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Abstract

This thesis presents Duo, the first wearable system to autonomously learn a kinematic model
of the wearer via body-mounted absolute orientation sensors and a head-mounted camera.
With Duo, we demonstrate the significant benefits of endowing a wearable system with
the ability to sense the kinematic configuration of the wearer's body. We also show that a
kinematic model can be autonomously estimated offline from less than an hour of recorded
video and orientation data from a wearer performing unconstrained, unscripted, household
activities within a real, unaltered, home environment. We demonstrate that our system for
autonomously estimating this kinematic model places very few constraints on the wearer's
body, the placement of the sensors, and the appearance of the hand, which, for example,
allows it to automatically discover a left-handed kinematic model for a left-handed wearer,
and to automatically compensate for distinct camera mounts, and sensor configurations.
Furthermore, we show that this learned kinematic model efficiently and robustly predicts
the location of the dominant hand within video from the head-mounted camera even in
situations where vision-based hand detectors would be likely to fail. Additionally, we show
ways in which the learned kinematic model can facilitate highly efficient processing of large
databases of first person experience. Finally, we show that the kinematic model can effi-
ciently direct visual processing so as to acquire a large number of high quality segments of
the wearer's hand and the manipulated objects.

Within the course of justifying these claims, we present methods for estimating global
image motion, segmenting foreground motion, segmenting manipulation events, finding
and representing significant hand postures, segmenting visual regions, and detecting vi-
sual points of interest with associated shape descriptors. We also describe our architecture
and user-level application for machine augmented annotation and browsing of first person
video and absolute orientations. Additionally, we present a real-time application in which
the human and wearable cooperate through tightly integrated behaviors coordinated by
the wearable's kinematic perception, and together acquire high-quality visual segments of
manipulable objects that interest the wearable.

Thesis Supervisor: Rodney Brooks
Title: Matsushita Professor of Robotics
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Chapter 1

Introduction

This thesis presents Duo, the first wearable system to autonomously learn a kinematic

model of the wearer via body-mounted absolute orientation sensors and a head-mounted

camera. With Duo, shown in figures 1-1 and 1-2, we demonstrate the significant benefits

of endowing a wearable system with the ability to sense the kinematic configuration of the

wearer's body, see figure 1-3. We also show that a kinematic model can be autonomously

estimated offline from less than an hour of recorded video and orientation data from a wearer

performing unconstrained, unscripted, household activities within a real, unaltered, home

environment. We demonstrate that our system for autonomously estimating this kinematic

model places very few constraints on the wearer's body, the placement of the sensors, and

the appearance of the hand, which, for example, allows it to automatically discover a left-

handed kinematic model for a left-handed wearer, and to automatically compensate for

distinct camera mounts, and sensor configurations. Furthermore, we show that this learned

kinematic model efficiently and robustly predicts the location of the dominant hand within

video from the head-mounted camera even in situations where vision-based hand detectors

would be likely to fail. Additionally, we show ways in which the learned kinematic model

can facilitate highly efficient processing of large databases of first person experience. Finally,

we show that the kinematic model can efficiently direct visual processing so as to acquire a

large number of high quality segments of the wearer's hand and manipulated objects.

Within the course of justifying these claims, we will present methods for estimating

global image motion, segmenting foreground motion, segmenting manipulation events, find-

ing and representing significant hand postures, segmenting visual regions, and detecting

17



Figure 1-1: The most recent version of the wearable system, Duo.

visual points of interest with associated shape descriptors. We will also describe our ar-

chitecture and user-level application for machine augmented annotation and browsing of

first person video and absolute orientations. Additionally, we will present a real-time ap-

plication in which the human and wearable cooperate through tightly integrated behaviors

coordinated by the wearable's kinematic perception, and together acquire high-quality vi-

sual segments of manipulable objects that interest the wearable.

1.1 The Data Sets

Although we have captured many hours of data, the results we present in this thesis pri-

marily use three data sets that cover a number of different types of variation. The data sets

are from a right-handed adult male, a left-handed adult female, and a right-handed adult

female. They were taken in two different home environments across a number of rooms each.
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rIC)

Intersense Cube, which
measures absolute orientation

Backpack with wireless
communication to the cluster

Headphones for audio based
feedback from the wearable

4 Wide angle camera focused on
the workspace of the hand

Computer cluster for real-time
perceptual processing and control
through wireless communication

Figure 1-2: A diagram of the most recent version of the wearable system, Duo.

Figure 1-3: This figure shows snapshots of the data captured by Duo. The top row shows

frames of first-person video, and the bottom row shows the etimated kinematic configuration

of the wearer's body associated with each frame.
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The two data sets from the same home were taken almost a year apart, during which time

a number of features of the home changed including furniture, furniture arrangement, and

pictures on the wall. The data sets also use two different versions of the capture hardware,

the initial and the final versions, which have fundamental differences in sensor layout and

orientation. The wearer in the first data set is the author who understood the mechanisms

and objectives of the research and performed a variety of actions for testing. The wearer

in the second data had not seen the system before and was unaware of any of the research

details. She mostly performed household chores she had intended to perform that evening.

The wearer in the third data set had seen the system before and understood the objectives

of the research, but lacked any detailed knowledge of the research.

1.1.1 Data Set 1

This 18 minute data set was captured with the original version of the Duo hardware, which

includes a camera mounted on the brim of a cap, which can be seen in the upper-left corner

of the image, see figure 1-4, and a front mounted torso orientation sensor. This data set was

taken while the right-handed adult male wearer performed a number of common manual

activities within the first home environment.

1.1.2 Data Set 2

This hour long data set was captured with the most recent version of the Duo hardware,

which includes a camera mounted like a headlamp. This data was captured within the

second home environment while the right-handed adult female wearer performed a number

of common manual activities within the second home environment, see figure 1-5.

1.1.3 Data Set 3

This 48 minute long data set was captured with the most recent version of the Duo hardware.

This data was captured within the second home environment while the left-handed adult

female wearer performed a number of common manual activities over a year later within

the first home environment, see figure 1-6.
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Figure 1-4: This image and kinematic visualization shows an example from data set 1. The

kinematic model shown is the hand-tuned model for the latest version of Duo. We use this

same model without alteration to visualize the examples from each data set. Using this

non-matching model shows how the three data sets differ in their orientation data. In this

case the torso sensor is placed differently than in the other two data sets, which leads to

the clearly incorrect torso visualization.

Figure 1-5: This image and kinematic visualization shows an example from data set 2. The

kinematic model shown is the hand-tuned model for the latest version of Duo, which in this

case matches well with the body of the wearer.
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Figure 1-6: This image and kinematic visualization shows an example from data set 3. The

kinematic model shown is the hand-tuned model for the latest version of Duo, which would

be correct for a right handed wearer, but the wearer is left handed, which results in the

incorrect position of the arm on the body of the visualized body.

1.2 The Benefits of a Kinematic Model for Wearable Systems

The primary claim of this thesis, is that a learned kinematic model of the wearer, au-

tonomously estimated via body-mounted absolute orientation sensors and a head-mounted

camera, can greatly benefit wearable systems. Within this section, we discuss several spe-

cific ways in which a learned kinematic model of the wearer can benefit wearables. First, we

discuss why an autonomously learned model is to be preferred to a hand-tuned kinematic

model. Second, we look at the extensive advantages of using a kinematic model that is

registered with a head-mounted camera to predict the location of the hand within images

captured from this camera. Third, we touch on the utility of giving wearables kinematic

sensing, without considering the direct relationship between the kinematic model and the

camera. Fourth, we look at the significant utility of incorporating captured kinematic data

into databases that attempt to record the entire life of an individual from a first-person

perspective.

1.2.1 Why Learn the Kinematic Model Autonomously?

The strongest reason for autonomously learning the kinematic model is that the estimation

method is able to explicitly find and represent a mathematical relationship between the
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kinematic model and the view from the head-mounted camera. This relationship allows us

to use the kinematic model and the measured absolute orientations of the wearer's body

parts to make predictions about the appearance of the hand within the images captured

by the camera. The benefits of this estimation are thoroughly described within the next

subsection. Specifying this relationship by hand would be challenging, time-consuming,

and error-prone. As a by product of the estimation process, the orientation of the camera

with respect to world coordinates is estimated, which opens up a number of perceptual

opportunities, such as detecting edges within the image that are aligned with gravity, or

the major axis of the forearm, see appendix A.

We have had some success approximately hand-tuning kinematic models for the wearer,

given a particular configuration of the sensors. These hand-tuned models do not produce

reasonable predictions of the hand's appearance in the image, but they do provide good

models for visualization of the orientation data. We have also used them with some success

in a real-time application in which the wearable would respond to the kinematic activities

of the wearer, but even in this application, careful tuning was required for a single user.

The resulting hand-tuned kinematic models are only judged based on their qualitative ap-

pearance, which makes it difficult to quantify how they relate to the captured data, and

to maintain consistency across sessions of captured data. Tuning these models is a time

consuming process that requires human intervention anytime a component of the system

has changed, the wearer has changed, or greater fidelity is required. Additionally, the hand-

tuned models would often require careful record keeping in order to remember the relevant

aspects of the wearer and the wearable's sensor configuration, so that an appropriate hand-

tuned model could be more easily created and associated with the captured data. Without

knowing the sensor ordering and approximate orientations on the body parts ahead of time,

hand-tuning a kinematic model could become a very daunting task.

By automating all aspects of the creation of a kinematic model, these concerns are

eliminated. Record keeping becomes unnecessary, since the captured data itself holds the

appropriate information. Likewise, the optimization criteria for the kinematic model be-

comes explicit, which allows us to better understand the model's strengths and weaknesses.

In addition, errors due to improper setup, calibration, or an improper hand-tuned model

are reduced or eliminated. Some similar motivations have driven the automated estimation

of kinematic models for motion capture data that includes position information [47, 6, al-
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though they do not have the incentive of finding a relationship between a kinematic model

and a head-mounted camera. Besides giving quantitatively better performance, and greater

consistency, automation gives the designer or researcher greater flexibility to test design

ideas without jeopardizing the captured data. Overall, the system becomes much easier to

use by both machines and people.

1.2.2 Predicting the Hand's Appearance in Images

A number of projects have demonstrated the value of monitoring the wearer's hands through

a head-mounted video camera. A kinematic model autonomously estimated by the methods

of this thesis, can significantly improve the reliability of hand detection in images and

dramatically lower the required computational costs.

Many researchers have developed gesture-based interfaces for wearables that rely on

detection of the hand in video from a head-mounted camera [41]. With gesture-based inter-

faces, hand activity serves as a natural way for the wearer to communicate with the wearable

in mobile situations where a keyboard or mouse may be inappropriate. With sufficient per-

ceptual sophistication, gesture-based interfaces could emulate the natural gestures used by

people to communicate with one another. For example, in an augmented reality application

or prosthetic memory application, the wearer might point to an object of interest within

the world and receive relevant information about that object, or have that object tagged

for future reference. Likewise, in a manner very similar to the real-time application we

present later in this thesis, holding an object up for inspection might trigger the wearable

to provide information about the object, or tag the object for future reference. Gesture-

based interfaces are just one example of the many uses for visual perception of the hand

in wearable computing. In Starner's work on a wearable system that interprets American

Sign Language [57], the system tracked hands in video from a hat-mounted camera. The

positions and sizes of the hands within the images provided much of the information used by

the HMMs that recognized signing by the wearer. Likewise, from the inception of wearables,

researchers have worked to create wearables that assist or instruct the wearer in manual

tasks, such as airplane maintenance or equipment repair [48, 53]. Reliably perceiving hand

activity would help a wearable better interpret the actions of the wearer with respect to

the task, and therefore help the wearer better achieve the current goals. Finally, knowing

where the hand is in the image, can help machines learn about human manipulation by
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facilitating the observation of everyday manipulative actions performed by the wearer.

All of the applications mentioned within the previous paragraph require full mobility and

robust hand detection in order to be practical for day to day use. However, purely vision-

based hand detection methods will encounter common situations that are very challenging

to interpret visually. At minimum, purely visual hand detection methods will require a great

deal of computation in order to be robust with respect to large variations across users and

environments. An overview of many common, yet challenging, hand detection situations

follows, in the form of seven example situations each accompanied by a description and

three example images. Except for one image of a blue hand, all the frames come from the

three test data sets described in the previous section. In addition, all of these test frames

display a white and blue circle that mark an area that the appropriate autonomously learned

kinematic model expects to be near the hand in the image. These kinematically estimated

hand positions are not exact, but they are of high enough quality to be very useful.:

1. Depending on the configuration of the head mounted camera, the hand may often

be out of view. Determining that the wearer's hand is not visible is a challenging task,

especially given the noisy, real-world images available to a wearable.

2. Humans are social, and will often be interacting with other people. Consequently,

hands will frequently appear in images that are not the wearer's hands. In these situations,

another person's hands may occlude the wearer's hands or be visible when the wearer's

hands are out of the image.
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3. Dark and noisy images that obscure the appearance of the wearer's hands are common

in real-world situations, because the dynamic range of the camera is much narrower than

the dynamic range of human vision. Human vision dictates the characteristics of common

lighting found in human environments, so artificial mechanisms for image capture are often

at a disadvantage, as indicated by the frequency with which a flash photography is required

in environments that are clearly visible to the naked eye.

4. The hand is a near-field object, so its size varies over a large range when viewed from a

head-mounted camera. This large variation in projected size necessitates detection methods

that perform well over a wide range of scales, which usually means that the methods must

perform more search in order to account for this variation in the hand's size in the image.

5. The color of the image of the hand changes based on the illumination of the en-

vironment, which along with example 6, can foil hand detectors that use skin color. The

example image on the far right is the only example image that was not captured by Duo.

It is indicative of a situation that has occurred a number of times in other capture sessions,

where indirect light from a window can make the hand appear blue.
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6. Common materials used within human environments result in images with colors

that are similar to skin, which, along with example 5, can foil hand detectors that use skin

color. For example, wood floors and wooden tables often produce colors that are similar to

skin color.

7. During everyday activity, the hand may be obscured by the object being manipulated

or covered by an article of clothing, such as a glove, mitten, sleeve, or pocket.

Tracking the hand over multiple frames and detecting the arm can help mitigate these

problems. However, a kinematic model registered with the head-mounted camera circum-

vents these problems altogether with minimal computation by allowing the wearable to

directly estimate the presence or absence of the hand within the image, and the position of

the hand within the image using direct measurements of the body's configuration. For some

tasks, no further hand detection will be required. For others, the kinematic model can be

used to place significant constraints on the detector's search for the hand, which can lead
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to drastically reduced computational requirements and the opportunity to use detection

strategies that would be inadequate in isolation. Furthermore, this strategy for hand detec-

tion requires that the kinematic model be related to the camera, since otherwise we would

have no way of knowing the visual implications of a particular body configuration. The

methods we present within this thesis automatically estimate an explicit kinematic model

and its relationship to the camera given very modest assumptions that place few constraints

on the wearer's body, the placement of the sensors, and the appearance of the hand. It's

worth noting that humans also make use of kinematic information to help them detect their

hands, rather than relying on visual detection alone. Humans have highly refined sensory

mechanisms with which they directly estimate their body's configuration [29].

1.2.3 Detecting Invisible Kinematic Activity

Besides helping a wearable detect the wearer's hand within images, a kinematic model can

be used to perceive important kinematic activity that occurs outside the view of the camera.

People often perform significant manipulation tasks without observing the hand, such as

when searching through a pocket, holding a suitcase, or swinging a bat. Similarly, wearables

can benefit from the perception of hand activity outside of the camera's view.

Researchers have convincingly demonstrated that body-mounted inertial sensors can be

used to help detect various types activities, such as sitting, standing, sleeping and walking,

that are important for establishing the context of the wearable's behavior [32][31]. By

perceiving this contextual information, wearables can better serve the needs of the wearer

[54, 9]. For example, if the wearer is sleeping, the wearable might avoid disturbing the wearer

unless the notification is vitally urgent. With a kinematic model, a wearable can use these

same detection methods, which are based on coarse motion estimation. But additionally, a

kinematic model allows the wearable to perceive the static configuration of the body, which

can lead to more robust and informative methods of detection and recognition.

The static configuration of the body can be highly informative, independent of whether

or not the hand is visible in images from the camera. For example, as will be demonstrated

later in this thesis, during everyday activity the hand can often be well-characterized as

being in one of four distinct positions relative to the torso. One position corresponds with

when the hand is at rest by the wearer's side, such as during walking activity. Another

position corresponds with when the wearer is holding his hand close to his head, such as

28



when eating, drinking, or visually inspecting an object. A third position corresponds with

holding or manipulating an object in front of the midpoint of the torso, and the final position

corresponds with reaching out into the world. It's worth noting that even if a wearable could

visually observe the hand in these significant positions, the perceptual system would need

to compensate for the constantly changing viewing angle of the head-mounted camera in

order to recognize the hand's position relative to the torso. More specifically, over a series

of images, the hand might be stationary with respect to the torso, but moving significantly

within the images.

It is not difficult to imagine a variety of exciting, and useful applications for wearable

systems with kinematic perception. For example, a wearable could help the wearer improve

at a sport or other physical task by directly monitoring the wearer's kinematic activity and

giving feedback on his performance. With sophisticated kinematic sensing, as described

within this thesis, an instructional wearable might at first be worn by experts performing

the task so that the wearable could learn how the task should be performed. So, for instance,

a wearable might first capture the golf stroke of a professional golfer while out on a real

golf course performing in an actual tournament, and then later advise novices out on the

same golf course as to how they could alter their swing in order to more closely match

the swing of the professional. The wearable offers the advantage of both capturing expert

activity and directing novice activity under real-world conditions, rather than the closed

laboratory conditions often associated with motion capture systems. Clearly, these types

of applications are more feasible with a system such as Duo, that can directly measure

the kinematic configuration of the body, than with a system that attempts to infer the

kinematic information from other sensory information. Of course, for many of these tasks,

more than four absolute orientation sensors would be beneficial, so that the wearable could

directly perceive more than the kinematic chain from the head to the dominant hand. Many

of the methods from this thesis could be extended to a system with 10 to 12 body mounted

orientation sensors. In particular, a system with 6 sensors to measure both arms would

primarily require alterations to the algorithm for assigning sensors to body parts.

Direct sensing of kinematic activity that is outside the view of the camera, also presents

distinctive opportunities for machines to learn about everyday human manipulation.
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Table 1.1: This table shows the approximate storage requirements for our system if run for

24 hours per day over various time scales that are relevant to human experience (of course,

just a factor of 3 larger than 2.1).

1.2.4 Mining a Lifetime of Data

Capturing and analyzing a lifetime of first person experience serves as a motivating goal

for a variety of research groups [20, 62, 25, 19, 33, 10, 18, 30, 40]. Most of these projects

rely on information such as email, photos, GPS, first person video, and audio. In order to

meet these goals in practice, very efficient and robust methods will be required for browsing

and annotating the potentially vast stores of accumulated data illustrated by table 1.1.

This thesis shows that augmenting first person video with absolute orientations from the

wearer's body facilitates highly efficient methods for browsing and annotating first person

experience. For example, if we ignore the processing involved in learning the kinematic

model, then given the task of acquiring segments of the wearer's hand, kinematic processing

can throw out around 95% of the video data before performing any video processing. Since,

even scripted, unoptimized, kinematic processing code that estimates the hand's position

in the image runs at over 1200 frames per second, this results in an enormous savings

relative to trying to visually detect the hand in each frame or performing other forms

of image processing on each frame of the captured database. If we take the notion of

recording data 24 hours a day seriously, then we quickly realize that anything that on

average runs below frame rate will result in a rapidly growing surfeit of unprocessed data,

since there are only 24 hours in a day for the offline processing to spend analyzing the
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previous day's recordings. Many useful image processing algorithms currently run below

frame rate, so if they are to be used, they must be applied to a rapidly selected subset of

the database. Kinematic data provides a powerful modality by which to make these rapid

selections. More generally, we hypothesize that many of the interesting moments in life are

sparsely distributed, and that kinematic information is a powerful way to efficiently find

these sparsely distributed moments of interest. Unfortunately, we would need more natural

data in order to appropriately investigate this hypothesis, so a thorough investigation must

be saved for future work. Within this thesis, we show efficient kinematic processing that

can kinematically estimate the visibility of the hand in the image, the location of the hand

within the image, the 3D location of the hand in a variety of coordinate systems, as well

as points in time that are likely to segment significant kinematic actions, and kinematic

position clusters that meaningfully categorize the position of the hand.

1.3 Thesis Overview

Within this chapter we presented our claims and argued for their merit. In the next chapter

we describe the platform Duo, which uses commercially available components to capture

and process estimates of the absolute orientations of the wearer's head, torso, and arm

along with video from a head-mounted camera. The wearable can run on batteries for

approximately seven hours between charges, and is able to wirelessly communicate with a

computing cluster for additional computational power.

In chapter 3, we present methods that use this orientation data and video to automati-

cally estimate the assignment of sensors to body parts, the orientations of the sensors with

respect to the body parts, a kinematic model of the wearer, the configuration of the camera

with respect to the kinematic model, and the orientation of the camera with respect to the

world. These methods allow the system to autonomously adapt to the body of the wearer.

Within chapter 4, we present methods for attention and segmentation in the kinematic

and visual modalities. The attention system directs the visual segmentation system based

on both visual and kinematic information, such as the estimated position of the hand. We

describe methods for kinematic segmentation, visual attention, and visual segmentation,

including a new interest point detector with associated shape descriptors.

For chapter 5, we present results from autonomous exploration of the structure within
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kinematic segments and visual segments collected from real data. Hand positions associated

with the kinematic segmentation points strongly cluster around a few locations when viewed

from the proper coordinate system. Segments collected using a visual attention system

specialized for the detection of hand activity cluster into hand segments and segments from

manipulated objects, as well as some background clutter. Tracking visual segments over

time finds salient and related sets of segments.

Then in chapter 6, we discuss the system we have developed for rapid, machine assisted

annotation and browsing of databases of captured experiences. This system facilitates

offline cooperation between a human assistant and autonomous processes for learning and

perception.

In chapter 7, we describe a demo application of a real-time wearable system that facil-

itates real-time cooperation between a human assistant and the wearable through tightly

coupled behaviors linked via kinematic sensing.

Finally, in chapter 8, we conclude with a summary of this thesis and a reiteration of our

claims.
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Chapter 2

The Platform

The platform is named Duo in order to emphasize cooperation between the human and the

wearable. Duo is strictly a research platform and as such emphasizes technical simplicity,

ease of servicing, and functionality over other design considerations important to wearable

computing, such as comfort and style. Technologies that merge sophisticated sensing ap-

paratus and computers with the human body are still in their infancy. Likewise, standard

software infrastructures for such systems have yet to emerge. As much as possible we have

attempted to use commercially available hardware and standard open source software to

create our platform. Despite these efforts to simplify development, a substantial amount of

work went into various iterations of both the hardware and software infrastructure. In this

chapter we describe the latest version of the platform, the constraints that influenced the

design, and some of the earlier versions of the platform.

2.1 Hardware

The most recent Duo platform is a fully mobile wearable system that integrates kinematic

and visual sensing, connects wirelessly to off-board computation, and can communicate

with the user by speech, see figures 1-1 and 1-2. Duo's sensors consist of a head-mounted

Firewire camera and 4 absolute orientation sensors. These sensory systems are connected

to a laptop computer mounted on a backpack. The backpack also contains rechargeable

batteries that support mobility by providing power to the laptop, camera, orientation sen-

sors, and other peripherals for approximately seven hours between charges. The laptop

can wirelessly communicates with a dedicated cluster of computers via 802.11b. With the
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increasing availability of economical broadband wireless connectivity this type of system

may someday function over an entire city, but for now the system is primarily used inside a

home with a dedicated wireless network. In contrast to wearable systems designed solely for

data capture and offline processing [10], Duo's design has been motivated by applications

that require computationally intensive real-time processing of the sensory input to support

relevant communication via speech. The computer cluster facilitates intensive real-time

sensory processing. When unable to connect with the cluster Duo can either shut down,

perform more limited perceptual processing, or just capture the sensory data to the hard

disk for offline processing.

In building the system we used commercially available components as much as possible

with the belief that this would reduce the cost of the system, simplify its construction, and

ease maintenance. The first version of Duo was incrementally fabricated and frequently in

flux. As such, the methods of construction included inelegant materials such as duct-tape

and cable ties. Although it was useful, this version of Duo was inconvenient in a number

of ways. For examples, accessing the laptop was difficult, recharging and powering the

system required changing multiple connections, the cables for sensing and power were easily

tangled, and the camera mount was difficult to adjust. The latest version of Duo corrected

most of these problems, while using most of the same internal components.

2.1.1 Acknowledgments

The physical design and construction for the latest version of Duo resulted from a collabo-

ration with Jeff Weber, a very talented robotics engineer working in Prof. Rod Brook's lab.

The custom power conversion and distribution board for the latest version of Duo resulted

from a collaboration with graduate student, and electronics expert, Eduardo Torres-Jara.

Eduardo Torres-Jara also helped significantly with the design of the circuitry necessary for

the LED array to function, which is described in chapter 7.

2.1.2 The Components

The Camera

The vision system uses a Dragonfly IEEE1394 camera from Point Grey Research that uses

1/3" CCD to produce uncompressed progressive scan images of 640x480 8bit pixels color

34



Figure 2-1: The latest version of the wearable system Duo, viewed from behind.
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Figure 2-2: Three views of the most recent version of the wearable system, Duo. The edges

of the three batteries are visible in the center image of Duo's profile. The construction used

a small aluminum frame from The Long Trail Jr. by Kelty, a backpack for kids.

filtered in a Bayer pattern at 30 frames per second. We use a wide angle lens with a view

of approximately 90 degrees. The camera produces images of good quality and can be

controlled using version 1.30 of the digital camera specification, which is well supported

in Linux. The ability to turn off auto-adjustment of the gain, shutter, white balance,

exposure, and brightness, and efficiently control and monitor these settings over Firewire is

advantageous for machine vision.

Orientation Sensors

Each orientation sensor is an InertiaCube2 made by the company InterSense. The company

claims that they have an accuracy of 1 degree RMS and an angular resolution of 0.01 degree

RMS. We have not attempted to verify these claims, but we have found their performance

to be suitable for our application. Each cube is 28.29mm x 24.38mm x 33.91mm. They

are still much too large to go unnoticed when attached to one's arms. Each of the orien-

tation sensors estimates its absolute orientation in the world by combining MEMs based

inertial measurements with gravimetric and magnetic measurements at around 180Hz. The

gravimetric and magnetic measurements provide an absolute reference frame with which the
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device compensates for drift from integrating the inertial estimates. One serious draw back

of these sensors is that their orientation estimates depend on the Earth's magnetic field and

consequently can be disturbed by interference from other magnetic fields and some large

metal objects. In practice, we have found that this problem does not happen very often,

but when it does occur the orientation estimates can be nearly worthless, particularly for

the kinematic estimates on which our system depends. Dramatically incorrect orientations

are easy to detect, so a sensible way to deal with this is to detect these obviously incor-

rect sensor estimates using statistics from normal human motion, and inform the wearer or

the offline processing system when the problem occurs. The wearer then has the option of

avoiding these problematic situations, which are usually tied to particular locations in the

world.

Communication

For visual depictions of the the power and communication systems for Duo, refer to figures

2-3 and 2-4. The laptop communicates with the four orientation sensors through a USB

connection to a Keyspan USB 4-port serial adapter (Part# USA-49WLC). The rate of

orientation data is relatively small at around 100 Hz * (4 sensors * 3 orientations) * (1

float) = 100*4*3* (4 bytes)= 4800KB/s = 38.4Kb/s. The camera connects directly to the

laptop Firewire port for communication, although it is not powered from the laptop. The

rate of uncompressed image data is much more formidable at 320x240 pixels * 3 bytes *

15 Hz = 3.456 MB/s = 27M.648 Mb/s. Since the image data must flow through the small

wireless pipe, and we wish to store many hours worth of images, we compress each image

independently as a JPEG image using the ImageMagick++ libraries and a quality of 80.

This results in an image typically of a size around 18KB, leading to a total bandwidth of

approximately 18KB * 15Hz = 270KB/s = 2.16Mb/s. Although independently compressing

each image requires more storage and bandwidth than video compression methods that use

correlations across time, individual images are more convenient to work with since they

allow rapid random access to individual frames. Time-based compression requires that

more than a single frame be accessed in order to decompress the frame of interest, and

often requires that a key frame and a series of frames be uncompressed in order access

the frame of interest. Using individual JPEG compressed images for video is essentially

the MJPEG format frequently used with DV cameras, although we store each image as a
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Figure 2-3: A closeup view of the back of the platform with labels for several components.

The holes in the board simplify mounting devices and cables.
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Figure 2-4: A schematic showing the major components and interconnections for the wear-

able system, Duo.
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distinct file with a file name that encodes the image's time stamp.

Power

A schematic in figure 2-4 shows most of the power distribution and conversion for Duo. The

Keyspan 4-port serial adapter is powered from the laptop through the USB connection The

four IntertiaCube2 sensors, which are each rated at 100mA at 6VDC for a total of 2.4W,

and the camera, which is rated at less than 2W, are powered by an Electrovaya 160 battery

through a custom power conversion and distribution board. The Electrovaya battery is

rated to have 160Wh at 19V. The custom board has a DC to DC converter that takes the

19VDC battery output and provides 6VDC for the four sensors in parallel. The Firewire

camera is powered directly from the same battery, since the IEEE1394 standard allows for

a wide range of voltages. In an earlier version, the orientation sensors were powered by two

batteries from DigitalCameraBattery.com with each battery powering two InertiaCube2's.

