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Abstract

The problem of estimating the parameters of superimposed signals using an ar-
ray of sensors has received considerable research interest in the last two decades.
Many theoretical studies have been carried out and deep insight has been gained.
Traditional applications of array processing include source localization and interfer-
ence suppression in radar and sonar. The proliferation of estimation algorithms has,
however, recently spurred an increasing interest in new applications, such as spatial
diversity in personal communications, medical applications and line detection in
images.

The goal of this manuscript is to provide a brief review of the recent research
activities in sensor array signal processing. The focus is on estimation algorithms.
These are classified into spectral-based and parametric methods respectively, de-
pending on the way the estimates are computed. Some of the most well-known
algorithms are presented, and their relative merits and shortcomings are described.

"~ References to more detailed analyses and special research topics are also given.
Some applications of sensor array processing methods are also commented upon,
and potential new ones are mentioned. The results of real data experiments are
also presented, demonstrating the usefulness of recently proposed estimation tech-
niques.
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1 Introduction

Estimation problems in theoretical as well as applied statistics have long been of great
research interest given their ubiquitous presence in a great variety of applications. Pa-
rameter estimation has particularly been an area of focus by applied statiticians and
engineers as problems required ever improving performance [7, 9, 8]. Many techniques
were the result of an attempt of researchers to go beyond the classical Fourier-limit.

As applications expanded, the interest in accurately estimating relevant temporal as
well as spatial parameters grew. Sensor array signal processing emerged as an active
area of research and was centered on the ability to fuse data from several sensors in
order to carry out a given estimation task. This framework, as will be described in more
detail below, uses to advantage prior information on the data acquisition system (i.e.,
array geometry, sensor characteristics, etc.). The methods have proven useful for solving
several real-world problems, perhaps most notably source localization in radar and sonar.
Other more recent applications are discussed in later sections.

Spatial filtering [6, 42] and classical time delay estimation techniques [8] figure among
the first approaches to carry out a space-time processing of data sampled at an array of
sensors. Both of these approaches were essentially based on the Fourier transform and had
inherent limitations. In particular, their ability to resolve closely spaced signal sources
is determined by the physical size of the array (the aperture), regardless of the available
data collection time and signal-to-noise ratio (SNR). From a statistical point of view, the
classical techniques can be seen as spatial extensions of spectral Wiener filtering [129] (or
matched filtering).

The extension of the time-delay estimation methods to more than one signal® and the
poor resolution of spatial filtering (or Beamformer) together with an increasing number
of novel applications, renewed interest of researchers in statistical signal processing. Its
reemergence as an active area of research coincided with the introduction of the well
known Mazimum Entropy (ME) spectral estimation method in geophysics by Burg [21].
This inspired much of the subsequent efforts in spectral estimation, and was intuitively
appealing as it was reminiscent of the then long-known Yule-Walker autoregressive esti-
mation model. This similarity was in spite of the fundamental difference with the latter,
which uses estimated covariances, whereas the ME method assumes exact knowledge of
the auto-covariance function at a limited number of lags. The improvement of the ME
technique resulted from making minimal assumptions about the auto-covariance function
at lags outside those which are known. Inspired by the laws of physics, Burg proposed to
maximize the entropy of the remaining unknown covariance lags. This improved estima-
tion technique, which is readily extended to array processing applications, has been the
topic of study in many different fields, see e.g. [9]. With the introduction of subspace-
based techniques [91, 12], the research activities accelerated even further. The subspace-
based approach relies on geometrical properties of the assumed data model, resulting in
a resolution capability which (in theory) is not limited by the array aperture, provided
the data collection time and/or SNR are sufficiently large.

IThese techniques originally used only two sensors.
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The quintessential goal of sensor array signal processing is to couple temporal and
spatial information, captured by sampling a wavefield with a set of judiciously placed
antenna sensors. The wavefield is assumed to be generated by a finite number of emitters,
and contains information about signal parameters characterizing the emitters. Given
the great number of existing applications for which the above problem formulation is
relevant, and the number of newly emerging ones, we feel that a review of the area with
more hindsight and perspective provided by time, is in order. The focus is on estimation
methods, and many relevant problems are only briefly mentioned. The manuscript is
clearly not meant to be exhaustive, but rather as a broad review of the area, and more
importantly as a guide for a first time exposure to an interested reader. For more extended
treatments , the reader is referred to textbooks such as [30, 88, 52, 48].

The balance of this paper consists of the background material and of the basic problem
formulation in Section 2. In Section 3, we introduce spectral-based algorithmic solutions
to the signal parameter estimation problem. We constrast these suboptimal solutions to
parametric methods in Section 4. Techniques derived from maximum likelihood principles
as well as geometric arguments are covered. In Section 5, a number of more specialized
research topics are briefly reviewed. In Section 6, a number of real-world problems for
which sensor array processing methods have been applied are discussed. Section 7 contains
a real data example involving closely spaced emitters and highly correlated signals.



2 Background and Formulation

This section presents the data model assumed throughout this paper, starting from first
principles in physics. We also introduce some statistical assumptions and review basic
geometrical properties of the model.

2.1 Wave Propagation

Many physical phenomena are either a result of waves propagating through a medium
(displacement of molecules) or exhibit a wave-like physical manifestation. A wave prop-
agation may take various forms, depending on the phenomenon and on the medium. In
any case, the wave equation has to be satisfied. Our main interest, here, lies in the propa-
gation of electromagnetic waves, which is clearly exposed through a solution of Maxwell’s
equations,

VD = o (1)
VB = 0 @)
0B
VE = - (3)
oD
VxH = J+ —8—{’ (4)

where D, B, E, H, J respectively denote the electric charge displacement, the magnetic
induction, the electric field, the magnetic field and the current density. Equations (1)-
(2) express the fact that charges are the sources of electric flux and that there exist no
magnetic charges. The last two equations on the other hand, confirm that a time-varying
magnetic flux induces a circulation of an electric field and that either a current or a
displacement current causes a circulation of a magnetic field.

Using the conservation of rate of change of charge within a volume V,

3]
- Pr = / .
3t v pd’r J - ndS,
with n denoting a surface normal, together with a transform of a surface integral into a
volume integral,
Vx(VxV)=V(V-V)-V?V,

for any vector V, one can derive after some algebra, the fundamental equations of prop-
agation:

0 5 0 oE
Py_wve = 2 e
V(e) \Y uat(.]+eat) (5)
) 2H?
——VH—!—E@W = VxJ. (6)



Solving either of these differential equations (with current charge sources as forcing func-
tions) leads to the solution of the other and results in the well-known traveling wave
equation,

s(t,p) = s(a’p — wt),

where w, and ¢ are respectively the temporal angular frequency and the spatial slowness
vector which determines the direction of the wave propagation, and p is the position
vector. The solution for an arbitrary forcing function (i.e. transmitted waveform) is
in general obtained as a superposition of single frequencies (narrowband frequencies, e.g.
sinusoidals), and often requires a numerical approach. The structure of the above solution
clearly indicates that an exponential-type function coincides with such a behavior. The
propagating waves we will be focusing on, in this paper, may emanate from sources such
as antennae (E-M waves) or acoustic sources (under water SONAR). The traveling wave
equation holds for any application of interest to the estimation methods discussed below.
The details of radiating antennae, are left to the excellent book by Jordan [53]. It is also
clear that homogeneity and time invariance of the fields are assumed throughout.
With little loss of generality?, we will assume a model of an exponential traveling wave
signal,
5(t,p) = s(t — op) = KR, (7)

where w = 27 f is the temporal frequency and k = a/w is the wave-vector. The length
of k is the spatial frequency (also referred to as the wavenumber), and equals 27\, with
A being the wavelength of the carrier. In fact, the model we arrive at will be useful also
for non-exponential signals, provided their bandwidth is much smaller than the center
frequency®. This aspect is important, since in many applications the received signals are
modulated carriers. It is also possible that the propagation channel introduces slowly
time-varying phase-shifts and/or amplitude modulations of the received signal, although
the transmitted signal is a pure tone.

Equation (7) above clearly shows that the phase variation of the signal s(-) is temporal
as well as spatial (as it travels some distance in space). Since the phase is dependent
upon the spatial coordinates, the traveling mode (determined by the radiating source)
will ultimately dictate how the spatial phase is accounted for. An isotropic point source,
as will be assumed throughout, results in spherical traveling waves, and all the points
lying on the surface of a sphere of radius R share a common phase and are referred to
as a wavefront. This indicates that the distance between the emitters and the receiving
antenna array determines whether or not the sphericity of the wave must be taken into
account (near field reception, see e.g. [10]). Far-field receiving conditions implies that the
radius R of propagation is so large (compared to the physical size of the array) that a flat
plane can be considered, resulting in a plane wave. Though not necessary, the latter will
be our assumed working model for convenience of exposition.

2As already noted, wideband signals can always be expressed as a superposition of exponential signals.
3More precisely, the narrowband model holds if the inverse bandwidth is much larger than the time
it takes for a traveling wave to propagate across the array.



Note that a linear medium implies the validity of the superposition principle, and thus
allows for more than one traveling wave. It is clear from (7) that these propagating wave-
forms carry information on their origin. This information is expressed in terms of certain
signal parameters, such as direction-of-arrival (azimuth and elevation), signal polariza-
tion, temporal frequency etc., associated with each emitter. These signal parameters play
an important role in many applications, some of which are discussed below, and their
estimation has been and continues to be a topic of great research interest. Indeed, this
problem forms the essence of sensor array signal processing, which is the topic discussed
in greater length in the following sections.

2.2 Parametric Data Model

Most modern approaches to signal processing are model-based, in the sense that they
rely on certain assumptions made on the observed data. This section describes the model
relevant for the present discussion. It is customary to represent a receiving sensor as an
isotropic* point source at given spatial coordinates 7; = (ya;, ¥5.), as shown in Fig. 1.

It is also possible to associate to the i** receiving sensor, a spatially variable pat-
tern (i.e. its response depends on the receiving angle), and account for its directional
sensitivity.

