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Abstract
Type safety and expressiveness of many existing Java libraries and
their client applications would improve, if the libraries were up-
graded to define generic classes. Efficient and accurate tools exist
to assist client applications to use generics libraries, but so far the
libraries themselves must be parameterized manually, which is a
tedious, time-consuming, and error-prone task. We present a type-
constraint-based algorithm for converting non-generic libraries to
add type parameters. The algorithm handles the full Java language
and preserves backward compatibility, thus making it safe for ex-
isting clients. Among other features, it is capable of inferring wild-
card types and introducing type parameters for mutually-dependent
classes. We have implemented the algorithm as a fully automatic
refactoring in Eclipse.

We evaluated our work in two ways. First, our tool parameter-
ized code that was lacking type parameters. We contacted the de-
velopers of several of these applications, and in all cases where
we received a response, they confirmed that the resulting parame-
terizations were correct and useful. Second, to better quantify its
effectiveness, our tool parameterized classes from already-generic
libraries, and we compared the results to those that were cre-
ated by the libraries’ authors. Our tool performed the refactoring
accurately—in 87% of cases the results were as good as those cre-
ated manually by a human expert, in 9% of cases the tool results
were better, and in 4% of cases the tool results were worse.

1. Introduction
Generics(a form of parametric polymorphism) are a feature of the
Java 1.5 programming language. Generics enable the creation of
type-safe reusable classes, which significantly reduces the need for
potentially unsafe down-casts in source code. Much pre-1.5 Java
code would benefit from being upgraded to use generics. Even new
code can benefit, because a common programming methodology
is to write non-generic code first and convert it later. The task of
introducing generics to existing code can be viewed as two related
technical problems [8]:

1. Theparameterization problemconsists of adding type parame-
ters to an existing class definition so that it can be used in differ-
ent contexts without the loss of type information. For example,
one might convert the class definitionclass ArrayList {. . .}
into class ArrayList<T> {. . .}, with certain uses ofObject in
the body replaced byT.

2. Once a class has been parameterized, theinstantiation problem
is the task of determining the type arguments that should be
given to instances of the generic class in client code. For ex-
ample, this might convert a declarationArrayList names; into
ArrayList<String> names;.

The former problem subsumes the latter because the introduction of
type parameters often requires the instantiation of generic classes.
For example, if classHashSet uses aHashMap as an internal repre-
sentation of the set, then parameterizing theHashSet class requires
instantiating the references toHashMap in the body ofHashSet.

If no parameterization is necessary, the instantiation prob-
lem can be solved using completely automatic and scalable tech-

niques [8, 11], and the INFER GENERIC TYPE ARGUMENTSrefac-
toring in Eclipse 3.1 is based on our previous work [11]. However,
to our knowledge, no previous practical and satisfactory solution to
the parameterization problem exists. Thus far, class libraries such
as the Java Collections Framework have been parameterized man-
ually, and developers involved with this task described it as very
time-consuming, tedious, and error-prone [12, 2].

We present a solution to the parameterization problem such that:
(i) the behavior of any client of the parameterized classes is pre-
served, (ii) the translation produces a result similar to that which
would be produced manually by a skilled programmer, and (iii) the
approach is practical in that it admits an efficient implementation
that is easy to use. Our approach fully supports Java 1.5 gener-
ics, including bounded and unbounded wildcards, and it has been
implemented as a refactoring in Eclipse. Previous approaches for
solving the parameterization problem [9, 7, 22] did not include a
practical implementation, and produced incorrect or suboptimal re-
sults, as will be discussed in Section 5.

We evaluated our work in two ways. First, we parameterized
non-generic classes, and examined the results to ensure that they
were satisfactory and usable to clients. Second, we complemented
that qualitative analysis with a quantitative one in which we com-
pared its results to those produced by human programmers. Our
tool computes a solution that is nearly identical to the hand-crafted
one, and is sometimes even better (i.e., it permits more casts to be
removed).

The remainder of this paper is organized as follows. Section 2
gives a motivating example to illustrate the problem and our so-
lution. Section 3 presents our class parameterization algorithm.
Section 4 describes the experiments we performed to evaluate our
work. Section 5 overviews related work, and Section 6 concludes.

2. Example
Figure 1 shows an example program consisting of two classes,
MultiSet andSortSet, before and after automatic parameterization
by our tool. The following observations can be made about the
refactored source code:

1. On line 6, the type of the parameter ofMultiSet.add() has
been changed toT1, a new type parameter of classMultiSet that
represents the type of its elements.

2. On line 9, the return type ofMultiSet.getMostCommon() is now
T1. This, in turn, required parameterizing classSortSet with
a type parameterT2 (line 34) and changing the return type of
SortSet.getMostCommon() (line 45) toT2. This illustrates that
parameterizing one class may require parameterizing others.

3. On line 12, the parameter ofMultiSet.addAll() now has type
Collection<? extends T1>, a boundedwildcard type that al-
lows anyCollection that is parameterized with a subtype of
the receiver’s type argumentT1 to be passed as an argument.
The use of a wildcard is very important here. Suppose that the
type Collection<T1> were used instead. Then a (safe) call to
addAll() on a receiver of typeMultiSet<Number> with an ac-
tual parameter of typeList<Integer> would not compile; the
client would be forbidden from using those (desirable) types.

1



1 // A MultiSet may contain a given element more than once.
2 // Each element is associated with a count (a cardinality).
3 public class MultiSet {
4 // counts maps each element to its number of occurrences.
5 private Map counts = new HashMap ( ) ;
6 public void add (Object t1 ) {
7 counts . put ( t1 , new Integer ( getCount ( t1 ) + 1 ) ) ;
8 }
9 public Object getMostCommon ( ) {

10 return new SortSet ( this ) . getMostCommon ( ) ;
11 }
12 public void addAll ( Collection c1 ) {
13 for ( Iterator iter = c1 . iterator ( ) ;
14 iter . hasNext ( ) ; ) {
15 add ( iter . next ( ) ) ;
16 }
17 }
18 public boolean contains ( Object o1 ) {
19 return counts . containsKey ( o1 ) ;
20 }
21 public boolean containsAll ( Collection c2 ) {
22 return getAllElements ( ) . containsAll ( c2 ) ;
23 }
24 public int getCount ( Object o2 ) {
25 return ( ! contains ( o2 ) ) ? 0 :
26 ((Integer)counts . get ( o2 ) ) . intValue ( ) ;
27 }
28 public Set getAllElements ( ) {
29 return counts . keySet ( ) ;
30 }
31 }
32

33 // A SortSet sorts the elements of a MultiSet by their cardinality.
34 class SortSet extends TreeSet {
35 public SortSet ( final MultiSet m ) {
36 super ( new Comparator ( ) {
37 public int compare (Object o3 , Object o4 ) {
38 return m . getCount ( o3 ) − m . getCount ( o4 ) ;
39 }} ) ;
40 addAll ( m . getAllElements ( ) ) ;
41 }
42 public boolean addAll ( Collection c3 ) {
43 return super . addAll ( c3 ) ;
44 }
45 public Object getMostCommon ( ) {
46 return isEmpty ( ) ? null : first ( ) ;
47 }
48 }

1 // A MultiSet may contain a given element more than once.
2 // Each element is associated with a count (a cardinality).
3 public class MultiSet<T1> {
4 // counts maps each element to its number of occurrences.
5 private Map<T1,Integer> counts = new HashMap<T1,Integer> ( ) ;
6 public void add (T1 t1 ) {
7 counts . put ( t1 , new Integer ( getCount ( t1 ) + 1 ) ) ;
8 }
9 public T1 getMostCommon ( ) {