InterSense sells simple, but very expensive D-cell battery packs for mobile operation, so

the battery power we provide through the power distribution board is appropriate. The

InertiaCube2's are the most expensive components of the platform, since the technology

has not yet been commoditized. We expect this to change fairly rapidly, since sensor

technology of this sort has a wide variety of applications and is beginning to show up in a

variety of products, such as 3D mice and medical devices. The laptop which is based on

Intel's Centrino chipset is rated at 19V 4.74A for 90W. The laptop uses most of the system's

power through two additional Electrovaya 160 batteries. The output from these batteries is

combined on the custom power board through two diodes. We removed the laptop's original

batteries, so as not to load the external batteries and to avoid the higher weight to power

ratio of the standard laptop batteries.

Computation

A laptop serves as the mobile computing portion of the platform. A Gateway 450XL laptop

with 1GB of RAM, a 1.6GHz Pentium M processor, a 60GB hard drive, a Firewire connector,

a PCMCIA slot with an Enterasys 802.11b lucent wavelan driver compatible card, and a

USB port performs all of the data capture, processing, wireless communication, and local

storage for the platform. Using a laptop has great advantages for research platforms as

opposed to more traditional embedded computers, since consumer laptops tend to be well-
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Figure 2-5: The original computer cluster consisted of eleven machines some of which are

shown in the picture. These machines were 600MHz and 1GHz Intel PIIIs inherited from

another project. Many of these machines eventually failed due to bad motherboards. The

current computer cluster is much more compact and a little more powerful.

supported by the open-source community, low cost, and fully configured with ethernet, a

hard drive, battery power, low-power processors, and many peripheral interfaces. When we

originally acquired the laptop for the system, we wished to maximize the processing power

and the options for peripheral interfaces. The selection was also influenced by our plan to

use the laptop for day to day work, which was a bad idea and should be avoided if one has

the resources. If we were to redesign the system, we would almost certainly use a smaller

laptop.

Wireless connectivity to a small cluster of computers goes through a Netgear WGT624v2

Wireless firewall router which is configured to solely serve as an access point providing

802.11b service for the entire apartment and the immediately surrounding area. When

the platform is within range, it can take advantage of the computing power for real time

behaviors and visualization. When outside of range, it can store the data it collects on its

local hard drive for off-line processing.

The computer cluster currently consists of 4 machines with battery backup. Two ma-

chines are 3200+ AMD 64 small form factor, headless, Shuttle boxes, each with 2GB of

RAM. They are relatively inexpensive, take little space, consume relatively little power at

250W, are quiet, and have good performance. The cluster also includes a generic 3.0 GHz

PIV based desktop with 2GB of RAM, and a laptop with a 1.8GHz Pentium M processor
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Figure 2-6: The older versions of Duo used a standard fabric backpack to hold the laptop

and other equipment. The image on the left shows the internal equipment for this version of

Duo, which consisted of batteries, an IEEE 1394 hub and a USB to 4-port serial converter

all mounted on a large fiat battery with dimensions similar to the laptop. This equipment

was placed within the backpack first with the back of the large fat battery next to the

wearer's back. Within the image on the right the laptop is visible through ventilation holes

cut out of the backpack's sides. This image shows the system just prior to being dismantled.

and 1GB of RAM, which we also use for development. The original cluster is described and

pictured in figure 2-5.

Internals of the Previous Version

In the first versions of Duo, the camera was powered through a Firewire hub, which was

powered by an independent 12VDC NiMH Powerbase battery rated at 7500mAH and de-

signed to power laptops. The hub and the battery sat in the backpack underneath the

laptop. The Powerbase battery served as the structural backing for the equipment in the

backpack and had a similar profile to the laptop with dimensions of 11.8"x8.9"x0.82". The

hub could connect up to three Firewire cameras to the laptop through a small 4-pin unpow-

ered IEEE1394 connector, as is common on many laptops today. In spite of initial ambitions

to use two cameras, in practice we only used a single camera on the system at a time, and

consequently did not add a hub to the latest version of Duo.
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2.1.3 Mounting Difficulties

Mounting sensing devices on the wearer presents a serious challenge for wearable systems.

The sensory systems for robots and animals typically do not need to be removed each day,

and are an integral part of the body's design. In contrast, at the present time few people

would be willing to have their bodies altered in order to better affix a camera. Likewise,

comfort, appearance, and ease of use place practical constraints on mounting methods. With

our wearable platform we can not expect the position and orientation of a sensor to have

the same consistency and precision across days as a robot's sensor or a person's perceptual

organs. Moreover, during the day, "motion noise" must be expected with wearable sensors

as they are likely to move independently of the body to some extent due to inertia and

imperfect physical coupling. Being placed on the outside of the body also makes wearable

sensors more vulnerable to being jostled by contact with the environment, especially since

the wearer will not have had a lifetime to learn how to maneuver with them. In addition,

the wearer may be compelled to adjust the sensor for comfort or end up fidgeting with the

sensor, as people often do with jewelry and other articles. When mounting the sensors we

strive to minimize this variability in position and orientation. However, as we discuss, the

remaining variability has strong implications on the types of algorithms we use.

Camera Mounting: Glasses, Hat, and Band

Over the course of Duo's development we have used three different methods to mount the

camera and orientation sensor to the wearer's head: glasses, a baseball cap, and a head

band (see figures 2-7 and 2-8). Several design issues played a role in this progression. Most

importantly, the camera needs a good view of the workspace of the dominant hand, and the

camera and orientation sensor should be in rigid alignment with the wearer's head and each

other. In addition, we would like for a wide variety of wearers to be able to use the system.

Other desirable properties for the head gear are comfort, ease of donning, and repeatability

of the sensor configuration with respect to the head. One complicating factor specific to

the camera we used, is that the small remote head of the camera must stay near a control

board which is relatively large and requires a Firewire cable attaching it to the laptop.

In the first prototype shown on the left side of figure 2-7, we mounted the camera on eye

glasses, and did not use a head-mounted orientation sensor. As will be made clear in the next
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A
Figure 2-7: This figure shows the first two versions of Duo's head gear. On the left, the

camera is mounted on the glasses and no orientation sensor is used. On the right, the camera

is mounted on the brim of the baseball cap and the orientation sensor is at the back of the

head, but not visible. The baseball cap version is shown just prior to being dismantled, and

is noticeably tattered from use and attempts to find ways of reinforcing the camera mount

in an adjustable way.

I

Figure 2-8: This figure shows the latest version of Duo's head gear. On the left, the blue

orientation sensor is visible. The black plastic rectangle which holds this sensor originally

served as the battery case for the head lamp. On the right, the camera and the camera

board are visible. The camera is mounted on a one degree of freedom pivot, which originally

held the lamp.
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chapter, the head mounted orientation sensor proved to be very useful. For the next revision

shown on the right side of figure 2-7, we mounted the camera on the brim of a baseball cap

and the orientation sensor on the back rim of the hat. The position on the brim of the hat

provided a better perspective on the workspace of the wearer's dominant hand by allowing

the camera to be positioned out in front of the face with a slight downward tilt. A hat was

also more accommodating for additional equipment of various sizes and weights, such as an

LED array described in figures 7-1 and 7-2, and the orientation sensor, which we wanted

to be closely coupled with the camera. We found the hat to be more comfortable as well,

especially with the asymmetrically distributed weight of the camera and orientation sensor

along with the standard thick Firewire cable we initially used. The Firewire and orientation

sensor cables trailed off of the head at the back and center of the hat, which kept them out of

the way during head movement and helped balance the hat. When compared to glasses, one

weakness of the hat as a camera is that it's position is less constrained. Glasses have three

points of contact which successfully reduce the effective degrees of freedom along which

the glasses, and hence the camera, can move. If appropriately fitted, glasses can be fairly

consistent in their orientation and position, with motion up and down the nose being the

most likely degree of freedom. On the other hand, even a tightly fitting hat tends to have

three degrees of freedom, in the manner of a ball and socket joint with the head being the

ball and the hat being the socket. A snugly fitting hat with a clear forward direction helps

compensate for the degrees of freedom, but is not as consistent as a mechanical constraint.

For the final version of the head gear shown in figure 2-8, we modified a commercially

available Gemini headlamp from Black Diamond designed for hikers, spelunkers, and others

who would like light to project from their forehead toward the area they are observing.

We replaced the forehead located lamp with a camera and the battery pack at the back of

the head with an orientation sensor. We mounted the awkward camera board on the top

band. As shown in figure 1-1, some hats can be worn on top of the head gear for warmth

or aesthetics. With the baseball cap head-gear, reliably adjusting the view of the camera

was a significant challenge. Because the camera was located on the side of the baseball

cap's brim, adjustments over all three orientation axes, and possibly position, would be

required to fine-tune the camera's wedge of visibility. Likewise, the camera would require a

different configuration for a left-handed wearer and might have difficulty observing the left

arm's actions. Moving the camera to the center of the brim might have helped with these
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problems. In the final head-band version, the camera is in the center of the forehead and only

requires a single degree of freedom to effectively adjust the viewpoint. Also, the camera's

viewpoint more closely relates to the perspective of the wearer, which can be advantageous

for applications that involve capturing and interpreting the wearer's experiences. The head

band does a good job of rigidly coupling the camera and the orientation sensor with the

wearer's head by keeping the sensors compressed against the wearer's skull. During a session,

the orientation sensor and camera are kept in rigid alignment with each other through the

wearer's head, but their relative orientations and positions are likely to change between

sessions. With the methods we present within the next chapter, we are able to compensate

for these between session changes. The wearer does need to be careful not to apply too much

pressure with the camera over long periods of time, since this can lead to some irritation

of the skin underneath the camera. We eventually added extra padding underneath the

camera plate in order to reduce irritation. Unlike the baseball cap, the head band can be

easily adjusted to fit different wearers.

Body Orientation

In addition to the head-mounted orientation sensor described above, three orientation sen-

sors are used to measure the absolute orientation of the torso, upper arm, and forearm.

The clearest and easiest location for mounting an orientation sensor is on the wrist in the

same manner that a watch is worn. The top of the wrist tends to be fat and have less

compliance than other parts of the body, which makes it well suited to forming a stable

coupling between the orientation sensor and the forearm. Additionally the location is com-

fortable, easy to use, and fairly repeatable due to landmarks such as the hand, the fat

top of the wrist, and the wrist's bony structure. A number of the results from this thesis

might be applicable to a system consisting of a single orientation sensor on the wrist and a

head mounted camera with an orientation sensor. For the upper arm, we use an arm band,

which is a commonly used method of wearing consumer devices, such as portable music

players during exercise. Achieving a stable coupling between the orientation sensor and the

upper arm is difficult because of the substantial soft tissue surrounding the bone and the

ease with which this tissue can be moved. In particular, twisting motion around the bone

occurs without much force. Fortunately, our work primarily uses the estimated orientation

of the major axis of the upper arm which is less sensitive to these twisting motions. The
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Figure 2-9: This figure shows how the torso orientation sensor was mounted in previous

versions of Duo. On the left, the torso orientation sensor is attached using an elastic band

in the same way that the wrist and upper arm sensors are attached. On the right, the torso

orientation sensor is mounted on the right backpack shoulder strap. The sensors can be

worn underneath or above clothing.

more uniform structure of the upper arm also makes consistent placement of the arm band

more difficult, which gives additional motivation for the methods of autonomous adaption

we present in the next chapter.

The initial wrist and arm bands used elastic bands of appropriate length with Velcro

fasteners taken from exercise equipment. They were somewhat uncomfortable, since they

needed to be wrapped tightly in order to securely fasten the sensors, which were directly

attached to the elastic material and held in place by the force of the elastic band wrapped

around the sensor and arm. For the latest version of Duo, the sensors are securely mounted

to a padded plate through which wider and more comfortable elastic material is threaded.

The width of the plate helps take the pressure off of the arm, and the threading makes the

bands easier to put on, since the wearer only needs to put his arm through the bands and

then cinch them.

During Duo's development, we have used three different methods for mounting the

torso orientation sensor. Initially we used a long band wrapped around the torso with

the orientation sensor sitting on the sternum, as shown on the left side of figure 2-9. We
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next affixed the orientation sensor onto the upper part of the backpack's shoulder strap,

as shown on the right side of figure 2-9. In the final version, we attached the orientation

sensor to the rigid part of the backpack in the far corner to help avoid electromagnetic

interference, as shown in figure 2-3. The torso is a very flexible body part that is able

to bend and twist in complicated ways. Consequently, what constitutes the orientation

of the torso is not well-defined. At the same time, the general orientation of the torso is

very informative about human activity, since changes in major activities and locomotion

typically involve large changes in torso orientation. The orientation of the torso tends to be

indicative of the contextual orientation of the body during activities, remaining relatively

still while the arms and head move around. Intuitively, keeping the torso twisted for long

periods is uncomfortable, and it is a large mass, so significantly changing its orientation is

a non-trivial mechanical process. Besides these coarse measurements of torso orientation,

the system is concerned with modeling the mechanical chain between the head-mounted

camera to the hand. For this estimate the upper part of the torso is most relevant, so the

three methods of mounting have focused on the upper part of the torso. Another source

of unmodeled complexity worth mentioning is in the shoulders, which have a surprisingly

large range of independent motion.

2.2 Software

An extensive software infrastructure supports research on Duo. The code base, most of

which will eventually be released as open source, consists of custom code for inter-process

communication, distributed computing, database backed storage and retrieval of captured

data, tools for data exploration and visualization, tools for annotation, perceptual process-

ing, and more. As with the hardware, the software infrastructure has evolved significantly

over time. Initially everything was coded in C++, including custom software for distributed

computation, and Matlab was used for interactive data analysis. Today the majority of the

non-vision code base uses Python, while critical vision code and a few other components

are written in C++ with Python interfaces using Swig.

48



2.2.1 OS

The wearable system and all the machines in the cluster run the testing version of the

Debian distribution of GNU/Linux, named Sarge. The laptop used in the wearable runs a

custom compiled kernel, version 2.4.27, in order to include the firmware for the Keyspan

four port serial device, which is not included in the stock Debian kernels. All the other

machines run stock Debian kernels, and the cluster nodes run the most recent 2.6 series

kernel released by Debian. Nearly all of the software from outside parties that our software

uses exists as Debian packages on official Debian mirrors and unofficial package repositories

and can thus be easily downloaded, installed, and maintained through the Debian package

management system. Consequently, the majority of the software required to integrate a

new machine into the cluster can be installed and configured using a script that makes use

of the command apt-get, which automates most of the process of installing and configuring

software from a local repository or over the internet. This type of infrastructure provided

by Debian, as well as the ease of customization, has been extremely useful.

2.2.2 Laptop Software

The software on the wearable laptop can be minimal or a complete development environ-

ment. We have run the system with a minimal setup consisting of essential services and

no graphical display, which was sufficient with the older version of Duo, since we worked

to minimize the need to remove the laptop from the backpack. With the current version,

we keep a complete development environment on the laptop, which is convenient for de-

velopment since the latest design for Duo makes the laptop easily accessible, as shown in

figure 2-10. On boot it seeks out the wireless network and starts up the wearable software,

which includes an image server and kinematic server. Maintenance and development can

be performed over ssh. Each machine participating in the application has it's own identical

copy of the entire software directory tree. A script in the clustering software is uses rsync

to synchronize the development version of the wearable software directory tree across the

wearable laptop and machines in the cluster. This approach is used instead of remotely

mounting the development directory in order to minimize network traffic, ease setup, in-

crease robustness, and allow the wearable laptop to function away from the cluster using

its own copy of the software, since the cluster is at times unreachable.
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Figure 2-10: The laptop can be used by taking the backpack off, undoing three Velcro straps,

and opening the lid of the laptop. This is convenient, since it makes a full development

environment mobile, and allows for implementation and testing in the wild.
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2.2.3 Networking

The latest networking and clustering software is based on Twisted, a powerful open source

Python framework for event-driven networking (asynchronous). Interprocess communica-

tion is performed via sockets, even when the processes are on the same machine. Sockets are

less efficient for communication on the same machine than methods such as shared memory,

but the overhead is acceptable for the coarse grained parallelism used in our application.

Sockets offer the benefit of a very general and well-supported method of interprocess com-

munication, which significantly assists development. The four machine cluster is connected

via a 100 Mbps switch. One of the four machines in the cluster contains two ethernet cards

and serves as a gateway between the wired network and the wireless network. Currently, a

DNS server and DHCP server run on the wired network in order to provide name resolution

and IP addresses to the machines on both the wired and wireless network.

2.2.4 Development

We use emacs, ipython and the bash command line as our development environment. We

originally wrote the clustering code and all of the wearable code in C++ along with a few

bash scripts. Although the code was fast, development and maintenance was costly due

to the coding inefficiency of C++ and the long code, compile, test loop. Consequently, we

gradually integrated the use of a high-level-language into the code-base to facilitate rapid

development and scripting. We chose Python because it promotes rapid development, is

well-supported with a variety of libraries, is easily installed through Debian, interfaces well

with C and C++, is open source, has a clean and readable syntax, and fits well with both

functional and object-oriented programming styles. Moreover, with the interactive environ-

ment ipython and the matplotlib, scipy and numarray libraries for mathematical processing

and visualization, Python does a good job providing much of the same functionality as

Matlab in a manner that is suitable for both offline exploratory analysis, and real-time

processing. We frequently use the same interpreted code for online real-time processing and

offline analysis.
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2.2.5 Libraries

Besides the standard libraries for C++ and Python development on GNU/Linux, our soft-

ware makes use of a number of more specialized open source libraries. The vision system

uses several efficient low-level operations provided by OpenCV, a computer vision library

written in C and sponsored by Intel, [12]. The SDL libraries and Pygame interface to them

are used for visualization of video and OpenGL models in C++ and Python. A number

of components of the Boost C++ libraries have been helpful. The SWIG libraries were

used to generate Python interfaces for our C++ code. Image conversion, including JPEG

compression for wireless image transmission and data capture, uses the ImageMagick li-

braries and C++ API. The Python Imaging Library (PIL) has provided some basic image

processing algorithms. The libdc1394 and librawl394 libraries are used to interface with

the Firewire camera. Pexpect has provided useful functionality for interfacing with inter-

active command-line programs. We make use of Numarray, SciPy, and Scientific Python

for various numerical computations, and Matplotlib for Matlab style visualization. The

Orange C++ and Python libraries have provided useful machine learning tools. Our C++

gui applications use GTKmm. For XML generation and parsing in C++ we use libxml++.

The flite C API and command line application are used to convert text to speech. SQLite

3.0 is an embedded database for the system.

2.2.6 Wearable Servers

Three main servers run independently on the wearable laptop in order to provide compressed

frames of video, samples from the orientation sensors, and speech services. All three servers

provide their services upon request, rather than pushing their data out to their clients.

We found that requiring an explicit request for each frame of video and orientation sample

added negligible latency, since the request could be made by the client prior to when it

actually is ready for new data. Requiring explicit requests has the benefit of controlling the

flow of data and allowing the clients to make more refined requests, such as for subimages

or lower-resolution images. In addition, requests for metadata, such as the current number

of connections, or requests to change the server's parameter, such as requiring that each

image be sent to all clients, are easy to add to the protocol. Each type of captured data

also includes a time stamp, which is important upstream for registering multi-modal data,
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properly handling time dependent signal processing operations, and searching the database.

The angle server also throttles its output to be a maximum of 100Hz. The time stamps

use the UNIX convention of seconds from the epoch. The speech server receives requests

for speech and executes the request using the command-line version of flite, an open-source

text to speech package.

The video and orientation servers make use of the basic Twisted infrastructure for clients

and servers, which entails client factories and server factories that create a sender or receiver

for each new connection. We created a generic server factory that takes a sample iterator and

a parser as input. The sample iterator returns a sample and a sample name for each call to its

"next" method, while the parser has a "write" method that when given a transport, a sample,

and a sample name as input, sends the sample and sample name out on the transport in the

appropriate format for the protocol. This generic definition allows us to easily create and

maintain new servers. The video and orientation servers use this same generic server factory,

but with different sample iterators and parsers. The video server uses an iterator that grabs

frames, while the orientation server uses an iterator that grabs orientations. Moreover, we

have created iterators that grab pre-captured images and orientation data from the disk or

a database. The image server can also serve generic images from a directory. This allows us

to easily run the same wearable application on previously captured data from the wearable

system, or any image collection of interest. The speech server uses the Twisted distributed

object model called Spread. Clients call the appropriate method on this remote object in

order to have the application talk to the wearer.

2.2.7 Storage

Data capture clients can be run on the wearable laptop or the cluster. The angle capture

client and image capture client run as separate processes. The angle capture client saves the

angles and associated time stamps it receives to a single binary file by continually appending

them. The format for the binary file is compact and is designed to be easily recovered in

the event that the saving process is interrupted unexpectedly. The image capture client

saves each raw JPEG encoded binary image it receives directly to a file without decoding

the image, and uses the image's time stamp for the image's file name. The file name

simply replaces the decimal point of the time stamp with an underscore to give a series

of image names such as the three images 1082513949_110296.jpg, 1082513949_204026.jpg,
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1082513949_297521.jpg captured on April 20th, 2004 at a rate of approximately 10Hz. We

use the ReiserFS filesystem, which is particularly well-suited to efficiently storing large

numbers of small files.

After a capture session, we connect the wearable to the wired network and run a script

that transfers the captured data to a machine on the cluster, puts the data into a standard

directory structure, and updates the SQLite database. Each capture session is stored under

a subdirectory labeled by the start time and date of the capture session in a human readable

format, such as the directory 200404202219 used to hold the session captured on April 20th,

2004. This naming scheme is sufficient for our purposes since there is only a single capture

device. This global SQL database holds the captured orientations indexed by their time

stamps and the fully qualified image file names indexed by their time stamps. This SQL

database consists of at least three tables, one of which holds the captured angles from all

sessions, another that holds all the image file names from all sessions, and another that

holds session specific information. Although the angles are stored within the database, we

keep the original capture files as backup. Only the file names of the images are stored

within the database, and the ReiserFS filesystem handles the actual storage of the data.

The database can be easily reconstructed using a script, which also looks for the presence

of new session directories and the absence of previously existing session directories in order

to help maintain the integrity of the database. If a session directory is missing, the script

gives the user the option to delete the associated data from the database. If a new session

directory is found, its data is added to the database.

Given the previously discussed bandwidth requirements, we can compute some approx-

imate storage requirements for our system over various time scales relevant to human ex-

perience, see table 2.1 and 1.1.

2.3 The Future Duo

Duo started out as a platform for investigating real-time interaction between a kinematically

perceptive wearable and the wearer. Given our success with fully autonomous, unsuper-

vised, offline processing of captured first person experience, we believe that future versions of

Duo should be optimized for data capture. By relinquishing the goal of real-time perceptual

processing, future versions of Duo could begin to approach the ideals of wearable computing
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Table 2.1: This table shows the approximate storage requirements for our system if run for

8 hours per day over various time scales that are relevant to human experience.

in terms of comfort, style, robustness, and low-power requirements. Reducing the compu-

tational requirements would lead to reduced battery requirements, which would both lead

to reduced size and weight for the system. Our experience has shown that researchers in

wearable computing have been correct to place such a premium on these design factors,

since even the most devoted wearer will find himself deterred from wearing the device for

long periods in public, if it is uncomfortable and unstylish. This quickly results in a habit

of not wearing the system and a habit of looking for excuses not to wear the system, which

is easy to do since the moments of interesting experience for a device such as Duo are often

very sparse and to some extent unpredictable in detail. Pushing future versions of Duo to be

seamlessly integrated into the life of the wearer would be likely to result in much more ex-

tensive data sets that would prove invaluable for offline analysis and learning related to the

natural statistics of human behavior. Since a capture only version of Duo would require no

display, and possibly no significant interface to the user at all, it should be possible to make

a very compact computation system, potentially the size of an IPod since 25GB would be

sufficient to capture 24 hours worth of data. The major discomfort for such a system would

relate to the head-mounted camera and orientation sensors. Absolute orientation sensors

and cameras, such as from cellphones, are both shrinking which bodes well for future de-

signs. Wireless interfaces to the sensors would be especially beneficial, since no mechanical

coupling is required between the various sensors except implicitly through their individual,
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minute 16MB 340KB

hour 1GB 20MB

day 8GB 160MB

week 56GB 1GB

year 3TB 52GB

decade 20TB 520GB

lifetime (75 years) 1.4PB 4TB



rigid couplings with the wearer's body. As previously mentioned, our autonomous methods

for learning a kinematic model can free a designer or researcher to explore different system

structures on a daily basis, without worrying about ruining the data, which would indicate

that a versatile sensor mounting system would at least be appropriate in the short term

while searching the design space for good system configurations.
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Chapter 3

Adapting to the Body

We would like to interpret the images from the camera and the orientations from the orien-

tation sensors in a consistent way across different wearers and across sessions of use by the

same wearer. A three dimensional kinematic model that represents the major axes of the

limbs and the relative position and orientation of the camera serves as a well-grounded rep-

resentation for the body of the wearer and its relationship to the sensors. It can also serve

as a useful representation for visualizing the output of the sensors. The methods described

within this chapter use the streams of orientations and images to autonomously estimate

a kinematic model that describes the wearer's body, the camera's relative orientation and

position, and the relationship between the kinematic model and images captured from the

camera. In addition, the system autonomously estimates the projected direction of gravity

in the image for each pixel.

We would like the wearer to don the equipment without worrying about the details

of sensor placement, or calibration. Similarly, we would like to give the designer of the

equipment flexibility in sensor placement, so that he can put more emphasis on factors such

as comfort and ease of use. The more the system is able to autonomously adapt to changes

in sensor position, sensor alignment, and the body of the wearer, the more easily the system

will be used without error. The methods we describe impose few constraints on the wearer

and designer since they only require the use of a camera with known intrinsic parameters,

sensors that are in rigid alignment with the body parts, and the visibility of a portion of the

hand's workspace from the camera. Moreover, in practice the constraint for rigid alignment

with the body parts can be weakened.
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Figure 3-1: This figure gives an overview of the methods we describe within this chapter

and their dependencies on one another. A kinematic model of the wearer is our ultimate

goal within this chapter, as represented by the darker boxes in the upper-right corner of the

diagram.
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As shown in diagram 3-1, the automated model estimation system first determines which

orientation sensor is attached to which body part by finding a kinematic chain that starts

with the camera, passes through all of the orientation sensors, and maximizes the similarity

between the motions of adjacent sensors in the chain, including the camera. The 3D rotation

of the head-mounted camera, used when finding this assignment of sensors to body parts, is

estimated using a fast and robust linear least squares method for finding a 2D affine model

of background motion. Second, the system estimates the rotational offset between the head-

mounted camera and the head-mounted orientation sensor by relating the frame to frame

rotation of the camera to the frame to frame rotation of the head-mounted orientation sensor

using linear least squares. Third, the system estimates the location of the hand within the

images from the head-mounted camera, which can be done using motion processing or other

methods. Finally, a nonlinear optimization is performed to find the kinematic model that

minimizes the error between the detected hand locations from image processing, and the

estimated hand locations from the kinematic model and the orientations of the camera,

torso, upper-arm, and forearm.

3.1 Handmade Models

Much of the research behind this thesis started with handmade models of the wearer's body.

These handmade models were based on measurements from the body of the wearer, careful

sensor placement, and iterative adjustment of the parameters using a visualization of the

3D kinematic model, as shown in figure 3-2. These models have been useful for visualizing

the orientation sensor data, generating coarse estimates of the hand's motion in the world,

discretizing the hand's work space, detecting some kinematic activities, and more. These

models represent the head, torso, upper-arm, and forearm as boxes with joints between

boxes located at the center points of faces and edges. For example, the model shown in

figure uses the following dimensions in meters for the body parts.

dt= dtorso =

du = dupperarm =

df --= dforearm =

dh = dhead =

0.39m 0.18m 0.47m

0.13m 0.13m 0.29m

0.08m 0.08m 0.33m

0.15m 0.20m 0.25m
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Figure 3-2: This figure shows a visualization with a handmade kinematic model of the

wearer reaching into the environment.
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The third dimension holds the longest dimension for each body part, which represents

the measured major axis (length) of the body part. The first dimension of the torso holds

the measured distance from shoulder joint to shoulder joint. The first two dimensions

of the head hold loose approximations for the head's dimensions, which are primarily for

visualization. The remaining dimensions for the forearm, the upper arm and the torso are

for visualization and do not effect the kinematics of the model.

Each orientation sensor returns its orientation as Euler angles a, /3, and y, which the

system immediately converts into a rotation matrix with the function R(a, /3, y).

R(a,/3,y) = Ry(a)R(3)R(y)

Where Ry, Rx, and Rz represent the rotation matrices around the y-axis, x-axis and

z-axis respectively. We then rotate each of the resulting orientations by a suitable offset,

Roffset, that accounts for the particular placement of the orientation sensor on the body.

So, for example, the final torso rotation matrix, Rtorso, is computed as follows:

Rtorso = R(torso, 3 torso, Ytorso)Roffsettorso

Given the dimensions and orientations of the body parts, we can now calculate the

positions of the parts in various coordinate systems. For example, the hand's position, h,

with respect to the approximate pivot point on the torso is calculated in the following way.

'dt, 0 0

Xh = Rtorso o + Rupperarm o + Rforearm 0 d

dt3 du3 df3

where dtn represents the nth element of the torso dimensions dt.

As described within chapter 2, the placement of the head-mounted orientation sensor

and the torso-mounted orientation sensor were changed several times during development

of the platform. Although joint lengths did not need to be altered, the constant rotational

offsets that compensated for these changes needed to be found each time and properly

associated with the captured data sets. Besides these fundamental changes to the platform,

variations in sensor placement occur between each session, which were typically ignored

when using a handmade model. The handmade models also did not precisely or dependably

characterize the relationship between the kinematic model and the images from the camera.