We will assume that the array is planar and has L sensors, each of which has coordi-
nates 7; = (Ya,, ys,) and an impulse response’

hi(t, ps) = ai(0)6(¢)6(ps).

As noted earlier, the superposition principle holds for M signals impinging on an L-
dimensional array. We can thus define an L x M impulse response matrix H(¢, @) from
the impinging emitter signals with parameters 8 = [0y, 0, ...,0)], to the sensor outputs.
Under the stated assumptions, the kl:th element of H(¢, 8) takes the form

Hkl(t, 9) - ak(ﬁl)ﬁ(t)é(pk) s k= 1,2, ce ,L y [ = 1,2, .. .,M . (8)

It immediately follows that the sensor outputs, denoted zx(¢)7 = {1,2, ..., L}, resulting
from a convolution operation can be written as,

M
ze(t) = 3 an(B) el )
1=1
for purely exponential signals and

M _ .
zr(t) = D ak(8) e/ my (1) (9)

=1

4The radiation/receiving pattern of an isotropic sensor is uniform in all spatial directions.
5For convenience, we assume that the sensors have no temporal dynamics. A sufficient assumption
would be that their transfer functions are flat over the signal bandwidth.
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Figure 1: General two-Dimensional Array

for narrowband signals. In the latter case, w is the common center frequency of the signals
and m(t) represents the complex modulation (gain and phase) of the [:th signal, which
by the narrowband assumption is identical at all sensors.

The above equation clearly indicates that the geometry of a given array determines
the relative delays of the various arrival angles. This is illustrated for the uniform linear
and circular arrays in Figure 2, where it is assumed that the array and the emitters are
all in the same plane.

The above formulation can be straightforwardly extended to arrays where additional
dimensions provide the flexibility for more signal parameters per source (e.g. azimuth,
elevation and polarization). In general, the parameter space can be abstractly represented
by some set © and may include all of the aforemetioned parameters. However, most of the
time we will assume that each 6; is a real-valued scalar, referred to as the [:th direction-
of-arrival (DOA).

The vector representation of the received signal x(¢) is expressed as

X(t) = [3(91)’ a(‘92)7 T a(eM)]S(t) = As(t)’ (10)
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Figure 2: Common 2-D arrays

where, with reference to (9),
4.T q.T 1.7
a(el) = [al(gl)ejkl i ) a’?(gl)ejkl rz) B aL(el)e]kl rL]T (11)
S() = [ema(t), e ms(t), ..., mag(t)] (12)

The vector a(6;) is referred to as the I:th array propagation vector, and it describes via
ki r, how a plane wave propagates across the array (note that k; is a function of the
DOA) and via ax(6;) how the sensors affect the signal amplitude and phase. In many
applications, the carrier e** is removed from the sensor outputs before sampling.

The received signal, will inevitably be corrupted by noise from each of the receiving
sensors, giving rise to the following model asssumed throughout,

x(t) = As(t) + n(t) . (13)
The sensor outputs are appropriately sampled at arbitrary time instances, labeled ¢ =
1,2,...,N. Clearly, the process x(t) can be viewed as a multichannel random process,
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whose characteristics can be well understood from its first and second order statistics
determined by the underlying signals as well as noise. The sampling frequency is usually
much smaller than w, so that x(¢) often can be regarded as temporally white.

2.3 Assumptions

The signal parameters which are of interest in this paper, are of spatial nature, and
thus require the cross-covariance information among the various sensors, i.e. the spatial
covariance matrix,

R =E{x(t)x(t)} = AE{s(t)s”(1)}A" + E{n(t)nf (1)} . (14)

Here, the symbol (-)¥ denotes complex conjugate and transpose (Hermite). Assuming
temporal whiteness and denoting ¢, , the Kronecker delta, the source covariance matrix
is defined as

E{s(t)sH(s)} =Pé (15)

whereas the noise covariance matrix is modeled as given by
E{n(t)n(s)} = 0?16, . (16)

Thus, it is assumed that the noise have the same level o2 in all sensors, and is uncorrelated
from sensor to sensor. Such noise is usually termed spatially white, and is a reasonable
model for e.g. receiver noise. However, other man-made noise sources need not result
in spatial whiteness, in which case the noise must be pre-whitened. More specifically,
if the noise covariance matrix is Q, the sensor outputs are multiplied by Q12 (Ql/ 2
denotes a Hermitean square-root factor of Q) prior to further processing. The source
covariance matrix, P is often assumed to be nonsingular (a rank-deficient P, as in the
case of temporally coherent signals, is discussed in Sections 3.3 and 4).

In the later development, the spectral factorization of R will be of central importance,
and its positivity guarantees the following representation,

R = APA" + 4’1 = UAU¥, (17)

with U unitary and A = diag{\;, A2, -, A} a diagonal matrix of real and positive eigen-
values, such that A\;y > Ay > --- > Ap. Observe that any vector orthogonal to A is an eigen-
vector of R with the eigenvalue o2. There are L — M linearly independent such vectors.
Since the remaining eigenvalues are all larger than o2, we can split the eigenvalue/vector
pairs into noise eigenvectors (corresponding to eigenvalues Apyy = -+ = Ay = o?) and
signal eigenvectors (corresponding to eigenvalues A\; > -+ > Ay > ¢2). This results in

the representation
R = U,A,UY + U,A,UZ | (18)

where the columns of the signal subspace matrix U, are the M principal eigenvectors,
and the noise subspace matrix U,, contains the eigenvectors corresponding to the multiple
eigenvalue 02, i.e. A,, = 0*I. Since all noise eigenvectors are orthogonal to A, the columns

9



of U, must span the range space of A whereas those of U,, span its orthogonal complement
(the nullspace of A®). The projection operators onto these signal and noise subspaces
are defined as

I = UUf=AAFA)IA"
Mt = U, UF=1-AA7A)TAT (19)

which clearly satisfy
I=1I + ITh. (20)

2.4 Problem Definition

The problem of central interest herein is that of estimating the DOAs of emitter signals
impinging on a receiving array, when given a finite data set {x(¢)} observed over {t =
1,2,...,N}. Asnoted earlier, we will primarily focus on reviewing a number of techniques
based on second-order statistics of data.

All of the earlier formulation assumed the existence of exact quantities, i.e. infinite
observation time. It is clear that in practice sample estimates are only possible and are
designated by a~. The ML estimate of R is given by®,

S (1) (21)

t=1

R=

A corresponding eigen-representation similar to that of R is defined as
R=TU,AUY + U,A,UY (22)

This decomposition will be extensively used in the description and implementation of the
subspace-based estimation algorithms. Throughout the paper, the number of underlying
signals, M, in the observed process is considered known. There are, however, good and
consistent signal enumeration techniques available [124, 93, 29, 61] in the event that such
an information is not available, see also Section 5.1.

In Sections 3 and 4, for space reasons, we limit the discussion to the best known
estimation techniques, respectively classified as Spectral-Based and Parametric methods.
With the full knowledge of existence of a number of good variations which address par-
ticular problems of those described here, the reference list attempts to cover a portion of
the gap which clearly can never be filled.

6Strictly speaking, (21) does not give the ML estimate of the array covariance matrix, since it does not
exploit its parametric structure. See Section 4 for further details on this aspect. The sample covariance
matrix (21) is sometimes referred to as an unstructured ML estimate.
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3 Spectral-Based Algorithmic Solutions

As pointed out earlier, we classify the parameter estimation techniques into two main
categories, namely the spectral-based and the parametric approaches. In the former, one
forms some spectrum-like function of the parameter(s) of interest, e.g. the DOA. The
location of the highest (separated) peaks of the function in question are taken as the
DOA estimates. The parametric techniques, on the other hand, require a simultaneous
search for all parameters of interest. While often more accurate, the latter approach is
usually more computationally complex.

The spectral-based methods in turn are divided into the beamforming approaches and
the subspace-based methods.

3.1 Beamforming Techniques

The first attempt to automatically localize signal sources using antenna arrays was through
beamforming techniques. The idea is to “steer” the array in one direction at the time and
measure the output power. The locations of maximum power yield the DOA estimates.
The array is steered by forming a linear combination of the sensor outputs

y(t) = ; wizi(t) = wx(t) (23)

where (-)* denotes complex conjugate. Given samples y(1),(2),...,y(N), the output
power is measured by

N
P(w) = 5 L) = -jlv S whx(t)x (t)w = wHRw (24)

t=1

where R is defined in (21). Different beamforming approaches correspond to different
choices of weighting vector w. For an excellent review of the utility of beamforming
methods, we refer to [115].

3.1.1 Conventional Beamformer

Following the development of the Mazimum Entropy criterion formulated by Burg [21] in
spectral analysis, a plethora of estimation algorithms appeared in the literature, each using
a different optimization criterion. For a given structured array, the first algorithm which
precedes even the entropy-based algorithm, is one which maximizes its output power for
a certain input. Suppose we wish to maximize the output power from a certain direction
§. The array output, assuming a signal at # corrupted by additive noise, is given by

x(t) = a(f)s(t) + n(t) .

11



The problem of maximizing the output power is then formulated as

mvng{WHx(t)XH(t)W} = 1nv§waE{x(t)xH(t)}W

max {E[s(t)l2 !WHa(9)12 +0? |W]2} : (25)

where the assumption of spatially white noise is used in the last equality. Employing
a norm constraint on w to ensure a finite solution, we find that the maximizing weight
vector is given by

Wpprp = a(@) . (26)

The above weight vector can be interpreted as a spatial filter, which has been matched
to the impinging signal. Intuitively, the array weighting equalizes the delays experienced
by the signal on various sensors to maximally combine their contributions. Figure 3
illustrates this point.

