there for the taking - the

"dance-technology" work that lays claim to the space where the union would



occur has typically ignored what both computation and choreography could

offer to each other.

A computational sensibility - the mechanics of generalization and abstraction,

choreography as representation, dance as computation.

Works referenced for Merce Cunningham are documented in the
comprehensive book:

D. Vaughan, Merce Cunningham, Fity Years. Aperture, New York, 1999.

they are arguably better contextualized for our purposes here in:

R. Copeland, Merce Cunningham: the Modernizing of Modern Dance, Routledge,

2004.

For Trisha Brown, the encyclopedic

H. Teicher (ed.) Trisha Brown: Dance and Art in Dialogue. MIT Press, Cam-

bridge, MA, 2002.

is indispensable. For Bill T. Jones:

B. Zimmer and S. Quasha, Body against Body: The Dance and other collaborations

with Bill TJones and Arnie Zane. Station Hill Press, New York, 1990.

One could write a long history of recent dance to separate this computational

sensibility out from the more general intellectualization of the art form that has

occurred over the last so years. But in order to trace the thread of algorithmic

concern through 20th-century dance, I'll focus on a set of four central choreog-

raphers whose contributions to and impact on dance is unquestionable -

Merce Cunningham, Trisha Brown, Bill T.Jones, and William Forsythe. It is my

great fortune that three of them - Cunningham, Brown and Jones - are col-

laborators on works discussed in this thesis.

A key tendency in computer science is the urge towards generalization - the

replacements of constants with variables- and abstraction - the re-

expression of prototypes as templates. This inheritance from mathematics is

powerfully exploited to unmask problems as restatements of previously solved

problems, to build generic machines that become the site of confluences of data

previously considered disparate, suggesting new computations that can be car-

ried out which in turn make for new frontiers and problems. It lies at both the

heart of computer science - in the form of the general Turing machine - and

at the periphery - of the everyday activities of the software engineering pro-

grammer. The flux of generalizations and abstractions of computer science

should, however, not be mistaken for the totalizations of natural science. Rather

than seeking a coherent, global predictive and explanatory system, the systems

of computer science are forever local, transformative, interconnected.
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As Umberto Eco points out in The Open Work (1962)
from the second half of the 20th century, artists

increasingly became fascinated by indeterminacy,
process and open form, establishing a productive
dialectic between this openness and the need to

produce a "finished" work.

U. Eco, The Open Work, A. Cancogni (trans.) Harvard,
1999.

See, for example, Cunningham's comments on both

"relativity" (as in physics) and animal motion in his
work Beach Birdsfor Camera in:

J. Lesschaeve (ed), The Dancer and the Dance,Merce

Cunninghan in conversation with Jacqueline Lesschaeve.

Marion Boyars, New York, 1985.

See also: M. Cunningham and D. Vaughan, Other

animals: Drawings and Journals. Aperture, New York,

2002.

The signature of this tendency is: a recasting of an established formal system in

new, more flexible terms, that immediately produces a range of new systems; an

often rapid exploration of the outcomes of these systems; a selection and cate-

gorization of some of these "instantiations" into new framework; and a resulting

framework that is itself ripe for generalization.

This computational sensibility is present at two levels in the work of these cho-

reographers. Firstly, in their choreographic processes - the systems, methods,

and notations through which the choreographers create the dance. Secondly, in

the finished work itself, as it appears on stage, and is interpreted by the viewer.

Of course, it is a defining feature of modern and contemporary dance that the

boundary between "process" and "product" is often blurred.

In the choreographic process, we can see this tendency throughout dance in

obvious places: the rapidly expanded palettes of modern dance, generalizing the

acceptable motion vocabulary to include the everyday, the pedestrian, even the

animal. Cunningham's earliest inventions and proclamations - the democracy

of the stage space, and the rediscovery of the dancer's back as a point of origin of

motion - can be interpreted as generalizations of a kind; any point of a stage

can be a "front", and any connected set of joints can be thought of as a limb.

What were once specified constants in a rigid description become variables in in

a generative framework.
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See the particularly revealing interview with Forsythe
by Paul Kaiser in Performance Research, 4 (2), Summer

1999. Available online at:

http://www.kaiserworks.com/ideas/forsythel.htm

figure 1. A body centered, fixed,"kinesphere"

But to find the most concentrated and self-contained examples of the generali-

zation-specification cycle we turn to Forsythe's choreographic practice. Many

examples drawn from his work have been described in the literature on the ideas

behind choreography, but seldom are meta-methodological diagnoses at-

tempted. For example, the most commonly mentioned strategy of Forsythe is his

decentered kinesphere. Forsythe takes the established kinesphere of movement

theorists (most notably Rudolph Laban) - a geometrical framework for the

description of limb positions that forms the grounding of Laban's extensive

analytical and notational techniques - and frees it from its anchor at the center

of the dancer's body. This new, roaming, kinesphere, now centered on an elbow,

an ear, or the midpoint between two hands, stands to inherit every analytical use

to which Laban put his kinesphere; it is a generalization of Laban's analytical

framework. Movements, within this framework, now acquire multiple explana-

tions (disparate problems are unmasked and seen as related), new impetuses for

moving are rapidly created as the ready-made machinery of Laban can be

brought to bear on new joints, limbs and points (the data of dance), the palette

radically expanded. Selection, categorization and reformulation then occurs as

Forsythe builds new frameworks to deal again with the resulting material -

systems of "alphabetization" or hidden geometry. These new representations of

dance are in turn ripe for later generalization, an agglomerative cycle that is

nothing less than the choreographic process. his is generalization and respecifi-

cation as a computer scientist would recognize them.

figure 2. A Forsynthian,"generalized", mobile, kine-

polyhedron. From Improvisation Technologies, below.

...... ....



Walter Benjamin problematizes the idea of the
arbitrariness of language in his short essay On the

Mimetic Faculty, offering an idea of nonsensuous imesis

that exploits the mimetic faculty of humans, indeed

takes it to a higher level. We might extend this notion
to computational representation.

W. Benjamin, On the Mimetic Faculty, In: P. Demetz (ed.)
Reflections, Harvest / HBJ, 1978.

These tendencies are articulated in: J. Lesschaeve, (ed.)

The Dancer and the Dance, Merce Cunninghamn in

conversation with Jacqueline Lesschaeve. Marion Boyars,

New York, 1985.

they are "demonstrated" in: F. Starr (ed.) Changes: Notes

on Choreography, Something Else Press, New York,
1968.

This role of representation within the choreographic process indicates more

points of connection with computer science. (The problematic issue of repre-

sentation on stage will be addressed later.) The creation of computer programs

often turns on representation - the virtual laying out of bits that represent, that

stand for, an object.Just as with computer science's generalization, the world rep-

resentation should be used with caution. In its basic sense representation occurs

when something stands for something else. The relationship between represen-

tation and represented may be based on some kind of similarity - in this case

this mimetic representation would have an iconic or "natural" relationship with

the represented. However, the representative relationship may also be arbitrary

- as in the relationship between signifier and signified in language. Computa-

tional representations are often arbitrary in this sense (although they are not

necessarily experienced as such by the programmer or external viewer). Without

the burden of strict imitation, these representations have the freedom to support

computation and reconnection - in short, transformation. The mimetic/

transformable distinction is of course not a binary opposition, but rather two

poles of a continuum. Having set up this axis for the purposes of this section we

shall see it problematized in later sections.

Cunningham's earliest investigations of chance procedures had the flavor of

computation and transformative representation about them. Motions were bro-

ken up, atoms identified, tokenized. These arbitrary tokens rearranged by the

toss of a coin, the fall of the I-Ching, and the new lines and tables recast the new

motion material for his dancers. Cunningham shares this style with composer

and collaborator John Cage at this time, and much of their quest for new com-

positional strategies could be re-read as a quest for representations that support

useful compositional actions.

But a particularly simple and effective example can be found in a number of

pieces by Trisha Brown in the 1970s. A transformation of the dancer's kinesphere
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c;- -

Drawings for Locus by Trisha Brown.

The idea of theater as the "imitation of actions" goes back at

least to Aristotle's Poetics (1449b-1450a). Classical dance,

with its emphasis on narrative, clearly belongs to this
tradition.

into boxes, the arbitrary representation of these boxes by letters of the alphabet,

the manipulation of the temporal sequencing of boxes by the creation of words

and messages and the retransformation of these messages into movement yields a

dance, a complex semaphore often intersecting with the representation's mirror

- the spoken word. Since the space has been represented as a cube, new

transformations (rotations and translations) of the cube suggest themselves,

further interrupting this communication. This is the fundamental composi-

tional technique behind Locus (1975).

Of course, what is missing inside this alphabetic representation is replaced ei-

ther by the choreographer while fixing the piece (in the case of many works by

Cunningham) or by the intelligence of the performer in the moment (in the

case of Locus), faced with the almost impossible task of computing the results of

the choreographic program. We as audience are presented with the act of com-

putation itself and its negotiation with the constraints and limits of the human

body.

This brings us to the presence of computational aesthetics on the stage, and the

dance's relationship to the audience's expectations and reactions. And it is here

that we should note how radical the relationship of choreographers such as

Cunningham, Brown, and Forsythe with dance history has been. While the cho-

reographies of Sergei Diaghelev, Vaslav Nijinsky and George Balanchine all ex-

pand the expressive and representational powers of classical ballet from within,

many contemporary choreographers, in particular Forsythe, threaten nothing

less than the three-thousand-year-old mimetic basis of theater as an imitation of

an action, in their displacement of overt mimetic representation by the fruits of

covert computational representations.
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I think we are trying to create something life-like. a kind of autonomous

form. Artificial life, so to speak, but cultural life. Fundamentally traditional

arts animate people's expertise. Classical ballet, for instance, lacks its own

vital force. Dance is a far more hybrid form of animation. It is like a drawing

that is drawn into itself. As in the third act of Eidos, it is cellular autonomy;

based on the same rules as every other one but each one reacting differently.

It is hybrid aesthetic organization, better yet, hybrid aesthetic animation.

William Forsythe, quoted in T. Ozaki, (P. Vigilio trans.), An

Interview witl Villian Forsytle. (availability as above).

Process spills onto the stage throughout contemporary choreography, and with

it the choreographer's computational sensibility. Forsythe is infamous for issuing

instructions to ensembles that recast entire choreographies extremely late in the

creative process (sometimes moments before first curtain). The results of these

manipulations of the systems that produced the choreographies are literally

"worked through", computed, on stage in front of the audience, the intelligence of

the individual dancers on display as much as their muscular memories. This

image of performance as computation leads us to improvisational techniques

where the relationships between parallel, often disparate, autonomous machines

are negotiated live, where the performer improvises simultaneously inside, and

with, a machine of their own making.

No clearer example of this tendency can be found than in choreographer / per-

former Bill T.Jones's piece 21 (1983) in which a fixed, circular cycle of 21 poses is

acted and re-acted out, numbered and named, by the performer. After declaring

(quite pedagogically, unlike Brown's Locus) almost all of its motion vocabulary,

Jones begins to narrate while the numbered poses continue to appear and dis-

appear, his narration, the movement of his body and the declared name of the

poses all intersecting under the pressure and the limits of the structure of the

piece and the abilities of the performer to negotiate their connections.

Here we reach the physical, rather than formal, limits of this "computational

sensibility" in modern dance: the limits of what the human body is capable of

performing, the limits of what choreography can be. For all the fecundity of the

"computational sensibility" outlined here, none of these techniques or inventions

exist independent of a body and a theatre space. Cunningham's proposal that

there are no fixed points in space meets the plain fact that the audience sits in

one place, and the edge of the stage is all too fixed; his democratic use of the

movement resources of the body pushes but goes no further than the limits of

bipedal balance. Brown, in the piece Man walking down the side of a building



Dance technology theorist Scott deLahunta fears that

choreographers have been backing away for decades
from live performance technologies that are otherwise

being integrated into theater. I hope that the work

presented in this thesis offers an counterexample.

S. deLahunta, Virtual Reality and Peiforinance, PAJ: A

Journal of Performance and Art 24.1 (2002) 105-114

(1970), produces a choreography that disrupts the audience's sense of orienta-

tion yet leaves the mechanics needed by humans to defy gravity (the harness

and rope) exposed for all to see . In Accumulation plus talking with water motor

(1978/1986) she shows, while simultaneously talking and dancing, a choreogra-

phy at the limit of memorization of narrative and of movement. In Homemade

(1966) the performer has her movements amplified by the film projector she

carries on her back in a dance of light, but it is a heavy, obvious and almost do-

mestic burden.

I believe that the creative potentialities of the dialogue between computers and

choreographers lie in this shared computational sensibility. Digital artists can

connect to, and radically expand, the vocabulary of the choreography that I have

outlined. For are they not experts of generalization, representation and, if not

computation as performance, surely the performance of computation? In ex-

change, choreographers and performers are experts of the negotiation between

the abstracted, transformed, and mechanical, between the theatrical, human,

and perceived. They are the experts of navigating the moments when a cold

algorithmic idea meets a warm body, the limits of performance, the limits of an

audience, the limits of from. They can offer this crucial expertise in return for

the digital artist's computational virtuosity, and the exchange itself ought to

impact not just a field of technologically augmented dance, but the creative used

of digital tools itself.



Information about Lifforms's intentions can be found in: T. W. Calvert,

A. Bruderlin, S. Mah, T. Schiphorst, C. Welman, Thc Evolution of an inter-

facefor choreograph~ers. Interchi'93 - ACM Press, April 1993.

See, for example, Hotwired's ecstatic reporting of
Cunningham's use of the computer:

http://hotwired.wired.com/kino/95/29/feature/index.html

as well as countless post-performance interviews and
discussions by Cunningham.

Earlier attempts at this dialogue were often unsatisfying. For example, as has

often been repeated in the press, Cunningham has been using the Lifeforms

software for more than a decade now as part of his choreographic process.

Ironically, however, such software is entirely concerned with the appearance of

the virtual human figure, its technical concerns imported wholesale from linear

key-frame animation rather than offering any computational support to the

choreographer. The tools all lead down the path of least technical resistance -

the commodity hardware of computer video, the tried and tested hyper-mimetic

representations of photorealistic "Hollywood computer graphics" This use of

the computer seems oddly disconnected from the underlying computational

practice that I have identified in his work. Despite his now expert use of com-

puters to find shapes that he can no longer find on his own body, Cunningham

still throws his own dice.

Of course, it would be just as unsatisfying to simply make a computer program

that helps Cunningham roll dice - this duplication of the choreographer's role

is unnecessary. We have to find some other way to create a programmer-

choreographer dialogue. To inform the technologies and practices that we de-

velop for the sake of this dialogue we clearly need to cast a net wider than con-

temporary choreography or even dance technology. In this regard the tools and

techniques of computer music are fundamental to my approach.
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Dance notation continues to generate conferences
and discussions but little permanent consensus. For

a glimpse at the rather more interesting, less

academic, personal notations of choreographers:

L. Louppe, B. Holmes, Traces of Dance,

Dis Voir / DAP Publishers, New York,
1994.

A compendium of mid-century musical notations:
J. Cage, Notations, Something Else Press, 1969.

Over the centuries, composers have developed notational representations that

allow the distribution and reproduction, but more importantly the transforma-

tion and interpretation of music, without the instantiation of sound. A focus on

the experimental transformation of music into a representation, on manipula-

tions within and with this new form, and on subsequent reinterpretation and

retransformation back into other sounds or other representations can be found

all along the border between computers and music - sound synthesis tech-

niques, compression algorithms, set-theoretic compositional strategies or new

instrument design. Computer science's representations and music's notations are

not just ways of seeing the world or music but locations for new ways of think-

ing about how to change it. Since this ground has been so fertile in the past, one

of the central techniques in my work is to import the techniques and approaches

of computer music into a new "computer dance" domain, 282

But even outside of computer music per se, these exchanges are present

throughout the history of music. The ascendancy of the twelve-tone row in

Western music was propelled initially, I suspect, by the explosion of formal pos-

sibilities that this transformative unit caused. Its mid-century crystallization

into an attempted totalization of musical form is opposed by a simultaneous

notational explosion amongst experimental composers.
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M. Nyman, Experimental Music: Cage and

Beyond. 2nd ed. Cambridge, UK:

Cambridge Univ. Press, 1999 (p. 4).

In this regard we might also look to the "formalisms" of the French

literary "workshop" Oulipo. In describing the relationship between

novelist/mathematician Raymond Queneau and mathematics,

author Jacques Roubaud describes the Oulipian imitation of the

"axiomatic method" in the writing of literature. Reacting against the

surrealist obsession with literary "freedom", Roubaud rejects the

"mystical belief according to which freedom may be born from the

random elimination of constraints.' However, the Oulipian of using

constraints to generate texts claims no ultimate authority, since

literary rules no longer have any foundation in value.

J. Roubaud, Mathematics in the Method of Raymond Queneau, reprinted

in: W. F. MotteJr (trans., ed.), Oulipo a primer of potential literature,

University of Nebraska Press, 1986 (p. 88, 89, 9 3 ).

2. ___

The experimental / avant-garde distinction made by composer and musicologist

Michael Nyman in describing this moment of music history, and the computa-

tional representations of computer music in general, will also help us calibrate

our relationship to the "formalisms" of contemporary choreography. Nyman

offers a distinction between "avant-garde" composers (the Boulez of the 1950s)

who search for coherent systems, self-contained and self-constraining; and the

"experimental" tendency (typified by Cage) concerned not with "prescribing a

defined time-object", but rather "outlining a situation in which sounds may occur,

a process of generating action (sounding or otherwise), afield delineated by cer-

tain compositional'rules 2'

In this analysis we see Forsythe, Brown, Jones and Cunningham allied most

definitely with the experimental - sharing practices that "work through" a field

delineated by temporary "rules", mining the potential latent in algorithmic sys-

tems as performed by their dancers, while temporarily protecting the integrity of

the system from reproach. Only after the consequences of these computations

have been discovered are these tactical formalisms aggressively questioned, top-

pled, robbed of any governing authority over practice as a whole. We will see a

very similar practice developed in this thesis as I explicitly locate techniques that

permit the development of algorithmic potential, and computational representa-

tions open to the unexpected, that simultaneously permit the navigation and

culling of the resulting computational space. In the creation of autonomous "live"

digital artworks, this method of working, which is at once ludic and serious, is at

the core of my aesthetics.

On"mapping"

The field of dance technology - the use of computer and electronics in a dance

theater context - is undeniably growing today. However, this is a field with

many practitioners, few techniques and almost no theory; a field that is gener-
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ating"experimental" productions with every passing week, has literally hundreds

of citable pieces and no canonical works; a field that is oddly disconnected from

modern dance's history, pulled between the practical realities of the body and

those of computer art, and that has no influence on the prevailing digital art

paradigms - largely taken from computer music - that it consumes.

If there is a term that tries to pass as a central concept in the theory of interac-

tive digital artworks in a dance context it is mapping. I shall argue that this word

has become vague almost past the point of usefulness, but at its core is a refer-

ence to the ability of digital computers to take data from one domain and

transform it into another. This transformative core of interactive digital art-

works is also the location of its "visualization" and "sonification" tendencies. This

thesis proposes and contrasts an alternative point of origin for digital artwork:

the interactive agent. But to attempt this contrast, and to contextualize the in-

teractive dance work that is presented later, we will have to spend some time

discussing the meanings that "mapping" has for the community. 29

Despite the term's imprecision, one can hardly cite a technical paper on dance

technology without encountering the word. A representative example:

Each part of the body has its unique limitation in terms of direction, weight, range

of motion, speed and force. In addition, actions can be characterized by ease of

execution, accuracy, repeatability, fatigue, and response. The underlying physics of

movement lends insight into the selection of musical material. Thus, a delicate

curling of the fingers should produce a very different sonic result than a violent and

dramatic leg kick, since the size, weight and momentum alone would have different

physical ramifications. To do this, physical parameters can be appropriately mapped

to musical parameters, such as weight to density or register, tension to dissonance,

or physical space to simulated acoustical space, although such simple one-to-one

correspondences are not always musically successful. The composer's job then, is

not only to map movement data to musical parameters, but to interpret these

numbers to produce musically satisfying results. [emphasis added]



From T. Winkler, Making motion musicalh Gesture Mapping Strategiesfor

Interactive Computer Music. Proceedings of the 1995 International

Computer Music Conference. San Francisco, International Computer
Music Association, pp. 261-4.

However, more recently: T. Winkler, Live Video and Soundfor Dance. From

Video, Technology and Performance Festival, Brown University April

4-5, 2003. Available online at: http://www.brown.edu/Departments/
Music/faculty/winkler/papers/

In what is in many ways the parent field of dance-technology, interactive music

controller design, researchers talk of mapping sensor data to musical parameters,

of the mapping problem, of classes of mappings, of good mappings and bad map-

pings, of intuitive mappings and unsuccessful mappings, of tools for mappings.

Some 40% of the papers in the 2004 New Interfaces for Musical Expression

conference use the term in all sincerity, as part of titles, abstracts, conclusions,

problem statements and results. Here and elsewhere, mapping has become a

analytical perspective and a methodology, an point of departure and a destina-

tion, a field of study, a description of a problem and a place where solutions are

to be found.

output = f(input)

This then is the core image for a whole branch of interactive music and much of

the smaller field of interactive dance technology and, almost as if through infec-

tion by the vector of their shared tools, interactive art as a whole.

My highlighting of this term and its problems is in no way meant to detract

from the artists and engineers who have struggled to find new sensors, new data

and new places for these data in artworks. Rather it is intended to indicate the

need for a greater range of vocabulary, for greater nuance, for describing this

very struggle and organizing the intellectual field around it.
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MAPPING - A SELECTION OF QUOTES

The step after hardware:

Raw values are received by Max via the VNS object,

an object written by Rokeby to handle system con-

figurations. From there, changing values represent-

ing the grid are displayed graphically, then scaled,

mapped, or otherwise prepared to enter the system's

response modules.
T. Winkler, Motion Sensing Music, Proceedings of the

International Conference on Computer Music 1998,

San Francisco, International Computer Music Associa-

ion.

The mapping had to be both transparent to the user

and complex enough to sustain interest if the sys-

tem were to be used day after day. In our process, we

took a top-down approach to mapping [...]
L. Gaye, R. Mazi, L. E. Holmquist, Sonic City: The Urban

Environment as a Musical Interface, Proceedings of the

2003 Conference on New Interfaces for Musical Expres-

sion.

Or the entire performance problem:

Our work on instrument design and instrumental
performance interfaces has led us to consider in

detail the mappings from the performer's gesture
space to the listener's perceptual space.
G. Garnett, C. Goudeseune. Perfiormnance Factors in Control of

High-Diniensional Spaces. Proceedings of the International

Conference on Computer Music. 1999. San Francisco,

International Computer Music Association.

Movements are identified and mapped in software

to play and process sounds (Max/MSP), or to alter

a live video feed using real-time video processing

software (NATO). The computer generates most of

the material based on the performer's movements,
with each performance being a unique realization of
the program's many potential responses.
T. Winkler, Live Video and Sound Processing.for Dance,

Video, Technology and Performance Festival,Brown

University April 4-5, 2003. Paper available online at:

http://www.brown.edu/Departments/Music/faculty/w
inkler/papers/

A prescription:

... there should be a correspondence between the
size of a control gesture and the acoustic result.
Although any gesture can be mapped to any sound,

instruments are most satisfying both to the per-

former and the audience when subtle control ges-

tures result in subtle changes to the computer's
sound and larger, more forceful gestures result in

more dramatic changes to the computer's sound.
D. Hewitt, I. Stevenson, E-mic: Extended Mic-stand

interface controller, Proceedings of the 2003 Conference

on New Interfaces for Musical Expression.

The underlying physics of movement lends insight

into the selection of musical material. Thus, a deli-

cate curling of the fingers should produce a very

different sonic result than a violent and dramatic leg

kick, since the size, weight and momentum alone

would have different physical ramifications. To do

this, physical parameters can be appropriately

mapped to musical parameters, such as weight to

density or register, tension to dissonance, or physi-

cal space to simulated acoustical space, although

such simple one-to-one correspondences are not

always musically successful.
From T. Winkler, Making motion mnusical: Gesture Mapping

Strategies jor Interactive Computer Music. Proceedings of the

1995 International Computer Music Conference. San

Francisco, International Computer Music Association.

Or a vista of possibility:

More furious and strenuous activity, for example,

could result in quieter sounds and silence. At the

same time, a small yet deliberate nod of the head

could set off an explosion of sound. Such "unnatu-

ral" correlations makes motion all the more mean-

ingful.
ibid.

Objects such as a coffee mug can be instrumented
and interactions with them mapped to sounds.

R. Hoskinson, K. van den Doel, S. Fels, Real-tine Adaptive

Control of Modal Synthesis, Proceedings of the 2003 Con-

ference on New Interfaces for Musical Expression.

Several mapping metaphors were explored; e.g.

tongue position was used to play a physical model of

the singing voice.
M.J. Lyons, M. Haehnel, N. Tersutani, Designing, Playing,

and Performing with a Vision-based Mouth Interface, Proceed-

ings of the 2003 Conference on New Interfaces for

Musical Expression.

The system must be flexible in respect of providing

unlimited mapping arrangements.
D. Hewitt, I. Stevenson, E-mic: Extended Mic-stand

interface controller, Proceedings of the 2003 Conference

on New Interfaces for Musical Expression.

What these principles are meant to address is that

the programmability of computer-based musical

systems often make them too easy to configure,
redefine, remap, etc. For programmers and compos-

ers, this provides an infinite landscape for experi-

mentation, creativity, writing papers, wasting time,

and never actually completing any art projects or

compositions.
P. Cook, Principlesfor Designing Computer Music Controllers,

ACM CHI Workshop in New Interfaces for

Musical Expression (NIME), Seattle, April, 2001.

The tablet we use allows for simultaneous sensing of

two devices, usually one in each hand. This rich,

multidimensional control information can be

mapped to musical parameters in a variety of inter-

esting ways.
D. Wessel, M. Wright, Problems and Prospects for Intimate

Musical Control of Computers, Computer Music Journal, 26

(3), MIT Press, 2002.
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The difference between success and failure, for

the performer:

One or two reported on their check for causality

between mouth action and aural effect: they found

it sometimes easily visible but quite obscure at other

times. This appeared to be mainly a function of the

mapping.

M.J. Lyons, M. Haehnel, N. Tetsutani, Designing, Playing,

and Performing with a Vision-based Mouth Interface, Proceed-

ings of the 2003 Conference on New Interfaces for

Musical Expression.

and for the audience:

The two primary goals of the mapping process are

firstly to have a satisfying communicative relation-

ship from an audience perspective and secondly to

create a workable relationship from a performers'

perspective which meets the requirements for sat-

isfactory control of the sound source and allows

high level performance skills to be developed.
D. Hewitt, I. Stevenson, E-mic: Extended Mic-stand

interface controller, Proceedings of the 2003 Conference

on New Interfaces for Musical Expression.

While in traditional acoustic instruments the effects

of the performer's physical activity on an instru-
ment are already established by the physical proper-

ties of the instrument, in electronic instruments this

relation must be previously designed. Mapping this

relation can be critical for the effectiveness of an

electronic instrument. [...]

The absence of a unique gestural mapping prevents

the performer from deeply exploring the system's

controlling mechanisms at the same time that it
prevents the listener from connecting visual input
and music.
F. Iazzetta, Meaning in Musical Gesture, in: Trends in Ges-

tural Control of Music, M. M. Wanderly and M. Battier

(eds.) IRCAM, 2000.

The central problem that the artist faces:

We emphasise the importance of the mapping be-

tween input parameters and system parameters, and

claim that this can define the very essence of an

instrument [...] Moreover, the psychological and

emotional response elicited from the performer is

determined to a great degree by the mapping.
A. Hunt, M. M. Wanderley, M. Paradis, The importance of

paramneter mapping in electronic instrumnent design. Journal of

New Music Research 23(4) 2003.

Just as the subject of a fugue must be thought out

for its potential for future exploration and expan-
sion, here too, the composer is challenged to find
musical gestures that serve the dual purpose of cre-
ating melodic interest while generating a function
applicable to signal processing.
T. Winkler, Interactive Signal Processing for Acoustic Instru-

nents, Proceedings of the 1991 International Computer

Music Conference. San Fancisco, International Com-

puter Music Association.

The solution endlessly deferred as future work:

The next stage in the process is to develop workable

mapping strategies and to implement the composi-
tional process.
D. Hewitt, I. Stevenson, E-mic: Extended Mic-stand

interface controller, Proceedings of the 2003 Conference

on New Interfaces for Musical Expression.

The opportunity and challenge of this system is to

devise strategies for mapping so very many degrees

of freedom into a meaningfully expressive whole.
C. Dobrian, F. Bevilacqua, Gestural Control of Music Using

the Vicon 8 Motion Capture System. Proceedings of the

2003 Conference on New Interfaces for Musical Expres-

sion.

Since my sound processing software is in continual

development, no definite mapping scheme is in use

yet.
C. Palacio-Quintin, The Hyper-Flute, Proceedings of the

2003 Conference on New Interfaces for Musical Expres-

sion.

However, even with more meaningful feature ex-

traction,finding compelling mappings for the output
of such a system will continue to be a challenge.

D. Merrill, Head-Tracking J'or Gestural and Continuous Con-

trol of Paraneterized Audio Eflects, Proceedings of the 2003

Conference on New Interfaces for Musical Expression.

Current work with the Metasaxophone involves

continued exploration of extended mapping possi-

bilities for physical models.
M. Burtner, The Metasaxophone: concept, implementation. and

mapping strategies for a new computer music instrunent. Or-

ganised Sound 7(2): 2002.

A lot of the ongoing work on the visual feedback is

going to be included into the working prototype in

the near future and we have been working inten-

sively on the object design and mapping issues,

which will also be reflected in the final instrument
design.
M. Kaltenbrunner, G. Geiger, S.Jorda, Dynamic Patches for
Live Musical Performance, Proceedings of the 2004 Con-

ference on New Interfaces for Musical Expression.

Mappings allow for any sound to be mapped to any
input arbitrarily, and the extreme freedom and

range of possibility makes it hard to construct map-

pings that look and sound "real" to an audience. It is

still not well understood how to construct mappings
such that they intuitively map well to an action; this
is because interactive music is still an extremely new
art form.
T. Marrin Nakra: Synthesizing expressive music through the

language of conducting. Journal of New Music Research.

2002, 31 (1). 2001.
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For a survey of synesthesia from both an artistic
and biological perspective:

R. B. Cytowic, Synesthesia: A Unity of the Senses,

New York: Springer-Verlag, 1989.

Continued from above: T.Winkler, Making notion musical: Gesture

Mapping Strategies for Interactive Computer Music. Proceedings of the

1995 International Computer Music Conference. San Francisco,
International Computer Music Association, pp. 261-4.

Of course, mathematicians have stretched the potential field of meaning of the

above equation beyond all the horizons that we can see from here; almost any-

thing could be written as the above definition. But if this definition has no lim-

its it has no use. In practice one can sense in this "function-like" aspect of map-

ping is a kind of college-level, piecewise linear or otherwise smooth, locally

stationary, state-less, typically decomposable relationship between input and

output. Such a vision acts as a normative idea of how, in this field, numbers get

transformed into numbers. The best work in the field, of course, pushes against

this central tendency, but the rules and arena remain fixed.

This term, and the ideas it accretes, spans decades. The source of the lasting

power of this description of interactive art is hard to locate exactly. It would be

tempting to suggest that it is residue from the early century tropes of synesthe-

sia, and eurythmics interacting with the purely technical possibilities of the

"multi-media". Perhaps it is a weak theoretical echo of the color organ or the

Theramin. More likely, however, is that it was brought into the field from ana-

logue music synthesizers and never left, reinforced, as we will suggest later in

this work, by the tools and environments used and promoted by artists them-

selves. These tools continue to suggest that the interchangeability and equiva-

lence of the digital signal has in some way a predictive or explanatory power over

the relationships between disparate media.

In dance technology it is not hard to find statements concerning mapping that

simply rejoice in the potential of digital tools:

By being aware of these laws, it is possible to alter them for provocative and in-

triguing artistic effects, creating models of response unique to the computer.

More furious and strenuous activity, for example, could result in quieter sounds

and silence. At the same time, a small yet deliberate nod of the head could set off

an explosion of sound. Such "unnatural" correlations makes motion all the more

meaningful.

133



The community itself is turning against the term: for

example, the New Interfaces for Musical Expression
Keynote in 2002:

3. Chadabe, The Limitations of Mapping as a Structural

Descriptive in Electronic Instruments. Proceedings of New

Instruments For Musical Expression, Dublin.

These articulations are often no more complex than: if the dancers move quickly

the music gets louder, or that the bass notes are blue and the treble red. Unless

one has unshakeable faith in a broad, universal synesthesia or a natural order of

relationships, these function-like statements are equally meaningful when in-

verted: the dancers move quickly and the music gets softer.

The term "mapping" is clearly outliving its usefulness and its predictive and ex-

planatory power has long left us. If this "map-ism" is deployed as a metaphor,

what does it metaphorically connect with? Are there interesting physical systems

that are satisfactorily read in this way? Do any of the natural analogues that

researchers are also interested in map anything? what part of a flute transforms

concrete, quantized measured data? what part of the audience manipulate a

stream of readings? If we are interested in interaction, why start with a formula

that goes only one way? If it is only a metaphor, why then is it embodied directly

in data-flow interfaces and underling architectures of common digital art tools?

The agent metaphor, developed in this thesis in a manner of particular use to

art-making, stands directly opposed to mapping in this most banal sense; and I

believe it to be of more use than the term in its more diffuse applications.

At the very least it will allow access to interactions that this function-like stance

does not. Indeed, the agent's very autonomy acts to prevent a deeply penetrating

analysis input to output from having any long term success - in describing the

behavior of an agent - or synthetic utility - in thinking about how to build

an agent to do something. The complication, and this opposing agent "meta-

phor" helps illuminate the roots of mapping's troubles. One weakness stems

directly from the flattening of detail, inherent in words that populate the de-

scriptions of maps: "move quickly", "louder' "bass", "blue", that comes just prior to

tying these surface properties together. This is a category error perpetrated by the

artist on their own thinking and practice - confusing a way of measuring or a

way of controlling something with the thing itself; confusing part of the effect



(appearance) for the totality of the cause (process); confusing a particular con-

trol surface (the volume knob) or a particular derived quantity (say, the sum of

distances divided by times) with a more internal structure of the process and

the context which to my eye is never flat, never just a number waiting be

plucked from nature by hardware.

On the one hand this is a particularly surprising mistake for the digital artist to

make, for unlike the scientist or engineer who takes nature as they find it, they

have at least partial responsibility for both the surfaces - the controls and the

viewpoints - and much of the thing being controlled or viewed. Be it the view

from psycho-physics, computer science, or digital art itself, these simple num-

bers and parameters are only byproducts of selected solutions, not the givens of

any particular problem domain. On the other hand it is an understandable

strategy. In quickly binding "sensor" to "output" inside a digital setting, mapping

deflates the awesome potential of the algorithmic before it can appear. The space

of algorithmic relationships is slowly and safely explored on a scaffolding of one 35

sensor to output thread at a time. The vertiginously parametric opportunities of

digital tools are both the object of fascination of the digital art world and its

greatest fear. They are, in much of the community's work, collapsed and hidden

from view by its very conception of the problem.

Where the connective statements of maps do have an importance is either in the

micro-scale of the hardware and software that executes a work or in the broad

strokes of a preliminary sketch. Pieces of hardware and software must and do

pass numbers between themselves - but the days have long passed when there

were efficiency or protocol problems that put this level of discussion at the fore

of this field's theorizing. Developers, collaborators must and will pass general

ideas around concerning what might happen and when and will make such

broad connective statements - but, again, have we not moved beyond a time

when these connections could justifiably mark the end rather than the begin-



ning of a discussion? The field of potential is too large to be explored armed

only with these statements and the work is too difficult for them to be of much

lasting use. Mapping should be receding in digital art's rearview mirror, not as a

solved or exhausted problem, but as an idea either too small or too broad to

really fit with the tasks and the opportunities at hand.

Toward the agent

I believe that many tools today fall into the category of allowing artists to try

more things faster. For example, the Max series of graphical environments:
http://www.cycling74.com.

As for the emerging trend towards using unsupervised techniques for "advanced

mapping", a few recent examples: A. Cont ,T. Coduys , C. Henry, Real-time Gesture

Mapping in Pd Environment using Neural Networks.

and,J. Mandelis and P. Husbands, Don'tJust Play it, Grow it!: Breeding

Sound Synthesis and Performance Mappings

Both are from the Proceedings of the 2004 conference on New

Interfaces for Musical Expression, Hammamatsu, Japan.

R. Bencina,The Metasuirace - Applying Natural Neighbour Interpolation to Two-to-Many

Mapping. Both are from the Proceedings of the 2005 conference on New

Interfaces for Musical Expression, Vancouver, Canada.

However, underneath this possibly falsely unifying term, there is an interesting

and relevant story underway in the literature, which again our competing agent

metaphor helps diagnose. I possess the following suspicion about the develop-

ment of mappings: that as we seek to build better mappings, we are led from the

simplicities of"complete specification" - the connecting the wire between input

and output - down two divergent routes with inevitable termini. The first of

these is better interfaces for complete specification, ones that yieldfaster ways of

exploring that space of wires. The second is, sometimes disguised, unsupervised

machine learning - to give us easier ways of describing the mappings of space.

The former path leads to the environments that dominate today - advanced

tools for trying out a relationship, discarding it, tuning it, trying another. These

are the tools that are commodified, taught in schools and have had to date more

permanence than most of the art made with them. They allow the working art-

ist to confront the space of possible mappings, to confront the potential devel-
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Interaction - Mapping p "Smarter" Mapping P The agent -- Al

figure 3. A depiction of the trend towards "smarter
mapping" found in the academic literature of

interactive art. What comes after this piecemeal
approach to "smartness" ?

Interaction NoMapping p, Mapping "hardware" - -, Faster Tools - -. New Tools

figure 4. A depiction of the trend towards "faster
mapping". The dominant tools available today are

constructed by analogy with the early "hardware" of

interactive art and concentrate on alowing the artist
to try a large number of alternative mappings. What

comes after the simple speed and flexibility of
software over hardware?

There is a story here that goes in an altogether different direction
from art back towards the biological:

M. Whitelaw, The Abstract Organism: Towards a Prebistory for A-Life

Art, Leonardo Vol. 34, No. 4, 2001.

and indeed my thesis shares a broad sensibility with this article's
primary text:

P. Klee, The Thinking Eye, George Wittenborn, NY, 1961.

A more sustained reflection on this artist's relationship to
contemporary art practice can be found in:

P. Boulez, Le Pays Fertile: Paul Klee, Editions Gallimard, Paris, 1989.

oped by digital manipulation by trying out more things more quickly. The latter

path leads toward nothing less than supervised machine learning - environ-

ments for training mappings, and inducing them out of interactions. These,

rather more niche and rather more academic ideas, seek to allow the working

artist to confront that unknown space of potential by trying out smarter things

and by navigating around the space in smarter ways. Ironically, we might say

that these tools seek to actually provide a useful map for the space of mappings.

As this latter thread becomes more developed, and its systems meet the realities

of rehearsal and distribution as well as the opportunities afforded by complex

assemblages of code and more sophisticated artistic intentions, I believe that it

will end up squarely in the domain of artificial intelligence.
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This engineering, or authorship perspective, is given a broad
manifesto in: R. Brooks, Intelligence without Representation,

Artificial Intelligence, 47 (1991) 139-159.

For an emphasis on this human-level description, for example:

"Artificial intelligence is the science of making machines do
things that would require intelligence if done by men"

from M. Minsky, Scmantic Information Processing, MIT Press,

1968.

This is accompanied by, but not indistinguishable from, an

emphasis on human-level problems in that work. My thesis work

breaks with any remaining Al tradition of human replacement

and instead focuses on an Al thread of human augmentation in

the broadest sense - augmentation by both the artifact (the

finished artwork is not something that I could create by hand)

and the techniques for creating the artifact (the ways in which

that "finished" is defined and found are inconceivable without
the Al).

Artificial intelligence, as articulated by its pioneers, is nothing less than the task

of getting computers to do the "right thing" - despite our inability to describe

in the kinds of ways that computers prefer what the "right thing" is, or at the

kinds of detail that computers demand what the operating environment will be.

AI is thus the study of and construction of new ways of articulating how sys-

tems should behave given a higher level, a more human level, a more convenient

description of the desired behavior and the environment in which they will op-

erate.

This thesis starts at the opposite end of this reading of modern interactive digi-

tal art. Rather than start with mapping in micro or macro and move toward

either art environments or academic artificial intelligence, it starts with both Al

and the tools for art-making, and heads towards interactivity, "multimedia"

transformation and connection.

Of course there is a reason why this direction is against the flow of the commu-

nity. Making live interactive programs that are artificially intelligent is a difficult

and obscure pursuit, and only recently has it made sense to move away from

solely focusing on increasing the scope of what computers can do (the size of

the potential field) to devote a little time to considering the practice of making

them do it (how that field is navigated). Digital artists need new ways of con-

ceiving their digital methods in order to take advantage of these opportunities. I

also believe that while I "demonstrate" this point in a few fields, confined pri-

marily to interactive art, the importance, and potential impact, of this navigation

from Al towards meaning-bearing relationships is much broader than this, and

indeed might be as broad as digital and algorithmic design itself. This broader

context will be indicated most strongly when I focus on the tools that I have

constructed partially in response to the difficulties of transferring my chosen

approach into my chosen fields.
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3. The agent

The decomposition is from R. Brooks, Intelligence without Reason, MIT

AI Lab Memo 1293.

The decomposition of action-selection details is from R. Brooks,

Challenges for Complete Creature Architectures, In Proceedings of the first

international conference on simulation of adaptive behavior, Paris,
France, 1991.

This is similar to the set of concerns given by: P. Maes, Modeling

Adaptive Autonomous Agents, Artificial Life, 1 (1), 1994. pp. 135-62.

Elsewhere in the literature we see the terms behavior-based and interactionist to

refer to this style of artificial intelligence practice. For our purposes here these

terms are indistinguishable and merely serve to re-indicate the emphasis on

finding an Al practice that is focused on the how the agent acts in, on and with
the world.

By starting where I believe the field is heading, almost inevitably, in a piecemeal

fashion and by doing so in a way that is open to influences and problems across

both computer music and computer animation, I hope to be able to create new

classes of artworks, new classes of experiences, in new ways. To make the above

stratagem realizable, both AI and digital tools need significant and careful navi-

gation and revision. That is what this thesis sets out to start.

Work presented in this thesis will therefore take the Al community's concept of

the agent as its central organizing principle and offers this as a replacement for

dance technology and interactive arts mapping.

Before sketching its relationship with the history of Al, we should begin with

the pioneers of the agent-based. Brooks cites four hallmarks of this nouvelle AI,

or what we are calling here agent-based style of work: situated - the boundary

between the agent and the world is porous, with the world directly influencing

the system; embodied - the agent acts upon the world and immediately senses

itself acting; intelligent - as acting in the world as far as judged by outside

observer; emergent - this intelligence is not confined to particular computa-

tional engine, nor is responsibility for the external action located in one par-

ticular place but arises out of the agent's interaction with the world.
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Note that in: M. Minksy, Society of Mind, Simon & Schuster, New York,
1988, We see a broader, more inclusive and more abstract use of the

term agent - his Society of Mind is a radically heterogeneous society of
mindless agents, none of which have the scale of, or the same structure

as, the normative agent model described here. We shall start with this
large, monolithic agent description and move towards the

heterogeneity of Minsky's society, but we will keep the term agent for
the "creature-as-a-whole"

figure 5.
The agent, for our definition here, is decomposed into three parts

- perception, action and motor systems.

In software agents, which are the only ones discussed in this work, we expand

upon the definition of the"world" to include software worlds (although for in-

teractive systems these worlds are in turn connected to ours), and we expand

upon the definition of "body" to include software bodies - control structures

that operate on material that can be rendered graphically. Indeed, part of the

contribution of my work is to push the agent-based approach into new worlds

(dance theater, and to a lesser extent computer music) and new bodies - musi-

cal bodies and non-constant, non-figurative bodies.

We will need some more terms, and a more concrete model of an agent to pro-

ceed through this. One segmentation that I propose, which is both generic and

useful, decomposes the software agent into three coupled systems, which we

shall label as the perception system, the action system and the motor system. I

believe this picture can be read into, if not readfrom, much agent-based work

- it is a generically descriptive decomposition of many practitioners' agent

architectures.

Describing the "contents" or the fields of competences for each of these systems

will be a task undertaken throughout this document. However, some starting

points are of use.

The perception system of an agent is the area thattakes the world as it finds

it and begins to transform it into a form more convenient for the creature.

Often this is where measurements become symbols, where raw sensations

given in what form hardware and the world can offer become categorized,

or at the very least scaled, filtered and perhaps fused. In Dobie, a synthetic

dog that can be trained in many of same the ways that a real dog can, the

perception system holds onto and adapts models of spoken commands

ready to classify the incoming speech from the trainer; in how long.., many

agents' perception systems try to follow dancers from the stage despite the

presence of noise and missing information. The flow of control, update
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Additionally, in the systems developed for this thesis, we add an

additional infrastructural "system" for the purposes of internal
communication

and activation of a perception system is only partially under the "control"

or the autonomy of the agent, and it is necessarily shared with the

moment-to-moment changes in the world.

The motor system of an agent is the area that coordinates the body's rela-

tionship to the world. Often, this is where the commands of the action

system meet the constraints of animation and the constraints of the world.

It is most often the site of expectations about how the body should move

in and interact with the world, and ongoing monitoring of how progress is

being made. In the case of graphical (and musical) agents it is where pre-

made material, often on its own terms, enters the agent. This material is

spliced, blended and layered to synthesize the manipulation of the agent's

body. In Dobie, the motor system splices, blends and layers from a library

of pre-made, hand-made dog animations; in how long.., agents with no

natural analogue often find and integrate their motion material by sam-

pling movement from the stage. The flow of control, update and activation

inside a motor system is only partially under the command of the action

system of an agent, and only partially under the command of imperatively

written code made ahead of time. This control is necessarily shared with

constraints of the agent's material and the uncertainties of the body which

it controls and world in which it acts.

The action system selects the actions to perform based on the perceptual

state and the state of the motor system and articulates these selections to

the motor system. Using the language of Brooks an action system is usu-

ally judged by three criteria: salience - are the actions appropriate and

relevant to the context?; coherence - do the actions make sense to an

observer over time?; and adequacy - are the actions in toto sufficient to

get the creature to achieve its goals?. We can fine-tune these criteria from

the point of view of an author of an agent: salience - has the creature, in

integrating its perceptual world, taken advantage of the correct aspects of
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world, or responded to the unexpected in the correct way?; coherence -

does the temporal patterning of the actions chosen amount to something?;

and adequacy - has the creature enough actions, and enough competence

to explore and modify its actions to yield the desired long-term behavior?.

This diagram also hints at the "execution cycle" of each of these systems. Often it

is translated directly into a sequential update of perceptual, action and motor

systems in order to complete one "evaluation" of the agent. It is further, but

rather confusingly in this presentation, the place where the terms "bottom-up"

and "top-up" act. In our case here the sense of gravity is reversed, and bottom-

up, or the data-driven, enters through the perception system from the top, and

the top-down, or agent-driven, is exerted from the core outwards.

Although the predominant flow in this diagram is from top to bottom, there is

much, in a complex creature, that goes the other way. Perceptual states can be

created from proprioception of the state of the action system, the state of the 42

motor system or the state of the body itself. In action systems that support the

learning of new relationships, it is the action system that guides the perceptual

development. Such is the confusion, at this level of discussion, of the flow of

communication between these systems that we draw an alternative diagram,

with an additional box, labeled "working memory" This area in the systems that

are built for this thesis is where much of the complex communication occurs,

and forms a better description of the systems as implemented than the alterna-

tive tangle of arrow.
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figure 7.
In the interactive robot, Kismet, Breazeal et al. divide the internal mechanisms

as above. Coloring as per figures 1 and 2. From C. Breazeal, A Motivational System

for Regulating Human-Robot Interaction, Proceedings of AAAI-98.

Interface
DLL

Socket
I/O

figure 8.
Further afield, Aaron Sloman's more "human level" artificial intelligence framework still per-

mits a similar decomposition. Note that in this work, as is typical with such architectures, the

space devoted to motor system issues is vastly reduced. Coloring as per figures 1 and 2. From

M. Minsky, P. Singh, A. Sloman, The St. Thomas common sense symposium: designing architecturesfor

human-level intelligence. The Al Magazine, Summer 2004.

Perception-
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1/O

figure 9.
In this work the Soar general purpose Al architecture has been coupled to the computer game Quake. In this diagram, the"motor system" of

the agents is almost entirely located inside the computer game itself. From J. E. Laird, It knows what you're going to do: adding anticipation to a Quake-

bot, International Conference on Autonomous Agents, Proceedings of the Fifth International Conference on Autonomous Agents, 2001.

43

.1 1-- . - - ___ __ - - - __ - = - - - -'- - - - - fi t ,



A famous example of a robot implemented within the
subsumption architecture that collects soda cans is given in : J.

H. Connell, A colony architecturefor an artficial creature, MIT Ph.D.

Thesis in Electrical Engineering and Computer Science, MIT Al
Lab Tech Report 1151 (June 1989).

By the time we arrive at:

R. Brooks, Elephants don't play chess, Robotics and Autonomous Systems 6
(1990) 3-15,

the problems of fusing sensor signals prior to entry into the subsumption
architecture is becoming apparent.

The commencement of expressive robotics:

R. Brooks, C. Breazeal, R. Irie, C. C. Kemp, M. Marjanovit, Brian
Scassellati, Matthew M. Williamson, Alternative Essences of Inteligence,

Proceedings of the American Association of Artificial Intelligence
1998, AAAI Press, CA.

states this decomposition directly, as does: C. Breazeal, Sociable
Machines: Expressive Social Exchange Between Robot and H uman. Artificial

Intelligence Laboratory. Cambridge, MA, MIT. 2000.

This division between perception, action, and motor systems has been often

hidden, suppressed or marginalized in the literature. For example, Brooks's early

"subsumption architecture" work: where each subsumption layer might either

inhibit or suppress elements of the layer below it, Brooks typically builds his

own vertical architecture through sensor inputs, an augmented finite state ma-

chine "action selection" and motor outputs. The complexities of the sensing

(which in the case of the early robotic vision work were significant) or ordering

movement (which on wheel robots are insignificant) are left out of the diagram.

However, as the bodies of robots (and later graphical characters) grow more

complex and as the perceptual worlds of the robots also grow more complex,

"sensor input" as a description necessarily yields to something that is worth la-

beling perception system, and "motor output" similarly yields to "motor system.

By the time we arrive at humanoid robots this decomposition into perception,

action and motor competencies is evident and fundamental.

This decomposition will serve as a useful starting point for our further compli-

cations and recastings of the agent metaphor throughout this thesis.

Authorship and Al

The agent concept itself offers a way of navigating AI literature. But there is

another perspective on this body of work that is relevant to this thesis. This I

shall call the authorship stance - the descriptive and critical stance toward an

AI system that is based on what it like to make things inside it.

Descriptions of the creative process allowed or encouraged by practitioners'

systems are surprising hard to find in the extant literature, and they are a hidden

subtext to the papers, a secret currency between researchers. Classical, or non-

agent-based, AI research often approaches this stance obliquely and narrowly;

one can detect only hints of the engineering reality of the practice of AI under-
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neath a kind of academic politeness. Some of this trace manifests itself in the

questions commonly asked of published systems - does the system scale? is it

robust? These questions might be taken to be "can a person reasonably add to

the system without it collapsing?", "is it possible to debug?","how does it fail?".

These questions are typically the hardest for scientific method to reach, but of

significant relevance to this thesis - this is, after all, an argument for and an

articulation of an agent-based practice.

Of course what is reflected in the history of the field and the level of critique

and discussion in the field's papers, what one might call the science of AL, is only

partially related to the practice of AL. It remains to be argued elsewhere whether

this disconnect, indeed, this failure of academic Al discourse to integrate the

use of Al into the discussion, shares any blame for the growing unease with the

progress made by the field and the ambiguity of the relationship between a core

academic Al and the more clearly engineering pursuits of either computer

games or statistical machine learning. However, this peculiarity of the field is 45

unavoidable if one approaches it to press its developments and techniques to-

wards the service and synthesis of one's own art. For both broad-reaching

frameworks and individual algorithms stand or fall in this foreign domain based

not on their performance in the chosen micro-world or standard dataset, but on

the story that emerges when they are turned loose within another micro-world

- my micro-world - or on another dataset - the one that I'm faced with in a

theater or a gallery.

Some of the motivation for the agent-based - and other distinct but related

trends in the 80s and 90s such as connectionism and artificial life - came from

an often open and explicit authorship twist: a belief that reactive, connective,

adaptive or behavior-based systems avoid the burden of knowledge engineering

(i.e. knowledge authorship) and exploit a far closer relationship with statistical



On "repairing" the subsumption architecture to remove general
purpose computation: R. Brooks, How To Build Conplete Creatures

Rather 'Than Isolated Cognitive Simulators, in: Architectures for Intelligence,

K. VanLehn (ed), Erlbaum, Hillsdale, NJ, Fall 1989, pp. 22 5- 2 39 .

From R. Brooks,
Elephants don't play

chess, Robotics and
Autonomous

Systems 6 (1990)
3-15,

P. Maes, Modeling Adaptive Autonomous

Agents, Artificial Life, 1 (1), 1994. pp.
135-62.

machine-learning techniques to avoid the hand-tuning, assembly or even crea-

tion of systems altogether.

For example, we can use this position to reread Brooks's general appeal for sim-

ple natural analogs first, his structuring of layered behavior systems and his

desire to limit the complexity of each layer to something much less than a gen-

eral Turing machine, as authorship prescriptions - the attempt to create sys-

tems that survive in complex worlds without the unconstrained complexity that

characterized previous approaches.

In our experience debugging the subsumption programs used to control our
physically grounded systems has not been a great source of frustration or diffi-
culty. This is not due to any particularly helpful debugging tools or any natural
superiority of the subsumption architecture. Rather, we believe it is true because
the world is its own best model (as usual). When running a physically grounded
system in the real world, one can see at a glance how it is interacting. It is right
before your eyes. There are no layers of abstraction to obfuscate the dynamics of
the interactions between the system and the world. This is an elegant aspect of
physically grounded systems.

Elsewhere the explosion of energy surrounding the related fields of neural net-

works, genetic programming and artificial life in general in the 1980s and 90s

was fueled by the promise that these techniques seemed to have to dodge the

whole question of system authorship.

However, Pattie Maes follows Brooks's lead and articulates the basis for consid-

ering the software agent away from the world of robotics, virtually embodied in

our computers as user interface or online as acting on our behalf. In this work

she explicitly judges action-selection strategies based not on their mathematical

qualities, experimental results or, in our terms, the field of potential developed,

but based on how easy or hard it is to make agents out of them.
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Overview from: P. Maes, Modeling Adaptive

Autonomous Agents, Artificial Life, 1 (1),

1994. pp. 135-62.

L.P. Kaelbling and S. Rosenschein, Action and Planning in
Eimbedded Agents, In: Designing Autonomous Agents: Theory

and Practice from Biology to Engineering and Back, edited by P.

Maes, MIT Press/Bradford Books, 1990.

B. Blumberg, Action-selection in hansterdan: lessons fron

ethology. Proceedings of the Third International
Conference on Simulation of Adaptive Behavior,

Brighton UK, 1994.

Evidence of this courtship includes a spate of "practical" books, including
the Al Game Programming Wisdom series:

S. Rabin, Al Game Programming Wisdom 1-2, Charles River Media,

Cambridge MA, 2002-3.

Even more conservative, the AI sections of the game programming gems
series: M. Deloura, Game Proganmming Gems 1-3, Charles River Media,

Cambridge, MA, 2000-2.

and, M. Buckland, Programming Game Al by Example, Wordware Publishing, 2004.

Maes plots a line through the "hand-assembled, flat structures" of early Brooks,

the early work of Leslie Kaelbling and Stanley Rosenschein on agents with ex-

plicit goals, and Maes's own "compiled" flat behavior networks towards the

hand-assembled hierarchical structures of Bruce Blumberg. Again, by the time

we reach Blumberg the demands of authorship, and the complexities of the

micro-worlds in which the agents are put to work, are necessitating new, more

authorable, action-selection mechanisms as well as a clearer statement of the

perception / action / motor system decomposition of the (in this case) graphical

embodied agent. This is less of a shift of emphasis than a clarification of what

agent-based AI has really been trying to find since its conception - a way of

making things.

Concern for how Al agents are authored takes one directly toward another field

very related to the work presented here - graphically embodied interactive

agents. This field has always had a little more concern for the techniques and

difficulties of actually authoring characters, being closer to interaction design,

digital entertainment, and computer game production.

Here of course, there are a number of examples of successful computer games

that incorporate artificially intelligent characters and mainstream academic Al.

The computer game industry is in the middle of an ongoing courtship limited

on the one side, I believe, by the willingness to articulate a useful authorship

position by academic AI and on the other by an willingness to create new game

genres that truly require and exploit artificial intelligence.
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Maxis. 77c Sims, published by Electronic Arts. 2000-.

Millennium Interactive Ltd. Creatures, 1996.
- however, see S. Grand, D. Cliff, A. Malhotra, Creatures: artificial life

autonomous software agents for home entertainment. Proceedings of the first

international conference on Autonomous agents, ACM, 1997.

Bandai, Tamagotchi, 1996-7.

Lionhead Studios, Black & White, published by
Electronic Arts. 2002.

K. Perlin and A. Goldberg, Inprov: a system for

scriptimg interactive actors i virtual worlds. In:

SIGGRAPH 1996 International Conference on
Computer Graphics and Interactive Techniques,

Proceedings of the 23rd annual conference on
Computer graphics and interactive techniques.

ACM, 1996.

More detail concerning the motor level issues
confronted in this work is given in: K. Perlin, Real

Tine Responsive Anination with Personality, IEEE

Transactions on Visualization and Computer
Graphics, 1 (1), 1995.

Of the most notable recent successes The Sims for example succeeded in domi-

nating if not forging a genre based on manipulatable synthetic people - dodg-

ing many of the more complex issues of making these characters smart by suc-

cessfully basing their smartness on a vast array of objects and events with which

the characters can interact. Earlier the successful Creatures got quite far with a

very interesting agent framework - I believe it is telling that one of the most

popular extensions to that series was the "creature science kit" that enabled play-

ers to directly manipulate (author?) aspects of the creatures. It is perhaps also

telling that there are striking parallels between the online communities that

went up surrounding Creatures' success and the craze for the altogether un-

intelligent Tamagotchi that came much later. Perhaps the success of these AI-

based games has less to do with crafting a genuine Al-based genre that it ini-

tially appears. The recently interesting game Black & White - based on a cen-

tral, learning agent - was certainly criticized by some as failing to find a stable

genre - opting to combine instead world-building, role-playing and straight

out fighting elements. The promised Al revolution of computer gaming has yet

to take hold.

However it is possible, in the field of graphical characters, both to remain inside

academia and yet stray too far from our AI roots. Ken Perlin and Athomas

Goldberg's classic Improv architecture appears at first to solve the whole problem

- that of authoring interactive graphical characters or actors with personality

- through the creation of simple, hierarchical scripts. Indeed, in reading these

papers one might be forgiven for thinking that the problem - creating live in-

teractive creatures with shallow but broad artificial intelligence - never existed

in the first place, but rather was a cruel hoax perpetrated by Al researchers (and

programming language researchers) on the animation, game design and artistic

community at large.
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A. Goldberg, Improv: A System fjr Real-Time

Animation of Behavior-Based Interactive Synthetic

Actors. In Lecture Notes in Artificial Intelligence,
Vol 1195, R. Trappi P. Petta (Eds.), 1997.

Similar criticisms can be levied against other animation-based work that
appears to take on the problem of creating complete characters - for

example: J. Cassell, T. Bickmore, M. Billinghurst, L. Campbell, K. Chang, H.
VilhjAlmsson, H. Yan, Embodiment in Conversational Interfaces: Rea.

Proceedings of the CHI'99 Conference. 1999.

J. Cassell, H. H VilhjAlmsson, T. Bickmore, BEAT The Behavior Expression

Animation Toolkit. In: SIGGRAPH 2001, International Conference on
Computer Graphics and Interactive Techniques. Proceedings of the 28th

Annual Conference on Computer Graphics and Interactive Techniques,
ACM, 2001.

A closer look at these papers hints at the underlying problem that is not solved.

That Perlin and Goldberg's architecture diagram omits any role for perception

is an important clue. It is true that the interaction between the "behavior sys-

tem" (the nest of scripts) and the "motor system" is a strong, indeed a seminal,

contribution. That their motor system for character, with all of its kinematic,

physical and content-level constraints survives when connected to its rather

unpredictable action-system scripts is an important success. However, the inter-

action between this script-driven"behavior system" and the dynamic, unpredict-

able world is absent. Not a single one of the example action scripts in Goldberg's

Lecture Notes in Artificial Intelligence paper talks about an external perception,

influence or input, let alone one that can change by itself at an inopportune

moment in a script's ballistic unfolding. This architecture, as applied to the

problem of action selection in even simple, unscripted worlds, offers a outsider

at least, little in the way of authorship strategies or tactics. As this line of work

emphasizes the problems faced by the meeting of animation and action, these

papers offer a lasting contribution. However, the "AI authorship problem" re-

mains.

Emergence, artificial life and digital art

It might come as a surprise, then, that it is at the very point when artificial intel-

ligence's anti-authorial positioning is at its greatest that the fusion of art and AI

reach their apogee, as art approaches the excitement surrounding artificial life

and emergent systems.



C. G. Langton (ed.), Artificial Life, Addison-Wesley,
CA, 1989.

On defining emergence: E. M. A. Ronald, M. Sipper, M. S.
Capcarrere, Design, Observation, Surprise! A Test of Emergence. Artificial

Life 5: 225-239 (1999).

ALife reconsiders its progress and its lack of progress at the turn of
the millennium:

M. Bedau, Artificial Life VII: Looking Backward, Looking Forward.

Artificial Life 6: 261-264 (2000)

Artificial Life's point of origin is usually given as a workshop organized by Chris

Langton around the study of living systems without biological structures - a

field concerned with "life-as-it-could-be", the formal basis for life, rather than

"life-as-it-is", the material basis of life. Unlike artificial intelligence the focus is

very much on evolution, morphogenesis, and metabolism and in particular, on

emergent structures.

Emergence is characterized by systems of prodigious yet ultimately rather un-

controllable and unengineerable production. The academic fields that momen-

tarily looked set to fuse to create a stable artificial life alloy have apparently

moved apart and onward, yet contemporary artificial intelligence, indeed, any

interdisciplinary academic field that occurs after 'A-Life", has failed to get com-

parable traction in the field of digital art - either in art theory or in art prac-

tice. We must revisit this power that emergent systems had over digital art if we

are to construct a new analysis of Al's potential to provide tools for digital art-

ists.

Emergence itself is a difficult term to define, although a number of technical

definitions exist. A most useful definition - seriously proposed at a time when

Artificial Life was reconsidering its history - ties "genuine emergence" to a

"lasting surprise" at a whole given an "apparently adequate description of its

parts'" This definition neatly captures the relationship between the captivating

"coolness" of emergent phenomena, explaining some of the prevalence of"emer-

gent art" over the last two decades, and their utter un-engineerability (or un-

authorability). If an emergent phenomena stands or falls on the excitement of

getting more out than one puts in, it conversely offers little advice on how one

should go about getting anything in particular out of such a system. Artificial

Life's emergence then stands more as an anti-methodology than a constructive

practice and we should be as suspicious of"emergence" as we are of"mapping" as

a point of origin for an art-making.



Interaction -- Mapping

figure 10. A depiction of the axis between the hand-crafted
mapping and the "emergent" in digital art. This axis is not confined
to artworks with an explicit Artificial Life referent, we can detect a

more general trend in interactive art; a belief that by the
construction of complex systems, artists will gain access to new and

interesting meaning-bearing forms. But how can one author an
emergent system when the definition of emergence is the very

surprise surrounding its unforeseen appearance?

There are a number of reviews of the still growing body of ALife/Art
works. One review is K. Rinaldo, Technology Recapitulates Phylogeny:

Articial Life Art, Leonardo 31, No. 5,371-376 (1998). A more
comprehensive compendium is M. Whitelaw, Metacreation: Art and

Artificial Life, MIT Press, Cambridge, MA, 2004.

A retrospective review of the artists' work is: C. Sommerer and L.
Mignonneau, Art as a Living System: Interactive Computer Artivorks.

Leonardo, Vol. 32, No. 3, pp. 165-173, 1999.

More recent work is included in:

L. Mignonneau and C. Sommerer, Creating Articial Life for Interactive

Art and Entertainment. Leonardo, Vol. 34, No. 4, pp. 303-307,
2001.

In particular, the forms evolved in: K. Sims, Galapagos.
Installation.

Emergence - The agent

["Authorship"

However, there is a long history of the biological entering digital art through an

artificial life context and we should pause to contextualize this thesis with re-

spect to this work. Indeed, Artificial-Life-based art seems an ideal context to

locate work, such as this thesis, that seeks to handle the creation of complex,

biologically inspired art.

There is much precedent: for example, the highly influential work of Christa

Sommerer and Lauraunt Mignaux spans a number of installations that are

structured by allowing gallery-goers to meddle in the evolution of simulated

creatures - staying close to a natural analogue in both appearance and process

- in Interactive Plant Growing 1993, A-volve 1994, GEMMA 1996. Yet at the

same time these works contain profound, convenient and presumably deliberate

misreadings of genetics, eliding phenotype and genotype, morphology and em-

bryology. After all, in reality, manipulating individual base-pairs just wouldn't

make much sense. It is not that a more faithful instantiated biological system

would make for better art, but rather it's important to note that this line of biol-

ogy avoids the trickier problems of agent-based artificiality - phylogeny, ad-

aptation, behavior. From this perspective the equally influential work of Karl

Sims is both less ambitious and more complete, in that it tries more simply to

evolve creatures without genomic authorship on the part of the viewer and yet

-



M. Bedau, Artificial Life VII: Looking Backward, Looking Forward.
Artifcial Life 6: 261-264 (2000)

achieves graphics with astonishing apparent intentionality, strategy and even

character.

Indeed, since Artificial Life is characterized by anonymity and group dynamics

rather than personality and behavior, Artificial-Life-based art stands or falls on

its ability to guide the interaction away from individual effort, intention and

adaptation of the lives it purports to synthesize. This sleight of hand has re-

sulted in a disconnect between theorizing and rhetoric surrounding interactive,

Artificial-Life-based artwork. In fact, this literature reads like an argument for

artificial-intelligence-based artworks. Strictly in terms of artificial life as a pow-

erful meaning-bearing principle, gallery-goers are undeniably more familiar with

a dog than with a fungus, a genome or a population distribution. No matter

how artificial life bends or reprojects its biological inspirations and aspirations,

it will miss these relationships and readings.

Stepping back, we might ask how artificial life itself is doing as a scientific field

entering its middle age. According to recent reviews, one fundamental question

that is posing considerable difficulty concerns creating example simulations that

show multi-scale, and multi-level emergent properties. We know from nature

that extremely deep chains of self-organizing and self-regulative structures are

one of the hallmarks of biological systems.

This far on in the history of A-Life based art, the lack of plentiful systems that

produce higher-order emergent structures at this point reads more as an obitu-

ary than a call-to-arms for the intersection of artificial life and digital art. As

artists we are typically interested in structures that have more than one level.

Indeed, we typically assume that any rich starting place has more than one level.

If I cannot "emergently" get to someplace where one long time-scale governs a

shorter time-scale, where one space overlaps another, where a complex of small



For Brooks, see references above, for Minsky, this
is his central attack on mainstream Al in his

upcoming Emotion Macbine.

For example, many instances of this blindness to the agent are to
be found in: E. R. Miranda (ed.), Readings in Music and Artificial

Intelligence. Routledge, 1999.

objects coalesce into a complex large object, then it is time to reconsider the

excitement around the emergent.

As I have argued in my critique of mapping, the central problem of digital art is

not generating potential, it is working with it and within it- it is navigating it; it

is drawing an atlas with your collaborators and agreeing on the names of the

continents; it is remembering where you have been in the space; it is turning this

potential field into a work. And if the problem isn't generating potential, there is

no need to be excited should it turn up or rather emerge without much effort on

our part. Such easy possibility is not an omen of good art but an harbinger of

effort to come.

Other intersections between art and artificial intelligence often slice Al too

thinly - to glean potential without organization - building systems with

specific deep but narrow competences. This is a classic criticism levied against

main-stream artificial intelligence by both Brooks and Minsky at various points.

Of the recent compendiums of articles on the use of artificial intelligence in

music, the interdisciplinary corner of "art-making and AI" that has seen the

most activity, two aspects stand out: firstly, almost all of the introductory de-

scriptions of artificial intelligence fail to include the concept of an agent in their

ubiquitous opening survey (opting instead to find a neat binary opposition be-

tween symbolic AI and, say, connectionism).



Music and connectionism - collected in: P.M. Todd and D.G. Loy (Eds.) Music
and Connectionism. Cambridge, MA, MIT Press 1991.

However, the field continues, music and (recurrent) neural networks: D. Eck and

J. Schmidhuber, Finding Temporal Structure in Music: Blues Improvisation with LSTM

Recurrent Networks. H. Boulard, editor, Neural Networks for Signal Processing XII,

Proceedings of the 2002 IEEE Workshop. 747{756, New York, IEEE, 2002.

Music and generative grammars - E. R. Miranda, Regarding Music, Machines,

Intelligence and the Brain: An Introduction to Music and AL. In E.R. Miranda (ed.)

Readings in music and artificial intelligence, Hardwood Academic Publishers,
2000.

And, of course, the much more sustained analytic work of F. Lerdhal and R.

Jackendoff, A Generative Theory of Tonal Music, Cambridge, MA, MIT Press, 1983.

Music and genetic algorithms - one thread of research is concluded in: P. M.

Todd, G.M. Werner, Frankensteinian methods for evolutionary music composition. In: N.

Griffith and P.M. Todd (eds.), Musical networks: Parallel distributed perception and

performance Cambridge, MA: MIT Press/Bradford Books 1999.

Music and Markov models: L. Hiller and L. Isaacson, Musical Composition with a

High-Speed Digital Comnputer. Journal of the Audio Engineering Society. 1958. M.
Farbood and B. Schoner. Analysis and Synthesis of Palestrina-Style Counterpoint Using

Markov Chains" Proceedings of International Computer Music Conference.
Havana, Cuba. 2001.

Finally, Minsky's classic manifesto for why the border between music and Al
should be much longer and more intricate: M. Minsky, Music, Mind, and Meaning,

Computer Music Journal, Vol. 5, Number 3. 1981.

Robert Rowe's earlier work, Cypher, R. Rowe, Interactive Music

Systems: Machine Listening and Composing, MIT Press, Cambridge

MA, 1992.

David Cope's well known "Experiments in Musical Intelligence"
project(s), surveyed in: D. Cope, Virtual Music, Computer Synthesis

of Musical Style, MIT Press, Cambridge MA. 2001.

George Lewis's Voyager systems: G. Lewis, Interacting with Latter-
Day Musical Automata. Contemporary Music Review 18/3

(1995): 99-112.

Secondly, what practitioners mean when they write "music and artificial intelli-

gence" is almost always "music and something that some AI has found useful".

Ihus, we have admittedly fascinating work in music and the neural network,

music and genetic programming, music and Markov models (hidden or not),

music and self-organizing maps. Research that is a called "music and AI" is gen-

erally missing a strong "music and complex AI systems" vein. On the one hand,

this is unsurprising: artificial intelligence has always been encroached on by

machine learning, artificial life, and exploratory statistics. On the other hand

this is rather unexpected, given general interactive tendencies in this research

(both as tool-for-composer and instrument/partner for performance) and the

widespread acknowledgment of music as an art that, if it has a definition at all,

is defined by the broad range of faculties that it draws upon and synthesizes.

However, the standout exceptions, I believe, represent some of the best and

lasting work in the field of computer music. Robert Rowe, George Lewis and

David Cope have all built systems that have reached the openness, the mass and

heterogeneity that are hallmarks of actual "artificial intelligence" systems. The

former two have exploited in different ways the software agent metaphor and

framework; all three have at least addressed if not looked closely at the lan-

guages , tool-sets, and representations needed for their work from an authorship

perspective. We shall see shades of both Rowe and Lewis in the areas of this

work that are most resolutely computer-music directed, Loops Score and parts of

The Music Creatures.



Flavia Sparacino reviews her work with an agent-based bent in: F. Sparacino, G.
Davenport, A. Pentland, Media in performance: Interactive spacesfor dance, theater, circus,

and museum exhibits. IBM Systems Journal, 39 (3&4), 2000.

Claudio Pinanez's work in "computer theater": C. S. Pinhanez, Computer theater.
Technical Report 378, M.I.T. Media Laboratory Perceptual Computing Section,

May 1996.

The "Oz Project" is reviewed at its beginning: J. Bates, The Nature of Character in
Interactive Worlds and The Oz Project, Technical Report CMU-CS-92-200, School of

Computer Science, Carnegie Mellon University, Pittsburgh, PA. October 1992.

And near its end: M. Mateas, An Oz-Centric Review of Interactive Drama and Believable

Agents. Technical Report CMU-CS-97-156, School of Computer Science,
Carnegie Mellon University, Pittsburgh, PA. June 1997.

Its "successor" the "Faqade project": M. Mateas and A. Stern, Architecture, Authorial
Idioms and Early Observations of the Interactive Drama Facade. Technical Report CMU-

CS-02-198, School of Computer Science, Carnegie Mellon University,
Pittsburgh, PA. December 2002.

M. Mateas, Interactive Drama, Art, and Artificial Intelligence.

Ph.D. Thesis. Carnegie-Mellon University, December,
2002.

In the visual arts we see a similar pattern, and when an agent-based framework

is claimed we should eye it as closely as we inspect artificial-life-based art's bio-

logical inspiration. This is not to critique the success of the art itself, but to

inspect the strength and practical use of the metaphor. Flavia Sparacino con-

structs an "intentional agent"-based interactive graphical and music dance space

but the metaphor seems thin - the agent is missing a body of any complexity

to control and the work is much closer to the principles of mapping perceived

movement than the description immediately reveals. Claudio Pinanez sustains a

longer agent narrative within the field of interactive drama, using real actors and

live graphics, and his agents represent an important early perceptual contribu-

tion to understanding the drama realm live. Some of the fruits of Carnegie-

Mellon's "Oz" project are also of relevance, including the "Faeade" project and

more recent work, which has tried to broaden the possible cultural application

of AI considerably.

However, as the interactionist or agent-based reaches the fields of drama and

narrative, the possibility of an interaction between cultural production and arti-

ficial intelligence, as constructed by actual AI / art practitioners, is now being

seriously written about. Most related to this work is Michael Mateas's contribu-

tions to locating the classical AI versus interactionist AI debate with respect to

the working artist's cultural production. Out of the ashes of this rhetorical bon-

fire he fuses a third way, an alternative "expressionist AI"

In his writings Mateas explicitly warns artists against aligning themselves too

strongly with "interactionist techniques" which might result in them "missing

out on a rich field of alternative strategies for situating AI within culture" This

rejection is deemed necessary to license the Oz project's use of "traditional AI"

structures for its natural language- and narrative-based works.



The root of this criticism appears to be a misunderstanding about the role of

the agent metaphor in contemporary Al practice and the relationship of the

agent as used today with the agent as used in early Brooks. The rejection of the

prescriptive power of the agent-as-metaphor arises from a disagreement with an

imagined proscriptive thrust of the early rhetoric that surrounded its birth. It is

as if the organization of the debate perpetuated in brief historical capsules (and

thesis context sections such as this) froze in the early 9os. The agent functions

today as an organizing principle, and as such organizes extremely hybrid struc-

tures that press into service representations and algorithms that in the 90s

might have been perceived as heretically classical, and can do so without be-

coming "vacuous" The agent-as-metaphor is not a position that rejects materi-

als, but it does structure them strongly. What one "misses out on" with a rejec-

tion of the agent as a poetic metaphor is a set of ideas about how one might go

about structuring a complex system that interacts with a dynamic, unpredictable

world of which it itself is a part. While stance neutrality on any particular AI
56

debate might initially seem an appealing non-position for an artist (one who

wishes to remain external to the field of AI), to my mind this position simply

recapitulates the narrative of endless potential and new possibilities that Mateas

justifiably finds suspect in early interactionist AL.

Rather, I argue it is more productive for the AI / artist to choose some broad

and useful organizing principles over a practice of ensuring the perpetual

blankness of their slate. I further disagree with Mateas's insistence on the nov-

elty of the artist's focus on authorship issues within Al or even the transforma-

tive possibilities of artists engaging in an Al practice. AL, and in particular

agent-based AL, has always has a profoundly important engineering tendency

which has maintained an interest in authorship problems. To set up an opposi-

tion - that art focuses on the negotiation of meaning as mediated by the ob-

ject, while AI focuses on the internal structure and its interaction - that is, to

make a clean separation between art's art and Al's science, one has to first strip



A review of much of this work can be found in: J. Gratch,
J. Rickel, E. Andre, N. Badler,J. Cassell and E. Petajan.

Creating interactiwe virtual humans: Some assembly required.

IEEE Intelligent Systems, 2002.

And a point of origin: N. Badler, C. W. Phillips and B. L.
Webber, Simulating humans: computer graphics animation and

control, Oxford University Press, 1993.

Al of its engineering core. As much as I appreciate the difference of the value

structures apparent in both literatures, this opposition is not is not clear-cut in

practice. That this core has been poorly expressed in AI's relationship within the

workings of scientific culture, publication and discourse is, I feel, undeniable.