10 return new SortSet<T1> ( this ) . getMostCommon ( ) ;
11 }
12 public void addAll ( Collection<? extends T1> c1 ) {
13 for ( Iterator<? extends T1> iter = c1 . iterator ( ) ;
14 iter . hasNext ( ) ; ) {
15 add ( iter . next ( ) ) ;
16 }
17 }
18 public boolean contains ( Object o1 ) {
19 return counts . containsKey ( o1 ) ;
20 }
21 public boolean containsAll ( Collection<?> c2 ) {
22 return getAllElements ( ) . containsAll ( c2 ) ;
23 }
24 public int getCount ( Object o2 ) {
25 return ( ! contains ( o2 ) ) ? 0 :
26 ((Integer)counts . get ( o2 ) ) . intValue ( ) ;
27 }
28 public Set<T1> getAllElements ( ) {
29 return counts . keySet ( ) ;
30 }
31 }
32

33 // A SortSet sorts the elements of a MultiSet by their cardinality.
34 class SortSet<T2> extends TreeSet<T2> {
35 public SortSet ( final MultiSet<? extends T2> m ) {
36 super ( new Comparator<? extends T2> ( ) {
37 public int compare (T2 o3 , T2 o4 ) {
38 return m . getCount ( o3 ) − m . getCount ( o4 ) ;
39 }} ) ;
40 addAll ( m . getAllElements ( ) ) ;
41 }
42 public boolean addAll ( Collection<? extends T2> c3 ) {
43 return super . addAll ( c3 ) ;
44 }
45 public T2 getMostCommon ( ) {
46 return isEmpty ( ) ? null : first ( ) ;
47 }
48 }

Figure 1. ClassesMultiSet andSortSet before and after parameterization by our tool. In the right column, modified declarations are underlined and
a removed cast is struck through. The example uses collection classes from packagejava.util in the standard Java 1.5 libraries:Map, HashMap, Set,
Collection, TreeSet.

4. On line 18, the type of the parameter ofMultiSet.contains()

remainsObject. This is desirable and corresponds to the (man-
ual) parameterization of the JDK libraries. Suppose the pa-
rameter ofcontains() had typeT1 instead, and consider a
client that adds onlyIntegers to aMultiSet and that passes
an Object to contains() at least once on thatMultiSet. Such
a client would have to declare theMultiSet suboptimally as
MultiSet<Object>, rather thanMultiSet<Integer> as permit-
ted by our solution.

5. On line 21, the type of the parameter ofMultiSet.containsAll()

has become anunbounded wildcardCollection<?> (which is
shorthand forCollection<? extends Object>). Analogously
with the contains() example above, use ofCollection<T1>

would force a less precise parameterization of some instances of
MultiSet in client code.

6. On line 28, the return type ofMultiSet.getAllElements() is
parameterized asSet<T1>. It is importantnot to parameterize
it with a wildcard, as that would severely constrain client uses
of the method’s return value (e.g., it would be illegal to add
elements other thannull to the returned set.)

7. On line 42, the type of the parameter of methodSortSet-
.addAll() is parameterized asCollection<? extends T2>.

Any other parameterization would be incorrect because the
method overrides the methodTreeSet.addAll(), and the sig-
natures of these methods must remain identical to preserve the
overriding relationship [12].

Even for this simple example, the desired parameterization re-
quires 19 non-trivial changes to the program’s type annotations,
and involves subtle reasoning. In short, class parameterization is a
complex process, and automated tool assistance is highly desirable.

Finally, we remark that, although the example uses the standard
(generic) Java libraries (e.g.,Map<K,V>, Set<E>, etc.), our technique
is also applicable to classes that do not depend on generic classes.

3. Algorithm
Our parameterization algorithm has the following 3 steps:

1. Create type constraints for all program constructs, and add addi-
tional constraints using a set of closure rules.

2. Solve the constraints to determine a type for each declaration.
3. Rewrite the program’s source code accordingly.

After Section 3.1 presents the notation used for representing type
constraints, Sections 3.2–3.4 present the steps of the algorithm,
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class Wrapper {
private Cell c4 ;

Object getW ( ) {
return c4 . getC ( ) ;

}
void setW (Object t4 ) {

c4 . setC ( t4 ) ;
}

}

class Cell {
private Object data ;

Object getC ( ) {
return data ;

}
void setC (Object t5){

data = t5 ;
}
void copyFrom ( Cell c5 ) {

data = c5 . getC ( ) ;
}
void addTo ( Collection col ) {

col . add ( data ) ;
}

}

1 class Wrapper<T1> {
2 private Cell<T1> c4 ;
3
4 T1 getW ( ) {
5 return c4 . getC ( ) ;
6 }
7 void setW (T1 t4 ) {
8 c4 . setC ( t4 ) ;
9 }

10}
11
12 class Cell<T2> {
13 private T2 data ;
14
15 T2 getC ( ) {
16 return data ;
17 }
18 void setC (T2 t5){
19 data = t5 ;
20 }
21 void copyFrom ( Cell<? extends T2> c5 ) {
22 data = c5 . getC ( ) ;
23 }
24 void addTo ( Collection<? super T2> col ) {
25 col . add ( data ) ;
26 }
27}

Figure 2. ClassesWrapper andCell before and after automatic param-
eterization. In the right column, modified declarations are underlined.

illustrating them with the running example of Figure 2. While
Figure 2 is small for the sake of exposition, our algorithm and
implementation handle the full Java language. Readers interested
primarily in the intuition may skip the detailed treatment of the
running example.

3.1 Type Constraints

This paper generalizes and extends a framework of type con-
straints [17] that has been used for refactoring [21, 6, 1] and, in
particular, as the basis for a refactoring that solves the instantia-
tion problem [11] (i.e., inferring the type arguments that should
be given to generic classes in client code). Due to space limita-
tions, the pre-existing parts of the type constraints formalism are
described informally, and the presentation focuses on the new con-
straints notation and algorithmic contributions that are needed for
solving the parameterization problem.

Type constraints are a formalism for expressing subtype rela-
tionships between program entities that are required for preserv-
ing the type-correctness of program constructs. Consider an assign-
mentx=y. The constraint[y] ≤ [x] states that the type ofy (repre-
sented by theconstraint variable[y]) must be a subtype of the type
of x. If the original program is type-correct, this constraint holds.
The refactoring must preserve the subtype relationship[y] ≤ [x]
so that the refactored program is type-correct. As another exam-
ple, consider a methodSub.foo(Object p) that overrides a method
Super.foo(Object q). The refactored program must preserve the
overriding relationship, in order to preserve dynamic dispatch be-
havior. This is guaranteed if the refactored program satisfies a con-
straint[p] = [q] stating that the types ofp andq are identical.

Our algorithm generates type constraints from a program’s ab-
stract syntax tree (AST) in a syntax-directed manner. A solution to
the resulting constraint system corresponds to a refactored version
of the program for which type-correctness and program behavior is
preserved. Frequently, many legal solutions exist, all of which pre-
serve the program’s semantics, but some of which are more useful
to clients. Our algorithm uses heuristics (Section 3.3.1) to choose
among legal solutions, but it never violates the semantics of the
program by changing behavior.

Refactoring for parameterization is significantly more complex
than previous work because it involves the introduction of formal
type parameters with inheritance relations between them, while si-
multaneously rewriting existing declarations to refer to these new
type parameters. This required non-trivial extensions and modifi-
cations to the type constraints formalism and the solver, including
most notably:

Type constraint variables:
α ::= αnw non-wildcard variable

? extends αnw wildcard type upper-bounded byαnw

? super αnw wildcard type lower-bounded byαnw

αnw ::= αctxt contexts
T type parameter
Iαctxt (α) α, interpreted in contextαctxt

αctxt ::= [e] type of expressione
[Mret] return type of methodM
[Mi] type ofith formal parameter of methodM
C monomorphic type constant

Type constraints:
α = α′ typeα must be the same as typeα′

α ≤ α′ typeα must be the same as, or a subtype of, typeα′

Figure 3. Notation used for defining type constraints.

