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Abstract

Type safety and expressiveness of many existing Java libraries an
their client applications would improve, if the libraries were up-

niques [8, 11], and theNFER GENERIC TYPE ARGUMENTSrefac-
C{oring in Eclipse 3.1 is based on our previous work [11]. However,

o our knowledge, no previous practical and satisfactory solution to
lthe parameterization problem exists. Thus far, class libraries such

graded to define generic classes. Efficient and accurate tools exis the J Collecti F h b terized
to assist client applications to use generics libraries, but so far the &S € Java LOollections Framework have been parameterized man-
ually, and developers involved with this task described it as very

libraries themselves must be parameterized manually, which is a ) ;
P Y time-consuming, tedious, and error-prone [12, 2].

tedious, time-consuming, and error-prone task. We present a type- - L )
constraint-based algorithm for converting non-generic libraries to .. YVé Presenta solution to the parameterization problem such that:
add type parameters. The algorithm handles the full Java languagell) the behavior of any client of the parameterized classes is pre-
and preserves backward compatibility, thus making it safe for ex- served, (ii) the translation produces a result similar to that which
would be produced manually by a skilled programmer, and (iii) the

isting clients. Among other features, it is capable of inferring wild- . A . : 2L X
card types and introducing type parameters for mutualIy-dependentapprQaCh is practical in that it admits an efficient implementation
that is easy to use. Our approach fully supports Java 1.5 gener-

(r:é?ggg)sr.in\;y?nhé\gl?p;n;Plemented the algorithm as a fully automatic ics, including bounded and unbounded wildcards, and it has been

We evaluated our work in two ways. First, our tool parameter- implemented as a refactoring in Eclipse. Previous approaches for

ized code that was lacking type parameters. We contacted the de-S0!Ving the parameterization problem [9, 7, 22] did not include a
velopers of several of these applications, and in all cases wherepraCt'Cal implementation, and produced incorrect or suboptimal re-

we received a response, they confirmed that the resulting parame-SU|ts’ as will be discussed in Section5. .
We evaluated our work in two ways. First, we parameterized

terizations were correct and useful. Second, to better quantify its

effectiveness, our tool parameterized classes from already-generi¢!0N-generic classes, and examined the results to ensure that they
libraries, and we compared the results to those that were cre- were satisfactory and usable to clients. Second, we complemented

ated by the libraries’ authors. Our tool performed the refactoring (Nt qualitative analysis with a guantitative one in which we com-

accurately—in 87% of cases the results were as good as those creP@red its results to those produced by human programmers. Our

ated manually by a human expert, in 9% of cases the tool results \0°! COMputes a solution that is nearly identical to the hand-crafted

were better, and in 4% of cases the tool results were worse. one, ang)ls sometimes even better (i.e., it permits more casts to be
removed).

. The remainder of this paper is organized as follows. Section 2

1. Introduction gives a motivating example to illustrate the problem and our so-

Generics(a form of parametric polymorphism) are a feature of the lution. Section 3 presents our class parameterization algorithm.

Java 1.5 programming language. Generics enable the creation ofSection 4 describes the experiments we performed to evaluate our

type-safe reusable classes, which significantly reduces the need fowork. Section 5 overviews related work, and Section 6 concludes.

potentially unsafe down-casts in source code. Much pre-1.5 Java

code would benefit from being upgraded to use generics. Even new

code can benefit, because a common programming methodology2. Example

is to write non-generic code first and convert it later. The task of Figyre 1 shows an example program consisting of two classes,
introducing generics to existing code can be viewed as two related y, ¢ jset andsortset, before and after automatic parameterization
technical problems [8]: by our tool. The following observations can be made about the

1. The parameterization probleronsists of adding type parame-  refactored source code:

ters to an existing class definition so that it can be used in differ-
ent contexts without the loss of type information. For example,
one might convert the class definitiedass ArrayList {...}
into class ArrayList<T> {...J}, with certain uses afbject in
the body replaced by.

2. Once a class has been parameterizedirtstantiation problem
is the task of determining the type arguments that should be
given to instances of the generic class in client code. For ex-
ample, this might convert a declaratiafirayList names; into
ArrayList<String> names;.

1. On line 6, the type of the parameter mi1tiSet.add() has
been changed to;, a new type parameter of clagsitiSet that
represents the type of its elements.

2. Online 9, the return type ofultiSet.getMostCommon() iS NOW
Ty. This, in turn, required parameterizing clagstset with
a type parameter, (line 34) and changing the return type of
SortSet.getMostCommon () (line 45) toT,. This illustrates that
parameterizing one class may require parameterizing others.

3. On line 12, the parameter @h1tiSet.addA11() now has type
Collection<? extends T;>, @ boundedwildcard type that al-

The former problem subsumes the latter because the introduction of

type parameters often requires the instantiation of generic classes.

For example, if clasBashSet uses aashMap as an internal repre-
sentation of the set, then parameterizingithenset class requires
instantiating the referencestashMap in the body offashSet.

If no parameterization is necessary, the instantiation prob-
lem can be solved using completely automatic and scalable tech-

lows anycCollection that is parameterized with a subtype of
the receiver’s type argumemt to be passed as an argument.
The use of a wildcard is very important here. Suppose that the
type Collection<T;> were used instead. Then a (safe) call to
addA11() on a receiver of typelultiSet<Number> With an ac-

tual parameter of typeist<Integer> would not compile; the
client would be forbidden from using those (desirable) types.



1/l A MultiSet may contain a given element more than once.
2/l Each element is associated with a count (a cardinality).
3public class MultiSet {
4 Il counts maps each element to its number of occurrences.
private Map counts = new HashMap ();
public void add(Object t1) {

counts.put(tl, new Integer(getCount(tl) + 1));

© © N o v

public Object getMostCommon ()
10 return new SortSet(this).getMostCommon ();
11
12
13
14
15
16
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3}

1}

2

33/l A SortSet sorts the elements of a MultiSet by their cardinality.

34class SortSet extends TreeSet {
35 public SortSet(final MultiSet m) {

public void addAll(Collection c1) {
for (Iterator iter = cl.iterator();
iter.hasNext (); ) {
add(iter.next ());

public boolean contains(Object o1) {
return counts.containsKey(ol);

public boolean containsAll(Collection c2) {
return getAllElements ().containsAll(c2);

public int getCount(Object 02) {
return (! contains(o2)) ? 0 :

((Integer)counts.get(02)).intValue();

public Set getAllElements () {
return counts.keySet ();

3
3

1/l A MultiSet may contain a given element more than once.
2/l Each element is associated with a count (a cardinality).
3public class MultiSet<T;> {

4 Il counts maps each element to its number of occurrences.

5 private Map<T;,Integer> counts = new HashMap<T;,Integer>();
6 public void add(T; t1) {

7 counts.put(tl, new Integer(getCount(til) + 1));
8

9 public T; getMostCommon() {

10 return new SortSet<T;>(this).getMostCommon ();
11

12 public void addAll(Collection<? extends T1> c1) {
13 for (Iterator<? extends T;> iter = cl.iterator ();
14 iter.hasNext (); ) {

15 add(iter.next ());

16

17

18 public boolean contains(Object ol) {

19 return counts.containsKey(ol);

20

21  public boolean containsAll(Collection<?> c2) {
22 return getAllElements ().containsAll(c2);

23

24 public int getCount(Object 02) {

25 return (! contains(o2)) ? 0 :

26 (£Eateger)counts.get(02)).intValue ();

27

28 public Set<T;> getAllElements() {

29 return counts.keySet ();