The automated model estimation described within this chapter addresses these issues.
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One disadvantage of the machine made models is that, unlike the handmade models,

they do not include a measurement of the length of the major axis of the torso. This

dimension does not play a role the kinematic chain from the camera to the wearer's hand,

so it is not estimated by the automated methods described within this chapter. A method

based on detecting the distance of the camera from the floor as a function of bending in

the torso might be able to produce such an estimate, but we have not attempted to do this.

When modeling motion of the hand with respect to the world, an estimate of the major

axis of the torso with respect to a suitable pivot point can improve the estimate of the

hand's motion, especially since the legs are often planted during manipulation. A properly

constructed handmade model can also be better for visualization since it incorporates three

dimensions for each body part, is hand-tuned while being visualized, and includes the major

axis of the torso. So, for some tasks the handmade models may be superior to the purely

machine made model. In these situations, augmenting the automated estimates with some

handmade estimates can produce a better model.

3.2 Assigning Orientation Sensors to Body Parts

We have four orientation sensors and four body parts and we wish to automatically deter-

mine which sensor is mounted to which body part. This section describes a method that

determines which orientation sensor is attached to which body part by finding a kinematic

chain that starts with the camera, passes through all of the orientation sensors, and max-

imizes the similarity between the motions of adjacent sensors in the chain, including the

camera.

On several occasions due to a software change or hardware change, such as rewiring

or remounting, the ordering of the angular measurements from the orientation sensors has

changed - sometimes unexpectedly. The following algorithm quickly determines the assign-

ment of sensors to body parts for Duo, which has been helpful for both real-time processing,

where it simplifies setup, and offline processing, where it simplifies the use of multiple data

sets that may have different sensor configurations jumbled together. At minimum, the ro-

bustness afforded by the following algorithm gives a practical benefit for a research platform,

since many hardware and software components tend to be in flux.

We assume that the four body parts form a single kinematic chain of body parts, and
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that the measured motions of adjacent body parts will tend to be more similar than the

measured motions of non-adjacent parts. With these assumptions, we define the problem

as one of finding a kinematic chain whose path through the body parts minimizes the

differences between the motions of adjacent parts, which we can reasonably formalize as

solving

argmin(T(C(ml, m2 ), C(m2, m3), ..., C(mn-1, mn)))m (3.1)

where T is a function that combines the individual costs into a total cost, C is a symmet-

ric function that returns the cost between the measured motions from two adjacent parts,

and mis a sequence of measured motions from the n distinct parts m = [ 1, m2, -...-, mn-].

Notice that all n parts must be included in monce and only once. The same formalization

holds if multiple sensors are attached to the same body part, although the ordering of these

sensors in the resulting kinematic chain m will be arbitrary, and further processing or prior

information would be required to determine the exact relationship between the chain of

sensor measurements and the chain of distinct body parts. For motion capture data that

included position information and no camera, some researchers have used a similar formu-

lation, which they have solved with a minimum spanning tree and a cost function related to

how strongly two parts appear to share a position describing a rotational joint [47]. Since

we only have uncalibrated orientation information we must devise a different cost function.

Likewise, our set of admissible solutions does not include trees, which alters the problem. 1

For Duo, we optimize the following function which has the form of equation 3.1

argmin ( E >St 0i't - Oi+itl ) (3.2)

where e = [0 1,t, 02,t, 03,t, 04,t, 05,t] and n,t is the sequence of angular changes over time,

t, measured for one of the five sensors and assigned to the nth body part in the kinematic

chain. The symmetric cost function, C, for this equation is

C(i9, Oi+l) = Et Oit - Oi+l,tI
Etl1

1The measured motion from sensors on the same body part might be similar enough to allow for their

categorization as a single body part, or as with our situation, we might know ahead of time that two sensors

are mounted to the same body part. Multiple kinematic chains would further complicate things, and require

inference of trees from the adjacency information.

63



Figure 3-3: This figure shows the graph for the problem, which is equivalent in complexity

to the Traveling Salesman Problem, and is used to assign body parts to sensors by finding

the kinematic chain from the camera to the forearm. Each node represents the time series

of orientation change estimates associated with a sensor. The head, torso, forearm, and

upper arm estimates come from the body-mounted orientation sensors, while the camera

orientation estimates are found by analyzing image motion. Each edge has a cost associated

with it from the cost function, C, which represents the dissimilarity between the two time

series the edge connects. The minimal cost path that starts from the camera and visits each

node once and only defines the estimated kinematic chain through the sensors and their

associated body parts. With proper data the minimal path should go from the camera to

the head to the torso to the upper arm and terminate at the forearm.

which computes the average difference between the angular change associated with the

two sensors. The angular change, Ot2, is the angle from the angle and axis form of the

rotation Rt2tl, which is the rotation of the sensor between sequential times t and t2. So,

Rt2tl = Rt Rt2

with Rt1 and Rt 2 being the consecutive orientations of the sensor at times t and t 2.

The quantity 0 is invariant to constant rotational offsets, so two sensors on the same body

part should have very similar values of 0 over time. Because the angular change between

time steps is small we can get away with the absolute value of the difference in two angles

without worrying about wrap-around effects. For equation 3.2, the combination function T

is simply a summation.
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Figure 3-4: This figure shows the average final cost matrix for the tests shown in figure

3-5. The row indices from top to bottom represent the camera, head, torso, upper arm, and

forearm respectively. As with all dissimilarity matrices, the diagonal is set to zero, since

each body part's motion is identical to itself. The forearm's motion is clearly most similar

to the upper arm's motion and very dissimilar to the other parts.

We include the camera in the chain by using its time series of estimated angular changes

as found through the affine motion approximation described in section 3.5.

With this starting constraint, optimizing the objective function of equation 3.2 defined

over the set of admissible sequence orderings e, is equivalent to solving the traveling sales-

man problem (TSP) [11] without the roundtrip constraint, which has equivalent complexity

to standard TSP. The kinematic chain must visit each sensor once and only once, and must

minimize the sum of the costs between the sensors. In the associated fully connected, undi-

rected graph, each node represents a sensor and its motion data, Ot, each edge represents

the option of assigning two sensors to be on adjacent body parts, and the cost associated

with traversing an edge is defined by the symmetric cost function C. Figure 3-3 shows the

graph associated with the specific problem the system solves. The symmetric cost function

C also defines a symmetric cost matrix for the fully connected graph, which we can use to

visualize the cost function applied to the data as shown in figure 3-4.

The traveling salesman problem is NP-hard, but we have very few sensors, so the brute
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force enumeration of the n! possible paths is fast. We have sometimes restricted the second

sensor in the chain to be the sensor with motion most similar to the camera, but this

greedy step is unnecessary and can sometimes increase convergence time due to noisy camera

estimates and the similarity between torso motion and the head. Without this greedy step

we have 4! = 24 paths over which to sum the costs and pick the minimum for our brute force

solution. We initially tried an entirely greedy approach to finding the best path, but found

that it converged significantly more slowly, partly because it did not take into account the

forearm's tendency to have motion much more closely related to the upper arm's motion

than any of the other body parts, which we would expect given that it sits at the other

end of the kinematic chain. This property suggests that a more general kinematic structure

discovery method for a more complicated kinematic model could detect the end points of

the included kinematic chains in a similar way.

Once we have our ordering for the sensors in the kinematic chain, assigning them to

body parts is trivial. The first two sensors in the optimal chain are the camera and head

orientation sensor. The next three sensors are mounted to the torso, the upper arm, and

the forearm, respectively.

The graph in figure 3-5 shows results for 20 tests over 400 frames each (approximately

30 seconds) from a data set 1, which consists of everyday activity within a kitchen, such as

opening cabinets, picking up a cup, etc.. By 200 frames over 50% of the tests have found

the optimum kinematic chain. By 400 frames 90% of the tests have found the optimum

kinematic chain. Convergence to the solution relies on non-trivial arm motion. If the wearer

is only walking with his arm by his side, the system will not necessarily result in the proper

ordering, since during this activity the dominant motions of all the body parts are related.

Once a non-trivial manipulation activity occurs, the solution is found quickly. We can

gate the estimation based on coarse properties relating to the significance of the motions

to compensate for this issue. For offline processing, we can increase the confidence in our

estimate by using large portions of the captured data. For online processing, we can wait

until a non-trivial action takes place or request that the wearer perform a non-trivial action,

such as waving his hand around and looking around the room. Waiting for a non-trivial

action is typically sufficient, since the system is likely to be uninterested in trivial activities

anyway.
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Figure 3-5: This graph shows results from 20 tests over 400 frames each, which is approxi-

mately 30 seconds. The test dataset consists of everyday activity within a kitchen, such as

opening cabinets, picking up a cup, etc.. By 200 frames over 50% of the tests have found

the optimum kinematic chain. By 400 frames 90% of the tests have found the optimum

kinematic chain.
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Figure 3-6: The left image was used during calibration with a standard calibration pattern.

The right image shows the image after using the undistort function in OpenCV with the

parameters determined by the Camera Calibration Toolbox for Matlab. The undistort

function removes radial distortion and centers the image around the optical center. The

elimination of a significant amount of the image around the periphery and the results from

resolution changes lead to undesirable side effects of the process.

3.3 Camera Calibration

Some of the methods described within this chapter assume that we have a calibrated camera.

The same camera captures all of the video, so we only need to calibrate the camera once in

order to assist the analysis of many days worth of video. Since we have direct access to this

fixed-lens, fixed-focus camera. we can calibrate it by hand using a calibration pattern and

standard algorithms. For this very common calibration problem we used the open source

Camera Calibration Toolbox for Matlab distributed by Jean-Yves Bouguet.

Several of the methods within this chapter make use of the optical center and the focal

length of the camera. Besides determining the camera's intrinsic parameters, the calibration

procedure finds parameters for radial distortion. Removing this radial distortion can benefit

several of our machine vision algorithms including motion processing and shape processing

by helping to preserve translation invariance across the image. We use a very wide angle

camera with a horizontal field of view of approximately 90 degrees. The radial distortion

and vignetting 2 for this camera are extreme, as can be seen on the left side of figure 3-6.

2Vignetting refers to the darkening around the periphery of the image that is especially noticeable in the

corners.
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Given the radial distortion parameters estimated during calibration, we use the undistort

function in OpenCV, which centers the image, removes the radial distortion, and cuts out the

periphery based on the estimated optical center and radial distortion parameters, [12]. The

major drawbacks of undistorting the image prior to processing are the extra computation

involved, the effects of space-variant interpolation across the image, and the reduction in

visible area, all of which can be seen in figure 3-6.

3.4 A 2D Affine Model for Background Motion

The system uses a 2D affine motion model to quickly and robustly estimate the image motion

resulting from the background environment. Subsequently, this motion model is used for a

variety of tasks, such as attending to regions of interest and estimating the 3D rotation of

the camera. A 2D affine motion model is defined by a 2x3 affine matrix M that transforms

an image position P1 = (x1 , Yi) at time step 1 into an image position P2 = (x 2 , Y2) at time

step 2,

Xl

X2 ] al a2 a 3-- ~~~~Yl
LY2 J a4 a5 a6 

This model can account for global changes in translation, scale, rotation, and shearing,

but is unable to properly handle foreshortening and other perspective effects. Nevertheless,

its fidelity is sufficient for modeling global background motion between two images that are

close together in time. Its simplicity allows us to use weighted linear least squares to fit

the model M to a set of estimated translations each of which has an associated covariance

matrix that represents the estimate's error. Furthermore, after we have our model, M, we

can compute the Mahalanobis distance between these translation estimates and the model

to obtain a good measure of how likely it is that the translation was generated by the model,

or in other words, the likelihood that a point in the image is part of the global background

with motion modeled by M.

2D affine motion models are commonly used to model global image motion [26, 66, 63,

49, 58]. Many choices exist for fitting the 2D affine motion model to the image data, in

terms of the cost function and optimization method applied. The method we have developed

formulates the problem in terms of block matching with Gaussian measurement errors, and
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a closed form, weighted linear least squares solution. While linear least squares fitting of

2D affine motion models to the best matches from block matching is a common approach

in the current literature, the use of Gaussian measurement errors for computing optic flow

from block matching appears to be uncommon. Ajit Singh was one of the first researchers to

model measurement error from block matching using Gaussians [56]. His method, however,

did not constrain the solution to be in the form of a parametric motion model as we do.

He used iterative optimization as opposed to a direct solution, which implies less efficient

processing. He performed block matching on the Laplacian of the intensity image, rather

than the image itself, as we do. He modeled the measurement error distribution by applying

an exponential to the raw errors, while we simply threshold the errors to form a binary error

map. He modeled the error around the mean of the error distribution, while like Anandan,

[1] , we represent the measurement error around the best matching translation. Finally,

he used a dense map of block matching results, while we only use the results of block

matching started at Canny edge points, [12]. Out of these differences, the most significant

by far, is our efficient, yet robust, closed form weighted linear least squares solution to

fitting the 2D affine motion model. This formulation can run in real-time, provides affine

motion estimates that are robust enough to find the alignment of the camera with the head

mounted orientation sensor, and has the added benefit of providing an edge segmentation

map in terms of the Mahalanobis distance.

3.4.1 Overview

The major computational load for motion processing comes from high resolution estimation

of the image motion model M from images I and I2. We take several steps in order to

reduce the computation and achieve real-time performance. The frame rate of processing

is especially important for motion since a larger time difference between frames leads to

complicating factors such as larger between frame image displacements, increased surface

occlusions, and smaller overlapping areas for the two fields of view. These factors reduce

the set of valid correspondences between the frames and increases the search required to

find legitimate correspondences.

First, we find a coarse low-resolution affine motion estimate in order to reduce the size

of the search window required when matching a block from I to blocks in I2 at high

resolution. The low resolution estimate can be misleading, but typically the majority of the
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image motion is well modeled as 2D affine motion and low-resolution images give a useful

hint as to the best area over which to search for block displacement.

Next we reduce the computation required by restricting the high resolution block match-

ing to points on edges. Canny edge detection, [12], is efficient and several other algorithms

used by our system make use of the same edge map, so the computational cost of finding

edges is negligible and the measurements of edge motion can be useful elsewhere. We use

our own code for Canny edge detection, which we have modified to simultaneously group

edges that are strongly related, where two edge points are considered strongly related if

a smooth, low-curvature path through other strongly related edge points connects them.

Edges also form a good compromise between dense estimates performed on every pixel and

sparse point tracking approaches that usually track corners or multi-scale blobs. Block

matching should be successful along at least one degree of freedom because edges fall on

blocks with high contrast elements. Ambiguity along the edge is more likely, but our error

model can represent this uncertainty.

Fitting a 2D affine motion model with weighted linear least squares to the results of

restricted block matching makes a useful compromise between fidelity, computation, and

robustness.

Algorithm Overview

The estimation method performs the following steps, or a close variation of them:

1. Perform a low-resolution estimation of the 2D affine motion, ML. The following steps

describe one method we have used:

(a) Average and down-sample the sequential gray scale images I and 2 to obtain

scaled versions of the images Ils1 and I2s, which are of the size of the original4

images.

(b) For each pixel, perform block matching on Ils and I2s to determine the best

matching translation of the pixel's image block between the two images.

(c) Find the linear least squares estimate of ML given the estimated translations.

2. Perform high-resolution estimation of the 2D affine motion M:

(a) Find edges in the images I and I2 using Canny edge detection.
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(b) For each edge pixel, perform block matching between I and I2 with the search

window centered on the properly scaled motion estimate provided by ML. Find

the best matching translation for each image block and a full 2D covariance

matrix representing a Gaussian model of the match error around this best match.

(c) Find the linear least squares estimate of M using the translations and a matrix

U that incorporates the covariance matrices.

(d) Throw away outliers by removing the 20% of the edges with the highest error.

The estimated affine motion of these edges has the highest Mahalanobis distance

from the measured motion as described by the best match translations and U.

(e) Reestimate M using the remaining edges (80% of the total).

(f) Throw out the 25% of all the edges with the highest error.

(g) Reestimate M using the remaining edges (75% of the total).

This particular description of low-resolution estimation serves as an example of one method

that we have used to provide hints to the high-resolution estimation through ML. Depending

on the expected amount of image motion and the search window used during block matching,

low-resolution motion estimation may not be useful, in which case we would set ML to the

identity transform, ML = [I10]. Likewise, we can produce ML using the same steps as

the high-resolution method, but applied to properly scaled low-resolution images. Once

we have estimated the relationship between the head-mounted orientation sensor and the

head-mounted camera, we could also use the head-mounted orientation sensor to generate

ML.

3.4.2 Block Matching

As illustrated within figure 3-7, the block matching algorithm we use outputs a Gaussian

model of how well a block matches an image over the search area. More precisely, we

estimate the motion of point P1 in image I1 to the corresponding point P2 in image I2 with the

standard technique of block matching. This technique searches for point correspondences

between I1 and I2 using image blocks as the point descriptor and a suitable comparison

measure such as normalized correlation or the sum of absolute differences. For each edge

point p, our block matching algorithm outputs the location of the best match, Pb, and a
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Figure 3-7: This figure illustrates the block matching algorithm by showing the results of

matching a 5x5 block to an 11x11 image using a 7x7 search window.

covariance matrix, C, that models the matching error around this best match. The specific

procedure used in our code for the affine motion estimate follows:

1. For each edge point P1 in I1

(a) Select a square, B, from image I1 centered around Pl.

(b) Define a search window S within image I2 centered around our current best

estimate of where the corresponding point P2 will be located. (For our high

resolution processing this involves using the suitably scaled low resolution affine

motion estimate to set the center of the search window, or making use of the 3D

rotation of the camera as estimated from the head-mounted orientation sensor.)

(c) Slide the block B to all points p8 contained in S

i. Select a square Bs centered on ps and of the same size as B.

ii. Calculate a match value, h, by comparing B, to B using the sum of absolute

pixel differences h = E.,y IB(x,y) - B(x,y)I

(d) Set the best position estimate Pb and associated match value hb to be the point

Ps with the lowest h8
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(e) Set the best estimate for the translation t of P1 to be t = Pb - P1

(f) Compute a covariance matrix C that describes the matching uncertainty centered

around Pb. With

C = I 1+ wE s(ps-pb)(ps -pb)T where ws = ifh<hb+r
CZ=WaIS+ 0 if hs _ hb + T

and
1 if h, < hb + T

ws =
0 if hs > hb + T

where r is our threshold for points that are sufficiently well matched to justify

inclusion in C. For the blocks of size 5x5 that we use during high resolution

matching we set r = 200 which assumes that we should see no more than 4

units of additional error per pixel in a block that truly matches, since 5x5x4 =

200. We set r to this constant value by hand. It works sufficiently well for our

purposes, but estimating r from measured pixel errors, especially as a function

of brightness and contrast, might improve the algorithm's performance. To avoid

over-confidence in the estimated error distribution, we also add aI to C, which

is equivalent to convolving the error Gaussian with a circular Gaussian with

variance a. We have had success with a = .

For low resolution motion estimation, we have used a search window S with size 7x7 and a

block B of size 3x3. For high resolution motion estimation, we have used a search window

S with size 11x11 and a block B of size 5x5.

3.4.3 Low Resolution 2D Image Motion Estimation

This subsection describes a simple low-resolution method we have used to find a low-

resolution affine motion model ML that we can pass to a higher-resolution motion processing

method. Given two images Ils and I2s we perform block matching on all points, not just

edges, to find values for ti, and we do not calculate the covariance matrices C. This leads

to the following equation in the standard linear least squares form of Ax = b, [59]:

X1 MT - X2

where
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ml m 2 m 3
ML =

[m4 m 5 m 6

X1 Yl 1

X2 Y2 1

Xn Yn 1

xl + tl Yl + tyl

X2 X2 + t2 y2 + ty2

Xn + txn n + tyn

with t being the translations associated with the best block matches for each of the n

pixels indexed by i.

Since we are using all pixels to estimate ML, X 1 is constant for every image pair of the

same size and we only need to compute K - (ATA) -1
- (XTX 1)- once upon starting the

motion processing system, assuming the stream of images stays at a constant size. This

results in the constant 3x3 matrix K. Consequently, for each image pair the system receives,

we only need to compute

MT = KXTX 2

Where XTX 2 involves a low cost multiplication of a 3xn matrix with an nx2 matrix

followed by a trivial multiplication of a 3x3 matrix with the resulting 3x2 matrix.

3.4.4 High Resolution 2D Image Motion Estimation

For high resolution motion estimates, we only perform block matching at edge points and

we use weighted linear least squares to incorporate the error covariance matrices generated

by the block matching process into the estimation of the motion model M.
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Weighted Linear Least Squares

We know that the least squares solution for Ax = b is x = (ATA)-iATb, which minimizes

IIAx - b 2 = (Ax - b)T(Ax - b) [59]. In order to better model the error in our translation

estimates, we can use the standard practice of applying a weight matrix W and minimizing

I(WAx - Wb) 112 = (Ax - b)TWTW(Ax - b) instead. Clearly, by substitution, this is still

linear least squares and can be minimized with x = (ATWTWA)-lATWTWb. By defining

U - WTW to be an inverse covariance matrix for a multi-dimensional Gaussian on the

block translation estimation error, we can discount the influence of some types of block

matching error, such as errors along the direction of the edge where there will typically be

more block matching uncertainty. In this case, solving

x = (ATUA) - 1 A TUb (3.3)

minimizes

(Ax - b)TU(Ax - b) (3.4)

To see this better, we can consider the linear least squares solution to be maximum

likelihood estimation of our model x where the error is Gaussian distributed with inverse

covariance matrix U. Specifically, with K representing the equation for a d-dimensional

Gaussian density on random vector y with covariance matrix and mean vector we have

A/(p, , y) = (27r)- I - 2 e 2I (y - ) T - (y )

and we can thus model our block matching error with

d -1 

A(b, U-',Ax) = (27r)- U - 1 2 e- (Ax- b)U(Ax - b)

where we set the mean vector to the means of the translation estimates p = b, the

covariance matrix E - U- ', and we constrain the random vector y to obey our model Ax

where x is the vector of free parameters defining M. The maximum likelihood solution is

identical if we set M = Ax and y = b, so the distinction is not important for our purposes.

We can either think in terms of finding the affine motion model that generates the most

likely set of samples given our error model, or we can consider ourselves to be finding the

affine model that gives the mean vector that maximizes the probability of the samples.
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Minimizing (Ax- b)TU(Ax- b) clearly maximizes the probability and hence gives us the

maximum likelihood solution, as shown below in the standard way

argmax(AX(b, U-1, Ax))x = argmax ((2r) U- e(Ab)TU(Ab))

= argmax(log(A(b, U-1, Ax)))x

= argmax(-l(Ax-b)TU(Ax-b))x

= argmin((Ax - b)TU(Ax -b))

Defining the Matrices

To put our 2D affine model into a form that allows us to use weight matrix U we vectorize

M to m, so that if we ignore U we have X 1 m = X 2, with

X1 =

x Y 1 0 0 0

0 o0 X1 Y 1

x 2 Y2 1 0 0 0

0 o 0 x2 Y2 1

xn Yn 1 0 0 0

0 0 xn Yn 1

al

a2

a3

a4

a5

a6
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X1 + tX 1

Y1 + tyl

X2 + t 2

X 2 = Y2 + ty2

Xn + txn

Yn + tyn

where using the equalities A = X1, x = m, and b = X2 translates these matrices into

the proper terms for the weighted least squares objective function of equation 3.4. We now

define U to be a sparse block diagonal matrix with 2x2 matrices C71 along the diagonal,

where C71 is the inverse covariance matrix for the 2D Gaussian that models the matching

error around the best matching location for the block associated with edge point i.

C- 1 0 0 ''' 0

0 C21 0 ... 0

0 0 0 ... C-1

Now, by equation 3.3, solving

m= (XTUX 1 ) 1XTUb (3.5)

will minimize the objective function of 3.4 and give us the solution we desire.

Simplifying The Solution

If we were to actually construct the full matrix U in order to solve equation 3.5, the com-

putation would be daunting. Fortunately, due to the sparse block form of the matrices the

computation is efficient enough for real-time processing. The details of the simplification are

not worth showing here, but the result is worth seeing as evidence of the low computational

requirements.

For the first part of equation 3.5, the computation of XTUX 1 only requires that we sum

n 6x6 symmetric matrices, where n is the number of edge points i used in the estimation.

The 21 distinct terms have the simple and redundant form shown below, where each .
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represents the corresponding lower diagonal value and C- 1 = 
U3i

due to symmetry.

XTUX 1 =

Xi2Uli
yxiUli
YiXiU1i

Xiuli
2

XTU3i

YiXiU3i

XiU3i

Yi2U

yiuli

xiYiU3i

y2 u3i

yiU3i

Uli

xiui
XyiU3i

U3i

X 2 U4i

YiXiU4i

XiU4i

U2i 1with u2i = u3i

U4i

Y2U4

YiU4i
U4i

The structure of the matrix is more clear when written in block form with viT =

[xi Yil

T T

xTux1-=' Z vv Tu ivii[ U1iVizV U3iVisV7i U3iViVi U4iViVZ

The resulting symmetric 6x6 matrix, XTUX 1, will be positive definite except for extreme

circumstances, such as when not enough edges are provided due to darkness. Consequently,

we can compute (XTUX 1)- l using fast specialized 6x6 matrix inversion code. We adapted

code from Fermilab by David Sachs available on the web, which he documents as using an

algorithm from pages 138-139 of [22]. This code notifies the caller if an error is encountered

when computing this inverse, so the system can recover on the rare occasions when the 6x6

matrix is not positive definite or otherwise improper.

The second part of equation 3.5, XTUb, is also computationally simple with

XTUb= E
i

(Xi + ti)Xiuili +

(Xi + ti)yiUli +
(Xi + ti)uli +

(Xi + ti)XiU3i +

(Xi + ti)yiU3i +

(Xi + ti)U3i +

(Yi + tyi)XiU3i

(Yi + tyi)yiu3i

(Yi + tyi)u3i

(Yi + tyi)XiU4i

(yi + tyi)YiU4i

(Yi + tyi)u 4i

which can also be more clearly

x1 Ub=

written in block form with vi

- F ViUli ViU3i X + 

i ViU3i ViU4i Yi + tyi
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Figure 3-8: This figure shows an captured image of the motion backgrounding algorithm.

The first frame shows the Mahalanobis distance for the motion edges, which in this case

leads to strong responses from the hand, arm, and brim of the hat. The second image shows

the first image in time with a vector field sampled from the 2D affine background motion

model with respect to which the Mahalanobis distances were calculated. The image on the

far right shows the second image in time to which the motion model maps edge locations

in the first image.

Now, we only need to multiply these two parts to find our solution for m and the

corresponding motion model matrix M.

Refitting And Motion Backgrounding

As described in the algorithm overview from subsection 3.4.1, we iterate the fitting process

in order to remove the influence of edge points that are not likely to be part of the motion

background. On each iteration we remove the worst fitting n% of the edge points and

reestimate m, which is computationally reasonable since we only need to perform block

matching once. We determine how well each edge point matches the model by calculating

the Mahalanobis distance, di, between the best match translation vector, ti, for edge point

i and the translation predicted by the model M, Mvi, relative to the edge point's error

model defined by the covariance matrix Ci.I)T 1 2

di = Mvi- Ci Mvi-
yi + tyi yi + tyi

The units of Mahalanobis distance, di, are image pixels, so working with these distances

is intuitive. The Mahalanobis distances also rank the edge points, which allows us to

throw out the points that fit the model poorly. For many environments the majority of
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Figure 3-9: This figure shows an captured image of the motion backgrounding algorithm.

The first frame shows the Mahalanobis distance for the motion edges, which in this case

leads to strong responses from the arm, and cabinet door. The second image shows the first

image in time with a vector field sampled from the 2D affine background motion model with

respect to which the Mahalanobis distances were calculated. The image on the far right

shows the second image in time to which the motion model maps edge locations in the first

image.

Figure 3-10: This figure shows an captured image of the motion backgrounding algorithm.

The first frame shows the Mahalanobis distance for the motion edges, which in this case

leads to low magnitude distances spread across the image, since the camera is rotating. The

second image shows the first image in time with a vector field sampled from the 2D affine

background motion model with respect to which the Mahalanobis distances were calculated.

The image on the far right shows the second image in time to which the motion model maps

edge locations in the first image.
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the image motion relates to the background environment, and can be well-modeled with

M. In environments where the majority of the image motion relates to the background,

edge points weighted by di serve as a useful map for motion based attention, and motion

backgrounding. Other segment [65]

3.5 Estimating 3D Camera Rotation from 2D Affine Image

Motion

The methods of Section 3.4 give us a 2D affine motion model, M, for the background

environment between sequential images I and I2. Within this section, we use a weak

perspective camera model along with this estimated 2D affine transformation to coarsely

estimate the 3D rotational motion of the camera between the images. We define the camera's

local coordinate system to have its z axis pointing into the image, its x axis points along

the width of the image to the right of the optical center, and its y axis pointing from the

optical center to the bottom of the image.