τ ::= τnw non-wildcard type
? extends τnw upper-bounded wildcard type
? super τnw lower-bounded wildcard type

τnw ::= C monomorphic type constant
T extends τnw type parameter

Figure 4. Grammar of types used in the analysis.

1. the introduction ofcontext constraint variablesrepresenting the
type with which newly introduced type parameters are instanti-
ated,

2. the introduction ofwildcard constraint variablesto accommo-
date wildcard types, and

3. the use of heuristics to guide the solver towards solutions pre-
ferred by human programmers (e.g., not introducing too many
type parameters, and preferring solutions with wildcard types in
certain cases), without violating program semantics.

Figure 3 presents the type constraint notation. Type constraints
are of the formα ≤ α′ or α = α′, whereα andα′ are constraint
variables. Most forms of constraint variables are standard, but we
discuss the new formscontext variablesandwildcard variables.

Context Variables. This paper introduces a new form of con-
straint variable that represent the type with which a (newly intro-
duced) formal type parameter is instantiated. Such acontext vari-
ableis of the formIα′(α) and represents theinterpretationof con-
straint variableα in acontextgiven by constraint variableα′.

We give the intuition behind context variables using examples.

• Consider the JDK classList<E>. References to its type parame-
terE only make sense within the definition ofList. In the context
of an instance ofList<String>, the interpretation ofE is String,
while in the context of an instance ofList<Number>, the interpre-
tation ofE is Number. We writeI[x](E) for the interpretation ofE
in the context of variablex.

• Consider the callc4.setC(t4) on line 8 of Figure 2. Java re-
quires the type of the actual parametert4 to be a subtype of the
formal parametert5 of Cell.setC (line 18). This is expressed
by the constraint[t4] ≤ I[c4](t5), which means that the type of
t4 is a subtype of the type oft5, as interpreted by interpretation
functionI[c4]. This interpretation function maps the formal type
parameters in the declared type ofc4 to the types with which
they are instantiated.

Using a context variable here is important. Generating a con-
straint without a context i.e.,[t4] ≤ [t5], would be incorrect be-
cause when[t5] gets resolved to a type parameterT2, because
there is no subtype relationship between the typeT1 of [t4] and
the typeT2 of [t5].

Although t5 is declared to be of typeObject on line 18, it
would be incorrect to require that[t4] ≤ Object, becauset5’s
type may be rewritten, e.g., to a newly introduced formal type
parameter. Our algorithm eventually resolves[t4] to T1 and[t5]
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assignmente1=e2

{[e2] ≤ [e1]} (r1)

statementreturn e0 in methodM
{[e0] ≤ [Mret]} (r2)

call e ≡ e0.m(e1, . . . ,ek) to instance methodM
canAddParams ≡ Decl(M) ∈ TargetClasses
CGen([e], =, [Mret], [e0], canAddParams) ∪ (r3)S
1≤i≤k CGen([ei],≤, [Mi], [e0], canAddParams) (r4)

declaration of methodM , M overridesM ′

canAddParams ′ ≡ Decl(M ′) ∈ TargetClasses
k = NumParams(M)

CGenWild([Mret],≤, [M ′
ret], Decl(M), canAddParams′) ∪ (r5)S

1≤i≤k CGenWild([Mi], =, [M ′
i ], Decl(M), canAddParams′) (r6)

α1 ≤ α2 Iα′(α1) or Iα′(α2) exists

Iα′(α1) ≤ Iα′(α2)
(r7)

α1 ≤ α2 Iα1(α) or Iα2(α) exists

Iα1(α) = Iα2(α)
(r8)

C〈T1, . . . , Tn〉 extends/implements C′〈τ1, . . . , τk〉
CGen(C,≤, C′〈τ1, . . . , τk〉, , true)

(r9)

Figure 5. Representative examples of rules for generating type con-
straints from Java constructs (rules (r1)–(r4)) and of closure rules
(rules (r7)–(r8)). Figure 6 shows auxiliary definitions used by the rules.
TargetClasses is a set of classes that should be parameterized by adding
type parameters.Decl(M) denotes the class that declares methodM .

to T2, implying thatI[c4] mapsT2 to T1, and thus thatI[c4](t5)
is resolved toT1.

• In some cases, a contextαctxt is irrelevant. For example,
Iαctxt(String) always resolves toString, regardless of the con-
textαctxt in which it is interpreted.

Wildcard Variables. There are two situations where our algo-
rithm introduces wildcards in the refactored program.

Wildcard variables are of the form? extends α or ? super α
(where α is another constraint variable), and are used in cases
where Java’s typing rulesrequire the use of wildcard types.
For example, in Figure 1,SortSet.addAll() (line 42) overrides
java.util.TreeSet.addAll(). If SortSet becomes a generic class
with formal type parameterT2, then preserving this overriding rela-
tionship requires the formal parameterc3 of SortSet.addAll() to
have the same type as that ofTreeSet.addAll(), which is declared
in the Java standard libraries asTreeSet.addAll(Collection<?
extends E>). Three parts of our algorithm work together to ac-
complish this: (i) The type ofc3 is represented, using a context
variable, asCollection<I[c3](E)>, (ii) Type constraint genera-
tion (Section 3.2) producesI[c3](E) = ? extends ISortSet(E),
which uses a wildcard variable, and (iii) Constraint solving (Sec-
tion 3.3) resolvesISortSet(E) to T2.

Our algorithm also introduces wildcard types in cases where
that results in a more flexible solution, as discussed in Section 3.3.1.
However, this does not involve the use of wildcard variables.

3.2 Type Constraint Generation

Figure 5 shows a few representative rules for generating type con-
straints. The rules omitted from Figure 5 involve no significantly
different analysis.

Rules (r1) and (r2) are from previous work. Rule (r1) states
that the type of the right-hand side of an assignment must be
equal to or a subtype of the left-hand side. Rule (r2) states that

if a method contains a statement “return e0”, then the type of
the returned expressione0 must be equal to or a subtype of the
method’s declared return type. The complete set of rules [21, 11] is
omitted for brevity and covers the entire Java language.

Rules (r3) and (r4) are among the new rules introduced in this
research. Rules (r3) and (r4) govern method calls. Rule (r3) states
that the type of the method call expression is the same as the return
type of the method (in the context of the receiver). This corresponds
to how the type checker treats a method call (i.e., the type of the
call and the type of the method are the same). Rule (r4) relates the
actual and formal type parameters of the call. TheTargetClasses
set (a user input to the algorithm) indicates which classes should
be refactored by adding type parameters (e.g., in Figure 1, classes
MultiSet, SortSet, and the anonymous class declared on line 35
are assumed to be inTargetClasses). The auxiliary functionCGen,
defined in Figure 6, performs the actual generation of a set of
constraints.

Java’s type rules impose certain restrictions on parametric types.
Closure rules such as (r7) and (r8) in Figure 5 enforce those restric-
tions. Rule (r7) requires that, given two formal type parameters1

T1 and T2 such thatT1 ≤ T2 and any contextα in which ei-
ther actual type parameterIα(T1) or Iα(T2) exists, the subtyping
relationshipIα(T1) ≤ Iα(T2) must also hold. To illustrate this
rule, consider a classC<T1, T2 extends T1> and any instantiation
C<C1, C2>. Then,C2 ≤ C1 must hold, implying that e.g.,C<Number,
Integer> is legal but thatC<Integer, Number> is not. Rule (r8) en-
forces invariant subtyping2 of parametric types:C〈τ〉 is a subtype
of C〈τ ′〉 iff τ = τ ′.