3}

1)

3
32

33/l A SortSet sorts the elements of a MultiSet by their cardinality.
34 class SortSet<Ts> extends TreeSet<To> {

public SortSet(final MultiSet<? extends T2> m) {

super (new Comparator<? extends To>() {
public int compare(Tz 03, Tz o4) {
return m.getCount(03) — m.getCount(o04);

s

addAll(m.getAllElements ());

36 super (new Comparator () {
37 public int compare(Object 03, Object o4) {
38 return m.getCount(03) — m.getCount (o04);

s

addAll(m.getAllElements ());

public boolean addAll(Collection c3) {
return super.addAll(c3);

public boolean addAll(Collection<? extends T2> c3) {
return super.addAll(c3);

45  public Ty getMostCommon() {
return isEmpty() ? null

45 public Object getMostCommon () {

return isEmpty() ? null first (); first ();

47

}
48 }

47

}
48 }

Figure 1. ClassesMultiSet andSortSet before and after parameterization by our tool. In the right column, modified declarations are underlined and
a removed cast is struck through. The example uses collection classes from pgekagetil in the standard Java 1.5 librarieéip, HashMap, Set,
Collection, TreeSet.

Any other parameterization would be incorrect because the
method overrides the methadeeSet.addA11(), and the sig-
natures of these methods must remain identical to preserve the
overriding relationship [12].

4. On line 18, the type of the parameteriafitiSet.contains ()
remainsobject. This is desirable and corresponds to the (man-
ual) parameterization of the JDK libraries. Suppose the pa-
rameter ofcontains() had typeT; instead, and consider a
client that adds onlyntegers to aMultiSet and that passes
anobject t0 contains() at least once on thafuitiSet. Such
a client would have to declare theiltiset suboptimally as
MultiSet<Object>, rather tharMultiSet<Integer> as permit-
ted by our solution.

Even for this simple example, the desired parameterization re-
quires 19 non-trivial changes to the program’s type annotations,
and involves subtle reasoning. In short, class parameterization is a
complex process, and automated tool assistance is highly desirable.

Finally, we remark that, although the example uses the standard

5. Online 21, the type of the parametemafitiSet . containsA11() - - : >
has become annbounded wildcardtollection<?> (which is (generic) Java libraries (e.gap<k, V>, Set<E>, eic.), our technique
shorthand forCollection<? extends Object>). Analogously is also applicable to classes that do not depend on generic classes.
with the contains() example above, use @ollection<T;>
would force a less precise parameterization of some instances of3,  Algorithm
MultiSet in client code. o . . .

6. On line 28, the return type ofultiSet.getAllElements() iS Our parameterization algorithm has the following 3 steps:

parameterized aset<T;>. It is importantnot to parameterize 1 Create type constraints for all program constructs, and add addi-
it with a wildcard, as that would severely constrain client uses  tjonal constraints using a set of closure rules.
of the method's return value (e.g., it would be illegal to add 2. solve the constraints to determine a type for each declaration.

elements other thaiu11 to the returned set.) 3. Rewrite the program’s source code accordingly.
7.0n line 42, the type of the parameter of methegttset-

.addA11() is parameterized a%ollection<? extends Ta>. After Section 3.1 presents the notation used for representing type

constraints, Sections 3.2-3.4 present the steps of the algorithm,



Type constraint variables:

Cl:i:v:::pgzil{cél; 2 °1:i?vl’§;‘*’§ZiiZ—%§>‘c4; = Qnw non-wildcard variable
3 — ? na i B
Dbject geti() { S w0 ? extends any w!ldcard type upper-bounded lay;,.,,
return c4.getC(); 5 “return cd.getC(); ? super Qnu wildcard type lower-bounded by,
6 } G
void setW(Object t4) { 7 void setW(T; t4) { Onw == Kctat contexts
c4.setC(t4); 8 c4.setC(T4); T type parameter
) ¥ 13} ¥ Tovpppe (00) a, interpreted in contexd ¢,
1 Qetzt = [€] type of expression
class Cell {, 12 class Cell<Iy> { []V[rct] return type of method/
private Object data: 1y privete Tz dated [M;)] type ofi*h formal parameter of methoti/
14 i
Object getC() { 15 Ty getc() { i
Jreecturg: data; 16 72reg:urn data; C, monomorphlc type constant
- o o A . Type constraints:
voi set ject t voi set t — !
b 1o a2 a=ao type o must be the same as typé
} 20 } a < a type a must be the same as, or a subtype of, tsipe
void copyFrom(Cell c5) { 21  void copyFrom(Cell<? extends To> c5) {
data = c5.getC(); 22 data = c5.getC()T
void addTo(Collection col) { ;31 3oid addTo (Collection<? super To> col) { Figure 3. Notation used for dEﬁning type constraints.
col.add(data); 25 col.add(data); -
} 26}
} 27} .
T u= Trw non-wildcard type
Figure 2. Classesirapper andCell before and after automatic param- :: extends 7o, UPper-bounded wildcard type
eterization. In the right column, modified declarations are underlined. & Super Tnw Ir?w\g’r?cr)—r?w(c)#gt?‘?:dt V;ldgg;‘itg’rﬁ’te
Tnw = ICly
T extends Tny type parameter
illustrating them with the running example of Figure 2. While Figure 4. Grammar of types used in the analysis.

Figure 2 is small for the sake of exposition, our algorithm and
implementation handle the full Java language. Readers intereste

primarily in the intuition may skip the detailed treatment of the dl the introduction oftontext constraint variablegepresenting the

type with which newly introduced type parameters are instanti-

running example. ated
_ 2. the introduction ofwildcard constraint variableso accommo-
3.1 Type Constraints date wildcard types, and

3. the use of heuristics to guide the solver towards solutions pre-
ferred by human programmers (e.g., not introducing too many
type parameters, and preferring solutions with wildcard types in
certain cases), without violating program semantics.

This paper generalizes and extends a framework of type con-
straints [17] that has been used for refactoring [21, 6, 1] and, in
particular, as the basis for a refactoring that solves the instantia-
tion problem [11] (i.e., inferring the type arguments that should
be given to generic classes in client code). Due to space limita-  Figure 3 presents the type constraint notation. Type constraints
tions, the pre-existing parts of the type constraints formalism are are of the formn < o’ or a = o, wherea anda’ are constraint
described informally, and the presentation focuses on the new con-yariables. Most forms of constraint variables are standard, but we
straints notation and algorithmic contributions that are needed for discuss the new formsontext variablesndwildcard variables

solving the parameterization problem. . Context Variables. This paper introduces a new form of con-

~ Type constraints are a formalism for expressing subtype rela- straint variable that represent the type with which a (newly intro-
tionships between program entities that are required for preserv-duced) formal type parameter is instantiated. Sucbratext vari-

ing the type-correctness of program constructs. Consider an assignableis of the formZ,, (o) and represents thieterpretationof con-

mentx=y. The constrainfy] < [x] states that the type gf (repre- straint variablex in acontextgiven by constraint variable’.

sented by theonstraint variabley]) must be a subtype of the type We give the intuition behind context variables using examples.
of x. If the original program is type-correct, this constraint holds.