But absence of evidence here is not evidence of absence. The artists who exploit

the AI tradition and literature are certainly not the first to make things using AI

techniques.

However, what is true is that this line of work takes the agent-based directly

toward the parts of human activity that Al has found so hard to reach - the

use of language and complex human narrative. In contrast, the work presented

in this thesis, which deals exclusively with non-linguistic, non-narrative do-

mains, is somewhat dislocated from the few examples of uses of AI in theater

and drama. Behind this dislocation is a significant difference of approach.

The story of Classical AI versus Nouvelle AI has often been presented as story

of the narrow-and-deep (the classical chess-playing computer) versus the small-

but-complete (Brooks's intelligent insect). The Oz project, Fagade and the work,

for example, ofJustine Cassell and Norman Badler and the general tradition of

language- and gesture-based intelligent agents all stretch the small-but-

complete of the agent to a broad-and-shallow - an "aspect ratio" unenvisaged

and unintended by Brooks; a breadth that goes all the way out to human lan-

guage.
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From the broad-and-shallow-agent researchers behind the Oz Project:

"It has been suggested to us that it may be impossible to build broad,
shallow agents. Perhaps breadth can only arise when each component
is itself modeled sufficiently deeply. In contrast to the case with broad,
deep agents (such as people) we have no a priori proof of the existence
of broad, shallow agents:'

from: J. Bates, A. B. Loyall, W. Scott Reilly, An Architecture

for Action, Emotion and Social Behavior. Technical Report

CMU-CS-92-144, School of Computer Science,
Carnegie Mellon University, Pittsburgh, PA. May 1992.

There is little a priori evidence to suggest that convincing broad and shallow

agents are possible. And despite the constructive work that has occurred in this

area was made I find the work in general has failed to coalesce a generally useful

set of core techniques and ideas for practicing different classes of"breadths".

This is, of course, rather unsurprising - if there were a small set of reusable

ideas that enabled a host of ultra-broad-yet-shallow agents over a comprehen-

sive set of human-level domains then there would be no need for any "depth"

and AI would have simply imagined its core troubles.

The work presented here follows a more conservative and consolidating path.

When an agent is described as "broad" we mean as broad as the world that we

put the agent to use in (and no broader, and no narrower). And when it is said

to be shallow, it means supple, and not over-committed to a particular problem

domain ahead of time. The frameworks that back the agents developed in this

thesis have all found use and instantiation in multiple agents, often designed by

multiple people. That these agents do not extend their apparent breadth all the

way out to human-level competencies is part of the cost at this time of devel-

oping more fundamental and reusable frameworks: Dobie looks to the training

of real dogs in order to work through, to an unprecedented level, the details and

needs of trainable computer systems; alphaWolflooks to wolf behavior for its

core interaction.

Toward an aesthetics and a practice of the agent-based

Signs of this tactical compromise are to be found directly in the artworks pre-

sented in this thesis. The Music Creatures offers up multiple fragments of

human-musical competency rather than an attempt at a totalizing human

whole, looking instead to the proto-musical competencies of animals; how long...

similarly offers a sequence of overlapping agents that slice through the choreog-

raphy in different ways and different times, while each attempt by the agents is



c.f. R. Sulcas, William Forsythe: The poetry of disappearance and

the great tradition. previously available online:

http://frankfurt-ballett.de/articles2.html

however, since the dissolution of the Ballett Frankfurt, this
paper is currently available through the internet archive:

http://web.archive.org

left radically incomplete. Loops Score takes a narration as its score but plays with

aspects that lie halfway between language and meaning, sound and music.

The perpetual inadequacy of these agents can be compared to the nonexistent

"human-level" artificial intelligences that they refuse to fake - an "automatic

music-generating system" (in the case of The Music Creatures); a "live

choreography-notating system" (for how long...) or a "meaning-to-music con-

verter" (for Loops Score).

This rejection of the directly human results in a series of works that are con-

tinually trying to catch up with their material, constantly off-balance, perturbed

by - rather than at equilibrium with - the gallery or stage that they share.

The resulting artworks develop an agent-based aesthetics of intention, effort

and transience. Every other aspect of these works - from the gestural, hand-

drawn qualities of their imagery to their attitude to human motion as it evapo-

rates in front of their gaze - gathers around this unstable core.

This privileging of disequilibrium in my gallery works may seem no more than a

matter of personal style, a mere reaction against the well-trodden paths of com-

puter graphics and interactive art. However, I believe it also to be nothing less

than the condition of contemporary dance - and a symptom of the computa-

tional sensibility in modern choreography in particular. Is not this disequilib-

rium implied by the gap between the audience's inevitable search for mimetic

representation and the transformative calculus hidden in this choreography? Is

it not this transience that Forsythe points to when he calls dance the poetry or

architecture "of disappearance"?



It is like parallel computing. In the old days, to make a dance in which
nothing changes, people used their perception to make a rigid structure, we
use our perception now to make a very complex structure. If I have 8 people
figure out a dance from the inside, I have 8 people looking at 8 different
things, from which they make connections. So basically what you are seeing
in the third act of Eidos is a huge connection machine, using the human being
as the original machine. It is primitive and wonderful, like a game; always the
same game, but each time played differently.

William Forsythe, quoted in T. Ozaki, (P. Vigilio trans.), An
Intervieiw' with William Forsythe. (availability as above).

Further, the agent metaphor, and the technologies to which it will lead us, offer

fertile ground for the growing of small algorithmic ideas, hypothetical enabling

constraints, and game-like forms that are open to the possibilities of chance and

interaction. But more importantly, unlike the cold computation that computers

find so effortlessly, but like the "parallel computers" of Forsythe's dancers, artifi-

cial intelligence's technologies of learning and adaptation, and its structuring of

the problems of perception and movement, allow artists to work through the

consequences of these tactical formalisms.

4. "Non-photorealism" and computer graphics

One, inspirational, post hoc synthesis of photorealistic
computer graphics is Andrew Glassner's formulation of the

rendering equation in A. Glassner, Principles of Digital Image
Synthesis. Morgan Kaufmann Publishers, Inc, San Francisco,

1995.

The goals and metrics of photorealistic computer graphics are relatively well

understood. This synthesis of the primary algorithms, of forward and inverse

ray-tracing, radiosity and surface-modeling techniques came at a time when

practice had not irretrievably outstripped theory. Drawing deeply on our un-

derstanding of the physics of the world it is possible to interpret the wide vari-

ety of photorealistic techniques in a single unifying framework which can in

turn be used to derive, or at the very least locate, approximations that are inside

the current real-time envelope accessible to contemporary graphics hardware.

Any theory of non-photorealistic computer graphics is in immeasurably worse

shape. Having benefited from, or at the very least been able to co-opt, the hard-

ware created for these immersive, realistic graphics, the field of non-

photorealistic works seems too large to unify, too diverse to theorize over and its

boundaries too poorly defined for us to artificially construct a set of natural

kinds to examine and reason with.

One might, however, start finding some orienting landmarks, if not in the aes-

thetics of the resulting works, in the techniques or technical styles deployed

therein. It is a field, after all, wedged between the predominantly photorealistic
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An excellent online resource covering this area is to be found
at: C. Reynolds, http://www.red3d.com/cwr/npr/

In print, a review: T. Strothotte, S. Schlechtweg, Non-
Photorealistic Computer Graphics: Modeling, Rendering and

Animation. Morgan Kauffman, 2002.

Despite more than a decade of dominance, development and
convergence Adobe corporation's, Photoshop and Illustrator

(www.adobe.com) remain separate, distinct and normative
on their application domains.

A review of "modern" versus
"classical" OpenGL (www.opengl.org): R.J. Rost, OpenGL

Shading Language, Addison-Wesley, 2002.

The "score / orchestra" fissure is discussed in
R. Boulanger (ed.) The Csound Book: Perspectives in Software

Synthesis, Sound Design, Signal Processing and Programming, MIT

Press, 2000.

Max/MSP is available at: http://cycling74.com

theoretical legacy of military virtual reality and Hollywood special effects and

the, again, predominantly photorealistic technical affordances offered by the

commodity hardware necessitated by computer games.

While we might feel that all kinds of non-photorealistic life has taken root in

this space, I believe that we'll find a limited number of survival strategies at

work. A comprehensive survey of all of non-photorealism in computer graphics

is a demanding task - it is after all a field that is defined principally in terms of

what it is not - and I shall limit the discussion here to trying to organize one

corner of this space that works in real-time, that is concerned with live and in-

teractive settings and is not devoted solely to duplicating early twentieth-

century painting or nineteenth-century engraving. We will try to find these

landmarks or axes throughout this document to locate technical styles, to ex-

amine the tensions navigated by certain technical approaches or to look at pos-

sible groupings of the aesthetic results of these practices.

One pole I shall refer to as "textural"; it has a corresponding anti-pole "geomet-

ric". These terms come from a purely technological distinction: these places

embody the parallel paths of real-time computer-graphics architectures that

always must incorporate manipulations at the level of the individual pixels and

at the level of points, lines and planar elements. This is the perennial separation

between bitmap image-manipulation software (e.g. Adobe Photoshop) and the

vector-based (e.g. Adobe Illustrator); this is the difference between "fill-rate" and

vertex operations" that graphics-accelerating hardware performs; between the

"fragment shader" and the "vertex program" of the modern, reinvented core

OpenGL, or the "imaging" and "primitive" pipelines of OpenGL's previous core.

Similar cleavages appear elsewhere: the sample level (textural) of the Music N /

CSound family of musical programming languages is encoded in a different

language from the score (geometry); the blocks of musical signal (textural) are

distinct from the world of lists and bangs (geometric) of Max/MSP.



Image-based rendering, early work includes: P. Debevec, C.J. TaylorJ. Malik,
Modeling and Rendering Architecture from Photographs:A hybrid geometry- and image-
based approach. In: SIGGRAPH 1996 International Conference on Computer

Graphics and Interactive Techniques, Proceedings of the 23rd Annual
Conference on Computer Graphics and Interactive Techniques. ACM, 1996

An overview: C. Zhang and T. Chen A survey on image-based rendering-
representation, sampling and compression. In :Signal Processing: Image Communication,

January 2004, 19, (1), pp. 1-28

For the technique of normal mapping, an introduction can be found in any
"game graphics" textbook. For a more detailed practical discussion: D. H.

Eberly, 3D Game Engine Architecture: Engineering Real-Time Applications with Wild
Magic, Morgan Kaufmann, 2004.

To cite just two influential examples of geometrically controllable texture:
S. Strassmann. Hairy Brushes. In SIGGRAPH 1986 International Conference
on Computer Graphics and Interactive Techniques, Proceedings of the 13th

Annual Conference on Computer Graphics and Interactive Techniques. ACM,
1986.

and:

L. Markosian, M. A. Kowalski, S.J. Trychin, L. D. Bourdev, D. Goldstein, and J. F.
Hughes. Real-Time Nonphotorealistic Rendering, In: SIGGRAPH 1997

International Conference on Computer Graphics and Interactive Techniques,
Proceedings of the 24rd Annual Conference on Computer Graphics and

Interactive Techniques. ACM, 1997.

At present I believe we are a point where the textural is on the ascendancy in

computer graphics in general and in interactive digital art in particular. The real-

time realism of recent computer games owes more to the textural complexity

afforded of normal-mapping than it does to the geometric complexity of the

rather low-polygon models that carry those static textures. And of course, inter-

active graphics is dominated today by the processing of video (texture). The rise

of"image-based" rendering techniques that work either mainly or solely with 2D

images exploiting the convenience of video sampling compounds this trend.

This is not due to technical opportunity; in the case of interactive art the de-

compression and manipulation of multiple video streams still taxes modern

hardware and the gap between the resolution of interactive, textural, video-

based work and its audience's high definition televisions shows no signs of nar-

rowing quickly. Rather, a full diagnosis of the fascination with video in particu-

lar and the textural in general requires a little more disentangling.

In any case, the best, and most interesting work in the field of non-photorealism

has been some work to bridge this texture / geometry segmentation, marrying

the controllability of geometry with the fluidity of texture. Often, however, this

work has focused on developing one particular style, taking photo-realism's

geometry and texturing it appropriately, rather than finding a broader, experi-

mental framework. I know of no work to date that provides a generic frame-

work or principles for synthesis of an animated form that lies between the

purely abstract and abstractions from sampled material. The purpose of the re-

projection rendering techniques developed in this thesis is to provide an instance

of such a framework.



Live computer graphics and the stage

See, Improvisation Technologics

(CDROM), ZKM (Center for
Art and Media Technology) /

Ballett Frankfurt, 1993.

The textural / geometry pole is of use in analyzing the contemporary use of live

graphics in a dance theater setting. Increasingly today the ascendancy of textural

computer systems is echoed by those working in dance technology who are

turning to video technology to "sense the stage" Where does this come from?

and where is it going?

In the early 1990s, Forsythe published many of his choreographic techniques in

a seminal pedagogical work - the CDROM Improvisation Technologies (1993).

Crude, but effective, hand-rotoscoped annotations of his inventions - gener-

alized kinespheres, hidden representations, and obscuring constraints - over-

laid Forsythe's own dancing and were accompanied by examples from complete

choreographies made for the Ballett Frankfurt. Effective, this tool was still in

use for training new members of the company up until its dissolution. This

work could have acted as a"call-to-arms" for both choreographers (showing that

a powerful articulation of their ideas was possible and useful using new media)

and would-be digital dance specialists (showing that a relationship could be

made with dance on a level deeper than the visual appearance of the dancer),

but instead Improvisation Technologies indicates a path not taken by the dance

technology community at large. There are a number of reasons why the field did

not develop and unfold in this way. I shall focus on diagnosing part of the prob-

lem using only one symptom, which will also be useful in highlighting some of

the differences between the work conducted for this thesis and the prevalent

field.



Some recent examples of the ongoing trend towards
video-based sensing and/or projection in dance
include the work by the dance company Troika

Ranch Future of Memory, 2003, by media artist Klaus
Obernaier, Apparition, 2004 and Vivisector, 2002,

Wayne McGregor / Random Dance's AtaXia, 2004.

In each of these works, the primary sensing
technologies (for both the real-time works and the

pre-prepared video materials ) and the primary body
representation used digitally is the video frame. The

apparent (in)ability for video to allow computational
"access" to human in these works often stands

remarkably at odds with the stated intentions of the
artists involved.

here is a little history of motion-capturing dance,
much of it is reflected in the work of Paul Kaiser and

Shelley Eshkar (collaborators on Loops, Loops Score,
how long.., and 22). Information available online:

http://www.openendedgroup.com

For a review of a broader range of work:

S. deLahunta Dialogues on Motion Capture Proceedings

of IDAT 1999.

Part of the impasse is due, I believe, to the interactive dance community's use of

video as the computer's way of seeing the stage. Video has a number of apparent

conveniences: it is cheaper than other sensing technologies, the interfaces with

computers have benefited considerably from recent consumer demand, a video

frame or sequences of frames seem to offer a large amount of data, and finally it

is, of course, easy to visualize how computation acts upon video. There is even a

sub-field of dance concerned with dance on camera, which offers a veil of prece-

dent and theory.

Unsurprisingly, then, the number of dance performances using live and proc-

essed video has been growing for a decade; the tools to support these works are

being standardized, distributed and sometimes even supported. None of these

things are true of the technology used for many of the works described in this

thesis - motion capture. Not only can't one buy in the store the tools used to

build the pieces described in this thesis, but my principal pieces (how long.., and

22) are the first use of real-time motion capture in a major dance work. The

underlying hardware technologies are expensive, specialized, obscure, rare and

precious.

Video, despite its apparent mimetic transparency, is a poor computational repre-

sentation of human movement. It is poor because it is not clear what transforma-

tions of pixel-level data have to do with transformations of human motion,

much less a choreographic dialogue; poor because capturing it constrains the

existing stage picture, the lighting and the set elements that have a longer tradi-

tion of relating to dance than video; poor because it is a fragile representation

- slow it down, zoom in, or recast it and quickly video's own materiality comes

to the fore, leaking onto the surface of the works created with it and pinning the

level of dialogue between the collaborators to a negotiation of appearances.
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In that variable lighting, camera
placement, multiple overlapping

bodies, a variety of motion with a large
dynamic range, and even costume

conventions seem to be exactly
configured to thwart much of the

seated, upper-torso focus of practical
computer vision research.

While it may be technically accurate to say that "video is used to sense the stage"

during a typical interactive dance work, little transformative representation of

the stage actually takes place: the stage is sensed by video but not perceived by

video, and little representation of the stage survives the transportation through

video into the computer. Rather, this video input leads directly to a predomi-

nantly textural computational methodology, an aesthetic of image-based ab-

straction turning around limited mimetic representations inside the computer.

The computational sensibility outlined in this argument suggests starting a little

closer to what it is that choreographers care about - human motion. Yet hu-

man motion is hard for a computer to see in the sea of pixels that is video. Mod-

ern dance is perhaps the worst-case scenario for the already challenging pursuits

of the field of computer vision; the sophisticated and experimental techniques

that would be required to bring human dance motion out of the video frame are

not yet stable enough for a sophisticated and experimental piece to be con-

structed upon them.

Motion capture offers such a representation while also having the "benefit" that,

having never captured the appearance of a dancer through a camera there is no

easy way to duplicate it - there is no path of least resistance leading to dupli-

cation and repetition. Motion capture is the basis for a hybrid representation:

one that lies between the purely computational and the dedicatedly mimetic.
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This has been shown in a series of studies in the 70s and 80s, starting with G.
Johansson, Visual perception of biological motion and a modelfor its analysis. Perception

and Psychophysics, 14: pp. 201-211. 1973.

Johansson's work, and the work of people who followed, showed that when
presented with a few points of motion (effectively the "dots" of motion capture)

humans are capable of correctly labeling body parts in the absence of all of the
points, recognizing gesture, differentiating gender, recognizing familiar people,

and even recognizing their own motion.

A more recent review of this matter may be found in J. K. Hodgins,J. F. O'Brien,
J. Tumblin, Judgments of Human Motion wtitl Diferent Geometric Models, Transactions

on Visualization and Computer Graphics, 4 (4), December 1998

This double aspect of motion capture is clear: it is computational because com-

puters can clearly manipulate it with considerable ease; yet a direct presentation

of the data is shockingly readable. This, then, is representation that supports

transformation and recasting - and it is the place that we will meet the com-

putational sensibility of contemporary choreography.

This, then, is surely the place to begin generalizations from which abstractions

can be made and on which algorithms can act. These actions, made visible,

might yet be related more, in the eye of the audience, to human movement than

they are to the technology that captured it and the representation that stored it.

In the language developed above motion capture necessitates a geometric force

and a point of departure from the abstract to re-project motion back onto the

stage. This is the technical point of contact around which a dialogue between

programmer and choreographer can occur, an intermediate point that is neither

automating say, the dice rolling of Cunningham, nor simply duplicating the

appearances of the performer.

Toward ambiguous computational graphics

For example, the 2D image-based work in K. Sims, Artoicial
Evolutionfor Computer Graphics. in Computer Graphics, 25(4), July

1991, or the Genetic Images installation,
with K.Sims Evolving 3D Morphology and Behavior by Competition. In:

Artifcial Lfe IV Proceedings, R. Brooks & P. Maes (eds.) , MIT

Press, 1994.

Armed with the textural / geometric opposition it is possible to project art-

works onto it. Karl Sim's genetic programming / artificial-life-based work (for

example, the Galapagos installation) leans toward the "geometric", while his

earlier, arguably less lasting work is textural.
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G. Levin and Z. Liberman, The manual
input sessions. 2004. Performance.

K. Obermaier, Apparition, 2004. and
Vivisector, 2001-2.

"I think we are in a very curious position today because, when there is no
tradition at all, there are two extreme ends. There is direct reporting that
is like something that is very near to a police report. And there is only the
attempt to make great art. And what is called the in-between art really, in a
time like ours, doesn't exist. [...] ... with these marvelous mechanical means
of recording fact, what can you do than go to a very much more extreme
thing where you are recording fact not as simple fact but on many levels,
where you unlock the areas of feeling which lead to a deeper sense of the
reality of the image, where you attempt to make the construction by which
this thing will be caught ... " (p. 66).

Francis Bacon, in D. Sylvester, Interviews with Francis Bacon, Thames-Hudson, 1975.

Few works are nimble enough to play between these poles. Golan Levin and

Zach Liberman's performance work for hands, projectors and cameras, "The

Manual Input Sessions, draws its motivating humor from the dramatization of

the crossing point between shapes made from hands (the abstract, made

through a most resolutely geometric use of video) and hands made from shapes

(the abstracted). In Klaus Obermaier's influential work for projections over

dance theater Apparition or the earlier Vivisector, it is not the play of figure /

ground that is of lasting interest; rather it is the threat of video unusually born

of transformation - human body parts re-projected onto other body parts

- rather than as bearer of mimetic intent. Of course, in these works (the latter

of which uses video to capture the silhouette of the dancers) this is achieved, if

it is achieved at all, through careful rehearsal rather than clever digital repre-

sentation - but that they are succeeding, to my eye, exactly at the point where

they are pushing against the affordances offered by the image-making technolo-

gies that they use is critical to the argument here.

In each of these performance-based works it is the vertiginous places during the

performance where the imagery loses its definite location between textural and

geometric that are most lasting to my eye. I argue that non-photorealistic

graphics, if it is to move beyond technical demonstrations of mimicry, or mere

novelty, will only find its contact with a lasting use in lasting digital art in these

technically difficult, ambiguous, middle grounds.

The "real world" seems to be stacked in favor of the textural over the geometric.

The "reality" of photo-realistic graphics remains heavily dependent on sampled

or procedurally generated textures; the physicality of the drawn line is revealed

as much in the surface qualities of the paper and the interaction between layers

of graphite as in the geometric shape of the drawing; both the softness of the

organic and the abrasiveness of its patina explode geometric complexity. Given

these challenges, it is no wonder that the most recent increases in graphical
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processing power and machine learning have given birth to a sub-field of

"image-based" off-line computer graphics.

There is a textural bias to the aesthetics of all this processing power. The appar-

ent "softness" of the organic form was at one point the most sought-after and

precious commodity of computer graphics, photo-real or not. The "gaussian

blur" was a popular benchmark of processing muscle; the smooth curve of the

non-uniform rational b-spline a hallmark of sophisticated and expensive non-

polygonal manipulation. But more often than not the texturality of computer

graphics fumbles its physical, or even biological, referent in real-time transfor-

mation. For its coveted smoothness are the result not of an unspeakable multi-

tude of past processes acting on the geometric, they are rather anti-patina: an

erasure of history, a hiding of the lack of process by which the rendering came

about. The gaussian blur deletes high frequency information; the smooth inter-

polate surfaces are skins stretched through a hidden 3-dimensional lattice.
68

The aesthetics of the work I wish to develop reveals process. Thus in computer

graphics, photo-real or not I begin at an unconventional and inconvenient place.

The works presented in this thesis stem from a common search: can we find a

non-photoreal, geometrically controllable textural aesthetic? Can their texture

be the trace of a process rather than an additional decorative layer? Can geome-

try interact on a textural surface? Can these interactions be metaphorically

physical or biological but geometrically rather than texturally faked? It is from

these principles that the work, by the time we are ready to enter dance theater,

readies itself to accept motion-capture material and play with the mimetic and

transformative possibilities offered.



Concluding remarks

In surveying some of the context of this thesis this chapter has sketched its

main arguments. From the narrowest to the broadest they are:

that with its recent focus on the "textural", live graphics in dance theater fails

to allow either computer graphics or simply computer algorithms suffi-

cient access to the very stuff of dance and choreography - human move-

ment; that new rendering techniques and new sensing methodologies

must be developed and incorporated into the field of dance technology for

genuinely computational interactive artworks to be created; that, para-

doxically, prominent choreographers today are outpacing the dance-

technologist's deployment of computational ideas.

that it is time for an articulation of the agent-based in digital art; that in

particular, this should be seen as a platform from which to critique the

prevalent synthetic and analytic approaches of interactive art in general 69

and dance technology in particular. The agent-based offers a radically dif-

ferent path for creating and navigating the potential developed by compu-

tation processes in comparison with either interactive art's "mapping" or

artificial life's "emergence, and an alternative point of origin for the devel-

opment of digital art-making tools. This metaphor provokes and accepts

choreography's use of"tactical formalisms" as a working practice.

that the time is ripe for algorithmic art and contemporary choreographic

practice to enter into a genuine, constructive dialogue; that for too long the

interactive digital arts have largely ignored the precedent of and opportu-

nity offered by dance.

These arguments will be fleshed out in the chapters that follow, and all of them

will be responded to in the final works for dance theater that I present.



This chapter is necessarily more technical than the chapter that

preceded; it articulates the specific technical context and techni-

cal origin of my work. It introduces the agent toolkit developed

by the Synthetic Characters Group in 2001, and includes an

overview of the c43/c5 action-selection approach, as an impor-

tant example of the agent as an "Organizingframework" And it

ends with a critique of the largest, most complex installation

from that period - alphaWolf - indicating how the contribu-

tions of this thesis respond to the weaknesses that appeared

during the development of this work.

Chapter 2 - Beginnings
70

In 1999-2003 the Synthetic Characters Group, of which I was a part, proposed

a new line of action-selection algorithms and an action representation that is

used in, or at least relevant to, many of the works described in this thesis. The

agent toolkits that embedded these techniques were referred to as the 'c' series,

c2 all the way through to c43 and cs, and these are as good a name as any to

refer to the successive developments of the approach. This work perhaps

reached its apogee with Dobie, an interactive synthetic dog character, trainable in

many of the ways that real dogs are. Inside Dobie there is an elaborated version

of the action selection structure used in the projects alphaWolf, Loops and an

early version of The Music Creatures, and this is the action-selection approach

that motivates the later discussion of the Diagram system.



c5 - An agent toolkit

The'c' series of work is described in the following two papers:

R. Burke, D. Isla, M. Downie, Y. Ivanov, and B. Blumberg, CreatureSmarts:
The Art and Architecture of a Virtual Brain. Proceedings of the Game

Developers Conference: 147-166. 2001.

D. Isla, R. Burke, M. Downie, and B. Blumberg. A Layered Brain
Architecture for Synthetic Creatures. Proceedings of the International Joint

Conferences on Artificial Intelligence (IJCAI). 2001.

Issues of learning and adaptation inside this series are discussed in:

B. Blumberg, M. Downie, Y. Ivanov, M. Berlin, M. Pjohnson, B.
Tomlinson, Integrated learning for interactive synthetic characters.

SIGGRAPH 2002. Proceedings of the 29th Annual Conference on
Computer Graphics and Interactive Techniques, ACM, 2002.

Action Value(t)

[Tr,Ob,Ac,Do Va]
Trigger(t) Do-while(t)

Object

figure 11. The action-tuple consists of up to five parts.

The trigger, do-while and value can each appear as a
time-varying scalar value.

The c5 action system begins with two structures, the action-tuple and the action

group. The action-tuple, which is either active or inactive at any given moment

of time, is a unit of action that aggregates the following components: each tuple

has at least a trigger - an instantaneous scalar value that indicates how relevant

or important the activation of action-tuple is to the current situation, in the

broadest sense; a do-while - an instantaneous scalar value that indicates

whether or not this action, should it be active now, is still important (high value)

or is "finished" in some way (low value), and thus should become inactive; an

action "payload" - the code that, while the action-tuple is active, should be

executed; a value - a scalar representation of the value that this action has to

the creature, this may be set by hand or learnt. Additionally, many action-tuples

possess an object - code that can scan the perceptual system to provide an

object for the action-payload to operate upon. An action-tuple can be read as a

(fuzzy) rule, in the case of Dobie for example: when the perception system hears

the trainer say"sit" (trigger), tell the motor system to sit (action-payload) near

the trainer (object), and keep telling the motor system to sit until it has done so

(do-while).

In this way, triggers, do-whiles and objects connect the perception system to

action-tuples; the action-tuples when applied send commands to the motor

system. The communication for each of these connections is supported by the

"working memory" blackboard introduced earlier.



TrOb, Ac, Do Va

TrOb, Ac, Do Va

Tr,Ob, Ac, Do Va

activev e

Tr,Ob, Ac, Do Va]

Tr, Ob, AcD Vaj

Action-tuples compete for expression (activation) in action groups based on

their expected values. An expected value is a combination (a multiplication) of

the value of a ruple and its trigger, if it is not active; or its value and its do-while if

it is. This captures a sense that a tuple should be both relevant (high trigger) and

valuable (high value).

Each action-tuple is inside one and only one action group, and each action

group has only one and always one active action-tuple. An action group is re-

sponsible for reading the triggers and values of the actions, and the do-while of

the active action, and deciding whether to keep the current active action or

switch to another one. It is possible to implement an action group in a number

of ways, but a good action-group implementation shares the responsibility with

the action-tuples it maintains for the behavioral relevance, persistence and co-

herence of the creature - balancing the short-term reactivity and opportunism

of a creature with the medium-term need to keep at an action active for long

enough to see some payoff and the long-term need to demonstrate goal direct-

ness and exploration of the behavior space. An initial action-selection algorithm,

that forms the basis for most c43 / c5 characters, is as follows 4
figure 12. Action-ruples compete for expression inside

action groups. At any given time an action group has an
active tuple.
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THE C43 ACTION SELECTION ALGORITHM

state

startles - a list of action-tuples that get special privilege to interrupt others.

tuples - a list of action-tuples inside this group

currentyActive - the currently active tuple

lastValues - a mapping from tuple to real number

algorithm

if the maximum tuple.expectedValueOf() over all of startles is greater than zero then

the greatest becomes nextActive.

P otherwise, ------ - - - -- -

construct the new map nextValues[tuple] = tuple.expectedValueOf() for all tuples

if any tuple that isn't currentlyActive has nextValue[tuple] >lastValues[tuple] and

2* nextValue[tuple) > currendyActive.expectedValueOfo then select a new action

if currendyActive expectedValueOfo=o then select a new action

P if we need to select a new action:

if all of nextValues[..] = 0 then nothing is done, and nextActive = currendyActive

- otherwise, - --

sample nextActive from a normalized version of nextValues[...]

and set lastValues[...] = nextValues[...]

For example, compare the Scoot Framework: S-Y. Yoon, B.
Blumberg, G. Schneider, Motivation Driven Learningfor Interactive

Synthetic Characters. Proceedings of 4th International Conference on
Autonomous Agents. 2000.

or the work in P. Maes, How To Do The Right Thing, MIT Al Lab,
Memo 1180, December 1998.

This action-selection mechanism was born of three goals - each a desire for a

certain simplicity. The first is to actually reduce the amount of action selection

that takes place. Unlike other, more continuous strategies, the whole action sys-

tem isn't exposed to a re-selection with every iteration; a new action is chosen

only in two cases: that the current one has decided itself that it is done (and

thus reduced its do-while to zero or a low value), or another action has become

much more important than it was the last time selection occurred. Indeed this

choice moves to increase the ease with which temporal patterns can be con-

structed inside this action-selection system. Therefore, this dramatic thinning-

out of the temporal complexity of the action system is not for computational

efficiency - it is for pragmatic clarity.

This is an authorship position. A behavior author can think through the be-

havior system they are creating for a longer period of time if it only changes at a

small number of well-defined situations. And, in principle, since the short-term

temporal dynamics of triggers and do-whiles matter much less in this framework

than in others, the author is freed from the uncertainty associated with the de-

grees of"freedom" afforded by time-constants and gains. Some of the"emergent"

behavior that would have been indirectly specified by these filter-constants is set

directly, most notably by the structure of the do-while. The do-while clause en-

ables individual action-tuples to finesse their long term likely-hood of preemp-

tion by other actions in the system, offering again a more local, and more ex-

plicit, control over the temporal dynamics of the group.

The second impetus for the c43 action-selection algorithm is an acknowledg-

ment that some actions need to be handled differently: specifically, the short,

transient, but always important actions are set aside into a separate group and

have the opportunity to override the current action at any time. In Dobie, these

startles control the initial introductory sequence and the reward marker; in al-

phaWolf, user interaction and reactions to pain; in an early iteration of The Mu-

173



sic Creatures, unexpected sound. This two-level approach decouples the trigger

of these transient actions, which often form the fundamentals from which the

interaction with the character is constructed, from the rest of the group, pre-

venting an "arms-race" between the values and triggers of these two species of

tuples.

The third motivation for c43 is a realization that the actions themselves, if given

a stable, long duration life-cycle and a supple motor system can form quite large

blocks and that there is little to be gained, other than a certain academic cachet,

by making an action system out of completely homogeneous material.

There are a number of extensions to this selection framework that are impor-

tant, and a number of ways that it directly or indirectly supports learning and

adaptation of its parameters.

Hierarchical structure

sit"

[whenever,1 T, until-sitting, Va]

[sound, T ,until-sitting, Va]

(sit-utterance, 1 , until-sitting, Va]

figure 13. Action-tuples can contain action groups. In Dobic, functional
groupings are developed. Here is a group of actions inside a tuple that

share the same action.

With a little care, we can create an action-tuple that has, as its action payload, an

action-group. Care is required because it is not initially obvious which one of

the many ways of choosing how to generate the external interface - trigger,

value - of an action-tuple (from the external interfaces of all of the action-

tuples inside a group) one should pick, if any. Synthesizing some mean combi-

nation of triggers and values to present to the layer above endangers two advan-

tages that a hierarchical action system might have - a more complete func-

tional separation between hierarchical descendants that do not share an ances-

tor, and computational efficiency through partial evaluation of the hierarchical

action tree.

These advantages can be restored if triggers for whole groups can be specified

ahead of time - that these triggers have something to do with the functional

grouping expressed through the hierarchy is not too onerous a requirement -



and that values for groups can be adapted on the same time-scales as their chil-

dren.

That said, there are characters constructed within the c5 thread that exploit this

hierarchical flexibility in both of these ways. In Dobie, action-groups collate

actions together according to action-payload and present triggers and values to

parenting groups by computing the maximum of its descendants. Loops chooses

the second path and groups behaviors together for the purposes of scripting

control, creating a semi-modal action-selection structure. alphaWolfruns multi-

ple action-groups simultaneously, and contains a few actions that themselves do

arbitration, using this second approach.

Complex value

The value part of the action-tuple offers one hook for adaptation to occur. In

classic reinforcement learning we find a decomposition of the action selection 75

problem that is not unlike the action-tuple representation. We can draw a table

with rows representing actions and columns (perceptual) states. If we were to

instantiate this complete table inside an action-tuple setting we would have one

action-tuple for each cell in the table, and this action-tuple would have a trigger

connected to the perceptual state and an action-payload corresponding to the

action. Reinforcement algorithms exist that explore this table and learn the

The classic overview of value of each of the cells.

r.eSnfoonmAnG.lBartogRiefarns R.t For example, in q-learning, for a transition taken by performing action
LeaSrtnn, MIG Prss, 1998.ceie
Learning, MIT Pre ss,1998. a e {a;} in state s E {sj} that results in being in state s' we update the

cell {a,s} as follows:

q{a,s} , q{a,s}+ P (r+. mx q{aj,s'} - q{a,s



The specific derails of these three forms of learning in the case of
Dobie are well described in the paper summarizing this

collaborative work:

B. Blumberg, M. Downie, Y. Ivanov, M. Berlin, M. P.Johnson, B.
Tomlinson, Integrated learningfor interactive synthetic characters.

SIGGRAPH 2002. Proceedings of the 29th Annual Conference on
Computer Graphics and Interactive Techniques, ACM, 2002.

with p the learning rate and y a "discount factor" and r the reward sig-

nal.

This cell is perhaps seeded with certain actions that are of high value (those that

satisfy the motivations of the creature, for example receiving food). The intui-

tion here is that action/state pairings that result in the opportunity to take high

value actions are themselves valuable, and during action/state transitions, dur-

ing, that is, credit assignment, these action/state pairings have some fraction of

the expected reward propagated back to them.

Inside the action-tuple-based c43 architecture, this table is forever implicit, and

we are free to partially instantiate it; the temporal dynamics of the action selec-

tion mechanism is significantly richer. More significantly, for the purposes of

more biologically plausible and more authorable learning, we reject q-learning's

proposal to continuously update a scalar value for each cell. Rather in Dobie we

represent "value" with a slightly more complex structure (that, for the purposes

of action selection may be turned into a scalar at any moment). This structure

keeps track of an expected rate of reward - it remembers that a highly re-

warding action is taken after a particular action-tuple at a certain rate. If the

value of subsequent action is in keeping with this expectation, then no value

update or propagation need take place.

The motivation for this simplification is in keeping with c43's rejection of indi-

vidual update cycle dynamics - value propagation does not occur unless

something changes in the world, no more than action selection occurs unless

something (triggers or do-whiles) changes inside the action-group.



B. Tomlinson, Synthetic Social
Relationships for Computational

Entities. PhD Thesis, MIT, June
2002.

In Loops the values of action-tuples are still scalar, but the value interface be-

comes a window onto a looping script which modifies the values of the action-

tuples that read from it (and provides a mechanism for the storage of active

tuples), page 114. In alpha Wolf the values of certain actions are coupled to a

social-learning memory system developed by Synthetic Characters group-

member Bill Tomlinson.

Dynamic structure

Finally, we look at a powerful species of learning that characters can perform by

dynamically extending its action system during the life of the creature in re-

sponse to training. In the reinforcement-learning example above, the rows (ac-

tions) and columns (perceptual states) of the "table" were set initially and the

learning algorithm converged on a set of entries for the cells. This solution

works quickly only if there are small number of rows and columns, otherwise

the time to convergence quickly becomes prohibitively large. Using the sparse

nature of the action-tuple representation, Dobie hierarchically explores both his

state space (the number and organization of columns), his action space (the

number and contents of the rows) and the set of pairings worth exploring

(whether or not there even is a cell, or here an action-tuple).

In Dobie, action-tuples, which start with very general rules that have constant

(and thus completely non-informative) triggers, maintain statistics about what

finer-grained models in the perception system have better predictive power over

obtaining reward. Eventually, new action-tuples, grouped automatically with

their more general hypotheses, are created which represent these less general,

but more reliable statements of the "rules of the world" for the creature. In this

way, new state-action pairs are created through reliability-based hierarchical

descent of the perception system structures. Dobie might join "sit" (action)

figure 14.
Dobie, 2002-3,

The Synthetic Characters
Group.
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figure 15. A c43/c5's hierarchical decomposition of the
perceptual world can be dynamically grown in response to

reward signals or other forms of learning.

"whenever" (trigger) with a more specific tuple of"sit" (action) "whenever there is

sound"

Similarly, in response to reward signals inside the action system, the perception

systems can begin to create finer models of parts of the perceptual world -

children of"whenever there is sound" might be specific models of speech uttered

by the trainer, labeled by the actions that potentially make use of these models.

These new perceptual states become candidates for further state-action pairing

in the action-system. Dobie might end up with a tuple "sit" (action) "whenever

the trainer says 'sit"', having started out knowing how to sit (and the unfading

joys of food). Sometimes this modeling of the world is less driven by reward

and more by the perceptions themselves: in The Music Creatures we shall see a

few creatures that opportunistically construct other models of heard sound and

- when they do so they store this "knowledge" (which is inherently procedural,

it is the ability to recognize again) in the perception tree.

Finally, we can build the equivalent of perceptual models of the results of per-

forming by actions that are parameterized in some way - for example if there

is an action which corresponds to a complex selection and blending of motor-

system material that is directed towards the goal of getting Dobie's nose as close

to a point in space as possible (perhaps some food). By keeping track of the

specific animation patterns that Dobie ends up using to execute this action, if

this action results in reward then we can generate new actions that correspond

to the performance of these animations. Dobie might end up with a tuple "'roll

over"' (action) "whenever" (trigger), having started out with the motor compe-

tence, but not the action-system representation for rolling over. Similar learning,

in a simpler domain, takes place in Loops: the learning of blended rendering

parameters. In this case the new perceptual models are saved for later as part of

the authorship story - during the "performance" of Loops as a work, no learn-
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ing takes place, page 123. The Music Creatures store new perceptual models of

action directly inside the motor system themselves, page 161.

2. _The generic pose-graph motor system

If the perception system of an agent is where the demands, time-scales and
action-system

structures of the world first meet the needs, flows and internal preferences of

the agent, the agent's motor system occupies a similar, but reversed role: inter-

preting the selections made by an action system into a control structure, perhaps

a control plan, executing it, and monitoring and reporting on its progress.

executing pool ofknown motor-programs An action system may ask a virtual dog to walk over to an object in the world
motor-program

stack and"sit"; it's a motor system that will be responsible for the sequencing of ani-

mation material onto the body representation of the creature in order to cause

pose-graph movement and ultimately sitting. Lower levels of the motor system ought to be

able to answer questions concerning whether another step or walk cycle should

be taken - knowledge about the constraints of the control of the body are

stored here. And, as we shall see, the motor system as a whole ought to be able
pose

to answer questions concerning the outward appearance of the character -

does our dog appear to be sitting or is it "standing up"- knowledge about the

contents of the body representation are also exposed at this location.

body/graphics

figure 16. The pose-graph provides much structure for the motor

systems of agents. The action system communicates with a pool of
"motor programs"; in the most basic case this produces a stack of

executable programs. These programs in turn call upon interpolators

that play back paths through the pose-graph structure.



My master's thesis: M. Downie, behavior, animation, music: the music and

movement of synthetic characters. S. M. Thesis, January, 2000.

Graph structures in computer graphics are by no means unique in motor-
system issues. Prior to my thesis:

C. Rose, Verbs and Adverbs: Multidimensional Motion Interpolation Using Radial-

Basis Functions, Department of Computer Science. Princeton, NJ,
Princeton University. 1999.

And more recently, L. Kovar, M. Gleicher, F. Pighin, Motion Graphs. 2002.

Proceedings of the 29th annual conference on Computer graphics and
interactive techniques, ACM, 2002.

and on the automatic generation of graphs: L. Kovar and M. Gleicher,

Automated Extraction and Parameterization of Motions in Large Data Sets.

Transactions on Graphics, 23, 3. SIGGRAPH 2004.

The italicized words above - planning, sequencing, constraints and contents

- are the essence of the motor system's task. We shall see throughout this the-

sis a wide range of body representations and control structures, indeed, one of

the contributions of this work is a demonstration of this range. Almost all of

these bodies and control structures have been implemented within a graph

based motor system framework that we will call here the pose-graph. This

structure was first constructed in 2000 and, although it has been re-

implemented twice since then, its generality allowed the idea to survive intact

through collaborative and solo work over the last four years. A brief review of

the original contribution is supplied here for completeness and to ground the

subsequent recent extensions and revisions to the framework.

A pose is a fundamental atom of a pose-graph motor system. In a representa-

tional creature it might be equivalent to a keyframe of an animation - a com-

plete description of the position of a classical, hierarchical, joint-angle based

digital figure. This dealing in terms of poses rather than key-frames, animation

tracks, or joint angles is the first abstraction that the pose-graph structure offers.

Additionally, poses may be parameterized - for example, a single pose might

represent a key-frame bundle of a frame of a walk-animation that is itself re-

computed based on blending several walk-animations together.

In the pose-graph motor system, poses, as you might expect, are arranged in

graphs - specifically graphs that are directed and strictly cyclic (where all

nodes are accessible from all others). Paths through these graphs are, in the case

of a classical digital figure, the raw material from which animations can be cre-

ated. In order to build an animation from a path through a graph of poses we

need one additional piece of information - the durations between the key-

frames. We call this the time-metric.
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For example, the standard
search algorithm used for

generating animations from
pose-graph poses is the A*-

search, for similar uses:
J.C. Latombe, Robot Motion
Planning. Kluwer Academic

Publishers, Boston, MA, 1991.

both these metrics are used in the A*-
search algorithm that the pose-graph uses

to find shortest paths between nodes; it is a
sufficient condition for the admissibility of
the pose-pose metric as a search heuristic

for the node-node metric for the node-node
distances to never be less than the pose-

pose of their respective poses.

This graph structure becomes useful for two main reasons: because there are

well-known algorithms for manipulating and inspecting graphs (in particular

searching them, but also comparing them and editing them) and because we can

specify operations at the level of the abstract-pose or chain of poses rather than

at the joint level - in the simplest case, at any given time the configuration of

the body of the creature is completely specified as either being at a pose graph

vertex or at some point along a pose-graph edge. These two abilities allow some

efficient abstract reasoning about and manipulation of poses to be constructed

without committing to a particular pose representation.

A pose-graph motor system spends much of its time producing animation ma-

terial by searching for poses from the graph that match certain criteria, then

searching for paths to those poses from the current body configuration and then

finally building "interpolators" that execute that path. To search for a path be-

tween two nodes in a graph we need another metric (which might be related to

time, but is more likely related to an estimation of "effort") which we shall call

the distance-metric. Two related distance metrics are possible (and in general

needed for fast searching) - metrics between pose-graph nodes that share an

edge and a distance between any two poses. To search for nodes of interest in

the graph we need labels and other information stored in the graph. Sometimes

these labels are simply names of poses of particular interest ("sitting' for exam-

ple), sometimes these labels are the positions of part of the creature's body -

the dog's nose. This decomposition of searching into two unrelated and rela-

tively efficient searches - a search for a node, and a search for a path - works

well for a number of problems.

Thus the pose-graph motor system seems to have something to offer the prob-

lem of planning and sequencing movement and its graph structure is one repre-

sentation of the constraints on motion placed on a body by the availability of
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figure 17. Initially, the stack consists of a "head" element that is connected to the

action system. Each program executes and requests that the pose-graph move to a

particular object - which might be another program (in which case this is placed

on the stack beneath) or a pose (in which case an interpolator is created, and the

stack ends). The stack of executing motor programs undergoes a complex tear-

down process whenever an element of the stack changes its output.

animation material content. To complete the basic pose-graph framework, a few

more ingredients are required.

Firstly there needs to be a control language, situated between the desires of an

action system and the constraints of the pose interpolators. One particular,

"stack-based" language certainly found some amount of traction in the collabo-

rative works presented here. This virtual machine for motor programs consisted

of a running stack of control elements - the"output" of element n is resolvable

into a request for a particular element n + 1 . Should element n ask for some-

thing and never change its mind, element n + 1 continues to execute. Should

element n ask for something else, the stack elements > n are torn down, and a

new set of stack elements are recursively constructed. Stack element 0 is a con-

nection to the requests of an action system and at the top of the stack, element

N, is a pose-graph interpolator. This construction worked well for a wide range

of creatures - allowing the creation of modular, reusable, programs that

shielded the action system from the current contents of the motor system 82

- but began to show its age and its simplicities with more complex configura-

tions.

In particular, for most creatures the identity between a single pose edge in a

single pose-graph and a complete description of the creature's body is just too

simple. Most representational creatures require the creation of several pose-

graphs, which execute in parallel and in general control various layers of the

body's motion. There might be a"tail layer" or a"face layer". The description of a

body configuration is then, at the very least, the pose-graph edge positions of all

of the pose-graphs, the parameters to the poses either side of those edges and

some description of how the independent pose-graph layers blend. The analytic

power of the pose-graph is not lost if, for example, there is one main pose-graph

that controls the bulk motion of the creature, if there is one place to go to ask if

the creature is sitting or standing. But the expressive power of the stack-based



motor programs are compromised if there are constraints between various lay-

ers. One critique and replacement is offered for The Music Creatures, page 152,

and for agents where the decomposition into layers offers insufficient granular-

ity, where motor programs that access different resources and target different

bodily degrees of freedom need to run in parallel rather than series, this, more

sophisticated motor-program "language" seems vital. The agents of how long...

operate in this domain.

Secondly, we need some algorithms that can supply some analytic, or

perceptual representations of what the pose-graph is doing. One is offered in

Dobie - an algorithm that can construct a data-driven model from several,

multiple pose-paths. This means that Dobie can learn that a particular flow

through the graph, one that might have no specific motor-program to create it,

is important enough to be named and represented as a possible action in the

action-system.
83

Another is to use the pose-graph as a place to store learning information that

can later be recalled in order to provide an analytic view of the motor system.

This approach has many uses and the pose-graph, in the agents that use it,

seems an ideal representation in which to store information about the relation-

ship between motion and something else. One satisfying result is in the inte-

grated learning of Dobie where, by incrementally labeling poses with the actions

that are running when they are executed, an agent can reflect upon the appear-

ance of its own body - in effect, averaging over the complexities of motor-

program stacks that interface between action and movement. Such a capacity is

one of the differences between a machine learning problem and a creature-

training problem - how the agent appears is all a trainer gets to see. In this case

it's extremely important that the trainer's reward information is propagated to

the correct actions - not to the actions that are currently executing but rather

to the actions that are generally responsible for making the creature look that



action system olRw

apparent animation i WN too Fetngup saong geting rewrdd

figure 18. The body does not always appear to be the same as the running action.

Fundamental to the problem of building motor systems is having them be able to

provide information about how the body appears to the outside. In the case

illustrated above, the action system tells the motor system to perform the action

"beg" - however, Dobie, in transitioning from "roll over" to "beg" appears to be

sitting for a moment. It is the action that causes "sitting" that ought to be rewarded.

way. A trainer rewarding Dobie the virtual dog for sitting is rewarding the ap-

pearance of sitting - and the fact that a complex stack of motor programs is at

this instant preparing to make Dobie stand is hidden and thus meaningless as

far as the trainer is concerned.

We can store this information in each pose as a simple distribution p(action)

and we can compute the entropy of this distribution which indicates whether

this is a pose that is strongly associated with the particular action or not. We

can improve these histograms, decreasing their sensitivity to precise system

timings, by smoothing these labels along the graph edges.

In The Music Creatures we have examples of storing sound in the pose-graph -

the line agent, page 141 - and of learning the results of more control-like poses

- in the exchange agent, page 135.

The usefulness of storing this information, and propagating it around the graph

structure hints at a more general extension of the pose-graph into hierarchical

structures, that allow the storing of label information, and perhaps even pose

information at a variety of resolutions. Indeed, as the richness of the informa-

tion stored in the poses increase, so does the chance that our search problems

will not decompose into node-finding and then path finding. Searching for a

node in the graph that has certain apparent properties that are dependent on

the path that the agent would have to take to get there. To find these kinds of

nodes takes, at the very least a full O(n2) search of the graph (a full, carefully

ordered, breadth first search) with O(n 2) storage - although the A*-search

algorithm also scales as O(n2) its effective leading constant is much, much

smaller given the good pose-pose heuristic information. Hierarchical graphs



A review of hierarchical search methods in such ad hoc generated
hierarchies is:J-A. Ferindez-Madrigal and J. Gonzilez, Multihierarchical

Graph Search. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 24 (1), January 2002.

For a use of the hierarchical motor system work described here:

C. L. Breazeal, D. Buchsbaum,J. Gray, D. Gatenby, B. Blumberg, Learning

From and About Others: Towards Using Imitation to Bootstrap the Social
Understanding of Others by Robots. Artificial Life, 11 (1), 2005.

support a downward, heuristic beam search that reduce this search to

O(nlog(n)).

There are a variety of ways of creating low-resolution versions of connected

graphs. Those most useful for searching maintain the same connectivity infor-

mation at lower-resolution views as found in higher-resolution views, looking at

the connectivity of nodes as well as their contents when deciding to merge

nodes. Since these graphs are completely cyclic anyway, this is not a hard con-

straint, but a heuristic. We should expect to find that the higher-resolution chil-

dren of two adjacent low-resolution nodes are also reasonable closely connected.

In the hierarchical pose-graph we collapse chains of singly connected nodes -

common in graphs created from long animations - into fewer nodes by unsu-

pervised clustering while converting nodes that are centers of star configura-

tions into larger models centered on them. At any given time, the agent's body is

located now not only on a pose-graph edge or node but on a whole set of in-

creasingly lower-resolution pose-graph edges or nodes. Poses that fit some de-

scription and are "close-by" in terms of the shortest path from the current posi-

tion can now be found with standard hierarchical graph searching techniques.

These techniques are used in the motor learning of the exchange creature in The

Music Creatures, page 141, and also form the basis for some of the motion iden-

tification work described.

The generic pose-graph

It is worthwhile to stand back and look at the more general implications of

pose-graph-based motor systems in a more digital-art rather than digital-agent

context. The triple space navigated by the motor system - action selection,

virtual body and animation material - is particularly interesting. The pose-

graph was originally constructed as a structure that could take content in the

most banal sense of the word - unstructured animation produced by hired



animators - and reuse it, live. This repurposes and exploits the animations, the

animator's talents and the extremely polished and researched tools that anima-

tors use. As a site of content the pose-graph explicit representation of material

seems inherently collaborative. In Loops the pose-graph structure became the

representation used to manipulate not movement (the underlying motion used

in that work simply played out on a loop) but choices - rendering parameters

and action-system parameters named by the collaborators. The explicit graph

structure - its graph of statements that "this" is a pose and it has "this" name -

became the sketchpad for the solidification of the collaboration, the memory of

where we were. As such it became a site of versioning information and database

techniques, page 107 and later, page 225.

Critiquing c5, alpha Wolf

Alpha Wolf was the vision of Bill Tomlinson and is
described in detail in: B. Tomlinson, Synthetic Social

Relationshipsfor Computational Entities. PhD Thesis, MIT,
June 2002.

The c5 action-selection mechanism is an example of an organizing structure

rather than a prescription for action selection in general. Each "slot" in this

template-like description can be filled by code of incremental complexity; the

abstraction afforded by cs's action groups has survived for a number years and a

number of projects because it offers the right blend of structure and openness

for a number of problems.

Much of this approach's gentle innovativeness was devoted to controlling the

temporal patterning of the resulting action selections. But it is exactly here that

there was more work to be done. The overview of the c5 action-selection

mechanism given above was an overview because it omitted two complications.

The full algorithm, as ultimately deployed in alphaWolf and Dobie (for Loops the

difference is immaterial) is given here -



MODIFIED C5 ACTION SELECTION ALGORITHM

state

stardes - a list of action-tuples that get special privilege to interrupt others.

tuples - a list of action-tuples inside this group

currentlyActive - the currently active tuple

lastValues - a mapping from tuple to real number

define expectedValueOf(tuple) to be tuple.trigger(*tuplevalue() if tuple is
currentlyActive or tupledoWhileo*tuplevalue() otherwise.

algorithm

if the maximum expectedValueOf(...) over all of startles is greater than zero then the

greatest becomes nextActive.

otherwise, if the currentlyActive is a startle, and expectedValueOf(currendyActive)=O, and

tuple.trigger(*tuple.value() is greater than zero, currentlyActive remains active

and nextActive=currentlyActive.

- otherwise,

construct the new map nextValues(tuplel= expectedValueOf(tuple) for all tuples

if any tuple that isn't currentlyActive has nextValue[tuple] >lastValues[tuple] and

2* nextValue[tuple] > expectedValueOf(currentlyActive) then select a new action

if expectedValueOf(currendyActive)=o then select a new action

- if we need to select a new action:

if all of nextValues[...] = 0 then nothing is done, and nextActive = currentlyActive

P otherwise, - ------- - - -

sample nextActive from a normalized version of nextValues[...]

if we selected because expectedValueOf(currentlyActive) was 0

set nextValues[currentlyActive] = tuple.trigger)*tuple.value()

A finally, lastValues[...] = nextValues[...]

Note the three highlighted lines in the description of the action selection

mechanism. These, rather explicitly, avoid a common but troubling scenario -

when the do-while of an action-tuple goes to zero, but the trigger of an action-

tuple is non-zero, the action-selection mechanism is likely to dither (swap back

and forth) for exactly one iteration. Why? because the action-tuple appears to

the action selection mechanism to go from zero to a non-zero value in one it-

eration, this causes a surprise" based reselect. The first line prevents this phe-

nomenon from occurring in the case of startle action-tuples, the second in the

case of normal action-tuples. In order for these "workarounds" to be written at

the action-group level the action-tuple must present all the pieces of its expected

value function, coupling its internal value structure directly to the group. (There

is an inverse situation, which was always solved at the tuple level, where a high

trigger leads to a zero do-while, that again causes a one-iteration dither.)

However, these corrections do not remove all temporal pathologies from the

action group formulation. If an action's trigger depends on the currently run-

ning action of the group, or if it depends on another action in another group

which in turn connects back to this action, multi-iteration dithers and even

freezes are possible. Such cases have appeared a number of times - during the

development of alphaWolf, where the creatures' action systems were split into

two separate, but very coupled groups. This coupling is perfectly reasonable on

paper - sometimes, the "attention" group controlled the palette of options for

the the main "action" group, sometimes the what the wolf was doing controlled

what it could pay attention to.

Other aspects of the extant c43/c5 creatures are already pushing along this path

of temporal complexity. Traditional reinforcement learning systems propagate

value between state-action pairings at each state-action transition. We have seen

that c43/c5 potentially drops this credit-assignment stage altogether should the

upcoming value be expected. However, in agents with complex bodies and mo-
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action system ROli it Reward

ent animation roll roll roll getting up getting rewarded

figure 19.Sometimes actions should not participate in credit assignment. In this case
the action "sit" is too short to have an effect on the body of the character - "Roll"

should receive the reward instead.

tor systems this credit-assignment stage is further complicated. It is necessary

(in the sense that it is often the difference between a"trainable" character and a

non-trainable one) for creatures with complex bodies to defer this decision to

propagate value to a later point in time. Since the action system necessarily runs

ahead of the motor system, issuing commands that will take a number of frames

to have an eventual effect on the body (due to animation constraints and the

constraints of realistic motion) a creature must take care to allow only actions

that had a shaping influence on the body of the character to participate in the

value propagation.

The reason for this descriptive detail (in addition to the benefits of accurately

recording the action selection algorithm for alphaWolf, Dobie, Loops and an early

music creature for the first time) is to illustrate where the tensions lie in taking

the simple intuition behind the c43 action selection mechanism and turning it

into an algorithm. The general lesson: that unexpectedly difficult intricacies

involving the patterning of time result from surprisingly simple systems. The

specific lessons: that if one really thinks of the action selection problem in terms

of not only relevancy and persistence but patterning - the order and timing of

actions that arise from an action system - then c5 appears deficient. As we

move from what one would call patterning, towards actions systems that dis-

tribute and control multiple interacting actions simultaneously, what I might be

tempted to call choreographing actions, then one might need an additional level

of description, additional state and additional control mechanisms than those

offered by cs's action-group.



Locating c5

P. Maes, How to do the right thing, MIT AI Lab, Memo
1180, December 1998.

Scoot: S-Y. Yoon, B. Blumberg, G. Schneider, Motivation
Driven Learning for Interactive Synthetic Characters.

Proceedings of 4th International Conference on
Autonomous Agents, 2000.

Before proceeding to the artworks created with cs, it's worth pausing to locate

c5 in the space of possible action-selection solutions, considering in more gen-

eral terms the problems that it solves well and the kinds of problems it has little

to offer. We'll reuse the axes later to work out where some of the contributions

made in this thesis fit. These axes are judged from the point of view of the

author of an agent, when they are trying to think through or think over the

behavior of the system. For the purposes of comparison we'll also include the

popular graphical environment Max, which will be the subject of considerable

discussion in the last chapter; and a hypothetical placeholder entitled xFSM

that notates a variety of small, finite-state machine techniques that appear in

scripting contexts or simple computer games. Finally, Maes89 refers to Maes's

influential"How to do the right thing" architecture; and Scoot, an older, hierar-

chical Synthetic Characters Group architecture.
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single action

Maes89
Only single "winning action"
discussed.

Subsumption
A variable number of
systems seek control,
higher level ones seizing
control over lower level
one.

c43/c5
Most characters possess a
small number of action groups
that interact loosely. Tight
coupling is difficult, a large
number of action-groups also
prone to error. Often low level
systems seize control at the
expense of higher level
actions.

xFSM
The simplicity of this approach
comes from the
state=action=animation
equivalence.

figure 20.
Single-actions versus multiple actions.

Soar
A large number of rules can
fire during elaboration /
proposal and evaluation stage.
Even though only one
operator is eventually
"applied".

Scoot
Most characters constructed
with a large and deep
hierarchical action system.
Actions at non-leaf nodes in
the tree do real work.

multiple concurrent actions

Max
Many modules active all the
time

We might begin by charting one axis - number. The paths of least resistance, the affor-

dances offered by c5, appear to lead to characters that have a low number of actions active

simultaneously. That is, from the point of view of the author, there is only a few things going on

at once. None of the main characters made with c5 have exploited a deeply hierarchical action-

system, and this is probably because c5 says little about, and potentially has trouble over, action-

tuples that interact with each other "behind the scenes". Towards the opposite end of this axis

we locate hierarchical action structures (for example, Scoot) and other structures where the

composition of simultaneous actions and finally the composition of simultaneous, interacting

actions leads to the expressive power of the action-group. As we proceed through this thesis we

will move from left to right - as we meet, as artists, the duration of a dance, or the installation

of an artwork, we will require more complex, more self-generating temporal structures based on

multiple overlapping actions.
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Soar
Elaboration is fast, operation
seems very fine grained and

possibly faster than state
changes.

"fast" - fine
typical resolution
of decision
making

Max
Encourages
decision making at
the rate of state
change everything
else is "clocked
down" from this.

xFSM
Moves exactly as fast as the
state changes and / or the
action is "taken".

Maes89
Signal processing network
based, dynamics of the
network effect the dynamics of
decision making.

Scoot
Hierarchical structure
often limits the "scale"
of changes when they
occur. However, has the
same constant action
selection time-slice of
Maes89.

Subsumption
Control shifts infrequently

c43/c5
Large action tuple units exert
some control over the speed of
action selection. Complex
sequences of action often
delivered by motor system.

"slow" - large decision
atoms

figure 21.
High resolution versus low resolution
action selection.

Another axis - speed. What is the typical granularity of decision-making in-

side the action system that the author is actually working with (or against)?

Systems that make decisions based on elaborate filter networks count here as

fast; Planning-based systems must potentially discard a large amount of com-

putation to change their decision count as slow. C5, as we have seen, picks a

middle ground, selecting infrequently and allowing both active actions and in-

active actions to semi-explicitly recommend re-selection. As we proceed

through this thesis we will fight to maintain the correct granularity of decision-

making and augment c5 with both long and shorter time-structures.

1 .1 on --.P-
&Q3



Subsumption
control shifts infrequently,
and explicitly

&__ f- on I

c43/c5
Flat structures means
what generally
happens next is less
than explicit,
although there is
good control for
when it happens.

xFSM
Possible (Action,State)
transitions are explicit, (with
the except for radically flat
structures like q-learning)

Maes89
Explicit pre-conditions and
post-conditions essential
feature of approach, these
help constrain the future
action possibilities. However,
the exact timing of the action
transition appears much
harder to control

U en

Scoot
Hierarchical structure
promotes the creation
of orderly structures
inside peer-group.
When super-peer
transitions occur they
are hard to organize.
Further: the problem of
"shared leaf nodes"
complicates non-
hierarchical transitions.

Soar
Arbitrarily complex
rules interact rapidly.

Max
No explicit
representation of
control flow, or
indeed "control" at
all.

I

high temporal
uncertainty

figure 22.
Low versus high "temporal uncertainty".
What is the range of things that can
happen when?

The final axis - temporal uncertainty. What is the typical potential temporal

complexity of the results of action selection - both its "texture" in time and its

scope? Here scripting systems and finite-state machines count as low - these

are often the kinds of systems that are used in computer games particularly be-

cause they are considered simple, and "safe" to use. C5 is significantly further

along than this, with its broad, flat action-groups (that have a lot of scope) and

its fairly unconstrained transition dynamics. Without taking extra steps pat-

terning sequences of c5 action-tuples is left entirely to the author, often dele-

gated to the motor system which has significantly stronger language for talking

about constraint and ordering. I will describe ways of simultaneously increasing

the temporal complexity of agents and their action selection techniques while

reducing this "temporal uncertainty" from the point of view of their authors.

low temporal
uncertainty
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Some of the work of the latter half of this thesis is to broaden the range of these

axes that is accessible from c5-like systems. Some artworks - Loops and Loops

Score - will need more actions ongoing simultaneously and interacting with

each other, and I'll present two ways of achieving access to this part of that axis.

Before moving onto those artworks, there is an installation that will draw the

advantages and disadvantages of c5 into sharper focus.

alphaWolf, a large c5 installation

alphaWolf was a project by the Synthetic Characters Group during the year

2ooi, completed during an intense collaborative period during the summer,

premiering at the SIGGRAPH computer graphics exhibition. It is by any metric a

success, multi-participant interactive work. It later toured to a number of ven-

ues, including the international Ars Electronica festival and German ZKM in-

stitute. Since in terms of the number of people actively contributing code, and

the numerical size of the perception, action and motor systems it contains, it is 93

second only to how long.., it is important to take this opportunity to examine a

concrete example of a complex work created within the c5 agent toolkit and to

learn the lessons latent in this unquestionably successfil installation.

figure 23. alphaWolf, 2001,
The Synthetic Characters Group.



UNDERSTANDING ALPHA WOLF
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August 3 August 8 final

figure 24. The main action system for a wolf in alphaWolf was one of the main sites of authorship during the development of the piece, and

grew seemingly without bound. Changes (gray) and additions (red) continue to be distributed throughout the file even up until the last

day.
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AlphaWolf.java

ComplexWolfCameraActionM.Java

Wolf.java
WolfSensorySystem.java

WolfNavigationSystem.java

ProprioceptionSystem.java

WolfActionSystem.java

WolfMotorSystem.java 
WolfPerceptionSystemjava

AutonomicVariableSystem.java

AlphaWolf.java

MultiCameraManager.java

ComplexWolfCameraActionM.java

95

FightAction.java ToodleAroundAction.java

figure 25. Over time, everything becomes connected, and coupled, to everything else. The left figure, taken from early July shows how the

systems are instantiated (red), directly connected (black) or weakly coupled through the wolf working memory (dashed, grey). Over time,

however, these "abstraction barriers" crumble and a densely connected set of codependent files result.
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figure 26. Inside the main action system file independence between action-tuples' activations is impossible to maintain. This figure traces

the thread of four "contexts" for triggering action-tuples that are themselves based on which action-tuples are active. Note how the colors

weave in many different combinations - no single hierarchical reorganization of this file will capture the complex temporal patternings

that these threads are producing.
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/Sensory and proprioception System
psl -new ProprioceptionSystem("wolf proprioception"
is o rySysem(Wolf's Sensory System", tipps, Math.PI*2, Double.POSITIVE-INFINITY, false);//Math.Pl/4.0, 200);

new WolfSensorySystem("Wolfs Sensory~5ystet i
AlphaWolfinstallation.visibilityAngle,
AlphaWolfinstallation.visibilityDistici,
AIphaWolflnstallation.smellRadis,
AlphaWolflnstallation.usc_4ye state.to-filter)

thissetSensorySystem
this.setProprioception 95 ~l(
/ Perception System
RJ new WolfPerceptionSystem("Wolfs Perception System tf]rhs);
et rception3ysten"

__1 eeptionSystemI0J

new CSEMSystes (this.getNameo+": CSEMSystem);

Action System
fthis.getNameo.equalspu11

installActionSystem( falumber, 9 )

//Navigation System
// reateAndinstaliNavigationSystem("Duncan's Navigation System", LocationPercept.BtOYtOCAION, wm;
crpateAndinstallNavigationSystem("Duncan's Navigation System", LocationPerceptBODYLOCATION , s

figure 27. The above, annotated segment, comes from the main Wolf character's

constructor. Note the complex, coupled, and order dependent, initialization of
subsystems.

By a"close reading" of the archives of this project I am tempted to find the fol-

lowing areas as problematic for the creation of complex agents in general.

Initialization, connection, registration and notification. All of the lines of

Alphawolf.java (the main installation file) and Wolf.java (the main initializa-

tion file for a Wolf creature) that do not create a system are devoted to

registering systems with each other and passing references to systems

through constructors so that they can perform their own registration and

connections. Early versions of The Music Creatures - as they cut new

paths away from the toolkit, were similarly plagued by critically order-

dependent but otherwise boilerplate instantiation code. This is the

creation-time coupling issue, and in more complex and heterogeneous

creatures there is a tenancy for this problem to increase in severity. Indeed,

in alphaWolf, the burden of reconfiguring and disconnecting a creature is

such that no creature is ever deleted from the work, at the end of a 5-

minute interaction cycle, with the pups having "grown" into adults, the

creature is reused rather than recreated.

-. I develop the Context Tree and a set of associated techniques to

combat this problem.

No re-use or extensibility. The initialization of the wolf agents in the main

behavior file WolfActionSystem.java is almost completely monolithic - it is

inconceivable that as a description of behavior this class could be extended

(or, in the language of object-oriented programming, sub-classed) by an-

other to create a variety of wolf or a wolf with a particular behavioral style.

Evidence for this hypothesis is present in the very form of the file, which

includes in one overlapping place the descriptions for the wolf pups, the

wolf"aunt" and the alpha and beta adults. Yet, at the same time, this com-

plex initialization routine seems have little space left for yet more pa-

rameters and options.
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- I develop an extensible programming model based in the Context

Tree that approaches the problem of creating extensible complex assem-

blages of systems with "over-ridable" or"sub-classable" default behavior.

Chains of actions are hard (B happens after A finishes), deferred execution

is hard (B doesn't happen while A is still ongoing) - These two temporal

primitives are so hard to express inside the body of the main agent be-

havior file that even a fairly close reading of the code will not yield this

secret issue. Only by executing and debugging the code will one realize the

careful choreography of signaling between one action-tuple and another,

between one mode and another. The chaining of actions hides a subtler

problem: Action-tuples whose values are based on the current activation

of another action short-circuit some aspects of the action-selection

mechanism, and reveal the complexities that the action selection technique

was constructed to hide. Part of the issue stems from the occasional

pathological cases in the action selection framework, some of which are 98

described above page 87, but much of the problem is that there simply

isn't any framework support for such chains of actions.

- The Diagram system is constructed around making explicit the tem-

poral sequence of events, incorporating some of the techniques that

motor systems use to handle their temporal sequencing, and the Fluid

tool renders the authorship of these sequences very visual while retain-

ing the expressive power of programming languages.

That execution ordering is significant and difficult is also hidden inside the

action-system file. Here WolfActionSystem.java goes to some lengths to en-

sure accurate hand-off between actions is reflected in the creatures

"working-memory" Should a working memory slot go unfilled, or perhaps

un-overwritten for one execution cycle, there are places where the action

system stalls and the behavior of the creature breaks down. This suggests
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figure 28. This figure shows the "optional" sections
of the main action system file - areas activated in

the cases that the wolf in question is the "alpha,
"beta" or "aunt" wolves rather than an interactive

wolf pup. Note also the fine scattering of numerical
constants that control the behavior, one might even

say the "character" of this particular character

that there is a disconnect between the time-scale that the actions are oper-

ating on and the amount of persistence that their effects should have.

-+ I develop the generic radial-basis channel as a technique page 135,

borrowed from the problem domain of motor systems, as a way of al-

lowing actions to have short term effects that extend past their activa-

tion stories in a flexible way, diffusing the coupling between action and

life-cycle.

Insufficient modularity of systems - things which on paper seem like they

should be modules couple so much information into the main behavior

class that they are added inline rather than as a module. We can see this in

the perception-system elements, user-interface elements (the on-screen

buttons for participants to interact with) or the action-system manifesta-

tions of device controllers. Other systems which are specified elsewhere

(for example the perception system) have much of their structure dupli-

cated as they too are coupled in (for example in the list of source action-

tuple triggers). Such a static duplication of structure is unmaintainable in a

creature that undergoes structural learning, for example Dobie overcomes

this problem in a specific case.

-+ We shall see the use of a Context-Tree-like structure to provide a

easy integration and de-integration of systems, pages 231; generic dy-

namically extensible views of hierarchical structures which will form the

basis for the Fluid environment, page 397.

Insufficient modularity of behavior - Even from the overview of succes-

sive differences between versions of the main action system file of alpha-

Wolf, we can sense large blocks of code being introduced, scattered into

the middle of the main initialization method. This impression turns out

to be accurate upon closer analysis - very little of this action system was

tested or even is even testable in isolation. There is overwhelming support
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figure 29. This figure illustrates a particular kind of
"comment" inside the main action system file of

alphaWolf. While comments are in general used to

pass explanations between collaborations inside

the code itself, the highlighted comments do not
explain what surrounding code does (as typical

comments do), but rather store what the
surrounding code used to be.

for isolated unit tests in the software engineering of complex systems.

Why was it not attempted in this work? Some of reasons are plain to see

in the relationship between the added blocks of code and their surround-

ings - they require too much from their surroundings to be efficiently

tested in isolation, they couple so strongly to their environment that to

isolate them would require an accurate duplication their environment.

-+ The lessons learned will form part of the motivation behind the Dia-

gram system, where we explicitly decouple systems (for example "abstract

balances" page 269) as well as some of the techniques used in The Music

Creatures where the coupling between systems is the subject of long-

term (that is longer than the execution cycle of a creature) learning, page

143. Finally, we design the Fluid environment to promote a bottom-up

testing methodology by incorporating techniques that allow small com-

ponents to be assembled into longer sequences - effectively allowing

the reuse of the small testing scenarios.

Storage of history - Finally, we note the growing number of comments,

notes and markers in the code, the annotation of and the incorporation of

the history of the file into the file itself - as notes to collaborators or to

self. Is this the correct place for it? And what history is missing - cer-

tainly the expected execution orderings that are implicit in the file, but

also the to-ing and fro-ing of the numerical parameters in the file as the

behavior is pushed one way, perhaps by one collaborator, and another,

perhaps by the addition of a new behavior.

-+ I develop an environment, Fluid, for creating, monitoring and debug-

ging complex assemblages of code that explicitly offers more historical

information about its own use, page 410. I also create specific, long term

database structures for other aspects of a work and the work's agents,

page 143 and page 22s.
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There will never be another alphaWolf and certainly not simply for the purpose

of comparing a programming technique with another. The exciting work of 6

programming collaborators who remained dedicated to one vision of an instal-

lation for more than 3 months cannot be duplicated for the purposes of an

attempted scientific comparison. So these ideas will be developed throughout

this thesis and be tested in other installations, both bigger and smaller than

alphaWolf, but we shall not be able to return to the exact same project for a con-

clusive demonstration of their applicability to this particular domain. However,

it is worth noting that there was at the time and beyond consensus amongst the

collaborators on alphaWolf that this work took us to a plateau of complexity

that could not be safely crossed in a reasonable amount of time- neither with

an extra pair of hands or an extra month.

It was with this thought that I turned to the next 4 years of work - developing

the tools and techniques required to traverse this threshold as I took the agent,

and the agent toolkit, into new territory. 101



Loops was commissioned as a 'digital portrait" of choreographer
Merce Cunningham, and takes as its point of departure a

motion-capture recording of Cunningham performing his 1970s

solo dance for hands of the same name. It is a piece for screen
but has been presented simultaneously with the parallel work

Loops Score which provides a related soundtrack.

Chapter 3 - Loops

Cunningham originally created Loops as a solo to be performed in front of a

Jasper Johns painting at the Museum of Modern Art.

"Described by Cunningham as an'Event for soloist; Loops was performed by
him at the Museum of Modern Art, New York on 3 December 1971... The
piece was performed in front of Jasper Johns's large painting Map, after
Buckninster Fuller's Dyinaxian Airocean World, in the Founders' Room on the

museum's sixth floor... Loops was performed again at New York's Whitney
Museum of American Art on 18 May 1973 (as Loops and Additions), and it

also gave Cunningham material for his appearances in Event performances,
such as the solo in which his hands move through the air around his head
and torso, fingers flickering and twitching..."

D.Vaughan, Merce Cunningham: 50 Years, Aperture, New York, 1999.

Loops is a portrait of Cunningham - it attends not to his appearance, but to

his motion. It is derived from a motion-captured recording of his 1971 solo

dance for hands and fingers entitled Loops. In this work, his motion-captured

joints become nodes in a network that sets them into fluctuating relationships

with one another, at times suggesting the hands underlying them, but more

often depicting complex cat's-cradle variations. These nodes render themselves

in a series of related styles, reminiscent of hand-drawing, but with a different

sort of life. Many viewers liken their experience of seeing Loops to that of gazing

into nature: its flickering motions put them in mind of fire or of primitive biol-

ogy, perhaps seen under a microscope.

Loops is computed in real time and is, in effect, a live performance (the program

is the only "performer" of this choreography other than Cunningham, who has

never set the work on any other dancer.) Thus Loops, the digital program, con-

fers an odd kind of immortality on Loops, the physical dance, for in essence it

keeps improvising itself. Manifesting itself through the probabilistic interaction

of its distinct parts, it reveals something new with every playback.
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1. __ An overview of the artwork

Art is the imitation of nature in her manner of operation.

This quote from'Ihomas Aquinas seems to be a
favorite quote of Cage's (sometimes attributed

by Cage to Coomaraswamy).

c.f.J. Cage, Comnposition as Process, Cbanges and On
Robert Rauschenberg collected in : Silence,

Wesleyan University Press, 1961.

c.f. T. Aquinas, Suimma Theologica.

figure 30. Cunningham performing Loops
for motion-capture session in 1999.

This idea, cited often by collaborators John Cage and Merce Cunningham, led

them to a deeper kind of realism, one that mirrored not the world's outward

appearance, but rather its underlying processes. One such process, which fasci-

nated both artists, was the workings of chance. They decided that by leaving

many of their creative decisions to the roll of the dice, they could give their art-

works true autonomy.

Loops explores, questions, and then extends these radical notions of realism

and autonomy. Loops is a work about distribution and change, about distrib-

uting networks of coherence over underlying human motion that are never sta-

ble, but the remains of which become the material used to create new networks.

There is a minimalism to the monochromatic imagery, but it is accompanied by

a sense of finiteness of material - a sense that there is a limit to the number of

lines and the number of points available and that the piece, which has no begin-

ning or end, is inefficiently enumerative.