Writing the 2D Affine Transform as a 3D Affine Transform

To emphasize that the motion model M is a 2D affine transform, we will define A" = M and

use A" instead of M for the rest of this section. We first find a 3D affine transform A that

has the equivalent effect of A" on image locations and incorporates camera parameters. A"

defines a 2D affine transform on raw pixel coordinates p" = (u", v", 1) that gives P2 = Apl,

where P and P2 are the pixel coordinates in I1 and I2 respectively. We convert A" to an

affine transform A on pixel coordinates p = (u, v, f) with the constant focal length f as the

3rd component, and with p = (0, 0, f) positioned at the optical center of the image such

that P2 = Ap1. We initially create A' that operates on p = (u', v', 1) with p' = (0, 0,1)

positioned at the optical center of the image (cr, cy) so that (u', v') = (u" -cx, u" -cy). With
~~~~~~~~~~~~'" 

c = (cr, cy, O), pI = pl +c and (p2+c) = A"(p' +c) which implies that p2 = A"pl+A c-c =

A Pl so that with

al a 2 a 3

All I I II II,, A = a4 a5' a6
0 61
0 1
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II II II Ix II

al a2 a3 +(cxa l +ca 2 )-c x

A= a4 a5 a6 +(cxa 4 + cya)-cy

0 0 1

We then create A by scaling the 3rd column of A' by 1/f.

al a2 a3 a1 a2 a3 /f
I ! 

a4 a5 a6 a4 a5 a6 /f

[ 0 1 0 0 1

Specifying the Camera Motion Model

We now define our camera model, and an equation that models the image motion resulting

from the motion of this camera model within a static environment.

A 3D point in the world Xw, = (xw, yw, z,,, 1) is transformed into a point, Xc, in the

camera's coordinate system by rotation RT and translation -tc, Xc = [RTI - tC2]X. We

wish to estimate the between image rotation, Rc2c1 , of the point X.. with respect to the

camera's frame of reference. For I1, Xcl = [R T I - tl]X, and for I2, Xc2 = [RT[-

t~2]X~. Xc2 = [Rc2clltc2cl]Xcl, so by substitution [RTI- t4 2] = [RT1 tr2cl] [RT tcl] and

consequently R 2cl = RT Rcl and tC2cl =-tc 2 + R TRcltcl. Since we are assuming that anyc~~ ~~~~~~~~~~t2 clc

radial distortion has already been removed from the images and since the pixel coordinates

p are with respect to the optical center, the intrinsic camera model simply scales xc and yc

by the focal length f and projects the resulting Xi onto the image plane:

Xi = PXC = (fx, fyc, Zc)

-f 0 0

P= Of O

0 0 1

Xi Yi fXC fycp= (u,v,f) = (, - f) =(c c f)
Zi Zi zc zc

The non-affine form of Xc can then be simply expressed in terms of pixel coordinates p,

[60],
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Xc U

01 [,1

We can now write Xc2 = [RC2c Itc2cW]Xcl in terms of the image coordinates p with an

additional affine element when necessary to arrive at:ZZ Z

xcP2= [RC2cijtc2ci]-pi (3.6)f

Equation 3.6 describes the image motion of stationary 3D points imaged through a

perspective camera undergoing rotation and translation.

Approximating the Camera's Motion Model

At this point we introduce a number of approximations in order to arrive at a coarse estimate

of the camera's 3D rotation in terms of our affine image motion model A.

First, we substitute P2 = Ap1 into equation 3.6 which will not be strictly equivalent

since it is itself an approximation of the 2D image motion.XC = 7
Zc ~~ f

Ze2~~~~~ZZc2P [Rc2cItc2c1 c P1 (36c

Next, we approximate the full perspective camera with a weak perspective camera. This

results in Zc2 and zcl being constant for all image points p. This approximation works wellwhen the difference in depth between the points is small compared with the average depth 

of perspective assumera undergoing rotation and transformation A describes the image motionApproximating the Camera's Motion Model

Atof 3Dthis point we introdue a numberackground that correspiond with a mostly stat a ionary estnvironment

ofwithin which the camera is mov3D rotating, and consequently that the moweak perspectiove model is a

Fireasonablt, we approxsubstitute m2 Ap into equation. 3.6 which will not be strictly equivalent

since it is itself an approximation of the 2D image motion.zc2 Apl -- [Rc2cl tc2cl] yC1Pil37
ff

Next, we approximate the full perspective camera with a weak perspective camera. This

results in c2 and z being constant for all image points p. This approximation works well

when the difference in depth between the points is small compared with the average depth

of the points. We assume that the affine transformation A describes the image motion

of 3D points in the background that correspond with a mostly stationary environment

within which the camera is moving, and consequently that the weak perspective model is a

reasonable approximation.
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We then assume that the image motion resulting from camera translation, tC2cl, is much

smaller than the image motion resulting from camera rotation, R2C1, and that we can

consequently set t 2c1 = (0, 0, Zc2 - ZC1 ) = (0, 0, Zcl(Z - 1)) (which can be multiplied by
ZCl

the affine component and changed to tc2cl = (0,0, ~ -1) and affine component f)

with any actual influence from lateral translation being attributed to noise in our estimates.

During everyday activities, head motion does tend to create much larger image motion

than translation. We restrict the samples used in the alignment estimation based on the

magnitude of the head motion recorded by the head-mounted orientation sensor in order to

help ensure that this assumption holds. For example, filtering in this way helps the system

avoid interpreting image motion from the floor as camera rotation.

Finally, we throw out the 3rd row of the equation, since A does not give us any infor-

mation about this row.

These assumptions result in the following approximation for the top two rows of equation

3.6:

Zc2 Apl Rc2clpl
Zcl

Zc2 al a 2 a3 1 r 2 r3 1
-[ Pl ~ P (3.8)
Zcl a4 a 5 a6 r4 r r 6

Solving for Rotation

We wish to find values for Ia and Rc2cl that minimize the difference between the two sides
ZC1

of equation 3.8 over the set of points P1 = (u, v, f), where u and v vary. The six parameters

of RC2cl should be constrained to be the top two rows of a rotation matrix and should

consequently only have three free parameters describing the two orthogonal unit vectors.

The angular change between images should be small, so we introduce a further approx-

imation and linearize Rc2C1 around zero angular change, which corresponds to the identity

matrix I. For this linearization we represent R using Euler angles c, and y, which are a

suitable representation for small angular changes.

R(a/, y) = R.(a)Ry()Rz(y)
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I1 0 0 cos(/) 0 -sin(/~)

t(a, /,3y) = 0 cos(a) sin(a) 0 1 0

0 -sin(a) cos(a) sin(3) 0 cos(3)

We now take the gradient of R with respect to the Euler angles

cos(y)

-sin(7)

0

vR = [D[R]a D[R][ D[R]] = D[R]QRyRZ RD[Ry]pR, RRyD[Rz], ]

0 0 0

0 -sin(a) cos(a) RyRz

0 -cos(a) -sin(a)

-sin(#) 0 -cos(3)

R. 0 0 0 Rz

cos(/) 0 -sin(/)
-sin(v) cos(i) 0

RxRy -cos(") -sin(y) 0

O0 0 

T

and linearize around zero rotation w = (a, /3, y) = (0, 0, 0), which is simply a first order

truncation of the Taylor expansion of R

R(O + w) ~ R(O) + vR(O)w + o(w2 )

0

0

1

0

0

0

-1

0

0

-1

0

1 0

0 0 W + o(w 2)

0 0]

1 "/ -t

R( + w) -Y 1 a + o((2)

0 -a 1

We now vectorize the equation and use linear least squares to minimize the distance

between the vectorized matrices with respect to and w, which corresponds to minimizing
the Frobenius distance between the matrices

the Frobenius distance between the matrices
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.mi Zc2 al a a3 rl r2 r3 I
argmvlnI

Zcl a4 a5 a6 r4 r 5 r6 ,
ZC1

For which we replace R with our linear approximation

1 -I+ [0 0 0a+ 0 0 -1 1 0ri r00 r301 1+0101
r4 r5 r6 0 0 1 [ 0 0 -1 0 0

which after vectorizing the matrices gives us the following minimization formula

argmin

/

al 0 0 0

a2 0 0 -1

a3 0 1 0

a4 0 0 1

a5 0 0 0

a6 -1 0 0

ZC1

Zcl

O
0

0

0

1

0

Zcl w

which linear least squares minimizes, since it's in the standard form Ax = b with

A=

al 0 0 0

a2 0 0 -1

a3 0 1 0

a4 0 0 1

a5 0 0 0

a6 -1 0 0

Zcl

a

'3

b=

1

0

0

0

1

0

Finally, we construct a rotation matrix using our linear least squares estimate for w.

The linearized estimate for Rc2cl is not guaranteed to be a valid rotation matrix. We could

plug w into R(a,/3, -y) = Rx(a)Ry(3)Rz('7), which would be a reasonable estimate given our

small angles, but it unnecessarily imposes an ordering on the three rotations, which is not

dictated by our linearization, and it will not necessarily be the closest rotation matrix to

our linearized estimate. We use a standard SVD based method from [60] to construct the

closest rotation matrix to the full linearized estimate RC2cl of Rc2cl. More specifically we

construct
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1 0 0 0 0 -1 0 1 0

Rc2cl = I + 0 0 1 0 1 0 -1 00 

0 -1 0 1 0 0 0 0 1

compute its SVD

UDVT = SVD(Rc 2 )

and then construct our final estimate for RC2Cl, where I is the identity matrix.

Rc2cl ~ UIVT

Evaluation

This coarse estimate of camera motion is important to several later estimates. It is used to

find the assignment from sensors to body parts. It is also used to estimate the orientation

of the camera with respect to the head-mounted orientation sensor, which in turn plays an

important role in estimating the kinematic model. Ultimately, these success of these later

estimates serve as the most important evaluation of the success of these coarse estimates of

camera motion. We can, however, get some sense of its isolated performance by comparing

its estimates to those made by the head orientation sensor, see figures 3-11 and 3-12.

3.6 Aligning the Camera with the Head Orientation Sensor

This section describes a linear least squares method that estimates the orientation of the

head-mounted camera with respect to the head-mounted orientation sensor. This estimation

uses the series of orientations provided by the orientation sensor along with the series of

camera rotation estimates provided by the methods of image motion analysis described

within the previous two sections. Since the head-mounted orientation sensor measures its

rotation with respect to world coordinates, this method allows us to estimate the orientation

of the head-mounted camera with respect to world coordinates.

The head orientation sensor provides an orientation Rh that represents the orientation

of the sensor with respect to world coordinates, where the world coordinates are in terms

of gravity and the earth's magnetic field. We would like to know the orientation of the

88



scatter plot of rotation angle
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Figure 3-11: This figure shows a histogram of the relationship between the rotational change

measured by the orientation sensor and the rotational change measured by the image motion

method of this section. Ideally the two values would be perfectly correlated as a line of unit

slope. The values are strongly correlated, which indicates that camera rotation estimate

from image motion does usefully relate to the true camera rotation. Also note that above

a change of approximately 0.12 radians between the orientation of the camera in the two

images, the motion processing algorithm misestimates the magnitude of the motion. This

outlier error relates to the constrained search window of the underlying block matching

algorithm for motion estimation. For this run, we did not perform full low-resolution image

motion first, which exacerbates the problem. Fortunately, we can reduce the impact of these

outlier errors by throwing out our image based camera rotation estimates when the change

measured by the head mounted sensor is above a threshold, such as 0.12 radians.
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scatter plot of rotation angle
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Figure 3-12: This figure shows the same histogram of figure 3-11 zoomed in to the area that

would be relevant if we were to throw out outliers based on the head's angular velocity as

measured by the head mounted orientation sensor.
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head mount
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Figure 3-13: This diagram illustrates the geometry of the camera alignment problem. Be-

cause the head, the head orientation sensor, and the camera are rigidly attached to each

other, they share the same axis of rotation. Consequently, Sc2c1 = Rhcsh2hl where Sc2cl is

the view of the shared axis of rotation in the camera's local coordinate system, and Sh2hl

is the view of the shared axis of rotation in the head orientation sensor's local coordinate

system.
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camera RC in the world coordinate system. We assume that for long periods of time there

is a constant orientation offset Rhc in world coordinates that brings the head orientation

sensor into alignment with the camera,

Rc = RhRhc

Between sessions, Rhc is likely to change. Occasionally during a session the alignment

between the two sensors may also change due to comfort adjustments or collisions. These

variations are the price we pay for having compliant head gear with a non-rigid coupling

between the orientation sensor and the camera. For real-time applications we would like to

estimate Rh, rapidly and in an online fashion so that the system can quickly adjust to a

new wearer and monitor the alignment throughout a session in order to adapt to occasional

changes.

In order to estimate Rhc, we relate the between image rotational motion of the camera

to the between image rotation of the orientation sensor. The camera rotation estimate Rc2c1

from section 3.5 estimates the rotation of the camera between images I1 and I2 with respect

to the camera's own reference frame.

Rc2cl = RRc2

Similarly, measurements from the head-mounted orientation sensor for images I, and 12

can be used to compute, Rh2hl, which describes the rotation of the sensor between images

Il and I2 with respect to the world reference frame.

Rh2hl = Rl Rh2

We would like to estimate Rhc using our estimate of the camera rotation Rc2cl and

the rotation of the orientation sensor Rh2hl. The most successful method we've found for

estimating Rhc aligns the estimated axes of rotation in the local coordinate systems using

linear least squares, see figure 3-13. Over most lengths of time in a particular episode,

the camera and orientation sensor are well-modeled as being rigidly affixed to the head.

Consequently, the camera, the orientation sensor and the head form a rigid body. When

this rigid body rotates, the camera and the orientation sensor share the same axis of rotation.

By aligning the local views of this shared axis of rotation, we can align the local coordinate

systems of the camera and orientation sensor.
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More precisely, when the rigid body undergoes a rotation, R21, between two frames, I1

and 2, this rotation can be represented by an axis of rotation s12 and an angle a12. The

orientation sensor and the camera view this axis of rotation, s12, in their local coordinate

systems as h2hl and Sc2cl respectively. A rotation that brings Sc2cl into alignment with

sh2hl will globally align the local coordinate systems along two degrees of freedom.

8c2c1 = RhcSh2hl (3.9)

The remaining degree of freedom corresponds with rotations around this shared axis

of rotation and has indeterminate alignment, since the rotation 12 around the shared

axis is relative to the current orientations of the local coordinate systems. We can align

this remaining degree of freedom and compensate for noise in our estimates by combining

rotation estimates from many frames due to the assumption that the aligning rotation

Rhc is constant. By vectorizing Rhc in equation 3.9, we can create a linear least squares

formulation that combines estimates from many sequential frames:

T 0 0Sh2hl

o T0 ST0Sh2hl
T0 0 STh2hl

T o8 h3h2 

T0 ST 0oS h3h2
T

o o Sh3h2

T
ST 0 0
o hnh(n - 1)

hnh(n-1)0 0 SSan ~ ~ hh(nn1l)

rl

r2

r3

r4

r5

r 6

r7

r8

r9

Sc2cl

Sc3c2

Scnc(n-1)

Where the entries ri are the vectorized elements of the rotation matrix Rhc and Shih(il)

and scic(i 1) are unit vectors representing the estimated axis of rotation between frames i - 1

and i in the local coordinate systems of the head and camera respectively. This equation

is in the standard Ax = b form and can be simplified and made computationally trivial by

using the pseudo-inverse (ATA) - 1 AT to solve for x, with

x= (ATA) ATb
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and

Ei Shih(l)S T 0 0 $ 0 0Ei Shih(i-1) hih(i-l) O- SOO

ATA = Ei Shih(i_-)sh(_) 0 S 0

So o L~i Shih()i-Sh)hih(i-l)

where S is the sum of the outer products of the rotation axes with themselves, and

Shih(i-l) 0 0

ATb 0 Shih(il) Scic(i-l)

0 0 Shih(il)

A key point to recognize with this solution is that the summations can be incremented

by an online process that continually reestimates ATA and ATb by adding the new terms

associated with the current frames i and i- 1. After updating them we compute (ATA)

which, if we desire, can be further simplified by only finding S- 1 and constructing the block

inverse with S-1 along the diagonal. Finally, we multiply these easily updated terms to find

x, x = (ATA) ATb. Moreover, we can recursively weight the incoming estimates with

the past estimates to have a fast online and adaptive estimate of Rhc that will compensate

for occasional changes in alignment between the camera and the head orientation sensor.

Results

We have tested this method of estimating Rhc on both ideal data, shown in figure 3-14, and

actual data from the system 3-16. Evaluating the quality of the solution is challenging, since

we don't know the true orientation of the camera within the world. We can qualitatively

assess the correctness of the solution within human environments by observing the edges

within the image that point to the vanishing point associated with gravity, as predicted by

the camera's global orientation, see figures 3-17, 3-18, and 3-19. In most urban indoor and

outdoor human environments, a significant percentage of the edges are aligned with gravity.

Besides serving as an efficient and intuitive way to qualitatively assess the estimated world

orientation of the camera, selecting edges by how well they are aligned with gravity or other

known world orientations - such as the forearm - can enhance perceptual processing, see

appendix A. We have pursued, but not completed, a related method for quantitatively

assessing the estimated camera orientation that sums up the responses of edges associated

with vanishing points, finds locally maximal vanishing points, and then compares the esti-

mated gravity vanishing point with the locally maximal vanishing points. A proper camera

94



orientation estimate should produce a gravity related vanishing point that is usually very

close to a maximal vanishing point when within urban human environments.

One source of error is the different sampling rates used by the orientation sensing process,

which samples at around 100Hz, and the image capturing process, which samples at around

10- 25Hz. I this work, for each image we simply use the orientation sample that is closest

in time to each image. For better accuracy we could interpolate between time stamped

orientations to produce estimates for the orientation of the head at the time stamp associated

with an image, for example using quaternions and SLERP.

3.7 Estimating Joint Lengths and Rotational Offsets

In our idealized handmade kinematic model from section 3.1, the orientations are indepen-

dent from the joint lengths, such that given any set of orientations the lengths of the body

parts could be longer or shorter. This lack of position information makes our estimation

problem distinct from automated kinematic model estimation from traditional motion cap-

ture data, which almost always includes position information [47]. For real human bodies,

the measured orientations are mostly invariant to the lengths of the body parts. Given

a time series of orientation measurements, some process might be able to extract subtle

information about the lengths of body parts from the dynamics of the body's motion, for

example by finding natural modes of motion during walking and combining this information

with the statistics of body dimensions from a large population study. Rather than resort

to such challenging and subtle methods, we use additional information provided by the

camera to directly estimate joint lengths for a kinematic model. Specifically, in addition

to the orientations provided by the body-mounted orientation sensors, the methods within

this chapter require the estimated orientation of the camera and the estimated position

of the wearer's hand within the images. The previous sections presented the methods we

use to estimate the orientation of the camera, Rc, from image motion, where, as required,

RC is specified with respect to the shared world coordinate system of the body-mounted

orientation sensors. The required information about the hand's position with the images

can be estimated in a number of ways, one of which we present within this section.
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estimation of R_hc given ideal randomly generated data
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Figure 3-14: This figure shows characteristic results of estimating Rhc using the algorithm

from this section with ideal randomly generated data. The data is generated by assuming

an ideal unknown noiseless offset Rhc, and ideal known noiseless values for Rh2hl and RC2C1

on each frame. Between each frame an ideal rotation is randomly selected and applied to the

camera and the head from which Rh2hl and RC2, 1 are calculated. This test demonstrates that

under ideal conditions the algorithm will quickly estimate Rh,. Under real world conditions

the algorithm also works efficiently and accurately. The final average error for these ten
ljnhc-R-hcllwhr

test runs was approximately 2 after 50 iterations. The error shown is 100 * lIRhc l[ where

the magnitude gives the Frobenius norm of the matrix. The error continues to drop rapidly

given more iterations. These particular tests used randomly generated rotations specified

in Euler angles from a uniform distribution of range [-0.027r 0.027r] for each Euler angle,

with a constant offset Rhc with an axis of [1 0 0] and angle of ½r. Changing any of these

parameters has little effect on the results.
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difference between the final estimate and interim estimates of R hc
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Figure 3-15: This figure shows the convergence graph of the estimate for Rhc on dataset

1. We can not be sure of the true solution, so we measure the difference between interim

estimates and the final estimate to gain some insight into how stable the final estimate is

and how quickly it is reached.
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difference between the final estimate and interim estimates of R hc
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Figure 3-16: This figure is a zoomed in version of figure 3-15 to illustrate the details of the

convergence speed. Notice that within these 500 frames the estimate for Rhc converges to

a value very close to the value it maintains for the rest of the 10000 frames. It converges in

less than a minute and gives useful values in just a few seconds.
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Figure 3-17: This figure and the three matching frames show qualitative results for the

estimate of Rhc. The left frame shows an image of a cube and axes aligned with the global

coordinate system. The image on the right shows the Canny edges weighted by how closely

the point toward the vanishing point associated with gravity as estimated using Rh, and

Rh.

Figure 3-18: This figure and the three matching frames show qualitative results for the

estimate of Rhc. The left frame shows an image of a cube and axes aligned with the global

coordinate system. The image on the right shows the Canny edges weighted by how closely

the point toward the vanishing point associated with gravity as estimated using Rhc and

Rh.
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Figure 3-19: This figure and the three matching frames show qualitative results for the

estimate of Rhc. The left frame shows an image of a cube and axes aligned with the global

coordinate system. The image on the right shows the Canny edges weighted by how closely

the point toward the vanishing point associated with gravity as estimated using Rhc and

Rh.

3.7.1 A Linear Least Squares Estimate

We first present a method that uses linear least squares to estimate the kinematic model.

Given only the hand's 2D position within images, this non-projective method is sufficient

to estimate a model that predicts the hand's position in new images based solely on the

measured orientation, but the resulting joint lengths are distorted due to projective effects.

If the hand detection method is able to provide a reasonable estimate of the 3D position of

the wearer's hand with respect to the camera, this method should be able to also generate

good estimates of the joint lengths.

The Linear Least Squares Formulation

First, assume that we have samples of the 3D location of the hand Xh with respect to

the camera's frame of reference and the associated world frame rotation matrices for the

camera, torso, upper arm and lower arm, {Rc, Rt, Ru, Rf}. With the following linear least

squares equation we can estimate the four 3D vectors {j, it, j, jf } that join the camera at

the origin Xc = (0, 0, 0) to the hand at Xh through the rotation matrices {R, Rt, R,, Rf }.
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Camera

Hand R.Jf

Figure 3-20: The kinematic model with respect to the world frame with the camera as the

origin.

RTR cl RRt RR ul RTRfl jc Xhl

•T Rc2 R Tc2Rftjt XTRC 2 RcRt 2 Rc2R.2 RT2Rf2 i t |Xh2| (3.10)

RLR. RR T if xh. RCRCn RnRt RRU RRf. - i - - Xhf

Rxyzj = Xh (3.11)

This is in the standard Ax = b form that we expect for linear least squares. The entries

of A are rotation matrices that rotate the body vectors {j, jt, ju, if }, first into the current

orientation of the associated body part and then into the camera's reference frame. The

first column of A is composed of identity matrices, since jc is a constant vector within the

camera's reference frame. The orientations of the body vectors can be used to partly align

the rotation matrices into canonical orientations. However, they do leave rotations around

each body vector's axis unnormalized. For example, wrist rotations around jil will not be

rotated into a canonical orientation. This is not a problem for predicting the location of

the hand and estimating the major dimensions of the body parts, but it does mean that the

resulting orientations are not directly comparable when found with distinct model fitting.

The vectors {jc, jt, ju, jf} implicitly encode both the lengths the body parts, {lC, It, U, If},

and appropriate orientation offsets, Roffset, of the body parts with respect to the sensors.

The lengths and orientation offsets of the upper-arm and forearm, ju and jf, approximately
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match the associated parameters that we determined by hand in section 3.1, while the

lengths and orientation offsets of the torso and camera, it and jc, do not directly map to

our handmade model since they approximately define the linkage from the camera to the

neck and from the neck to the shoulder joint. The lengths of the linkages are equal to the

magnitudes of the vectors of matrix j.

it l= tIlJtl

if - Ilii II

Each implicitly defined orientation sensor offset rotates a unit vectors ii into the direction

of the appropriate vector of j.

= Roffset Roffsett Roffset Roffset ] (3.12)
Ju of fset ii- lu -

The rotational offsets {Roffset, Roffsett, Roffset, Roffsetf } are underspecifed, since ro-

tations around the axis of u will not effect the equality of equation 3.12. As mentioned

above, this results from the estimation process. For example, rotations around the axis

of the forearm from wrist twisting will not affect the location of the hand. If we wish to

normalize this aspect of the measured orientations across different sessions and bodies, we

could do so by monitoring the ranges of motion around the linkages during common ac-

tivities and matching up these ranges of motion to a canonical range. For example, wrist

twisting occurs over a fixed range due to joint limits and comfort - constraints on the dis-

tribution that we could use to pick a common rest orientation across different sessions and

bodies.

2D Hand Detection

Equation 3.10 assumes that we have the 3D location of the hand in the camera's frame of

reference. If our hand detection system is only able to output a 2D hand location in image

coordinates, we can ignore projective effects, use a non-projective orthogonal camera model,

and solve the resulting modified version of 3.10. This modified version removes the rows
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that involve depth (every 3rd row of the equation), and substitutes the non-projective image

coordinates for the original projective x, y components of the hand positions Xh. Solving

this modified form results in a useful kinematic model that gives the approximate angles

of the body parts with respect to the sensors, predicts the hand location within images

fairly well when the hand is not too close to the camera, and can be used to estimate

whether or not the hand should be visible within an image given the angles of the body

parts. Unfortunately, since the hand is a near-field object, this orthographic model performs

poorly in many situations. The model's joint lengths are distorted due to projective effects,

hand position estimates are poor when the hand is close to the camera, and, perhaps most

significantly, the model does not successfully predict when the hand will not be visible in

the image.

3D Hand Detection

Alternatively, we can attempt to create useful estimates of the 3D location of the hand.

By a variety of methods we can detect the hand in an image and estimate its projected

location and size. The projected location and size of the hand strongly relate to the hand's

3D location, but they do not give us exact estimates. Both vary based on the viewing angle

and the configuration of the hand, which has many degrees of freedom, as one would expect

from such a compact and highly articulate manipulator. Without additional information

we cannot estimate the metric depth, zc, of the hand with our monocular camera. We could

use a distribution over expected hand size to help constrain the depth.

Fortunately, in order to make equation 3.10 useful, we only need to estimate the depth

of the hand up to a constant scaling factor, since the equation holds for any constant scaling

factor multiplied by {Jc, it, ju, jf } and Xhi = i [ u v f . This allows us to solve for

aZhi and the relative body lengths {iajca, jta, jua, jf } and impose a metric scale later if

we desire. For hand prediction we do not need to estimate a metric scaling factor since 

divides out when computing (u, v). For our camera model, the projected area ap of a 3D

planar patch parallel to the image plane with visible surface area of as obeys the equation

ap= - as so that z fa. We can solve for z up to an unknown constant scaling factor

a by setting f 2ca2as = c where c is a constant and c > 0, which results in

az = 
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This is a good approximation for an object whose visible surface varies little and whose

visible surface depth is much smaller than the distance to the image plane at z = f.

Unfortunately, the visible surface of the hand can vary considerably by viewing angle and

configuration. For example the visible surface of the knife edge of the hand differs from the

palm of the hand with fingers outstretched by around a factor of 5. Also, the hand can come

very close to the face and hence the camera. We can mitigate these problems by throwing

out samples and performing more advanced area estimations that account for hand angle

and configuration, but we should expect noise in our estimates of az.

Much as we did for motion processing in section 3.4, we could reduce the effects of

uncertainty by introducing a covariance matrix, U- 1, that describes the measurement error.

U would be composed of covariance matrices and weighting terms in order to incorporate

Gaussian models of the uncertainty in our estimates of Xh. We did not test this approach.

If we could confidently produce 3D estimates of the hand's position, this linear least

squares model would be highly desireable, since it's estimate could be computed in real-

time. As we will describe next, we did not pursue this solutions, and instead developed an

offline, non-linear method. Finding suitable real-time 3D hand detection methods to couple

with this linear least squares method for kinematic model estimation would be a worthwhile

endeavor for future research into real-time wearable systems with kinematic sensing.

3.7.2 A Nonlinear Estimate

Rather than burden ourselves with estimating the 3D position of the hand up to a scaling

factor a, we can instead reformulate the problem as a nonlinear optimization problem at

the cost of additional computation.

We construct the the objective function, c(j), using the cost function f(j) and a penalty

term Spenalty(j).

c(j) = f(j) + aspenalty(i)

The scalar constant a determines the relative importance of the two terms.

The main cost function f(j) measures the differences between the 2D visually estimated

hand positions, xh, and the hand positions predicted by the measured orientations, R, used

with a kinematic model and a fully projective camera model. Specifically,

R = [RTRC RTRt RTRU RTRf]
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rg(tfRx , -xif w 9f - XRz, -hi|)

where Rxy is the xand ycomponents (first and second rows) of the block matrix of

full rotation matrices R, and Rz is the z component (third row). The division by R is

an element-wise division, so that fi is simply the kinematic model's hand position

estimate. The magnitude measures the Euclidean distance between this estimate and the

visual estimate h in image pixels, and the cost function, g, can be used to make the

total cost more robust to outliers. We make g constant beyond a threshold, dmax, so that

the estimation can better handle outliers, such as false positive hand detections when the

wearer's hand is not even visible due to the body's configuration.

(d) d if d < dmax
g(d) =

dmax otherwise

We found that making g robust to outliers helps significantly when optimizing c(j) with

real hand position estimates. Using an alternative robust cost function for g with some

slope information when d > dmax might help with optimization, but we have had success

with simply clipping the maximum error.

The penalty term Spenalty (j) encourages the sum of the joint lengths to stay close to 1,

Spenalty(j) = abs(1 - lill)

since the objective function c(j) is invariant to the length of j due to projection.

R.,i,3j zi= f

This term can improve the speed of convergence by removing an irrelevant degree of

freedom. It also makes the exact results of the optimization more comparable.

A great variety of algorithms exist for optimizing a nonlinear objective function such as

c(j). We use the Nelder-Mead Simplex algorithm provided by the optimization module of

SciPy, a numerical analysis package for Python [28]. This optimization algorithm gives us

flexibility in defining the objective function since it only requires function evaluations and

does not make use of the gradient or Hessian of the objective function. This ease of use,

however, most likely comes at the cost of additional search and computation. We've had
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Figure 3-21: This frame shows an example that illustrates the motion signal used to generate

hand estimates. Notice that points around the hand clearly have the strongest responses as

their motion differs significantly from the projected motion of the environment due to head

motion. The left image is the Mahalanobis distance between the measured edge motions

and the 2D affine background motion model. The middle image shows the first image in

time with a vector field sampled from the 2D affine motion model. The right image shows

the second image in time to which the 2D affine motion model maps edge points in the first

image.

success by running this optimization algorithm with the search initialized with a randomly

selected 12 dimensional unit vector for j. To ensure that we find a more global optimum,

we typically run the optimization around 100 times and select the lowest cost result. We

have sometimes re-run the optimization after removing outliers, which can lead to modest

improvements in the solution. Much more significant improvements could be obtained by

using the hand predictions produced by a learned model to better detect the hand in the

images, and then using these improved hand predictions to retrain the model.

3.8 Offline Hand Discovery

Both the linear and nonlinear methods for estimating the kinematic model require hand

position estimates. For offline estimation we can provide suitable hand estimates by finding

locations of high foreground motion within the image using the motion segmentation system

we described in section 3.4.4. Within the workspace of the hand, the hand tends to be the

fastest moving object. The human hand sits at the end of a long, high-powered, kinematic

chain that moves it rapidly in 3D space. Due to our first person perspective, the hand

is always near the camera, so these fast 3D motions project to fast motions within the
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image. Other than the image motion resulting from head rotation, the image motion of the

hand is often the largest. Consequently, positions corresponding with the largest foreground

motion, as measured by the motion segmentation system, serve as noisy, but informative,

estimates of the hand's position, see figure 3-21.

During any specific frame, the largest motion within the image may result from another

object within the environment or even an object held by the wearer's hand. Likewise, the

hand is not always moving and is not always visible to the camera. We address these issues

by clustering the camera normalized orientation sensor data and then combining the motion

estimates from images associated with the same cluster. For the images within the same

cluster, the hand should be in approximately the same position within the image, since the

orientations of the body-mounted sensors with respect to the camera are very similar, while

other sources of motion should be more evenly distributed. Consequently, we can filter out

many of the noise hypotheses and find body configurations for which the hand is not visible.

A Probabilistic Model

We can model this relationship in terms of probability, with a position of maximum fore-