.

source s(t)

d
y -7 - ..
_ Receiving Sensor
) 20 35 45 56 d=0w
y(®

Figure 3: Standard Beamformer

Inserting the weighting vector (26) into (24), the classical spatial spectrum is obtained
as
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For a uniform linear array (ULA), the steering vector a(f) takes the form (see Figure 2)

. . T
a(d) = [1, et eJ(L"l)ﬂ , (28)

where w
¢ = —;d sin(6) (29)

is termed the electrical angle. Here, w is the center frequency of the signals, c is the speed
of propagation, d is the inter-element separation and the DOA 6 is taken relative to the
normal of the array. By inserting (28) into (27), we obtain Pgr(f) as the spatial analogue
of the classical periodogram in temporal time series analysis, see e.g. [83]. Unfortunately,
the spatial spectrum suffers from the same resolution problem as does the periodogram.
The standard beamwidth for a ULA is ¢p = 27 /L, and sources whose electrical angles
are closer than ¢ will not be resolved by the conventional beamformer, regardless of the
available data quality.

3.1.2 Capon’s Beamformer

In an attempt to alleviate the limitations of the above beamformer, such as its resolving
power of two sources spaced closer than a beamwidth, researchers have proposed numerous
modifications. A well-known method was proposed by Capon [23], who formulated an
algorithm as a dual of the beamformer. The optimization problem was posed as

min P
W

subject to  w7a(f) =1.

Hence, Capon’s beamformer attempts to minimize the power received from noise and
any signals coming from other directions than ¢, while maintaining a fixed gain in the
“look direction” #. The optimal w can be found using, e.g., the technique of Lagrange
multipliers, resulting in
R 1a()
Weoap = — . 30
afl())R~1a(h) (30)
The above weight in turn leads to the following “spatial spectrum” upon insertion into
(24)

1
(OR-ta()
It is easy to see why Capon’s beamformer outperforms the more classical one, as the
former uses every single degree of freedom to concentrate the received energy along one
direction, namely the bearing of interest. The Capon beamformer is allowed to give
up some noise suppression capability to provide a focused “nulling” in the directions
where there are other sources present. The spectral leakage from closely spaced sources

is therefore reduced, though the resolution capability of the Capon beamformer is still
dependent upon the array aperture.

Poap(0) = " (31)
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A number of alternative methods for beamforming have been proposed, addressing
various issues such as partial signal cancelling due to signal coherence [128] and beam
shaping and interference control [41, 20, 115].

3.2 Subspace-Based Methods

Many spectral methods in the past, have implicitly called upon the eigen structure of
a process to carry out its analysis (e.g. Karhunen-Loéve representation). One of the
most significant contributions came about when the eigen-structure of a process was
explicitly invoked, and its intrinsic properties were directly used to provide a solution to
an underlying estimation problem for a given observed process.

Early approaches involving invariant subspaces of observed covariance matrices include
principal component factor analysis [49] and errors-in-variables time series analysis [58]. In
the engineering literature, Pisarenkos work [81] in time series analysis was among the first
to be published. However, the tremendous interest in the subspace approach is mainly
the result of the introduction of the MUSIC (Multiple SIgnal Classification) algorithm
[91, 12].

3.2.1 The MUSIC Algorithm

As noted in Section 2.3, the structure of the exact covariance matrix together with the
spatial white noise assumption implies that its eigendecomposition can be expressed as

R = APAY + ¢’ 1=U,A U + 5?2 U, U7 | (32)

where the diagonal matrix A, contains the M largest eigenvalues (assuming APA to be
of full rank). Since the eigenvectors in U, (the noise eigenvectors) are orthogonal to A,
we have

UZa(@)=0, 0€{0,...,0m}. (33)

To allow for unique DOA estimates, the array is usually assumed to be unambiguous;
that is, any collection of L steering vectors corresponding to distinct DOAs 7, forms a
linearly independent set {a(m),...,a(nz)}. In particular, a ULA can be shown to be
unambiguous if the DOAs are confined to —7n/2 < 6 < 7/2 and d < A/2. Under this
assumption, @y, ...,0y are the only possible solutions to the relation (33), which could
therefore be used to locate the DOAs exactly.

In practice, as previously noted, an estimate of the covariance matrix R is obtained,
and its eigenvectors are split into the signal and noise eigenvectors as in (22). The or-
thogonal projector onto the noise subspace is estimated as

=00, . (34)
The MUSIC “spatial spectrum” is then defined as
af’(6)a(d
at(0)I1+a(d)

14



(the denominator in (35) is included to account for non-uniform sensor gain and phase
characteristics). Although Py (6) is not a true spectrum in any sense (it is merely the dis-
tance between two subspaces), it exhibits peaks in the vicinity of the true DOAs provided
IIt is close to ITL.

The performance improvement of this method was so significant that it became an
alternative to most existing estimators. In particular, it follows from the above reasoning
that estimates of an arbitrary accuracy can be obtained if the data collection time is
sufficiently long or the SNR is adequately high. Thus, in contrast to the beamforming
techniques, the MUSIC algorithm provides statistically consistent estimates. Though the
MUSIC function (35) does not represent a spectral estimate, its important limitation
is still the failure to resolve closely spaced signals in small samples and at low SNR.
This loss of resolution is more serious for highly correlated signals. In the limiting case
of coherent signals’, the property (33) no longer holds and the method fails to yield
consistent estimates, see e.g. [60]. The mitigation of this limitation is an important issue
and is separately addressed at the end of this section.

3.2.2 Extensions to MUSIC

The MUSIC algorithm spawned a significant research activity which led to a multitude of
proposed modifications. These were attempts to improve/overcome some of its shortcom-
ings in various specific scenarios. The most notable was the unifying theme of weighted
MUSIC which, for different W, particularized to different algorithms,

_ a”(f)a(6)
P(8) = al (O)TILWTIta(d) - (36)

The weighting matrix W is introduced to take into account (if desired) the influence
of each of the eigenvectors. It is clear that a uniform weighting of the eigenvectors,
le. W =1, results in the original MUSIC method. As shown in [99], this is indeed the
optimal weighting in terms of yielding estimates of minimal asymptotic variance. However,
in difficult scenarios involving small samples, low SNR and highly correlated signals, a
carefully chosen non-uniform weighting may still improve the resolution capability of the
estimator (see Section 7).
One particularly useful choice of weighting is given by [62]

W = ele{ ) (37)

where e; is the first column of the L x L identity matrix. This corresponds to the Min-
Norm algorithm, originally proposed by Tufts and Kumaresan [64, 113] for ULAs and
extended to arbitrary arrays in [66]. As shown in [55], the Min-Norm algorithm indeed
exhibits a lower bias and hence a better resolution than the original MUSIC algorithm.

"Two signals are said to be coherent if one is a scaled version of the other.
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3.2.3 Resolution-Enhanced Spectral Based Methods

The MUSIC algorithm is known to enjoy a property of high accuracy in estimating the
phases of the roots corresponding to DOA of sources. The bias in the estimates radii [62],
however, affects the resolution of closely spaced sources when using the spatial spectrum.

A solution first proposed in [13], and later in [37, 19], is to couple the MUSIC algorithm
with some spatial prefiltering, to result in what is known as Beamspace Processing. This
is indeed equivalent to preprocessing the received data with a predefined matrix T, whose
columns can be chosen as the steering vectors for a set of chosen directions:

z(t) = THx(t) . (38)

Clearly, the steering vectors a(f) are then replaced by T#a(f) and the noise covariance
for the beamspace data becomes o2 THT. For the latter reason, T is often orthogonalized
before application to x(¢).

It is clear that if a certain spatial sector is selected to be swept (e.g. some prior
knowledge about the broad direction of arrival of the sources may be available), one can
potentially experience some gain, the most obvious being computational, as a smaller
dimensionality of the problem usually results. It has, in addition, been shown that the
bias of the estimates is decreased when employing MUSIC in beamspace as opposed to
the “element space” MUSIC [37, 137]. As expected, the variance of the DOA estimates is
not improved, but a certain robustness to spatially correlated noise has been noted in [37].
The latter fact can intuitively be understood when one recalls that the spatial pre-filter
has a bandpass character, which will clearly tend to whiten the noise.

Other attempts to improving the resolution of the MUSIC method are presented in
e.g. [56, 33, 135], based on different modifications of the criterion function.

3.3 Coherent Signals

Though unlikely that one would deliberately transmit two coherent signals from distinct
directions, such a phenomenon is not uncommon as either a natural result of a multipath
propagation effect, or intentional unfriendly jamming. The end result is a rank deficiency
in the source covariance matrix P. This, in turn, results in a divergence of a signal
eigenvector into the noise subspace. Therefore, in general U a(f) # 0 for any 6 and the
MUSIC “spectrum” may fail to produce peaks at the location of DOAs. In particular,
the ability to resolve closely spaced sources is dramatically reduced for highly correlated
signals, see. e.g. [63].

In the simple case of two coherent sources being present and a uniform linear array,
there is a fairly straightforward way to “de-correlate” the signals. The idea is to employ
a forward-backward (FB) averaging as follows. Note that a ULA steering vector (28)
remain unchanged, up to a scaling, if its elements are reversed and complex conjugated.
More precisely, let J be an L x L exchange matrix, whose components are zero excepts
for ones on the anti-diagonal. Then, for a ULA it holds that

Ja* () = e 7L=D2a(g) . (39)
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The so-called backward array covariance matrix therefore takes the form
Rp=JR'J = Ad L Vpe-CL-YAH | 521 (40)

where ® is a diagonal matrix with e/%, k =1,..., M on the diagonal. By averaging the
usual array covariance and Rp, one obtains the FB array covariance

1
Rpp = 5 (R+JRJ)
= APAf 4421, (41)

where the new “source covariance matrix” P = (P + ® VP&~ (21} /2 generically has
full rank. The FB version of any covariance-based algorithm simply consists of replacing
R with Rpp, defined as in (41). Note that this transformation has also been used in
noncoherent scenarios, and in particular in time series analysis, for merely improving the
variance of the estimates.