In its particular fashion, the work indicates the first direct point of contact be-

tween the history of chance operations in digital art, in which the long time

collaborators Cunningham and Cage play a significant role, and the probabilistic

action-selection strategies of artificial intelligence. The agent metaphor enters

this work through the motion-capture points - some 42 points are represented

in the original motion-capture session, and we distribute 42 simple creatures as

a "colony" across the hand data. This reflects the desire for an complexity that

was entirely interior to the moving hands (this piece is live but not interactive
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Motion capture is the name given to a technol-
ogy that uses multiple, calibrated cameras to
reconstruct the three-dimensional motion of

points in space. These points of motion are
typically markers attached to human movers.
When "cleaned" offline, by hand, motion cap-

ture offers a sometimes astonishing accuracy of
reconstruction of moving skeletons - the kind

of fidelity appreciated by motion-capture's
roots in both the biomedical community and

military simulation. Today it typically provides
the source material for the animations found in
computer games, and Hollywood'digital extras'.

Most recently commercially available real-time
motion capture has become a practical reality

- and systems made by three hardware manu-
facturers are now available.

Motion capture hardware, however, remains
within the budget scale of Hollywood, the mili-

tary and computer games. Loops used offline-
motion capture of a performance by Merce

Cunningham that was generously donated by
Modern Uprising Studios. The two other dance

works use real-time motion capture, with
hardware and engineering support donated by

MotionAnalysis Corporation.

with the viewers). The desire to explore, and given the unlimited duration of

this piece potentially exhaust, the making and unmaking of relationships be-

tween the finite number of points on the hands implies that the creatures' per-

ceptual world should be quite rich - for what the creatures'sense of their peers

is the hidden underpinnings of these fluctuating relationships.

Therefore, their perceptual worlds included the movement of the motion cap-

ture point it is associated with an individual creature, a number of senses of its

local neighborhood of points and signals sent directly from other creatures.

These latter two senses were additionally available in forms weighted by the

existence of visible connection between the creature being perceived and the

creature doing the perceiving. Signaling in the micro-world of the piece takes

place at a finite speed, inside a simulated virtual fluid. Thus signals propagate

and join in waves throughout the space of the colony and, as they push the be-

havioral tendencies of the creature around, these signals are also rendered visible

on the creatures' bodies.

Indeed the visual appearance of the work stems as much from rendering the

perception of these creatures visible as it does from allowing the creatures to

chose their appearance, but from the perspective of our agent framework in

these creatures' bodies we find an important example of a heterogeneous, non-

movement-oriented motor system. Each creature's "body" consists of: a set of

ordered lists of points that each start with the creature's own point (for example,

these may be drawn as connected line segments), a set of filter coefficients ap-

plied to a motion sampler that samples the underlying motion capture data, and

a position in a blend space of rendering styles.
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IMAGES FROM Loops
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figure 31.

Loops (inverted).



Distributing change

signaling signaling
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tscripting
refractory system

figure 32.
In Loops the action-tuple is augmented with two

structures, the trigger system and action collabo-
rate in a refractory mechanism and a signaling

process. These signals couple the behavior of the
agents in Loops to each other.

Since we are concerned with the distribution of similarity and difference, much

of the technical and computational resources deployed in Loops are concerned

with the action systems of our creatures. These systems are constructed using a

probabilistic action selection framework very similar to c43, page 71. Recall that

the two basic construction units of this hierarchical behavior system is the

action-group and the action-tuple.

The contents of each of these parts will be the subject of much description: the

triggers for each action-tuple come from a perception of what other creatures in

the colony are doing - this is a signaling mechanism global throughout the

colony; the do-while is a duration distribution that starts out set by hand; simi-

larly the values of the action tuples are also hand-set initially.

Two extra elements are added to this basic configuration. First is a refractory
multiplier for the action - actions that fire are less likely to fire again. This

dodges many of the coupling / temporal pathology problems discussed in the

critique of the c43/c5 action selection strategies, page 87, effectively damping

away any chance of a one-iteration dither, which otherwise may occur since this

action system is coupled through the signaling mechanism to 41 others.

The second element specific to Loops is an expectation mechanism that cuts

across the action-tuples' duration-controlling do-while - in the event of some-

thing"surprising" (to be defined below) occurring, a re-selection is almost cer-

tain to occur.

The strength of coupling between each of these two systems and the action-

tuples are adaptive: the refractory systems adapt their time constants to be twice

the ultimate durations of each individual action-tuple; the expectation mecha-

nisms adapt the size of their effect (equivalently what the expectation mecha-

2. ___
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Signaling "fluid"
c43 action
hierarchical group

Scripting
(tuple signal coupling,

refractory constants)

figure 33. Each Loops agent combines a
new set of scripting techniques for action

systems with a new exploitation of the
generic pose-graph motor system. The

contents of this diagram will be
discussed in the pages that follow

Named
parameter

bundles

Pose-graph rededing

ConnectWty

Scripting (tuple value)

Named
parameter
bundles

"fluid"
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nisms consider truly surprising) to try and keep the typical duration of an

action-tuple to be near an author-specified duration (io seconds). These inter-

nal adaptive parameters had, of course, the ability to be reset externally - thus

these resets had the ability to be scored.

The motor systems

Inside each action-tuple are, of course, the actions themselves. In Loops these

take the form of (possibly a composite of ) one of three classes - asking the



/

figure 34. A sampling of Loops basis creature's motor system to change rendering style, asking the creature's body to
rendering styles or "adjectives"' change its connectivity or asking the creature to send signals out into the col-

ony. We'll look at each of these possible actions in turn.

The creature's primary motor system is constructed purely within the pose-

graph framework, but unlike earlier work using these structures, exploits the 108

representation neutrality of the pose-graph not to render the realistic animation

of a representational creature using combinations of pre-made material, but

rather to control the rendering parameters of a non-representational creature

using combinations of pre-made sets of parameters.

Thus we fill in the lower levels of the otherwise abstract pose-graph with the

following structure:

The pose representation - an ad hoc collection of rendering parameters,

line styles, noise amplitudes, couplings to signals. These bundles are pre-

cursors to other persistent structures in the agent toolkit, the persisted

partial trees, page 225, and the long-term learning database, page 143.



As we have seen, this pose-graph motor system is representation agnostic; we

need to plug-in some representations and metrics to handle this specific pose

representation. Specifically:

distance metric - the X2 distance between the overlapping parameter sets

in the nodes (the pose-graph is highly connected, thus this distance metric

is less important than in other motor systems). Specifically for all of the

parameters N that are present in two poses a and b we have a distance

i=N |ai - bi|
da-b = |ai+bi

i-O

time metric - each ad hoc parameter has a well-known range, and a well-

known time-scale for traversing this range, the time metric is given by the

average of each of the times given by these ranges.

interpolator - the interpolator for poses is a bundle of interpolators for 109

each individual parameter, each parameter parameter has a "bias"

P e [0, o] that modifies these linear blends between two values a and b to

be v= ba' +a(1-a0) where P' = P if a| > |b otherwise s'= 1/P .

This means that the interpolator will err on the side of smaller values of v

for P < 1 .This, and the ability to interpose nodes into the pose-graph to

deal with the special cases, seemed to give enough control to avoid situa-

tions where a linear, independent blend of a great many rendering pa-

rameters produced unpleasant intermediate renderings. Finally, Loops's

motor programs are always interruptible, all blenders are capable of taking

the rendering parameters set from any intermediate state.

In addition to causing the rendering style of the creature to move around the

pose-graph, actions also choose to modify what the body of the creature is con-



nected to. The body is a set of ordered lists of line segments, with this creature

at the head of each list. To keep things simple (and stochastic), the actions

which modify the connectivity of the body fall into three different operations:

delete(segment distribution) - deletes a line segment drawn from

a distribution;

change(point distribution, segment distribution) - changes a segment

to connect to a point

add(point distribution, segment distribution) - adds a point after a

particular segment

An action might perform these operations regularly until some condition is met

- for example it might delete(anything) until there are no more connections left;

or it might add(any-opposite-hand, shortest list) until it is connected to 5 other

points.
110

We then construct a vocabulary of distributions. Point distributions: anything

- any point; any-oppositehand - any point on the opposite hand; correspond-

ing-opposite - the point corresponding to this on the opposite hand; correcthier-

archy - the points above and below in the "correct" hierarchical skeleton of the

hand; acrosshand - the points at the same level on nearby fingers; connecteda-

mount - proportional to how many connections a point has; isconnectedtome

- only points that are connected to this point; nearby - points close by. Seg-

ment distributions: longest, shortest, furthest, closest - each over the length of the

segment chains in spatial distance or numerical segment length. Fuzzy binary

and unary boolean operations "or" (a+b),"and" (a*b),"not" (i/(i+a)) were also

created such that these can be put together.



LOOPS - CONNECTIVITY METRICS
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figure 35.

hand hierarchy

proximity

thend

x topological proximity

This diagram shows a small sampling of the connectivity metrics distributed across successive frames of motion-capture animation.
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Signals and expectations

Signals are named, vector values that propagate away from points inside hidden

fluids - one independent fluid for each vector signal. Loops chooses to model

the fluid by storing a highly down-sampled history of point positions and a

sampled history of signals sent by each point.

The signal s present at a particular location p for M signaling markers at

positions pm (t) at time to is approximately:

SP = JSM(to - p -p.(t)\v)dt

where v is the speed of propagation and sm(t) is the signal sent by

marker m at time t . In practice, of course, the integral is replaced by a

sum over the (highly) down-sampled history of each point.

Signal transmission has a refractory nature to it - a signal sent constantly gets 112

used up and fades to a low value, so the fluid model is more efficiently modeled

as a set of sources, as above, and as a general background. This sparsifies the

sum over markers above.

This weighted average is fed into the action systems of each creature and in the

majority of cases, receiving this signal causes the creature to perform a similar

action. However, this is not necessarily a constant cause of homogeneity inside

the colony - it is easy to author situations using the refractory mechanism that

are homogenous but highly unstable, ripe for change. And when this change

occurs isolated pools of different behaviors spread throughout the colony and

compete for space. It can be some time before homogeneity arises again. These

behavior-activation patterns are reminiscent of the percolative behavior of po-

rous solids in physics, or the simulation of "forest-fires" in experimental mathe-

matics, page 362.



LOOPS - THE SIGNALING "FLUID"
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In addition to forming this weighted average, we can also form a weighted ra-

dius:

rp = max SP-J Sm(to -|p - pm(t }v)dt

This radius is used as the basis for the expectation models of the creatures. Inte-

grating across all of the signals, normalized over a long time period, creatures

can observe ongoing, conflicted change nearby in the colony. One of the most

important, non-action, signals propagated through the hidden fluid is the accel-

eration of the points themselves. Therefore, the motion of the hands, and in

particular their unexpected motion, seeps into the action selection of the points

that perform the motion.

Naming

The final set of behaviors and behavioral parameters that made it into the crea-

tures (some 30 action-tuples) are pushed around by a running script which con-

sists, in essence, of a series of these named states. The act of recalling a name

either resets an adapted parameter to a particular value, resets a equilibrium

point in a drifting parameter, or modulates the value of an action tuple to make

it more or less likely to fire.

But what does a name refer to? and should the author of an agent have to

know? much ambiguity remains in the single act of naming - does our new

label "forest fire (white)" refer to these refractory periods, or the values of those

signaling behaviors? In Loops the ambiguity is reduced by collecting multiple

examples (and remember, for many named states in the colony, we have up to 42

examples for any particular snapshot). By using the consistency between exam-

ples to modulate the effect of the saved parameters, when they are recalled,

these multiple examples help articulate what it is that we are specifically inter-



K-means is a standard unsupervised clustering
algorithm - I enjoy the presentation in C. M.

Bishop, Neural networks for pattern recognition,

Claredon Press, Oxford. 1995.

This formulation of the use of the Bayesian
information criterion is after D. Pelleg and A.
Moore. X-neans: Extending K-neans with efficient

estination of the number of clusters. In Proceedings

of the 17th International Conference on Ma-

chine Learning, pages 727-734. Morgan
Kaufmann, San Francisco, CA, 2000.

ested in, what it is that the artists are in fact naming. Those parameters which

show little variety throughout all the examples, upon recall, act forcefully upon

the creatures'action systems; those that show no consistency have no force upon

reapplication.

One must be a little careful as to how this "consistency" is calculated if we are to

fully exploit the information contained within a potentially heterogeneous set of

examples. Rather than using the spread of a value, or its standard deviation we

repeatedly cluster using a simple k-means clusterer with k=(1..4). We choose

our"spread" to be the maximum of the Bayesian information criterion (BIC):

Given a particular clustering C of the (q-dimensional) points {Pil with

i =1...n

BIC(Cl{pi}) = L({pi}IC) - k(q± 1) logn2

we take the maximum likelihood estimated, log-likelihood L({pi}|C)

assuming k spherical clusters with centers pi each with nk points:

_ 2og(27t)- *klog(2) n-k
c=1 ... k-

with (point pi belongs to a cluster with center P(i)):

-1

n = E lpi - P(i)

We can then compute a raw consistency measure just from the "error" of the

highest scoring clusterer, here we set this to be 1 /&2.

We then allow each cluster to act separately on the action system weighted by

the distance from the current parameter to the cluster. These weights are nor-
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x~d.3 x*0.2
xZ0.5 x=0.52,c=0;23

x=0.83 x=0.75
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x=2.46 
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clusters current population successive applications

examples/
"pose" representation

figure 37. Multiple examples inside the pose
representation are clustered. During "recall" or

pose-interpolation these clusters act on the

creature or the colony separately, to reintroduce
heterogeneity.

malized over all clusters in this example, but multiplied by our consistency

measure (normalized over all clusters for this value in the database):

Given a cluster C, with mean pi acting on a attribute vector v the itera-

tion is:

k f(pi - v) .e(i-v) -ZI2
V e- V+

=1 e(Pi-)

where Z is max 1/62 for this value in the database.

There are two desirable results of this scheme: parameter bundles that have, for

example, two clearly defined examples for the sample parameter are not penal-

ized as "inconsistent" and thus are weakly recalled if these exemplars are widely

separated; secondly, such consistent, but heterogeneous example sets work to

increase (and ideally, restore) the heterogeneity of the colony when applied.

- @00
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These names appear in Loops in two places. Firstly they are the bundles of ren-

dering parameters stored in the creatures' pose-graph motor systems. They are

recalled by the actions, and smoothly transitioned to by the motor system as

described above. Early in the production of Loops, these bundles of parameters

are created by the hand exploration of the rendering space; later in the produc-

tion they are sampled and stored from the colony using these techniques. I see

this shift from manual exploration to exploration enabled by the processes, if

not provoked by the processes, and supported by our agent metaphor, to be a

significant hybridization of method in Loops. Secondly, names that refer to non-

motor parameters - the running actions, the coupling from actions to signals,

and the filter dynamics of the refractory system - are assembled by hand, into

a looping script which declares at what time what named states act on the col-

ony and with what magnitude ( a above). This is created by the artist's loosely

distributing change and contrast throughout the 18-minute cycle of time.

In any case, a rather odd thing has happened here. We can recast this scripting 117

view of all of the creatures' action systems as a basis representation for a "body"

for a super-agent motor system. Some of the symptoms that are hallmarks of a

motor-system-like solution appear at this level, 85: we are interested in manipu-

lating the flow of time through an otherwise constrained set of examples (the

sequencing of animation); there are constraints that are specified in terms of how

this flow can occur that cannot be made ahead of time (the constraints of con-

tents). Although the "script" for Loops ultimately consisted of a single chain (in

an endless loop) of "actions" driving this action-system-motor-system, this lay-

ering of representational style hints at future conceptual possibilities and tech-

nical implementations. This is our first inversion and embedding of the

perception-action-motor decomposition within itself - there will be others,

and when the time comes to revise the agent toolkit, these inversions will be

expected, page 211.



LooPS - EXCERPTS FROM THE SCORE

public elm LoopsScript
implements Updateable

Script s;

publie LoopsScript(

s = new Script();
s.new LoopingRealTimeBase

(rmins(10.6), true);

throughout the script there are
references to terms such as~xRay"
or"amoeba'. These are names that
the artists used to talk about the
basic stylistic vocabulary built for
the piece. They refer to behavioral
tendencies, connection topologies
and/or rendering styles. These
common labels became increasingly
important as the piece's stylistic
vocabulary developed.

the creatures are responsible for
showing how they are connected to
other points, Sometimes they choose
to connect themselves to points that
are make sense in a traditional joint
hierarchy. However, they can choose
to produce complex'cat's cradles' or
sparse points.

|| cats cradle
Fnw vnd( 0.1 adnwtrgl

s pureCatCradle=100",
"s cameraTime=0.6",
"s timeFlow=2",
"pointTrans=0.3"

|| a little of "xray"
enwEven 30 L.addewStringill

"s-xrayContext=5'

|I back away (make the transition tentative)
1new Een 35 ).addinew Stringtli

"s-xrayContext=0"

I| mixed state - some "xray' some "cat's cradle"
nwEvnd 40 .add(new Stringl

"sxrayContext=5",
s-pureCatCradle=5"

I/force a transition into "xray"
F.e n45).Addnw Swingll

"ssxrayContext=100"

snwEvend 46.adtd(new Stingl
"s-pureCatCradle=0"

|/thin out density and show points
Evend45 + 30 )Addine Stingiu

"s-nothing=10000",
"s forwardSampling=0",
"s accPointSize=1",
"pointTrans=0.2"

/| scribble (by sampling motion forward in time)
,.new Event 45 +.i 3 + 25 )Adnw String II

"s-onlyPoints=0",
"s-forwardSampling=10",

s-xrayContext=0" //???

|/ complicate matters by introducing some "whiteGia"
s Fe rm 45 + 30 + 45 ).addinew Stringi I

"s-whiteGia=20",
"s nothing=1",
"s-accPointSize=O",
"pointTrans=0.0001"

|| move camera towards hands
.n ,e(45 + 30 + 45 + 20 . 20add(news'inegl

"s forwardSampling=10",
"s-nothing=0",
's cameraTime=0.47"

|/transition to "whiteGia" complete
F-new ( Evn .4 30 + 4S + 2o.+ 25).addinew Smingill

"s whiteGia=100",
s-nothing=0",

"sjorwardSampling=2,
"s timeFlow=1"

|| propagate force messages between creatures
snew d Eemte45 . 30 + 45 + 20 + 25 + 20 ddnew Smagi

"s doForceFlare=100"

-1ew Evm( 45 + 30 + 45 + 20 + 25 + 25).addknew Stringli

"s doForceFlare=10"

snwEvend 4S +-3 + 45 + 20 + 25 + 35 ,add(new String[If

"s doForceFlare=0"

|/thin out "whiteGia"
evend45 4 30 + 45 + 20 + 2s + 

4 5 
.addne, SinglI1

s nothing=1,
"pointTrans=0.2"

sE 45 + 3t + 45 + 20 + 2 + 47addnwi Stringtl I
"1s-nothing=0"

"whiteGia" refers to
a rendering style that
we found reminiscent
of the line quality of
Giacometti's portraits.
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"forward sampling"
randomly elongates the
point creatures bodies
along the animation
material. The result
is often similar to
inverted comet trails.

"force propagation" refers
to the virtual dispersive
medium that the point
creatures areembedded in'
Creatures can inject force
into what is in essence a
simple cloth simulation,
to perturb and fatten
the geometry of nearby
creatures.

-



the behavior system paradigm is par-
ticularly good at generating hybrid
states with some of the colony
agreeing on one behavior and others
performing some other actions.

// scribble (by sampling motion forward in time)
snew Evem( 4 5 + 30 + 2 5 ),radd (new String[ I

"s-onlyPoints=O",

s_forwardSampling=10,
"s-xrayContext=0" //???

/ complicate matters by introducing some "whiteGia"

,new Evemt 45 + 30 + 45 ),addtnew stringill
"s whiteGia=20",
"s-nothing=1",
"s accPointSize=O",
"pointTrans=0.0001"

I;,

/move camera towards hands
,new Evenr( 45 + 30 + 45 + 2o + 20 ).add(new Stwingill

's forwardSampling=10,
"s nothing=O",
"s cameraTime=0.47"

/transition to "whiteGia" complete
snwEe(45 - 30 + 49, + 2o + 25 ).add(new Stringti

"s whiteGia=100",
"s~nothing=O',
"sjforwardSampling=2",
"s timeFlow=1"

// propagateforce messages between creatures
&.new Evemt( 45 + 30) + 45 + 20 . 25 + 20).Addtnew Sitingill

s doForceFlare=100"

s.nw Evem 45 + 30+ 4N + 20 + 25 + 25 ).Add(new Sing[ll

s doForceFlare=10"

,.new Evemt( 45 + 30 + 45 + 20 + 25 + 35 ).add(new stringo l
"s doForceFlare=O"

/ thin out "whiteGia"
Fnew ve( 45 + 3N + 45 + 20 + 25 + 45 ).add(new String~l

"s_nothing=1",

pointTrans=0.2"

,new Event( 45 + 30 + 45 + 20 + 25 + 47 hadd(new String[]
"snothing=0-

// transition to a 7rrstirr" based dynamics
,new Eem( 45 + 30 + 45 + 2(0 + 25 + 50 ),add(new stringlf

"s-nothing=100",

"sjforestFireOne=1",
"s-cameraTime=0.6",
"s randomPointSize=0,0,

"pointTrans=0"

.new Evemt( 45 + 30 + 45 + 20) + 25 + 53 ).add(ew Stfingill
"s~nothing=0"

Ik

// a delicate, transient state
,new Event( 45 + 30 + 4S + 20) + 25 + 60 ).add(new String|iH

"s whiteGia=O",
"s catCradle=10",
"s xrayContext=1",
's randomPointSize=0.0"

senew Evemt( 41 + 30 + 45 + 20 + 25 + 80 ).add(netw Stuingill
"sscameraTime=0.47"

):

// "message passing" between randomly flashing points
snew Eve( 45 + 34) + 45 + 20 + 25 + 80 + 45).add(new Sings

"s-message=40",
"pointTrans=0.4",
"s catCradle=o",
"syxrayContext=O",
"sjrandomPointize=0.4",
"s-cameraTime=0.47,
"s timeFlow=0.2"

snew Evet( 45 + 30 + 45 + 20 + 25 + 80 + 45 + 30 .add(new Stringl
"s-randomPointSize=0.0,
"pointTrans=0.4",
"sjtimeFlow=1"

/a complex heterogeneous state - Large Glass?
s.new Evem( 45 + 30 + 45 + 20 + 25 . 80 + 44545 .add(new Stingill

"s tendril=55",
"pointTrans=O.,0001",
"s-xrayContext=1",
"s_message=o",

"s timeFlow=O5'",
s cameraTime=0.6",
sjrandomPointSize=0"

the way in which the point creatures
adapt their geometry to indicate how
they areconnected'to other points
changes throughout the piece. One
of the earliest styles we built was
the'tentative tendril'growth style,
where points seem to be gently seek.
ing nearby points in the hand.
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by changing how gradually or sud-
denly new behavioral tendencies are
introduced into the creatures by the
script we can modify the abruptness
of the transition, If we quickly force
a behavioral tendency to have a very
high value we startle creatures into
revaluating their behaviors, But by
gradually introducing new behavior
we can create hybrid and"indecisive"
states into the colony.
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// which we slow down for
,new Eent( 45 , 30 + 45 + 20 + 25 + 80 + 45 + 45 + 14 + 81 + 20

.add(new Slingm II

s timeFlow=0.2"

,new Evemlt 4S + 30 + 45 + 20 + 25 + 80 + 4S + 45 + 14 + 81 + 30 )

.Add(new swtingm l
"s\timeFlow=0.5"

,new Event( 45 + 30 + 45 + 20 + 25 + SO + 45 + 45 + 14 + 81 + 40

.Addfnew saingm l

'srtimeFlow=1.5"
I:

/startling transition into "name bug' connection topology

nameBug" refers to a dense, nested L"c'" 45 . 30 + 45 . 20 + 25 . 80 + 45 + 4, . 14 +91 + 45)

connection topology between points a Strig[I

that was introduced by a simple '-bugName= 1000",

mistake in code. Once the mistake "s-amoeba=0',

was traced and corrected we rebuilt "pointTrans=0.2",

the style. "pointWhite=1",

snew Elem( 45+30+45+ 20 + 25 + 80 + 45 + 45 + 1i + 91 + 45 +10)

.add (new Stringl

"sjtimeFlow=0.2"

mnew Event(45+30+45+ 211+ 25 + 80 + 45 + 45 + 14 +- 91 + 45 + 15S)

.add(new String II
sjtimeFlow=1"

/thin out density

's nothing=10",
's timeFlow=0.2" //I?

'foest firemessage propagation t out densit2

refers to a complex extension of addne .i9

thefrorce propagation" used earlier. s-nothing=0
Instead of passing force into a simple
physics simulation, points pass mes- // complexforest fire with densely connected graph
sages of behavioral tendency. This ne Emil( 4530,4;,20+25+0 1,45 4+ 0 +45+30

creates a deliberately brittle positive 9dl1 nng

feedback system. Behaviors change 'soresttireOne=10',
between points in a way similar to su a =
how fire spreads in a forest. These stendril=0,
complex behavioral dynamics were s timeFlow=l1,
extensively simulated in isolation s camerafime=0.47'
and could be visualized while the
piece was running.

new Even(( 145 +5 + 2 0 + 25 + 80+ 45 + 45 + 14 + 101 + 45

- 35 ).add(ne:w stringli
"s forestFireOne=100",
"s forwardSampling= 100,
"s bugName=0N
"pointTrans=0.05",
"s timeFlow=1",

D;

// move camera in
.,new Event 45 + 30 + 45 . 20 + 25 + 80 + 45 . 45 +14 + 101 + 45 + 35

+ 40 ).Addolew suingi I
"s cameraTime=0.6'

);

// starting transition into tendril growth, with whatever

/ stylistic parameters happen to be there
,new Iveinti 45 + 30 + 45 +2-0 +, 25.+ 80 + 4S + 45 + 14 + 101 + 45 + 35

+ 60 ).Add(new Stringm l
"s forestFireOne=0',
"s tendril=100'

,new Evemt( 45 + 30 + 4; + 20 + 25+, 80 + 45 + 45 + 14 + 101 + 45 + 35+

60 . 30 )add(few Sring[ I

"s-pureCaCradle= 100",
"s tendril=0"

we also can change the
speed with which we
play out the underlying
motion capture data.
For example here we
craft a moment of calm
surrounded by frenetic
activity.
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we do not return at
the end of the script to
exactly the same place
(behaviorally) as we
started from. The next
and subsequent times
through this script
(which is looped) the
behavior and choices
of the creatures will be
slightly mote complex,
slightly less clear cut
and creatures respond
to residual behavior in
the system. Thus there
are behavioral timescales
much longer than the
length of this script.



Rendering Loops

I conclude this overview of the Loops installation with a description of the

graphical rendering constructed for the bodies of the agents - which at the

time offered a unique exploration of what the computer graphics community

would refer to as the "non-photoreal"

The material to be rendered is given directly by the point-line segment level

description. These line segments are in fact descriptions for splines that origi-

nate at the point agent's position but use other agents as control points. It is on

these lines that the Loops agents'"rendering parameters" act. These lines are in-

terpreted using one form of parametrically controllable spline - the so-called

TCB (tension, continuity, bias) spline family. Roughly speaking these parameters

control, per control node, the sharpness (T), the "loopiness" (c) and the assy- 121

metricallity (B) of the line. The distribution of TCB values along the lines then

marks an important class of rendering parameter.

These splines, in turn, are used to deform predefined geometric meshes that

span the space of smooth, rough, spiky - the position inside this blend space

forms another parameter that controls the appearance of this agent's line.

Prior to reaching the drawing surface, screen-space noise is added to the posi-

tion of each vertex. The parameters (amplitude and direction) of this noise are

not specified directly as a rendering parameter. Rather, their couplings to the

signal-propagation layer are specified. This offers a back door for the action

selection of points to be visualized as sweeping across the graphical representa-

tion of the colony.



Gordon E. Moore's "Law" states that the

complexity of an integrated circuit available for
a fixed cost doubles every 18 months. For

example:
http://en.wikipedia.org/wiki/MooresLaw

These meshes are alpha-composited into the screen as transparent geometry.

And the multiple overlappings of the randomly perturbed geometry add con-

siderable texture to the drawn line. However, this texture is entirely controlled

by the geometry and, even instantaneously, offers a genuine patina of process to

the drawn material.

Finally, the frame-buffer on which Loops is drawn exhibits its own, very simple,

memory of process. Rather than, as is typical in computer graphics, clearing the

screen prior to each new frame, the previous frame in Loops is dimmed slightly

and the new frame drawn on top of its fading trace. The result is an accumula-

tion of geometry driven textural complexity.

Calculating the spline-based distortions of the blended mesh was sufficiently

complicated to occupy much of the processor power present on the high-end

commodity hardware available in 2001 when this piece was constructed. Need-

less to say, Moores "Law" has turned this aspect of Loops's renderer into an alto-

gether more trivial computational load. The mechanism behind the distinctive

appearance of Loops was reconsidered for each subsequent work and its "hand

drawn" aesthetic can be felt in even my most recent work.

The longevity of this hand-drawn "look" in my work is not motivated by the

desire to display technical virtuosity, nor the delight in a perverse re-

appropriation of the hardware designed for the photo-real. Rather, it stems

from the importance of the sense of effort, the sense of mistake and subsequent

correction, and the sense of being trapped within and exploring a finite world of

possibilities. Even in the most recent dance piece how long... as we move from a

viewpoint of agent-as-computing the work to agent-as-seeing the work, this

hand-drawn referent remains motivated by that work's notational concerns. The

effort, the uncertainty and ultimate transience of the hand-drawn, the sketched,

remains.
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Of course, this geometrically controlled emergence of texture was reinvestigated

using more computationally intensive strategies beyond that of simply not

clearing the frame-buffer "properly" between successive frames. And my fascina-

tion with the gestural connotations of the drawn line motivated a balancing

countermove back towards the "photo-real" in the work 22.

3. Concluding remarks - authorship and emergence

The simplest form of adaptation that can occur in this system is one that modi-

fies the "internal value" of the action tuple. Lower the value, and the probability

of it firing, all other things being equal, decreases. This kind of adaptation, pro-

voked by simple, hand-reinforcement, occupies a kind of middle ground -

both technically and temporally - in a chain of possible adaptive processes that

shaped Loops while it was being made. For Loops was made as a collaborative

work, and in this particular case a collaboration with non-programmer artists. 123

After assembling a certain confidence in our materials, our methodology began

with running a small-scale version of the work and tuning it, and growing it.

This small-scale version started by using a limited amount of motion-capture

material (to help us maintain our bearings) and limited sections of the action

system - over time, pieces of action system that had been worked on exten-

sively were pieced together and the system opened up to more motion material.

Initially, most of the tuning took place on the smallest, least "process", and most

"direct" level. the appearance of the creatures, and the shape of the blend spaces

that their rendering parameter-based bodies traversed; by the end, most of the

tuning was devoted to large scale signaling interactions of the colony. At each

level (and there were almost always more than one being worked on at a time),

there was a cycle of exploration and adaptation succeeded by naming and verifi-

cation that there was a consensus of reproducibility between the artists and the



colony - that everyone, including the creatures, agreed on the name and what

it was that was named.

The list of "adaptive levels" was quite long and reflects, I believe, the depth of

collaboration achievable using this stack of adaptation / persistence: rendering

parameters for the creatures were deliberately altered and new example pa-

rameter sets were named and injected back into the blend space available for all

creatures; connectivity tendencies were assembled and named; actions were

added into action systems of creatures (sometimes, for experimental purposes,

to the creatures associated with one hand) and named; behavioral decisions

were reinforced (and negatively reinforced), reward signals delivered to the en-

tire colony, to a particular hand, to a set of creatures exhibiting a particular be-

havior, or, more likely, to a set of creatures exhibiting a particular rendering

style; behavioral configurations were named, including the preferences created

through reinforcement and the internal parameters of the refractory and ex-

pectation mechanisms. 124

Each of these adaptive levels forms an intricate emergent structure; but each

pairs a downward specifyingforce with this upwards, emergent, untamed poten-

tial. Upwards - rendering parameters, although manipulated by hand are con-

stantly being blended together and juxtaposed by the creatures' multiple motor

systems; downwards - the sampling, storage and editing of new parameter-sets

back into the vocabulary of the colony. Upwards - a basis set of connectivity

patterns are created, but here, too, the creatures spend much of their time in

intermediate states; downwards - the direct modification of the connectivity

metrics. Upwards - the interaction of newly added actions with the existing

action system; downwards - the sampling of active actions or the hand crea-

tion of partially active sets of actions, or the reinforcement of actions and sig-

naling mechanisms and the annotation of this reinforcement into the script

itself.



Thus Loops represents in miniature the whole argument of the agent-based

practice - it offers a framework for organizing navigational and specificational

strategies that mine the potential latent in algorithmic systems. Rather than

choosing between a rejoicing in the sheer size of the abstract potential devel-

oped by fusion of multi-media and digital process (as offered by artificial life),

or the hand-tuned system that acts as a refusal of potential (as offered by prac-

tices of mapping), the agent offers an alternative path, where algorithmic, formal

ideas are permitted their potential while artists are permitted multiple strategies

for exerting their taste.

Thus the incredible flexibility of the action system, the renderer and the analysis

of motion are paired down, even sculpted, interactively by the artists making

this work. At each level, points, directions and planes are stored, named and

folded back into the work. The first indication that our method was truly

"working" occurred when the colony was first exposed to the whole motion-

captured performance. Loops became a richer work, a surprising work, and yet, 125

simultaneously remained the same work. This stable expansion of a formal idea

is often a distant dream of interactive works - far easier is the over-fitting of a

piece's parameters to a particular "correct" interaction; far more common is brit-

tle failure in the light of the unexpected. Even today the resulting system is both

complex and opaque enough to keep some of its secrets until years have passed

- this installation has been touring since 2001, and is booked through until the

end of 2005 - and yet was, during its making, controllable enough that this

surprises could be captured, assured and incorporated back into the work.

While the specifics of each the levels themselves are concretely tied to Loops,

this idea of a stack of such levels is not. Indeed, this layering of freely emergent

systems with systems that impose not order or control, but explicitly a naviga-

tion or the ability to draw a map, offers us a general alternative model to that of

artificial life. The agent-metaphor, together with it telescoping structure of time-



scales and self-interactions helps organize how this stack intersects with the

artwork's interaction - even if, in this case, the work only interacts with the

artists as they are developing it.

We'll note in passing that Loops, although it reuses much of the c43 toolkit,

occupies a different area of our earlier axial decomposition of action-selection

techniques. Viewed from outside, from the perspective of the creators of this

work, Loops "action selects" on two levels: Loops's multiple, interacting creatures

allows access to the "multiple concurrent actions" domain previously far away

from c43. In the work that follows we'll see further efforts to allow a complex

"choreography" of simultaneous actions that moves further away from c43's

starting point.

I believe that these layered structures are at the core of why the agent-based

offers an organizing alternative to the positions of mapping and emergence, in

general, for creating interactive artworks. And while Loops was created over a 126

very short period of activity, we shall see this argument only growing stronger as

the agent enters either dance theater or long-term collaborative art-making.

Loops then, within its limits, is a work that I claim as successful. Successful in

the sense that it leads to something - that is, it does not exhaust the potential

developed by its seed technical ideas, but rather leaves one with a better sense of

the territory of that potential (for just one example, the point-and-line-based

bodies appear, regeneralized in both Lifelike and how long...); successful in its

creation of an authorable yet emergent methodological process; and successful

in remaining open to the opportunities of the material that it interacts with.

This given, the real question lies in how to expand these "successes" into larger

and more complex works. Loops had much many attributes in its favor towards

these goals. Although collaborative, it was an intensely personal work - it was

very much made on our own terms, in our own time - what happens when the



working practice is expanded out to other collaborators (e.g. choreographers)

with other time scales (e.g. rehearsals and workshops) and other non-personal,

non-constant spaces (e.g. theaters and galleries)? Although complex, Loops es-

tablishes this complexity by the duplication of simple parts, and therefore risks

falling into the anonymity I accused artificial life of cultivating. While the tran-

sient presence of the human form prevents the singular from disappearing from

Loops altogether, it was clear at the time of completion of this work that an en-

gagement with a smaller number of more complex agents was on the horizon

- that Loops has deferred, but not solved, the software engineering problems

apparent in alphaWolf. Seen in this light, the "success" of Loops promises much

but speaks little to these problems. In order to create my next artworks, these

issues would have to be addressed.
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This chapter introduces the interactive installation artwork The

Music Creatures and some of the technologies it provoked - of

most note the coroutine scripting technique and the generic

radial-basis channel, which will be extensively explored and

used later. It brings the agent-based to a very particular kind of

sound-image relationship, and extends both the authorship and

rendering techniques of Loops, and the use of the pose-graph

based motor system.

Chapter 4- The Music Creatures

The Music Creatures are a series of multi-screen, multi-speaker installations that

directly investigate the use of the creature metaphor in creating interactive mu-

sic. Over the course of three years, a number of musical creatures have been 128

constructed and revised. The discussion here will focus on the most recent in-

stallation, commissioned by the Ars Electronica festival in 2003. that used an

ongoing population of four creatures drawn from a population of eight species.

1. - An overview of the artwork

Each creature follows the same design principles: a music creature is one that

creates sound solely through the movement of its body, and restructures its

body to reflect its current understanding of its sonic world; although networked

together these creatures will communicate with each other solely through the

air - each creature gets a screen, a speaker and a microphone; each creature

lives for a short duration (around 7-10 minutes) the life-cycle and in particular

the learning-cycle of the creatures will be carefully arranged, by analogy with the

sensitive periods found in animals that possess acoustical pattern-learning such



as birds; rather than attempting to capture some complete competence in a par-

ticular musical style or cultural context, each creature will have a particular

competence in a field that broadly underpins music itself, inspired by the appar-

ently proto-musical competences of animals.

This inadequacy of a particular music creature's intelligence to capture a com-

plete musical field or to appropriately capture the complete control surface of its

body is a deliberate strategy to create creatures that appear to strive, without

long term success, for order and stability. This apparent intentionality, the ar-

ticulation of effort and the display of the dynamics of expectation and surprise

mark the aesthetic goals of this work.

"Bio-musicology" and agent based Al

For example, the compendium: N. L. Wallin, M. Bjorn, and S. Brown, The Origins of
Music. The MIT Press, Cambridge, MA. 1999.

This often comparative work connects nicely with the ongoing work on the

cognitive and neurobiological origins of music. For example, I. Peretz, Brain

specialization for music : New, evidence from congenital amusia. In: Biological foundations

of music. Annals of the New York Academy of Sciences, 930, pp. 1 5 3 -1 6 5 , 2 0 0 1 .

And the tentative relationship between proto-music and proto-language:

R. Jackendoff, A comparison of rhythmic structures in music and language. In P.Kiparsky

and G. Youmans (eds.) Phonetics and Phonology, Vol. 1. Rhythm and Meter (pp.
15-44), Academic Press, New York. 1990.

S. E. Trehub, E. G. Schellenberg, D. S. Hill, Music perception and cognition: A

developmental perspective. In: I. Delibge, and J. A. Sloboda, Music perception and

cognition. Psychology Press, Sussex, UK. 1997

In this work we are driven by the desire not only to investigate the relationship

between musical problems and motor problems but to engage the (necessarily)

biological roots of human music and press the field of artificial intelligence into

the service of interactive music and digital animation. In this wider context, we

have a bold hypothesis: only by beginning with a study of the animal roots of

musical behavior - roots which may include the organization of both sound

and gesture in time - can we begin to create systems that we can interact with

musically. We further hypothesize that traditional, western "high art" music the-

ory might have no place at all in the construction of primitive, artificial, interac-

tive musical agency, and that a study of proto-musical capabilities and the com-

monalities of animals may ultimately prove more useful for the creation of new

interactive musics. Therefore, we make perceptive, learning and motor repre-

sentations of these music creatures biologically plausible, in the hope that they

will be useful for communicative and expressive ends.
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Despite a recent resurgence of interest in such biomusicology, science cannot yet

provide a computationally constructive or artistically useful theory of musical

production, consumption or collaboration. And it is unlikely that pure biologi-

cal approaches will bear fruit without complimentary constructive artistic ex-

perimentation.

These musical creatures are early moves toward these goals - they are posed as

a response to the problem and draw their inspiration from the problem, rather

than as offering any solution to the problem. While their scientific contribution,

in terms of either their explanatory or predictive scope is limited, they do how-

ever represent what I believe to be the first artistic contribution to the field of

biomusicology - a field that, unlike, for example, artificial life, has so far failed

to capture much attention either within the interactive art community or within

the computer music community. If biomusicology is to live up to its goals - to

revolutionize our understanding of music's relationship with the mind and the

human's relationship with music - then digital artists will need to figure out 130

how to play a part.

With regard to animals and music, The Music Creatures are a set of agents that:

possess a variety of prototype implementations of acoustic templates, in the

sense that they segment and understand their acoustic environment

(shared with humans) in order to create sound in it. The goal is to create a

set of acoustic processes that are capable of simultaneously generating

novel material, and of being crafted in ways that the artist considers per-

ceptually intelligible. I hypothesize that to find algorithms and represen-

tations which, when placed in the real world, offer the artist a creative

balance between surprising novelty and meaningful control, we should

look to the algorithms and representations found in nature.



possess abstracted, simple bodies, the control of which they learn, and the

movement of which create sound. Success will be achieved when there is a

certain unity of form: between visual depiction of the creature, the sound

that it creates, and its expressive and communicative needs for doing so.

This unity is seldom achieved in the plentiful multimedia artworks created

to date. I hypothesize that animals provide an ideal example of under-

standable and engaging expressive agency.

develop on long, environmental, time-scales. They will be works with rather

classical form - their narratives will have "beginnings, middles and

ends"- rather than a temporal heterogeneity that I believe has become

the norm in generative art. Such life-spans of creatures are not without

precedent within the agent-based artifact, but the inclusion of biologically

motivated and genuine development in such works perhaps is. I hypothe-

size that by looking at such natural "narratives of development" we can

understand how to make interesting autonomous art that unfolds over 131

long periods of time.

We cannot survey all the art that has been, or could be, made with a concern for

these characteristics, nor can I cover the variety of possible animal analogues.

The Music Creatures is simply one extended elaboration on these principles.

Bird song - ontogeny

But before I begin to describe the unfolding of this work, there is much to be

gained from discussing a particular natural analogue that was influential in its

developments - song birds. The Music Creatures are not birds, and unlike, for

example Dobie, we do not look directly to an animal analogue to find the specific

behavior, body and interaction for our creatures; we draw, instead inspiration

from the challenges that songbirds face, and the ways in which they face them,

to provide a level of"structuring complexity" for the artwork.



This view of the ontogeny of bird song is derived from the long and fascinating

literature on the interaction between the innate and the learnt in songbirds.
Sources that have been inspirational include:

towards constructible models of song learning - P. Marler, Three models of song

learning: evidence from behwiorJ. Neurobiology, 33:501-516. 1997.

an early overview of the problem - W. H. Thorpe, Bird-song; the biology of vocal

comnnunication and expression in birds. Cambridge University Press, Cambridge, UK.
1961.

a later overview P. Marler, Song-learning behavior. The interface with

neuroethology. Animal Behavior Vol. 30 pp. 479-82, 1991.

and on the connection with human music - P. Marler, Origins of music and speech:

insightsfrom animals. in: N. L. Wallin, M. Bj6rn, and S. Brown, T1e Origins of Music.

The MIT Press, Cambridge, MA. 1999.

Many researchers in classic experiments on oscines have produced a number of

well established and fascinating key results, including:

memory based learning. There is a sensitive period for song learning, where

infant birds must hear fully developed songs of their species in order to

develop normal song. Acoustic isolation, or exposure solely to the song of

other species typically results in abnormal song in adult life. However,

birds do not sing until much later than this period (the waiting period in

white-crowned sparrows, for example, is around 100 days). This sensory

-acquisition phase is generally completely distinct from the motor-

production phase. This fact is an unavoidable obstacle to any simple motor

theory of song production. The Music Creatures make no sound, make

little use of their bodies and do not progress normally along their devel-

opmental narratives in the absence of sound in the gallery.

subsong. As the motor-production phase begins, birds "babble" - a phe-

nomenon not unlike the one we observe in human infants. Amorphous,

this babbling doesn't have much connection with what was heard previ-

ously. However, birds to seem to require self-feedback at this stage -

deafening birds during this period prevents the ultimate production of

normal song. It seems possible to conclude that during this phase the bird

is constructing sensorimotor mappings for its complex sound production

systems. Temporarily deprived of a connection to their motor systems

early in their development, the agents presented here would not develop

stable musical patterns in later life.

plastic song / overproduction. During the next stage, the song possesses

many syllabic elements; some are those heard during the tutoring time and

some are "improvisations on a theme' Most will ultimately be discarded as

the song crystallizes. Analyses of the songs produced in this phase, how-

ever, imply that more acoustic material has been memorized by the birds
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that than is evidenced by the structure of ultimate adult song. The Music

Creatures here, through their actions, organize their musical material while

playing it, crystallizing a particular pattern or a particular set of sounds.

innate acoustic templates. But in this memorization process birds do not

act as acoustic sponges, nor do they soak up all their early sonic environ-

ment while they are young. Instead, birds tend to learn only from the

songs of conspecifics. Careful experimentation reveals that perceptual and

motor limitations are not enough to explain the lack of openness in the

learnt song, rather, a certain quantity of innate knowledge about the ulti-

mate song form is required. The Music Creatures here sample only parts of

the musical domain that they are equipped to understand - one agent

looks for rhythmic material, another cares only for timbre. Their predispo-

sitions to parts of human music shape what it is that they tend to learn,

and what it is that they can learn.

133

While The Music Creatures are the basis for no scientific claims, they are clearly

not unrelated to natural processes, and they do, I believe, represent one of the

first synthetic and artistic deployments of agents that possess some form of

biologically inspired development.

2. Narrative descriptions of exchange, network, line and tile

Four creatures from the 2003 version of this work are sufficient to give a sense

of the conceptual span of the creatures and the deployment of the technical

systems described in this thesis (the remaining four are variations of this set).

These creatures are: exchange - that constructs and then learns to play a spa-

tial percussion instrument of sorts, while constructing and learning how to

move its body; tile - a body-visualization of a rhythm analysis that under-

stands and generates rhythmic patterns; network - a body-visualization of a



simple transition network model of acoustic material that tries using its body to

accompany the sounds that it hears; line - a metaphorical tape loop that re-

cords into an expanding pose-graph motor representation the sounds that it

hears and sings.

Each offers a response to the life-cycle of a song bird: they marry both the

memory-based aspects of"song learning" with an innate specification for the end

of the learning period - and this connection is further underlined in installa-

tion where the recording of sonic material is displayed quite visually and sound

leaves traces on the screen. Their approach to formulating a sound-image rela-

tionship is grounded solely in their bodies - there is no sound without move-

ment and any sonic learning that occurs takes place close to, and is exploited by,

their motor-system structures.

Of course, unlike birds their virtual bodies are not necessarily constrained in

construction nor in appearance by the physics of the real world. However, ex-

change, line and network all exist and fight with small "physics" simulations. This 134

underscores in installation the physicality of the sound production that we are

undertaking. Neither does a single creature stabilize on a single, robust song for

a long period of time - these creatures'lives are evenly distributed between

periods of open learning and periods of more closed use. However, this is an

approach to the "composition" of music that is analogous to the the indirection

of birds'learnt song. Rather than specifying the music as notes on a page, the

mode of the music's becoming is predefined in the authorship of the creatures.

As the work proceeds, the life-cycles of the creatures on the multiple screens

diverge, thwarting any direct compositional tendency that remains.

The language used in the following outlines sacrifices detail for the sake of a

brief overview. Later sections will fill in these descriptions considerably, clarify-

ing exactly what these creatures do and, perhaps more importantly for this

document, how they were made.



exchange

'he control parameters for the surface that
makes up this creature's body are four rotational

degrees of freedom. The surface itself is

"skinned" using the conventional skinning
algorithm - see page 352.

The exchange creature's body is a simple parametric planar surface embedded in

a physics simulation that preserves linear and angular momentum. By changing

the control parameters this surface, kinetic energy is injected into the physical

system, propelling the creature around its rather small world. Three pre-made

"animations" of these parameters, constructed by hand, are played out by the

creature, randomly at first as it learns the mapping from surface parameters to

the resulting physical movement. This damped, simple physical world offers the

opportunity to construct motor-learning in miniature.

In accordance with an emerging general principle in this work, the accumulation

of acoustic events are both marked in space and by the indicated growth of the

creature's body. This surface, although distorted, is isomorphic to a plane, we

place material spatially and graphically (represented as vertical lines) at the most

appendage like position, here the fastest moving edge vertex, and growth of new

vertices occur around the fastest moving edge. Thus even eventual form of the
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body is deferred to the agency of the creature and its interactions with the envi-

ronment..

New acoustic lines distort the locations of previous lines, evening them out.

Once the creature has accumulated enough body material, enough evenly

spaced acoustic material, and a complete enough map of its body control sur-

face, this learning period ends. Having satisfied this 'motor-acoustic template'

the creature now begins to propel itself around the world a little more willfully

and a little more flexibly using a more connected version of its pose-graph mo-

tor system. Its action system here is still quite simple (and will remain so

throughout the piece) moving between seeking notes that are related acousti-

cally with events that it hears, to seeking notes that are as different as possible.

The amount of energy that it devotes to moving is coupled to a reservoir filled

up with the amount of activity in the room and damped by a longer term in-

creasing fatigue.

Eventually the notes are used up, and as they disappear the body of the creature

disintegrates.

figure 38. An overview of the exchange agent.

Sound
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There is much precedent for rhythm tracking using phase and

frequency locking. In a musical context, the entraining

oscillator model is close to the model used in this agent, see: J.

D. McAuley, On the Perception of Time as Phase: Toward an

Adaptive-Oscillator Model of Rhythm. Ph.D. thesis, Indiana
University, 1995.

E. W. Weisstein. Net. From MatlWorld- A Wolfram Web
Resource.

http://mathworld.wolfram.com/Net.html

The tile creature's body is made up of a variable number of flat tiles, and each

tile is coupled to a single ongoing model in a rhythm tracking perception sys-

tem. Each model represents a phase and frequency hypothesis for the acoustic

pulses heard in the world. The tiles are connected in a hierarchical structure;

initially this structure reflects the parent-child relationship between hypotheses

in this percept tree, and free edges for growth are chosen at random. Initially the

creature is content to grow its body on a relatively flat surface, appearing like the

flattened planar net of a complex polyhedron with small oscillations of the tiles

governed by the frequency of of the corresponding rhythmic hypothesis.

With enough confidence in the shape of the structure, the amplitude of these
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oscillations increases until they become complete rotations. Material that is

heard is placed at the location of the tile corresponding to the model that best

explains this particular event, and is struck in subsequent rotations. The result-

ing patterns are strongly poly-rhythmic. Due to the complex folding of this

nesting, rotating structure, other tiles can strike these lines - these secondary

events are heard as a faint, arrhythmic echo.

The tiles need to be continually reorganized either in terms of confidence

(higher confidence tiles migrate to the root of the structure) or, later in the life-

cycle of the creatures, frequency (lower frequency models migrate to the root of

the structure). During this reorganization it also moves from the complex, ran-

cotfi9urdon domly branching 3-dimensional structures to what is in essence a single two-

dimensional curve made out of squares. After this structure is achieved, subse-

quent reorganizations drop rather than transfer tiles. The body evaporates.
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figure 39. An overview of the tile agent.
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network

The body of network is a point-line connected graph constructed by building a

vertex for each identifiable sound event in its environment and an edge between

subsequent sound events to indicate temporal succession. It is thus a literal visu-

alization of a transition graph model for musical structure. Duplicate edges are

slowly removed and lengths slowly adapted to relax tension in this potentially

over-constrained graph structure.
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After we have a well-ordered graph of sufficient complexity, and after there is a

level of confidence in the consistency and relevance of each of the acoustic mod-

els, the creature can attempt to respond to acoustic events, by playing the

node(s) that are likely to come next given a particular stimulus, after the ex-

pected delays. Essentially, network 'Joins in" with musical fragments that it rec-

ognizes.

However at any moment a number of hypotheses about the next sound fight for

the control of the diagram of possible music that is the creature's body. How-

ever, there is a catch, a physical constraint: in order to "pluck" a node, the crea-

ture must have physical support from an underlying lattice structure - the

nodes either side of a node must be bound lattice before a node can be plucked.

Unheard nodes are eventually forgotten, culled, and replaced by new material.

Eventually the culling continues, but this sense of"newness" is not refreshed and

the network disintegrates.

paraees

figure 40. An overview of the network agent.
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line

A single, simple, looped chain attempts to cycle through three hand-drawn

shapes - a triangle, a square and a spiral. However, its body representation is

an under-specified node-local representation rather than global so the process of

transition proceeds through search rather than as a direct morph or blend. Each

node acts through impulsive forces propelled by the sonic events in the room

rather than through a direct control structure and thus liable to overshoot, es-

caping local minima for the search. Faint traces of globally consistent solutions

to the problem are indicated through nodes that are getting close to a solution.



The three-state motor sequence is represented in the language of the pose-

graph motor system, as a looped graph structure. As it attempts to go through

the sequence of states it records the sounds that it hears in those nodes using

the pose-graph as a secondary memory structure.

Having successfully toured its graph and learnt the sound of each pose, it begins

to sing the contents of the pose as it traverses them, slowly drifting from node to

node, but still being propelled by the presence of sound. However, important

sonic events that are unlike the contents of the nearest pose-graph node are "un-

expected" and cause the insertion of new nodes into the graph, and thus a new

pairing: the current state of the body (which has, likely, been thrown off course

by the force of the sonic event) and the sonic material that caused it.

Nodes, especially nodes that have not been successfully visited in a long while

are slowly dropped from the graph until only two remain.
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3.-_ "Tactical" learning

Eight creatures, the four above and variant of each were assembled and tuned in

two months, including the time taken to construct the new non-photorealistic

renderer that drew their bodies. Despite this short time-frame, The Music Crea-

tures departs from alphaWolf and Dobie in refusing to structure the interaction

between participant and agent with an overt narrative or a specially constructed

interface. Nor does The Music Creatures develop a way of simplifying the world

of the agent: rather the creatures are simply given a microphone each.

In this formulation of the agent and world, much is unforeseen. Thus The Mu-

sic Creatures were a challenge - how open to the potential of the sounds in an

unknown gallery, their interactions with the agents, and the interactions be-

tween the agents could an artwork be?

This time-frame was made possible by the re-use of many of the techniques 143

described in this thesis, in particular the c5 agent toolkit. But specifically, this

toolkit had to be surrounded in technologies crafted to deal with both the un-

foreseen of the interactive and the unforeseen of the authorship process.

We will unpack some of the ones more specifically behind those four descrip-

tions here.

Long-term learning and persistence

The above stories of course, omit many implementation details; however, the

first and most glaring omission are implementation numbers - the decisions,

thresholds, limits, the choices concerning when and how things should occur.

From the above descriptions of the music creatures we can read: "after there is a

level of confidence in the consistency in the contents of the node-level acoustical

models" - this level is a number, a cutoff; "important sonic events that are un-



like the contents of the nearest pose-graph node are unexpected" - this meas-

ure of unlikeness is a scale, specifically it is a mapping from some unspecified

range to the domain of 0... 1; "Having accumulated enough body material ... this

learning period ends" - this is a sensitive period, a mapping from some un-

specified value scale and a time-period to a decision that some learning epoch

should end.

Setting these numbers, or equivalently calibrating the range (and the units) of

the quantities that they intersect or scale, is a considerable burden to the author

of a complex system. In the particular case of this installation, the burden is

impressive: The Music Creatures installation was a complex five-computer, four-

screen installation that proved impossible to assemble prior to its arrival in the

gallery space - rather the "installation" was made piecemeal, agent-by-agent in

a large open-plan office area. Knowing the dynamics of all four creatures when

they begin to hear each other, the precise characteristics of the sound available

in the galleries or even just the sound level there in advance was simply impossi- 144

ble.

The impossibility of this kind of foreknowledge of an interactive process is the

burden of interactive art. However, it is also the condition and indeed the op-

portunity of interactive art. To shirk this burden by direct specification is to

close off potential before it develops.

However, in each case there is a way of specifying what these numbers should

be that is simultaneously more indirect and more explicit. Instead of specifying

the number directly, we specify what this number should achieve and let some

simple online learning technique this indirection. This, coupled with a rather

Lamarkian inheritance of these learnt "traits" across multiple instantiations of

the creatures, ameliorates much of the difficulty of setting these numbers and

scales. The agents indirectly learn, and in learning specify the cut-offs, scalings
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figure 42. An easy cut-off problem. Here we are trying to find a cut-off that main-

tains the same output rate from a filtered set of valued-events with a non-

stationary distribution of values. After a brief moment of uncertainty, the win-

dowed cut-off correctly adapts to a sudden change in the underlying statistics of

the channel needing filtering. For much harder examples of this working, see

figure 91 on page 270

and period-closure criteria in different ways, and we will take each of these in

turn.

A cut-off tries to form a boundary in a range that splits the number of examples

on each side into a specific percentage. To find a cut-off we store the history of

examples. A simple estimator would place the cut-off point for an acceptance

ratio of a this fraction of the way through a sorted list of example values. This

example history is maintained over a very long window of time, since the cutoff

itself is rarely changed. Keeping the examples around has the additional ad-

vantage that we can change our mind about the cut-off ratio. We shall see this

technique, in a more dynamic situation, re-used in the Diagram framework,

page 269.

For modeling scalings we have a richer set of options. Scaling by the maximum

and minimum ever seen is one option, but again, the possibility of the data

being non-stationary complicates things. The following algorithm uses a simple

"effective" maximum and minimum:

initialize min a, and max b, at time ta +- tb +- to

then at any time i:

(b - a)
ae = a+y (1 - e-(tIt-t))

2

then the scaled version of a datum d is:

d'= (d-ae)/(be -ae)

if d < a : a +- d, ta <-I ; if d > b : b <- d, tb +-r
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The classic introduction to self-
organizing maps (including the

edge-effect phenomenon) is: T.
Kohonen, Self-Organizing Maps.

Springer Series in Information
Sciences, Vol. 30, Springer, Berlin,

Heidelberg, New York, 1995.

this implements a simple forgetting strategy with a rate governed by P and a

completeness governed by T.

For small P and y~ 1 this strategy does not alter the distribution of example

values, but simply squeezes or stretches it to fit the unit interval; thus many of

the properties of the original examples survive. To make the output distribution

more uniform, to "whiten" the input distribution, the music creatures use a self-

organizing map trained on the history of the data to model the distribution of

these data. For scalar input d , for each example presented to the map (in a ran-

dom order, multiple times) we perform the following iteration:

over the N "self-organizing" nodes at locations an

i = argminId -an I
n

for n= 1...N:

an <-- f (In - il)d+ [1 - f(In - il)J an

where f(In -il) is the self-organizing map's kernel function, for this

work a Gaussian of radius N/4

Additionally, to avoid the "edge effects" of self-organizing maps, we

modify the original self-organizing learning strategy: stretching the

range of the map on each iteration to be equal to the the effective maxi-

mum and minimum computed by the previous scaling formula.
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Implementation extensions for
this algorithm include: ensur-

ing that aiO 4 ai, and using a
more robust interpolation

strategy (one that takes into
account more than two of the

self organizing nodes might be
to use radial-basis functions

after a straight line fit).

Then, given a new example, we can perform the following lookup and interpo-

lation from this map.

for datum d on map {anJ:

io = argminId -an|I
n

ii = argmin Id -an I
n io

if io < d < i1 or ii < d < io :

a = (d -aio)/(ai - aio)

d'= (aii + (1 - a) io)/IN

else if d > io :

a = (d - aij )/(ai, - aio)

d' = (io + a)/N

else if d < io

a = (d - aio)/I(ag, - ais)

d' = (io - a)/N

Finally, to choose the end of a sensitive period based on a value v and a time t is

the problem of choosing a cutoff P and a coefficient 'y for the following equa-

tion:

for a process that yields a value v at time t we pronounce the end of the

period if:

figure 43. The one-dimensional self-organizing map rescales an input signal,
"whitening" its distribution, despite large shifts in the input distribution. This

makes it an ideal intermediate representation for coupling systems together.

1147



The task here is to accept moments that have high value v but decrease

our threshold over time, getting less choosy about the v that will be ac-

cepted such that normally the process takes time to . There are, again, a

number of ways of doing this, especially if one has information about

the process generating v . But in the laziest position -a position of ig-

norance - is to re-scale v to the unit interval. In doing so we can elimi-

nate the choice of P and accept if

2v- 1+7t >0

without loss of generality. We then estimate 'y given a set of examples

{vi,ti} and a target time to:

= {1 Ito - 2vi Iti) i

None of the above "learning" formulae cause any particular theoretical difficul-

ties, especially in the case where a good first guess is available in addition to the
148

indirect specification; for the wide variety of ad hoc applications that they are

used for in The Music Creatures they all learned and converged quickly. Such

techniques are present at all levels of the creatures: at the basis of interpreting

sound levels - for segmenting sound into acoustic events; judging when an

agent has a sufficient knowledge of its sound-body mappings - so that periods

can end; comparing sound models - when is a sound "new", when is it surpris-

ing? It is inconceivable that this piece could have been completed without the

tactical widespread deployment of these simple techniques; it is similarly incon-

ceivable that such a piece would have been attempted without them.

The methodologies of learning

However, such technical competence is not the end of the story. There is a sig-

nificant gap between the academic reality of this simple learning and its practi-

cal use, its integration into a working practice. This "implementation difficulty"



stems from the way that agents are authored, and indeed from the fact that the

agents are being authored while this learning is going on. This makes how this

storage and recall of this data occurs surprisingly tricky.

Ideally, we'd like to specify our numbers, cutoffs, scaling etc. with as little fanfare

as possible:

PersistedScaling magicNumber = persistedScaling("cutoff-for-loudness", 0.0f, 1f);

this declaration loads a long-term (that is, longer than the execution life of a

creature) model, initializes a model if there isn't one already (to be between o

and i in this case), prepares it to collect examples upon use:

for cutoffs: passed = magicNumber.filter(value);

for scalings: value = magicNumber.filter(value);

for periods: passed = magicNumber.filter(value, time);

and arranges for it to be saved upon the termination of the program. 149

Clearly this persistent data faces the same challenges as faced by the persisted

rendering and action attributes of Loops, page 114. Part of our defense against

the system changing from invocation to invocation is our handling of non-

stationary example sets.



A context-tree based solution page, 211 can help with the

problem of multiple instantiated learnt parameters - a

parameter instantiated in a different context counts as a

separate, different learnt parameter that might share

past history with parent contexts. Since the current con-

text is an unambiguous chain of names it can be stored

just like any uniform resource locator. However, this

context does not suffice as the sole context for these
parameters.

But there is an additional problem not faced by the Loops database, an addi-

tional dimension to the problem of "naming" in complex systems. The issue

stems from the need to exploit as much context and data as possible for new

learnt parameters - as much context and data, that is, and no more. Consider

that multiple creatures may execute the same lines of code as above, consider

that the same creature may instantiate many objects that have that line in them,

finally, consider that we might have a small test program that thoroughly tests

this line of code before it is embedded in a larger agent. This line appears as a

simple declaration, however it is woven into my creative practice in an intricate

fashion. In each of these cases, we might wish to exploit the knowledge accreted

in the test programs, share knowledge accumulated between invocations of re-

lated creatures. Thus, we wish to structure our persistent parameters in such a

way that as authors we remain mobile, and that the data can move with us: that

we can move from small test stage, an exploratory phase, testing inside a larger

system, back to a small debug session.
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I starthigpoint for new
velocityFor volume( cut)

figure 44. Initialization material for newly created mod-
els is found by breadth-first search across the database.

Here a new velocityForVolume(cut) would be initialized
with material from a previously learnt model, learnt in

the same main class (as well as the same context, and
the same creature name). This node is then placed in

this graph at this location.

We can list a number of potentially important "contexts": the "name" of the

creature, or related, the name of the "main class" (the entry point into the entire

program running the agent), and finally the name of the learnt parameter itself.

Unfortunately, there seems to be no single ordering of these contexts that makes

sense.

Rather than attempting to formulate a single tree structure with these learnt

parameters at various leafs and nodes, we form a heterogeneous, but directed

graph with contexts and learnt parameters connected together. Collecting in-

formation about the data that should be behind a learnt parameter is done by

breadth-first search over this graph structure.

Many of the edges of this graph can be established automatically - for exam-

ple edges are formed from a main class to its superclass (but not the other way),

if the superclass existed in the graph. Other weighted edges can be created, and

permanently deleted with a graphical utility (for later work, this was assembled

and written in Fluid). This same utility rolls back the database to a previous

state (when we make an experimental change); tags a database state with a

useful label (something more easily remembered than a date and something

that tracks the state of the project); and can list differences between database

states (to allow an investigation of the project as it is changing).

This connected-graph-aware versioning system is an extension of the ideas used

for Loops's rendering parameter database. It is thus neither the first, nor will it

be the last persistent store required, page 225; required, that is, to take a tech-

nology that in an academic sense is working perfectly, and turn it into a tech-

nique that is actually integrated into a working practice.
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4, _Advanced flow control - coroutines, radial-basis channels, and an introduction

to the "language interventions"

The previous section identified a particular class of unobtainable foreknowledge

in authoring interactive works - knowledge about both the coarse structuring

and the fine details of the world in which the work will be installed. In finding a

few algorithms I built the necessary support to ensure that they could and

would be widely deployed throughout the work.

Another broad class of uncertainties faced by the agent author is less concerned

with the world and the agent and more concerned with the interactions between

systems internal to the agent itself. Specifically, the uncertainties faced where

multiple parts of an agent fight for, or cooperate over, control over another. Such

arbitration and control problems occur throughout the agent metaphor. Some

are action-selection problems - objects fight for attention, action-tuples com-

pete for expression. But others are coupled more directly to perceptual and 152

motor systems.

Imperative programming languages earn their name by their focus on a se-

quence ordering of commands. With a small number of exceptional flow con-

trol structures, programs in such languages start at the top of the page, and

execute line-by-line until they get to the bottom. Advanced metaphors, con-

structed "on top" of imperative languages increasingly complicate this flow.

The c5 toolkit makes extensive use of one set of such complications - object

orientation. However, as we shall see in a number of places in this work there is

an essential conflict between the flow of serial execution in an imperative pro-

gramming language and the flow of time in the life-cycle of an agent. These

conflicts necessitate a less generic set of extensions to the set of non-imperative

flow control structures, ones specifically tailored to ameliorate the conflict be-



tween the orderly imperative of what it that an agent author is trying to achieve

this moment and the disorderly, diffuse chaos of other parts of the agent

framework already assembled.

As we proceed down the perception -+ action selection -- motor control chain

this conflict becomes increasingly severe. Although the perception system

monitors the world as it finds it, in realtime, for the most part its flow control

can be coupled quite directly to the world and only occasionally reconfigured by

an action system - the world dictates what code gets executed when. As we

move to the parts of an agent that take responsibility for maintaining long-term

behavioral coherence the differences between the flow of this coherence and the

flow of an imperative language widens to a chasm.

In this work, and many other agent systems, by the time we have reached the

action-selection layer we have small parcels of imperative-code (the action pay-

loads of our action-tuples) and a highly distributed flow-control structure (the 153

action selection mechanism and its coupling to other systems) that changes

often and changes on different time-scales. None of this code is written in what

one might call an imperative spirit. As we head towards the motor system even

these parcels of code need to be dissolved as the granularity of control becomes

equal to the granularity of the agent's "update cycle', essentially the frame-rate,

the control-rate, or the clock-quantum of the simulated world. Programming at

this level is hard - hard to write, hard to maintain, it is a barren landscape for

artistic intention because no thought, it seems, can be continued in any mean-

ingful way for more than a few lines of code.



A good introduction to continuation-passing-style that is less language specific

than many is: D. P. Friedman, M. Wand, C. T. Hayes, Essentials of Programming
Languages. MIT Press, 2001.

The canonical definition of the Java language isJ. Gosling, B.Joy, G. L. SteeleJr.,

G. Bracha, The Java Language Specification, 3rd edition, Addison-Wesley, 2005.

for Scheme, the following is usefil: G. L. Steel, G.J. Sussman, The Revised Report
on SCHEME, MIT Al Lab Memo 452. 198.

for Python, see http://www.python.org

for the Common Lisp Object System, G. L Steele, Comion LISP: The Language,

Bedford: Digital Press, 1990.

for C#, http://www.ecma-international.org/publications/standards/
Ecma-334.htm

Part of the response to the problem will be to look to more sophisticated flow

structures. I'll use this as a basis for a critique of current digital art-making envi-

ronments (and the concepts they encourage). And I shall show our main, con-

ventional object-oriented programming languages hybridized with ideas from

other languages. When this hybridization occurs it will concern flow control

features: I will introduce a "continuation-passing style" implementation in Java

- inspired by languages such as Scheme; a "coroutine" based system imple-

mented in both Java and Python - inspired by Python's implementation, but

finding its roots from the days before ubiquitous threading; and a set of "com-

plex, multiple-dispatch" techniques inspired by the Common Lisp Object Sys-

tem.

Adding these exotic language extensions and libraries to a base language re-

quires some justification. The choice here - Java - is a popular language that

has found and thrived in a fertile niche between sophisticated abstraction (the

reflective capabilities of the object model and the malleability of the virtual

machine code) and a practical rather than polemic level of object orientation

tried and tested in other languages and implemented well. It offered support for

exceptions, a safe memory model and a runtime type system at a time when

implementations of these features in other mainstream languages were experi-

mental and poorly tested. It seems a suitable language for large, complex col-

laborative development especially in teams with a variety of skill levels and to-

day is surrounded by a number of sophisticated programming environments.

Where it falls down is perhaps on the smaller scale, and it is here that the so-

called dynamic languages take over. Removing the type system and its textual

burdens (declarations, casts, and various commitments to organizing one's ab-

stractions) these languages are generally considered ideal for testing, for gluing

together pre-existing objects and for "interstitial coding" They have a tendency

to encourage language features that are thought by many to thoroughly scupper
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the maintainability of large, multi-person code-bases. At this price they often

offer direct or indirect support for malleable syntax and modifiable meta-class

semantics that allow the appearance and benefits of domain-specific languages

without any of the burden of writing and maintain one's own tool chain.Thus I

augment the choice ofJava here as the main programming language with a more

dynamic language - the Java-based implementation of Python. Its important

to note that its role as an interstitial language in this work is enhanced by the

open-source nature of this implementation, and that it, rather than Java, forms

the basis of the programming environment developed in the last section of this

thesis, Fluid.

The choice of language for this work is not casual, indeed part of the argument

of this thesis is that programming languages and the tools around them are so

malleable, interesting and important in one's work that the artist bears a respon-

sibility for their choice of language and the design of the language - that they

should not be a passive consumer of a toolset. And while discussion concerning 155

the relative merits of programming languages typically generate more heat than

light, the implementation details of the broad concepts and the language-level

interventions of this thesis remain significant even given the perennially unjus-

tifiable choice of language itself.

In similar languages (and there is a lot of interest in Java-like languages for ex-

ample the more recent C#, or perhaps even the contemporary style C++) it is

expected that some of the implementation techniques, or at the very least styles

will carry over. In other different but similarly sophisticated languages these

techniques will no doubt be achievable in some other ways, and the implemen-

tation specifics here will have little to offer. Still, however, the arguments for

their applicability to the problems discussed here, extension to the program-

mer's palette and place in agent architectures in general are still expected to

stand.



Authoring the passage of time

This "imperative disconnect" is the second thing that the narrative descriptions

of the music creature's behaviors obscure, or at the very least gloss over. How is

the passing of time authored? - what happens in the space between para-

graphs? Quoting again from the descriptions:"Having accumulated enough

body material ... this learning period ends" - this is a scripted transition that

waits for some condition to be true and takes one action system configuration to

another; "nodes ... are slowly dropped from the graph until only two remain" -

this is another scripted condition. "in order to 'pluck'... it takes the nodes either

side ... binds them temporarily" - this is a scripted motor program.

We have a number of techniques, not least of all the action systems themselves

for waiting for a condition to occur before doing something. But perhaps there

ought to be a lighter-weight, and more imperative, way of specifying these well-

ordered sequences of tasks. Even the "payloads" of actions themselves often turn 156

out to have a"scriptable"life-cycle - "do something when at the start, keep do-

ing this for a while, and then make sure that this is done before finishing" This

tendency is not confined to The Music Creatures. An example from the action-

tuples of alpha Wolf might"read" as follows "to set this variable in working mem-

ory, tell the motor system to perform a particular action, wait until it is done, or

for a while; go over to that other wolf and then growl". These are scripts in

miniature.

There is a role for such lightweight languages in the cases where the order of

events are predicable and the number of possible paths and interactions through

the script code are small. We see such small programs persistently at the motor

level. Here is an example: action systems ask for a particular goal to be achieved

and the motor system must navigate that task by calling up a walking animation

until the agent is close enough to take a half-step and then, shortly after, it fi-



for precedent for these "continuations" in Java, the RIFE project:
http://rifers.org/wiki/display/RIFE/Home

The method used here relies on the the ability to recover the order of method

declarations in a source file at execution time. The order is compiler-dependent,

however all compilers used for this work since 2000 (both as part of the

standard Java developer distribution and as part of the Eclipse project) have
emitted byte code that is ordered in this way.

The Eclipse project: http://www.eclipse.org

nally can sit down. This is a suitable problem for scripting (as opposed to a

finer-grain representation like a perception / action system) because the order

of events is well known and the behavior in the case of interruption is well de-

fined - for such simple things there should be a way ofjust writing them down

and having them execute. The remainder of this section is devoted to a technical

description of the incorporation into Java of a language pattern that allows just

this.

We have seen repeatedly that sequencing action over multiple execution cycles

usually requires special effort for imperative programming languages. Typically,

either effort is applied to rethink the sequencing in a way that is reentrant (in

essence using a repeatedly executed switch statement) or to build the sequenc-

ing by imperatively constructing a kind of executable data-structure. We can do

better using the reflexive powers of a language such as Java to implement an

older programming idea called coroutines. A coroutine is a restartable proce-

dure (or here, method call). Coroutines are easily implemented in a language

with proper continuations, or even reflexive access to the stack-frame structure,

and they look to be implementable in Java with some load-time byte-code ma-

nipulation. The implementation comments here are therefore of less interest to

other language implementations, but how coroutines are used should still be

interesting. Now we can make apparently imperative scripts -+
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rc beginningo{

System.out.println(" beginning ");

return progress;

}

int i= 0;

rc waitAWhileo{

if (i++<10) return wait;
else return progress;

}

rc thatslto{

System.outprintin(" that's it ");

return stop;

}

This object is given to an executor that interprets the return codes of these

methods. The critical point here is that at each return the rest of the system 158

(and in most cases this is almost all of the rest of the agent) gets a chance to

execute. Although for the purposes of the above example we would certainly be

better off in a language that supported coroutines directly (for example, the

above is one method and six lines in Python) the fact that we are forced to re-

turn something that describes the next move (here, wait, proceed or stop) turns

out to be an interesting opportunity. For, to be powerful enough to be up to the

tasks that we ask of them, our scripts (clean as they are) need to retain some of

the best features of object-oriented programming. In particular, it would be

better if they were a little more reusable, a little more component-oriented and

more composable.

To achieve this, we begin by extending the lexicon of things that our coroutine

method elements can return and by making the executor keep track of a stack of

coroutines, only the top of which is executed. This is, in a sense, a recreation of



the stack behavior of the virtual machine, with added reflexivity and flexibility

- a kind of homemade continuation-passing style of programming. In addition

to the singleton objects, progress, wait and stop we add: the singleton failure -

which signals an exceptional "error" condition has occurred; push(coroutine)

- which pushes a coroutine ahead of this one on the stack; replace(coroutine) -

which replaces the current coroutine with another; after(coroutine) - adds this

coroutine to the stack just before the current one (it will thus execute after this

one); trap(coroutine) - upon failure, the default behavior is to tear the stack

down and return failure; adding a trap to the stack intervenes in this destruc-

tion, and allows the trap to execute instead.

From these primitives we can build more useful coroutines that exploit the stack

structure for their implementation but don't necessarily reference it in their

definition, for example: andWhile(coroutine[]) - while these coroutines are

progress-ing or wait-ing, keep running this coroutine otherwise stop;

needs(coroutine[]) - needs all of these coroutines to progress before this corou- 159

tine progresses; obtain(coroutine[]) - a combination of both of these, wait until

each coroutine progresses before continuing and only run while they aren't stop

or failure.

The name of the last "return code" hints at where some of this is heading.

Coroutines provide an excellent interface to a resource model. The simplest

resource is something that only one object can own. Other objects need to wait

in line to own the object or can a perhaps steal the resource, forcing the lock. If

they are waiting in line, then their coroutine-based attempts to own the re-

source are wait-ing too; if they force the lock, the coroutine-based interface used

by the ex-owner returns failure. Through obtain(...) and needs(...) we can attempt

to claim a number of locks at the same time and give up if no progress is made

on any front, before trying something else.



These coroutine / resource combinations are extremely useful for guarding

access to limited resources throughout The Music Creatures and successive work.

They are used in a strictly technical way: apportioning use of the two running

video texture channels in 22 and making sure that these textures are switched

out only when they are not on the screen. And they are used in a more "agent

oriented" way: distributing the motor-program control over the reorganization

of tile's body segments - a reorganization which is a short series of uninter-

ruptible, but potentially overlapping procedural animations; forcing the "physical

constraint" that network suffers under before it gets to play its nodes; and of

course, limiting the life-cycle transitions out of sensitive periods (essentially,

executed with needs({aCertainAmountOftearning})).