ground image motion generated by either the hand position distribution, Ph, or the noise

distribution, Pn, as represented by the mixture distribution, px,

Px = aph + (1 - a)pn

We model Ph as being influenced by the random variable, c, which represents the con-

figuration of the wearer's body with respect to the camera,

Ph,c = PhicPc

and the noise pn as being independent of c,

Pnlc = Pn

so that the joint distribution over x and c is

Px,c = aPhlcPc + (1 - a)PnPc

which we can condition on c, which is known
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Figure 3-22: This figure illustrates the benefit of conditioning the hand position estimation

on the body configuration c. The images on the right show the hidden component distribu-

tions that are mixed to give the full distributions that we can measure in the right column.

The top row shows the unconditioned distribution px, which leads to the distributions as-

sociated with body configurations bo, b, b2 , b3, and b4 being mixed with the background

noise model pn. The background noise model, pn, is in blue in the left column. The bottom

row shows Pxlc(x, bo), which is the result of conditioning the distribution, Px, in the first

row by body configuration b0 associated with position f(bo). Since the noise model is in-

dependent of the body configuration the conditioned distribution has a strong peak around

f(bo), which is the position we wish to estimate, and is consequently much easier to detect.
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Pxlc = Px = aPhlc + (1 -a)Pn
Pc

Additionally, we make the mixture probability a a function of the body configuration b

a(b) - /0 if the hand is visible given body configuration b

0 if the hand is not visible given body configuration b

Now we model Phlc as a unimodal distribution translated around the image plane based

on the body configuration. Specifically u is a unimodal distribution with maximum value

at (0, 0) that is translated by a 2D image position returned by f, which returns the ideal

image position of the hand as a function of the body configuration, b.

Phlc(m, b) = u (m - f(b))

Assuming the translations by f are distributed over some area of the image and that

pc(b) is not degenerate, it's clear that conditioning the distribution Ph on c increases the

peak of the resulting distribution, since

Ph(m) = Ph,c(mb)= Pc(b)Phlc(m, b)= jpc(b)u (m- f(b))

and by assumption (0, 0) is the maximum of u, so

u(f(b) - f(b)) < u(f(b) - f(bl)) Vb b

which implies

fbPc(b)u (f(b) - f(b)) > u (f(bl)- f(bl))

Phlc(f(bl),bl) > Ph(f(bl))

since f(b) f(bl) for some value of b and E [u (f(b) - f(b))]e = fbpc(b)u (f(b) - f(b))

Likewise, since the noise distribution p, is independent of c, conditioning on c will

increase this peak in the measurement model with respect to the noise when the hand is

visible.

pplc(f(bl) bl) > p(f(bl))

OPhlc(f(bi), bl) + (1 - O)pn(f(bl)) > Ph(f(bl)) + (1 - 3)pn(f(bl))

Phlcf(bl), bl) > Ph (f(bl))
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Consequently, the signal to noise ratio is improved for the detection method we use.

Similarly, the variance for the signal also decreases when conditioned on c. The increased

peak of the signal relative to the noise also allows us to better determine when the hand is

not visible for a configuration, since the absence of the peak can be more easily detected.

Estimation of the Hand's Position

Given our general probabilistic formulation, many estimation methods are applicable to find

the ideal image positions f(b) associated with body configurations b. We use histograms to

nonparametrically estimate the distribution Pxlc and find a maximum likelihood estimate

for f(b). Given the low dimensionality of the distribution and the large amount of training

data, nonparametric estimation of the distribution is computationally feasible and results

in a set of distributions that can be viewed as images to gain intuition and help debug the

estimation process. A clear alternative would be parametric Gaussian distributions, since

this estimation problem appears to be well-suited for the use of Gaussian distributions for

the conditioned distributions Phlc and a Gaussian or uniform distribution for the global

noise model pn.

We first quantize the set of encountered kinematic configurations as represented by the

orientations of the torso, upper arm and forearm with respect to the head orientation Rh.

[RTRt RR,, RTRf]

We use k-means [13] with the assumption that the set of encountered orientations oc-

cupies a small volume of the entire space of orientation values. For clustering we represent

orientations using unit quaternions. The twelve dimensional feature vector consists of the

four components of each of the three unit quaternions. The components of the quaternions

function well with a Euclidean distance metric, since they represent rotations as a point on a

3-dimensional sphere and are easy to renormalize. Before performing k-means, we filter out

the kinematic configurations for which the rate of change of the orientation of the forearm

with respect to the head is below a threshold. We perform this prefiltering step because we

intend to relate the k-means clusters to the output from our motion segmentation system,

and image motion associated with the hand is more likely when the forearm is moving with

respect to the camera's reference frame. In addition we filter out times when the rate of

rotation of the head is above a threshold, since the background motion estimation performs

110



poorly during these large saccadic motions, as discussed in section 3.5.

For each of the k clusters, we initialize a 2D histogram, hb, that we use to coarsely

approximate Pxlc for body configuration b. For each remaining image, i, there is an estimate

of the hand's location, xi, which corresponds with the location of maximal motion within

the image. For the maximal motion location we originally used the position of the edge

with the largest Mahalanobis distance from the background motion model, although more

recently we have used the output of the interest point detector applied to the motion map

as described in chapter 4. We partition these location estimates, xi, into k sets where each

set Xb contains the detected locations associated with members of cluster b. Finally, we

coarsely approximate Pxlc using the histograms hb in the standard way.

hb(v): Ex, 6(g(x)- v)
Ex 1

where the funimction g transforms the image coordinates to the histogram's coordinates,

which typically has a lower resolution than the image. We then smooth the resulting

histogram.

For each body configuration b we now have a histogram hb. We now find the bin of

hb with the maximum value, hmaxb and convert the bin index into an approximate image

coordinate, hpob,. We also compute the variance of the histogram, hvarb

hposb = 9-1 (argmax (hb))

hmaxb = max (hb)

Estimating the Joint Lengths

For each of the k body configurations we now have a hand position estimate hpob. By

itself, this nonlinear, data-driven, model can be used to predict the hand's location within

an image given the configuration of the wearer's body as measured by the orientation

sensors. However, it gives us no direct information about the placement of the sensors

on the body, the orientations of the body parts in world coordinates, the positions of the

forearm and upperarm with respect to the camera, or the lengths of the body parts. It is

also unable to provide hand position predictions outside of the body configurations it has

witnessed, and does not provide a clear method for interpolating the hand prediction given
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a configuration in between the k means that coarsely discretize the the configurations of the

body. In contrast, once they are fit to this data, the linear and nonlinear kinematic models

do provide these benefits.

We first throw out estimates for which hmaxb < Pthresh or hvarb > varthresh, in or-

der to eliminate generally poor hand position estimates, as well as position estimates from

images for body configurations for which the hand is not visible. With the remaining

estimates, we generate pairs of body configurations and hand positions. For the body con-

figuration, we normalize the mean vector of the associated cluster to be three unit quater-

nions. Originally, we would convert these three unit quaternions into rotation matrices

Rb = [ R T Rt RTRU RT Rf , so that they could be used with the kinematic estimation

techniques of this chapter. More recently, we have used the body configuration closest to

the mean in order to avoid the chance of the mean not matching a plausible body con-

figuration. At this point we have sometimes used these pairs, (Rb, hposb), to fit the 2D,

non-projective, linear least squares model, which is very efficient. The resulting residuals

and the 3D position estimates from this model could then be used to throw out significant

outliers that correspond with very poor hand estimates prior to fitting the nonlinear model.

More recently, we have directly fit the nonlinear model to the training pairs without this

filtering step, which seems to lead to better solutions at the cost of more computation.

Summary

In summary, the system uses three tricks to discover the hand with very modest constraints

on its appearance. This same approach should work if the wearer is wearing a glove or

has an artificial hand. The first trick takes advantage of the fast 3D motion of the hand,

and its proximity to the camera, which lead to the hand having the tendency to create the

fastest foreground image motion. Second, the probabilistic model we described is able to

amplify a hand detector signal by conditioning it on the body's configuration. In this case,

conditioning on the body's configuration amplifies the weak hand signal provided by our

maximal motion detection system. Finally, the form of the kinematic model, and robust

nonlinear search for optimal parameters, finds hand hypotheses that are consistent with

a kinematic model and throws out hand hypotheses that are not. Consequently, this last

step is able to handle many bad hypotheses, such as the bad hypotheses giving a hand

position in the image when the hand is not visible for the associated body configuration.

112



Figure 3-23: This image shows a smoothed histogram of maximal motion locations for all

of the frames from the 11500 images of dataset 1. This histogram is not conditioned on the

configuration of the body. With respect to our model, this histogram is a nonparametric

empirical approximation of the density P. Notice that the lower-right third of the image

has larger probability due to hand and arm motion, and the upper-left of the image has

a strong response due to the brim of the hat, which was stationary with respect to the

camera and hence moving with respect to the background. The approximate peak of the

motion may correspond with preferred hand locations during manipulation and viewing by

the wearer.

All three tricks work together to take a very weak hand detector based on maximal motion,

and output useful 2D hand position predictions in the image, 3D hand positions relative to

several different coordinate systems, and an explicit kinematic model with joint lengths and

orientations relative to the sensors. One other point worth noting, is that using k-means

with a fixed value of k to quantize the body configurations constrains the computational

complexity of the nonlinear search by always using the same number of training examples,

k.

3.9 Putting it All Together

We now combine all of the methods of this chapter to autonomously determine the assign-

ment of the sensors to the wearer's body parts, find the relationship between the camera and

the head-mounted orientation sensor, discover the position of the hand, and finally learn a

kinematic model that includes the lengths of the major axes of the upper-arm and forearm,

the relationship between the camera and the kinematic model, and the orientations of the

body parts with respect to the sensors.
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Figure 3-24: These three images show smoothed histograms of maximal motion locations

conditioned on the configuration of the body. With respect to our model, these histograms

are nonparametric empirical approximations of the conditional density pxlc(x, b) for three

different quantized values of the body configuration, b. The left histogram corresponds with

a body configuration for which the hand is not visible, which leads to widely distributed noise

and a histogram that approximates Pn from our model. The center histogram corresponds

with a body configuration for which the hand is positioned in the center of the camera's

view. The right histogram corresponds with a body configuration for which the hand is in

the lower right portion of the image. Notice that the signal to noise ratio is high for the

right two histograms, which matches well with our model.
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Figure 3-25: The left image shows the predicted hand location from the learned kinematic

model. The center and right images show visualizations of the learned kinematic model from

the camera's view point and the world coordinate system, respectively. These particular

images illustrate a major advantage of combining wearable kinematic sensing with vision,

since the hand would be difficult to detect visually in this common low-light situation.

A trivial amount of computation produces the estimate of the hand's location using the

measurements from the orientation sensor. Given this position estimate, visual processing

related to the hand can be restricted to a small area of the image. The two modalities

complement one another, with the kinematic processing usually requiring far less bandwidth,

storage, and computation.

We successfully tested these methods on all three data sets. Within this section we

present results from a kinematic model learned from data set 1. For this test, we used

k = 100 body configuration clusters. Examples of the 100 corresponding histograms that

serve as estimates for Pxlc are shown in figure 3-24. Figure 3-23 shows the unconditioned

global histogram px. As these examples indicate, for this data set the histograms match

well with our probabilistic model.

3.10 Wrist Rotation

The kinematic model does not include an estimate of the twisting of the wrist around the

forearm's axis. For manipulation tasks, however, this wrist rotation can be very informa-

tive. In this section, we describe a method that estimates wrist orientation based on the

orientation sensor data and the learned kinematic model.
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Figure 3-26: The left image shows the predicted hand location from the learned kinematic

model. The center and right images show visualizations of the learned kinematic model

from the camera's view point and the world coordinate system, respectively.

Figure 3-27: The left image shows the predicted hand location from the learned kinematic

model. The center and right images show visualizations of the learned kinematic model

from the camera's view point and the world coordinate system, respectively.

Camera

rif

Figure 3-28: We can use the learned kinematic model to estimate the orientation of the

wrist, 9 w.
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Estimating Wrist Orientation

We can find the wrist's orientation using the absolute orientation information from the

forearm along with the major axis of the forearm estimated by our learned kinematic model.

One complexity that we must be careful to address is the influence of global rotations of the

body on the wrist rotation estimation. For example, if a person were spinning in place with

his arm by his side, the global spinning would be interpreted as wrist rotation with respect

to the absolute orientation measurements from the forearm, Rf. In order to avoid this, we

find the relative orientation of the forearm, Ruf, with respect to the absolute orientation of

the upperarm, Ru, prior to finding the wrist orientation.

Ruf = RTRf

This works because the forearm and upper arm are only connected by a DOF rotational

joint at the elbow followed by a rotational joint around the axis of the forearm. The major

risk in doing this is the tendency of the upperarm mounted orientation sensor to be less

stably mounted than the wrist sensor with respect to twisting around the arm. Despite this

risk, in practice we've found the results to be of good quality. The learned kinematic model

can be used to estimate the rotation around the elbow, Re, and the difference between it

and the relative rotation of the forearm must be approximately equal to the wrist rotation

we desire, Ru. So,

RwRe = Rf

Rw = RufRe

where the rotation around the elbow, Re , has the following axis and angle of rotation,

which is computed using the transformed forearm vector jf from the kinematic model.

axisR = f x Rufjf

angleRe = arccos (jr, jf Rufj)

We use the angle from the axis and angle form of Rw for our unnormalized wrist orien-

tation, uw. Notice that the axis of Rw simply points in the direction of jf.
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Normalizing Wrist Orientation

We wish to be able to compare wrist orientations across sessions with distinct sensor place-

ment and different wearers, so we now find a normalized wrist orientation Ow using the

statistics of the observed angle, Su,. The orientation range of the wrist is approximately 7r.

Two simple methods for normalizing the wrist orientations, would be to find the mean wrist

orientation, or find the orientation range by looking for minimums and maximums. A risk

of using the mean orientation, is that the specific activity of the wearer will unduly bias the

measurement and require longer periods of averaging. Two risks of using the minimums and

maximums are that there may be noise in the measurements that would distort the range, or

the wearer might not rotate the wrist to the extremes. A histogram of the orientations from

data set 1 samples, shown in figure 3-29, suggests an alternative method of normalizing the

wrist orientation and lends credence to our concerns about using the mean or minimum and

maximum values. The distribution is very peaked and falls off much faster than a Gaussian,

which indicates that there is a special orientation at which the wrist spends most of its time.

We also see the highly tapered tails of the distribution as well as some rare, but extreme,

noise that would make estimations based on the minimum and maximum values poor, if not

useless. We estimate this rest point angle non-parametrically by finding the maximum of

a histogram of 09w fmod 27r, which has the advantage of avoiding any problems we might

otherwise encounter due to orientation wrap-around.
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histogram of unnormalized wrist orientations
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Figure 3-29: This figure shows a histogram of the unnormalized wrist orientations, ;uw

estimated from dataset 1. Notice that the range for wrist motion is approximately 7r radians,

as one would expect from inspection of his own wrist movement. Also, notice that the

distribution falls off much faster than a Gaussian, which indicates that during the activities

the wrist had a natural orientation to which it would return. This also matches our intuition

due to the comfort of various wrist angles and the orientation of the wrist when it hangs

relaxed by one's side. Finally, one should notice that there is noise that occasionally appears

and sits well outside of the true wrist orientation. We have not investigated the source of

this noise.
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Chapter 4

Attention & Segmentation

Duo's perceptual systems efficiently find salient segments of kinematic and visual stimuli.

For the kinematic perceptual system, a kinematic segmentation method uses the learned

kinematic model to find moments in time that are likely to border significant hand activ-

ity and correspond with important 3D positions of the hand. For the visual system, the

learned kinematic model and a visual interest point operator select salient locations and

sizes at which to find visual segments. This staged, attention-based filtering used by the

visual system is important for practical applications, since our method of producing visual

segments runs at well-below frame rate due to its large computational requirements.

Within this chapter, we first present our method for kinematic segmentation. Next, we

describe the attention mechanisms used for the visual system, including a new visual interest

point operator with associated shape descriptors. We then conclude by describing our image

segmentation algorithm, which produces local, approximate, parts-based segments.

4.1 Kinematic Segmentation

The kinematic segmentation algorithm for hand activity splits kinematic activity at local

minima of multi-scale, low-pass filtered estimates of the hand's velocity. Hand velocity

serves as a useful measure of hand activity. The hand must make physical contact with

items in the world in order to influence them, so the body propels the hand from position

to position in order to physically interact with items of interest. Most of this propulsion is

provided by the arm, which moves the hand very rapidly between positions with a unimodal

velocity profile that tends to peak near the center of the reach and scale linearly with
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distance [29]. Consequently, acts of manipulation can usually be broken into three parts:

propelling the hand to the appropriate position and matching the velocity of the item of

interest, interacting with the item, and propelling the hand back to the body or another

item in the world. In real life manipulations, the transitions between these parts of the

hand's activity tend to be blurred, but the velocity before and after interacting with an

item does momentarily diminish relative to the high velocities used to propel the hand

between positions. As always, there are exceptions, such as with ball contact in volleyball,

which may result in a very small velocity change relative to the hand's motion.

If we can find these points of diminished velocity, we can better interpret captured video

and kinematic data. For example, for machine augmented browsing and annotation as we

describe in chapter 6, we can summarize video based on these special moments in time, see

figure 4-1. Similarly, as we will explore in chapter 5, the hand positions associated with

these special moments in time have strong structure, which we can discover autonomously.

Within the literature, researchers have often used multi-scale local minima or zero-

crossings to segment motion capture data [27, 7, 21, 50]. However, these methods typically

use joint angles, as opposed to the estimated motion of the hand. As discussed above,

hand velocity is a well-founded method for segmenting the natural manipulation activities

in which we are interested. Many motion capture researchers process free-form motions,

such as dancing and martial arts, as opposed to natural manipulation activities. Further-

more, motion capture data for people performing everyday tasks within unaltered home

environments is rare, if not unique, due to the challenges of capturing this type of activity.

Finally, combining motion capture data with first person video is uncommon.

4.1.1 Detection Overview

We wish to detect these transition points using our kinematic model. Local minima are an

appropriate feature for detecting these transition points due to three reasons: the typically

smooth unimodal hand velocity of reaching, the tendency for the hand velocity to scale

linearly with reaching distance, and our lack of knowledge about the two frames of reference

between which the hand is transitioning. Likewise, velocity profiles for reaching tasks over

different distances can be coarsely modeled as being scaled versions of one another, so

a multi-scale filter bank with scaled unimodal filters is appropriate for finding activity

across different distances. In general, long distance motions tend to correspond with more
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Figure 4-1: This figure shows an automatically summarized 120 frame sequence of the

wearer getting a drink out the refrigerator. Frames were selected that corresponded with

local minima detected by the kinematic segmentation system, which in this case used the

hand-tuned kinematic model. The automatically selected synopsis frames correspond well

to reaching for the refrigerator door, opening the refrigerator door, reaching into the re-

frigerator to grab a drink, reaching for the refrigerator door, and closing the refrigerator

door.

123



~0.6 I
20.4

0.1 E~ ~ ~ ~~~~~~'. f2 t J , l/ ' .
~~0 ~2.5 5 6.3 8

0.08 [ .?;,. 

0.06.
0.041,. 0.02 ,0.12[0,08 _' _

0.04 - / \

0.02~~~~~~~~~~~~~~~~~~/

0 4

time in seconds
8

Figure 4-2: This figure shows the results of the kinematic segmentation algorithm applied

to a sequence with the wearer drinking from a cup. The top row shows the images that

are closest in time to the kinematic segmentation times. The second row down shows the

smoothed hand velocity in units of arm lengths per second. The red spikes indicate local

minima detected by the kinematic segmentation system. The third row down shows the

raw hand velocity estimates based on the hand position estimates provided by the learned

kinematic model over time. In general these estimates are noisy. The bottom row shows

the Gaussian smoothing filtered used for these segmentations.
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Figure 4-3: This figure shows an example of the kinematic segmentation algorithm being

run on a sequence in which the wearer orients towards a writing pad on a table, reaches

and grabs the notepad, manipulates the top page, and begins to write on the notepad.
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Figure 4-4: This figure shows another sequence of kinematic segmentations using the same

form as figure. The sequence shows the wearer reaching for the door knob, opening the

door, moving through the doorway, closing the door, and bringing his hand back to his side.

125

2 6 8



t 0. O

4 ' -- \ '' ' 1'~~~~~~~7 '

41 5.5103

0 4.1 5.5 .2 1030 4,1 5.5 8,2 10.3

S ; ,00Xi ....... i \' A \~0 ''vl I'--. 1-//V\,

0 | . . 2eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee///eeeeeeeeeeeeeeeeeeeeeeheee1.

0 2 4 6 8 10

time in seconds

Figure 4-5: This figure shows the results of kinematic segmentation while the wearer walks

around a room. The graphs are as described in figure. The segmentations occur because we

are using the hand's velocity relative to the position of the torso and the orientation of the

world, so that spinning in place results in estimated hand velocities. If we are interested in

manipulation events we may want to filter out these segmentations by detecting walking.

For other tasks related to navigation these segmentations may be useful, though we do not

explore this possibility. We measure velocity with respect to the world's orientation in order

to better account for hand velocity due to torso rotation, such as when twisting to open a

door.
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significant transitions. Figures 4-2, 4-3, 4-4, and 4-5 show examples of this signal processing

performed at a single scale that we have used in this thesis.

We now need to select a frame of reference from which to measure the velocity of the

hand. Ideally, we would know the frames of reference for the start and the end of the hand's

journey and in some way interpolate our velocity measures between those two frames. We

can safely assume that most of the manipulation activities in which we are interested will

either be performed relative to a body related frame of reference or with respect to the world

frame, since most objects are stationary with respect to the world prior to being grabbed

for manipulation. Given that our kinematic model is based solely on absolute orientation

measurements, it does not give us a direct way of measuring the hand's velocity with respect

to the world frame. We can, however, approximate this velocity since the position of the

torso tends to move slowly within the world relative to the hand's rapid motion. In many

manipulation tasks the torso tends to be a stable frame of reference from which the arms

and head move, observe, and manipulate the world. Using our kinematic models, we can

measure the velocity of the hand with respect to a position on the torso using the world

orientations of the body parts to find a good approximation of the world velocity of the

hand. In contrast to the world frame, we can directly estimate the velocity of the hand

with respect to the parts of the body. The torso is the most useful frame of reference

for detecting these transitions, since many manipulation tasks occur in a nearly constant

frame of reference with respect to the torso, which we will discuss further in section. For

this frame of reference we normalize the rotation matrices of the kinematic model by the

absolute world orientation of the torso.

[ RTRt RTRU RtTRf ]

The torso's orientation becomes I, so any position on the torso will result in the same

hand velocity. The head's frame of reference could be useful for segmenting some activities

that involve moving objects to the head, such as objects for eating, drinking, and listening.

However, head rotations are common and outside of these can generally lead to irrelevant

local minima in the hand velocity.

Fortunately, for many hand activities, the hand's velocity is high enough that multi-scale

local minima with respect to the local torso frame are similar to the local minima measured

with respect to the world torso frame. For these kinematic segmentation results, we use the
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world torso frame.

4.1.2 The Specifics

With the hand-tuned model, we have used hand velocity estimates with respect to a centered

position at the base of the torso using absolute world orientations. The 3D position of the

hand, x, at time step i is a function of the orientations of the torso, upper arm and forearm

(Rt, R, and Rf) at time step i with respect to the world, and the vectors that represent

the torso length, upper-arm length, and forearm length (t, ju, jf).

jt

xi= [ Rti R ui Rfi ] u

Ji

The automatically adapted kinematic model only provides a length of the torso from

the base of the neck to the shoulder, since it does not estimate a length for the major axis

of the torso. We can either use this value for jt and estimate the velocity of the hand

with respect to the position at the base of the neck, or we can estimate the velocity of

the hand with respect to the base of the torso by approximating the length of the torso's

major axis, and its orientation with respect to the torso orientation sensor. For example,

we could potentially estimate the torso's length by using the relationships between forearm

length, upperarm length, and torso length from population statistics. Possibly due to a

failing sensor, the torso dimension estimate from the learned kinematic model is poor. For

this work, we simply use the estimated velocity with respect to the position of the base of

the neck on the learned kinematic model and the orientations with respect to the world.

Given these hand position estimates, we compute the first difference of the positions

and the associated time stamps, t, to obtain a linear estimate of the hand velocity, v, at the

center time, (ti+1 + ti)/2.

Xi+l - Xi
ti+1l -ti

These estimated samples of the hand velocity are now measured and calculated at around

100Hz, although some of our results from older data sets use samples at 10 to 15Hz. Even

with the newest system, the actual frequency varies based on a number of factors, not the

least of which is the computational load for the system. Since the system uses Linux without
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a hard real-time task scheduler the frequency and phase of the samples can show significant

jitter. 100Hz is a relatively high frequency with respect to the rate of the significant units

of kinematic motion in everyday activity, and is sufficient for segmenting the majority of

hand activity.

We now filter these velocity estimates with low-pass filters, fj, at a series of scales j.

The specifics of the smoothing, low-pass filters do not seem to be too important for the

tests we have performed, although given the common velocity profiles of the hand, smooth

unimodal filters are sensible from a matched filter perspective. For very efficient processing,

a simple block filter of various lengths can be sufficient, which only requires an addition

and subtraction for each new sample. Given more processing power, multi-scale Gaussians

can be used, possibly with downsampling. For this section we use multi-scale Gaussians to

filter the velocities. Gaussians have the advantage of being used in a large body of work on

the scale-space analysis of signals. Other types of wavelet type processing would most likely

be effective too. We normalize the filter elsewhere, so we drop the multiplicative Gaussian

normalization to give us the following set of filters:

t2

fj(t)=e J

We perform the following computation to compute the smoothed velocity estimates, s, at

each scale, j. The equation is essentially a correlation (or convolution assuming symmetry of

the filter) between the filters and the velocity signal. To compensate for jitter and frequency

changes in the velocity samples, the filter is evaluated at appropriately shifted times and

normalized to sum to one. Potentially superior compensation methods exist, for example

interpolating and resampling the velocity signal at a uniform frequency and then performing

standard convolution, but this method for computing s works sufficiently well.

s3t ti+i+ti - t) v
ti+i~ti - t)Ei h ( 2j _t

Finally, after computing sjat a sequence of times, tk, we find local minima in these

smoothed hand velocity signals. A local minima is detected at tkif

s(tk) > sj (tk-1 ) and sj (tk) > sj (tk+ 1 )

These detected local minima, mn, now serve as hypothesized breaks between significant

units of hand motion at different scales of time and space.
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Figure 4-6: This diagram depicts the attention and segmentation system used to find image

segments of interesting hand activity.

4.1.3 Results

We show qualitative results of this segmentation method in figures 4-2, 4-3, 4-4, and 4-5.

Furthermore, in chapter 5, we show that the hand positions associated with these special

moments in time have strong structure, which we can discover autonomously.

4.2 Visual System Overview

As shown in figure 4-6, for visual processing the learned kinematic model is used to find

times and image locations worthy of further processing. From the filtered stream of kine-

matically interesting images, weighted edge maps are computed with weights that indicate

how important an edge is to the particular situation. After this, a visual interest point

operator takes the weighted edge map as input and finds salient image positions with asso-

ciated scales, represented as radii, [(xl, yi, r1 ), (x2, Y2, r2)...]. These interest points can then

be further filtered based on their relationship to the kinematically predicted hand location.
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Finally, given the set of remaining interest points, the visual segmentation system finds a

coherent visual segment for each position and scale tuple.

Our visual segmentation system, which we describe later in this chapter, performs com-

putationally intensive image segmentations at a rate of around 5 to 10Hz on a 3GHz AMD

machine, which necessitates significant filtering of the vast number of possible positions,

scales, and times by the attention system in order to allow for practical computation times.

For example, to collect the segments that we will analyze in chapter 5, Duo's visual at-

tention system uses the following measurements to efficiently direct Duo's computational

resources toward the wearer's hand and the objects the hand is manipulating:

1. Select images that have high kinematically estimated visibility of the hand.

2. Select images that have high kinematically estimated motion of the hand.

3. Compute edge maps weighted by the edge's amount of foreground motion, where the

edge point's foreground motion is the Mahalonbis distance between its motion and

the global 2D affine motion model, as described in chapter 3.

4. Apply the visual interest point operator we describe in the next section to these motion

weighted edge maps in order to produce a list of interest points.

5. Select the resulting interest points that are near the kinematically estimated position

of the hand.

6. Use the visual log-polar image segmentation method we describe later in this chapter

to find an image segment for each of the remaining interest points.

By kinematically selecting images in which the hand is highly visible, and moving rapidly,

the visual attention system selects moments in time at which motion based interest points

are likely to do a good job of selecting interest points associated with the hand and any

object it might be manipulating. Consequently, as we show in chapter 5, the resulting visual

segments tend to be of the hand, and objects the hand is manipulating.

4.3 From Visual Edges to Points of Interest

Our motion processing system only provides motion information at strong edges within the

image. More generally, important image information is often concentrated around strong
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H
Figure 4-7: This figure shows an unfiltered series of interest point salience maps produced

by this algorithm when given a white rectangle as input. The scale associated with the

maps increases from left to right. Strong responses in the maps correspond with corners,

parallel lines, and the ends of the rectangle at various scales. The output of the algorithm

has similarities to the output from classic image processing techniques such as the distance

transform and medial axis transform, which can be viewed in terms of wave fronts that start

at the edges and propagate away from the edges, intersecting one another at significant

locations.

edges. We would like to combine the information distributed across the edges in a way that

helps the attention system. Multi-scale methods for finding interest points within images

with distinct regions have become popular within the machine vision literature. Interest

point detectors have been used as a precursor to a variety of recent object recognition sys-

tems [36, 37, 38, 64, 24]. David Lowe's interest point methods, which are especially popular,

are supported by long developed formalizations of continuous scale-space representations of

images [35]. They are particularly effective when the shape of the regions of interest are