Examples. The following examples show how the rules of
Figure 5 apply to three program constructs in the example of
Figure 2. The examples assume that the setTargetClasses is
{Cell,Wrapper}.
line 5: call c4.getC() to methodCell.getC()
(r3)
→ CGen([c4.getC()],=,[Cell.getCret],[c4],true)
(c2)
→ { [c4.getC()] = I[c4]([Cell.getCret]) }
This constraint expresses that the type of the expression[c4.getC()]
is the same as the return type of methodCell.getC in the context
of the receiverc4.
line 8: call c4.setC(t4) to methodCell.setC(Object)
(r4)
→ CGen([t4],≤,[Cell.setC1],[c4],true)
(c2)
→ { [t4] ≤ I[c4]([Cell.setC1]) }
In other words, the type oft4 must be a subtype of the type of the
first parameter ofCell.setC in the context of the type ofc4. This
constraint is shown as (x2) in Figure 7. (Cell.setC1 andt5 denote
the same program element.)
line 25:call col.add(data) to methodM ≡ Collection<E>.add(E)

(r4)
→ CGen([data],≤,[M1],[col],false)
(c4)
→ { [data] ≤ I[col](E) }
This indicates thatdata’s type must be a subtype of type parameter
E in the context ofcol. This constraint is shown as (x6) in Figure 7.

Figure 7 (rows (x1)–(x6)) summarizes the constraints generated
for Figure 2. For simplicity of presentation, Figure 7 shows the con-
straint system after eliminating equality constraints. For example,
line 5 gives rise to 2 constraints:

(i) [c4.getC()]≤[Wrapper.getWret] rule (r2)
(ii) [c4.getC()]=I[c4]([Cell.getCret]) rule (r3)

1 or constraint variables that could become formal type parameters
2 In the presence of wildcard types, this is relaxed to ‘containment’ sub-
typing [12] (e.g.,? extends Number is containedin ? extends Object and
thereforeSet〈? extends Number〉 is subtype ofSet〈? extends Object〉).
In this paper and in our implementation, we conservatively assume invari-
ant subtyping even with wildcard types.
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αP is the type, in the original programP, of the program construct corresponding toα.

CGen creates and returns a set of type constraints. The result constrainsα and the interpretation ofα′ in contextα′′. The particular constraint (=,≤, or≥)
betweenα andIα′′ (α′) is determined byop. CGen is defined by case analysis on the type of its third parameter in the original programP .

CGen(α, op, α′, α′′, canAddParams) =8>>>>>>>><>>>>>>>>:

{α op C} whenα′P ≡ C andcanAddParams ≡ false (c1)
{α op Iα′′ (α′)} whenα′P ≡ C andcanAddParams ≡ true (c2)
{α op C} ∪

S
1≤i≤m CGen(Iα(Wi), =, [τi], α

′′, canAddParams) whenα′P ≡ C〈τ1, . . . , τm〉 andC is declared asC〈W1, . . . , Wm〉 (c3)

{α op Iα′′ (T )} whenα′P ≡ T (c4)

CGen(α,≤, [τ ′], α′′, canAddParams) whenα′P ≡ ? extends τ ′ (c5)
CGen(α,≥, [τ ′], α′′, canAddParams) whenα′P ≡ ? super τ ′ (c6)

Figure 6. Auxiliary functions used by the constraint generation rules in Figure 5. FunctionCGenWild is defined in Figure 11.

# constraint line rules/cases
(x1) I[c4]([Cell.getCret]) ≤ [Wrapper.getWret] 5 (r2),(r3), c2
(x2) [t4] ≤ I[c4]([t5]) 8 (r4), c2
(x3) [t5] ≤ [data] 19 (r1)
(x4) [data] ≤ [Cell.getCret] 16 (r2)
(x5) I[c5]([Cell.getCret]) ≤ [data] 22 (r1),(r3), c2
(x6) [data] ≤ I[col](E) 25 (r4), c4
(x7) I[c4]([data]) ≤ I[c4]([Cell.getCret]) closure(r7), x4
(x8) I[c5]([t5]) ≤ I[c5]([data]) closure(r7), x3
(x9) I[c5]([data]) ≤ I[c5]([Cell.getCret]) closure(r7), x4
(x10) I[c4]([t5]) ≤ I[c4]([data]) closure(r7), x3

Figure 7. Type constraints inferred from the program of Figure 2. Line
numbers refer to Figure 2 and indicate from which program construct
the constraint was generated. Rule numbers refer to generation rules in
Figure 5, and case numbers refer to Figure 6.

In Figure 7, these are merged to form the (x1) constraint. Rows
(x7)–(x10) in Figure 7 are the additional constraints that are gener-
ated due to the closure rules (r7) and (r8) of Figure 5.

3.3 Constraint Solving

A solution to the system of type constraints is computed using
the iterative worklist algorithm of Figure 8. During solving, each
variableα has an associated type estimateEst(α). An estimate
is a set of types, where types are as defined in Figure 4. Each
estimate is initialized to the set of all possible (non-parametric)
types and shrinks monotonically as the algorithm progresses. When
the algorithm terminates, each estimate consists of exactly one
type. Because type estimates do not contain parametric types, they
are finite sets, and algebraic operations such as intersection can be
performed directly. As an optimization, our implementation uses a
symbolic representation for type estimates.

Algorithm Details. First, the algorithm initializes the type esti-
mate for each constraint variable at lines 2 and 15–22 in Figure 8.

The algorithm uses a worksetP containing those constraint
variables which it has decided shall become type parameters, but
for which that decision has yet to be executed. The setP is initially
seeded with the constraint variable that corresponds to the declara-
tion that is selected either by a heuristic or by the user (line 3). The
inner loop of parameterize() (lines 5–11) repeatedly removes an el-
ement fromP and sets its estimate to a singleton type parameter.
For new type parameters, the upper bound is the declared type in
the original (unparameterized) program.

Whenever a type estimate changes, those changes must be prop-
agated through the type constraints, possibly reducing the type es-
timates of other variables as well. The propagate() subroutine per-
forms this operation, ensuring that the estimates on both sides of a
type constraint contain only types that are consistent with the re-
lation. Whenever a context variableIα′(α) gets resolved to a type
parameter,α must also get resolved to type parameter (line 30).
To see why, suppose thatα gets resolved to a non-type parameter

Notation:
Est(α) a set of types, the type estimate of constraint variableα
αP type of constraint variableα in the original program
Sub(τ) set of all non-wildcard subtypes ofτ
Wild(X) set of wildcard types (both lower- and upper-

bounded) for all types in type estimateX
US

E universe of all types, including all wildcard types
(i.e., bothsuper andextends wildcards)

Subroutine parameterize():1

initialize()2
// P is a set of variables known to be type parameters
P ←− {automatically- or user-selected variable}3

repeat until all variables have single-type estimates4
while P is not emptydo5

αtp←− remove element fromP6

if Est(αtp) contains a type parameterthen7
Est(αtp)←− {type parameter fromEst(αtp)}8

else9
Est(αtp)←− {create new type parameter}10

propagate()11
if ∃α.|Est(α)| > 1 then12

Est(α)←− {select a type fromEst(α)}13

propagate()14

// Set initial type estimate for each constraint variable
Subroutine initialize():15

foreachnon-context variableα do16
if α cannot have wildcard typethen17

Est(α) = Sub(αP)18

else19
Est(α) = Sub(αP) ∪Wild(Sub(αP))20

foreachcontext variableIα′(α) do21

Est(Iα′(α)) = US
E22

// Reconcile the left and right sides of each type inequality
Subroutine propagate():23

repeat until fix-point (i.e., until estimates stop changing)24
foreachconstraintα ≤ α′ do25