In a more general scenario where more than two coherent sources are present, forward-
backward averaging cannot restore the rank of the signal covariance matrix on its own.
A heuristic solution of this problem was first proposed in [128] for uniform linear arrays,
and later formalized and extended® in [31, 93]. The idea of the so-called spatial smoothing
technique is to split the ULA into a number of overlapping subarrays. The steering vectors
of the subarrays are assumed to be identical up to different scalings, and the subarray
outputs can therefore be averaged before computing the covariance matrix. Similar to
(41), the spatial smoothing induces a random phase modulation which in turn decorrelates
the signals that caused the rank deficiency. This is pictorially shown in Figure 4.

Formally, the transformation can also be carried out by an averaging procedure of
overlapping diagonal submatrices of the original covariance matrix R, and thus as a
result, “unfold” the collapsed signal subspace with an appropriate choice of the submatrix
size (i.e. subarray size). A compact expression for this smoothed matrix R can be
written in terms of a filtering matrix F as follows. If p is a positive integer smaller
than L (p is the number of elements in the subarrays), n, = L — p + 1 is the number of
subarrays, F = [Fip|Fy|---|Fy,,], is a p x n,L windowing matrix defined by F;, =
[0p5(i-1) 1 Tp|0px(1—i-pt+1))s & = 1,2, -+, n,, then we can write

R=F(, ® (R)FT.

Here, ® denotes the Kronecker matrix product and I,,, is the ns X n, identity matrix. The
rank of the averaged source covariance matrix P can be shown to increase by 1 w.p.1 [27]
for each additional subarray in the averaging, until it reaches its maximum value M.
The drawback with spatial smoothing is that the effective aperture of the array is re-
duced, since the subarrays are smaller than the original array. However, despite this loss

8The so-called spatial smoothing transformation requires a translational invariance which is valid for
ULA. Conceptually, however, one could always map the steering vectors for any array into those of a
ULA and proceed with the transformation described here, see further [40].
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of aperture, the spatial smoothing transformation mitigates the limitation of all subspace-
based estimation techniques while retaining the computational efficiency of the unidimen-
sional spectral searches. As seen in the next section, the parametric techniques, in general
do not experience such problems when faced with coherent signals. They require, on the
other hand a more complicated multidimensional search. Let us again stress on the fact
that spatial smoothing and F'B averaging is essentially limited to ULAs. When using more
general arrays (e.g. circular), some sort of transformation of the received data to that of a
ULA must precede the smoothing transformation. Such a transformation is conceptually
possible, but requires in general some a priori knowledge of the source locations.
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4 Parametric Methods

While the spectral-based methods presented in the previous section are computationally
attractive, they do not always yield sufficient accuracy. In particular, for scenarios in-
volving highly correlated (or even coherent) signals, the performance of spectral-based
methods may be insufficient. An alternative is to more fully exploit the underlying data
model, leading to so-called parametric array processing methods. As we shall see, coher-
ent signals impose no conceptual difficulties for such methods. The price to pay for this
increased efficiency is that the algorithms typically require a numerical optimization to
find the estimates. For uniform linear arrays (ULAs), the search can, however, be avoided
with little (if any) loss of performance.

Perhaps the most important model-based approach in signal processing is the maxi-
mum likelihood (ML) technique. This methodology requires a statistical framework for
the data generation process. Though not necessary, the vast majority of existing ML
algorithms assume Gaussian noise. Two different assumptions about the emitter signals
have led to two different ML approaches in the array processing literature. The signals
are either regarded as arbitrary unknown sequences, or they are modeled as Gaussian
random processes similar to the noise. These two signal models result in the determin-
istic (or conditional) and the stochastic (or unconditional) ML methods respectively. In
this section, we will briefly review both of these approaches, discuss their relative merits,
and present two subspace-based ML approximations. Parametric DOA estimation meth-
ods are in general computationally quite complex. However, for ULAs a number of less
demanding algorithms are known, as presented in Section 4.4.

4.1 Deterministic Maximum Likelihood

While the background and receiver noise in the assumed data model, can be thought
of as emanating from a large number of independent noise sources, the same is usually
not the case for the emitter signals. It therefore appears natural to model the noise as a
stationary Gaussian white random process whereas the signal waveforms are deterministic
(arbitrary) and unknown. Assuming spatially white and circularly symmetric® noise, the
second-order moments of the noise term take the form

E{n(t)nH (s)} il | bt (42)
E{n(t)n”(s)} = 0. (43)

[l

As a consequence of the statistical assumptions, the observation vector x(t) is also a
circularly symmetric and temporally white Gaussian random process, with mean A(8)s(¢)
and covariance matrix o?I. The likelihood function is the probability density function
(PDF) of all observations given the unknown parameters. The PDF of one measurement

9A complex random process is circularly symmetric if its real and imaginary parts are
identically distributed and have a skew-symmetric cross-covariance, i.e., E[Re(n(t))Im(n”(2))] =
—E[Im(n(t))Re(nT (¢))].
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vector x(t) is the complex L-variate Gaussian:

IW;QII elx()-As@/? (44)

where | - | denotes the determinant, || - || the Euclidean norm, and the argument of A(6)
has been dropped for notational convenience. Since the measurements are independent,
the likelihood function is obtained as

LDML(67 S(t), 0'2) = Hg__l(’ITO'z)_L e]]x(t)—As(t)||2/02 . (45)

As indicated above, the unknown parameters in the likelihood function are the signal
parameters 6, the signal waveforms s(¢) and the noise variance o2. The ML estimates of
these unknowns are calculated as the maximizing arguments of L(0, s(t), o?), the rationale
beeing that these values make the observations as probable as possible. For convenience,
the ML estimates are alternatively defined as the minimizing arguments of the negative
log-likelihood function — log L(8,s(t), 0?). Normalizing by N and ignoring the parameter-
independent L logm-term, we get

1 N
Ippz(6,s(t),0?) = Llogo® + W Z Ix(t) — As(t)]|?, (46)
t=1

whose minimizing arguments are the deterministic maximum likelihood (DML) estimates.
As shown in [14, 122], explicit minima with respect to o2 and s(¢) can be obtained as

5 = %Tr{ij{} (47)
s() = Afx@), (48)

where R is the sample covariance matrix, Al is the Moore-Penrose pseudo-inverse of A
and ITy is the orthogonal projector onto the nullspace of A¥ e

. 1 N

R = N;x(t)xH(t) (49)
Al = (A#A)1AH (50)
M, = AA! (51)
My = I-1I, . (52)

Substituting (47)—(48) into (45) shows that the DML signal parameter estimates are
obtained by solving the following minimization problem:

Opr = arg {mom Tr{Hf&f{}} . (53)
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The interpretation is that the measurements x(t) are projected onto a model subspace
orthogonal to all anticipated signal components, and a power measurement

= 2L ITEx(@)] = Tr{IT R} is evaluated. The energy should clearly be smallest when
the projector indeed removes all the true signal components, i.e., when 8 = 8. Since only
a finite number of noisy samples is available, the energy is not perfectly measured and
Opnr will deviate from 6. However, if the scenario is stationary, the error will converge
to zero as the number of samples is increased to infinity . This remains valid for correlated
or even coherent signals, although the accuracy in finite samples is somewhat dependent
upon signals correlations.

To calculate the DML estimates, the non-linear M-dimensional optimization problem
(46) must be solved numerically. Finding the signal waveform and noise variance estimates
(if desired) is then straightforward, by inserting 8 pyyy into (47)-(48). Given a good initial
guess, a Gauss-Newton technique (see e.g. [22, 118]) usually converges rapidly to the
minimum of (46). Obtaining sufficiently accurate initial estimates, however, is generally a
computationally expensive task. If these are poor, the search procedure may converge to
a local minimum, and never reach the desired global minimum. A spectral-based method
(see Section 3) is a natural choice for an initial estimator, provided all sources can be
resolved. Another possibility is to apply the alternating projection technique of [141].
However, convergence to the global minimum can still not be guaranteed. Some more
aspects on the global properties of the criteria can be found in [77].

4.2 Stochastic Maximum Likelihood

The other ML technique reported in the literature is termed the stochastic maximum
likelihood (SML) method. This method is obtained by modeling the signal waveforms as
Gaussian random processes. This model is reasonable, for instance, if the measurements

_are obtained by filtering wideband signals using a narrow bandpass filter data. It is, how-
ever, important to point out that the method is applicable even if the data is not Gaussian.
In fact, the asymptotic (for large samples) accuracy of the signal parameter estimates can
be shown to depend only on the second-order properties (powers and correlations) of the
signal waveforms [100, 76]. With this in mind, the Gaussian signal assumption is merely
a way to obtain a tractable ML method. Let the signal waveforms be zero-mean with
second-order properties

E{s(t)s?(s)} = P&, (54)
E{s(t)s’(s)} = 0. (55)

Then, the observation vector x(t) is a white, zero-mean and circularly symmetric Gaussian
random vector with covariance matrix

R=A(0PA#(6)+ 1. (56)

The set of unknown parameters is in this case, different from that in the deterministic
signal model. Now, the likelihood function depends on €, P and o?. The negative log-

22




likelihood function (ignoring constant terms) is in this case easily shown to be
lsn(0,P,0%) = log|R| + Tr{R™'R} . (57)

Though this is a highly non-linear function, this criterion allows explicit separation of
some of the parameters. For fixed 6, the minimum with respect to ¢? and P can be
shown to be (although this requires some tedious calculations [15, 51])

. 1 -
Gsmr(0) = L_MTY{sziR} (58)

Psun(0) = AT(R-5%,,(0) DATH (59)

When (58)—(59) are substituted into (57), the following compact form of the criterion is
obtained

Osmr = arg {mem log! APSML(B)AH +65mp(0)1 l} . (60)

In addition this criterion has a nice interpretation, namely that the determinant

‘Af’ sun(@)A" +6%,,,(0)1 l, termed the generalized variance in the literature, measures
the volume of a confidence interval for the data vector. Note that the argument of the
determinant is the structured ML estimate of the array covariance matrix! Consequently,
we are looking for the model occupying the least volume, to obtain the “cheapest possible”
explanation of the data.