roughly circular and the interiors of the regions of interest have an average pixel value that

is significantly different from the exterior's average pixel value. Due to these characteristics,

these methods have been described as blob detectors. These methods are not well-suited

to regions of interest that are primarily defined by varying contrast strongly localized at a

region's border, nor are they appropriate for weighted edge maps as provided by our motion

processing system. Within this section we describe our interest point method that serves

as a complementary, edge-based approach to these region based interest point methods.

The algorithm we present is computationally efficient and suitable for real-time pro-

cessing. An example of the raw output maps is show in figure 4-7. In addition to finding

interest points in an image, we present a computationally efficient variation of this algo-

rithm that produces shape descriptors for each interest point that characterize an interest

point as corresponding to a corner, parallel lines, or a circle and provides an orientation for
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Figure 4-8: This figure depicts the approximate locations of the two votes at scale s cast

by an edge with orientation 9 and position (x, y).

Figure 4-9: This figure shows the radius, r, as a function of the scale index, s, for parameters

rmin = 1.1, rmax = 20.0, and c = 9.

this shape, if it is not too circular. A single, non-circular shape feature defines a transform

in position, orientation, and scale relative to a corresponding shape feature, which is useful

for finding alignments between sets of feature points. These features serve as a promising

compromise between highly complex point descriptors [3, 43, 4, 15, 5], and overly generic

point descriptors, such as classic corner detection methods [17, 12].

4.3.1 Edge Based Interest Points

The input to the interest point detector consists of a set of weighted edges, ei, where each

edge i consists of a weight, wi, an image location, (xi, yi), and an angle, Oi. In a manner

similar to a Hough transform for circles [17], each edge votes on locations in scale-space

that correspond with the centers of the coarse circular regions the edge borders.
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For each edge, we add two weighted votes to the appropriate bin locations (b, by) at

each integer scale s. As depicted in figure 4-8, within the original image coordinates the

two votes are approximately at a distance r from the edge's location and are located in

positions orthogonal to the edge's length. For this section, we assume that the angle i

describes the direction of the edge's length and that Oi is in the range [0, 7r), so that no

distinction is made between the two sides of the edge.'We define r to be scale-invariant

with respect to the integer scale index s with r+l a constant multiple of rs. Given the

constants h and g, r is defined as follows.

rs = exp (h(s -1) + g)

rS+1 = exp(hs + g) = exp(h)
rs exp (h(s - 1) + g)

We choose h and g so that r is between rmax and rmin inclusive, and s is an integer

that ranges from 1 to c inclusive. The exponent of constant growth is determined by rma,,

rmin, and the number of scales c, see figure 4-9.

rmin = r = exp (g)

rmax = rc = exp (h(c- 1) + g)

which implies

g = log(rmin)

h - log(rm) - log(rmin)
C-1

which can be easily verified.

For each scale s there is a 2D histogram that accumulates votes for interest points.

The discretization of these histograms is determined by the integer bin length, Is, which

scales linearly with the scalar parameter . Higher values result in larger bins and lower

resolution histograms. For convenience, ls can be specified in terms of the approximate

length of the radial dimension of the log-polar discretization

Is = ceil (3 (rs+o.5 - rs-0.5))

1For some applications, such as finding bright regions, this algorithm can be adapted to use a full range

of angles.
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or the arc-length of this discretization,

is = ceil (-lrs)

Vote accumulation uses discretized angles a.

a(O)= = round( (o + 2))

In order to calculate the bin indices, (br, by), for the 2D histogram at scale s, we first

quantize the displacement vector, d,

d (, s) = round (i cos(a(9)))

dy(0, s) = round (I sin(a(9)))

which results in the displacement vector being constant across all edges with a given

angle regardless of position, see figures 4-10 and 4-11. Given this quantization, a look-

up table of displacement vectors can be precomputed for efficiency. We then add this

displacement vector to the scaled and quantized position of the edge.

bx(x, 0, s) = round () + d(0, s)

by(y, , s) = round () + d(O, s) = b(y, 0- , s)

Now that we have the bin indices, we can write the following equation for the resulting

interest point salience map, map, for scale s using delta functions, 

1 if (x = 0) A (y = 0)
~(x,y) =

0 otherwise

map8(u,v) = Eiwi( (u-b(xi, Oi,s),v-by(yO,s)) +

5(u - bx(xi, i + 7r, s), v - by(yi, i + r, s)))

Finally, in order to soften the effects of our block discretization, we low-pass filter map8

with a separable, clipped, FIR Gaussian, for example a 3x3, 5x5, or 7x7 filter.

smoothedmaps = G * maps

which is equivalent to giving each edge a Gaussian vote distribution with
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Figure 4-10: This figure shows the histogram bins that can receive a vote from an edge

at position (0,0) for some angle 0. Each of the nine diagrams represents the 2D his-

togram for a different scale s. These graphs were generated by placing a dot on a

position if (bx(O, , s),by(O, , s)) equals that position for some value of , notice that

(bx(O, , s), by(O, 0, s)) = (dx(0, s), dy(0, s)). The specific quantization of the circle varies

by scale. For this visualization rmin = 1.1, rmx- = 20.0, c = 9, 3 = 0.5, and n = 32.
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Figure 4-11: This figure shows how the 2D histogram at scale, s = 6, from figure 4-

10 translates as the position of the voting edges translates along x. These graphs were

generated by placing a dot on a position if (bx(x, 0, 6), by(0, 0, 6)) equals that position for

some value of 9. Due to the quantization of (dx, dy), the shape of the circle remains constant

with translation. For this scale, the edges need to translate 2 units in order for the histogram

to translate 1 unit. For this visualization rmin = 1.1, rmax = 20.0, c = 9, / = 0.5, and

n = 32.

smoothedmap.(u,v)= i wi( G(bx(xi, i, s)-u, by(yi, i, s)-v) +

G(bx(xi, i + 7r, s) - u, by(yi, Oi + 7r, s) - v))

This is also approximately equal to blurring the weighted edge map by scale varying

Gaussians.

4.3.2 Calibration

Ideally, the interest points resulting from a shape that is rotating and changing in size would

all have the same value. We introduce two scalar functions norms and norms to reduce

scale dependent variations and angle dependent variations respectively. The values for these

two functions are determined empirically using two calibration steps. They are used in the

computation of the interest point salience maps as follows.

maps(u,v) = norms(s) i normo(Si)wi( (u-bb(xi, i,s), v-by(yi, i, s)) +

(u - b(xi, Oi + 7, s), v- by(yi, Oi + 7, s)))

These two calibration steps help the algorithm successfully compare interest points

across scales and reduce variations due to rotation. The Cartesian discretization of the
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Figure 4-12: This figure shows three calibration images we use to help normalize the interest

point values that would result from a shape as it varies in orientation and scale. For both

normalizations in orientation and scale, we use this rotating half plane as input, which

results in the scale-invariant shape of a straight edge. The angle of square calibration

images increases from left to right. For the results within this thesis, the calibration steps

use 360 rotated calibration images.

binary edges used as input for interest point processing leads to variation over rotation.

Vertical and horizontal edges have more edge pixels per unit length than diagonal edges,

which gives them more weight in the interest point algorithm. The specifics of the edge

detection algorithm can also introduce variations over rotation. Antialiasing could reduce

these sources of variation by representing each edge pixel with several properly weighted

edge pixels. Although effective, this approach would substantially increase the processing

required, since the computational complexity increases linearly with the total number of

edge pixels. We instead mitigate the effect of these variations by performing additional

edge thinning, scaling the edge weights with an empirically determined angle dependent

value, and performing Gaussian smoothing on the resulting histograms.

We use the rotating edge, shown in figure 4-12, as the rotation calibration pattern.

The mean value of a circular region of the resulting smoothedmaps (u, v) at some scale s

is computed for each orientation of the rotating input image. These mean values are used

to pick a scalar value for each orientation that would lead to a constant total, as shown in

figure 4-13. These normalized orientation values would be likely to vary some with scale as

well, which we could normalize during processing without much additional computation, but

would require a single time consuming calibration of greater complexity. For the work we
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orientation dependent edge normalization
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Figure 4-13: This figure shows an example of the resulting angle dependent normalization

weights from calibration. The graph shows that edges of the same image length contribute

different totals of votes due to their angle. The graph shows that the vote total, vh, from

a horizontal edge will tend to be related to the vote total, vd, from a diagonal edge of

the same length by 0.88vh z 1.28vd. These empirically measured values make sense since

Vh 1. 28 Z -Vd 0-.88 v2 is the ratio we would expect given edges with Cartesian sampling and square

pixel. A pixel with sides of length 1 will have a diagonal of length XV and consequently an

ideal diagonal edge must be multiplied by vX to match the unit weight per unit length of

a horizontal edge. It is also worth pointing out that this is not an insignificant difference in

voting weight.
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scale dependent normalization
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Figure 4-14: This figure shows the mean values of interest points indexed by scale that

result from the input of the edge calibration image of figure 4-12. We normalize the maps

so that these mean values become equivalent, since an edge viewed from any scale is still an

edge and should produce interest points with the same weight. As we would expect, these

empirically determined mean values increase with scale, since interest points at larger scales

sum the votes from more edges.
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present here, we take the simpler approach of picking a single scale and using the orientation

normalization values from that single scale for all scales.

After normalizing variations due to rotations, we normalize variations over scale. Once

again, we empirically determine the values for normalization rather than attempting to

model the sources of variation in detail, see figure 4-14. Clearly some form of normalization is

required, since as a shape is enlarged the total number of edge pixels representing its border

increases, which causes corresponding interest points for the shape to have larger values.

Additionally, some scale dependent variation results from the details of the quantization

across scales.

4.3.3 Fourier Shape Features

By weighting the votes by functions of the edge's angle, f and f2, we can compute useful

shape related features for each interest point.

maps(u, v) = norms Ei norm0,wi( f(0)6(u - b(xi, Oi, s), v - by(yi, Oi, s)) +

f2()6(u - bx(xi, Oi + 7r, s), v - by(yi, Oi + r, s)))

The effectiveness of having two functions, f and f2, requires that the edge angle, , be

restricted to a non-redundant angular range, such as [0, r), which is sufficient to describe

all the possible edge angles. Without this restriction, the application of one of the functions

over another would not be distinct.

Setting fl and f2 to Fourier basis functions can be used to detect parallel edges and

corners, in contrast to the entire circles detected when they are constant. We can detect

corners using

fi = cos(9)

f2 = -cos(0)

and

fi = sin(9)

f2 = -sin(O)

as shown in figure 4-15, to give us two sets of c maps each. The magnitude of these

two corner maps responds strongly to rounded corners and arcs that subtend 7r radians, see
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Figure 4-15: This figure shows the weighting functions used to generate complementary

maps whose magnitude responds strongly to rounded corners and arcs, but weakly to parallel

lines and circles, and whose angle points towards the interior of arc-like shapes. Two

functions fl and f2 are required, since each edge has two sides that vote. The result,

however, is a single continuous weighting function for each vote as a function of the vote's

angle 0 from the edge, which is displayed in these graphs. In this case, the weighting

functions are cos(9) and sin(O). The two values from a location on the resulting maps

approximately correspond to the result of multiplying the edge distribution by these two

functions. Notice how the weights from two sides of a full circle would cancel each other to

zero. Likewise, notice that as an arc begins to subtend greater than 7r radians, the magnitude

of its response begins to decrease. Finally, it's worth noting that perfectly parallel arcs will

cancel each other out.
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fl=sin(20), f=sii 20)

O

Figure 4-16: This figure shows the weighting functions used to generate complementary

maps whose magnitude responds strongly to parallel arcs, but weakly to circles, and whose

angle can be interpreted as pointing parallel to the parallel arcs. Two functions f and

f2 are required, since each edge has two sides that vote. The result, however, is a single

continuous weighting function for each vote as a function of the vote's angle 0 from the

edge, which is displayed in these graphs. In this case, the weighting functions are the

Fourier basis functions cos(20) and sin(20). The two values from a location on the resulting

maps approximately correspond to the result of multiplying the edge distribution by these

two functions. Notice how the weights from two sides of a full circle would cancel each other

to zero. Likewise, notice that an ideal arc subtending 7r radians would have zero magnitude.

As an arc starts to subtend more than r, the magnitude of its response begins to decrease.

Finally, it's worth noting that perfectly parallel arcs will give a maximal response.
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Figure 4-17: Given ideal edges with unit weight, and ideal continuous sampling of the scale-

space, these three graphs show the edge input that would result in the largest possible

magnitude for the three shape feature maps. From left to right, a circle would give the

maximal response for the circle feature map, a half circle would give the maximal response

for the corner feature map, and parallel arcs would give the maximal magnitude response

for the parallel feature map. Please note that the orientation of these inputs will not affect

the magnitude of the response, only the angle. These shapes correspond with the rectified

Fourier components for frequencies of 0, 1, and 2.

0.6jr 0,5,

/ >'0
r- 

Figure 4-18: Given ideal edges with unit weight, and ideal continuous sampling of the scale-

space, these two graphs show edge inputs that would result in a zero magnitude response

from the corner shape map. Please note that the orientation of these inputs will not affect

the magnitude of the response, only the angle. These shapes relate to the orthogonality of

the Fourier components of frequency 0, 1, and 2.
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Figure 4-19: Given ideal edges with unit weight, and ideal continuous sampling of the

scale-space, these two graphs show edge inputs that would result in zero magnitude for

the parallel shape map. Please note that the orientation of these inputs will not affect the

magnitude of the response, only the angle. These shapes relate to the orthogonality of the

Fourier components of frequency 0, 1, and 2.

figure 4-17, but responds very weakly to parallel lines and circles, see figure 4-18. The angle

of these two corner maps points toward the interior of the shape.

We can detect parallel edges by doubling the frequency

fi = cos(20)

f2 = cos(20)

and

fi = sin(20)

f2 = sin(20)

as shown in figure 4-16, to give us two more sets of c maps each. The magnitude of

these two parallel maps responds strongly to parallel arcs, see figure 4-17, but responds

very weakly to corners and circles, see figure 4-19. The angle of these two parallel maps can

point parallel to the parallel arcs.

Clearly we could continue to find the responses to higher frequencies, until we could

reconstruct a function that represents the summed input votes as a function of angle, but

we've had success with these three lowest frequency components that do a reasonable job of

balancing fidelity, generality, and computation. In addition, higher frequencies are likely to

correspond with uninteresting noise in the input. Example magnitude maps resulting from

an ideal rectangle are shown in figure 4-20.
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Figure 4-20: From left to right, these three columns of images show the magnitude of the

circle map, the corner map, and the parallel map when given an input of a white rectangle.

Scale increases from top to bottom, and each row shows the aligned responses for a given

scale. The figure shows that features map locations that correspond with the corner's of

the rectangle, the parallel lines of the rectangle, and the ends of the rectangle respond as

we would expect from the discussion within this section.
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4.3.4 Computational Efficiency

The complexity for computing the feature maps maps is linear with respect to the number

of edge points. For a single set of feature maps, maps, over scale each of the n edge points

must update two bins at each of the c scales, resulting in 2cn bin updates. For the five sets

of shape feature maps this gives 10cn bin updates, which in practice is small enough for

real-time video processing.

4.3.5 Filtering the Interest Points

Once we have these various interest point maps, we would like to filter out points that are

uninteresting and select points that are likely to correspond with a salient region. We do this

by selecting points that are local maxima in position and scale. If the circular magnitude

is less than a threshold, we also filter out the interest points. If we calculate the circular

magnitude map from unweighted edges, then after calibration we should set this threshold

to a least remove any interest points that primarily correspond with a single edge point.

More generally, the values of the circular map can rank the interest points across scale. We

use this method to select the top 10 interest points to obtain the segments we process in

chapter 5. We can also select desirable points based on the magnitudes of the shape maps.

Two powerful measurements are the ratio of the parallel magnitude map to the circular

magnitude map and the ratio of the corner magnitude map to the circular magnitude map.

These ratios characterize the shape at the interest points, but also normalize out fluctuations

due to edge weighting. If the parallel ratio is high, it means that the majority of the edges

contributing to the interest point form a parallel shape. Likewise, if the corner ratio is high,

it means that the majority of edges contributing to the interest point form a corner shape.

4.3.6 Integral Region Features

After filtering the interest points based on their Fourier features, the strength of their

response, and non-maximum suppression, the system can quickly compute a variety of

region based features for each of the remaining interest points using the "integral images"

of various feature maps, as popularized by Viola and Jones in [61]. A conservative region

would use the inscribed square for the circle associated with each interest point. We've

experimented with several types of distinctive integral image features. Most of these region
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features use the standard method of efficiently creating an "integral image" , N, from a

feature image, I, with the same dimensions as the original edge image using

(xy) E I(u,v)
v=[O,y] u=[O,X]

and then efficiently computing the sum, S, of the original feature image, I, over a

rectangular region defined by [xleft, Xright, ytop, ybottoml] with

S(Xleft, Xright, Ytop, Ybottom) = N(Xright, Ybottom)-N(Xright, top)-N(Xleft, Ybottom)+N(Xleft, Ytop)

For a given interest point at bin location (xb, Yb) and scale s the square region would be

defined in terms of the circular region of I with center (msxb, msyb) and radius r, which

can sensibly be translated into the square circumscribed by this circle

Xleft = msXb -

Xright = msxb + r

Ytop = msYb -

Xbottom = msYb + 

or the square inscribed with this circle

Xleft = msXb -rs

Xright = msXb + rs

Ytop = msyb - r

Xbottom = msYb + rs

In order to better compare these region related features across scales, we typically use

the average value, A, across the region.

A(Xleft Xright, Ytop, Ybottom) = S( left, xright, Ytop, Ybottom)
(Xright - Xleft)(Ybottom -Ytop)

We have used this method for a variety of feature types including color components and

the Laplacian of color components. For color components we've used RGB and saturation

and value from HSV, as well as grayscale values.

4.3.7 Fourier Integral Features

For cyclic quantities, such as hue and gradient angle, the sum or average value of the

quantity has the undesirable effect of neglecting the cyclic nature of the feature, and hence
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misrepresenting the distances between values. Moreover, sometimes we would like to take

advantage of the power of histograms for representing distributions of feature values over

a region, rather than relying on the average value. For some features, such as orientation

and brightness, we may also wish to introduce some invariance to additive change.

For cyclic quantities, we could use two feature images in order to represent the quantities

as unit vectors with angles that represent the value of the quantity. Averaging these vectors

gives a measurement that represents the cyclic nature of the features at the cost of additional

computation. We can extend this approach by applying a function f to the feature values

prior to computation of the integral image.

Nf (XI) = E E f MUV))
v=[O,y] u=[O,x]

In which case Nsi, and Nc,8 would give us the unit vector representation. By using

additional Fourier basis functions for f we can represent the distribution of feature values

over the region with increasing levels of resolution in frequency. Moreover, the magnitude

of these paired components, such as (N, 8 + Nin)1/2, can serve as shift invariant features

describing this distribution.

4.3.8 Results

We have performed a variety of informal tests with this interest point operator, associated

shape descriptors, and integral features for tracking and object correspondence. However, we

do not report these results here. Within this thesis, we do, however, use the basic interest

point operator provided by the circular map to select interest points based on a motion

weighted edge map. The top interest point is used to select the maximal motion position

used for the weak hand signal of chapter 3, which is crucial for learning the kinematic model.

The top 10 interest points within a threshold distance of the estimated hand position are

used to initialize the image segments collected for chapter 5, which results in segments of

the wearer's hand and the manipulated objects. The interest point position and radius

serve as a good way to initialize the log-polar segmentation method of the next section. For

intuition about the parallel shape features we show two example images in figure 4-21.
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Figure 4-21: These two images show the top 8 shape features at a single scale for these two

images of beavers from the Caltech 101 database [16]. Blue circles mean that the interest

point at the corresponding scale has a strong parallel magnitude, and the blue line in the

middle of the circle shows the angle of the parallel shape. Green circles mean that the

interest point at the corresponding scale has a strong corner magnitude, and the green ray

in the middle of the circle shows the direction of the corner shape. The two beavers have

strong parallel shape along the axes of their bodies.
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4.4 Log-Polar Image Segmentation

We present an iterative algorithm for image segmentation that efficiently evolves a closed

curve expressed as a radial function of angle. The curve evolution consists of two steps

that are repeated until a convergence criterion is met. For the first step, given the current

center of the shape, the algorithm finds a closed curve that approximately optimizes a

parameterized cost function. To accomplish this, hypothesized borders are found along

a set of rays that originate from the current center. Then, with respect to a rotation

and scale-invariant cost function, an efficient shortest path algorithm finds a near optimal

closed curve composed of hypothesized borders and illusory borders. Illusory borders are

naturally incorporated into the optimization and relate to an explicit penalty term in the

cost function. For the second step, a new center is found using the current closed curve.

The new center is estimated based on the center of mass of the region enclosed by the curve.

By modeling the image segmentation problem using a graph within which a closed path

must be found that optimizes some cost function, our approach is similar to algorithms

such as normalized cuts [55] that partition a graph that represents the image in order to

find a segmentation. The main difference with our work is that by using a simplified and

approximate shape model with iterative optimization and a log-polar coordinate system,

we are able to create a simplified graph that allows for rapid optimization via a shortest

path algorithm rather than computationally intensive optimization methods, such as the

spectral methods employed to find approximately optimal cuts on 2D graphs [46]. The

form of our graph is essentially D instead of 2D and is specifically a topologically sorted,

directed acyclic graph. By iteratively evolving the curve, our segmentation algorithm shares

similarities to the vast number of curve evolution methods in the literature [51]. However,

we do not use level-sets, or gradient based hill-climbing to find the segment, and instead use

discrete, graph-based optimization methods. Likewise, our iterations involve two distinct

steps, the first of which adapts the location of the segment's center, and the second of

which adapts the shape of the segment with respect to the center. Many segmentation

methods use clustering in various feature spaces to find regions with similar appearance [8].

Although our method makes use of texture features and a statistical appearance model, it

is significantly different from most methods that use clustering in that it finds each segment

independently instead of finding all segments simultaneously. It's interesting to note that
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Figure 4-22: Results of using the log-polar segmentation algorithm on the wearer's arm.

evidence indicates that humans do use some form of visual segmentation early in their visual

processing system [52, 2].

4.4.1 Task-oriented Segmentation

Image segmentation is a long extant sub-field of machine vision for which an enormous

number of approaches have been proposed. Our approach relates to region growing, curve

evolution, and graph-cut methods. By requiring segments to fall within the set of shapes

described by our shape function, our approach also relates to work on shape representation.

Complicated shapes outside of this set must be approximated or represented by multiple

segments.

The greatest risk of using visual segments for visual perceptual processing, is that the

segmentation algorithm may not produce the segments that are actually useful for the

current vision task. One way to mitigate this problem is to allow a task-oriented vision

system to bias the segmentation algorithm, thereby increasing the chances of selecting useful

segments. Moreover, if each segment is found in succession rather than simultaneously, the

results of each segmentation in the series can bias the next segmentation. From a biological

perspective, one can consider this style of segmentation to be akin to an active vision system

that saccades around the image segmenting regions in succession.

Rather than attempt to represent complex regions with a single segment, our algorithm

uses many simpler segments in succession, thereby simplifying the computation of each

segment and giving opportunities for the task to influence the segmentation process. Each
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segmentation can be biased in a number of ways by the task-oriented attention system.

For example, the attention system can bias the process by location, scale, textured region

appearance, edge appearance, importance of edge features versus region features, curve

smoothness, and curve continuity. Instead of looking for a single global segmentation for

a given image, we iteratively look for simple segments as a function of several biasing

parameters, which include a location and scale that can be provided by the visual interest

point operator of the previous section. In order to produce segments across an entire image,

the algorithm must be run for many settings of the biasing parameters, which may not be

tractable over the entire space of parameter settings. This iterative formulation of global

segmentation can have advantages for task-oriented image processing, since, for example,

each segmentation in a search task can be biased by the previously found segments. For

example, our algorithm might first segment a part of a tree trunk and then follow the trunk

along its axis for further segmentations. One can think of this as allowing saccade-based

strategies for vision, such as those used in active vision systems modeled after the human

visual system. For this thesis, we use the output of the attention system in the form of a

list of interest points to direct the process of visually segmenting the image.

4.4.2 Invariance

We require that the iterative curve evolution we use be invariant to position, scale, and

rotation. More precisely, if we apply a transformation T, consisting of rotation, scaling and

translation to the original input image I and the initialization parameters P, the result

of applying the segmentation algorithm S should be the original series of evolved curves

{C 1, C2, ...Cn} transformed by T. So, if

S(I,P) {l, C2, ...Cn}

then

S(T(I),T(P)) {T(Cl),T(C2),...T(Cn)I

Consequently, we require that both the curve estimation step and the center estimation

step be invariant to rotation, scaling, and translation, as this will result in the overall curve

evolution be invariant to the transformations.
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4.4.3 The Segmentation Shape

We restrict the segmentation shape to be a closed curve described by an image location

X = (x,y) and a polar function d(8), which returns the distance, d, to the segmented

region's border from the center, X, along each angle, . This set of shapes has been

used by many researchers, since it includes useful shapes and has attractive computational

properties. In this work, we sample the function d(8) for n equally spaced values of 9, and

hence represent the function as a vector D of length n, so that the entire segmentation can

be represented as a vector S = {X, D} of length n + 2.

For complex shapes that cannot be fully represented by a single segmentation S1 we

can represent the shape as the union of a set of segments, Scomplex = {S1, S2, ...Sm}. Note

that if we ignore sampling issues, any segment describes a unique shape, but that without

further constraints a shape can be described by many different segments due to the use of

approximate shapes.

4.4.4 The Appearance Model

Normalized histograms model the appearance of the interior and exterior of the closed

curve. The segmentation algorithm takes as input a texture feature image that has been

computed from the image to be segmented. The texture image has the same height and

width as the original image, but each location holds an n-dimensional feature vector. The

algorithm and the actual C++ code allow for any number of feature dimensions. Likewise,

the actual structure of the normalized histogram is a design choice that can be tailored to

the specific application. We have experimented with a number of different feature vectors

and histogram models. For most of the work presented here, we use a six dimensional

feature vector computed at a single scale, which includes y,u,v for brightness and color, and

the magnitude of the gradients from the red plane, the blue plane, and the green plane of

the original image. For the histogram, we use six independent one-dimensional histograms,

each with 256 bin, so that the probability value associated with a given feature vector would

be computed by multiplying together the six normalized values from these six histograms.

The large number of bins works because these histograms are used to discriminate between

interior and exterior membership, rather than to generate reasonable probability values.

The two histogram models, one for the interior and the other for the exterior of the
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closed curve, are used to produce an interior versus exterior discriminant function. A

feature vector is categorized as coming from the interior, if the probability value from the

interior histogram is greater than the value from the exterior histogram. This is a maximum

likelihood categorization of the feature vector with respect to the histogram models.

Rather than actually maintain and update an interior and an exterior histogram, we

instead use a histogram for the interior and a histogram for the union of the interior and

exterior areas. The advantage of this approach is that only the interior histogram needs to be

updated upon a change in the closed curve. We could easily generate the exterior histogram

by subtracting the unnormalized values of the interior histogram from the unnormalized

values of the histogram of the union, so we know that these two histograms contain the

same information. Depending on how many feature vectors we need to evaluate, we may

choose to never explicitly compute the exterior histogram, and instead directly use the

interior and union histograms. For example, we can determine the membership of a texture

feature vector v using the following inequality:

fli interiori(vi) > fi(unioni(vi) - interiori(vi))
rFi Ej interiori(j) ri Ej(unioni(j) - interiori(j))

where interiori represents independent interior feature histogram i, unioni represents

independent total image feature histogram i, vi represents feature component i of the texture

feature vector v, and summing over j sums all of the bin counts in the histogram, which

facilitates proper normalization. If this inequality is true, then the feature vector v is

marked as having interior appearance, otherwise it is marked as having exterior appearance.

For efficiency, the denominators only need to be computed once given a particular set of

histograms. For the rest of this chapter, we refer to the interior appearance model as

the foreground appearance model, and the exterior appearance model as the background

appearance model.

4.4.5 The Edge Model

The edge model is used to generate border hypotheses and to weight these border hypotheses

based on their edge characteristics. Currently, we use a Canny edge detector with low

thresholds to generate the set of hypothesized border points. The Canny edge detector

serves two important roles when generating border hypotheses. First, with its thresholds, it

throws out border hypotheses that sit within extremely smooth regions, which helps reduce
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the chances of the closed curve passing through these locations. Without this filtering,

smooth gradients such as those found on smooth walls and the sky can result in arbitrary

boundaries along the gradient. Second, non-maximal suppression avoids overly redundant

representations of the contours by thinning the edges. Additionally, our implementation of

the Canny edge detector labels edge pixels that are strongly related to one another which is

used later in the segmentation process. In addition to the Canny edges, border hypotheses

can also be inserted at every transition detected by the appearance model, an approach that

we have used successfully at times, but requires more computation due to the additional

border hypotheses.

Texture edges and threshold adjustment are two common problems with using Canny

edge detectors. We've found the segmentation algorithm to be somewhat robust with respect

to these problems, since it also makes use of the appearance model and the border graph.

The appearance model is able to reduce the influence of texture edges by classifying them as

foreground or background points, while optimization of the border graph allows for missing

edges to be interpolated in a reasonable way. If a class of images results in too many spurious

edge hypotheses, the user has a variety of options including smoothing the image prior to

processing, increasing the threshold used by the Canny detector, and a vast literature on

filtering border points. The important aspect of this segmentation algorithm is that it can

perform well over a wide range of edge maps, including situations where the edges are sparse

with gaps in the ideal borders, and situations where the edges are too dense with respect

to the ideal borders, due to noise and texture edges.

4.4.6 The Graph

Using the border hypotheses, we construct a graph to represent all the hypothesized closed

contours, see figure 4-23. Each vertex in the graph corresponds with a border hypothesis

and each edge in the graph corresponds with a hypothesized connection between two border

hypotheses. Given a center X1 and an image I, we wish to find an appropriate distance