Remove fromEst(α) all types that are not a subtype of26

a type inEst(α′)
Remove fromEst(α′) all types that are not a supertype27

of a type inEst(α)
if Est(α) or Est(α′) is emptythen28

stop: “No solution”29
foreachcontext variableIα′(α) do30

if Est(Iα′(α)) is a singleton set with type parameter T31

andEst(α) does not contain Tthen
addα to P32

Figure 8:Pseudo-code for the constraint solving algorithm.
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constraint initial intermediate solutions during solving inferred
variable alias estimate (i) (ii) (iii) (iv) (v) (vi,vii,viii) type
[c4] =α1 Sub(Cell) −→ −→ −→ −→ −→ { Cell } Cell

[Wrapper.getWret] =α2 Sub(Object) { T1 } −→ −→ −→ −→ −→ T1
[Cell.getCret] =α3 Sub(Object) −→ { Object, T2 } { T2 } −→ −→ −→ T2
[t5] =α4 Sub(Object) −→ { T2 } −→ −→ −→ −→ T2
[data] =α5 Sub(Object) −→ { Object, T2 } { T2 } −→ −→ −→ T2

I[c4]([Cell.getCret]) =α6 US
E { T1 } −→ −→ −→ −→ −→ T1

I[c4]([data]) =α7 US
E { T1 } −→ −→ −→ −→ −→ T1

I[c4]([t5]) =α8 US
E { T1 } −→ −→ −→ −→ −→ T1

[t4] =α9 Sub(Object) { T1 } −→ −→ −→ −→ −→ T1
[c5] =α10 Sub(Cell) −→ −→ −→ −→ −→ { Cell } Cell

I[c5]([t5]) =α11 US
E −→ −→ { T2, ? extends T2 } −→ { ? extends T2 } −→ ? extends T2

I[c5]([Cell.getCret]) =α12 US
E −→ −→ { T2, ? extends T2 } −→ { ? extends T2 } −→ ? extends T2

I[c5]([data]) =α13 US
E −→ −→ { T2, ? extends T2 } −→ { ? extends T2 } −→ ? extends T2

I[col](E) =α14 US
E −→ X15 { T2, ? super T2 } −→ −→ { ? super T2 } ? super T2

WorksetP { α2 } { α4, α3, α5 } { α3, α5 } { α5 } ∅ ∅ ∅ ∅
X15 = { Object, ? super Object, T2, ? super T2 }
Figure 9. Illustration of constraint solution for the program of Figure 2. Each constraint variable is given an alias for later reference. The table shows, for
each constraint variable: its initial type estimate, its type estimate at 8 points in the solving process, and the final inferred type. A ‘−→’ entry means that the
type estimate for that constraint variable remained unchanged in the given step. Columns(i)–(iv) indicate the type estimates after each iteration of the loop on
lines 5–11 of Figure 8. Columns(v)–(viii) indicate the state after resolving under-constrained variables, on lines 12–14 of Figure 8. The last row shows the
contents of the worksetP , which contains variables that are eventually assigned type parameters.

type,C. In that case, the context is irrelevant (as mentioned in Sec-
tion 3.1), and thusIα′(α) also must get resolved toC (i.e., not a
type parameter). This is a contradition. This step propagatates pa-
rameterization choices between classes.

Assembly of Parametric Types.The type estimates created
during the constraint solution algorithm are all non-parametric,
even for constraint variables that represent program entities whose
type was parametric (e.g.,c1 on line 12 in Figure 1), or will
be parametric after refactoring (e.g.,t1 on line 6 in Figure 1).
A straightforward algorithm, run after solving, assembles these
results into parametric types. For instance, the typeCell for [c5]
and the type? extends T2 for I[c5](T2) are assembled into the
typeCell<? extends T2> for [c5].

Example of Solving.Figure 9 illustrates the constraint solving
process using the example program of Figure 2. The ‘initial esti-
mate’ column in Figure 9 shows the initial type estimate for each
constraint variable, determined as described in lines 15–22 of Fig-
ure 8 and using notation from the top of Figure 8. For example:

• The initial type estimate for variable[c4] is Sub(Cell) because
Cell is the original type ofc4 andc4, being a variable declara-
tion, cannot be assigned a wildcard type. The initial estimate is
Sub(Cell), rather than{ Cell }, because the algorithm allows
a newly introduced type parameter (e.g.,T extends Cell, to be
assigned toc4).

• The initial estimate ofI[c5]([data]) is US
E (the universe of all

types, including lower- and upper- bounded wildcards).

When the algorithm is run on the program of Figure 2, the outer
loop (lines 4–14) is executed four times. On its first iteration, the
inner loop (lines 5–11) is itself executed four times, and the inner
loop is not executed on the subsequent iterations of the outer loop.
Each inner loop execution consists of assigning a type parameter
to a constraint variable. Each outer loop execution selects a type
for an under-constrained constraint variable. We will now discuss
columns (i)–(viii) of Figure 9, which show the state of the algorithm
at the end of the four inner loop executions, and at the end of the
four outer loop executions.

Column (i).The algorithm first assigns a new type parameterT1

to constraint variableα2 (i.e., [Wrapper.getWret]), and propagates
that choice to related constraint variables. Due to constraints (x1),
(x7), (x10), and (x2), which establish the order[t4] ≤ I[c4]([t5])
≤ I[c4]([data]) ≤ I[c4]([Cell.getCret]) ≤ [Wrapper.getWret], the
estimates of all 5 of these variables are narrowed to{ T1 }.

To understand why all 5 variables get the estimate{ T1 },
consider variable[t4]. Transitively, we have that:[t4] ≤
[Wrapper.getWret] = T1. The only subtypes ofT1 are {T1, ?

extends T1}. Intersecting this set with the current estimate for
[t4] (namely,Sub(Object)) reduces[t4]’s estimate to simplyT1.
Propagating that change through the type constraints sets the other
three constraint variables toT1 as well. Given that context vari-
able I[c4]([t5]) is now a type parameter, lines 30–32 of the al-
gorithm constraint5 to be a type parameter as well (see the
discussion of propagate() in Section 3.3). Similar arguments ap-
ply to I[c4]([data]) and data, and toI[c4]([Cell.getCret]) and
[Cell.getCret], so the three variables are added to the worksetP of
variables that will be assigned type parameters. Column (i) shows
the result.

Column (ii).The second variable to be removed from the work-
set is [t5] (an arbitrary choice is made at line 6 in the pseudo-
code); it is assigned a new type parameterT2. To satisfy the type
constraints, the estimates of variablesdata, [Cell.getCret], and
I[col](E) are narrowed, and column (ii) shows the result.

Column (iii). The third variable removed from the workset is
[Cell.getCret]. Its current estimate is{ Object, T2 }. To assign a
type parameter to the variable, line 8 of the algorithm choosesT2

(rather than creating a new type parameter). Because of constraints
(x4), (x5), (x8), (x9), and (x6), the estimates of variables[data],
I[c5]([Cell.getCret]), I[c5]([t5]), I[c5]([data]) and I[col](E),
respectively, must be narrowed. Column (iii) shows the result.

Column (iv).The algorithm removes the last variable,[data],
from the workset. It is already assigned a type parameter, so its es-
timate remains unchanged. Estimates of other variables also remain
unchanged in this iteration, because they are already consistent with
the constraints. Column (iv) shows the result.

Column (v).At this point, the worksetP is empty and all esti-
mates are consistent with the type constraints. However, the esti-
mates for variablesα1 andα10–α14 contain more than one type.
The algorithm makes a heuristic choice (line 12 in pseudo-code) to
narrow the estimate ofI[c5]([Cell.getCret]) to { ? extends T2 }.
By reconciling that choice with constraints (x9) and (x8), the esti-
mates for variablesI[c5]([data]) andI[c5]([t5]), respectively, are
also set to{ ? extends T2 }. Column (v) shows the result.