The criterion function in (60) is also a higly non-linear function of its argument 6. A
Newton-type technique implemention of the numerical search is reported in [77] and an
excellent statistical accuracy results when the global minimum is attained. Indeed, the
SML signal parameter estimates have been shown to have a better large sample accuracy
than the corresponding DML estimates [100, 76], with the difference being significant
only for small numbers of sensors, low SNR and highly correlated signals. This is true
regardless of the actual distribution of the signal waveforms, in particular they need not be
Gaussian. For Gaussian signals, the SML estimates attain the Cramér-Rao lower bound
(CRB) on the estimation error variance, derived under the stochastic signal model. This
follows from the general theory of ML estimation (see e.g. [112]), since all unknowns in the
stochastic model are estimated consistently. The situation is different in the deterministic
model for which the number of signal waveform parameters s(t) grows without bound
as the number of samples-increases: they cannot be consistently estimated. Hence, the
general ML theory does not apply and the DML estimates do not attain the corresponding
(“deterministic”) CRB.

4.3 Subspace-Based Approximations

As noted in Section 3, subspace-based methods offer significant performance improve-
ments in comparison to conventional beamforming methods. In fact, the MUSIC method
has been shown to yield estimates with a large-sample accuracy identical to that of the
DML method, provided the emitter signals are uncorrelated [97]. The spectral-based
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methods, however, usually suffer from a large bias in finite samples, leading to resolution
problems. This problem is accentuated for increasing source correlation. Recently, para-
metric subspace-based methods that practically have the same statistical performance as
the ML methods have been developed [101, 102, 117, 118]. The computational cost for
these so-called Subspace Fitting methods is, however, less than for the ML dito. As will
be seen in Section 4.4.3, a computationally attractive implementation is known for the
ubiquitous case of a uniform linear array.
Recall the structure of the eigendecomposition of the array covariance matrix (32),

R = APA" +0°1 (61)
= U,AUH 4 o*U, UH (62)

As previously noted, the matrices A and U span the same range space whenever P has
full rank. In the general case, the number of signal eigenvectors in U, equals M’, the
rank of P. The matrix U, will then span an M’-dimensional subspace of A. To see this,
express the identity in (61) as I = U, U¥ + U UZ. Cancelling the 0> U, UZ-term then
yields

APAT 4+ 22U U =U A UY . (63)

Post-multiplying on the right by U, (note that U¥U, = I) and re-arranging gives the
relation
U, = AT, (64)

where T is the full-rank M x M’ matrix
T =PAU,(A, - *1)7. (65)

The relation (64) forms the basis for the Signal Subspace Fitting (SSF) approach. Since
0 and T are unknown, it appears natural to search for the values that solve (64). The
resulting @ will be the true DOAs (under general identifiability conditions [126]), whereas
T is an uninteresting “nuisance parameter”. When only an estimate U, of U, is available,
there will be no such solution. Instead, we try to minimize some distance measure betwen
U, and AT. The Frobenius norm, defined as the square-root of the sum of squared
moduli of the elements of a matrix, is a useful measure for this purpose. Alternatively,
the squared Frobenius norm can be expressed as the sum of the squared Euclidean norms
of the rows or columns. The connection to standard least-squares estimators is therefore
clear. The SSF estimate is obtained by solving the following non-linear optimization
problem:

(6,1} = argpin [0, — AT} (66)

Similar to the DML criterion (46), this is a separable non-linear least squares problem
[44]. The solution for the linear parameter T (for fixed unknown A) is

1= Al0, (67)
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Substituting (67) into (66) leads to the separated criterion function

~

0 = arg {mem Tr{l’IjTAJsASﬂsH}} . (68)

Since the eigenvectors are estimated with different quality, depending on how close the
corresponding eigenvalues are to the noise variance, it is natural to introduce a weighting
of the eigenvectors. We thus arrive at the form

Ossp = arg {mgm Tr{HjﬁstJf}} : (69)

A natural question is how to pick W to maximize the accuracy, i.e., to minimize the
estimation error variance. It can be shown that the projected eigenvectors IT% (6¢)dy, k =
1,..., M are asymptotically independent. Hence, following from the theory of weighted
least squares, [43], W should be a diagonal matrix containing the inverse of the covariance
matrix of IT(0o)ty, k£ =1,..., M’ This leads to the choice [102, 117]

W = (A, — ?I)A;T . (70)
Since W,,; depends on unknown quantities, we use instead
W = (A, = 6°T7A," (71)

where 62 denotes a consistent estimate of the noise variance, for example the average
of the L — M’ smallest eigenvalues. The estimator defined by (69) with weights given
by (71) is termed the Weighted Subspace Fitting (WSF) method. It has been shown to
theoretically yield the same large sample accuracy as the SML method, and at a lower
computational cost provided a fast method for computing the eigendecomposition is used
(see Section 5.5). Practical evidence, see e.g. [77], have given by hand that the WSF and
SML methods also exhibit similar small sample (i.e. threshold) behaviour.
An alternative subspace fitting formulation is obtained by instead starting from the
“MUSIC relation”
ATOU, =0if 6 =86, , (72)

which holds for P having full rank. Given an estimate of U,,, it is natural to look for the
signal parameters that minimize the following Noise Subspace Fitting (NSF) criterion,

~

0 = arg {mgm Tr{AHfJnT:TfAV}} , (73)
where V is some positive (semi-)definite weighting matrix. Interestingly enough, the
estimates calculated by (73) and (69) asymptotically coincide , if the weighting matrices
are (asymptotically) related by [77]

v = AT(6,) 0, w7 At*(8,) . (74)
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Note also that the NSF method reduces to the MUSIC algorithm for V = I, provided
|a(#)| is independent of #. Thus, in a sense the general estimator in (73) unifies the
parametric methods and also encompasses the spectral-based subspace methods.

The NSF method has the advantage that the criterion function in (73) is a quadratic
function of the steering matrix A. This is useful if any of the parameters of A enter
linearly. An analytical solution with respect to these parameters is then readily available
(see e.g. [119]). However, this happens only in very special situations, rendering this
forementioned advantage of limited importance. The NSF formulation is also fraught with
some drawbacks, namely that it cannot produce reliable estimates for coherent signals,
and that the optimal weighting V,,, depends on 6y, so that a two-step procedure has to
be adopted.

4.4 Uniform Linear Arrays

The steering matrix for a uniform linear array has a very special, and as it turns out,
useful structure, which, as described next, will result in enhanced performance. From
(28), the ULA steering matrix takes the form

eJd1 el®2 . el®um

A@)=| . | : - (75)

GIL-Dd1 Gi(L-Ddz ... oi(L-Déu

This structure is referred to as a Vandermonde matriz [44].

4.4.1 Root-MUSIC

The Root-MUSIC method [11], as the name implies, is a polynomial-rooting version of
the orginal MUSIC technique. The idea dates back to Pisarenko’s method [81]. The basic
observation is that the polynomial

p(z) =upalz) k=M+1,M+2,...,L, (76)
where
a(z) =[1,2,...,2717 | (77)

has M of its zeros at /%, [ =1,2,..., M provided that P has full rank. To exploit the
information from all noise eigenvectors simultaneously, we want to find the zeros of the
MUSIC function Ly _

U, a(2)||* = a”(2)U,U, a(z) . (78)

However, the latter function is not a polynomial in z, which complicates the search for
zeros. Since we are interested in values of z on the unit circle, we can use a”(z71) for
af’(z), which gives the Root-MUSIC polynomial

P() = 2L al (z" 10, UL a(z)a () . (79)
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Note that P(z) will have M roots inside the unit circle (UC), that have M mirrored
images outside the UC. Of the ones inside, the phases of the M closest to the UC, say
21,22, ..., 2um, yield the DOA estimates, as

0, = — arcsin (5 d arg(ék)) : (80)

It has been shown [97, 98] that MUSIC and Root-MUSIC have identical asymptotic
properties, although in small samples Root-MUSIC has empirically been found to perform
significantly better. As previously alluded to, this can be attributed to a larger bias for
spectral-based methods, as compared to the parametric techniques [62, 85].

4.4.2 ESPRIT

The ESPRIT algorithm [80, 87] uses the structure of the ULA steering vectors in a slightly
different way. The observation here is that A has a so-called shift structure. Define the
sub-matrices A; and A, by deleting the first and last rows from A respectively, i.e.

e fu ][ =5]
By the structure (75), Ay and A, are related by the formula

A=A D, (82)
where ® is a diagonal matrix having the “roots” /%, k = 1,2,..., M on the diagonal.

Thus, the DOA estimation problem can be reduced to that of finding ®. Like the other
subspace-based algorithms, ESPRIT relies on properties of the eigendecomposition of the
array covariance matrix. Recall the relation (64). Deleting the first and last rows of (64)
respectively, we get

U1 = AlT ; U2 = A2T 3 (83)

where U, has been partitioned conformably with A into the sub-matrices U; and Us.
Combining (82) and (83) yields

U,=A,9T=U,T'®T. (84)
Finally, defining ¥ = T ®T we obtain
U, =U,7 . (85)

Note that ¥ and & are related by a similarity transformation, and hence have the same

eigenvalues. The latter are of course given by /%, k = 1,2,..., M, and are related to
the DOAs by (80). The ESPRIT algorithm is now stated:

1. Compute the eigendecomposition of the array covariance matrix

2. Form U; and U, from the M principal eigenvectors
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3. Solve the approximate relation (85) in either a Least-Squares sense (LS-ESPRIT)
or a Total-Least-Squares [43, 44] sense (TLS-ESPRIT)

4. The DOA estimates are obtained by applying the inversion formula (80) to the
eigenvalues of ¥

It has been shown that LS-ESPRIT and TLS-ESPRIT yield identical asymptotic estima-
tion accuracy [84], although in small samples TLS-ESPRIT usually has an edge.
4.4.3 IQML and Root-WSF

Another interesting exploitation of the ULA structure was presented in [17], although the
idea can be traced back to the Steiglitz and McBride algorithm for system identification
[96]. The IQML algorithm is an iterative procedure for minimizing the DML criterion

V(0) = Tr{IIxR} . (86)

The idea is to re-parametrize the projection matrix Hf& using a basis for the nullspace
of A”. Towards this end, define the polynomial b(z) to have its M roots at e’%*, k =
1,2,..., M, ie.,

b(z) = 2M 4+ 012+ by = T (2 — €7%%) (87)

Then, by construction the following relation holds true

1 1
v by e 1 e 0 gt .. gitw
. . :0
: : : (88)
0 b bv-1 - L] aene L. git-Deu
& BPA=0.