The coroutine / stack model also generalizes the previous stack based model for

motor programs, discussed page 82 that had surprising longevity - it was used

for alphaWolf, Dobie, Loops, Max, an early version of The Music Creatures and

still makes an appearance in current work at the MIT Media Lab (for example, 160

the work of The Robotic Life group). This simpler model aimed first for the

reusability of components - stacks were assembled of motor programs that

were themselves made out of stacks of pre-made components - but what was

lost was the scriptability. Nothing much was left of the underlying imperative

language (Java) which, of course, has much in its favor when it come to the task

of programming. Further, it had no equivalent of trap(coroutine), and no excep-

tional error handling which made conflict handling and disassembly of motor

program stacks troubling and error-prone.



for an explicit discussion of Leo and the pose-graph:

C. Breazeal, D. Buchsbaum,J. Gray, D. Gatenby, B. Blumberg,
Learning From and About Others: Towards Using Imitation to

Bootstrap the Social Understanding of Others by Robots. Artificial

Life, 11 (1), 2005.

I am indebted to Robotic Life group
researcher Jesse Gray for bringing

these ongoing issues with the single
stack model to my attention, long

after I had abandoned them myself.

Blumberg's motor system is described in: B. M. Blumberg,
Old Tricks, New Dogs: Ethology and Interactive Crea-

tures. Media Laboratory. PhD Thesis. MIT. 1996.

Minsky's centrality of (negotiable) resources is in his
forthcoming Emotion Machine.

These extensions are not simply academic investigations into exotic program-

ming models - the lack of any formal cooperation between motor system

stacks was only tenable for characters who had only one primary motor system

to begin with and characters, such as the Robotic Life Group's Leo, that assem-

ble many layering motor systems together have spent much time constructing

such cooperation. Its lack of a fine-grained resource-like view onto the motor

system and its insistence on a single stack bought some simplicity at the expense

of much power.

While the formal principles of this "new" language for motor programming are

new, the underlying insight that there is a lock/resource model aspect to motor

systems is hardly novel. The gated access to shared resources has formed a core

part of every modern operating system for as least as long as multitasking; the

importance of necessary and preferable locks forms one of the key insights of

Blumberg's motor system. In a broader context still, Minsky places resources

with apparently similar life-cycle constraints at the core of his recent AI archi-

tecture - but the scriptability of the life-cycles of these resources in an agent

framework is what makes them powerful in my formulation here.

Adapting bodies

The Music Creatures is as much about the bodies of the creatures than the music

that they make, and more to do with rethinking the figurative in computer

graphics than about reinventing a fragmentary minimalism in computer music.

The third thing missing in the narrative descriptions of their behaviors was the

specifics of the control structures the agents had over their bodies. Again,

quoting from the narrative overviews: "...its body representation is under-

specified and node local" - this is a specific kind of body representation that

can be used to generate movement; "the creature must have physical support

from an underlying lattice structure, it takes the nodes either side of the node to
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play and binds them" - this is procedurally generated animation of an alto-

gether more flexible kind of body. "... as exchange learns the mapping from sur-

)vs face parameters to the resulting physical movement:' - this is learning to pro-

cedurally control a body.

figure 45. Line has a deliberately perverse pose representation. Rather than remem-

bering the location of each of its control nodes, the pose records an angular repre-

sentation of where each node is with respect to each other. Line attempts to move

from pose to pose using this representation embedded in a spring-like physics sys-

tem. The result is a pose representation that is capable of transitioning between

material, but does with effort and difficulty. This pose representation also gives rise

to the potential fields illustrated in the lower half of this figure. These fields show,

given a fragment of the growing line, where the next control node should be placed
in order, here, to create a circle.

The pose-graph, although flexible, isn't for every situation. It handles very well

the case when the control over a body can be discretized, even if those discrete

units are small blend spaces. It isn't appropriate for bodies that offer a high

number of independent degrees of freedom that are not broken down, or do not

need to be broken down into "animations" or "poses". Network and tile are crea-

tures with such bodies.

Before moving onto the more abstract control problems that the music creatures

face, we should look at how they do exploit the pose-graph motor system to

support the simple learning that they achieve.

Both the exchange and line incorporate learning into their use of the pose-graph

- both are simple, data-driven, example-based techniques that gain any power

they have over the body of the creature because of the framework in which they

are placed.

The problem faced by exchange is to remember what effect its pre-made anima-

tion material has on the navigation of its body through its world. It will then

use this knowledge to navigate back to various locations in order to "strike" the

musical material stored there. It accomplishes this simple task by annotating its

pose-graph - which begins with three, simply connected "animations" that

exploit the creature's four rotational, parametric degrees of freedom - with the

results of playing out that frame of animation. The multiple examples remem-

bered from the ultimate translation vectors that result on the creature's corner

vertices are stored in a clustering structure not unlike that of Loops's rendering
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vertex v,

pose-graph
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figure 46. The motor learning in exchange is performed by annotating
the contents of its primitive pose-graph with the effect of performing
those poses. Theses annotations store the effective directional change

of three of the bodies vertices. Given this structure the pose-graph can
now be searched in a different-way, based on these annotations. While

not accounting for the momentum that the creature has, this is suffi-
cient to allow a certain, perceptible, amount of goal-directed move-

ment by the creature.

parameters. Having filled this data-structure with examples, exchange can

search outwards through its motion graph in order to synthesize movement

that propels the creature toward a particular point in space. The creature itself

is "damped"back to the origin of its world, so it can never go too far astray.

Line operates in a similar way, by annotating the pose-graph structure. Here,

however, it is not the consequences of movement that are stored in the nodes,

but the a record of the sound present when the pose has been played out. Per-

ceptual clusters of sound that fission propagate topological changes to the pose-

graph itself - new pose-material is sampled directly from physics-based body.

Finally, it is important to revisit our general description, page 85, of the role of

the motor system in an interactive work in the light of these simple learning

techniques. We have already seen the motor system's primary force in organiz-

ing pre-made material, incorporating "content" made using other, non-agent

techniques into the agent and becoming the location where this material is

blended, spliced, resequenced. With the simple learning techniques described

above, the surface between the agent and the pre-made moves outwards, in

favor of the artist. The agent can now use material, not as "content" but as scaf-

folding for learning, the seed for the agent's own material.

The generic radial-basis channel i -flow blending

In general, however, the pose-graph has little to say about the problem of the

body-representations for non-figurative creatures - it offers a control structure

for the body for line but not the structure for it to control. It will have even less

to say about the body (as opposed to the pose) representations for many of the

creatures we see later, which are adapting their bodies or sampling them from

motion-capture data. One generic framework for the construction of these
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bodies will be presented soon, page 319. But we can treat some of these concerns

here.

To review: there appear to be two essential and unavoidable characteristics of

the environment in which "motor-systems" work, two unavoidable "unforesee-

able" problems in authoring agents: firstly, multiple pieces of code (for example,

action-tuples) attempt to access the same resources (for example, joint-angles)

and these read and write accesses must be arbitrated, blended, or rejected out-

right. Secondly, these processes want to have their accesses at one particular

time-scale, duration or rhythm (for example, when they become active) but

want their effects and control to last over a different time-scale (for example,

starting slowly, but continuing until a goal is achieved or until a goal is unreach-

able, fading out over time, etc.). We'll call the first of these the blending / arbi-

tration problem and the second, because it comes from a disconnect between

the flow of execution in our action systems and the flow of execution in the

motor system, the motor flow control problem. 164

Both of these problems are approached by the coroutine / resource model given

above, but only in the case where the arbitration and the flow problem is in

some way localizable and only when the control itself is symbolic. This is often

the case in high level terms in pose-graph motor systems, where there is a well

defined surface between the action and motor system - and the currency of

exchange across this membrane is named (that is, symbolic) poses.

However, at the lowest levels of the motor system, the communication with the

body, there are often blending problems that cut across coroutines and are nu-

meric rather than symbolic. These numerical blends are often the kinds of con-

trol that we wish to exert over processes - when the exit of one routine should

be smoothly eased-out, and the entrance of another should be strongly percus-

sive. As the motor systems that are constructed for our agents become progres-
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figure 47. The generic radial-basis channel is a place where multiple processes can
present small, overlapping, signal processing primitives in a ad hoc fashion. In this

example here a few postings are added to two channels, including one that tries to
temporarily tie the value of both of these channels together.

sively more hybrid - incorporating both "content driven" pose-graphs and

"process-driven" procedurally generated movement, these blending and layering

problems will dominate as a whole host of distributed processes throw material

at the control structures of the agents' bodies.

We will start by discussing a simple, but powerful general-purpose approach to

constructing motor-system elements that address these two problems - the

generic radial-basis channel. This has worked well for the creation of some parts

of not just The Music Creatures, but every work since; beyond the content driven

pose-graph structure.

In its simplest form a channel is a composite of the following elements: a value

representation, a number of "postings" to the channel, and a (monotonically

increasing) time-base. A value representation exposes a mathematical space that

is at least as large as a vector space (we shall note in passing the possibilities of

value representations that are non-commutative and thus are not vector spaces

nor even fields) in terms of the following primitive operations:

interface ValueRepresentation<tvalue>{

tyvalue zeroO;

t_value add(tyvalue a, float w, tvalue b);

These two operations are chosen to be the minimal set required to implement

an incremental weighted average. A posting is an object that has the ability to

compute, given a time-base, a value v that is compatible with this value repre-

sentation, a scalar weight w and a time marker T . Given its set of postings and a

value representation, a channel can compute its value at the time indicated by its

time-base by summing all the weighted values of its postings. In addition to

computing its value at each update cycle, the channel also considers culling

postings from the active set: postings are removed if their net relative contribu-
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weight value

time marker

figure 48. The anatomy of a "posting" to a generic radial-basis channel - a
weight function, a value (both of which vary over time) and a time marker

(which may shift after posting).

touch~j

setWindow(...) root setWindow(...)

const=0. xp, P=0.3

dilate 1/2 setwindow(K/

figure 49. A library of generic window functions can be created and combined
using this "plus / multiply" tree structure. Each of these windows can be dynami-

cally expanded in response to setWindow(.) messages.

tion to the channel falls below E ~ 10-6 and the time-base is after the posting's

time marker. This arrangement shares responsibility for the removal of a post-

ing, ensuring that elements that have an important effect on the value of the

channel are kept, and that postings that temporarily have little effect can prevent

themselves from being removed (by moving their time-marker into the future).

The implementation of a posting can generally be broken down into a window

generator, that generates the weight for the posting and a value generator that

decides on the value. Critically, the the value of a channel is changed in a very

orderly fashion - first each posting is updated (in addition order), then each is

asked for a value and a weight, then these values and weights are combined in-

crementally using the value representation, and finally, the channel checks for

culling possibilities. This allows postings to immediately remove themselves

from the channel - by setting their weights to zero, and their time-markers to

- - in the knowledge that they will never be updated again; further, this

gives new postings access to the value and total weight of the channel prior to

their entry - useful for smoothing their entry and setting the scale of their

windows.

With these simple features it is easy to build a lexicon of window functions and

generic value generators. Window functions can be multiplied, blended and

added, for they are just scalar functions and the value representation interface is

complete enough to enable the creation of various filters without binding to the

underlying representation. Window functions typically provide compact sup-

port in time - hence the name of this over-arching framework: generic radial-

basis channel - and also share some of the control over the time marker calcu-

lation. Both these components are reusable and easy to write. But it is the con-

trol over the "posting" and its life-cycle, the relationship to the post-ing to the

post-er that is more interesting, and indeed is what brought us to this structure

in the first place.
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new Posting(...){}.window(...).value(...);
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p = new Posting(...).window(...)value(...);
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p.setValue(6)

direct control

p = new Posting(.. ){};

"push"

"local computation"

self governed

figure 50. Generic radial-basis channels offer three broad
categories of flow decoupling.

We can characterize three kinds of relationship:

Ballistic - some postings are sent and then never communicated directly

with again. These postings are free to pull the material and data that they

need to compute their values and their ending strategy. A posting like this

marks an inversion of control flow from an imperative style that pushes

data to a location to one where a single imperative push of control to a

location that subsequently pulls data.

Touchable - Other postings are less independent and the post-er fre-

quently sets their value. However, unlike in the conventional forward

situation of a purely imperative strategy, the flow of the post-er is shielded

from the burdens of having to set a value on a fixed schedule, or a fixed

order. One can construct windowing functions in this case that begin to

decay away in the absence of new data; postings constructed with these

windows needed to be "touched" every so often to keep them valid, other-

wise they eventually fade to nothing. This allows an care-free disappear-

ance of the post-er and a graceful fade out of the posting's effects.

Persistent - Finally, some postings are meant never to be culled, and man-

age the global characteristics of the channel (limiting velocities, smoothing

over large changes etc.) or control the behavior of the channel in the ab-

sence of any other postings (drifting back to a particular set point, for

example).

The generic radial-basis channel forms the foundation of a number of the bod-

ies of the more exotic agents presented in this work (in particular it forms part

of the blendable body framework constructed for how long.., in addition to its

service here in The Music Creatures).

This broad use is supported by a broad range of value representations. At the

level of a point, it's easy to see how a three-dimensional position vector can be
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exposed directly by a value-representation interface. More interesting value

representations can also be written, with a little more care, for infinite lines,

finite line segments, infinite planes and finite triangles.

For example the piece 22 uses a varying set infinite lines as "fiducial marks".

Sometimes these lines couple to geometry in the scene, other times their move-

ment, their momentum is connected to the movement of the performer. Clearly

this is a situation where we have several procedural algorithms operating at dif-

ferent time-scales that need an authorable blending system. The value repre-

sentation is straightforward:

2D-infinite lines: value representation is a homogeneous 5-vector:

(xiaC,ax2aC,y2a,Ca) = (x'1, y'1,x2 ,2, a)

The infinite line goes through (xi,yi) and (x2,y2). To form

C = Aw + B we find the point on A, P closest to the midpoint of B: 168

(Bx, +Bx 2 ,By +By 2 )/2.

and form two new points, equidistant from P on line A:

(A*,,A*,,A*2 A*2

We then blend A* -w with B :

C=( A* w+Bx,, A,*w+B, /,A*w+B4,Ax w+ a

Using an exponential mapping, we can form a blend space for Quaternions and

have orientation valued channels. Scalar representations make channels excel-

lent candidates for modeling the motivations and emotions of an agent - as-

pects of agents that are good examples of values that are influenced by a variety

of systems on a variety of time-scales, while also having set points to drift back

to. Low-, high- and band-pass filters can be constructed that are independent of



the value representation; persistent postings can finesse the signal properties of

channels, and limit velocities. Whole procedural networks can be constructed,

tested, and reused in a value-agnostic fashion.

Other than window and value-generating functions we can extend this basic

framework in a number of ways: we can produce exotic value representations

and extend the idea of an incremental weighted sum, page 354; we can replace

the incremental weighted sum altogether with another structure that combines

multiple values and weights, below; and we can, with a few more constraints on

the interface that postings present to the world, allow other processes to inspect,

move and organize postings, page 248.

The generic radial-basis channel 2 - rediscovering action-selection

Sometimes the degrees of freedom that creatures' bodies offer can be expressed

succinctly using these radial-basis channels: for example tile doesn't need much 169

more than channels to control its tiles (one channel per tile with a value repre-

sentation that has parenting information as well as orientation); exchange has

four rotational degrees of freedom (here, a channel each). But network has mul-

tiple processes fighting for control over its body. For clarity of movement just

one process must be able to gain control of the movement of the network and

cause it to move to the lattice. A purely channel-based weighted average is a

fight without a winner.

Sometimes, then, a weighted average is inappropriate. Rather than blending

between two different ideas of what a particular value, position, rotation, line or

mesh should be, it would be better to pick one and stay with it for a while. Of

course, this intuition needs some careful refinement - what constitutes two

different ideas of what a particular value should be, and what does it mean to

stay with one for a while? No matter how carefully we build the control struc-
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figure 51. In this figure a set of six postings are configured to influence two scalar

values. The value representation in this case is a pair of proposed changes to the

two targets. Two processes try and make targets 1 and 2 equal to zero; two others

try to make them equal to one; and a final pair of postings try to make target 1

equal to target 2 and vice versa. The results of these (over-constrained) processes,

as arbitrated by the competitive radial-basis channel structure, is to cycle through

the two most stable states, targets 1 and 2 having almost the same value for almost

all of the time yet oscillating between zero and one.

ture for the weights, we cannot pick the correct weights for a blended average

without looking more closely at the contents of the blend itself.

So we need to extend the value representation to give a little more insight into

the material being blended.

interface ExtendedValueRepresentation<t_value>{

t-value zeroo;

t-value add(tyvalue a, float w, t_value b);

e float normalizedDistance(t_value valuel, t_value value2);

This additional method provides a normalized distance between two values

inside the representation - a distance of i means that these values are com-

pletely different (that is, two different ideas of a value), a distance of o means

that they are indistinguishable (that is, they are the same idea).

Now we need a structure that modifies the weights obtained from the postings

to the generic radial-basis channel.

Consider formulating a matrix D of normalized distances where each element

Dij is the distance between posting i and posting j, with i, j E 1..N and N as

the number of postings. The idea is to use this matrix D to sharpen the contrast

between the weights of the postings Wi such that incompatible postings are not

blended, but rather the strongest one wins.

Initially, we set:

W' = W

We perform the following iteration fot Vi,
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figure 52. A more complex example than the previous case. Six processes again,

however two try to make target 1 equal to minus one and one, while two try to

make target 2 equal to zero and two; the remaining two are as before, but compete

with lower weight. The exploration of the partial solutions to this unsatisfiable

constraint problem oscillates randomly; however the two channels remain highly
correlated.

N
W|<- W|-(1 - TJmax Tj)j=1

W' +- IWI

With each iteration, postings that provide values that conflict with each other,

mutually inhibit each other, with their power of this inhibition set by their

weights. We can continue this iteration until convergence to produce a winner-

take-all weight vector, which will either have only a single non-zero entry or

multiple non-zero entries that correspond to zero normalized distances. This

encapsulates the intuition that we should not blend between "two ideas" of the

same value.

Alternatively, we can run a small number, q ,of iterations to increase the contrast

between weights without removing all of the conflict. Rather than fixing q

ahead of time, we might choose a dm such that dmax = IW' - W I (we termi-

nate should IW' - WI > dmax and set W' such that it is dmax away from W ,

noting that the furthest away W' could be from W , that is, the largest possible

dmax, is v N ).
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For the purposes of imple-
mentation we must remember

that this vector notation is
strictly mathematical, and in

fact N varies with the number
of the postings.

B. Blumberg, Action-selection in

hainsterdam: lessons frotn ethology.

Proceedings of the Third Inter-
national Conference on Simula-

tion of Adaptive Behavior, Brigh-
ton UK, 1994.

This may suffice for channels that have many postings that enter and exit in a

constant flux. However, for channels with long-term postings the temporal dy-

namics of this algorithm are too clear-cut. Stronger postings that conflict always

crush weaker postings - no exploration occurs. Two alterations change this:

firstly, a long-term memory, controlled by the time constant a , updated

after all of the multiple iterations of the above algorithm:

Bi <- a Bi+ (1 - aC)(1 - W!)

with a c 0..1

and, if W/ > E then Gi =else Gi = 1, with > 1

secondly, we use this memory to modulate the weights as they enter the

algorithm:

Wi,initial <-WBiGi

Together a and P control the time-constant of changeover that we

would expect between two d = 1 postings with identical weights. Spe-

cifically for large a and large P , changeover will occur slowly, for a

close to 1 sensitivity to transient changes of weight and distance is re-

duced. Specifically, the time constant varies like In(1/(pa)).

Although I have deployed generic radial-basis channel formulation inside motor

systems, this extension to the framework, transparent from the point of view of

the posting interface and only a small addition to the value representation, actu-

ally spans a space of action-selection algorithms, where the "action" selected is

which (combination of) postings to back in the blended output. Most notably,

the space of action selection algorithms spanned by choices of (dmax, a, P) in-

cludes that of Blumberg ( dmax = o , a and P control the "level of interest" in

the language of that model) but also includes models where multiple actions act
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simultaneously ( dmax </N, p 1 ) and when the transition between actions

is soft ( ac -_ 1, @ ~z 2 ).

Generic radial-basis channels with normalizedDistance(...) value representations

are used in the implementation of "soft constraints" in the Fluid representation

- multiple processes seek to maintain relationships between the positions and

sizes of visual elements on a page. These over-constrained set may admit no

global solution, yet one would like the layout to both explore the space of possi-

ble solutions and to keep close to layouts that are partial solutions. Here the

"values" are modifications to individual positions and sizes, and the normalized

distance between two displacement vectors Vi and V2 is:

max( 0,(Vi -V2 )

|V1\| V2|

Such a metric is also used as the basis for the final output to the body of network 173

to ensure that only compatible ways of satisfying its "imagined" physical con-

straint are attempted simultaneously. The framework allow competitive proc-

esses to be added to the generic radial-basis channels. From an authorship per-

spective, multiple postings can be added to the channel without fear of the sys-

tem "breaking" under the strain of incompatible request - rather the channel

will simply do the best that it can, and while doing so, explore many of its par-

tial options.

This class of channel completes the discussion of the alternative "flow-control"

strategies developed for The Music Creatures and deployed beyond. In the

coroutine and resource frameworks we have, at last, a scripting technique for use

in defining ordered actions and motor-programs, that is simple enough to admit

a clear, imperative style, but strong enough to survive the uncertainties of inter-

action and complex system. In the generic radial-basis channels we have a ge-



neric framework for the creation of not only signal-manipulation networks, but

"process-manipulation networks" - for the cases where a symbolic-level

scripting approach does not "script" at the correct resolution. These channels are

for the numeric representations, typically of agents' bodies, for the places where

many systems, many lines of code, excerpt uncoordinated influences over central

points. Finally, in the cases where neither a carefully computed blend, nor a

strictly "action-level" action selection technique is appropriate, I have offered a

hybrid - a generic radial-basis-channel-based "soft" action-selection strategy.

Each of these techniques are general-purpose techniques for the creation of

mid-points, loci of interactions inside complex systems.

5. Concluding remarks - The Music Creatures'aesthetics of agency

This chapter began with an overview of the lives of four different kinds of

agents and concluded with a detailed description of the techniques constructed 174

to realize their narratives. Despite the ordering of this chapter, the narratives

did not completely precede or succeed the frameworks used to create them, but

emerged as the techniques for the principles were constructed. This interplay

between narrative and technique seems to be a fundamental emergent property

of the agent-based installation that involves creatures possessing genuine life-

spans populated by periods of learning and development. Specifically, this sepa-

rates these works from those typically produced under the banner of artificial

life Although oddly shaped and perhaps appearing closer to the machine than

the animal, and despite their ultimate disposal and replacement on an almost

regular time-scale in the gallery, these creatures are never the anonymous agents

that artist's readings of artificial life seem to provoke. Rather they are, even in

their limited ways, condensations of some experience particular to their instal-

lation space and to the people whose space they share.



Their seven-to-ten minute life-span takes them through a number of changes

that, when multiplied by the other creatures, offers a balance of complexity and

order that survives in its gallery setting. The Music Creatures populate a number

of interaction time-scales up to this seven-minute mark: at the smallest level,

their performance of sound is coupled to the small perturbations of their

graphic lines; they respond promptly to sound made in the gallery; they main-

tain musical cells that last ten or twenty seconds; they offer visual and behavior

changes that take place over a few minutes. On longer time-scales the whole

installation undergoes cycles lasting hours, as material is perpetuated by crea-

tures hearing other creatures. Change over each of these durations seems im-

portant for finding an interactivity that remains both direct and lasting.

This said, however well prepared the balancing strategies involved in the making

of this work, they speak little to the problems of constructing a work that un-

folds over days, weeks or months. It remains an enticing vista for future work to

create agents such as The Music Creatures that exist on longer time-scales. We 175

shall revisit this horizon briefly when we consider the future directions for my

work

As a stratagem of indirection, The Music Creatures offer an extremely deferred

model for the creation of music from the sounds in a gallery. Such indirection is a

hallmark of the agent-based; the deferral to the agent marks its autonomy and

indeed its very agency. In Loops, the flux and distribution of finite material and

stylistic change is the object of indirection; when we reach how long..., it is the

creation of animation material and meaning-bearing relationships that is indi-

rectly specified in the agent formulations. Yet as we move away from the nearly

ambient, or certainly minimalist musical aesthetic of The Music Creatures the

complexities and the stakes of this indirection become much higher. As we shall

see in Loops Score (the next musical work I present), by the time I am ready to

approach the problems of music again, I will have had to reinvent the action-



selection architecture of the agent framework to increase the ways in which I

can direct this indirection.

Additional aspects of The Music Creatures persist in my most recent work for

dance. The most striking of these elements is the music creatures'sense of effort

and intention. Each of these creatures has been, in many respects, set up tofail.

Exchange's learning isn't quite strong enough to offer it a stable model of the

results of executing a pose; it fails to account for the higher-order physical ef-

fects like momentum on the body, and the creature thus over- and under-shoots

its target. Line's internal representation of pose is left deliberately over-specified

- leaving the creature to struggle from pose to pose. Tile is given an impossible

task of grasping, indeed embodying, the rhythm of sonic material passed from

other creatures that usually have little direct regard for rhythm. Network visual-

izes the frustration of an overly and overtly simple transition model of musical

material. Thus, these creatures are in a constant state of imbalance and inade-

quacy, constructed not of perfectly functioning parts, but rather of pieces that 176

fail and continually re-compensate in interesting ways in unpredictable envi-

ronments - their own actions add to rather than negate their environment's

unpredictability. As much as they are constructed with systems that offer long-

term learning and the automatic calibration of their perceptual systems, this just

serves to keep the creatures on their edge of complexity. That they have tech-

nologies with strongly open interfaces, waiting to blend and shift competing

signals to their bodies is because they possess multiple and simultaneously con-

flicting intentions. Unlike animals such as birds or even characters such as Do-

bie, these creatures are not well-matched to their ecology or installation setting.

It need not have been like this, and it would have been simpler if it had not: I

could have built stronger motor learning for exchange or given the agent access

to the physics simulation so that it could "cheat"; line could simply have per-

formed a linear "morph" between poses; network need not obey an imagined



physical constraint - it could simply twitch in time to its sound; tile might have

acted to guarantee the rhythmic qualities of the colony.

However, this resulting aesthetics of failure and frustration, of effort and inten-

tion, stands in marked contrast to the smooth ease of much of computer

graphics and interactive art, and the slick successes of the technology demon-

stration. That these agents manage to remain, purposefully, at a point of inter-

active disequilibrium is in itself the technical achievement of the work. I believe

this to be one of the destinations of the agent-based, and such traces reappear in

my works for dance theater. My agents there chase after all-too-inadequate and

transient perceptions of movement and graphic form.

177



This section develops two techniques that have a wide applica-

bility to a range of problems that agents face when trying to

understand complex worlds. These techniques find a crucial

place at the core of the perception systems of many of the agents

discussed in this thesis - Loops Score, how long...? and 22.

Chapter 5 - The b-tracker framework & distance mapping

In the previously discussed decomposition of the agent - into "perception',

"action" and "motor" systems - the perception system holds the privileged place

as the point of entry of the external world into the agent. As we take the agent

metaphor, or just an agent toolkit into new arenas - choreography, music,

visual art - unsurprisingly, the perception systems of our agents require signifi- 178

cant attention.

For the perceptual worlds inhabited by the agents are broad ranging: the agents

in this thesis perceive the details and the gross aspects of human movement

(motion-capture data), of human musical performance (data from an instru-

mented piano), of human speech (material from a narration) and of the sound

of music itself (from live microphones in a gallery). One test of the agent meta-

phor is to organize these disparate domains without trying to unify them. In-

deed in this chapter and those that follow we will see that agent metaphor offers

the ability to construct a small set of principles and technologies that span this

range - allowing, perhaps even provoking, new relationships between com-

puter, movement, space and sound.

It is in this section that I articulate two such organizing perceptual frameworks

- these are the "open forms" of the agent perception system, that help organize,



or indeed provoke, these relationships. It is also in this section that we can for-

mulate most sharply the analysis and critique of the methodologies and results

of the traditional digital artist's "mappings'

1. _- _______ The perception system

Root

Location

leat ned.

figure 53. A c5 agent "percept tree" classifies and extracts information from the
perceptual world.

Often the perception system of a c43/c5 toolkit based creature follows a tree

structure. The percepts at each node in this tree possess the ability to extract

information from the rawest providers of sense information to the creature.

This is a hierarchical decomposition of the state of the world, as sensed by the

agent, into a set of categories, or at the very least, carefully treated responses to

it.

Throughout this thesis there have been agents that have grown their percept

trees to dynamically extend and tune the way that they decompose the world. In

The Music Creatures' exchange agent, sub-models of the "sound" percept are dy-

namically added in response to hearing segmented audio in the gallery; in net-

work these sub-models carry transition information that is used to create the

body of the creature; in tile there is a population of rhythm models, not sonic

models. Loops, for the matter of a little simplicity and computational efficiency

amongst its numerous creatures has a fixed number of percepts looking for the

"unexpected" in the colony's signaling environment. Finally, it is by dynamically

monitoring and populating sub-levels of this hierarchical structure that Dobie is

able to construct new states in the world from which to explore new (state,ac-

tion) pairings, as described previously, page 77.

This hierarchical structure works well for these creatures and for a number of

others, particularly in simple virtual worlds. But that this is a hierarchical de-

composition of the state of the world needs to be made clear: a positive response

from the "sound" percept of Dobie, the interactive, trainable dog indicates the

1179



presence of sound of the environment; a positive response from the"black"

percept of a wolf pup in alpha Wolf indicates the presence of a another black pup

in its field of vision; yet the co-activation of"sound" and"black" does not indicate

the presence of a single "howling-black-wolf-object". Simply that there is howl-

ing and there is blackness somewhere.

'Ihus, we might say that "objects" in the world, should they exist at any level of

description in the virtual environment, are broken up upon entry to the c43/c5

perception system. And that any perceptual fusion that occurs is up to the agent

to perform.

This is only the first half of the perceptual fusion problem. Having completed

this there exists, in some c5-based creatures, parallel perception trees that take

fused packages of percept-tree response and constructs higher level recognizers

that have categories for such things as "howling-black-wolf". However, even

with these second order trees, there is a need to fuse the information from these 180

perceived objects with objects previously perceived. And this tracking of objects

is the other half of the perceptual fusion problem.

One can construct agents and interactive worlds that do not require any solu-

tion to any tracking or fusion problem: Dobie, for example, cared about a reward

marker and the position of the interactor's avatar in the world, but cared not for

any representation of their common origin; alphaWolf could in most cases, like

many agent to agent perception problems, simply "cheat" and remember to

package up all of the perceptions that came from the same particular agent to-

gether, and having done so, no ambiguity remained; the creatures of Loops never

needed an object model, rather they sensed the average of all the creatures' ef-

fects on the surrounding signaling-fluid.



Compelling evidence for this payoff is presented in D. Isla,

The Virtual Hippocampus: Spatial Common Sensefor Synthetic

Creatures S.M. Thesis, MIT. 2001.

There are three possible reasons for not "cheating" or at least constructing an

agent tool-kit such that cheating is not mandatory. The first is computational

efficiency - complex perception for the 42 creatures of Loops was, at the time,

out of the question. The second is what one might call perceptual honesty -

that by demanding that our agent synthesize its own object-level models rather

than obtaining them directly from the world, the mistakes that the creature

makes concerning objects will be believable and, ultimately support an assigna-

tion, by an observer, of the agent of consistent knowledge and intentions. There

is a substantial pay-off in realism and behavior for what might seem like sub-

stantial unnecessary busy-work.

The third reason for this decision is that when one makes the connection be-

tween the virtual agent and the real world more porous, there are simply no

object models to be found and the agent must synthesize its own. This is the

problem we face in interactions less structured than in Dobie and alphaWolf

and, indeed, in domains closer to sensing the real world directly such as robot-

ics. Our agents, when they enter the context of dance theater, must synthesize

and maintain models of moving dancers; when they enter a gallery they must

construct and monitor models of sonic material; and when they listen to the

performance of music they must create and track the location of the perform-

ance in the "world" of the score themselves. These things are simply not directly

available from the "sensors" that we known how to make.

Thus in agent worlds that are more strongly coupled to our worlds, tracking and

fusion problems are much less avoidable, since we seldom get an opportunity to

control - as we wonder as artists from domain to domain - both the sensing

and the subject being sensed.

Therefore throughout this work a broad range of algorithms are located in

places that act as "perception systems" for the rest of the interactive artwork -
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in particular those that build and sustain an a set of "object" hypotheses. I shall

use as examples in this thesis: score followers - that match live musical per-

formance to a pre-arranged score; choreographic trackers - that match live

movement to open or closed versions of previous rehearsals; rhythm finders -

that look for repeated gestures and form more complex ideas of the speed of a

gesture; movement trackers - that rework synthesized movement into new

sequences; speech recognizers - that identify snippets of sound as similar or

different to previously important sounds.

2. The b-tracker"design pattern"

If the perception system is where the uncontrollable organization of the world

repeatedly meets the internal author-able organization of the agent, a tracking

problem occurs when the agent needs to form perceptual structures that exist

longer than a single perceptual snapshot, where new information needs to be 182

match and incorporated into older structures, when ongoing structures become

repositories for learnt information, and when old structures require mainte-

nance and extrapolation. Problems in this task range widely: short term, classic

object persistence problems - is this object the same object that I saw some

moments ago (from Dobie) ?; medium term support for ongoing actions - I

have drawn a line from this object to this place, where now is this object (from

how long...?) ?; long term memory problems - is this previously encountered

dominant towards me (from alphaWol) ?, is this sound like a previous sound

(from The Music Creatures) ?



To develop a general, unifying, reusable framework for solving these tracking

problems we decompose the issue into three main stages that take place over

two pools of data (we'll see cases where more complicated structures are built

up by layering trackers constructed in this fashion). The data pools are the

incoming elements and the ongoing models and the stages are incoming ele-

ment fusion, incoming->ongoing prediction / match / update, and ongoing

cleanup. We'll first develop each stage of the framework before specifying these

stages precisely.

'Color

I.

~\ \,

S/ percepts

,'percept activations

Color = (1,0,0)
* Location = B

figure 54. A hypothetical example consists of object tracking in a multi-object

world. "Incoming elements" in this case are various continuous or categorized

perceptions that are presumable located in the world.

Sound= 1

bLocation= B

Root
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o *howl"= 1
OLocation = A

O'howl"=1
O Location = A

0 Color = (1,0,0)
Q Location = 8

O Sound= 1
O Location = 8

o -howl- =1
OLocation=A 

OColor=(1,0,0)
QLocation = 8 t

QSound= 1

0Color= (1,0,0)
>Locaion = B

Q~ound = 1

0 Color= (0,0,0), constant
QLocalon = A', with velocity v

0"howl"= 1, for the last 3 seconds

QColor= 1,0,O)
OLocation = B, unsure

Osound= 1, for the last 1 second

0 color = (1,1,0)
QLocation = C, not seen for 10 seconds

QSound= 0, was active 5 seconds ago

figure 55. These can be fused together on the basis that perceptions that come

from the same location come from the same object.

figure 56. Previously the agent has encountered a number of objects, we need to

match these older objects with the new, fused sense data.
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o "howl"= 1
OLocation=A

QColor= (1,0,0)

0 Location = B
OSound= 1

0 Color = (0,0,0), constant
0 Location = A, with velocity v -predicted

0"howl"= 1, for the last 3 seconds - predicted

0 Color = (1,0,0)
OLocation = B', unsure

OSound = 1, for the last I second

I 0 Color =(1, 1,0)
0 Location ' not seen for 10 seconds

QSound 0, was active 5 seconds ago

figure 57. In many cases it makes for a more robust perception system to match

these new sense data with predictions of what these older objects should be now.

This prediction process might change the apparent contents of the older-

objects, or it may form and add new hypothesized descendants and nominate

these as new ongoing models.

OColor= (0,0,0), constant
0 "howl"= 1 Location = A, with velocity v -predicted

0 Location = A Q "howl"= 1, for the last 3 seconds - predicted

0 Color= (1,0,0)
QLocation = B

Osound= 1

QColor = (1,0,0)
OLocation = B, unsure

OSound = 1,for the last 1 second

QColor = (1,1,0)
0 Location = C not seen for 10 seconds

0 Sound= 0, was active 5 seconds ago

QColor= (0,0,0), constant
OLocation = A, with velocity v

O"howl" =1, for the last 4 seconds

QColor= (1,0,0), constant
- QLocation = 8, sure

Osound= 1,for the last 2 seconds

QColor= (1,1,0)
QLocation = C, not seen for 11 seconds

0 Sound =0, was active 6 seconds ago

185figure 58. In either case, once the new data

has been matched with some of the older

object-models, this new data is merged with

the older object models. In particular, the

agent's confidence in on object model will

change, and the agent's confidence in the very

existence of this ongoing object will change.

Match algorithms vary in the deployment of

the b-tracker framework - the two most

commonly used are a greedy merge up until a

certain threshold and a Hungarian assign-

ment solver, page 3 10. We'll see a selection of

simple algorithms below.



OColor= (0,0,0), constant
OLocation = A, with velocity v

0 "how"= 1, for the last 4 seconds

OColor= (0,0,0), constant
Q Location = A, with velocity v

0 "howt"= 1, for the last 4 seconds

OColor= (1A0)
Q Location = B, sure

QSound= 1, for the last 2 seconds

Ocolor= (1,0,0)
Q Location = B, sure

QSound= 1, for the last 2 seconds

figure 59. Confidence in the existence of some objects might be so low that they

are culled, stable confusion in the value of some data inside an object may result

in ongoing model fission or two ongoing object models might be seen to be

really the same object and fused.

Finally, we note that top-down influences may be exerted on the contents of

this perceptual structure by injecting particular elements into the incoming set,

or more interestingly, speculatively injecting objects into the ongoing model set

(and waiting to see if any data "sticks" and increases the confidence associated

with this model). In the above, diagrammed example, a creature might hypothe-

size the existence of an object in the world (perhaps food) with an unknown

location. This ongoing model can be used as a placeholder object for action.

Of course this is all extremely general, but it's worth listing the data-structures

and algorithms that need to be added to this framework, to provide a kind of

template that we can fill in when we come to deploy this framework. To make

concrete these stages, I'll sketch the structures and algorithms needed to con-

struct four of the example uses of this framework that were deployed in art-

works discussed in this thesis.

OColor= (1,1,0)
QLocatlon = C, not seen for I 7 seconds

QSound= 0, was active 6 seconds ago
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The Hough Transform - P.V.C. Hough, Machine
Analysis of Bubble Chamber Pictures, International

Conference on High Energy Accelerators and
Instrumentation, CERN, 1959.

The seminal score following work: B. Vercoe, M.
Puckette. Synthetic Rehearsal: Training the Synthetic

Performer. Proceedings of the 1985 International
Computer Music Conference. San Francisco:

Computer Music Association, 1985.

Imagery for Jeux Duex was made to accompiany
composer Tod Machover's concerto for

"hyperpiano":

T. Machover, Jeux Duex for Hyperpiano and

Orchestra, Musical Score, Boosey & Hawkes, New
York. 2005.

The marker and dancer trackers are further

discussed on page 305. A less direct tracker is
found on page 368.

They are: a Hough tracker - given some movement (here, of dancers in how

long...?, and the source video of Imagery for Jeux Deux) it tries to hypothesize

and maintain straight lines that explain the movement or images, named after

the Hough transform in image processing that finds straight lines in an image;

score follower - given live performance data (notes played inJeux Deux) this

tracker works out where on a known musical score we currently are; marker

tracker - given noisy, unlabeled, untracked motion-capture data tries to com-

pute marker assignments, and smooth positions and velocities for these points

while ignoring transient ghost markers; dancer tracker - given good marker

data tries to cluster these locations into isolated areas and thus, without

matching skeletons or using any other kinematic knowledge, tries to find clus-

ters of points that are likely dancers.

These problems are of roughly increasing complexity: the Hough transform is

relatively solved problem, although I am unaware of any interest in solving it

incrementally; many have written scorefollowers, a fundamental if dangerous

building block of interactive computer music for at least decade, and around for

two, but our implementation gives us a few novel uses; in tracking markers it

transpires that it is more important to have a solution based in this perceptual

framework than it is to have a more accurate but proprietary black box solution;

similarly with the dancer tracker, for a number of reasons we can exploit access

to the specifics of this solution stratagem during the imagery for how long...?

Firstly, the data structures:

incoming element: has some, perhaps fragmentary, labeled piece of data

associated with it. In a Hough tracker example this will be a short line seg-

ment, in a scorefollower example this will be a time-stamped note, in a

marker tracker example this will be the position of a marker of unknown

origin, in a dancer tracker this will a set of tracked marker positions.
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ongoing model: has space for a complete object model, together with

enough element history, use history and merge history to participate in

this agent. scorefollower - hypothesized score position and tempo; marker

tracker - Kalman filter model of marker position, velocity and accelera-

tion; dancer tracker - k-means-based clusterer of marker positions.

And at each stage there are algorithms that might be provided:

incoming element fusion: spots that some elements should be pieced to-

gether into intermediate packages of data in order to make the matching

easier. Hough tracker - successive line elements that are too short to be

reliable are pieced together into longer elements with a more definite di-

rection; score follower - no fusion takes place; marker tracker - markers

that are too close together are merged; dancer tracker - no fusion takes

place.

ongoing model prediction: prepares the outgoing models for matching by 188

speculatively, and reversibly, updating them with the current "time". Hough

tracker - no prediction; scorefollower - predicts where we would be in

the score right now if we continued at the hypothesized tempo; marker

tracker - the kalman filter prediction cycle; dancer tracker - the k-means

update cycle on the most recent data.

incoming -+ ongoing match: matches the incoming elements and element

packages with the ongoing models often using a distance metric between

elements and models. Hough tracker - nearest neighbor search using a

line-segment to line-segment distance; score follower - all incoming data

"matches" all models, every hypothesized score position and tempo has to

explain the incoming notes; marker tracker - an implementation of the

"Hungarian algorithm" linear programming method produces unique

parings between markers and predicted marker positions, some markers



will be new, some ongoing models will be unmatched; dancer tracker - all

incoming data "matches" all models, all markers have to be explained by

each hypothesized dancer configuration.

incoming -. ongoing merge: having made a match (or made no match) the

ongoing model needs to be updated. Often a global confidence score is

associated with a model. Hough tracker - a line segment model is rotated

and translated toward the new line segment data; scorefollower - each

matched model builds some good hypotheses as to what note in the score

that incoming note corresponds to, and what that does to the current

tempo; marker tracker - marker positions are added to the ongoing kal-

man filter as an observation stage; dancer tracker - potential k-means

cluster fission and fusion are evaluated in the light of the new data; fitting

scores are calculated.

ongoing model cleanup: culls, fuses, fissions and injects ongoing models into

the pool. Hough tracker - poorly scoring models are dropped, good scor-

ing models duplicated as the number of hypotheses are kept near a par-

ticular target number; scorefollower - poor hypotheses are dropped,

nearly identical hypotheses are merged, good hypotheses that have multi-

ple explanations of the most recent data split; marker tracker - poorly

performing, lost markers are dropped; dancer tracker - poor models are

dropped, good models that wish to offer versions of themselves with

greater or fewer active clusters (dancers) do so.

top-down influences: That systems typically post-perception can offer top-

down influences on the perception system is also of considerable interest,

particularly in a space where an agent might commit to acting upon a

model: in a hough-tracker - we might need to maintain lines that have

been drawn or are being drawn or are the lattice for an ongoing move-

ment; in a scorefollower - we might have alternative means for guessing



figure 60. In a score follower the ongoing model is a pair (score posi-

tion, tempo). The b-tracker population of models attempt to predict

the next notes and compete to explain the data as it arrives in a live
setting.

R. Dannenberg, Dynamic Programmingfor Interactive Music Systems, in Readings in

Music and Artificial Intelligence, E. R. Miranda, (ed.), Contemporary Music

Studies series, Vol. 20, Harwood Academic Publishers, 2000.

D. Temperly, The Cognition of Basic Musical Structures, MIT Press, 2001.

the current position, during rehearsal or performance; in a marker- or

dancer-tracker the agent again may already have started to act upon a

marker and require that such a position is maintained and updated.

In its chameleon-like configurations the b-tracker framework relates to other

work that has been used in the fields that border on that of making agents'

perception systems. Maintaining a population of likely hypotheses (ongoing

models) as one scans some data piece by piece (incoming elements) is very

similar to a beam-search, a general purpose heuristic search technique used, for

example, in planners. A beam search is a different (a more general, but often less

complete) but related way of solving problems typically solved by dynamic pro-

gramming.

And much has been written about dynamic programming as a framework for

understanding, or at least building, musical perception, for example the work of

David Temperly and Roger Dannenberg. But a careful reading of this work will

show that once the initial excitement surrounding the dynamic programming

trick - the spectacular apparent efficiency of dynamic programming over com-

plete search, converting exponential time algorithms into polynomial time - it

becomes increasingly hard to formulate perceptual frameworks inside the limits

of the dynamic programing per se. Indeed, as Temperly is forced to add optimi-

zations in his monograph on the use of dynamic programming in music and

look to fusing dynamic programming processes together it looks more and more

like heuristic search.
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figure 61. In ImageryforJeux Deux video of piano key depresses was integrated into the piece's network of points and lines by annotating the video with straight lines. These

lines, identified by a Hough transform on each video frame were then tracked using the b-tracker framework. This yields lines that follow follow the underlying animation

of the key press and can be connected to other material in the work.

Especially in the case of the marker tracker there is a clear a relationship

between the b-tracker as described here with the Conditional Density
Propagation algorithms first described in:

M. Isard and A. Blake, CONDENSATION - conditional density propagation for visual

tracking. International Journal Computer Vision, 29, 1, 1998

A.J. Viterbi. Error lounds for convolutional codes and an asymptotically optimum

decoding algorithm. IEEE Transactions on Information Theory 13(2):260-267,
April 1967.

With application to hidden Markov models, L. R. Rabiner. A tutorial on hidden

Markov models and selected applications in speech recognition. Proceedings of the IEEE
77(2):257-286, February 1989.

Frames: M. Minsky, A Frameworkfor Representing Knowledge. MIT Al Lab, Memo
360,June 1974.

Of course, the most important example of dynamic programming is arguably be

the Viterbi "search" of hidden Markov models. Indeed, we'll see a gesture recog-

nition task posed in the b-tracker framework, page 315. A population of simple

predicting trackers that explain incoming data looks a lot like the condensation

framework used in computer-vision tracking problems. Further afield, the top-

down injection of ongoing models reminds one of symbolic AI's frame structure

- when actions want to hypothesize the existence, perhaps of an hidden object,

they might instantiate an ongoing model that will act as both a repository for

information, should this object become, visible and as a token for other actions to

use (for example to provoke and guide search behavior) based on the uncertainty

of various "slots" in that "frame'.

It is not then that the b-tracker framework necessarily opens up previously in-
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score-time

score-time

figure 62. The b-tracker framework allows a robust score follower to

be quickly created from reusable parts. The above diagram shows a

tracking of score position using a synthetic performance of Tod Ma-

chover'sJeux Deux that has been artificially corrupted with 10% of the

notes played wrongly. Despite the noise the tempo is clearly constant

and accurate. The lower diagram shows a snapshot from a rehearsal

- where at one point a few measures of music are repeated.

tractable problem domains - in terms of analysis - but rather that is is a sin-

gle core framework for thinking about, and implementing, many kinds of things

that intelligent systems end up needing to do. The motivation for and the suc-

cess of this framework comes from two places: firstly that its broad applicability

will allow a great many agent perception systems to be quickly and robustly

considered and assembled, exploiting a common set of code and visualization

tools; secondly, that as a way of allowing an agent to see the world it is not only

an open or "white" box but better - it offers the right kind of openness and the

right sort of partial inner structure for other systems to communicate with, on

the level not just of"output"or"results" but of inner dynamics as well.

It is worth pausing to reflect upon the openness of this structure compared to

other approaches - since the b-tracker framework offers a concrete way to talk

about some perception problems, its i worth taking stock and comparing this

framework to other "perceptual frameworks" used in digital art. While some

incredibly well-written analysis might offer a single "answer", a single "percep-

tion" of, say, our current position in a musical score, or the position of a dancer

on a stage, the b-tracker offers a small, trackable population of scored hypothe-

ses with histories and uncertainties. Which would we rather work with as art-

ists?

I suggest that tracking problems occur in exactly the places where a mapping

approach would fail to gain traction. In lieu of the perfect answer - the exact

score position, the precise dynamics of the stage, a stock function-like transfor-

mation offers toflatten the information present in the perceptual world into a

single quantity, which in turn allows subsequent simple transformation. It

makes no difference if this quantity is of high dimension or a single number, the

function-like core of mapping and transformation promotes a constant data

dimension.
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background subtract medial axis
video + hand color model transform + Hough

transform

rehearsal

b D a

IL mi b-tracker based score follower -- Jm scare time- hand aninarion frame

offline

live

b-tracker based score follower -0 b-tracker based video tracks N hand animation interpolation and playback

MIDI

pn I
performance live synchronized animation

figure 63. lnagery forJeux Deux couples two b-trackers together to syn-

chronize animation (derived from video footage of a rehearsal) to a live

performance. First, the note data (MIDI) of the rehearsal is converted

to a score-time (in quarter notes) using a score follower. This relation-

ship can be inverted to provide a video time-code and playback rate per

quarter note of the music. Then the score is tracker live. As the live b-

tracker follows the score, animation material from the rehearsal tracks

each score hypothesis, fading in and out with the ongoing model confi-
dences.

Tracking problems occur in places where simple averages may capture nothing,

where what is being perceived is intrinsically multi-modal (in a statistical, rather

than media sense). The average score position when there is uncertainty over

whether a performer is repeating a section of music is worse than most other

guesses one could make; the average position of a dancer when there is uncer-

tainty over whether there is one or two dancers can be arbitrarily poor. A mo-

tion capture marker-mean-position might be so noisy as to be useless (consider

the case where a dancer lingers on the edge of the motion capture volume), and

might be arbitrarily far away from the dancers (consider the case of two, op-

posing, lingering dancers). When confronted with such "noise" mapping tool-

b-tracker based
point tracker

point and line based
hand animation
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Of course, this flavor of explicit representation - our

population of hypotheses about the world - appears

to go against the spirit at least of the early agent-

based research in the field. However, we can avoid

some of the dissonance with our historical narrative

by realizing that the actions that our agents make are

not dictated by or dedicated towards maintaining this

model of the world, nor is this model a singular and
totalizing end in itself.

kits offer to bury these measurements in increasing levels of filtration. But if

there is insufficient information present in this signal to start with, if the per-

ceptual world of the autonomous artwork is already aliased so severely, to look

for the solution by eliminating even more information from this signal seems

perverse,page 307.

In some cases an agent can work with these potential hypotheses without flat-

tening them in any way: in Imageryfor Jeux Deux, multiple video streams syn-

chronized with individual score-tracking hypotheses fade in and out with the

confidences of these models - the resulting perception is of a continuously

synchronized visual performance, that waxes and wanes with the certainty of

the tracking, which in turn is affected, on a different level, by the very clarity of

the music at the point. Even simpler, lines drawn to moving points on the stage

of how long...? commit the b-tracker to maintaining an active hypothesis for the

end marker while the line exists, allowing the linear form to unfold gesturally,

rather than appearing in a single frame.

In other cases, of course, an agent has to pick one hypothesis and stay with it.

What constitutes a good decision-making technique ? - an action selection

strategy. We have already seen that such algorithms are judged by their rele-

vance (they pick good models), their coherence (they stay with these models

long enough and no longer).

By using an action-selection framework our agents can then become extremely

conservative concerning the deletion of information. And this aspect of this

work - and it really is an aspect of the agent approach that we are building

here - is reflected directly in the artwork. It is the difference between being

able to stably form a dancer-like cluster of points, maintaining a top-down in-

fluence over that cluster and performing a visual operation on their position

- one that is coherent over seconds or minutes - versus being able to "visual-
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ize" the mean of all the markers on the stage. The former is tentative but spe-

cific, possibly fleeting, but a particular segmentation of the perceptual world; the

latter is an affirmative, constant, broad averaging over the whole environment.

The former meets the world on its own terms; the latter slices the world in a

predefined manner regardless of the specifics of what it happens to slice.

The b-tracker framework offers a fundamentally different authorial position on

the perceptual world occupied by an interactive artwork. Constant dimensional,

pre-arranged slices of a perceptual world that do not segment the perceptual

world are of limited use in complex worlds; in fact this might be the very hall-

mark of complexity itself. By using, instead, these techniques, our agents are

more open to the interactive possibilities of those complexities.

3. The distance mapping algorithm
195

This is not to say that the action selection begins and ends the use of perceptual

information -the properties of the thing perceived of course leak (or perhaps

are even mapped) into the action that demonstrates that the perception has

occurred (move toward an object; reconfigure toward a new musical measure,

begin breaking down a "scene" of the choreography over there, manipulate the

temporal flow of a graphical "score" based on this moment occurring now). But

an agent framework allows the complexity, the multi- and variable dimensional-

ity of the world, into the agents that exist inside it.

This said, we have seen problems and solutions to problems within this agent

perspective that have the flavor of mapping to them - the long-term learning

database of The Music Creatures, page 143, learns simple scalings from one do-

main to another; the motor learning of music creatures makes small self-

organizing maps in order to understand the effects of its own motor control. Of

course these are "small numbers" inside large systems - rather than large sys-



tems made up of small numbers. But what makes these different from the ex-

cruciatingly hand-made signal manipulations of classical mapping is the tech-

nologies that surround these magic numbers and transformations - technolo-

gies that allow these numbers to be indirectly and automatically set by a more

"human" description or process of what those numbers ought to be.

Our simple, often one-dimensional self-organizing maps can learn a scaling

from one domain into a particular, fixed range, while removing some of the

static statistical features of the input domain, decoupling the consumer of this

signal from some of the specifics of the producer. This technique, as much as it is

useful, does not care about the temporal qualities of the signal. It does nothing

with the temporal statistics of the signal (indeed, the first step in the learning

algorithm for these maps is to randomize the order of and often down-sample

the input signal) and it gives no interesting control over how the the output

distribution changes. Perhaps, and especially as we move towards sharing a time

and space with live dance, there is a role for indirectly specified maps that do 196

propagate some temporal information.

As work for how long...? and 22 progressed it became increasingly apparent that

we needed to build our own layered structure of perceptions of the movements

of the dancers, stacking primitive upon primitive perhaps with parameters that

could be quickly learned or reconfigured, rather than approaching the problem

armed solely with a detailed foreknowledge of the choreography - foreknowl-

edge that was impossible to obtain given the choreographic work schedule of

how long...? and with the working practices and improvisatory nature of 22.

Early on, as we began to sharpen the marker- and dancer-trackers, we began to

look at other simple measures that we could derive from of, a set of markers

moving in space that would be robust to both noise and choreographic deci-

sions. The ultimate payoff for this work comes with a description of the works

themselves, but the approach is so general as to merit a separate discussion here.



In 22 there are several properties of the imagery that become, at times, con-

nected to motion on the stage - the obvious way to do this is to couple speed

(of dancer) to speed (of playback of video, of movement of infinite lines). In how

long...? there was a perceptible and yet ungraspable, unlocatable, vanishing

rhythm to the movement that stood in defiance of the frame-rate and resolution

of the motion-capture cameras. Immediately clear was that speed as "distance

divided by time", as one would write it in high school, captured little of the mo-

tion of modern dance;with its dizzying curves and recursive foldings back on

itself, this rhythm in Brown's motion simply was not to be found in such trivial

coarse velocities.

Consider the problem, then, of automatically mapping the movement of a dancer

to the movement of the virtual animation. Specifically, mapping the movement

of a motion-capture marker-set to the movement through a particular, pre-

made animation. We would like to specify as little foreknowledge to this

"motion-scrubbing" problem as possible - because everything might be differ- 97

ent in the next rehearsal or performance - and yet relate the complex temporal

qualities of the dancer to the complex temporal qualities of the pre-made ani-

mation.



For a brief overview of multi-
dimensional scaling: J. B.

Kruskal, and M. Wish. Multi-
dimensional Scaling. Sage Publi-

cations. Beverly Hills. CA.
1977

A simpler sub-problem is the mapping of a marker set animation to the "move-

ment" of a single number. More precisely, can we find the motion of a single

scalar quantity that most succinctly captures the qualities of that marker-set

movement? This problem leads to the classic definition of multi-dimensional

scaling problem, which is in this case equivalent to computing the principle com-

ponent or leading eigenvector of the self-distance matrix. All multi-dimensional

scaling techniques seek to find low dimensional spaces to embed high dimen-

sional data-points such that distance relationships between the points are re-

tained in the lower dimensional space. We could treat such an embedding algo-

rithm as a black box, simply reading the literature and implementing one of the

well known versions of the technique. However, a reinterpretation of the prin-

ciple component analysis that underlies this technique will provide us with an

algorithmic formulation that is more efficient for our purposes and much more

flexible.

Our approach here is to take the input signal (the marker movement) i, and a

distance-metric (that gives a distance from any particular configuration of

markers to any other) d(Io, It, ) over a range of time t = a... b sampled by N

samples. This distance metric is the foreknowledge that we add. We can then

compute the N x N matrix of distances D' . The goal is to transfer this distance

matrix over to a single output scalar quantity that is also defined over the inter-

val t = a... b and also sampled by N samples. We do this by iteratively making

the N x N matrix of self-distances for the output signal D" increasingly like

that of D'. For scalars, where the distance metric is simply llx - Yl the iteration

is:

for each element Ot. t =a... b,

o0 +- ot+a(c (Ot0q) -(Dl/rD,- 1))]
q7t
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For a description of the power-method,
and its convergence properties:

G H. Golub and C F. Van Loan, Matrix
computations, second edition, 'The Johns

Hopkins University Press, 1989.

also G. H. Golub, P. Comon, Tracking afew
extreme singular values and vectors in signal

processing Proceedings of the IEEE
Volume 78, Issue 8, Aug., 1990.

A related, more principled, but less
general iterative work is: T. Morita, T.

Kanade, A Sequential Factorization Method

for Recovering Shape and Motion fron Image

Streams. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 19

(8), 1997.

By starting with a motion signal that shows some variation (even if it is simply

some noise added to the signal) and repeatedly applying the above equation to

each element of the signal N for some small u we will decrease the difference

between D'and Do.

The above formulation of the problem is equivalent to an algorithm known as

the power-method of finding the largest eigenvector of a matrix. For non-

degenerate starting signal, it is extremely likely to converge and converges with a

rate proportional to a111 /X2 - the ratio of the first two eigenvalues of the dis-

tance matrix.

However, our almost pictorial interpretation given here seems to offer opportu-

nities for special control that the text-book leading-eigenvector formulation

does not possess:

Firstly, we might want to find a constrained solution where a few particular

0n are fixed, or are less able to move - this is an opportunity for "top-

down" control over the answer, perhaps the agent has already committed

its body to some part of the solution and thus this part of our re-scaling

cannot change.

Secondly it's easy to see how to iteratively update this system when a new

piece of data arrives - turning an iterative algorithm into an incremental

one - we simply need to pick a single new output scalar that minimizes:

ON+1 +- arg min ( ly - ,N - D'
Y n=1 ... N ,+

Since ON is a good starting guess for ON+1 , this is an O(N) operation

rather than O(N 2 ) and also allows us to shape the preference for output

distribution.
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figure 64.
The distance mapping algorithm can be

executed iteratively. Here, the solution to

the problem given on the next page,figure
66, is slowly developed over time.

We can go further than this and, introducing a little latency in the out-

put mapping, update not just one but the last few recent output samples,

increasing the stiffness of this update as we go further back in time. This

might reflect an increasing commitment to older values, perhaps because

some other system has acted upon them.

Thirdly, and perhaps most interestingly, we can redefine the above picture in

more abstract terms and operate on non-scalar output spaces. We define

an operation blendedDistanceNorm(Oa . Ob , d, a) that takes two elements

of 0 - Oa and 0 b and returns a version ofOb , O'b such that the dis-

tance between O', and Oa is a closer to d . Of course, for such a general

function we can say much less about the global convergence properties of

this algorithm, but if this function always does what it claims to do, and

never goes backwards, we know that we will always converge to a solution,

if not the optimal solution. Finding optimality, in the face of many local

solutions, is within the purview of the b-tracker framework which will

meet this representation shortly.

We are now in a position to define a class of automatic, iterative, temporally

aware mapping algorithms that are defined in indirect terms: specifically an

input distance metric, and output distance metric and an output blend func-

tion. In certain cases where the input space has a particular topology we can

automatically generate an input distance metric using the self-organizing map

techniques previously described; otherwise there usually remains as a degree of

freedom to pick a scaling between the distances of one space and the other.
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DISTANCE MAPPING EXAMPLE - UNSTRUCTURED VIDEO

source video animation

complex video sequence si

figure 65. The distance map-
ping algorithm takes one
matrix of distances (here

formed from a complex video
sequence) and tries to the

distance matrix of some other
signal, in some other mathe-

matical space, look just like it,
by modifying that signal.

square rests for while ante X6neo
o lft a sanother bonce on t

onileft hand sideof the top of the screen
image, slowly spinning

upward

source video continued

he N slowly returns to the
exact same spot as the

starting frame

f

frame 50-99

simple, scalar sequence

figure 66. Automatically mapping the video sequence of a rotating, bouncing square to a scalar or

a 2-vector captures many of the aspects of the source video - the general symmetry, the slight

asymmetry, the pause in the middle, the "rebound" upon the bounce. Further distance mapping

analysis of the residual distance matrix yields a noisy, but informative, oscillatory signal that

corresponds to the wavelength of the square's rotation.

frame 0-49
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We also note, in passing, that we have seen other representations that can sat-

isfy these criteria - pose-graph motor systems have distance metrics and if

needs be we can compute a constrained blendedDistanceNormo function by

allowing movement along graph edges; generic radial-basis channels' value rep-

resentation can be used to formulate a blendedDistanceNormo function if sup-

plied with a distance-metric (the exact same interface is required for the com-

petitive basis channels, page 169).

The motion-scrubbing solution

For a formal definition of the Hausdorff
distance: E. W. Weisstein. Hausdorff

Measure. From MathWorld-A Wolfram

Web Resource.

http://mathworld.wolfram.com/HausdorffMeasure.html

Thus we can formulate a solution to the motion-scrubbing problem with almost

no tuning on our part. We need: a distance metric for motion capture marker

data - for the case of tracked data, page 305 this is a trivial sum of squared

distances, for untracked, data we use the Hausdorff distance metric; a distance

metric on the output space - the sum of squared vertex-position differences

for the vertex animation data suffices; and a blendedDistanceNorm() function -

we use an iterative algorithm that searches forwards or backwards in time along

the fixed animation, is generic to any interpolatable time series (including the

pose-graph representations) that already has a distance metric. In this case the

inter-frame distances of the animation that the output distance calculation uses

can be pre-computed and the whole iterative system runs in real time with a

negligible computation burden; the core iteration is easily accelerated by mod-

ern vector processing techniques.

Unlike the simple approach of mapping the speed (as in distance divided by

time) of dance to the speed (as in frames per second) of video this approach has

the following advantages:

it allows backward motion by the performer to change the direction of
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movement of the video and similarly repetitive movement by the dancer

repeats segments of video all the way out to the duration of the time-series

windows. No amount of filtering a measured "dancer speed" could ever

achieve the same effect for the information is simply not present in the

instantaneous velocity of the dancer, but in the relationship to the body

now with the body long past;

it is less sensitive to noise on the input signal than a first derivative calcula-

tion would, be while adding no additional latency;

it is bidirectional - the distance metric of the target representation also

factors into how quickly we move through it. Rather than just playing out

at a variable rate, should the video do something like "reverse" direction,

our motion-scrubbing performer will have a much harder time keeping

the video moving forward.

Mapping the moving of the dancer to the movement of the fiducial, "infinite" 203

lines that mark the scrim in 22 is accomplished in a similar way - only here the

distance-mapping algorithm is located inside a generic radial-basis channel and

its output is blended with the influences of nearby geometry on those lines and

the line's own momentum. It is useful to use the distance-mapping algorithm

within such a process; in fact we can fade the distance mapping layer in and out

depending on how good a job it finds itself doing at matching the output dis-

tance matrix with the input. This allows not just a mapping to occur, but the

system to seize correspondences as the opportunity arises.

Finally, we can use incremental mappings into low=dimensional spaces as an

input to higher level perceptual primitives. In particular we can open up the

workings of the distance mapping algorithm to the view of b-tracker hypotheses

that track a range of output signal trajectories, scoring them on how well their

distance matrices correspond to the target input, creating new hypotheses by



perturbing the output signal - helping the system as a whole out of local

minima caused by degeneracies of the output space. Alternatively, we can track

individual extrema as the move through low-dimensional output signals on the

basis that the input signals correspond to at least transiently interesting"poses".

We shall see an example of these very algorithms in the memory score agent of

how long...?, page 368.

Concluding remarks

In summarizing the distance mapping approach we might try to find a little

space between it and more conventional slices through perceptual worlds. Al-

though the distance "mapping" algorithm began as a direct approach to the

mapping problem, with a goal of finding new ways of explicitly yet indirectly

specifying mappings, in this formulation information is compressed into low

dimensional signals but not necessarily deleted.

This is, of course, a wide
cross-section through com-

puter music, for an introduc-
tion to most of these tech-

niques as they apply to com-
puter music, C. Roads, The

Computer Music Tutorial. MIT

Press, 1996.

For wavelets: G. Evangelista,
Flexible Waveletsfor Music Signal

Processing. Journal of New Mu-
sic Research, 30 (1). 2001.
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Indeed, we might note, in searching for a definition that separates the "analyti-

cal" of mapping from the analytical of more broadly used computer scientific

representations is this compression. If we think of the analytical representations

that have truly widespread use in synthetic arenas - for example, in computer

music we have the short-time Fourier transform, linear predictive coding, the

wavelet transform, or even just the radial-basis functions and neural networks of

some of the more advanced mapping techniques - each of these representa-

tions began or were quickly adapted for the use of signal compression and re-

construction. Multi-dimensional scaling, related as it is to adaptive vector quan-

tization and self-organizing maps, also shares this compression-aspect. And it is

this, not any comparative complexity, that indicates a separation between such

techniques and the simple averages and global measurements that visual, inter-

active artists have typically tended to gravitate toward.



Taken together - the broad, generic and adaptable b-tracker framework and

the very specific, analytic distance-mapping technique have a number of features

of critical importance to the working artist. They are general purpose: and thus

lasting, and worth investing tools and visualizations on; they are generic: armed

with these techniques I can build and test algorithms using simple data-sets,

perhaps scalars, before exposing agents to the complexities, of, say modern

dance; and they are open - they offer structure for thinking about perceptual

problems and a variety of detail levels for interaction. These are the two ap-

proaches that allow my agents to enter into a whole variety of perceptual

worlds, quickly and adaptively.
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This section takes us from the works that use the c5 agent-
toolkit to a new toolkit, called Diagram. It introduces the first
artwork to exploit this framework - Loops Score, the music

for Loops. Diagram is a loose and interacting set of extensions
to c5 that are designed to ameliorate the apparently persistent
problems that artists employing complex agents face. In the
technical discussion that follows, I respond to my previous cri-
tique of c5 and its use in alphaWolf Diagram is also the set of
technologies that will lead to how long....

Chapter 6- The Diagram framework & Loops Score

In the previous description of the complex, multi-programmer project alpha-

Wolf, we discovered a number of inefficiencies in the way that it was assembled. 206

While some of these problems may have stemmed from what one might call

"impedance mismatches" between the components used to assemble alphaWolf,

it seems more likely that the failings and weaknesses of this large assembly ideas

from the c5 agent toolkit used for that work were more infrastructural than tied

to any particular algorithm or representation. Both Loops and The Music Crea-

tures dodged or postponed many of the issues identified - simply because of

the size or goals of the agents involved, or the technologies deployed around

their creation.

For the two works for dance theater that close this thesis - how long.., and 22

- we had the great fortune of having two and a half years of notice before pre-

miering the works. I could have spent all of this time constructing new frag-

ments - new action-selection techniques, new classifiers for the perception

system and new representations for pose-graph motor system. Instead I took



some time to consider how these fragments were being assembled and the "glue"

systems that hold the other systems together.

Complex assemblages - the inversion (of the inversion) of control

The so called"gang-of-four" design patterns book - E. Gamma,
R. Helm, R.Johnson,J. Vlissides, Design Patterns, Elements of reusable

object-oriented software. Addison-Wesley, 1995.

Primary texts on software engineering's ideas concerning the
"Inversion of Control" are hard to come by. An overview of a

broad variety of "framework integration problems" can be found
in: M. Mattsson,J. Bosch, M. E. Fayad, Framework integration

problems, causes, solutions. Communications of the ACM, 42 (10).
1999.

Online resources abound however:

The Apache project's Excalibur project:
http://excalibur.apache.org/

the "HiveMind" project at Apache Jakarta:
http://jakarta.apache.org/hivemind/ioc.html

The PicoContainer framework: http://www.picocontainer.org/

The Spring framework: http://www.springframework.org/

The scope of these "glue systems" is both a little broader that the influential "de-

sign patterns" of software engineering and substantially narrower than a com-

plete, integrated, academic AI system. Broader -for they are more concrete and

more multiply instantiated than the abstract design pattern; Narrower - for

they make no claim to be a complete or even partial solution to any particular

AI world or problem domain by themselves.

The inability to draw a stable, hierarchical diagram of either control, instantia-

tion, execution ordering or signal flow has been seen before in both published

descriptions of hypothetical AI systems and throughout software engineering.

We have seen it, in miniature, in our analysis of the source files of alphaWolf,

page 100; we have seen it in the odd inversion of motor-system outside the col-

ony of Loops, page 117; and we have seen it in the ad hoc reinterpretations of the

perception / action / motor decompositions of The Music Creatures.

Indeed, historically, the very idea of the software agent has been motivated by

the problem of creating heterogeneous assemblages of interdependent modules

(agents) to solve complex tasks in complex domains- be they economies or

soccer games - here the autonomy of the agent aligns again with the tractabil-

ity of the decomposition of the complex task into interacting parts.
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Blackboard architectures have a long history both inside and outside the agent.

For a software engineering perspective: F. Buschmann, R. Meunier, H. Rohnert, P.

Sommerlad, and M. Stal. Pattern-Oriented Software Architecture: A System Of Patterns.

West Sussex, England: John Wiley & Sons Ltd., 1996. Inside the agent: B.

Hayes-Roth, A Blackboard Architecturefor Control, Artificial Intelligence, 1985.

Synthetic biochemical communication: S. Grand, D. Cliff, A. Malhotra,

Creatures: artificial life autonomous software agents for home entertainment. Proceedings

of the first international conference on Autonomous agents, ACM, 1997.

XML is a ubiquitous W3C committee
standard - http://www.w3.org/XML/

The tendency here, in both micro- and macro- conceptions of the problem, is to

simplify the interconnectivity between these modules (agents). Hallmarks of

this trend are extremely diverse, but one might re-read blackboard systems, arti-

ficial biochemistries, and various instantiation languages for behavior systems as

searches for a minimal but powerful"glue" for signal flow, execution control or

system instantiation. Each, I believe, is in insistence on the expressive role of the

ubiquitous system diagram in AI's "system paper, with its complex boxes and

thin arrows, each a desire for "modularity" re-articulated repeatedly.

Inside purer software engineering pursuits, similar problems and solutions are

devised and re-devised. Most prevalent are the problems surrounding the in-

stantiation of complex assemblages, and there is a thread of solutions that are

typically referred to as the "inversion of control" or more tersely, IoC.

Many loC systems propose a separate instantiation language (typically XML)

for all material that is written in some other language - one programming

technique for the boxes, another for the arrows. Still more IoC systems provide

registry and retrieval mechanisms for objects to use in order to find the other

objects that they ought to connect to - a central place for boxes to find their

arrows.

The goal in both cases is to decouple modules from each other, indeed, to keep

modules modular, the boxes boxed-up and the arrows lightweight. The dreams

of the modular cure many of the things that were so hard to maintain during

the development of alphaWolf- separation of effect, incremental"testability', a

late binding reconfigurability and the ability to reuse pieces of a work in the

next.

IoC systems that use a separate configuration language, commit themselves to

two positions. Firstly that the glue between systems is necessarily simpler than
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the systems being glued together - that the box is bigger than the arrow -,

and that this gluing does not require or deserve the complexities of a "full

strength" programming language nor the environments that accompany them

- that the organization of arrows is simpler than the contents of the box. Sec-

ondly that this assemblage is separated both temporally and (metaphorically)

spatially from the cores of the modules themselves - these systems talk of a

"design time", where the arrangement of modules is decided upon prior to exe-

cution, and a design space outside the modules.

Indeed, IoC solutions in general fail to allow the inversion of their particular

inversion of control - or, less rhetorically, they fail to be particularly sophisti-

cated about where the control (instantiation, execution or communication) ends

up after it is taken away from the insides of the module. These systems are not

failing their problem domain, but the challenges that they have been designed to

face simply are not as complex as the architectural problems fundamental in

making complex agents. The idea, therefore, that a module might, during exe- 209

cution, long after instantiation, reorganize existing modules, construct some

anew and partially delete some more, is at best a rather long way from tradi-

tional IoC systems' point of departure. To deposit control into a central registry,

a configuration file or a set of instantiation descriptions, is a fundamental dilu-

tion of the power of a module in the system over the modular, and, if our idea of

the module is our receptacle for our introspection, our reusability and our ex-

tensibility strategies, this maneuver reinforces the problems of constructing

complex assemblages of modules with complex life-cycles.

Ihis of course isn't of much relevance for problems where the connections be-

tween modules are a simple affair and the modules themselves provide all of the

power, but our agents are already dynamic and getting more so as we move from

Loops to how long.... Perception systems grow, action systems grow, long-term

authorship techniques cut across both, motor systems model what actions sys-



B. Blumberg, Swamped! Using plush toys to direct autonomous

animated characters. Proceedings of SIGGRAPH 98: conference
abstracts and applications., ACM Press, 1998.

B. Blumberg, (void*): A Cast of Characters. Proceedings of

SIGGRAPH 99: conference abstracts and applications. ACM
Press, 1999.

tems do, action systems set one structure up only to develop another later. Thus,

artificial agents do not appear to be in the group of problems that allow the

longer-term use of parallel instantiation languages.

It is worth noting in passing that early in the work of the Synthetic Characters

group just such an instantiation language was created and used (for the large-

scale installations SWAMPED!, 1997 and (void *) - a cast of characters, 1998).

'Ihis design, which was part of the Scoot framework, was ultimately superseded

and replaced by the current 'c'series of agent toolkits for a number of reasons,

not least of which are the arguments presented above. Finally, we note of course

that these IoC strategies run parallel to, but are in general more sophisticated

than, the virtual wire of environments for digital art - which embody the fan-

tasy of the system diagram - but in all fields the tactics are the same.

It is common to refer to the instantiation phase of an IoC container system as

the time when "dependency injection" occurs. This is the time when connections

between systems are forged, either pushed to modules from a central descrip-

tion of what the connections should be, or pulled by the modules from a central

naming service. In the work that follows we reject the singular nature of the "de-

sign time" and look at structures that remain malleable across the life-cycle of

the agent, and some structures across the life-cycle of the creation of the art-

work.

This project shares, indeed inherits, the broad tactical goal of IoC systems - to

find a low number of powerful, tractable, indeed author-able, strategies for con-

trolling, assembling, ordering the execution and communication of modules.

But our approach here differ from previous IoC attempts in that it admits im-

mediately that that "low number" may be in fact greater than one; that the con-

trol, assemblage and ordering of modules are intersecting but not identical

problems; and that these issues necessarily breach attempts to contain them

210



For an overview of Aspect-Oriented Programming issues, there is a special issue

of the Communications of the ACM: T. Elrad, R. E. Filman, A. Bader, Aspect
Oriented Programming: Introduction, Communications of the ACM, October 2001.

In spirit we are most influenced by the AspectJ project:
http://eclipse.org/aspectj

2. _ _ _ _ _ _ _ _ _ _

figure 68. The agent
decomposed again. According

to this diagram "working
memory" acts as a conduit

between all internal systems.

Percption Ssnem n

Action System

a

within the confines of instantiation languages, of "design time" or any other

place which is essentially outside modules organized.

Related to modern IoC systems is the current excitement surrounding Aspect-

Oriented programming. AoP, seeks to augment the module vocabulary of object

oriented programming to include "concerns" that cut across several classes, in-

stances or methods. Like "mainstream" AoP we are interested in finding alter-

native connective relationships between modules and alternative authorship

strategies for maintaining these relationships. And we will use some of the same

techniques that AoP underJava uses - instantiation time, byte-code injection

and, most recently, load-time annotations. Unlike AoP we are not looking for

generic solutions, but rather very specific ones for the problems that arise while

authoring agents.

The Context-Tree, a new"working memory" for agents.

In the initial description of the c5 toolkit we drew a diagram, a decomposition

into perception, action and motor systems connected by a ubiquitous "working

memory.

This "working memory" serves as a communication channel, a persistent black-

board where systems could write and read, post and receive messages to each

other, while remaining relatively uncoupled. Earlier, I refused to draw real ar-

rows between these boxes - denying the implication that one particular thing

flowed in a direction, coupled in a particular way or assumed control over any

other. We can continue to refuse to draw arrows, but analyzing how separate

gent concerns inside the agent-toolkit couple in these ways is, however, going to be an

unavoidable aspect of taming complexities of large agents. In this section we

develop a replacement for the simple blackboard-like working memory of c5,

called the context tree.
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The context tree is a tree of execution contexts, or scopes, that loosely follows

the execution of the complete code-base involved in a particular work. In its

simplest deployment the context tree has the following properties:

. for any given moment during the execution cycle, there is a single special

level of the tree (branch or root) that is the"current context.

. each context has a name, and, optionally, any number of children.

. names are not unique throughout the tree, but are unique within a single

group of children.

. each context has a parent, bar the top of the tree, the "root context".

. the tree is typically, but not always, fully explored in each execution cycle.

. the mapping from source-code line number to execution context is poten-

tially one-to-many: if a line of code is revisited during execution it is not

necessarily revisited in the same context. Context scope is thus a dynamic 212

scope, rather than something that can be either statically or lexically deter-

mined.