Column (vi,vii,viii).The algorithm makes three more heuristic
choices to narrow the estimates ofI[col](E), [c4], and[c5]. None
of these choices causes any changes to propagate to other estimates.
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All type estimates are now singleton sets, and the solution
shown in the rightmost column of Figure 9 is used for rewriting
source code.

3.3.1 Heuristics

The algorithm of Figure 8 makes an underconstrained choice on
lines 3, 6, 12, and 13. (On line 8, there is only one possibility.) Any
choice yields a correct (behavior-preserving and type-safe) result,
but some results are more useful to clients (e.g., permit elimination
of more casts). Our implementation makes an arbitrary choice at
lines 6 and 12, but uses heuristics at lines 3 and 13 to guide the
algorithm to a useful result.

Type Uses for Parameterization.The selection of type uses for
parameterization (on line 3) can affect the quality of the final pa-
rameterization. For example, in the example from Figure 1, select-
ing the parameter ofMultiSet.contains (on line 18) would result
in a parameterization in which too many type uses (including also
the parameter ofMultiSet.getCount) have the final typeT1. Such
a (legal) parameterization would be inconvenient for clients of this
class.

Our tool permits a user to select, with a mouse click, a type to
parameterize. Otherwise, it uses the following heuristic.

1. If a generic supertype exists, use the supertype’s signatures in
the subtype. This is especially useful for customized container
classes.

2. Parameterize the return value of a “retrieval” method. A retrieval
method’s result is downcasted by clients, or it has a name match-
ing such strings asget andelementAt. Even classes that are not
collections often have such retrieval methods [8].

3. Parameterize the formal parameter to an insertion method. An
insertion method has a name matching such strings asadd or
put.

The heuristic further forbids selecting these uses of types:

1. Parameters of testing methods such ascontains. Their types
are typically different than the type parameter. For example, the
parameter ofjava.util.Collection.contains is Object.

2. Type uses that are not in the public interface of the class.
3. Parameters of overridden methods (such asequals), unless their

type in the overridden class is a type parameter. As discussed in
Section 3.1, to preserve method overriding, types of such param-
eters must remain unchanged, and cannot be parameterized.

4. Type uses in interfaces or abstract classes. Their uses tend to be
under-constrained and can lead to sub-optimal results.

Narrowing a Type Estimate to One Type.Given a type estimate
to narrow, line 13 chooses one of its elements. The algorithm uses
a heuristic that minimizes the use of casts in client code, while
preserving flexibility in cases where this does not affect type-safety:
it prefers (in this order):

i) types that preserve type erasure over those that do not,
ii) wildcard types over non-wildcard types, and

iii) type parameters over other types, but only if such a choice en-
ables inference of type parameters for return types of methods.

For example, given estimate{ Number, ? super Integer }, if the
type of the constraint variable in the original program wasNumber,
the heuristic selectsNumber. When selecting a type from estimate
{ T2, ? super T2 }, the heuristic selects? super T2. Finally, when
selecting from estimate{ Number, T1 }, whereT1 extends Number,
the heuristic selectsT1.

To justify the restriction in (iii), observe that assigning a type
parameter or a parametric type to a method return type is benefi-
cial, because doing so reduces the need for casts in clients of the
class. Otherwise, introducing type parameters simply increases the
apparent complexity of the class for clients. For example, consider

variableo2 on line 24 of Figure 1. Assigning a type parameter to
o2 would not allow inferring a type parameter or a parametric type
for any method’s return type. Therefore, it is not assigned a type
parameter but rather the type that preserves erasure (i.e.,Object).

3.3.2 Miscellaneous Issues

A solution to the constraint problem does not always exist. For
example, consider the following class.

class C {
public String getText ( ) { return "hello" ; }

}
If the return type ofgetText is selected for parameterization,
the type parameter would have to have a concrete lower bound:
T super String. Such type parameters are disallowed in Java.
Line 28 in Figure 8 detects cases in which no solution can be
found.

As noted in Section 3.3, lines 30–32 of Figure 8 handle inter-
class dependencies. Interfaces and abstract classes are handled by
the same mechanism, i.e., our algorithm creates type constraints to
preserve method overriding and treatsimplements/extends rela-
tionships as other inter-class dependencies.

Our algorithm and implementation fully support parame-
terization in the presence of generic methods, e.g., those in
java.util.Collections but we have not yet implementedadding
type parameters to methods. (Von Dincklage and Diwan used
heuristics to handle generic methods [22]—such heuristics may
also be applicable to our work. In previous work, we used a context-
sensitive version of the generic instantiation algorithm to parame-
terize methods [11].)

Reflection poses no problems for our algorithm—reflection-
related classes are parameterized in JDK 1.5 and our inference uses
those generic annotations when parameterizing user classes.

3.4 Source Rewriting

After the tool solves the constraint system and assigns each con-
straint variable a type, it rewrites the source code as follows:

1. Add a formal type parameter for each constraint variable whose
type estimate is a type parameter. For example, a new formal
type parameterT1 is added to classWrapper on line 1 of Fig-
ure 2 because several constraint variables are assigned the type
parameterT1.

2. Rewrite each program declaration to reflect the value of the
corresponding constraint variable. For example, in Figure 9, the
type assigned to[t4] is T1. Therefore, on line 7 of Figure 2, the
declaration oft4 is changed toT1.

3. Remove redundant casts, as on line 26 of Figure 1. A cast(C)E
is considered redundant if the computed type for[E] is C. If the
computed type is a subtype ofC, then the cast can be removed
only if the cast expression is not used to force static member
resolution. Otherwise the program’s behavior will change [12].

4. Evaluation
A practical type parameterization tool must be correct, accurate,
and usable. Correctness requires that run-time behavior is not mod-
ified for any client. Accuracy requires that the parameterization is
close to what a human would have written by hand. Usability re-
quires that the tool is easier to use than performing the refactor-
ing manually. This section describes our experimental evaluation
of these desiderata.

4.1 Implementation

We implemented our technique in a refactoring tool that is in-
tegrated with the Eclipse integrated development environment.
Our previous work on the instantiation problem [11] was adopted
by the Eclipse developers and made into Eclipse 3.1’s INFER
GENERIC TYPE ARGUMENTS refactoring. Our parameterization
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parameterizable classes type use time inference results diff vs. manual
library classes LOC type uses selections (sec.) params wildcards others same better worse

concurrent 14 2715 415 5 115 11 23 266 353 37 25
apache 74 9904 1183 53 301 70 90 676 1011 116 56
jutil 9 305 80 4 1 7 5 40 65 15 0
jpaul 17 827 178 11 6 15 11 110 148 22 8
amadeus 8 604 129 4 5 6 4 86 125 1 3
dsa 9 791 162 4 3 8 0 69 158 4 0
antlr 10 601 140 3 6 12 8 81 n/a n/a n/a
eclipse 7 582 100 5 5 6 0 51 n/a n/a n/a
Total 148 16329 2387 89 442 135 141 1379 1860 195 92

Figure 10. Experimental results. “Classes” is the number of parameterizable classes in the library, including their nested classes. “LOC” is lines of code.
“Type uses” is the number of occurrences of a reference (non-primitive) type in the library; this is the maximal number of locations where a type parameter
could be used instead. The next two columns show how many type use selections were made (line 3 of Figure 8) and the cumulative run time. After the results
from our tool, the “diff vs. manual” columns indicate how our tool’s output compares to the manual parameterization.

tool builds on that previous implementation work and is integrated
with Eclipse in a similar way.

A programmer can use our tool interactively to direct a refactor-
ing process (each step of which is automatic) by selecting (click-
ing on) an occurrence of a type in the program. The tool automat-
ically rewrites (parameterizes) the class in which the mouse click
occurred, and possibly other classes as well. Alternatively, a pro-
grammer can specify a set of classes to parameterize, and the tool
heuristically selects type occurrences. The tool uses Eclipse’s built-
in support for displaying changes, and the user can examine them
one-by-one, accept them, or back out of the changes.