The refactoring must preserve the subtype relationgHip< [x] * Consider the JDK clagsist<E>. References to its type parame-
so that the refactored program is type-correct. As another exam- terEk only make sense within the definitionfst. In the context
ple, consider a methaghb . foo (Object p) that overrides a method of an instance afist<String>, the interpretation af is String,

Super.foo(Object q). The refactored program must preserve the  while in the context of an instance Dist<Number>, the interpre-
overriding relationship, in order to preserve dynamic dispatch be-  tation ofE is Number. We writeZx) (E) for the interpretation of
havior. This is guaranteed if the refactored program satisfies a con-  in the context of variable.
straint[p] = [q] stating that the types @fandq are identical. e Consider the calt4.setc(t4) on line 8 of Figure 2. Java re-
Our algorithm generates type constraints from a program’s ab-  quires the type of the actual parameterto be a subtype of the
stract syntax tree (AST) in a syntax-directed manner. A solutionto  formal parametets of cell.setc (line 18). This is expressed
the resulting constraint system corresponds to a refactored version by the constrainf4] < Z;c4;(t5), which means that the type of
of the program for which type-correctness and program behavioris  t4 is a subtype of the type @, as interpreted by interpretation
preserved. Frequently, many legal solutions exist, all of which pre-  functionZ 4. This interpretation function maps the formal type
serve the program’s semantics, but some of which are more useful parameters in the declared type «f to the types with which
to clients. Our algorithm uses heuristics (Section 3.3.1) to choose they are instantiated.
among legal solutions, but it never violates the semantics of the Using a context variable here is important. Generating a con-
program by changing behavior. straint without a context i.e[+4] < [t5], would be incorrect be-
Refactoring for parameterization is significantly more complex cause wherjts] gets resolved to a type parameter because
than previous work because it involves the introduction of formal  there is no subtype relationship between the typef [t4] and
type parameters with inheritance relations between them, while si-  the typer, of [t5].
multaneously rewriting existing declarations to refer to these new Although t5 is declared to be of typebject on line 18, it
type parameters. This required non-trivial extensions and modifi-  would be incorrect to require thft4] < object, becauses’s
cations to the type constraints formalism and the solver, including  type may be rewritten, e.g., to a newly introduced formal type
most notably: parameter. Our algorithm eventually resoles to T; and|t5]



assignment: =e; if a method contains a statementeturn ey”, then the type of

{le2] < [ea]} (r1) the returned expressiosy must be equal to or a subtype of the
method'’s declared return type. The complete set of rules [21, 11] is
statementeturn eg in methodM omitted for brevity and covers the entire Java language.
{leo] < [Mret]} (r2) Rules (r3) and (r4) are among the new rules introduced in this
research. Rules (r3) and (r4) govern method calls. Rule (r3) states
calle =eg.m(ey, ... ,e;) to instance method/ that the type of the method call expression is the same as the return
canAddParams = Decl(M) € TargetClasses type of the method (in the context of the receiver). This corresponds
CGen([e], =, [Mret], [e0], canAddParams) U (r3)  to how the type checker treats a method call (i.e., the type of the
U <i<r CGen([es], <, [Mi], [eo], canAddParams) (r4) call and the type of the method are the same). Rule (r4) relates the
- actual and formal type parameters of the call. ThegetClasses
declaration of method/, M overridesM’ set (a user input to the algorithm) indicates which classes should
canAddParams’ = Decl(M') € TargetClasses be refactored by adding type parameters (e.g., in Figure 1, classes
k = NumParams(M) MultiSet, SortSet, and the anonymous class declared on line 35

(15) are_assu_med_ to be ifurgetClasses). The auxiliaryfun_ctiorCGen
(r6) defined in Figure 6, performs the actual generation of a set of
constraints.
Java's type rules impose certain restrictions on parametric types.
(r7)  Closure rules such as (r7) and (r8) in Figure 5 enforce those restric-

CGenWild([Mret], <, [M!..], Decl(M), canAddParams’) U
Ui <i<k CGenWild([M;], =, [M]], Decl(M), canAddParams’)

a1 < as Zor(a1) or Z, (a2) exists

Zor (1) < Zor(az) tions. Rule (r7) requires that, given two formal type paraméters
) Ty andT» such thatly; < 7> and any contextv in which ei-
a1 < aa Tay (@) OF Iy, (o) eXists (r8)  ther actual type paramet@F, (T:) or Z(T3) exists, the subtyping

Tay (@) = Lo, (@) relationshipZ, (T1) < Z.(T2) must also hold. To illustrate this
rule, consider a clasxT1, T2 extends T1>and any instantiation
C(T\,...,T,) extends/implements c’ (T1, .y Tk) c<C1, ¢2>. Thenc2 < c¢1 must hold, implying that e.gc<Number,
IolE 7 (r9)  Integer>is legal but that<Integer, Number> is not. Rule (r8) en-
en(C, <, C(T1,...,Tk), -, true) . . . . .
) forces invariant subtypirfgof parametric typesC'(r) is a subtype
Figure 5. Representative examples of rules for generating type con- ofc<7’> iff + =7,
straints from Java constructs (rules (r1)—(r4)) and of closure rules
(72“'85 t(g)—(rS))_. Figurte ? fhows f\huxtiliarl]ry (deelgnitions “sted.bydtge “é'de.s' Examples. The following examples show how the rules of
argetClasses IS a Sl of classes that shou'd be parameterized by adding piq e 5 apply to three program constructs in the example of
type parameter®ecl()M) denotes the class that declares methéd Figure 2. The examples assume that the BetgetClasses is
{Cell,Wrapper}.
to Ta, |mp|y|ng that’[[c4] maps‘r2 to T1, and thus thar[c4] (t5) line 5: call c4.getC() to method}ell.getC()
is resolved tar;. — CGen([c4.getCO)],=,[Cell.getCqy ] [c4] true)
e In some cases, a context..,: IS irrelevant. For example, { [c4.£etCO] = Tjcaj([cell.getC,e;]) }
Za10¢ (String) always resolves terring, regardless of the con-  This constraint expresses that the type of the expreésiogetc (]
textactz+ in which itis interpreted. is the same as the return type of metfuad1 . getc in the context
of the receivek4.
line 8: call c4.setC(t4) to methodcell.setC(Object)

Wildcard Variables. There are two situations where our algo-

rithm introduces wildcards in the refactored program. (4)
Wildcard variables are of the form extends « Or 7 super « o CGen([t4].< [Ce11.setC1],[c4] true)
(where « is another constraint variable), and are used in cases—  { [t4] < Zjcqj([Ce11.setC1]) }
where Java’s typing rulesequire the use of wildcard types. In other words, the type af4 must be a subtype of the type of the

For example, in Figure 1SortSet.addA11() (line 42) overrides first parameter ofel1.setc in the context of the type of4. This
java.util.TreeSet.addA11(). If SortSet becomes a generic class constraint is shown as (x2) in Figure Te{1.setC; andts denote
with formal type parameter,, then preserving this overriding rela-  the same program element.)

tionship requires the formal parametsrof SortSet.addA11() to line 25:call col.add(data) to methodM = Collection<E>.add(E)
have the same type as thatlekeSet . addA11 (), which is declared CGen([data],<,[M1],[col],false)
in the Java standard libraries @geeSet.addA11(Collection<? © { [data] < Tieon) (E) }

extends E>). Three parts of our algorithm work together to ac-
complish this: (i) The type ot3 is represented, using a context
variable, asCollection<Zic3(E)>, (ii) Type constraint genera-

This indicates thadata’s type must be a subtype of type parameter
E in the context okol. This constraint is shown as (x6) in Figure 7.