vector D. We assume that we have a method that produces a set of hypothesized borders,

H(O) = {bl,b 2,...bk}, for each angle , which in our implementation involves traversing

the edge map from the center X1 along a ray at each angle and inserting the border

hypotheses for each edge encountered by the ray. We then create a directed graph, for

which each hypothesized border is a vertex v(O,d) and each vertex at 0 = i is connected to
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Figure 4-23: The diagram on the left shows a log-polar graph of border hypotheses with

single connectivity and no skipping allowed, so that c = 1. The graph is improper and does

not have a solution due to too few border hypotheses and no allowed skipping. The diagram

on the right shows the same border hypotheses in a graph that allows skipping over a single

ray of border hypotheses, so that c = 2.

all the vertices 0 = i + j where j = {1, 2, ...c} and 0 is quantized to be one of a angles

with radians in between each ray. The integer value c dictates how many rays can bea

skipped when finding an optimal path, see figure 4-23. Each skipped angle results in an

illusory border and a penalty, since the path will not travel through any of the hypothesized

borders for these skipped angles. A closed path through this graph that starts and ends

at the same vertex v and only loops through the angles once, corresponds with a distance

vector D and a closed segment on the image with center X1.

4.4.7 The Cost Function

We now wish to create a cost function for the graph that will lead to useful segmentation

shapes. In order to efficiently find an optimal path using shortest path techniques, we

restrict our cost function Cost(path) to a form that can be calculated by summing the

edge costs along a path. Since any cost associated with a vertex can be added to the cost

associated with each incoming edge, we include vertex based costs for convenience.

path = {V1,V2...Vn} where ( 1 = vn) and (Oi < Oi+lVi n- 1)
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Cost(path) = E EdgeCost(vi, vi+l) + VertexCost(vi)
i=[1,n-1]

The optimal path should be invariant to scale, rotation and translation. Since we will

handle translation invariance when we estimate the center of the segmentation, we only

need to worry about scale and rotation here.

A vertex v has data associated with it, including the index of the ray on which it sits vo,

the Cartesian position of the border vx, the index of the edge group to which it belongs ve,

the number of locations categorized as having foreground appearance Vfg between it and the

current center Xi, and the number of locations categorized as having background appearance

Vbg between it and the current center Xi. Each ray also has data associated with it,

including the total number of locations categorized as having background appearance on

the ray ebg, and the total number of locations categorized as having foreground appearance

on the ray efg.

For convenience, we restrict the EdgeCost function and the VertexCost function to be

linear combinations of functions that can return values from zero to one, inclusive.

First we introduce a term for the cost of vertex to vertex distance in order to promote

smooth paths and bias the segmentation to circular shapes. We calculate this distance

function in log-polar coordinates which makes it invariant to rotation and scale

r(v) = a log (vx - Xi )

dist(vl, v2) = ((r(v2) -r(vl))2 + (v2o - v10o)2) 2

Second, we introduce a term that penalizes skipping over a ray, which produces illusory

edges.

skip(vv2) = (v2o - vlo) - 1 if neither v nor v2 is a virtual borderskip(vl, v2) =
(v2o - vl) - 0.5 otherwise

This is also invariant to scale and rotation, since it only uses the orientation of the two

vertices. With only the dist and skip terms, the lowest cost shape is a circle of any scale

that passes through a hypothesized border at each and every angle.
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Third, we create a term that penalizes edges that are not in the same edge group e. Our

modified Canny edge detector assigns the same group number e to edges that are likely to

be part of the same continuous edge.

1 if vie # v2e
edgegroup(v1,v2) = 1 if v v2

0 if Vle V2e

This edge membership term encourages the segmentation system to find curves that use

edges that are clearly related to each other. It's a coarse binary signal, but it is very efficient

to compute and use within the graph.

Fourth, we add a term that allows a penalty to be associated with border hypotheses

based on their salience, bordersalience. This is a vertex cost and is a general way of

rewarding curves that use strong edges as measured by some other system. For example,

they might be edges that have strong motion, or very high gradient magnitude.

Fifth, we add a term that penalizes vertices depending on how well they separate pixels

in the foreground and background appearance models. While traversing the a ray, points

are classified as being from the foreground model or the background model based on the

current appearance models. While traversing the ray from the center outwards, a count of

the number of pixels classified as foreground and a count of the number pixels classified as

background are updated and assigned to border hypotheses as they are encountered.

b(v, ) = (Vfg - Vbg) + ((Ebg - Vbg) - (efg - Vfg))
Obg + ofg

regionstrength(v) = 1 _ b (v, E ) + 1
2

Out of these possible terms, we have had success using just the following five terms, and

associated cost function:

EdgeCost = o 1 dist + a2 skip + a3 edgegroup + a4 regionstrength

VertexCost = a5 bordersalience

Setting the weights ai biases the segmentation system to emphasize different properties

that define a region, such as the border versus the foreground texture. For our work, we've
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set these values by hand to values that have lead to generally useful performance. For

example we've used the following settings for most of the work described within this thesis:

W=[1 3 1 3 0

These cost settings ignore the border salience term, give strong and equal weighting to

the skip and region strength terms and give the same smaller weight to the distance and

edge group terms.

It's not difficult to think of ways to automatically set these weights to constants given

training data. It's less clear what methods one would use to set them dynamically, other

than making use of contextual data to decide what settings might be more effective. An

attention system could potentially set these weights given the task.

4.4.8 Finding the Shortest Path

We have constructed a directed graph with cycles. By converting it into an topologically

sorted, acyclic graph with approximately the same optimal path, we can efficiently find a

good approximate solution.

We first pick an angle with a maximally distant vertex to be our start and end angle.

Then, before we construct the graph, we add a number of virtual borders to the list of

hypothesized borders associated with this start/end angle. If we were sure that the optimal

path would pass through one of the hypothesized border vertices at our start/end angle

we would not need to add these virtual vertices. However, the optimal path may in fact

skip over this angle and therefore have an illusory border, which would not correspond with

any hypothesized border vertex. By adding vertices we can decrease the distance between

a vertex and any possible illusory border, therefore bounding the error. We can make this

error arbitrarily small, by adding more virtual border vertices, but each additional vertex

increases the required computation. We place each new vertex at the center of the largest

gap between all of the current vertices.

Now, after having added our virtual borders, we construct the graph described earlier

in this section. We then take each vertex at this start/end angle, and substitute two new

vertices, one of which has all of the incoming edges and is labeled as a start vertex, and

the other of which has all of the outgoing edges and is labeled as an end vertex. Next, we

remove all edges which jump over the gap we have inserted into the graph. More formally, if
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we were to shift the vertex angles so that the start vertices have angle 0 and the end vertices

have angle 2r, we would then remove any edge that ends at a vertex with an angle less

than the angle of the vertex at which it starts. This construction results in a topologically

sorted, directed acyclic graph.

Given this topologically sorted, directed acyclic graph, we can efficiently find the shortest

path through by the traditional techniques of shortest paths [11]. We simply traverse the

graph from the start vertices to the end vertices, angle by angle. For each vertex we maintain

a list of pairs, each of which corresponds to the shortest path found from the associated

starting vertex, and includes a path length and the preceding vertex for the associate path.

The final result is the optimal path through the graph, which defines a path through the

edge points associated with the border hypotheses at the vertices of the graph. We now

create a new curve D by linearly interpolating between these edge points in the image.

4.4.9 Estimating the Center

Given the current center Xi and curve Di we wish to estimate a new center Xi+l1 . At

minimum we require that the update function be invariant to translation, rotation, and

scale as represented by transform T. An update function that sets Xi+l to the center of

mass, M, of the region defined by the curve Di will be invariant to T, since, as is commonly

known, the center of mass of a shape is invariant to T. This is easily shown using integrals

over the region enclosed by D to define the center of mass M

M(D)= fxf1
which is clearly invariant to T, since T is a linear transform of position

T(M(D))= T ) = f () = M(T(D))

Likewise setting Xi+1 = Xi + a(M- Xi) for a scalar a will be invariant since

T(Xi+) = T(Xi + a(M(D) - Xi)) = T(Xi) + a(T(M(D)) - T(Xi))

which allows us to reduce the convergence rate by setting 0.0 < a < 1.0. We can define

other reasonable invariant families of update equations. For example, one can define a set

of update equations that are invariant to T, restrict Xi+1 to be inside the convex hull of

Di, and require that the influence of a border on Xi+j vary monotonically with the border's

distance from the current center, Xi.
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4.4.10 Convergence

For this thesis we iterate the two steps of finding an optimal curve D and finding the center

X until the following inequality is true:

(al - ai) + (a2 - ai,) 
I<T

al + a2

where al is the area of the segment in the previous time step, a2 is the area of the segment

in the current time step, ai is the area of the intersection of the two segments, and r is a

threshold below which the two segments are considered similar enough to stop the iterations

and declare the segmentation converged. Notice that if the two areas are equal and fully

overlap, then the left side of the inequality equals 0. Also notice that if the two areas are

equal but do not overlap at all, the left side of the inequality equals 1. Alternatively, if a

threshold for the maximum number of iterations is exceeded, the segmentation is stopped

and the last segment returned.

4.4.11 Results

Despite impressive efforts to quantify the quality of visual segmentation algorithms, [39],

evaluating a visual segmentation system in isolation is a challenging and potentially ill-

posed problem. The appropriate visual segments can be task dependent, the number of

potentially valid segmentations of a natural scene can be very high, and the significance of

differences between an approximate shape and some ideal shape is unknown. Since our visual

segmentation system produces sub-segments, that have approximate shape, evaluation is

further complicated. In contrast, task dependent segmentation can be evaluated using

standard methods, although often in these situations one ends up evaluating segmentation

in terms of detection and recognition. Since our emphasis is on autonomous learning and

discovery, we let the results of the next chapter serve as evidence of the efficacy of this

visual segmentation algorithm. Within the next chapter we show results from the visual

segmentation system when used to collect segments of hands and manipulated objects, along

with examples of visual segments autonomously created and tracked through time.
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Chapter 5

Associating Visual & Kinematic

Segments

Using the attention and segmentation methods from the previous chapter, we can efficiently

collect significant visual and kinematic segments from the database of captured experience.

Within this chapter we use unsupervised clustering and tracking to autonomously find

structure within autonomously collected sets of segments. The hand segments we analyze are

3D hand positions that correspond with the local minima of hand speed from the previous

chapter. Through k-means and visualization, we show that with respect to the head and the

torso these positions are well-represented by three to four intuitive clusters. We then use

k-means to cluster appearance feature vectors that correspond with visual segments that

were generated by a visual attention system tuned to segment the hand and manipulated

objects. As we would expect, this process results in clusters that strongly represent the

hand, and clusters that strongly represent objects manipulated by the hand. Next, we show

example results from tracking visual segments over time. We then conclude by discussing

the implications of these results for future research on machines that autonomously learn

about everyday human manipulation.

5.1 Clustering Significant Hand States

Our kinematic segmentation method from section 4.1 uses the learned kinematic model to

give us a set of times representing hypothesized transitions between significant hand-related

activity. By clustering the 3D position of the hand at these transition points, we can rep-
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resent the locations between which most significant hand motions take place. We find that

for data set 1, which consists of a large number of distinct activities, these positions can be

well modeled as being in one of three or four states. These hand states are sensible and cor-

respond with intuitive interpretations and are informative for the recognition of kinematic

activity. The results also have an appealing analogy with "place cells" from neuroscience.

Experiments have demonstrated the existence of neurons that respond strongly and selec-

tively to the presence of a stimulus in a particular position relative to an animal's body, and

have further found neurons that are especially sensitive to the animal's hand [29, 45, 44, 23].

We use both the head frame and the torso frame to measure the positions for clustering.

Each frame offers a coordinate system that is informative about particular activities. For

example, the head coordinate system can show at what locations the hand is typically

observed. The clusters demonstrate that the torso tends to serve as a relatively stable and

consistent coordinate system during common activities.

Clustering with respect to the hand positions associated with segment points has several

advantages to clustering over all positions. First and foremost, as one can see from the

figures of section 4.1, the hand spends a significant percentage of its time in transit during

many common activities. By using the locations associated with these segmentation points,

we can bias the distribution towards the starting points and destinations of the hand, which

allows us to model hand motions in terms of making transitions between these states. We

can also use these clusters, which model the likely locations of action transitions, to improve

the segmentations by using position as well as velocity. Finally, the number of transition

points as measured by the segmentation algorithm is far smaller than the number of total

positions. For example, the approximately 11000 captured configurations of the body in data

set 1 result in approximately 550 segmented positions, which is a factor of 20 smaller. This

directly results in very fast processing of the data set, including the clustering we perform

in this section. With around '550 positions, we are able to run our k-means algorithm for

many values of k, and many random initializations, in just a couple of minutes.

We cluster these positions using k-means, which is fast and effective for this data set.

As can be seen in the figures, the high density areas of the distribution are compact and

somewhat spherical. For the examples within this section, we clustered the data with k set

to 1 to twelve. For each value of k we fit 10 randomly initialized k-means models and keep

the model with the lowest error. A standard challenge with a model such as k-means, is how

164



a histogram of the time duration between adjacent kinematic segmentation times
40

35

30

25

C
= 200

15

10

5

n

I I

-3--1....11

dt

Figure 5-1: This figure shows a histogram of the time differences between adjacent kinematic

segmentations found in dataset 1, using a filter with a scale of a half second. With this

dataset and this filter, the salient transition points tend to occur at an interval of 1.75

seconds.

to avoid overfitting the data, since the error will continue to drop to zero in the limit as k

goes to infinity [13]. A variety of measurements for model complexity have been developed

to attempt to choose k and balance the benefits of lower error with the costs of higher

model complexity. We are able to avoid these issues representing the error in terms of 3D

distance in units of arm length. This allows us to select k in a reasoned way. Specifically

we choose the first k that results in an average error less than a fifth of the arm's length,

which is approximately the length of the hand and should match well with the error level of

our hand position estimates, since we only measure wrist rotation and not bending at the

wrist. This choice leads to a value of k = 4 for the positions measured relative to the torso,

and k = 3 for the positions measured with respect to the camera.
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Figure 5-2: These two graphs show the dependency of the model error on k when using

k-means on kinematically segmented hand positions from dataset 1. The left graph shows

the fitting process on positions measured with respect to the torso and the right graph

shows results on hand positions measured with respect to the camera. For each value of k,

we fit 10 randomly initialized k-means models and keep the model with the lowest error.

The key point to note with these graphs is that we can represent the error in terms of 3D

distance in units of arm length. This allows us to select k in a reasonable way. Specifically

we choose the first k that results in an average error less than a fifth of the arms length,

which is approximately the length of the hand and should match well with the error level of

our hand position estimates, since we only measure wrist rotation and not bending at the

wrist.
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Figure 5-3: This figure shows the three means resulting from the k-means clustering we

performed on the kinematically segmented hand positions as measured with respect to the

camera's frame of reference. The distribution of 3D hand positions is shown alone in the

top row. In the second row the four configurations of the learned kinematic model that best

match the four resulting clusters are shown with the distribution. On the last row, these

kinematic configurations are shown with white spheres representing the mean locations.

In order to convey the 3D structure of the data, the columns are rotated versions of one

another. The first column corresponds with us looking through the back of the camera.
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Figure 5-4: This figure shows the three means resulting from k-means clustering on the

segmented hand positions with respect to the camera's frame of reference. The first column

shows the configuration of the arm associated with the best matching position for each

cluster along with the part of the distribution closest to that particular mean. The second

row shows the same arm configuration with a white sphere located at the mean. The final

row shows the image associated with the best matching hand position for each cluster. The

top cluster corresponds with the head looking at the hand while reaching in the world. The

middle cluster corresponds with the hand being at rest by the wearer's side. The bottom

row corresponds with the hand being close to the camera and relatively centered. Fitting

a line between the top cluster and the bottom cluster might indicate the gaze direction of

the wearer relative to the camera.
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Figure 5-5: This figure shows the results of k-means clustering performed on the kinemati-

cally segmented hand positions as measured with respect to the torso's frame of reference.

The distribution of 3D hand positions is shown alone in the top row. In the second row

the four configurations of the learned kinematic model that best match the four resulting

clusters are shown with the distribution. On the last row, these kinematic configurations

are shown with white spheres representing the mean locations. In order to convey the 3D

structure of the data, the columns are rotated versions of one another. The learned kine-

matic model does not result in a strong canonical orientation for the torso, since it does not

estimate the torso's major axis. These images are shown with respect to the torso's unnor-

malized coordinate system, so the model is leaning back with respect to world coordinates.

The configurations can be more easily in the next figure, in which the means are shown in

isolation from one another and adjacent to a corresponding image.
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Figure 5-6: This figure shows the four means resulting from k-means clustering on the

segmented hand positions with respect to the torso's frame of reference. The columns are

analogous to those of figure 5-4. The top cluster corresponds with the hand being a the

torso's side. The second cluster corresponds with the hand being in front of the torso in a

location at which people often manipulate or hold objects. The third row corresponds with

the hand reaching away from the torso into the world. The bottom row shows the hand

being held close to the front of the head. The cluster for the hand being in the rest state is

particularly strong, which corresponds with our intuition for the rest state.
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5.2 Visual Discovery of the Wearer's Hand and Manipulated

Objects

During a manipulation event, objects that move with the hand and against the background

are likely to be related to the manipulation event. We bias the segmentation system to

find hands and manipulated objects using our visual attention methods from the previous

chapter. The attention system kinematically selects times at which the hand is highly visible

in the image and the hand is moving rapidly in the image. During most manipulation events

the wearer will at some point observe the hand. Likewise, if the hand is not visible to the

camera our system will not have an opportunity to visually learn about the manipulation

event anyway. This simple filtering step rapidly removes approximately 90% of the images

from data set 1. With the remaining images, we only need to process the area around

the kinematically predicted location of the hand, which on average effectively throws out

50% of each image. At moments when the hand is moving rapidly in the image, the visual

interest point operator, applied to an edge map weighted by foreground motion, is more

likely to select interest points at positions and scales that correspond with the hand and any

objects being manipulated. We initialize 10 visual segmentations at the scales and positions

of the maximally responding motion weighted interest points that are within a threshold

distance from the kinematically estimated position of the hand within the selected images.

We then attempt to remove segments that are approximately duplicates of another of the

10 member segments. When applied to data set 1, this process collects approximately 12000

visual segments.

We cluster appearance feature vectors associated with these 12000 resulting visual seg-

ments using k-means with k = 10. For the appearance feature vector we use three 16

dimensional D histograms for the hue, saturation, and value inside the segment, and one

128 dimensional vector representing a 16x16 square, brightness normalized image patch of

the segment scaled to fit within the small square. Prior to concatenating these four compo-

nents into the resulting 176 dimensional feature vector, we compute the PCA representation

of the four raw individual feature vectors, reduce their dimensionality, normalize the total

variance for each of them, and weight them. For the particular results we show here, we do

not whiten or reduce the dimensionality of the three color histograms, which start out as

16 dimensional D histograms, so PCA for these three components does not actually serve
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Figure 5-7: This figure shows the 79 member segments closest to one of the k-means clusters.

The blue polygon shows the polygon generated by the associated log-polar segmentation.

A rectangular image patch that bounds the polygon is shown for each segment. This

cluster primarily consists of segments of the wearer's hand. Note that there are some

similar segments, since the interest point operator initializes 10 segments per kinematically

interesting image, and we only remove obvious duplicates.

any role in the k-means clustering. The original dimensionality of the 16x16 image patches

is 256, which we reduce to 128 dimensions by dropping the minimum variance dimensions

as determined by PCA. Prior to concatenating these four component feature vectors we

weight them, multiplying the hue, saturation, and image patch components by 0.3 and the

value histogram by 0.1, so that brightness differences are given less weight.

We show the best matching members of these clusters in the following 10 figures: 5-7,

5-8, 5-9, 5-10, 5-11, 5-12, 5-13, 5-14, 5-15, 5-16. Hands strongly represent three of the

clusters, while several of the other clusters are strongly represented by hand held objects

manipulated during data set 1.
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Figure 5-8: This figure shows the top 79 segments of another cluster in the same way as

figure 5-7. This cluster mostly contains hand segments.

5.3 Tracking Segments Through Time

Tracking segments over time provides another method by which to associate visual segments

with one another, which takes advantage of the dense time sampling of video. For offline

tracking we have used a shortest paths algorithm applied to visual segments in consecutive

frames. Although this process is relatively inefficient, shortest paths provides a simple,

flexible, and effective framework for offline tracking of visual segments. At each frame i the

system creates a set of visual segments Si = {sl, S2 ... Sn} by segmenting locations selected

by the attention system. We define a cost function C that assigns a cost for matching one

segment to another. The cost function C can take into account a number of features of

the segment, such as position, shape, and appearance. The system then performs all points

shortest paths on a directed acyclic graph formed by connecting all the segments in Si with

all the segments in Si+, using directed edges with costs defined by C. We can vary the

graph by sequentially connecting m segmentation sets, Sito Si+m. Likewise, if we wish to

allow segments to disappear for some number of frames we can insert additional directed
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Figure 5-9: This figure shows the top 79 segments of another cluster in the same way as

figure 5-7. This cluster mostly contains hand segments.

edges that skip j frames and define a cost function Cskip(Sa, si3, j) that takes the number

of skipped frames as an additional argument that will give an appropriate penalty for the

disappearance of a segment.

Besides associating segments across time, this method tends to filter out segments that

are sporadic and of low quality. Segments that do not correspond well with object bound-

aries will tend to be filtered out because they will tend to vary as the underlying, unrelated

regions move independently. Likewise, redundant segmentations will compete to match with

segments in the next frames, which tends to reinforce segments that are stable over time.

Segments in the foreground will tend to be occluded less than segments in the background,

which also biases the resulting paths to relate to foreground objects, which is desirable for

our purposes, see figure 5-17. The total costs for the surviving segment paths of length

m can be used to compare these segment paths with one another and provides a measure

of salience for the segment paths where more stable paths are considered more salient, see

figure 5-18. In addition, we can custom design the cost function to select paths of interest,

such as paths whose color model matches skin color, see figure 5-19. The major drawback
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Figure 5-10: This figure shows the top 79 segments of another cluster in the same way as

figure 5-7. The top members mostly consist of manipulated objects including a bowl, a

plate, and a coke can.
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Figure 5-11: This figure shows the top 79 segments of another cluster in the same way as

figure 5-7. The top members mostly consist of manipulated objects including a plate, and

a framed picture.
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Figure 5-12: This figure shows the top 79 segments of another cluster in the same way as

figure 5-7. The top members mostly consist of manipulated objects, including a bowl, a

silverware drawer, and a cup.

177



Figure 5-13: This figure shows the top 79 segments of another cluster in the same way as

figure 5-7. This cluster contains some manipulated objects, some hands, and parts of the

background. Views of a cup make up the majority of the object related segments shown.
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Figure 5-14: This figure shows the top 79 segments of another cluster in the same way

as figure 5-7. The top members mostly consist of background and manipulated objects,

including a framed picture and a coke can.
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Figure 5-15: This figure shows the top 79 segments of another cluster in the same way as

figure 5-7. This cluster contains some manipulated objects, some hands, and parts of the

background. The top segments include the back of a chair that was moved, a cup, a can,

and a bowl.
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Figure 5-16: This figure shows the top 79 segments of another cluster in the same way as

figure 5-7. The top segments mostly consist of background.

of this method is that it requires almost all of the desirable segments to have been found in

advance, which can be a very time consuming process. The interest point operator and other

elements of the attention system can mitigate this cost, but the total number of necessary

segments per frame can still be prohibitive and lead to overnight computations on a cluster

of machines in order to process less than an hour of video. Preliminary experiments indi-

cate that the visual interest point operator and associated shape descriptors might be able

to perform rapid tracking and filtering of salient elements of the video prior to computing

visual segments, resulting in significant computational savings.

5.4 Towards Autonomous Machine Learning about Everyday

Human Manipulation

The results of this chapter suggest promising directions for research into machines that

autonomously learn about everyday human manipulation.

The clear structure of the specially selected hand positions indicates that many manip-

181



Figure 5-17: These two images show examples of the remaining segment paths after a five

frame shortest paths computation. Polygons of the same color display the segments over

time that form a particular shortest path.

Figure 5-18: These two images show examples of the most salient segmentation path, which

in these two cases is the arm. This is a common occurrence, probably because the arm is

well modeled as a rigid 2D segment undergoing rotation, translation, and scale, along with

its propensity to be in the foreground and occluding other segments during activity.
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Figure 5-19: This sequence of images shows an example of using a specialized cost function

that is biased to find the hand by decreasing the cost for segment paths that have some

hand color and are spatially close to the kinematic prediction of the hand's location.

ulation activities could be well-modeled at a higher level of abstraction by modeling the

transitions of the hand among the hand-states represented by these clusters. The statistics

for these transitions could naturally be modeled with HMMs [13]. Like the hand-states

themselves, the statistics for the transitions among the hand states could be easily collected

autonomously. After modeling these transitions, transitions of a particular type could be

selected and associated with features, such as representations of the hand's configuration,

and the rotation of th wrist. We could search for distinct types of transitions, such as the

difference between bringing a cup up to the head to drink, which would involve a particular

type of wrist and hand location, and bringing a cup up to the head for visual inspection.

Given the results of this thesis, research along these lines should be able to create machines

that can autonomously associate distinctive kinematic actions.

The clear structure of the clusters of vision segments also suggests directions for future

research. The first priority should be to autonomously select the clusters that represent the

hand and then use them to autonomously train a visual hand detector. We have already

done this with some success, but have chosen not to report the preliminary results in

this thesis. Selecting the clusters that contain hands can be accomplished by ranking the

clusters based on how close the member segments are to the kinematically predicted hand

locations, and how well the sizes of the segments vary with the kinematically estimated

depth of the hand. A variety of possible hand detectors are available. Our tests used the

shape descriptors associated with our visual interest point operator, along with associated

integral appearance features. Once the hand can be detected visually, the system could
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combine this visual detector with the hand position predictions from the learned kinematic

model to produce better estimates of the hands location throughout the data set. Amplified

versions of these improved position estimates, or the unaltered improved position estimates,

could then be used to train a better kinematic model. If more high quality hand data would

be beneficial, the system could track the hand from moments of high confidence to generate

additional high-quality hand position estimates.

Given a visual hand detector and better hand position estimates, the system could

focus on two types of learning. The first would be to model the appearance of distinct

configurations of the hand. The hand clusters contain images of the hand in a large number

of distinct configurations, varying by grip, orientation, and such. Modeling these distinct

configurations of the hand would help to distinguish among different manipulation activities

and be informative about the object being manipulated. For example, a pincer grip is highly

predictive of the location of part of the object being manipulated. The other focus would

be on modeling the objects being manipulated. The clusters of visual segments from this

chapter already indicate the high quality of object segments that can be produced by Duo's

visual system. These could be further filtered by explicitly tracking the segments over time

and monitoring their position with respect to the hand, as detected by the newly trained

kinematic model and visual hand detector. After this further filtering, the objects should

be clustered based on their member parts and appearance.

After performing these methods of autonomous learning to better model the hand's ap-

pearance, the appearance of manipulated objects, and associated kinematic activities, the

system could begin to look for relationships between manipulative actions and the manip-

ulated objects. Although a few research steps away, this opportunity for rich autonomous

learning served as the original motivation for this thesis. Darnell Moore has already im-

pressively shown, albeit under highly-constrained circumstances, that actions and objects

can be mutually informative, [42]. By learning about the relationships between actions and

objects, the system would have an opportunity to learn about the function of objects, which

to some extent is a more fundamental view of an object's significance than its appearance.

Since kinematic activity strongly relates to the abstract function of objects, it could be used

as a proxy for this abstract function and directly associated with objects. For example, cups

vary greatly in the details of their appearance, but the kinematic activity associated with

drinking from a cup is highly stereotyped since it directly relates to the cup's fundamental
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function of transporting liquids to the mouth, and moving the liquids into the mouth for

drinking.

We are optimistic about the research path we outline here. For this thesis, we have

built a strong foundation on which to build a machine that autonomously learns about the

world by watching the activities of the wearer. The system is not mearlymerely a demo,

but a fully functional hardware and software platform. We hope that future research will

build upon this foundation. We intend to encourage this by releasing significant parts of our

software as open source. With this is mind, we have been careful to minimize dependencies

on non-open source software. The device drivers for the orientation sensors and the use

of Matlab in camera calibration are the only non-open source dependencies for the Duo

platform of which we are aware. The software side of the platform is already being used on

work by Aaron Edsinger on the humanoid robot Domo [14].
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Chapter 6