4.2 Methodology

Our evaluation uses a combination of 6 libraries that have al-
ready been parameterized by their authors, and 2 libraries that
have not yet been made generic; these two varieties of evaluation
have complementary strengths and weaknesses. Use of already-
parameterized libraries lets us evaluate our technique’s accuracy
by comparing it to the judgment of a human expert other than our-
selves. However, it is possible that the library authors performed
other refactorings at the same time as parameterization, to ease that
task. Use of non-parameterized libraries avoids this potential prob-
lem, but the evaluation is more subjective, and a human reading
the tool output may not notice as many problems as one who is
performing the full task. (It would be easy for us to parameterize
them ourselves, but such an approach has obvious methodological
problems.)

Our experiments started with a complete, non-parameterized li-
brary. (For already-parameterized libraries, we first applied a tool
that erased the formal and actual type parameters and added neces-
sary type casts.) Not all classes are amenable to parameterization;
we selected a subset of the library classes by first manually select-
ing the set of packages that we considered to be likely to contain
parameterizable classes, and then selecting the classes that were
parameterizable by our tool.

The experiments processed the classes of the library in the fol-
lowing order. We built a dependence graph of the classes, then
applied our tool to each strongly connected component, starting
with those classes that depended on no other (to-be-parameterized)
classes. This is the same order a programmer faced with the prob-
lem would choose.

All experiments used our tool’s fully automatic mode. For ex-
ample, at each execution of line 3 of Figure 8, it chose the lexico-
graphically first candidate type use, according to the heuristics of
Section 3.3.1. To make the experiment objective and reproducible,
we did not apply our own insight, nor did we rewrite source code
to make it easier for our tool to handle, even when doing so would
have improved the results.

Figure 10 lists the subject programs. All of these libraries were
written by people other than the authors of this paper.concurrent is

thejava.util.concurrent package from Sun JDK 1.5.apacheis
the Apache collections library (larvalabs.com/collections/). ju-
til is a Java Utility Library (cscott.net/Projects/JUtil/). jpaul
is the Java Program Analysis Utility Library (jpaul.sourceforge.

net). amadeusis a data structure library (people.csail.mit.edu/
adonovan/). dsa is a collection of generic data structures (www.

cs.fiu.edu/~weiss/#dsaajava2). antlr is a parser generator (www.

antlr.org). eclipseis a universal tooling platform (www.eclipse.
org). The last two libraries have not been parameterized by their
authors.

Most of the classes are relatively small (the largest is 1303
lines), but this is true of Java classes in general. Our tool processes
each class or related group of classes independently, so there is no
obstacle to applying it to large programs.

4.3 Results

4.3.1 Correctness

A parameterization is correct if it is backward-compatible and self-
consistent. Backward compatibility requires that the erasure of the
resulting parameterized classes is identical to the input. If so, then
the compiled.class file behaves the same as the original, unparam-
eterized version: for example, all method overriding relationships
hold, exactly the same set of clients can be compiled and linked
against it, etc. Consistency (type-correctness) requires that the pa-
rameterized classes satisfy the typing rules of Java generics; more
specifically, that a Java compiler issues no errors when compiling
the parameterized classes.

Our tool’s output for all the tested library classes is correct: it is
both backward-compatible and consistent.

4.3.2 Accuracy

We determined our tool’s accuracy in different ways for libraries
for which no no generic version is available (antlr andeclipse) and
those for which a generic version is available (all others).

When no generic version of a library is available, we asked
the developers their opinion of the result. A developer of Eclipse
examined each of the changes made by our tool and concluded that
the changes were “good and useful for code migration to Java 5.0.”
He mentioned only 1 instance (out of 100 uses of types in the
Eclipse classes we parameterized) where the inferred result, while
correct, could be improved. A developer of ANTLR concluded that
the changes made by our tool “look pretty good”. He mentioned 1
instance (out of 140 uses of types in the parameterized classes)
where the inferred result, while correct, could be improved.

When a generic version of a library is available, we examined
each difference between the pre-existing parameterization and our
tool’s output. For 87% of all type annotations, the output of our
tool is identical or equally good. For 4% of annotations, the output
of our tool is worse than that created by the human. For 9% of
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annotations, the tool output is better than that created by the human.
Figure 10 tabulates the results.

Given two parameterizations, we used two criteria to decide
which was better. The first, and more important, is which one
allows more casts to be removed—in clients or inside the library
itself. The secondary criterion is which one more closely follows
the style used in the JDK collections, which were developed and
refined over many years by a large group of experts, and which
can therefore be reasonably considered models of style. The two
criteria are in close agreement. (When multiple styles appear in the
JDK, we did not count differences in either the “better” or “worse”
category.) We present three examples from each category.

Examples when the output of our tool was worse:

i. Our tool does not instantiate the fieldnext in member type
LinkedBlockingQueue.Node (in concurrent) as Node<E>, but
leaves it raw. Such a choice is safe, but it is less desirable than
the manual parameterization.

ii. Our tool does not infer type parameters for methods; for exam-
ple, the methodPredicatedCollection.decorate in apache.

iii. Our tool inferred two separate type parameters for interface
Buffer in theapachelibrary. In this case the manual parame-
terization had only one.

Examples when the output of our tool was better (in each case,
the developers of the package agreed the inferred solution was
better than their manual parameterization):

i. Our tool adds a formal type parameter to member classSyn-

chronousQueue.Node in concurrent. Adding the parameter al-
lows elimination of several casts insideSynchronousQueue.

ii. In methodVerboseWorkSet.containsAll in jpaul , our tool
inferred an upper-bounded type parameter wildcard for the
Collection parameter. This permits more flexible use and
fewer casts by clients, and also adheres to the standard col-
lections style from the JDK.

iii. Our tool inferredObject as the type of the parameter of method
Canonical.getIndex in amadeus. This is more flexible with
fewer casts (and follows the JDK style). A similar case oc-
curred injpaul (our tool inferredObject for the parameter of
WorkSet.contains).

4.3.3 Usability

Our tool operated fully automatically, processing each class in
under 3 seconds on average. A user who elected to manually select
type uses would only need to make 89 mouse clicks to add 135
type parameters to 148 classes. As mentioned, 4% of the computed
results are sub-optimal, requiring manual correction.

By comparison, manual parameterization requires making 1655
edits to add generic types — after reading the code to decide what
edits to make. And even so, the human result was sub-optimal 9%
of the time, so adjusting the results after finishing is even more
work than in the tool-assisted case.

Those results illustrate that manual parameterization requires a
significant amount of work. Parameterization of theapachecol-
lections took “a few weeks of programming”, according to one of
the developers. It is an error-prone activity and, to quote the same
developer, “the main advantage we had was the over 11,000 test
cases included with the project, that let us know we hadn’t broken
anything too badly.”

5. Related Work
Duggan [9] presents an automatic approach for parameterizing
classes written in PolyJava, a Java subset extended with parame-
terized types. Duggan’s type inference infers one type parameter
for each declaration in a class. Even after applying simplifications
to reduce the number of useless type parameters, Duggan’s analysis
leads to classes with excess type parameters. Duggan’s analysis is

inapplicable to Java because PolyJava differs from Java 1.5 in sev-
eral important ways, and Duggan does not address issues related to
raw types, arrays of generic types, and wildcard types that arise in
practice. Duggan does not report an implementation or empirical
results.