tion (Section 3.2) producéﬁcs%(E) = 7 extends Zgortset (F), Figure 7 (rows (x1)—(x6)) summarizes the constraints generated

which uses a wildcard variable, and (iii) Constraint solving (Sec- for Figure 2. For simplicity of presentation, Figure 7 shows the con-

tion 3.3) fESQ|Ve§Sorts_et(E) 0Ty, . straint system after eliminating equality constraints. For example,
Our algorithm also introduces wildcard types in cases where |ine 5 gives rise to 2 constraints:

that results in amore fle?(ible solution, as dis.cussed in Section 331 () [c4.getCO)]<[Wrapper.getW, ] rule (r2)

However, this does not involve the use of wildcard variables. (i) [c4.getCO]=Z(cq([Cell.getC,]) rule (r3)

3.2 Type Constraint Generation

Figure 5 shows a few representative rules for generating type con-1or constraint variables that could become formal type parameters

straints. The ru]es omitted from Figure 5 involve no significantly 21n the presence of wildcard types, this is relaxed to ‘containment’ sub-

different analysis. _ typing [12] (€.g.7 extends Number iS containedin ? extends Object and
Rules (r1) and (r2) are from previous work. Rule (rl) states thereforeset(? extends Number) is Subtype OfSet(? extends Object)).

that the type of the right-hand side of an assignment must be In this paper and in our implementation, we conservatively assume invari-

equal to or a subtype of the left-hand side. Rule (r2) states that ant subtyping even with wildcard types.




ap is the type, in the original prograff, of the program construct corresponding+o

CGen creates and returns a set of type constraints. The result consiraims the interpretation af’ in contexta’’. The particular constraint{, <, or >)
betweern andZ,, . (a’) is determined byp. CGen is defined by case analysis on the type of its third parameter in the original pr@gram

CGen(a,op,d’, o', canAddParams) =

{aop C} whena’p = C andcanAddParams = false (c1)
{aopZ, (')} whena/p = C andcanAddParams = true (c2)
aopC}lU . CGen(Zo(W;), =, [1:], ", canAddParams) whena'p = C{r1,...,Tm) andC is declared a&’ (W1, ..., W, c3
1<i<m
aopZon (T whena'p = T c4
«
CGen(a, <, [7'],a”, canAddParams) whena’p = 7 extends 7’ (c5)
CGen(a, >, [7'],a”, canAddParams) whena’/p = 7 super 7’ (c6)

Figure 6. Auxiliary functions used by the constraint generation rules in Figure 5. Funct@an Wild is defined in Figure 11.

# constraint line |rules/cases

Notation:
(X1) [Z[cqj([Ce11.getC,e]) < [Wrapper . getii o] 5 [(r2),(r3), c2 Est(a)  asetof types, the type estimate of constraint variable
&g; K:} E [i[cf]}([tf’]) 189 E:‘l‘; c2 ap type of constraint variable in the original program
(xa) ldata] < [c:1i.getcret] 16 |2 Sulr)  setof all non-wildcard subtypes of
(X5) |Z(cs) ([Ce11.getCyey]) < [datal 22 |(r1),(r3), c2 Wild(X) set of wildcard types (both lower- and upper-
(x6) [aata] < Ticon](E) 25 |(r4), c4 < pounded) for all types in pre estl_maKa
x7) T(ca] ([data]) < Zjca) ([Cel1.getC,c,]) [closure(r7), x4 Uz universe of all types, including all wildcard types
(x8) Zic5)([45]) < Zpcs) ([data)) closure(r7), x3 (i.e., bothsuper andextends wildcards)
(x9) I[C5](Edata]) < Tpesp([cen1. getC,qy]) [Closure(r7), x4 . )
(x10) Zica) ([¢5]) < Zicqj([aata]) closure(r7), x3 1 _Sl_J_brlc_)Ut'ne parameterize():
Figure 7. Type constraints inferred from the program of Figure 2. Line 2 ;?I}t;aislzae(s)et of variables known to be type parameters

numbers re_fer to Figure 2 and indicate from which program construct 3 P« {automatically- or user-selected variaple

the constraint was generated. Rule numbers refer to generation rules in . . . -

Figure 5, and case numbers refer to Figure 6. 4 repeat until all variables have single-type estimates
5 while P is not emptydo

6 ap+<— remove element fron¥
In Figure 7, these are merged to form the (x1) constraint. Rows 7 if Est(asp) contains a type parametdnen
(x7)—(x10) in Figure 7 are the additional constraints that are gener- 8 Est(ay,) «— {type parameter fronkst (au,) }
ated due to the closure rules (r7) and (r8) of Figure 5. 9 else
10 Est(aqy ) «— {create new type paramejer
3.3 Constraint Solving 11 propagate()

if 3a.|Est(a)| > 1then
Est(a) < {select a type fronfst(«)}

14 propagate()

A solution to the system of type constraints is computed using 12
the iterative worklist algorithm of Figure 8. During solving, each
variable o« has an associated type estim&st«). An estimate
is a set of types, where types are as defined in Figure 4. Each
estimate is initialized to the set of all possible (non-parametric) T .
types and shrinks monotonically as the algorithm progresses. When™> Subroutine initialize(): .
the algorithm terminates, each estimate consists of exactly one® foreach non-context variable: do
type. Because type estimates do not contain parametric types, they’ I @ cannot have wildcard typtaen
are finite sets, and algebraic operations such as intersection can be? Bst(a) = Su{ap)
performed directly. As an optimization, our implementation uses a 19 €lse 4
symbolic representation for type estimates. 20 Est(a) = Sul{ap) U Wild(Sut{ap))

Algorithm Details. First, the algorithm initializes the type esti- 21 foreach context varblablela/(a) do
mate for each constraint variable at lines 2 and 15-22 in Figure 8. 22 Est(Z,/(a)) =Ug

The algorithm uses a worksdt containing those constraint /IR ile the left and riaht sid f h . i
variables which it has decided shall become type parameters, but econclle the left and right sides of each type inequality
for which that decision has yet to be executed. Theistinitially 23 Subroutine propagate(): _
seeded with the constraint variable that corresponds to the declara24 répeat until fix-point (i.e., until estimates stop changing)
tion that is selected either by a heuristic or by the user (line 3). The 25 foreachconstrainta < o’ do
inner loop of parameterize() (lines 5-11) repeatedly removes an el-26 Remove from&st(«) all types that are not a subtype of

/l Set initial type estimate for each constraint variable

ement fromP and sets its estimate to a singleton type parameter. atype inEst(a’)
For new type parameters, the upper bound is the declared type ire? Remove fromEst (') all types that are not a supertype
the original (unparameterized) program. of atype inEst(«)
Whenever a type estimate changes, those changes must be props if Est(a) or Est(a’) is emptythen
agated through the type constraints, possibly reducing the type es2g stop: “No solution”

timates of other variables as well. The propagate() subroutine per-3o foreach context variableZ,,: (o) do
forms this operation, ensuring that the estimates on both sides of ag1  if Est(Z,/(«)) is a singleton set with type parameter T

type constraint contain only types that are consistent with the re- and Est(«) does not contain Then
lation. Whenever a context varialile, (o) gets resolved to atype 35 adda to P
parameterp must also get resolved to type parameter (line 30). Figure 8:Pseudo-code for the constraint solving algorithm.