. a context has any number of named elements, a mapping from name to

object reference, and these are separate from namespace of children contexts.

Named elements can be looked up with respect to the current context,

should no element be found, successive parent contexts are searched until

this element, or key is found.

. navigation through the tree, the creation and deletion of contexts is explicit.

. the other parts of the context tree can be referenced and searched both rela-

tively and absolutely. The context-tree has aspects of a runtime database.



For information about dynamic scope in Perl

- L. Wall, T. Christiansen,J. Orwant,

Programming Perl, O'Reilly, 2000.

For an entry to the debate over Lisp's (early) dynamic scoping:

http://en.wikipedia.org/wiki/Scope_(programming)

key: the-creature's-perception-system = P
context: creature key: the-creature's-action-system = A

key: the-creature's-motor-system = M

context: P context: A context: M

figure 69. The creature context and its three child contexts P, A
and M.

Clearly my context tree shares many similarities with dynamic scoping found, for

example, in some dialects of Lisp or more recently Perl. However it differs from

these implementations mainly through its explicitness - dynamic scope is not

implicitly woven from the language in which the code is written, but rather ex-

plicitly navigated, named and used by code that, in this case, may be written in

any number of languages. However, given the above description of the context

tree it should be clear that there really isn't very much complexity to it at all. An

acceptable simple implementation of the context tree is simply a tree of named

hash-maps. As we develop our use of the context tree, we will begin to weaken

some of these assumptions: we shall see contexts with multiple parents, and

language-level features for accessing and navigating the tree.

It's reasonably straightforward to see how to turn this tree into a solution for

simple inversion of control problems. A creature needs a perception system, an

action system and a motor system and we have a particular instantiated percep-

tion system P, a particular action system A, and a particular motor system M; we

make a creature-level context creature that contains the key-value bindings

de-perception-system:P, the-action-systevA , and the-motor-system:M. We'd like to write

this with as little fanfare as possible, in Java (with the "keys" statically imported

from definition interfaces):

theevrceptionSystem.set(P);

myP = thePceptionSystem.getO;

and in Python (using a class specifically designed for context tree access):

cthePerceptionSystem = P;

We'll see an even more minimal interface to the context tree below, page 242.

Typically, Keys like thePerceptionSystem are static, that is globally importable and

accessible - they obtain that locality and module specificity not through the
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key: the-creature's-perception-system = P
context: creature key: the-creature's-action-system = A

key: the-creature's-motor-system = M

key: the-creature's-action-system = A2

context: P context: A context: A2  context: M

figure 70. One way of ensuring that M refers to A2 is to write the

reference directly into M, locally overriding it for this part of the
context tree.

class-hierarchy-like instance fields but through the context hierarchy. However,

later we might see storage that is both instance and context local, page 220. In

other cases we might pick some other hierarchy structure to present as a tree -

in the graphical user interface discussed later, we consider the hierarchy of views

as a "context-tree-like" tree, page 397. No matter, for having constructed this

abstraction, we are free to choose the granularity and the tree to apply it to. For

the purposes of this discussion we shall assume the most typical case, there is a

single, statically accessible context-tree shared by the entire runtime system.

Modules P, A, and M execute in their own, child contexts of creature. When the

motor system M needs to find a reference to the action system it looks up the-

action-system in its own context, although there is no binding there, there is a

binding in the parent context creature and action system A is returned. The box

thus finds its arrow.

Simple as this example is, there are a few key results to note:

this is a weakly coupling assemblage - this action system is never stored as

an module-level variable (for example, it is never stored as an instance

variable for any particular object), it can always be obtained from the con-

text tree. The action system can change completely (to the point that the

action system is actually a different object reference) without explicitly

accessing or notifying any other system. For this to be useful to consumers

of this information, context-tree lookup should be fast enough; this is

easily achieved by a variety of caching mechanisms that turn a context tree

search into a single hash-map lookup in most cases. For this to be useful

to authors of systems there should be notification mechanisms that can

provide hand-off between changing systems.

214



DEBUGGING WITH THE CONTEXT TREE

I I I
hierarchical context tree keys favorites

run visual elements upon
breakpoint access

set breakpoint on XPath and
regular context-tree expressions

figure 71. The context tree becomes a place where we can focus the

attention of custom debugging interfaces, to assist in the creation of
agents. Shown here are the interfaces to the context-tree visualizer and

the context-tree "breakpoint" interface. Breakpoints, which run on

context and key access, are stored with the agent, and can be executed

without any graphical intervention. Thus the boundary between
"debugging" and "finished work" is blurred

"breakpoints" set
on context-tree

access

I T
full details, grouped by search

including stack- context, find
trace,of context- context or value

tree search
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the interconnect between modules is traceable - the first step of all inter-

module communication is a call to the context-tree interface. If we want

code to monitor, reflect upon or perhaps even interpose itself between, the

action system and M or the motor system and A then the site of this inter-

cession is clear. The result of this is that we focus a monitoring and tool

building effort on the context tree and, for our tools and for our own navi-

gations of the tree we can exploit the hierarchy's implicit "locality of ef-

fect": changes (be they modifications or bugs) to a context affect only chil-

dren.

the modules remain mobile - the motor system can be executed inside a

different context (for example a different creature) and its binding lookups

from the point of view of M will change to reflect the new context. For this

to be useful, it should be easy to cache and store state that needs to be

context dependent as correctly context dependent. This is achieved by 216

building higher-level container classes that are automatically backed by

"context local storage" and by building language-level constructs that

make, for example,"context locality" as easy to achieve as "instance locality"

and "class locality" is in whatever object-oriented language that we have

chosen, page 220.

This concludes the introduction to the context tree - my candidate replace-

ment for an agents central blackboard, an alternative to the arrows in a system

diagram. The section that follows simply takes this structure and builds more

useful structures on top of it. Compared to blackboard architecture the context

tree has more structure - a nest of searchable blackboards, an explicit and

dynamic hierarchy of execution contexts that is tied to the execution of code.

Compared to an "arrow" it has much less structure, a much less narrow focus, it

provokes much weaker couplings between modules. Therefore the context tree,



as proposed, is a more complex compromise between these two simple solu-

tions. It sacrifices some of the apparent simplicities of either of these two posi-

tions, hopefully, in exchange for simplifying the real problems that come with

their use.

The uses of the context tree3.

Ihe Fagade pattern is from: E. Gamma,
R. Helm, R.Johnson,J. Vlissides, Design

Patterns, Elements of reusable object-oriented
software. Addison-Wesley, 1995.

However, in our two examples above, none of these decoupling"victories" are

secure against all possible manipulations of the contents, execution cycles and

the assemblies of P, A, and M. And the real power that the context tree has over

a central registry is that its internal structure somehow reflects automatically the

execution and use patterns of the model that refer back to it. We'll need to see

some more complex examples for this power to be obvious.

For example: what happens if there are two action systems to communicate with

A1 and A2? Where does the second go? How does A2 get a share of the commu-

nication between A1 and M? Something similar to the well known Fagade pat-

tern might be deployed to make two action systems appear as one to the motor

system, but just as the fagade pattern hides its presence from the caller it hides

its presence from our previously traceable interconnect; it is a"local trick" and

doesn't necessarily place control and share responsibility for its hidden manipu-

lation in the right place. If we are going to perform such local maneuvers why

have a central mechanism to begin with?

The actual problem behind this is an insufficient inversion of control - the

motor system and a specific action system remain too strongly coupled together

even when they find each other through looking each other up in the context

tree. Better to note that much communication between the two systems can be

articulated inside the context tree itself, with the posting and querying of results

or elements that can be used to obtain results. Our pattern shifts then: rather
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context- creature

context: P context: A I context: A2

context: M

figure 72. A strong coupling between A2 and M.

context: creature

context: P context: A I context: A2  context: M

figure 73. A local coupling between A2 and M.

context: creature

context: P context: AI

context: M

than have a reference to the-creature's-action-system at the creature level (which is

really the act to blame for our commitment to a single system at that level) we

have our action system and motor system post results to and query information

from the context tree - these results and queries are arbitrated by their own

individual keys. Loose coupling can be achieved by using the context creature for

this blackboard; results from both A1 and A2 are written here, in an execution

dependent order.

Asymmetrically strong couplings can be achieved and with them a variety of

execution independence:

A stronger, more detailed coupling, from Ax to M can be made by injecting a

reference to Ax's context above M's context for use by M in looking up the

results of A, which are stored local to A, - this coupling can be easily

arranged by an assembly mechanism completely external to both Ax and M

and independent of the ordering of A1 and A2;

A local coupling from Ax to M can be constructed by injecting the results of

A directly into M's context - here Ax must come to know something

about the existence of M's context, but nothing of the specifics of M's itself.

Again this is (A1,A2) order independent; or

A private coupling by moving M to a sub-context of a particular Ax - this

often makes Ax responsible for other aspects of M's life cycle including the

ordering of Ax and M.

The context tree cannot make the decision as to which kind of coupling is more

appropriate, but it does at least allow the decision to be made. And in each case,

this serves the end of making the communication between modules more ex-

plicit, more standard (and thus observable by our generic context tree inspec-

tion tools) and, depending on how these results are described in code, poten-

tially more declarative.

figure 74. A private coupling between A2 and M.
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Looking back at the complexities illustrated in chapter 2 on the "large-agent"

system alphaWolf we see a number that could be directly treated by using the

context-tree as a general mechanism for coupling modules, and it is not difficult

to hypothesize uses for each of the above couplings in this project. The coupling

diagrams of figure 25,page 95, tell three stories of the development of alphaWolf

and hide three more. One is the sheer number of connections between between

disparate parts of code - which is in itself an argument for a strong and gen-

eral purpose way of connecting things without boilerplate code. The second is

the increase of connection density as the project grew. As modules "split" (pre-

sumably for the purposes of localization and testing) they duplicate and drag

with them all of the previous connections to systems and add usually at least

two more connections between the newly created modules - observe "fight

action" and"toodle action" appearing out of the main"action system". Thirdly as

the project develops, modules that were general purpose become specialized,

and in doing so, other modules assume specific knowledge of that specialization 219

- the transformation from"perception system" to"wolf perception system' and

the leakage of this concrete implementation into other systems. What is hidden

in these figures is are the"modules" that are never created because the coupling

to their environment would be so strong, when expressed in method calls and

shared instance variables, as to render the exercise futile. Equally hidden, and

equally absent, are the "mock" objects that were difficult to create for the pur-

poses of testing other modules in the presence of such detailed shared knowl-

edge of the implementation of each module. Finally, hidden on the diagram,

since it is difficult to represent pictorially, are the careful aggregation and or-

dering of one module's results by another in order to present this information in

turn to other modules - for example, the perception system bundling infor-

mation from the prioprioception system in order to pass it to parts of the action

system.



The context-tree speaks to all of these problems. It offers a communicative

complexity that scales with the number of modules, not the number of connec-

tions. It offers the potential of the utterly "code-free" fission of a module since

the ability to find and connect to modules is stored outside the module being

fissioned. We shall see that the context-tree offers module-external methods of

shielding the implementation details of a module from others; a more detailed,

yet potentially safer coupling that decreases the the threshold for modularity;

and, as illustrated above, a module-external place where code can aggregate and

treat the output of several modules before passing them up or along the context-

tree for the consumption of other modules.

However in a more general sense, we have only begun the process of decoupling

the modules of the agent - and we have simply deferred the problem rather

than solved it if disparate parts of our hypothetical systems A or M need know

about the specifics of the coupling arrangement - if special code need be writ-

ten to implement these different classes of couplings. Rather, it should make no 220

different to the insides of the modules to access a variable in each of these cou-

pling scenarios. It is to the decoupling of this decoupling that we turn next.

Context-tree container classes

Clearly we are presenting the idea that we can have a language-level binding that

appears to be a something like a "regular variable" (for example, in java an in-

stance member of some kind of reference type, in python a class attribute).



figure 75. The canonical linked list structure is an open network of

references. We can replace the references with context-tree lookups to
yield a context-tree-aware container class.

For example, in our most plain java we can define a context-tree key class with

the following interface:

interface Key<t_value>{

//looks up the binding for this key from the context tree

t~yalue geto;

// sets this binding to be this value

void set(t~value value);
}

This is the interface used for our previous examples.

In certain circumstances is possible to hide the presence of even this single level

of indirection in Java, and in languages that are more directly malleable, such as

Python, these meta-class level manipulations have been explicitly built in to the

language. No matter, for even with this shim we can construct higher level data-

structures where the references to objects have been replaced by these context-

tree bindings.

For example we can take the canonical linked-list structure and translate the

next, previous, and object references (together with the head references) to unique

context-tree bindings. This gives us a list container class that at each level of the

context tree acts as a list just inherits the semantics of the hierarchical context

tree lookup. In particular, changes to the list in parent contexts are visible in all

children contexts while the opposite is never the case. This holds both for non-

structural (changes of what a particular list element refers to) and structural

alterations of the list (deletions and additions to the list); when structural

modifications present at parents and children overlap, then the list appears to

follow the principle that the child context overrules the parent context for the

purposes of that child context.
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figure 76. The context-tree list
extends the semantics of the

context tree to a list container.
Here elements stored in all

parent contexts are visible in all
children contexts. Similarly

operations on the list, additions
and deletions appear to occur at

that level and all levels below. list = ABCDEFG

lis

list = ABCDEFG

list = ABCDEFG

t = ABCDEFG

list = ABCDZEFG list = ABXCDZEFG

list = ABCDZEFG
2. list.insert(2, "X")

The Java Collections framework is a
standard toolkit of container classes -

for a tutorial see:

http://java.sun.com/docs/books/tuorial/collections/

Similarly, "automatic" translation from instance-local to context-and-instance-

local data-structures is trivial in the case of the (hash)map and the binary-tree,

and thus is able to re-express the complete set of primary interfaces of the Java

"collections framework'. These context-tree-local container classes are then

stored as conventional instance or class members, the further level of indirection

afforded by storing these indirectly seldom being useful.

Programming in the interstices - code injection

These higher-level context storage containers allow the bootstrapping of yet

higher-level programming techniques. When asked for its value our context-key

local class asks the context tree for the value of a binding and returns it. When

used as a blackboard for the posting and retrieval of results this is a site of

communication between one module and another, and, as such, it is also a site

of coupling of a different sort - one connected to systems' expectations of the

semantics (what it means) of their communication rather than the syntax

(where it is). We'll begin with a toy problem, although as we will see below this

example occurred a great number of times during these multi-year projects,

potentially threatening the very collaboration that was taking place.
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A posts a value A's result4.O to the context tree and B looks for A's result as an im-

portant input. But the code for B was written a long, long time ago, and we've

just compiled it again and mixed it into the agent in a hurry; A has been com-

pletely rewritten since then, and the scale of A's result has changed - how can

we make it appear to B that A's units are twice as big?

One way to achieve the re-scaling is to execute code after A's posting but prior

to B's reading that either rewrites the binding or injects a new binding into a

context more local to B. These are clearly clumsy solutions, and neither of these

solutions work well in practice. They introduce order-dependence where none

previously existed and they interact poorly with a module C that is also inter-

ested in A's result

A more interesting and maintainable technique is to open up the indirection

provided by the context-tree key to the context tree itself.
223

Our key now looks like:

interface Key<t_value>{

t._value geto;
void set(t_value value);

e void addToLookupStack(CodeElement<tLvalue> element);

}

where our CodeElement interface:

interface CodeEIement<t_vaIue>{

tyvalue open(tyvaluefiter);
t-value close(t_valuefier);



we can now restate key's get behavior in terms of this filtering stack, in python-

like pseudo-code:

returnValue = nothir

for deement in codeElements
retumValue = deementopen(retumValue)

for dement in reverse(codeFwvent)

retumVaue = deeentclose(retumVadue)

return retwmVaue

Keys come with a CodeElement that heads their stack that just looks the key up

from the context tree as usual. And of course, we can write a CodeElement that

has an close() that performs the unit correction between B and A in a matter of a

few lines. Maintaining two methods open() and close() allow filters to choose to

pre-empt the main lookup. These CodeElement fragments are completely inde-

pendent and potentially persistable. 224

The final twist is to make this stack of CodeElements a context-tree-local linked

list. With this we can add our re-scaling code element to the list inside B's con-

text and inside B's context alone. From within this context it is part of the stack

executed to get at A's result and it gets its opportunity to modify the value passed

through it accordingly; from outside this context it is not part of the list.

We are now in a position to begin to see the relationship between the context

tree and inversion of control container systems. Comparing these context-tree

extensible, context-tree lookup's to conventional IoC's push or pull "dependency

injection" - the connection of instantiated modules - we might be tempted to

claim the term "code injection" for the more aspect-oriented context-tree system.

For here it isn't (just) the references that are getting hooked up through the

context tree, but the semantics of the actual reference types offered by the un-

derlying language that are being subtly stretched from outside the module of



small amounts of code. This is neither strictly "pull" or "push" - these injections

may come from other modules, typically parent modules, and one module's

"central naming service" is another module's peer or child.

My context tree provides two other interstitial sites that are worth mentioning

- watches and traps. Watches aid in the creation of context-tree debugging

tools and allow code to be executed whenever slots in the context tree change. It

is possible to implement this feature with zero additional cost in the case that

there are no watches at or above a particular context, and this feature is designed

mainly for debugging rather than self-monitoring. Traps, on the other hand, are

called whenever contexts are entered, exited, re-parented, have children added

to them, or deleted and are useful in maintaining caches of information (that

may need to be updated if the topology of the context tree changes) or provid-

ing hooks for controlled shutdown in the case of context deletion. Later, I shall

introduce structures that require this kind of caching in order to achieve good

speeds at runtime, and we shall see some uses of the context tree for life cycle 225

management in generalpage 231.

Storing parts of the context tree - the technical support for naming

I've presented the context tree as a general purpose "working memory" for

agents - a place where systems can post and read information and thus com-

municate in a loosely coupled fashion. This is an accurate description for its use

in the agents in The Music Creatures, Weather for an interactive window, Max, 22,

how long.., and Imageryfor Jeux Deux and all other agents within the most re-

cent versions of the c5 toolkit. However, the context tree began life as a solution

to a slightly different problem - not as a substrate for communication between

processes but as a place for communication between artist and agent during the

creative process.



The hierarchical outline of the tree makes it ideal for configuring rendering

parameters broadly, before stepping down a few levels of the tree for local con-

trol over a specific agent, a specific shape or a specific line. And being able to

distribute code throughout the interstices of the rendering is of course ex-

tremely powerful - for example, this makes it easy to programmatically distrib-

ute variety - of rendering styles, or behavior, page 114.

This technique works so well that I invested much time in creating graphical

and textural interfaces for the context tree to set, inspect and manipulate these

values and injected code. The context tree, with its structure dynamically deter-

mined by the execution of the agent, is its own "ideal interface" for distributing

parameters. Creating Loops and The Music Creatures was just as much a matter

of traversing the context tree of the colony and manipulating parameters as it

was storing them, learning them and recalling them, page 114.

The filtration example above was presented as a toy example - and it certainly 226

does look like a lot of trouble to go to for to multiply a number by two. How-

ever, this very problem appears frequently in practice. The context tree's scoped

accessibility makes it an ideal place to put the large number of ad hoc parameters

that get set and reset during the creation of an art work - be they line thick-

nesses, colors, noise parameters, filter coefficients. how long.., moves around at

least two hundred of these at various locations of the context tree, and almost

everything that isn't specified in the action system in Loops is specified by these

numbers - in the motor system, the graphics system and the global control of

the colony.

However, there is a problem with storing these values. The resulting parameters

aren't just numbers - they have been hard fought for and hard won; they

might represent a considerable effort to tune the appearance of a line - e.g.

Loops - there might have been a considerable amount of offline learning in-



volved on the value of a coefficient - e.g. Music Creatures - they might repre-

sent a considerable amount of consensus inside a collaborative work as to what

a particular appearance should be, last month or even last year - e.g. how

long.... Such is their importance in the development, one clearly needs a strategy

for storing them past the life-cycle of a single execution of the work and past the

memory span surrounding a rehearsal or an improvisation.

This storage of these parts of the context tree itself appears to be easily achiev-

able by taking contexts and writing them to disk, and indeed this tree-like

structure serializes to and from human-readable XML extremely well. But these

persistent numbers are not built from stable material, they are not referentially

stable: line thicknesses are being developed at the same as the line drawer which

today uses a selection of multiple lines rather than the simple one it did last

week (Loops); a new agent wants to reuse the same rendering styles, on different

geometry (The Music Creatures); learnt filter coefficients for one body now have

to be translated into a new smoothing coefficients for a completely different 227

body that as of last month hangs upside down - (how long...).

Where there is a storage problem there is a versioning problem waiting to happen:

these numbers are not loaded back into the same system that saved them, and

the effort devoted into finding these parameters cannot be allowed to slowly

halt the further development of the system. If it could, we would be faced with

choosing from two frustrating inertias - a forward inertia that would discour-

age us from changing the process, having made the choice; and a backward inertia

that would discourage us from making the choice, until the process is "finalized".

Both cripple the exploration of the field of potential developed by our complex

systems just at the time when that potential might solidify into the particular;

both threaten the collaborations that I have been involved in at, arguably its

weakest place, my ability to regenerate material that was previously the subject



of consensus early in the collaboration, despite the provisional nature of the

systems generating it.

Having realized the significance of the problem, the solution turns on two in-

gredients added to our context-tree techniques. The first is a database that acts

as a repository for named, subsets of keys take from branches of the context-

tree - we'll call these subsets persisted, partial trees. These partial trees are

stored with versioning information that exists, crucially, on two levels: at the

level of the partial tree, and at the level of the individual key. Named partial trees

are additionally arranged in this "database" into types: parameters for our line

renderer would be a type; a variety of named partial trees, each with different

names, would form a set of rendering styles that we are interested in deploying

throughout the piece; and a set of partial trees of the same name might be an

ordered history of how this particular rendering style has been modified during

the development of the piece.
228

Particular dates can be identified with names inside the database -"before the

January rehearsal" or "before line renderer 2 got fixed". Historical information

about a particular key is never deleted, merely superseded; databases for the

works presented in this thesis, some of which were constructed over a period of

2 years, reach a size of several megabytes. This size is perfectly manageable

without recourse to more heavyweight, truly"database" back ends.
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figure 77. Reversioners and version recognizers work
together to ensure that persisted, partial trees are made

up to date upon recall.

The second ingredient is a set of code resources that can first recognize when a

key or a partial tree is "out of date" with respect to the current system and sec-

ondly do something about it. Version recognizers and"reversioners" can work in

parallel and in series at both the partial tree and the individual key level. Neither

recognizers nor reversioners can be made completely automatically, for the space

of incompatible system changes resists standardization, but they can be made

easily specifiable.

Version recognizers are generally quite simple, in most cases recognizing a spe-

cific date tag isn't the latest, or a particular key is missing from a persisted

partial-tree. Reversioners generally act not by rewriting keys or adding previ-

ously missing keys but by injecting code into the keys or injecting code into new

keys that tie their value to existing ones. The accumulated injected code allows

old systems (or, more likely, old snippets of scripting code) talk the "old lan-

guage" of the older keys while automatically presenting the newer interface to

any module that cares.

Version recognizers are arranged and stored as vertices in a directed graph

structure, with particular reversioners as edges of the graph, a path of accumu-

lative "reversioning" is computed through directed search from the most recent

(by date) version found from the database to the most recent (by date) version

accessible to it in the graph. Should a reversioner R1 2 that moves versions

recognized by Vi to those recognized by V2 fail to turn a partial tree that is

recognized as V1 into a partial tree recognized by V2 back-tracking occurs.
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Indeed the small work, Weatherfor an
interactive window, was mainly concerned

with testing interfaces for live
experimentation of rendering styles

right up until minutes before the
opening of the installation.

Although Loops exploited the context
tree for its parameter distribution, it
lacked a re-versioning graph system.

This "versioner graph" was successfully deployed in the pieces how long..., 22,

Lifelike and in The Music Creatures and an earlier prototype of the system was

developed for Loops and Weatherfor an interactive window. Three of these five

pieces were collaborations, two took place over a period of two and a half years.

The version graphs for each of these dance pieces contained on the order of tens

of nodes, some general, but some quite specific. In Loops and sometimes in The

Music Creatures these partial trees are the very material from which the lowest-

level representation of the generic pose-graph motor systems deployed in that

work - these named"rendering styles" were in fact the named "body configura-

tions" of the agents of Loops.

That the majority of these parameters were directly or indirectly related to ren-

dering styles or body configurations probably stems from the the fact that these

parameters are both the most readily placed as stored numbers or injected code

and are the most likely site of tuning-while-running during a collaboration.

However, it is also true that the results of offline and ongoing learning processes

were stored and versioned in these persistence structures for maintenance across

time-scales longer than the typical duration of the piece. Returning, once again,

to alphaWolf, we can hypothesize uses for these techniques not just in tuning,

say, the rendering parameters for the wolves, but rather in changing the way in

which agents themselves were created. The partial storage of the context-tree

could have provided a mechanism by which particular arrangements of the so-

cial learning of the wolf-pups that were proving problematic to debug could be

stored and recalled independent of the ongoing development of the social

learning mechanisms. The ability to quickly return, in the presence of structural

changes, to the debugging "frontier" would have greatly assisted the tuning of

the social"game dynamics" of the piece.

Looking back to The Music Creatures, page 143, and forward to a more general-

purpose expression of this idea, page 410, this is neither the first or the last per-
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sistence database that this thesis will discuss, and the theme of directly treating

the historical development of a piece with custom tools continues: techniques

that face up to responsibilities and consequences of long-term collaboration and

thwart the encroachment of these choice / process inertias often developed

when complex processes and artistic choice collide.

Authoring systems that change over time - the inverted context-tree list

// Sensory and propioception System

,pp, Marh.P*2 Doubie.POSITIVEINFINITY, false);//Math.PI/4.0, 200);
n3.e Wolf5 eo. ysteem("WWs SemO

AlphaWolfnstlation.visibility i ,s I
phaWolfinstalladon.smellidsie,

dS . awfnstaflio.ugy_state_to_filtr

hPeraepioepSystm
"~r ol"ptonSynrem.WWs Percepdon Sy..e. th.is);

ecepn

f . inSyswet

FNM S 0Mnew CSEyt (thisgetName+": CSEMSystem")

// Action System

//Navigation System

" Taf~n^ " 'INaga inytmucns aviain Systm ocanPerept.80DROCcr tateAndinsaIINaviptio'Syst01(*Ducan's Naviation. Systeml, LocationP'.cetPNBOOYLOCATI

figure 78. A great many systems created and registered.

The act of registering leaves a distributed, intricate trace
that is hard to unravel.

The problems of constructing complex assemblages of interacting modules has

motivated many of the interstitial techniques developed here. However, the

problem of dismantling parts of these complex assemblages appears to be fun-

damentally even harder than constructing them in the first place. To see why

this is the case, we should look back at the kinds of situations that appeared

often in alphaWolf, where a great many systems were instantiated, registered

and accreted.

Firstly we note that construction follows the execution of the code, but there is

no closure around this or any construction in this object-oriented / imperative

language. Each of those objects might wire themselves together and make more

objects that keep references to others. This is easily written in an imperative

style, and straightforward to execute assuming one has gotten the order correct,

but the execution itself leaves no trace - it is possible and perhaps likely that

these newly constructed, installed and registered objects don't have references to

the objects that made them, installed them or maintain them as registered.

Even if they do it's not clear that it is desirable for them to have the knowledge

or the power to unmake, uninstall or de-register themselves. Such knowledge

and access would represent a strong and, worse, diffuse and intricate coupling

between disparate sub-parts.
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list = ABCDZEFGHIX

list = ABC list = GHI
list = DEF

2. list.insert(2, "X")

figure 79. The inverted context tree list
appears to have the contents of a context

and all children (as opposed to all parents).

Further complexity flows from the need to propagate a description of what is

and what is not being torn down through the method calls doing the disassem-

bly, it is not clear that this can this even be described without coupling the mi-

nutia of an assemblage to an external description of its boundaries. But we al-

ready have seen one description of the boundaries of a assemblage that doesn't

need to be propagated anywhere - a branch of the context tree - and we have

seen one species of container class that automatically reflects the state of the

context tree. Perhaps these two ideas can be combined to make structural addi-

tions and deletions to the context tree equivalent to structural registrations and

de-registrations.

Consider a new kind of list structure - the inverted context-tree list. Like our

earlier linked list backed with context-local storage, its contents are actually

distributed throughout the context tree, rather than stored in a particular in-

stance or class field; and just like the our previous linked this this list is in actual

fact a union of lists stored in a number of contexts. However, where the context-

tree list was the union of all lists at the current context and its chain of parents,

this inverted list is the union of all lists at the current context and all of its chil-

dren. Unlike the previous linked list structure we cannot construct this list by

list = DEF
list = GHIX
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replacing object-references with context-tree key lookups, for context-tree key

lookups proceed, in the absence of code injection, upward through the tree.

However, in practice we certainly can reuse the same caching mechanisms that

make access to the context tree fast to maintain this inverted list of lists at each

level of the tree.

This list is now a primitive from which we can construct registration lists, exe-

cution orders and notification queues. Whenever there is a list of objects that

need updating or notified when events occur, this list should be an inverted

context-tree list; whenever there is a map of known services that might be called

upon by a module, this map should be an inverted context-tree map. Delete part

of the context tree and all references to objects installed at that level and below

disappear, execute methods on this module in a different part of the context tree

and a different set of objects to update or services are available. Further, upon

deletion, the references disappear in a particularly orderly and consistent fash-

ion: namely, simultaneously. And this simultaneous destruction occurs at a par- 233

ticular moment: at the last transition out of the deleted context they are never

seen again. This is a time when, by definition, there is no code running that

accesses these data-structures. Together with a few "language level" program-

ming tricks, this facility can be made broadly usable, removing much of the boi-

lerplate code that is involved in both de-registering and even registering systems'

connections, page 247.

This idea, as already described, is very useful beyond simply enabling the disas-

sembly of systems - indeed it permits the rapid assembly of the kinds of com-

plex assemblages that the context-tree promotes from going unexploited in sys-

tems that need to delete parts of themselves during their execution. Often in the

face of creating an agent or an artwork the focus is on assembling something,

testing it, tuning it; having reached a point of confidence that that thing is

heading the in right direction, one puts this piece down and takes up another



These environments will be the subject of
much discussion in chapter 8 - see the

references therein.

part of the work. Only when these pieces come together do their life-cycles

begin to get complicated: when we need to go from one piece to another, incor-

porate one in another, instantiate three things rather than one.

By no means, however, is this kind of tear-down essential to the creation of

graphical, interactive agents - the installations Loops, Dobie, alphaWof, The

Music Creatures, Lifelike all ran without any structural deletion occurring during

their life-cycles. Similarly, most interactive works - be they authored in Max,

Isadora, Director, or Flash - seldom change structurally much after initializa-

tion time - data flows through pre-made networks of modules, pre-loaded

resources are moved to the fore or hidden.

However, in each of my early works, the problems of structural deletion made

their presence felt - Loops became an infinite piece about the finite materials

from which it was constructed; Dobie learns without bound, without forgetting;

alphaWolf faced difficulties of such magnitude loading and deleting its constitu-

ent wolves that after their five minute growth cycle they were swapped around

rather than deleted and reinitialized. As I moved to agents with more complex

parts, their lives, and the simulations they inhabit, grow shorter: The Music

Creatures only lived for around 7 minutes before dying - and with their accu-

mulation of models and graphical material they might not have made it much

past a few hours if left to run; and Lifelike ran for the duration of a 30-minute

dance work, but the accumulative flux of points, lines, graphical resources, and

behavior systems were so great I fear it would not make it past an hour. Is this

the necessary price for live structural change?

Instead, these works (and commercial interactive programming environments),

find a solution space (or a duration) where they do not have to confront the

issues that come with tearing down previously constructed systems that may
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have changed structurally; but at the same time, we are clearly interested in

works that do change structurally and remain running over long time-scales.

So the above techniques, the context tree and the containers, enable how long...

to have a parade of overlapping, interactive agents that come and go, that model

and stop modeling, that add and subtract geometry. As an artwork there is no

secret reason why it could not run indefinitely. If it were appropriate, we could

loosen the scripting of the entrances and exits of agents to create an endless

chance juxtapositions of bodies and perception systems. Perhaps this flexibility

will be demonstrated an installation context at some future point. Regardless,

the flexibility paid for itself in rehearsal.

Therefore together the context tree and its container classes allow for the as-

sembly and automatic disassembly of modules. However, there is an alternative

interpretation of this power that has implications squarely in the domain of

artificial intelligence, not simply software engineering. Since the addition and 235

deletion of things are tied to the context tree and since contexts nest we can use

context-trees to implement structural closures. That is, we can open a child con-

text, try some computation and, if we don't like the results just delete the con-

text and it is as if nothing happened. If we do like the results, we need to propa-

gate the contents of that child context up to the parent - overwriting slots that

contain simple values, merging slots that contain lists etc. This kind of specula-

tive execution allows systems to hypothesize about what would happen if it

changed in a certain way. Unlike languages with built-in support for closures it

is up to the programmer to decide what is and what isn't closed in. This is a

problem since it is prone to error unless using context-tree-local storage is sim-

ple (see the annotation library, page 242), but it is a benefit because it allows us

to choose what does and what doesn't get rolled back on this context-tree-level

"undo. This technique has a number of in the works: The Music Creatures used

an early version of this technique to speculatively close a sensitive period that



might in fact need to open again; Loops Score uses it in a number of places to see

if performing a musical action will produce a series of notes that can be related

in some way to what has already been scheduled, page 251. I expect that this

technique will find an increasing role in future agents that undergo long execu-

tion, long-term structural change.

Further, such a facility - had it been offered by the toolkit at that time -

would have radically changed how projects such as alphaWolf were authored.

Not only would it have been possible to unravel the kinds of structures indi-

cated in figure 78, but this error-prone glue code itself would disappear. By

preserving the modularity of parts of the agents one could also prevent the un-

fortunate collapse of all three "kinds" of agents (pup, adult and caretaker) into a

single action system - allowing the set of action tuples present in the system to

grow and change during the life-cycle of the creature rather than creating a sin-

gle action system with parts "shorted-out". This offers an improvement not just

of computational complexity of running the action systems (which, in itself is 236

dwarfed by the graphics and animation tasks) but of the complexity of debug-

ging these systems, visualizing their execution, even just thinking through the

results of modifying the source code (see, for example, the number of"optional

sections" in the alpha Wolf behavior code in figure 8o, page 238). Further, a real

deployment of the context-tree as a universal coupling between parts of an al-

phaWolf creature might have permitted modular testing, in particular the pro-

filing and creation of the perception system and motor system independent of

the action system, allowing in turn the multiple programming collaborators on

that project to work more independently (directly treating the problems illus-

trated in figure 25, page 95).



The context-tree and system creation - sub-classable complex systems

The above sections have considered the context-tree-based solutions to the

problems of constructing, manipulating, and disassembling complex assem-

blages of interacting"modules". This last section addresses the related problem

of re-using them.

Often in object-oriented programming languages one expects to be able to use

inheritance to provide a set of good base classes that will speed the implemen-

tation of, and reduce the amount of code required for, common specific classes.

In an agent toolkit one expects to be able to create a simple agent in code by

perhaps overriding a few methods from a base class that aggregates the machin-

ery required for a graphical agent, an agent with a motor system, a perception

system and an action system etc. Unfortunately, in practice, building a toolkit

that offered such a super-class template has proved to be extremely difficult, and

throughout the collaborative development of the'c'series of agent toolkits, there 237

has been an ongoing tension between powerful "abstractions" and useful"base-

classes". Here a apparently irreconcilable tension appears: between concretizing

all-too-abstract elements in order to make specific agents, or abstracting all-too-

concrete previous works to make the next. AlphaWolf falls, in my opinion,

squarely inside the gap between these two poles - little of the code piece gets

reused in the works that follow, yet the generic nature of some of the elements

used in its creation can do little to prevent the growth of the behavior system

files.

In this quandary, nothing less than one's technical development as an artist is at

stake - the tension is between maintaining a broad ranging set of elements

that are difficult to turn into free-standing artworks, versus accumulating

knowledge, and experience, but no tangible tools or code.
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Let us look at this complex "sub-classing" problem in detail. Perhaps the prob-

lem stems from the number of options that this super-class aggregation needs to

present to its possible sub-classes. Rather than reducing possibilities as we de-

scend down the inheritance chain to get closer to specific uses of the agent

toolkit, the opposite happens: flexibility increases exponentially as we aggregate

systems that are suffering from the same problem. So, unless there exists a

mechanism for distributing defaults and overrides amongst these systems, either

inopportune choices are made and the inheritance hierarchy is abandoned, or

the base-classes provide so broad a base that they are hard to understand.

So far we have tried hard to allow the creation of complex assemblages that do

not couple to their connections - essentially, their "parameters" The context

tree defuses some of these tensions. We can have constructors for these aggre-

gating classes that are written in a normal fashion - passing through, incorpo-

rating and storing parameters - as well as mutators that are coded almost as

normal; all using the context tree. However, these classes do still couple in a

number of ways to the classes that they instantiate. This instantiation is one way

that super-classes commit to limiting the options for their potential future sub-

classes and if this instantiation cannot be defaulted and overridden then we are

very much in the situation outlined above.

The standard design pattern used to avoid this in practice is another inversion-

of-control technique: the well known factory pattern. The factory pattern inter-

poses logic in the name resolution and construction of classes. Rather than

asking the language for a new instance of a specific class, one asks the factory for

a new instance of a particular interface. This factory decides on what class should

be instantiated and with what parameters. There are two problems associated

with trying to deploy the factory pattern widely: providing enough information

to the factory for that decision to take place and providing those parameters

once that decision has occurred.
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The context tree can clearly help with the distribution of parameters across a set

of systems - this is the very purpose to which we have put it in the examples

above. This ability could be pressed into backing a factory system - we could

distribute the names of classes to instantiate just as easily as we can distribute

other parameters. But perhaps there is a more apt and more flexible meeting of

the context tree and the factory pattern.

We can use a version of the interstitial context-tree programming technique

described above, page 222. Instead of shielding systems from changes that are

incompatible with previously saved data, by installing context-specific filters on

access to that data, we can install context-specific factory functions to instanti-

ate classes.

We build up the language very similarly - and we should build it up, for it is

going to become a common programming unit for a whole variety of systems.

They key programming element is the the CodeElement from before: 239

interface CodeElement<tvalue>{

trvalue open(t_valuefiter);
t_value close(t_valuefiter);



A little care must be taken with how
Java's generics and type system are used
to make this syntax work. In general we

admit not only t~value, the underlying

value type for the keys, but <? extends
t~value>, and Class<? extends tyvalue> to

be passed into these methods. These
methods are omitted for brevity.

Internally, of course, Keys are free to
ignore the parameter on the type, since

the implementation of generics is not
strictly part of Java's type system.

These elements are stored and executed in context-local lists inside Extend-

edKeys. This class offers what Key offers plus a number of convenient versions of

the add method that help write more factory-based context tree programs. The

most important of these methods are:

call(Object o) - wraps any object (that is presumed to have only one pub-

licly accessible method) in a CodeElement and adds call to this element on

the stack.

lookup(Key<t-value> o) - looks up a key from the context tree.

is(tvalue o) -just returns this value into the execution order of the stack.

with(Key<tvalue> key, tyvalue value) - places a CodeElement that temporar-

ily sets a particular key to a particular value on the stack.

makeNewo - puts a CodeElement on the stack that will instantiate classes

that are passed to it (runs in close(...))

This lets us declare a default instantiation, perhaps in a creature base-class, like:

navigatonSystemactory.is(DefaultNavigation.dass).makeNewo;

And then from some other location, perhaps in the action system, where we

need a navigation system:

navigationSystemFactory.get(;

will suffice. This is the most straightforward of all possible examples. We can

use the context tree to pass "keyword parameters" to this factory:

navigationSystemFactory.with(bodySize, 1o).geto;
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XPath is a w3c spectfication -
http://www.w3.org/TR/xpath

The flexible Java XPath engine used for this work is Jaxen -
http://jaxen.org/faq.html

This project specifically allows XPath expressions to be
evaluated over "custom" object models (here, the context tree,

later, the Fluid view hierarchy).

We can, far away from this invocation or declaration, manipulate the factory

lookup such that this action system gets a special navigation system, perhaps in

a subclass of the base creature class:

navigationSystemFactory.inside("action-sys/").is(GraphicalNavigationSystem.dass);

Or, less radically, we could just provide a better default:

navigationSystemFactory.with(bodySize, myBodySize);

In order to distribute these throughout the partially assembled context tree it is

useful to have a path expression language to refer to contexts different from the

current one. Rather than invent an expression language that handles hierarchies

of attributed objects we borrow an extremely well thought-out, standardized

expression language made for searching xml -XPath - and map its object

model (which is usually the tree-like structure of elements and attributes in

xml) onto the context tree (a structure of contexts and keys). This allows simple

searching for contexts by name over the whole tree (looking for "action-sys"

regardless of where we are):

navigationSystemFactory.inside("//action-sys/")...

as well as more complex expressions that may match multiple contexts (looking

for a context that contains a value for direction):

navigationSystemFactory.insideAll("//*[ct:containsKey('direction')]")...

The methods that round out this interstitial programming environment are:

and(Object o) - call-s o should nothing have been found yet.

beforeAnd(Object o) - call-s o first in the stack, and only calls the rest of the

stack if it doesn't come up with an object.
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importing(Object o) - imports the context given by o into the stack at this

point.

There is a strong similarity between these methods and the complex, multiple

dispatch of the Common Lisp Object system. However, here, dispatch is ex-

tended in a context-centric way external to the class or method structure target.

This borrows, then, the flavor of Aspect Orientation but is specifically focused

on the problem of instantiation and allows configuration behavior to be modi-

fied live, on a per-context, that is a per-hierarchically-defined-module, basis

reusing the functional groups that the context tree represents.

While these techniques do not make the problems of extending complex code

assemblages evaporate they do make a great deal of different to the problem.

Unlike the tangled "excesses" of earlier agents that, while informing the work

that followed, were, as a set of code, ultimately abandoned after premiering, the

agents of how long.., were constructed both with more generic element and more 242

simply. Thus, we will see these techniques exploited in the agents of how long...

- in the LineAcceptor system, page 325, and the "subclasses" of the agents built

between workshops and in the evenings between rehearsals would not have

been possible without this mobility. Intense, but open collaborative practice

requires a solution to the abstract and flexible / concrete and useful dichotomy

- one's prior work to entering the theater must be useful if there's work to be

done, but it must be flexible if there's a collaboration that is to occur.

3. An annotation tag library for context-tree use in Java

Although it is certainly possible to implement the above context-tree key class,

and use the context tree itself in pure Java, the works discussed in this thesis

have gravitated towards one of two alternative paths. They either provided

extended, syntactic "sugar" for the context tree in the form of a pre-processor



language for Java or, more recently, a set of method and member annotations

and a custom, byte-code injecting classloader that manipulates classes based on

these annotations.

This latter implementation, which has only become possible with the most

recent revision of the Java language, has the considerable benefit of standardiza-

tion, allowing one to maintain an utterly conventional tool chain in the presence

of even radical alterations to the semantics of Methods and Classes. Because of

this, it will be this implementation that will be described here. It is in this "tag

library" that we are the closest to "Aspect Oriented Programing" but main-

stream AoP lacks the idea of a context-tree.

Java's annotations (similar in implementation to the annotations of C#) are

essentially programmer-defined, structured"comments" in code that can be read

at run-time, or in this case, class-load time. We start with our most basic anno-

tation that tags classes: 243

@context

this informs our custom class-loader that this class has the potential to have

the other tags from our library. It is a class-load-time error for subclasses

of such classes to omit this tag and debug-time error for other tags to be

present in a class without this tag. It provides both safety and optimiza-

tion for the load time.

@dynam ic(name=optional prefix)

marks this member variable as being context-local. subsequent Write and

read access to and from this variable is rewritten to go through a context

key. This context key's identifier defaults to the name of the member + the

name of the class. Currently, only private object reference members of

classes may have this tag.



@subcontext(name)

places the contents of this method inside a child of the current context called

"name, creating this context if necessary. Crucially this has three proper-

ties that are hard to get right without language support: the tag exhibits

the expected behavior for overridden methods, specifically their method

bodies are wrapped and wrapped once regardless of the existence, location

and number of any calls to methods in the superclass; secondly the con-

text is correctly unwound should the method exit abnormally; and lastly

this tag has the expected behavior even when the method annotated is a

constructor.

@inside(contextdesaipdon, creadondescipdon=default)

a more flexible form of"subcontext" that allows specification of two helper

classes that define how to find the subcontext and how to create it should

it not be found. In addition to the helper classes that"subcontext" uses that 244

finds a named child context of the current context and creates one if it

isn't there, other helpers have been found to be useful. One acts as"sub-

context" does once and then from that point on goes back to that exact

same context, regardless of the current context. The current context is

restored upon the exit of the method. This is useful, for example, to ensure

that methods of an instance are executed in the same context that was

present when the instance was constructed.



Execution orderings

@deferUntilEntry(conttdesaiption, queuedescniption=default)

@deferUntilExit(contextdescripdort queuedescriptdon=default)

these two tags defer the execution of the body of the method until a specific

context is entered or exited. These tags are only to be used on methods

that have no return value. The queue description describes a class respon-

sible for storing the deferred method calls, which need not be a simple list:

subclasses that concatenate multiple method calls together into a single

call are useful, more complex deferrals will be discussed, page 275.

'Ihese annotations clearly give a lot of power to a class to alter the scope

surrounding the execution of a method in a way that maintains a cou-

pling between object and execution context. They are not arbitrarily

powerful - for example, it is impossible with these tags (but not with

the underlying interfaces) to change the context in which a method 245

executes based on a parameter to that method.

@autoUpdates

this tag marks a constructor of a class (or a whole class, thus marking all

constructors). Constructors marked this way register the constructed in-

stance with a central auto-update list fetched from context-tree local stor-

age which, by default is an inverted context-tree list, 232. Instances con-

structed this way will have their update(...) method called when the auto-

update chain is updated. The interface for Updateables is trivial:

interface Updateable{

void updateo;



A more complex life-cycle interface is optionally:

interface Task extends Updateable

void inito;

void updateo;

void shutdowno;
void forceShutdowno;
void isShuttingDowno;
void hasShutdowno;

This fuses two models together, optional shutdown and forced shut-

down. A life-cycle object that has shutdown() called on it may opt to

return true from isShuttingDowno and may ultimately return true from

hasShutdowno, guaranteeing that this object will never have updateo

called on it again from this context. Alternatively, should the updator 246

call forceShutdown() this component must expect never to have update

called on it again (again, from this context). In this case, components

that absolutely must shut down over a period of a few calls to updateo

should arrange for their updateo to be called by some other means.

These life-cycle interfaces are implemented by a wide range of classes

throughout how long..., 22, and Loops Score; the agents of how long...

themselves implement these interfaces, as well as the rendering tasks

that require graphics resources, and the individual graphical elements

and scripts in the Fluid environment.

The deletion of contexts, which would silently prevent subsequent calls

to updateo for autoUpdatable-s stored in inverted context-tree lists with-

out any call to shutdownO, and therefore violate the implied contract are

monitored for by installing "traps" at the current level of the context tree.



@doesAutoUpdating

@doesAutoUpdatingOverContext

@doAutoUpdate

These tags are for classes that do the updating - instances that will be

containers for other classes. The first tag marks a constructor of a class (or

a whole class, thus marking all constructors) as owning part of the

context-tree local auto update tree. The constructor (including super con-

structor invocations, and all inherited subclass constructors) is effectively

wrapped in a pair of save(.) and restore(...) calls for the context-tree local

storage for the central auto-update list. The second tag uses a inverted

context-tree list rather than a conventional list to back the storage of this

local update loop. This is useful in the case where a single instance is ex-

pecting to be updated in several times in different contexts. The third tag

performs this auto-updating in the body of the following method in a

"overriding safe" manner. 247

Of course, a majority of classes that are marked @doesAutoUpdating are

marked @autoUpdates as well - they are "updatable" containers that

create things that are updated in turn.

Several more tags will be added to this library through the same mechanism to

complete the Diagram system, they integrate some of the features of that work

back into the language - transforming what looks to the caller to be a method

call into an object that is deferred, executable, inspectable, modifiable.



4. _The Diagram framework - the channel / marker representation

In Francis Bacon: the logic of sensation, French

philosopher Gilles Deleuze presents the diagram as

a stage of artistic creation, citing Bacon's example of

a brush stroke which reveals that the mouth of a

portrait could cut across the entire face, suddenly
increasing the sense of distance and transforming

the figuration. Deleuze affirms the role of chance in

this act - the lines of the diagram are "irrational,
involuntary, accidental, free, and haphazard" The

diagram exists on the boundary between
preparatory work and the act of painting proper;
its chaos must be transformed into a new form of

figuration.

G. Deleuze, Francis Bacon: The Logic of Sensation,
D. W. Smith , T. Conley (trans.), University of

Minnesota Press, 2003.

channel
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figure 81. The basic anatomy of a marker and a
channel.

The Diagram framework, in this work, synthesizes many of the technologies

described above to generate a canvas on which unsynchronized or uncoupled

processes, perhaps action-selection systems or perceptual traces, can mark and

out of which new figuration, here a new temporal patterning, can be found. It is

simultaneously a loosening of techniques like the c5 action-group, hierarchical

scene-graph-based graphics and the pose-graph motor system and an opportu-

nity for more direct temporal specification.

There are two extremely minimal core elements to the Diagram framework: the

channel and the marker. A marker is an object with a time and duration with

respect to some time-base. A channel is an set of markers, ordered by onset

time that shares a time-base with its markers. A channel has a unique channel

context - that is, a part of a local context-tree that is associated with the Dia-

gram system. All diagram system storage is local with respect to this context

tree, thus all marker creation, modification and deletion is potentially specula-

tive. Markers are always part of one and only one channel.

This micro-structure is generic enough to permit the re-expression of many of

the data structures seen thus far. This channel / marker structure is a minimal

subset of the representation behind the generic radial-basis channel, and behind

the visual elements laid out in a sheet in Fluid, it will become our instantiated

action, and our scheduled pose in the pose-graph motor system.

The first layer of Diagram focuses on building channels and markers extremely

well. In particular it is occupied by building notification mechanisms (for the

addition, change and deletion of markers) with respect to whole channels or

individual markers. These notification chains support batching and event coa-

lescing, page 275, and form the basis of the efficiency and efficacy of the algo-
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rithms that use these channels. Both channels and markers are mutable, but can

provide immutable views as well as views onto windows of time or segments.

A detailed discussion of these inner details here would be unmotivated, so we

will wait until the uses of the framework come into focus in making Loops Score

before describing the implementation aspects. The goal for the Diagram system

is not to provide another action selection algorithm (although we shall see one,

page 251), nor another perceptual framework (although, page 259), nor a re-

placement for the pose-graph motor system (although, by the time we see the

Fluid environment Diagram will have turned the pose-graph inside out, page

349). Part of the goal is to simply re-articulate the previous structures in a form

that reduces the barrier for interaction between them. But in doing so I will

present a new "recomposition" of action and motor patterning. The goal is to

build a support structure around these algorithms that extends their power,

specifically in the realm of supporting complex temporal patterning, specifically

for the use of the agent metaphor in time-based art. It renders explicit, indeed 249

graphic, what was previously implicitly hidden in action system initialization

code, the trace of execution through a motor system or the pattern of activation

in a perception system. It allows the re-coupling of algorithmic processes that

cut across systems and algorithms in the temporal domain.

Some principles, however, guide the development of the Diagram-based works

and the uses to which we put the channels and markers - Loops Score, how

long..., and to a lesser extent 22, ImageryforJeux Deux and The Music Creatures

(which developed an older version of this Diagram work).

These principles are:

marker manipulation should be reversible and inspectable - we shall see

algorithms for marker production (essentially nothing more than produc-

tion systems implemented with an explicit time axis) and manipulation,



but very little information is ever irreversibly removed or irretrievably hid-

den in any of these manipulations. Rather than translating a marker by

overwriting its position, a relationship is set up and maintained that ac-

tively moves a marker to the left. This relationship is added to the channel,

visible in the diagram, inspectable by other processes. Where action-

selection systems allow code to compete for expression, the Diagram sys-

tem additionally allows processes to compete for the modification of ex-

pressed lines or channels. Notification and compression support make

reading and storing (and strategically forgetting relationships) computa-

tionally tenable.

transient, experimental computation - on the other hand, the computa-

tional impact of this agglomerative network of relationships is bounded by

the transient nature of these channels. Often they are only representing

the near future, and at one end there is the present - a scheduler horizon

- and at the other there is an increasing uncertainty about the future - 250

a planning horizon. The detailed relationships are meant to be transient,

compressed and discarded. Slicing channels and modifiable sub-views

onto channels help with writing code that efficiently deals with windowed

portions of time. Context-Tree backed storage allows structural modifica-

tion to channels to be attempted in sub-context, experimentally conducted

only to be effortlessly discarded.

highly accessible - the channel / marker idea would be abstract beyond the

point of utility if it wasn't for the common set of"glue systems" that make

Diagram-like computations fast and allows them all to share a common

language. The idea itself is useless, and in addition not very diagram-like,

should these channels and markers be inaccessible to systems that have

little commitment to the Diagram system. In the work that follows the

channel / marker system is forced into systems by extending the pro-

gramming language, page 242, aggressively finding commonalities between



it and the visual tools (Fluid, page 412), between it and more traditional

computer musical concerns (Loops Score) and between it and the way that

motor systems are structured (Loops Score, page 267). Diagram will blur

the separation between action selection (or more strictly action layout), the

kind of motor sequencing that agents tend to do and the previous working

memory / context-tree "blackboard" that was used as a communicative

glue between systems.

As the description of the work that is based on this kernel continues it should

be more apparent just what it is that is diagram-like about this diagram frame-

work.'Ihe Diagram system's channels become a field, a rapidly receding canvas

where multiple systems leave initially uncoordinated marks in time only to have

their chance-like relationships enforced, reorganized or reshaped by other proc-

esses that induce patterns out of them and their histories.

251
Action selection in the Diagram framework

Diagram, as described up until this point, is missing a key part of the action

system story - an action-selection strategy. While we would be free to take a c5

implementation of action-tuples and have its actions mark channels, it should

be clear that this algorithm isn't quite taking full advantage of the channel /

marker representation. Firstly, this approach knows little and says less about any

time other than the present. Secondly, it doesn't then open up its action selec-

tion to external modification - its action-selection results are neither reversible

or inspectable. Thirdly, at the core of c5, as it is typically deployed, is an as-

sumption that there is only one, always one and exactly one active action at any

time. Of course, creatures constructed with this approach are free to have mul-

tiple c5 action groups operating in parallel - and we have seen such creatures

in alphaWolf and even the colony as a whole in Loops - but in Diagram we are

particularly interested in this problem of multiple action selection in order for



c43/c5

c5 + Diagram

figure 82. The action-tuple is split up into two
parts, a trigger factory and an produced action.

these multiple actions to be coordinated. Specifically, it isn't clear that delegating

multiple action selection to multiple independent and continually overlapping

groups isn't simply deferring a problem of coordination rather than solving it.

My approach is to disassemble the c43/c5 + action-tuple organization and then

reassemble it in a slightly different order, ultimately exposing its internals as a

diagram-like representation.

While the action-tuple is a convenient shape to draw and a convenient chunk to

think about we will have to split it into two to prepare it for multiple simultane-

ous actions (additionally, in the overview of c43/c5 we already saw that an

action-tuple had to expose its .trigger() .value() and .doWhile() methods sepa-

rately. The unity of the action-tuple is clearly already under attack).

The trigger becomes, in addition to the place where we obtain the instantaneous

relevance and expected value for the action, the factory for the action payload
- an object that, when asked, is capable of producing an action which then

exists independently of the trigger. This formalizes the split described above-

although many factories and payloads collaborate after creation - and it allows

triggers to effectively"group"parametric actions together and possibly instanti-

ate multiple versions of them simultaneously, or even just one after another.

The second modification to c43/c5 is to explicitly allow multiple simultaneous

actions - assuming the trigger factories are willing to allow it. We define an-

other object that represents the action budget - the number of simultaneous

actions that this action group is willing to maintain. With the help of this ob-

ject, the core c43/c5 proceeds as normal - the central heuristic of only select-

ing actions when the action-group's triggers and do-whiles have changed both

significantly and relevantly remains, only here an action selection may result in

an action-tuple being added to the active set rather than replacing it, or the out-
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figure 83. The trigger factories schedule
produced actions into a channel which is then

read out over time to execute the actions.

going, loosing action being deleted from the active set according to the demands

of the action budget.

The final twist is to both store and present the results of the action-selection

strategy in a publicly accessible channel. Running actions are markers, triggers

produce markers when they are selected for. Indeed triggers do not simply in-

stantiate actions, they schedule actions by writing into the channel, and are free

to place the results of their winning selection in the future. All storage con-

cerning whether an action is or is not active - in particular, for the purposes of

maintaining this"budget" of multiple actions - is maintained with respect to

this channel, and a number of other, auxiliary and independent processes can

act on this channel without fear of disturbing the action-selection process.

These processes fine-tune, realign, filter, recombine and even delete the sched-

uled actions.

Many of the subtle timing and organization issues of the c43/c5 selection algo-

rithm either evaporate or become explicit and visualizable rather than implicit.

Through the trigger / action split we have made explicit the possibilities for ac-

tions to participate in more than one group and now have a focused location for

more complex cross inhibition. Through the open channel / marker representa-

tion, temporal coordinations that would have to be implicitly coaxed out of the

temporal dynamics of the triggers and do-whiles can now be specified as quite

self-contained processes orthogonal to action selection itself - and we shall see

many examples of processes that cut across the results of action selection, clean

them up and constrain their relationships.

These post-selection modifications need not be kept strictly downstream of the

trigger instantiations - by pushing all of the action-selection and budget stor-

age into the context-tree we can even allow for speculatively executed, page 231,

action selection, and more usefully, action instantiation. An example: triggers
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THE C5 + DIAGRAM ACTION SELECTION ALGORITHM

state (all state marked @dynamic)

startles - a set of action triggers that get special privilege to interrupt others.

trigers - a set of action triggers inside this group.

lastValues - a mapping from tuple to real number

budget - an object that will handle the balancing of the action budget and hold the"list"

of current actions

algorithm

if the maximum tuple.expectedValueOf() over all of stardes is greater than zero then

nextOffr becomes the

greatest of these.

- otherwise,

construct the new map nextValues[rigger] = triger.expectedValueOf() for all triggers

if any trigger has nextValue[trigger]>kistValues[trigger] and

nextValuefrigger] > 2* min(budgetcurrentlyActiveo) then select a new action

if budgetisUnbalencedo then select a new action

- if we need to select a new action:

if all of nextValues[...]= 0 then nothing is done

- otherwise,

sample nextOffer from a normalized version of nextValues(...]

success = budgetoffer(nedOfer)

- if success:

ntOfer.instantitate()

and set lastValues{ ... ]= nextValues[...)

can retract their instantiated actions, "unscheduling" them from the channel.

They might do this because, after the application of the processes that would

clean up the scheduling of actions in the channel, some condition is not true.

The only signal propagation out of this speculative execution "closure" is the the

trace that the trigger should not attempt to re-fire.

Finally, by creating a persistent trace of the action execution, we formalize some

of the ad hoc nature of the deferred credit assignment that we found necessary

for trainable characters, page 87 (a direct use of this flexibility, page 343); one can

imagine other processes scavenging inputs from the history of execution - the

channel of markers past.

In general, this c5 / channel actions selection system, together with a battery of

post-selection filtration and manipulation processes, can be read as hybridizing

a reactive approach to action selection with something that might seem more

"deliberative". Indeed, in the separation that coincides with the interactionist /

classical AI division, both sides of this debate have constructed systems with

impoverished vocabularies concerning the patterning of time. Reactive archi-

tectures, even more so than pure c5, allow the precise temporal patterns to

emerge out of the interaction of tens or hundreds of elements - while tech-

niques to control the speed with which these systems change their selection

often earn them places towards my "low temporal complexity" and"low tempo-

ral uncertainty" axes, precise and certain control over patterning can become a

quite complex affair. On the other hand, classical Al systems - which can have

strong symbolic representations of time, and allow sequencing and planning -

have had relationships with "real-time" that are often tenuous at best. The c5 /

channel action selection technique combines a reactive, an interactive, action

selection algorithm with a short window where the temporal patterning

strengths of deliberation,"planning" and sequencing can be brought to bear.
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Although it should be clear that, at least in principle, the availability of post-

selection, ad hoc filtering processes increases the both expressive range of action-

selection within the c5 toolkit and the vocabulary available to the agent author

for articulating that range, it is worth pausing to review what such an extended

action-selection algorithm might have meant for the alphaWolf project. The

Diagram framework explicitly treats many of the problems that caused pro-

found complexity in the creation of both the action systems of the wolf-pups

and its interface to the motor systems.

Firstly it is important to realize that a pup action system is in fact an example of

a multiple, parallel action system - each consists of an "attention" action group

and a "main" action group. However, while the execution number and order of

these units are fixed by the limits of the toolkit at that time (the attention group

always runs first, and both groups only select once), the order that makes sense

for the problem that the behavior designer is trying to solve changes depending

on the part of the interaction being authored. Sometimes what the pup should 255

pay attention to is limited by the action that the wolf pup is performing (e.g. it

should look at the thing that it is fighting); at other times the actions that ought

to be performed are constrained by the object of attention (e.g. the pup can't

fight a navigational marker on the ground supplied by the person directing the

pup). What raises the stakes of the problem is the paucity of ways in which

these two groups can be coupled - the first group to happen to make a deci-

sion gets priority and one ends up fighting against the protection against dith-

ering inherent in c5 - the mechanisms to bias the rolls of the dice of these

action groups are misused to ensure that the right set of dice gets rolled first.

This is the spindle around which the complexity of figure 26, page 96, weaves

itself.

In Diagram the coupling is much more easily expressed as a filtration process on

the results of a single, much simpler action group. Weights or biases on the trig-



gers of actions remain just that - gone are the additional triggers that ma-

nipulate what group of actions get a chance to select. A scan of the ultimate

behavior system file deployed in alphaWolf shows that, in the absence of short-

circuiting triggers that act in this fashion, the complexity of the action selection

process, as measured by the number of triggers connected to all action tuples,

reduces by 60%. Additionally, it appears that several action tuples, that act as

silent placeholders for actions that subsume control over both groups, would

disappear entirely.

Secondly, and more speculatively, are the other hypothetical simplifications that

Diagram could have offered the designers of alphaWof. Most significant is the

ability for the channel mechanism to represent, schedule and revoke sequences

of actions. As I have stated, page 98, the creation of chains of actions and the

deferral of actions while others run seemed fundamentally difficult in alphaWolf

- difficult to both express, and to express without damaging the action-group's

ability to prevent dithering. Sequences where pups explore their environment, 256

by moving between random locations; where adults move away from the pack

only to return later; and indeed the primary interaction of moving towards a

pup, fighting it and winning or losing, form the backbone of this kind of direct-

able agent's "scriptability". The deferral of directed escape while being attacked

also suffers from being only indirectly expressible inside the wolf-pup's action

system - a set of triggers that "latch" user interaction can be seen throughout

the code. Finally, it might have been possible to unify the top-most layers of the

wolf-pups' motor system with parts of the action system in a single set of Dia-

gram channels. The patterning of the motor programs of alphaWolf often

reached points of extreme complexity due primarily to the navigational com-

plexity of the environment (the need to move pups towards moving targets). If

both scheduled actions and the resulting motor programs could have "seen" each

other, and more importantly been seen by the navigation system, issues of per-

sistence - either running actions until the pup actually arrived at a point where



interaction could occur or eliminating attention switches made impossible by

the current motor programs - could have been avoided.

While it remains, impossible to verify these claims of the utility of the Diagram

system for the alpha Wolf installation, it is equally clear that if these problems

can arise even in a system in many respects ill-suited for their treatment, it will

not be long before they arise in other works. Indeed, in how long.., and 22 we

shall see ghosts of the complexities of alpha Wolf appear again - "modal" action

systems that move through constrained phases, often patterned by the flow of

time through the work; actions, be they the drawing of lines, or the manipula-

tion of existing graphic elements, that unfold over small, scripted periods of

time; and a general blurring of the boundary between action selection and mo-

tor patterning. Prior to deploying Diagram in earnest in my pieces for live

dance, however, I completed an installation that was very much about the com-

plex and"precise" patterning of time - a live composition, Loops Score.
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Loops Score - live computational music for Loops

b-tracker note producer

long-term note memory

Scripting
(time windows

onto narration)

acoustic narration

wote memory

00 EI 00

note output

virtual piano

figure 84. Loops Score agent overview. Each of these boxes will be
"unpacked" in the main body of the text.

Loops Score is the music that was made to accompany Loops. It was constructed

by analogy with the visuals two years after Loops premiered.Just as Loops con-

structs a set of interacting processes that observe and recast the motion of

Cunningham's hands, Loops Score takes a set of interacting musical processes

that listen to and restate the sound and language of Cunningham's narration.

Cunningham provided a twenty minute recording session, independent of the

motion capture session, consisting of him reading from his 1937 diary - his

first visit as a young man to New York. 'he sonic palette for the work was

found in a high-fidelity sample set provided by the John Cage Foundation of a

prepared piano, prepared in accordance with Cage's instructions accompanying

his sonatas and interludes. By selection, filtration and pitch shifting this pre-

pared piano was turned into set of seven pianos, each with a different, but radi-

cally expanded, timbal range.

Unlike Loops there is a single agent at work in the production, and, in contrast

with The Music Creatures this agent has no visual form and its musical output

comes without virtual movement analogies, but simply as a set notes sent to a

set of virtual pianos. However, Loops Score was a work that continued many of

the technical themes that Loops started, in particular: what it might mean to

score one or more action systems and how might one create a work that navi-

gates alternating layered structures of emergence and control. In particular the

ability to general complex structures in channel / marker representations and

then have competing tasks slice across these channels, organizing and culling

them, is in itself the layer of open emergence and detailed specification.

The Music Creatures was a unique exploration of the possibilities of relation-

ships between the body of an agent, the sound that it makes and the sound that

it understands. But as far a mainstream computer music is concerned this ap-
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peal to virtual physicality was a digression. Loops Score approaches computer

music more directly. Where The Music Creatures have agents with complex

perceptual and motor skills and simple, almost script-like developmental action

systems glued together with a few automatically learned parameters, Loops Score

is on ground more common with the traditions of the interactive music work:

the complexity is in the scoring, and in the interpretation of this score - spe-

cifically the "action system" of the agent. There is, no doubt, a future installation

to be made that has comparable richness in each of the three parts of the agent

decomposition, page 44, but taken together I believe that these works do a good

job of creating a preliminary sketch of that installation's territory.

The open process score

Early in the creation of this piece we rejected the, perhaps rather Cunningham-

esque, idea that the meaning of the words might be technically unrelated to the

processes that act upon the sounds of them, opting instead to find the "process 259

score" for the music out of the text itself. The search was to find structures in

the text that had both musical and linguistic function, that were 'half way' be-

tween forms found in music and forms bearing linguistic meaning. A number of

forms were found, and each form was constructed as a loose template. They

included lists inside the text both large and small; comparisons and spatial re-

lationships; markings of the passage of time; returns to previous locations.

These templates operate on the word level, and one could perhaps imagine given

a robust enough speech-to-text system performing this template-matching in

real time. This was not attempted and not required given the finite and prede-

termined narration, but remains an enticing possibility for future work. Rather,

an analysis of the text of the narration was coupled to sound of the narration

through marking of the onset and offset of each word in the narration. Thus for



each present atom in each instance of each template, we can provide a time pe-

riod this atom is"listening" to the sound of the narration.

Each of these structures, gathered from the text, marks a channel-based script

which opens windows for actions to occur. Actions inside Loops Score are trig-

gered by the presence of narration material inside these windows; in the end

some 150 windows are marked on the score, cross-linked to sixty-five actions.

The vocabulary of possible actions corresponds metaphorically to the kinds of

structures that trigger them: list-actions repeat their triggering elements while

searching for a stable rhythm inside the elements; comparison-actions state

their elements and then emphasize the differences between them; passage-

actions state their first element and then continue to look for material that is

sonically related until the close of their marked passage; return-actions com-

press material from their triggering element all the way back to where they

"came from". The actual programming of these musical cells is constructed using

the manipulations of the marker / channel structure that will be described in 260

the following section. These actions schedule the notes to be played into a chan-

nel which is itself exposed to the actions. Rather than "ballistically" writing the

notes to be played to the scheduler, they opportunistically align, modify and

perhaps even fight for space and relationships "on output"

Since the script is densely packed with overlapping processes, these actions

compete using the action-selection mechanism described above. The budget for

actions is dynamically set based on a smoothed version of the amount of musi-

cal material that eventually makes it out of the agent - providing a long-term,

self-regulatory production.



LooPs SCORE - EXTRACTS FROM THE TRIGGER SCORE-

Febuary 20th, 1937

Saturday

Four hour train trip

One thirty to five thirty

Taxi ride from Macy's Thirty-Six street up to fiftieth street

threw my first glimpse at the great white way

Taft

Victoria filled up

finally nark at hotel Chesterfield

wr -

dump of the first order -w

figure 85.
An extract from the narrative-generated score for Loops Score - narrative on le (or anized loosely by onset time), potential actions on the right

with the "attention windows" that tiese actions listen to.

Eli
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Febuary 22nd, 1937

Monday

Up two hours abase of gang

Walk down broadway

passed empire state building

boy, you sure know its there when you look at that

EDi

F~Li

down park avenue Li
further down towards cast river

getting slummier

all the time

and finally stop

stop, dead end

those three words

tell a whole story

slums, just as pictured

kids playing in the streets

vendors selling wares from carts

mothers yelling from windows

cars missing kids by inches

and the piers of the dead end

ED 2tm3
m 771

wm
w
EIW

LILJ F. -

figure 86.
An extract from the narrative-generated score for Loops Score, continued - the score also contains increases and decreases of target output note

density and probabilistic pauses.

F-J
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bus ride up central park

zoo

playgrounds
art mueseum

more playgrounds

finally up lenox avenue to hadrem

columbia university

savoy, the home of sweet romance

and finally

166 street

then back
again

F,141
_ f~F_ HI

and so I bid new york goodbye

but not for long-

post

An extract from the narrative-generated score for Loops Scor
played is made available to the processes in the next iter

gure 87.
con inued - upon ending, the score loops. However, the memory of the notes

tion, allowing actions to trigger in advance of all of their attention windows.
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For what I believe to be the state of the art in
this problem, A. T. Cemgil, Bayesian Music
Transcription, PhD dissertation, Radboud

University of Nijmegen, 2004.

One of the earliest score followers used
unstructured audio: B. Vercoe, M. Puckette.

Synthetic Rehearsal: Training the Synthetic Performer.
Proceedings of the 1985 International

Computer Music Conference. San Francisco:
Computer Music Association, 1985.

This pitch tracker is an implementation of the
lightweight voice-pitch tracker:

L. K. Saul, D. D. Lee, C. L. Isbell, Y. LeCun, Real
time voice processing with audiovisual feedback : toward

autonomous agents with perfect pitch, Advances in
Neural Information Processing Systems 15.

NIPS 2002.

Thus, the agent of Loops Score exists in a perceptual world dominated by the

sound of the narration annotated by this script. The perception system here

transforms the audio into a series of overlapping note events. And we find our-

selves again in a problem domain half way between that of music and that of

speech. The conversion of raw unstructured audio to quantized notes is a

problem that has, of course, received considerable attention - it is in essence

the inverse problem to the forward task of synthesizing sound from a score.

And, particularly in monophonic worlds, solving this problem is often an im-

portant initial step in interactive music systems. However we are in an adjacent

but different domain here - converting speech rather than music to musical

notes - a less grounded domain. The coarsest version of this problem might

be the extraction of prosodic contour and the segmentation of voiced and un-

voiced parts of speech and this too has received some attention. Our goal then

is more musical detail than that afforded by speech-based approaches, and less

musical fidelity to a ground-truth with a more complex input than polyphonic

music-based approaches.

Because of our need for musical accuracy we forsake the simplicities of a pure-

monophonic pitch tracking-solution. We recast this perception problem as a as

a tracking problem, tracking peaks on successive overlapping Fourier transform

frames, seeding our b-tracker ongoing model population with the results of a

lightweight monophonic pitch follower. We use the b-tracker perceptual

framework to track these peaks and convert them into musical "notes.

To use the b-tracker framework we need to supply the following underlying

process details: individual tracking hypotheses are represented as individual

frequencies F with frequency"velocities" Pv and amplitudes; they predict that

the next Fourier frame will contain a strong peak at the same frequency, and a
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that cotton club dinner was good and the show was a knock-out

figure 88.The notes created (grey) and
filtered (red) from the b-tracker analysis

of the short-time Fourier transform
windows from Cunninghams's narration.

frequency one Fourier bin higher P + R + Fv and one bin lower F - R + Fv ;

thus the untrimmed branching factor of the forward search is three. Successive

Fourier frames are overlapped by a factor of four, to provide precise frequency

information in the case that only one frequency is present in a bin. In the case

that multiple frequencies move in and out of a bin we'd expect the kind of

crossing hypotheses that can be disambiguated with the frequency velocity in-

formation. The monophonic pitch tracker constantly seeds the tracker with

hypotheses at its output pitch, should it determine that voiced speech is actually

taking place.

Once a hypothesis has survived the culling process of the b-tracker for four

successive frames (four frames overlap a single location), it has the opportunity

to emit a note. To do this we need to convert the pitch history of the hypothesis

to a musical note. Since we have no underlying pitch grid from the underlying

sonic material we have to adapt one as we move along. We can represent this

pitch grid as a set of hypotheses that get adapted by the pitches emitted by the

lower level tracker.

Setting the size of the bins to be multiplicative increments of I/12 gives us a

adaptive chromatic scale. Choosing larger increments gives us access to poten-
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tially interesting hybrid modes - modes because the scale is typically quantized

more coarsely than a full evenly-tempered chromatic scale, hybrid because the

locally coarse quantization grids are allowed to be globally misaligned. This

increment, and the speed of adaptation / forgetting in this layer are free pa-

rameters. And in a few places the score forces a flushing of this memory - a

modal break accompanies the change of day in the narration. This granularity is

easily expressed as a"cleanup" process on the ongoing model stage of this b-

tracker implementation, page 189.

These hypotheses, labeled with note values, amplitudes, and ultimately with

durations, are the "output" of the perceptual layer of the Loops Score agent.

These hypotheses are injected into a short-term memory (of around five sec-

onds), which maintains the full merge histories of the hypotheses and a long

term-memory (of around thirty minutes, twice the duration of the underling

narration) which maintains just enough information to write a musical score.

This resulting post-perceptual surface is thus easily presented in the channel /

marker representation. This is the raw musical material that triggers and enters

the actions of Loops Score and my discussion will now turn to how the raw algo-

rithmic material of these actions are constructed. These materials, although in-

troduced here in a "computer music" use are all specific only to the marker /

channel representation and the fundamental support that Diagram offers -

they are of music, but not musical themselves. They form the basis for the odd

"musicality" of movement and interaction that I have sought in my dance pieces

and beyond.

figure 89. The diagram
visualizer (which showed

alongside Loops and Loops Score
in a separate, synchronized

interactive kiosk). These
images are quite literally the

markers and channels
generating the music.
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Generator stacks

channel

tO I t I t2

generator i

inextO - @ time to

Lnext( )- @timet,

inext() - @ time tj

Lnexto @ time t 2

figure 90. Converting between channels and
generators is easy. Here a generator reads out

a channel in order.

The most important is a diagram channel generator - this is an extension of

the co-routine / resource framework introduced for The Music Creatures, page

156. In that work the framework was constructed to allow small imperative pro-

grams to run concurrently while allowing cross-program interaction and de-

pendency in the shape of resources. Typically, these small programs got one

chance to execute (or "update(...)") per update cycle of the music creature in

which they were embedded. Here we allow our co-routines to "return" a se-

quential series of diagram channel markers, and move programs forward not

once per update cycle but until the markers that they start returning reach a

certain point in the future. These programs are responsible for keeping the

diagram channels' description of the future filled up and are called upon to gen-

erate more material, if they can, when they are needed.

Musical material generating processes, both simple and complex, can be written

inside this style. For example (this time in Python, the Java is similar to the co-

routines previously discussed):

def scale(start, step):

n=start

while true:

n = n + step

yield noteMarkerFor(n, quarterNote(n))

produces an ascending chromatic scale. Parallel and series composition of proc-

esses are achieved using the same kinds of continuation-composition that the

co-routine / resource framework already allow.

def contrary-motiono:

yield parallel( (scale(0,1), scale(100,-1))

Clearly, we can turn channels into generators quite simply (this generator is
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nothing more than sorted channel marker iterator), and we can turn generators

into (potentially infinite) channels through rendering out the markers that ap-

pear from the generator until a sufficient time in the future is reached. Nothing

prevents generators from returning markers that do not increase in time along

the channel, although such a practice is discouraged."Flattening" generators can

be applied to processes that cannot produce their output in time order, with

increasing levels of latency (i.e decreasing levels of minimum future) being in-

troduced for increasing levels of safety.

Generators and channels are complementary: generator-level composition is

particularly good at producing memory and time-efficient processing of action-

level musical manipulation; channel-level manipulations are good at producing

transformations that cut across many channels or many time epochs and are

suitable for memories and intermediate buffers.

The goal was to create from such a language framework a system that allowed 268

the rapid development of incremental, real-time musical processes that contain

as little latency as is needed to maintain their computational integrity inside a

dynamic environment but no less - a system that blends the interactivity of

reactive systems and the complex multi-temporal scheduling and planning of

material that more deliberative systems achieve.