Since B has full rank L — M, its columns do in fact form a basis for the nullspace of A,
Apparently the orthogonal projections onto these subspaces must coincide, implying

I1; = B(B¥B)'B” . (89)

Now the DML criterion function can be parametrized by the polynomial coeflicients b5 in
lieu of the DOAs 6. The DML estimate (53) can be calculated by solving

b = arg mki)n Tr{B(B¥B)"'B”R} (90)
and then applying (80) to the roots of the estimated polynomial. Unfortunately, (90)

is still a difficult non-linear optimization problem. However, [17] suggested an iterative
solution as follows

1. Set U=1

28




2. Solve the quadratic problem

b = arg mén Tr{BUB”R} (91)

3. Form B and put U = (]§’>H]A3)“1
4. Check for convergence. If not, goto Step 2
5. Apply (80) to the roots of B(z)

Since the roots of b(z) should be on the UC, [18] suggested using the constraint
by =0  k=1,2,....M (92)

when solving (91). Now, (92) does not guarantee roots on the UC, but it can be shown
that the accuracy loss due to this fact is negligible. While the above described IQML
(Iterative Quadratic Maximum Likelihood) algorithm cannot be guaranteed to converge,
it has indeed been found to perform well in simulations.

An improvement over IQML was introduced in [101]. The idea is simply to apply the
IQML iterations to the WSF criterion (69). Since the criteria have the same form, the
modification is straightforward. However, there is a very important advantage of using
the rank-truncated form stWfJf rather than R in (91). That is, after the second pass
of the iterative scheme, the estimates already have the asymptotic accuracy of the true
optimum! Hence, the resulting 1Q-WSF algorithm is no longer an iterative procedure:

1. Solve the quadratic problem

b = arg mén Tr{BBYU,WUH} (93)

2. Solve the quadratic problem

b = arg mti)n Tr{B(BHf})"lBHfJSWfJf} (94)

3. Apply (80) to the roots of b(z).

Note that this algorithm is essentially in closed form (if one accepts solving for the eigen-
decomposition and polynomial rooting as closed form), and that the resulting estimates
have the best possible asymptotic accuracy. Thus, the IQ-WSF algorithm is a strong
candidate for the “best” method for ULAs.
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5 Additional Topics

The emphasis in this paper is on computational methods for sensor array processing.
Because of space limitations, we have omitted several interesting topics from the main
discussion and instead give a very brief overview of these additional topics in this section.
We structure this section in the form of a commented enumeration of references to selected
specialized papers.

5.1 Number of Signals Estimation

In applications of model-based methods, an important problem is the determination of
M, the number of signals. In the case of non-coherent signals, the number of signals
is equal to the number of “large” eigenvalues of the array covariance matrix. This fact
is used to obtain relatively simple non-parametric algorithms for determining M. The
most frequently used approach emanates from the factor analysis literature [4]. The idea
is to determine the multiplicity of the smallest eigenvalue, which theoretically equals
L — M. A statistical hypothesis test is proposed in [91], whereas [124, 140] are based on
information theoretic criteria, such as Akaike’s AIC (an information theoretic criterion)
and Rissanen’s MDL (minimum description length). Unfortunately, the above mentioned
approach is very sensitive to the assumption of a spatially white noise field [136]. An
alternative idea based on using the eigenvectors rather than the eigenvalues is pursued in
the referenced paper. Another non-parametric method is presented in [29].

In the presence of coherent signals, the above mentioned methods will fail as stated,
since the dimension of the signal subspace then is smaller than M. However, for ULAs one
can test the eigenvalues of the spatially smoothed array covariance matrix to determine
M (93], with further improved performance in [61].

A more systematic approach to estimating the number of signals is possible if the
maximum likelihood estimator is employed. A classical generalized likelihood ratio test
(GLRT) is described in [77], whereas [123] presents an information theoretic approach.
Another model-based detection technique is presented in [118, 77], based on the weighted
subspace fitting method. The model-based methods for determining the number of signals
require calculating signal parameter estimates for an increasing hyphotesized numbers of
signals, until some pre-specified criterion is met. Hence, the approach is inherently more
computationally complex than the non-parametric tests. Its performance in difficult signal
scenarios is, however, improved and the model-based technique is less sensitive to small
perturbations of the assumed noise covariance matrix.

5.2 Reduced Dimension Beamspace Processing

Except for the beamforming-based methods, the estimation techniques discussed herein
require that the outputs of all elements of the sensor array be available in digital form.
In many applications, the required number of high-precision receiver front-ends and A/D
converters may be prohibitive. Arrays of 10* elements are not uncommon, for example in

30




radar applications. Techniques for reducing the dimensionality of the observation vector
with minimal effect on performance, is therefore of great interest. As already discussed
in Section 3.2.3, a useful idea is to employ a linear transformation

z(t) = T"x(t),

where T is L X R, with (usually) R <« L. The transformation is typically implemented in
analog hardware, thus significantly reducing the number of required A/D converters. The
reduced-dimension observation vector z(t) is usually referred to as the beamspace data,
and T is a beamspace transformation.

Naturally, processing the beamspace data significantly reduces the computational load
of the digital processor. However, reducing the dimension of the data also implies a loss
of information. The beamspace transformation can be thought of as a multichannel
beamformer. By designing the beamformers (the columns of T) so that they focus on a
relatively narrow DOA sector, the essential information in x(¢) regarding sources in that
sector can be retained in z(t). See e.g., [38, 116, 138, 142] and the references therein. With
further a prior: information on the locations of sources, the beamspace transformation
can in fact be performed without losing any information at all [5]. As previously alluded
to, beamspace processing can even improve the resolution (the bias) of spectral-based
methods.

Note that the beamspace transformation effectively changes the array propagation
vectors from a(f) into T*a(d). It is possible to utilize this freedom to give the beamspace
array manifold a simpler form, such as that of a ULA, [40]. Hence, the computationally
efficient ULA techniques (see Section 3 are applicable in beamspace. In [71], a transfor-
mation that maps a uniform circlar array into a ULA is proposed and analyzed, enabling
computationally efficient estimation of both azimuth and elevation.

5.3 Estimation Under Model Uncertainty

As implied by the terminology, model-based signal processing relies on the availability of
a precise mathematical description of the measured data. When the model fails to reflect
the physical phenomena with a sufficient accuracy, the performance of the methods will of
course degrade. In particular, deviations from the assumed model will introduce bias in
the estimates, which for spectral-based methods is manifested by a loss of resolving power
and a presence of spurious peaks. In principle, the various sources of modeling errors can
be classified into noise covariance and array response perturbations.

In many applications of interest, such as communication, sonar and radar, the back-
ground noise is dominated by man-made noise. While the noise generated in the receiving
equipment is likely to fulfill the spatially white assumption, the man-made noise tends to
be quite directional. The performance degradation under noise modeling errors is studied
in, e.g. [68, 121]. One could in principle envision extending the model-based estimation
techniques to also include estimation of the noise covariance matrix. Such an approach has
the potential of improving the robustness to errors in the assumed noise model [131, 123].
However, for low SNR's, this solution is less than adequate. The simultaneous estimation
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of a completely unknown noise covariance matrix and of the signal parameters poses a
problem unless some additional information which enables us to separate signal from noise,
is available. It is, for example, always possible to infer that the received data is nothing
but noise, and that the (unknown) noise covariance matrix is precisely the observed array
sample covariance matrix. Estimation of a parametric (structured) noise models is con-
sidered in, e.g. [16, 57]. So-called instrumental variable techniques are proposed, e.g. in
[104] (based on assumptions on the temporal correlation of signals and noise) and [132]
(utilizing assumptions on the spatial correlation of the signals and noise). Methods based
on other assumptions appeared in [79, 114].

At high SNR, the modeling errors are usually dominated by errors in the assumed sig-
nal model. The signals have a non-zero bandwidth, the sensor positions may be uncertain,
the receiving equipment may not be perfectly calibrated, etc. The effects of such errors
is studied e.g. in [39, 67, 108, 109]. In some cases it is possible to physically quantify the
error sources. A “self-calibrating” approach may then be applicable [86, 127, 119], albeit
at a quite a computational cost. In [108, 109, 120], robust techniques for unstructured
sensor modeling errors are considered.

5.4 Wideband Data Processing

The methods presented herein are essentially limited to processing narrowband!® data.
In many applications (e.g. radar and communication), this is indeed a realistic assump-
tion. However, in other cases (e.g. sonar), the received signal may be broadband. A
natural extension of methods for narrowband data is to employ narrowband filtering, for
example using the Fast Fourier Transform (FFT). An optimal exploitation of the data
entails combining information from different frequency bins [59], see also [125]. A simpler
suboptimal approach is to process the different FFT channels separately using a standard
narrowband method, whereafter the DOA estimates at different bins must be somehow
combined.

Another approach is to explicitly model the array output as a multidimensional time
series, using an auto-regressive moving average (ARMA) model. The poles of the system
are estimated, e.g. using the overdetermined Yule-Walker equations. A narrowband
technique can subsequently be employed using the estimated spectral density matrix,
evaluated at the system poles. In [106], the MUSIC algorithm is applied, whereas [75]
proposes to use the ESPRIT algorithm.

A wideband DOA estimation approach inspired by beamspace processing is the so-
called coherently averaged signal subspace method. The idea is to first estimate the
signal subspace at a number of FFT channels. Then, the information from different
frequency bins is merged by employing linear transformations. The objective is to make
the transformed steering matrices A at different frequencies as identical as possible, for
example by focusing at the center frequency of the signals. See, e.g. [50, 94] for further
details.