To see why, suppose thatgets resolved to a non-type parameter



constraint initial intermediate solutions during solving inferred
variable alias || estimate () (i) (iii) (iv) (v) (vi,vii,viii) type
[ca] =ag Sul{Ce11) — — — — — {Cel1} Cell
[Wrapper . getW, o] =ag || Sul{Object) {11} — — — — — Ty
[Cell.getCpqy] =ag || Sul{object) — { Object,T> } {12} — — — T

[t5] =ay || Sul{object) — {12} — — — — To
[data] =as || Sub{object) — { object,T> } {12} — — — T
Tica)([cell.getC, o)) =g ug {1} — — — — — T
Ty ([data]) =a7 U% {11} — — — — — Ty
I[c4] ([es]) =asg U% {11} — — — — — T

[ta] =ag || Sul{object) {11} — — — — — Ty

[c5] =o10 || SulfCell) — — — — — {ce11} Cell
I[c5] ([t8]) =11 U% — —_— { T2, 7extends Ty } | — | { ?extends T } —_— ? extends To
I[C5] ([Cell.getcret}) =12 U% — — { T2, 7extends Tz } | — | { ?extends T } — ? extends To
I[C5] ([data}) =13 U% — — { T2, ?extends T } — { 7 extends Ty } — 7 extends Ty
I[col] (E) =14 U% — X5 { T2, 7super T2 } | — — { ?super T> } | ?super T
WorksetP { a2 } { 4,3, Q5 } { a3, a5 } { as } 1] [] 1] [

X15 = { Object, ? super Object, T2, ? super T> }

Figure 9. lllustration of constraint solution for the program of Figure 2. Each constraint variable is given an alias for later reference. The table shows, for
each constraint variable: its initial type estimate, its type estimate at 8 points in the solving process, and the final inferred-typ@ny means that the

type estimate for that constraint variable remained unchanged in the given step. C@)iv)sindicate the type estimates after each iteration of the loop on

lines 5-11 of Figure 8. Column(s)—(viii) indicate the state after resolving under-constrained variables, on lines 12—14 of Figure 8. The last row shows the
contents of the worksd®, which contains variables that are eventually assigned type parameters.

type,C. In that case, the context is irrelevant (as mentioned in Sec-  To understand why all 5 variables get the estiméte; },
tion 3.1), and thug, («) also must get resolved @ (i.e., nota consider variable[t4]. Transitively, we have thatfta] <
type parameter). This is a contradition. This step propagatates pa-[wrapper.getW,,] = Ti. The only subtypes of;, are {1y, 7
rameterization choices between classes. extends T1}. Intersecting this set with the current estimate for

Assembly of Parametric Types.The type estimates created [t4] (namely, Sul{Object)) reduces|t4]'s estimate to simplyr;.
during the constraint solution algorithm are all non-parametric, Propagating that change through the type constraints sets the other
even for constraint variables that represent program entities whosethree constraint variables tn as well. Given that context vari-
type was parametric (e.get on line 12 in Figure 1), or will able T;c4)([t5]) is now a type parameter, lines 30-32 of the al-
be parametric after refactoring (e.@4 on line 6 in Figure 1). gorithm constraints to be a type parameter as well (see the
A straightforward algorithm, run after solving, assembles these discussion of propagate() in Section 3.3). Similar arguments ap-
results into parametric types. For instance, the tygaa for [c5] ply t0 Zjcq([data]) and data, and t0Zc4;([Cell.getC,]) and
and the type? extends To for Zic5(72) are assembled into the  [ce11.getc,,], SO the three variables are added to the workset
typecCell<? extends Ta> for [c5]. variables that will be assigned type parameters. Column (i) shows

Example of Solving.Figure 9 illustrates the constraint solving  the result.
process using the example program of Figure 2. The ‘initial esti- Column (ii). The second variable to be removed from the work-
mate’ column in Figure 9 shows the initial type estimate for each set is[t5] (an arbitrary choice is made at line 6 in the pseudo-
constraint variable, determined as described in lines 15-22 of Fig- code); it is assigned a new type paramaterTo satisfy the type
ure 8 and using notation from the top of Figure 8. For example: constraints, the estimates of variablega, [Cell.getC,.], and
Tico1)(E) are narrowed, and column (i) shows the result.

Column (iii). The third variable removed from the workset is
[Cell.getC,,]. Its current estimate i§ Object, T2 }. TO assign a
type parameter to the variable, line 8 of the algorithm choases
(rather than creating a new type parameter). Because of constraints
(x4), (x5), (x8), (x9), and (x6), the estimates of variablesta),
Zics)([Ce1l.getC,o]), Zics)([t5]), Zics)([data]) and Zicon)(E),
respectively, must be narrowed. Column (iii) shows the result.

Column (iv). The algorithm removes the last variableatal,

When the algorithm is run on the program of Figure 2, the outer from the workset. It is already assigned a type parameter, so its es-
loop (lines 4-14) is executed four times. On its first iteration, the timate remains unchanged. Estimates of other variables also remain
inner loop (lines 5-11) is itself executed four times, and the inner unchanged in this iteration, because they are already consistent with
loop is not executed on the subsequent iterations of the outer loop.the constraints. Column (iv) shows the result.

Each inner loop execution consists of assigning a type parameter ~ Column (v).At this point, the worksef” is empty and all esti-
to a constraint variable. Each outer loop execution selects a typemates are consistent with the type constraints. However, the esti-
for an under-constrained constraint variable. We will now discuss mates for variables:; and ao—ai14 contain more than one type.
columns (i)—(viii) of Figure 9, which show the state of the algorithm  The algorithm makes a heuristic choice (line 12 in pseudo-code) to
at the end of the four inner loop executions, and at the end of the narrow the estimate 6fcs;([Ce11.getC,]) 10 { 7 extends T }.

four outer loop executions. By reconciling that choice with constraints (x9) and (x8), the esti-

Column (i).The algorithm first assigns a new type parameter ~ Mates for variableg|.s)([data]) andZ .5 ([t5]), respectively, are
to constraint variable (i.e., [Wrapper.getw_]), and propagates  also settq 7 extends To }. Column (v) shows the result.
that choice to related constraint variables. Due to constraints (x1),  Column (vi,vii,viii). The algorithm makes three more heuristic
(x7), (x10), and (x2), which establish the ordes] < Z;.4;([t5]) choices to narrow the estimatesDfo1;(E), [c4], and[cs]. None
< Tica ([data]) < Ticq ([ce11.getC,.,]) < [Wrapper.getW,.,], the of these choices causes any changes to propagate to other estimates.

estimates of all 5 of these variables are narrowefltp }.

¢ The initial type estimate for variable4] is Sul{ce11) because
Cell is the original type ot4 andc4, being a variable declara-
tion, cannot be assigned a wildcard type. The initial estimate is
Sulfce11), rather than{ cel11 }, because the algorithm allows
a newly introduced type parameter (em.extends Cell, to be
assigned te4).

* The initial estimate off;c5([data]) is U3 (the universe of all
types, including lower- and upper- bounded wildcards).



All type estimates are now singleton sets, and the solution variableo2 on line 24 of Figure 1. Assigning a type parameter to
shown in the rightmost column of Figure 9 is used for rewriting o2 would not allow inferring a type parameter or a parametric type
source code. for any method'’s return type. Therefore, it is not assigned a type

parameter but rather the type that preserves erasura@giject).