Donovan and Ernst [7] present another automated approach for
the parameterization of Java classes. The technique automatically
determines both type parameters and where declarations should re-
fer to those type parameters. The approach first performs an intra-
class analysis that constructs a type constraint graph using dataflow
rules. Then, after collapsing strongly connected components and
making additional graph simplifications, an inter-class analysis
fuses type parameters where required to preserve method over-
riding. The algorithm also determines how references to generic
classes should be updated, by inferring actual type parameters. The
work by Donovan and Ernst differs from ours in several significant
ways. Although it is reported that the desired solution is computed
for several examples, Donovan and Ernst report that “often the class
is over-generalized” (has too many type parameters). Donovan and
Ernst’s work pre-dates Java 1.5 generics and targets a translation
to GJ [3]. As a result, they may infer arrays of generic types (dis-
allowed in Java 1.5 generics), and do not consider the inference of
wildcard types. Donovan’s work [7] was never fully implemented,
and no empirical results are reported.

Von Dincklage and Diwan [22] also present a combined ap-
proach for the parameterization of classes and for the inference
of actual type parameters in clients of those classes. Similarly to
Duggan [9], their tool (Ilwith) creates one type parameter per dec-
laration, then uses heuristics to merge type parameters. Our sys-
tem differs in its (1) algorithm, (2) implementation, and (3) eval-
uation. (1) A key difference from our algorithm is that Ilwith is
unsound, due to insufficient type constraints (it is missing those
for preserving erasure for methods and fields, and overriding rela-
tionships between methods). As a result, the behavior of both the
library and its clients may change after parameterization, without
warning; this makes the technique unsuitable in practice. By con-
trast, our approach is correct (see Section 4.3.1) and uses heuristics
only to choose among legal solutions. Unlike our approach, Ilwith
does not handle key features of Java generics such as raw types
and wildcards. To control run time and the number of constraint
variables, Ilwith uses special cases in the algorithm to handle other
Java features, such as calls to static methods and methods in generic
classes, and context-, field-, and instance-sensitivity; by contrast,
our system is more uniform, and we have not found performance
to be a problem. Ilwith creates maximally many type parameters
and then tries to merge them via heuristics (though other heuris-
tics, such as the requirement that every field declaration mentions a
type parameter, may leave the result over-general). By contrast, our
technique starts with no type parameters and incrementally adds
them. (2) We mention only two differences between the two imple-
mentations. First, Ilwith does not rewrite source code, but merely
prints method signatures without providing details on how method
bodiesshould be transformed. Second, Ilwith took “less than 2 min-
utes” per class on a 2.66 GHz machine, whereas our implementa-
tion averaged less than 3 seconds per class on a 2.2 GHz machine.
(3) The experimental evaluation of the two tools differs as well. Il-
with was evaluated on 9 data structures (5 lists, 1 stack, 1 set, and
2 maps) chosen from two libraries (47 classes altogether, including
inner classes, interfaces and abstract classes). The authors made
whatever edits were necessary to enable Ilwith to succeed, so the
classes are most like the pre-parameterized libraries in our eval-
uation. However, the authors did not evaluate the accuracy of the
solution, either via examination by a Java expert or via comparison
to existing parameterized versions of the libraries (then available,
for example, from the GJ project and from JDK 1.5 beta releases).
Even the example signatures shown in the paper differ from what a
programmer would have written manually, for example inaddAll,
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contains, equals, putAll, remove, andremoveEntryForKey. (The
authors state that the results are consistent with Eiffel [14], but a
Java programmer performing a refactoring is more likely to care
about Java semantics and backward compatibility.)

Previous work by the present authors includes two algorithms [8,
11] that, given a set of generic classes, infer how client code can
be updated by inferring actual type parameters and removing casts
that have been rendered redundant. In this paper, we extended the
constraint formalism and implementation of [11] to accommodate
the inference of wildcard types. Although [11] includes a mode for
inferring method type parameters by means of a context-sensitive
analysis, it does not infer class type parameters. Some of the present
authors previously used type constraints for several refactorings
and program transformations that also involve manipulating types
and class hierarchies, such as refactorings related to generaliza-
tion [21], customization of library classes [6], and refactorings for
migration applications between similar library classes [1]. The IN-
FER TYPE refactoring by Steimannet al. [20] lets a programmer
select a given variable and determines a minimal interface that can
be used as the type for that variable. If such an interface does not
yet exist, it is created automatically. Steimannet al. only present
their type inference algorithm informally, but they appear to use
similar constraints to those of [21].

A number of authors have explored compile-time parametric
type inference to ease the burden of explicit parameterization in
languages supporting parametric types [15, 18, 13]. Many of these
approaches were applied to functional programming languages,
and thus focus on introducing type parameters for functions, rather
than for classes or modules. Obviously, such languages differ in
many important respects from Java 5.0, e.g. in the lack of a class
hierarchy with inheritance and overriding, or in the use of struc-
tural (cf. nominal) subtyping, or in the lack of the notion of type
erasure. These differences in semantics and structure necessitate
significantly different constraint systems. Moreover, the type sys-
tems in many functional languages (e.g. ML) induce a uniqueprin-
ciple typefor each program variable, whereas in our case the con-
straint system leaves the possibility to select a ”desirable” result
from a software engineering perspective, which is a critical con-
cern for source-to-source transformations. Yet other works describe
parametric type inference even for languages with mandatory ex-
plicit parameterization for the purpose of statically type checking
such diverse languages as Cecil [4], constraint logic programming
(CLP) [10] or ML [16]. Again, these works differ from ours in
many critical details of the language’s type system.

Siff and Reps [19] focused on translating C functions into C++
function templates by using type inference to detect latent polymor-
phism. In their work, opportunities for introducing polymorphism
stem from operator overloading, references to constants that can
be wrapped by constructor calls, and from structure subtyping. In
a similar vein, De Sutter et al. [5] perform link-time inference of
reusable C++ object code fragments for the purpose of code com-
paction. In essence, their work reconstitutes type-parametric func-
tions from template instantiations created during compilation, but
does so using code similarity detection rather than type inference
per se, and on a low level representation (object code).

6. Conclusion
We have presented a solution to the parameterization problem,
which involves adding type parameters to existing, non-generic
class declarations. This is a complex task due to requirements of
backward compatibility and behavior preservation, the existence of
multiple type-correct solutions, complications posed by raw and
wildcard types, and the necessity to simultaneously parameterize
and (generically) instantiate multiple interrelated classes. Our al-
gorithm handles all these issues and the full Java language.

Our parameterization algorithm subsumes previous algorithms
for generic instantiation, which change library clients to take ad-

line 42 in Figure 1:
methodM ≡ SortSet.addAll overrides
M ′ ≡TreeSet<E>.addAll(Collection<? extends E>)

whereτ1 ≡ M1 andτ ′1 ≡ M ′
1

(r6)
→ CGenWild([τ1],=,τ ′1,SortSet,false)
(c3)
→ {[τ1] = Collection} ∪

CGenWild(E([τ1]),=,? extends E,SortSet,false)
(c5)
→ {[τ1] = Collection} ∪

CGenWild(E([τ1]),≤,E,SortSet,false)
(c4)
→ {[τ1] = Collection} ∪

E([τ1]) = ? extends E(SortSet)}

Figure 12. Example applications of constraint generation rules from Fig-
ure 5.

vantage of libraries that have been made generic. Our analysis com-
putes an instantiation at the same time as it performs parameteriza-
tion.

We have implemented our algorithm in the context of the
Eclipse IDE and run experiments to verify its correctness, accuracy,
and usability. The results are correct: they are backward-compatible
and they maintain behavior. The results are even more accurate than
parameterizations performed by the library authors: 9% of the tool
results are better, and 4% of the tool results are worse. The tool is
usable: it requires only a mouse click, runs quickly, and thus greatly
reduces overall developer effort. We are hopeful that this tool may
increase the uptake of Java generics, which are a very valuable
language feature that increases type safety and expressiveness.
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