10Gignals whose bandwidths are much smaller than the inverse of the time it takes a wavefront to
propagate across the array, are referred to as narrowband.
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5.5 Fast Subspace Calculation and Tracking

When implementing subspace-based methods in applications with real-time operation,
the bottleneck is usually the calculation of the signal subspace. A scheme for fast compu-
tation of the signal subspace is proposed in [54], and methods for subspace tracking are
considered in [28]. The idea is to exploit the “low-rank plus o?I” structure of the ideal
array covariance matrix. An alternative gradient-based technique for subspace tracking is
proposed in [139]. Therein, it is observed that the solution of the constrained optimization
problem, W,

max Tr{W*RW}
subject to W*W =1

spans the signal subspace.

For some methods, estimates of the individual principal eigenvectors are required, in
addition to the subspace they span. A number of different methods for eigenvalue/vector!
tracking is given in [26]. A more recent approach based on exploiting the structure of the
ideal covariance is proposed and analyzed in [134]. The so-called fast subspace decomposi-
tion (FSD) technique is based on a Lanczos method for calculating the eigendecoposition.
It is observed that the Lanczos iterations can be prematurely terminated without any
significant performance loss.

5.6 Signal Structure Methods

Most “standard” approaches to array signal processing make no use of any available in-
formation of the signal structure. However, many man-made signals have a rich structure
that can be used to improve the estimator performance. In digital communication ap-
plications, the transmitted signals are often cyclostationary, i.e. their autocorrelation
functions are periodic. This extra information is exploited in e.g. [1, 133, 90], and algo-
rithms for DOA estimation of cyclostationary signals are derived and analyzed. In this
approach, the wideband signals are easily incorporated into the framework, and there can
be more signals than sensors, provided not all of them share the same cyclic frequency.

A different approach utilizing signal structure is based on high-order statistics. As is
well-known, all information about a Gaussian signal is conveyed in the first and second
order moments. However, for non-Gaussian signals, there is potentially more to be gained
by using higher moments. This is particularly so if the noise can be regarded as Gaus-
sian. Then, the high-order cumulants will be noise-free, because they vanish for Gaussian
signals. Methods based on the fourth-order cumulant are proposed in [82, 24], whereas
[92] proposes to use high-order cyclic spectra (for cyclostationary signals).

A common criticism to both methods based on cyclostationarity and those based on
high-order statistics is that they require a considerable amount of data to yield reliable

11The referenced paper considers tracking of the principal left singular values of the data matrix. Math-
ematically, but perhaps not numerically, these are identical to the eigenvectors of the sample covariance
matrix.

33




results. This is because the estimated cyclic and high-order moments typically converge
more slowly towards their theoretical values as the number of data is increased.

5.7 Time Series Analysis

The DOA estimation problem employing a ULA has strong similarities with time series
analysis. Indeed, an important pre-cursor of the MUSIC algorithm is Pisarenko’s method
[81] for estimation of the frequencies of damped/undamped sinuoids in noise, when given
measurements of their covariance function. Likewise, Kung’s algorithm for state-space
realization of a measured impulse response [65] is an early version of the ESPRIT algo-
rithm. An important difference between the time series case and the (standard) DOA
estimation problem is that the time series data is usually estimated using a sliding win-
dow. A “semsor array-like data vector” x(t) is formed from the scalar time series y(¢) by
using
x(t) = [y@®),yt+1),...,y(t+L—-1)" .

The windowing transformation induces a temporal correlation in the L-dimensional time
series x(¢), even if the scalar process y(t) is temporally white. This fact complicates the
analysis, as in the case of spatial smoothing in DOA estimation, see e.g. [25, 103, 61].
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6 Applications

The research progress of parameter estimation and detection in array processing has
resulted in a great diversity of applications, and continues to provide fertile ground for
new ones. In this section we discuss three important application areas, and in addition
demonstrate the performance of the algorithms on a real data example.

6.1 Personal Communications

Receiving arrays and related estimation/detection techniques have long been used in High
Frequency communications. These applications have recently reemerged and received
a significant attention by researchers, as a potentially useful “panacea” for numerous
problems in personal communications (see e.g. [130, 107, 3, 105]). They are expected
to play a key role in accomodating a multiuser communication environment, subject to
severe multipath.

One of the most important problems in a multiuser asynchronous environment is
the inter-user interference, which can degrade the performance quite severely. This is
the case also in a practical Code-Division Multiple Access (CDMA) system, because the
varying delays of different users induce non-orthogonal codes. The base stations in mobile
communication systems have long been using spatial diversity for combatting fading due
to the severe multipath. However, using an antenna array of several elements introduces
extra degrees of freedom, which can be used to obtain higher selectivity. An adaptive
receiving array can be steered in the direction of one user at a time, while simultaneously
nulling interference from other users, much in the the same way as the beamforming
techniques described in Section 3.

Figure 5 illustrates a personal communication scenario involving severe multipath.
The multipath introduces difficulties for conventional adaptive array processing. Unde-
sired cancellation may occur [128], and spatial smoothing may be required to achieve
a proper selectivity. In [3], it is proposed to identify all signal paths emanating from
each user, whereafter an optimal combination is made. A configuration equivalent to the
beamspace array processing with a simple energy differencing scheme serves in localizing
incoming users waveforms [89]. This beamspace strategy underlies an adaptive optimiza-
tion technique proposed in [105], which addresses the problem of mitigating the effects of
dispersive time varying channels.

Communication signals have a rich structure that can be exploited for signal separation
using antenna arrays. Indeed, the DOAs need not be estimated. Instead, signal structure
methods such as the constant-modulus beamformer [45] have been proposed for directly
estimating the steering vectors of the signals, thereby allowing for blind (i.e., not requiring
a training sequence) signal separation. Techniques based on combining beamforming
and demodulation of digitally modulated signals have also recently been proposed (see
[70, 110, 95, 111]). It is important to note that the various optimal and/or suboptimal
proposed methods are of current research interest, and that in practice, many challenging
and interesting problems remain to be addressed.
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Figure 5: Mobile Radio Scenario with an Adaptive Array

6.2 Radar and Sonar

Modern techniques in array processing have also found an extensive use for in radar and
sonar [69, 78, 47, 32, 48]. The antenna array is, for example, used for source localization,
interference cancellation and ground clutter suppression.

In radar applications, the mode of operation is referred to as active. This is on account
of the role of the antenna array based system which radiates pulses of electromagnetic
energy and listens for the return. The parameter space of interest may vary according to
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the geometry and sophistication of the antenna array. The radar returns enable estimation
of parameters such as velocity, range, direction of arrival of targets of interest [112].
More recently, researchers have focused on an extension of the spatial sampling concept
of an array to synthesize a highly resolving array with a moving airborn sensor which
periodically transmits/receives electromagnetic energy. Such a synthetic aperture radar
(SAR) system is pictorially shown in Figure 6.

Range Resolution= ¢ v ( Beam Width angle)

p <

Point Targets

Cross-Range Resolution = A
o> Wy

Figure 6: Synthetic Aperture Radar System

The fraction of the scattered energy which is reflected towards the synthesized array,
when appropriately processed, i.e. integrated over the range and cross-range (region along
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the flight plan), and adequately deconvolved, result in the reflectivity of the background,
thus permitting its imaging. Numerous important areas of applications in remote sensing,
include environmental studies (forrestation etc.), meteorological predictions, oceanography
and many others.

Sonar applications, on the other hand, use acoustic energy and can operate in an active
as well as passive mode. In a passive mode, the receiving array is generally in a listening
mode to detect and process any acoustic energy emanating from sources. It thus has the
capability to locate distant sources. Deformable array models are often used in sonar,
as the receiving antenna is typically towed under water [69]. Techniques with piecewise
linear subarrays are used in the construction of the overall solution.

In an active mode, a sonar system emits acoustic (electromagnetic arrays are also used
underwater) energy and monitors and retrieves whatever echo. This again can be used
for parameter estimation, such as bearings and velocity etc., using the delay of the echo.
Despite its limitations due to the speed of sound, sonar together with related estimation
techniques, remains a reliable tool for range, bearing estimation and other imaging tasks
in underwater applications. However, the difficult propagation conditions under water
may call for more advanced signal modeling, such as in matched field processing (see e.g.

10]).

6.3 Industrial applications

Sensor array signal processing techniques have drawn much interest from industrial ap-
plications, such as manufacturing and medical applications. In medical imaging and
hyperthermia treatment [35, 36], circular arrays are commonly used as a means to focus
energy in both an injection mode as well as reception mode. It has also been used in treat-
ment of tumors [34]. In electrocardiograms, planar arrays are used to track the evolution
of wavefronts which in turn provide information about the condition of an individual’s
heart. Array processing methods have also been adopted to localize brain activity using
biomagnetic sensor arrays (SQUID sensors) [74]. It is expected that the medical appli-
cations will proliferate as more resolution is sought, e.g. signals emanating from a womb
may be of more interest than those of a mother.

Other applications in industry are almost exclusively in automatic monitoring and fault
detection/localization. In engines, sensors are placed in a judicious and convenient way to
detect and potentially localize faults such as knocks or broken gears [46]. One emerging
and important application of array signal processing is in using notions from optics to
carry out tasks in product quality assurance in a manufacturing environement [2], and in
object shape characterization in tomography [72, 73]. An semiconductor manufactoring
example is provided in the following.