3.3.1 Heuristics )
The algorithm of Figure 8 makes an underconstrained choice on 83.2 Miscellaneous Issues

lines 3, 6, 12, and 13. (On line 8, there is only one possibility.) Any A solution to the constraint problem does not always exist. For
choice yields a correct (behavior-preserving and type-safe) result, example, consider the following class.

but some results are more useful to clients (e.g., permit elimination class C {

of more casts). Our implementation makes an arbitrary choice at public String getText() { return "hello"; }

lines 6 and 12, but uses heuristics at lines 3 and 13 to guide the

algorithm to a useful resul. If the return type ofgetText iS selected for parameterization,

the type parameter would have to have a concrete lower bound:
Type Uses for Parameterization. The selection of type uses for T super String. Such type parameters are disallowed in Java.
parameterization (on line 3) can affect the quality of the final pa- Line 28 in Figure 8 detects cases in which no solution can be
rameterization. For example, in the example from Figure 1, select- found.

ing the parameter afultiSet.contains (On line 18) would result As noted in Section 3.3, lines 3032 of Figure 8 handle inter-
in a parameterization in which too many type uses (including also class dependencies. Interfaces and abstract classes are handled by
the parameter afultiSet.getCount) have the final type;. Such the same mechanism, i.e., our algorithm creates type constraints to
a (legal) parameterization would be inconvenient for clients of this preserve method overriding and treaifplements/extends rela-
class. tionships as other inter-class dependencies.

Our tool permits a user to select, with a mouse click, a type to Our algorithm and implementation fully support parame-
parameterize. Otherwise, it uses the following heuristic. terization in the presence of generic methods, e.g., those in

java.util.Collections but we have not yet implementediding

type parameters to methods. (Von Dincklage and Diwan used
heuristics to handle generic methods [22]—such heuristics may
classes. also be applicable to our work. In previous work, we used a context-

2. Parameterize the return value of a *retrieval” method. A retrieval  gonitive version of the generic instantiation algorithm to parame-
method'’s result is downcasted by clients, or it has a name match- o i-e methods [11].)

ing such strings aget andelementAt. Even classes that are not Reflection poses no problems for our algorithm—reflection-

3 EOlleCt'otns_Oﬁiﬂ h?"e SUICh retrle\t/al rtnethogls [8]t" thod. A, elated classes are parameterized in JDK 1.5 and our inference uses
- Farameterize the formal parameter 1o an insertion method. AN those generic annotations when parameterizing user classes.
insertion method has a name matching such stringsiaor

put. 3.4 Source Rewriting

The heuristic further forbids selecting these uses of types: After the tool solves the constraint system and assigns each con-
straint variable a type, it rewrites the source code as follows:

1. If a generic supertype exists, use the supertype’s signatures in
the subtype. This is especially useful for customized container

1. Parameters of testing methods suchcastains. Their types
are typically different than the type parameter. For example, the 1. Add a formal type parameter for each constraint variable whose

parameter Ofiava.util.Collection.contains iSObject. type estimate is a type parameter. For example, a new formal
2. Type uses that are not in the public interface of the class. type parameter; is added to classrapper on line 1 of Fig-
3. Parameters of overridden methods (suchqsis), unless their ure 2 because several constraint variables are assigned the type

type in the overridden class is a type parameter. As discussed in parameter;.
Section 3.1, to preserve method overriding, types of such param-2. Rewrite each program declaration to reflect the value of the

eters must remain unchanged, and cannot be parameterized. corresponding constraint variable. For example, in Figure 9, the
4. Type uses in interfaces or abstract classes. Their uses tend to be type assigned t¢4] is T,. Therefore, on line 7 of Figure 2, the
under-constrained and can lead to sub-optimal results. declaration of4 is changed ta; .
) ) ) ) 3. Remove redundant casts, as on line 26 of Figure 1. A(¢AsE
Narrowing a Type Estimate to One Type.Given a type estimate is considered redundant if the computed type[fdris C'. If the

to narrow, line 13 chooses one of its elements. The algorithm uses  computed type is a subtype 6f, then the cast can be removed
a heuristic that minimizes the use of casts in client code, while  only if the cast expression is not used to force static member

preserving ﬂelelllty in cases where this does not affect type-safety: resolution. Otherwise the program’s behavior will Change [12]
it prefers (in this order):

i) types that preserve type erasure over those that do not, 4. Evaluation

ii) wildcard types over non-hwildcard t)épes, alm(_jf h achoi A practical type parameterization tool must be correct, accurate,
i) tytﬁe parfameters ?ver other types, fUt only it suc a? O'Cﬁ edn- and usable. Correctness requires that run-time behavior is not mod-
ables inference of type parameters for return types of methods. jsieq for any client. Accuracy requires that the parameterization is

For example, given estimateNumber, ? super Integer }, if the cIo_se to what a hum_an Wo_uld have written by har]d. Usability re-
type of the constraint variable in the original program wasber, quires that the tqol is easier to use than performing the refactor-
the heuristic selectsumber. When selecting a type from estimate Ing manually. This section describes our experimental evaluation
{Ta,? super Ty }, the heuristic selects super T. Finally, when of these desiderata.

selecting from estimatéNumber, T1 }, WhereT; extends Number, .
the heuristic selects; . 4.1 Implementation

To justify the restriction in (iii), observe that assigning a type We implemented our technique in a refactoring tool that is in-
parameter or a parametric type to a method return type is benefi-tegrated with the Eclipse integrated development environment.
cial, because doing so reduces the need for casts in clients of theOur previous work on the instantiation problem [11] was adopted
class. Otherwise, introducing type parameters simply increases theby the Eclipse developers and made into Eclipse 3.4BER
apparent complexity of the class for clients. For example, consider GENERIC TYPE ARGUMENTS refactoring. Our parameterization



parameterizable classes type use | time inference results diff vs. manual
library classed LOC |type uses selectiong (sec.)| params | wildcards | others | same| better | worse
concurrent| 14 | 2715 415 5 115 11 23 266 | 353 | 37 25
apache 74 | 9904 | 1183 53 301 70 90 676 | 1011| 116 | 56
jutil 9 305 80 4 1 7 5 40 65 15 0
jpaul 17 827 178 11 6 15 11 110 | 148 | 22 8
amadeus 8 604 129 4 5 6 4 86 | 125 1 3
dsa 9 791 162 4 3 8 0 69 | 158 4 0
antlr 10 601 140 3 6 12 8 81 na | n/a n/a
eclipse 7 582 100 5 5 6 0 51 n/a | nla n/a
Total 148 |16329] 2387 89 442 | 135 141 1379 | 1860| 195 | 92

Figure 10. Experimental results. “Classes” is the number of parameterizable classes in the library, including their nested classes. “LOC” is lines of code.
“Type uses” is the number of occurrences of a reference (non-primitive) type in the library; this is the maximal number of locations where a type parameter
could be used instead. The next two columns show how many type use selections were made (line 3 of Figure 8) and the cumulative run time. After the results
from our tool, the “diff vs. manual” columns indicate how our tool’'s output compares to the manual parameterization.

tool builds on that previous implementation work and is integrated the java.util.concurrent package from Sun JDK 1.&pacheis
with Eclipse in a similar way. the Apache collections librarg{rvalabs.com/collections/). ju-

A programmer can use our tool interactively to direct a refactor- til is a Java Utility Library éscott.net/Projects/JUtil/). jpaul
ing process (each step of which is automatic) by selecting (click- is the Java Program Analysis Utility Librarygdaul . sourceforge.
ing on) an occurrence of a type in the program. The tool automat- net). amadeusis a data structure librarpéople.csail.mit.edu/
ically rewrites (parameterizes) the class in which the mouse click adonovan/). dsais a collection of generic data structuresn.
occurred, and possibly other classes as well. Alternatively, a pro- cs.fiu.edu/"weiss/#dsaajava2). antlr is a parser generatosi.
grammer can specify a set of classes to parameterize, and the tooknt1r.org). eclipseis a universal tooling platformifw.eclipse.
heuristically selects type occurrences. The tool uses Eclipse’s built- org). The last two libraries have not been parameterized by their
in support for displaying changes, and the user can examine themauthors.