Machine Augmented Annotation of

Captured Experience

The results from the previous section give some indication of how much machines might be

able to autonomously learn by passively monitoring human manipulation. Within the next

two chapters, we present two systems we have designed and implemented that attempt to

enable Duo to cooperate with a human in order to better learn about everyday manipulation.

In the next chapter, we will describe a system for real-time collaboration between Duo and

the wearer. Within this chapter we describe machine augmented offline annotation and

browsing tools that can help humans and machines collaboratively browse and annotate a

database of captured experience.

Although real-time cooperative applications with the wearable, such as the one we de-

scribe within the next chapter, are appealing and highlight potentially useful ways for peo-

ple to help machines learn, offline machine assisted annotation and browsing of captured

kinematic and video data is more practical in the near term. By coupling fast machine

perception and learning algorithms with interactive browsing and annotation tools, a flex-

ible software architecture, carefully designed user interfaces, and a cluster of workstations,

we can greatly enhance the ability of a person to help machines learn. Furthermore, this

offline approach allows the wide variety of time scales of operation for various algorithms

for perception and learning to be more seamlessly integrated together. Fast algorithms such

as our kinematic and visual segmentation systems can help the person help the machine at

interactive rates, while slower estimations such as the nonlinear estimation of the kinematic
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model and discovery of the hand can take place in the background across the cluster, or

even overnight.

6.1 System Architecture

Figure 6-1 shows the architecture for the system. Three relational databases form the core

of the system. Each database is designed to hold particular types of data. The database

of captured experiences is updated after an episode of data capture, but otherwise is read

only and replicated across the cluster of machines. The database of results from learning

holds learned structures that tend to apply to most of a capture episode or a series of

capture episodes in the database, such as a learned kinematic model. The database of

annotations holds annotations organized by time that directly refer to the contents of the

capture database, such as visual segments and kinematic segments. Both the database of

learned results and the annotation database typically reside on the root machine so that the

user can access them through local tools at real-time interactive rates. The cluster machines

also read and write to these two databases by way of two custom XML-RPC servers.

We use the open source embedded database SQLite3.0 for each of the three databases.

Although not designed for heavy, large-scale, mission-critical transaction-based operation,

this database is excellent for our purposes. First, the database is extremely fast, which

allows us to query the databases at real-time rates from Python. So, for example, the

Python based video browser is able to play video and overlayed annotations at frame rate

by quickly submitting time-based SQL queries to the capture database and the annotation

database. Second, the database is easy to replicate and manage since it exists as a single

file in the application's directory. This allows us to easily backup particular annotation and

learning databases, and switch out the current databases for previous ones. Finally, SQL

provides a simple and uniform query interface for the software applications. The user on

the root machine and the automated annotators across the cluster all update the databases

in the same way, except that their entries are labeled as being from a machine or a human.

SQL provides a good ability to search over the annotations, captured data, and learned

data using a variety of criteria, and all databases are indexed by time.

A typical session of use starts by connecting Duo to the wired network after a capture

session, copying the raw capture directories on Duo to the root machine, and then running
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Usually these three databases
and the usees software tools
reside on the same machine for
efficient interactive browsing
and annotation.

Figure 6-1: This diagram shows the architecture for Duo's semi-automated browsing and

annotation system. The system uses three databases, one for captured data, one for learned

results, such as the estimated kinematic model, and one for user and machine made an-

notations. The captured database is replicated across a cluster of machines for parallel

processing of its contents. The other two databases are queried through either a local li-

brary or through two XML-RPC servers over the network. The Annotator software directly

queries all three databases in real time at frame rates and higher to help the user help the

machine annotate the captured data.
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a script that automatically synchronizes the capture database with the currently available

capture directories, and replicates the database across the cluster. Next a cluster wide

script updates the learned database with the estimated kinematic models and the estima-

tions on which they depend for all of the episodes in the capture database for which the

estimations have not been made. Next a script uses the newly estimated kinematic mod-

els to automatically segment the kinematic data and then adds these segmentation times

to the annotation database. Other autonomous processes, such as the collection of likely

hand segments and manipulated object segments shown in chapter 5, also make use of the

databases for input and as a repository for results. Consequently, the user can see these

autonomously generated segments when browsing through the database.

6.2 A Machine Augmented Interface

The user can browse through the captured database using the machine generated kinematic

segmentations to summarize the episode, see figure 6-3 for a view of the interface. This

interface simplifies both browsing and annotation of the wearer's activities.

The user can also browse the episode as video with visualized kinematic data, annotating

visual segments in the process, see figure 6-2. The video viewer, shown in figure 6-2, uses

a custom display based on OpenGL [67] to seamlessly display images, 3D models, and

annotations. Within the video view, the same visual segmentation algorithm used by Duo to

segment video autonomously, facilitates annotation by allowing the user to select significant

parts of the image for annotation with a single click of the mouse. By using the same

segmentation method Duo can better make use of the segments, since if Duo were to select

the same location, Duo would get the same segment as the person using the software. At any

point the user can click on a part of the video, which will freeze the video and perform a log-

polar segmentation at that location that the user can either discard or label. The interface

is intuitive and fast to use, since clicking the segment automatically puts the window's

focus on the annotation label box, hitting enter while in the label box inserts the current

visual segment annotation into the database, and clicking the image prior to hitting enter

discards the current visual segment and performs a new segment. The performance of the

log-polar segmentation is excellent for this application, since it can usually be performed in

less than 0.2 seconds, which results in no significant lag from the user's perspective. Also,
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Figure 6-2: This is a screen shot of the Annotator annotation software in its video browsing

mode. From here the user has access to all of the captured episodes within the database,

which the user can select with the calendar based episode selector. Video updates are

equivalent to SQL queries to the capture and annotation databases, and can be played at

frame rate and above when the software is used on the root machine that holds the annotator

database. As the video is playing, previously created visual segments from machine and

human annotations are overlayed at frame rate with their labels. At any point the user can

click on a part of the video, which will freeze the video and perform a log-polar segmentation

that the user can either discard or label.
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Figure 6-3: This figure shows a screen shot from the Annotator software in action browsing

mode, which allows the user to efficiently move through the video based on the automatically

segmented kinematic activity.
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the log-polar segmentation is intuitive to work with since it relates to a form of natural

center for objects which people are inclined to click. Each of the segmentations shown in

the screenshot of figure 6-2 were made with a single click to a point within the object.
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Chapter 7

A Real-Time Wearable System

with Kinematic Sensing

Much of the research for this thesis was originally directed towards the eventual creation of

a wearable creature that would both passively and actively learn from the wearer. We now

believe that passive data capture and machine augmented annotation will be a more fruitful

direction for research in the near term. However, wearable learning systems that actively

ask the wearer for help do have some distinct advantages that are well worth considering.

Within this section, we describe a demo application of such a real-time wearable system

that elucidates some of these advantages.

7.1 The Application

The first and only real-time application we implemented with the Duo platform was also

our very first project with Duo. For this work, we used the original backpack version of the

Duo hardware with the original software system, which was written entirely in C++. We

designed this application to acquire segmented images of hand-held objects manipulated by

the wearer during everyday activities. In the terms of Daniel Dennett, this wearable creature

was designed to be a form-a-vore that wished to learn about the objects people worked with

during the day. This demonstration application was significant in the way kinematic sensing

was used to enable tight integration between the behaviors of the wearable system and the

wearer.
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Figure 7-1: For a time, the white LED array shown on the left was wrapped around the

bottom of camera. The LED array was used to illuminate objects held up to the camera,

so that they could be easily segmented. The black box shown in the middle held two 9V

batteries and custom circuitry on a bread board in order to power the LED array and allow

the laptop to turn the LED array on and off through the parallel port. In the image on

the right, the LED array is barely visible below the camera. Unfortunately, this is the only

picture of the attached LED array we were able to locate. We removed the LED array

in order to simplify the system and focus on segmentation algorithms that did not require

active illumination.

7.1.1 The Behavior System

Duo monitored kinematic activity and attempted to detect movements that were likely to

indicate that the wearer reached out into the world, grabbed an object, and brought it back

near his body for comfortable manipulation. Upon detection of such a movement, Duo

would verbally request that the wearer, "look at the object". After making the request,

Duo would monitor kinematic activity in order to detect whether or not the wearer was

holding the object up for close visual inspection. If Duo detected that the wearer was

cooperating and that the wearer's hand was in the appropriate position, Duo would flash

an LED array for every other captured image from the hat-mounted camera, so that the

object could be easily segmented, see figures 7-1 and 7-2. While flashing the LED array,

Duo also monitored the wearer's head movement. If the head movement of the wearer was

too large, Duo would make the request to the wearer, "keep your head still". If the wearer

cooperated, high-quality, segmented images of the object would be obtained.
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Figure 7-2: This figure shows two segmentations of common manipulable objects by Duo.

When Duo detects that the wearer has reached for an object, Duo requests that the person

look at the object via speech through the headphones. When the person holds up the object

to look at it, Duo flashes the LEDs in order to produce the segmentations shown in this

figure. The first; column shows Duo's view before the LED flash and the second column shows

the view during the LED flash. The third column shows the difference between the flashed

and non-flashed images. The fourth column shows the mask produced by thresholding this

difference. The final column shows the masks applied to the images to segment the hands

holding the objects in the images.

7.1.2 Active Visual Segmentation

The array of white LEDs provided active illumination that clearly differentiated between

foreground and background since illumination rapidly declines as a function of depth. By

simply subtracting the illuminated and non-illuminated images from one another and ap-

plying a constant threshold, Duo was able to segment the object of interest and the hand.

see figure 7-2.

By keeping his head still, a cooperative human would minimize the image motion, which

improved the success of this simple segmentation algorithm and reduced the need for motion

compensation prior to subtracting the images. The location at which the LED array was

most effective sat about 25cm from the face, centered on the eyes. Humans also get a strong

sense of depth around this location through stereopsis. The wearable could have feasibly

used a stereo camera configuration to get a similar segmentation, but the computational

cost and additional hardware complexity would not have been justified for this application.

Also, less obtrusive infrared LEDs could have been substituted for the white LEDs, but

debugging would have been more difficult and less feedback would have been provided to

the human about optimal object placement and system activity. Others have used LEDs for
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active segmentation, such as for the segmentation of walking hazards in a wearable system

designed to help people with very poor vision [34].

7.1.3 Kinematic Detection

This demo employed three distinct kinematic detectors. The reach detector and object

inspection detector both used an approximate kinematic model, while the head motion

detector monitored the magnitude of change in the head's direction over time.

The reach detector used a hand-coded matched filter to detect when a person was

likely to be grabbing a new object. The filter operated on measurements derived from the

kinematic model and its estimated configuration based on the measured orientations from

the human body. The filter was run on the results of projecting the estimated velocity of

the hand, with respect to the world's coordinate system, onto a unit vector extending from

the center of the torso to the previous position of the hand. The resulting measurement

indicated the velocity at which the hand was moving toward or away from the center of the

human's torso. The matched filter detected when the wrist moved away from the torso for

an extended period at a relatively high velocity, slowed down to a stop, and then moved

toward the torso at a relatively high velocity for an extended period. Specifically, a block

filter derivative, equivalent to a single Harr wavelet, was convolved with the D signal

representing the hand's distance from the center of the body over time. Time stamps were

also used to preprocess the signal and produce a linearly interpolated signal with sampling

points at a uniform frequency. The Harr wavelet is a form of multi-scale derivative, much

like the methods for kinematic segmentation we described in chapter 4.

The object inspection detector would signal when the kinematic model indicated that

the dominant hand was within a volume in front of the eyes of the wearer.

7.2 Properties of Real-time Wearable Systems

The demo application we have described, serves as a useful example that illustrates several

properties of real-time wearable systems that use kinematic sensing.
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7.2.1 High-level Control

The demonstration wearable only had coarse high-level influence over the wearer's body

on which it depended. Yet, with a cooperative person, this control was sufficient to move

interesting objects to a location ideal for segmentation. Requesting other types of high-

level object-directed actions would also be feasible. In general, any strictly verbal command

could conceivably be made by a wearable system, so the space of possible actions that could

be performed by the wearer at the wearable's request is quite large. Kinematic sensing

helps the wearable to both determine what request would be appropriate and measure how

well the wearer responds to a request that involves body motion. This effectively lets the

wearable share the body of the wearer, which makes the complete system not unlike a

humanoid robot with coarse, high-level control.

7.2.2 Subsumption Architecture

The overall architecture used for this real-time application can be well-modeled as a sub-

sumption architecture with the human serving as the lower layer of behaviors on which the

wearable's behaviors were built. Figures 7-3 and 7-4 illustrate this perspective, which em-

phasizes the ways in which a kinematically perceptive wearable can benefit from the natural

behaviors of the wearer.

7.2.3 Passively Monitor, Then Interrupt

This wearable's behavior followed a generally useful pattern, which is to monitor the kine-

matic activities of the wearer until something interesting occurs, and then interrupt the

activity in order to actively learn about it. This pattern of behavior has several benefits.

First, it allows the wearable to make a tradeoff between acquiring relatively unbiased sam-

ples from the everyday behavior of the wearer, and intentionally biasing the samples away

from natural behavior in order to aid the wearable in its goals. Second, as emphasized

throughout this thesis, kinematic data can be processed much more efficiently than visual

data, so the system can monitor kinematic data in a low-powered sleep mode and wake-up

upon an interesting activity to perform more intensive and power hungry processing, such

as visual computation. This is an interesting variation on the methods of chapter 4 which

were discussed in terms of the benefits of kinematic attention for offline processing. Rather
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Figure 7-3: This diagram shows a high-level view of the real-time human/wearable plat-

form, which can be well-modeled as using a subsumption architecture with the wearable's

behaviors opportunistically built on top of the human's behaviors.
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Humanoid Platform

Figure 7-4: A detailed block diagram of the human/wearable platform. Within the Wearable:

Reach Detector activates when the human reaches for an object. Hand Near Head Detector activates

when the human's hand is close to his head. Head Motion Detector activates when there is head

motion and the Hand Near Head detector is active. Active Segmentation synchronously flashes the

LEDs and segments the illuminated foreground object from the background when the Hand Near

Head Detector is active. Within the Human (Conceptually): Behavior Inhibitor and Examine

Object Behavior activate when the wearable requests to see the object better. Behavior Inhibitor

inhibits Daily Behavior which was active. Examine Object Behavior brings the object close to the

head for visual inspection, which triggers the wearable's Hand Near Head Detector. Head Motion

Inhibitor activates when the wearable requests that the wearer keep his head still, and inhibits head

motion associated with Examine Object Behavior.

201



than simply saving precious computation time while processing enormous databases, in the

context of real-time systems these same methods can help save precious battery power and

help to properly allocate very limited computational resources.

7.2.4 Shared Sensory Systems

An important aspect of wearable systems with respect to learning is the potential for wear-

ables to capture all of the sensory experience and behavior of the wearer. A related issue

that is particularly relevant to real-time wearable systems, is the extent to which the wear-

able shares the sensory systems of the wearer. In the real-time application we describe

in this chapter, the wearable could be usefully described as having shared the kinematic

and visual sensory systems of the wearer. The kinematic sensors took measurements that

approximated the proprioceptive sensing of the wearer, providing an estimate of the kine-

matic configuration of the head, torso, and dominant arm, while the hat-mounted camera

approximated the view from the wearer's eyes. Neither of Duo's modalities is close to the

resolution and breadth of the human's senses, but they do provide coarse approximations.

In general, a shared sense is one for which the wearer's sense and wearable's sense provide

approximately the same information. This sensory configuration provides both advantages

and disadvantages. One advantage is that the wearable can more easily model the behavior

of the wearer, since the wearable can directly monitor the information that influences the

wearer's behavior. Similarly, if the wearer is going through a learning process, the wearable

has some opportunity to tag along and learn in a similar way. Behaviors that help the wearer

in a learning task may potentially be beneficial to the wearable as well. For example, when

the wearer inspects an object, he brings it closer to his eyes, which both separates it from

the environment in depth and allows for higher resolution imaging of the object. The real-

time application described within this chapter was able to take advantage of both of these

properties by using the LED array to segment the foreground by depth and by grabbing

higher resolution images of the object. Additionally, a wearable could request that the

wearer rotate the object, in order to view it from another perspective. Shared sensory

systems can also make the problem of shared attention simpler for a wearable. Rather than

attempting to infer the object of the wearer's attention based on observations from a third

person perspective and then servoing sensory systems to observe the object, a wearable with

shared sensors can simply let the wearer/caregiver focus attention on the object, which will
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automatically focus the wearable's attention on the object,

The primary disadvantage of shared senses is that control over the senses is also shared.

Sometimes the goals of the wearable and the wearer will not be aligned. The wearer might

not look at what interests the wearable. The wearer might not interact with the world

in the way the wearable would like. The wearable can encourage the user to inspect an

interesting object and keep his head still, but the wearable is ultimately dependent on a

helpful and responsive wearer. Wearables could mitigate this problem by combining shared

senses with omni-senses that sense everything and actuated-senses that allow the wearable

to direct its own senses. For example, the wearable could use multiple omni-directional

cameras to see most of the world, and a pan-tilt camera mounted to the torso could look

where the wearable wants to look.

Kinematic sensing helps mitigate these control problems by allowing the wearable to

directly monitor the control choices made by the wearer. This allows the wearable to find

moments at which the human's behaviors are aligned with the wearable's objectives, and

to more easily determine the extent to which the human is responding to the requests of

the wearable. Robust designs for this type of system require that the wearable be able to

detect when the human is cooperating, since even a very helpful person will have moments

during which he can not assist.

7.2.5 Looking for Special Moments

The previous two points fit into a larger pattern that involves Duo monitoring and observing

over long periods of time to find situations for which the problem is easier. The real-time

system can use the kinematic model to detect situations in which the senses are helpfully

aligned or the context of the wearer's behavior fits with the interests of the wearable. Our

offline system from earlier chapters also used this method to find moments in the database at

which the wearer's hand and manipulated objects could be more easily segmented. Even if

favorable situations are sparse, enough of them may be detected over the coarse of multi-day

recording sessions to facilitate the process of learning.
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Figure 7-5: This table highlights some of the more significant differences between real-time

and offline wearables for learning.

7.3 Real-time Versus Offline Learning

The real-time wearable system we describe in this chapter used kinematic sensing and ac-

tive segmentation with an LED array to acquire segmented images of the wearer's hand

and manipulated objects. The clear advantage is that with the user's help and some spe-

cial sensory equipment this relatively simple wearable system was able to acquire the same

type of information collected by the complex, autonomous, offline system we have described

in the previous chapters. However, real-time wearable systems for learning also have dis-

advantages. The major disadvantages are that real-time wearable systems often require

significant portable computation, additional perceptual hardware, and real-time perceptual

algorithms, which greatly limits the algorithmic options for perception. They also require

more rigorous and complicated coding. Furthermore, in order to take advantage of this

real-time processing, the wearable must interrupt or otherwise influence the wearer's nat-

ural activities, thus increasing the burden on the wearer and altering the wearer's natural

behaviors.

Table 7.3 highlights some of the properties that distinguish real-time and offline wear-

ables for learning. Real-time wearables can interact with the wearer which may be advan-

tageous, while strictly offline wearables are less likely to burden the wearer or corrupt his

natural behavior, but do not have the option to have the wearer make things easier. With

a real-time wearable, the user can annotate aspects of a situation while privy to the full

context of the situation, while with offline processing, the person's view of the situation is

limited to the captured data and the person's memory, who may not have even been the
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wearer during the capture session. On the other hand, offline annotation can make use of

helpful machine augmented tools for annotation and browsing, such as those described in

the previous chapter. These tools can allow the person annotating the data to rapidly find

interesting situations across the entire capture session with a comfortable user interface,

while in a real-time wearable setting, browsing across previously captured sessions would

be more challenging in terms of the interface and the computational requirements. Real-

time wearables require more computation and more power for real-time perception than

a wearable designed to strictly capture data for offline processing, which, as mentioned in

chapter 2, can significantly impact the comfort and style of the wearable. Finally, real-time

wearables can be used to actively sense the situation in a reactive way by influencing the

wearer and using additional sensing hardware, while offline processing requires that all the

sensing has already been performed. Of course, there is room for designs that sit in between

these two extremes. For example, a wearable that is primarily designed for capture might

make use of very simple processing to actively sense the environment at opportune times.

7.4 Summary

As discussed in chapter 1, many applications can benefit from kinematic sensing. Within

this chapter, we looked at a specific, implemented, demonstration application that illuci-

datedelucidated several aspects of real-time wearable design, particularly with respect to

creating wearables that actively learn from the wearer. We then compared real-time wear-

ables for learning to offline wearables for learning.
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Chapter 8

Conclusions

In this thesis we presented Duo, the first wearable system to autonomously learn a kinematic

model of the wearer via body-mounted absolute orientation sensors and a head-mounted

camera. We demonstrated the significant benefits of endowing a wearable system with

the ability to sense the kinematic configuration of the wearer's body. We showed that a

kinematic model can be autonomously estimated offline from less than an hour of recorded

video and orientation data from a wearer performing unconstrained, unscripted, household

activities within a real, unaltered, home environment. We demonstrated that our system for

autonomously estimating this kinematic model places very few constraints on the wearer's

body, the placement of the sensors, and the appearance of the hand, which, for example,

allows it to automatically discover a left-handed kinematic model for a left-handed wearer,

and to automatically compensate for distinct camera mounts, and sensor configurations.

Furthermore, we showed that this learned kinematic model efficiently and robustly predicts

the location of the dominant hand within video from the head-mounted camera even in

situations where vision-based hand detectors would be likely to fail. Additionally, we showed

ways in which the learned kinematic model can facilitate highly efficient processing of large

databases of first person experience. Finally, we showed that the kinematic model can

efficiently direct visual processing, so as to acquire a large number of high quality segments

of the wearer's hand and the objects the wearer manipulated.

Within the course of justifying these claims, we presented methods for estimating global

image motion, segmenting foreground motion, segmenting manipulation events, finding

and representing significant hand postures, segmenting visual regions, and detecting visual
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points of interest. We also described our architecture and user-level application for machine

augmented annotation and browsing of first person video and absolute orientations, as well

as a real-time application that uses kinematic sensing.
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Appendix A

Angular Perception

The results from the methods of chapter 3 allow us to very rapidly estimate the orientation

of the camera within the world via the rotation matrix Rhc. Within this appendix, we briefly

discuss two ways in which the camera's orientation in the world can be used to enhance

perception. For both of these methods, we first compute our estimate for the orientation

of the camera in world coordinates R, using Re = RhRh, with our estimate for Rh, from

chapter 3 and the current head orientation sensor output Rh. This operation has trivial

computational complexity, so it is well suited to real-time applications.

A.1 Tagging the World by Viewing Angle

Given the world orientation of the camera, Rc, we might like to know to what extent this

orientation of the camera in world coordinates influences the things that Duo sees in the

world. Statistically, the wearer's head and hence Duo's camera occupy a small percentage

of the volume of rooms and the world in general. The directions parallel to the ground plane

tend to be free parameters, while the elevation of the head tends to be highly constrained.

While active, people are usually sitting or standing and their head tends to be above the

ground plane at; corresponding heights. In addition, human environments are strongly

structured with respect to the ground plane as defined by gravity. Given these strong limits

on viewing position and the strong oriented structure of human environments, we would

expect Duo to be able to find some strong relationships between the azimuthal angle of

view and the things it sees. For example, the floor should be more prominent when looking

down and ceilings should be more prominent when looking up.
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In order to investigate these properties, we can tag each visual segment, or pixel, by it's

elevation angle with respect to the camera's position. With our camera model an image

pixel p with the coordinates (u, v) corresponds with the point (xc, Yc, zc) = e (u, v, f) and

hence the vector v = a (u, v, f) where a is an arbitrary scalar and (0, 0, 0) is the position

of the camera and its optical center. Assuming that the y axis in global coordinates is

parallel to gravity and points upward, the elevation angle 7I associated with a pixel p can

be determined by computing the normalized vector v

V

Iv=l

rotating it into world coordinates

vw = Rcv

and computing the arcsinof its y component

7 = arcsin (-s)

where- < < 2 with =-2 pointing straight down with gravity, r = 2 pointing2~ - 27 

straight up against gravity, and = 0 pointing perpendicular to gravity and hence hori-

zontally. Tagging visual stimuli with r7, such as visual segments, can provide a powerful

feature with which to interpret the world and better detect significant components of the

environment, such as the floor and ceiling.

A.2 Making Use of Projected Angle as a Feature

As illustrated in chapter 3, our rapid estimates of the camera's orientation in the world can

be further used to enhance perception by relating edge directions to meaningful vanishing

points. Any known orientation in world coordinates, such as the direction of gravity or the

direction of the wearer's forearm, corresponds with a vanishing point in the images captured

by the camera. Given the direction vector, we can find this vanishing point and then weight

edges by how well they point to the vanishing point. It's important to note that within

real images captured from a head-mounted camera by a person performing unconstrained

daily activities, gravity aligned edges will often be distinct from strictly vertical edges in

the images, so that knowledge of the camera's orientation within the world is important.
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These edges, weighted by the extent to which they correspond with a given vanishing

point, could serve as a feature in and of themselves, since, for example, many objects have

sides that are parallel to gravity, and edges parallel to the direction of the forearm are

more likely to correspond with the forearm's borders. By projecting the direction of the

major axis of the forearm onto the image, we could estimate what the dominant forearm

direction should be within the image and how it should be rotating from frame to frame.

These estimates could then be used to weight edges for attention. Another possible use

for this information, would be to quickly search for surfaces on which objects are placed.

The system could look for locations in the image at which many short, gravity aligned,

parallel edges, terminate, which would tend to correspond with the bases of objects on a

surface. Likewise, some classes of objects have strong properties relative to gravity, such as

bookshelves, which often have many gravity aligned edges over a small area. Additionally,

we could define local coordinate systems at each point in the image based on the direction

of gravity at the image position, which could help with object detection and recognition by

constraining the likely orientations of the stimuli in the image, since many objects, such as

a tree, tend to be found in the world with canonical orientations with respect to gravity.

This contextual information about the world coordinate system with respect to gravity at

an image location could be powerful, and is easy to estimate with our system.

We would like to use RC to estimate the projected image angles of known angles in

the environment including the direction of gravity, represented by the unit vector dg, and

the dominant direction of the forearm, represented by the unit vector d, which can be

estimated from the forearm orientation sensor output Rf. The projection of points from

the world into the camera are well modeled by the equation X = [RTI - t 2]X. We

position the origin of the world's coordinate system at the camera's optical center, so that

the world frame and camera frame only differ by the camera's rotation with Xc = RTXw,,

where affine coordinates are unnecessary. Assuming the direction d is not parallel to the

image plane, we find the point (u, v) at which a vector from the origin with direction d and

length a would intersect the image plane, which corresponds with the vanishing point we

desire. Solving for (u, v) in

u R d= a r 1 dv=Tad =a r2d

f Ir3 
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gives

_= f
r3d

and

[u f [rl ] d
v r3d r

The direction, b, of the projection of another vector parallel to d that passes through

point (u2, v2) on the image plane is equal to the direction of the ray from point (u2, v2) to

(u, v), which is defined everywhere on the image plane except (u, v).

( (u2, v2) = arctan2(v-v2, u-u2) = arctan2 ( f r2d - v2, frld -u2)
r3d r 3d

This is clear from the geometry, since (u, v) is the vanishing point on the image for all

the rays parallel to d, which we can easily confirm. We start with the following equation

that shows the projective relationship between a vector ad + m and the resulting image

point (3, v3) as a function of a, where m is a constant three dimensional vector describing

a point in space through which the vector passes when a = 0.

U3
zT

V3 =R(ad + m)

f
This can be written as

[u3 1 -fRT(ad + m)

v3 - 3 ar3d
f

which we can use to confirm that (u, v) is the limiting projection point as a, and conse-

quently the length of the vector, goes to oo.

u
li fRT(ad + m) fRTd lim arC v

a-oo ar3d r3d

f
If r3d = 0, then the direction d is parallel to the image plane and the projected directions

are all parallel lines. In this case, we simply need to find the direction between the origin

and the rotated vector d, without worrying about projection or intersections. So,
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U4

V4 = RT d

0

where the image vector (4, v4) specifies the projected direction at all positions when

r3d = O.

'qparallel (2, V2) = arctan2 (4, U4) = arctan2 (r2d, rid)
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