As noted earlier, it is often desired to minimize a human input in a manufacturing
environment, for a number of reasons (e.g. cost, reliability, etc.). Sensor array processing
applications in such an environment have recently been reported. An array of photosensors
is used to monitor reflections from a surface, whose image is given in Figure 7. This
image could conceptually represent a number of products, but in this case it is that
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of a semiconductor wafer which bears a scratch which, for obvious reasons needs to be
detected and its position estimated. In Figures 8 and 9, the ESPRIT method is used to
estimate the parameters of the diagonal line, namely the coordinates (pixel offset from
the left upper corner) as well as the angle of inclination with respect to the vertical. In
these Figures, the parametric solution is compared to a more conventional non-parametric
method that is more well-known in the area of tomography — the Hough transform. The
ESPRIT method performs at least as good as the Hough transform, and on account of
its simple implementation, ESPRIT is a promising technique for such applications. Note
that the Hough transform requires a great deal of data which in turn is memory intensive,
while the computational as well as the storage requirements with ESPRIT is much more
advantageous.
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Figure 7: Semiconductor chip with an inscribed line
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Figure 8: Line angle estimate using the ESPRIT (dashed vertical line) and the Hough
Transform (solid line) methods.
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Figure 9: Line offset estimate using the ESPRIT (dashed vertical line) and the Hough
Transform (solid line) methods.
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7 Real Data Example

In this section, the viability of the various methods is tested on experimental radar data,
provided by Professor S. Haykin of McMaster University. The receiver is an L = 32-
element uniform linear array, which is mounted vertically so that the DOA is in this case
the elevation angle. The sensors have a horizontal polarization. The array is located on
the shore of a lake, whereas the transmitter is on the other side. Thus, the surface of the
lake will ideally generate a specular multipath component. The orientation of the array
is such that the direct and reflected waves impinge approximately symmetrically with
respect to the broadside. Five data sets have been processed, in which the separation
between the two signal paths (in electrical angles, see (28)) varies between A¢ = BW/5
and A¢ = BW/3, where BW = 27/L represents the standard beamwidth of the array
(in radians).

The given five data sets were processed using the previously presented methods as-
suming a perfect ULA array response (28). In two of these data sets, none of the tested
methods was able to locate two signal components in the vicinity of the postulated true
values. In the other three sets, fairly good results were obtained. The results from two
of the latter data sets are presented below. There are many possible reasons for the ob-
served variability in the data. The most obvious is of course uncertainties in the receiving
equipment, for example due to mutual coupling between sensor elements. The calibration
requirements are generally quite high if one wants to achieve a resolution well within the
beamwidth of the array. Other possible sources of errors are insufficient signal-to-noise
ratio (SNR), spatial correlation of the noise field, etc. To illustrate the latter point, the
eigenvalues of a typical sample covariance are depicted in Figure 10, along with a real-
ization from the theoretical model. One should also bear in mind that in a real data
experiment, there are actually no true values available for the estimated parameters. The
postulated A¢ is calculated from the geometry of the experimental setup, but in practice
the multipath component may very well be absent from some of the data sets, or it may
impinge from an unexpected direction. In the following, the results from two successful
data sets are presented. The sets are labeled A and B for reference. To obtain an idea
of the statistical variability of the estimates, the data sets, each containing N = 127
snapshots, are first divided into 4 subsets of 32 samples (the last two subsets overlap
by one snapshot). As a first attempt, the various spectral-based methods are applied.
Since the signal components are expected to be highly correlated or even coherent, the
spectral-based methods are likely to fail. However, the signals can be “de-correlated”
by pre-processing the sample covariance matrix using forward-backward averaging (41).
This has little or no effect on the beamforming techniques, but will be seen to improve the
performance of the spectral-based subspace methods, particularly so for the Min-Norm
method.

In Figure 11, the results from applying the traditional beamforming and the Capon
methods to the 4 different A subsets are presented. The “spatial spectra” are all nor-
malized such that the peak value is unity. The “true” DOAs (electrical angles, measured
in fractions of the beamwidth) are indicated by vertical dotted lines in the plot. It is
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Figure 10: Distribution of eigenvalues for 32-element uniform linear array. Simulated
data and real data set A.

clear that the beamforming methods fail to resolve the sources in this case. In Figure
12, the results for the MUSIC method with and without forward-backward averaging are
shown. The presence of the two signal components is visible for the FB-MUSIC method,
but the resolution capability is still not quite adequate. Finally, the Min-Norm method
is applied and the resulting normalized “spatial spectra” are depicted in Figure 13. The
Min-Norm method is known to have better resolution properties than MUSIC because of
the inherent bias in the radii of the roots [55, 62], and using forward-backward averaging
we see that Min-Norm performs satisfactorily in this scenario. Moving on to the paramet-
ric methods, we first apply the TLS ESPRIT method with forward-backward averaging
and the WSF method. The results for both methods are excellent, as seen in Figure 14.
The statistical variability appears to be smallest for the WSF method, as predicted by
theory. The estimates from the SML and DML methods are virtually identical to those of

44



BEAMFORMING
T TN T

Normalized Spectrum
[=
o
Normalized Spectrum
o
w

0.31

. 0 0. . 0 0.
Beamwidths Beamwidths

Figure 11: Spatial spectra for the beamforming (left) and Capon (right) methods. The
results from the 4 subsets of data set A are overlayed. The horizontal azxis contains the
electrical angle in fractions of the beamwidth. “True” DOAs indicated by vertical dotted
lines.

WSF for these data, and they are therefore not included in the plot. Finally, we applied
the ESPRIT and WSF methods using all N = 127 snapshots from data set A, but with
varying numbers of sensors. The results are shown in Figure 15. One can conclude that
23-25 sensors are required to resolve the signals in this data set. This corresponds to a
source separation of about A¢ = 0.23 beamwidths. The signal-to-noise ratio on data set
A is estimated (using stochastic maximum likelihood) to SNR=15 dB for the signal at
¢ = 0.20 and SNR=12 dB for the signal at ¢ = —0.20. The signal correlation is estimated

to
S 2 COT ) I
VEls1 ()1 Ells2 ()]
This clearly indicates a specular multipath component, since the signals are nearly coher-
ent and have a phase difference close to 180°.
The corresponding numbers for data set B are SNR=6 dB for the signal at ¢ = 0.14,
SNR=2 dB for the signal at ¢ = —0.36 (estimated locations) and

—2.955

P12 ~ 0.99 70567

Hence, data set B appears to be more noisy than set A, and the reflection in the lake ap-
pears to have caused a phase shift different from 180°. For this data set the postulated sig-
nal separation is smaller (0.21 BW) than that of set A (0.31 BW). The normalized “spa-
tial spectra” for the Min-Norm method are shown in Figure 16. With forward-backward
averaging, a second peak at about —0.4 BW is clearly visible. The TLS ESPRIT method
did not produce satisfactory results on data set B, with or without forward-backward
averaging. However, the more advanced parametric methods still appear to be useful.
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Figure 12: Spatial spectrum for the MUSIC method, with (right) and without (left)
forward-backward averaging.

Again, the estimates from the WSF, SML and DML methods are virtually identical us-
ing all sensors, as seen in Figure 17. There is a rather clear trend in the estimates, and
one might suspect non-stationary conditions during the data collection. Nevertheless, the
different parametric methods were also applied using all N = 127 snapshots from data
set B. In Figure 18, the estimates are plotted versus the number of sensors used by the
algorithm. On these data, the estimates stabilize at about 26-28 sensors, corresponding
to a source separation of about A¢ = 0.21 beamwidths. However, as for the Min-Norm
method there is a quite substantial bias in the estimate of the DOA at ¢ < 0 (the mul-
tipath), assuming that the given “true DOAs” are correct. One could perhaps attribute
this bias to the time-variations indicated in Figure 14.
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Figure 13: Spatial spectrum for the Min-Norm method, with (right) and without (left)
forward-backward averaging.

47



Parametric Methods
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Figure 14: Estimated electrical angles (in beamwidths) using the WSF and forward-
backward TLS ESPRIT methods. The horizontal axis is the 4 different data subsets.
“True” DOAs indicated by horizontal vertical lines.
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Figure 15: Estimated electrical angles (in beamwidths) using the WSF and forward-
backward TLS ESPRIT methods on the entire data set A. The horizontal azis is the
number of sensors employed by the estimator. “ITrue” DOAs indicated by horizontal ver-
tical lines.

49



MIN-NORM

FB MIN-NORM

0.9F 0.9
0.8 08}
0.7 07

06F 06}

Normalized Spectrum
Normalized Spectrum
o
0

-2 -1.5 -1 -05 0 05 . 0
Beamwidths Beamwidths

Figure 16: Spatial spectrum for the Min-Norm method, with (right) and without (left)
forward-backward averaging.
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Figure 17: Estimated electrical angles (in beamwidths) using the WSF, SML and DML
methods. The horizontal azis is the 4 different data subsets. “True” DOAs indicated by
horizontal vertical lines.
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methods on the entire data set B. The horizontal azis is the number of sensors employed
by the estimator. “True” DOAs indicated by horizontal vertical lines.
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8 Conclusions

The depth acquired from the theoretical research in sensor array processing reviewed in
this paper, have played a key role in helping identifying areas of applications. New real-
world problems solvable using array signal processing techniques are regularly introduced,
and it is expected that their importance will only grow as automatization becomes more
widespread in industry, and as faster and cheaper digital processing system become avail-
able. This manuscript is not meant to be exhaustive, but rather as a broad review of the
area, and more importantly as a guide for a first time exposure to an interested reader.
The focus is on algorithms, whereas a deeper analysis and other more specialized research
topics are only briefly touched upon.

In concluding the recent advances of the field, we think it is safe to say that the
spectral-based subspace methods and, in particular, the more advanced parametric meth-
ods have clear performance improvements to offer as compared to beamforming methods.
Resolution of closely spaced sources (within fractions of a beamwidth) have been demon-
strated and documented in several experimental studies. However, high performance is
not for free. The requirements on sensor and receiver calibration, mutual coupling, phase
stability, dynamic range, etc. become increasingly more rigorous with higher performance
specifications. Thus, in some applications the cost for achieving within-beamwidth reso-
lution may still be prohibitive.

The quest for algorithms that perform well under ideal conditions and the under-
standing of their properties is in some sense over with the advances over the past years.
However, the remaining work is not the less challenging, namely to adapt the teoretical
methods to fit the particular demands in specific applications. For example, real-time
requirements may place high demands on algorithm simplicity, and special array and sig-
nal structures present in certain scenarios must be exploited. The future work, also in
academic research, will be much focused on bridging the gap that still exists between
theoretical methods and real-world applications.
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