one-by-one, accept them, or back out of the changes. Most of the classes are relatively small (the largest is 1303
lines), but this is true of Java classes in general. Our tool processes
4.2 Methodology each class or related group of classes independently, so there is no

Our evaluation uses a combination of 6 libraries that have al- obstacle to applying it to large programs.
ready been parameterized by their authors, and 2 libraries that

have not yet been made generic; these two varieties of evaluation®-3 Results

have complementary strengths and weaknesses. Use of already4.3.1 Correctness

parameterized libraries lets us evaluate our technique’s accuracy,

by comparing it to the judgment of a human expert other than our- consistent. Backward compatibility requires that the erasure of the

selves. However, it is possible that the library authors performed resulting parameterized classes is identical to the input. If so, then

other refactorings at the same “”?e as param.eteriz.ation, to ease thattne compiled c1ass file behaves the same as the original, unparam-
task. Use of non-parameterized libraries avoids this potential prob- oe ;64 version: for example, all method overriding relationships
lem, but the evaluation is more subjective, and a human reading ;|4 "oy actly the same set of clients can be compiled and linked
the tool output may not notice as many problems as one who is ,aingt it ‘etc. Consistency (type-correctness) requires that the pa-
performing the full task. (It would be easy for us to parameterize ., noterized classes satisfy the typing rules of Java generics; more
them ourselves, but such an approach has obvious methodologicage sifically, that a Java compiler issues no errors when compiling

proglermf(.) riments started with mplete, non-parameterized i the parameterized classes.
ur experiments starte a compléete, non-parameterized - -, t50/'s output for all the tested library classes is correct: it is

brary. (For already-parameterized libraries, we first applied a tool i ; :

that erased the formal and actual type parameters and added neceé)-Oth backward-compatible and consistent.

sary type casts.) Not all classes are amenable to parameterization;

we selected a subset of the library classes by first manually select-*-3-2 Accuracy

ing the set of packages that we considered to be likely to contain We determined our tool's accuracy in different ways for libraries
parameterizable classes, and then selecting the classes that wer®r which no no generic version is availablnlr andeclipse and
parameterizable by our tool. those for which a generic version is available (all others).

The experiments processed the classes of the library in the fol-  When no generic version of a library is available, we asked
lowing order. We built a dependence graph of the classes, thenthe developers their opinion of the result. A developer of Eclipse
applied our tool to each strongly connected component, starting examined each of the changes made by our tool and concluded that
with those classes that depended on no other (to-be-parameterizedhe changes were “good and useful for code migration to Java 5.0.”
classes. This is the same order a programmer faced with the prob-He mentioned only 1 instance (out of 100 uses of types in the
lem would choose. Eclipse classes we parameterized) where the inferred result, while

All experiments used our tool’s fully automatic mode. For ex- correct, could be improved. A developer of ANTLR concluded that
ample, at each execution of line 3 of Figure 8, it chose the lexico- the changes made by our tool “look pretty good”. He mentioned 1
graphically first candidate type use, according to the heuristics of instance (out of 140 uses of types in the parameterized classes)
Section 3.3.1. To make the experiment objective and reproducible, where the inferred result, while correct, could be improved.
we did not apply our own insight, nor did we rewrite source code When a generic version of a library is available, we examined
to make it easier for our tool to handle, even when doing so would each difference between the pre-existing parameterization and our
have improved the results. tool’s output. For 87% of all type annotations, the output of our

Figure 10 lists the subject programs. All of these libraries were tool is identical or equally good. For 4% of annotations, the output
written by people other than the authors of this papancurrentis of our tool is worse than that created by the human. For 9% of

parameterization is correct if it is backward-compatible and self-



annotations, the tool output is better than that created by the human.inapplicable to Java because PolyJava differs from Java 1.5 in sev-
Figure 10 tabulates the results. eral important ways, and Duggan does not address issues related to
Given two parameterizations, we used two criteria to decide raw types, arrays of generic types, and wildcard types that arise in
which was better. The first, and more important, is which one practice. Duggan does not report an implementation or empirical
allows more casts to be removed—in clients or inside the library results.
itself. The secondary criterion is which one more closely follows Donovan and Ernst [7] present another automated approach for
the style used in the JDK collections, which were developed and the parameterization of Java classes. The technique automatically
refined over many years by a large group of experts, and which determines both type parameters and where declarations should re-
can therefore be reasonably considered models of style. The twofer to those type parameters. The approach first performs an intra-
criteria are in close agreement. (When multiple styles appear in the class analysis that constructs a type constraint graph using dataflow

JDK, we did not count differences in either the “better” or “worse”
category.) We present three examples from each category.
Examples when the output of our tool was worse:

i. Our tool does not instantiate the fieldxt in member type

rules. Then, after collapsing strongly connected components and
making additional graph simplifications, an inter-class analysis
fuses type parameters where required to preserve method over-
riding. The algorithm also determines how references to generic

LinkedBlockingQueue.Node (in concurrent) asNode<E>, but classes should be updated, by inferring actual type parameters. The

leaves it raw. Such a choice is safe, but it is less desirable thanWork by Donovan and Emst differs from ours in several significant

the manual parameterization. ways. Although it is reported that the desired solution is computed
ii. Our tool does not infer type parameters for methods; for exam- for several examples, Donovan and Ernst report that “often the class
ple, the metho®redicatedCollection.decorate in apache is over-generalized” (has too many type parameters). Donovan and
Our tool inferred two separate type parameters for interface Ernst’s work pre-dates Java 1.5 generics and targets a translation

Buffer in theapachelibrary. In this case the manual parame- 0 GJ [3]. As a result, they may infer arrays of generic types (dis-
terization had only one. allowed in Java 1.5 generics), and do not consider the inference of

wildcard types. Donovan’s work [7] was never fully implemented,
Examples when the output of our tool was better (in each case, and no empirical results are reported.

the developers of the package agreed the inferred solution was \on Dincklage and Diwan [22] also present a combined ap-
better than their manual parameterization): proach for the parameterization of classes and for the inference

i. Our tool adds a formal type parameter to member cigss of actual type parameters in clients of those classes. Similarly to

chronousQueue . Node in concurrent. Adding the parameter al- ~ Duggan [9], their tool (llwith) creates one type parameter per dec-

lows elimination of several casts insifignchronousQueue. laration, then uses heuristics to merge type parameters. Our sys-
. In methodVerboseWorkSet . containsAll in jpaul, our tool tem differs in its (1) algorithm, (2) implementation, and (3) eval-
inferred an upper-bounded type parameter wildcard for the uation. (1) A key difference from our algorithm is that liwith is
Collection parameter. This permits more flexible use and unsound, due to insufficient type constraints (it is missing those
fewer casts by clients, and also adheres to the standard col-for preserving erasure for methods and fields, and overriding rela-
lections style from the JDK. tionships between methods). As a result, the behavior of both the
Our tool inferredhbject as the type of the parameter of method  library and its clients may change after parameterization, without
Canonical.getIndex in amadeus This is more flexible with ~ warning; this makes the technique unsuitable in practice. By con-
fewer casts (and follows the JDK style). A similar case oc- trast, our approach is correct (see Section 4.3.1) and uses heuristics

curred injpaul (our tool inferredobject for the parameter of ~ 0nly to choose among legal solutions. Unlike our approach, llwith
WorkSet.contains). does not handle key features of Java generics such as raw types