To flesh out the description of how this framework was used for Loops Score,

we need to give some kind of overview of both generator-and channel-level ma-

nipulators from which the actions of the agent were created. Since, as pre-

miered, Loops Score used thirty-five primitive generators, eight channel ma-

nipulators together to make three versions (each a generator) of each of the four

sub-linguistic templates described above, we should group these generators and

manipulations together into some kind of taxonomy.



Generator-level operations - the abstract balance

An abstract balance is a generator-level Diagram facility that takes a channel

that is having markers added to it and filters these events such that a target

event rate is met - it requires that something, perhaps the markers themselves,

can provide a scalar value for a marker. We have seen something similar, but less

dynamic, in the persistent long-term learning of The Music Creatures, page 143.

The task is to find some horizontal partitioning cut-off for a channel such that

the rate is maintained if markers that are "bigger" that this cut-off. If we have a

sorted list of N markers mn in the source channel we place the cut-off Ca,N

that lets the top x fraction through at position aN or, more accurately:

Ca,N = m [aNJ (1 - aN + LaNJ) +maN] (aN - [aNJ )

In practice the distribution of marker-values isn't necessarily stationary. Han-

dling arbitrary non-stationarities is, of course, arbitrarily hard. The following 269

gives a variable forward momentum generated by recent history:

C'a, N, = Ca,N + (Ca,N/2 - Ca,N)P

for P > 1 this extrapolates out how the cut-off is changing with time. It's easy

to modify this approach further to prefer more pessimistic or optimistic (or

rather high-value or low-value) extrapolations.

The balances can turn a channel of valued-markers, which might represent ac-

tions or perceptual events, into event streams with particular general rates. Of-

ten, it seems, it is easy to come up with a good metric for perceptual events, but

much harder to understand how this metric transforms the underlying tempo-

ral behavior of what it applied to. Without these indirect connections, such as

the abstract-balance, one begins to start tuning the metric itself in response to
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figure 91. The abstract balance correctly
adapts its threshold to maintain a very
event similar rate while capturing only

the highest value events.

the temporal dynamics of the material that it is exposed to. That these connec-

tions should be more indirectly, yet more explicitly specified is argued strongly

in the development of The Music Creatures, page 175. Such a blurring of princi-

ple (the metric) and pragmatic deployment (what it happens to be used on) is a

generally unacceptable level of coupling between two parts of a system and is

often how a commitment to a particular input or processing of input gets buried

deep within a system that consumes it.
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The complete abstract balance has two more parameters - a maximum latency

and a minimum refractory period. The first controls the "look-ahead" window

size and controls how far back in time the generator will be returning events.

High latency will allow a better tracking of the target rate on highly non-

stationary input. A minimum refractory period blocks events from being gener-

ated too close together, and, further, masks these events in the memory (the

sorted array above) such that they do not feature in the computation of the

threshold.

Generator-level operations -filtration / perceptual partial re-tracking

figure 92. A fragment from the short term
memory of the Loops Score agent "re-tracked" by

a new b-tracker process, segmented into three
registers, corresponding to three b-tracker

hypotheses. Note that no constant
segmentation threshold would give this result.

Another generator-level manipulation of the musical material captured from

the transformation of Cunningham's narration is the perceptual stream tracker.

This layers another level of the b-tracker framework on top of the musical ma-

terial - a much coarser level than the original partial analysis was conducted

on - that produces a number of generator streams of material. Each b-tracker

hypothesis is a perceptual stream - a pitch value, and a pitch momentum. Al-

though a number of attempts at musical perceptual stream segmentation are

present in the literature, the existence of the b-tracker framework makes the

implementation of another perceptual stream follower almost as simple as fill-

ing out a form: a hypothesis representation (pitch, pitch momentum) = (p, M) ,

a distance metric between hypothesis and pitch class datum d p+m - d , a

hypothesis predictor p <- p + m, m +- am . Now further generator-level ma-

nipulations can be performed on the lower (the lowest good hypothesis) and

upper (the highest good hypothesis) lines of the transformed material.
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Channel-level operations - the rolling culler

bd' I

One simple, but ubiquitous channel-level manipulation is the rolling culler.

'his manipulation can be put to two uses, the first is to incrementally remove

from a channel markers that have fallen past a particular time horizon, freeing

up the space allocated to them and allowing the channel's memory to forget

them. The second use for this rolling structure is to read out, according to some

time-base the contents of the channel - like reading a score, (or playing a Fluid

score, page 393) - by intersecting the time-base interval between updates with

the contents of the channel. This is, therefore, one way of turning a fully laid-

out channel into a marker generator. Rolling cullers are used to run the Dia-

gram framework into a scheduler of music (with note events as markers) or an

organizer of movement (with pose-graph or other instructions as markers).
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figure 93. The rolling culler is responsible for
the past "forgetting" of markers in channels. It

correctly handles both variable update rates and
moving markers.
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Channel-level operations - the fusionfilter

figure 94. Three example fusion filters take
from the text.

In Loops Score, Diagram markers represent actions, planned out in time, that

when traversed by the moment, result in notes being played, or parameters

being set. The abstract balances are ways of culling sets of actions, based on

criteria - metrics of value - thinning them out to a particular rate. There are

other ways of thinning actions, that are more important if these channels are

going to be coupled with other channels.

As a representation of future, scheduled actions, the Diagram marker channel

appears to notate a case where actions are independent and that, baring any

constraints, markers can be swapped or dropped independently. What if actions

remained atomic, but were able to form molecules inside their channels?

A Diagram fusion filter takes a perspective onto the markers in a channel and

looks for patterns that fit templates that, once matched, cause the replacement

of the components with a new marker or markers. If we can find a succinct way

of specifying these channel "chemistries" then they offer a powerful way of fil-

tering or developing channel contents.

We can write production templates for perceptual phenomena:

forward masking: Italoud + lto+Aquiet -+ Itoloud

backward masking: |toquiet + to+Aloud - to+Aloud

local quantization cleanup: Itoc# Ito+Ac# - Ito+A/2c#

On the left-hand side there is a template to be matched - certain markers with

certain properties with a particular temporal relationship (and in particular,

within a certain window of time); on the right hand side are the markers pro-

duced. This notation is not complete - it does not specify whether intervening

markers are either ignored or prevent the match from occurring.

1273



For example, the C.L. Forgy, Rete: A Fast
Algorithmfor the Many Pattern/Many Object Pattern

Match Problem, Artificial Intelligence, 19, 1982
continues to have new implementers today:

http://drools.org/Rete

The use of production systems per se in
generative computer music is a little more

ephemeral.

Programmatically we are free to construct these windowed template recognizers

a number of ways and many recognizers are simply coded "by hand". We shall

see later a less general, but more compact notation for describing these tem-

plates, page 278.

There are other abstract production calculi that are useful to define in general.

One models a species of marker whose action is to set a variable to a value:

redundancy deletion: [Ito(x +- a)+ Ito+,o(x <- b)+Ito+A (x +- a)] -> |t0(x +- a)

for: Va, b

Such filters, applied over short windows, remove transient values that are set

and then unset from a stream.

Such techniques fall very firmly within the domain of production systems and,

as written, their use in either AI is far from new. However, in important previ-

ous uses of production rules in AI the goal has been to create a complete sys-

tem using this structure - essentially recasting the complete action selection

and / or motor system problem in terms of competing or ordered production

rule systems. In the framework here, the production system is not the material

from which other system are constructed, rather they available to other struc-

tures and representation. What is different here is the strategy not the tactics,

the framework that this idea is embedded in and the principles that govern its

deployment.

reversible, live and aware of time- no production rule deletes any mate-

rial, even if it appears to "consume" its triggering markers, these markers

remain in the channel (annotated as "consumed") and linked to the mate-

rial that they produced and the production rule that coordinated it. This

allows two important flexibilities: firstly, production rules that have fired

are updated live when the details of their left hand sides are updated;
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NOTIFICATION INSIDE THE DIAGRAM FRAMEWORK

The batching of notifications is one form of deferred method execution. Rather than, say,

the addition of a marker to a channel causing the notification of every system interested

in that channel we allow modifications to channels to be bracketed by calls to begin-

Modification() and endModificationo. Only at endModification() are notifications

propagated (calls can be safely nested). One thing that is important to get correct in this

implementation is how structural modifications - deletions and additions - should be

handled. Many processes that execute on modifications are much easier to code if notifi-

cations are delayed until not only the addition of a marker to a channel has taken place,

but the marker has finished having its attributes set and its relationship with other mark-

ers configured. Batching as written above, achieves this delay.

However, for deletion of markers the issue is a little trickier. Again, consumers of

notifications typically want to be informed of the impending deletion of a marker

before the actual removal of the marker takes place, for it might have information

stored with respect to the markers role in the channel. If these consumers only hear

about the deletion after the marker's information has been deleted then they must be

written to maintain a copy of all of that information. Maintaining this duplicate

information, in turn, places a heavier burden on the notification mechanisms. So

rather we make it easy to place the final removal of markers at endModificationo

time - there is a removeAtEndModification(marker). 'Ibis defers final deletion until

notifications have had a chance to act.

Finally, deletions need to be fused in the notification batch with any additions that

take place to short-circuit notification cascades for markers that are added-changed-

deleted or changed-deleted in one single batch. Ironically, such fusion of method calls

would be an ideal use of the channel based fusion filters, were those filters not being

constructed out of the use of this very notification mechanism.

secondly, production rules can choose to "un-fire" and delete their right-

hand side should their conditions for acting cease to exist. This fluidity is

vital in the case where the contents of the two sides of the production rule

vary continuously, which is the case since the marker temporal positions

are continuous, unlike the typical symbolic-level AI production systems.

a domain of low computational complexity - although in general even a

carefully ordered set of production rules can become computationally

burdensome (and a non-ordered set can, of course, run forever) we note

that in most cases there are a number of factors on our side: the rules are

not being used to structure particularly deep or broad computation -
they are for cleaning, recognizing and embellishing small amounts of in-

crementally specified material, more complex computations can be

achieved by other means; the computation is limited by the present time

in one direction and by a configurable time horizon on the other - there

is little point computing things far before the present, and far in the future

can wait.

The computational difficulties that remain are ameliorated by careful

batching of the notifications that cascade out from a channel when it is

modified. Indeed, the batching of notifications becomes vital for keeping

the whole Diagram system working at high speed.

high availability - one or more fusion filters can be attached to any chan-

nel; however, because these filters are often used to filter executable mark-

ers they are particularly useful for channels which represent destinations

for deferred method calls. This is of such general applicability that we add

to the context-tree annotation library for Java a new annotation tag (that

triggers load time byte-code injection):

@deferlntoChannel(dranneDescription, parmeterDescription)

this tag marks a method (which must return void) as being deferred into
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figure 95. By an intricate network of notifications, fusion filters are happy to collabo-

rate with changing marker inputs, changing their output positions or attributes, or

ultimately retracting their products altogether. The relationship is bidirectional.

a channel. Calling this method no longer results in the method body

being executed; rather, a marker that will execute the method body is

created and inserted into the channel at a particular time in the future.

channelDescription points to a class that describes how to find the channel

in question and the channel's time-base (this is typically either from the

context tree or from a fields in this instance). parameterDescription points

to a class that describes how to take the parameters to this method and

transform them into attributes on the marker - attributes that will

presumably be read and matched by fusion filters and other channel-

level manipulations.

Fusion filters and @deferlntoChannel are the basis for an important part of my

tool"Fluid". When visual elements (which can be though of as actions) are

activated by multiple processes (which can be thought of as action-groups) we

would like them to continue to see a stable life-cycle transition - starto, con-

tinueo, stop() and always in that order- despite multiple processes, spread

throughout the code-base, starting them, continuing them and stopping them

without coordination. The solution is to defer these start(, continueo and

stop() calls into a channel and have a fusion filter clean up the overlapping

messages into a diagram that expresses whether the action is in fact running or

not.

It start + tcontinue --+|tocontinue

to stop + tocontinue -+ Itocontinue

to start+ Itostop --+ Itostart

If some latency in stopping and starting actions is acceptable we can elide

stops and starts that occur too closely together into unbroken "continues":

Ito Stop + Ito+Astart -* Io-ro+Acontinue
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This is useful, perhaps even vital, in the visual programming case where one

needs to construct visual programs that are robust with respect to infinitesimal

changes of visual element positioning, page 393. Away from the visual environ-

ment this offers a neat and self-contained (with respect to where the logic is

located) solution to the problem of non-reentrant actions having multiple par-

ent action groups. In how long.., there is the weaving agent, page 371, whose "mo-

tor system" is entirely constructed out of such Diagram channels - the motor

actions taken by the creature involve reorganizing a notation of the stage. The

interface between the action system and the motor system evaporates, and only

the programming language - the method call - remains.

Loops score uses fusion filters at a number of levels. Firstly, to further clean the

output of the perceptual abstract balances, implementing coarse perceptual

masking effects (for the processes that benefit from capturing a few strong and

structurally important notes) and removing repeated overlapping notes from

the transformation and sampling of the narrative. Secondly, to propagate, and

more importantly repeat-with-modification, these samples of musical material.

Channel-level operations - modified time view

channel 1

The narration for the Loops Score is not a linear story, but rather a series of

independent fragments, between which there are pauses of random duration.

figure 96. Two channels coupled together ref
other's contents, but present different tempo

- useflul for the compressed memory stru
Lo

The first channel-level manipulation is a simple one - the temporal distortion.
time map This takes a channel and makes a view onto it that has a remapped time. With a

bi-directional time remapping, both the view and the source channel are both

live - markers can be added to either one and appear in the correct place in the

other. Loops Score uses such a channel pair as its primary memory of its out-

lect each putted musical events to compensate for these randomly generated pauses; the
ral views material that falls in the gaps between narratives is stretched or compressed
otures of
ops SCOre. when written and stretched or compressed again when recalled.
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Channel-level operations - continuation momenta

J L..J LJ aJ LJ -J

AxaxxAxaxxAxaxxl

horizon

regular expression: (Ax?a)x?| - |\1
4

(Axa)xx| -|Axa

formatter---

figure 97. An example "continuation momentum"
written using a regular expression.

41

In the fusion filters above I loosely wrote"production equations" such as:

forward masking: Itoloud + to+Aquiet --+ Itloud

We can code the recognizers (the left-hand side) and the producers (the right-

hand side) by any means. The only constraints are that the recognizers must

work incrementally - in response to batched notification updates from the

channels - and producers should work non-destructively and reversibly -

installing the request notification inside the source markers to maintain their

relationship should their source markers change, or delete the production

should their source markers be removed. However, for the sake of quick ex-

perimentation and tuning if nothing else, sometimes it is more conceptually

useful to appeal to an intermediate and less general notation - particularly in

the case of rhythmic cell generators.

So I will define a smaller set of channel listeners, which I will call channel mo-

menta. These classes are responsible for taking the contents of a channel and

continuing it out a little further in time. They are useful for maintaining a met-

rical grid, repeating otherwise idiomatic phrases for the purposes of proto-

rhythmic structures. In how long.., they are ways of injecting regularity into the

movements of an agent (accumulation, page 349) without either choice or rigid

duplication. In Loops Score they are responsible for continuing a motif such that

other processes can effect the repeated gesture. Their left-hand side is always

bounded by a temporal horizon (the "long past") of fixed size or number of ele-

ments and by the last element in the channel (the "now"). This window contains

the pattern that is to be matched by the channel momentum object.
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In this work I was assisted greatly by the open
source regular expression engine that ships with

Java 1.5 - http://java.sun.com

Of course, there is one pattern-matching domain where mainstream computer

science can give us a significant head-start - so called"regular expression"

matching. Thus there is an intermediate subspecies of fusion filter acts on an-

notated strings using an extended regular expression library. If we can produce

a channel parser that takes a windowed area of a channel and transduces the

markers and the gaps between markers into strings of annotated characters,

then we can formulate our production rules in terms of regular expressions.

Most regular expressions (and all regular expression engines) match portions of

strings of characters using expression encoded in other strings. In Diagram, the

target characters are annotated with information connecting them to the mark-

ers, or the spaces that created them. These annotations do not affect the

matching power of the regular expression, but they do follow their characters

along for the ride. Produced markers can then be created in terms of the "cap-

tured groups" (strings of now annotated characters) of the template regular

expressions by channelformatters which have an opposite role to channel pars-

ers, turning these marker-annotated characters into new markers in the future

of the channel.

Channel-level operations - opportunistic alignment

Adobe Systems Inc - http://www.adobe.com/illustrator

Apple Computer, Inc - http:// www.apple.com/keynote

Most of the channel manipulations described above cut across multiple times

on the same channel. There is an important class of channel manipulations that

link markers across channels, typically markers that are temporally proximate.

Of most use in Loops Score are the alignment manipulations. These take the

markers in a source channel and try to make the markers in a target channel

line up. At first blush, this is is not too dissimilar to the object-based alignment

of popular graphical tools (such as Adobe Illustrator or Apple Keynote ).
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processes try to keep the contents of
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The fastest implementation is the most obvious: specifically, when a pair of

source/target markers fall close together in time, we change the location of the

target marker to align with the destination marker.

However, again, we return to the principles of the Diagram system. In particu-

lar, these alignments should be reversible and live. The key to maintaining these

principles is to store the the marker positions in a framework that blends multi-

ple, overlapping and persistent opinions about what a position should be. We

have already seen one such framework - the generic radial-basis channel. Spe-

cifically, we create a class of marker that stores its position and duration in a

generic radial-basis channel, page 152, that has a (position, duration) value repre-

m__
Li Lj L _i
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sentation. Now we can re-implement the above example. Rather than setting

the location of the target marker to be the position of the destination marker we

create a posting that expresses and maintains the constraint that the target

marker should be the same as the source marker, whatever that value should be.

Now external processes are free to move the source marker around and our

pinned target marker will follow - therefore, we should also express the con-

ditions in which the constraint is violated and "removed" (contributing to the

radial-basis channel with zero weight). This makes the alignment reversible (no

information is deleted) and live (the operation is actively maintained).

Such alignments are extensively used throughout Loops Score to manage and

reduce the otherwise chaotic rhythmic complexity that otherwise comes from a

number of independent musical processes taking musical material and subject-

ing them to repeated transformation. Indeed the alignment of markers before

transmission to the virtual piano is the central source of rhythmic arbitration at

the output"stage" of the agent. Unlike standard rhythmic quantization there is 281

no global grid imposed upon the output, but a local complexity limit for the

temporal patterning.

Four extensions make this alignment more useful and more detailed for musical

purposes. Firstly, when aligning with extremely sparse channels one might wish

to use a fusion filter to generate virtual markers "between" sparse markers. In

our graphical tool metaphor this is equivalent to aligning not just to the edges of

the page, but to the center as well. Secondly, we might choose to find the tempo-

ral distortion for un-aligned markers in terms of the nearby aligned markers.

For the purposes of efficiency Loops Score uses a simple linear blend for un-

aligned markers that fall between their nearest aligned markers; Imageryforjeux

Deux uses a a radial-basis function solution after a straight line fit to couple the

note-level channel output of a score follower to a set of video keyframes.

Thirdly, there is no reason not to make the constraint bi-directional; rather than



forcing the target marker to have the same onset as the source, we force both

markers to the same, intermediate time. This is the technique used in the output

stage of Loops Score (where, additionally, the relative weights on the movement

come from the amplitude of the musical event represented by the markers).

Finally, we note that in the generic radial-basis formulation we can also encode

additional constraints into the positions and durations of the channel - per-

haps some markers must be in the middle of others, often the ordering of mark-

ers are significant and cannot change. This representation will see a much more

use when we discuss the visual counterpart to the channel marker: the Fluid

graphical system.

Concluding remarks

Loops Score is a densely overlapped work of computer music that, like Loops,

moves between areas of shocking clarity - piano mimicking the sound of 282

Cunningham's voice - and periods that are propelled and sustained by its own

obscured but palpable logic. Like The Music Creatures, the piece with its general

strategy of capture and repetition-with-modification, produces clearly percepti-

ble intentional development, a deeply rhythmic movement with no stable pulse

or tonal center. More than The Music Creatures it is an oddly self-balancing yet

unbalanced music, culling the variety of the over-prepared prepared pianos and

often offering slow and audible development of material.

Technically Loops Score set out to be an exploration of the recently created Dia-

gram framework in a setting closer to traditional computer music than The Mu-

sic Creatures. That it offered a thorough "work-out" of the technology at the

lowest level is undeniable - the architecture survives the instantiation and

destruction of tens of thousands of actions and perhaps millions of notes with-

out intervention. The re-coupling of the strategies afforded by this work and a



more visual, perhaps a more "agent-like", set of concerns occurs in the new dance

pieces, in particular the work for how long...

I believe that in this virtual choreographic domain the emphasis, borrowed from

my musical concerns, on the complex patterning of time and the authorship of

rich, open forms in time provides a fresh perspective on the creation of live

time-based media. The Diagram framework successfully hybridizing the reac-

tive, or "interactionist" tendencies of shared by both the agent and mapping

perspectives with the more ponderous and typically off-line strategies of non-

real time and perhaps even non-algorithmic music.

We should step back and return briefly to the axial decomposition of action-

selection techniques discussed earlier, page 89, so see where the diagram frame-

work fits in. Clearly, the Diagram framework core action-selection algorithm

pushes the c43/c5m action strategy into allowing multiple simultaneous ac-

tions. However, as a supporting framework, Diagram also reduces the burden of 283

responsibility on the core selection technique - no longer is it responsible for

all of the high level temporal patterning of an agents actions. No longer is action

selection the final structuring step (with the details to be filled in by a motor

system) in the creating of temporal structures. Rather it is the first step, with

the results of action selection to be further crafted by collaborating processes.

By allowing post-hoc manipulations of future, scheduled actions and interac-

tions, multiple processes that cut across the results of action selection can both

clean up and constrain them. This acts to reduce the "temporal uncertainty"

faced by the author of an agent, while at the same time offering hybrid strate-

gies, orthogonal to action selection, that allow for more complex patterning of

action.

In standing back and surveying Loops Score, the Diagram framework and the

smaller"glue systems" that this chapter has developed, we see that this "complex



patterning of action" - what I might call the choreography of the digital agent's

actions - is in fact the goal of this family of techniques.

The context-tree permits the kind of modularity that defuses one of the central

methodological contradictions of making art with a complex process - how

choices act upon a process that is simultaneously being developed, how the

names of parameters, styles, behaviors, states, movements retain power over the

complex processes without fusing solid the agent's inner workings (and with

them our creative process) prematurely. Through decoupling elements, through

code injection, and through carefully made persistence frameworks, we have

complex processes that can support long-term collaborative practices. I am

tempted to call this the complex patterning of collaboration.

Is this choreographic? The Diagram framework, in its explicit articulation of

action selection and scheduling, makes a computational representation, in the

sense of the introductory chapter - a site for further, agglomerative, transfor- 284

mation, for the collision of processes and constraints. It is these structures that

allow for the small, nimble agents of my work in dance theater.

These "language interventions", the multiple uses of the context tree, the agents

made up of changing parts, the explicit patterning of action in the diagram

framework, all are motivated by the need to author and contain intricate proc-

esses. One cloud remains, however - how to take the techniques developed in

this chapter cast them in such a way that they can truly be deployed "live", as it

were, in a collaborative creative process. This thesis's answer to this will be given

in the last chapter, on Fluid, the graphical environment that responds to this

problem.



This chapter concerns two pieces for dance theater: 22, with Bill
TJones, and how long does the subject linger on the edge of
the volume...? with Trisha Brown. In addition to the unprece-
dented use of real-time motion capture, 22 presents a novel class

of non-photorealistic rendering techniques. how long.., is a more
sustained and lasting work, and most of this chapter is devoted
to its overlapping and interacting agents.

Chapter 7 -22 & how long does the subject linger on the edge of the volume...

Two works for dance theater conclude this thesis - 22, with choreographer/

performer Bill T.Jones; and how long does the subject linger on the edge of the

volume...? with choreographer Trisha Brown.
285

The pieces were constructed during a series of intense, week-long residencies

throughout the two years leading up to their premiere. Given the considerable

expense involved in maintaining a dance company in a theater, and the speed

with which choreographers are able to manipulate the movement of their danc-

ers, there is a considerable responsibility for the digital visual artist to develop a

working style and a working tool-set by which algorithmic"material" is prepared

ahead of time and deployed, tuned and remade live in an improvisatorial setting.

My aim upon entering these collaborations was to find a working area similar to

that of Loops - where the initial algorithmic ideas, the tentative and tactical

"formal systems", should be layered and surrounded in such a way that not only

could they surprise us as visual artists with unexpected correspondences and

developments, but that these surprises could be seized, assured and folded back

into the work and its development. The aesthetics of effort, intention and tran-

sience first developed in my Music Creatures was to be our point of departure



for new agents that caught fragments of motion from the stage. And the tech-

niques, and the very musicality, of Loops Score was to be transported into an

animated realm.

22, an overview

22 is the live imagery created to accompany a new dance work of the same name

by choreographer / performer Bill T.Jones. Like how long.., which was devel-

oped in parallel, this work is for real-time motion capture in front of a live audi-

ence. Unlike how long.., this piece is an improvisation for solo performer, and

although it uses similar processes to understand the movement of the dancer on

the stage, it ultimately represents a strictly simpler use of the agent metaphor.

Therefore, the focus of the discussion here is primarily on the non-

photorealistic rendering techniques developed for this work and, later, secon-

darily on the examples 22 provides for the Fluid graphical environment. 286

22 took, as its point of departure,Jones's ig8os work 21 which combined spo-

ken narrative with a series of 21 poses drawn from magazines, film and everyday

life. In 21, these initially cryptic poses become iconic when purposefully labeled

in a fixed expository sequence early in the work. As Jones begins to speak, tell-

ing stories from his past leading up to the present moment, this fixed sequence

of named poses exists as a parallel medium, sometimes hidden in more dance-

like movement, sometimes surfacing as an almost clock-like circular motor, al-

ways threatening to intersect the meanings of the narrative or disrupt the re-

telling of the story.



The story of the working-class mother feeding her daughter

to her abusive husband also appears in Jones's memoirs -
B. T.Jones, (with P. Gillespie), Last Night On Earth,

Pantheon, 1997.

figure 99. Parts of the work Lifelike began to explore the passage between the

abstract and abstraction - here is a horse figure, based on the decidedly "offline

motion capture" of photography pioneer Eadweard Muybridge, see: E.
Muybridge, Animals in Motion, Dover, 1957.

In 22 the imagery (and the music, by composer Roger Reynolds) enter the work

as another parallel track that can coexist in the same space as the performer's

movement and words and threaten the flow of the other media, only occasion-

ally, but very clearly"interacting" to form new meanings with the other simulta-

neously presented elements. As in 21 we reduce the imagery to a self-prescribed

palette and ordering of material - 7 "stations"; as in 21 these stations may be

obliquely related to the narrative material - the retelling of a story told to Jones

as a child (of a rather gruesome black working-class Thyestean feast) and a re-

telling of a story heard on the radio (concerning a photo-journalist's trip to

Rwanda) - but create this ambiguous relationship mainly through their ge-

neric nature.

Unlike my other work related to choreography - how long..., Loops, or much of

Lifelike - these stations are definite, particular and recognizable, and demand

to be treated as such. Our stations are, in order: ladder, viewfinder, window,

door, box, table. Conceptually this recognizable material is to be pushed around

by the movement and the narrative on stage. Sometimes looping, appearing

pinned in a machine-like cycle only to break free as the story progresses, and

other times coexisting and arriving at a point of unison as if by chance.

The technical task, then, was to find a rendering method that allowed a fluid

passage between the photo-real and the abstract and one where this passage

would retain the sense of underlying movement from the material. To this end,

I looked for a rendering technique that could incorporate the undeniable mi-

metic advantages of video with the control offered by synthetic, real-time com-

puter graphical movement.
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The re-projection renderers

The Music Creatures, 22, how long..., Max and Imagery for Jeux Deux introduce a

new class of real-time "non-photorealistic" graphics renderers - the "re-

projection renderers". The core of a re-projection technique is the idea that the

previous rendered frame is used to texture geometry that will be drawn in the

current. Crucially, texture coordinates for these pieces of geometry are auto-

matically generated to distort the previous rendered frame such that it maps

onto the new positions of the geometry or newly extended geometry. Moving

geometry thus carries the image of how it was previously rendered; its history is

re-projected back onto its present shape.

A commonality throughout most of the works described in this thesis is the

addition of various amounts of noise to the geometry drawn and the overlap-

ping of transparent successive frames - a successive frame based"motion-blur"

technique. In a re-projection context, this overlapping noise creates grain-like 288

texture on the geometry that is controllable by the geometry because it stems

from this very geometry.

This geometry is no longer computationally isolated from the rest of the scene,

or the rest of the image that it is rendered to (as in traditional static or dynamic

texture mapping) but actually has a relationship to nearby elements - the

graphical canvas is no longer smooth and error free. Since pieces of geometry

that overlap necessarily share the same texture - there only ever is one previ-

ously rendered frame - overdrawn areas of the screen end up interacting on

the image plane outside and inside the drawn geometry as if, say, one line were

carefully rendered taking into account all of the other lines in the scene (a com-

putation that would probably be computationally prohibitive). The accumulated

noise of a re-projection rendered scene may have areas where low frequencies

dominate, but this textural blurring is unlike most of computer graphics.



RE-PROJECTION RENDERERING - AN OVERVIEW

blurred diffuse shaded

re-projected
texture map

edge outline

figure 100. This re-projection renderer character - Max - illustrates the basic re-projection shading and edge-tracing setup.
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RE-PROJECTION RENDERERING - IN CLOSE-UP

figure 101. A simple pair of triangles outlined in white and filled in using a re-projection shader. Note the interaction between overlapping pieces of

geometry, and note the internal shading - coupled to the edge rendering and the overlap itself.

figure 102. Counter-clockwise from top left: 1. the same triangles as above, have separated - traces of their previous encounter remain; 2. one

triangle moves rightwards over the other - trace of movement slowly fades; 3, 4 a moving vertical line has disappeared from view, and a trace of

movement remains on the surface of the triangle.
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figure 103. A more complex example (motion
studies from video-tracked Jones motion). This

geometry is rendered using a single linear
primitive - all texture comes via re-projection.

-v

figure 104. Close-up of line fragments - the
history of crossing lines interact with geometry
on screen.

7
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figure 105. Study for 22 - multiple frames from
"table" sequence in a variety of video+

re-projective styles - note the use of distorted
color space.
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re-projection setup

figure 106. The standard re-projection setup renderers offscreen at a high
resolution (with a separate level of motion blur) . The back buffer is used to

texture material in the front buffer.

Autodesk / Discreet -
http://www.discreet.com/3dsmax

Firstly, it is completely tied to the geometric content of the scene and secondly, it

generated directly by the history of rendering and the accumulation of geometric

material (and not by hiding the absence of process information in the picture).

Further, and this is especially evident in the "gestural" lines of how long..., geome-

try carries with it the history of its making. At the end of a"gesture" the "texture"

that remains on the thickened line is inextricably linked to how that line was

drawn over time. The image plane is not created afresh with every frame.

The final rendering technique for 22 augments a re-projection renderer to incor-

porate pre-made video material generated from pre-made animation sequences.

These sequences were constructed in a conventional 3d modeling, key-framing,

and rendering environment (3D studio max / character studio), and exported as

both geometry and rendered video. By correcting for the offline-rendering sys-

tem's lens parameters, this video could be synchronously projected back onto the

moving geometry as its animation was played back in the real-time renderer.

Thus, if undisturbed, this real-time renderer could appear to display all of the

photorealistic techniques that the offline renderer of 3d studio max could provide

- soft shadows from many light sources, complex materials, high resolution

meshes - at the minimal expense of decompressing video.

Unlike in the case of video, however, we know much about the underlying mo-

tion present in what it is that is being projected onto the geometry. In 22 each

station has the possibility of a human figure acting inside it - there is a man

climbing a ladder; a child pushing a box etc. - since the video is projected onto

geometry, we can re-synthesize camera movements with respect to specific body

parts of the figure, or around important parts of this virtual set, or dynamically

compose the stage picture ofJones and this virtual presence. While the geometry,

in clothing itself in the texture, exploits video for its "fidelity"and "realism", video
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here takes the geometry as a perfect annotation of the positions and processes

that generate it. The technique is thus fully hybrid.

Of course, there is a catch: this "trick" of projecting video over synchronized ge-

ometry only "looks right" in a particular special case: if the virtual projector for

the video has the same lens parameters and position as the virtual camera had in

the offline renderer and the virtual camera of the real-time renderer is also at this

position. While the scene can stay relatively"photo-real" with small violations of

these conditions, for larger movements away from this ideal position, the coher-

ence of the scene disintegrates.

However, what is less obvious is that the underlying movement of the geometry

remains readable during this process of abstraction - the movement of the vir-

tual figure in particular outlasts its figuration - and only in rare conditions are

the mechanics of the actual technique itself legible. Because these shards of video

intersecting with moving form are also visually interesting, the final full, 22 ren- 293

derer incorporates this shading layer of video re-projection with another more

typical re-projection of the previous rendered frame. The now standard noise and

motion blur complete the set of graphical techniques used. This makes 22 the

most complex"shader" produced for this thesis.

While the visual imagery for 22 exploits this shader to generate its graphical

flirtation with figuration and abstraction, the full flexibility of this shader has not

been seen in this work to date. In particular, little space to explore the rhythmic

possibilities of desynchronizing the typically coupled movements of underlying

geometry animation, underlying camera movement and projected video could be

found during the dance work. Since less than one fifth of the prepared geometry/

video library made it into this particular work, it is expected that these further

uses of this re-projection shader will be explored in a separate installation.



22 - ALIGNED VIDEO PROJECTION

294

figure 107. The aligned video shader only "looks right" from the correct spot. The above diagram shows how the projected video aligns exactly with
the geometry that it strikes (left), however movement off axis (right) leads to abstraction. In the finished work this video layer is accompanied by
noise, motion blur, a re-projection layer, of course, a black background. The wireframe here is for illustration purposes only. The result is a ren-

derer that can produce imagery that moves in and out of figuration, while retaining the rhythm and scale of human movement, in startling ways.
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figure 108. The same scene as the previous diagram, slowly rotating around the child figure - which moves in and out of clarity.
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figure 109. Virtual camera movement is not the only degree of freedom that this shading technique offers. Here we rotate the virtual projector

around the scene.



22 - SOME IMAGES FROM AND AROUND THE WORK
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figure 110. A sequence of images from the "door"
station (inverted).
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figure 111. From "ladder" and "window" (inverted).



Distorted color spaces

One of the weaknesses of the re-projection rendering technique is its handling

of color. Although it might be a highly controlled feedback technique it is still a

feedback technique and as such, while we can control the feedback gain and the

"neutral point" for each of the three color components - red, green and blue -

the feedback structure has a tendency to diverge each component to either o or

i resulting in an extreme quantization of color palette to only eight colors. Even

when this feedback does not diverge, at the date of writing, general purpose

frame-buffers on commodity hardware provide only 8 bits of precision for each

color component. Normally 8-bits are sufficient for presentation purposes;

however, it is insufficient for computation purposes - and as we move to draw-

ing more transparent overlapping geometry with higher levels of motion blur we

are more exposed to the accumulation of quantization errors in the frame-

buffer. 22 is far away from the monochrome of much of my work (Loops, Life-

like, The Music Creatures are all monochromatic work and how long.., is a set of 299

almost monochrome + red palettes).

Clearly the color interpretation of the frame-buffer must be remade while we

patiently wait for commodity hardware to support more color depth. The full

RGB component model is a good, generic color space, but perhaps there are al-

ternative spaces that are better suited to rendering the results of the re-

projection renderers. One conventional solution would be to interpose a 3x3 or

a 4x4 matrix that could rotate, or rotate and translate, the RGB color-space into

some other space. However, this solution is still limited to a linear or projective-

linear transformation of color.



figure 112. The full re-projection setup adds a buffer used to perturb the drawing

of the main buffer onto the screen and an additional two texture lookups.

In 22 we construct an alternative interpretation of all four rendered compo-

nentS R,G,B, and alpha before placing them into the final display buffer (for final

accumulated motion blur and presentation). The most general technique would

be to interpose a 3d texture lookup based on the (RGB) components before pres-

entation. Unfortunately the size of this 3D-texture is prohibitively large, if one

wants full resolution control over the texture. So there is a compromise solution,

which suits the typically compressed color palettes of the work. Two stages - a

2D texture lookup based on the 'R' and 'G' components from a texture that we

shall call the'R/G texture which is then multiplied by another 2d texture lookup

based on the 'B' and 'alpha' components which we shall call the 'blue texture'.

These 2D textures and the intervening multiply operation, are full floating-point

range and precision - no quantization occurs here.

Clearly by reconfiguring these two textures, the fixed points of a divergent re-

projection-feedback can be relocated anywhere in the color space; the edges of

these fixed points can be softened by adding animated dithering noise to these 300

texture buffers; and the journey to those fixed points can be reshaped in number

of ways - providing we accept limited access to a portion of the complete RGB

palette. The technique easily produces a continuous blend-space of monotones

or duotones, for example. Further, otherwise hidden, almost transparent ge-

ometry can have unconventional effects on the material that it overlaps, effects

far away from the generic rainbow of the RGB color model: "blue" geometry, can

pick out the intensity of a piece of underlapping geometry, while, for example,

transparent green geometry might alter the saturation of the material that it

overlaps. In the final presentation buffer, subsequent overlapping renders are

blended in conventional RGB space. In this way the problems of pushing com-

putation into a display resolution buffer can be overcome, as properties of the

color-space are set to be recomposed as needed by the artist during the work.



22, video / geometry motor system

Raw marker data

ASU / AME
pose recognizer

Reprojection renderer

figure 113. The 22 agent system diagram.

The"motor system" of the agent creating this work live exists in a rather simple

world and simply has to play out vertex, camera and video animations with

various degrees of synchronization or deliberate de-synchronization. Its motor

programs are dominated by the task of locking and holding rendering resources,

page 156, that represent the constraints of real-time (video) rendering. For ex-

ample, for extremely slow motion through a station it is preferable to blend

successive frames of video, this requires the simultaneous use of two high reso-

lution video textures. However, to cross-fade between multiple stations each

station must make do with one one video texture. This degree-of-freedom

locking life-cycle is expressible within the co-routine / continuation scripting

model. The robustness of this framework here is critical: a single frame of mis-

placed video rendered across the wrong geometry is highly visible when we are

playing this close to the photo-real.

Given the duration of the performance these stations are each performed twice.

However, their moments of entry, the flow of time through them, their render-

ing parameters and camera movement, and their disappearance are coupled to

Jones's movement and a set of stage-manager cues.

Jones's movement enters the work in two ways - firstly through a pose-

recognizer, constructed by the AME motion analysis team at the Institute for

Studies in the Arts, which recognizes a few of the 22 poses that Jones performs.

These become cues that bend the flow of time through the imagery. The pieces

of this malleable score, and techniques used to build it are the subject of the

next chapter, Fluid. Secondly Jones enters the visuals through a distance-

mapping-based analysis of his movement, irrespective of his pose. The mecha-

nism used to manipulate the flow of the video/geometry playback is discussed

in detail as part of the distance-mapping algorithm, page 202.
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In addition to annotating and selecting the station material from the library of

geometry and video to construct this sequence of"stations", a number of struc-

turally important lines through the geometry were also hand labeled. These

"infinite" lines, as they were rendered, are constantly on the transparent scrim in

front of the audience and represented the fiducial possibilities of the space and

the threat of the next station's coalescing. In the absence of information to track,

these faint marks, sometimes propelled by motion from the stage, acquiesce and

fade until they are barely perceptible. As a new station begins to form they pre-

pare the way and guide the eye for the the underlying movement of the station.

These transitions from being under the control of the geometry of a station,

through traveling under their own momentum, to being quietly pushed around

by the performer are negotiated through a simple generic radial-basis channel.

Concluding remarks

22, which like its predecessor 21 licenses the creation of dance works with mul- 302

tiple, simultaneous, streams of media that, unlike a classic Cunningham / Cage

/ Rauschenberg work, are deliberately crafted to create new figurative and nar-

rative meaning. The imagery indicates, embodies and participates in the pre-

vailing threat of unification in Jones's choreography and narrative: preempting,

amplifying or illustrating the complex and unpredictable ways that Jones's sto-

ries, movement and vocabulary intersect. This challenge precipitated a different

set of rendering techniques, and a different, less intricate control structure for

them. As an investigation into the strategies required for creating autonomous

systems that coordinate with movement, 22 holds a special place in the develop-

ment of my thesis work. However, it is not until the next work that the prom-

ised dialogue between programmer and choreographer can be truly glimpsed.



2. How long does the subject linger on the edge of the volume...

The imagery for how long does the subject linger on the edge of the volume... was

made over a period of a year and a half in collaboration with choreographer

Trisha Brown for a new piece for dance theater for her company. It takes as its

points of origin: the unprecedented technical ability to use a real-time motion-

capture system to observe the dancers live; Brown's output as part of a "pre-

history" of visual algorithmic art - her dance diagrams simultaneously visual

programs for movement and the traces of movement; and my own impressions

of observing, as an audience member, the unconquerable yet seductive complex-

ity of Brown's choreography.

The imagery for this work is the action of digital agents creating their own

"dance diagrams" live during the performance, displaying their own, inevitably

incomplete attempts to slice and section Brown's choreography in the moment.

The bodies of these agents are, as in 22, projected over the dancers on a trans- 303

parent scrim, allowing the images to share the same space as the performers.

These agents offer their own choreographic hypothetical causes for the move-

ment that they perceive and offer their own ways of notating the traces of the

movement as it happens.

In many respects this work is the culmination of several of the threads of this

thesis. As a work that is ultimately an overlapping parade of interactive agents, I

was forced to reconsider the techniques I had been using to represent and ma-

nipulate the bodies of the agents - creating a generalized framework for doing

so, the "blendable body" framework; the action-selection strategies and the

motor-system organization exploit much of what was developed for our Dia-

gram system; and the perceptual techniques used to build structures up from

the live motion-capture material will, for the reader of this complete thesis,

seem familiar - choreographic trackers based on the b-tracker framework,



how long...?

Loops

figure 114. Motion capture is a series of complex data-
processing tasks. Real-time motion-capture systems

must offer data at a variety of levels of processing if they

are to be used for live digital artworks. bow long... takes
most of its data at a far lower level than other "real-

time" applications. Loops required human cleanup of the

data after capture, at a "rate" of around one hour of

laborious clean-up per minute of motion capture.

distance mapping algorithms and persistent object structures. Finally, much of

this work came after the creation of most of Fluid and of the glue systems, so it

acts as a motivation and as a test of the principles embodied therein.

Raw motion-capture hardware provides points isolated in both space and time

- these untracked points lack any skeleton or inter-frame correspondences.

That our blendable body framework consists of a network of computational

representations that start with these untracked points is no coincidence. Having

this network act as a body representation allows for perceptual mechanisms to be

reused as proprioceptual mechanisms and allows the agents to perceive other

agents' bodies in the same manner as they perceive the live dancers. As we shall

see below, it takes a some delicate work to turn these untracked points of mo-

tion into data suitable for coupled visual imagery.

Unlike Loops, The Music Creatures or even the other interactive work for dance

that premiered on the same evening, 22, how long.., is a system that undergoes

complicated and complete structural change during the 30-minute duration of

the piece. The never-ending, never-repeating Loops or the carefully scored 22

represent one single system that is instantiated, and left to run in a world that,

while it might push the system around, is always pushing the same set of parts.

A few sections of the execution cycle might be turned on or off, but the actual

palette never changes: in the case of Loops - 42 creatures, 30 actions, 20 ren-

dering basis sets etc. - or in 22 - two channels of video, two channels of

geometry, one or two agents using them.

Whole agents (and renderers and network resources) come and go during how

long..., and perceive and stop perceiving each other and the dancers. This com-

plex layering is harder to rehearse (it's not clear how one jumps into the middle

of this world), more dangerous to program (the taking of problematic execution

paths are deferred until late on in the piece and yet might be dependent on the
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early parts of the work having taken place). It necessitates new tools - Fluid -

and better programming methods - the "glue systems". And yet such a fluidity

and a vocabulary of change is demanded by the heterogeneity of Brown's work

and the exceptional intelligence by which changes of number, partnering and

coherence take place on the stage. A Loops-like work with its constant, un-

changing exploration of a change over a finite world would be out of place

against any of Brown's recent choreographic output. The technical response to

this challenge is the widespread use of the context-tree to ease construction and

connection of objects and automatically handle their (sometimes partial) disas-

sembly when they were no longer needed.

We will start with the lowest technical levels of how long.., and work towards a

narrative and technical description of each of the agents themselves, beginning

with the treatment of the exciting, but troublesome, realities of the currently

available real-time motion-capture data and progressing towards the general

framework for constructing the bodies of this work's agents and then onto the 305

agents themselves.

3. The problems of real-time motion-capture data

The leading industrial real-time motion-capture systems are designed to provide

a very particular class of data - so called kinematic data. These data are the set

of hierarchical joint angles and joint / bone positions that represent a human

figure, and is the result of raw-marker data acting upon a pre-made kinematic

simulation of a particular dancer. These data are typically clean, within plausible

joint constraints, tracked and labeled with particular body parts. The goal of

motion capture systems is to get to the underlying human figure, even in the

presence of transient marker occlusions and measurement noise.



This piece, and this strategy, of course,
owes its very existence to the

generously provided hardware and
engineering resources of the

MotionAnalysis corporation who
provided access to the raw, unlabeled

marker data.

Unfortunately, during the complexities of modern dance, over the size of a pro-

scenium stage and with a number of other, similar bodies also visible, these data

are of surprisingly little use. In particular, since the typical motion-capture sys-

tems generally have found a role in military applications and medical biometrics,

the systems are constructed to either provide very accurate tracking information

or provide no information at all. A compromise is hard to find: due to the con-

straints of occlusion and the large capture volume, dancers wore a reduced

marker set indicating their arms, head and back - making the kinematic fit

harder. Both systems tested during the development of the work could take up

to tens of seconds to register the entrance of a dancer into the motion-capture

volume, and, when material became close and complex the kinematic data

would simply disappear. There is no evidence to suggest that the kinematic

modeling performed by these systems is anything less than state of the art, but,

in the presence of uncertainty over an exact skeleton reconstruction and an

exact dancer identification there should be something more useful than silence.

Instead of accepting this state of affairs we take the data at a lower level. We

inject into the perceptual world of the agents for this piece, not the bones and

labeled joints of the dancers but the raw marker data from the motion-capture

hardware. This is before the kinematic fit is attempted, before the frame-to-

frame tracking correspondences have been computed, just after the markers

have been identified by the cameras and projected and intersected into three

dimensions. It will be up to the agents that populate the world of the images to

track and label these points, but as they do so, significantly, they can compute

their own ideas of how reliable the tracking and labeling are. An entrance into

the space becomes something that is immediately recognizable, exploiting the

extremely low latency of motion capture cameras, while, of course, remaining a

moment of imprecision and uncertainty as to the identity of the dancer or limb

entering. That there would be some benefit to (re)building the data-processing

path in the agent framework so that we can maintain the depth of the percep-
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tual structures of the agents, rather than passively consuming the output of a

proprietary black box, should come as no surprise.

One can extract a certain amount of information from unlabeled, untracked

data, untreated. Indeed during the development of this piece, a motion-analysis

team working in parallel created a number of metrics on the raw and labeled

motion-capture data. The initial technical communication network of the work

would have (unacceptably) put the visual imagery strictly "downstream" of this

black-box analysis; the imagery was to be in a strict "visualization" relationship,

or indeed a "mapping" relationship, with this "analysis.

Of course, this ordered "flow" of information is in reality an order to lose infor-

mation, an order that the imagery was to be given no scope to negotiate. Such a

position is fundamentally rejected by this work.

Unlabeled data 307

Let us first see how far one can get with untracked motion capture material,

before augmenting it with our own tracking analysis. For example, there exist

distance metrics that do not require inter-frame point correspondences - for

example the (directed) Hausdorff metric from points {pi} to points {qj}:

d,,.-q = max minpi - qj

This metric is useful for rapidly matching a subset of template points to a group

of points, and it forms the basis for one of our"choreographic trackers' below. It

is completely insensitive to the labeling of sets {Pi } and {qj } (one can scramble

the ordering of both these sets and their distance doesn't change). However, it is

extremely sensitive to one of the kinds of corruptions that raw motion-capture



data face - ghost markers that flicker in and out, often a long way from the

true position, due to errors in the reconstruction. A brief presence of such a

distance marker can dominate the outer "max" operation above.

To construct more local (to a dancer or tight cluster of dancers) information

C. Bezdek, Fuzzy Mathemat- one can always run a fuzzy k-means algorithm to partition the marker set into

ics in Pattern Classification. clusters. But this approach too suffers from a lack of robustness with respect to
Ithaca, NY: Cornell Univer- the flickering markers, albeit to a lesser extent - in particular in the case where

sity; 1973.
the model-selection strategy dithers between different values of k.

Fulfilling my theoretical predictions of trouble, even after processing the various

quantities (speeds, correlations) derived from this untracked information with

filters with long time-constants or long median-filters, these numerical meas-

urements of the stage were clearly inadequate - those that were smooth

enough to appear reliable lagged so far behind the motion of a dancer as to de-

stroy any possibility of a legible relationship forming; those that were fast 308

enough to react in time were not stable enough to reliably use. This no-man's

land of filtration seems to me a classic symptom of having incorporated insuffi-

cient information into one's signal set before treatment. Real-time motion cap-

ture systems can provide data with latencies on the order of 15 milliseconds -

we should fight to preserve these startlingly correlated data.

Even had these low-level features turned out to relate to my perception of the

movement of the dancers, tracked points and clusters of points are essential for

any visual imagery that is tightly coupled to the dancers on the stage. To draw a

line from a point on a dancer's body to another point in space that lasts longer

than a single frame requires that we know the subsequent location of that par-

ticular point, unless the decision to draw a line is remarkably repeatable and

based only on the position of the marker set. Therefore, constructing a point-

level tracker, and arguably a dancer-level tracker is simply unavoidable.



Our solution consists of two parts: firstly we construct a point tracker. using the

b-trackerframework, that can survive momentary presences of ghost markers

and momentary absences of occluded markers. In doing so it can keep track

simultaneously of the point locations and of how confident the agent should be

in those locations. This confidence will then be used to assist and correct dis-

tance metrics and decompositions of the stage. These markers and clusters of

markers enter into an hierarchical instantiation of the object-persistence frame-

work developed for our agents and are now stable enough to be used as the

impetus for visual imagery. Secondly, what subsequent layers actually do with

these perceived markers dynamically controls the perception system's willing-

ness to exchange stability (markers flickering) for accuracy (markers tracked

with low latency). Indeed, having obtained a marker, or a"dancer" as a point of

reference on the stage, subsequent systems are guaranteed that this position

augmented with various quantities will be accessible for all future times. They

are, of course, not guaranteed that this reference will be perfectly related to the
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present motion, but the existence of the point of reference itself is maintained

and the computation of its associated qualities, including relevance, will take

place as long as and action or motion command for an agent is interested. We

might call this a"top-down" influence on our perception system and it seems to

me that these techniques will be vital for the creation of visual imagery coupled

to motion-capture data for some years to come.



Use of the b-tracker framework in real-time motion capture

The Hungarian algorithm is introduced in: H. W. Kuhn, The Hungarian
Methodfor the Assignment Problem, Naval Research Logistics Quarterly,

Vol. 2, 1955, pp. 83-97. It solves the assignment problem posed here in

O(N
3) time. For a more contemporary use in the field of shape

recognition - S. BelongieJ. MalikJ. Puzicha, Shape Matching and Object

Recognition Using Shape Contexts, IEEE Transactions on Pattern Analysis
and Machine Intelligence, 24 (4), 2002.

p- -

lost point

new point

figure 115. The point-matching algorithm tries to assign this frame's set
of points to the previous, predicted, ongoing model positions.

Occasionally points are dropped and new points enter the scene.

The core of the point tracker is an implementation of a well-known linear-

programming-based assignment solver known as the Hungarian algorithm. It

solves the problem of assigning a set of n-objects to a set of m-objects in such a

way as to minimize the sum of distances between the n-object pairs. Each object

is paired with a unique object. This is the basis "incoming -, ongoing match"

part of the b-tracker assemblage. The input to this algorithm is simply the n by

m distance matrix M with elements Mij representing the distance from object

i to object i . The strict metricality of the distance metric used to generate the

Mij is irrelevant; as long as Mij are non-degenerate the Hungarian algorithm

will find a solution.

We take n < m for this discussion, without loss of generality, for we can reverse

the sense of the set designations. Incoming points to be matched with the cur-

rent population of points are in the 1; , (i < n) and the current population of

points in the set Oj, (j : m) . The Hungarian algorithm is executed for each

new batch of incoming points to generate new assignments to the existing

population. These new points are then "merged onto" the points that they were

assigned to. This approach of merging new information with a dynamic popu-

lation of old "tracked points" is of course similar to the core of many of the per-

ception systems described in this thesis.

Obviously, the number of points that deserve to be in the current population

changes constantly during the piece (with the presence and absence of dancers,

or other agents). Further, the solver is constrained to map each object i < n to a

particular object i m no matter how far away this assignment ends up being.

To allow a dynamic number of points in our current population, and to prevent

the solver being forced into making particularly poor decisions for the sake of
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making complete assignments, we should pad both of the object sets with vir-

tual points that will act as sources and sinks for the assignment. If an incoming

point is matched to a virtual point in the current set, it is because it has "just

arrived" and if a current point is matched to a virtual point in the incoming set

it is because it has been (perhaps temporarily) "lost". Matching a virtual point to

a virtual point is an irrelevant and frequent event. As a first pass, we set the dis-

tance from marker to virtual point to be some value greater than the distance

that a point could travel in a single frame. Virtual point to virtual point dis-

tances are set equal to half this value.

The input then to this algorithm is a set of distances, so we need a distance met-

ric from an unlabeled marker to an ongoing point model. The ongoing point

model is a simple 2nd order (modeling 3D-position, velocity, acceleration) Kal-

man filter, which treats being assigned to an incoming marker as a measurement

event and predicts the place of the marker on subsequent frames. This predicted

position is used as the basis for the distance between an incoming marker and 311

an ongoing point model.

The confidence model consists of two components: the match history for on-

going points models (whether or not the point matched a real point or a sink),

and the noise estimation on the position of the point from the Kalman filter.

The match history of a point looks like an low-pass filter on the pulse train

of Os (lost) and is (matched).

cm +- MCM+ (1-am) -I, point matched
0, point unmatched

Thus the complete confidence for a marker is given by:

C = Cm/Pa



where Pa is the noise covariance on position from the point's Kalman

filter. Confidences are always normalized before use.

In the absence of top-down pressure to maintain a model, point models are

culled when their confidence score reaches epsilon ( 10-).

Now that we have a dynamic set of ongoing points each with a confidence and

associated with a position, velocity and acceleration from the tracker, we can

revisit our low-level analyses of point motion. Speeds become computed not

from the Hausdorff metric but from confidence-weighted sums of the absolute

values of velocities from the ongoing point models. Since brief ghost points

never achieve high confidence levels and short "marker-outages" have little im-

pact on either the confidence of the points or their velocity models, these met-

rics are highly impervious to the kinds of noise we have been seeing. At the

same time, since no filtering additional to the Kalman filtering of the points is

taking place, the processing latency is that of the Kalman filters. Even the bulk 312

confidence-weighted acceleration values appear relatively smooth during peri-

ods of high total confidence and, to the naked eye, related in the to the under-

lying movement. Critically, at periods of low total confidence, the agents might

prefer not to make any"big moves".

The units of this confidence are highly ad hoc and we are free, by changing the

time constants on the filter score or by changing the noise priors on our Kalman

filter, to change the distributions of scores over the (o,i) interval. There is a limit

to this flexibility; should the confidences themselves show appreciable noise

then this noise is simply re-injected back into the sum. But in general this allows

us to trade latency for smoothness in detail, prior to the bulk-summation over

point-level analyses.



What about the backwards, "top-down" influence on this tracker? Should an

ongoing point model continue to be matched against incoming data all is well.

However, should this model be culled (due to a persistent lack of confidence in

its existence) any reference to it becomes stale. Once the model has left the

tracker it will never be updated again. The solution to this problem is not to

simply forcibly re-inject markers of interest back into the tracker for, after all,

the model has been dropped for a reason. Rather, we transition from updating

the point model based on incoming marker data to updating the model based

on the local velocity field of the current point set.

The local velocity field v(p) at a point p looks like the following, given a

set of velocities vi at markers pi:

( [ (e-(P-Pi)/Pvj
v(p) = Eg e-(P-Pi)r

2

Finally, it is at the very least more visually appealing to have a smooth 313

transition from these two updating domains. We therefore add to our

model-update equations a confidence-weighted influence (with confi-

dences ci) of the local velocity field:

()-Ei ; e-(P-Pi)/civi1v(p) = e(i/rc
E~je-(P-Pi)/Aci

While points of interest that are culled from the tracker no longer accept

marker data as measurements, their positions and velocities are still updated

according to the above equations, and these points that no longer reflect an

exact marker position are swept along by the motion of nearby points (and have

velocities similar to nearby points).



The dancer-level tracker

We use a very similar structure to construct more dancer-level (rather than

marker-level) perceptions of the stage. Rather than constructing a trellis of
"ongoing marker models" we construct a trellis of "ongoing dancer trackers".

Here, each dancer-tracker is implemented as a k-means tracker (where, for the

purposes of this piece k = 1 ... 4 ). The k-means clustering algorithm is a simple

and popular unsupervised clustering algorithm that iteratively converges to a

Voronoi-partitioning of space into k areas (clusters), each cluster being repre-

sented by a center, also a position in space. While this commonly used algo-

rithm is simple to implement, and requires O(nk) time per iteration, which is

acceptable for our n ~ 50 domain, it suffers from a number of problems. Firstly,

the algorithm only converges to local minima and while these are often quite

good they may be arbitrarily bad, and once a tracker has found a poor solution

subsequent iterations on related data will probably also be poor. The literature
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recommends restarting from fresh, variously heuristically described, center sets,

perhaps multiple times on each data-set and choosing the"best" decomposition.

Secondly, the naive k -means implementation requires a fixed k . If we were to

run many iterations of many freshly started trackers, each with k = 1 ... 4 , on

each time-slice of data then this clustering would begin to be rather computa-

tionally intensive.

Our less naive implementation maintains a smaller population of (good) k-

means trackers. At each time-step each tracker i "predicts" a future configuration

of ki - centers and, optionally, predicts a ki-i or a ki+1 tracker formed by

merging or splitting centers. By moving up and down in 'k' through splitting and

merging we hope to leverage existing successful decompositions of the markers

rather than randomly restarting them.



In order to fit into our perceptual framework, trackers need to be scored. We

score in two parts:

The first part is a running score, and reflects how long this tracker has been

part of the population. Two running scores are kept, with different initial

conditions: for the purposes of "culling" this score is initially set to 1, for

the purposes of confidence this score is initially set to 0.

The second part of this score is a measure of how well this tracker is clus-

tering the data. Here we use the Bayesian information criterion (BIC)

which has the advantage of penalizing the flexibility of high k models, the

details of which are given earlier, page 115. k -means trackers produce

k + 1 -means trackers by fissioning their largest cluster if this results in an

increase of the BIC score. Similarly k - 1 -means trackers are produced by

fusing the smallest cluster with its nearest neighbor should this seem bet-

ter from a BIC standpoint.
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This perceptual structure proved more than adequate for the task of segmenting

the stage into dancer-like clusters of markers during how long... Indeed, this

framework offers flexibility that seems rather under-taxed during this piece.

Less than a year before the premiere, it had been thought that a larger number

of dancers (increasing the k- search space), each wearing a larger number of

markers (increasing the computational cost of running a tracker) would be

available. Given the constraints of camera placement and lighting in a prosce-

nium the resulting marker and dancer counts were reduced.

"Tracking" higher level features

Given the Kalman-filtered tracked points, and their ongoing confidences, and

the hypothesized dancer-centers, we are in a position to create slightly higher



level descriptions of what is occurring on the stage. And here our hypothetical

mapping-based approach and this agent-based approach continue to diverge.

There are two kinds of ways of looking at the stage, in this work. Firstly, we can

produce speeds, heights, and directionalities integrated and averaged over all of

the tracked hypotheses; we might even weight these averages by the confidences

of the models averaged, as above.

An advanced mapping strategy would typically take these measurements and

begin to filter or manipulate them into something that would couple to some-

thing visually. For continuous processes this would literally be a filter network.

For discrete events, triggers, thresholds and perhaps hysteresis mechanisms

would be specified on these signals.

This translation from continuous to discrete is particularly poorly understood

within a mapping realm. But an agent does not have to flatten, or integrate over, 316

this information in order to make its decisions. Indeed it can defer loss of in-

formation until at least the action-selection stage and quite possibly beyond.

This provides a second, alternative mode of reaction to the stage and interaction

with the choreography: maintain these multiple hypotheses, these tracked mod-

els, and construct classifiers or recognizers over them. When it comes time to

couple these hypotheses to discrete or continuous structures, do so through a

competing, multiple action-selection technique.

The specific qualities of the hypotheses and perceptual sources will then influ-

ence, or parameterize, the specifics of the actions taken, so such "mapping"-like

filter networks will have their place, but the use of these measurements adheres

to a few general principles that make the working practice around these filter

networks tolerable, or even tenable within a rehearsal or improvasatorial setting.



Firstly, we reuse the scaling and mapping techniques discussed in the develop-

ment of The Music Creatures to provide a coarse level, purely data-driven treat-

ment of these numbers without recourse to direct hand tuning. For example,

any model of"fast" that is created in this piece is created on these rescaled data.

Secondly, we reuse the beam-search mechanics used for the b-tracker in order to

form time-sequence parsers. These recognizers go beyond simple instantaneous

thresholds of the data and again allow indirect and explicit specification of phe-

nomena to match. For as soon as we begin to consider allowing the data to trig-

ger an event visually - say, something to occur when dancers fall to the ground

- we ought to approach this problem as a gesture-recognition task, no matter

how simple, rather than a threshold- and hysteresis-tuning task.

Within this framework, constructing small "gesture recognizers" for the stage is

simple:

a simple "recognizer" that recognizes when all of the dancers are performing 317

floorwork, built using the beam-search matcher framework:

sequenceBSM = GaussianSequenceBSMO;

sequenceBSM.new StateRange("high"' 1, 5, 7.5f, 10);

sequenceBSM.new StateRange("low" 0, 0.5f, 0.5f, 3);

sequenceBSM.setSource(perDancer.getHeightChannel());

this creates a beam-search matcher that is looking to be able to parse

sequences into two chunks, a state "high" for around 5-10 seconds fol-

lowed by briefer state "low" for 0.5 to up to 3 seconds. Because of the

automatically rescaled and remapped data provided by the height chan-

nel, we can specify high and low as simply 1 and 0. Because of the rich

data provided by the height channel - both heights and confidences

associated with all of the dancer hypotheses - we know that what the
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matcher is looking for hasn't been accidently filtered out from its data

source.

Again, we use beam-search rather than a dynamic programming-based or

Viterbi-parse-inspired approach - not for reasons of computational efficiency

but to provide a little additional flexibility at a computational cost that we can

easily afford for such simple (that is, low dimensional, low number of states,

with simple state models) recognition tasks. The flexibility includes a more gen-

eral choice of transition model, and access to the multiple-hypothesis structure

itself.

This completes the overview of the techniques and principles used for the per-

ceptual structures of the agents for how long... Before discussing the specifics of

the agents themselves there is one more general framework that needs intro-

duction. As this thesis has been presented there has been a general shift from

pre-made agent bodies that are constructed (or loaded) once then manipulated

- the wolf pups in alphaWolf and Dobie, for example, were modeled once and
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then continually animated - to agents whose bodies are synthesized on the fly

- the music creatures' network or tile for example. Each of these creature's bod-

ies were created in a completely ad hoc fashion. For the purposes of how long...

- a piece that was to be about the act of observing choreography with a whole

range of agents - it was clear that a more general framework for creating such

synthesizable bodies was needed.

Blendable body framework structures - point ;- line - plane -+ point

The urge to generalize before re-specializing is present throughout this thesis,

and the same path has been taken with the body representations of the agents

developed - the way that they are rendered on the screen, the way that they are

controlled, and the way that they are internally represented.

This standard, conventional body representation (in particular, a

hierarchical structure of general transforms) is prevalent throughout
computer graphics, video games and digital art. Papers where these

issues are considered rather than simply assumed include:

W. Shao, and V. Ng-how-HingA generaljoint componentframeworkfor
realistic articulation in human characters. In ACM SIGGRAPH 2003

Symposium on Interactive 3D Graphics, pp. 11-18.

N. Badler, C. Phillips, and B. Webber, Simulating Humans: Computer Graphics,
Animation, and Control. Oxford University Press, 1993.

In computer games / pedagogy: D.H. Eberly, 3D Game Engine Design : A
Practical Approach to Real-Time Computer Graphics, Morgan Kaufman, 2000.

In digital art, artists often implicitly accept the body model assumed by
the tools that they used. A high-water-mark in the aesthetics of the

hierarchical body model is the installation of Paul Kaiser and Shelley
Eshkar, Ghostcatching, 1997.

319Over the last decade the convergence of the asset pipelines of cinema special

effects and computer games has resulted in a condensation of a dominant, core

way of representing articulated figures in the broadening field of computer

graphics. This paradigm can be briefly summarized as one that represents a

figure's skeleton as a strict hierarchy (rooted, typically, somewhere in the base of

the spine) of parent-*child transforms covered with a deformable,"skinned"

mesh. This viewpoint is re-expressed in the tools for modeling 3d characters,

animating them, and rendering them, in the commonly available game engines,

in the recent computer-game textbooks and in the commodity consumer-

graphics accelerators. It is the responsibility of artists not to go so unquestion-

ingly down a road that has been so neatly laid out for them. Perhaps there are

misuses" of 3D-modeling software, of key-frame animation packages, mis-

readings of the typical real-time rendering engine and more exploitive ways of

exploiting commodity hardware, that lie off this rather well traversed path.



The re-projection renderer for 22 is in some respects one such misreading,

playing deliberately with the artifice of the photo-real while exploiting the tools

made for making it. But perhaps there are more fundamental destabilizations.

Starting at the most technical level, the scene-"graph"library used for all of the

work since Loops made the hierarchical description of its rendering figures op-

tional - decoupling geometry from the usual tree of transforms; it has exposed

only the parts of the underlying graphics hardware that has been called "con-

temporary" OpenGL - that which places the onus on the programmer to sup-

ply the logic that transforms geometry onto the screen and colors it; and it has

taken control of the skinning algorithm rather than delegating it to an underly-

ing graphics hardware. The resulting graphics "system" is smaller and more nim-

ble that the real-time, computer-game-inspired graphics engines while lacking

support only for large static worlds and complex photorealistic shadows. No

particular contribution to the already well-populated world of graphics libraries

is claimed here, but the work that follows would have been much harder to even
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conceive of if it had been constructed in relation to a large, conventional stan-

dard scene-graph library.

In the spirit of generalization we construct a small set of primitives which

would be powerful enough to build the characters of a computer game, but

which, more importantly, are general enough to support other kinds of agent

bodies. We start with the primitives: points, lines and planes.

Points are stored movement - they are the markers of raw motion capture,

they are the joints of a hierarchical transform creature, they are the posi-

tions of vertices of a mesh or the control hull of a smooth surface. Points

can be asked for their position with respect to time, are organized into

bundles that share a common expected time-base and, crucially, provide

notification mechanisms for the appearance, disappearance and change-of-

properties of points from the bundle. These notification mechanisms



allow filtered views of bundles to be created inexpensively, and allow

points to be offered up by modules and then retracted. Some bundles offer

connectivity information that indicates that points are connected to other

points in a parent-child relationship (like a bone between joints); some

bundles offer extra information about the points (like their speed, or how

confident it is in the point's position or an additional rotation).

Lines are the drawn gestures - named, connected curve segments de-

scribed imperatively. Lines are the curves of popular 2-dimensional draw-

ing languages such as Postscript formed by a sequence of moveTo(...), Ii-

neTo(...), curveTo(...) instructions. They are externally transient: the primary

interface concerning lines isn't one for storing lines, but for accepting in-

structions as to how to draw a line, although some line acceptors, of

course, store data. These line acceptors can be arranged in complex, fork-

ing filtering structure and the name of a line often becomes a way of navi-

gating this structure. And, of course, the name identifies this line as a line 321

that exists over multiple execution cycles. Lines have more visual flexibility

than points, so there is a context-tree-based stack language for construct-

ing these filter-networks and handling the life-cycle of a line.

Our planar-element representation stores pure topology - vertices, edge,

faces and bi-faces (quads). This topological structure is richer than most

graphics libraries - holding much more information than is required to

send the mesh to the graphics hardware. Sacrificing space efficiency for

fast transformability, their interface looks more like the polygonal model-

ing tools available in a commercial modeling application than a close-to-

the-hardware game engine - vertices, edges, faces and bi-faces can be

added and deleted while maintaining a topologically sound representation

at each level. Like point bundles, they are nexuses of notification about

these additions and deletions, carefully batching these notifications for

speed and sorting them for consistency.



These three representations are surrounded by a few auxiliary but important

classes. Points, as sources, are generally faqades covering generic radial-basis

channels with 3-vector value representations, page i52; line acceptors, as sinks,

generally store lines in channels with a more complex, multi-segment value

representation and their stack language is an interesting domain-specific pro-

gramming technique; and triangular topologies, as complex stores, require an

additional class to manage the position of their vertices that would enjoy the

flexibility of a channel per vertex but in most cases requires a more specialized

store if it is to scale to thousands of vertices.
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THE BODIES OF HOW LONG... - AN EXCHANGE OF MATERIAL

POINTS

0 0
o0o

motion-capture from stage

dancer position from b-tracker

alignment points in the corners
of the space (as viewed from

audience)

points

pre-made, hidden stage - lines
architecture

pre-made "glyphs" and
"parachutes"

basic primitives - boxes, triangles

figure 117. The raw material in each of the three graphic
languages. Of course, the motion capture from the stage

is by far the most present.

0 0
o o find stable lines*

points I

raw source
for transformation

PoINTS

0o0
00

LINES

I/
SHAPES

figure 118. how long... builds a vocabulary of
transformations between point, line and

plane which were in the initial stages of
the creation of the work, deployed in an
improvisatorial manner with live dancers.

"tessellation"

SHAPES

"midpoints" sweep

ines points

I
etc.

figure 119. Of course, these processes can
shape be accumulated. By using the tricks of the

context-tree we can stack processes on top
of each other while loosely coupling them
and the agents that instantiate them.
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motion-capture, the stage 0 o
right now 0 0 "stage machine"

points lines and shapes

The points on the stage are illustrated by a particular agent, here, the motor system of "stage machine"

motion-capture, the stage 0 o
right now 0 0 a point memory "stage machine"

points lines and shapes

Stage machine, for example, records the point movements as it illustrates them.

001 0

a point memory
0  1 "stage machine"

points lines and shapes

Suddenly the points break free of the stage, and begin to cycle this captured animation

0 0v

a point memory 0 1 "stage machine" 7
points lines and shapes 'parachutes" --

more lines and
motion-capture, the stage 0 O shapes

right now 0 0

points

Another agent takes both the live motion-capture material and the body of the machine as its source material

figure 120. An example ordering of transfer processes - taken from documents shared between the collaborators.
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Line acceptor stack language - more programming in the context-tree

The Postscript programming language for drawing - Adobe Systems Inc, The
Adobe Postscript Reference Manual, 3rd edition. Available online at:

http://partners.adobe.com/public/developer/ps/index-specs.html

The Portable Document Format - Adobe Systems Inc, PDF Reference, 5th edition.
Available online at:

http://partners.adobe.com/public/developer/pdf/index-reference.html

Apple's Cocoa application framework - developer.apple.com/cocoa
In particular the drawing model, shared by Apple's Quartz Compositor:

hrtp://developer.apple.com/referencelibrary/GettingStarted/GSGraphicslmaging/

The underlying metaphor for the line is the drawn gesture - it is exchanged

between systems as instructions for drawing rather than a stored representation

for what is drawn. This runs counter to the graphics-engine tendency (that

wants to store something in a persistent place to facilitate its transmission to

graphics hardware), but is in line with the successes of resolution-independent

drawing interfaces such as postscript / pdf and the drawing models of advanced

windowing systems like Cocoa.

As a"gesture", a system accepting a line often faces life-cycle mismatch with the

code that it is accepting a line from. It might need the line to persist; it might

need to update a line that it has previously drawn; it is unlikely that it wants to

flash a line on the screen for a single frame - that's not particularly gestural,

and it's certainly not the general case. At the same time lines as they are proc-

essed can accumulate all kinds of rendering parameters - colors and thick-

nesses for sure, but in the renderers typically used here also noise and blur pa-

rameters, projection parameters and many more. Further, lines are graphically

transformable in more interesting ways than points - there's simply more to

draw and more time to draw it. Dashed lines, mid-point perpendiculars, lines

that connect the ends of lines - lines that trigger these transformations are the

technical underpinnings of the"notational" strivings of the agents of how long...
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The line acceptor interface looks like the following:

interface LineAcceptor{

void open(;
void close(;

void beginSpline(String identifier);
void endSplineO;

void moveTo(Vec3 position);
void lineTo(Vec3 position);
void curveTo(Vec3 position, Vec3 control, Vec3 controL2);

Of course we are free to construct line-acceptor filter networks using conven-

tional techniques - building a LineAcceptor that distributes to many LineAc-

ceptors, and passing LineAcceptors into constructors and accessors throughout

the codebase. In practice these become a source of considerable coupling be- 326
tween systems. One ends up having to specify many acceptors to act as outputs

for a system if it is to draw in a variety of styles. The context-tree here doesn't

quite fit, as an indirection method offers indirection on the level of a system not

on the level of a line.

A solution is to have a line acceptor dispatch on the basis of the name of the line

to a set of sub-contexts named by that line. While these contexts could exist in

the main context-namespace, it is more appropriate and powerful to have them

in their own local context-tree which intersects with the main context-tree, page

211. We are now in a position to form programs of filtering elements stored in

context-tree-local lists, pages 220. What do these program elements accept? Be-

cause the begin(name), moveTo(...), lineTo(...) ... end() imperative style is conven-

ient for suppliers of lines but inconvenient for accepting filters of lines, these

program elements accept a line-storage package that contains all the control

nodes (and extra drawing parameter nodes) of the line. This package also forms



the basis for a generic radial-basis value representation. And because filtering is

so important for these small programs, the context will also contain the last

line-storage package that passed through this context.

Now our elements'interface must support the following operations, with strong

life-cycle contract: open - called before any other operations, may be nested;

close - closes a previous open; filter(name, inputPackage, outputPackage) - an

opportunity to copy information, add rendering parameters etc. to the output

line; shouldCull(cull) - an opportunity to maintain this line even if it is no

longer accepted by this line acceptor in this open / close cycle.

Line element programs are composed and altered using the following style in

Java (k -"line context",fifter - the program being constructed);

Icbegin("square"); {

filter.add(new FadeOutOver(10));
327

Ic.begin("edges"); {

filter.add(new AddNoise(noiseParameters));

filter.add(new MarkVertex("../corner" thickness);

c.endo;

Icbegin("comer") {

filter.add(new Thicken(10))

filter.add(new LowPass(amount))

filter.add(new ForceCull(true));

Ic.end()

filter.output(new Momentum(O.9f))

filter.output(new OutputTo(dynamicLine))

c.end();



And then we can draw a square with:

output.begin("square/edges/allOfThem");

outputmoveTo(0,0,0);

outpulineTo(10,0,0);

outputlineTo(10,10,0);

outputlineTo(0,10,0);
outputlineTo(0,0,0);

outputendo;

Lines drawn beneath the above program in the context-tree will get a square,

with some per-vertex noise, with the vertices of that line re-rendered in a thicker

line which will lag behind the movement of the square. If the above output code

stops executing, this square will still be drawn, and follow its previous motion

with some momentum, fading out over 10 execution cycles. However, the corner

markings will disappear instantaneously.
328

Because these stack programs are specified instantaneously, local (with respect

to the main context-tree) overrides are still possible (ct - main context tree):

lc.begin("square/edges");
fier.addFirst(new InColor(0,0,1));

kc.endo;

executed in the root-agent context changes the square edges made by the cur-

rent creature to blue (but not the square edges of every creature).



LINEACCEPTORS - A SELECTION

end

start

end

I ~

I anhiadon

constant 
Mdistance L 1M )

constant anm
animation

extrapolate
animation

animation
freeze

animation

motion
decomposition

anmation

motion cross

animation {line} to line

bi-rail srface

S [line} to surface

{line, point} to line

radialbasis
distort

figure 121. Line acceptor primitives convert between (potentially animated) lines to (potentially animated) lines. Other conversions link points and surfaces to linear, ges-
tural forms.
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Triangular topology vertex-positioning system -fast "alpha blending" in time and space

Fast computer-graphics rendering systems store the positions of vertices in a

large array, often in memory with special properties, and dispatch a list of indi-

ces into this array to describe the triangles to be drawn - nothing more than

this is needed or considered by the engine. This vertex array is augmented by

exactly one extra piece of information, the 3-tuples of indices into this array that

define the triangles. Triangular topology stores store only topology, only the

information in this index array, and do so in a much less space efficient way -

storing, for the sake of fast computation, explicitly the edges, faces and quads of

this structure and the network of relationships between them (a face has three

edges, a quad, two faces etc.). This has the benefit that it is easy to grow and

manipulate geometry live - we shall see uses for this representation in both the

triangle agent, page 343, and the parachute / accumulation agent, page 349.

None of this stores a vertex position - what representation should we use? 330

Computation prohibits the creation of ten-thousand generic radial-basis chan-

nels (although around a hundred can certainly make it onto the screen at the

same time in both how long.., and ImageryforJeux Deux) so we need to pick a

less general vertex-position representation if we are to work with intricate

meshes.