and wildcards. To control run time and the number of constraint
variables, llwith uses special cases in the algorithm to handle other
Java features, such as calls to static methods and methods in generic
classes, and context-, field-, and instance-sensitivity; by contrast,
bur system is more uniform, and we have not found performance
0 be a problem. llwith creates maximally many type parameters
nd then tries to merge them via heuristics (though other heuris-
tics, such as the requirement that every field declaration mentions a
type parameter, may leave the result over-general). By contrast, our
technique starts with no type parameters and incrementally adds
them. (2) We mention only two differences between the two imple-
mentations. First, llwith does not rewrite source code, but merely
prints method signatures without providing details on how method
bodiesshould be transformed. Second, llwith took “less than 2 min-
utes” per class on a 2.66 GHz machine, whereas our implementa-
tion averaged less than 3 seconds per class on a 2.2 GHz machine.
(3) The experimental evaluation of the two tools differs as well. II-
Wwith was evaluated on 9 data structures (5 lists, 1 stack, 1 set, and
2 maps) chosen from two libraries (47 classes altogether, including
inner classes, interfaces and abstract classes). The authors made
whatever edits were necessary to enable llwith to succeed, so the
classes are most like the pre-parameterized libraries in our eval-
uation. However, the authors did not evaluate the accuracy of the
solution, either via examination by a Java expert or via comparison
fo existing parameterized versions of the libraries (then available,
for example, from the GJ project and from JDK 1.5 beta releases).
Even the example signatures shown in the paper differ from what a
?rogrammer would have written manually, for exampladaaii,

4.3.3 Usability

Our tool operated fully automatically, processing each class in

under 3 seconds on average. A user who elected to manually selec
type uses would only need to make 89 mouse clicks to add 135
type parameters to 148 classes. As mentioned, 4% of the compute
results are sub-optimal, requiring manual correction.

By comparison, manual parameterization requires making 1655
edits to add generic types — after reading the code to decide what.
edits to make. And even so, the human result was sub-optimal 9%
of the time, so adjusting the results after finishing is even more
work than in the tool-assisted case.

Those results illustrate that manual parameterization requires a
significant amount of work. Parameterization of #ygachecol-
lections took “a few weeks of programming”, according to one of
the developers. It is an error-prone activity and, to quote the same
developer, “the main advantage we had was the over 11,000 tes
cases included with the project, that let us know we hadn’t broken
anything too badly.”

5. Related Work

Duggan [9] presents an automatic approach for parameterizing
classes written in PolyJava, a Java subset extended with parame
terized types. Duggan’s type inference infers one type parameter
for each declaration in a class. Even after applying simplifications

to reduce the number of useless type parameters, Duggan’s analysi
leads to classes with excess type parameters. Duggan’s analysis i



contains, equals, putAll, remove, andremoveEntryForKey. (The line 42 in Figure 1:

authors state that the results are consistent with Eiffel [14], but a methodM = sertSet.addAll overrides
Java programmer performing a refactoring is more likely to care ]V{] :Treiseﬁm'agd‘,ui(i\‘jll,le“m“? extends E>)
about Java semantics and backward compatibility.) © wherer = My andry = My
Previous work by the present authors includes two algorithms [8, = CGenWild([ri],=7{ Sortset, false)
11] that, given a set of generic classes, infer how client code can— {[m1] = Collection} U
be updated by inferring actual type parameters and removing casts CGenWild(E([T1]),=,7 extends ESortSet,false)
that have been rendered redundant. In this paper, we extended th& {[r1] = Collection} U
constraint formalism and implementation of [11] to accommodate CGenWild(E([11]),<E,SortSet,false)
the inference of wildcard types. Although [11] includes a mode for ©9 {[1] = Collection} U
inferring method type parameters by means of a context-sensitive E([r1]) =7 extends E(SortSet)}

analysis, it does not infer class type parameters. Some of the presen
authors previously used type constraints for several refactorings
and program transformations that also involve manipulating types
and class hierarchies, such as refactorings related to generaliza-

tion [21], customization of library classes [6], and refactorings for \antage of libraries that have been made generic. Our analysis com-

migration applications between similar library classes [1]. The | 5 tes an instantiation at the same time as it performs parameteriza-
FER TYPE refactoring by Steimanet al. [20] lets a programmer  ion.

select a given variable and determines a minimal interface thatcan  \ye have implemented our algorithm in the context of the

be used as the type for that variable. If such an interface does notgjipse IDE and run experiments to verify its correctness, accuracy,
yet exist, it is created automatically. Steimaginal. only present  gnq ysability. The results are correct: they are backward-compatible
their type inference algorithm informally, but they appear to use g they maintain behavior. The results are even more accurate than
similar constraints to those of [21]. L _ parameterizations performed by the library authors: 9% of the tool
A number of authors have explored compile-time parametric yagyjts are better, and 4% of the tool results are worse. The tool is
type inference to ease the burden of explicit parameterization in saple: it requires only a mouse click, runs quickly, and thus greatly
languages supporting parametric types [15, 18, 13]. Many of these rgqyces overall developer effort. We are hopeful that this tool may
approaches were applied to functional programming languages,jncrease the uptake of Java generics, which are a very valuable

and thus focus on introducing type parameters for functions, rather |anguage feature that increases type safety and expressiveness.
than for classes or modules. Obviously, such languages differ in

many important respects from Java 5.0, e.g. in the lack of a class

hierarchy with inheritance and overriding, or in the use of struc- References

tural (cf. nominal) subtyping, or in the lack of the notion of type 11| galaban, F. Tip, and R. Fuhrer. Refactoring support for
erasure. Thes_e differences in semantics and structure necessitate class library migration. IDOPSLA pages 265-279, Oct.
significantly different constraint systems. Moreover, the type sys- 2005.

tems in many functional languages (e.g. ML) induce a unfyire

ciple typefor each program variable, whereas in our case the con-
straint system leaves the possibility to select a "desirable” result
from a software engineering perspective, which is a critical con- ;
cern for source-to-source transformations. Yet other works describe pl)g%gsrammlng language. I@OPSLA pages 183-200, Oct.
parametric type inference even for languages with mandatory ex- ’ . e .

plicit parameterization for the purpose of statically type checking [4] C. Chambers. The Cecil language specification and rationale:
such diverse languages as Cecil [4], constraint logic programming Version 2.0. 1996. .

(CLP) [10] or ML [16]. Again, these works differ from ours in [5] B. De Sutter, B. De Bus, and K. De Bosschere. Sifting out the

IT:igure 12. Example applications of constraint generation rules from Fig-
ure 5.
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One returns a singleton set whose only constraint relates type constraint varahfeky’ according tap.

One(a,op,a’) =
{aopa’}

{ {Oc = 7 extends Oc'}
{a = 7?7 super O/}

CGenWild is like CGen, but may generate wildcard constraints.

CGenWild(a, op, o, &', canAdd) =
One(a, op,C)
One(a, op, Ly (a'))
One(a,0p,C) UU; << CGenWild(Za(W;), =, [1i], &, canAdd)

One(a, op, Lo (T))

CGenWild(a, <,[7'],a, canAdd)
CGenWild(a, >, [T'],a, canAdd)

whena/p» = C andcanAdd = false
whena’p = C andcanAdd = true
whena’p = C(r1,...,Tm), C declared a& (W1, ...
whena'p = T

Whel’lo/p = 7 extends 7’
wheno/p = 7 super 7!

(c1)
(c2)
(c3)

(c4)

(c5)
(c6)

Figure 11. CGenWild auxiliary function, which is used in Figure &:Gen Wild is like function CGen of Figure 6, except for the use of functigéhne.
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