In the common case, code for computer graphics writes and reads directly into

the large array of vertex positions, all accesses are immediate and every write

access completely overwrites the contents of a specific vertex position. We add

two additional axes of storage to this: extending the temporal vocabulary of

reading and writing to this array and allowing groups of operations to be

blended into the array rather than overwriting it.

Firstly, rather than allowing raw access to this array we form a stack of 0. .. N

auxiliary arrays "on top" of it and couple these arrays on an element-by-element



Alpha blending: T. Porter and T.
Duff. Compositing digital images.

Computer Graphics, 18(3),July
1984.

basis. At each update cycle we take the vertex V at level n, Vn and blend it into

the level n - 1 starting from the top and ending at the lowest array, the array

that will be ultimately sent to the graphics hardware:

V_1 <- anV_.1+ (1 - an)Vn

Vn-2 <- an_ I Vn-2 + (1 - an_ 1) Vn_ I

Vo <- aiVo + (1 - ai)V

This cascaded low-pass filter structure is characterized by the number of levels

N and the individual filtering constants ai = 1.. N . By writing into this

structure at various levels one can achieve various kinds of overlapping, blended

animations of vertex positions. For example, writing into level N produces a

ji=Nblend to a new position over a time-scale governed by {a;}i=o . This movement

is smooth, long and, most importantly, permanent.

By writing into lower levels # N one can effect faster, non-permanent changes.

At levels near N the changes are soft and shallow, near o the changes are rapid

(at o, they are instantaneous) and decay quickly back to the level N state. By

writing into multiple levels one can produce rapid permanent changes (for ex-

ample writing into all levels) or rapid changes that take a long time to decay

(writing into levels 0 -> (N - 1) ). All "animations" created by writing by in-

stantaneously writing into only middle levels have both "ease-ins" and "ease-outs"

generated for them, without any maintenance. We call this technique temporal-

alpha blending, after the alpha blending ubiquitous in computer graphics.
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TEMPORAL ALPHA BLENDING

output - level 0 -

level 1 -V ~--- vetl A l~ OTT.- A~t

level 2 V

level 3

level 4 __ i f
level 5

mesh write into levels 3-5 slow animation with "ease-in" and "ease out" "tonic movement

mesh write into levels 1&2 slow animation with "ease-in" and "ease out" mesh returns to original position

332

mesh write into output level percussive animation with "ease out" mesh returns to original position

A ~ - - -- .0k

overlapping mesh operations - mesh moves through complex transition to new position

figure 122. By writing into the stack of vertex buffers at various places, smooth, complex or percussive transitions can be blended and over-
lapped without interaction between the processes that cause them.



Further optimizations can be made by storing the three-
dimensional vectors as four vectors - which also happens to
better suit the vector-processing units of most contemporary

hardware - and using the extra, fourth, floating-point value to
store a flag that prevents the update being performed in the

case that each vertex in the stack is identical. This helps, but
doesn't help as much as storing one flag per cache-line rather
than one flag per vertex. Of course, this is rather architecture

dependent. But with this level of optimization the structure is
computationally inexpensive in the absence of animation, and

scales extremely well in the presence of local changes or
instantaneous changes.

Unlike the generic radial-basis channels, which use immutable value represen-

tations, implicate the context-tree and orchestrate a number of objects together

to compute their values, this structure can be very efficiently implemented in

bulk on modern processors.

The second extension to this fast-to-draw vertex array is a more traditional "al-

pha blending" of independent processes. That is, rather than writing over a ver-

tex with a new value, this vertex is written with some weight or alpha and is

blended with the old position of the vertex. This way we can execute simply

written algorithms that modify vertex positions and easily adapt them to scale

back their influence. Such blended influence is at the core of many iterative

mesh manipulations in addition to the classical mesh skinning techniques used

for graphical characters.

This blending is, of course, trivial to implement, even if we allow for the extra

flexibility needed to state which of the N temporal buffers to write into. How-

ever, there is a specific implementation problem that is worth working through,

for it sheds light on an approach that will be used in other places in this graph-

ics system.

The following (python) code appears to iterate through all faces and move each

vertex closer to the center of all the faces that it is part of - this code shrinks

meshes to reduce surface area, and appears to mimic several biological and

physical grown phenomena:

forfinfaces:
center = centerOf(f)
for v infvertices:

writePositionBlended(v, center, amount)

However, this code, tidy as it is, fails in our alpha blending for two reasons.

Firstly, writePositionBlended(...) writes immediately to the vertex array that cen-
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terof(...) reads from - the results of this code are dependent on the order of

"faces" whereas the intended algorithm isn't; therefore the code is wrong. Sec-

ondly, overlapping invocations of writePositionBlended(...), even with no subse-

quent reads, are order dependent - the last blend having more impact on the

final value of the vertex than the first.

Of course, no-one writes code like that. But it ought to be that easy, especially if

one is programming in a darkened theater. A better way is to add an auxiliary

array to the main vertex array that we are manipulating, and write into this

array and read from the main array. And in doing so, we store not 3d vectors but

4D homogeneous vectors, where the 4th element is the total weight written so far

and the previous three are kept multiplied by this. An alpha-blended write of a

vector (x, y, z, a) to an element in the array (x', y', z', a') becomes:

334
y' <-y' +ay

z' - z' + az

a' <-- '+a

to convert this (x',y', z', a') to an actual 4-vector we form (x'/a',y'/a', z'/a', 1)

Of course, the code above need not care that this extra array exists and, in fact,

inspection will prove that the above code executes correctly even if this structure

exists. We call the act of making this copy an open and the act of writing this

copy back onto the main array a close. Opening takes no parameters. Closing

takes two - amul and aadd - that control how much the auxiliary A array

gets to effect the main array V in the following equation:



ae = a'amul + aadd

K

figure 123. Multiple mesh
operations (conservation of

edge length and face area) on a
moving form have a physically

grounded, almost biological
appearance.

ue is clamped to 0... 1, and:

V +- aA +(1 - ae)V

The caller to the above code can wrap the invocation in an open...close bracket,

and we can dispense with the"amount" parameter to this method altogether:

openo

moveToCenter()

close(O, amount)

is equivalent.

Of course, opens and closes can nest; we can form an auxiliary array A 2 to an

auxiliary array A' . In this case close has four parameters. The last two control

what happens to the alpha component of the underlying array:

ae = a'amul + aadd

A *- eAz +(1 -ae)A1z

aa,e = a'aamul + aa,add

A' +- aa,eAz + (1 - aa,e)A1

Finally, we note that since reading always occurs from previous openings, an

opening does not necessarily imply a copying of the vertex data and in many

cases a zeroing of the auxiliary array suffices. For completeness, we add pa-

rameter to the open(...) to control the amount written to each of the 1 ... N

temporal buffers, should this be the first open in the chain.

335



These two mesh representations when combined, although lacking complete

generality, allow a range of very compactly defined manipulations of the con-

tents of the vertex array to be overlapped in time. In particular they allow the

convenient recasting of mesh-operations into mesh-processes: as controllable,

adaptive constraints or general composable animation generators. We are free to

look to three-dimensional modeling packages that each have a great many

mesh-operations (and this is well explored terrain, only a handful of the library

of mesh operations of how long.., are "new" in this sense), code them quickly and

robustly, and then wrap and layer these operations inside this temporal alpha-

blending framework to shape the animation of their operation.

The spaces on stage

We now have a strong general purpose framework for synthesizing and render-

ing controllable geometry from captured motion. One final ingredient is miss-

ing. 336

Unlike previous indirect methods of sensing dancers in live performance (for

example gyroscopes, accelerometers or single video camera) real-time motion

capture deals solely in terms of absolute, calibrated position. That is, the marker

data that are provided by the hardware locate particular points, in real millime-

ters from a known origin. This provides a unique opportunity when it comes to

projecting these positions back out onto the stage if we can work out how to

transform "real pixels" back into "real millimeters".

Unfortunately, we lack a good way of projecting into a three-dimensional vol-

ume, so despite this accuracy and richness, we remain dependent on a

computer-graphical trompe l'oeil to make the three-dimensional graphics, when

projected on a very two-dimensional transparent surface (a"scrim") in front of

the dancers, appear to occupy the same space as the dancers. Part of the "effect"



is purely stagecraft for sure - should any light fall on the scrim the effect is

immediately absent and the imagery will read as flat no matter what is pro-

jected.

One graphical trick deployed in how long.., and, to a lesser extent in Imageryfor

Jeux Deux, is a rediscovery of an old and traditional computer-graphical tech-

nique - depth cueing. In how long..., unlike with traditional distance "fog", the

distance to the virtual camera shades not only the intensity of the linear mate-

rial drawn but the hue, noise amplitude and transparency.

The noise amplitude is particularly important - left unscaled by distance, the

typically sketchy quality of my randomly perturbed line actually works against

the correct cueing of depth. As lines in the foreground, with the same amount

of world-space noise added to them, appear to move more they overlap less and

therefore, after the action of sequential frame motion blur, appear fainter. Scal-

ing the noise amplitude and the opacity by a function of distance prevents this 337

inversion or, alternatively, turns it into an apparently finite depth of field (by

pushing more distant material into noisier territory as well).

Further, although the color palette of how long.., appears to be an austere and

diagrammatic monochrome + red, there is in fact almost no pure white in the

work - rather each line is quietly hue-shifted towards blue (receding) or red

(advancing). The difference between having these techniques and not is ex-

tremely apparent in the perceptual depth of the imagery as it hangs in the space

of the stage even though the colors themselves are barely perceptible.

Such tricks work for any three-dimensional rendering projected into the space.

However, in how long.. we need an extra ingredient - a mapping from the

three-dimensional space of the motion-capture data into a three-dimensional
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I calibration
motion
capture

freeI f alignment or
graphics shadow

I free I mapping

virtual
camera

I calibration
projection
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I calibration
stage

figure 124. The complete stack of coordinate system
transformations that are possible when using real-time motion

capture in theater. In order to complete this loop we need to
know the corners of the projection screen, and the coordinate
system of the motion-capture hardware in the same frame of

reference as the theater.

"world-coordinate" space of the renderer which gets projected (mathematically)

onto the image plane which in turn gets projected (physically) onto the scrim.

How Long... is built with a vocabulary of such mappings and they come in two

species - the audience-aligned mapping, and the shadow-projection mapping.

The audience-aligned mapping is so called because, for a particular seat (at a

particular height) in the auditorium the imagery and the dancers align exactly,

for all positions of the dancer on the stage. As one moves away from this ideal

seat the alignment grows less and less exact (though the imagery is still star-

tlingly correlated). The position of the projections on the surface of the scrim is

measured (by hand) prior to the performance. The mapping takes the points in

real space and intersects the line between the marker and the auditorium seat

with the scrim. This provides a two-dimensional representation of the marker

data, in virtual camera coordinates. This two-dimensional point-set is given new

depth, along the lines between the points and the virtual camera position, pro-

portional to the distance of the real-space point and the real-space scrim. A

"plan view" of the stage can be created using the same mathematics, only by

locating the virtual audience member above the stage and the "scrim" at the floor

plane of the theater.

The shadow projection uses the same mathematics, but a different interpreta-

tion: it places the audience position on stage. In this case, this position acts as a

virtual light source casting a shadow of geometry onto the scrim. This two-

dimensional image is then given depth again by offsetting it from the virtual

camera plane by a distance proportional to the distance from the virtual light

source. It is, in effect, a three-dimensional shadow - figures close to the virtual

light source loom large and close to the front of the stage - that plays with the

secret materiality of the hidden projection surface.
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AUDIENCE-ALIGNED MAPPING

stage-mocap

LII 0 LZL
stage-mocap -+ scrim

audie

stage-mocap - scrim - virtual camera projection surface

stage-+mocap - scrim -. graphics depth -+ virtual camera -+ projection surface

gmwykm

from upstage left

figure 125. A camera orbit of an object on stage with imagery projected onto a scrim in the front of the stage. From the alignment point the
imagery point aligns exactly; from the point of view of the graphics world, the object has an oddly distorted perspective.

scrim

mocap
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from "alignment point"



4 ,virtual light

340

figure 126. The audience-aligned and shadow-projection mappings compared. An identical geometric construction yields dramatically differ-
ent results. In the latter, objects and figures loom large and transiently on the scrim.

audience



These two classes of mappings, or projected projections, find a balance between

the readable and the dramatic - the audience can see the connection between

both the movement of the images and dancers and, at times, the overlap be-

tween their positions. Deploying these coordinate systems throughout a piece

becomes the problem of distributing clarity throughout the hall. It is a matter

for considerable, but exciting, future work to adapt these techniques to the

availability of multiple projection surfaces in richer (but, alas, less tourable)

stage configurations.

3. 'he agents deployed in bow long...

The power of this graphical framework comes not from the non-photorealistic

shaders or the number of stock elements that can be composed in the line ac-

ceptor stacks to make complicated notations, but from the processes that move

between the representations of points, lines and planes. How Long... necessarily 341

starts with points - the points of motion from the dancers on the stage - but

becomes a sustained trope about the recording of movement and the transfor-

mation into drawn line and the possibility of solid form. This chapter concludes

with a description of the more complex agents, the details of their implementa-

tion, and a sketch of how they overlap.



AN EXAMPLE ("IMPROVISED") FLOW THROUGH HOW LONG...-

CREATURE

The corners of the lines
leftoveroncethecreature i Additional points from

has left the stage. Lines Points the stage can be slowly
introduced.

TREE is based on
a point / midpoint
construction, these
Points and midpoints
can be broadcast to other
processes.

GLYPH / ACCUMULATION

Solidified lines declare
an area that will capture
movement and produce
the source material
for the ACCUMULATED

VOLUME.

STAGE MACHINE

This is computationally
related to Tree since

Points Points it too builds a single
skeleton over multiple
dancers.

However, it tends to
emphasize the areas
arounddancersorgroups
of dancers.

MIDPOINT LINES

Touching the stage like
rain these can move
the vertical lines of the
box geometry to the
midpoints between the
dancers.

Suddenly a gap can open

Points Lines up in these lines (for
they are positioned in
the empty space between
dancers).

Box et al.

- Our boxes can exchange
Shapes Points roles with these groups

of dancers and flow into
the BOX COUNTERPOINT

sequence or the
SHADOWER sequence.

Ultimately we are
Lines Lines left with very clear

diagrammatic box or
frustum lines.

Which can become
the shape of a new
creature, perhaps in
an environment where
gravity pulls upwards,
creating an aerial
creature.

4 This complex form can
Shapes Shapes be traced and simplified

back into a small number
of triangles.

PARACHUTE

This might suddenly
pivot into a new shape Shapes Shapes
- a parachute.

Alternatively this may
make an entrance by
being pulled back onto
the stage (perhaps
after the departure of a
creature). We mocked
this up onJan 20.

Ultimately the billowing
lines from parachute can
simplify and solidify as
the stage empties.

MEMORY SCORE

... becoming a single
Lines Lines set of horizontal lines

following a single dancer.

Thinned out even more,
we have a single line
crossing the entire stage.

WEAVING

This line may be joined
Lines Lines by others as others enter

the stage. Together they
weave, andpossiblyrotate
around the dancers.

figure 127. An example "flow" through the how long.., agent framework. This was the state of the piece for a series of workshops. The fin-
ished work adds a final return to the triangle here labeled "creature" - taken from documents shared between the collaborators.
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the triangle - the trace of movement

Diagram / c5 action
selection

Standard b-tracker marker pool

taWMmheWadg

' Aboaana imneeseser

The piece opens with a creature stage-right playing a simple game with a simple

goal - to make it over to stage-left. However, the only source of motion avail-

able to the creature comes from the movement of the dancers on the stage. In

order to begin to make progress it needs to hitch a ride on the motion available,

connecting and disconnecting from the markers it sees in order to pull and be

pushed leftwards.' he creature's body, initially a line supported by single trian-

gle, accretes the diagrammatic traces of these connections, disconnections and

movements as the creature continues.
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Triangle
"notation body" Standard b-tracker marker pool

figure 128. The triangle agent diagram.



TRIANGLE - SOME IMAGES-

N

figure 129. The triangle. The first seven images are from various openings of the piece. A re-projection rendered line element picks out one
path through the triangular framework. The last two images are from the "reprise" of triangle. (inverted).
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figure 130. The four classes of actions that triangle can take on one or two points:
pull vertex, split-and-pull vertex, rotate vertex (constrained to be on a circle from

another point) and split-and-rotate vertex.

There is a palette of four operations that the creature can ask of its body. Each

operation can be applied to any vertex (or any pair) of the body - this multi-
plies the number of actions - and when disconnected each operation leaves, in

addition to any new edges, vertices and faces that the operation creates, a trace

that the operation took place which is respecified local to the coordinate system

of that part of the creature.

The body exists in a simple physically simulated world - it falls to a ground

plane, maintains angular momentum when it falls or is pulled over - and si-

multaneously is trying to conserve average edge length and face area (through

our triangular operations framework described above). The simulation is dis-
torted slightly to allow increased stability for this generally flat structure in the

plane parallel to the screen (if the triangle were to fall over towards the audi-

ence, all they would see is a line). The creature succeeds (and during the per-

formances, and dress-rehearsals it has never failed) because of a few simple heu-
ristics, encoded into the structure of its action system, and"prior knowledge" of

the choreography.

The action system of triangle is implemented within the Diagram framework,

page 251 - trigger factories produce the operations listed above in response to
monitoring a b-tracker based marker tracker that scores markers based on

whether they are going in the right direction or not. Actions are scheduled

closely in the output channel and remain active - lengthening their markers -
while the markers that they are attached to remain scored above a threshold.

What remains to be learnt - from exposure to the choreography - is rather

simple: how strongly to couple these scores with the triggers that create action,

and where to set the thresholds that ultimately cause the operations to discon-

nect from the markers. The representation that the destination for the learning
is a channel of examples - a generic radial-basis channel with a time-base given
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figure 131. Once actions have completed, traces of the operation remain con-
nected to the body of triangle. This body is located in a simple physics simulation;
thus, while it attempts to conserve edge length and face area it is simultaneously

falling towards a hidden ground-plane,

by the life of the triangle agent, aligned, that is to the start of the choreography.

Learning occurs by monitoring the forward progress (or lack thereof) of the

creature and increasing (or decreasing) the coupling between triggers that

caused active actions and the tracked markers, and decreasing (or increasing)

the threshold for the active actions to withdraw. These marks occur in the

channel itself, at the onset times of actions participating, so they are tied to the

context of the choreography - assuming of course, that it does not change

structurally. Ultimately this learning problem, as deployed in the opening cho-

reography of how long.., is not particularly difficult, as Brown responds to the

agent's presence on the stage with material that appears to toy with the crea-

ture's intention but ultimately moves from stage right to stage left, the structure

succeeds in capturing what it needs from the underlying motion.

Variations of the triangle agent appear, in different renderings and multiples

during the piece - one alternative has its physics system modified, such that

net rotational movement from the markers directly causes rotational momen-

tum on the creature, forcing it to roll horizontally away from the dance which

now it must attempt to cling onto. Similar, although much easier, learning oc-

curred for this creature too.
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While the design of this creature's learning strategies are much less sophisti-

cated than that of say, Dobie, there are two points to note in any comparison.

Firstly, the integration of a scored temporal element seems vital in "choreo-

graphing" rather than "demonstrating" learning. Secondly, the primary construc-

tion of a triangle action system took place in a single afternoon, the realization

and reconfiguration for the alternative instantiations of the creature took place

during a break in a rehearsal. Returning to the language of chapter i, it might be

tempting to compare this experimental learning, deployed in the moment, ex-

plored during the creative processes, with Dobie's carefully thought through,

crafted and framed, dog-learning avant-garde. However, in all seriousness, this

technical feat is simply the product of Diagram framework's insistence on an

explicit articulation of time, page 251, the context-tree's power for allowing

duplication-with-modification of agents, page 222, and Fluid's utility in allowing

complex systems to be tested and tuned live, page 387.
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TRIANGLE - LEARNING OVERVIEW
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figure 132. Triangle learns when to connect and disconnect from the passing dancers by rehearsing with the choreography in order to move
from stage right to left. This figure shows the successive stages of learning (from top to bottom). Space is rotated for the purposes of presen-

tation. Stage right becomes the top of each image (inverted)
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parachutes & accumulation - coordination without specification

Standard b-tracker marker pool

Perceptual event battery

] El .. [. [

Opportunistic
alignment

It is a general principle that if there were no dancers, or they did not move, not

much of the imagery would appear and even less of it would move. The next set

of creatures - the parachutes and the accumulations - also capture motion

from the dancers on the stage, similar to the triangles. However rather than

deliberately connecting to a handful of points these creatures connect to the

points en masse and we develop a new structure, a new kind of "animation" to

control the relationship between these creatures'bodies and the bodies on stage.

Just as The Music Creatures were a silent potential for music, until sound was

heard in the gallery, this animation is an"open form', a movement-less animation

that acts as a series of arranged receptacles for manipulated motion.
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' Marker capture and geometry
creation in Accumulation

Vertex

figure 133. The agent system
diagram for parachute and

accumulation.
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PARACHUTE - SOME IMAGES

350

figure 134. The parachute. Dashed lines connect the solid form to the dancers. On the right a
parachute decides to connect to the "markers" of another parachute.

(inverted)



ACCUMULATION - SOME IMAGES

VW4
figure 135. The accumulation. The red lines indicate the sampling of movement material, and

the creation of geometry, from the stage. (inverted)
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Delaunay tetrahedralization is a three-dimensional version of the
well known Delaunay triangulation algorithm -

E. W. Weisstein. Delaunay Triangulation.
From MathWorld-A Wolfram Web Resource.

http://mathworld.wolfram.com/DelaunayTriangulation.html

The implementation used here is to be found in David Eberly's Wild
Magic graphics and algorithms library:

http://www.geometrictools.com/

A parachute is a simple, box-like form that appears in space. By translating and

scaling itself to cover all of the dancers it forms a visible connection to each

marker. The maintenance of these markers becomes a top-down influence on

the parachute's perception system and these markers are continually updated

and distributed across the actual current marker set. Subsequent deformations

of the parachute shape are driven by a rhythmic exploration of a space of possi-

ble triangular topology vertex positioning operations. For parachute, these op-

erations focus on generalizations of the standard "mesh-skinning" algorithm

commonly used for digital characters. An accumulation is similar, but it takes its

form from a rather dramatically captured motion - it is constructed as a dis-

torted Delaunay tetrahedalization of successive slices through markers motion

captured between two moving lines on the stage.

The standard skinning algorithm is the following. We capture a set of vertex

positions (the skin) and set of transforms (the joints) at a particular moment -
this is the "binding information". At any time there is a set of weights for each

vertex that connect the vertex to these transformations.

for the bind positions of the mesh {V;} , the bind-time transformations Mj , the current

transformations M' and the weights wi-j we can compute new positions {v;} by

weighted sum:

v j ij-M';.M jvi i +j
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For a more conventional overview of character skinning, the related work
section of: J. P. Lewis, M. Cordner, N. Fong. Pose Space Deformations: A Unified

Approach to Shape Interpolation and Skeleton-Driven Deformation. In Proceedings of
ACM SIGGRAPH, Computer Graphics Proceedings, Annual Conference

Series. 2000.

Further, since this idea has been canonized and hardware accelerated, both
of the leading low level graphics libraries expose functionality for at least

"matrix-palette" skinning.
DirectX - http://msdn.microsoft.com/directx/, and OpenGL -

http://oss.sgi.com/projects/og-sample/registry/ARB/vertexblend.xt

This mathematical expression is equivalent to a rather more interesting formu-

lation. Conventional skinning is a set of blended, overlapping operations - one

for each transform as above. However we can reinterpret this as a set of dy-

namic processes that are each trying to maintain a constraint. In the case of

skinning the constraint is that vertices should be in the same local position as

when they were bound, regardless of the new position and orientation of the

transform.

This view allows us to integrate "skinning" into the blendable body framework,

and create animations from the process of skinning, with the process of skinning

attempting to maintain its constraints. It also suggests decompositions (gener-

alizations) of the skinning algorithm.

For example: we call 2 sets of positions in space - a set of marker positions

(from the source) and a set of vertex positions (from the parachute geometry)

- a binding. (Without further work there are no rotations labeled in the mark-

ers, they are pure positions). We can restate the conventional (translation only)

skinning algorithm easily within the vertex-positioning framework, and we can

make temporally smooth movement by writing into higher levels of the tempo-

ral buffer stack. But there are other constraints - for one, we can keep the same

distance:

for the bind positions of the mesh {vi} , the bind-time positions Pj , the current positions

P and the weights wi-j we can compute new positions {v} by weighted sum:

v < wi-j (vi + (vi - P) (|vi - Pj /vi - P5I - 1)] / wi-j

Further, we could let the distance change, but keep the same orientation with

respect to the marker position:
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for the bind positions of the mesh {Vi I , the bind-time positions Pj , the current positions

P5 and the weights wi_.j we can compute new positions {v;} by weighted sum:

vi wi-j [P + (vi -P ).Q_,ji (vi --P)]|/wij

where the quaternion Qi_+ is given by:

Gi-j = Q(vi -Pj;vi - P)

that is the quaternion that rotates the vector vi - P5 onto vi - P1 .

There are local constraints too that we can apply, without reference to the

marker bind positions, but simply to the vertex bind positions. Some of these

have to do with the properties of the topology placed on top of these vertices

- can try to maintain the edge lengths of a mesh and the face areas of a mesh,

or, more conflictingly, we can try to reduce the face (surface) area of the mesh 354
while trying to preserve edge lengths. More interestingly we can look at local

relationships between the bind positions - similar to the angle representation

used in line in The music creatures, 16l. Applying this operation allows parachute

to coalesce its shape after many transformations, but possibly in a new position

and orientation and in a rather indirect way. In any case: each constraint gets

applied inside the temporal alpha-blending system to the body of the agent;

these processes unfold over time or are stated and retracted by this system.



ALTERNATIVE SKINNING - A"PARAMETRIC" OVERVIEW
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'figure 136.

rim

/0
A single "skinning" control point applied to an initially undeformed cylinder - two classes of constraint are shown, in the upper level of

each the control point -shown in red - is moved vertically upwards, in the lower, the control point is moved diagonally.
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Similar to the previous figure, however here two additional "translation" constraints are added to each side of the original constraint. These act to keep
nearby parts of the cylinder "undeformed". Of course, for more exotic constraints the implications of the "undeformed" can be quite complex.
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figure 138.
Because these skinning constraints are processes not
operations, they necessarily produce animations not

new static forms. The above figure shows an
animation created by two successive, instantaneous

movements of the control points. Because of the
nested capture( and releaseo calls used to create this
animation, the mesh does not return to its original

configuration, but rather retains some of the trace of
its animation.

To navigate the forest generated by this framework we clearly need to impose

some structure on these operations. One container interface that has proven to

be widely applicable is the"capture/release" interface:

interface CaptureRelease {

void release(float amount);

void capture(float amount);

void merge(float amount, CaptureReleasefirm);

CaptureRelease forko;

I

This interface does a good job of wrapping motor-system level constraints, in-

cluding all of the processes described above. It works well for other constraints
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such as inverse-kinematic (IK) constraints applied to a digital figure and, since

this is a less exotic constraint, I'll use this as the illustrative example.

Consider making an IK-based "feet-sliding constrainer" - this was done for a

small bipedal character called Max (unconnected with how long..., see figure ioo,

page 289) that was driven by an otherwise "conventional" pose-graph motor sys-

tem but had purely procedural turning animations. This means that Max

turned by playing a walk-forward animation, while being rotated clockwise or

anti-clockwise around the vertical axis. One result of this is that Max's feet may

well slide during his animation.

Indeed, it has become a typical strategy computer graphics to procedurally ma-

nipulate character animation (blending animations or otherwise transforming

them, perhaps in response to user control or offline optimizations) and then use

inverse kinematics on chains down each leg to prevent the feet from appearing
to slide. To stop a foot slide the constraint tries to remove motion parallel to the 358

ground plane but not perpendicular. In order to allow forward motion of the

character at all, the constraint should be applied only when the foot is in contact

with the ground. And because computer graphics is not as exact as real physics,

there will be a little fuzziness in our idea of the ground, so the constraint should

fade in and out as the foot nears the contact plane. This is equivalent to fading

in (to 1) and out (to 0) the amount that we release() the results of computing

the IK to the virtual skeleton and root node. However, the creature is being

propelled by a force that is not under the control of the foot-sliding constrainer

- the constrainer needs to update its idea of where the foot should be. This is

what the amount associated with capture is for, it controls how much the virtual

skeleton influences the constrainer's idea of its target. In this case this will de-

crease from 1, perhaps to 0 or to some low number, before increasing to 1 as the

foot comes toward the floor and leaves. The remaining methods - fork and



graph shapes release parameter

small capture
loop point start large release

small merge/ fork

loop point end

figure 139. The graphical environment Fluid (discussed in the next chapter)
can be used to create these small, rhythmic pattern generators, scripting
the application of the skinning and other mesh operations. These scores

can be "unrolled" into diagram channels and opportunistically aligned with
events gathered from the stage.

merge - allow the internal state of the constraining object to be duplicated and

at some later point blended with another constraint.

We can wrap all of the above transformations in capture/release mechanisms.

Clearly for our rather odd creature bodies the ordering, flow and amount pa-

rameters of these mechanisms will dominate their movement. We construct a

purely meta-procedural idea of an animation by building an interactive notation

for the chaining of capture/release structures. In these diagrams time runs left to

right, horizontal lines show the same constraint, markings on the line indicate

captures or releases. Time-synchronous graphs help provide amount parameters.

Dashed lines mark forks and merges.

As we shall see, the creation of these domain-specific, executable notations is

something that the Fluid framework has been specifically designed for.

Each of these diagrams specifies an open-animation, rhythmic cell that when

repeated results in a complex expansion, tracking, dissolution and condensation

of the parachute geometry. That the contents of the cell form connections to the

movement enforces a relationship, however shifting, with the motion on the

stage. The cells can be named, and called upon by a small action system that, in

the case of the parachute, oscillates between three such cells, or motor programs

each of around 10 seconds in duration; in the case of the shorter-lived accumu-

lation there is only one cell.

However, although the cells are made by essentially opening and closing win-

dows onto the motion of the dancers, their internal organization in this formu-

lation simply remains unchanged regardless of the motion of the stage. As an

agent metaphor, this is a motor system without an action system, an open, yet

somehow "ballistic" form. Is there a way of coupling these overlapping cells

without losing the notational fluidity, without coupling the notation to a par-
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ticular choreography, or losing the sense of the cell's identity?

In order to identify marker configurations, the shape
matching algorithm presented in:

D.P. Huttenlocher, W.J. Rucklidge, A multi-resolution technique

for comparing images using the Hausdorff distance, Proceedings of
Computer Vision and Pattern Recognition, 1993.

was implemented. This is easily applied over the entire set of
marker hypotheses in the ongoing b-tracker, to create a more

reliable identification of a moment of choreography. Such
choreographic tracking, however, was never placed "in the

critical path" of how long... (unlike the pose recognition of 22,
for example).

The first step to this perpendicular relationship is to look for ways of bending

the repeated passage of time through the cell. Notations, such as those seen

above (constructed in Fluid), can be "unrolled" into a Diagram channel or arbi-

trary length. This lets us bring the pattern matching and temporal manipula-

tions to bear on the execution time and possibly ordering of these cells.

To complete this coupling we need something to couple these cells to. For this

we construct a perceptual stream of"significant events" from the markers on the

stage. A list of event recognizers are easy to synthesize from the agents'lower-

level perceptions of the markers on the stage and from the dancer-like clusters

and from a rough look at the choreography. They are: number of dancers

changing; high acceleration maxima from a number of points; acceleration

minima at low velocity for a number of points; sudden drop in the height of the

points. Additionally, a couple of key marker configurations are identified.

These unspecified ideas can be sharpened up (in an unsupervised, automatic

way) using the learning database techniques constructed for The Music Crea-

tures, page 143, (specifically, they are a mapping from an unspecified input do-

main to a (o,i) range with the bottom 0.5 of the range cut off and ignored.
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Event generators that look for maxima and minima
do so by parabola fitting and sometimes take a

number of execution cycles to fir a clean parabola
through the quantity, so events can be added to the

fixed stream at temporal locations other than "now"
This opportunistic matching for parachute runs

with a latency of around half a second (of course,
the actual geometric operations update at the much
smaller tracking latency of the perception system).
Such complicated layering of update rates is easily

expressed within the Diagram system.

Now that we have a stream of mobile future events, from the unrolling of the

rhythmic cells, and a stream of fixed near real-time perceptual events, we can

incrementally search and shift the the mobile future events to maximize the

coincidences between high "value" perceptual events and the elements of the cell.

In doing so we maintain, of course, the ordering of the cell elements. Fluid al-

lows for a labeling of other constraints on its diagrams and these too can be

unrolled into the Diagram channel - the changes to the position of one cell

ripple outward to all future cells. Although the prototype notation from Fluid

could be copied out indefinitely, we choose instead to duplicate the previous cell

from the Diagram channel itself. In this way, in the absence of structurally im-

portant events from the stage, the cell repeats its previous incarnation.

This animation technique conspires to align the changes of intention of the

parachute creature - which is what the elements of these rhythmic cells are

legible as - with notable events on the stage, if those events are present, and

otherwise maintains a coherent but slow tempo. This allows coordination be-

tween two complex systems - the parachute / accumulation structure and the

structure of the choreography as observed in very visible and simple ways -

without specification; serendipity without chance.
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tree / stage machine / forest fire

Standard b-tracker marker pool

b-tracker skeleton maintenance

Heuristic triggers-
update skeleton

Diagramaction scheduling
& Fusion filter

Diagramlcs acton

LneAcceptor stack

Skeleton ilustration

figure 140. The general agent system diagram for tree and stage
machine andforestfre. Only the skeleton representation and the

line acceptor stacks differ significantly - the agents share a
common"base class".

Both parachute and accumulation are structures that react to and trace move-

ment - they are "live memories" of the dance. The next class of agent enters

into the choreography in a different way, offering alternative motivations and

partial explanations for the movement as it unfolds.

Three agents are alternative ways of drawing a skeleton: for a figure or for a stage.

They are three relatively straightforward studies exploiting the notational po-

tential of the blendable body framework. Tree constructs a skeleton for an

offline captured solo and re-injects it into the piece (partially overlapping with

the performance of the solo itself); Stage machine hypothesizes a skeleton for all

of the markers on the stage; Forestfire flows edges over an invisible lattice built

from an instantaneous snapshot of the markers, revisiting the percolative

action-selection dynamics of Loops.

Each agent fails to grasp its goal repeatedly - there is no such thing as a skele-

ton for a whole stage of dancers, but rather a series of plausible constraints that

the dancers are obeying at any particular moment that the agent can fleetingly

illustrate.
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TREE / STAGE MACHINE / FOREST FIRE - SOME IMAGES

K
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figure 141.
Left: tree reconnecting with material from the stage; middle: stage machine illustrated two different ways;

right:forestfire and stage machine overlapping. (inverted).
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Traditionally, motion-capture systems, when they are actually asked to label

markers, label them against a known skeleton - a set of fixed length bones

with fixed markers and fixed classes ofjoints connecting them. The stage ma-

chine agent performs a much more difficult and less grounded task - to try to

infer the skeleton from observing the marker data. At the core of the stage ma-

chine's algorithm is a matrix of low-pass filtered bone"affinities". That is, a con-

nection between marker mi and marker mj :

= Imi,to - mj,to * mi,to - mi,tI - mj,to - mj,t )
(Imi,t - mi, l + mj,to - mj,ti 1)

is considered a good candidate for being a bone if they are both moving and,

while moving, they are maintaining their distance relationship. At any given

moment we can strike through this matrix a minimum-spanning-tree, a tree

that, while connecting every marker, minimizes the (instantaneous) total of the

distances of its edges. Within the language of the blendable body framework,

this is a process that casts points (markers) and their history of movement into

lines (the spanning tree). Inevitably, parts of this tree will reveal themselves as

false - points of motion that happened to move in similar directions - two

dancers in unison - or points that orbited around another as a center - one

dancer around another - (both plausible "bones" by the above metric) will shift

direction and break apart. How and when should this skeleton be reconsidered?

Stage machine uses the b-tracker framework to maintain both the underlying

marker movement and its hypothesized skeletons. The minimum spanning tree

is periodically injected into the bone-level b-tracker as a set of plausible bones.

Each tracked hypothesis inside this tracker is a bone - a marker-marker edge

- and as these edges evolve we can trace a "skeleton" by drawing the highest

scoring edge for each marker. Slowly we drift away from a clean spanning tree of

the markers and eventually individual markers themselves might lose all rea-
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One well-known
algorithm for computing
the minimum spanning

tree of a set of vertices is :
J. B. Kruskal. On the shortest

spanning subtree of a graph
and the traveling salesman

problem. Proceedings of the
American Mathematical

Society 7(1) 1956.

figure 142. A simple automatically
generated skeleton process - as
used in stage machine. As the
markers transition from obeying
one constraint (orbiting the
rightmost marker) to another

(orbiting the leftmost) the
"skeleton" follows.



figure 143. The dendogram
generator that Tree uses to

construct its hypothetical skeletons.

sonably scoring bone hypotheses. At this point it is time for the agent to act

upon its perception system: to re-inject a new minimum spanning tree into the

tracker.

Two twists complete this agent as deployed in how long... During the life-cycle of

this agent we can modify the above bone metric as it feeds into the minimum

spanning-tree algorithm to favor or disfavor bones that span different dancers.

We may go so far as to render cross-dancer skeletal lines differently - indeed

at the second appearance of this technique, bones that bridge dancers are used

to form a perpendicular, running fence. Controlling the above preference thus

controls the density and the detail of this dynamic partitioning of space.

Secondly, we perform the re-injection of the minimum spanning tree, which is

often a rather dramatic reconfiguration of the current illustration, using the

scheduling techniques of the Diagram system, similar to the intersecting

rhythm generators of parachute / accumulation.

Tree andforestfire are similar to the stage machine in that they are Diagram

scheduled reorganizations of a instantaneously hypothetical skeleton; they dif-

fer in their definition and rendering of the topologies that they find. Tree, rather

than finding a minimum spanning tree through the bone matrix, constructs a

hierarchical clustering of the markers and their bone matrix. Specifically, Tree is

a dendogram of the markers with the euclidean distance metric between points.

As a dendogram of N points introduces on the order of another N mid points

tree thickens the cloud of markers around the dancer. Unlike the use of stage-

machine in how long.., which tracks only the markers of the dancers, tree links an

offline motion-capture take (with many more points) with what is currently

being performed - thus in addition to choosing to reschedule the rehierarchi-

calization of its perception system, tree also interprets its current skeleton as a
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filtering network on the underlying motion-capture data.

AJ

figure 144. The forest fire process,as
applied to a static mesh. Two

processes (fires), red and black
compete for vertices (trees). By

altering the propagation
probability, the burn time and the

regeneration rate a range of
dynamics and interchanges can be

created.

For an introduction to percolation
phenomena:

D. Stauffer , A. Arahony, Introduction
to Percolation Theory, Taylor &

Francis. 2001.

However, I have particularly
enjoyed the presentation in:

H. Peitgen, H.Jurgens, D. Saupe,
Chaos And Fractals: New Frontiers of

Science, Springer-Verlag, 1992.

Each node (bar the leaf nodes) of the dendogram consists of a parent node and

exactly two children markers. Typically the position of the parent node corre-

sponds to the center of the two children. Unfiltered, motion of the children

markers freely moves the parent; however we can separate the rotational and

linear components of the motion of the children with respect to the motion of

the parent. By increasingly strictly conserving the distance from each of the

children to the parent we can allow the inferred skeleton structure to "push

back"onto the data. Rather than fading out as irrelevant and being replaced by a

new attempt, the tree can spin out into absurdity and a new tree structure can

capture these new markers and bring them back toward the original underlying

motion.

Finally,forest fire constructs its "skeleton" by a periodic, Diagram-scheduled,

Delauny tetrahedralization of the marker set. Rather than displaying this vol-

ume of triangles over the dancers, this structure becomes a hidden lattice for a

percolation simulation. Specifically, a number of propagable forces or "fires"

compete for space on the lattice. At any given moment, for any given occupied

node, there is a small probability that this node will succeed in capturing a

nearby node. Nodes remain occupied (burning) for a certain time, and nodes

remain unoccupiable (burnt, "re-growing") for a similar duration. The trace of

propagation for a particular point of origin becomes a cascade of curves over the

lattice. The agent acts to replenish the lattice illustration by adding original fires,

or, less frequently, to reconstruct the entire lattice.

In different ways, each of these agents construct speculative frameworks for the

movement from the stage that they perceive - these frameworks are live,

maintained and reconsidered by the agents. It is these agents the provide the

most direct slices through the movement and hints of the choreographic proc-
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esses behind it - the forging and reforging of similarities (stage machine), the

propagation of movement impulses from dancer to dancer (forestfire), and the

making and breaking of clusters on the stage (tree). Sometimes, these agents are

overlapped with each other, each conflating the present of other agents with the

markers of the dancers themselves, providing a dense, accumulative network of

computational representation made visual.
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memory score - the trace of perception

Standard b-tracker marker pool

Confidence-based marker thinning

Distance mapping

b-tracker, minimum tracking

The memory score agent was constructed to accompany a tangled, "triangular"

solo in the piece. The agent is principally governed by the attempt to visualize a

distance-mapping-based decomposition of movement - a comparison and a

projection of the current configuration of the dancer's body with the agent's

memory of the solo.

The central algorithm is an attempt to decompose the movement into a series of

key poses - these will be poses that represent the boundaries of phrases -

and then illustrate the connection between the dancer and these poses.

Diagram action scheduling
&abstract balance filtering

Memory Score
"notation body"

figure 145. The agent system diagram for memory score.

Diagram/cS action
selecton
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MEMORY SCORE - SOME IMAGES
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figure 146.
Memory Score, above: taken over the "tangle solo"; below, a more complete marker set. (inverted).
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"past" - "now"

Figure 148. A cascaded, variable resolution signal for the distance mapping
algorithm.

Figure 147. Tracked minima roll
backwards through the output of
the distance-mapping algrorithm.

-.-.- distance
mapping curve

b-tracker
hypothesis

First we execute the distance-mapping algorithm to reduce the motion of the

dancer down into a single scalar trace. Rather than compose this algorithm over

a very long, high-resolution memory of movement, we use a telescoping buffer

of time; with 4 time-scales each with half the temporal resolution of the previ-

ous one this allows for the representation of 30 seconds of movement at initially

40 frames a second with 200 "frames". Next we look for and track points of local

maxima and minima on this trace. For this, of course, we use a simple b-tracker

framework: hypotheses are parabolically fitted extrema.

These tracked moments of time, which roll slowly backwards, sometimes split-

ting apart, sometimes coalescing, correspond to poses that have a special rela-

tionship with the structure of the memory - and they have an appealing, in-

tuitive interpretation. They are the points that are locally, maximally or mini-

mally distant from other material. They are the furthest points reached, and

they are the points that are unexpectedly returned to after some journey.

The memory score agent acts in response to the creation and deletion of new b-

tracker hypotheses, fitting new poses into an illustration of the timeline, pro-

jected above the dancer, connecting poses from tracked point to tracked point to

form horizontals of time, connecting the structures of poses using minimum-

spanning trees to create a vertical. It has a limited amount of information that it

can send to its motor system - specified in total connection length and dele-

tions per update cycle - so it is a task that is not without effort.

Visually, the material from the dancer - which at times is quite startlingly

clear, ricochets back across the stage as the agent tries and ultimately fails to

tether it to the developing score. Although it proceeds and lingers after the solo

it ultimately finds a point of correspondence with the, literally, tangled and

folded movement of the dancer on the stage.
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weaving - a hidden body acting with a simple diagram combiner

Standard b-tracker marker pool

dancer tracker

dancer order recognizer

Dagram action scheduling
& Fusion filter

notation body"

Figure 149. The agent system diagram for Weaving.

While parachute / accumulation and memory score formed and moved their bod-

ies from the traces of dance, and the tree /forestfire / stage machine agents

grasped at the improbable mechanics behind the dance, the last agent that will

be described here hides its body completely.

Weaving, the very simple agent which nearly closes the piece, is constructed

from a hidden creature that looks only at the ordering of the dancers, from front

to back, and tries to retrace this ordering by weaving a set of lines in space. Spe-

cifically, it tries to notate these re-orderings that occur from front to back on

these lines by weaving the dancers' respective lines. The agent's motor system is

a single Diagram fusion filter that fuses together weaves that occur in quick

succession that would ultimately cancel each other out, yielding a simpler

weaving pattern. The notation is completed by a perpendicular line that links

the event to the dancers in the space, and by a distortion of the lines to overlap

with the location of the midpoint between the involved dancers.

As the agent progresses, it moves from fixing its coordinate frame from that of

the weaving material to using that of the dancers - the horizontal lines are

pulled around by the dancers'increasingly repetitive winding and unwinding,

yet at the same time the material is pulled back onto the stage by the crossings

and uncrossings of the perceived movement. The initial clarity of the strong

horizontal lines when disrupted by this rotational force captured from the stage

powerfully disturbs the space occupied by the dancers. As the agent catches up

with its perception of the dance, the very stability of the woven lines that it ma-

nipulates begins to slip away.

Diagram/c5 action
selection

UneAcceptor stack
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WEAVING - SOME IMAGES
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figure 150. Weaving. (inverted).



4. Concluding remarks

This distinction, between composition and
instrumental echos Robert Rowe's axes of

partner" and "instrument" in interactive
computer music performance.

Both 22 and how long.., are, in very different ways, a deployment of the agent

metaphor to create interactive imagery for a dance theater work. Despite their

use of a level of hardware sophistication that offers unprecedented fidelity, they

resist the simple manipulation and transformation of this data into images that

duplicate the movement of the dancers. This indirect approach might provoke a

justifiable fear that by beginning so far away from the source - the movement

and the choreography of my collaborators - far away from "visualization",

"sonification" or even just careful measurement, I begin on a path that leads

only to the disrespectfully cryptic and obscure.

But let us return to how Forsythe, Brown or even Cunningham choreograph.

Rather than simply displaying the results of a transformation of movement, or

instruction to move, their working practices accrete transformation, layer and

bury the traces of layers on top of one another. This experimentation, this

working by working out, is compositional, not instrumental. It is already at the

"opposite end" of the spectrum from mapping, visualization, or rendering-

visible.

In a traditional"mapping" approach, the search for a few good visualizations of

movement data, a fine sonification of motion-capture material, a handful of

good-looking points in the space of mappings, is the quest for an instrument -

one for Brown's dancers or for Cunningham's movement to play. However, the

motion of these choreographers is so dense, and the story of how this motion

came to pass so rich, that I understand the urge to take a fragment of motion

and study it, pinned under the microscope before it disappears - and this is

where the urge to visualize, to faithfully map, even to explain comes from. While

Loops - an installation work with "offline" motion capture of Cunningham's

hands - does not go in this direction, it perhaps might have done.
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how long.., and 22, for live, rather than pre-captured, dance, do not do this either.

In theater, rather than in installation, one rarely has the opportunity to freeze

time, to save motion from disappearing. And to do so, to seek to save the

movement from evaporating, is radically against the very nature of the choreog-

raphy that we are collaborating with. This would not be a collaboration nor

even, to my eye, a respectful response to the choreographers' work. Rather we

should find architectures for our own algorithms that can twist, fold and inter-

sect in parallel to those of the choreographer, and tools to let us keep pace with

the choreographer - open to chance, open to improvisation, open to rehearsal,

open to collaboration. That is what I believe my work has achieved.

The aesthetics of the projections for this piece draw directly from generalizing,

transforming, representing and computing what is happening on the stage and

indicating to the audience that this is already occurring in the theater and has

already occurred in the creation of the work. One of my goals is to enable a

visual and interpretive mobility for the audience in their reading of the dance,

and in their writing of the dance's mechanisms over and above what they nor-

mally have in a staging of a dance piece. The space shared by the agents of how

long.., is common not only to the dancers, but to the audience as well; and the

imagery in this work here, I believe, rather than mediating the dancefor the

audience, unfolds a simultaneous staging of the experience of watching the

dance.

One danger is that the projections become authoritative, flattening into a single

reading of the play of relationships before they even unfold. The other pole is

that the obscurity of the projections erase the connection between the dancers

and any dance. These dangers are faced by every piece labeled "interactive", but

here the stakes could hardly be higher - one of the most evocative aspects of

Brown's recent work is the simultaneous choreography of appearance and oc-



cultation of movement - the unexpected and alarming clarity of what ought to

be complex, and the disorienting disappearance of what should be visible.

To avoid these dangers in how long.. and 22 I sought to build systems that, like

the audience, seemed to chase after fragments of movement, fragments of rela-

tionships, fragments of non-narrative meaning. And I sought to accomplish this

apparent intentionality and this continually deferred presence of choreographic

intent by actually constructing systems that truly would chase after fragments of

movement, while sharing a common space with the stage and possessing their

own, related, choreographic formal structures. This work is a sincere and con-

sidered response to Forsythe's "architecture of disappearance", to Cunningham's

"ephemeral dance", to Brown's perpetually "unstable molecular structures'.
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This section introduces the graphical environment developed to
create, manipulate, script, debug, and visualize my most recent
artworks. Chronologically, it comes between The Music Crea-
tures and the dance works. It is presented in contrast to the
predominant tools that digital artists use today.

Chapter 8- Fluid, an environment for digital art-making

In earlier sections of this document we have described an "authorship stance"

with respect to the critique and construction of artificial intelligent agents - a

stance where the ease of construction of the agent is critical, a stance where the

ability to conceptualize the creation of an artwork, while creating it, inside the

agent framework, is vital. It is not enough to demonstrate the academic place 376
and power of learning algorithms, action-selection techniques, and motor-

system representations - these innovations must be framed in a relationship

with a creative practice.

I have indicated that the authorability afforded by agent systems or AI systems

in general receives little direct attention, but we have proceeded to construct a

series of technologies that enable the assembly of the kinds of complex struc-

tures that AI agents seem to demand. And yet at the same time as the context-

tree, the Diagram framework, the generic radial-basis channel and the use of

historical databases of various kinds enrich the vocabulary for expressing agents,

they in turn make their own complex potentials. In this section the authorship

perspective on agent systems meets a more sustained critique of the authorship

perspective afforded by "mapping" and its kin as we construct the toolset used

for navigating our agent-based practices and the agent toolkit.



Further, in the introduction, page 28, we have set up the concepts surrounding

the blanket term "mapping" as an opposing model against which to pitch an

agent perspective, as both metaphor and implementation. I have already noted

that this term is a pervasive one, but nowhere is its pervasiveness more manifest

than in the tools that digital artists use.

But there is perhaps more at stake here than the critique of existing environ-

ments for multi-media interactive art. The construction of tools for creating,

treating and manipulating the complexities of an agent toolkit - tools that

transform this technology into one that can be rehearsed with, speculated with

and collaborated with - is a problem that broadens out to more general issues

in digital design; issues that are independent in many ways of the particulars

and the eccentricities of the agent-based . While I shall focus on the compari-

sons between my tools and those dominant in interactive art, I hope more gen-

eral contributions will become apparent.
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1._ _ A critique of existing environments

Some of my works, in particular the earlier agents - Music Creatures and Loops

- exploit and motivate these AI techniques and metaphors, but they remain

artworks that are created through the writing and testing and tuning of tens of

thousands of lines of code. Some lines of course are part of the toolkit and they

have been written and tested before; some of the new lines are refactored to

become part of the next toolkit. However, a great many of them were specific to

the particular installation. and the making of the art-work is the making and

remaking of those lines of code until they are right.

Not many digital artworks are made like this today. Rather there is a burgeon-

ing community forming around a growing set of software tools for making

digital art, in particular interactive digital art without "recourse" to text-level



programming. And, since these tools are well entrenched in the community and

form the basis of the courses and programs in schools, it is likely that very few

digital artworks will be made like this tomorrow either.

With few exceptions, these popular graphical environments (they are controver-

sially sometimes referred to as visual programming languages) are based on a

common small reservoir of ideas: a few visual metaphors, a few structuring con-

cepts. They each possess a surprisingly similar flavor and set of capabilities. So

similar, in fact, that one might suspect that we are suffering from a digital art

tools monoculture.

My recent works - how long.., and 22 - were both created over a long, sus-

tained period, their premieres scheduled two and a half years in advance, each

given five, week-long workshops spread evenly out over that time, with a rela-

tively stable set of hardware. Further, these works were made in collaboration

with other artists, both visual and in other media, some of whom programmed 378

while others did not. This rare time-frame of sustained collaboration allowed a

long and profitable look at the tools needed to survive these intensive workshop

scenarios, effectively both allowing and necessitating a move away from a tech-

nique based completely on writing, testing and tuning those thousands of lines

of code. Under ideal conditions one might argue that such a sincere look at not

just "what should be done" but the inseparable "how it should be achieved" is

part of the responsibility that artists have to their collaborators upon agreeing to

work together. To construct and own one's tools as far as possible, marks noth-

ing less than an openness to the potential of the collaboration. The resulting

goal was to find a different reservoir of ideas that could be drawn upon for the

creation of a fresh programming environment for the making of interactive

digital artworks. This would be an environment for which I would be responsi-

ble - not (just) for the maintenance of the engineering, but for the supply and

ultimate flux of embodied concepts.



Begun by Ben Fry and Casey Reas:
http://www.processing.org .Its tactical simplicity when
compared to other Java environments was declared in a

personal discussion between myself and Reas.

Alice: http://www.alice.org/

Drawing by Numbers is by John Maeda,J. Maeda, Drawing By Numbers,
MIT Press, 2001.

The most productive critical dialogue around Max- conducted by a
number of major figures in computer must - happened a

considerable time ago (to apparently little effect): It is collected in

P. Desain and H. Honing. Letter to the editor: the mins of Max. Computer
Music Journal, 17(2). 1993.

This section will begin with a brief survey of the common principles behind the

graphical environments. This will not be a critique of their implementation

details, their stability, or their processing power, but rather of what it is they set

out to do and the affordances they offer to artists who come to them.

I shall articulate three main weaknesses of these environments, before moving

onto a more sustained, contrasting description of the graphical environment

that emerged out of the needs and pressures of authoring the agents for how

long.., and 22 and the end of he Music Creatures. My discussion will summarily

ignore the recent interest in pure programming environments such as the nota-

ble Processing, Drawing By Numbers and Alice applications. The former com-

promises slightly Java's support for maintainably complex projects in exchange

for a significant and admirable gain in pedagogical impact, but remains thor-

oughly and deliberately eclipsed by more fully fledged programming environ-

ments. From a community perspective Processing is extremely vibrant and in-

teresting, but as a development platform it is only half-way toward something

else. The other text-based programming environments aim, in different ways,

for even greater pedagogical impact and an even greater simplicity constraint.

The mainstream tools have been criticized before, however my purpose here is a

little more focused. Nor is this discussion the place for a fruitless competition

between the agent-based and extant tools. Rather, we are looking for environ-

ments that allow us not just to create complexity but to interact, navigate, man-

age and collaborate around the kind of complexities that the agent-based ap-

proach tends to create. While they may be sold (and even taught) on the basis of

how rapidly they create potential, what I will ask of these tools here is how they

interact with, navigate and manage the potential of interactive media.
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Information about Max/MSP/Jitter can be found at http://www.cycling74.com

Other environments in this tradition:

Meso's vvvv -
http://vvvv.meso.net/

Infomus Lab's eyes-web -
http://www.infomus.dist.unige.it/eywindex.html

Trokia Ranch Dance Company's Isadora -
http://www.troikatronix.com/isadora.html

Miller Pukette's pd -
http://www-crca.ucsd.edu/~msp/software.html

IRCAM'sj-max -
http://freesoftware.ircam.fr/

There is one exception to the meaninglessness of the visual
layout of a Max"patch" or circuit - that the top-to-bottom,
left-to-right ordering of elements breaks ties in deciding the

execution ordering of modules. But it is generally believed
that if a patch depends on this subtle execution ordering the

patch ought to be redesigned.

The graphical suite with longest pedigree is Max/Msp/Jitter - with Max

being the name of the core and Msp and Jitter being progressively more recent

extensions that allow the manipulation of sound and video respectively. More

than anything else Max is the canonical data-flow programming environment

for interactive digital art. The central metaphor is that the flow of data between

processing modules will be represented as a visual circuit - this is a digital im-

plementation of the wires of an analogue synthesizer. The computational

strength of the environment is then measured solely in the number of available

modules and perhaps the number of data-types that these wires can carry.

Circuits can be hidden inside custom modules and while a few modules present

custom views and interface elements onto their inner workings, most, including

embedded circuits, retain a rather generic appearance - a label and input and

output terminals. This itself is not a particularly problematic design decision -

an attempt perhaps to maintain a rather clean and minimal visual appearance to

a complex circuit.

But visual programming is an idea that seems always to be sliced in two, and

Max partitions the visual and the programming at a very particular place. What

is visual is precisely that which is not programming and what is programming

is, I argue, not made especially graphic. The actual layout, appearance, size and

visual relationships between these modules are meaningless. This has the stated

benefit that users are relatively free to reorganize the visual appearance of the

circuit to create their own "interface" to the patch. In practice this flexibility is

greatly curtained by the circuit's metaphorical use of wires which do act to con-

strain layout and worse: the primitive interface possibilities of the completely

static layout of a circuit. Is any other complex software product content to dis-

play an interface that does not change structurally? Rather, the static panel of

knobs and switches is again borrowed from the analogue synthesizer. But if one

argues that Max is neither a interface language nor a programming language, it
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A survey of our incomplete knowledge concerning the efficacy of
visual programming environments can be found in: A. F. Blackwell, K.

N. WhitleyJ. Good, M. Petre, Cognitive Factors in Programming with

Diagrams. Artificial Intelligence Review 15: 95-114, 2001.

For a use of LabVIEW in interactive music: T. Marrin-Nakra, Inside the

Conductors Jacket: Analysis, Intepretation, and Musical Synthesis of Expressive
Gesture. PhD Thesis. MIT, 2000.

Macromedia - http://www.macromedia.com/

For control-flow-based visual "programming" take, for example,
Apple's wrapper around the text based AppleScript - Automator:

http://www.apple.com/automator.

The visual interface for the Alice environment is also control / object
first: S. Cooper, W. Dann, R. Pausch Teaching Objects-first in Introductory

Computer Science, Proceedings of SIGCSE 2003.

remains to be seen if there is a better way of slicing the problems presented by

"visual programming'.

Equally ambiguous but more important is Max's very assumption that a depic-

tion of the flow of data through modules that process the data is a particularly

good way of capturing what a program does, that the manipulation of the flow

of data through modules is a particularly good way to change what a program

does and that thinking about the flow of data is a good way to think about what

programs do and should do.

It is hard to find any persuasive science either way on these questions - few

care about the speed with which artists can assemble their programs and even

fewer would try to measure the quality of the decision making under such con-

straints - although there are some researchers who measure the behavior of

programmers in similar environments (the popular LabVIEW environment

which is targeted at engineers, but has been used for interactive artworks). In

any case, the literature is utterly inconclusive about the merits of data-flow ver-

sus opposite paradigms, most notably"control-flow" where visual elements rep-

resent the looping and gating constructs of imperative programming languages

rather than the inputs and outputs of procedure calls. There are shades of this

alternative presentation buried inside Macromedia's Director and applications

that date from its era. It is telling that environments based on this depiction

have been more popular in two areas: scripting languages and programming

pedagogy than they have in interactive art per se. There seems to be something

of relevance to the "temporal arts" that the pure data-flow path misses.
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It is perhaps for this reason that PD, the next
generation of Max-like environments,

possesses a nascent "data-type" system.

Data-flow also trumps data-type in these environments. Max's wires can move

numbers, sound and video around in addition to nested lists of numbers and

strings - in theory, a circuit can talk about any data "structure" that, say, LISP

can. Yet at the same time the use and inspection of these non-uniform data-

structures are utterly un-visual and un-composable. Nowhere is this more ap-

parent than in the handling of geometric scene data, which necessarily are com-

plex hierarchical linked systems. For all of my earlier discussion of the control-

lability of geometry versus the blendablility of video texture, geometry in these

applications - with its messy, heterogeneous, hierarchical, typed, non-flowing

data-structures - is less controllable (and, of course much less blendable) than

video. Geometry in these applications is fixed and solid, a container for texture;

it is something that is imported and displayed rather than synthesized. This lack

of interest either in variable data-structures or variable control-structures is

clearly antithetical to the needs of my work, since much of the technical contri-

butions of this thesis has been given over to the task of making complex systems

that change structurally while running. I believe that a toolset and a methodol-

ogy that draws one towards such "static" complexity actually draws one away

from the potentials of interactivity - be this between artist and tool, dancer

and stage, or audience and screen.

That Max, and its progeny (including PD, a re-implementation by Max's main

original author Miller Pluckett with different license restrictions, operating

systems and, of course, modules; and vvvv, a re-implemention of the same ideas

with, at the time, a different operating system and a greater emphasis on video),

should focus on illustrating data-flow rather than control should come as no

surprise. And we can use this as circumstantial evidence in the absence of any

applicable visual programming language science. The Max module is the most

succinct "visualization" of the mapping metaphor that one could imagine, short

of our earlier "function" image. As far as it is visually concerned, in the language

of computer science, the module is no more than a function call. Indeed if there
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For a detailed definition of the Model-View-
Controller pattern: F. Buschmann, R. Meunier,

H. Rohnert, P. Sommerlad, M. Stal, Pattern-
Oriented Software Architecture, Volume 1: A System

of Patterns.John Wiley & Sons, 1996.

See, for a range, the two-volume review of the
field up to 1990: E. P. Glinert, Visual

Programming Environments: Applications and Issues
& Paradigms and Systems. IEEE Computer

Society Press, 1990.

is a common computer-science reference to data-flow programming environ-

ments it is not "object orientation" as has been claimed but rather a simple side-

effect-free functional programming language. Of course, Max cannot extend

this principle too far, and ultimately compromises its functional "purity" - hid-

den, un-visualized side effects abound.

It need not be this way. Max's modules nest but never intersect, they are not

views onto a complex system, but the complex system itself. My point of de-

parture is a slightly different place, I require tools for manipulating the agent-

toolkit, offering, that is, windows into systems rather than the material of the

systems themselves.

In the language of user-interface design, however, this is not a matter subject to

taste. Rather Max conflates the model (the data, here both the modules and the

wires) with the view (the way of manipulating the data, here both the box and

the lines) and with the controller (the glue that binds the model to the view).

Such a conflation is considered unforgivable by many a human user interface

programmer. It couples the model so tightly to the view such that no other view

can be offered onto the model. This visual monoculture is our first main criti-

cism of Max and can be levied regardless of what one thinks of the power of the

contents of its boxes and wires.

For the visual-programming literature does have consensus on one topic - the

vast number of different visual metaphors available to choose from. There are

hundreds of visual programming languages. Max offers one metaphor, but more

critically, enforces this single view onto the "program. Indeed, its view onto the

program is, as far as it is concerned, the program itself.

One can extend Max by adding a module type - either through a external,

compiled textual programming language, or though the nesting mechanism -
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Water, C.Fry and M. Plusch
- http://www.waterlanguage.org/

This trend comes from plotting a line through the interest in extensible
syntaxes for example, the Fortress languge -

http://research.sun.com/projects/plrg/fortress06l8.pdf

and G. L. Steele,Jr., Growing a Language, Journal of Higher-Order and
Symbolic Computation 12(3) 1999.

and trends towards direct manipulation of abstract syntax trees,
including James Gosling's Jackpot project:

http://today.java.net/jag/page15.html

but one cannot add a new way of looking at the "program" that Max has helped

assemble either from outside or, critically, inside Max. This lack of self-

reflexivity is the second of our main criticisms.

Of course, the exact same charge can be levied against a textual programming

language - few source codes are open or reflexive in this sense. Although we'll

note in passing a recent interest in doing just this - XML based programming

languages such as Water, the Inversion of Control XML configuration files of

several container systems and of course this less-than-recent aspect of Lisp, seek

to blur program and data by programming with a structure designed for data.

The goal here is to allow programs to view and remake programs, in much the

same way as we asked previously if Max should not allow modules to make,

move and delete modules, even ifjust for the sake of having dynamic interfaces.

Some have gone so far as to predict the slow death of"single-text" programming

languages as they become inherently multi-perspective. If textural programming

is becoming self-reflective and in an odd way "multi-media" shouldn't there be a

panoply of domain-specific, multi-media programming environments leading

the charge?
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Isadora -
http://www.troikatronix.com

Isadora (v1.1, pre-release)
manual, p. 68 -

http://www.troikatronix.com

If Max has its technical roots in the analogue synthesizer and its conceptual

roots in mapping, few environments can be seen to widen these bases a little.

Isadora is an interesting environment for the purposes of this thesis because of

its development in an interactive dance context - it is the work of the Troika

Ranch Dance company, artist and engineer Mark Coniglio. Its more accessible

revisitation of the visual design of Max is noble, but not an issue for this discus-

sion any more than its processing speed or range of modules.

More interesting are the two concepts that Isadora, depending on one's view,

either adds to Max or pulls out of Max and names: that of the specific recover-

able graph configuration or "scene", and that of a separate control surface for a

circuit or "control panel". The "scenes" are the most interesting innovation -

they offer specific support for a clumsily created control structure implemented

in a master "graph" in Max that switches between activating various subgraphs.

An Isadora document can have any number of Scenes, each of which is a col-

lection of actors (modules) that manipulates one or more streams of digital me-

dia. Isadora scenes are

like scenes in a play: each one may have a different set, different lighting, etc. [...]
Because you can jump almost instantly from one scene to another [...] it is possi-
ble to move from one interactive setup to another as you move through sections
of a performance.

In a sense they are environment support for episodic pieces. The metaphor

given is one of lighting or stage cues but while this is useful for understanding

what they are, it is just as useful for discovering what they are not. For in light-

ing and stage cues there are a well-defined set of resources for a scene change to

act on. This enables the idea of a transition to be defined as resources - light

levels, ropes etc - are moved from one state to another. Not so in digital media

progressing networks. A scene change, as given by Isadora or by Max's limited

control flow, a necessarily dramatic event - it involves the initialization and
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configuration of one circuit and the termination of processing in another. No

amount of support, which Isadora has, external to the patch, for fading in or out

the video output of a circuit really meets the challenge of a live multi-media

"transition". A cross-fade of end-products does not allow the outgoing modules

that control that video output to negotiate their relationship with the modules

that will soon replace them. Even the simplest L-cut of film-editing - where a

cut in one medium precedes a cut in another - violates the constraints of this

clean cross-fade.

This technique depends on the superimposability, and we might rather say,

texturality, of the predominantly video-like media that flows through those

circuits during this switch over or"cross-fade". This is in contrast to a tool that

would acknowledge the geometricality of the processing graphs that are being

juggled by this scene switch.

The ultimate inadequacy of Isadora's "scene" leads us to our third main criticism 386

of the whole data-flow paradigm: while Max and others may organize the flow

of data around efficiently and somewhat visually, and their control structures,

while questionable, are clearly serviceable, their relationship with time is par-

ticularly weak. To my taste, to be able to create and manipulate complex tempo-

ral flows is a more central and harder problem than the creation of complex

flows of data. Superiority in the domain of creating complex data-

manipulations are something that visual environments such as Max can battle

over with programming languages like Java, but the layering and negotiation of

temporal structures is something that both Java and Max do unquestionably

poorly.

The perception / action / motor system decomposition of an AI agent is as

much about the layering and negotiation of time than it is about anything else,

and we have already seen (page 242 and pagels6) a number of additions to our



core programming languages that extend their vocabulary in this regard over

traditional imperative languages. Perhaps these victories for a text-based envi-

ronment can be secured if they are placed in a visual framework that starts by

depicting the flow of time rather than the flow of data.

Fluid, an overview

Fluid, while it might compete in the same arena, has to solve a different prob-

lem. While it shares with Max and Isadora the goal of being a working envi-

ronment for artists - the tool that they use live in rehearsal, the sketchpad that

they use on the plane to the rehearsal and the environment that they develop

ideas and materials in long before the rehearsal - unlike Max it doesn't have to

take responsibility for creating all of the complexity of the piece. Rather, Fluid's

job is to make the agent toolkit approachable, improvisatory, extensible and de-

velopable, to cull from its potential the pieces of an artwork. Thus, it is neces- 387

sarily hybrid, sharing the development space with the environment used to

make the toolkit itself. This can be both a feature and a drawback: it is a feature

because the more conventional texual programming environments have had far

more development time spent on them than any tool in the arts probably ever

will, and a drawback because the Fluid system will never have a complete view

of the development of artwork.

A summary of some design principles behind Fluid will help locate Fluid and

define its relationship to both traditional pure "code practice" and the traditional

use of environments like Max.

Visible, editable code is a ubiquitous glue in every visual element - thus,

every visual element on a Fluid sheet contains code - be it a simple box, a

time marker, a graph - and this code is inspectable and changeable and,

of course, executable. Ihis means that while Fluid is most certainly a vis-



visual code element

time location text editor overlay (Python)

time marker

figure 151. The main window for a sheet - visible here are some code elements of
various kinds, and the text editor and the output panel.

ual programming environment, it is most certainly not a visual program-

ming language. The atoms of programming are readily available and edit-

able but they are not necessarily graphic.

Every visualization is "executable" - a Fluid sheet is a place where one

makes fragments of code that call upon the whole agent toolkit, however,

it's also a place where the whole agent toolkit can deposit visualizations of

its state. But, here, the same principles apply - editable code surrounds

and connects the visualized elements to the sheet and to each other.

Visual presentation matters (somehow) - the visual arrangement of sheet

elements is typically interpreted by other sheet elements and is always

meaningful for some process. Therefore Fluid invests a considerable

amount of code towards making general-purpose spatial manipulations

available: multiple groupings of objects are possible, two constraint-based

layout systems are available, code can talk about spatial filtering. But, the

visual presentation's meaning is open to definition and redefinition - it 388

might be that there is a flow of scripting type from left to right, or it might

be that child elements above other elements are responsible for the chil-

dren's life-cycles. The visual presentation's interpretation is not set, but

there are enough tools for controlling the layout of elements that it can be

made usefully important.

One visual element may be in a number of "places" - since visual position

is meaningful in a variety of ways, visual position is no longer completely

available to the programmer to act as a"secondary notation" for organizing

thought and storing memory. To restore some of this flexibility we allow

and expect objects to be able to exist on a number of sheets simultane-

ously, including sheets that may not be currently loaded. Often multiple

sheets are stacked in layers showing visualizations of lower layers'contents

and workings or showing the relationships between sheets.



The history of using the tool is in the tool itself - programmers have typi-

cally surrounded their editors with extra versioning systems that keep

track of how textual code is changing from day to day. These tools are

almost always domain-agnostic, handling text files with no knowledge of

their contents. However, in collaborative art-making the history of the

collaboration is part of the collaboration, and environments should make

the history of their use directly part of the environment. We have seen this

need in our analysis of alpha Wolf, page 1oo, and I have seen it in my own

work, pages 114, 143 and 225. This necessitates the creation of domain-

specific versioning systems and domain-specific loggings and analyses of

how the tool is being used.

The environment can refer to itself - Code in Fluid is open to manipula-

tion by code (in Fluid). Following on from the previous principle, the code

inside each sheet element can talk about, manipulate and script the ap-

pearance of itself and connect to an interface that allows the manipulation 389

of other components in the sheet. Additionally, the format for storing

Fluid sheets is a both human- and machine-readable XML. This principle

is also manifest in a certain self-reflexivity of interface. What would be a

fixed set of menus, slider or other user-interface "widgets" in a traditional

environment become code "boxes" that happen to have particular appear-

ances. The boundary between a finished"user interface" design for the tool

and the tool itself is removed; part of the action of working within Fluid is

to reorganize the interface itself.

Fluid sheets can be instantiated with or without visual display - A sheet

can be instantiated without creating any visual component, in the com-

plete absence of the underlying windowing system. This is an apparent

feature of almost any graphical programming environment; however it is

harder to maintain in the presence of embedded code that might end up

manipulating the"appearance" of a non-graphically instantiated sheet ele-



figure 152. The boundary between finished artwork
and development tool is blurred. This image is of

the Diagram visualizer, which can underlie the Fluid
framework. The visualizer itself showed along side

Loops & Loops Score.

ment. To fully exploit the power of ad hoc visual layouts for all kinds of

tasks both big and small, we should expect hundreds or thousands of

sheets to be instantiated during the life cycle of the work. Any hint of the

underlying windowing system in such a process prevents this use-case

from being either practical or stable.

The boundary between finished artwork and environment is blurred -

no clean separation between what is "Fluid" what is "toolkit', and what is

finished artwork has been maintained in my practice. The movement of

ideas has not always gone from toolkit to environment and the flow of

control isn't always from environment to the toolkit. Some examples: the

layout constraint system become the motivation for some of the advanced

generic radial-basis channel combinations; Fluid can overlay the main

graphics canvas and track objects on the screen; there is a pose-graph

motor system representation for fluid visual element positioning - one

can think of Fluid "agents"; parts of Fluid have even been exhibited along- 390

side Loops. The visual element structure can quickly become just the visu-

alization of a Diagram marker channel and vice versa.

Together, these principles imply a visual programming environment that is a

radical break from the Max tradition, or indeed from any art-tool relationship

widespread today.

This environment was tailored for a specific domain and a specific working

style: the creation of collaborative interactive artworks through intensive work-

shops, with generous but expensive time in theaters, through improvisation and

through the condensation of improvisations. It dodges completely several prob-

lems that others confront and, I believe, fail to convincingly solve. Unlike the

Max / Isadora / vvvv / EyesWeb tradition it does not attempt to be a visual

programming language - it limits its use of graphical display and makes exten-

sive use of editable code. This places in the Processing / Drawing by Numbers /



Alice camp. Yet at the same time, this allows it to be in some cases more visual

- the visual layout of elements can be made meaningful to and visible to the

program itself. However, unlike these extant "art languages" Fluid sheds any

pedagogical claims in favor of offering an environment that retains the power of

"full" programming languages to scale to large, multi-hundred-thousand-line

code-bases. Yet it retains and exploits a commonly available programming lan-

guage that, while it is extended, does not break its connection to all of the lit-

erature for the language, or the research behind the language.

Without extensive and difficult-to-control user studies, Fluid can make few

claims for ease or power of use. This makes it no worse off than the dominant

"products"in the marketplace today. which operate without a firm predictive or

explanatory theory of their use. At the very least Fluid stands as a unique set of

wholly implemented, and demonstrated hypotheses about what features art-

making environments need to possess to survive long collaborations around

open-ended and complex systems. 391

'Ihe principles above form the backbone of my description of Fluid.



Code in every box

The canonical definition of the Java language is J. Gosling, B.Joy, G. L. Steele Jr.,

G. Bracha, The Java Language Specification, 3rd edition, Addison-Wesley, 2005.

for Python, see http://www.python.org

for Jyrhon, see http://www.jython.org

The code that is ubiquitous in Fluid is a"dynamic language" called Python, spe-

cifically the Python implementation written in Java known as"Jython". In con-

trast to the main language of the agent toolkit (Java) Jython is an interpreted,

late binding language, the semantics of which are extremely malleable, contain-

ing a full and rather usable meta-class programming framework. It has been

designed with the purpose of being hosted from within a larger system in mind,

and Jython has been designed to be hosted within a Java runtime. Finally, as a

language that has a compact and open source implementation, the interpreter is

not a closed black box, but rather an ideal site for further introspection and

augmentation. The basic strategy is as follows: by using language such as Java

for the large and intersecting agent toolkit, and a dynamic language such as

Python for the assembly, glue and interface to the toolkit, the strengths of both

programming languages can be combined.

Because of the modifiable semantics of the language we can build carefully pre-

pared classes and environments - for small amounts of Python code to use -

and glue visual elements that contain these codes together, giving them purpose

on the sheet. Obtaining an editor for these pieces of code hidden inside ele-

ments is easy - Fluid presents a typical, and rather complete, code editor that

happens to support rich-text-format files and runtime automatic line comple-

tion. Objects in Python can be inspected live, and code executed per-line, per-

selection or per-element with a single key-press. Quite a bit of time, especially in

the early stages of development or testing, is spent purely inside the editor win-

dow executing code and inspecting objects. Useful code is then propagated out-

side the editor into separate visual elements for execution or even just docu-

mentation of ideas, examples and tests. At this point we have a system that can

support simple spatial mnemonics - the equivalent of a "Desktop" metaphor

for small snippets of code.
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This is one route into a visually "extended" programming, but to go further, the

positions of these elements must begin to mean something. The simplest exam-

ple of this is a Fluid timeline. This is a commonly used way of configuring a

sheet and is a good starting place from which to build an improvisation envi-

ronment.

Inside a time-line there is a series of executable elements and one or more time

markers. Broadly put, a time marker executes elements that it crosses. Of

course, this means that there is a life-cycle for the executable elements - at some

point in time they transition from lying dormant to being"executed" each cycle

(at various times) and then later from executing to being"stopped". We know

from the rest of this work that it is important to state the contract between the

executor and the executee in such life-cycles; the life-cycle for these elements is

detailed, open and strongly enforced.

393
Runners and execution

Helping the time-marker is a Runner class, that maintains this contract, actually

executes the code inside each visual element, and interprets that code's "return

values" or effects on the code's local environment. Although time-lines are

ubiquitous, especially inside computer music systems (one could think of any

sequencing package or audio editor in the last 20 years), the presence of execu-

table code rather than musical notes or sounds inside the elements adds a com-

plicating dimension.

The possible state diagram for visual elements executed by a moving line is more

complex than it first appears. Since the timeline runner executes code by inter-

secting visual elements' bounding boxes with the rectangle formed by the

sweeping time marker over one execution cycle, we should look at how these

rectangles can intersect.



* continue(..) * stop( ... )

*jumpForwards(..)

figure 153. The intersection of a moving time-
marker and visual elements causes a number of

messages to be sent to the elements.

continue(...)

start(...)

jumpForwards(...)

figure 154. The full state and transition diagram for
a visual element.

LIZ
The traveling time-marker can cut across the start or the end of a visual element

but it might also wholly consume the visual element (effectively starting it and

stopping it in one cycle); additionally it may do this while moving backwards. It

is important to allow the code inside the element to respond to each of these

events differently if needs be. Many visual elements run only once (on startup),

some do the same thing at start, continuation and ending, some are "unmissable"

(the proper execution of subsequent elements depends on this element having

started) and execute at least their start and end on being jumped over, others are

not worth starting unless they are going to continue for a while.

It is the Runner's responsibility to take the text of the code that the visual ele-

ment contains and map it onto this finite state structure. In Fluid this is done by

executing the entire code box once and looking for the value of a "return vari-

able", r. By interpreting the value of r - which may be any one of a number of

Python objects - the runner interprets what part of this transition diagram

gets populated. The following summarizes the return values that have been

found useful inside the current Fluid system (over how long..., 22, Imageryfor

Jeux Deux):

nothing, r remains unset after execution. In this case, the visual element

wants no further execution. This doesn't mean that it never executes, in

fact it has already been executed once to see what r was going to be. Such

visual elements, therefore, are executed only on "start", "umpOverForwards"

and"jumpOverBackwards'.

r = an-executable (any of a class containing a Python function, method or

generator, or ajava or Python instance implementing Updateable). In this

case the visual element has offered up an object that should be evaluated

or executed for each execution cycle that this visual element is "running".

Generators are called only until they no longer return values. In this case,

nothing additional is executed in the case of"jumpOverForwards" and

o start( .)
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"jumpOverBackwards".

r = a 3-tuple; r= (start-executable, continue-executable, stop-executable). In

this case the visual element has offered up something for each of the"start',

"running" and "stop" stages of the visual element life-cycle. This case is by

far the most commonly used case throughout Fluid.

r = a dictionary; r = {startstart-executable, go:continue-executable, stop: stop-

executable, jumpF:jump-executable, jumpBjump-b-executable} - the com-

pletely, and rather more verbosely, supplied dictionary of things that might

be executed. Any of these can be omitted without error.

In addition to reading this "return value" the runner ensures that certain vari-

ables are configured before execution (and before the execution of the returned

components of r in the future). These are purely for convenience and readabil-

ity; all the information is available from the Fluid interface with a little indirec-

tion. 395

_t - the normalized position of the time marker through the visual ele-

ment. This can, in the case of start and stop parts of the life-cycle, be

greater than one or less than zero.

dA - the normalized instantaneous velocity of the time marker.

_atributes - the persistent attributes dictionary for the visual element. This

is a window onto the visual element from the outside world, and a place

for the visual element to store things that will survive across executions

and even across application launches. This is also how visual elements

customize some of their user interface - Python functions that are stored

in this dictionary become menu items for the visual element, numbers

become interactive sliders, and strings become editable text boxes.



In the case of multiple time markers the _t in the execution
environment is modified to become an instance which mas-

querades as a number, but contains all the _t information
from each of the time-markers should the visual element

require access. At present the scalar version of this is the _t
corresponding to the most recently created time marker.

continue(...)

Finally, we note that there can be multiple time-markers at work on one sheet

- we'll see below how this can become increasingly useful in more complex

sheets. Indeed, there is, in addition to any time-marker on a sheet, another

Runner, one corresponding to explicit mouse-clicks on the visual elements.

Fluid elements can be executed by option-clicking on them, which spawns a

time marker local only to that element for the duration of the mouse movement.

This means that runners must organize themselves such that the life-cycle tran-

sition diagrams for individual markers can be effectively shared. This is achieved

through a context-based parenting mechanism - specifically all the children of

a runner share the activations of the parent. Although there are a great many

ways of taking the product of two of these state-diagrams, in practice only one

based on the logical "or" of whether a diagram is executing has been of use. Spe-

cifically, if any runner claims a visual element as running then it remains or be-

comes running. One could imagine forming"and" and even "exclusive-or" inter-

sections between runners and their time-lines, but so far no project has needed

them. This multiple, distributed-access state diagram is supported using the

deferred dispatch and channel rewriting capabilities of Diagram, page 273.

figure 155. The full state and transition diagram for
an element on a sheet with two time markers.
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A (persistent) plug-in architecture

The Cocoa application framework
that is used to implement Fluid also

uses delegation chains in part to
deliver events from input devices to

visual elements, and to delegate
method calls; Fluid extends this

technique to include the storage of
attributes.

Clearly, even with our time-line example there is quite a lot going on - we

should begin to look at how these elements are coupled together, and how the

sheet assemblage is designed and perhaps even more importantly stored over

time. We have spent some time analyzing the conditions under which tight

coupling between systems occurs in the agent framework and building tech-

niques such as the context tree that prevent relationships between apparently

independent code fusing solid.

Firstly we'd like to be able to reuse visual elements inside different contexts, dif-

ferent sheets, and specifically, according to our design principles above we'd like

to be able to use them non-visually. This means that they must communicate

with the visual presentation system but not couple to it. Fluid makes extensive

use of two techniques - a tree delegation system and an external extension

mechanism. The first technique is similar to the delegation chains used for event

handling in many windowing frameworks. But I extend this idea to allow arbi-

trary method calls to be propagated up a branching container chain in a

breadth-first fashion: from element, to containing elements, to the sheet and

eventually to an interface to the containing agent. All of the event handling,

execution and visual presentation is handled in this open, over-ridable way.

Data storage acts in a similar way to the delegation chain, external to the visual

element itself. Ihe component of"plug-in" architecture of Fluid is fundamental,

rather than just an extra layer of extensibility. Python code execution is a plug-

in, time-markers, constraint systems are plug-ins, the very visual position and

size of the "visual" element is maintained by a plug-in. The actual information

maintained by the visual element itself consists of nothing more than a unique

ID. Plug-ins are added to the sheet and as a result offer the ability to set, get,

store and delete properties with respect to this tree of containers. This allows
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plug-ins to overlay services into the sheet: by manipulating the container chain,

plug-ins can affect the default behavior of some or all of the visual elements.

This allows extensions to the Fluid system that are "multiplicative" rather than

"additive', extensions that alter the ways that sets of visual elements can execute,

combine and can be manipulated, what the visual elements actually present

visually, and how they act visually. This is in stark contrast to systems such as

Max where "externals" simply add to the numerical quantity of the modules

available.

Secondly, although the quantity of code stored by any one sheet is much smaller

than that of the framework supporting it, the situation is just as important from

a storage perspective. For in order to commit to an environment one has to trust

that it will always be able to recover one's work even after a several month hia-

tus, during which time the agent framework might have changed, but more

importantly Fluid itself might have undergone revision. The file structures of

Fluid were explicitly designed to allow the environment to grow without losing 398

the ability to load previously saved files. This, in itself, isn't a particularly hard

problem, and can be achieved by storing versioning information in the files (for

similar techniques, see the long-term learning database, page 143). However, it's

also important that the environment can shrink or that sheets can be loaded

into and saved from completely different environments. So, for the purposes of

long-term storage, data travels with both the plug-in and with the visual ele-

ment. Unknown data is both carefully ignored, carefully propagated, and in

most cases still accessible even in the absence of an actually executing plug-in.

Plug-ins are defensively coded to verify the relationship between their internal

structures and what remains in the individual visual elements upon load. In

practice, two-year-old sheets are still loadable today.



Connectivity

In a fashion similar to that of data-flow environments, we can add to our ele-

ments inputs and outputs and begin to draw connections between boxes. The

values at the connections can be pushed from outputs to input from within the

Python environment:

_output[O| = 5

- but these connections are not necessarily for data-flow. These connections

manifest themselves as set variables inside the Python environment:

print input[O]

however they do not necessarily "represent" the flow of data. They might repre-

sent the aliasing and thus sharing of variables between otherwise local python

namespaces.
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From the output module:

makeAliasOutput(O, "a")

overridden spatial connection a = 5

a running code box
declares that the variable a will alias the zero-th output, and from the input

figure 156. Code elements linked together, either by
hand or by code. visual element we might have:

makeAliaslnput(O, "a")

print a

By going further, and propagating not values, but small objects that reference

the visual elements from which they come, visual elements can conspire to ap-

pear to implement a style of data-flow programming.



overridden spatial connection fading traces of connection

figure 157. The history of ephemeral, implicit
connections between modules can be visualized as a

separate "layer" to the environment. Such
connections are gathered by automatically

monitoring the Python interpreter.

From the output module, it looks the same:

makeLiveOutput(0, "a")

a = 5

declares that the variable a will alias the zero-th output and sets things up to

allow this visual element to be executed if needed to evaluate a. From the input

visual element we might have:

makeLiveinput(0, "a")

print a
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What are the contents of these small objects? Since anything can, with the as-

sistance of a Runner, ask for the execution of another element, these objects ask

for just that - to ensure that it has the latest value at its inputs. These execu-

tions are safe and timely. They are aware of that runner's life-cycle state diagram

and thus the element that is asking for the computation is guaranteed to both

maintain the correct life-cycle contract of the element and only cause one exe-

cution per execution cycle. This hybridizes a pull-based data-flow style with a

more orderly time-marker style, proving that data-flow, variable execution and

alternative visual metaphors can coexist on a single interactive surface.

In data-flow environments, one connects boxes and these boxes remain visually

connected - as a "visualization" of the history of interaction, and as a"user in-

terface" that allows the connection to be broken, and restored. Since Fluid visual

elements contain code, Fluid offers many other ways of "connecting" elements

together by writing code rather than by interacting with the sheet using a

mouse: code can look up an element by name, by regular expression; code can 401

find the visual element to the left of it, all of the visual elements underneath it.

That these global or spatial lookups can be written in code rather than made by

mouse-clicks is a fundamental result of the principle that code can "see" the

visual layout of the sheet. However, at the same time, there is much to be said

for allowing the environment to provide a "visualization" of what that code is

doing and a"user interface'for allowing these connections to be rearranged.

The solution is to construct a visualization layer that, by collecting information

from the python environment, as it is executing code, annotates the sheet with

the connections that the code makes and offers the opportunity for these con-

nections - which might be one visual element connecting to an element to the

"left" of it - to be frozen or reconnected. These layers are translucent, optional

and overlay the sheet - they are coupled to the sheet through the plug-in ar-

chitecture.



Inside the Python these connections look like:

target = leftOfo

target = find("fade out *")[0]

leftOfo, find(...) etc. return Python
objects that masquerade as refer-

ences to other visual elements, and
exploit the _attributes dictionary to

ensure that they remember whether
or not they have been overridden in

the sheet.

This provides enough stability and flexibility that the layer can edit the envi-

ronment of the visual element to ensure that connections overridden by direct

interaction continue to be overridden. The connections fade over time as they

remain unmentioned by the executing code.

There are additional reasons why we would like to be able to trap and interpose

all references to external visual elements by the code inside a particular visual

element. We'll see the importance of being able to draw a circle around the con-

text accessed by an element when we look at recording the history of interaction

with Fluid, page 410.

This highlights two of the design principles: that code and visual elements

should coexist on the same sheet, and that the history of using the environment

should be reincorporated into the environment. This interplay between making

the results of code visual and turning visualizations back into code is what con-

stitutes one axis of "fluidity" inside Fluid. But before picking up the thread of

incorporating use history into tools in a more focused fashion, I will survey

some of the other kinds of layers implemented in the current Fluid system and

how they are used.
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Multiplicative extensions - Alternative layers

I. Sutherland, Sketchpad: a Man-Machine
graphical communication system,Annual ACM

IEEE Design Automation Conference, 1964.

Of the most important layers available in the current version of Fluid are the

constraint systems. Constraints have a long history in visual layout tools - in

particular they form the very basis of one of the very first visual layout tools

Ivan Sutherland's seminal Sketchpad system. But, despite Sketchpad's hybrid

programming / drawing approach, visual layout constraints are completely

absent from the history of visual programming environments for digital art -

absent as a tool in the Max/Isadora/vvvv series, for visual layout is unimpor-

tant in these applications. Paradoxically, each of these graphical systems offer

less support for fast visual layout than most drawing or painting applications.

However, when the visual layout of the sheet means something - to the code

contained as well as to the user - and when the environment is the platform

for a certain amount of improvisation, it is important to allow the specification

of more complex and quick manipulations of visual element layout.

Two constraint systems are implemented inside Fluid; both have the same in-

terface and appearance and allow a conventional set of constraints to be speci-

fied on the layout of the visual elements. Same, Before (and by inverting the

parameters After) relative constraints on both the start and the end of elements;

Same, Bigger (and thus Smaller) on the duration of elements. These constraints

can be applied to visual elements that group visual elements (and distort their

contained children equally when needed). Finally, elements' positions can be

pinned to a particular spot - this allows all of the previous, relative, constraints

to have an absolute aspect, since visual elements to represent absolute positions

and sizes can be created with ease.

The perennial problem with constraints, however, is that it is extremely easy to

construct over-constrained systems, and extremely hard to build fast but stable

solvers for these systems. Although much work was done in Sketchpad and
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afterwards to address these issues, Fluid dodges the problem creating two con-

straint implementations, neither of which has any claim to optimality, but

rather a focus on stability and speed of execution. In the future, a more complex

linear-programming-based constraint system could be implemented.

The first constraint system is a rather typical damped iterative solver that tries

the best that it can, with a decaying amount of effort, to maintain each of the

constraints in turn. Should a constraint be broken (due to over constraining) it

is brightly indicated on the sheet. This ad hoc solution works well for under-

constrained problems and tends to break stably in over-constrained situations.

Never has a sheet "exploded" during all of the improvisatory use of Fluid in de-

veloping how long..., 22 or ImageryforJeux Deux.

The second constraint system is a little different. It is based on the generic

radial-basis channel formulation for competing processes. In under-constrained

domains it acts the same as first constraint system - it is a damped, iterative 404

solution to the problem. However, rather than trying to find a nearby, stable

solution to an over-constrained problem, the competitive channel representa-

tion gives each constraint a certain amount of time to apply. This "solver" actively

explores the over-constrained partial-solution space, generating not an attempt

at a single solution, but an ongoing animation. To date I have used this solely as

an exploratory technique (for the generation of rhythmic cells that are per-

turbed in different ways), or a visualization technique for the similar Diagram

based processes of Loops Score, page 258. It is expected that in the future this

technique will autonomously create rich rhythmic patterns in the domain of

motor systems.

Regardless, the constraint system is perfect for making visual and maintaining

the ordering constraints of the visual elements' code - that one thing should

take place before another, or that this visual element cannot end before another



- that allow sheets to be quickly reorganized during rehearsal before calling

upon a time-marker to"scrub"with.

Another available layer is related to the constraints system - the layout snap-

shot. This is a duplication of a sheet (in the sense given below, page 410) that

saves the positions and sizes of all the elements."Ihis layout can then be blended

with the current layout. New visual elements that are not present in the saved

copy can remain stationary or, more usefully, can get pulled around by the

nearby saved elements movement. This reuses the same techniques as found in

the Diagram channel system, page 248. A pose-graph-based view of these snap-

shots exists, and in the future we might see an agent acting upon a Fluid sheet

itself.

Fast visualizationfor the agent toolkit

During the use of the agent toolkit many programmers - inside and outside 405

the Synthetic Characters Group, myself included - have produced carefully

crafted visualizers and debugging tools for various systems. At any given time

one could expect to find a motor system visualizer or two, three or four for the

context-tree and so on at various stages in the development of the agent toolkit.

With modem, graphical tools, building and maintaining these tools isn't hard,

nor is it as time consuming as it used to be. But it does require a constant effort

parallel to the development of the system being visualized. And there is a con-

stant tension between creating a well-designed interface (code) for the interface

(visual) and creating one quickly. As a result, these carefully crafted visualizers

are often out of date at any particular point in time - if, that is, they get created

at all.

Fluid potentially offers much more than either a hand-crafted visualizer or a

traditional debugger since it integrates graphical user interface construction



For an overview of the three-
way merge algorithm -

T. Mens. A state-of-the-art survey
on software merging. IEEE

Transactions on Software En-
gineering, 28(5), 2002.

tools, code execution and domain specific storage in one place. In order to bring

the toolkit closer to the Fluid sheet, it is important that the toolkit can offer

objects to the sheet on an equal level to the visual elements; that agent toolkit

objects can be visual elements - that one can connect to the motor system or a

pose in the pose-graph, visually and spatially. his is important even in the sim-

plest, and least "Creative" use of Fluid - having a sheet be a place where visuali-

zations of a running system can take place.

Clearly, it isn't hard to have the toolkit load a sheet and procedurally create vis-

ual elements inside it, but some caution is needed - if these "offered" visual

elements are to fully participate in the Fluid framework they need to participate

in the long-term storage of the sheet. This implies that offered elements, which

are free to change in number and nature from invocation, to invocation must be

matched up with visual elements that are free to be edited, moved around and

otherwise adorned as they are loaded from the persistent store.

Three sets of parameters must be considered in this merge - the new creation

parameters offered by the toolkit, the creation parameters previously offered by

the toolkit (at the last occasion that the sheet was saved) and the parameters

now specified by the sheet itself. The differences between the first two are ap-

plied to the third unless there are corresponding differences between the last

two - this is the classic, three-difference merge algorithm applied across a set

of attributes, and the visual element position. Later, we will see another appli-

cation of this algorithm to the textual contents of the visual elements, page 410.

Once offered, these visual elements are now a bridge between the agent-toolkit

and Fluid. However, both parties ought to be able to create simple layouts and

interfaces that are more complicated than a simple box. Fluid, of course, allows

one to surround these offered elements with code and other visual elements.
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Yet at the same time we should realize that most "debugging code" exists inside

the agent toolkit as textual output not user-interface construction code - how

should these pieces of text describe user-interface layout? The quickest and

simplest debugging output statement from deep inside the agent toolkit looks

like the following:

stream.printn(" motor system value :"+amount);

These statements are ubiquitous throughout programming - stream could be

an interface to a complex logging interface or simply an interface to the system

log. The sheer number of statements like the above make the use of such code

seem almost inevitable. The prevalence of these lines inside the agent-toolkit

seemed impervious to the increasing flexibility and availability of visual user-

interface design tools prior to Fluid. All collaborations (and all programming

collaborators), from alphaWolf to how long..., include these lines.

It's not hard to see why they might be more maintainable than a hand con- 407

structed interface - they are programmatically described, compiled with the

system that is being investigated and require no interface for that system to be

created and maintained simply to get at the misbehaving number. If, in com-

parison to contemporary data-flow tools we are to conceptually embed complex

systems inside our visual elements, rather than construct complex systems with

visual elements, there ought to be a way for these opaque complex systems to

talk back to the visual elements.

So we start here, with the kind of talking that seems so prevalent, and construct

a incrementally more complex "stream visual interface" to the visual element.

Offered visual elements provide an object, "stream", that can be written to as

above. We augment the traditional stream output with the following features

which augment the visual layout of the stream and provide a lightweight bridge

to the Fluid's visual elements:



figure 158.
A dynamically created, ad hoc

debug display and interface

Text"lines" become rows in an outline view - rows are collected only for a

fixed number of update cycles and such cycles group the output; the ele-

ments "[[name" and"]]" bracket sub-branches of the tree. This allows the

debugging output to be presented in a hierarchical, multi-resolution fash-

ion.

html processing tags are acceptable - since we are free from the assump-

tion of plain-text output there is no reason not to allow a subset of the

rich-text format to be displayed.

Stable user-interface objects are possible - the tag

"<button name='name'> label </button>" writes "label" not in a hierarchical

outline-view text row, but rather a button in the row; the tag

"<slider name='name'>label</slider>" makes a labeled slider.

The values for these two interface elements are written as attributes to

the visual element and can be read by the agent toolkit as:

stream.getAttribute(name)

408



From the Python interface these attributes are read and written simply as the

value "_attributes.name". The hierarchy of debugging output can be parsed (in

plain text) through an object called _debugStream. For example:

jebugStream[2] is equal to"motor system value :5.0"

and

Jebugstream.motorSystem[o] is equal to"at SIT"

These two accesses to the debugging information mean that the visual elements

that surround the offered element, and the code inside the offered element can

access everything about the ad hoc debugging interface's output. This text-based

graphical visualization completely avoids the overhead and complexities of cre-

ating visual interfaces and code interfaces that they connect to, which is a par-

ticularly error-prone area of programming. One must take special care to 1409

maintain the same behavior of a system regardless of whether anyone is looking

or not. This often requires the caching away of transient data and, depending on

the windowing toolkit used, may even have thread-safety issues. The near in-

evitability of text-based debug output, and the error-prone nature of the mix of

user-interface code inside the agent-toolkit stands as one of the lessons learned

from the complex collaborative endeavors from alphaWolf to how long.... This

push-based debugging, although offering a more generic, more rudimentary

visual presentation, meets the complex code-base where it stands - the rest of

the Fluid environment can be used to customize the presentation of informa-

tion. Fluid becomes a site of interactive visualization and investigation that

meets the agent-toolkit on the toolkit's own terms.



Expressing history

For a history of one of the oldest version
control systems that is still in use today:

http://www.gnu.org/software/rcs/rcs.html

During the course of creating the piece how long.., the master sheet that con-

trolled the piece was loaded and modified 2o6 times; secondary sheets, for test-

ing elements and working on specific sections were loaded and modified 3223

times. With the exception of some 45 unexpected fatal crashes which may have

resulted in data loss, a detailed history of the creation of the piece, and all other

works created in Fluid since May 2004 (when the database came online), was

stored. But what is a "detailed history" of working inside Fluid? and, equally

importantly, how should it be made available to the tool itself?

Programmers have long surrounded even solo work with versioning systems

that allow them to consciously checkpoint their work - storing it in a central

database format. Concurrent versioning systems, designed for more than one

programmer to work on a set of resources at the same time, are also the back-

bone of both the open-source movement and almost all large closed-source

development models. This is very much prehistoric computer science - the

core formats and algorithms for storing and generating annotated views of the

changes that resources undergo in these systems have been found and fixed for

decades.

But the importance of making the history of the development present in the

tool itself was brought to my attention in at least three ways. Firstly, by the

presence of the"commented history" throughout the text of alphaWolf,figure 29,

page 100. If this history was so important as to be preserved in the files them-

selves, despite universal struggles with the bulk and complexity of those files,

perhaps this is an indication not only of the importance of developmental his-

tory but of the inadequacies of conventional version control tools (which were

also, of course, very much in use during alphaWolf). Secondly, by the realization

that I repeatedly required access to the history of many of my persistent stores
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I figure 159. This figure
stack of read / write shows a live, layered
access to a global display indicating read

variable and write access to a
sheet-local variable

- the long-term learning databases of The Music Creatures, page 143, and the

bundles of parameters in Loops, page 114. This history was not always in a form 411

that conventional version control systems found easy to use.

Finally, in watching my own work patterns inside Fluid I identified a number of

cases where having history at my disposal would prove useful. The simplest

case, and the most important given the nature of Fluid, is history of code exe-

cution. In a fully thought-out sheet, execution is often under the control of the

visual elements themselves - intersecting time-markers, moving visual ele-

ments, running scripts and so on. However, early in the development of some-

thing, or when some specific case is being explored, execution is often much

more piecemeal - one has found a case that doesn't quite work right, or one is

beginning to test a new component - through highlighting parts of code and

executing them, using a Fluid sheet as a sketchbook to sample from rather than

as a place to put ideas down. Further, in improvisations one is often moving too

fast to remember what one is doing.



time remapping
graph

runner executed element runner executed element hand executed
elements

I
edited, hand

executed

executor

text (with
reference to
original element)

figure 160. This sheet was automatically
created from the interaction history
with another. This "unrolling" of a

marker sweep and piecemeal execution
of code inside visual elements is itself
executable and remains linked to the

original sheet.

What each of these cases really needs is the execution history of a sheet and its

attached textual editors - what code, in what elements, when. Early in the de-

velopment, when executing samples from a sheet, or samples from a long un-

structured piece of textual code, one ends up trying the same pattern of execu-

tion repeatedly - to get back to the place where a problem occurs or where the

horizon of knowledge lies. In improvisational contexts one needs to go back and

look at what was done in the heat of the moment. The solution is to begin to

look at ways of turning the execution of a sheet into a new sheet.

As a naive start, we can take each executed element and copy it to a new sheet, a

time-line sheet, where execution time runs monotonically and evenly from left

to right. This, for example, "unrolls" or flattens-out any temporal manipulation

that was happening to an underlying time-line sheet or "scores" an improvisation

that sampled from various parts of a sheet in an ad hoc fashion. Since high-

lighted snippets of code can be executed in the textual editor, these need to have

visual elements created for them. This is the (visual) equivalent of converting a

marker generator in the Diagram framework to a channel representation.
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This unrolling must carefully propagate a snapshot of the local environment of

the visual element at the time that the element or snippet was executed to the

newly created elements - otherwise the new sheet will not perform in the

same way when executed. There are up to three places that this "local state" can

be put in relation to the newly created visual elements: back inside the local

context of the visual element, as an explicit addition to the code stored in the

element, and as a separate, but (visually) linked element on the sheet.

The "local context" to a piece of code executing inside a Fluid visual element is a

rather complex affair - but in all cases we can trap it by a placing a few hooks

into the Python interpreter. The complete context caught by the unrolling his-

tory functionality is as follows:

Python-level local variable access - this needs to be recorded in the un-

rolled sheet, if it is read by the visual element or script before being written

to. It can be a separate element - injecting a value into the new element's 413

local variable space - or additional code in the new element's textual

description.

context-tree variable access - very similar to local variable access; writes

and reads are typically annotated on the unrolled"score" as separate visual

elements. Making these global accesses explicit is a useful visualization

understanding. Below we shall see more advanced uses of this score-like

style.

visual element persistent attributes - visual elements have a stored (across

loading and saving sheets) set of attributes that can be read or written by

code, or by inspectors. Reading or writing these requires duplication in the

new visual element.'This is always performed by making new stored at-

tributes.



group reinterprets elements

"unrolled" variable read contained within

"unrolled" variable write - now
posts to radial basis channel figure 161. This sheet, generated by

unrolling another, has had some vari-
able accesses grouped together inside a

subgroup that "reinterprets" the code
that writes to those variables. Now,
rather than directly setting values,

postings are sent to a generic radial-
basis channel.

sheet-level access - what should operations which result in obtaining ref-

erences to other visual elements return in the duplicated sheet? Should a

visual element A find a visual element B that also ends up duplicated in the

unrolled sheet, then we can transport the reference, making a new refer-

ence from the duplicate A' to the duplicate B'. Should B not already be du-

plicated, then we either have to try to copy B or make a new reference to

the original element B. Currently this second operation seems well defined

and Fluid makes a cross-sheet reference A'-- B and allows this reference

(using the same techniques as we use for overriding spatial references, page

399) to automatically load the missing sheet, if needs be, on access.

Since these "visualizations" of the interaction history are executable, we can

sweep time across the sheet and play back what was done before. We are free to

take these sheets and begin to edit them - changing the order of operations,

splicing them with alternative takes, etc. We are also free to re-express their

contents in a different way. One highly useful modification of a sheet that is

typically produced by this unrolling is to take variable access and replace it with

generic radial-basis channel postings.

The new group, surrounding the variable reads and writes re-interprets the

contents of the code below - wrapping the execution environment of the vis-

ual elements in a structure that maps variable access to generic radial-basis ac-

cess. One channel (sharing a time-base with the sheet) per variable is created as

needed by monitoring the underlying Python interpreter for global variables,

and temporarily overriding the object that is used for context-tree access. Writes

become postings (with window parameters set by the duration of the visual

element) and all reads return python objects that masquerade as numbers, but

access the corresponding channel.
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Even without their modifiable executability, these unrolled sheets or score-like

diagrams have been extremely useful in both remembering and showing what

happened in an improvisation that took place in a theater under time con-

straints dictated by dancers and musicians. But this kind of use is a short-term

use: logging information taken in the moment is there to be looked at soon after

and understood, perhaps played and replayed with a little more, but strictly

from the point of view of understanding what took place.

These sheets, as described thus far, cannot offer a longer term record of what is

taking place, because they go out of date. They loose their connection to the

sheets whose execution they annotated when those sheets change. They are a

tool for recording only so far as they become separate from what it is that they

record. Is there a deeper way to link the record of an improvisation around a

sheet to the sheet while, at the same time, maintaining this connection through

potentially separate evolutions of these sheets? A history of interaction with a

tool that isn't a frozen record but a new view onto the material interacted with? 415

A network of text: copy & paste as a version control system

At the root of this issue is the problem of duplicated textual code. Currently

copy and paste is a ubiquitous part of any textual interface - there is hardly

any text box or textual widget that does not support this on any contemporary

windowing system. However, a copy and paste operation leaves no process trace.

Further, the nature of the process, this duplication of code, is invisible to extant

programmers' version control systems. These systems realize that code has been

added somewhere, but do not retain the connection between the copied and the

copy - for that connection is lost a long time before the versioning system op-

erates on the file. Typically this is not a significant problem in versioning control

- versioning systems are so old now, that had it been a problem we might have

seen a good few solutions, especially as such systems are being integrated into



*-+ def initialize(:
print "starting up"
_attributes.speed = 4
c.mbrw=0.3
c.mbO=O +-.

-++ def initialize(:
_attributes.speed = 3
c.mbrw=0.2
c.mbO=0.5 +-.

pasted

figure 162. Copy, paste and edit creates a versioning"problem" and

an opportunity to use the three-way difference algorithm to in-

spect the history of snippets of code that are transfered around
and across sheets.

programming environments. Copy and paste,

after all, is often considered a symptom of a poor

programming infrastructure, and some of the

classic design patterns and indeed some of the

motivations for object-oriented programming

itself are to reduce the amount of code that has to

be copied and pasted in order to program.

However, the theoretical goals of a programming

language and its use in practice often diverge

dramatically - despite the inability to accurately

reconstruct the copy and paste history of, for

example, the source code files of alphaWolf, one

can feel its presence throughout. The simple so-

lidity of taking one element that is known to be

tested and working and duplicating it (rather

than refactoring it in such a way that it can be

multiply instantiated and in doing so potentially

break what is known to be working) is a powerful

temptation even for the best programmers when

under pressure.

In any case, in Fluid, we are are operating in a

completely different domain from where these

arguments for careful object-oriented design

typically take place. Rather than large, re-

factorable, and pre-thought-out complex code-

bases, Fluid's visual elements are an ad hoc, often

improvised arrangement of very small parts. That

copying code is simply the fastest and easiest
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The rich-text format -
hrtp://www.microsoft.com/downloads/deta
ils.aspxFamilyID=ac57de32-17fD-4b46-

9 e4

e-467ef9bc5540&displaylang=en

The use of it here depends on the application framework's

handling of alien RTF tags, which seems implied by the

specification. These rags are, in the current implementation

in Cocoa under Macintosh OS X, persistent across all appli-

cations that deal with text, not just internal to Fluid - they

mark blocks of text as having references to a database
through the use of unique IDs.

thing to do (rather than re-factoring the design of material inside a visual ele-

ment) is much less avoidable in this domain. Rather than reinventing the theory

of re-factoring to cope with the kind of fragmentary, poorly planned, spontane-

ous code that Fluid encourages and circumstances dictate, we do the opposite

- shape the tool around the use, and open up the history of duplication to the

versioning systems.

Thus, in Fluid, copy and paste operations leave persistent process traces. Fluid

exploits the commonly used rich-textformat for the storage and the presentation

of code to the user. By embedding custom tags inside the text structure of a

modern text formating system we can annotate the relationship between the

copied and the copy in a persistent fashion. We can then recreate the common

versioning system operations not in terms of files of code, but of chains of cop-

ied and pasted elements.

Given a snippet of text we can perform the following three operations on it with

respect to viewing its history:

show resource - when a copy / paste relationship is first created, a resource

is created with it. This is the central representation and marks that this

particular piece of code is important and should be tracked. Everything

else, the copied and the copy, has a relationship with this resource. By

looking at the resource we can then see everywhere this text ended up, or

where it came from. By looking at these resources, we can compare how

they have changed, or how they are being used. We can begin to examine

the ramifications of changing something that this code depends on, and

begin to repair it when we do change it.

force changes to (resource, later, earlier, all) - this forces an overwrite of

the contents of the text snippet-to the resource or to a subset of children
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database explorer is visual
element (just like everything else)

resource /
pointer editor

(live)

figure 163. The text database explorer interface can be manipu-
lated from within the fluid environment - it is constructed from

visual elements.

of the resource. The labels "later", "earlier" and "all" refer to child snippets

that were created either later or earlier than this particular snippet of text.

merge changes to (later, earlier, all) - this performs a three-way difference

merge with this text, its resource and each of the places linked to this text

that appeared after or before this relationship was created. This difference

/ merge algorithm is standard as part of a concurrent version system -

here, however, it isn't the work of different programmers at different times

that are being considered as happening"concurrently', it is the work of one

programmer in a number of places. Unlike version-control systems, the

"files" (fragments of text spread across visual elements and sheets) that

need to be considered are being automatically inferred. Collisions (incom-

patible, "simultaneous" changes of text that cannot be reconciled) are

flagged for special handling.

loose snippet (resource, all) - breaks the connection that this piece of text

has with the database with respect to a single database resource or with

respect to all resources associated with this snippet.

The interface shows a local, hierarchical view of the database - resources point

to snippets (ordered in time) as children; snippets have a resource and a visual

element associated with them; visual elements contain multiple snippets. The

textual contents of all these elements can be browsed and edited without load-

ing the associated sheets. The database of resources and concurrent snippet

versions is maintained in parallel with the text storage of the individual sheets.

This provides safety in redundancy (since Fluid remains an experimental and

evolving system); at any time we could delete the entire database, losing the

text-level history information, but maintaining the present state of the sheets

together with their version history (maintained in a more traditional version

control system).

partial database
view
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Finally, while I have described this system as one for keeping track of where

copy and pasted code ends up - maintaining the relationship between copied

and copy on behalf of the programmer - it also serves to maintain a connec-

tion between the unrolled sheets and the sheets that were unrolled - on behalf

of the Fluid system itself.

The flow of time - more controllable time markers

The central idea behind the time-marker on a sheet is to allow a visual envi-

ronment to start with what I believe is the one of the most central parts of the

problem of digital art - the patterning of time. And in starting here, we start

by analogy to the representation most present in the temporal arts - the linear

score.

While I have argued that the agents constructed for the work I've presented do

an excellent job of patterning the time that they occupy, and an equally satis- 419

factory job of provoking ways of thinking about how that time of interaction

could be filled, in many works there has been a layer either above or below the

agents that has had a strongly score-like flavor to it. In Loops I constructed a

colony of creatures capped by a score and noted that this began to look like a

motor system of another super-agent, page 117; in how long... I deploy agents

throughout the work but organizing their sequence and overlap in a fairly linear

fashion to align with the performance, page 373; Lifelike is performed in a similar

way, with a more complicated overlapping of less complex agents; in 22 we are

in effect seizing control over the material that the motor system of the agent

uses, page 286; at the detailed levels of parts of how long.., we are constructing

movement out of overlapping linear sequences, page 361; in Loops Score there is,

again, a score not of notes but of opportunities for action, a "perceptual score",

page 259. In each of these examples we are not so much scripting the actions that

the agents will take, depriving the metaphor of its idea of autonomy; rather we



are either scripting the manipulation of part of the perceptual world that the

agents are in, or providing scripts for the agents to manipulate in turn. In both

cases the lines of these linearities cut right through hundreds of files of code and

we are forced to make tools such as Fluid to make these broad strokes or de-

tailed manipulations.

But clearly, this linear, or perhaps more accurately, the monotonic, score is the

point of departure not destination. Thus we should begin to break down ahd

complicate this scripting environment to bring it closer to the agent toolkit that

it intersects with.

First, I shall look at a few mechanisms for controlling the time-marker as it

moves across the sheet. Then, as these mechanisms get more sophisticated they

will lead to multiple time-markers - time-markers that are concurrent, and

markers that are under the control of some other organizing principle.
420

Improvisation on a time-marker sheet often takes the form of a combination of

hand-executing visual elements, sweeping the time-marker, playing back previ-

ously made time-marker "scrubs" and of course, sometimes executing individual

pieces of code straight from the text editor.

For example, consider a time-marker that is under procedural control, moving

from time A to time B over a certain duration. How can a visual element that

this marker strikes change the flow of movement? Perhaps it might try to slow

down or pause until an event occurs, perhaps it might skip ahead to catch up

with some other process, perhaps it might loop backwards to the beginning of

some sequence while a condition has not occurred. Thus, we might consider

two kinds of alterations: alterations of the speed of onward time flow, and un-

connected jumps. However, these two categories obscure two other, perhaps

more useful, categories: temporary and permanent time modifications.



It is hard to overestimate the need to both calculate and fix durations, to both

give and receive durations, during a collaboration around a time-based work.

Sheets of durations have always occurred as common language throughout all

stages of development of how long..., 22, ImageryforJeux Deux, and even (rather

illicitly since it was for a Cunningham anti-collaborative stage work), in Lifelike.

Even works that appear far removed from the problems of occupying a period

of time have such "ballistically scored" elements: the development of alpha Wolf

would have benefitted noticeably by the addition of such a representation for

handling both the large-scale life cycle of the piece (a 5-minute "growing up

period" of the wolves) and the small contrivances of the scene-setting introduc-

tion (falling asleep and being woken up by the participants). Such "scripts", be

they interactively modifiable, cut across whole action systems and are hard to

bring about in piecemeal, distributed architectures. It is appropriate to construct

tools and passages of time that have more global and graphical views over the

agent and its environment. 421

Of course, in remaining open to the interactive possibilities of the environment,

such scores or scripts often don't remain ballistic for long. The importance of

maintaining interactivity under a fixed duration constraint has ramifications for

any process that wants to change how time flows through a work. In an area

that ought to have a fixed duration, simple control of the rate of our time-

marker is meaningless at best, and dangerous at worse. Rather, it is much more

important to be able to, for example, slow down the apparent movement of time

in such a way that it will speed up later to exactly compensate. Such non-

permanent changes are vital if we are to be serious about moving away from the

fixed linear score. Of course some changes are permanent - the duration of

how long... varies by io seconds in performance and perhaps even 90 seconds

during rehearsal because of permanent changes in the positions and durations

of sections.
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figure 164. Two generic radial-basis channels control the move-
ment of a time marker allowing changes to the position that are
both transient (in the sense that the duration of the work does

not change) and permanent.

One time-marker control system to which I have had recourse in both how

long.., and 22 stacks two generic radial-basis channels: one controls the rate of

increase of time which feeds into a permanent posting in a second channel that

controls the time itself. This posting integrates these instantaneous rates to

come up with a current time. Temporary pauses, speed-ups and even loops are

placed as postings in this second channel - and placed with considerable

weight in order to have an effect - permanent changes are expressed in terms

of changing the value of the rate channel by introducing a (temporary) posting.

This approach works well for both how long.., and 22. In the former, there is a

very minimal description of what agents get created and destroyed that is played

out by a time marker. This high-level sheet contains visual elements that them-

selves contain and run sheets. In how long.., these sub-sheets are also reasonably

simple (perhaps ten elements) but at the top level, there is a single time marker

controlled by this two-level generic radial-basis channel. This time marker is set

to move through the piece, over thirty minutes, but at several places time is

temporarily paused, waiting for cues from the global choreographic tracking

system; in three places it is permanently paused effectively waiting for permis-

sion to continue, and in two of these places there is a"hand cue" (one corre-

sponding to a particularly difficult-to-capture rapid entrance, and one corre-

sponding to the very end of the piece). In 22 the situation is rather more com-

plex, because the world to be scripted is more complex - the piece incorpo-

rates, in addition to the main manipulation of video and geometry, textual ele-

ments, linear graphical elements and a rather complex system of cuing signals

sent to the music. In this work the usefulness of a single time-marker begins to

break down.

To see how Fluid might manage a move to multiple time-markers, we should

first look at how visual elements control the time-marker of the sheet that they

are on. There are two levels of control - a direct-drive"scripting" interface and
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an indirect or "deferral" specification.

The direct-drive interface is extremely direct - instantaneous Python state-

ments have permanent or temporary effects on the time marker through two

time objects - time and tempTime. The following examples should convey the

directness and the usefulness of the lines of code that can be constructed using

these objects.

time.now = 40 - sets the time to be 40; this is a "permanent" change and

there is no compensating speedup or slowdown. Behind the scenes, a in-

stantaneous change to the rate channel causes the jump. Hence, time.now

= startof(" beginning") - goes back to the start of the visual element

called"beginning"; time.now = time.now -40 -jumps back 40 units.

tempTime.now = 40 - sets the time to be 4o; this is a "temporary" change,

made by adding a posting to the time position marker that lasts, by default

around io seconds with weight i. For finer control: tempime.now = {to: 423

40, duration:5, weight:ioo, bias:i} - sets the time to 40, for around 5 sec-

onds, with weight 1o, with a window strongly biased towards the start,

giving a percussive jump to the beginning and a long"ease-out". Hence,

tempTime.now = {to:time.now-40, weight: lambda t: t*ioo} -jumps back 40

with a channel window function that gets stronger as time goes on.

timeline = {to:40, over-rio} - animates time from wherever the marker cur-

rently happens to be, to 40 over io seconds. This is, again, a permanent

change and is actually performed by modifying the rate channel. Hence:

time.now=o; time.line = {to:40, overio, weight:o.5} -jumps to the very edge

of the sheet and begins to move forward to 40. temprime.line can perform a

similar end by writing to the position channel.

time.rate = time.rate/2 - a (temporary) slowdown in the rate of time propa-

gation that results in a permeant modification of duration. Finer control



figure 165. A main marker has been
"reinterpreted" by two subgroups,

fissioning their parent marker.
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similar to tempTime: for example, time.rate = {to: time.rate/2, duration:5,

weight: io, bias: 1 }. This is achieved by posting to the rate channel. Likewise,

tempTime.rate.

Both time and tempTime are ideal for scrambling around in an improvisation,

helping one construct and blend loops of time by executing one-line statements

by hand out of a pre-organized visual element's text editor. And, of course, there

is nothing to stop visual elements from incorporating these statements inside

their offered executable functions - in fact, this is predominantly how the

score-follower and the hand triggers from the performer are integrated with the

flow of time through Imagery for Jeux Deux. However, we can combine the

above primitives to offer a more goal-directed manipulation of the flow of time

through the sheet, based on discrete triggering events.

This simplest, general-purpose interface to an event supported directly by Fluid

looks like:

interface DeferSpecification {

DeferSpecification begin(double time);
double passed(double dwe);
void end(double time);

begin(..) informs the specification that we are about to start listening; passed(...)

queries whether (i) or not (<i) the event has taken place, and is monotonic -

that is, once passed(.) a specification is never not passed(...); and end(...) informs

the object that the caller is no longer willing to wait. Additionally, begin(...) has

the opportunity to return the specification that will be used for subsequent

passed(...) and end(..) calls. Consider the case of a next_floorwork event, that is

passed(...) when all of the dancers simultaneously go to the ground. This may

happen more than once in a work - hence we register our interest in the next

main sheet time
marker I
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For example, the basic set of fuzzy operations
defined in : K. Tanaka, An Introduction to Fuzzy

Logicfor Practical Applications, Springer, 1996.

such event using begin(...). This returns the object that we will query for

passed(..) - allowing us to pass DeferSpecifications around globally, without

passing around the means to create them afresh should we want some event's

passing to remain local.

DeferSpecifications are composable using (fuzzy) boolean operators - specifi-

cations are commonly composed with an "or" operator with a time-out which

limits how long a piece of code will wait. Inside the co-routine / resource

framework we can bridge DeferSpecifications with standard co-routines by con-

verting an increasing passed(...) to progress, a constant passed(...) to continue, a

passed(..) = i to stop and a violation of monotonicity as failure, page i6. This

bridge, of course, can be traversed in both directions.

DeferSpecifications allow the creation of higher-level time-manipulation primi-

tives. Most simply, we might pause at the start of a visual element until a specifi-

cation has passed. It is most convenient to revisit the return-value of a visual

element with respect to a Runner and write:

r = (starteecutabk, continuexmecutable, ende&ecutable)

r = deferuntil(r, specfication)

The defer_* family of return-value decorators also understand 5-tuple as well as

3-tuple r values:

r = (startexecutablew hilewaiting-executable, transition_executable,

continueoecutable end_ecutable)

where the first is executed immediately, the second while the specification has

not passed and the third as the transition from not-passed to passed.

More commonly used is a softer-pause:

r= defer-until(r;spefcation,fircion smoothness, permanence)
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this works the generic radial-basis channel structure a little harder, slowing

down to arrive at a time that is "fraction" through this visual element when the

specification becomes passed, but in any case never going beyond this fraction;

the remaining parameters control the fading in and fading out of the window

functions on the postings that achieve this, and how the control between per-

manent and temporary channels is partitioned out. Finally, we have:

r = defer forever(r, spe'fication)

that runs the underlying visual element should "specification" pass regardless of

whether this visual element is still executing or not (in which case, it runs the

"start-executable", "continue-executable" and "end-executable" in three execution

cycles).

Each of these mechanisms - the defer_* method "decorators" and the time and

tempTime direct objects are manipulating the time-marker for the whole sheet -

the shared generic radial-basis channels ensure that competing ideas as to what 426

this time should be are blended and faded in and out. However, the impact of

changing the time is shared throughout the sheet - there is only one time-

marker.

To allow two or more threads of action to drift in and out of sync in response to

events would require the use of multiple sheets - which seems a less than per-

fect solution since it potentially deletes the spatial relationship (the "sync")

which grounds both visual layouts. However, within the Diagram framework a

better solution takes almost no effort to implement - we make the generic

radial-basis channels for rate and time-position have context-local storage (for

postings) where the context is given by the sheet grouping. Now we have an ad

hoc but hierarchical structure in which to place postings, and whenever we ma-

nipulate the rate and position channels we get to choose at which level to place



the posting - local to the visual element, local to any group that the visual ele-

ment is in, or"local" to the sheet (i.e. global).

At present the grouping visual elements make this choice for their children, by

interposing a text preamble and post-amble to their children's code that causes

their access to the time and rate channels to be at the group level. All other ac-

cess is, by default, at the sheet level. This is the fundamental work that allows

the reschedulable notations of the parachute / accumulation agents of how long...,

the to-ing and fro-ing offorestfire and stage machine and the rhythmic traps of

22's scrubbing through video.

Now that we have the techniques required to fission and fuse time markers back

together again, we can go further and build from time markers alternative ways

of "executing" a sheet. The most developed are the graph-based structures. In-

spired by the general usefulness of the pose-graph motor system and the task of

creating a visualizer that allowed the visual assembly of pose-graphs from ani- 427

mation materials, we can create an executable graph structure using Fluid.

Of course, creating a directed, cyclic graph of connected visual elements is al-

ready supported in Fluid, page 399, so there is little visual programming work

that needs to be done. However, we can form a graph Runner, by extending the

time-marker Runner. This Runner moves through a graph structure and executes

the contents of the visual elements that it encounters. The visual element return

value r structure remains similar - scalars, lists or dictionaries of functions,

methods or Updateables - but is extended with a graph return value g which is

a dictionary of attributes that informs the graph runner that is executing the

code how to act. At present there are three keys in this dictionary:
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figure 166. A "graph selection" sheet. Time-
markers can be local to particular visual

elements - here a marker is local to the area
underneath a visual element. Deactivations and

subsequent reactivations between markers are
elided. Note the different, but still meaningful,
interpretation of the visual layout in this sheet.

duration - how long should this visual element execute for (in seconds);

Ihis value may be changed during the execution, but only when we get to

the "end" of the visual element do the other keys become significant. dura-

tion controls the rate radial-basis channel in a two-level time-control simi-

lar to those used in time markers.

next - this refers to the visual element that we should go to next: it can be a

visual element itself, the a name of an element or a regular expression over

the name of the elements. It can also be the special elements _nowhere (to

stop the runner completely), _op (refers to the spatially highest visual ele-

ment connected to this element), -bottom (likewise). next may also be a

dictionary that maps any of these elements to floating point values, in

which case it is used to create an un-normalized probability distribution

which is sampled from to create the next visual element.

fork - an optional list of alternative "nexts that causes the graph runner to

fork a copy of itself. By default these copies do (unlike time markers) re-

execute the visual elements that they encounter - that is, they do not

share a common parent (see page 396).

Even without the forking paths and the probabilistic next selection this structure

is enough to visually create a pose-graph motor system from coarse-grained

animations. To more fully exploit the visual potential of Fluid, in particular in

pose-graph-like domains, we visualize the sweep of time across the graph visual

element using a time-marker with a conventional runner, separate from the

graph runner, local to the area beneath the visual element and sharing a com-

mon parent with all of the other local time markers.
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All three of the main modeling and animation packages now have some kind of
transition-graph-based character animation editor:

AliasWavefront's, Maya - http://www.aw.com. Autodesk / Discreet, Character
Studio - http://www.discreet.com. SoftImage's XSI -

http://www.softimage.com/products/behavior/v2/default.asp

While these are innovations in their product domains, it is clear that the user

interface is still catching up with the expressive power of even computer game

industries, and little of the substantially more advanced motion editing

algorithms of the last 5 years' worth of SIGGRAPH have made it into the

products yet, nor have the interfaces for motion editing reached the level of

programmability taken for granted in other software domains.

'Ihis allows the visual creation not just of a pose-graph motor system, but of

procedural processes on top of the pose-graph structure - that overlap, for

example, with the beginnings and endings of animations. It is work for the

future to try these ideas on a representational character, but it is my suspicion

that Fluid will compare favorably with the recent interest in graph-based ani-

mation editing engines.

With the forking runners and probabilistic next selection it becomes possible to

visually create, manipulate and improvise with the stochastic rhythmic cell gen-

erators of Loops Score and how long....

closing remarks

Fluid is a tool that has been made available to others. However, if it were not for

the urge to generalize before specifying that bore it, it would be a completely

specific, personal tool. Nor does it, as a work of engineering, independent of the

agent-toolkit (and its lower-level graphics rendering, sound systems and net-

work resources) offer anything sellable to the "non-programming" digital artist.

Nor does it offer a segmentation of its structure into "modules" that are easily

shared as currency between members of a"community" It seems to have few of

the attributes of Max's social success.

However, while it does not compete with these tools, I nevertheless believe that

part of its contribution is in that arena. That Fluid's database-like handling of

its use-history, its self-reflexive monitoring capabilities, the way in which it en-

ables the structuring of an environment to peer into the workings of a complex

system, even the length to which it can stretch a dynamic language's syntax to-

ward terse domain-specific tasks all have something to offer this domain, even

in the absence of any widespread acceptance of the expressive need for text-

based programming. It seems that should Fluid be augmented with a more
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extensive, Python-based library fitting a problem domain shaped a little more

traditionally, it would be a short and productive matter to turn this environment

into something that could be productively used by other people. It does share

some of the hallmarks of a truly learnable environment - it is non-modal, it

reveals its flexibility gradually, it is itself open to inspection, and it is certainly
adaptable to areas smaller than manipulating a full-blown agent toolkit.

Although Fluid clearly makes much of a visual layout's ability to be interpreted

as a layout in time, even this does not in itself limit Fluid's applicability to the

time-based arts. On a number of occasions, inside and outside Fluid, we have

seen almost static ends achieved by dynamic means - for example, the"unroll-

ing" of the interaction history of Fluid onto a single temporal score, page 412; the

scoring of computer graphical processes in order to produce geometries from

the action of constraints, page 349. In both cases the history of process, be it

driven by mouse clicks or process scores, provides a temporal dimension that

begs visualization. The multiple ways in which the history of these processes 430

can be visualized, understood, and recast, all while remaining within the cur-

rency of Fluid - live-linked, text-based code - is an image that persists out-

side of the problem domains in which I have had the opportunity to use Fluid

to date. Shades of such concerns abound in tools outside the context of interac-

tive art - the forking"undo" stacks of image processing tools, the linear compo-

sition of mesh operations in modeling packages and the processing networks of

image compositors, all mimic the surface of Fluid's relationship with its own use

history. The utility and the potential for these techniques seems broader than

the context that I have chosen for this chapter - the dominant interactive art

tools - and hints at an "improvisatory" core of many other digital working

practices.

At the same time, however, there are some aspects that would need to be recon-

structed or strengthened: the development of additional layers is something that



ought to be achievable in Fluid directly, without recourse to the underlying host

language; the version control system should be expanded to handle multiple

simultaneous authorship on independent filesystems In general Fluid could

benefit from being re-architected in such a way that it can truly be turned upon

itself and made even more independent of the underlying toolkit - giving it a

certain kind of pedagogical clarity. Yet in general, turning Fluid into a widely

used tool is at least a less complex task than turning the agent toolkit into a

widely used architecture, and perhaps this will offer an intermediate point in the

distribution of the engineering contributions of this thesis.

But part of Fluid's contribution might be to question whether this arena - the

single available art tool - should continue to be structured as it has been. Fluid

would surely add more to the debate around the technical and conceptual bases

for digital art making if there were in fact a debate raging.

With its acceptance of the expressive power of text-based programming, Fluid 431

keeps company with what might be an emerging counter-trend toward the text-

based - as evidenced by the languages Processing / Drawing By Numbers /

Supercollider. Yet at the same time as these environments reject the problems

and half-solutions of visual programming, they also reject the entire visual in-

terface and run the danger of finding themselves ignorant of another emerging

counter-trend in textual programming languages - one toward multiple, semi-

textual views onto a program. The dominant art-making environments are all in

danger as they grow of falling between the "professional" environments for large

text-based programming projects - which have more support and manpower

behind them - and the "easy-to-learn" visual environments. Fluid points to-

ward a new class of hybrid environment and to a path out of this rapidly

shrinking space.



Contributions & future work

This document began with a discussion of two disparate areas of human en-

deavor - contemporary choreographic practice and agent-based artificial intel-

ligence. My work is located between these two areas, bridging them, exploiting 432

each one for the other.

This thesis offers a productive critique of what I believe to be the two most per-

sistent and widespread fantasies in digital art - its fascination with "emergence"

and its reliance on the metaphors and techniques of"mapping". The first chap-

ter of this work highlighted three axes, directions or trends in interactive art: a

"conceptual" trend - moving from the hand-crafted and hand-established

mapping relationship through a variety of machine-learning-based techniques; a

"technical" trend - from the hardware-based pre-history of digital interactive

art through fast, flexible software-based tools designed to allow a great many

mapping relationships to be experimented with and tuned; and a"methodologi-

cal" dimension - opposing the hand-crafted and thought-though mapping

with the unexpected complexities of emergence. Beyond the termini of these

axes I place AI's agent in general, and, of course, the kinds of agents constructed

in this thesis in particular. The articulation of these directions was not intended
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figure 167. The three axes introduced in chapter 1
(figures 3, 4 and 10 on pages 37, 37, 51 respectively.

to organize or predict the quality of the art produced by particular practitioners

at particular positions on this illustration. Rather, it aimed to indicate the cur-

rents in the academic research and literature already present, and to create a

frame through which my work could be viewed. In starting with the agent, I

sought to start where I considered interactive art to be heading and moved in a

counter direction. This counter-move is more than just a theoretical posture;

rather I place the very interactivity, relevance and success of the artwork at stake

in my ability to traverse these trends backwards toward constructing apparent

interactive relationships, finding tools that ameliorate the difficulties of my ap-

proach, and techniques that help navigate the complexities of the agent-based.

Along the conceptual axis, I take the agent, in all of its complexities, and look

for mechanisms to absorb the recent techniques for developing relationships

(i.e. "smart" mappings) and techniques to allow simple relationships, which may

cut across many parts of the complex agent, to be authored. My carefully de-

ployed learning techniques and perceptual structures can be seen in this light.

Along the technical axis, I have developed tools, algorithms and frameworks

that solve two classes of problems. Firstly they allow a "modular" approach to

the construction of agents to be retained during the art-making process - I
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have offered a variety of communicative blackboards and modifications and

extensions to programming languages that share this goal. This modularity, if

truly retained, escapes an otherwise perennial tension present at the heart of

complex software systems between generic, broadly applicable frameworks that

become hard to use because of this breadth and specific crafted solutions that

are hard to disassemble, reuse technically or use conceptually to structure future

works. Secondly, my technical contributions, my tool Fluid and my "glue sys-

tems', span many such"modules" specifically so that modifications and interac-

tive potentials that cut across the whole agents can be constructed. Finally, along

the methodological axis, both my tools and interstitial contributions speak to

the problems of authoring systems that have emergent (that is, both unforesee-

able and copious) consequences.

Much of this counter-move from agent to interaction, of course, has something

to say about the limits of the present day field and forms the basis of this thesis's

critique of the existing literature and approaches. Along each thread of this 434

document - the development and maintenance of the potential of algorithmic

systems, the envisaging and use of tools, and the deployment of"tactical formal-

isms" in a collaborative work - I show how an alternative metaphor, that of the

agent, directly confronts what emergence and mapping ignore.

summary of technical contributions

I have offered specific implemented examples of the use of simple learning tech-

niques to control the potential developed by complex agent-based systems - in

the "stack" of emergence and authorial control of Loops, in the long-term learn-

ing database of The Music Creatures and in the agents of how long...?. I have been

closely involved in developing an action-selection technique - the approach of

the c5 agent toolkit - and have then extended it to the diagram framework,

which radically expands the vocabulary available to the agent author for the



purposes of shaping and constraining the temporal patterns it creates. I have

been closely involved in and learnt the lessons from creating complex agents in

collaboration, identifying a set of problems and solutions that lie half-way be-

tween artificial intelligence and software engineering, leading to the context

tree. I have identified two reusable design patterns for the creation of agent's

perception systems and proved them in a wide range of particular instantiations

- the b-tracker framework and the distance mapping algorithm. Generaliza-

tions and re-specifications abound in my work - I have created the generic

pose-graph representation that allows the rapid creation of agents with a wide

range of bodies and source material; my generic radial-basis channels, my

language interventions and the context tree all decouple elements of the agent,

allowing them to be quickly repurposed and recast. I have surrounded these

complex assemblages in a set of tools and representations that allow them to not

just be demonstrated but integrated into ongoing art practice; these tools are

collected in Fluid. I have created graphical rendering techniques and intermedi-
435

ate body representations for agents - the re-projection renderers - that

open the possibilities of ambiguous visual forms back out to the agent itself.

The nature of these technical contributions needs some careful consideration in

two ways. Firstly, for the purposes of both a dissertation and a broader academic

context it is important to consider what it is that they actually contribute. Sec-

ondly, for the purposes of considering how these techniques might be perpetu-

ated in intellectual discourse outside this document, we need to consider how it

is they are structured.

On the one hand it is my belief that they do little, if anything, to extend the

theoretical reach of artificial intelligence as measured by the standard data-sets

and conventional micro-worlds of machine learning. However, I believe each of

them makes significant and original contributions to the practical reach of the

agent. This disconnect between the directly quantifiable and the pragmatically



useful is independent of the predominant art context of my work. It is not that

my decision to deploy my technical contributions in the service of making art-

works somehow thwarts AI's methods for evaluating contributions. Rather, it is

due to both the lack of quantification inherent in the field - particularly when

close to large-scale, heterogeneous AI systems and even more so when discuss-

ing design approaches and structuring frameworks rather than specific algo-

rithms.

My technical contributions appear as both general structure and multiple, spe-

cific instances; often the specific instances are present in, perhaps even domi-

nant in, specific technical fields. Each contribution possesses this double nature:

the b-tracker framework has in a very real sense no algorithmic core, it is a

framework, a structuring template that gets populated based on the task at

hand. In doing so, the resulting system may recapitulate computer music's score

follower or computer vision's tracking algorithms as well as providing novel

hypothesis trackers that are hybrids or just plain different. And while in these 436

cases, my resulting "implementation" (which is nothing more than a particular

specification of the variable parts of the b-tracker framework) work well in

these areas, any evaluation of the technical competencies of these particular

instances of the frameworks do not quite get at the heart of the quality struc-

turing contribution itself. And despite this algorithmic displacement, the b-

tracker framework refers not just to a chapter of this document but also to spe-

cific, singular implementation, a specific body of code, that is present enough to

also be the site of fixed visualization tools and offer interactive surfaces and

abstraction barriers up to other modules inside the agents that I create. The

distance mapping algorithm generalizes and reinterprets statistical techniques

such as multi-dimensional scaling - techniques that have been around for dec-

ades that I have no claim over - but recasts them in such away that they have

broad use to the problems that interactive artists face. The use (e.g. of multi-

dimensional scaling approaches to a broad range of mapping problems) is novel,
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but it is the recasting itself (e.g. the articulation of the general problem and so-

lution and a constructive proof that there exists an implementation that survives

this generality) that I believe is lasting and significant.

Thus I am often left seeking, for the purposes of locating my contribution,

mechanisms of"proof" of the technical contributions not at the level of specific

implementations but at the level of the framework. Towards this end, I can see

three lines of reasoning. Firstly, one argument exploits the range of artworks -

installations, compositions, interactions, works for live theater - together with

works with an explicit and clear biological referent - Dobie, alphaWolf- that

have used these technical underpinnings as a step towards securing the quality

of these techniques. Secondly, while the argument that many of these artworks

were constructed quickly (in the case of Loops in particular) may appear struc-

turally unsound, I believe that there are certain thresholds of speed and facility

that, when crossed, allow new kinds of artworks to be created, and new kinds of

collaborations to succeed. That the score follower for Imageryfor Jeux Deux

that in the original conception of the work was thought to be unnecessary was

constructed and tested in an afternoon and ultimately became fundamental to

the interaction of the piece, and that the recapitulations of triangle were con-

structed during a break in rehearsal, point towards the crossing of such qualita-

tive thresholds.

Thirdly, I offer the range of researchers working with rather than on my techni-

cal ideas as an argument for the strength of their contribution. They have had

widely differing concerns and agendas and many have constructed their own

work around the agent-toolkit that incorporates my techniques and code. This

second layer of validation offers an alternative plane of collaboration - one

where I assume, as I do in my artworks, responsibility for some of the technical

path, but reject responsibility for the artifactual destination. In this fashion, one

might point to the use of the pose-graph motor system to control robots (hy-
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bridizing computer animation techniques with expressive robotic control); or

the use of the context tree to create agents that simulate other agents (the em-

bedding of a "virtual" agent within another by using the hierarchical context).

Since I comprehensively lack the skills or opportunity to work in robotics or the

background in the simulation theories of cognitive modeling I cannot retroac-

tively claim these tasks as motivation for the pose-graph motor system or the

context tree. Since these extended uses remain within the realm of messy, large-

scale AI research there are no critical results on standard data-sets, no disprov-

able predictions strong beyond the number of "free-parameters" that my tech-

niques possess, that I can borrow for the purposes conclusive proof. Instead I

might claim what might be large-scale AI's only equivalent of the scientific stan-

dard of replication - a relatively independent reuse of AI design ideas and im-

plementation.

But in a broader context I refuse to shy away from these harder-to-evaluate

approaches and framings not simply because of the practical utility that they 438

offer me in my varied collaborations, the practical fluidity that they allow in my

work or the thrill of seeing them adopted, expanded upon and reused in do-

mains distant from my own opportunities. Rather, I believe that such frame-

works, such reframings of algorithms and data-structures, are precisely the re-

search project that both artificial intelligence and digital art require at this very

time. This opinion, in a AI context, is sufficiently well stated elsewhere - in the

work of Minsky and others. In a digital art context it bears restating. Having

gone beyond a simple technical facility, the speed with which well-known and

well-worked-out algorithms may be either coded (in a"text-based" practice) or

called-up (in a more typical"visual-programming' environment), the research

vista, the methodological frontier that lies beyond the simple mining of the

flexibility and speed of computers, is to find the structures and frameworks that

allow the understanding, generalization and re-recognition of common algo-

rithms in a new light of digital art. That many of my contributions are in the



interstices of code-practice indicates a recapitulation of my emergence and

authorship counter-tension at a different level of practice. That the central tech-

nical problems faced by digital art (and artificial intelligence) might be shifting

from the finding of powerful algorithms and data-structures to figuring out

how to deploy them given that they already exist.

Without the technical contributions my artworks are inconceivable, in all senses

of the word: they could not be articulated, started, or finished. Without the

artworks, these technical contributions would be unmotivated, unproven, un-

fulfilled. 'he techniques are neither directly present in the surface of the art-

works nor vanish completely from them, no more than the style in which these

frameworks are constructed is independent of the art that I have made and pro-

voked.

The artworks presented here are more than the techniques behind them and,

simultaneously, the techniques that I have developed here are not wholly con- 439

sumed by the artworks that exploit them. Indeed, one crucial indication of the

technical success of an artwork is tied up in this very attitude. As artistic condi-

tions (collaborations, available materials and interactions) provoke technical

contributions that are (by personal preference, and by practical necessity) flexi-

ble, generic, or modular in nature this effort is satisfying and worthwhile when

an artwork escapes the ability to think through the potential field generated by

the technique, finding the utterly unexpected deep within this field. Simultane-

ously the technical approaches are in themselves satisfying and worthwhile

when they remain unexhausted by the pieces that they permit, pointing towards

unexplored vistas after the works themselves have been "finished".

Again, this criterion for success speaks also of the methodological importance

for the modular, reusable and the generic in my work and goes some way to

legitimize, at a technical level, the apparent indirection inherent in the agent-



based. Rather than being a complicating and eccentric place to begin work, per-

haps my agent metaphor and practice offers a vastly shortened route to this

technical territory.

The future work of this thesis, my future artwork, is at the very least to continue

mining the potential of the technical contributions of this thesis while using

new artworks to, in turn, provoke new developments. Rather than discuss in

abstract terms where my techniques might lead my art and where my art might

lead my techniques, I would rather discuss two concrete, commissioned art-

works that I believe illustrate and extend the two main threads of my work.

Horizon, 2005-7

The first thread can be drawn through parts of alphaWolf, Dobie aspects of The

Music Creatures and ultimately 22 - agents with complex bodies and large

stores of animation material which require complex blending, layering and ma- 440

nipulation and yet have a strong, representational, figurative requirement. This

thread leads to a project entitled Horizon, commissioned for the main hall of the

forthcoming international concourse-F at Atlanta's Hartsfield-Jackson Airport.

On a 360-by-30-foot custom-made LED display, this permanent artwork will

finally present the opportunity to make a piece that runs live, without repeti-

tion, on an "architectural" time-scale. It will be the largest live permanent digital

figure 169. Horizon sequence pre-visualization artwork to date.

-forest, hide and seek.

Our imagery, which inverts the scale of child and airport, will draw on extensive

motion capture libraries of children's motion - playing hide-and-seek, ma-

nipulating the skyline of Atlanta, operating the mechanics of the airport. These

game-like forms will be played out by characters assuming the figuration of

children, but like 22, this figuration is not the stable affair of computer games

and special effects, but rather the unstable, shifting forms of childhood dreams.



To create the choreography of these multi-agent games, I expect to use and

extend the Diagram framework - extending its ability to coordinate multiple

action to the choreography of multiple agents - and a pose-graph motor sys-

tem - extended specifically to perform well over both extremely large libraries

of animations and variable bodies.

The use of the agent metaphor in structuring this work allows the imagery to be

open to extension - incorporating events from the changing life of the city as

the years go by - and responsive to external influences: the flux of passengers,

the time of day, the weather and the season. This couples the artwork to the

environment of the airport, and the time-scale of the installation setting, in a

bgr17i ag ew cam way that a finished film could not hope to achieve. The techniques developed in
baggage claim.

this thesis that allow the rapid creation, tuning and automatic "balancing" of

agents will be fundamental in constructing an artwork on an display-scale set-

ting that inherently cannot be prototyped accurately. The piece is set to open

with the completion of the terminal building in 2007. 441

The Enlightenment, 2oo5-6

The second thread through my work can be traced through Loops, The Music

Creatures, Loops Score and parts of how long...? and Imagery for Jeux Deux - the

visual depiction of both generative and analytic musical processes, the nota-

tional and the enumerative. This thread leads to a project entitled The Enlight-

enment, commissioned as part of the 40th season of the Lincoln Center for

Performing Art's Mostly Mozart festival to celebrate the 250th anniversary of

Mozart's birth. Ten high-resolution displays distributed down the length of the

front of Avery Fisher Hall will make this work the highest-resolution live digital

artwork to date, and truly allow the creation of digital imagery that can be ob-

served at a range of distances. As in The Music Creatures, each screen will house

a sound-producing agent communicating with its neighbors; as in Loops Score



figure 171. The Enlightenment installation pre-
visualization.

the "source material" for the agents will be fixed in advance; as in how long...? and

Imageryfor Jeux Deux the physicality of performance will brush up against an

aesthetics of notation and description.

But this new artwork presents the opportunity to unite the aesthetics of effort,

intention and transience with the concerns of truly "human-level" music - the

central issue arguably dodged by both my musical works to date. The source

material will be the last 30 measures, the dizzying display of five-part invertible

counterpoint in Mozart's Symphony No. 41 "TheJupiter". And over an constant

installation period of three months the agents will recompose, recast and redis-

cover the unities and possibilities of the material Mozart deploys in this pas-

sage, exploiting a library of video and sound captured from performances of the

work. Both acoustically and visually, The Enlightenment will be patterned on the

scale of the hour, the day, the week and the month. In some senses it will be a

three month long composition.
442

While my previous works might have used unconventional means (the agent),

hardware (motion capture) and tools (Fluid) they have not yet enabled access to

non-traditional audiences, scopes or venues. These new works place the artifi-

cially intelligent agent not just in new art contexts but in unexpected contexts

for digital art. The "openness" of my open forms, the enticing time-scales hinted

at by Loops and The Music Creatures and the surplus potential evident in the

rehearsals of my works for dance theater seem to demand a move away from the

traditional gallery installation or the confines of a fixed duration performance.

This move comes with considerable challenges. While I have had success, as far

as my works have led, in creating pieces that are far beyond what one can think-

through as an artist by developing techniques that allow the navigation of open

interaction, can my open forms remain open while I construct pieces that are far

longer than any single rehearsal, far longer than I can possibly work-through,



even once? Both Horizon and The Enlightenment stand on a new threshold for

digital art.

the experience of the agent

The agent metaphor offers the opportunity to reframe the problems of algo-

rithmic art in terms that meet the computational sensibility of contemporary

choreography that I identified in my opening chapter. My most recent collabo-

rations with choreographers have resulted in what I believe is the most sus-

tained example to date of a dialogue centered on this computational sensibility. I

have constructed networks of computational representations that are complex

enough to yield surprising forms, material and relationships, and controllable

enough to allow the unexpected to be assured. I have sought the technologies

required to bring these forms to human movement and human movement to

these agents. By careful formulation and generalization of learning, program-

ming and visualization techniques, I offer the extensions, frameworks and tools 443

that this agent metaphor needs in order to be more than just an organizing

principle. My technical contributions alleviate the difficulties posed while ex-

ploiting the opportunities offered by the indirection inherent in the agent-

based.

This indirection is the aesthetic center of my body of work; my agents are

autonomous enough, intelligent enough, to maintain a dynamic disequilibrium

with their environments. Because of this relationship to their setting, I believe

my agents embody an aesthetics of intention, effort and transience unobtainable

by more "direct" means. I offer new"open forms' that are solutions to the para-

dox of"scoring" an autonomous system.

A number of times throughout this thesis I have documented this aesthetics

that I believe is attainable from this agent-based practice and indicated, or at



least hinted at, the moments when it truly comes to the fore in my work: the

musical renegotiations of The Music Creatures - the error-prone echos and the

observable attempts by the creatures to traffic musical material, the intentional-

ity of network, the broken clock-like movement of tile; the endless recomposing

of Loops; the quirky, fragile rhythmic material of Loops Score that produces ma-

terial that is unexpected yet somehow inevitable; the layered excesses and in-

adequacies of how long... - the goal of triangle, the fleeting shifts of memory

score; the moments when, having drifted apart, the imagery, movement and

narrative of 22 collide. All of these aspects, all of these moments, seem at their

core to be both technical and aesthetic consequences of the construction of

autonomous agents. But what precisely links them all and, more importantly,

but perhaps even more speculatively, what accounts for my personal attraction

to these phenomena? What are the experiential intentions of my work?

It remains impossible and impractical for me to find a definitive statement on

these matters, yet my sense that there remains a stable and common core to 444

these "aesthetic moments" that escapes merely the technical relationships be-

tween the works begs some attempt at explanation.

One route that offers some promise in this direction is to return to the opening

chapter's brief discussion of the status of the "formal systems" developed in both

contemporary choreography and, by influence and extension, my work. In these

fields I have referred to these approaches as deploying"tactical formalisms' that

is, formal techniques that arrive methodologically prior to the discovery of their

consequences, and perhaps even their natures, that are protected from interro-

gation during their articulation and given privileged status during the mining of

the potential that they develop. These formalisms are deprived of any totalizing

wider role by an equal, but opposite, tendency to question and undermine these

very formal ideas between works, between explorations. I believe that in my

work my set of experiential goals are actualized when these formal approaches



Quotes are from
P. Klee, Paul Klee Notebooks, Volume 1: The Thinking Eye,

J. Spiller, (ed.) George Wittenborn, NY, 1961.

come into oblique contact with a seemingly opposed set of concerns - that of

realism.

At the simplest level the search for this tension between the formal, the

autonomous, and the realist might explain my continual return to human mate-

rials - be it human motion - Loops, how long... - the fundamentals of hu-

man music (rhythm, timbre) - The Music Creatures - the human voice and

language - Loops Score. These, often explicitly, counter-balance my agent-based

formal indirections. Alternatively, perhaps it predicts my interest in developing

"ambiguous" computer graphical techniques that can transit between the realist

and the abstracted - most notably in 22. Perhaps it suggests a deeper reason

for my sincere, but admittedly uneasy, engagement with biological referents -

in The Music Creatures specifically and in the the c5 agent toolkit in general. But

these aspects again draw us back to a more technical level than this discussion

was intended to take, or at least one internal to the work rather than external,

and does not explain the considerable autonomy I give to my formal ap-

proaches.

There is a long tradition, however, of attempting to rehabilitate the realist pro-

ject, freeing it from what, for example, Paul Klee called the "painfully precise

investigation of appearances", of transferring concern from appearance tofunc-

tioning - from "anatomy to physiology". Perhaps one might identify in my

work, or at least in my aesthetic intentions, couched in and supported by the

presence of the human, in motion and in sound, a realism that lies one further

step removed from the optical than this physiology.
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For a selection of essays by members of the Oulipo:

W. F. MotteJr (trans., ed.), Oulipo: a primer ofpotential literature,
University of Nebraska Press, 1986.

For a more encyclopedic introduction:

H. Mathews, A. Brotchie, The Oulipo Compendium, Atlas Press, 1998.

from pp. 58-9, in D. Sylvester, Interviews with
Francis Bacon, Thames-Hudson, 1975.

M. Imberty, The Questions of Innate Competencies
in Musical Communication, in: N.L. Wallin, B.

Merker, and S. Brown, The Origins of Music, MIT
Press, Cambridge MA, 1999

Perhaps this occulted presence of nature accounts for the longevity of contem-

porary choreography far from the "hook" of narrative, mimesis or emotion. Per-

haps there is a point of contact here with the longevity of the Oulipo literary

group s formal" or "axiomatic" investigations. Returning to my first chapter's

concerns with the interplay between figuration and abstraction, perhaps this is

what Francis Bacon isolates as the tension between order and representation,

between one level and another:

"One of the reasons I don't like abstract painting, or why it doesn't interest me, is

that I think painting is a duality, and that abstract painting is an entirely aesthetic

thing. It always remains on one level. It is only really interested in the beauty of its

patterns or its shapes. [...] I think that great art is deeply ordered. Even if within

the order there may be enormously instinctive and accidental things, nevertheless I

think that they come out of a desire for ordering and for returning fact onto the

nervous system in a more violent way."

Perhaps too this is what musicologist Michel Imberty, searching for a naturalis-

tic foundation for music, and by my extension the "temporal arts, has encoun-

tered:

All [music's] temporal substance is nourished by our way of being in the world;

that is, in our time, out culture, our perceptions, our bodies, our emotions, and our

sentiments. It is not communication but a representation of our ability to commu-

nicate, it is a stylized game for our opening to the world, it is communication with-

out an object to communicate. In this sense, music is indeed, the symbol of our

fundamental relation to time, life, and death.

To give a name to the place where the anatomical, the physiological, and the

formal intersect, I propose that this at this core is an infra-realism, in which the

audience (and the artist) recognizes not an precisely analogous or parallel mode

of functioning but the very functioning-like aspect of bodies and their imbal-

ances with the world. A captivating recognition that Loops Score does not reso-

nate with the rules of language per se but draws its strength from a parallel rec-

ognition that language incorporates an alien mechanic current; that The Music

Creatures point towards a formal quality possessed not just by the algorithmic
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machinations of western art music but even the song of birds; that in how long...

my images point to the arbitrary yet necessary core of both choreography and

human movement in general. Perhaps this is the thread that ties my technical

relationship to motion-capture, through my conceptual choice to begin with the

autonomous agent rather than a "more direct" interactive relationships, to my

deployment of such localized formal systems, my preference for imbalance and

transience, the aesthetics of my visual imagery, and finally all the way through to

my experiential intentions.

To gain access to this territory within the context of interactive digital art I have

had to abandon the conventional points of origin, the standard tools, and the

traditional methodologies and create my method, technique and structuring

concepts afresh. I have sought the collaboration of a diverse range of artists and

AI researchers. Although I claim that the the technical contributions are strong

and the artworks successful, and I believe that I have proved this as much as it

can be proven by applying these techniques to an extremely diverse range of 447

works, my firmest belief is that the technical contributions are of interest to

digital artists who are both willing and able to interrogate their own technical

practices. In general I hope that my thesis expands digital art's working practices

- changing the starting points of pieces, the methods and in particular the

tools used on the journey and the possibilities open to artists. I hope that my

thesis, like my works, indicates and develops a field of previously unknown po-

tential and demonstrates techniques for navigating this field.
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